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ABSTRACT 

Polyolefins, semicrystalline polymers also known as thermoplastics, are highly desirable 

because of their material properties, low cost, and ease in processing. The flow and thermal 

history experienced during processing are known to affect dramatic changes in crystalline 

kinetics and morphology, dictating the final material properties of solidified products. 

However, the underlying physics that control crystalline orientation and kinetics is not well 

understood. To optimize processing conditions and maximize material performance, it is 

desirable to understand how the interplay of molecular character and flow conditions shape 

crystalline microstructure.    

In the last decade, advances in catalyst technology have produced well defined materials 

enabling the systematic study of molecular influences on flow-induced crystallization. We 

investigate bimodal blends of polypropylenes (PP) in which we vary the molecular 

character (concentration, molecular weight, regularity) of the high molecular weight mode. 

We apply a number of in situ characterization tools (rheo-optics, rheo-WAXD) to the 

development of transient structure and interpret our findings in light of ex situ examination 

(polarized light microscopy, TEM) of the final morphology. 

Blending a well-characterized high molecular weight isotactic polypropylene into a “base 

iPP” at various concentrations (c), we determined that blends with less than 1% of chains 

with Mw five times larger than the Mw of the base resin profoundly affected the 

crystallization kinetics and crystalline morphology of a sheared melt. Beyond 

unambiguously demonstrating the important role of long chains in the formation of 

anisotropic crystallization under flow, this approach allowed us to be specific about the 

length that is meant by “long chains” and the concentration of these chains in the melt. 

Varying the concentration from below to above c* revealed that the effect of the long 

chains involves cooperative interactions, evident in the non-linear relationship of the long 

chain concentration, particularly as c approaches the long chain-long chain overlap 

concentration. The long chains greatly enhance the formation of threadlike precursors but 

only mildly enhance the formation of pointlike precursors. 
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In studying a series of blends in which the Mw of the long chain mode was varied, we 

found that increasing the Mw of the long chain portion of a bimodal blend increased the 

tendency to form threadlike precursors to oriented crystallization. This was highlighted by 

a marked decrease in the threshold stress necessary to induce oriented crystalline growth 

and is related to the separation in time scales between the slowest relaxing chains and the 

average. Thus, the propagation of shish varies strongly with the separation in time scales 

between the slowest relaxing chains and the average. Below a threshold ratio of relaxation 

times (τL/τS ~ 100) addition of long chains did not change the behavior from that of Base-

PP itself.  

Our analysis of real-time rheo-optical and rheo-WAXD experiments combined with depth 

dependent information from a novel “depth sectioning” analysis technique uncovers several 

keys to understanding how anisotropic crystallization is induced by flow. Threads first 

form near the channel wall, where stress is highest, and grow in length with prolonged 

flow. After sufficient time, thread length per unit volume saturates, perhaps due to 

collisions with other threads or crystalline overgrowth from those threads. Prior to 

saturation, when crystalline overgrowth is negligible, the thread propagation appears to be 

linear with shearing time. The propagation of threads varies in a nonlinear manner with 

stress. Finally, we identify a promising set of conditions that can be used to measure the 

thread propagation velocity for this material if the appropriate length scale can be assigned 

by microscopy.  

We examined the effects of long chain regularity on the formation of threadlike precursors, 

showing that addition of molecular level defects to the high end of the molecular weight 

distribution effectively raises the threshold stress and mitigates the formation of oriented 

precursors induced by flow. Our study included a model bimodal blend of isotactic and 

atactic polypropylene as well as large scale bimodal blends of isotactic polypropylene and a 

propylene-ethylene copolymer fit for pilot-scale production of nonwoven fabrics. It is 

noteworthy that the qualitative behavior observed in the melt-spinning process accords well 

with the trends evident in isothermal shear-induced crystallization. This has value in two 

respects. Scientifically, it is significant that idealized flow and thermal conditions may well 
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reveal the physics relevant to polymer processing, which involves mixed shear and 

extension under non-isothermal conditions. Technologically, the ability to screen different 

resin compositions on a small scale can be used to optimize flow-induced crystallization 

characteristics prior to scale up.  
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1.1 Background 

In the early 1950’s, Karl Ziegler1 and Giulio Natta2 launched the modern polyolefin 

industry with the discovery and development of catalyst-driven polymerization of olefins, a 

feat for which they shared the Nobel Prize for Chemistry in 1963.  The development of a 

completely synthetic, re-formable material was a boon to the nascent polymers industry, 

which relied heavily on natural products (e.g., rubber, gutta percha, and celluloid) and hard 

phenolic resins.3 Today, representing about 60% (24 million tons) of the polymer produced 

annually in the U.S.,4 polyolefins are the most widely used polymeric materials due to 

excellent physical properties, easy processibility, recyclability, and low cost.  Polyethylene 

and polypropylene, the most common polyolefins, are used in products ranging from car 

bumpers to carpet fibers to artificial joints, and are fabricated by a variety of methods 

including injection molding, fiber drawing, thermoforming, and extrusion. Widespread 

commercial usage of polyolefins has motivated studies to understand the processing-

structure-property relationships of these materials to optimize control of product material 

properties.   

Polyolefins belong to a class of polymers known as thermoplastics, which can be melted 

and reformed due to their semicrystalline nature. This characteristic leads to an ease in 

processing that, in part, is responsible for their widespread use. The semicrystalline nature 

of polyolefins naturally leads to a composite structure in which crystalline portions impart 

strength and amorphous portions impart toughness. The material properties such as 
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strength, hardness, and permeability are linked to microstructural characteristics—

crystallite orientation and organization—known to vary in a highly non-linear way in 

response to flow. Dramatic improvements in material properties can be achieved during 

processing by controlling crystalline microstructure. For example, Dyneema®, a highly 

oriented polyethylene fiber, has a modulus of 116 GPa (modulus of steel is 200 GPa), but 

the modulus of unoriented polyethylene is < 10 GPa. Furthermore, recent improvements in 

catalyst technologies enable exceptional control over molecular characteristics (molecular 

weight, molecular weight distribution, tacticity, comonomer incorporation) of 

polyolefins—the primary molecular parameters that affect crystallization. However, the 

complex interplay between processing conditions and molecular characteristics that 

determines the final crystalline microstructure in not well understood. It is our goal to 

elucidate the underlying physics controlling flow-induced crystallization of semicrystalline 

polymers. 

1.1.1 Morphology and nucleation in quiescent polymer crystallization 

Semicrystallinity is a consequence of the key feature that distinguishes polymers from 

small molecules—connectivity. Flexible chain polymers of simple monomer units that are 

covalently bonded to form macromolecules can be millions of units long. This connectivity 

has consequences for crystallization. Unlike small molecules which add sequentially to a 

molecular crystal arrangement in space leading to 3-dimensional crystal growth up to the 

macroscopic scale, polymers are unlikely to form such an arrangement due to the size of 

each molecule. Rather, polymer chains fold back and forth forming platelet-like crystals 

which extend in only two dimensions. The third dimension established by the fold length (5 

– 20 nm) remains more or less constant. The chain-folding habit of polymer crystallization 

was determined by Keller5 upon examining single crystals of polyethylene grown from 

dilute solution. These chain-folded crystals (also known as chain-folded lamellae) are a 

metastable structure (though at least one researcher6 has challenged this assumption) 

adopted by the polymers since the thermodynamic equilibrium crystalline structure, 

composed of fully extended chain crystals, is kinetically frustrated. Because chain folding 

is a kinetically controlled process, many chains are unable to re-enter (or are rejected from) 

the lamellar crystal and may span multiple lamellae, participating in several crystals. This 
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is even more likely when crystallization proceeds in bulk from the melt state where 

polymer chains are highly entangled and must disentangle to participate in crystallites. The 

interlamellar portions of the chains remain amorphous and may represent 10 – 70% of the 

polymeric material.  

During bulk crystallization from the melt in the absence of external perturbation, polymers 

tend to form spherical super structures known as “spherulites.”7,8 Spherulites result from 

branching and splaying of lamellae as they grow outward from a nucleus to fill space. The 

spherulite structures are easily analyzed with optical microscopy, yielding information on 

the inherent nucleation and growth rate of the polymer (Figure 1.1). Much of the early 

knowledge concerning crystallization kinetics and morphology was obtained in this way.  

According to classical nucleation theory, quiescent crystallization of polymers begins when 

statistical thermal fluctuations in chain conformation and arrangement within a metastable, 

supercooled phase produce a critical-sized nucleus of the crystalline phase followed by 

growth into a new macroscopic phase.  This growth is spontaneous when the size of the 

nucleus is large enough to balance the bulk free energy gain against the free energy cost of 

creating a new interface.  Smaller nuclei rapidly destabilize.  However, there is substantial 

debate concerning the earliest events of polymer crystallization, with several investigators 

challenging nucleation and growth as the origin of crystallites.  Terrill, et al.9 and Olmsted, 

et al.10 reported SAXS experiments of crystallizing polypropylene, suggesting that the 

nucleation step actually resembled a spontaneous, liquid-liquid spinodal decomposition, a 

term that describes a completely different method of phase-separation in which the unstable 

phase continuously and cooperatively reorganizes on longer length scales than the nucleus.  

Strobl11 cited Olmsted and Terrill when proposing that polymer crystallization closely 

resembles ordering in 2-D systems that grow cooperatively via intermediate states: a 

mesomorphic layer that thickens into a granular layer of crystalline blocks that finally 

merge into lamellar crystals.  Muthukumar12 contends that classical nucleation and growth 

can explain all experimental observations cited by the previous investigators (though the 

controversy continues), but points out that situation is further complicated when an external 

flow field is applied during crystallization.  
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1.1.2 Flow-induced morphology and nucleation in polymer crystallization 

The morphology, or structural arrangement, of the crystallites is greatly influenced by the 

conditions of crystallization. In the presence of a flow field, anisotropic nucleation is 

known to produce highly oriented crystallites. Early studies of stirred polymer solutions by 

Pennings13 uncovered a structure commonly referred to as a “shish-kebab.” 

Conventionally, it is thought to consist of a central crystalline core of extended chain 

crystals (“shish”) decorated with radially growing chain-folded lamellar crystals 

(“kebabs”). Appearance of an analogous “row-nucleated” structure14-16 is well-established 

for bulk crystallization from the melt in both strong14,17-19 (extensional) and weak20-22 

(shear) flows (Figure 1.2). However, the very nature of the shish or threadlike nuclei 

(crystalline,17,22 amorphous,23 smectic24-28) is not well understood and remains a topic of 

interest and debate. 

It is well known that in polymer crystallization, flow enhances both the rate and anisotropy 

of nucleation.  No satisfactory molecular theory currently exists to explain the mechanism 

by which flow induces nucleation.  Flory29 attributed enhanced nucleation to a reduction in 

entropy of the melt due to segmental orientation, leading to an increase in the melting point 

and thus an effective increase in the subcooling.  However, this does not fully account for 

the experimentally observed increase in crystallization kinetics30 nor does it attempt to 

explain morphological changes.  Keller31 contended that a coil-stretch32 transition for the 

longest chains led to formation of extended chain crystalline nuclei when coiled chains 

fully extended.  His work focused on extensional flows and cannot explain the dramatic 

effects induced even by “weak flows” (such as shear) where chain extension is unlikely.  

Janeschitz-Kriegl33 posited the idea that dormant “athermal” nuclei in quiescent melts, 

nuclei whose number density is a function of temperature but not time, are activated as 

clusters coalesce during flow leading to threadlike precursors.  More recently, Li and de 

Jeu24-26 asserted that crystallization under flow proceeds via a pre-ordering of the melt into 

layers of pseudo-crystalline bundles of chains with smectic ordering reminiscent of 

Strobl’s11 description of quiescent crystallization. No clear consensus exists concerning the 

nature of oriented nuclei or the mechanism(s) by which they are fashioned. 
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1.1.3 State of knowledge concerning molecular effects on crystallization 

Understanding how molecular characteristics of polymers affect crystallization will enable 

rational design of polymer resin molecular characteristics to exploit processing-structure-

properties relationships.  However, little is known concerning molecular variables, in large 

part because of ill-defined polymers that were studied. Until recently, heterogeneous 

Ziegler-Natta type catalysts used to produce commonly studied polymers (polyethylene and 

polypropylene) yielded materials with a broad distribution of both molecular weights and 

molecular defects. Furthermore, the distribution of molecular defects is linked to molecular 

weight such that the longest chains are the most perfect and the shortest chains contain the 

most defects. 

In the literature, a long-standing hypothesis has held that a broad distribution of molecular 

weights and the high molecular weight tail, in particular, are responsible for the dramatic 

crystallization effects in deformed systems.13,34-39  It is commonly believed that the long 

relaxation time of the longest chains relative to the bulk of shorter chains leads to 

preferential orientation under flow and the growth of highly anisotropic crystallites. Yet, 

the broad distribution of molecular weights prevented determination of which chains 

should be considered “long,” and it remained unclear whether long chains enhanced 

crystallization because of length or because of regularity. Chain regularity (tacticity, 

comonomer content) is known to strongly affect degree of crystallinity, crystallization 

kinetics, and morphology.40-43 

1.2 Motivation 

Study of flow-enhanced crystallization dates back to the 1960s,34,35,44-48 but the problem has 

regained considerable attention in the past decade20,21,36,49-57 due, in part, to the 

advancements in single-site catalysts58,59 which offer unprecedented control of polymer 

molecular properties. Metallocene catalysts produce polymers with a narrow distribution of 

molecular weights (Mw/Mn ~ 2) compared to heterogeneous catalysts (Mw/Mn ~ 4-6) and 

yield an even distribution of defects over all molecular weights. For polypropylene, the 

symmetry between adjacent methyl substituents, or tacticity, can be varied from random to 



 I-6
nearly perfect. Such control over molecular variables enables a systematic approach to 

the study of flow-induced crystallization. 

Polypropylene has garnered attention particularly in the crystallization literature due to 

properties amenable to experimentation: ready availability in linear form (polyethylene 

tends to form branches), a wide crystallization temperature window, and moderate 

crystallization kinetics. Furthermore, there exists substantial interest from an industrial 

perspective. Polypropylene has gained the largest share of the plastics market4 since it 

exhibits properties that are more desirable than polyolefin relatives: polyethylene, 

polyvinyl chloride, and others.  Polypropylene has a higher melting point, lower density, 

good chemical resistance, and lower cost. Great effort is directed toward expanding the 

market for polypropylene and improving its processing characteristics. The crystallization 

kinetics of iPP are slow relative to PE, increasing technological motivation to understand 

the ways that molecular structure and processing flow can be used together to produce 

rapid solidification and hence high throughput production.  To be used in the widest range 

of processes, polypropylene materials are tailored for processing by modification of the 

molecular weight, molecular weight distribution, tacticity, comonomer content, and chain 

architecture through trial and error methods. 

The ultimate goal of studies of flow-induced crystallization is the development of a truly 

predictive model requiring only molecular characteristics of the polymer and flow 

conditions as parameters. A successful model would predict relevant crystalline 

characteristics such as degree of crystallization, kinetics, orientation, morphology, and 

material properties. Such a model does not exist. A number of empirical models60-63 of 

flow-induced crystallization have been formulated which rely on adjustable parameters that 

are used to fit limited experimental data, do not account for morphology, and generally 

calculate only one pertinent value (i.e., onset of crystallization, degree of crystallization). 

Guided by experimental findings, recent models of flow-induced crystallization have begun 

to focus on molecular dynamics in the melt using rheological approaches to predict the 

effects of high molecular weight chains on crystallization kinetics64,65 and morphology.66 

The dramatic influence of anisotropic nucleation upon crystallization kinetics, structure, 
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and ultimate material properties suggests that successful models must include the 

physics of oriented threadlike precursor formation. However, a solid understanding of those 

physics must first be discovered, motivating the design of our experiments to track the 

formation of oriented precursors. 

Our research aims to elucidate the molecular physics that underlie flow-induced 

crystallization by systematic variation of molecular parameters of polypropylene. Our 

strategy for unraveling the molecular aspects of flow-induced crystallization begins with 

the hypothesis that the longest chains are responsible for the induction of highly oriented 

crystallites. Model blends of polypropylenes with a bimodal distribution of molecular 

weights in which the length and amount of long chains are known, and the molecular 

regularity of the long component that can be systematically varied are examined. We focus 

on polypropylene, in particular, but are hopeful that insights from its study will be 

applicable to other semicrystalline polymers and will ultimately provide a more complete 

perspective of flow-induced crystallization events. 

1.3 Thesis organization 
We begin by introducing the novel device developed for well-defined flow-induced 

crystallization studies and the methodology applied (Chapter 2). Next, we test and confirm 

the hypothesis that long chains enhance the formation of anisotropic crystals by adding 

small amounts of high molecular weight polypropylene to a base resin, looking particularly 

at how its effects vary at concentrations where the long chains begin to overlap (Chapter 3). 

To clarify how long chains promote the transition to oriented crystalline growth, the 

subsequent chapters describe the effect of the relative length of the long chains to the short 

chains (ML/MS) on the threshold stress to induce oriented crystallization, σ* (Chapter 4); 

the relative thread length per unit volume as a function of the local stress, σ - σ* (Chapter 

5); and the effect of long chain regularity on the formation of threadlike precursors 

(Chapter 6).   
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Figure 1.1: Polarized light micrograph of spherulites in an isotactic 
polypropylene impinging upon one another. Scale bar 100 µm. 
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Figure 1.2: Scanning electron micrograph of toluene-extracted ultra high 
molecular weight polyethylene crystallites with a shish-kebab structure 
following shear treatment. (Reprinted with permission from Hsiao, B.S., et 
al. Phys. Rev. Lett. 2005; 94 (11): 117802. Copyright (2005) by the 
American Physical Society). 
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2.1 Background 

Studies of flow-induced crystallization over nearly four decades have focused on various 

types of flow fields: complex processing flows1-12 (e.g., injection molding, film blowing, 

fiber drawing) and controlled flows, either in modified rheometers13-17 or custom-designed 

devices.18,19 Processing flows are difficult to analyze since they involve complex flow 

fields (mixture of shear and elongation, uniaxial and/or biaxial deformation) that are 

usually unknown as well as thermal transients and gradients that are, too, usually unknown. 

Separately, experiments have been performed with known flow and thermal conditions in 

modified rheometers or custom devices that impose simple, well-defined flows under 

isothermal conditions. However, comparing the results from well-defined experiments to 

processing flows is not straightforward. Rheometers are incapable of imposing the 

magnitude of stress experienced in processing conditions. The highly nonlinear effects of 

stress make it impossible to extrapolate results seen at low stress to high stress conditions 

relevant to processing. Furthermore, experiments in rheometers usually involved 

continuous flow, leading not only to distortion of the polymer melt but a reorganization of 

the crystallites once formed, complicating analysis of their final orientation distribution.    

In the 1990s a renewed interest in flow-induced crystallization was sparked. An elegant 

approach formulated by Janeschitz-Kriegl and co-workers20-22 addressed the shortcomings 
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of prior studies15-17,23,24 that were complicated by one or more of the following: non-

isothermal conditions, continuous flow during the entire crystallization process, and/or 

inability to access stresses that induce the transition to oriented growth. Their approach 

involved fitting a valve on the end of an extruder allowing a controlled duration of flow at 

high stress relevant to processing conditions. The flow was imposed for a brief interval, 

shorter than the time for crystallites to appear. In this way, the effect of melt deformation 

on crystallite orientation could be isolated from re-organization of crystallites.  

Experiments were conducted isothermally so that the effect of temperature could be 

independently studied.  

2.2 Shear-induced crystallization apparatus 

We adopt the “short term shearing” approach of Janeschitz-Kriegl to examine the effects of 

flow as a function of shear stress and shear duration under isothermal conditions, 

implemented in a custom instrument developed at the California Institute of Technology by 

Kumaraswamy25. A significant advantage of our shear apparatus is a small sample 

requirement (~10 g) for operation enabling a suite of experiments (500 mg per experiment) 

to be conducted even on model materials available in limited quantities. The extruder 

utilized by Janeschitz-Kriegl required a minimum of 22 kg per experiment, limiting 

investigation to industrially available materials.  The relatively compact size of our 

instrument facilitates synchrotron X-ray experiments to probe structure formation in real 

time.  Like Janeschitz-Kriegl, our instrument for shear-enhanced crystallization can apply a 

well-defined thermal history and impose high wall shear stresses for a controlled duration, 

measure birefringence and turbidity during and after shear, and facilitate sample removal 

for ex situ imaging using optical and electron microscopies. Processing-like stresses (wall 

shear stresses up to ~0.15 MPa) can be accessed by application of large pressure drop 

across a rectangular channel within a flow cell. The rectangular channel has dimensions 

63.5 mm x 6.35 mm x 0.5 mm (length x width x depth). Greater than 10:1 aspect ratios for 

length:width and width:depth confine entrance effects to a short distance into the channel 

and provide a nearly two-dimensional flow between parallel plates.26  
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The apparatus consists of the following parts (Figure 2.1): pneumatic actuator for 

driving flow, melt reservoir for holding polymer sample, heating block to hold the flow cell 

and maintain crystallization temperature (Figure 2.2), and a removable flow cell (Figure 

2.3).  

2.3 Experimental protocols 

Prior to imposing short-term shearing, the polymer is in a fully relaxed, isothermal state.  

Polymer is loaded and held at a temperature above its melting point (Tm) in the reservoir 

immediately adjacent to the flow channel. Upon actuating the pneumatic cylinder, the 

polymer melt is driven into the flow cell (Figure 2.4). The flow cell is initially held above 

the equilibrium melting temperature (Tm
0) for the polymer and filled with polymer melt 

from the reservoir. The polymer in the flow cell is then held at Terase (> Tm
0) for 5 – 10 

min27 to erase any (conformational) memory effects caused by the filling process and to 

melt any residual crystallites. By pre-filling the cell prior to characterization, we eliminate 

extensional and fountain flow effects associated with polymer filling the empty channel 

and produce a pressure-driven, shear flow when a second pressure pulse is applied. Finally, 

the sample is cooled to the crystallization temperature (Tc).   

Upon reaching Tc, a desired pressure drop is applied to drive intense shear flow through the 

channel for a brief shearing time ts. The imposition of shear demarks the beginning of the 

experimental time frame (t=0). The geometry of the flow cell (length/depth ~ 100) limits 

the total experimental shear strain at the wall (γw) to ~100 strain units to ensure that every 

fluid element that reaches the observation point was already in the channel at t = 0 (hence 

subjected to the specified thermal and flow history). Therefore, the maximum ts that is 

applied is determined to be that at which ≈ 100 mg of polymer is extruded.  

2.4 Sample preparation 

Throughout this work we employ bimodal blends of polypropylenes designed to reveal the 

effects of particular molecular characteristics on flow-induced crystallization. Of particular 

interest are blends of a small amount of very long chains with a majority of moderate 
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length “base resin.”  The enormous viscosity mismatch between the two species 

precludes melt blending: we found that melt blending resulted in degradation of the long 

polymer and incomplete mixing of the two components. To obtain a homogeneous mixture, 

we employ a solution blending method. The two components are weighed and codissolved 

in a 2.3% xylene solution at 140 °C for 20 min under nitrogen atmosphere and in the 

presence of an antioxidant (2000 ppm of IRGANOX1010®). A precipitate is obtained by 

pouring a fine stream of the hot xylene solution into a large excess (8:1) of methanol, 

which is then filtered and dried under vacuum for 3 days at 80 °C. After further addition of 

2000 ppm of a 1:1 mixture of two antioxidants, IRGAFOS168® and IRGANOX1010®, the 

dried precipitate is press molded at 180 °C under 10,000 psi into an ingot sized to fit the 

sample reservoir for the shear experiment.  

2.5 Characterization methods 

To evaluate structural changes during and after cessation of shearing, we use in situ rheo-

optical and rheo-WAXD measurements. The effects of molecular structure and flow 

conditions on the final morphologies are established ex situ by microscopy. 

2.5.1 In situ characterization 

For real-time measurements of the transient microstructure, the flow cell is fitted with 

windows in the walls of the flow channel (quartz for optical, beryllium for X-ray) to allow 

the probing radiation to pass through.  

In rheo-optical experiments, turbidity and birefringence are tracked to monitor the progress 

and anisotropy of crystallization. The optical train consists of He-Ne laser-light 

(wavelength λ =  632.8 nm) passing through crossed and parallel polarizers (I⊥ and I‖) 

measured with photodiode detectors.28 When depolarization is negligible and the retardance  

(∆nπd) is less than a half-wave (λ/2), the birefringence (∆n), which is a measure of the 

mean anisotropy of sample, is given by 
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where d is the thickness of the sample. When strongly oriented crystallization proceeds 

after flow, the retardance become very large (∆nπd > λ/2).  The time at which the 

retardance reaches a half-wave is marked by appearance of a maximum in I⊥/I‖.  

Successive minima correspond to increasing odd multiples of λ/2 and successive maxima 

correspond to even multiples of λ/2.   Transmittance is defined as total transmitted intensity 

(Itot=I⊥+I‖) normalized by a constant value of Itot,0 before shearing. 

The modular design of the apparatus enables relocation to a synchrotron X-ray source for 

in situ rheo-WAXD experiments. The optical train is modified to include a CCD camera 

(Figure 2.5) to capture 2-D diffraction patterns, and the quartz windows are replaced by 

beryllium. Further details regarding the synchrotron X-ray experiments are provided in 

Chapter 3. 

2.5.2 Ex situ characterization 

The flow cell is removable and designed for easy extraction of solidified samples. The 

crystalline sample can be sliced into thin sections using a cryomicrotome for further 

inspection by microscopy (5 – 10 µm thickness for optical microscopy, and 100 nm 

thickness for transmission electron microscopy [TEM]). Polarized light microscopy and 

TEM are used to study the final morphology at micrometer and nanometer length scales, 

respectively. 
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Figure 2.1: Schematic of shear-induced crystallization apparatus.  
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Figure 2.2: Schematic of melt reservoir, heater block, and flow cell (gray) 
assembly.  
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Figure 2.3: Schematic of flow cell.   
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Figure 2.4: Schematic of the thermal and flow history imposed on 
samples subject to flow-induced crystallization. 
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Figure 2.5: Schematic of optical arrangement for WAXD. 
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3.1 Introduction 

The strong effects of flow on crystallization are attributed to the perturbation of chain 

configuration by flow. It has been generally believed that extension of macromolecules 

promotes the formation of long threadlike structures oriented in the direction of elongation, 

and these filaments provide nucleating surfaces for radial growth of chain-folded lamellae. 

Keller and coworkers1, 2 have studied flow-induced crystallization in polymer solutions, 

where interactions between molecules can be minimized, in order to describe the 

underlying mechanisms of polymer crystallization from the oriented state, partly based on 

the detailed study of “shish-kebab” structures grown from stirred solutions.3 This “row-

nucleated structure” model, deduced from solution studies, also describes the morphology 

resulting from elongational flow-induced crystallization of bulk polymers where the 
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connectivity within a chain and the entanglements between chains restrict the 

segmental diffusion of the molecules.4 Similar shish-kebab morphology is induced by shear 

flow in which full extension of individual chains is unlikely. Perhaps extension of portions 

of the chain between topological constraints in the melt is sufficient to produce threadlike 

structures,5 or perhaps chain extension is not required.  

It has also been inferred that flow-induced changes in crystallization kinetics and the 

induction of the shish-kebab structure are strongly affected by “long chains.”6-12 The 

evidence is based predominantly on samples that have broad distributions of molecular 

weight and molecular regularity.  This has presented a major obstacle to 1) defining what is 

meant by the long chains, 2) proving that their role is due specifically to length and not to 

more perfect molecular structure (traditional polyolefins produced by Ziegler-Natta type 

catalysts have correlated length and regularity13, 14), and 3) discerning how their impact 

varies with concentration to gain deeper insight into the physical basis of their effect.  

Further, when comparing materials of different average length, a number of investigators 

have used experiments performed holding deformation rate fixed.6-10, 15-17  This choice 

makes it difficult to attribute observed differences in behavior to molecular length per se, 

since the comparisons are made at very different stress.  The effects of stress are known to 

be very strong, including qualitative changes in kinetics and morphology upon crossing 

threshold stress levels; therefore, comparisons made at fixed stress are needed to probe 

effects of chain length and its distribution.   

To overcome the limitations of poorly defined materials, we follow the approach of 

Kumaraswamy et al.,18 who demonstrated that preparation of binary blends of narrow 

distribution isotactic polypropylenes (iPPs) provides a route to model materials in which 

the length and concentration of long chains are known and can be systematically varied. To 

expose the effect of long chains on the response during and after shear, we adopt the “short 

term shearing” approach of Janeschitz-Kriegl19-21 and make comparisons of the effects of 

flow at a given shear stress. To evaluate structural changes during and after cessation of 

shearing, we use in situ rheo-optical and rheo-WAXD measurements. To reveal the effects 
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of molecular structure and flow conditions on the final morphologies, ex situ 

microscopic observations were performed. 

Portions of the work in this chapter were performed by collaborators22 who provided 

fractionated long chain polymers, polymer characterization (GPC and NMR), and optical 

and electron micrographs. Our primary collaborator, Dr. Seki, prepared polymer blends and 

conducted DSC characterization and rheo-optical experiments in our laboratory at the 

California Institute of Technology. (Parts of this chapter have been published and are 

reproduced with permission from Macromolecules, 2002. 35: 2583-94.  Copyright 2002 

American Chemical Society). 

3.2 Experimental 

3.2.1 Materials 

An iPP with moderate molecular weight (186 kg/mol) and narrow polydispersity in terms 

of both molecular weight (Mw/Mn = 2.3) and stereoregularity ([mmmm] = 96%, Tm = 148 

°C) was provided by Dr. Robert Sammler23 for use as a base polymer resin (Base-PP). An 

iPP with much higher molecular weight (923 kg/mol), narrow PDI (Mw/Mn = 1.3), and high 

stereoregularity ([mmmm] = 98%, Tm = 165 °C) (L-PP) was prepared by fractionation from 

a parent iPP polymerized with a Ziegler-Natta catalyst. The tight distribution of chain 

length for L-PP (Figure 3.1) was achieved by using fractionation by the solvent gradient 

method, in which the solvent composition of o-dichlorobenzene and diethylene-glycol-

monomethyl-ether in polymer solution was changed gradually.24 The methods used for 

molecular characterization are presented below in Section 3.2.7.25 The difference in 

stereoregularity and Mw led to a 16.3 °C difference in the apparent melting point of the two 

samples.  

Bidisperse blends were prepared with different concentrations of L-PP (c), varying c from 

0 to twice the critical concentration of L-PP (c*) at which molecular coils of L-PP begin to 

overlap one another (Table 3.1). The overlap concentration, c*, is26, 27   
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where Na is Avogadro’s number and Rg is the radius of gyration. The characteristic ratio of  

the weight-averaged radius of gyration to Mw of iPP (<Rg
2>/Mw

0.5) is 0.39 according to 

SANS measurements,28 leading to an estimated c* of 7.0 x 10 -3 g/cm3 for L-PP. Blends are 

coded using the value of c/c*. For example, B025 denotes the blend with c/c* = 0.25. 

Blends were prepared by solution blending as described in Chapter 2. 

3.2.2 In situ rheo-optical measurements 

The flow cell was initially held at 215 °C and filled with polymer melt from the reservoir. 

The polymer in the flow cell was then held at 215 °C for 10 min29 to erase any memory 

effects caused by the filling process. Finally, the sample was cooled to the crystallization 

temperature (Tc).  Upon reaching Tc, a desired pressure drop was applied to drive shear 

flow through the channel for a brief shearing time ts. All experiments described here were 

conducted at the same Tc of 137 °C. Temperature stability was maintained within ± 0.3 °C. 

Short-term shear pulses, corresponding to wall shear stresses (σw) of 0.055, 0.09, 0.11, and 

0.12 MPa were applied for brief periods such that ts was much less than the crystallization 

time at this temperature. In order to change total strain applied, the amount of polymer 

extruded (wex) was varied from about 30 mg to 100 mg by changing ts from about 250 ms to 

8 s. The turbidity and birefringence were tracked to monitor the progress and anisotropy of 

crystallization.  

3.2.3 In situ rheo-WAXD 

A selected set of shearing conditions were further examined by rheo-WAXD (wide angle 

X-ray diffraction) to provide more detailed information concerning crystallization kinetics 

and the orientation distribution of the crystallites. The modular nature of our shearing 

apparatus allows facile relocation to a synchrotron radiation source. The flow cell used for 

rheo-optical experiments containing quartz windows is replaced by a cell with beryllium 

windows, which are largely X-ray transparent. No additional modifications of the apparatus 

are required. The high beam flux available from a synchrotron enables time-resolved X-ray 
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diffraction measurements from weakly scattering materials such as polymers. WAXD 

experiments were performed at beamline X27C at the National Synchrotron Light Source.30 

The beam at X27C is tuned to a wavelength of 1.366 Å. Two-dimensional scattering 

patterns (1024 x 1024 pixels) were collected using a MarCCD camera.31 

The 2-D WAXD patterns are background corrected by subtracting an empty cell 

background pattern to remove excess scattering from the beryllium windows and air. Each 

frame captured is normalized according to acquisition time and the time dependent beam 

intensity of the synchrotron source. The resulting patterns are analyzed in terms of a 

circular average of the scattered intensity vs. scattering vector q and azimuthal scans of the 

orientational dependence of scattering intensity of the 110 and 040 diffraction planes.  

It is not possible to compute the quantitative degree of crystallization from our WAXD 

data, so we use a crystallinity index to characterize the increase in overall crystallinity with 

time. Quantitative calculation of the degree of crystallinity requires a wide enough range of 

diffraction angles to perform an analysis such as the Ruland32 method. Further, it requires 

that the crystallite orientation distribution be well-defined and invariant with time. 

Alternatively, we report a crystallinity index (xc)  

 
ac

c
c II

I
x

+
= , (3.2) 

where Ic and Ia are the intensities of the crystalline and amorphous portions of the scattering 

profile respectively, as determined from a circular average of scattering intensity vs. q. The 

crystallinity index includes the major peaks captured in our data in the scattering range q = 

0.9 – 1.6 (Figure 3.2). The amorphous and crystalline portions of the profile are 

deconvoluted by subtracting the scattering profile of the amorphous polymer prior to shear 

treatment scaled appropriately to approximate the amorphous portion of each scattering 

profile (Figure 3.2). The resultant represents scattering from the crystalline portion only. 

The crystallinity index does not give a quantitative degree of crystallinity and neglects the 

orientation dependent nature of crystalline scattering. Here we use xc to highlight overall 

changes in the rate of crystallization due to flow as a function of polymer composition and 
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to qualitatively compare the overall rate of crystallization with that of the oriented 

crystallites. 

To characterize the orientation distribution of crystallites, azimuthal scans are performed at 

each Bragg angle of interest (110 and 040). The amorphous contribution to the diffracted 

intensity at that scattering angle is estimated from the circularly averaged data using a 

linear interpolation between scattering angles on either side of the diffraction peak (dotted 

lines, Figure 3.2). After subtracting the amorphous contribution, the azimuthal distribution 

of intensity is analyzed to determine the angular position, peak amplitude, and full-width at 

half-maximum (FWHM) that provide the best fit of a Lorentzian line shape to the 

experimental data. Emphasis is placed on the 110 reflection because it reveals the relative 

amounts and the angular distributions of parent crystallites and their epitaxial daughter 

crystallites. 

To properly evaluate the ratio of parent to daughter crystallites (P:D), it is necessary to 

apply a geometrical scaling to the azimuthal intensity to account for orientation-dependent 

scattering. The geometry of the Ewald’s sphere construct dictates that crystallites with 

uniaxial orientation along the axis of the orientation sphere (the flow direction in our case) 

will have a diminished diffracted intensity compared with an isotropic distribution of the 

same amount of crystallites such that 

 
)sin(

2
φπfIsotropic

Oriented
= , (3.3) 

where φ is the azimuthal angle and f = sin(90 - θ) with θ denoting the scattering angle; f has 

the value 0.992 and 0.989 for 110 and 040 planes, respectively.33 For a given number of 

crystalline poles (plane normals), the intensity of diffraction depends on the density of 

poles that satisfy the Bragg condition (at each 2θ). Crystalline poles with perfect uniaxial 

orientation at an angle φ from the axis of the orientation sphere trace out a cone on the 

orientation sphere (Figure 3.4). For example, crystalline poles oriented perpendicular to the 

axis of orientation will cover a disc (a cone of φ = 90°) and have a relatively low density of 

poles that intersect the Ewald’s sphere. In contrast, crystalline poles oriented along the 
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orientation axis (φ = 0) will have a high density. On our flat plate image, the flow 

direction and axis of the orientation sphere are along the equator (horizontal direction) of 

the 2-D image. Therefore, the scattered intensity detected on the meridian (vertical 

direction) of the 2-D image from crystalline poles oriented at φ = 90° appears less intense 

than an equivalently oriented group of crystalline poles oriented along the equator φ = 0°. 

3.2.4 Ex situ microscopy (OM and TEM) 

Sheared samples examined in the rheo-optical experiments were allowed to solidify at Tc = 

137 °C in situ until the transmittance dropped to zero, after which the flow cartridge was 

removed and plunged into ice water.  After the cartridge had cooled, the sample was 

removed and prepared for ex situ morphology studies. Thick sections (thickness = 10 µm) 

were taken in the flow-vorticity and flow-gradient planes and were examined using a 

polarization optical microscope (OM). Ultra thin sections approximately 100 nm in 

thickness were cut at a position corresponding to the center of the optical window.  A block 

face was cut, the sample was stained with ruthenium tetroxide for two hours at 50 °C,34 and 

sections were cut from the block face using a microtome.  Thin sections for both “through” 

and “edge” views were prepared (images in the flow-vorticity and flow-gradient planes, 

respectively). Transmission electron microscope (TEM) observation was carried out at 

Mitsubishi using a JEOL TEM model JEM 1230 at 100 kV. 

3.2.5 DSC measurements 

In a differential scanning calorimeter (Perkin-Elmer DSC-7), the crystallization and 

melting of iPPs were characterized at a scanning rate of 5 °C/min in N2 atmosphere.  

3.2.6 Measurement of molecular weight 

Weight averaged molecular weight (Mw) and polydispersity of molar mass for iPPs were 

measured at Mitsubishi by GPC with an on-line multi-angle laser light scattering 

photometer (GPC-MALLS). The measurements were performed on a Waters model 150C 

with three polystyrene columns (SHODEX KF-806M from Showa Denko Co. Ltd.) at 

413.2K using a flow rate of 1.0 mL/min. The sample was injected as a 0.3 mL aliquot of a 

1,2,4-trichlorobenzene solution with 2 mg/mL concentration. The differential refractometer 
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was used to detect solute concentrations and specific refractive index increments. The 

MALLS model DAWN DSP from Wyatt Technology Corporation, equipped with a He-Ne 

laser (λ = 632.8 nm), was connected with the GPC instrument. The ASTRA software 

package from Wyatt was used for analyzing GPC data and scattering data, which were 

collected simultaneously at 17 scattering angles ranging from 18° to 155°  (details25 are 

given elsewhere). 

3.3 Results 

3.3.1 Quiescent crystallization kinetics 

The peak crystallization temperature, melting temperature, and enthalpy change (∆Hf) were 

measured by differential scanning calorimetry (DSC) at a constant cooling rate. These 

values were almost identical for all blends and were ≈ 112 °C, ≈ 143 °C, and 85 J/g, 

respectively (Table 3.1). Addition of L-PP to Base-PP did not affect the crystallization 

kinetics under quiescent conditions, even though pure L-PP has greater crystallinity and 

faster kinetics compared with Base-PP due to its higher stereoregularity. Similarly, the 

turbidity half time, defined by the time at which the transmittance reaches one-half, was 

approximately 6500 s at 137 °C for all blends (Figure 3.5). Slight differences in the 

turbidity half time can be ascribed to variability in the temperature control. 

3.3.2 In situ rheo-optical 

3.3.2.1 Turbidity 

The development of turbidity at earlier times indicates that crystallization kinetics 

accelerate with increasing σw even when ts is reduced to hold the total applied strain nearly 

constant (Figure 3.6). The turbidity half time of the blends sheared at 0.12 MPa for the 

maximum ts was approximately ten times shorter than that for quiescent conditions.  The 

addition of low concentrations of long chains (< 2% wt.) only slightly alters the melt 

rheology. Therefore, these measurements are made not only at fixed stress (hence nearly 

the same average level of segmental orientation due to flow), but also for similar shearing 

time and total applied strain. 
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The turbidity half time also decreases with increasing ts, but the dependence on ts is 

much weaker than the dependence on σw (Figure 3.7). 

3.3.2.2 Birefringence 

Distinctive changes in the transient birefringence with applied stress indicate a critical 

stress level necessary to induce highly oriented crystalline growth in the sample. Therefore, 

we define a “critical shear stress” (σ*) necessary for this event.  For the present samples, as 

described below, the critical shear stress showed a significant and monotonic decrease with 

increasing c/c* (Figure 3.8). 

Below this threshold stress (σw < σ*), the birefringence profiles show no evidence of 

highly oriented growth (Figure 3.9).  The plots of I⊥/Itot for B1 are representative of all 

blends during and after shearing at σw, ranging from 0.055 to 0.11 MPa for different ts (0.5 

s < ts < maximum ts). I⊥/Itot during shearing exhibits a boxlike locus, which increases in a 

matter of ~50 ms to the plateau value, and is nearly constant and then at ts drops to the 

baseline value, a response that is consistent with the applied pressure profile.  I⊥/Itot then 

increases gradually after cessation of flow, reaching a value around 0.1 at the end of the 

optical experiment (stopped when the transmittance falls to zero) regardless of c and σw (< 

0.11 MPa). The delay time (td) between the cessation of shearing and the subsequent 

growth of I⊥/Itot decreases with increasing σw and increasing c. For example, td decreases 

900 ± 100, 650 ± 50, 600 ± 50, 450 ± 30, and 500 ± 30 s as c increases for B0, B025, B05, 

B1, and B2, respectively, for σw = 0.09 MPa and maximum ts. The low turbidity at td 

(Itot/Itot,0 ≈ 1.0) suggests that this rise in I⊥/Itot is not due to depolarization. The effect of ts on 

td is very weak for σw < 0.11 MPa but indicates a faster onset of crystallization with 

increasing ts. 

For σw ≥ σ*, the birefringence profiles show evidence of highly anisotropic crystallization 

(Figure 3.10). The values of I⊥/Itot during crystallization after shearing attain remarkably 

large values compared with results at lower σw (σw < 0.11 MPa). For B025 with σw = 0.12 

MPa and ts = 0.5 s (less than the maximum ts), I⊥/Itot reaches 0.4, more than four times 
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larger than the ultimate value following shear at a slightly lower σw and maximum ts. 

The development of I⊥/Itot for shear at 0.12 MPa is strongly affected by c and ts. With 

increasing ts and c, birefringence after transient shearing grows faster and achieves higher 

values.  When the long chain concentration increases to c/c* = 0.5, we observe a qualitative 

change in the evolution of birefringence during transient shearing. The loci of I⊥/Itot for B0 

and B025 during transient shearing at 0.12 MPa generate the same boxlike shape as that 

sheared at lower σw; however, for B05, B1, and B2 we see that I⊥/Itot exhibits an “upturn” 

during shear after the plateau value is reached and then relaxes upon cessation of shear 

(Figure 3.10). The “upturn” feature has been shown to correspond to the formation of a 

“shear-induced structure” that gave fiber-like crystalline reflections of the α-modification 

of iPP during real time synchrotron WAXD in a conventional Z-N iPP.35, 36 Subsequently, 

these samples were shown to have developed a skin-core crystalline morphology. In our 

samples, the “upturn” in birefringence similarly indicates that shearing at σw > σ* results in 

the formation of a highly oriented structure in B05, B1, and B2. The “upturn” appears at ts 

= 0.35 s in these three blends, corresponding to wex of approximately 65 mg. Moreover, it 

should be noted that the birefringence of B1 and B2 after transient shearing at σw > σ* does 

not completely relax to the baseline value when ts > 1 s (Figure 3.10D and 3.10E).  

The ultimate value of birefringence (at the time the transmittance fell to zero) does not 

increase linearly with c but distinctively increases around c/c* of 0.5 (Figure 3.11). This 

non-linear dependence on long chain concentration suggests that the kinetic and 

morphological results due to increased long chain content are due to a multi-body effect. 

Specifically, long chain-long chain overlap enhances the development of anisotropy during 

shearing, i.e., the appearance of the birefringence “upturn,” and leads to well-developed 

oriented structures during subsequent crystallization. 

3.3.3 In situ rheo-WAXD 

The material used to prepare bidisperse blends was limited, which restricted X-ray 

scattering experiments to just three materials, B0, B05, and B1, and to stresses that induce 

oriented crystallization (σw > σ*). All samples crystallized primarily in the monoclinic α 

crystalline phase confirmed by the positions of 5 strong diffraction peaks (110, 040, 130, 
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111, and 041/131). At long times, a small amount of γ crystalline content is detected, 

evident by the unique peak at q = 1.43 Å-1. The presence of γ-phase crystallites is known to 

occur in metallocene based iPP37 due to its particular distribution of stereo- and regio-

defects; γ-crystallites commonly nucleate epitaxially from the ac face of α-iPP 

crystallites.38 

Scattering reflections for α-iPP (110, 040, and 130) centered on the meridian of the 2-D 

WAXD pattern (Figure 3.12) indicate crystallites with c-axis oriented along the flow 

direction. As is the case for most polymers, the c-axis of the unit cell is along the direction 

of the chain axis of the molecule for α-iPP. A second population of crystallites is indicated 

by maxima flanking the equator of the pattern along the 110 plane. Isotactic polypropylene 

exhibits a unique lamellar branching behavior38 known as “cross-hatching” in which a 

second population of crystallites (daughters) grows epitaxially from existing crystalline 

lamellae (parents). These daughter crystallites are oriented nearly perpendicular to the 

parents (~80° or ~100°, the β angle of the monoclinic unit cell of α-iPP).  The azimuthal 

distribution of intensity of the 110 diffraction peak is analyzed to determine the distribution 

of parent and daughter crystallites. (Daughter peaks can in principle be distinguished along 

the 130 plane as well, but are not as prominent as those along 110 and are located much 

closer to the parents, making the 130 unsuitable for determination of parent:daughter ratio.) 

The qualitative effects of long chain concentration are evident in the 2-D WAXD patterns 

(Figure 3.12) recorded at a particular time (1200 s) after shearing at a given stress (σw = 

0.11 MPa) for a fixed number of strain units (fixed extruded mass, wex): the blends with 

long chains added show much greater overall crystallinity and the enhancement is largely 

due to the growth of strongly oriented crystals. 

During crystallization, xc increases more rapidly for the blends than for the base resin 

(Figure 3.13A): at a concentration of 0.5c*, long chains result in roughly double the 

crystallization rate compared to the base polymer (B0), and at c* the overall rate is roughly 

2.5x greater than for B0. The difference can be attributed to the quantity of oriented 

crystallites measured by the amplitude of the 110 parent peaks (Figure 3.13B). The strength 
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of the effect of long chains depends on the stress imposed. We find that low 

concentrations of long chains reduce σ*, the threshold stress required to trigger the 

transition to oriented growth. The differences in behavior between the base resin and the 

binary blends are most pronounced in the range of stress that lies above σ* of the blend and 

below σ* of the base resin, as in the case for the flow conditions of Figures 3.12, 3.13, and 

3.14. 

Increasing the concentration of long chains leads to the following trends in the kinetics and 

morphology of crystallization of the oriented skin: the population of oriented crystals, 

tracked using the amplitude of the parent peak in the 110 diffraction (Figure 3.13B), grows 

more rapidly and reaches higher values before the time at which parent growth slows; the 

degree of orientation increases, as indicated by the decrease in azimuthal width of the 

parent 110 peak (Figure 3.13C); and the predominance of parent crystallization over 

daughter crystallites increases (Figure 3.14A and 3.14C). 

In addition to the dramatic effects of long chains on the formation of the oriented skin, the 

WAXD patterns also indicate enhancement of unoriented crystallization in the bimodal 

blends relative to B0 (Figure 3.14C). 

For the 110 reflection, overlap of the parent and daughter peaks contributes to the baseline 

of azimuthal scans, especially for broad distributions. However, the parent and daughter are 

coincident along the meridian at the 040 reflection since the unit cells share a common b-

axis. Therefore, we analyze the azimuthal dependence of the 040 reflection to quantify the 

oriented (parent + daughter) population relative to the unoriented population. For this 

reason, we used the 040 plane to determine the baseline due to isotropic crystalline 

scattering.  

3.3.4 Ex situ microscopy (OM and TEM) 

Optical micrographs (OM) under crossed polarizers and TEM for a B2 sample sheared at 

0.055 MPa for 7.5 s (wex = 98 mg) and then crystallized at Tc = 137 °C for 2800 s are 

presented to show the typical morphology of blends sheared at σw < σ* (Figure 3.15). The 
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value of I⊥/Itot just before removing the sample was 0.075 ± 0.03. A thin (5 µm thick), 

somewhat oriented skin layer can be seen at the surfaces of the sample, and a fine-grained 

layer of spherulitic structures is observed below the skin layer. The thin birefringent skin 

layer is composed of stacked lamellae grown perpendicular to the flow direction (Figure 

3.15B).  

A similar thin layer of lamellae perpendicular to flow also appears in some of the OM and 

TEM images for samples sheared at σw > σ* (Figure 3.16). Previously, Kumaraswamy 

encountered such a layer but was unable to determine its nature.36 The replica technique 

used to image the features of the sample by TEM was not suitable to capture features in this 

dense layer. However, ruthenium tetroxide staining provides adequate contrast to 

distinguish the crystalline features. In the example shown (Figure 3.16), the perpendicular 

lamellae occur in a layer extending 6 µm from the cell wall adjacent to the highly 

birefringent layer and appear slightly darker in optical micrographs. At higher 

magnification (TEM), the morphology of the 6 µm layer appears distinctly different than 

the shish-kebab structures (highly birefringent layer) farther from the wall. At the highest 

magnification, we discern individual lamellae and can visualize the cross-hatching 

behavior. The high number of cross-hatches in this layer accounts for the dark appearance 

when viewed between crossed polarizers since the nearly perpendicular parent and 

daughter lamellae cancel each other’s birefringence. We believe the presence of this thin 

stacked lamellar layer is due to a flow effect at the wall surface (quartz windows). 

Crystallization of the polymer on a quartz window substrate at the quiescent condition did 

not produce ordered stacks of lamellae (Figure 3.17). 

All blends crystallized after shearing at σw of 0.12 MPa (> σ*) showed a highly oriented 

skin layer (Figure 3.18A-E).  The skin layers appear as bright bands at the walls when 

viewed through crossed polarizers.  The thickness of the skin layers for B0, B025, B05, B1, 

and B2 (Figure 3.18A-E) are estimated to be 10 ± 3, 25 ± 10, 53 ± 5, 47 ± 8, and 47 ± 5 

µm, respectively. The thickness and uniformity of the skin layer increases remarkably at 

c/c* of 0.5 and saturates for c/c* =1 or higher. The position of the abrupt transition between 

the skin layer and the spherulitic core provides a measure of the threshold stress required to 
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induce the transition to oriented growth, σ*, since the stress decreases linearly from 

the wall to the center of the flow channel.  At depths greater than 50 µm from the wall, 

highly oriented crystallites are not observed; the boundary is fairly sharp and corresponds 

to σ* ≈ 0.11 MPa.  The saturation in skin thickness as a function of long chain content 

indicates that the threshold stress varies weakly with c for 0 < c < 0.25c*, strongly for 

0.25c* < c < 0.5c*, and weakly for 0.5c* < c  (Figure 3.8).  As previously reported,35 the 

formation of the oriented skin observed ex situ correlates with the development of strong 

birefringence in situ after cessation of shear as lamellae grow transverse to the precursors 

created during shear (Figures 3.10 and 3.18).  

A difference in the exact depth of the channel of flow cells containing beryllium windows 

used in rheo-WAXD experiments compared with the cells used for rheo-optical 

experiments resulted in a lower σw when the same pressure drop was applied across the 

cell. Therefore, the rheo-WAXD experiments required longer shearing times to apply the 

same total strain. Because the stress applied was closer to σ*, a thinner oriented skin layer 

was observed for rheo-WAXD than for rheo-optical experiments (Figure 3.19). The 

resulting micrographs of the quenched samples show a transcrystalline layer where the 

spherulites at the edge of the fine-grained layer grew toward the center of the channel. The 

boundary between the fine-grained and transcrystalline layer (at ~100 µm) allows us to 

visualize the depth dependence of shear-induced nuclei and infer the critical stress (~0.09 

MPa) for pointlike nucleation induced by shear.39 (This boundary cannot be seen if samples 

are quenched prior to the growth of the transcrystalline layer as in Figures 3.15, 3.16, and 

3.18). 

TEM images of the skin layer of the same samples examined by OM reveal shish-kebab 

structures (Figure 3.20). The thickness of the bright skin layer observed by OM is 

consistent with the distance from the surface to the boundary between the row-nucleated 

region and the spherulitic region seen in TEM images. From a series of TEM images 

(Figure 3.20A-E) it can be clearly seen that the number of shish-kebabs increases with 

increasing c and increasing ts (Figure 3.20D and 3.20F). Thus, evidence strongly supports 

the notion that the strong, non-linear effect of c on the transient birefringence during shear-
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induced crystallization at σw  > σ* is caused by the formation of the shish-kebab 

structure and the non-linear increase in the number of shish-kebabs, particularly as c/c* 

increases from 0.25 to 0.5. 

We quantify the length of threadlike precursors per unit volume by measuring the average 

distance between shish-kebab centers. We determined this thread density from TEM 

images by counting the number of shish-kebabs in a 2 µm depth range at several distances 

from the wall (Figure 3.21). The inverse of the square of the distance between centers 

scales as shish length/vol. The thread density saturates at long chain concentration above 

c*. 

3.4 Discussion 

3.4.1 Isolating the effect of long chain content 

To clarify the effect of the long chains, it is necessary to compare experiments performed at 

the same wall shear stress so that the average polymer orientation in the melt during shear 

is approximately fixed. Using this approach we avoid the difficulty of discriminating the 

effects of long chain content from the highly non-linear effects of changing the applied 

stress, which obscure the interpretation of prior studies that made comparisons at fixed 

deformation rate.7-11, 15-17 The addition of a small concentration of narrow distribution long 

chains to a fixed “base resin” exposes their role in oriented crystallization. The utility of 

this method was demonstrated by Kumaraswamy et al. who showed that long chain content 

in bidisperse blends was strongly related to the induction of oriented growth by shearing.18  

At fixed stress, and hence roughly fixed average orientation, the long chains become more 

oriented than average.  The relative length of the long and short chains largely determines 

the disparity in their relaxation times and their orientation states during shear. In contrast to 

earlier experimental studies in which polymer samples with very broad molecular weight 

distributions were blended to vary long chain content,40 Kumaraswamy used relatively 

well-defined materials.  Thus, it was possible to be specific about the relative length of the 

long chains compared to the bulk (ML/MS ~ 4.5).  
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The prior study by Kumaraswamy et al. only examined concentrations above long-

chain overlap (2-10%, corresponding to c/c* of 2.5 – 12.3), and pronounced skin formation 

was observed for all binary blends investigated (but not for either the short or long 

polymers alone). The purpose of the present study is to learn more about the mechanism by 

which long chains affect flow-enhanced crystallization. Here we examine the change in 

behavior as a function of c both above and below c* to determine whether the long chain 

effect is a single-chain effect or cooperative. We further examine the experimental results 

for evidence of the specific steps in flow-enhanced crystallization in which the longest 

chains play an important role.  

3.4.2 Sequence of events in shear-enhanced crystallization 

According to the model of Janeschitz-Kriegl and coworkers,15 the first stage in shear-

enhanced crystallization is the formation of “pointlike” precursors; once formed, sustained 

shearing can elaborate these “pointlike” precursors into “threadlike” precursors (Figure 

3.22).  The high aspect ratio of the threads causes lamellar growth from them to be laterally 

constrained, resulting in formation of a highly oriented, row-nucleated morphology. Our 

data is qualitatively consistent with this model, and we will discuss our results in the 

context of this basic physical picture.  From the earlier work of Kumaraswamy et al.18 and 

the results described above, it is clear that long chains play a central role in the formation of 

the row-nucleated morphology.  Within the framework put forward by Janeschitz-Kriegl, it 

is essential to know where the long chains are involved in the sequence of events that 

underlie the creation of this oriented structure.    

At what stage(s) are the long chains involved?  The observed behavior of the blends 

indicates that the long chains greatly enhance the growth of threadlike precursors but only 

mildly enhance the formation of the initial pointlike precursors.  Above the threshold stress 

the elaboration of pointlike nuclei into threads depends strongly on c. TEM images reveal 

that the number of threads increases with increasing long chain concentration (Figure 3.20), 

holding T, σw, ts, and γw all nearly fixed.  As concentration increases from 0 to 0.5c*, we 

observe an increase in thread length per unit volume up to a saturation value that does not 

change substantially with further increase in long chain concentration up to 2c* 
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(corresponding to approximately 100 nm between thread centers).  For B0 and B025, 

most threads are less than 20 µm long (both ends visible in TEM images), but for B05, B1, 

and B2 the length of the threads exceeds the field of view (20 µm).  

The enhancement of oriented growth due to the addition of long chains indicates that a 

greater length/vol of threadlike precursors form in the binary blends, as is confirmed by 

electron micrographs (Figure 3.20 and 3.21). Increase in the total length of threadlike 

precursors per unit volume is accompanied by a decrease in the lateral distance between 

them. Kinetic consequences of this trend include an increase in the initial rate of formation 

of oriented crystals (Figure 3.13B). Because all of the observed growth occurred after 

cessation of flow and the long chain concentration is so low that it does not affect the 

growth velocity, the quiescent growth velocity is constant across the three experiments. 

Therefore, the greater the rate of oriented crystallization, the greater the area of the growth 

front, in accord with the increase in length/vol of threadlike precursors. Another 

consequence of the decreased distance between threads is a reduction of the distance the 

growth fronts propagate prior to impingement. Since the splay in orientation increases with 

distance from the shish, reduced distance to impingement leads to a tight orientation 

distribution. 

Further evidence for increased thread length comes from the real-time development of 

birefringence and oriented crystalline diffraction intensity during crystallization after 

cessation of shear. The birefringence grows faster for blends with higher long chain 

concentration and exhibits a saturation effect at higher concentrations, consistent with the 

ex situ TEM findings (Figure 3.10). The increasing birefringence during crystallization is 

due to the growth of oriented lamellae (kebabs) that occurs after the cessation of flow. The 

quiescent growth velocity is the same for all blends as indicated by our DSC data, so the 

accelerated growth of birefringence and parent (kebab) peak amplitude with increasing c is 

a result of higher thread length per unit volume. Therefore, we conclude that long chains 

enhance the process of thread elaboration, leading to longer threads and higher thread-

nuclei density.  
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The transient birefringence observed during shear also shows that adding long chains 

enhances the formation of oriented precursors up to concentrations of c*, with a weak 

effect upon further addition of long chains.  For low concentrations of long chains (B0 and 

B025, Figure 3.10A, B), the birefringence profile is boxlike, tracking the orientation of 

chain segments in the melt due to the applied stress.  When more long chains are added, 

there is an “upturn” in the birefringence (beginning at roughly 0.35 s for B05, B1, and B2, 

Figure 3.10C-D), which prior work has shown correlates with the formation of threadlike 

precursors and highly oriented α-iPP with c-axis along the flow direction.35, 36 The “upturn” 

occurs when a sufficient number of oriented crystallites (combination of “shish” and 

“kebabs”) have formed, causing the birefringence due to crystalline anisotropy to become 

greater than the birefringence from segmental anisotropy in the melt.  Thus, the appearance 

of the “upturn” for c/c* ≥ 0.5 indicates a substantial increase in the number and length of 

threadlike nuclei with increasing long chain concentration. Unfortunately, the limited 

sensitivity of rheo-WAXD experiments precludes the detection of crystallites at such early 

times.  However, we observe a correlation between the upturn in birefringence with the 

appearance of highly oriented α-phase crystallites. 

In contrast to the strong effect of c on the formation of threadlike precursors, the effect of 

long chains on the formation of the pointlike precursors was relatively weak.  Below the 

critical stress required to induce highly oriented growth, the absence of oriented structures 

observed by ex situ microscopy implies that threadlike precursors were not formed or that 

they were exceedingly short-lived and did not nucleate oriented crystallization. 

Nevertheless, samples sheared below the threshold stress show accelerated crystallization 

kinetics compared to quiescent conditions. Indeed, the fine-grained layer seen in samples 

sheared below σ* shows an increased number of spherulites when compared with quiescent 

conditions, consistent with the shear-induced formation of pointlike precursors. The density 

of nuclei in a sheared melt is a function of stress and temperature. In our isothermal 

experiment, the stress gradient determines nuclei density and spherulite size, with large 

spherulites forming at the core where few nuclei develop and a fine-grained layer near the 

wall (optical micrographs of samples subjected to σw < σ* not shown).  TEM images for 
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quenched samples sheared at σw > σ* reveal that, below the oriented skin layer, 

spherulites at a given depth from the wall (i.e., at comparable σ < σ*) were approximately 

the same size regardless of c.  Thus, the addition of long chains did not produce a 

pronounced change in morphology for σ < σ*, suggesting that long chains do not strongly 

affect the formation of point-nuclei.  In situ rheo-optical observations also support this 

conclusion.  The accelerated formation of pointlike precursors at σ < σ* is manifested in 

the development of light scattering at an earlier time than in the quiescent case.  The 

addition of long chains has only a weak effect on turbidity half times for experiments at 

similar stresses (σw < σ*) and shearing times (Figure 3.23).  

On the other hand, rheo-WAXD results highlight a noticeable change in the kinetics of 

unoriented crystallization, suggesting an increase in the number of pointlike precursors 

with increasing long chain concentration. The onset of isotropic crystallite growth occurred 

earlier for B1 than B05 (and B0), although the ratio of isotropic crystallites was only 

marginally lower for B05 at 1200 s, the time at which the total transmitted intensity of light 

in rheo-optical experiments was nearly 0. Since we were unable to obtain rheo-WAXD 

results for B025 or B2, we can not clearly distinguish the nature of the dependence of 

pointlike precursors on long chain concentration. However, it is clear that the presence of 

long chains affects the kinetics of isotropic crystallization, but perhaps only slightly. 

Therefore, it seems that the turbidity half-time is too insensitive to be a good indicator of 

the number of pointlike nuclei. For the (very low) concentration range we examined and 

the given length of long chains, we maintain that the effect of long chain concentration on 

the formation of pointlike precursor formation is weak compared with its effect on 

threadlike precursor formation. The long chains likely exert a stronger influence at higher 

concentrations than those used here or when the long chains have higher Mw. 

3.4.3 Molecular perspective on shear-enhanced crystallization 

3.4.3.1 Formation of pointlike precursors 

Even at low stress levels, flow greatly enhances the crystallization kinetics of a polymer 

melt by increasing the number of pointlike nuclei.  The mechanism by which these 

crystallization precursors are formed is unknown, but the results indicate that the 
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mechanism does not preferentially involve the most oriented chains in the melt (the 

long chains).  Put another way, it appears that the average level of segmental orientation is 

the dominant factor in determining their rate of formation, since the rate appears to be 

governed by the local stress (~average orientation), nearly independent of the concentration 

of long chains.  The low concentration of long chains in our blends will only slightly alter 

the average orientation and so lead to a slight increase in pointlike nucleation. Thus, the 

experimental results negate our initial hypothesis that the addition of long chains would 

greatly enhance the formation of pointlike nuclei following shear as a result of the stronger 

orientation of the longest molecules due to their long relaxation times.  Similarly, Somani 

et al.6 have hypothesized that for “orientation-induced crystallization, a certain degree of 

molecular extension must be achieved to induce formation of stable primary nuclei,” and 

for a “particularγ& , only the longer chains will be oriented.” If this were the case, the 

addition of long molecules would increase the amount of oriented material as well as the 

number of primary nuclei.  Alternatively, Janeschitz-Kriegl and coworkers suggested that 

the pointlike precursors form by the coalescence of “athermal nuclei” during shear, 

tracking the applied strain rather than the degree of molecular orientation.41  This 

mechanism is expected to be insensitive to the addition of long chains, in accord with these 

results.  However, the “athermal nuclei” hypothesis does not accord with the observed 

temperature dependence of precursor formation reported by Kumaraswamy.18, 35   

The α-modification of crystalline iPP is a complex arrangement of molecules composed of 

31 helices with alternating handedness packed into a monoclinic unit cell.42 Although shear 

cannot generate this precise structure, the local ordering of segments due to flow increases 

the likelihood that chains may adopt a long-lived structural arrangement due to thermal 

motion. The accelerated formation of pointlike precursors occurs sporadically at a rate that 

is controlled by the average segmental orientation. The fact that the presence of highly 

oriented long chains does not greatly affect this rate implies that many chains are involved, 

sampling a significant portion of the overall orientation distribution.   
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3.4.3.2 Formation of threadlike precursors 

The primary mechanism by which long chains enhance the formation of row-nucleated 

structures appears to be the elaboration of pointlike precursors into threads.  When the 

applied shear stress exceeds the critical shear stress, threadlike precursors form. The fact 

that the threshold stress σ* initially decreases with addition of long chains shows that the 

presence of these slower relaxing molecules enhances the elaboration of pointlike 

precursors into threads.  The decrease in the sensitivity of the process to addition of long 

chains beyond the overlap concentration indicates that the effect of long chains is a 

cooperative one that increases significantly as the probability of long chain-long chain 

overlap increases.   

Why are long chains preferentially involved in elaboration into threads?  If we consider 

the propagation of a threadlike precursor from a pointlike precursor, we envision that 

adjacent chains in the melt interact with the surfaces of a given pointlike precursor.  

Suppose that an adjacent chain adsorbs to a surface normal to the gradient direction: the 

free segments of such a chain will subsequently become elongated due to sustained shear 

(Figure 3.24a). Chain segments convected along a streamline with lower velocity relative 

to the attachment point will lag behind, while those segments on the higher velocity side 

will be extended downstream.  If a number of chains become tethered to the pointlike 

precursor, this process will create a substantial number of oriented segments upstream and 

downstream of the particle (Figure 3.24b).  Although full extension is unlikely, the strong 

orientation enhances the likelihood of subsequent nucleating structures forming along the 

line of flow (Figure 3.24c).  Thus, the same process can repeat itself over and over again, 

leading to a train of precursor clusters connected into a thread (Figure 3.24d).   

Long chains might greatly enhance this process for three reasons.  First, their segments are 

more oriented than average, which might put them in a preferred state for adsorption onto a 

precursor surface.  Second, simply by virtue of having more segments per molecule, they 

are more likely to adsorb.  Third, once adsorbed, they provide more segments to participate 

in “streamers” dangling upstream or downstream (Figure 3.24b), and these segments will 

be more oriented on average than those of shorter “streamers.”   
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After cessation of shearing, lateral growth continues from the threadlike precursors 

(Figure 3.24e). Since relaxation of chains in the melt occurs quickly after cessation of 

shearing, the growth velocity is expected to be that of the quiescent case. 

Why is the threshold stress insensitive to long chain concentration?  We expected σ* to 

decrease substantially with increasing long chain concentration over the range tested due to 

stronger relative orientation and proximity of long chain segments.  Instead we see a 

threshold stress that only decreases ~10% as c increases to 0.5c* and is almost unchanged 

with further increase to 2c* (Figure 3.8). The schematic picture in Figure 3.24 may provide 

insight into the reason(s) that addition of long chains enhances the formation of threads, yet 

the threshold stress does not change with long chain concentration.  First, the threshold 

stress may correspond to one that induces sufficient segmental orientation of the long 

chains to significantly enhance the rate of adsorption onto precursor surfaces (Figure 

3.24a).  This threshold is insensitive to c over the range probed because the relaxation time 

of the long chains does not increase greatly from that of isolated long chains in a short 

chain matrix (even at 2c* there is little long-long entanglement).  Second, the threshold 

stress may be the value that induces sufficient orientation of the “streamers” to trigger rapid 

propagation of threads up and downstream of a given precursor (Figure 3.24b-c).  In this 

case the threshold stress would be insensitive to the long chain concentration for the same 

reason as for the shear induced orientation of long chains in the melt: the relaxation 

dynamics of a long chain tethered to a precursor are insensitive to long chain concentration 

until long-long entanglement becomes significant. 

Why is the effect of long chains cooperative?  There are two ways in which reaching long 

chain-long chain overlap might be significant.  First, the probability of a particularly strong 

local enhancement of orientation due to overlap of the “orientation clouds” represented by 

individual long chains becomes increasingly likely to occur.  In view of our speculation 

about the way the threads propagate, the multi-body interaction may be among long chain 

“streamers” trailing from pointlike precursors. Second, the relaxation time of the long 

chains increases with increasing long chain-long chain interaction, particularly with the 

inception of long chain-long chain entanglement.  As the long chain relaxation time 
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increases with c, the orientation of the long chains also increases, particularly for c 

low enough that the mean relaxation time is hardly perturbed (so the deformation rate 

under a given stress remains nearly that of the pure short chains).  Similarly, if a long chain 

adsorbs to the surface of a precursor, the degree of orientation of the resulting “streamers” 

will be higher if the strands are entangled with surrounding long chains that are being 

swept by in the flow. 

Why don’t shish tumble?  A striking feature of the row-nucleated morphology is that the 

threadlike precursors are well-oriented along the flow direction.  If they tumbled with the 

vorticity of the shear flow, it is unlikely that they could attain the lengths seen in 

micrographs or exhibit the strong, uniform orientation that is observed. It may be that the 

threads do not tumble because they are elongating continuously.  For long, slender 

particles, the tumbling period, which is deduced from Jeffery orbit for rod-like particles,43 

increases strongly with increasing length of rods.  We suspect that the threadlike precursors 

may grow sufficiently quickly that their tumbling period effectively becomes infinite (long 

compared to ts) before they tumble.  The shish formed in B025 after shearing at 0.12 MPa 

for 1.0 s were not completely straight  (Figure 3.25A), whereas the shish formed in B2 after 

shearing at 0.12 MPa for 0.75 s were quite straight and thin (Figure 3.25B), perhaps 

reflecting the difference in thread growth velocity in these samples.  

Why does the concentration of threads saturate?  It is interesting that the addition of long 

chains beyond c* to 2c* produces little further enhancement of the formation of threads.  

This may be related to a morphological feature observed ex situ.  The distance between 

centers of neighboring shish in the region where shish are most densely packed was 

determined from TEM images. For the same conditions (σw = 0.12 MPa; comparable strain 

units corresponding to wex ≈ 100 mg) the shortest distance between shish for B0 was 200 

nm and for all other blends 100 nm.  Since TEM images average over the thickness of the 

ultra-thin sections, the actual spacing between the threads may be greater than this apparent 

value.  Nevertheless, the distance between threads seems to saturate as c increases. We see 

two general mechanisms that might be involved in this saturation effect.  First, once the 

threads reach a sufficiently high density, they may hinder each other’s further growth 
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(perhaps growing threads strike lateral lamellae propagating from neighbors).  

Second, at the tip of a growing thread, locally like a pointlike precursor, there may only be 

sufficient surface area for adsorption of a small number of chains.  As the concentration of 

long chains increases, they may fully occupy the available surface, causing the propagation 

velocity of the threads to saturate. 

3.4.3.3 Comparison to existing concepts regarding long chains 

Somani et al.6 have offered a molecular picture for nucleation and growth induced by 

transient shearing mediated by chains above a critical orientation molecular weight M*.  In 

their results, stacked lamellae oriented perpendicular to the flow direction were observed 

by TEM. Assuming the power law relationship between the shear rate and M* (M*~γ -a) 

given by Keller,5,44 they estimated M* from the fraction of the oriented crystalline lamellae.  

Implicit in this analysis is the assumption that “only polymer molecules having a molecular 

weight above a critical orientation molecular weight M* can form oriented structures” at a 

given shear and that all chains above M* are in these oriented crystals. In a subsequent 

paper40 they argue that incorporation of short molecules into the oriented crystals may not 

take place.  The present results show that the amount of oriented crystalline material 

(approximately half of the polymer in the oriented skin) can greatly exceed the amount of 

long chains (less than 1.5% in the present blends) that are involved in templating the 

oriented growth.  Physically, this result suggests that it is sufficient to create a very dilute 

quantity of threads to template oriented growth which incorporates chains of all lengths as 

the growth front advances.33 

Keller et al.5,44 ascribed the mechanisms for formation of threadlike structures to a coil-

stretch transition of long molecules from random coils to extended conformations which 

can then solidify into fibrillar crystals. His explanation of a coil-stretch mechanism at work 

during simple shear flow was based upon studies in extensional flow, where shish were 

shown to be the result of extended chain crystals. In shear flow, Keller hypothesized that 

extension of long chains would result between entanglement constraints imposed by the 

surrounding molecules. Our data suggest multi-body interactions of long chains play a 

significant role during the formation of threads, exhibiting a non-linear increase in the 
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number of threads with increasing c.  While we do not believe a coil-stretch transition 

occurs during shear, the nonlinear dependence on long chain concentration may indicate 

that long chain-long chain entanglement plays a role consistent with the partial extension of 

segments of the long chains due to topological constraints described by Keller.   

The concept of coil-stretch can not be completely ruled out, however. Intriguing 

experiments by Chu and coworkers45 examined of the conformational dynamics of λ- DNA 

molecules fluorescently labeled to allow direct microscopic observation in a shear flow. 

Molecules in shear flow did not show a distinct coil-stretch transition such as occurs in 

extensional flow, but at high shear rates individual molecules were observed to explore 

largely extended fluctuations. However, the mean fractional extension never rose higher 

than 0.4, as the stretched state is destabilized by the rotational component of the shear flow 

which causes the molecules to tumble. This leaves open the possibility that some long 

chains in our blends may achieve a partially extended state and that this contributes to the 

formation of oriented precursor structures. 

3.5 Conclusions 
Blending well-characterized iPP into a “base iPP” is a useful way to determine a 

relationship between characteristics of specific molecules and their role in the 

crystallization process.18  Using this approach we have shown that blends with less than 1% 

of chains with Mw five times larger than the Mw of the base resin have profoundly affected 

the crystallization kinetics and crystalline morphology of a sheared melt.  Beyond 

unambiguously demonstrating the important role of long chains in the formation of 

anisotropic crystallization under flow, this approach allows us to be specific about the 

length that is meant by “long chains” and the concentration of these chains in the melt. 

Varying the concentration from below to above c* revealed that the effect of the long 

chains involves cooperative interactions, evident in the non-linear relationship of the long 

chain concentration particularly as c approaches the long chain-long chain overlap 

concentration. The long chains greatly enhance the formation of threadlike precursors, but 

only mildly enhance the formation of pointlike precursors. 
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Table 3.1 Blend Composition and Thermal Properties  

blend c a (g/cm3) c / c* a Tc b (°C) ∆Hf b (J/g) Tm
 c (°C) 

B0 0 0 113.1 84.3 143.8 
B025 1.76 x 10-3 0.25 112.2 86.7 143.8 
B05 3.51 x 10-3 0.5 112.7 83.5 143.7 
B1 7.00 x 10-3 1.0 111.9 84.5 143.6 
B2 1.39 x 10-2 2.0 112.9 86.2 143.8 

 

aConcentration of L-PP (c) and the critical concentration of L-PP obtained from eq. 1 in 
the main text. bCrystallization temperature (Tc) and heat of fusion (∆Hf) determined by the 
exothermal peak position and calorific value of DSC with the constant cooling condition 
of 5°C/min from the melt (220°C). cApparent melting temperature (Tm) was determined by 
the peak temperature of DSC on second heating with heating rate of 5°C/min. 
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Figure 3.1: Molecular weight distribution for Base-PP (dotted line) and L-
PP (solid line) measured by GPC-MALLS. 
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Figure 3.2: Circular average of 2-D WAXD patterns. Two-dimensional 
WAXD patterns are collected using a MarCCD camera (top). A circular 
average of intensity vs. q is extracted (bottom) and crystalline peaks are 
identified. The crystallinity index (xc) is calculated by separating the 
crystalline and amorphous fractions of the circular average. The 
amorphous portion (dashed line) is approximated by the scattering profile 
of the amorphous polymer melt (prior to shearing), scaled appropriately. 
The profile of diffraction from crystalline material (grey curve) is taken to 
be the difference between the total intensity and the amorphous 
contribution. Subsequent analysis of the azimuthal dependence of 
crystalline diffraction uses a linear approximation (dotted lines) of the 
amorphous halo. 
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Figure 3.3: Azimuthal scans of the 040 (top) and 110 (bottom) planes and 
fits. Crystallite orientation is analyzed by fitting the azimuthal peaks with 
Lorentzian peak shapes and extracting the relevant peak parameters (i.e., 
peak amplitude, FWHM). The 040 peaks are fit first and used to set the 
isotropic baseline since the peaks are sufficiently separated that no peak 
overlap occurs. The fraction of isotropic to oriented intensity in the 040 
scan is used to determine the isotropic baseline for the 110 scan. After 
removing the 110 isotropic baseline, the parent and daughter 110 peaks are 
fit with Lorentzian shapes. The parent:daughter ratio is calculated from the 
peak amplitudes. The FWHM measures the distribution of orientations. 
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Figure 3.4: Geometry demonstrating the intersection of the Ewald’s 
sphere with the orientation sphere. This axis of the orientation sphere is 
directed out of the page and is coincident with the velocity direction in our 
experiment. The dashed line denotes an isotropic intersection of the 
orientation sphere with the Ewald’s sphere and will project a ring on the 2-
D flat image at the right. The hashed circle is a projection of the cone of φ 
that the uniaxially oriented crystals trace out on the orientation sphere. The 
intersections of this cone with the dashed line (on the Ewald’s sphere) will 
project arcs on the 2-D WAXD image. 
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Figure 3.5: Turbidity of blends crystallized quiescently at 137 °C.  
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Figure 3.6: Turbidity of (A) B0 and (B) B1 during crystallization after 
short term shearing (t = 0 defines beginning of shear) at Tc = 137 °C and 
various wall shear stresses for maximum shearing time (extruded mass 
was about 100 mg).  
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Figure 3.7: Turbidity of B1 during crystallization after short term shearing 
at Tc = 137 °C for σw of (A) 0.055 MPa and (B) 0.12 MPa for various 
shearing time. 
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Figure 3.8: The critical shear stress (σ*) needed to induce the transition to 
oriented growth is plotted against long chain concentration (c/c*). The 
value for σ* was determined by measuring the depth of the highly 
birefringent skin in polarized light micrographs. The error bars indicate 
variation in the skin thickness rather than measuring error. 
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Figure 3.9: Relative intensity through crossed polarizers (I⊥/Itot) of B1 
during short term shearing at 137 °C and during the crystallization after 
cessation of shear. The inception of shear is taken to be t = 0.1 s since the 
first relevant decade is 0.1-1 s. (A) A shear pulse with σw = 0.055 MPa 
was applied for (○) 3.0 s, (∆) 5.0 s, and ( ) 7.5 s, corresponding to wex 
(mass extruded ~ total strain) of 36, 61, and 93 mg, respectively. (B) A 
shear pulse at σw = 0.09 MPa was applied for (○) 3.0 s and (∆) 1.5 s, 
corresponding wex was 47 and 97 mg, respectively.  A “boxlike” pressure 
profile was imposed during ts (inset in A). 
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Figure 3.10: Relative intensity through crossed polarizers (I⊥/Itot) of (A) 
B0, (B) B025, (C) B05, (D) B1, and (E) B2 during and after short term 
shearing at 0.12 MPa and 137 °C is plotted against time. Time is offset by 
0.1 s and relative intensities have been shifted progressively by a factor of 
0.2 for clarity. Shearing time and wex are given above each trace. Dotted 
lines in figures indicate the time when the birefringence upturn during 
shear can be observed. 
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Figure 3.11: Relative intensity through crossed polarizers (I⊥/Itot) vs. long 
chain concentration (c/c*) of blends crystallized at 137 °C with σw = 0.11 
MPa. Shearing times are 1.4 s, 1.0 s, 1.2 s, 1.4 s and 1.25 s for B0, B025, 
B05, B1, and B2, respectively. Time is offset by 0.1 s for clarity.  
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Figure 3.12: Two-dimensional WAXD patterns acquired at 1200 s after shearing at σw = 
0.11 MPa for B0 (ts = 1.7 s), B05 (ts = 2.0 s), and B1 (ts = 2.2 s). The acquisition time was 

30 s and the patterns have been deconvoluted from the amorphous scattering halo and 
retain crystalline diffraction only. Parent and daughter crystalline peaks are evident on the 

110 plane. The β-angle of the monoclinic unit cell of α-iPP (99.62°) is shown for reference. 
Daughter peaks along 130 are not distinct. (The flow direction coincides with the equatorial 
direction; the meridional direction is vertical.)  



 III-39

 

Figure 3.13: Real-time rheo-WAXD analysis of crystallization kinetics. 
For σw = 0.11 MPa > σ*, increasing long chain concentration causes an 
increase in A) crystallization kinetics evident by crystallinity index, xc, B) 
amplitude of parent peaks, and C) the FWHM of parent 110 peaks. Peaks 
for B0 were too ill-defined to confidently assign a FWHM from fits. The 
shearing time and wall shear stress (and mass extruded) for each 
experiment are: ts = 1.7 s, σw = 0.11 MPa,(wex = 89.8 mg) for B0; ts = 2.0 
s, σw = 0.107 MPa, (wex = 98.3 mg) for B05; and ts = 2.2 s, σw = 0.108 
MPa, (wex = 108 mg) for B1. The break in xc at 375 s is an artifact of data 
collection where the acquisition time change from 10 s to 30 s. 
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Figure 3.14: Fits of 110 and 040 azimuthal scans show the dependence of  
oriented crystallization on long chain concentration. A) Fits to the raw 
azimuthal scans of 110 crystalline reflection at 1200 s after shear. The 
non-zero isotropic baseline in B) fits of the 040 azimuthal scans for B05 
and B1 shows the enhancement in the growth of isotropic crystallites 
compared to B0. C) The parent:daughter ratio (after correcting for φ 
dependence) strongly depends on long chain concentration (c).   
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Figure 3.15: (A) Optical and (B) transmission electron micrographs of B2 
crystallized at 137 °C after shearing at σw = 0.055 MPa for ts = 7.5 s, 
corresponding to wex = 98 mg. Scale bar is (A) 100 µm and (B) 100 nm. 
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Figure 3.16: Optical and electron micrographs of dense lamellar layer 
near cell wall in B1 sheared for 1.4 s at σw = 0.11 MPa. A 6 µm layer near 
the wall appears dark between crossed polarizers (left). At larger 
magnification (center), the layer is distinctly different from the row 
nucleated structures farther from the wall. At the highest magnification 
(right), individual cross-hatched lamellae are distinguishable. The 
significant cross-hatching explains the lack of birefringence from this 
layer. Length scales are indicated in image. 
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Figure 3.17: TEM of B0 crystallized quiescently at 137 °C on the surface 
of a quartz window. The lamellae are not ordered like those that occurred 
following flow. No transcrystalline layer emanates from the glass, 
indicating that it does not act as a nucleating surface; instead, the lamellae 
are part of large spherulites centered away from the glass interface. The 
scale bar is 100 nm. 
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Figure 3.18: Optical micrographs of (A) B0, (B) B025, (C) B05, (D) B1, (E) B2, and (F) 
B1 crystallized at T  = 137 °C after shearing at σ  = 0.12 MPa for t  = (A) 1.4 s, (B) 1.0 s, 
(C) 1.2 s, (D) 1.4 s, (E) 1.0 s, and (F) 0.6 s. The corresponding w  were 97, 99, 99, 112, 91, 
and 50 mg, respectively. The samples were quenched after crystallizing for (A) 1855 s, (B) 
1611 s, (C) 1667 s, (D) 2899 s, (E) 1690 s, and (F) 550 s. The in situ birefringence and 
TEM images are presented in Figures 3.10 and 3.20. Scale bars are 100 µm. 
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Figure 3.19: Optical micrographs of A) B0, B) B05, and C) B1 which 
were crystallized isothermally for 5000 – 6000 s following shear in rheo-
WAXD experiments before being quenched. Note the contrast between the 
edge of the fine-grained layer and the sample core. Scale bars are 100 µm. 
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Figure 3.20: TEM micrographs of the skin layer of (A) B0, (B) B025, (C) 
B05, (D) B1, (E) B2, and (F) B1 for the same conditions as Figure 3.18. 
The flow direction is parallel to the edge of the sample shown as the 
boundary between the sample (gray) and the embedding material (white). 
Sections were cut in the plane of the flow and velocity gradient directions. 
Scale bars are 2 µm. 
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Figure 3.21: Thread length per unit volume determined from TEM. 
Average shish-kebab spacing gathered from closer examination of TEM 
(top) from Figure 3.20A-E at several depths from the wall was used to 
estimate the threadlike precursor density (bottom). 
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Figure 3.22: Schematic diagram of Janeschitz-Kriegl’s model for the 
formation of the skin layer induced by applying shear above the threshold 
shear stress. (a) Point nuclei appear in the super cooled melt at ta. The 
number density of the nuclei decreases with increasing depth from the 
wall. (b) Threadlike precursors grow in the flow direction from the point 
nuclei that appeared at ta. The lateral growth of lamellae from threadlike 
precursors begins.  Additional pointlike precursors form during the period 
from ta to tb. (c) As threads become long enough that lateral growth would 
suppress noncrystallographic branching, the template for an oriented skin 
is created.  (d) Further increase in the number and length of threads leads 
to greatly increased overall crystallization rate and highly oriented growth. 
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Figure 3.23: The turbidity half-time (t1/2) to reach Itot/Itot(0) = 0.5 vs. long 
chain concentration (c/c*) for conditions where highly oriented growth did 
not occur. Actual σw for each point ~0.06 MPa: B0 0.062 MPa; B025 
0.059 MPa; B05 0.061 MPa; B1 0.059 MPa; and B2 0.057 MPa. Actual 
σw for each point ~0.08 MPa: B0 0.074 MPa; B025 0.067 MPa; B05 0.086 
MPa; B1 0.088MPa; and B2 0.085 MPa. For each case wex ≈ 100 mg.  
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Figure 3.24: Schematic diagram of the nature of shear-induced oriented 
nucleation and subsequent growth of oriented crystalline lamellae during 
short-term shearing above the threshold shear stress. (a) A long chain 
(bold line) dispersed in short chains in a supercooled polymer melt 
adsorbs to an existing pointlike precursor as it flows past.  Dangling 
segments of adsorbed chains become oriented due to sustained shear. (b) 
Additional chains adsorb and their dangling segments form “streamers” 
upstream and downstream of the pointlike precursor. (c) The increased 
local orientation of the chain segments increases the probability that long-
lived ordered structures will form. (d) More chains adsorb to these new 
nucleation sites and the process propagates a string of nuclei along the line 
of flow. (e) The nuclei along this thread lead to lateral lamellar growth. 
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Figure 3.25: TEM micrographs of curved and straight shish in the skin 
layer of (A) B025 and (B) B2 crystallized at Tc = 137 °C after shearing at 
σw = 0.12 MPa for similar total strain (wex ≈ 100 mg), corresponding to ts 
= (A) 1.0 s and (B) 0.75 s. Scale bars are 100 nm. 
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4.1 Introduction 

The high molecular weight tail in the distribution of molecular weights has been shown to 

strongly influence the development of oriented crystalline morphologies in flow-induced 

crystallization (Chapter 3). The effectiveness of these long chains in promoting nucleation 

under flow derives from the spectrum of relaxation times existing within a broad 

distribution of molecular weights. For linear chains, the longest molecules have the slowest 

relaxation dynamics. According to the theory of reptation originally postulated by de 

Gennes,1 the relaxation time (τ) of a linear polymer chain scales with chain length (N) as 

τrep ~ N3. The reptation model does not strictly account for the dynamics of an entangled 

melt,2 and theories that include constraint release and contour length fluctuations3,4 give 

better accord with experimentally observed scaling of the terminal relaxation time (τ ~ 

N3.4). This molecular weight scaling results in a large disparity in relaxation times between 
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the average chain and the longest chains and can lead to preferential orientation of the 

longest chains under sufficiently strong flow conditions.  

In 2002 Kumaraswamy reported evidence of a kinetic pathway to oriented nucleation in 

flow-induced crystallization.5 The time required to observe the onset of oriented 

crystallization, manifested as an “upturn” in birefringence during shearing, decreased with 

increasing temperature. Furthermore, the decrease in time matched the rheological time-

temperature superposition shift factor, aT, suggesting that the formation of the oriented 

precursors tracks the molecular dynamics of the melt.  This behavior was unanticipated in 

models describing crystallization. The role of long chains in the schematic model given in 

Chapter 3 is compatible with a kinetic pathway: both the time required to sweep long 

chains over the surface of an existing precursor and the time for the adsorbed long chains to 

become distorted follow the time-temperature shift behavior of the melt. More recent 

models6-8 have begun to incorporate the state of molecular orientation of the longest chains 

to represent more realistically the underlying physics responsible for flow-induced 

nucleation. Experimental determination of the effect the length of the long chains on the 

formation of oriented precursors is needed to test these models. 

Having established a relationship between the concentration of long chains in the melt and 

the formation of threadlike precursors to oriented growth, we aim to determine what 

constitutes “long chains” in comparison to the weight averaged molecular weight of the 

short bulk chains, MS, using well-defined, bidisperse blends of isotactic polypropylene in 

which the weight averaged molecular weight of the long chain component, ML, is varied. 

We anticipate a lower bound in ML/MS below which the long chains do not access 

sufficiently strong orientation compared to the bulk chains and exert no influence on the 

formation of oriented crystalline morphologies. 

4.2 Experimental 

4.2.1 Materials 

The same “base resin” was used to prepare a series of bimodal blends with a small 

concentration of long chains added. The base resin (Base-PP) is the same as in Chapter 3, 
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with moderate molecular weight (186 kg/mol) and narrow polydispersity in terms of 

both molecular weight (Mw/Mn = 2.3) and stereoregularity ([mmmm] = 96%) provided by 

Dr. Robert Sammler (Dow Chemical Company). Four high molecular weight iPPs with 

lengths from 507 kg/mol to 3500 kg/mol were used (Table 4.1). The first three were 

fractions provided by Mitsubishi Chemical Company:  f507-PP (Mw = 507 kg/mol, Mw/Mn 

= 1.2, [mmmm] = 98%), f862-PP (Mw = 862 kg/mol, Mw/Mn = 1.3, [mmmm] = 98%), and 

f923-PP (Mw = 923 kg/mol, Mw/Mn = 1.3, [mmmm] = 98%), prepared by fractionation from 

a parent iPP polymerized with a Ziegler-Natta catalyst as described in Chapter 3. The 

fourth, 3500-PP, is an ultra-high molecular weight iPP (~3500 kg/mol, Mw/Mn = 1.8) and 

high stereoregularity ([mmmm] > 98%) prepared by metallocene polymerization. 

Bidisperse blends, prepared via the solvent blending procedure described in Chapter 3 

(3.2.1), are referenced according to the Mw of the long chains, e.g., B507 denotes the blend 

of f507-PP with Base-PP. From Equation 3.1 we estimated the overlap concentration, c*, 

for long chain materials (Table 4.1). Guided by our earlier findings that c/c* = 1 is 

sufficiently concentrated to observe a strong influence of long chains on flow-induced 

crystallization, we formulated blends such that the long chain concentration c = c* for 

f507-PP, f862-PP and f923-PP (1.66 wt%, 0.84 wt%, and 0.7 wt%). The blend of 3500-PP 

contained 1 wt% (c/c* = 2.4) of long chains. Due to the unusually high molecular weight of 

3500-PP, even this low concentration caused the solution viscosity to be noticeably higher 

during solution blending and required a longer time to obtain a homogeneous mixture. 

Using the extrusion rates (wex/ts) of the blends at a stress low enough that crystallization 

does not affect the rate of extrusion, we estimate the ratio of the viscosity of the blends to 

the viscosity of the base polymer to be ~ 1.28:1 (B500) – 1.32:1 (B3500). 

4.2.2 In situ rheo-optical measurements 

The experimental conditions applied in this study were similar to those in Chapter 3. To 

erase any memory effects caused by the channel filling process, the flow cell was initially 

held at 215 °C for 10 min. All experiments described here were conducted at the same Tc of 

137 °C (maintained within ± 0.3 °C). Short-term shear pulses corresponding to wall shear 

stresses (σw) of 0.07 and 0.11 MPa were applied for brief periods such that ts was much less 
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than the crystallization time at this temperature. The maximum ts was determined to be 

that at which ≈ 100 mg of supercooled polymer was extruded. To make comparisons at 

constant applied stress and constant total strain, small changes in ts were chosen to hold the 

amount of polymer extruded (wex) for each blend approximately fixed. 

The orientation of crystalline microstructure is determined by the development of 

birefringence in the sample. When the optical retardance is less than a half-wave (λ/2), the 

birefringence can be calculated from the ratio of the perpendicular component of 

transmitted light between crossed-polarizers to the total intensity (I⊥/Itot) according to 

Equation 2.1. The time at which the retardance reaches a half-wave is marked by a 

maximum in I⊥/Itot and a full-wave is marked by a minimum. Successive minima 

correspond to increasing, odd multiples of λ/2 and successive maxima correspond to even 

multiples of λ/2. We only consider extrema for determining birefringence when the total 

transmittance is greater than 20%. However, spectrographic birefringence studies of liquid 

crystalline polymers by Burghardt and coworkers9 showed that using extrema to calculate 

birefringence is robust even in the presence of depolarization.  

4.2.3 In situ rheo-WAXD 

A selected set of shearing conditions was further examined by rheo-WAXD (wide angle X-

ray diffraction) to provide detailed information concerning crystallization kinetics and the 

crystallite orientation distribution. Specifically, we analyze the 2-D X-ray diffraction 

patterns as described in Chapter 3  to extract the following metrics: crystallinity  index (xc), 

and the attributes of Lorentzian fits to the azimuthal distribution of intensity at 110 and 040 

reflections (peak height, FWHM, and position). 

4.2.4 Optical microscopy (OM) 

Thick sections (thickness = 5 µm) were taken in the flow-vorticity and flow-gradient planes 

and examined using a polarized-light microscope to evaluate the presence and thickness of 

the oriented skin and fine-grained layers induced by flow. 
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4.2.5 DSC measurements 

The quiescent crystallization and the melting of iPPs were characterized using a differential 

scanning calorimeter (Perkin-Elmer DSC-7) at a scanning rate of 5 °C/min in a N2 

atmosphere.  

4.2.6 Measurement of molecular weight 

Weight averaged molecular weight (Mw) and polydispersity of molar mass for f507-PP, 

f862-PP, f923-PP, and Base-PP were measured using GPC with an on-line multi-angle 

laser light scattering photometer (GPC-MALLS) and differential refractometer by 

collaborators at Mitsubishi Chemical Company. The measurements were performed on a 

Waters model 150C with three polystyrene columns (SHODEX KF-806M from Showa 

Denko Company, Ltd.) at 413.2K using a flow rate of 1.0 mL/min. The sample was 

injected as a 0.3 mL aliquot of a 1,2,4-trichlorobenzene solution with 2 mg/mL 

concentration. The differential refractometer was used to detect solute concentration from 

the specific refractive index increment. Scattered light was measured simultaneously at 17 

angles ranging from 18° to 155° using a DAWN DSP from Wyatt Technology Corp., 

equipped with a He-Ne laser (λ = 632.8 nm). The ASTRA software package from Wyatt 

was used for analyzing GPC data and scattering data  (details10 are published elsewhere). 

4.3 Results 

4.3.1 Quiescent crystallization kinetics 

Crystallization in the absence of flow reveals no discernible trend in kinetics with 

increasing long chain molecular weight (Figure 4.1). The differences in overall 

crystallization kinetics suggest a variation in foreign particles which can act as 

heterogeneous nucleants and dominate the rate of nucleation under quiescent conditions. 

With application of flow, the influence of incidental foreign particulates is small compared 

to the flow-induced nucleation (compare Figure 4.1 and Figure 4.2A). 

4.3.2 In situ rheo-optical 

We examine the effects of long chain molecular weight (ML) at two shearing conditions: 

using a wall shear stress σw = 0.11 MPa and σw = 0.07 MPa. The former is above the 
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threshold stress σ* to induce the transition to oriented growth in bimodal blends with 

long chain ML ≥ 862 kg/mol5,11 and is below the base resin’s σ* (Chapter 3).  In contrast, 

σw = 0.07 MPa is less than σ* of the binary blends we have examined previously. After 

cessation of shearing at σw = 0.11 MPa, the birefringence increases with time only for 

bimodal blends containing long chains of ML ≥ 862 kg/mol. This signature of the creation 

of oriented precursors during flow is absent if the long chains are ~500 kg/mol.  The 

growth of birefringence after shearing is stronger the longer the “long chains” (Figure 

4.2A).  For the longest two, B923 and B3500, an upturn in birefringence is evident during 

shear. The timescale of crystallization as gauged by the turbidity of the sample is also 

unchanged by addition of long chains with ML ~ 500 kg/mol and only mildly changed by 

addition of long chains with ML ~ 862 – 923 kg/mol (Figure 4.2B).  The dramatic increase 

in flow-induced orientation in B3500 is accompanied by a tremendous acceleration (two 

orders of magnitude) in crystallization kinetics. Crystalline microstructure that scatters light 

develops so fast that the total transmitted intensity drops below one-half prior to the end of 

shearing. Note that the cylinder actuation caused a jump in the position of the flow cell that 

partially obscures the incident laser beam; withdrawal of the cylinder repositions the cell to 

its initial placement. This displacement leads to an artificially lowered Itot/Itot(0) value 

during the pulse. The total intensity should remain constant at 100% up to approximately t 

= 1 s for B3500 [Figure 4.2B]; thereafter the intensity should be understood to fall 

monotonically with the final value during the pulse equal to that immediately after the 

pulse.   

To further illustrate the tendency of ultra-high molecular weight polymer chains to induce 

oriented crystallization, we examine a weak shearing condition in which the applied stress 

is lower than the threshold stress for any of the blends described in the previous chapter 

(σ*(c) ≥ 0.099 MPa, Figure 3.8). For σw = 0.07 MPa, only B3500 develops an upturn in 

birefringence during shearing and an increase of birefringence following cessation of flow 

(Figure 4.3A), clearly indicating a strong dependence of σ* on ML. Following mild 

shearing, crystallization is slightly slower overall compared to intense shearing and the 

crystallization kinetics increase mildly with ML (Figure 4.3B). 
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4.3.3 In situ rheo-WAXD 

Time-resolved rheo-WAXD of the bimodal blends following intense shearing (B862 and 

B923 at σw = 0.11 MPa and B3500 at σw = 0.065 MPa) shows the degree of crystallinity 

reaches greater values on faster timescales with increasing ML.  No synchrotron time was 

spent on B507 in view of the optical results showing it was indistinguishable from Base-

PP.  Despite imposing a wall shear stress approximately half as intense, the resulting 

crystallinity for B3500 is nearly double that of B862 and B923 (Figure 4.4). Furthermore, 

B3500 has a tighter distribution of orientations (FWHM) and a larger population of 

oriented crystallites (110 parent area) as evident in azimuthal scans of the 110 crystalline 

reflection (Figure 4.5). The ratio of parent to daughter crystallites is greater for blends 

containing long chains than it is for Base-PP; however, the enhancement is independent of 

ML. An increase in the P:D ratio with ML might become evident if B3500 is subject to the 

same shear stress, since the parent to daughter ratio increases with applied shear stress, 

Chapter 5.  

4.3.3 Ex situ optical microscopy 

Examination of the final crystalline morphology by polarized light microscopy readily 

reveals the enhancement by long chains with ML ≥ 862 kg/mol (Figure 4.6). The boundary 

between the birefringent skin layer near the wall and the spherulitic core defines the 

threshold stress (σ*) necessary to induce highly oriented crystallization. The value of σ* 

depends on ML and shows a strong drop between 923 and 3500 kg/mol (Figure 4.7).  

4.4 Discussion 

4.4.1 Importance of relaxation-time separation on shish-kebab formation 

We have previously established that the formation of threadlike precursors depends heavily 

on the presence of long polymer chains with slow relaxation dynamics compared to the 

average. The preferential orientation of the longest chains leads to long-lived anisotropic 

structures that template further oriented growth. The extent of this preferential orientation is 

controlled by the melt dynamics of the molecules, specifically the separation in relaxation 

time scales between the longest chains and the average in the blend. This separation of 



 IV-8
relaxation times depends on the relative chain lengths and on the concentration of the 

long chains. Here both species are well entangled: MS/Me = 43 and ML/Me ranges from 112 

to 800, using Me = 4400 kg/mol12 (although the entanglement molecular weight of iPP is 

still disputed). The relaxation time of the short chains is not affected significantly by the 

addition of a small concentration of long chains: their reptation timescale, τrep,S ~ (NS/Ne)3.4, 

is independent of c and ML.  The situation is more complex for the long chains.   

The long chains are at the concentration threshold for overlap, too low a concentration for 

them to entangle with each other. The motion of the short chains permits much, or even all, 

of the distortion of the long chains to relax on timescales much shorter than the reptation 

time of the long chains, τrep,L ~ (NL/Ne)3.4, where Ne is the length of chain per entanglement 

blob and NL is the length of a long chain.  In this regime of dominant constraint release, 

there appears to be a threshold ratio of chain lengths (ML/MS)* somewhere between ML/MS 

= 2.5 (too low) and 4.4 (above threshold) required to perceptibly change flow-induced 

crystallization behavior from that of Base-PP. It is more difficult to specify the 

corresponding ratio of the relaxation times (τL/τS), which would enable comparison with 

theoretical models of flow-induced crystallization and has implications regarding the 

mechanism of the long chain effect.  

Theoretical models of the rheology of binary blends have been developed that estimate the 

terminal relaxation time of the long chains according to the molecular weights and 

concentrations of the components.13,14 In the present blends the short chain constraints last 

long enough to impose an effective “tube” constraining long chain motion, i.e., they satisfy 

the criterion NS
3/(NLNe

2) > 1.13,14 Therefore, the terminal relaxation of the long chains can 

be modeled using a coarse-grained adaptation of the Rouse bead-spring model in which 

each entanglement blob is represented by a single bead-spring unit. In the literature this 

mode of relaxation is termed “tube-Rouse”14 or “hindered-Rouse.”15  Recent experiments 

on the dynamics of the long chains in dilute binary blends by Wang and coworkers15 show 

that long chains at c = c* exhibit a Rouse-like relaxation spectrum (see Figure 7b of ref. 

15).  In blends having NL/NS from 6.6 to 25 and well-entangled short chains (NS/Ne ~ 10), 

the increase in viscosity due to the long chains exhibited a regime of linear behavior at low 
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volume fraction, φ < φc, where φc is an empirical critical concentration. Based on their 

finding that φc was greater than the overlap concentration, the viscosity increase ∆η due to 

the long chains at c = c* should conform to the hindered-Rouse regime: ∆η = φηS 

[NL/(NeNS)1/2], where ηS is the viscosity of the pure short chain melt and the factor in square 

brackets is due in part to the magnitude of the long chain contribution to the modulus, GP ≈ 

φGN
o(NeNS)1/2/NL, and in part due to the long chain hindered-Rouse relaxation time, τhR ≈ 

τSNL
2/NeNS. This expression captures the fact that the viscosities of three of the blends 

(B507, B862, and B923) are very nearly equal, all having ∆η/ηS ≈ 0.25 based on their 

observed extrusion rates. Unfortunately, the underlying expression for τhR gives 

unreasonable results for these three blends: τhR/τS  ≈ 300 for B507 and τhR/τS  ≈ 1000 for 

B862 and B923, in which time the long chains would instead relax by reptation (τL/τS ≈ 30 

for B507 and τL/τS ≈ 200 for B862 and B923).  The case of the most interesting blend, 

B3500, is the most ambiguous.  Based on hindered-Rouse, addition of 1% of 3500 kg/mol 

chains would more than double the viscosity relative to the base resin.  We did not find this 

to be the case; instead, its extrusion rate is very similar to that of the other three blends. 

Future research on the linear visco-elasticity of these specific blends may shed light on this 

discrepancy (perhaps, the long chain contribution in B3500 is extremely shear thinning, 

giving ηapp ≈ ηS at the shear stresses used in our experiment). 

The abrupt increase in the effect of the long chains when ML is increased from 507 to 862 

kg/mol is reminiscent of the notion of a critical molecular weight (M*) originally 

introduced by Keller16 to describe the portion of chains in a distribution of molecular 

weights that become fully extended in an abrupt coil-stretch transition. Keller’s 

experiments were conducted on dilute solutions of polymers in extensional flows, but he 

believed the same mechanism might apply to entangled systems or even weak flows (i.e., 

shear flow). For Keller, the presence of shish-kebab structures was an indicator of extended 

chains. However, in shear flow the polymer conformation is unlikely to approach its fully 

extended length,17 although portions of the chain may become stretched. Therefore, we 

conclude that shish-kebab formation is not contingent on fully stretched chains.  Instead, a 



 IV-10
sufficient degree of segmental orientation, which can be achieved far below full 

extension, enables propagation of shish.  

4.4.2 Dependence of the threshold stress on ML 

The longer the long chains are relative to the average length, the greater the level of 

orientation they reach at a given stress.  In accord with segmental orientation being the 

determinant of shish propagation, the threshold stress necessary to induce oriented 

crystallization decreases strongly as ML/MS increases (Figure 4.7).  All four blends have 

similar viscosity which is approximately 30% greater than Base-PP. Therefore, 

comparisons at fixed stress correspond to approximately constant deformation rate as well.  

The ratio of deformation rate to relaxation rate, characterized in steady shear flow by the 

Weissenberg number ( γτ &≡Wi , the product of the relaxation time and the shear rate), 

governs the distortion of chain conformation during flow.18  

Several researchers7,19 have recently adopted the use of these dimensionless parameters to 

classify and model flow-induced crystallization as a function of the material relaxation 

(~Mw) and the strength of the flow. Van Meerveld19 defines two Deborah numbers for shear 

flow: one based on the reptation time (Derep) and the other based on the much shorter time 

scale for contour length fluctuations related to chain stretching (Des). For Derep < 1 and Des 

< 1, the chains are at equilibrium, neither stretched nor oriented; for Des < 1 < Derep, flow 

induces mild orientation (disturbing conformation on length scale greater than the 

entangled blob size, but not orienting segments within an entanglement blob); and for Des > 

1, the onset of chain stretching occurs. Furthermore, van Meerveld posits that the ratio of 

long chain length to the average in the melt (ML/MS) and the concentration of long chains 

will influence the orientation and stretch experienced by the high molecular weight chains.  

Increasing ML/MS results in an increase in Des and Derep for the long chains when 

equivalent flow conditions are imposed. Therefore, long chains in the bimodal blends with 

greater ML/MS experience greater chain orientation and stretching and increase the 

propensity to form threadlike precursors.   
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Here we do not pursue a more quantitative treatment of the degree of orientation of 

the long chains when free in the melt or when adsorbed to propagating shish. In the 

following chapter we take a substantive step toward quantitative analysis by developing a 

new method to extract the depth dependence (hence stress dependence) of flow-induced 

crystallization from average measurements across the entire sample thickness (hence the 

entire stress range from 0 to σw). 

Conclusions 
Increasing the Mw of the long chains in a bimodal blend increased the tendency to form 

threadlike precursors to oriented crystallization. This was highlighted by a marked decrease 

in the threshold stress necessary to induce long-lived oriented precursor structures. Thus, 

the propagation of shish varies strongly with the separation in time scales between the 

slowest relaxing chains and the average. Below a threshold ratio of relaxation times (τL/τS ~ 

100) addition of long chains did not change the behavior from that of Base-PP itself.  
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Table 4.1 Characteristics of Base and Long iPP 

 Mw a Mn a  c* [mmmm] b Tm c 
sample (kg/mol) (kg/mol) Mw/Mn 103 (g/cm3) (mol%) (°C) 
Base-PP 186.0   80.9 2.3 15.6 96.0 148.3 
f507-PP 507.5 422.9 1.2   9.4 98.3 169.7 
f862-PP 862.0 663.1 1.3   7.2 98.5 170.6 
f923-PP 923.2 707.3 1.3   7.0 98.0 164.6 
3500-PP 3500 1950 1.8   3.6 > 98 145.4 

 

aDetermined by GPC-MALLS. b 13C NMR. cApparent melting temperature obtained 
from peak position of DSC. 
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Figure 4.1: Total transmitted intensity between crossed polars of bimodal 
blends crystallized in the absence of flow at Tc = 137 °C. The Mw of the 
long chain component (ML) is varied and denoted by the sample code. 
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Figure 4.2: Birefringence (top) and total transmitted intensity (bottom) for 
bimodal blends crystallized at 137 °C after shearing at σw = 0.11 MPa for 
1.7 s (Base-PP, B507), 2.0 s (B862), 1.25 s (B923), and 3.0 s (B3500). 
Inset shows birefringence during the shearing pulse. Note the timescale 
here is an order of magnitude shorter than that of quiescent crystallization 
shown in Figure 4.1. See text for explanation of large drop in Itot/Itot(0) for 
B3500 during the pulse. 
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Figure 4.3: Birefringence (top) and total transmitted intensity (bottom) for 
bimodal blends crystallized at 137 °C after shearing at σw = 0.07 MPa for 
6.0 s (BASE-PP, B507, B862, and B3500). B923 sheared at σw = 0.06 
MPa for 7.5 s. Inset shows birefringence during the shearing pulse. 
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Figure 4.4: Crystallinity index for bimodal blends with increasing ML. 
Breaks in the data near 300 s for B862 and B923 are an artifact upon 
changing data acquisition time. See Figure 4.5 caption for shearing 
conditions. 
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Figure 4.5: Time evolution of peak parameters for fits of parent peaks on 
azimuthal scans of the 110 reflection. Degree of oriented crystallite A) 
parent amplitude and B) parent area increased with ML. The distribution of 
orientations of parent crystallites, C) FWHM, is more narrow for 
increasing ML (the average FWHM for Base-PP is indicated by a dashed 
line with standard deviation) and D) the parent:daughter ratio was 
approximately the same. The results are for crystallization at 137 °C 
following shearing at 0.11 MPa for 1.7 s (Base-PP), 2.0 s (B862), and 2.2 
s (B923). B3500 was sheared at 0.065 MPa for 7 s and is presented to 
demonstrate the magnitude of orientation enhancement caused by the 
ultra-high molecular weight chains even at mild conditions. 
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Figure 4.6: Polarized optical micrographs of A) Base-PP, B) B500, C) 
B923 (representative of B862 micrographs), and D) B3500 for the same 
conditions as Figure 4.5. Samples were crystallized isothermally at 137 °C 
for ~2 hrs before quenching. The void in the center of B) B500 is due to 
rupture caused by contraction of the sample volume as it crystallized. 
Scale bar is 100 µm. 
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Figure 4.7: Threshold stress for transition to oriented morphology. Error 
bars represent variation in skin thickness in the micrographs used for 
determination of the skin-core boundary.  
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5.1 Introduction 

A fundamental goal in studying flow-induced crystallization is the development of a 

predictive model that can determine final material properties and relies only on polymer 

molecular characteristics and flow conditions. A successful model should capture not only 

the kinetics of crystallization but also the crystalline morphology, since material properties 

are strongly influenced by the anisotropy of crystallites. A number of empirical models1-4 

have been formulated over the years which rely on comparison to experiments to set their 

adjustable parameters. These models fail to consider the importance of morphology on the 

determination of crystallization kinetics, degree of crystallinity, or crystallite orientation. 

The phenomenological model of Eder5,6 does account for morphology and predicts the 

structure of crystallization (number of shish, shish length) but relies only on flow 

kinematics (a power law dependence on flow rate) rather than the dynamics of the 
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molecules. An appreciation for the role of molecular dynamics has prompted the 

development of a micro-rheological model that aims to predict crystallization induction 

time on a molecular basis with knowledge of a few nonadjustable parameters.7, 8 While this 

model successfully predicts crystallization induction times and even predicts the relative 

increase in flow-induced nucleation with increasing temperature,9 as reported in our 

group,10 it fails to incorporate the anisotropy of nucleation and final crystalline 

morphology. The model currently being developed by Meijer and co-workers11 holds the 

most promise in predicting crystalline structure and kinetics based on the dynamics of 

molecules deformed by flow and can successfully predict the layer transitions in the skin-

core morphology. The model modifies Eder’s equations, replacing the shear rate 

dependence with a material state parameter (recoverable strain) based on the configuration 

state of the molecules. 

Predictive models rely on validation from experimental data to ensure that the model is 

based on the correct physical mechanisms. Currently, experimental knowledge of the 

relationships between flow conditions and threadlike precursor formation is limited. 

Understanding the highly nonlinear effects of stress on formation of anisotropic nuclei is a 

key to predicting crystallite morphology and final material properties. It is generally 

accepted that the longest (slowest relaxing) chains are important to formation of threads 

due to preferential orientation in flow, and the effect is nonlinear with stress. However, 

much of the experimental effort is focused on determining the nature of the precursor 

structure, which remains highly debated. The precursors are described as extended chain 

crystals,12,13 liquid-crystalline smectic bundles,14-16 and non-crystalline microfibrils.17 Here 

we hope to shed light on the inception and propagation of threadlike nuclei from a sheared 

melt. We present rheo-optics and rheo-WAXD to characterize the inception and growth of 

shish as a function of flow conditions. To do so, we also present a novel analysis of 

macroscopic measurements (such as WAXD, birefringence, dichroism, or light scattering) 

to infer the depth-dependence of the emerging microstructure during and after flow. 
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5.2 Experimental 

5.2.1 Materials 

We further examine the bidisperse blend of 3500-PP (1 wt%) and Base-PP, referred to as 

B3500. The preparation and molecular details of this blend are described in Chapter 4 (see 

Section 4.2.1 and Table 4.1).  

5.2.2 In situ rheo-optical measurements 

All rheo-optical experiments described here for B3500 were performed at Tc = 137 °C 

using the same experimental protocols reported earlier in Chapter 4. The flow cell was 

initially held at 215 °C for 10 min after filling with polymer melt from the reservoir. The 

sample was cooled to the crystallization temperature (Tc) and a pressure drop was applied 

to drive shear flow through the channel for a brief shearing time ts. Short-term shear pulses 

with a fixed wall shear stress (σw) of 0.06 MPa were applied for brief periods such that ts 

(varied from 1 – 12 s) was much less than the quiescent crystallization time at this 

temperature. The turbidity and birefringence were tracked to monitor the progress and 

anisotropy of crystallization.  

5.2.3 In situ rheo-WAXD 

An expanded set of shearing conditions were further examined by rheo-WAXD (wide 

angle X-ray diffraction) to provide more detailed information concerning crystallization 

kinetics and the distribution of crystallite orientations. In addition to the conditions 

delineated for rheo-optical experiments, a series of shear stresses (σw = 0.037, 0.045, 0.055, 

and 0.062 MPa) were applied for ts = 7 and 12 s at Tc = 137 °C.  

5.2.4 Real-time “depth sectioning” 

In a pressure-driven flow through a rectangular slit, the shear stress imposed on a fluid is 

highest near the walls of the channel. The stress varies linearly from the wall to the center 

of the channel where no distortion of the fluid occurs and stress is zero. This robust 

relationship between distance from the center and stress enables meaningful analysis of the 

stress dependence of morphological features that appear in solidified samples. Earlier 

(Chapter 3), we deduced a threshold stress value for the transition from unoriented to 



 V-4
oriented crystallization by ex situ microscopic examination of quenched samples (for a 

given sample). This value was further validated by dynamic experiments at mild conditions 

(σw < σ*) that showed no evidence of oriented crystallization, consistent with the inferred 

threshold stress.  

Fortunately, the stress-depth relationship also enables meaningful analysis of the depth 

dependence of real-time data. Using thoughtfully selected sets of shearing conditions 

(constant ts with varied σw), we can isolate the signal arising from a given depth at each 

time point using rheo-optical and rheo-WAXD methods. The key feature is examining the 

incremental contribution to the real-time data from one shear stress to another (with all 

other conditions fixed), allowing us to attribute the difference to a small spatial region of 

the sample (Figure 5.1). For example, consider a pair of experiments performed on the 

same material (B3500) at the same temperature (137 °C)  for the same shearing time (12 s) 

but for two different values of the wall shear stress (σw,1 = 0.064 MPa and σw,2 = 0.055 

MPa).  At every moment in time (e.g., 130 s) during and after shear, the depth averaged 

measurement obtained for the experiment with σw,2 = 0.055 MPa corresponds to the depth 

average signal from the central 86% (σw,2/σw,1) of the sample subjected to  σw,1 = 0.064 

MPa, simply rescaled for optical path length.  If we subtract the X-ray diffraction pattern 

captured at 130 s after shearing at σw,2 = 0.055 MPa from the X-ray diffraction pattern 

captured at 130 s after shearing at σw,1 = 0.064 MPa, the remaining diffraction pattern can 

be attributed to the outermost 35 µm of the 500 µm thick sample subjected to σw,1 = 0.064 

MPa, i.e., where the applied stress was between 0.064 and 0.055 MPa (Figure 5.2). 

Repeating this procedure with progressively lower wall shear stress yields a depth-

dependent profile of X-ray patterns of the sample subjected to σw,1 = 0.064 MPa. For 

comparison with one another, the resultant patterns are normalized based upon the 

thickness of the region each represents. 
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5.3 Results 

5.3.1 In situ rheo-optical 

5.3.1.1 Turbidity 

The evolution of turbidity following shear treatment occurred faster with increasing 

shearing time (Figure 5.3). The increasing turbidity as the crystallites grow causes the total 

transmitted intensity to decay to zero typically with a sigmoidal time profile when viewed 

against a logarithmic timescale. However, for conditions that induce very strong crystallite 

orientation, the transmittance decays in two stages. For example, when B3500 is sheared at 

σw = 0.06 for ts > 4 s, an early decay profile is followed by a second drop in transmittance. 

Interestingly, the second decay coincides with the timescale of the decay for shearing at 1s 

< ts ≤ 4 s. (Only the shortest shearing time, ts = 1 s, gave a timescale of turbidity 

development significantly slower than the rest). 

5.3.1.2 Birefringence 

Following cessation of shear, birefringence developed earlier and reached a higher ultimate 

value with increasing shearing time at constant stress (Figure 5.4).  During the shearing 

pulse, the birefringence rises quickly to a steady value. For ts > 4 s, the birefringence shows 

the “upturn” feature associated with oriented crystallites and does not fall back to zero after 

cessation of shear. For ts ≤ 4, no “upturn” occurs and the birefringence drops back to zero 

following shearing as the stress is relaxed. It is worth noting that the time required for 

relaxation of the birefringence to zero after the cessation of shear is longer than the 

observed time in previous blends of Base-PP with long chains of Mw < 106 g/mol. This is a 

consequence of the extremely high molecular weight of 3500-PP. For conditions where the 

birefringence fully relaxed after shear (ts < 4), it takes ~1.6 s for the birefringence to return 

to the baseline value after cessation of shear. (For comparison, blends from Chapter 3 

composed of Base-PP and 923 kg/mol L-PP required only ~250 ms for birefringence 

relaxation).  

After cessation of shearing (for ts > 3 s) and a short delay (1 – 10 s), birefringence from 

growing, oriented crystallites develops. For ts = 2 and 3 s, the birefringence is low and 
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develops after a long delay (100 s) but grows while the transmittance is still above 

50%, indicating it is not an artifact of depolarization. Negligible birefringence is detected 

for the condition where ts = 1 s. The intensity transmitted through crossed polarizers, I⊥/Itot, 

does not rise significantly above the baseline until the total transmittance falls below 50% 

accompanied by depolarization of the incident light.  

5.3.2 In situ rheo-WAXD 

From inspection of 2-D WAXD patterns, the qualitative trends are evident. The degree of 

crystallinity, degree of orientation, and ratio of parent- to daughter-crystallites increases 

with shearing duration (Figure 5.5 and 5.6). A well-defined, fiberlike orientation of α-iPP 

crystallites with c-axis in the flow direction develops for ts > 2 s. For ts ≤ 10 s, no 

crystalline peaks are detected during the shear pulse, indicating that all measurable 

crystallization occurs in the absence of flow. For ts = 12 s, the first detectable crystalline 

reflections occur in the frame which captures the last 2 s of shearing (5 s acquisition times 

are used during the first minute with approximately 5 s between frames for CCD readout). 

The crystallinity index, xc, is 0.019 for this frame, about 17% the crystallinity at the time of 

impingement (130 s) for this condition.  

The sensitivity of birefringence allows detection of smaller amounts of oriented crystallites 

than WAXD measurements. However, birefringence tends to underestimate orientation in 

the presence of a low parent to daughter crystallite ratio, which can mask the orientation of 

parents when the nearly orthogonal daughters cancel out birefringence of the parents. This 

is evident in our WAXD data for short shearing times. Despite the similarly low 

birefringence measured using rheo-optics for the shortest shearing times (Figure 5.4), the 

population of uniaxially oriented crystallites is noticeably greater for ts = 3 s than for 2 s at 

σw = 0.06 MPa (Figure 5.6). Furthermore, it is clear from WAXD that ts = 1 s is insufficient 

to induce orientation, confirming that the rise in I⊥/Itot at long time is due to depolarization 

of the light that occurs at low transmittance. 

These trends in morphology are evident in the time-dependence of the 2-D WAXD. A 

striking increase in the rate of crystallization with ts is readily observable between ts = 3 s 
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and 4 s where xc becomes measurable earlier and grows faster (Figure 5.7A). At early 

times, the crystallinity is attributable to oriented crystallites only: the initial increase in xc 

correlates with an increase in amplitude of the parent peaks in an azimuthal scan of the 110 

reflection (Figure 5.7B) and a tighter distribution of orientations (FWHM) of the parents 

(Figure 5.7C). The FWHM of parent peaks saturates to nearly the same value for ts > 4 s, 

but is significantly broader for shorter shearing times. 

Azimuthal scans of the 110 diffraction indicate that two populations of highly oriented 

crystallites develop and that the relative intensity of the parent and daughter peaks (P:D 

ratio) increases with increasing shearing time for ts > 4 s (Figure 5.8). The P:D ratio is 

nearly identical for ts = 3 s and 4 s. Peak fits for ts = 2 s were too unreliable to calculate a 

P:D ratio with confidence, and shorter shearing duration induced no orientation.  

The parent peak area grows more rapidly with increasing shearing time. For longer 

shearing times (ts > 4 s), a sharp rise is followed by a change in growth rate (Figure 5.9A). 

The change in growth rate can be attributed to the impingement of kebabs growing outward 

from adjacent shish. The impingement time decreases for increasing shear duration but 

saturates above ts > 5 s: 200 s for ts = 4 s; 65 s for ts = 5 s; and 55 s for ts > 5 s. Prior to 

impingement, the growth of parent 110 peak is roughly linear with time.  

Comparison of the slopes of this linear region of growth against shearing time enables us to 

evaluate the relative growth front induced by flow. The growth rate of the 110 parent peak 

area increases gradually with ts up to 4 s, then strongly with further increase in ts (Figure 

5.9B).  

5.3.3 Real-time “depth sectioning” 

Using the analysis method described above to assign depth dependence to real-time data, 

we analyze four depth sections (Figure 5.10 top): the sections represent depths from the 

wall between 0 – 35 µm, 35 – 74 µm, 74 – 102 µm, and 102 - 250 µm (the channel center). 

Each of these differential WAXD patterns (Figure 5.10 middle) is normalized by the 

thickness of the corresponding section and analyzed to compute xc,and the amplitude and 

FWHM of parent 110 peak.  
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According to the “depth sectioning” analysis for a sample sheared for 12 s at 0.064 

MPa, the rapid rise of 110 parent peak area, AreaP,110, occurs within 74 µm of the channel 

wall, predominantly in the outermost 35 µm (Figure 5.11A). At depths between 74 and 102 

µm, AreaP,110  rises more slowly but plateaus at the same value as the 35 -74 µm section. 

The outermost section reaches a greater AreaP,110, suggesting more densely packed 

crystallites. The onset of impingement, characterized using the time of the maximum rate 

of increase of AreaP,110, occurs earlier in sections closer to the wall (25 s for 0 – 35 µm; 55 

s for 35 – 74 µm; and 85 s for 74 – 102 µm). With increasing distance from the wall, the 

orientation distribution of the parent crystallites distinctly broadens and the parent-to-

daughter ratio decreases (Figure 5.11B and 5.11C). Peaks in the “core” section are weak, 

leading to a large uncertainty in the parameters of the Lorentzian fit. We present data for 

the central section only to indicate that the orientation distribution is much broader than in 

the sections nearer to the channel walls. 

Identical analysis of a series of shearing conditions for ts = 7 s provides a glimpse of the 

depth-dependent effects of shearing time (Figure 5.12). Within 35 µm of the wall, the 

growth of AreaP,110 with time following 7 s of shear is very similar to that after 12 s of 

shear, including the impingement time (35 s for ts = 7 s; 25 s for ts = 12 s).  Based on our 

prior work, this suggests that the length of shish per unit volume created during the first 7 s 

of shear hardly changed during continued shearing for 5 s more: the nucleation 

enhancement in the outermost 35 µm saturates within 7 s of shear at σ = 0.060 ± 0.005 

MPa.  Deeper than 35 µm into the sample, decreasing ts from 12 s to 7 s resulted in much 

slower growth of AreaP,110, a lower final value of AreaP,110, and a longer time before 

impingement (Figure 5.12A). Likewise, at depths greater than 35 µm, the FWHM shows a 

monotonic broadening with increasing depth and broader values for 7 s compared to 12 s of 

shearing (Figure 5.12B). The P:D ratio at each depth for ts = 7 s was lower than at the 

equivalent depth for ts = 12 s. The depth dependence of P:D that was seen for ts = 12 s is 

absent for ts = 7 s (Figure 5.12C). 

From the depth dependent results, it is clear that the initial growth rate of AreaP,110, 

[dArea/dt]0  is a highly nonlinear function of stress (Figure 5.13).  



 V-9
5.4 Discussion 

Recent rheo-optical and rheo-WAXD experiments have provided rich information 

regarding the development of anisotropic crystalline morphology during and after flow.18-24 

However, the nature of pressure driven flow through a channel combined with orientation 

of the optical axis along the velocity gradient direction restricted real-time measurements to 

averaged quantities over the depth of the flow channel. Study of depth dependent effects 

have been performed “post mortem” following quench and removal of the sample. The 

“depth sectioning” analysis employed here enables us to extract depth dependent 

information in a time-resolved fashion.  

5.4.1 Propagation of threadlike precursors 

Our interpretation of the present results is strongly influenced by the conclusions of earlier 

work20, 25 in which we combined ex situ electron microscopy with in situ optical and X-ray 

measurements.  The material was a conventional Ziegler-Natta iPP (ZN-iPP) that behaved 

at 141 °C in a manner analogous to the B3500 in the following respects: at stresses above a 

threshold value (~0.047 MPa for ZN-iPP, ~0.044 MPa for B3500), it is possible to induce 

the transition to oriented growth if shearing is sustained for a long enough time (≥ 2 s for 

ZN-iPP, ≥ 3 s for B3500); the transition to oriented growth is marked by formation of 

oriented crystals after flow has ceased.  Images of the nanostructure in ZN-iPP showed that 

increasing shearing time led to the following sequence of morphologies in the region where 

σ* < σ < σw: for ts = 1 s, sparse needle-like precursors templating growth of oblong 

spherulites; for ts = 2 s, row-nucleated structures with threadlike precursors many 

micrometers in length; for ts = 4 s, a decreased average distance between the rows in the 

oriented skin; ts = 8 s, indistinguishable from ts = 4 s. Thus, there was an initial 1 s 

induction period during which pointlike precursors formed and some started to elongate 

into needles.  Over a time interval of 1 s during shear (from 1 s to 2 s), threads formed 

prolifically; we infer that the threads elongate by propagation upstream and downstream 

(by symmetry) and that their propagation velocity is of order 10 µm/s.  The increase in 

length of shish per unit volume ceases by 4 s into the shear pulse. Thereafter, flow 

enhancement of crystallization that is evident in birefringence and WAXD results must 
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occur predominantly by lateral thickening of the threadlike precursors without 

significant change in their length.  The fully saturated array of shish had row spacings that 

varied with depth in the sample, increasing from ~250 nm apart at a distance of 

approximately 10 µm from the wall to ~750 nm apart at a depth of 50 µm from the wall.  

How the depth-dependent structure formed in real-time was unknown, inspiring the design 

of the present experiments. 

In qualitative accord with our prior findings, the real-time data here shows that threads 

grow longer and denser with increasing shearing time.  For the series of shearing times ts = 

1, 2, 4, 5, and 7 s (Figure 5.5), almost all of the observed crystallization occurred after 

cessation of shearing by growth at the quiescent growth velocity. The quiescent growth rate 

is the same for each condition since the material composition and crystallization 

temperature remain unchanged. Therefore, the increase in the initial rate of oriented 

crystallite growth seen with increasing ts reveals a greater total available surface area for 

growth templated during flow.  During flow, the nucleating surface available on threadlike 

precursors increases by a combination of increasing thread length and increasing thread 

diameter. The impingement time manifested by the decrease in the rate of growth of the 

parents provides an indirect estimate of the distance between shish: (impingement 

time)*(growth velocity) ~ (distance the growth front advanced). The impingement time 

changes little with further increase in ts beyond 5 s.  From this we infer that increase in 

thread length was the dominant effect for ts ≤ 5 s and that thickening of the threads was 

dominant for ts > 5 s.  

5.4.2 A depth dependent sequence of events 

Based on our previous schematic model (Chapter 3), we add a depth dependent facet to our 

sequence of events leading to the development of the shish-kebab morphology induced by 

shear flow. At early times, the orientation of chain segments induces the formation of stable 

pointlike precursors which lead to primary nucleation events from the melt. The pointlike 

nuclei form first nearest the wall where the stress is highest and the orientation of chain 

segments is greatest. As flow continues, long chains that are participating in (and anchored 

to) the incipient nuclei become much more distorted than the surrounding chains leading to 
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the growth of an anisotropic precursor structure. This occurs first near the wall where 

stress is highest (greatest orientation) and pointlike precursors first formed. Continued flow 

causes the threadlike precursors to grow in length and perhaps diameter as surrounding 

chains are recruited to participate and stabilize the structure. At longer flow times, pointlike 

precursors continue forming at depths farther from the channel wall and threadlike 

structures also propagate from these points. Prolonged flow acts to lengthen the existing 

threads, leading to a more dense thread spacing. Stable threadlike precursors nucleate 

crystallite growth in the form of oriented kebabs that grow radially away from this central 

structure. There is some evidence that the linear growth velocity of crystallites is greater 

during flow than in the quiescent condition;20 however, in the current study we can not 

confirm this since detectable crystallization occurs after cessation of flow. 

For B3500, a sufficient length per unit volume of these threadlike structures has developed 

to become detectable, as an upturn in birefringence, after 4 s of shearing time (Figure 5.4). 

However, the development of anisotropic crystalline orientation detected by WAXD at 

later times indicates that oriented precursor structures developed after as little as 2 s of 

shearing. The impingement of kebabs from neighboring shish begins at 25 s in the 

outermost 35 µm, causing a slow down in the growth of oriented crystalline diffraction 

seen in WAXD (Figure 5.9). Impingement times at greater depth from the wall are longer, 

implying that the distance between threads increases with depth. Thus the real-time data 

accords with the distribution of thread spacing seen in prior TEM studies in ZN-iPP under 

similar crystallization conditions18 and in bimodal blends of narrow distribution 

polypropylenes (Chapter 3), although the depth dependence was mild in the blends with 

~1000 kg/mol long chains.  

We interpret our results in terms of shish formation during flow. Petermann and co-

workers26 have recently shown evidence of shish propagating into an undeformed melt for 

an isotactic polystyrene. They describe the extension of shish into the melt as an 

“autocatalytic” process involving ordering ahead of the growing shish as polymer chains 

are “reeled in” to the crystal. However, they state that the phenomenon required a material 

with a low crystallization rate and that resisted refolding to form chain-folded lamellae  
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(i.e., unpublished experiments in more common semicrystalline polymers that form 

chain-folded lamellae did not show shish-propagation after cessation of deformation). They 

concluded that the phenomenon occurs only in a relatively narrow range of systems (to date 

only in a low tacticity polystyrene). Highly isotactic polypropylene has a high 

crystallization rate and strong tendency to form chain-folded lamellar crystals;  therefore, it 

is unlikely that iPP shish propagate after cessation of flow. Furthermore, Petermann reports 

shish extension of < 1 µm, which is negligible relative to the length of the shish-kebab 

structures seen in our TEM images ( > 20 µm). 

Flow suppresses the formation of daughter crystallites. Depth sectioning shows that in the 

outer 35 µm section the parent crystallite peak area grows at the same rate (with 

impingement occurring within a span of seconds) and reaches nearly the same value for a 

sample subject to 7 s or 12 s of flow. However, the parent to daughter ratio is about twice 

as high for the 12 s flow condition (Figure 5.8 and 5.13). Flow tends to direct the chain axis 

into the velocity direction and so tends to frustrate the growth of daughter crystals in which 

the polymer chain axis is nearly perpendicular to the flow direction. This finding is 

consistent with results reported previously by our laboratory.20 

5.4.3 Toward determination of thread propagation velocity 

The propagation of threadlike structures appears to saturate once a certain thread density is 

achieved. The small change in impingement time in the outer 35 µm section when 

comparing 7 s and 12 s shearing times suggests negligible increase in the thread length/vol 

near the wall after 7 s of shearing. The arrest of further thread propagation may be a 

consequence of collisions with kebab overgrowth. Since we see crystalline scattering in the 

first WAXD frame following 7 s of shearing and an upturn in birefringence that does not 

decay to zero, it is reasonable to deduce that kebabs have begun to grow prior to the end of 

7 s of shearing even though they are below the sensitivity of WAXD (insensitive to < 1% 

crystallite volume).27 So, any determination of thread propagation velocity should be based 

on conditions where shearing ceased prior to saturation  
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For ts < 5 s, the initial slope [dAreaP,110/dt]0 increases linearly with shearing time 

(Figure 5.9B), suggesting that thread length increases approximately linearly with time 

during shear at the stress level in the outermost 35 µm (σ = 0.064 - 0.055 MPa). Further, 

the subsequent delay (> 90 s) in the onset of detectable crystallization following short 

shearing times lends assurance that kebab growth did not progress significantly during 

flow. Therefore, these conditions are promising for estimating the thread propagation 

velocity. However, translating the real-time data into a linear propagation velocity for shish 

awaits future ex situ images of the final morphology for at least one shearing time.   

Without real-space images, the best we can do is use the impingement time as a “ruler”: the 

roll-off in the rate of growth of parent crystallites for the saturated structure is in the range 

100 – 200 s, which would correspond to a separation between shish in the range 350 – 700 

nm based on our prior work, and the quiescent growth velocity.  If we took 400 nm as an 

estimate of the shish separation in the saturated case, we would infer that the length of 

shish per unit volume is roughly 4 µm-2.  Based on Figure 5.9B, this population of shish 

developed between 1 and 4 s at a roughly linear rate of 1.3 µm-2s-1 . Again, the lack of TEM 

images limits our ability to translate this into a growth velocity. To illustrate how the 

calculation would be performed, suppose shish in the fully saturated state were observed to 

be 20 µm long; the real time results would suggest that the first second of shear created 

approximately 0.2 sites/µm3 from which shish propagated at a velocity, vprop, of roughly 7 

µm/s. This example illustrates how real time measurements for a series of ts and for a series 

of σw could be used with just a small amount of (expensive and time consuming) electron 

microscopy to determine the propagation velocity of shish. This method can be used to 

provide theorists with the first determinations of vprop(σ,T, ultimately as a function of 

molecular parameters (e.g., length, stereoregularity and concentration of long chains). 

5.5 Conclusion 
Our analysis of real-time rheo-optical and rheo-WAXD experiments combined with depth 

dependent information from “depth sectioning” confirms several existing results and 

uncovers several new keys to understanding how anisotropic crystalline is induced by flow. 
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As seen previously, threads first form near the channel wall where stress is highest and 

grow in length with prolonged flow. After sufficient time, thread length per unit volume 

saturates, perhaps due to collisions with other threads or crystalline overgrowth from those 

threads. The propagation of threads varies in a nonlinear manner with stress. With our 

current findings, we can now see that prior to saturation, when crystalline overgrowth is 

negligible, the thread propagation is linear with shearing time. Here we identified a 

promising set of conditions that can be used to measure the thread propagation velocity for 

this material if the appropriate length scale can be assigned by microscopy. This result 

moves us closer toward a previously unavailable experimental measurement of a 

fundamental mechanistic aspect of flow-induced crystallization necessary for modeling 

improvements. Future experiments might aim to deduce the effects of other conditions 

(temperature, molecular weight distribution, etc.) on the thread propagation velocity. 
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Figure 5.1: Schematic of stress profile in channel flow and a qualitative 
velocity profile. At the channel wall, the fluid velocity is zero (assuming 
the no-slip condition) due to high frictional forces resulting in a maximum 
stress at wall. The stress gradient is linear between the center of the 
channel (σ = 0) and the wall (σw). This linear relationship allows 
correlation between morphological features viewed ex situ and stress. 
Likewise, the depth dependence of real-time data can be inferred from a 
series of stress conditions. 
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Figure 5.2: Schematic of depth sectioning profile. Examination of the 
difference in scattering, A, between specimen #1 and #2 enables a real-
time look at crystallinity developing in a small region below the wall. A 
series of such specimens allows further partitioning of real-time results 
into depth related slices (i.e., segments B, C, and D). The specimens 
shown above were sheared for 12 s at 137 °C but at different stress levels: 
specimen #2 (σw = 0.064 MPa) and specimen #1 (σw = 0.055 MPa). 
WAXD patterns captured 130 s after imposition of shearing. 
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Figure 5.3: Total transmitted intensity, Itot/Itot(0), vs. time for B3500. All 
samples crystallized at 137 °C following shear at σw = 0.06 MPa and ts 
varied from 1 - 12 s.  
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Figure 5.4: Birefringence of B3500 during crystallization at 137 °C 
following shearing (σw = 0.06 MPa) for various shearing times (ts = 1 – 12 
s) noted in the legend. A) The normalized intensity of light transmitted 
between crossed polarizers, I⊥/Itot, vs. time. B) The average birefringence 
∆n (n33 – n11) vs. time calculated from I⊥/Itot to emphasize the differences 
in final birefringence of the samples vs. shearing time. 
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Figure 5.5: Two-dimensional WAXD patterns of B3500 at 1250 s after 
shearing.  A strong fiberlike crystallite orientation developed in B3500 at 
137 °C after shearing at σw = 0.06 MPa for A) 12 s and B) 3 s. Acquisition 
time = 30 s. 
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Figure 5.6: Azimuthal scans of the 110 WAXD reflection at 1250 s after 
shearing. It is remarkable that with as little as 2 s of shearing, (weakly) 
oriented crystallites are growing. For ts = 1 s, crystallization does not have 
a preferential orientation. 
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Figure 5.7: Degree of crystallinity and orientation increase with 
increasing shearing time. A) The crystallinity index (xc) rises sharply for 
conditions where flow was imposed for longer than 3 s. A corresponding 
increase in the B) amplitude of parent peaks on the 110 azimuthal 
indicates the growth in crystallinity is due to oriented crystallites. C) The 
FWHM decreases for longer shearing duration up to 5 s. Further shearing 
does not affect a decrease in orientation distribution. 
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Figure 5.8: Time evolution of parent to daughter ratio of 110 peaks for 
different shearing durations. 



 V-23

 

Figure 5.9: Area of the 110 parent peak. A) The area of parent 110 peaks 
grows faster and to substantially higher values for greater shearing times. 
A change in growth rate occurs when growing shish-kebabs impinge upon 
one another. Prior to impingement the growth rate is linear and B) the 
initial rate of increase, [dAreaP,110/dt]0, of the parent area curves increases 
with increasing shearing time (ts). 
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Figure 5.10: Real-time “depth sectioning” of WAXD for B3500 during 
crystallization at 137 °C following shear for 12 s at σw = 0.064 MPa. A 
schematic representation of the depth profile vs. stress relationship is 
shown (top). Examples of the resultant WAXD difference patterns at 130 s 
after shear (dashed line on bottom graph) for regions listed in the 
schematic (core not shown) are displayed (middle). Real-time 
development of 110 parent peak area for each depth (bottom). The depth 
from the wall of each section is A) 0 – 35 µm, B) 35 – 74 µm, C) 74 – 102 
µm, and D) 102 µm to the center. 
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Figure 5.11: Real-time “depth sectioning” of oriented crystallites for 
B3500 after 12 s shearing (σw = 0.064 MPa). A) Area of 110 parent peaks. 
B) FWHM of parent 110 peaks indicates a broadening of the orientation 
distribution at depths closer to the center of the channel. FWHM for the 
“core” was difficult to determine accurately. The dashed line indicates an 
average of the fit values and the error bars indicate the spread. C) Parent to 
daughter crystallite ratio decrease at greater depth. 
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Figure 5.12: Real-time “depth sectioning” of oriented crystallites of 
B3500 after shearing at σw = 0.064 MPa for 7 s (filled symbols) and 12 s 
(empty symbols). A) Area of 110 parent peaks. B) FWHM of parent 110 
peaks. FWHM for the “core” was difficult to determine accurately. The 
dashed or solid lines indicate an average of the fit values and the error bars 
indicate the spread. C) Parent to daughter crystallite ratio. 
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Figure 5.13: Initial rate of increase of 110 parent peak area vs. stress for 
“depth sections” of B3500 sheared for 7 s (filled symbols) and 12 s (empty 
symbols). 
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6.1 Introduction 

The strength, hardness, permeability, and clarity of semicrystalline polymers are strongly 

affected by the degree of crystallinity and orientation distribution of the crystallites formed 

under the influence of the thermal and flow history imposed during processing.1-4 The most 

dramatic effects on material properties are associated with the morphological transition 

from qualitatively spherulitic growth to highly oriented, “row-nucleated” crystallization. 

Although the exact mechanism responsible for anisotropic nucleation is not known,5-11 it is 

generally accepted that the longest molecules preferentially obtain a higher orientation state 
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during flow, leading to anisotropic crystallization. Therefore, molecular strategies for 

optimizing flow-induced crystallization to confer desired processing behavior may be 

developed based on modifying the participation of the longest chains. Here we explore the 

possibility of reducing the extent of oriented crystallization of isotactic polypropylene (iPP) 

by deliberately placing molecular defects (ethylene comonomers) in chains on the high-end 

of the molecular weight distribution (MWD).  

The present blends are designed based on knowledge of binary blends in which the long 

chains (< 2% wt.) and the bulk of the chains (“base resin”) are both strongly isotactic 

([mmmm] > 96%) homopolymers (Chapter 3). Addition of long chains of ML/Mbase > 4.5 

strongly contributes to the transition to oriented morphologies.12 The effect is very sensitive 

to the relative length of the long chains and their concentration (Chapter 4). Therefore, 

adjustment of the length of the uppermost 1 – 2% of the MWD can profoundly alter flow-

induced crystallization behavior in qualitative accord with the long-standing hypothesis put 

forward by Keller13 and supported by subsequent study.12, 14-17 

Blending polypropylenes that differ in molecular attributes such as molar mass, 

stereoregularity, or comonomer content provides a facile route to diverse materials. The 

overall molar mass distribution of the blend can be tuned to optimize melt rheology for a 

process of interest. In principle, the distribution of monomer-level defects (stereo- or regio-

errors or comonomer) across the molar mass distribution can be use to independently 

optimize flow-induced crystallization characteristics. However, there is little experimental 

or theoretical literature to guide the design of this “defect distribution.” The impetus to 

establish design principles has grown with the development of technologies for commercial 

production of bimodal and multimodal PP’s. Such material can be prepared in a single 

reactor with two reaction zones or with two catalysts present.18-20 Alternatively, a chain of 

two or more reactors can produce materials having disparate modes finely dispersed on a 

microscale (within “reactor granules”).3, 19-21 

It is known that monomer-level defects profoundly affect the solid-state structure and 

material properties (density, modulus, etc.)22-24 and the quiescent crystallization kinetics25-28 
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of iPP. The literature is scant regarding flow-induced crystallization of bimodal 

distribution of monomer-level defects, particularly materials that place the defects 

preferentially on the long chains in the binary blend. Most studies of binary blends 

preferentially placed defects on the short chains in an overall distribution,29-31 perhaps 

motivated by the desire to better understand the distribution of defects seen in ZN-iPP. 

To expose the effects of the distribution of defects, we examine materials that have similar 

overall distribution of chain length and similar average comonomer content. To make 

contact between conclusions based on well-defined, isothermal “short term” shearing 

experiments and behavior in realistic (nonisothermal, extensional flow) processing 

histories, we examine blends that can be prepared in large enough quantity to perform pilot 

scale production of non-woven fabric. Indeed, the desire for fibers that are tough and 

extensible illustrates the motivation for establishing principles for reducing the tendency 

toward oriented crystallization under the influence of flow. Specifically, the high yield 

stress and low strain at break associated with highly oriented iPP fibers make it difficult to 

bond the fibers together to form the fabric, reduce the extension that the fabric can 

accommodate without failure, and increase the tendency of the fabric to shed fiber 

fragments.32-34 We demonstrate that preferential placement of comonomer on the high end 

of the MWD is effective in moderating the degree of orientation induced by flow, both in 

isothermal shear and in fiber spinning.  The conclusions based on large scale blends are 

confirmed by experiments on model materials in which the usual increase in oriented 

crystallization due to the addition of well-defined long chains is essentially “turned off” by 

placing molecular defects on the long chains. 

6.2 Experimental 

6.2.1 Materials 

The samples used in the study to demonstrate the effects of monomer-level defects 

distributed on the high molecular weight portion of the MWD include both model polymer 

systems available in gram quantities and systems designed to be produced commercially. 

The model blends comprise a relatively low molecular weight, narrow distribution iPP 

(Base-PP: Mw = 186 kg/mol, Mw/Mn = 2.3, [mmmm] = 96%) with a small quantity (~1%) 
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of either high molecular weight (~1000 kg/mol) isotactic polypropylene, iPP, or atactic 

polypropylene, aPP. The long iPP has Mw = 923 kg/mol Mw/Mn = 1.3 and [mmmm] = 98%.  

The long aPP has Mw = 1073 kg/mol Mw/Mn = 2.2. Blends are denoted BiPP, containing 0.7 

wt% iPP, and BaPP, containing 1 wt% aPP.

A large scale set of bimodal materials were designed to include pilot-scale nonwoven fabric 

production in the scope of experiments. So that a large enough amount of each blend could 

be made, we chose to use melt extrusion blending and selected the individual components 

from commercial resins available in large quantity.  Materials intended for industrial use 

were provided by Procter & Gamble (Table 6.1). To produce blends having similar 

rheological properties and overall comonomer content, we chose pairs of “long” and 

“short” polymers that had similar length (“long” having Mw = 209 ± 6 kg/mol and “short” 

having Mw = 147 ± 4 kg/mol), one polymer in each pair being an iPP homopolymer and the 

other an iPP with a small amount of ethylene comonomer (2.6 – 2.9 wt% ethylene). The 

long homopolymer is denoted L and the long copolymer LEP.  Likewise, the short 

homopolymer and copolymer are denoted S and SEP. The propylene components are 

commercially available iPPs: S is a metallocene-type (Exxon Achieve 3825) and L is a 

Ziegler-Natta-type (Exxon PP1154).  The metallocene-catalyzed random copolymer (RCP) 

components (Japan Polychem), SEP and LEP, are approximately matched in ethylene content 

and melting point.  The binary blend samples used in the study have blend ratios chosen so 

that both materials have Mw = 150 ± 10 kg/mol and ethylene content (C2) = 1 ± 0.2%.  This 

represented a trade off: adjusting blend ratio to better match C2 content would increase the 

disparity in Mw and vice versa.   

6.2.2 Molar mass 

Molecular weight and molecular weight distribution for L/SEP and LEP/S and each 

component was determined at The Procter & Gamble Company by high temperature gel 

permeation chromatography (GPC) with multi-angle laser light scattering and refractive 

index detection. Measurements were conducted in trichlorobenzene (TCB) at 150 °C using 

three 10 µm x 300 mm mixed –B-LS columns. Samples and standards were dissolved in 
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TCB and filtered using 2.0 µm filter cups. BHT (2,6-di-t-butyl-4-methylphenol) was 

used as an antioxidant in the eluent. 

6.2.3 Melt flow rate (MFR) 

The flow characteristics of the blends and components were characterized by the melt flow 

rate (MFR) using ASTM standard method D1238. The MFR is commonly used as a simple 

metric to characterize material viscosity as the mass of polymer extruded through an orifice 

under specific conditions of temperature and pressure. For polypropylene, the MFR is 

reported in units of dg/min at 230 °C under 2.16 kg of extrusion weight. MFR values 

provided by The Procter & Gamble Company. 

6.2.4 Quiescent crystallization  

Quiescent crystallization kinetics and crystallization and melting points for L/SEP and LEP/S 

were characterized at Procter & Gamble by differential scanning calorimetry (DSC) using a 

TA Instruments C3A04 DSC equipped with autosampler . Crystallization kinetics were 

characterized using peak crystallization times for a series of crystallization temperatures. 

Samples were annealed at 215 °C, well above the highest estimate of Tm
0
 for iPP,35 to erase 

prior thermal history and mimic conditions used in shear experiments. Crystallization and 

melting points were determined after constant cooling and heating cycles at 10 °C/min. 

Melting point temperatures are reported for the second heating. In contrast to 

homopolymers, for which the equilibrium melting temperature can be estimated by 

extrapolation of observed melting points according to the Hoffman-Weeks method,36, 37 the 

present blends are composed of components with widely separated melting points.  At deep 

enough subcooling (blend crystallization temperature, Tc (blend) << Tm (RCP)), both 

components are incorporated into crystals; however, at shallower subcooling there are 

temperatures at which the RCP component does not crystallize (Tc (blend) > Tm (RCP)).  

Consequently, at high Tc the corresponding melting points deviate upward from a linear 

trend established at lower crystallization temperatures. Therefore, the estimated equilibrium 

melting points reported for the blends are only used for comparison of the blends to each 

other.  Given the uncertainty in determining Tm
0, we report results in terms of Tc rather than 

subcooling. 



 VI-6
6.2.5 Comonomer content 

Nuclear Magnetic Resonance (NMR) spectroscopy, performed at The Procter & Gamble 

Company, was used to determine ethylene content in the component polymers and their 

blends, L/SEP and LEP/S. All samples were run at 135 °C in 1,2-dichlorobenzene-d4 on an 

INOVA 500 NMR spectrometer using a 10 mm tube without spinning.  Samples were 

approximately 10% polymer (wt./vol.) and were heated in an oven at 145 °C for 1 – 2 

hours before data collection. Data collection lasted several hours to overnight, and samples 

were exposed to a limited air headspace. 

The approximate value of the T1 relaxation parameter was measured for each resonance 

using the T null method. T1 was found to be less than 1 second for each resonance.  Inverse 

gate decoupled 13C spectra were collected with D1 = 10 s (> 5*T1 so integrals would be 

quantitative). The methyl resonances (in the expansions of the methyl only region) were 

assigned based on the data in the literature.38, 39  

6.2.6 Flow-induced crystallization  

Rheo-optical characterization of flow-induced crystallization was conducted using 

protocols reported earlier (Chapter 2). Short-term shearing is achieved using pressure 

driven flow through a rectangular channel with thickness 500 µm ± 4%.  To establish a 

consistent thermal and flow history for each experiment, the sample cell was filled with 

material from the reservoir and held for 5 minutes at 215 °C to ensure molecular relaxation 

and melting of residual crystallites. The sample cell was cooled to the crystallization 

temperature, Tc, and a brief shearing pulse was applied. The crystallization temperatures 

(Tc) were chosen such that quiescent crystallization times that were long compared to the 

time required to cool to Tc, ensuring that no quiescent crystallization occurred prior to 

application of the shearing pulse. Further, the selected Tc led to completion of flow-induced 

crystallization on an experimental time scale (~102-103 s) conducive to synchrotron X-ray 

experiments.  

For model blends the effects of composition are compared at a single temperature (Tc = 137 

°C) since this represents nearly constant subcooling given that all three samples are 
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between 99 – 100% Base-PP.  For the large-scale blends, Tc’s were chosen such that 

the quiescent crystallization times of the two blends matched.  The ratios of the long and 

short components that gave the best match of MFRs and C2-contents of LEP/S and L/SEP 

represent a compromise that gave a somewhat greater MFR and higher melting point for 

L/SEP (despite a greater weight percentage of comonomer defects, owing to the difference 

between the PP homopolymer components, mPP vs. ZN-PP, Table 6.1). Consequently, the 

two blends differ in terms of quiescent crystallization kinetics (Figure 6.1). To compensate 

for the mismatch in kinetics, the choice of crystallization temperatures (142 °C for LEP/S 

and 145 °C for L/SEP) was guided by both DSC and turbidity results (Figure 6.3), which 

differed from each other. Turbidity half-times (t1/2) were 14,900 ± 5000 s for L/SEP (145 

°C) and 8800 ± 2400 s for LEP/S (142 °C), indicating faster crystallization for LEP/S at the 

chosen temperatures. In contrast, isothermal crystallization times from DSC (peak of the 

transient exotherm) were 7590 s for L/SEP (145 °C) and 14,250 s for LEP/S (142 °C), 

indicating, L/SEP was faster. The results of turbidity half-times may be an indication that 

LEP/S scatters light more prolifically than L/SEP as it crystallizes. We will demonstrate that 

the difference in quiescent crystallization kinetics is moot in light of the overwhelming 

effects seen in flow-induced crystallization.  

Results from rheo-optical experiments identified selected conditions for synchrotron rheo-

WAXD (wide-angle X-ray diffraction) experiments at the Advanced Polymers beamline 

(X27C) at the National Synchrotron Light Source, a department of Brookhaven National 

Laboratories. The X-ray wavelength was 1.366 Å. The X-ray probes provide a relative 

measure of crystallinity, identification of crystalline phase, and anisotropy. Raw WAXD 

patterns were collected and analyzed according to the methods reported in Chapter 3 to 

extract crystallinity index (xc), and metrics of oriented crystallization based on 110 

azimuthal scans: parent peak area, FWHM, amplitude, and ratio of parent to daughter 

crystallites. 

6.2.7 Flow-induced solid-state morphology 

In addition to in situ investigation, samples were removed from the shearing apparatus for 

ex situ morphological characterization at Procter & Gamble, specifically the delineation of 
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the “skin-core” boundary evidenced by a highly birefringent skin. The quenched 

samples were sliced into thin sections (5 µm) using a Leica EM FC6 ultramicrotome for 

observation via polarized light optical microscopy (OM) using a Zeiss Axioplan 2 light 

microscope. Samples are situated with the experimental flow direction oriented at 45° 

relative to the crossed polarizers. The number of spherulitic superstructures within the core 

of the sample can be used to determine nucleation density.  

6.2.8 Fiber morphology and properties 

L/SEP and LEP/S were melt spun into fibers at take up rates of approximately 1200 m/min 

and collected for characterization using WAXD and tensile testing. For WAXD, fibers 

were gathered into small bundles and oriented in the X-ray beam with the fiber axis 

horizontal (direction of flow for shearing experiments).  

Low speed tensile properties were measured at Procter & Gamble according to ASTM 

standard D3822 using an MTS Synergie™ 400 tensile testing machine (MTS Systems 

Corporation, Eden Prairie, MN) equipped with a 10 Newton load cell and pneumatic grips. 

Tests were conducted at a crosshead speed of 200% per minute on single fiber samples 

with a 2.54 cm gage length. Coupon mounted fibers were loaded into the tester grips and 

the paper was then cut away so as not to interfere with the test result. Samples were pulled 

to break. 

6.3 Results 

6.3.1 Shear-induced crystallization of model blends 

The effect of long chains on the transition to oriented crystallization is strongly affected by 

molecular defects: following shear at σw = 0.11 MPa at 137 °C, the blend with < 1% of 

long iPP added exhibits more rapid and oriented growth than Base-PP, while the blend with 

1% long aPP shows no increase in crystallization kinetics or orientation relative to Base iPP 

(Figure 6.2A). Thus, the addition of long iPP reduces the threshold stress required to trigger 

the transition to oriented crystallization. Following shear at σw = 0.06 MPa, none of the 

model materials exhibited anisotropy in optical characterization, showing that σ*BiPP is 

between 0.06 and 0.11 MPa. Note that the experiments shown in Figure 6.1A are not only 
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matched in terms of the imposed stress: the concentration is so low that the shear rate 

is nearly constant. Base-PP and BaPP were subjected to the same shearing time and, 

consequently, the same total strain and total work; BiPP was subjected to a shorter shearing 

time, emphasizing its increased sensitivity to flow-induced crystallization.   

Oriented crystallization can be induced in Base-PP if the shear stress is sufficiently high.  

For example, a stress of 0.124 MPa is sufficient to induce oriented growth in Base iPP 

(Figure 6.2B). Thus, σ*Base-PP is between 0.11 and 0.124 MPa. When BaPP is subjected to a 

stress (0.127MPa) that is greater than σ*Base-PP, it also undergoes oriented growth.  This 

may explain the discrepancy between our findings and prior reports that long aPP can 

enhance the transition to oriented growth.11 If experiments on a short iPP at σ < σ*Base are 

compared to experiments on its blend with long aPP using the same shear rate, and hence 

greater shear stress, an observation of oriented growth may simply reflect the inherent 

characteristics of the short iPP if the imposed stress exceeds σ*Base.  

 

6.3.2 Shear-induced crystallization of large-scale blends  

Intermediate shear stress (σ*L/SEP <σ <σ*LEP/S):  There is a striking contrast between the 

development of highly oriented crystalline microstructures in L/SEP and the lack of oriented 

crystallization in LEP/S after equivalent shear treatment over a range of shear stresses, 

indicating that L/SEP has a lower threshold stress than LEP/S.  To highlight this difference, 

we will focus on a particular set of flow conditions and the quiescent condition at the 

corresponding Tc for each sample.  Following shear at σw = 0.11 MPa, L/SEP exhibited a 

decrease in t1/2 by two orders of magnitude compared to the quiescent case; yet LEP/S 

demonstrated only a modest acceleration in crystallization kinetics (Figure 6.3). To achieve 

comparable total strain (i.e., mass extruded, wex) at the chosen Tc, L/SEP was sheared for 1.3 

s and LEP/S for 1.5 s. Shearing time is a relatively weak variable, so the present 

comparisons may be regarded as holding strain constant and shearing time nearly 

constant.40  Despite the higher crystallization temperature (145 °C vs. 142 °C), slower 

quiescent crystallization, and shorter shearing time, L/SEP has a faster timescale for shear-

induced crystallization than LEP/S. Crystallization of L/SEP was accompanied by rapid 
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development of birefringence indicating the growth of anisotropic crystallites, while 

LEP/S showed no birefringence growth after corresponding shear treatment (Figure 6.4). 

Thus, the large reduction in the crystallization timescale of L/SEP correlates with the 

development of strongly oriented crystallization. 

In addition, the shape of the transmittance profile over time for L/SEP decreased in a two-

step fashion after cessation of flow, in contrast to the simple decay observed for LEP/S. 

Below, WAXD results show that for L/SEP the first decay is associated with the rapid 

growth and impingement of the shish-kebab structure in the skin region near the wall, and 

the later decay correlates with the slower growth of the spherulitic core. The single decay 

observed in LEP/S under these conditions is attributed solely to spherulitic growth based on 

rheo-optical (I⊥/Itot) and WAXD results.  

The strong orientation evident in the transient birefringence correlates with growth of 

highly oriented crystallites observed by WAXD (Figure 6.5A).  The 2-D diffraction 

patterns captured 30 minutes after cessation of shear indicated L/SEP crystallized in the α 

modification for iPP with the c-axis oriented along the flow direction. The onset of 

crystallization in LEP/S had not yet occurred after 30 minutes. L/SEP shows signs of 

significant cross-hatching with reflections from parent crystallites oriented along the 

meridian and daughter crystallite reflections flanking the equator.   

Following shear treatment and isothermal crystallization at Tc for 90 minutes, the solidified 

samples from rheo-WAXD experiments were removed for ex situ microscopy (Figure 

6.5B).  An oriented “skin” layer (39 ± 1 µm) was induced in L/SEP, but no oriented 

crystallites were visible in LEP/S. The drastic difference in morphology evident from 

microscopy confirms the correlation between an oriented morphology and in situ 

observation of birefringence growth after cessation of flow.  Since the stress varies linearly 

from the wall to the channel center, the position of the “skin-core” boundary corresponds to 

σ* = 0.09 MPa for L/SEP. Due to the lack of an oriented skin in LEP/S at σw = 0.11 MPa, we 

deduce that its threshold stress is σ* ≥ 0.11 MPa. The results indicate that introducing 
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irregularities (e.g., comonomer) preferentially in the high end of the MWD can 

moderate the effect of the long chains on flow-induced orientation.   

High shear stress (σ*L/SEP  < σ*LEP/S < σ):  By increasing the shear stress, it was possible to 

induce oriented crystalline growth in LEP/S. (Thus, the comonomer distribution can be 

regarded as changing the threshold stress). Shear treatment with σw = 0.15 MPa applied for 

0.7 s at 142 °C was adequate to produce anisotropic crystallization in LEP/S as indicated by 

the development of birefringence after cessation of flow. The total transmittance (Itot/Itot(0)) 

exhibited a bimodal decay similar to that noted earlier for L/SEP. However, the initial 

decrease in transmitted intensity was small, corresponding to ~20% of the total intensity, 

followed by a plateau and final decay of the remaining transmitted intensity at longer times. 

As a result, application of this more intense shear stress did not alter t1/2 for LEP/S (see 

section 6.3.4). Corresponding rheo-optical experiments for L/SEP (σw = 0.15 MPa, ts = 0.7 

s, Tc = 145 °C) caused rapid oriented crystallization with faster growth of birefringence and 

shorter t1/2 times than LEP/S, as expected based on its behavior for σw = 0.11 MPa.   

In corresponding WAXD experiments at σw = 0.15 MPa, LEP/S crystallized with 

anisotropic α-iPP structure qualitatively similar to L/SEP (Figure 6.6A). However, the 

degree of orientation and the intensity of the reflections were much weaker for LEP/S than 

L/SEP. Further analysis of the real-time structure development is given below (see section 

6.3.5). 

Ex situ optical microscopy (Figure 6.6B) showed that the oriented “skin” layer induced in 

L/SEP (94 ± 4 µm) was roughly twice the thickness of that in LEP/S (48.5 ± 1.5 µm). Based 

on the position of the “skin-core” boundary, the threshold stress, σ*, was calculated to be 

0.09 MPa for L/SEP, in accord with the results reported above, and 0.11 MPa for LEP/S. 

L/SEP had no discernable fine-grained layer, but an irregular transcrystalline layer (< 40 µm 

thick) extended toward the core from the inner edge of the skin. A few large spherulites 

appeared below the skin, most likely due to contaminants. Neither large spherulites nor a 

fine-grained layer were visible in LEP/S. The cores of both samples were composed of tiny 

spherulites indicating that negligible nucleation and crystallization had occurred and that 
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the polymer near the center of the channel remained molten at the time the samples 

were quenched, 1 hour after cessation of shearing.   

6.3.3 Trends with stress  

The complete suite of experiments (Appendix A), which covered a range of temperatures, 

stresses, and shearing times, is consistent with the results outlined above. A lower threshold 

stress for L/SEP translates into greater acceleration of crystallization kinetics and higher 

orientation compared to LEP/S at intermediate and high stresses, σ > σ* (L/SEP) (Figure 

6.7A). As noted earlier, the two-stage decay of total transmitted light complicates 

comparison of turbidity half-times between the two blends. For instance, a plateau in the 

decay of transmittance for L/SEP occurs near Itot/Itot(0) = 0.5, making the choice of a single 

t1/2 value difficult; meanwhile, t1/2 for LEP/S hardly changed vs. stress despite changes in 

morphology, rendering this metric useless to differentiate the two cases. Therefore, we plot 

the time for the total transmitted intensity to reach 80%, t0.8, against stress. At each stress, 

the t0.8 times are shown for various shearing times. As mentioned earlier, the effect of 

shearing time is much weaker than that of stress, allowing meaningful comparisons to be 

made for the effect of stress despite variations in ts. A strong nonlinear decrease in t0.8 was 

born out for L/SEP. With increasing wall shear stress, the timescale for crystallization 

dropped by orders of magnitude in conjunction with the development of strongly oriented 

crystallites. However, a relatively shallow, nonlinear trend was produced for LEP/S across 

the same stress range. The relatively weak effect of shearing on crystallization kinetics for 

LEP/S in response to stress is consistent with its final morphology. Even at the highest 

stress, LEP/S formed few oriented nucleation sites confined to a thin skin.  

Upon decreasing the value of Tc, we note an unexpected trend for L/SEP (Figure 6.7B). The 

crystallization kinetics at Tc = 142 °C as a function of stress overlapped very nearly with 

those at 145 °C, especially at moderate to high shear stresses. This is in contrast to the trend 

for LEP/S which shows an overall shift to faster times when comparing experiments at Tc = 

137 °C and 142 °C, as expected. 
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6.3.4 Transient morphology development  

In situ rheo-optical and rheo-WAXD probes enable the observation of real-time 

development of crystalline morphology.  Subject to σw = 0.11 MPa, LEP/S shows only 

isotropic growth in azimuthal scans of the 110 peak position (Figure 6.8A), with crystalline 

reflections in WAXD appearing on a timescale that accords with turbidity development in 

rheo-optical experiments (~2000 s). Oriented crystallization in LEP/S only occurs at 0.15 

MPa. Peaks in WAXD appeared about 50 s after shear with corresponding development of 

birefringence occurring between 25 – 40 s after shearing. The growth of oriented 

crystallites proceeds rapidly for approximately 1000 s at which point the overall growth of 

crystallinity slows (Figure 6.10A) and further oriented crystallization becomes negligible 

(Figure 6.8B).  

Closer comparison between WAXD and rheo-optical results reveals a correlation between 

the initial drop in total transmittance and the change in growth rate of the 110 parent peak 

area (Figure 6.9). The end of the initial drop in transmittance (~40 – 54 s) coincides with 

the strong rise in parent peak area correlating with the rapid growth of oriented kebabs. The 

start of the second decay in transmittance correlates with the change in slope of parent 

peaks. This slope change is indicative of the onset of shish-kebab impingement. For L/SEP, 

the impingement onset time occurs approximately 150 s after shearing at σw = 0.15 MPa 

and 180 s after shearing at σw = 0.11 MPa. In light of the final skin-core morphology seen 

in optical micrographs (Figure 6.6B), the early growth can be attributed to crystallization of 

shish-kebabs in the skin until impingement with further crystallization occurring mainly 

within the spherulitic core of the sample.  

For L/SEP, oriented crystallization becomes detectable by WAXD in the frame immediately 

after cessation of flow, at both 0.11 MPa and 0.15 MPa, and is similarly manifested as an 

upturn in birefringence (Figure 6.3) during the shear pulse in optical experiments. In this 

case the complementary optical results enable a faster detection timescale, revealing 

crystalline orientation with 20 ms time resolution during the shearing pulse, far faster than 

the 15 s required for WAXD acquisition. At 0.11 MPa, L/SEP rapidly crystallizes with 

strong orientation. Within 35 s, the intensity due to oriented crystallites (Figure 6.8B) 
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grows to half of the value it eventually reached after 2500 s. This rapid crystallization 

behavior is evident in the two-stage development of turbidity in rheo-optical experiments 

(Figure 6.3), resulting in a rapid drop in transmitted intensity to approximately 0.5 within 

the first 50 s followed by a brief plateau and secondary drop beginning about 180 s after 

shearing. Between 35 s and 200 s in the WAXD experiment, the slope of xc becomes 

increasingly flat (Figure 6.10A) and the intensity of the oriented crystalline peaks saturates 

(Figure 6.8B). L/SEP behaves similarly at σw = 0.15 MPa only on a slightly faster timescale. 

WAXD and optical measurements reflect the real-time development of microstructure—

oriented crystallization near the walls of the cell followed by isotropic crystallization in the 

core.  These results are consistent with our previous findings.41, 42 It is noteworthy that the 

skin thickness for L/SEP at 0.11 and 0.15 MPa approximately doubles, as does the ratio of xc 

at 200 s when oriented crystallization saturates. This implies that at early times, xc is 

proportional to the total thread length/vol. 

Both L/SEP and LEP/S crystallize more rapidly at 0.15 MPa (Figure 6.10A) and with greater 

crystallite orientation (Figure 6.8B); although, the crystallization kinetics and level of 

orientation of LEP/S still lag far behind L/SEP at this stress. In fact, L/SEP demonstrates 

faster crystallization at σw = 0.11 MPa than LEP/S at σw = 0.15 MPa. We analyze the 

transient development of oriented crystallization by fitting peaks azimuthal scans of the 110 

reflection. The FWHM (Figure 6.10B) of the fits to the parent peaks (φ = 90° and 270°) 

indicates that the orientation distribution is established early in the crystallization process—

templated with high fidelity by the precursors generated during flow. The distribution of c-

axis orientations about the flow direction does not differ greatly for L/SEP at either stress; 

however, FWHM is roughly twice as broad for LEP/S compared to L/SEP at 0.15 MPa, 

indicating a lower degree of orientation. 

The ratio of parent to daughter crystallites indicates a decrease in cross-hatching for L/SEP 

compared with LEP/S (Figure 6.10C). For σw = 0.15 MPa, the parent:daughter ratio is more 

than two times greater for L/SEP than LEP/S. Since no oriented crystallites formed for LEP/S 

at 0.11 MPa, no comparisons can be drawn between the blends at moderate stress. 

Comparison of the parent:daughter ratio for L/SEP at both moderate and high stress reveals 
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a significant decrease in cross-hatching with increasing stress, in accord with our 

previous results42 (Chapter 5).  

6.3.5 Ex situ WAXD on spun fibers 

The intense flow and rapid quenching involved in fiber spinning resulted in significant 

differences in crystallization behavior between L/SEP and LEP/S (Figure 6.11). Bundles of 

fibers of each material were examined by WAXD to ascertain level of crystalline 

orientation and crystal type. Fibers produced from L/SEP give highly oriented diffraction 

patterns that closely resemble the oriented patterns captured at early times during 

isothermal shear-induced crystallization experiments. Some peak overlap is evident in the 

reflections at large scattering angles, but may be due to imperfect alignment of the fibers 

within the bundle rather than crystalline defects. On the other hand, LEP/S fibers exhibit an 

entirely different behavior from the shear-induced crystallization experiments or compared 

to L/SEP fibers. Two broad, diffuse peaks dominate the fiber pattern indicative of iPP 

mesophase crystallites, historically referred to as the “smectic” phase, resulting from 

rapidly quenched PP samples.43,44 The mesophase has been described as paracrystalline,45,46 

microcrystalline,47 and as distortions of either α- or β-modifications of iPP,47,48 and remains 

a subject of debate.48-50 A few very weak arcs in the positions expected for the 110, 040, 

and 130 reflections indicate that a small amount of α-iPP is present among the mesophase 

crystals. It is clear that well ordered crystallization is suppressed in LEP/S fibers, but is not 

so in L/SEP fibers. 

6.3.6 Fiber mechanical properties  

Tensile property tests conducted on the fibers reveal a significantly different behavior 

between the two blends (Figure 6.12). For fibers spun at take-up rates ~1200 m/min, the 

yield stress at ~30% strain is 55 MPa and 22 MPa for L/SEP and LEP/S, respectively. 

Despite a much lower yield stress, the tensile strength for LEP/S (142 MPa) is not greatly 

diminished compared to L/SEP (161 MPa). Fibers produced from LEP/S demonstrate 

improved extensibility as indicated by the lower yield stress and higher strain at break 

value (LEP/S: 470%; L/SEP: 440%).   
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6.4 Discussion 

The present results show that for a given molar mass distribution (designed to optimize 

processing rheology in this instance), the distribution of monomer-level defects can be used 

to produce very different flow-induced crystallization behavior in iPP. In relation to the 

strong role of the longest chains in an overall distribution, the results imply that placement 

of comonomer (or stereo-errors) on the long chains substantially reduces their ability to 

enhance propagation of thread-like precursors. Results obtained in short-term shearing 

experiments correlate well with the behavior in fiber spinning, suggesting that shear flows 

at high stresses can be used to determine molecular design principles that are relevant to 

processing flows that impose extensional or mixed flows under nonisothermal conditions. 

In accord with previously established relationships between solid-state morphology and 

fiber material properties, the ability to use molecular variables to modulate oriented 

crystallization translates into control of the modulus and strength of fibers. 

6.4.1 Shear-induced morphology and kinetics 

To expose the effect of the molecular regularity of the long chains it is necessary to hold 

other variables constant. One approach is to use a base resin as a control and add small 

amounts of long chains that are either highly uniform or have a desired frequency of local 

defects in chain structure.  This approach definitively demonstrates that the participation of 

long chains in the formation of threadlike precursors can be eliminated by molecular 

irregularities that prevent them from crystallizing (here, atactic chain structure): long chains 

containing stereo-defects provide no enhancement in the formation of oriented crystallites 

compared to the base resin alone, in stark contrast with the blend with highly stereo-regular 

long chains.  Technologically, however, solution blending is not acceptable economically 

or environmentally, and achieving a uniform dispersion of a small concentration of long 

chains into a bulk of shorter chains cannot be accomplished by melt blending.   

Our goal is to establish the relationship between molecular structure, processing behavior, 

solid-state structure and properties.  Therefore, one of us (JPA) designed bimodal blends 

that can be prepared in large amounts by melt blending.  To produce homogeneous blends, 

the ratio of the viscosities of the long and short components was kept less than 5.  
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Consequently, the chain length distributions of the iPP and copolymer components 

overlap, and we no longer know the precise length or amount of “long chains.”  Instead we 

know average quantities and compare bimodal blends designed to hold overall comonomer 

content and melt rheology nearly constant. In turn, this permits comparisons under nearly 

matched flow conditions, particularly temperature and shear stress. Despite nearly matched 

ethylene comonomer content, L/SEP and LEP/S resins exhibited widely differing  flow-

induced morphologies and kinetics of crystallization, indicating the role the longest chains 

play in flow-induced crystallization is not only a function of their segmental orientation 

state but also their molecular regularity.   

Monomer-level defects in the longest chains interfere with the propagation of threadlike 

precursors from pointlike ones. Based on a conceptual model of the strong effect of long 

chains in blends with uniform molecular regularity (Chapter 3), we envision (Figure 6.13) 

the effect of molecular defects on the participation of long chains in the events leading to 

oriented crystallization under flow. Our model assumes that propagation requires the 

adsorption of long chains to existing pointlike precursors (Figure 6.13b). Chain adsorption 

to the nucleus surface depends on the molecular-regularity of the adsorbing chains.  The 

presence of various chain defects (i.e., stereo- or regio-errors, comonomers) will reduce the 

ability of chains to come into crystallographic registration and remain attached to the 

precursor surface.  

A critical step in our model is the propagation of the threadlike precursor (Figure 6.13c).  

Chains tethered to precursor surfaces have much slower relaxation dynamics than the 

corresponding chains free in the melt; therefore, the adsorbed chains access higher degrees 

of orientation than their free counterparts and have a greater tendency to undergo chain 

stretching.  The high level of segmental orientation just upstream and downstream of the 

precursor causes the local probability of ordering to be high—provided that the oriented 

strands can participate in ordering and recruit neighboring chains to order with them.  In 

our model, this step is essential to the formation of threadlike precursors that eventually 

template oriented semicrystalline morphologies.  Chain defects will frustrate the formation 

of stable, ordered structures from the oriented, but still molten strands adsorbed to the 



 VI-18
precursor.  In order to crystallize, polypropylene must adopt a 31 helical structure.  

Stacking of helical stems depends on interaction of the pendant methyl groups that protrude 

from the helix.51  Chain defects undoubtedly disrupt the regularity of the helical structure 

and the ability of multiple helical stems to pack and form a long-lived structure.  Without 

the addition of new ordered material immediately upstream and downstream of the 

precursor, the propagation of the oriented structure halts and crystallization proceeds with 

spherulitic morphology.  

6.4.2 Interpretation of transient morphology development in the skin 

Careful consideration of in situ and ex situ results as a whole permits a more complete 

understanding of the events involved in oriented crystallization.  Rheo-optical and rheo-

WAXD data should be interpreted in light of the final morphology to explain the 

underlying physical changes. For example, the two-step decay in transmittance during 

rheo-optical experiments was initially thought to be related to greatly suppressed 

crystallization kinetics in the RCP portion of the blends. However, the correlation with a 

change in parent crystallite growth rate measured by rheo-WAXD (Figure 6.9) shows it is 

instead a consequence of rapid growth and impingement of shish-kebab structures in the 

skin. The two-stage drop in transmittance is exhibited only when a strong crystallite 

orientation is induced. This interpretation is in line with results reported in Chapter 5 for a 

bimodal blend of highly isotactic PPs that also show two-step turbidity growth but do not 

possess a high defect concentration.  

6.4.3 Effect of long chain regularity on spun fiber structure and properties  

Current understanding of the effects of molecular characteristics of iPP on fiber processing-

structure-property relationships is based primarily on experience with traditional Ziegler-

Natta polypropylenes. It is known that a broad molecular weight distribution gives 

desirable shear thinning and melt elasticity for the melt-spinning process. In traditional ZN-

iPP, the longest chains in the broad distribution are also the most stereo-regular.52, 53  

Single-site catalysts offer the potential to synthesize iPP with designed distribution of 

molecular regularity across the distribution in chain length. Here we explore the possibility 

that a series of resins could be prepared with equally desirable melt rheology but very 
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different solidification behavior.  For some applications it is desirable to have 

strongly oriented crystallites (to increase tensile modulus), while in other applications mild 

orientation is desired (to improve fiber toughness). The results show that for fixed average 

comonomer content, the distribution of molecular regularity can be used to adjust the flow-

induced crystallization characteristics: the tendency toward oriented crystallization is 

increased if defects are preferentially on the low-end and decreased if defects are mainly on 

the high-end of the molecular weight distribution. 

Threads spun from LEP/S resin demonstrated noticeably different molecular ordering and 

material properties. The rapid thermal quenching experienced in the fiber spinning process 

led to the formation of disordered α and mesophase PP crystallites. The decrease in 

formation of threadlike nuclei in LEP/S, demonstrated in shear experiments, suppressed 

early growth of α-phase crystallites in the spinning process, with the consequence that 

highly disordered crystallites formed as the temperature plunged. Recent studies by Choi 

and White54 found that low tacticity iPP (in their case isotactic triad [mm] = 0.89) led to 

mesophase formation in spun fibers.  This is consistent with our findings for fibers of 

LEP/S. In contrast, L/SEP fibers crystallized as strongly oriented α-iPP like typical Ziegler-

Natta iPP fibers. Thus, the extensional deformation imposed on the melt during fiber 

spinning induces formation of  threadlike precursors in L/SEP that template the growth of 

ordered α-phase crystallites as the fiber cools.   

The differences in crystalline phase and microstructure give rise to the different physical 

properties measured for the two fiber types. In accord with prior literature,22,34,55 strong 

orientation and high crystallinity correlate with a relatively high yield stress and relatively 

low yield strain. The transition from the yield plateau to the strain-hardening regime is also 

relatively low for the strongly oriented fiber (LEP/S shows a pronounced plateau, and it is 

virtually absent in L/SEP). Similarly, the stress required to break the strongly oriented fiber 

is greater, but the strain at break is lower than for the moderately oriented fiber.  

This can be understood by considering the molecular mechanism involved in plastic 

deformation. For fiber samples with uniaxial orientation, plastic yield will involve several 
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crystalline chain slip mechanisms.56, 57 Slip only occurs above a critical value of the 

shear stress resolved upon the slip plane and in the slip direction known as the critical 

resolved shear stress (CRSS). The relationship between the force (F) applied to the slip 

plane (A) and the resolved shear stress (τ) takes into account the angles between the slip 

plane normal and the force axis (φ) as well as between the slip direction and the force axis 

(λ), known as the Schmid factor:57, 58 

 λφτ coscos
A
F

= , (6.1) 

In the case of extensive “shish-kebab” growth during fiber formation, one can expect high 

crystal chain alignment in the direction of spinning (whether in the “shish” or the 

“kebabs”), hence λ ~ 0° and φ ~ 90° (with fiber symmetry). Thus, for a given critical 

resolved shear stress (τc), it takes a very high force (Fc) to initiate the chain slip process. 

Therefore, it is reasonable to expect a higher yield stress for fibers of L/SEP that contain 

highly oriented crystallites. Concomitantly, one can reasonably assume that the higher the 

original alignment of chains, the smaller the natural draw ratio and the higher the final 

alignment after cold drawing, leading to lower extensibility and the higher breaking stress 

of the fibers.  

6.4.4 Relationship to prior literature and directions for future research 

Many researchers have studied the effects of comonomer content and comonomer blends 

on the crystallization behavior of iPP,22, 24, 26, 28-31, 59 but most studies have focused on 

quiescent crystallization. Studies that did examine effects of flow22, 29-31 had not included 

blends in which the defects were inversely distributed according to molecular weight (i.e., 

high Mw low regularity chains blended with low Mw with high regularity chains). Recently 

Somani, et al.11 examined the effect of adding of a small amount of high molecular weight 

atactic polypropylene to a low molecular weight iPP base resin and concluded that it 

enhanced flow-induced crystallization. They appreciated the fact that aPP would be 

rejected from the crystallites, but argued that enhanced orientation of the long chains would 
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influence neighboring chains and explain the weak but noticeable enhancement in 

crystallization that they observed.  

Our results for a corresponding model blend of high molecular weight atactic PP blended 

into a base resin do not agree with the findings of Somani. Unfortunately, Somani’s 

experiments were not performed at the same shear stress, but at constant shear rate. Given 

the highly nonlinear effect of stress on crystallization, it may be that the higher stress 

imposed on the blend of short iPP with long aPP would have induced a similar 

enhancement in the crystallization of the short iPP itself. In addition, Somani investigated 

stresses below the threshold to produce highly oriented row structures, limiting comparison 

with our findings that defective long chains do not enhance the formation of oriented 

crystallites. However, we found no evidence of crystallization enhancement at any stress in 

the blend with atactic long chains compared to the base resin alone 

The following predictions based on the present results and our conceptual model may serve 

as a guide for future research. For a fixed base resin, the addition of a given, small 

concentration of long chains will produce little effect on the flow-induced crystallization 

behavior if the long chains are atactic, moderate enhancement if their tacticity matches the 

base resin, and strong enhancement if the long chains are substantially more isotactic than 

the base resin. In particular, the threshold stress to induce oriented growth may decrease 

and the rate of propagation of threads may increase as the perfection of the long chains is 

increased (all other parameters held fixed).  Analogous predictions are made for the effects 

of comonomer content. In the context of our simple model, disruptive comonomers on the 

long chains will have similar effects whether they represent a missing methyl group 

(ethylene comonomer) or a bulky pendant group (butene or larger comonomer). Based on 

our prior observation that the effects of long chains on point-like precursors are much 

weaker than on threadlike precursors, we expect that the effect of defects on the long chains 

will likewise strongly affect formation of threadlike precursors and weakly affect formation 

of pointlike ones.  
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6.5 Conclusions 
It is noteworthy that the qualitative behavior observed in the melt-spinning process accords 

well with the trends evident in isothermal shear-induced crystallization. This has value in 

two respects. Scientifically, it is significant that idealized flow and thermal conditions may 

well reveal the physics relevant to polymer processing, which involves mixed shear and 

extension under non-isothermal conditions. Technologically, the ability to screen different 

resin compositions on a small scale can be used to optimize flow-induced crystallization 

characteristics prior to scale up. 

We found that the addition of chain defects to the high-end of the MWD mitigates the 

formation of oriented precursors induced by flow. The presence of defects (comonomer 

content or stereo-errors) effectively lowers the threshold stress, σ*, required to induce 

oriented crystallization. This effect is in accord with a simple mechanistic model of the 

long chains’ role in the propagation of threadlike precursors. 
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Table 6.1 Summary of material characteristics 

  Mw b  Tm c Tm
0 d MFR C2 

Blend/components Wt.% (kg/mol) Mw/Mn (°C) (°C)  (Wt.%)e

L/SEP 100 140 3 157 174 20.2 1.2 
L (ZN-PP)a  60 203 3.2 161  13 -- 
SEP (mRCP)a  40 143 2.3 128  40 2.9 

        
LEP/S  100 159 2.2 148 171 17.6 0.8 

LEP (mRCP)a 30 215 2.4 125  7 2.6 
S (mPP)a  70 151 2.2 150  32 -- 

 

aSynthetic nature of the individual component is indicated in parentheses: ZN, Ziegler-
Natta catalyst; m, metallocene catalyst; PP, homopolymer; RCP, random copolymer. 
bDetermined by GPC. cApparent melting temperature obtained from peak position of DSC 
upon second heating. dEstimated using Hoffman-Weeks extrapolation (see text). eEthylene 
comonomer content determined by 13C NMR.  
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Figure 6.1: Quiescent crystallization kinetics determined by DSC for 
L/SEP ( ) and LEP/S (∆). 
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Figure 6.2: Birefringence and total transmitted intensity for model blends 
of isotactic and atactic polypropylenes after shearing A) at σw = 0.11 MPa 
at 137°C for 1.4 s (Base-PP and BaPP) and 1.25 s (BiPP) and B) at σw = 
0.124 MPa (Base-PP) and σw = 0.127 MPa (BaPP) for 1.4 s. (Under 
quiescent conditions their crystallization times gauged by the turbidity 
half-time at 137 °C are: Base-PP, 14,000s; BaPP, 18,000s; and BiPP, 
9,000s.) 
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Figure 6.3: Total transmitted intensity for L/SEP (145 °C) and LEP/S (142 
°C) under quiescent (Q) and shearing (S) conditions σw = 0.11 MPa. The 
experimental crystallization temperatures were chosen to approximately 
match quiescent crystallization (see text). Shearing times were chosen to 
match total strain (L/SEP, ts = 1.3 s; LEP/S, ts = 1.5 s), 
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Figure 6.4: Birefringence development in L/SEP ( , 145 °C, ts = 1.3 s) 
and LEP/S (∆, 142 °C, ts = 1.5 s) for σw = 0.11 MPa, such that σ*L/SEP < σw 
< σ*LEP/S. 
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Figure 6.5: A) WAXD patterns captured for L/SEP (145 °C) and LEP/S 
(142 °C) 30 minutes after cessation of shearing at 0.11 MPa. Linear 
intensity scale is used. B) Ex situ, optical micrographs of L/SEP and LEP/S 
viewed through crossed polarizers after being subjected to shear pulse (σw 
= 0.11 MPa for ts = 1.0 and 1.5 s, respectively) and crystallizing 
isothermally for 1 hour. (Note that ts for L/SEP was reduced to maintain 
matching total strain between rheo-optical and rheo-WAXD experiments). 
Scale bar, 100 µm.  
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Figure 6.6: A) WAXD patterns captured for L/SEP (145 °C) and LEP/S 
(142 °C) 30 minutes after cessation of shearing at 0.15 MPa. Linear 
intensity scale is used. B) Ex situ, optical micrographs of L/SEP and LEP/S 
viewed through crossed polarizers after being subjected to shear pulse (ts = 
0.7 s at σw = 0.15 MPa) and crystallizing isothermally for 1 hour. Scale 
bar, 100 µm. 
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Figure 6.7: Time for transmitted intensity (Itot/Itot(0)) to reach 0.8 (t0.8) for 
A) L/SEP ( , 145 °C) and LEP/S (∆, 142 °C) and B) L/SEP ( , 142 °C) 
and LEP/S ( , 137 °C) at a series of shear stresses. Trend lines are added 
to guide the eye. Dashed lines in A) are reproduced in B) for comparison. 
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Figure 6.8: Azimuthal scans of the α-iPP 110 diffraction plane for L/SEP 
(145 °C) and LEP/S (142 °C). Results for σw of A) 0.11 MPa and B) 0.15 
MPa. Intensity has been normalized for acquisition time and time-
dependent beam intensity. 
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Figure 6.9: Total transmitted intensity through crossed polarizers (top) 
and parent peak area from azimuthal scan of 110 WAXD reflection 
(bottom) for L/SEP at σw = 0.11 MPa and 0.15 MPa. Transient morphology 
development in the skin layer results in distinct slope changes in the real-
time transmittance correlating with the onset of shish-kebab impingement 
indicated by change in parent peak area growth rate. 
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Figure 6.10: Time-resolved WAXD analysis of A) crystallinity index (xc), 
B) full-width at half-maximum (FWHM) of Lorentzian fits to parent 110 
peaks, and C) parent:daughter ratio (see text) for 110 peaks for L/SEP (145 
°C) and LEP/S (142 °C). 
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Figure 6.11: Two dimensional WAXD patterns for fibers spun from L/SEP 
(left) and LEP/S (right) blends. 
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Figure 6.12: Tensile stress curves for spun fibers of L/SEP ( ) and LEP/S 
(∆) drawn at approximately 1200 m/min. Fiber diameters were ~ 30 µm. 
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Figure 6.13: Schematic representation of the effect of chain defects on the 
events leading to oriented crystallization. a) Chain defects on short chains 
(L/SEP) vs. long chains (LEP/S). b) Chain defects retard the process of 
adsorption to a point-like nucleus. For L/SEP the effect is minimal since 
long chains dominate this process, but for LEP/S there is a profound effect 
since defective long chains are difficult to attach. Further, propagation 
accomplished by short chains requires a higher stress. c) A local 
concentration of oriented, “crystallizable” segments is necessary to 
propagate threadlike nuclei. In L/SEP this is readily available. However, in 
LEP/S any long chains that attach to the point-like nucleus are less 
effective due to reduce ability to crystallize. This creates a discrepancy in 
the apparent thread propagation velocity (vprop). 
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APPENDIX A 

We include a summary of additional rheo-optical data collected during investigation of 

LEP/S and S/LEP (Chapter 6). Figure captions denote shear-induced crystallization 

conditions. 

 

 

 

Figure A.1: Summary of total transmitted intensity for quiescent 
crystallization experiments of L/SEP at Tc = 145 °C. 
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Figure A.2: Summary of total transmitted intensity of quiescent 
crystallization experiments for LEP/S at Tc = 142 °C. 
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Figure A.3: Intensity through crossed polarizers scaled by total 
transmitted intensity (I⊥/Itot) and normalized total transmitted intensity 
(Itot/Itot(0)) for L/SEP crystallized at a series of temperatures after shearing 
(σw = 0.102 ± 0.001 MPa) for 1.5 s. At 144 °C and 145 °C the shearing 
time was 1.3 s. Extruded mass was 100 ± 4 mg. 
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Figure A.4: Intensity through crossed polarizers scaled by total 
transmitted intensity (I⊥/Itot) and normalized total transmitted intensity 
(Itot/Itot(0)) for LEP/S crystallized at a series of temperatures after shearing 
(σw = 0.10 ± 0.001 MPa). Conditions: 137 °C, ts = 1.6 s; 139 °C, ts = 1.6 s; 
140 °C, ts = 1.5 s; 142 °C, ts = 1.5 s. Extruded mass, wex = 70 ± 2 mg 
(except for 140 °C; wex = 50 mg). 
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Figure A.5: Intensity through crossed polarizers scaled by total 
transmitted intensity (I⊥/Itot) and normalized total transmitted intensity 
(Itot/Itot(0)) for L/SEP crystallized at Tc = 145 °C and various shearing 
stresses. Extruded mass, wex = 106 ± 2 mg. 
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Figure A.6: Summary of intensity through crossed polarizers scaled by 
total transmitted intensity (I⊥/Itot) and normalized total transmitted 
intensity (Itot/Itot(0)) for L/SEP crystallized at Tc = 145 °C and σw ≈ 0.10 
MPa. Precise stress, shearing time, and extruded mass indicated on legend. 
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Figure A.7: Summary of intensity through crossed polarizers scaled by 
total transmitted intensity (I⊥/Itot) and normalized total transmitted 
intensity (Itot/Itot(0)) for L/SEP crystallized at Tc = 142 °C and σw ≈ 0.10 
MPa. Precise stress, shearing time, and extruded mass indicated on legend. 
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Figure A.7: Summary of intensity through crossed polarizers scaled by 
total transmitted intensity (I⊥/Itot) and normalized total transmitted 
intensity (Itot/Itot(0)) for LEP/S crystallized at Tc = 137 °C and σw ≈ 0.10 
MPa. Precise stress, shearing time, and extruded mass indicated on legend. 
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Figure A.9: Intensity through crossed polarizers scaled by total 
transmitted intensity (I⊥/Itot) and normalized total transmitted intensity 
(Itot/Itot(0)) for LEP/S crystallized at Tc = 142 °C and various shearing 
stresses. Precise stress, shearing time, and extruded mass indicated on 
legend. 
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