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Abstract

The aim of this dissertation was to develop models of fatigue crack growth and stress-
corrosion cracking by investigating cohesive theorics of fracture. These models were
integrated in a finite-element framework cmbedding a contact algorithm and tech-
niques of remeshing and adaptive meshing.

For the fatigue model, we developed a phenomenological cohesive law which ex-
hibits unloading-reloading hysteresis. This model qualitatively predicts fatigue crack
growth rates in metals under constant amplitude regime for short and long cracks, as
well as growth retardation due to overload. Quantitative predictions werc obtained
in the case of long cracks.

We developed a chemistry-dependent cohesive law which serves as a basis for
the stress-corrosion cracking model. In order to determine this cohesive law, two
approaches, based on energy relaxation and the renormalization group, were used for
coarse-graining interplanar potentials. We analyzed the cohesive behavior of a large——
but finite—number of interatomic planes and found that the macroscopic cohesive law
adopts a universal asymptotic form. The resulting stress-corrosion crack growth rates
agreed well with those observed experimentally in ‘static’ fatigue tests given in the

literature.
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Chapter 1 Introduction

Fatigue of materials has been the subject of extensive research for more than one
hundred and fifty years and is still an area full of great challenges for both fundamental
studies and engineering applications. The peculiarity of fatigue failure is that it
occurs under the action of some driving force which is much smaller than what is
needed for classic (monotonic) failure. In addition, fatigue failure can occur in many
different forms and spans a wide range of length scales. In his book "Fatigue of
Materials,” Suresh [89] identifies at least seven sources of fatigue failure, namely
mechanical fatigue, creep-fatigue, thermomechanical fatigue, corrosion fatigue, sliding
contact fatigue and rolling contact fatigue. It is thercfore difficult to understand
it fundamentally and this has a significant detrimental cffect on the reliability of
practical engineering structures.

The development of a comprehensive computational life-predicting tool capable
of handling variable amplitude loading, environmental effects, temperature effects
and multi-axial loading situations is one of the most challenging task in engineer-
ing fatigue design. The need of increased safety and reliability have made this tool
especially important for numerous industrial applications, c.g., structures such as
bridges, airplanes, nuclear pressure vessels, drilling rigs, and micro-components such
as MEMS.

This thesis is focused on two different fatigue failure mechanisms at the macro-
scopic length scale: mechanical and corrosion fatigue. The first one results from the
fluctuation of externally applied stress, while the latter one results from the presence
of a chemically aggressive environment.

The intrinsic multiscale character of fracture predicates that macroscopic models
of fracture, e.g., those described by the cohesive theories of fracture, should fully re-
solve the physical mechanisms of crack formation at finer scales. The use of multiscale

models with the explicit resolution of different length scales should provide answers



to this problem. However, such models might prove to be unfeasible or impractical,
if for example the range of length scales were too large. An alternative—and maybe
more viable—strategy is to derive an effective macroscopic behavior from a proper
renormalization of the physical mechanisms at finer scales. The latter alternative is
pursued in the second part of this work and serves as a basis for the derivation of
the chemistry-dependent cohesive law used in the stress-corrosion cracking model in
metals. In the first part of this dissertation, we focus our attention on the mechanical
fatigue of metals at the macroscopic length scale.

In .Chapter 2, we develop a macroscopic cohesive model for fatigue crack growth.
An cssential characteristic of the cohesive law is that it exhibits unloading-reloading
hysteresis to simulate dissipative mechanisms such as crystallographic slip and fric-
tional interactions between asperities. This feature has the additional important
consequence of preventing shakedown and allowing for steady crack growth. The
near-tip plastic fields and cohesive zone are resolved explicitly by employing adaptive
meshing. The material description accounts for cyclic plasticity through a combina-
tion of isotropic and kinematic hardening and it also accounts for finite deformations
such as those accompanying the blunting of the crack tip. Crack closure is likewise ac-
counted for explicitly as a contact constraint. Several specific examples demonstrate
that such a model is capable of a unified treatment of long cracks under constant-
amplitude loading, short cracks, and the effect of overloads without ad hoc corrections
or tuning.

In Chapter 3, we extend the previous mode! to account for fatigue initiation. We
restrict our attention to a specific material point in the target material from which
a fatigue crack could be initiated. The number of cycles to failure for that material
point as a function of load parameters is compared with ecxperimental results.

In the second part of this dissertation, starting with Chapter 4, we investigate
the macroscopic behavior of cohesive laws in the case of cleavage fracture. Cleavage
fracture involves the simple separation of atomic planes. It is therefore governed by
interplanar potentials which are amenable to an cffective ab-initio characterization.

An adequate description of cleavage fracture at the macroscale is contingent on the



integration of interplanar potentials into engineering ca10111atiorls—tlxereby requiring
full atomistic resolution in the vicinity of the crack tip. However, this approach is often
unfeasible or impractical. An alternative strategy, which is pursued in this work, is
to parameterize tﬁe interplanar potentials on a coarse-grain level and then determine
the corresponding macroscopic law. Coarse-graining is achieved by investigating the
cooperative behavior of a large number of interatomic planes forming a cohesive layer.
Using two methods of investigation based on energy rclaxation and renormalization-
group transformation, we find that the macroscopic cohesive law in the limit of large -~
but finite—interatomic planes adopts a universal form which is completely determined
by the elastic moduli, lattice constants and surface energies.

In Chapter 5, we investigate the environmental effect on the fatigue behavior of
metals. Hydrogen embrittlement is considered to be the main mechanism of damage.
The hydrogen concentration in the host metal is governed by a diffusion equation
which incorporates localization of hydrogen due to hydrostatic stress. By utilizing a
thermodynamic framework developed by Rice and Wang [80], the universal cohesive
law of Chapter 4 was modified in order to account for the presence of embrittling
species such as hydrogen. The critical energy release rate is gencralized to be a de-
creasing function of the hydrogen concentration. Calculations show that such a model
successfully predicts the time to failure of metal sample immersed in an aggressive

environment under static loading.



Chapter 2 A Cohesive Model of Fatigue
Crack Growth

2.1 Introduction

The work presented in this chapter is concerned with the development and validation
of a finite-element model of fatigue crack growth in metals. We will start by defining
the finite-element methodology used for such purpose. Next, we introduce a cohesive
law which exhibits unloading-loading hysteresis allowing for steady crack growth un-
der cyclic loadings. Finally, we validate our model through various comparisons with
experiments.

Fatigue life prediction remains very much an cmpirical art at present. Following
the pioneering work of Paris [71, 70], phenomenological laws relating the amplitude of
the applied stress intensity factor, AK and the crack growth rate, da/dN, have pro-
vided a valuable engineering analysis tool. Indeed, Paris’s law successfully describes
the experimental data under ‘ideal’ conditions of small-scalc yielding, constant ampli-
tude loading and long cracks [41, 1]. However, when these stringent requirements arc
not adhered to, Paris’s law loses much of its predictive ability. This has prompted a
multitude of modifications of Paris’s law intended to suit every conceivable departure
from the ideal conditions: so-called R effects [25, 95]; threshold limits [44, 19, 50];
closure [22]; variable amplitude loads and overloads [96, 97!; small cracks [24, 23];
and others. The case of short cracks is particularly troublesome as Paris’s law-based
designs can significantly underestimate their rate of growth [89]

The proliferation of ad hoc fatigue laws would appear to suggest that the essential
physics of fatigue-crack growth is not completely captured by theories which are based
on the stress-intensity factors as the sole crack-tip loading parameters. A possible

alternative approach, which is explored in this chapter, is the use of cohesive theories
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Figure 2.1: Cohesive law with irreversible behavior.

of fracture, in conjunction with the explicit resolution of the near-tip plastic ficlds
and the enforcement of closure as a contact constraint. Cohesive theories regard
fracture as a gradual process in which separation between incipient material surfaces
is resisted by cohesive tractions. Under monotonic loading, the cohcsive tractions
eventually reduce to zero upon the attainment of a critical opening displacement.
The formation of new surface entails the expenditure of a well-defined energy per
unit area, known variously as specific fracture energy or critical energy release rate.
A number of cohesive models have been proposed—and successfully applied-to date
for purposes of describing monotonic fracture processes [54, 55, 57, 65, 61, 11, 91, 16,
62, 68, 77]. In some models, unloading from-and subsequent rcloading towards-the
monotonic envelope is taken to be linear, e. g., towards the origin, and elastic or
nondissipative [11, 12], Fig. 2.1. As it turns out, however, such models cannot be ap-
plied to the direct cycle-by-cycle simulation of fatigue crack growth. Thus, our simula-
tions reveal that a crack su-bjected to constant-amplitude cyclic loading, and obeying
a cohesive law with elastic unloading, tends to shake down, 1. e., after the passage of a
small number of cycles all material points, including those points on the cohesive zone,
undergo an elastic cycle of deformation, and the crack arrests. The centerpiece of the
present approach is an irreversible cohesive law with unloading-reloading hystere-

sis. The inclusion of unloading-reloading hysteresis into the cohesive law is intended

(&1



to simulate simply’ dissipative mechanisms such as crystallographic slip [3, 40] and
frictional interactions between asperities [30]. Consideration of unloading-reloading
hysteresis proves. F:ritical in one additional respect: the attainment of an elastic cycle
is not possible if the cohesive law exhibits unloading-reloading hysteresis, and the
possibility of shakedown—and the attendant spurious crack arrest—is eliminated alto-
gether. Frictional laws exhibiting unloading-reloading hysteresis have been applied
to the simulation of fatigue in brittle materials [31, 34, 38, 101].

The plastic near-tip fields, including the reverse loading that occurs upon unload-
ing, aré also known to play an important role in fatigue crack growth 78, 59, 46, 88,
89]. Models bascd on dislocation pile—ups [7] or ‘superdislocations’ [3, 40] have been
proposed to describe the plastic activity attendant to crack growth. The Dugdale-
Barenblatt [4, 21] strip yicld model was used by Budiansky and Hutchinson [10] to
exhibit qualitatively the cffects of closure, thus demonstrating the importance of the
plastic wake in fatigue crack growth.

Here, we proposc to resolve the near-tip plastic fields and the cohesive zone explic-
itly by recourse to adaptive meshing. In particular, the plastic dissipation attendant
to crack growth is computed explicitly and independentlyl -of the cohesive separation
processes, and therefore need not be lumped into the crack-growth initiation and
propagation criteria. The material description accounts for cyclic plasticity through
a combination of isotropic and kinematic hardening; and for finite deformations such
as accompany the blunting of the crack tip. Crack closure is likewise accounted for
explicitly as a contact constraint.

In the present approach, crack growth results from the delicate interplay between
bulk cyclic plasticity, closure, and gradual decohesion at the crack tip. Since the cal-
culations explicitly resolve all plastic fields and cohesive lengths, the approach is {ree
from the restriction of small-scale yielding. This opens the way for a unified treat-
ment of long cracks, short cracks, and fully-yielded configurations. In addition, load-
history effects are automatically and naturally accounted for by the path-dependency
of plasticity and of the cohesive law. This effectively eliminates the need [or ad hoc

cycle-counting rules under variable-amplitude loading conditions, or for ad hoc rules



to account for the &ffect of overloads.

This chapter is organized as follows. We begin by setting the basis of the finite
element model for fatigue simulation in Section 2.2. The cohesive law is defined in
Subsection 2.2.1. Then follows Subsection 2.2.2 on cyclic plasticity. Finally, Subsec-
tion 2.2.3 describes the finite clement implementation of the model. In Section 2.3,
we present the results of validation tests which cstablish the predictive ability of the
model under a varicty of conditions of interest. We begin by establishing that the
model exhibits Paris-like behavior under ideal conditions of long cracks, small-scale
yielding and constant amplitude loading. Finally, we show that the model captures

the small-crack effect and the effect of overloads without ad hoc corrections or tuning.

2.2 Description of the Model

We have developed a finite element model to simulate the fatigue behavior of a plane
strain specimen. The simulation was performed by an implicit integration of the
equilibrium equations using a Newton-Raphson algorithm to resolve the non—linear
system of equations [14]. The main constituents of the model are described in the

next three Subsections, 2.2.1, 2.2.2 and 2.2.3.

2.2.1 A Cohesive Law with Unloading-Reloading Hysteresis

The centerpiece of the present approach is the description of the fracture processes
by means of an irreversible cohesive law with unloading-reloading hysteresis. The
inclusion of unloading-reloading hysteresis within the cohesive law is intended to
account, in some effective and phenomenological sense, for dissipative mechanisms
such as frictional interactions between asperities [30] and crystallographic slip [3,
40]. As noted earlier, consideration of loading-unloading hysteresis additionally has
the far-reaching effect of preventing shakedown after a few loading cycles and the
attendant spurious crack arrest.

We start by considering monotonic loading processes resulting in pure mode I

opening of the crack. As the incipient fracture surface opens under the action of the



loads, the opening 15 resisted by a number of material-dependent mechanisms, such as
cohesion at the atomistic scale, bridging ligaments, interlocking of grains, and others
[1]. For simplicity, we assume that the resulting cohesive traction T" decreases linearly
with the opening displacement §, and eventually reduces to zero upon the attainment
of a critical opening displacement J. (e. g., {68, 11, 77}); see Fig. 2.1. In addition,
separation across a material surface is assumed to commence when a critical stress T,
is reached on the material surface. We note that, prior to the attainment of the critical
stress, the opening displacement is zero, i. e., the potential cohesive surface is fully
coherent. We shall refer to the relation between 7" and 6 under monotonic opecning as
the monotonic cohesive envelope. More elaborate monotonic cohesive envelopes than
the one just described have been proposed by a number of authors [56, 79, 99|, but
these extensions will not be pursued here in the interest of simplicity.

The critical stress T, may variously be identified with the macroscopic cohesive
strength or the spall strength of the material. In addition, the arca under the mono-

tonic cohesive envelope,

é‘c
G, = / T(8)d6 = ~0.6., | (2.1)
0 2

equals twice the intrinsic fracture energy or critical energy release rate of the material.
In general, thc macroscopic or measured critical energy-release rate may be greatly
in excess of G, by virtue of the plastic dissipation attendant to crack initiation and
growth. In addition, G./2 may itself be greatly in access of the surface energy owing
to dissipative mechanisms occurring on the scale of the cohesive process zone.

For fatigue applications, specification of the monotonic cohesive envelope is not
enough and the cohesive behavior of the material under cyclic loading is of primary
concern. We shall assume that the process of unloading from—and reloading towards—
the monotonic cohesive envelope is hysteretic. For instance, in some materials the
cohesive surfaces are rough and contain interlocking asperitics or bridging grains
[30]. Upon unloading and subsequent reloading, the asperitics may rub against cach
other, and this frictional interaction dissipates energy. In other materials, the crack

surface i1s bridged by plastic ligaments which may undergo reverse yielding upon
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Figure 2.2: Cyclic cohesive law with unloading-reloading hysteresis.

unloading. Reverse yielding upon unloading may also occur when the crack growth
is the result of alternating crystallographic slip [3, 40]. In all of these cases, the
unloading and reloading of the cohesive surface may be expected to entail a certain
amount of dissipation and, therefore, be hysteretic.

Imagine, furthermore, that a cohesive surface is cycled at low amplitude after
unloading from the monotonic cohesive envelope. Suppose that the amplitude of
the loading cycle is less than the height of the monotonic envelope at the unloading
point, Fig. 2.2. We shall assume that the unloading-reloading response degrades
with the number of cycles. For instanée, repeated rubbing of asperities may result
in wear or polishing of the contact surfaces, resulting in a steady weakening of the
cohesive responsc. A class of simple phenomenological models which embody these
assumptions is obtained by assuming different incremental stiffnesses depending on
whether the cohesive surface opens or closes, i. e.,

. | K9, ifo<0
T= _ _ (2.2)
Kt4, ifo6>0

where K+ and K~ are the loading and unloading incremental stiffnesses respectively.
In addition, we take the stiffnesses K* to be internal variables in the spirit of dam-

age theories, and their evolution to be governed by suitable kinetic equations. For



simplicity, we shall assume that unloading always takes place towards the origin of

the T' — & axes, i. e., -

K~ = Lmax (2.3)

émax
where Ty, and dy,., arc the traction and opening displacement at the point of load
fcversal, respectively. In particular, K~ remains constant for as long as crack closure
continues. By contrast, the reloading stiffness K is assumed to evolve in accordance

with the kinetic relation:

o | —K+6/6s, ifd>0 24)
(K*—K~)8/8;, ifd<0

where d; is a characteristic opening displacement. Evidently, upon unloading, 5 <0,
K~ tends to the unloading slope K, whereas upon reloading, 5> 0, K~ degrades
steadily. Finally, we assume that the cohesive traction cannot exceed the monotonic
cohesive envelope. Consequently, when the stress-strain curve intersects the envelope
during reloading, it is subsequently bound to remain on the envelope for as long as
the loading process ensues.

Evidently, the details of the kinetic equations for the unloading and reloading
stiffnesses just described are largely arbitrary, and the resulting model is very much
phenomenological in nature. However, some aspects of the model may be regarded
as essential and are amenable to experimental validation. Consider, for instance,
the following thought experiment. A cohesive surface is imparted a uniform opening
displacement & < &, and subsequently unloaded. Let K be the initial reloading
stiffness after the first unloading. The cohesive surface is then cycled between the
opening displacements 0 and dy. Let K3, be the initial reloading stiffness after N

cycles. A straightforward calculation using Eqgs. (2.3) and (2.4) then gives

K, = K} (2.5)

10



where

8 - .
A= ;)_—g(l — ¢ 700/0r)2 4 gm0/ (2.6)

is a decay factor.  Likewise, we have

Tnyr = AN (2.7)

where

Tn = K585(1 — c®/%1) (2.8)

is the traction at the end of the Nth cycle. Iterating the recurrence relations (2.5)
and (2.7) gives

K= N KF (2.9)

and

Ty = AV T, (2.10)

It is clear from these relations that both the initial reloading stiffness and the traction
at maximum opening decay exponentially with the number of cycles. In the case of

primary interest, 65 > ., we have

-

A~ 1— §_3 + h.o.l. (2.11)
Oy

It follows from this expression that, to first order, the model predicts the decay factor
A to decrcase linearly with the displacement amplitude of the cycles. In addition, to

first order (2.9) and (2.10) reduce to
Ky =e N/t g (2.12)

and

Ty = e No/dr T, (2.13)

11



and the characteristic opening displacement follows as

5, = (50 o 50
! log(Tn/Tns1) log(KJJ\r//KJJ\r/-{-l_)

(2.14)

independently of N. The exponential decay of the maximum traction under constant
amplitude displacement cycling of the cohesive law is an essential feature of the model
which can be tested experimentally. In addition, equation (2.14) provides a basis for
the experimental determination of the parameter d;.

Simple methods of extension of models such as just described to account for mixed
loading and combined opening and sliding have been discussed elsewhere [12, 62]. An
account of issues pertaining to finite kinematics and the requirements of material

frame indifference may be found in {62].

2.2.2 Cyclic Plasticity

Cohesive theories of fracture introduce a characteristic length into the description of
material behavior. As noted by Camacho and Ortiz [12], for finite element calculations
to result in mesh independent results, the cohesive length must be resolved by the
mesh. Since, for the class of ductile materials contemplated here, the cohesive zone
is often buried deeply within the near-tip plastic zone, the resolution of the cohesive
length necessarily results also in the resolution of the plastic zone. One appealing
consequence of this resolution is that the plastic fields, and, in particular, the plastic
dissipation attendant to the crack opening, are computed explicitly within the model
and need not be lumped, in some effective sense, into the description of fracture.

In the simulations reported here we adopt a conventional Jo-flow theory of plas-
ticity with power-law kinematic hardening and rate-sensitivity. A brief account of the
model follows for completeness. More comprehensive reviews of thesc formulations
are available in the literature ([20, 15, 89]). We start by formulating the constitutive
relations in the framework of small strains or linearized kinematics. In this limit,
Hooke’s law takes the form

o =c(e—€") (2.15)

12



where o is the stress tensor, ¢ are the elastic moduli, which we assume to be isotropic,
€ is the strain tensor; and €” is the plastic strain tensor. The plastic strain rate is

assumed to obey the Prandtl-Reuss flow rule

=ép§S—B
2 0

ép

(2.16)

where €P is the effective plastic strain, s is the stress deviator, B is the back-stress

tensor, and

o= E(s _B)(s— B)} v (2.17)

is the cffective Mises stress. The effective plastic strain is assumed to obey a rate-

sensitivity power-law of the form

m
&P = ¢t <i - 1) . o>0, (2.18)

Ty

wherce €] is a reference plastic strain rate, m is the rate-sensitivity exponent, and o,

is the yield stress. We further assume a hardening power-law of the form

P 1/n
oy = 0o (1 + —p> (2.19)

where o is the initial yield stress, £f is a reference plastic strain, and n is the hardening
exponent. We further assume an equation of evolution for the backstress of the Ziegler

form [74, 102
. 3s—B

:0’—
Vo o

B (2.20)
In calculations, these equations are discretized in time by the fully-implicit backward-
Euler method [63]. In addition, we use the mecthod of extension of Cuitifio and
Ortiz [14] in order to extend the material description— and the corresponding update
algorithm—into the finite deformation range. Consideration of finite kinematics is
required, e. g., near the tip of the crack in order to account for the effect of crack-tip

blunting.
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2.2.3 Finite Element Implementation

We use six-node isoparametric quadratic elements with three quadrature points per
element for the discretization of the domain of analysis. These elements do not lock in
the near-incompressible limit and can therefore be used reliably in applications, such

as envisioned here, involving volume-preserving large plastic deformations. Cohesive

ohesive

lements volume

eglements

Figure 2.3: Geometry of a six-node cohesive element bridging two six-node triangular
elements.

laws such as described earlier, can be conveniently embedded into double-layer—or
‘cohesive’-elements [65, 100, 12, 62, 16, 62, 77]. The geometry of the cohesive elements
used in calculations, and their adjacency relations to the volume elements they bridge,
is shown in Fig. 2.3. These cohesive elements are a two-dimensional specialization
of the general class of finite-deformation cohesive elements developed by Ortiz and
Pandolfi [62]. The elements consist of two three-node quadratic segments representing
the two material surfaces bridged by the cohesive law. The displacement interpolation
within each material surface is quadratic. Following Ortiz and Pandolfi [62], all
geometrical calculations, including the computation of normals, are carried out on
the middle surface of the element, defined as the surface which is equidistant from
the material surfaces. The calculations presented subsequently are concerned with

straight cracks under pure mode I loading, and, hence, the middle surface simply
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coincides with the plane of the crack at all times.

As may be recalled, we assume the cohesive response of material surfaces to be
rigid prior to the attainment of the cohesive strength T, of the material. In the
finite-element confext this implies that all boundaries between volume elements are
initially fully coherent. As the deformation proceeds, cohesive elements are inserted
at those element boundaries where the cohesive strength is attained. The subsequent
opening of the cohesive surface is governed by the cyclic cohesive law formulated in
Section 2.2.1. Upon closure, the contact constraint is enforced through a conventional
augmeﬁted-Lagrangian contact algorithm [84].

As mentioned earlier, one of the aims of the present approach is the explicit
resolution of all the near-tip fields, including the plastic fields, down the scale of the
cohesive zone. This confers the calculations a clear multiscale character, in that the
macroscopic lengthscale, commensurate with the size of the specimen, and selected
microscopic lengthscales, are resolved simultaneously. The resulting multiresolution
demands of the model may effectively be met with the aid of adaptive meshing.

Evidently, in the vicinity of the cohesive zone, the mesh size must equal a small
fraction of the cohesive zone size. The mesh can then be progressively coarsened
away from the crack tip. The optimal mesh gradation of the mesh can be deduced
from standard interpolation error estimates [76]. For a linear-elastic K — field, the
optimal mesh-size distribution h(x) is found to go as r¥*, where r is the distance to
the crack tip. In particular, the optimal mesh size tends to zero as the crack tip is
approached.

Based on these considerations we design the mesh near the crack tip to have a r3/4
size gradation down to a distances of the order of the cohesive length, below which
the element size is held constant at a fraction of the cohesive zone size. In order to
keep the problem size within manageable bounds, the full length of the plastic wake
left behind by the advancing crack tip is not resolved by the mesh.

Meshes are constructed automatically by first meshing all the edges defining the
boundary of the domain of analysis, including the flanks of the crack, at the required

nodal density. The geometry of these edges is continuously updated so as to track the



crack advance. The interior meshes are constructed by inserting nodes in a hexagonal
lattice arrangement at the target local nodal density. The nodal set is subsequently
triangulated by an advancing front method [76]. Examples of meshes used in calcula-
tions arc shown in Figs. 2.5 and 2.6. The high quality of the meshes in the presence
of steep gradients in element size is particularly noteworthy.

The calculations proceed incrementally and the quasistatic equilibrium equations
are satisfied implicitly by recourse to a Newton-Raphson iteration. As the crack
advances, the near-tip mesh is continuously shifted so as to be centered at the current
crack tip at all times. After every remeshing, the displacements, stresses, plastic
deformations and effective plastic strains are transferred from the old to the new
mesh. The transferred fields define the initial conditions for the next incremental

step. The details of the transfer operator are given in [64].

2.3 Comparison with Experiment

Next wec proceed to assess the predictlive ability of the theory in three regimes of
interest: fatiguc crack growth of long cracks in the Paris regime; fatiguc crack growth
of short cracks; and the effect of overloads on growth rates in long cracks. It is
well-documented experimentally that, for long cracks in many materials subjected
to constant-amplitude load cycles, the rate of growth of the crack is proportional to
a power of the stress-intensity factor amplitude range [69]. We therefore start by
showing that, under the conditions just stated, the theory predicts the requisite Paris
behavior. Once this is established, we proceed to investigate the implications of the

theory in regimes for which Paris’s law is not applicable.

2.3.1 Fatigue Crack Growth of Long Cracks in the Paris
Regime

We consider a center-crack panel of aluminum 2024-T351 subject to constant ampli-

tude tensile load cycles, Fig. 2.4. The load is applied uniformly on the edges of the
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Young’s modulus E 70 GPa
Poisson’s ratio v 0.3
Initial yield stress og 325 MPa
"Hardening exponent n 8
Reference plastic strain e 0.0002
Rate sensitivity exponent m 100
Reference plastic strain rate £ 0.08s~1
Specific cohesive energy G. 13.8 kJ/m?
Cohesive strength T, 800 MPa
Decay displacement 4 4 mm

Table 2.1: Aluminum 2024-T3 material parameters used in fatigue calculations.

panel and is cycled between zero and a prescribed amplitude. Owing to the symme-
tries of the problem, the analysis may be restricted to one quarter of the specimen.
The material properties used in the calculations are collected in Table 2.3.1. The

value of 0y has been estimated from archival experimental data [2]. The initial half-

P(t)

Figure 2.4: Schematic of a center-crack panel test.

crack size aqg is taken to be 10mm. An overall view of initial mesh used in calculations
and a zoom of the néar-tip region are shown in Fig. 2.5. In this figure, the centerline
of the specimen is on the right. '

During the first load cycle, the stresses rise sharply at the crack tip and the

crack grows abruptly. With subsequent loading cycles, a plastic zone becomes well
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established, with the result that the crack tip is shielded from the applied loads. In
addition, a cohesive zone develops which has the effect of further limiting the level
of stress near the tip. After an initial transient, as quasi-steady mode of growth sets
in. It should be carefully noted that, as the amplitude of the loads is held constant,
the nominal stress-intensity factor range AK gradually creeps up as a result of the
steady increase in crack length.

Fig. 2.6 depicts the contours of effective plastic strain after the crack has grown to

a length a =15.7mm under the action of load cycles of amplitude 85MPa. As may be
‘ seen, a well-defined plastic wake has formed behind the crack tip. The width of the
wake remains ostensibly constant during crack growth. It bears emphasis that the
crack grows steadily without evidence of shakedown. As noted carlier, the hysteretic
nature of the cohesive law is critical for ensuring steady growth and eliminating
spurious crack arrest after a small number of cycles. It is also noteworthy how the
mesh resolves the wake for a considerable length behind the tip. Eventually the mesh
is coarsened in order to maintain the problem size within reasonable bounds, and
some information is inevitably lost. Fig. 2.7 shows a log-log plot of the crack growth
rates da/dN predicted by the theory over a broad range of stress-intensity factor
amplitudes AK. The three computed lines in the figure correspond to the three
initial crack lengths: ag = 10, 20 and 30 mm. A power-law dependence of da/dN on
AK is clearly evident in this plot, which is evidence of Paris-like behavior. Fig. 2.7
shows also a compendium of experimental fatigue data for Aluminum alloys [2]. As
may be seen, the experimental data points fall within parallel upper and lower bounds
of slope approximately equal to 3. Fig. 2.7a reproduces the experimental bounds and
shows that the theoretical lines fall well between them and have ostensibly the same
slope.

This comparison demonstrates that the theory is capable of matching long-crack
constant-amplitude fatigue data at least as well as Paris’s law. It should be carefully
noted, however, that the theory is more genecral than Paris’s law, as it does not a
priori restrict the size or geometry of the crack and the plastic zone, or the time-

variation, amplitude or geometry of the loads. The ability of the theory to match the
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Figure 2.5: Initial mesh, overall view and near-tip detail (crack length ay = 10 mm).

experimental record outside the range of validity of Paris’s law is assessed next.

2.3.2 Short Cracks

It is well-documented experimentally [47, 89] that short cracks exhibit a higher rate
of growth than predicted by Paris’s law when the material constants in such law are
fitted to long-crack data. Thus, for sufficiently short cracks the experimental da/dN -
AK data points fail to collapse into a single master curve independent of crack size,
and Paris’s framework breaks down.

We have assessed the ability of the theory to capture this short-crack effect by
considering aluminum center-crack panel specimens with initial crack lengths: ap =

1, 5, 10, 20 and 30 mm. The material properties and loading conditions are as in the
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Figure 2.6: Contour plots of effective plastic strain €”, overall view and near-tip detail
(crack length @ = 15.72 mm).

preceding Section.

Fig. 2.8 collects the predicted crack growth rates. As may be seen from the figure,
the rates of growth corresponding to the two longest cracks, ap = 20 and 30 mm,
are almost identical. The slight difference between the two cracks owes mostly to the
effect of the boundary of the specimen and the smaller size of the ligament for the 30
mm crack. The near coincidence of the da/dN vs. AK curves attests again to the
Paris-like behavior predicted by the theory for long cracks. Remarkably, the rates of
growth predicted by the (same) theory for the short cracks are greatly in excess of
those computed for the long cracks, Fig. 2.8, in keeping with experiment. The theory

thus seems to capture the short crack effect. The short crack effect sets in when the
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Figure 2.7: Comparison of theoretical and experimental [2] growth rates.

crack size becomes comparable to the size of the cohesive zone, which scales with the
characteristic length [, = EG,./T?. For the material under consideration here this
length is I, =~ 1.5 mm, which explains the clear short-crack effect observed in the
calculations. Clearly, in this regime the stress intensity factor K no longer provides
a measure of the amplitude of the near-tip fields, and it loses its value as a means of
interpreting the data and formulating crack-growth laws.

An alternative crack-tip parameter which does retain its meaning irrespective of
crack size is the crack-tip opening displacement (CTOD). Based on this observation,

Leis et al. [47] (see also [41]) suggested a CTOD-based crack-growth law of the form

da n
o = C(49) (2:21)
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Figure 2.8: da/dN vs. AK for different initial cracks sizes: ag = 1, 5, 10, 20, 30mm.

as a means of extending the validity of Paris’s law to short cracks. In this expression

4 is the CTOD and A¢ is the CTOD range per cycle. Figure 2.9 shows the loci of

da/dN—-Aé points predicted by the theory for all crack sizes under consideration. It

is evident from the figure that, when plotted against the parameter A4, all crack

growth rates tend to converge on a single master curve. The theory does therefore

lend support to Leis et al. re-interpretation and extension of Paris’s law. The CTOD-

based growth law (2.21), if assumed valid, reveals useful insights into the breakdown

of Paris’s law for short cracks. For simplicity, assume that the applied stress cycles

between zero and o, and that the material is linear elastic. If, in addition, Dugdale’s

model is assumed to apply, e. g., at the maximum opening displacement § (cf [10] for

22



1.2E-05 F ‘
1E-05 d
B /
8E-06 |- 7
'E /
6E-06 |- 7
[~ 7/
: /
4E-06 | 7
| Ve
- 7
T | 7
7
<0 i s
D2 2E-06f s
Q= 7
TE - s
I /
l
_—— = = a0= 1 mm
L R aO = 5mm
a,=10 mm
:/. ————— - ao =20 mm
‘,.-I —_————— ao =30 mm
| ! ! L | L | IR I TR
0.003 0.005 0.007

CTOD [mm]

Figure 2.9: Predicted growth rates da/dN vs. Ad for initial crack sizes: ag = 1, 5,
10, 20, 30 mm.

23



a more complete artalysis including unloading), then one has, for cracks of any length

. 8T, TO
o= ;Ealog |isec <§i>] (2.22)

Eliminating o from (2.22) in favor of the nominal stress-intensity factor K = o+/ma

8T, T K .
4= ;-E—alog {sec (\/EQTC>} (2.23)

For long cracks, i. c., when

gives

K2
a > 1T (2.24)
Equation (2.23) reduces to
K2
d = 5T (2.25)

to first order. Thus, in this regime § is proportional to K? and otherwise independent
of the crack length, and Paris’s law is recovered from (2.21). By way of contrast, when
a becomes comparable to (7/4)(K?/T?), the opcning displacement § no longer bears
a power relation to K and depends explicitly on the crack size, and Paris’s law ceases
to apply. Furthermore, if (2.23) is inserted into (2.21), a simple calculation shows

that da/dN increases with decreasing a at constant K, in keeping with observation.

2.3.3 The Overload Effect

Paris’s law is also known to break down when the crack is subjected to a sudden
overload. In particular, it is well documented [93] that one singlc sharp overload may
significantly retard the growth of the crack.

We proceed to assess ability of the theory to capture this overload effect. To this
end we consider a center-crack panel of aluminum 2024-T351 of the same dimensions
and subject to the same loading conditions as in the calculations discussed in Sec-
tion 2.3.1. In particular, the initial crack size ag is chosen to be 10 mm, the applied
stress cycles between zero and 85 MPa, corresponding to R = 0 and an initial nominal
AK of 18 MPa,/m. In addition to a constant-amplitude calculation such as described

in Section 2.3.1, we have carried out a simulation in which, after 500 normal cycles,
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the specimen is subjected to one single peak load 50% above nominal. Following
the application of the overload, the specimen is again cycled at the original constant

amplitude.

Fig. 2.10 shows a comparison of the growth rates predicted with and without overload.
As may be seen in Fig. 2.10, the application of the overload causecs an instantancous
crack advance followed by crack arrest, or very slow growth, for a period of roughly 200
cycles. Subsequently to this temporary slowdown, the growth rate increases steadily
and tends to the growth constant-amplitude rate. However, the application of the
overload results in a permanent lag in the size of the crack and, consequently, in an
extension of the fatigue life of the specimen. These trends are in excellent agreement
with the available observational evidence (e. g., [93]).

The response just described is the result of several competing mechanisms. Thus,
the application of the overload raises the driving force for crack-growth and the crack
shoots forward instantaneously. However, the overload also causes the plastic zone
to grow in size markedly. Upon unloading, the residual stresses associated with
this plastic deformation tend to close the crack, with an attendant slowdown in the

subsequent growth rate.

2.4 Summary and Conclusions

We have investigated the use of cohesive theories of fracture, in conjunction with
the explicit resolution of the near-tip plastic fields and the enforcement of closure
as a contact constraint, for the purpose of fatigue-life prediction. The cohesive law
formulated as part of the fheory has the distinguishing characteristic of exhibiting
unloading-reloading hysteresis. The inclusion of unloading-reloading hysteresis into
the cohesive law simulates simply dissipative mechanisms such as crystallographic slip
and frictional interactions between asperities, and the accumulation of damage within
the cohesive zone, eventually leading to complete decohesion and crack extension.
Consideration of unloading-reloading hysteresis also has the important consequence

of preventing shakedown, thus allowing for steady crack growth.



The calculations explicitly resolve all plastic fields and cohesive lengths énd, conse-
quently, the theory is frec from the restrictions needed to ensure small-scale yielding.
In particular, the theory does not directly rely on the stress-intensity factor as a
crack-tip loading parameter. Our calculations demonstrate that the theory is capable
of a unified treatment of long cracks under constant-amplitude loading, short cracks
and overloads. In the case of long cracks and constant-amplitude loads, the theory
predicts Paris-like behavior, i. e., the rate of growth is in proportion to a certain power
of the stress-intensity factor range and is independent of the length of the crack. By
way of .contrast, the same theory predicts the experimentally observed growth accel-
eration in the short-crack regime, as well as the equally observed growth retardation

due to overloads, without ad hoc corrections or tuning.
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Figure 2.10: (a) Fatigue life curve and (b) growth rates for a constant-amplitude
loading with and without a single 50% overload at the 500th cycle.
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Chapter 3 A Cohesive Model of Fatigue

Crack Initiation

3.1 Introduction

We extend the fatigue crack growth model presented in Chapter 2 to account for
fatigue initiation. The crack lengths involved at initiation may vary from the order
of micrometers if studied at the microscopic level to the orders of millimeters at the
macroscopic level. We adopt here an engineering perspective, focusing our attention
to initiation of cracks at the macroscopic scale. Fatigue initiation may therefore be
related to the detection of the smallest crack resolved by current crack detection
systeimns.

The engineering approach to fatigue initiation is characterized in terms of the num-
ber of (stress or strain) cycles necessary to induce fatigue failure in a smooth, initially
uncracked specimen. Although this is a total-life approach, it measures fatigue initia-
tion to a good approximation as the fatigue life propagation in these specimen is small
compared to the fatigue initiation. The pioneer of the stress-life approach is Wohler
[98], who was the first to define the concept of endurance or fatigue limit. Several
phenomenological laws for fatigue initiation were derived from such an approach in
order to account for the influence of the applied stress range, mean stress,... on the
number of cycles to initiation. Some relations to account for effect of the mean stress
have been proposed by Gerber [29], Goodman [33], Basquin [5], Soderberg [86], and
Morrow i53]. In order to account for variable amplitude loading, Palmgren [67] and
Miner [51] have suggested the Palmgren-Miner cumulative damage rule. The strain-
lifc approach has been led by Coffin [13] and Manson [49] who derived the so-called
Coffin-Mansion relationship.

Our objective is to unify some of the empirical models by having recourse to the
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cohesive theories of fracture. We restrict our attention to a candidate maferial point
from which a fatigue crack could initiate. Qur objective is to determine the number
of cycles to failure for that material point as a function of load parameters, c. g.,
maximum load, nﬁnimum load, etc.

The chapter is structured as follows. The essential clements of the fatigue initia-
tion model can be found in Section 3.2. Subsection 3.2.1 describes the cohesive law
under monotonic and cyclic loading. Subsection 3.2.2 presents our model of fatigue

initiation. Finally, Section 3.3 shows several examples of applications and comparison

with experimental data found in the literature.

3.2 Fatigue Initiation Model

We place ourselves within the framework of the cohesive theories of fracture. Crack
formation is considered as a gradual separation of material surfaces resisted by cohe-
sive tractions. A number of cohesive models have been suggested to describe mono-
tonic fracture processes [55, 57, 61, 11, 91, 16, 68). In Chapter 2, we proposed a
cohesive model fracture under cyclic loading. The fatigue initiation model we suggest,

here relies on these two approaches.

3.2.1 Cohesive Law for fatigue Initiation

Under monotonic loading, the separation of the material surfaces is gradual and
governed by a cohesive law which may vary in shape. We adopt the universal binding

energy-distance relationship (UBER) (81] as our monotonic cohesive law:
d
o(8)=Co exp(—6—) (3.1)
0

where C' and 4, are material constants, and ¢ is the opening displaccment. As may be
recalled, we assume the cohesive response of material surfaces to be rigid prior to the

attainment of the cohesive strength of the material. Therefore, we slant the UBER
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relation so as to clilminate its initial elastic stiffness:

T(6) = 0(6 + —2) (3.2)

where T'(4) defines the slanted (or equivalently elastically corrected) cohesive law
under monotonic loading; see Fig. 3.1(a). We will subsequently refer to equation 3.2
as the monotonic cohesive envelope.

As the potential fracture surface starts to open under the action of the loads, the
opening is resisted by a number of material-dependent mechanisms such as cohesion
at the atomistic scale, bridging ligaments, interlocking of grains and others. The
maximum applied monotonic load a material point on a cohesive surface could sustain
is given by 7, and the corresponding opening displacement is é.. Any applied load
above T, will result in the failure of the cohesive material surface. In that case, only
one cycle is needed for crack initiation and the opening displacement at initiation is
dc. If the maximum applied load upon monotonic loading is less than T, the material
does not fail and crack nucleation does not occur.

A variation of the cohesive envelope defined by equation 3.2 is also considered in
this model. We introduce a threshold value of the cohesive stress Tipreshold, 85 shown
in Fig. 3.1(b). Tinreshoia Simply prevents the opening of an initially closed material
surface if subjected to applied stresses below Tieshotd-

Under cyclic loading, we adopt the irreversible cohesive law with unloading-
reloading hysteresis developed in Chapter 2; see Fig. 3.2. We assume that the cohe-
sive traction cannot exceed the monotonic cohesive envelope. Consequently, when the
stress-strain curve intersects the envelope during reloading, it is subsequently bound

to remain on the cnvelope for as long as the loading process ensues.

3.2.2 Fatigue Initiation

We consider a candidate material point from which a fatigue crack could initiate.
This point can be viewed as belonging to a potential material cohesive surface. The

law of separation of such surface is governed by equations 2.2, 2.3 and 2.4 derived
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Figure 3.1: Universal binding energy-distance relationship defining the monotonic
cohesive envelope for the cohesive law of fatigue initiation.

in Chapter 2. These equations define the model I of fatigue initiation. We have
also considered a second model (model IT) for which K+ had slightly different kinetic
equations. In model II, we postulate that upon unloading, Kt becomes equal to
K™, ie., 0y is set to zero in equation 2.4 if § < 0.

Let us denote by ¢ the opening displacement of the material point and by #(d) the
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Figure 3.2: Cyeclic cohesive law with unloading-loading hysteresis.

corresponding cohesive traction. In order to determine the number of cycles to failure
as a function of loading parameters, the material point under consideration is cycled
between a maximum and minimum applied stress, denoted respectively by oma, and
Omin- A possible path followed by the candidate material point in the space (£,0) is
schematized in Fig. 3.3, where 0., and 0,4, are assumed to remain constant for the
sake of clarity.

Following the first loading to 0,4, the material point reaches C;. Upon unloading
to Tmin, the first cycle is completed. After a series of four cycles, the material point
reaches Cj and it is clear from Fig. 3.3 that the cohesive traction cannot sustain the
applied stress o,,4;. The material surfaces have reached a state where the opening
displacement grows unbounded under the applied loads. This onset defines fatigue
crack initiation and is characterized by a critical opening displacement, &;nitiation,
beyond which the cohesive tractions cannot sustain the maximum load of the fatigue

cycle.
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Figure 3.3: Cyclic cohesive law with a UBER-type monotonic envelope. Fatigue
nucleation process.

3.3 Applications

3.3.1 The Fatigue Limit

We proceed to compare experimental data of constant-amplitude fatigue tests of
smooth specimen of aluminum 2024-T4 alloy [35] (table 3.1) with the model devel-
oped previously. The parameters of the cohesive envelope were adjusted so that 7.,
corresponds to the ultimate tensile strength of the material and the area under the
cohesive envelope is equal to the macroscopic fracture energy. Two parameters are
available to fit the experimental data: Tinreshoid and the decay parameter d¢, defined
perviously in Chapter 2. For both models I and II, we find that without threshold,
the optimal 0y is equal to 6 mm, whereas with threshold, d; is 40 mm and 7, is 127.5
MPa. The numerical results in Fig. 3.4 reveal that the difference between models I
and II is significant mainly in the low cycles-to-failure regime. In that regime, the ap-
plied stress is close to the ultimate tensile strength and it is expected that a specimen
under such high stress should fail almost immediately. The S-N curve obtained from

the model II is characterized by a critical value of the applied stress above which the
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Al 2024-T4
Specific cohesive energy G. || 13.6 kJ/m?
Cohesive strength 71, 503 MPa
Al 2048-T851
Specific cohesive energy G, || 13.04 kJ/m?

Cohesive strength T, 455 MPa
Steel 300M

Specific cohesive energy G. || 16.38 kJ/m?

Cohesive strength T, 1930 MPa

Table 3.1: Material constants used in the fatigue initiation calculations.

specimen fails in one cycle. On the other hand, S-N curves determined from model I
do not have that characteristic. Instead, with model 1, the S-N curves are very flat for
applied loads just below the ultimate tensile strength. One would therefore predict
lifes as high as 10* cycles for specimens subjected to loads barely under the ultimate
tensile strength.

At lower applied stress, both models with threshold fall in the ball park of the
experimental data, while the models without threshold tend to overestimate the life

of the specimen.

3.3.2 Mean Stress Effect on Fatigue Life

The effect of the mean stress on the fatigue life is shown in Figs. 3.5 and 3.6, where
we compare experimental data [36, 37] for steel 300M and Aluminum 2048-T851 alloy
(table 3.1). We find that dy is 50. mm and T, is 180 MPa for the Al12048-T851; d;
is 0.9 mm and 7, is 950 MPa for the Steel 300M. From these figures, we observe
that model I appears to fit better the experimental data for the first part of the S-N
curve. However, neither of the models seem to do well for the tail of the S-N curve

and deviate significantly from the experimental data.
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Figure 3.4: Comparison between the two models with and without threshold and the
experimental data of Aluminum 2024-T4.

3.4 Conclusions

We have derived a model of fatigue initiation based on a hysteretic cohesive law with a
UBER type envelope corrected to have an infinite slope at the origin. The S-N curves
obtained from the model shows reasonable agreement with the experimental data for
different types of metals. The model captures the effect of the mean-stress, at least

qualitatively. Its simplicity makes it an ideal candidate for a larger scale framework
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in order to study more complex problems such as the environmental, temperature,

plasticity and multi-axial loading effect on fatigue nucleation.
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Chapter 4 Coarse-Graining and
Renormalization of Atomistic Binding
Relations and Universal Macroscopic

Cohesive Behavior

4.1 Introduction

Cohesive theories of fracture are predicated on a direct description of the physi-
cal processes which lead to separation and the eventual formation of a free surface.
The development of cohesive theories rests on a detailed physical understanding of
the operative fracture mechanisms, which are often complex and cut across multi-
ple lengthscales, especially where ductile fracture is concerned. Cleavage fracture,
by way of contrast, entails the simple separation of atomic planes and is, therefore,
governed by interplanar potentials which are amenable to an effective first-principles
atomistic characterization. For instance, Jarvis et al. [39] have recently calculated
the cohesive behavior of (111) planes in fcc aluminum, and of Al,O3 cleavage planes,
using GGA density functional theory; and Park and Kaxiras [72] have carried out ab-
initio simulations of hydrogen embrittlement in aluminum and calculated generalized
stacking-fault energies as a function of interplanar separation and sliding. |
First-principles interplahar potentials are characterized by peak stresses of the
order of the theoretical strength of the crystal. In addition, the crystal loses its
bearing capacity after an interplanar separation of only a few angstroms. Moreover,
the integration of first-principles interplanar potentials into engineering calculations
necessitates full atomistic resolution in the vicinity of the crack tip, which is often
unfeasible or impractical. This disconnect between atomistic and engineering de-

scriptions begs a number of fundamental questions, to wit: What is the proper way
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to coarse-grain a cohesive description?, and: What is the macroscopic form of the
cohesive law after coarse-graining?

In this chapter, we address these issues by investigating the cooperative behavior
of a large number of interatomic planes forming a cohesive layer. We employ two
main approaches in this investigation: relaxation and the renormalization group. Re-
laxation or weak convergence methods are concerned with the determination of the
macroscopic behavior of materials characterized by a non-convex energy function.
These materials often develop fine microstructure in response to imposed deforma-
tions. Truskinovsky et al. [17, 75, 18], and Braides et al. [8], have pioneered the
application of these methods to fracture. However, the full relaxation of a cohesive po-
tential yields the trivial result that the effective cohesive potential is identically equal
to zcro. The chief difference between the analysis pursued here and full relaxation is
that, at zero temperature, we seek energy minimizers of large—-but finite—collections
of interatomic planes. In this limit we find that, for a broad class of interplanar
potentials, the macroscopic cohesive law adopts a universal form asymptotically.

We show that this universality of the macroscopic cohesive behavior is amenable to
a renormalization-group interpretation. The normalization group which coarse-grains
the cohesive behavior is somewhat nonstandard and has to be crafted carcfully, e. g.,
so as to preserve the surface energy and the elasticity of the lattice. The universal
form of the macroscopic cohesive law is preciscly an attractive fized point of the

renormalization-group transformation.

4.2 Problem Formulation

We consider a macroscopic cohesive crack opening symmetrically (mode I) and un-
dergoing quasi-static growth. We denote by d the interplanar distance, 4 the opening
displacement across an interatomic plane, and ¢ the corresponding cohesive traction.

These latter variables arc presumed related by a known cohesive or binding law #(4),
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which derives from an interplanar potential ¢(d) through the relation
t(6) = ¢/(5) (4.1)

'Here and subsequently, a prime denotes differentiation of a function of a single vari-
able. For simplicity, we shall assume throughout that the atomistic binding law ¢(4)
rises monotonically from zero at § = 0 to a peak value o, at § = d., and subsequently
decreases monotonically to zero, Fig. 4.1. Correspondingly, the cohesive potential
¢(8) is convex in the interval 0 < § < 4, has an inflection point at § = 4, is concave
for § > 6. and asymptotes to twice the surface energy, 27, as 6 — 0o. In addition, we

shall assume that ¢(0) is smooth and analytic at § = 0, with Taylor expansion:
b~ %52 +o(6?) (4.2)
for some constant C. The value of C can be readily deduced from the elastic moduli
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Figure 4.1: Interplanar potential and corresponding cohesive or binding law.
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cijrr of the crystal.* To this end, let m be the unit normal to the plane 0f the crack,
and apply a small and uniform opening displacement to all interatomic planes. Evi-
dently, the energy per unit volume of the crystal follows from the cohesive potential
as (C/2d)d? asyrﬁptotically as § — 0. On the other hand, the strain tensor of the
crystal is €;; = (6/d)mym;, and the corresponding encrgy is (62/2d%)cijmmam memy.

Equating both energies yields the identity:

1
C = acijklmimjmkml (43)

Next imagine that the atomistic description is coarse-grained, e. g., by the quasi-
continuum method [90], or by a passage to the continuum limit, or by some other
suitable means. Let d denote the spatial resolution of the coarse-grained descrip-
tion. For instance, in quasicontinuum or in engineering finite-element simulations d
measures the local element size. The corresponding effective cohesive law may be
obtained by analyzing the behavior of a cohesive layer of thickness d and containing
N = d/d atomic planes. The cohesive layer is taken through a total opening displace-
ment 0 resulting in a macroscopic traction £. The chief objective of the analyses that
follow is to determine the macroscopic cohesive law #(4) in the limit of N large but fi-
nite. Equivalently, we may seek to determine the asymptotic form of the macroscopic

cohesive potential ¢(0) such that

1(8) = ¢'(5) (4.4)

in the same limit.

4.3 Universal Asymptotic Form of the Macroscopic
Cohesive Law at Zero Temperature
_ At zero temperature, the crystal deforms so as to minimize its total energy. The

governing principle is, therefore, energy minimization. Let §; > 0,47 =1,...,N be
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the opening displatements of the interatomic planes in the cohesive layer. Then, the

total energy of the cohesive layer is
N
B =" ¢(8:) (4.5)
i=1

Let now & be the macroscopic opening displacement. Then, the effective or macro-

scopic energy of the cohesive layer follows from the constrained minimization problem:

¢(8) = inf > o(6) (4.6)

{6108} 45
N
5= >4 (4.7)
i=1
In conjunction with the kinematic constraints (4.7), the stationarity of E** demands

t(di) =

[ d]

(8) = constant, i=1,...

N (4.8)

Thus, at equilibrium, all interplanar tractions must be equal to the macroscopic
traction.

We shall classify the possible states of an interatomic plane into two categories or
variants, according as to whether the opening displacement § is in the range 0 < § <
dc, or in the range & > .. We shall designate variants of the first kind as coherent,
and variants of the second kind as decohered. We may further classify the states of a
cohesive layer by the number Ny of coherent planes, or, equivalently, the number No
of decohered planes, it contains. Since the function ¢(8) is one-to-one ovér the interval
[0,6.), equation (4.8) deménds that the opening displacements of all coherent planes
be equal at equilibrium. Likewise, the opening displacements of all decohered planes

must be identical at equilibrium. Under these conditions the macroscopic cohesive
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energy follows fromi the minimization problem:

¢(52 = {(51,52§,I(11f\11,1v2)}{Nl¢(01)+N2¢(62)} (4.9)
5 = Niby+ Nab (4.10)
N = N+ N (4.11)
0 < & <4, (4.12)
dy > 6 (4.13)

where d; and §, are the opening displacements in the coherent and decohered planes,

respectively. In addition, the equilibrium equations (4.8) reduce to
t(d1) = t(d,) = #(3) (4.14)

These relations are depicted geometrically in Fig. 4.1.

Next we proceed to determine the minimum energy states of a cohesive layer by
analyzing the cases Ny = 0,1,2,... in turn. We begin by considering the case in
which all planes are coherent, corresponding to Ny = N and N, = 0. Then, the
kinematic constraint (4.7) gives §; = §/N = §. Evidently, in the limit of N — oo, §

tends to zero and, in view of equations. (4.2) and (4.9), we obtain

C-

~ =&, as N — oo (4.15)

(9) gm0 ™ 2

where

Oy
Il
z|la

(4.16)
is an effective cohesive-layer stiffness.
Consider next the case of one decohered plane, Ny = N — 1 and N, = 1, whence
(4.10) becomes
(N=1)6,+ 8, =46 (4.17)

Solving for & gives §; = (8 — &5)/(N — 1). In addition, since §; and & are required to
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be nonnegative, it follows that §; < § /(N = 1), and thus §; — 0 as N — co. From
this limit it additionally follows that é, — & in the same limit. Suppose now that

§ > &, and, hence, 5 > &,. Under these conditions, ¢(d;) ~ 27 and (4.9) reduces to

o( )|N2='l ~2y, asN—oc (4.18)

Since interactions beyond nearest neighbors are not taken into account, an altogether

identical analysis gives.
qE(S)M L~ 2k, as N — oc (4.19)
=

for the case of k decohered planes.
The macroscopic cohesive energy may now be expressed as

#(0) = min @(5)\1\,2:}6 (4.20)

0<k<N

However, it follows from (4.19) that, asymptotically as N — oo, multiple decohered
planes are not energetically possible at zero temperature, and only the cases kK = 0
and k£ = 1 need be considered in (4.20). Therefore, the effective cohesive potential is
the lower envelope of the energies (4.15) and (4.18), namely,

(C/2)8%, if & <o,

é(8) = min{952, 27} = ‘ (4.21)
2 27, otherwise

-z gl N
0, =24/ = =2 :
=H/E= 5 (4.22)

is a macroscopic critical opening displacement for the nucleation of a single decohered

where

plane. The corresponding macroscopic cohesive law is

- Co, iféd<é,
7(6) = (4.23)

0, otherwise
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It is interesting to hote that the peak macroscopic traction is
Az = Cry
G.=Co,=2/Cvy=2 N (4.24)

We conclude the analysis by verifying that, in the decohered regime, § > 6, ~ VN,
and hence 8 > §, for sufficiently large N, as supposed.

These functions are shown in Fig. 4.2. The macroscopic cohesive potential is
initially quadratic and subsequently constant following the attainment of the critical
" macroscopic opening displacement. Remarkably, the macroscopic critical opening
displacement and peak traction scale as: 4, ~ VN and 0. ~ 1 / VN, respectively.
Thus, for large N, it follows that the macroscopic cohesive law entails much lower
tractions, occurring at much larger opening displacements, than the atomistic binding
law. In effect, the passage from the atomistic to the macroscopic scales is accompanied
by an expansion of the opening displacement axis and a simultaneous compression of
the traction axis. By constrast, the macroscopic fracture energy, or critical energy-
release rate, ¢(co) remains invariant under the transformation and is equal to the
atomistic value ¢(oo) = 2. It is also remarkable that, for the class of binding laws
under consideration, the asymptotic form (4.21) of the macroscopic cohesive law is
universal, i. e., independent of the atomistic binding law. Evidently, the parameters
which define the macroscopic cohesive law quantitatively, e. g., the surface cnergy v
and the modulus C, are material specific.

As a simple illustrative example, we consider the universal binding energy relation

(UBER) [81] defined by the interplanar potential:
$(6) = 2y — Cb(8 + &) /% (4.25)

This function falls within the class of potentials considered in the foregoing. We
choose as material constants: C' = 3.54 J/m?/ A2 5, =0.66 A, which are representa-
tive of aluminum. The macroscopic cohesive laws resulting from a direct numerical

minimization of the energy (4.9} for different values of N are shown in Fig. 4.3. The
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Figure 4.2: Universal asymptotic form of the macroscopic cohesive law at zero tem-
perature.

universal asymptotic form of the macroscopic cohesive law is compared in Fig. 4.4
against the corresponding numerical results. The convergence of the macroscopic
cohesive law towards the universal asymptotic form as the number of planes in the

cohesive layer increases is clearly evident in this figure.

4.4 FEffect of Finite Temperature

At finite temperature, entropic effects make it feasible for the cohesive layer to deco-
here on multiple planes. In order to assess this effect simply, we recall that, asym-
potically, the energy of a cohesive layer with no decohered planes is (C/2)62, and
that the energy of a cohesive layer containing & decohered planes is 2ky. Within this
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approximation, the partition function of an area a? of layer is, therefore,

[e]
Z(5,T) = e AC/2F? 4 N g f2kna? (4.26)

k=1
where 8 = 1/kgT, and kg is Boltzmann’s constant. In order to count states properly,
we identify a with the lattice parameter of the crystal. Physically, this is tantamount
to allowing for decohered areas of a size commensurate with the lattice parameter.

The sum in (4.26) defines a geometric series which may be evaluated readily, with the

result: ]
s —B2va
N _ _—B(C/2)62a2 e
Z((S,T) — € € +1—:—e—_w (427)
The free energy density per unit area of the layer now follows as
- = 11 -
F(,T)= —Eﬁlog Z(6,T) (4.28)
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whereas the resulting effective cohesive law is

. dF

6, T) = ﬁ(E,T) (4.29)

The effect of temperature on the macroscopic cohesive potential for aluminum,
endowed with an interplanar potential of the UBER type, is shown in Fig. 4.5. The
lattice parameter is taken to be a = 4.05 A. As expected, the Helmholtz free energy
rises above the zero-temperature in the amount T'S, where S is the configurational
entropy of the layer, Fig. 4.5a. The corresponding effect on the macroscopic cohesive

law is to smooth out the decohesion transition, Fig. 4.5b.

4.5 Renormalization Group Interpretation

The renormalization group (RG) (sce, c. g., [32]) provides a natural framework for the
understanding of universality, i. e., the phenomenon that large classes of systems with
unrelated Hamiltonians may nevertheless exhibit identical thermodynamic behavior
near critical points. It is therefore not entirely unexpected that the main result
of Section 4.3, namely, that the limiting form of the potential of a cohesive layer
is universal for a broad class of interplanar potentials, can be given a compelling
interpretation within the RG framework.

For simplicity, we confine our attention to the zero temperature case. We proceed

to construct an RG transformation R such that the sequence
Ony1 = Ro,, n=0,1,... (4.30)

with ¢o(d) = @(8), yields, by recourse to an appropriate scaling, the large N asymp-
totic form of the macroscopic cohesive law in the limit. As in the preceding Section,
the interplanar potentials contemplated here, and to which the transformation R is
applied, are continuous, monotonically increasing functions ¢ : [0,00) — [0,2v] and
analytic at the origin. For simplicity, we additionally restrict attention to functions

¢(0) possessing a single inflection point, so that ¢'(§) has a single maximum.
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We construct R by the usual combination of decimation and scaling. The deci-
mation step concerns a layer consisting of two interatomic planes with opening dis-
placements 0; and 4, and total opening displacement 4. The corresponding effective

energy follows from the minimization problem:

B6) = jnf 16060) +9(52)) (431

Next, we proceed to rescale <5(6) in such a way that the sequence defined by (4.30)
has a well-defined fixed point. Since the transformation must preserve the relation
¢(00) = 27, it is clear that we are allowed to rescale the independent variable § only.

Thus, we set

(R9)(8) = ¢(Ad) (4.33)

For very small § the interplanar potential ¢ is essentially quadratic and reflects the
elasticity of the lattice. Thus, in order for the transformation to preserve the elasticity
of the lattice, it must leave parabolic functions invariant. For ¢ = (C/2)§?, it follows
that & = & = §/2 and ¢ = 2(C/2)(6/2)% = (C/2)(6/v/2)2. Finally, (R)(8) =
(C/2)(A6/v/2)?, whence it follows that A = /2 for ¢ to remain invariant under the

transformation. The complete RG transformation is, therefore,

B8) = inf {6(61) + 9(6)} (4.34)
b = 6+ (4.35)
(Ro)(6) = ¢(V25) (4.36)

Taking 8; = 0 and d, = § in (4.34) immediately shows that the unscaled energy ¢(6)
is bounded above by the original function ¢(4).

It is clear from definition (4.34-4.36) that the RG transformation leaves the specific
fracture energy ¢(co) invariant and equal to its initial value 2y. Another invariant of
the RG transformation is the initial modulus C' = ¢”(0). Indced, consider the limit

of R¢ as 0 — 0. Since necessarily §; < § and , < 6, it follows that both §; — 0 and
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d2 — 0 in this limit. (R¢)(6) may therefore be computed by replacing #(é) by its
Taylor expansion about the origin, namely, (C/2)§?%, with C = ¢”(0). But parabolic
functions are invariant under R and, hence, so is C.

The RG transformation R (4.34-4.36) preserves the monotonicity of ¢(8). In order
to see this, consider a pair of opening displacements § and §' = A\J, with A < 1. Let
d~)((5) = ¢(d1) + ¢(d2) for some pair of opening displacements §, and &, satisfying
constraint (4.35). The opening displacements 8] = Ad; and 8§, = A\d, then satisfy the
similar constraint: & = &) + &}. It therefore follows that ¢(8') < B(Ad;) + d(Ad,) <
d(81) + ¢(d) = #(5). An application of the rescaling (4.36) to both sides of this
inequality finally proves the assertion.

It is easy to show that the function
: O .
boo(0) = mln{Eé , 29} (4.37)

is a fixed point of R. To this end, we may distinguish the cases: a) §; < b, and 8, < d,;
b) 6 < 4. and é; > &, or, equivalently, d; < 6. and §; > 6., and ¢) &; > &, and §; > 4.
Case (a) requires that § < 26, and gives an unscaled energy: ¢(8) = (C/2)(5/v/2)2.
Case (b) requires that > J.. The optimal unscaled energy is obtained by taking
6y = 0 and 6, = §, with the result: ¢(8) = 2. Case (c) results in the unscaled energy:
gz~3(5) = 4~. The function (4.37) is recovered by taking the minimum of the unscaled
energies resulting from cases (a), (b) and (c¢) and applying the scaling (4.36) to the
result.

A key question is whether the fixed point (4.37) is attractive. We have investigated
this question numerically for the particular example of the UBER binding law, (4.25).
Fig. 4.6 shows the evolution of ¢, with increasing n. It is clear from the figure
that, at least for the example under consideration, the flow of functions ¢,(d) does
indeed converge strongly to the fixed point (4.37). The relation to the asymptotic
cohesive law (4.21) is as follows. We may regard ¢,(4) as the result of decimating
and rescaling n times a cohesive layer containing N = 2" planes. The total opening

displacement of the layer is obtained by undoing all the rescalings, with the result:
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6 = (v2)"6 = VN§. For large N, ¢,(8) ~ ¢oo(6) and one has

B(8) ~ ¢poo(6/V/N),  as N — oo (4.38)

which is identical to (4.21).

Equation (4.38) establishes a connection between the renormalization group, specif-
ically as generated by transformation (4.34-4.36), and the large- N asymptotic form of
the cohesive potential determined directly in the preceding Section. It is interesting
" to note that the RG transformations which pertain to the renormalization of interpla-
nar potentials are markedly different from those which arise in the calculation of bulk
thermodynamic properties. In this latter context, the appropriate scaling is related
to the volume of the sample and is designed so as to result in well-defined extensive
fields and intensive variables. In the present context, the energy densities under con-
sideration are defined per unit area, and the limit of interest is the total energy of
the cohesive layer per unit surface area, as opposed to the energy per unit volume. In
addition, the independent variable of interest is the total opening displacement across
the cohesive layer, as opposed to its transverse strain. These peculiarities account for

the non-standard character of the renormalization group defined in the foregoing.

4.6 Summary and Conclusions

We have presented two approaches for coarse-graining interplanar potentials and de-
termining the corresponding macroscopic cohesive laws based on energy relaxation
and the renormalization group. We have analyzed the cohesive behavior of a large—
but finite—number N of interatomic planes and found that the macroscopic cohesive
law adopts a universal asymptotic form in the limit of large N. We have also found
that this asymptotic form of the macroscopic cohesive law is an attractive fixed point
of a suitably-defined renormalization-group transformation.

The universal asymptotic form of cohesive law is particularly simple: the traction

rises linearly from zero to a peak stress g, at a critical opening displacement &,



and subsequently drops to zero. The scaling of the peak stress and critical opening
displacement is 8, ~ 1/ VN and &, ~ v/N. Thus, coarse-graining is accompanied
by an attendant reduction (increase) in the cohesive traction (opening displacement)
range, while at the same time preserving the surface of specific fracture energy of the
crystal.

It is interesting to note that the size of a cohesive zone at the tip of a crack in
an elastic crystal scales as [ ~ 1/a2 [4]. Upon coarse-graining, the cohesive zone sizc
increases to [ ~ 1/6.2, which gives [ ~ NI. This scaling preserves the ratio I/l = d/d,
which shows that coarse-graining has the effect of expanding the cohesive-zone size
to within the resolution of the coarse-grained description. In particular, it eliminates
the onerous need to resolve the atomic scale in simulations.

It is also interesting to note that the universal form of the macroscopic cohesive
potential is completely determined by the constants C = ¢"(0) and ¢(c0) = 2.
This greatly reduces the scope of the first-principles calculations required to identify
the macroscopic cohesive behavior of specific materials, which can be limited to the
calculation of elastic moduli, lattice constants and surface cnergies.

Finally, we close by suggesting possible extensions of the theory. The analysis
presented in the foregoing has been restricted to symmetric (mode I) opening nor-
mal to the atomic planes. A worthwhile extension would be to consider interplanar
potentials defined in terms of three opening displacements and, therefore, capable of
describing tension-shear coupling. Another worthwhile extension would be to consider
interplanar potentials with multiple inflection points, which would greatly enlarge the

class of materials tractable within the theory.
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Figure 4.5: Influence of the temperature on the effective behavior of the chain (N =
100).
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Chapter 5 A Cohesive Model of

Stress-Corrosion Cracking

5.1 Introduction

Stress-corrosion cracking (SCC) was recognized in the nineteen fifties as an important
failure mode for metallic structures subject to an aggressive environment [9]. Despite
the intensive rescarch devoted to SCC, its underlying mechanisms are yet to be fully
understood and depend upon complex chemical and mechanical interactions, which
vary with the environment and system studied. As a result, several models such as
slip-dissolution [92, 60], film-induced cleavage [82, 83] and hydrogen embrittlement
[85, 52} were suggested as potential mechanism for SCC. These models, each consistent
with experimental data in particular systems, suggest SCC cannot be explained by
a universal mechanism [87, 66]. We focus our attention to systems where hydrogen
embrittlement is recognized to be the principal source of damage for the material,
e.g., high-strength steel in aqueous environments [43].

Hydrogen cmbrittlement is often described as a two-step process. During the first
step, the hydrogen is absorbed from the environment into the host metal and diffuses
through the metal lattice toward a critical region in the material, e.g., at the vicinity
of a crack tip [87, 48]. The diffusion process is driven by the gradient of the chemical
potential of the hydrogen [42] and depends on the state of stress in the metal. As
the hydrogen diffuses in the metal, it influences the plastic behavior of the material.
Several authors have reported either softening or hardening of the material (see [87] for
a brief review). In addition to lattice diffusion, the hydrogen can be transported via
pipe-diffusion but evidences show that this mode of transportation could be neglected
[45, 26, 87). Several other authors have suggested as well the possibility of trapping

sites in the metal impeding the hydrogen diffusion [87]. During the second step,
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the hydrogen lowers the specific fracture energy or critical cnergy release rate of the
material, eventually leading to the advance of the crack.

We propose in this chapter to consider both phases of hydrogen embrittlement in
order to define a fnodol of SCC with quantitative predicting ability with regard to the
life of specimens in an aggressive environment. The first step will be approached by
using a stress-assisted diffusion equation. Our approach to the second step is to use
the concepts developed in chapter 4, in conjunction with a thermodynamic framework
suggested by Rice et al. [80], in order to account for the deletcrious effect of hydrogen
on the fracture properties of the material. In Section 5.2, we derive a cohesive law
function of the impurity concentration. In Section 5.3, we consider the stress-assisted
diffusion of segregants into the host metal. Section 5.4 describes the implementation
of our model in the finite element framework. Finally, in Section 5.5, we validate our

model by comparison with experiments available in the literature.

5.2 Cohesive Law in the Presence of Impurities

We describe the fracture process by means of an irreversible cohesive law which has the
important characteristic of being a function of the impurities concentration present in
the material. In this manner, we account for a possible embrittling effect of segregants
in the host metal. The chemistry-dependent cohesive law is based on the universal
macroscopic cohesive law developed in chapter 4 and is defined as

Cs, ifé < 4,

o(0) = (5.1)
0, otherwise

with

- C
5o = 2\/% (5.3)
g = 20/Cy (5.4)
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where C' is a simple function of the elastic moduli of the material, as defined by
equatioﬁ 4.3; 6. is the critical value of the opening displacement beyond which the
cohesive stress drops suddenly to zero; and o, is the peak value of the cohesive stress
occurring at 6 = é..

It is worthwhile to note that both 4. and o, are function of the surface energy of
the material while C' depends solely on its elastic properties. We postulate that the
impurities present in the material will have a much greater influence on its surface
energy than its elastic properties. In that case, C will not depend on the presence
‘of impﬁrties in the material and is a constant. What remains to be determined is
the functional dependence of the surface on the impurity concentration. This will be
discussed in Subsection 5.2.2.

Another important point to make is that the universal cohesive law defined by
equation 5.1 contains the elastic contribution of the cohesive layer. The use of the
continuum mechanics to model the bulk of the material already takes this contribution
into account. Therefore, one should correct the cohesive law so as to remove its

contribution to the elastic energy. We investigate that issuc in the next Subscction.

5.2.1 Elastically Corrected Cohesive Law

The cohesive law has to be modified in order to remove the elastic contribution
resulting from the renormalization of the interplanar atomic potential. We define the

modified cohesive law t(§) as follows:

t(6) =o(d + Ui,((%) (5.5)

It has the effect of skewing the cohesive law so as to give an infinite slope at the

origin. One obtains (see appendix A) the following elastically corrected cohesive law:

o.—C8, ifd <6,
£(0) = (5.6)

0, otherwise
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Therefore, we recover the classic linearly decreasing cohesive law by correcting the

universal macroscopic cohesive law, as illustrated in figure 5.1.
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(a) Universal cohesive law.

1
8/8,
(b) Elastically Corrected cohesive law.

Figure 5.1: Universal macroscopic cohesive law and its elastic correction.
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Figure 5.2: Thermodynamic interface ([80]).

5.2.2 Surface Energy as a Function of Impurity Concentra-
tion

In this Section, we briefly summarize the results obtained by [80] and, in particular,
the functional dependence of the surface energy as a function of the impurity con-
centration. In [80], the authors considered the fracture process to take place along
a thermodynamic interface depicted in figure 5.2. The interface is defined by two
surfaces St and S~ which are separated by a distance é called opening displacement.
0 is assumed to be equal to zero prior to scparation. In addition, impurities can be
present on the two surfaces of the interface at all times. They can be associated with
well-defined concentrations I'" and I'~ defined per unit area, in excess of those of the
bulk phases. The concentration on the interface I' is equal to the sum of I't and I'".
The interface is in contact with an external environment characterized by a known
chemical potential ™. All thermodynamic functions relevant to the interface are
functions solely of the temperaturc T', the opening displacement ¢ and the interface

concentration I'. The infinitesimal change of the interface’s internal energy is equal
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to
du =Tds + odd + pdl’ (5.7)

where u is the excess internal energy of the interface, s the excess entropy of the
system, o the cohesive traction on the interface and p its chemical potential. By
assuming the temperature to be constant, it is more convenient to work in terms of

the excess Helmholtz free energy f(4,T) =u — T's.
df = 0dd + pdl (5.8)

This relation is assumed to hold during the separation of the interfaces. If the func-
tional expression for f were known as a function of § and I", we could immediately

determine the cohesive traction ¢ as a function of 4 and T since

of(s,ry,
= o(5T) (5.9)

Instead, additional assumptions have to be made in order to obtain ¢(4,I"). The first

one, suggested by [80], is to assume that f(4,T') has two limiting values

lm f(&,1) = fi(I) (5.10)
Jim f(5T) = fp(T) + f(T7) (5.11)

The interpretation of these two limits is straightforward. When 4 is equal to zero, the
interface can be viewed as a grain boundary in the metal. In that case, f, is the free
energy of a grain boundary. When 4 goes to infinity, the interface becomes two free
surfaces so that f(4,I") is equal to the sum of the two free surfaces free energy f.
If separation is fast enough to be at constant interfacial concentration I', the work

of separation of the interface 2v;,; is found to be equal to

r
r
(27int)F=const = (Q’Yint)l":o - / {lflb(]-—‘) - Nfs(a)}dr (512)
0
Assuming the surface coverage is not saturated [80], the Langmuir-McLean model can
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be adopted so that
r

wll) = Ag? + RTIn{—

} (5.13)

where the index i refers to a grain boundary or a free surface and I'{ is the surface
concentration at saturation (full coverage). According to [80], when combined with

equation 5.13, equation 5.12 can be simplified to

(2’Yint)l‘=const ~ (27int)l‘=0 - Ag r (514)

where Ag stands for Ag, — Ag,. This is the relation we adopt in our model of

stress-corrosion cracking.

5.2.3 Effect of the Impurities on the Cohesive Law

Combining equations 5.14 and 5.6, we obtain the final expression of the chemistry-

dependent cohesive law:

2/ Cl(Yomt)rmo — Ag/2 T] — C8, if § < 5,
o(5.T) = VC[(Vint)r=o — Ag/2 T i (5.15)

0, otherwise

The critical opening displacement and cohesive stress become respectively

5.(T) = 2\/ (%’“)FZ‘E 29/2T (5.16)

and

7:(T) = 24/ Cl(ime)roo — Ag/2 T] (5.17)

The influence of the reduction of the surface energy due to the presence of the im-
purites on the cohesive law is shown in figure 5.3. 27, is the surface energy of the

material free of impurities.
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Figure 5.3: Dependence of the cohesive law on the impurities concentration.

5.3 Impurity Stress-Assisted Diffusion

The governing cquation for hydrogen diffusion is form:ulated as a stress-assisted dif-
fusion initial-boundary valuec problem (IBVP). We consider the system impurity/host
metal to be an ideal (dilute) solid solution. The impurity in the lattice is modeled
as a point defect causing dilatational distortion only. Its chemical potential can be
written as

w(C,T,0)=p’+ RTInC — pV (5.18)

where C is the concentration of the diffusing species, R is the gas constant equal to
8.314 J/Kmol, T is the absolute temperature, p is the hydrostatic stress equal to
oxk/3 and V is the partial molar volume of hydrogen in solid solution. The flux of

hydrogen is related to the hydrogen chemical as follows [73]:

J=—-MCVpu (5.19)
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where M is the mobility of the segregant. Replacing equation 5.18 into eqﬁation 5.19

and using the ideal solution assumption, we obtain (after some algcbra)

DV .

where D is the lattice diffusion constant. Although D is a function of the temperature
and the amount of dislocations present in the material, we keep it constant as a first
approximation. V is assumed to be constant as well. The conservation cquation for
“the segregant is
ocC

STV I=0 (5.21)

By inserting equation 5.20 into equation 5.21, we have
oCc DV D

v
—__— =DC,,— —C.pn, — . 5.
T e (5:22)

In order to have a well-defined problem, we must specify the proper set of initial and
boundary conditions. We impose either a value for the concentration along the crack

flanks or a mixed type boundary condition expressed as follows:

éDnC+ (1-—

; )J-n=—=D,C,, (5.23)

o
be
where D, is an adjustable normal diffusion constant, n is the external normal to the
crack flank, and C., is a given (equilibrium) concentration determined from the ex-
ternal environment. The mixed type boundary condition is enforced on the boundary
of the crack flanks at the vicinity of the crack tip.

We justify the use of a mixed boundary condition as follows. Far away from the
crack tip, equilibrium conditions are attained. The concentration of the impurities
along the crack flanks is equal to the equilibrium concentration as dictated by the
external environment. At the crack tip, the opening displacement is zero so that
impurities from the external environment are prevented from penetrating into the

bulk of the metal. In other words, the (normal) flux of impurities at the crack tip is
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zero. In-between, there is a region which is neither in equilibrium nor isoiated from
the environment. We postulate that, in that region, the normal flux is proportional
to the difference between the equilibrium concentration and the actual concentration
on the crack ﬂank.‘ Consistency of the mixed type boundary conditions with the oncs
at the crack tip and far way from it is achieved by the dependence of the mixed type
boundary condition on 4. The location along the crack flank at which equilibrium is
attained is chosen to be where § attains its critical value, i.e., outside of the active
cohesive zone.
The stress-assisted diffusion problem can now be formulated as follows:

aC DV 2% :
B = DC,z'i - ﬁci'p,i - ﬁ']—vcp,iz‘-, in B

b

< %DHC + (1 — 5%) J-n= %Dn Ceqs 0N 0By, (5.24)

C = Cy, on dB¢

\

where B is the domain of interest, dB¢, the boundary where a concentration is
prescribed and 0B,,, the boundary where a combination of the normal flux and the
concentration is prescribed. The initial value of C is taken to be zero everywhere

except on B¢ where it is equal to Ce,.

5.4 Coupling Mechanics with Chemistry

In this Section, we formulate the coupled initial boundary value problem defined
by the mechanical boundary value problem and the stress-assisted diffusion initial
boundary value problem.

This IBVP depends on the mechanical fields through the boundary conditions
and the stress-term present in the partial differential equation. In the applications of
interest here, the change in the mechanical fields are very slow in time so that dynamic

effects are not relevant. The inertia forces and strain hardening effects can therefore
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be neglected and ittsuffices to solve the static mechanical equilibrium equations.

Vo = 0, nB
o-n = t, ondB; (5.25)

u = 1, on 0B,

where o is the stress tensor, t, the applied tractions, i, the prescribed displacement
field and n, the outward normal of the domain boundary. The dependence of the me-
chanical equations on the impurities is implicitly present in the material constitutive
equations. The presence of impurities may affect the material fracture toughness.
The constitutive model adopted for the material behavior follows the J-2 flow
theory of plasticity with isotropic-hardening. We adopt the following conventional
power hardening law
CP
p

; )a (5.26)

oy = 0ye(1 +

5.4.1 Finite Element Discretization

Static equilibrium is enforced weakly by recourse to the virtual work principle

/U:VndB=/ t-ndS (5.27)
B

AB;

wherc 7 is an admissible virtual displacement field. Upon a finite clement discretiza-

tion of equation 5.27, the governing equations become
fint = feot (5.28)

where ¢ is the external force array which accounts for the applied surface tractions
and " the internal force array arising from the current state of stress. The system
of non-linear equations is solved by recourse to a Newton-Raphson iteration scheme.

The weak form of the stress-assisted boundary value problem is

/CndB:/J-vndB— J-nnds (5.29)
B B aB
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where 77 is an admissible virtual concentration field. Using equation 5.23, we obtain

/C*'n dB :/ J -V dB + a6 / ndS+B(8) | CndS (5.30)
B B

J8Bm, 8Bm

where
_ _Ceq
= T 1-3/5,

B(8) = 125

The finite element discretization of equation 5.30 gives the semi-discrete system of
- equations

MC+KC=Q (5.31)

where M is the concentration capacity matrix, C is the array of nodal concentrations,

K is the diffusivity matrix and Q is the diffusion flux array. In indicial notation, we

have
M], = [zN.N, dB
{Q}, = ) [pNadS
Klp = [Kilg+ [Kal,
with

Kil,, = [s{D VN, VN~ %VP - VN, Ny} dB

Kzl = —B(0) [55, NNy dS
The critical stable time step of our problem is determined solely by the diffusion
equation. In the applications of interest, the relevant time scale is much bigger than

the critical time step so that we integrate the diffusion cquation implicitly by the

generalized trapezoidal rule, with the result

Mcn+1 + KCn+1 = Qn+1
Cna = C,+ At Chia (5.32)
Cn+a = (1 - CY)C,, + CVcn+1

where alpha is a real number in (0, 1] and At the time step.
The coupling of the mechanical and stress-assisted diffusion equations is handled

by means of a staggered procedure. Given an initial distribution of impuritics, a
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mechanical step is computed assuming the impurities distribution to remain constant.
The resulting mechanical fields are in-turn held constant and used to solve the stress-
assisted diffusion equation. The computed scgregant concentration distribution is
then used as the initial conditions for the next time step, completing one time-stepping

cycle.

5.5 Numerical Simulation of the Static Fatigue Test

" Static fatigue tests have been extensively used in the past to investigate the affinity of
specific materials to stress-corrosion cracking in various environments. These tests can
therefore serve as a benchmark to assess the predictive ability of the model developed
in the foregoing.

The aim of such tests is to determine the value of K., the initial stress-intensity
factor below which stress-corrosion cracking is not observed. Kj,.. can be found by
applying a decreasing series of initial K; until the specimen does not break. The first
value of K7 in the series is usually chosen slightly below the critical stress-intensity

factor Kp,.

5.5.1 Steel in Artificial Sea-Water

In their experiments [6], Beachem and Brown tested scveral center-cracked specimens
in plane strain conditions. The material used was AISI 4340 steel. After being loaded
to the selected stress, the center cracked portions of the specimens were immersed in
a 3.5 percent sodium chloride solution. After recording the time to failure of each
Specimens, the authors inferred a K4 value of 12 ksivin.

The center crack panel, shown in figure 5.4, is subject to a constant tensile loading
normal to the plane of the crack. The environment is enclosed in the crack and is
allowed to attack the metal through the specimen’s crack faces. Tables 5.1 and 5.2
summarize the material parameters used in our numerical simulations. We obtained
them from [6, 87, 94].

The experimental results arc summarized in table 5.3. The stress-intensity factors
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2 Material Parameters
E[GPa] v o,[MPa] ¢ n K; [MPay/m ]
210 0.3 1600 10~* 8 96.8

Table 5.1: Mechanical material constants.

Material Parameters
D Vi Vi Ag T,
[m?/s]  [m®/mol] [m*/mol] [kJ/mol] [mol/m?]
1.33 1078 2.10°° 7.116 107° 44 2.65 107°

Table 5.2: Diffusion material constants.

reported in the table were computed from the following equation:

K= P\/ﬂa,f(%) (5.33)
with
2a Ta a a
(22— s 11— 0.025(-2)2 + 0.06(—)*
f(=) sec2WL1 0.0 5(W) + 0.06(—=)"]

where P is the applied stress, 2a is the crack length and W, the specimen width.

In order to compare the experimental data shown in table 5.3, we ran several simula-
tions for different values of constant applied stress while maintaining the environment
unchanged. The temperature is assumed to remain constant throughout the calcu-
lations and set to 300K. Since the equilibrium concentration of hydrogen was not

given, we dctermined it from a similar experiment where the authors measured a

Center-Cracked Specimens
K; Time Width Crack Length Load
[ksivin.] [min] [in)] [in.] )

88.5 o 1.473 0.750 12,150
85.0 - 1.499 0.598 15,000
37.1 84 1.503 0.587 6,500
27.2 399 1.493 0.617 4,630
25.0 2452 1.499 0.600 4,330
19.1 4464  1.500 0.617 3,150
14.6 27024 1.508 0.640 2,460
14.2 54545 1473 0.740 1,970

Table 5.3: Summary of Experimental Data ([6)]).
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Figure 5.5: Crack length as a function of time.

Co of 0.1 (ppm wt) under the same conditions of the original experiment [28]. The
adjustable normal diffusion constant D,, in equation 5.23 was set to 3.5 1073m?/s.
We recorded the crack length as a function of time (figure 5.5) and were able to
estimate the time-to-failure by determining the time at which the crack reaches the
Iuns'cable regime, i.e., when the growth rate goes to infinity. The resulting time-to-
failure compared with the experimental data are shown in figure 5.6. The squares are
the numerical results and the triangles are the experimental results. The two compare
well even though it appears that our numerical result does not reach a limiting value of
for K4.. Infact, it is not clear if K .. can really be defined without the corresponding

time after which a specimen is considered never to fail. If a specimen hasn’t failed
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Figure 5.6: Comparison of the experimental times to failure with the numerical ones.

after that critical time, the experiment is stopped and the time to failure is considered
to be equal to infinity. However, if one could wait long enough, the specimen might
fail. This is what we observe in our simulations. Although we do not reach a limiting
value for K7, the time to failure becomes very large and comparable to the critical

amount of time after which experimentalists consider the specimen not to fail.
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N Material Parameters
E[GPa] v o,[MPa] ¢ n K [MPaym]
200 - 0.3 1300 107 8 62

Table 5.4: Mechanical material constants (AISI-4130 Steel).

5.5.2 Steel in Hydrogenous Gas

In this Section, we investigate the delayed fracture of high strength steels in gaseous
hydrogen atmosphere. The material is a high strength steel of the type AISI-4130.
. The material parameters are summarized in table 5.4. The specimen were immersed
in a gaseous environment in contact with the metal. The equilibrium concentration

for the hydrogen atom is given (in ppm wt) by Sievert’s law
Co = o \/pH, (5.34)

where « is 3.6 1073 [27] at room temperature (300K) and py, is the hydrogen pres-
sure in [kPa]. This gives a Cp of 6.5 1072 (ppm wt). In [58], the crack velocity was
measured as a function of the stress intensity factor for a hydrogen pressure of 77kPa;
see figure 5.7. On that same figure, the numerical rate of crack growth is shown as
a red line. Although the numerical crack propagation rate seems to be continuous
(figure 5.7), the crack advances intermittently. The controlling process is the rate
of hydrogen absorption and diffusion. When the hydrogen attains a critical concen-
tration, the cohesive zone weakens to the point that the crack advances. The crack
stops when it encounters a region poor enough in hydrogen content. The process
repeats itself as the hydrogen continuously diffuses toward the crack tip. Figure 5.5.2
illustrates this process. Four snapshots of the hydrogen concentration contour plot
are shown. The orange segments are the boundary of the specimen. The color red
represents a concentration equal to the equilibrium concentration and the blue one

represents a concentration equal to zero.
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(a) t=0 hour. (b) t=100 hours.

(c¢) t=500 hours. (d) t=1000 hours.

Figure 5.8: Snapshots of the hydrogen concentration distribution in the specimen.
The crack grows intermittently and away from the region of high hydrogen content.

5.6 Summary and Conclusions

We have derived a finite-element model of stress-corrosion cracking with quantitative
predicting ability with regard to the life of specimen in an aggressive environment.
The principal mechanism of damage considered was hydrogen embrittlement. Hy-
drogen transport was modeled by a stress-assisted diffusion equation including the

hydrostatic stress terms. The kinetics of hydrogen absorption was accounted for by
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a mixed-type boundary condition in the region close to the crack tip. The hydrogen-
induced reduction of the material cohesive energy was determined by the use of co-
hesive theories of fracture. We derived a cohesive law which exhibits a dependence
on the hydrogen concentration. |

Our simulations show close agreement with experimental data observed in “static”
fatigue load tests. The crack propagation observed in our simulation is intermittent
and driven by the hydrogen absorption and diffusion. As the hydrogen reaches a
critical distribution in the fracture process zone, the material fails and the crack
propagétes until it reaches a zone poorer in hydrogen. If the zone with depleted
hydrogen offers enough resistance against the propagation of the crack, the crack
eventually arrests. As the hydrogen continues to diffuse toward the crack tip, this
process repeats itself, leading to intermittent crack growth until complete failure of

the structure.
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Chapter 6 Conclusions

We have investigated the use of cohesive theories of fracture for the purpose of study-
ing fatigue crack propagation and stress-corrosion cracking. The fatigue model de-
rived in the first part of this dissertation relies on a cohesive law which has the dis-
tinguishing characteristic of exhibiting unloading-reloading hysteresis. The inclusion
of 11nldading-reloading hysteresis into the cohesive law simulates dissipative mecha-
nisms such as crystallographic s.lip and frictional interactions between asperities, and
the accumulation of damage within the cohesive zone, eventually leading to complete
decohesion and crack extension. It has also the important consequence of prevent-
ing shakedown, thus allowing for steady crack growth. In addition, the model is
free from any small-scale yielding assumptions as a consequence of the explicit res-
olution of the plastic fields and cohesive lengths. In particular, it does not directly
rely on the stress-intensity factor as a crack-tip loading parameter. Our calculations
demonstrated that the model is capable of a unified treatment of long cracks under
constant-amplitude loading, short cracks and overloads. In the case of long cracks
and constant-amplitude loads, the theory predicted Paris-like behavior. By way of
contrast, the same theory predicts qualitatively the experimentally observed growth
acceleration in the short-crack regime and the equally observed growth retardation
due to overloads, without ad hoc corrections or tuning.

We have also derived a model of fatigue initiation, based on the hysteretic cohesive
law developed for the fatigue crack propagation model. The monotonic cohesive
envelope used was of the UBER type, corrected to have an infinite slope at the
origin. The S-N curves obtained from the model showed reasonable agreement with
the experimental data for different types of metals. The model captured the effect
of the mcan-stress, at least qualitatively. Its simplicity makes it an ideal candidate
for a larger scale framework in order to study more complex problems such as the

environmental, temperature, as well as multi-axial loading effect on fatigue nucleation.
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In the second part of this work, we have presented two approacheé for coarse-
graining interplanar potentials and determined the corresponding macroscopic cohe-
sive laws based on energy relaxation and the renormalization group. We have ana-
lyzed the cohesive behavior of a large—but finite—number N of interatomic planes
-and found that the macroscopic cohesive law adopts a universal asymptotic form in
the limit of large N. We have also found that this asymptotic form of the macroscopic
cohesive law is an attractive fixed point of a suitably-defined renormalization-group
transformation. Coarse-graining is accompanied by an attendant reduction (increase)
in the cohesive traction (opening displacement) range, while at the same time pre-
serving the surface of specific fracture energy of the crystal. It also has the effect of
expanding the cohesive-zone size to within the resolution of the coarse-grained de-
scription. In particular, it eliminates the onerous need to resolve the atomic scale
in simulations. In addition, the scope of the first-principles calculations required to
identify the macroscopic cohesive behavior of specific materials can be limited to the
calculation of clastic moduli, lattice constants and surface energies.

The coarse-grained macroscopic law was then used to develop a model of stress-
corrosion cracking. The principal mechanism of damage considered was hydrogen
embrittlement. Hydrogen transport was modeled by a stress-assisted diffusion equa-
tion including the hydrostatic stress terms. The kinetics of hydrogen absorption was
accounted for by a mixed-type boundary condition in the region close to the crack
tip. The material surface energy is reduced duc to the presence of hydrogen in the
metal according to a thermodynamic relation given by [80]. This relation was used
dircctly in the coarsed-grained cohesive law. In particular, we were able to determine
"the functional dependence of the parameters of the cohesive law—i.e., the critical co-
hesive stress and critical opening displacement—without any additional assumptions.
Our simulations show close agreement with experimental data observed in “static” fa-
tigue load tests. The crack propagation observed in our simulation is intermittent and
driven by the hydrogen absorption and diffusion. As the hydrogen reaches a critical
distribution in the fracture process zone, the material fails and the crack propagates

until it reaches a zone poorer in hydrogen. If the zone with depleted hydrogen offers
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enough resistance against the propagation of the crack, the crack eventuélly arrests.
As the hydrogen continues to diffuse toward the crack tip, this process repeats itself,
leading to intermittent crack growth until complete failure of the structure.

Finally, we cloée by suggesting possible improvements of the different models pro-
posed here. The analysis presented in this work has been restricted to symmetric
(mode I) opening normal to the plane of the crack. A worthwhile extension would
be to consider cohesive laws defined in terms of three opening displacements, and
therefore capable of describing tension-shear coupling. Another worthwhile exten-
" sion to the coarse-graining approach would be to consider interplanar potentials with
multiple inflection points, which would greatly enlarge the class of materials tractable
within the theory. Finally, it would be of great interest to couple the model of fa-
tigue crack growth and stress-corrosion cracking to study corrosion fatigue for several

systems metal/environment under various conditions of loading.
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Appendix A Derivation of the Elastically

Corrected Cohesive Law

We modify the universal cohesive law in order to remove its elastic contribution. The
universal cohesive law is defined as
Cs, if § <4,

0, otherwise

We define the modified (corrected) cohesive law #(d) as follows:

t(9)

1) =+ S

) (A-2)

where here and subsequently, a prime denotes differentiation of a function of a single
variable. It has the cffect of skewing the cohesive law so as to give an infinite slope

at the origin. From equation A.2 and equation A.1, we have

1) = o'tn1 - Ty (A3)

where 7 is equal to J + ;,((‘2) In order to determine the expression of ¢(J), we consider

the three cases, namely: n > 6., n < é. and n = 4.

Case 711 > 0,

If n > 6, then o(n) = 0 and equation A.2 yields £(d) = 0. Therefore, from the

definition of 1, we have & > 4.
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Case 7 < 4,

If n < 4., then () = 00 as a direct result of equation A.3. From equation A.2,
t(6) = o(n) = Cn. This expression simplifies to § = 0 after having replaced 7 by its
definition. We also note that ¢(0) < 0., where we define o, as C9,.

Case n = 6.

If n = 6., then it is straightforward that ¢(6) = 0. — ¢/(0)6.

Therefore, we recover the classic linearly decreasing cohesive law by correcting the

universal macroscopic cohesive law:

o.—C6, ifé<é,
t(0) = (A.4)

0, otherwise
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