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ABSTRACT

This report is concerned with the investigation of skin-friction
and heat-transfer in the two-dimensional flow of a viscous com-
pressible fluid.

| The boundary-layer equations are first transformed by the
Howarth-Stewartson transformation and then it is shown that for
fluids of Prandtl Number unity, if the Chapman viscosity law be
assumed to hold, then any boundary-layer problem with the free
stream Mach Number different from zero can be formally reduced
to a problem for which the free stream Mach Number is equal to
zero.

The momentum method is then used to solve i:he boundary-
layer equations in the Howarth-Stewartson form, for the case when
the free stream Mach Number is zero. The basic equations developed
are first used to solve the case of those specific pressure gradients
which lead to "similarity flows'. Other investigators have solved
the exact equation for these flows on the differential analyser. The
results obtained in this report, with the aid of very simple methods,
agree to within a few percent with these more exact but laborious
computations.

The use of the method for the case of arbitrary pressure gradients
is then developed. Three ways of solving the resulting equations are
discussed. In particular, an integral solution for the square of the
momentum thickness, analogous to the one existing for incompressible
fluids but with different exponents, is given. The application of the

method is demonstrated by solving an illustrative example..
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LIST OF SYMBOLS.

(Eq. Nos. indicate equation which defines the symbol)

i ]
A  constant in 4w, = Ax also in Eq. 5-33

—_
R~
S~

heat-transfer, Egs. 3-13 and 4-7c

& also speed of sound

B  constant, Eq. 5-33

£ wall temperature function, Eq. 3-6a and 4-5c¢

C constant of viscosity law, Eq. 2-7 also constant in Eq. 5-26

Cp specific heat at constant pressure

+ function, Egs. 3-1 and 4-2a
%,,%.p functions of A and A , Eqgs. 3-16
‘enthalpy

h
s~
A non-dimensional enthalpy Eqs. 3-5 and 4-2b
¥ total enthalpy

K

heat transfer, Eq. 2-20b

% coefficient of heat conduction, Eq. 2-20b
coefficients, Eqs. 4-13

M  also Mach Number

Pr. Prandtl Number

£ "
’m'}l functions of A and A , Egs. 3-19
P g

P  also pressure
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2

also exponent in  a, = Ax

absolute temperature

components of velocity on Xx-y plane

components of velocity on x-9 plane
coordinate axes, Eqgs. 2-5

coordinate axes along and normal to body surface
skin friction, Eqs. 3-11 énd 4-7a

( 4 =0,1, «..... 4), coefficients, Eq. 3-1

displacement thickness, Eq. 4-7b

( 4 =0,1, ....... 4) coefficients, Eq. 3-5
ratio Sp.
Cqr

ratio of boundary-layer thicknesses, Eq. 3-10

velocity and temperature boundary-layer thickness .

respectively
displacement thickness Eq. 3-15a
momentum thickness Eq. 3-15b

k!

ratio 5

distorted Y -coo rdinate, Eq. 2-12b .
similarity variable, Eq. 4-1
"enthalpy thickness'", Eq. 3-15c
“enthalpy flux thickness'", Eq. 3-15d

defined by -~ 24, , Eq. 3-3

pressure gradient parameter in similarity flow, Eq.

coefficient of viscosity

coefficient of kinematic viscosity
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) L

ratio ‘Sv

density

skin friction, Eq. 2~20a

stream function, Eqs. 2-6 and 4-2a

SUBSCRIPTS

in "external'' flow

at velocity maximum point
at stagnation point

at separation point

at wall

derivatives

at upstream infinity
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I. INTRODUCTION.

The techniques for solving the Prandtl boundary-layer equations
for incompressible fluids are highly developed. Exact solutions for
the velocity boundary-layer exist for zero pressure gradient and for
certain other specific pressure gradients. The Karman-Pohlhausen
method gives reasonably good estimates of the skin-friction for
arbitrary favourable pressure grédients. The temperature boundary-
layer equation has also been solved, exactly for the case of zero
pressure gradient and by approximate methods for arbitrary pressure
gradients. An account of these methods is given in Reference [1] .

In the case of compreésible fluids, however, a comparatively
fewer number of solutions exist. Here, the problem is complicated
by the existence of too many parameters like pressure gradient,

Mach number and Prandtl number, and also by the fact that the
velocity and temperature boundary-layer equations are now coupled
and have to be solved simultaneously. Most of the existing solutions
are limited in application because of restrictive-assumptions _placed
on the parameter involved. Thus, either the pressure gradient is
assumed equal to zero, or the Mach number is assumed to be negli-
gible, or the Prandtl number is assumed to be equal to unity. All or
any of these assumptions simplify the eq.ua’cio.ns considerably, but
limit the applicability of the solutions.

In this report the prdblem studied is that of heat-transfer and
skin-friction in two dimensional compressible laminar boundary-layers.

The usual Prandtl boundary-layer assumptions are made to derive the



basic equations pertaining to the problem. These equations are then
transformed by the Howarth transformation as modified by Stewartson
(hereafter referred to as the Howarth-Stewartson transformation)

and using the Chapman viscosity relation

ML I

Mo Te
where, in the initial formulation of the problem, it is not necessary
to assume C to be a constant. In general C will be a function of
the enthalpy - A i.e. C=C(R). In this report C is assumed to
be a constant; but it should be noted that the value of the constant
is not restricted to unity. It can take on any constant value depending
on where the above linear relation is matched to the actual /U~ -T
curve. \

These boundary-layer equations, in the Howarth-Stewartson
form, with C = constant, exhibit an interesting feature. If the
special forms of the equations for the two cases of M =0, arbitrary

Pr. and Fr.=1, arbitrary M be compared, it is found that a formal
correspondence exists between the special forms if the Fk. is assumed
equal to unity in both cases. This correspondence then states that
for Pr.=1, any boundary-layer problem with M % O can, in principle,
be formally reduced to a problem with M = 0 , provided C be assumed
to be constant, A special case of this correspondence is the c.orrela—
tion of flows at M ¥ 0 and Pr. =l past insulated bodies with incom-
pressible flow. These questions are discussed in Chapter II.

The present report is concerned only with flow at M =0 and



arbitrarsr Pr. . However, with the aid of the correlation just men-
tioned, the results obtained for the special case of Pr.=1, may be
applied to the case where M # O . As mentioned earlier, itis

always assumed that C = constant, although not necessarily unity.

In Chapter III, an extension of the Karman-Pohlhausen method
is applied to the boundary-layer equation in the Howarth-Stewartson
form. This gives us the two basic differential equations of the
problem. Chapter IV deals with the application of this method to
the Falkner-Skan similarity flows. The two ordinary differential
equations derived in fhe previous chapter, in the case of similarity
flows, reduce to two algebraic equations. These algebraic equations
are then solved for various cases and numerical results obtained for
the skin-friction, heat-transfer and the ratio of the two boundary-
layer thicknesses. A few of the cases studied here have been pre-
viously treated by other investigators who solved the exact boundary-
layer equations for the same similarity flow, on the differential
analyser. The values of skin-friction and heat transfer obtained in
this report, with the aid of very simple methods, agree to within
a few percent with these more exact but laborious computations.

The case of arbitrary pressure gradients is dealt Wit‘h in
Chapter V. In this case the basic differential equations may be
numerically integrated to obtain a solution. This is, in general,
tedious and two approximate solutions to the equations are also
suggested. One is a polynomial solution, which will give reasonably
good results for cases when the wall temperature is not very different

from the free stream temperature. The other involves rewriting the
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basic differential equations in a simpler form and then making certain
linearizing épproximations, similar to those made by Holstein and
Bohlen for incompressible fluids, This yields a solution, for the
momentum thickness in the form of an integral, the integrand being
a function of the arbitrary pressure gradient raised to some power.
The value of the exponent can be easily obtained for any given case.
The distribution of skin-friction and heat-transfer along the wall can
then be computed very rapidly and fairly accurately by using the
integral solution. A hypothetical problem is then solved by each of
the three methods and the numerical results compared to show their
relative accﬁ.racies.

It is believed that the case of M £ O and PrR.% 1 can also be
treated by the methods employed in this report. However, no calcu-

lations have been carried out.



II. BASIC EQUATIONS.

2.1. The Boundary-Layer Equations.

The boundary-layer equations for the steady two-dimensional

flow of a viscous compressible fluid are:

Continuity
(gu), +(f’v)%. = o , (2-1)
Momentum |
p(uuy + u‘u\*) + p, = o© (2-2a)
by = © (2-2b)
Energy

§ (A gy + w}%) | (#”) |—PR N‘) (2-3)

Boundary Conditions

u = v = o0 at Y = © (2-4a)
TR TR €S at Y = (2-4b)
LSS TN SNTS at Y = O (2-4c)
b= R 5 4= 4,00 at Y = (2-4d)
where:
* = T = enthalpy
4 = . %—1 = total enthalpy

and the other notation is standard. The subscript "4 " refers to
conditions at the wall or body surface, and the subscript "' e " to
external conditions i.e. conditions at the outer edge of the boundary-
layer. The only assumptions made in deriving the above equations are
the usual Prandtl boundary-layer assumptions and that the curvature

of the body surface is negligible.



2.2. Howarth-Stewartson Transformation.

We now introduce the Howarth-Stewartson transformation to
distort the X and Y co-ordinates (along and normal to the wall
respectively) to some new co-ordinates X and Y . This transfor-

mation, as given in Reference [2] is:

SR (N (L

A ) (AL

where the subscript " o ' refers to conditions at upstream infinity.

The stream function Y on the X-y plane is defined by:

$io

w = ? ( \V}) X = CONST, (2-.6a)
vo= - Sa(y)) (2-6b)
. 9 . x / \(,,,: CONST,
If the Chapman-Rubesin®® viscosity law
/"‘ = C .:_r._. ' (2-7)

/‘TOO Too

where C = C(h), be assumed to hold., then by using the transformation
of Eqs. 2-5 and the relation of Eqs. 2-6, the boundary I1ayer equations,
Eqs.2-1, 2-2 and 2-3, can be transformed to two partial differential
equations in Y and jf on the X-Y plane. These equations, together

with the boundary conditions, are given below:



Momentum Equation

Yoy = WaWyy - j <“°°M ) a: ) = VM<C\K(Y)Y (2-8a)

Energy Equation

2

Wi %y = 22 2 fefics om)i) ] e

Boundary Conditions

¥y = (WY) = 0 at Y = O (2-9a)

X = CoNST.

(\VY )X = CONST,
¥
} _ = }Q(X) . at Y = o (2-9d)

a, M (%) - at Y = o (2-9b)

i

ho(X)  at Y =0  (2-9¢)

The boundary functions 4,(X) , %W(X) etc. are related in a
simple manner to the corresponding functions 4,(x), rQwa) etc.
on the x-)# plane. Me is the Mach Number of the external flow

Ue

and is given by M, = ol
e

2.3. Special Forms of the Equations.

Some special forms of Eqs. 2-8 will now be discussed.

PR.= | , arbitrary Mach Number

In this case, the momentum equation (Eq. 2-8a) remains unaltered,
but the energy equation (Eq. 2-8b) simplifies since the dissipation

term, (l—PR)( ) ( Y)Y , is now zero. The total dissipation, how-



ever, is not zero and is implicitly taken into account by using 1}«

instead of 4),_ . The resulting equations for this case are:

\PY \ny - \PX\VYY - ‘g‘;(awMe)i%%%l = ])N(C\YY‘I)Y (2-10a)
Vobe - Wty = Yw(Cfy,), (2-10b)

M= 0, arbitrary Prandtl Number

If the Mach Number of the free stream is zero, then the effect
of dissipation is negligible. This means that the explicit dissipation
2 2
. - _ ae J_ . .
term in the energy equation, (1 PR')(E;) 5 (‘Vy) v » is again zero
(2s in the case for F.=1). This can be readily shown to be true by
writing the equations in non-dimensional form and letting M—o0.

Since we can write j as

|

| . i} .
‘g\; o W vl ‘ﬁf;* ()M

where u(—oo,\*.) =U and M = %‘:—— is the Mach Number of the free

o

stream, it follows then that for M =0 | 3« may everywhere be
replaced by ‘?v . This is also a consequence of neglecting dissipa-
tion, since dissipation is considered implicitly when '3' is used in-
stead of h in the equations.

Further, as M - 0, both a4, and a,—> o, but the ratio

gﬂ —> | , Hence (am Me) should be replaced by W .
o9

Finally, as M- O, the transformation relations of Eqgs. 2-5

also simplify. Since 9_@) = | , we see from Eq. 2-5a, that the Xx-
Qoo

coordinate does not distort and X = X . The \j, -co-ordinate, how-
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: ks
ever, does distort and Eq. 2-5b gives Y =% where = J (i\)d
q 8 " =1 5. 4t
Using the simplification given above Eqs. 2-8 for this case

reduce to:

W*l\'/‘l" - Y, ¥ - h M due vw(cxy“\n (2-11a)

Pr.

W-’l&"_ R AYE Zgg(c’k,oq (2-11b)

2.4. Correlation between flows for M#% 0 and M=o

A comparison of Eqs. 2-10 and Eqs. 2-11 brings out the striking
fact that if it be asgumed that Pr.=1 and C = constant, then the boun-
dary-layer equations for M #0 and for M=0 are formally identical,
with the following' correspondence:

. Pe.=1; C = const.
M=+ 0 M

i
o)

X corresponds to

Y " " y(
P e )
(a” Me) 1" " u

Thus, for Pk =1, any boundary-layer problem with M# 0 may, in

e

principle, be formally reduced to a problem with M= 0 provided C
be assumed to be constant.

It should be noted that the correspondence emphasizedby Stewart-
son(z) between the compressible and incompressible boundary-layer
equations, is only a spe’:cial case of the more general correspondence

shown above. He considered the case of no heat transfer, and for
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that case.the condition M=o implies incompressible flow. Thus,
in the case of Pr.= \-0, and no heat transfer, the compressible
boundary-layer equations (i.e. for M=% 0 ) can be reduced to the
incompressible boundary-layer equations { i.e. M= 0 ), In the
correspondence shown above., the condition of no heat transfer
is not required.

In this report only those problems will be considered for
which M= 0 | No restrictions will be placed on either the . No.
or the pressure gradient in the external flow. The method outlined
herein will thus enable us to get the skin-friction and heat-transfer
for all problems where the M= 0 and also, by virtueof the corres-
pondence shown above., to those problems'with Mx 0 for which the
k.= | . Problems for which Mxo and % %\ arenot dealt
with in this report, but it is felt that the method given, with suitable
modifications, will apply to these cases also.

2.5. Equations for M =0 and resulting mapping.

In section 2.4 we have seen that for the special case when
the Howarth-Stewartson transformation relations of Eqs. 2-5 reduce

to the following equations:
X = x (2-12a)
kK
_ = F\d
v o= k¢ g <f,,> ¢ (2-12b)

and the boundary-layer equations, in terms of Y and ’9\, , for

C = constant, are given by



-11-

. _ £. 'du ' '))’ -13a

¥y - Y. V¥ AT e = OOWA'( (2-13a)
—_ \ — —)); -

W &,'( Y ‘P»\n o 4)\1] n (2-13b)

where Z\); = C’J%, , is a sort of effective viscosity. For C=1 , ob-
viously '))o: = 3)00 . In all subsequent work C will be assumed equal
to unity, although it should be noted that if C #F | , one would simply
have to replace Y, by voj to take this into account. The constant C

of the Chapman linear viscosity law can be used to match the viscosity
with Sutherland value at any one desired point. The two curves, how-
ever, will not be tangential at this point. The value C = | corrlesponds
to matching the values at upstream infinity. If, however, the curves
are matched at the wall, so that we get a more correct value of vis-
cosity near the wall where the viscous stresses are largest, then

the value of the constant C will be given by

./2_
c = (TW) (Too + S > (2-14)
Too T+ S

where S is the Sutherland Constant corresponding to the temperature

Ty . It should be noted, however, that since C is assumed to be
a constant, Eq. 2-14 will be valid only if the wall temperature Tl ,is
constant, or alternatively, when T, is varying some average value
of T, is used.

The boundary layer equations (Eqs. 2-13) for M=0'and C =
const, =1, caﬁ be written in terms of velocities instead of the stream

function ¥ . On the JC——"j, plane, the components of velocity ® and
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V¥ are given by Egs. 2-6. On the X-% plane, the Howarth-

Stewartson plane for M =0 | the components of velocity are given

. »*
by & and V¥V where

*
w

i

b

(W’I) x = consT, =
*

v = ‘(WX)YP CONST,

i

(T )

Using these relations, Eqs. 2-13 become

Continuity
A v * 8]
2 + =
1
Morﬁentum
U, + . - .{‘.Me due = voou,m
”( % dx
Energy
h * Y
_ . K
Boundary conditions
-g\ = ‘y\'w(x) at 11 = Q
‘R, = ‘£\e = A£~ 00 = CoNST. at ')2 = &

(2-15a)

(2-15b)

(2-16a)

(2-16Db)

(2-16c¢)

(2-17a)

- (2-17b)

(2-17c)

(2-17d)
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Boundary condition, Eq. 2-17d, ‘states that since M=0 | in
the external non-viscous part of the flow, the temperature, and hence
the enthalpy is constant (assuming, of course, that C| does not vary).

2.6, Integral form of the Equations.

The boundary layer equations, Eqs. 2-16 b and ¢, are two
simultaneous partial differential equations. From these equations
one may, however, derive two sifnultaneous ordinary differential
equations by integrating them with respect to i . If the exact velocity
and temperature boundary layer profiles were known, these would
satisfy the integrated equations exactly. One method of using these
integral relations for finding approximate solutions is the following.
One assumes that in their dependence on 1 the functions describing
the velocity and the temperature can be approximated to by simple
functions, say polynomials, which depend only on a finite number of
unknown parameters which are functions of ¢ . These parameters
may then be determined from certain boundary conditions and matching
conditions and from integral relations. ‘This is the Karman-Pohlhausen
method. It is known that, at least for incompressible fluids, this
method gives gbod results in regions of favourable pressure gradient.

We first define four thickness parameters on the x-n plane.

These are

) dn (2-18a)

o
%
i
o —
—
{
s(s
Iy

&**

- S ﬁ_e(‘_ %e) dq (2-18b).



=14 -

‘a0

3 _ j ( | - %e) dv (2-18¢)

o
* %

W - gmg_ W 3
| \ Ke,) W (2-18d)

where, since M =0, in the external flow 9\2= ?lw and §,= ¥, .
These thickness parameters have clear physical interpretations.
5* . . . 5**
Thus represents the displacement thickness and the momen-
tum thickness on the X -7 plane. If we use the transformation re-
lation of Eq. 2-12b together with the fact that §,=f,, we see that
é‘**
value of the momentum thickness on the physical x-y plane. This

% *
is, however, not true of 57 . 19' may be called an "enthalpy

2

although defined on the X - i plane, also represents the

* %

thickness' on the x-7 plane and ‘19' is an “enthalpy-flux thickness',

S*¥* * %
Like s )9 has the same physical interpretation on the X - Yy
plane as it does on the X - N plane.

*

If Eq. 2-16a be used to eliminate ¥ from Eqs. 2-16b and c,
and then the equations be integrated with respect to N from =0
to 7= 00 , then in terms of the thickness parameter defined above,
the integrated equations areﬁ :

Integrated Momentum Equation

2 (**
A7)y e due (8- < B eanm
dx doc g,
Integrated Energy Equation
* %
d(uev™) | _ Ku (2-19b)

dx £ Loo
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where the skin-friction at the wall is:

B FG T )

1}20 (2—208.)

and the heat-transfer at the wall is:

Ko = - &(%) = Efi«’_(w‘)qso (2-20b)

=0 Pr. -};{

In obtaining Eqs. 2-19, the Prandtl Number has been assumed
to be constant.
For incompressible flows (i.e. § = const. and L= const. )
Fa * ¥
79 = \9 = 0 . Hence, for such flows, Egs. 2-19a and b reduce to

the single equation

2 %k '
0‘(“"— é *) + Mo é_l_}__e; S* = z‘*_’f.
dx dae oo

. . 19* ]9_**—
which is well known. For compressible flows, and are not
zero and it is these parameters that show the coupling that exists

between the momentum and energy equations.

Note: It should be pointed out the integrated equations given in Eqs. 2-19
are very similar to those published by Cohen and Reshotko in NACA
TN 3326, very recently in April, 1955. The work for this report was
done independently and completed before the publication of the above
report. The work of Cohen and Reshotko follows this report rather
closely till this stage, but thereafter the two are very different. They
. do not solve the resulting differential equations but extend the use of
Thwaites! technique for incompressible boundary-layers to this com-
pressible case, and attempt to find some semi-empirical relations
based on existing exact solutions of the problem. In this report, how-
ever, an attempt is made to solve the resulting equations,

~—
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III. THE MOMENTUM METHOD OF SOLUTION.

3.1." Introduction.

The Ihomentum method was first used by Karman and Pohl-

(4)

hausen to estimate the skin-friction in incompressible boundary-
layers. For compressible heat conducting fluids we have a tem-
perature boundary layer in addition to the velocity boundary layer.
The approximations used for the two boundary layers will be the
same. We shall assume that the approximating functions satisfy the
integrated energvy equation as well as the integrated momentum
equation.

In this report, quartics are used to represent the 1 -depen-
dence of the distribution of velocity and temperature in the boundary-
layer.

It will be assumed that the velocity reaches its free-stream
values at a finite distance from the wall. This distance will depend
on X and be denoted by Jv(‘x) . 5v(x) will be called fhe thickness
qf the velocity boundary layer, = 5v(x)is then the edge of the velocity
“boundary 1ayer.v Similarly er assume that the temperature boundary
layer has a finite thickness &, (). 0,(x) and 8,0x) will have to be
determined in the course of solving the problem. In general they
will not be equal. |

As approximating functions we assume that for each value of

x % and > are quartic polynomials in —ZZ- and _?_ res-

’ Ue ﬂ-e é‘v 51‘
pectively. The five coefficients of;(x) and P,; (x) of each of these
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polynomials are then functions of X . Thus altogether we have
to determine twelve unknown functions of X , namely
3 &_‘t(x) , Pi(x) («b: o, 4, ... 4’)

Twelve conditions must then be imposed on these functions.

3 51‘(3‘)

| d, ()
First we require that the velocity boundary layer joins the free
stream so smoothly that at Y = 5‘,()6) , -.;:_(é_e .as well as its first two
derivatives are continuous. This means that (%. = { and its two

e

first derivatives are zero at M = Jv(x). Analogous conditions
are imposed on _7;& at W = JTPG). This gives altogether six
conditions. Furtheermore, we require that at N=0 the polyno-
mials give correctly the value of the functions and their first
two derivatives. Since the first derivatives are proportional to
the unknown rz/w_ and Kw resp., this actually represents only
four additional conditions. The missing two conditions are then
supplied by the requirement that the approximating functions
satisfy the integrated momentum and energy equations.

The details of the method described above will now be given.

3.2. Velocity Boundary-Layer.

Letting § = ..V_L_ , we assume a quartic in 3 to represent

dy
the shape of the velocity boundary-layer.

Thus, we assume:

2 3 4

vz FOD = o, ¢ K F o4 AT 4 A F oa o, F (3-1)

e
The first matching condition at the wall and the three matching con-

citions at the edge of the boundary layer are then
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‘FEQ) - ) (3-2a)

6 = (3-2b)

£(6) = o (3-2c)

£ = o (3-24)

L ? = g'z“ A
-0
—> —>-
Ue  MOD o fop = &
e
Fig. 1.

These conditions enable us to find all o in terms of one of

them, say &, . Carrying this out one finds

— -—

WL fyp = Anz As? A4 R R
Ue 6 z
where a new symbol A(x) =-26has been introduced.

In Eq. 3-3, M is the indepe.ndent variable. There are also,
as yet, two independent parameters A and 6y . A relation between
them is found by satisfying the e.q_uation of motion (Eq. 2-16b) exactly
at the wall (i.e. at 1] =0 ). Sinc*;e the second N -derivative of w

at the wall is determined from the momentum equation, this is simply

the matching condition that the quartic of Eq. 3-1 has the correct second
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derivative at the wall. A simple calculation gives

£ * v A

o
= e 3-4
Y 1+ & d“e) (3-4)
dx
i u)—aw“)—1+$n' h iti ku:
Here h (x} = Ty (x) is the boundary condition on ')

at =0 . The relation of Eq. 3-4 now reduces Eq. 3-3 to a one

parameter family of velocity boundary-layer profiles. Here A is
chosen as that independent parameter. In general, as the shape of
the profile changes from point to point along the wall, the value of
the parameter A will also change. Hence, in general, A= A(X)

3.3. Temperature Boundary-Layer.

Letting § = —Y_l- , we assume a quartic in ¥ to represent the

T
shape of the temperature boundary-layer.

Thus, we assume:

e

“P\, 7 2 3 4
k_ = y\(}z) = ,F" t+ F‘f + sz -+ P3{ + P4§’ (3-5)

with the following four matching conditions corresponding to Egs. 3-2.

A (o)

= 1+ b (3-6a)
{(51) = (3-6D)
Yy = o (3-6c)
&"(ST) = o (3-64)
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T A | 5= 3

e A, "A(’f) ' o (1+&) ¥?\v(?)=%

e

Fig. 2.

It should be noted that the parameter & v defines the wall
temperature, and in general will not be constant. Thus &= %(x),
will be a known function of X depending on the given distributioﬁ
of wall temperature. If, however, the wall temperature is constant
then ‘6' will be a constant also. . The value b-0 win correspond
to the case when the temperature at the wall is equal to the temperature
at the outer edge of the boundary layer. Since M=o0 , beoo will
imply incompressible flow. The value &= -1 will correspond to the
theoretical limiting case when the wall terﬁperature is equal to 0°
on the absolute, scale. |

Using Eqgs.3-6 in Eq. 3-5 gives

7 b e * 3
£ = 'P"()z) = (‘+"P")"(—_.—-——+p )t + Pz; + (L&’Pz)f (3-7)
he 3 _ ( N E’-) §4
3
In Eq. 3-7, we again have Y( as the independent variable and
two independent parameters ﬁl and 51- . As in the case of the velo-

city boundary-layer, we can eliminate one of these parameters by
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satisfying the eq_ué.’cion of energy (Eq. 2-16¢c) exactly at n=o0.
_This gives |

fz = o0 (3-8)
and reduces Eq. 3-7 to a one pararheter family of i;emperature

boundary-layer profiles, given by

% = E:(wz') = (+®) - 282 4 2% {3; ‘e—§4 | (3-9)
e ‘

This independent parameter could be chosen as CST . However,
in this report a new parameter A is chosen. A is defined by the

relation

A = v (3-10)

and represents the ratio of the velocity to the température boundary-
layer thicknesses. This parameter is of greater physical significance
than either J'v‘ or JT whose definitions are rather arbitrary.

3.4. Skin Friction and Heat-Transfer.

We have just seen that Eq. 3-3 together with Eq. 3-4 defines
a one parameter family of velocity boundary-layer profiles, and
Eq. 3-9 defines. a one parameter family of temperature boundary-
layer profiles. We can now use these definitions in Eqs. 2-20, and
define the skin friction and heat-transfer in terms of these parameters.

I we define K by

X = £ = Aviz (3-11)
68,

then the skin friction Tw— is given by
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T - /u o N Of ' (3-12)

If we define (L) by

a

_’_Z’() = 2 3-13
R - (3-13)

A
a

then the heat-transfer Ky,-is given by

. _. frow ke b (_I_) -0

- Pr. a

3. 5. Evaluation of thickness-parameters.

The four thickness parameters defined in Eqs. 2-18 can now
be evaluated by using the boundary-layer profiles of Eqs. 3-3 and
3-9. The upper limits of integration in the definitions of Eqs. 2-18
will have to be replaced by the appropriate finite limit 5V or 5T .

The evaluation of these integrals yields:

6\!
5§ = J( = ﬁ_e) ol»( = & (N (3-15a)
OSV
- j L(-g)dr = SHA Rt
5'* = SéT(t—i:) 0‘»1 = &r(”i @) | (3-15¢)
'F\.e 10 C
. og

15‘** - Siﬁ(u;j{_)dn - 5T£3,(/\,A) (3-15d)
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where the functions are defined by

oy = 3eoA ' (3-16a)
120

‘Fz()\) o X4 48X\~ 5,328] (3-16b)

45 360
A = - ! A A | 3-16

F(he) 15,120 A% [ P )] (3otte)

¢ = (l68 A - 180n" + g1 A -14) (3-164)
3

¢4.(a) = (2,006 A - 324A + 84 ) (3-16e)

3.6. The differential equations for }\(x) and A(x).

¥ % * %%
The values of 0,9, % and ¥ , as given by Eqs. 3-15
and 3-16, can now be substituted in the integrated equations of motion °

and energy (Eqs.2-19). The values of T, and K ,are given by (cf.

w-
Eqgs. 3-11, 3-12, 3-13 and 3-14)

' | L, (Avaz

T, = a ;5 ) (3-17a)
6 4,

Ko = 2hs he & A (3-17b)

. d,
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and Eq. 3-4 gives the value of 5v . The resulting differential

equation for X(X) and A(x) are of the form

Iy dh + m (N, ) = O (3-18a)
dx

dA - da LN ) - -
p(A,A) =t q(A,A)_A_.; + ;u B) = 0 (3-18Db)

The functions 'e , ™ P , ¢ and A will, in general, also de-
pend on the external velocity 4 ,(x) and its derivatives and the
wall temperature function 'B'LX) and its derivatives. These will,
however, be known for any given problem. |

For the particular case of Ay = const., i.e. a constant

wall temperature, these functions are defined by Eqs. 3-19 below.

LAy - [zx £, ﬁJ (3-19a)

m,A) = ['\ﬁ + 3 Q’z)';“ _ Qriz)e by ] - 2\.{2_[“’;“‘2 -'4] (3-19b)

o G | 2 (u2>2. _

(A, n = . _Me A (3-19¢)
P ) Zué [3 ?,' + ?z]

e o e A (sg - ag) N e (s, - é@i)] (3-194)

A a) = A [th + ?r] e 2| 4 30,2400t ) A (3-19¢)

’ > ' %! (“IQ)L ‘ Pr.



-25-

where:
, d " alz . ' / d
u, = d:e y Me = A:" 3 ﬁ = g{i ; ﬂ/' = d% and so on.

For the case of varying wall temperatures, when —px(x):\:. const.,
Eqgs. 3-18 will still be valid, although the functions ] , v P s G
and % will be different from those given by Eqs. 3-19 and will have
to be worked out for each particular distribution of k‘(JC) . For the
sake of simplicity in illustrating the method, the value of ‘pf(x) will

be assumed to be a constant from now on.
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IV. SIMILARITY SOLUTIONS (FOR M= 0 )

4.1. Basic Equations.

In some problems, with specific pressure gradients, a "simi-
larity variable' may be formed by a suitable combination of the
independent variables ( X and 1 ), such that the partial differential
equations of Eqs. 2-11 can be reduced to ordinary differential equations.

Classic examples of such similarity flows are the "wedge flowsv"
of Falkner and Skan in which the external velocity U is given by
We = Axﬂ , { A is a constant). We shall consider the case when

the wall temperature is constant {i.e. 4 - const.) and C = const.

In this case we introduce a similarity variable © , defined by

. |
8 . /(h\)/\ x—-f’n T (4-)
2¢ Y,

and assume that y and 4 have the following form

- O+
y o= [ 2A% £ (4-2a)
(€ +1)
I =' R (0) ' (4-2b)

Inserting these values into Eqs. 2-11 one finds that they reduce to

~
a pair of ordinary differential equations for f(©) and —9\(8)

Fm . {\.Fll N Z)\* [,‘P\\’, N (_‘::)2] - o (4-3a)

R N U (4-3b)
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In the above equations, primes denote differentiation with respect

to & and.

J

*x
ALt | (4-4)
L+

The boundary conditions are:

foy = £(o = o (4-5a)
f(,oa\ = 1 (4-5b)
Ty - iw - 1+t O (4-50)
E(w\ = ! (4-5d)

4.2. The Momentum Method

From the relation of Eq. 4-1 we see that if for any given x, ¥
varies from O to w, then © also varies from 0 to . So if the
momentum method of solution is to be used the integrals of Eq. 4-3
with respect to € from =0 to ©= wwill have to be satisfied.

These integrals are:

x w0

(wrzk*)'j F¥7de 4 2)*Skz—\) de - o - 2)fﬁ (4-6a)

. v f.-’, 2-
ch K de = - (4-6b)
Qa. Pg, .
(o]
where:
" :
o = ‘F(o\ (proportional to skin-friction) (4-7a)

w .
S( |- {l) de (proportional to displacement-
thickness) (4-7b)

™
h

]
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’ ~
f
—c—'l— = = i fv'v(o) (proportional to heat-transfer) (4-7¢c)

The integrals involved in the above equations can be evaluated
for this special case of similarity flows in the same way it was done
in Section 3.5 for the more geﬁeral case.

Let ©= SV and 6= ST represent the edges of the two boundary
layers. Note that 5\, and 51- are now constants. Furthermore the
meaning of these symbols is not the same as in the preceding Chapter.
Let (5\,)3 and (5\, )4 be the two parameters as defined in Chapters IIL

and IV respectively. Putting ¥ =(0), and 6 =(§,), in Eq. 4-1 then
Y Y| 3 4 q

shows that
2C Vp 1-£
(5), = Aana == G,
A similar equation applies to 57- . On the other hand, if the

ratio A = 351 is formed the similarity factors will cancel, so that the
\ - ,

definition of A in the present Chapter agrees with that of the other

Chapters.
We assume polynomials of the fourth degree in 39— for the
. v
/ .
function F(e) , which represents the velocity profile, and in 2

3y

for the functioﬁ‘ Z(e) , which represents the temperature profile.
These profiles are then made to match four boundary conditions similar
to those of Eqs. 3-2 and 3-6, and are finally reduced to a one parameter
family by satisfying Eqs. 4-3 exactly at the wall (i.e. € = o ). The

resulting profiles are:

. fley = | )t;nz (5%) _%_(%)4, ):4(_?_)____;_@_(36_\_/) (4-8)

Lo E(a)

{

]

£

P
e
1t
~~
+
g
S
i
N
G
T~
- o
~—~—"
+
N
g
—_—~
o
e’ on
i
o
—_
o
S~
N
1
o]
z
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where

5* A
v = T (4-9)

The skin-friction and heat-transfer are given by

Tor = 4 €V (4-10a)
foo ,u_ez' 2 XAUp.

_Ke = [l Y. & (4-10b)
frotie R e > Lte afr. .

where, as before,

X = —_— - . -
o5, (4-11a)
L= 2 A | | (4-11b)
; 5\!

We can now evaiuate the integrals involved in Eqs. 4-6 by
changing the upper limif of integration from "'co'" to the appropriate
finite limit év or 51. , and using the expressions for WCI(G) and ‘E(e)
as given by Egqs. 4-8. In this manner Eqs. 4-6 can be reduced to
two siﬁultaneous algebraic equations in )\ and A , where A |
as before, is defined by A = ,S_" . The resulting equations are

S
of the form:

i
©

A e PAT 4 QN+ R (4-12a)

LA+ MM + N = o (4-12b)
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where the coefficients P ,  , R and L , M |, N are defined

below:
x*
P - 9. 60 512 | —= -
+ T (4-13a)

. %
8 = [3,02_4 b_ 241092 - 54432 -P,-}( A >.. 1,065-6  (4-13b)

A Y+ 2 X°
R = 36,288 (1+ 4) (\1\9;33 (4-13c)
L = <I68 A - 180 AT+ g1 A - \4) = 3,(4) | (4-13d)
M o <")°‘6 A z24 A + %4 ) . = 9.(4) (4-13¢)
N = - 60%2-_80 O+ 3y N (4-13f)

4.3. Similarity flows as a special case of general flows.

The differential equations (Eqs. 3-18) derived in Section 3.6
are completely general as regards pressure gradients, and hence
should include the similarity flows as a special case. Itis an
interesting check, therefore, to deduce the simultaneous algebraic
equations of Eqgs.4-12, that result in the similarity case, from Eqgs.
3-18.

Since, in the similarity case, the shape of the boundary.—layer
profiles does not change with x , the parameters )\ and A which

define these profiles, are constants. Thus

dN - da - o ’ (4-14)
dx d x



and Eqs. 3-18 reduce to the following

m (X A) = o (4-15a)
A (N A) = o (4-15b)
Assuming the veldcity in the external flow to be given by
*
U = Axﬂ' , and noting that 1 - IZ‘X* , we have
4 ” %*
M ume 4 ) _(32+\) ) _<\+i)\) (4-162)
[ () N
" "
Heve _ = ~<Q+'> = -(*‘::) (4-16b)
| @ N

 Substituting these and the values of m () A) and 4(),8) from Egs.
3-19b, e in Eqs. 4-15 above gives us two simultaneous algebraic
equations of the form of Eqs. 4-12 with the coefficients identical
with those given in Eqs. 4-13.
We can thus derive the equations governing similarity flows
from the more general equations of the previous Chapter.

4.4. Method of solution.

Since }\* and %’ are known constants for any given case ( }\*
represents the pressure gradient and ‘& the constant wall temperature),
Egs. 4-12 can now be solved simultaneously for the two unknowns A
and A . A graphical solution is easiiy obtained by solving each
equation in turn for the unknown /\ fc')r assumed values of A . Two

curves, one corresponding to each equation, are thus obtained on

the A-A plane. One of these, the one corresponding to Eq. 4-12a
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depends on the value of Pr. while the other does not. The point of

intersection of these curves gives us the required solution.

A(PrR.=1)
/\<pK.=O'7)

A al A
(Fr.=0'7) (Pr =1-0)

Fig. 3.

Once A and A are determined, o , which is propoi‘tional
to skin friction, is given by Eq. 4-1la and é ', which is propor-
tional to heat transfer, is given by Eq. 4-11b,

The boundary-layer profiles can now be easily determined.
Since A is known, the value of 5\, is calculated by using Eq. 4-9,
and the velocity boundary-layer profile, L‘i«_ = vF(le), as a function of

¢ , is given by Eq. 4-8a. )

The profile of the temperature boundary-layer, as a function
of the variable SQ , depends on the value of 4 alone, and is

T
thus independent of the solution. However, since the value of g'r

depends on the value of A obtained as the solution, the temperature

\ Ae PN +are R =

(o]

N
boundary-layer profile :R_ = -2»(6) , as a function of @ also depends

e
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on the solution._ Its shape may be obtained by determing the value

*

£ 67 = Sv. .
O T A
It should be noted, however, that the similarity variable ©
is not formed from the physical coordinates %X and Y , but from x
and 1? the Howarth-Stewartson coordinates for M=o,

4.5. Illustrative Example.

As an example of the method, consider the flow of a compres-
sible fluid of Prandtl Number 0.7 past a 45° wedge at M = O .

For this case

)
Me = Ax:/3 ; /2—.:‘/3 . >\*= !

We shall assume that the wall temperature T, is greater
than Te , the temperature in the external flow, more specifically

that

_‘_1_.." = ‘p"‘*" = 'P\, = \+“PJ‘ = -5
Te ‘e\e

whence ’Pr = 0-5 and heat is transferred from thewall to the fluid..

For such a case Eqs. 4-12 become -

3 2 53 |
A+ 34.08 A - (1)1!‘1 + 4 = ¢ >>\ + 4,072 = 0 (4-17a)

3 2 . 2 3
(\68A ~1%0A +.9|A-14>)\ + (Z,O'eA ~324 4 +84)A 32,4 00 A o (4-17b)

A graphical solution of Eqs. 4-17 yields
X = 5§-39

‘ A o 662
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Thus

§, = J—_’—-—-}: - 26l ;A = Avz o os
ZX*:(H'{") 63dv

whence

ST = §_V_ . = 4d-.050 5 —‘— = -—2:—- = ©0-43%4
A * b

(5)

These values compare well with those obtained by Levy
by a trial and error method on the Differential Analyser. His values
are

« 1.10

(i): 0.49 '

.* .
4.6. Flat plate parallel to flow direction ( >\ = 0 )

il

The flat plate is a simple case of the general problem for
which exact solutions have been obtained. The general method out-
lined in the previous sections can be used as follows:

For the flat plate Me = const., hence P=0 , and therefore
’\*; © . Note that in this case Eq. 4-12a becomes independent
of Eq. 4-12b. From Egq. 4-9 we see that since 5\, is finite, A=o .
This, thus leaves 5\, indeterminate. We can, however, use
Eq. 4-6a and this gives us

§ = fowff"de ;J

Q

Sv
££"de  (4-18)

The integral of Eq. 4-18 can be evaluated by using Eq. 4-8a and this

gives us

5328
0{ = ! SV
48,360

(4-19a)
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Also, since A=o , Eq. 4-1la gives us

£ = Z (4-19b)

v

Whence, from Eqs. 4-19a and b

d =\/35£»32_8_ - 0.4%46
45, 3c0 0-4%4 (for all values of % and F. )

This value of ® is about 3 percent larger than the exact value
of & = 0.4696 obtained by Hartreé(é).
- The algebraic equatinn deduced from the integrated energy
equation (i.e. Eq. 4-12b), can then be used to determine A . Direct

*
substitution of A =0 and AN=o satisfies the equation trivially but

does not determine A . So we proceed as follows. We divide

Y 2z
Eq. 4-12b by 2 X (v Pr\ and then replace __—-2\—_—_.- by év . Then

2N+
letting A=>o gives us:
M &, 30,240 , b
vy _-;P___— A = O (4-20)
R.

But we know from Egq. 4-19b that

5 - i_ = 4 = \7-03 _
v od* 0-2348 (4-21)

. 2
Inserting the value of M from Eq. 4-13b and Oy from Eq. 4-21

in Eq. 4-20 gives us an equation in A

L A% - 1353 A% 4 ouigzs A - 00475 = O (4:22)

R.

The solution of this equation, for the appropriate value of Pr. , gives
us the required value of A . For k.=1 , of course, A =\-0. From

the values of A and SV one then finds ST , and (—k) is given by
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Eq. 4-11b.

4.7. Incompressible flow (P,-___ o )

The so called incompressible flow is a special case of the above.
o~
In this case ¥ .o and hence &_w =1+& =1 and k= he = Yo
~

The energy equation, Eq. 4-3b, then has the trivial solution o=

and the momentum equation becomes the Falkner-Skan equation.

"

I [\—- ({')1] = 0 (4-23)

1 ¥ is assumed to be small without neces sarily being zero,
i.e. when the flow is almost incompressible one may expand ¥ and

-~

£ in powers of &

fle f.0) + & Ee) + BFf(0) &+ et (4-24a)

£ (o)

~ ~
o+ ERe) + BTRLe) 4 o (4-24b)

U

Inserting these expansions into Eqs. 4-3 one sees that £, still

satisfies the Falkner-Skan equation for incompressible flow (Eq. 4-23),
~

whereas ‘?\., satisfies the equation

/\J"
oo+ AL = o (4-25)

with  the boundary conditions

A0y = 1 (4-26a)
Ry = o© (4-26b)

This is often referred to as the heat transfer equation in incompressible
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flow. The use of the term "incompressible'" is, however, somewhat
misleading here and Eq. 4-25 should be understood in the sense above.
Note that for almost incompressible flow the momentum equation
(Eq. 4-23) is independent of the energ;y equation (Eq. 4-25) if one only
con-sidefs the leading term in the expansion of f in Eq. 4-24a.
Because of the fact that Eq. 4-23 is uncoupled from the en‘ergy equation
its solution by momentum methods_is especially easy. In this case
Eq. 4-12a is an equation for A only since & should be put equal
to zero in the coefficients & and R . The value of A so obtained
may be substituted into Eq. 4-12b which now becomes an equation
for A . Solution of this equation then leads to an approximate solution
of Eq. 4-25 and the heat-transfer coefficient is obtained to the first
order in ’g‘ .
The perturbation method just described is of course not re-
stricted to those pressure gradients which'lead:to similarity solutions.

However this idea will not be discussed further in this report.

4.8. Limiting case when S -1,

The case when & = -1 corresponds to 'wa = Ww - o .
This is true when either T,=0 or T. = o either of which are
physically impossible. However, this is an interesting theoretical
limit to consider.

: * _

As in the case of N=o , we see here from Eq. 4-9, that A
must be zero in order that S\, be finite. So 5\, is‘again indeter-
minate from Eq. 4-9. We can again use a similar limiting procedure

2%
as we did for the energy equation when A= o6 . We divide both

\
z>\*( 1+4)

3
Eqs. 4-12a and 4-12b by 2 A (1+ 1) and then replace by
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2 .
8v . If we now let )\—)o , and remember that is finite, we

end up with two equations which can be reduced to the following form:

4-26
-g} = 0'235(|+2}\*) + I-z(l_i))»* ( 2)
. - fe. (z,o\e a® - 324 A + 84) (4-26Db)
sz. A

7,560

By equating the right hand s.ides of the.above equations one obtains
a comparatively simple equation for A alone, which is easily solved
for any giveﬁ X and Pr. . Once A is found Sy is directly given
by either equation. Since A is zero the equation for X (Eq. 4-lla)’
again reduces to the simple form of Eq. 4-19 and, as before, (-é—) is
found from Eq. 4-1lb.

4.9. Summary of Results.

Based on the ‘above._method the values of & and (a'—_) , which
essentially represent skin friction and heat transfer, have been
computed for A 0, 1/4, and 1/2; 4 =+1.0, +0.5, 0, -0.5 and
-1.0; PR.. =1.0and 0.7. Tile values are tabulated in ’i‘ables IA and
1B. Figs. 4, 5, 6, and 7 give a plot of these parameters. |

The values of A , the ratio of the boundary-layer thicknesses
are also tabulated in the same Tables, and plotted on Figs. 8 and 9.
The values obtained by Levy(5) do not cover as wide a range as those
obtained in this report.’ In the range that is common, however, these
values agree to within 3 percent of those obtained by him.

One point needs special mention and that is the variation of «

with &. for ¥ >o and ® <o . In this report it is found that if
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>0 , of decreases as Pr. increases for any given >\* {other
then Nz o , 'in'which case >\* is independent of both . and & ).
This is in agreement with the results of Levy. However, for & {o ,

A increases as Pr, increases. This reversal of trend is not
shown by Levy's results, which show the same trend for 4 {o as
for >0 . However, the results obtained in the present report

seem qualitatively plausible, at least for small %— and fk. near unity.

Putting fR. = | +€ and expanding « around €=0 and ¥~ o one
obtains
2 2
o = ol 4+ b, B, b v e, v e, e |

The fact that Fk. does not influence the value of A& for Pr: 0 means

that o,, , o[, etc. are zero. If we now consider a fixed small value
of b at R =1+t and R&.=1 it is seen that the difference of the
value of o in the two cases is €4 o, . Since d, is a constant

this correction term changes sign with b .
Figures 5 and 8 show the variation of ('(!I) . We see here that
the rate of heat-transfer is greater, the greater the IR No.
Lastly, the variation of A is shown in Figs. 6 and 9. We see
that the ratio A | increases as IR. increases, because the thickness
81_ decreases with increase in PR, . A 1is smaller for 2 > o
when heat is transferred from the wall to the fluid, than it is for %‘(0

when heat is transferred from the fluid to the wall.
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- V. ARBITRARY PRESSURE GRADIENT (FOR M=0)

5.1. Transformation of the Differential Equations.

In the case of arbitrary pressure gradient, when the problem
I
cannot be reduced to a 'similarity' case, A= éf\— and A = d4
dx ax
are no longer zero. The complete equations {Eq. 3-18) have then

to be used. These complete equations are

N+ m = o (5-1a)

PN 4+ gA+ A = O (5-1b)

where the functions € , wm *7 ;9 and % are defined in
Eqgs. 3-19.

Following a method somewhat similar to that which Holstein and
Bohlen(7) used for the case of incompressible fluids, we can rewrite
the above differential equations in a simpler form. Apart from making
the equations a bit easier to handle, the main simplification lies in
the fact that they no longer contain the second derivative of the known
velocity in the external flow.

The simplified form of the equations is:

2
d(877) . e F(ha) (5-22)
dx Ue
Rk \ %
d 7)) S an ) (5-2b)
dx Ue

where the functions F(},8) and G(},a)are defined below
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F(LA) - e[\?—f:rl[()\ﬂz)(w By -NF, _ 3-Qr A

3 1)42} (5-3a)
T &
&
g (A, A) = (A2 A4 g,\ - 30,2400+ ¥)A
(h.8) [w 3‘;"—5“3’ E ] (5-3b)

Pr.

2

2 *
and the values of (S**) and (\9‘ ) are obtained from Eqs. 3-15b, d
and Eq. 3-4 as

2
>y 2 ety L1 Pe XN £ ) (5-4a)
(5 ) = 5" f.hy = w & ug :
2. P2 % 2 - 4 Ve A2
($**) . &g = 2 =R

5.2. Correspondence with the Holstein-Bohlen Equations when ’PT O

7~

For the case of incompressible fluids P\w‘-‘— | and %

"Eqs. 5-2a and 5-2b now become uncoupled and the velocity equation

can be solved independent of the temperature equation
b-o

ion. V.By putting
in Eq. 5-2a we obtain
) :
d(d™) | Pe gy | Arm o GeMA Lhgm
dx Ue ) \20 (5'5)
where
£y - -

v [sXwash-s325] = L[ -L)- IM](5 -6)

Eq. 5-5 is the same as that deduced by Holstein and Bohlen for
incompressible fluids .
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5.3. Range of variation of /\ and A

An examination of Eq. 3-3 shows that A = -\2 makes (%5-) =0
M M =e
and thus gives us the shape of the separation profile. A value of A\
less than ~ 12 is not admissible. Further, for /\>12. there results

values of % > 1 in the boundary layer, which is physically impossible.
e

Thus the form parameter A is limited to the values

1z £ A&+ | (5-7)

Since both 5\, and 51— are positive, the only restriction on

will be that

A > o . (5-8)

5.4, Stagnation Values.

The integration of the equations, in either the form given in
Egs. 5-1 or in Eqs. 5-2, has to start at the stagnation point which is
taken to be at X =0 ., We, therefore, require some initial values
at the stagnation point in order to start the integration. A typical
set of initial values for Eqgs. 5-1 would be the values of A and 4 at
Xx =0 . These are not given. However, we impose the condition
that 5_{._’}. ‘and 6.1_4_. be finite at X =0 . As will be seen later this re-

dx dx

quirement determines uniquely A and A at x=o , at least within
the range of physically admissible values of A and 4 (cf. Eqs. 5-7
and 5-8). It will be seen later that if the external velocity field repre-
sents flow past a blunt-nosed body, the values of A and A at X=0
agree with the values found in Section 4.9 for flow towards a flat

-x-
plate normal to the stream (i.e. /\ = ). In a similar way one finds

1
2
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. R 2
the initial values of (5**) and ('19**) for Egs. 5-2.
We shall first use Eqs. 5-1. At the stagnation point (denoted
by the subscript 'o' and assumed to be blunt) where 4e = O, we see
from Egs. 3-19 that

o = }70 = %,

o]

/ '
Thus, the requirement that the slopes /\o and 4, be not equal to

infinity, gives us the following conditions that must be satisfied
m = o ' (5-9a)

zzo (5"9b)

i
(o)

If we substitute the values of WM, and %, from Eqs. 3-19 in the

above equations, we get two equations in A and A , of the form

Aeayed)  _ag -3k A - 2AF, - o (5-10a)
6 1o A
g Ay g N - 30240 b) st 5 (5100)

V.

These two equations, solved simultaneously, yield I\= Ao and A = Ao
the values of A and A a{ K =0

It should be noted that Eqs. 5-9 for determining /\o and A, are
very similar to Eqs. 4-15 used for determini_zg)\ and & in the Falkner-

Skan similarity case. The difference lies in the fact that in using

"
Mo Ue

Eqgs. 4-15 5 was put equal to g‘—é—'— (where € is the exponent

in Mg~ xe ), whereas in using Eqs. 5-9 we considered the case of a

"
blunt nosed body for which He “.l_e =0 at > =0 , Thus solutions of
(ee)
*

Eqgs. 5-9 are the same as solutions of Eqs. 4-15 when L=t (i.e. N = ‘/2).
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The abofre then tells us that the values of A and A at the stagnation
point of flow past a blunt nosed body are the same as the values of A
and A obtained for flow towards a flat plate normal to the free stream.
Of course this was to be expected, for in both cases Ug~ x . The
values of A, and A, , S0 obtained, are completely general and in-
dependent of the particular pressure gradient of the problem. For
k.= o-7 , the values of >\° and Ao so obtained, are tabulated in
Table III.

If now the values of >\° and A, are substituted into Egs. 5-1
one sees that )\: and A: are indeterminate ("Prime'" denotes deri-
vative with respect to X ). These derivatives can, however, be
easily determined by first differentiating Eqs. 5-1 with respect to X
and then putting ¢ =o . Using the fact that Lo |, Po and &, are

equal to zero one finds

/ ! !

S5 U o = o (5-11a)
/ ! /¢ /

bo ho  + 4,80 + 2 = o (5-11b)

o / /
Again, substituting the values of ‘Pa , m, h,l S c_z'o’ and %,

which can be obtained from Eqs. 3-19, in the above, we obtain two
! /
simultaneous equations for determining Ao and Ao, .
This process of differentiating Eqs. 5-1 with respect to ¢ and
then using the fact that 'Qo , po and q, are zero, can be repeated
as many times as desired and the equations for determining the deriva-
tives of )\ and A to any order, at the stagnation point, can be

derived. Thus the equations for evaluating the second order derivatives
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] “
Ao and A, are

] " 13 { "
24, A, + L, Ao+ m, = © (5-12a)

L I !
b M BN waglal s qlale n!

) (5-12b)

and so on.

Using Eqs. 5-2 instead of Egs. 5-1 yields the same value for
A , A and their derivatives at X =0 . From Eqs. 5-2 we see
that since Yo = 0 , unless the values of F(M,A)and 6(},8) are also
zero, the slopes [(5**)ZJ: and [(19'**)1:': will be infinity. This then
gives us the following conditions to be satisfied at the stagnation

point:

il
¢]

FCA, A) (5-13a)

i
¢

GLA, D) (5-13b)

Both the functions F(\,A) and G(A,A) as given in Eqs. 5-3
have two factors, and it turns out that the only physically significant
values of A, and A, , satisfying the restrictions of Eqs. 5-7 and 5-8,
are obtained when the second of the two factors is zero in both cases.
This gives two éq_uations for determining /‘Q and A, which are
exactly the sain_e as Eqs. 5-10 obtainéd earlier.

Knowing the values of /\° and A, , the values of 50** and 7.%**
can be obtained from Eqs. 5-4.

Since both F(A,8) and G(A,A) are now zero at the stagnation

*%\% *%\ 2
point, the initial slope of the integral curve for (CS ) and (79 )

at that point has the indeterminate value % . By using L'Hospital's
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rule, however, we get from Eqs. 5-2

| d(8~¥*)7— 'Qoo dF
= I dx - (5-14a)

| dx (1e),
Sy - Yo | da
d(ou : ] S (o), [ ‘“]o G-

°

Substituting the values (S*f)z, ( 1}0**)1, F(A, a) s aﬁd

G(A,A) in Eqs. 5-14 we obtain two simultaneous equations for /\Ql

and Aol which are the same as those deduced earlier from Eqs. 5-11.
Differentiating Eqs. 5-3 with respect to ¢ and using the values

of A, , DAy, /\; and A, gives us the magnitudes of [O\F/dx]o and

[d%x] . These can now be substituted in Eqs. 5-14, to give us

the slopeos [(5**)”]:and [(19'**)L]:.

5.5. Check on stagnation values for ‘&': o

For incémpres._sible flows, when - o , the equation for
determining Ae is no longer coupled to the equation for A,
This equation is obtained by putting b-<o in Eq. 5-10a and is given
by
/\3 + 47- 4 )\7_ - ‘,670'4 A+ 9,072 =0

Note that this equation is independent of the Prandtl Number. The
solutions to this equation are >\ =-T72.255, 7.052 and 17.805. Of

these, the only value that is physically admissible, is
A =7.052 (5-15)

/
Similarly, the value of )\,, is obtained from Eq. 5-1lla by

putting er=o . This gives
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/
- 0-44371 A, = —(f‘i'\) 0.7361
‘ o
which yields
(5-16)
B . o s . AE
y differentiating Eq. 5-3a the value of ( i

. 1
dF = - 0-.-0652 uf
ax : be [

o

Q

is obtained

to be

and hence, from Eq. 5-14a

IV 3 "
AT cess P (M) (5-17)
oln( (ug)z

o

These results given in Eqs. 5-15 and 5-17 agree with those given by

Holstein and Bohlen(7 ) .

5.6. Example to illustrate the method of calculating stagnation values.

To illustrate the method outlined above, we shall compute the
magnitude of these parameters for the case when F-10 and fe- o7 .

For this case Eqs. 5-10 become

3
Ao + 474 N, (214.4 + ‘a3é°-‘3),\° + 12,144 =

]

%.(Aa\ >\°L + jL(AQ)k - $6,400 ,/_\f = O

and a graphical solution of these yields

A

o

4.595 (5-18a)

A,

]

0.416 (5-18b)
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as the only physicaily admissible values. These values check with
the values for A and A obtained in Section 4.9 for A= i/, (and
- 1.0, PR. =0.7).
Eqgs. 3-16 now give the magnitude of the various functions and

their derivatives (with respect to their arguments) as

fN)  =0.20171 ;£ =0.11027
[F,'()\_J]a = -0.00833 ; [{:z‘()\\:\ = -0.002071
: " [
Ay =0 ; |[F,CAM] = -0.0002205
fan] ‘™).
%,(A.,) = 0.6350 ; gz(A,) = 94,134
[9/m]  =18.442 [gm] =72
[4/ ], =59.026 i [qrca] =5,028.3
4(Ao,n.) = -0.2149
Using these in Eqgs. 5-11 yields
/ /- 1
17178 A, + 15.953 A, = -0.50666 (f_‘s)
ws Je

] /
302.83 A, - 8,786.6 A,

1"
445.92 (ﬁg)
ug /o

which solved simultaneously, give

&

>
[
1l

- 0.2594 ( ) (5-19a)

>
1

s
mln 5 A

. =-0.05969 (k) (5-19b)
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Similarly the equations for determining the second derivatives

are obtained from Eqs. 5-12 as

] " ) U" 2 u.”,
£0.90451 N, - 7.9766 4, = -0.92056 (—é) +0.506666 (22 )
Ue /o ue /o
173 7" v 2 "
-202.86 A, + 6053.8 A, = 495.985 (_‘is) - 445,92 (“f )
Ué o ae o
and when solved simultaneously give
tH " i 2 ulll
Ao = -1.2462 _g) —~ 0.1260 (_i) (5-20a)
ug /o Ne /o
" ) ", 2 "
A, =-0.02590 (ﬁf_) - 0.07791 (22 (5-20D)
wé 0 e /o

he vatues of (67°)°, (577, [(5++1], ana [(6"Y],

can also be obtained, if desired, from Eqs. 5-4 and Eqs. 5-14 as

2
_ (5:*) = 0.02793 1)","
(mg),
( 190**) = 0.61412 Ve
(14 o
and
/ i
[(5*) ], = -0.02924 i";(t_*i;__).._
, (ue),
[(79'**)1] o = -0.37791 Voo (Ue )o
(wd)y

5.7. Point of velocity maxima.

At that point along the wall where the external velocity Mg (x)
reaches a maximum value ( at x=x,, , say, which will be known

from the given distribution of MELX)), we have

(he). = o (5-21)
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where the subscript "y "' refers to conditions at this point of velo-
city maxima.
From Eqs. 3-4 we see that the value of A= /\.m at this point

is given by

A, = n;j-,@j)h.gg)w

it
o

(5-22)

Although both /\.m and (ué)mare zero at X = X, the
ratio (Z(AT) tends to a finite limit as X > x,, . This limit can be
e

obtained from either Eq. 5-la or 5-1b and is done as follows:

7
Multiplying, say, Eq. 5-la by ¢ we have

o (5-23)

i

(Méﬁ) >\’ + (u;m)

As X > x,. , A > o and &ke'e o , and hence from Eqgs. 3-19 we see

that

(ul Q) — [ M————-—-———-—e F2 (M

2.
| *—in‘l-’] (l) (me),,

Using these in Eq. 5-23 we have

x’ ’Ue”
S - (:IZ )vw (5-24)

Eq. 5-24 when integrated gives

<-A—> =const. = C (say) (5-25)

e
[
and using the relation in Eq. 5-24 above gives us the value of /\

at X =X as
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AN = C(Me)y, (5-26)

The constant C is, as yet, arbitrary. Its actual magnitude,
in a particular case, will depend on the initial values at 2 =0 . All
that can be definitely said about C is that it must be a positive
constant. For, from Eqs. 5-22 and 5-25 above, we see that

o () -G, - S0,

X — X\

So for & > -1, C>o0 . Furthermore, since at the velocity
maxima point (u:)m {0 , we can conclude that at this point

!

A

v . L O ‘ (5-27)

Performing a similar limit procedure, as X ->x,,, on Eq. 5-1b
leads to the same result as quoted in Eq. 5-26. In fact, taking the '
derivative of either of the equations of Eqs. 5-1, multiplying the result
by (U.é )“’ , and then taking the limit as X » x., , yields, each time,
the same result as given in Eq. 5-26. Thus, these equations give us
the value of only the first derivative of /\(i) at X =%, (i.e. the
value of )\lm ) up to a multiplicative constant C . They do not
yield any information regarding the higher order derivatives of ACx)
at this point. Further, the equations give us no a priori knowledge
regarding A(x) or any of its derivatives at X = X -

3.12. Methods of solution.

The equations developed, Eqs. 5-1 for )\(x) and A(x) or Eqs. 5-2

X % 19_** . Lo
for & (x) and (x) , together with the initial values of the parameters
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involved aﬁd their first derivatives with respect to X , can be
solved in various ways. Only two methods will be discussed below.
(A). Numerical integration
(b). Approximate methods
Of course, various schemes of iteration can be used to improve the
results of the approximate solutions to any degree of accuracy de-
sired. |

(A). Numerical integration.

Apart from it being tedious, numerical integration in this case
has the added disadvantage that the starting point of the integration
(the stagnation point at X = o ) is a singular point. To avoid this
difficulty, it is best to use a Taylor's expansion for A(xy and A(x)
about the point X =0 up to some small distance out from the stag-
nation. point, say x =, .

In this range oL x<L x,

n
A(x) = )\(0) + >\’(0) x + _z‘_(_"lxl Foe e e e e e e (5-28a)
2
Alxy = AG) + Ao x + _Aigl X F - v+ .- -(5-28b)
2_ .
where the values of
] !
Aoy = )‘0 ; ’\(O) = /\0 ............. etc
/ ' .
Al) = A, ; Aco)y = 4, ettt etc.

can be calculated as shown in section 5.4. From the point X = X,
onwards, simultaneous numerical integration of Eqs. 5-1 can be con-

tinued without any difficulty.
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(B). Approximate Methods.

(i). Approximate solution I - A polynomial solution.

We have two reference points: the stagnation point at x= o ,
and the point of velocity maxima at x=x,, . A Taylors expansion
of A(x) and A(X) is known and the value of Aee) at x = Xy is
also known. We can, therefore, choose a polynomial of any desired
degree, which satisfies the above conditions. Thus, if we choose
to satisfy the first two derivativeé only, at X =0 , and the value
of Ax) at the points X =¢ and X= X, , we can use a cubic of

the form

4 ! ¢
A(x) = Aa + A:x + X: x?. - L (Ao"‘)‘oxw"‘z_o,x:‘)xs (5-29)
=z x3 2

m
!
Differentiating Eq. 5-29 gives Ax) as

/

[/ !
AI('IB = >\o + /\o x + -—3—- ( %o * >\olx'h~ + _)LP'X:,:) xz (5-30)
x3 z

As a first approximation for A(*) we may assume that A(x)=
constant = A, . This may be improved on as follows. Eq. 5-1b is

equivalent to the following integral

p 4
A = A. + J{(A,x_) dx. (5-31a)
where
- % + b\
faaxy = ~———————.qu (5-31b)

In evaluating f(a,x) we may assume Ax) and )\[(x) to be given by
the polynomials of Eqs. 5-29 and 5-30 and Ax) to be A, . The

integral in Eq. 5-3la can then be evaluated. In principle this iteration
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method of solving Eq. 5-3la for A(x) may be continued.

(ii). Approximate Solution II - An integral solution.

If the value for A(x) is assumed to be a constant, then if
- certain linearizing approximations be made, the equation for A(x)
can be integrated in a manner similar to that which Holstein and
Bohlen(7) used for incompressible fluids.

The equation, in the form given in Eqs. 5-2a, is

o\(s**)’- _ Vg F(>\, A)
dx —A_Ie_

If we use a new parameter K defined by

2 .
K - L%‘D_MQ’(HL) = MR (5-32)

oo

and assume A(x)= A, , then the function F(A,A) can be closely
approximated by a linear function of K . Thus for F(} A) we can

write

FIMAY = A+ BK (5-33)

where A is a constant and B is dependént on the values of ‘8— and
A, alone. The range of variation of > has to be split in two and
a different value of B used in each range, in order that the approxi-

mations be good. The values of these constants are given in Table II.
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TABLE II.
VALUESOF "A " AND'"R "

Stagnation point to Point of velocity
Range point of velocity maxima to

maxima separation point.
x O { X £ Xam X & X L X,
A 0- 47 0-47
B L 2-52&-2&&_ g.‘] | [38__5;2_6_&__3.0

144 A, r:,'; FAYN ]

It should be noted that for incompressible fluids where b= o

the approximations reduce to:

0 £ x & Xt F(MA) =0.47 - 6.1K

i

K & ¢ & Ay F(N, D) 0.47 - 8.0K

and these compare well with the approximation suggested by Walz(s)

for incompressible fluids, for the whole range variation of X , as
F(N) = F(K) =0.47 - 6 K

If this approximation is used then Eq. 5-2a becomes

d(8**)* u,,
= L = A+ BK - 5-34
1z - [ + ] ( )

Using the expression for K from Eq. 5-32 makes the above

equation
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2 AN ! %%\
4™y _ Ue @1+ l’r)(é ) = P A (5-35)

dx We g

Eq. 5-34 can be integrated by using an integrating factor. This

gives the solution as
Xy
By -t
Ay, | Me dx (5-36)

Xy

-0+ 3
Me ‘ (5**)L

x,y

Noting that for all reasonable values of 4 , (say, ‘9}' {5 ), the factor
B(++ PY) is always negative, we have, for the two ranges under con-

sideration

0 £ £ X

>
2 e+ ) -1
(5**) - AVe Ue Ax (5-37a)
u-—B(w@r)
e o]
Xy éx $ x)s
W _ x
wxn 2 ) \ S ~a(td-t | SU:F’(M’)_‘
= A — T | Me dx + Tooah V8 A% 1(5-37b
(8 ) = o0 ueB(H%-) “eatu»fr) ( )

° A

where, in Eq. 5-37b the value of B is different for the two expressions
within the brackets in accordance with Table II.

Once the distribution of (3**)2is known, that of >\(1) can be
found graphically by using Eq. 5-32, i.e. the relation

(6**)7' _ Vo A -FZ_()‘)

g 1+ &
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The distribution of A(x) and A(X): having been obtained by

|
a(x)

uéing any of the methods outlined above, that of «(x) and can
be deduced by using Eqs. 3-11 and 3-13.

5.9. Example to illustrate the methods of solution,

To demonstrate the methods of solution outlined in section 5.8,
we consider the flow of a compressible fluid of P=r. =0.7at ™M =0,
over the heated surface of a body. . The wall temperature is assumed
to be twice the temperature in the external flows {i.e. 4 =1.0) and
the distribution of external velocity on the surface is approximated
by a cubic of the form:-

AL () = xX - —z—B (5-38)
where X is measured along the surface from the stagnation point.
Of course, it is not necessary to have the distribution of Me(x) given
as a explicit function of x . Its distribution, in general, will be
known numerically, and the method can be lised just as easily for these
arbitrary distributions of #e(x) . The above distribution is chosen
only as a convenient illustrative example. '

For this distribution

/ " w
Uelo) =0 ; U (0) =1 ; U (0)= 0 ; W)= -1

and using these in Eqs. 5-18 and 5-20 of the illustration example: of

section 5.6, gives us

Mo

{

1
4.595 A, =0 ; Ao =0.127

1
1

1

{
0.416 ; A, =0 ; A,

A, 0.078
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2

The Taylor's expansions for these functions, about the point x = o

then becomes

Ax) = 4.595 + 0.127 g o, (5-39a)
AGO = 0.416 4+ 0.078 X 4 ovvernnennnns (4-39Db)

2.

(A). Numerical Integration.

The above Taylor's expansions can be used up to a distance,

say X,=o0-1, where the values of A(x) and A(X) are
A(o-1) = 4.595
A(o-1) =0.416

"and the numerical integration started from this point. The results of
this integration are given in Table IV and plotted on Figs. 10 and 11.

(B). Approximate Methods.

(i). Approximate polynomial solution.

Examination of the numerical solution obtained above reveals
that the variation in A(x) is small when compared to the variation in
/\(x) . As we go from stagnation point to the point of separation the
value of A(x) varies approximately from 0.42 to 0.56 whereas that of

A(x) varies from 4.6 to -12. So, as a first approximation A(X) may

be assumed to be constant. This gives us

Alx) = A, =0.416 (5-40)

The velocity He(X) reaches a maxima at the point

X, =1.414
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. /
and this makes the polynomial solution for A(x) and A'(x)

A(x) = 4.595 + 0.064 x* - 1.669 x> (5-41a)

A0 = 0.128 x - 5,007 % (5-41b)

Eqs. 5-40, 5-4la and b may now be used in Eq. 5-3la to give a
more accurate estimate of A(x) . However, this is not done here.

The values of )\(1) , as calculated from Eq. 5-40 are given in
Table IV and plotted on Fig. 10.

(ii). Approximate integral solution.

The solution for A(x) is, as stated before, assumed to be

A(x) = 0.416

Since # =10 , the value of the factor BO1+&) , for the two

ranges, is obtained from Table II as

o L x 1.414 BO+b) =-17.40

1414 < x { X B b)) 1764

*xky = ‘
The solution for (E ) thus becomes, for 6 x < 1.414,

2 X
* % \6- 40
(%) _ °'474 S we  dx (5-42)
Vo TP L

o

and for the range 1.414 { o { X, , Eg. 5-37b is used with the
appropriate values of B(+ &) ,
It should be pointed out that integration of Eq. 5-42 has to be

performed rather carefully, specially in the neighborhood of the
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stagnation point, because of the large values of the exponents in-
volved. For example, Simpsons rule will not give accurate answers,
and more refined techniques will have to be used.

2

The curve for )\(x) is obtained graphically from the (5 **>

curve by using the relation

()" _  AAM

:\)Qo 2 ﬂe/
The values of /\(X) thus obtained are gi\;en in Table IV and
plotted on Fig. 10.

5.10. Results.

The variation of A with x obtained for this épecial case
(i.e. Ue= %~ ’-;-3 with PR, = 0.7 and £ -1, 0) is shown in Fig. 10.

The figure shows the results obtained by all the three methods.

The polynomial solution: does not show good agreement with
the numerical solution and the separation point is also moved too
far down stream. It is felt, however, that for smaller values of
the curve of A versus x has, in general, a shape which can be
better approximated by a polynomial of a low degree.

The integral solution, on the other hand, shows much better
agreement with the numerical solution throughout the range of varia-
tion of X from X =0 to x = x, . The solution by this method is
quick and easy to ébtain. For any given PR. and - one obtains a
value for A, by the methods of section 5.4. By substituting this
value into the expression for B(w+!) as given in Table II one obtains
the exponents involved in the integral solution for the momentum thick-

ness. This integral is then readily evaluated numerically and from it
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the curve of X= A(x) obtained.
Fig. 11 shows the variation of A(x) with X as obtained by
Athe numerical solution. It shows that the ratio of the velocity to
the temperature boundary layer increases steadily from the stagnation
to the separation point. However, this increase is not large, and as

a first approximation A(x) may be assumed to be a constant.
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TABLE IA.

Values of «, (;'c) and A for M =0 and M = Axe

Prandtl Number =1.0

Value of 'b! +1.0 + 0.5 0 - 0.5 -1.0
A 0.485
0 i
” (a) 0.485
*x
<
A 1.000
A 1.256 1.081 0.907 0.728 0.534
N |
= (z) 0.509 0.494 0.478 0.459 0.437
i
*<
A 0.581 0.662 0.733 0.784 0.818
M 1.822 1.501 1.196 0.892 0.559
J |
- (—) 0.550 0.523 0.500 0.475 0.442
1] [«
*
A 0.416 0.523 0.664 0.760 0.791




Values of o, (-é;) and A for M =0 and we=Ax".
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TABLE IB

4

Prandtl Number = 0.7

Value of 'b’ +1.0 +£0.5 0 - 0.5 - 1.0
X 0. 485
o) (
(7;) 0.426
Il
X
~<
A 0.878
e 1.256 1.081 0.907 0.728 0.534
< -
A\ (J_) 0.509 0,494 0.478 0.459 0.437
t} (48
*
<
A 0.581 0.662 0.733 0.784 0.818
® 1.822 1.501 1.196 0.892 0.559
N
- )
. | (£) | o.550 0.523 0.500 0.475 0.442
*®
~<
A 0.416 0.523 0. 664 0.760 0.791
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TABLE III.

Values of }\o and Ao,

(FPr. =0.7)

& No Ao.
+1.0 4,59 0.416
+0.8 5.12 0.455
+0.5 5.99 0.523
+0.2 6.82 0.609

0 7.052 0.664
-0.2 6.76 0.713
_0.5 5.13 0.760
-0.8 2.35 | 0.782
-1.0 0 0.791
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Values of A(x) and A(x)

(R, =0,7; ‘8’:]_,0; e = 1—7—2—3
Value of A(x) Value of Al(x)

NUM. | INTG.{ POLY.] NUM. | INTG] POLY. Remarks

INTG.| SOL. } SOL. INTG. | SOL. | SOL. I
0 4.60| 4.41| 4.60 | 0.416 Stagnation point }
0.1 4.60| 4.41] 4.59 0.416
0.2 4.60| 4.40( 4.58 0.417
0.3 4.60| 4.39| 4.56 0.419
0.4 4.60 | 4.37| 4.50 0.422
0.5 4.59 | 4.33| 4.40 0.426
0.6 4.59 | 4.29| 4.26 0.431
0.7 4.57 | 4.22| 4.05 0.437
0.8 4.52 | 4.13| 3.78 0.445
0.9 4.44 | 4.01| 3.43 0.455
1.0 4,28 3.81| 2.99 0.466 ©
1.1 3.98 | 3.50| 2.45 0.480 - ©
1.2 3.45 | 3.01| 1.80 | 0.494%| % <
1.3 2.46 | 2.25| 1.03 | 0.510%( S
1.4 " 0.58 | 0.46| 0.14 0.526%
1.414 0 0 0 0.528% i i Velocity maxima
1.45 | -1.39 {-1.36] -0.36 0.538% ~ ~
1.50 | -3.54 1-3.99{ -0.90 0.543% § X
1.55 | -6.38 [-8.45[-1.47 | 0.550 s <
1.570 -- -12.0 -- -- ‘Sep.Pt. (Intg.Sol.)
1.60 | -10.67f -- ~-2.08 0.560
1.608{ -12.0| -- -- 0.561 Sep.Pt.{Num.Intg.)
1.7 -- -- -3.42 -
1.8 -- -- -4.94 -
1.9 -- -- -6.63 -
2.0 - - -8.51 -
2.1 -- -< -10.59 --
2,163 -- -- -12.0 -- Sep, Pt. (Poly.Sol.)

These values are taken from the faired curve for A(x)
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