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Abstract

The unifying theme of this thesis is an attempt to understand the origin of
several major highland units on Venus. Chapters 1 and 2 develop numerical
models of mantle plumes. In Chapter 1, I discuss the numerical methods used in
calculating the geoid anomalies, topographic uplifts, and heatflow associated
with upwelling plumes. Because plumes are a likely cause of at least some terres-
trial hotspot swells, Chapter 1 also examines how the numerical models compare
with observations of terrestrial hotspots. In Chapter 2, I compare the plume
model results with observations of geoid anomalies and topography from the
Equatorial Highlands of Venus. Chapter 3 examines another model, in which
parts of the Equatorial Highlands are interpreted as spreading centers analogous
to terrestrial mid-ocean ridges. Chapter 4 develops a crustal convergence and

mantle downwelling model for the Ishtar Terra region of Venus.

Terrestrial hotspot swells are regions of elevated topography and high rates
of volcanism. A variety of evidence suggests that at least some hotspots, such as
Hawaii, are formed by quasi-cylindrical mantle plumes upwelling from deep in
the mantle. I model such plumes using a finite element code in cylindrical,
axisymmetric geometry with a depth-dependent Newtonian viscosity. Many pre-
vious workers have modeled plumes using a sheet-like, Cartesian geometry, but I
find that cylindrical and sheet-like upwellings have significantly different geoid
and topography signatures. However, Rayleigh number-Nusselt number sys-
tematics in the two geometries are quite similar. Increasing the Rayleigh number
or including a low-viscosity asthenosphere decrease the geoid anomaly and the
topographic uplift of a plume. For comparison with observations, the models are
scaled with the aSsumptions of whéle—mantle convection and a temperature con-
trast of about 300°C between the center of a plume and normal mantle. The
models are able to explain the amplitudes of the observed geoid anomalies and
topographic uplifts at Cape Verde and Hawaii, provided that the Earth’s mantle

has a low viscosity zone in the asthenosphere and upper mantle similar to that
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previously inferred by Hager and colleagues on the basis of long-wavelength
geoid modeling. However, for aspect ratio 1, the models predict swell widths
that are about twice as wide as observed. This discrepancy maﬁf be due in part
to terrestrial plumes having aspect ratios of less than 1. Alternatively, inclusion

of temperature-dependent rheology may lead to narrower swells.

The Equatorial Highlands of Venus consist of four main structures, Atla,
Beta, Ovda, and Thetis Regiones. Each of these features has a circular to oval-
shaped planform and rises 4 to 6 km above the mean planetary radius. These
highland units are alsb long-wavelength geoid highs, with amplitudes ranging
from 35 meters at Ovda to 120 meters at Atla. These features also contain topo-
graphic valleys, interpreted as extensional rift zones, and Beta is known to con-
tain shield volcanoes. These characteristics are all consistent with the Equatorial
Highlands being formed by upwelling mantle plumes. In order to compare results
fof Venus and Earth, I assume that the two planets have similar mantle heat
flows. With this assumption, I find that in order to satisfy the observed geoid
and topography for the Equatorial Highlands, the asthenosphere and upper man-
tle viscosity must be higher on Venus than on Earth. This conclusion is con-
sistent with modeling of the long-wavelength admittance spectrum of Venus and
with the observed differences in the slopes of the geoid spectra of the two
planets. One possible explanation for the different viscosity structures of the two

planets is that the mantle of Venus is drier than the Earth’s mantle.

An alternative model for Ovda and Thetis Regiones, proposed by Crumpler,
Head, and colleagues, is that these features are terrestrial-type spreading centers.
The strong positive correlation between the geoid and topography observed in
Ovda and Thetis is unlike that observed for terrestrial spreading centers. The
maximum elevation expected for spreading centers on Venus is 1.5 km, and a
cooling plate thermal model predicts a maximum geoid anomaly of 8 meters,
both much less than observed. Thus, even if a spreading center is operative in
Ovda and Thetis, most of the geoid and topography must be due to other

mechanisms. Crumpler et al. also proposed the existence of “cross-strike
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discontinuities,”" which they interpreted as transform fault zones, but the evi-

dence for these structures is not conclusive.

The Ishtar Terra region of Venus contains the highest topography known
on the planet, over 10 km above the mean planetary radius, as well as abundant
tectonic features, many of which are apparently compressional in origin. These
characteristics suggest that Ishtar is a crustal convergence zone overlying a
region of downwelling mantle. In order to explore quantitatively the implications
of this hypothesis for Ishtar’s origin, I present models of the viscous crustal flow
driven by gradients in lithostatic pressure. For reasonable bounds on the mantle
convective velocity, I find that if the crustal convergence hypothesis is correct,
then the crustal thickness in the plains surrounding Ishtar can be no more than
about 25 km thick. This result is in good agreement with several independent
estimates of crustal thickness on Venus based on modeling of the spacing of tec-
tohic features and of impact crater relaxation, but is much less than the
estimated crustal thickness derived from an Airy isostasy model of Ishtar’s grav-
ity anomaly. Much of the observed gravity anomaly must be due to density
anomalies in the mantle beneath Ishtar. Although I treat Ishtar as a crustal
convergence zone, the crustal flow model results show that under some cir-
cumstances near-surface material may actually flow away from Ishtar, providing

a possible explanation for graben-like structures in Fortuna Tessera.
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anomalies. Observations of heat flow anomalies at several hotspot swells in the
range of 8 to 16 mW m™2 are also consistent with the existence of substantial
thermal anomalies in the lithosphere (Von Herzen et al., 1982; Detrick et al.,
1986; Courtney and White, 1986), although there is some cdntroversy sur-
rounding the magnitude of these heat flow anomalies (Louden et al., 1987; Von
Herzen et al., 1989).

Long-wavelength geoid anomalies and seismic tomography provide tools
for probing the deeper structure of hotspot swells. There is a strong positive
correlation between the global distribution of terrestrial hotspots and the long-
est wavelength components of the geoid (Crough and Jurdy, 1980; Richards et
al., 1988). At somewhat shorter wavelengths, individual hotspots also tend to
be geoid highs, although the size and shape of these more localized geoid highs
depends on how the long-wavelength geoid components are filtered. For exam-
ple, Crough (1982) estimated a regional geoid anomaly of 8 meters for the Cape
Verde Rise, whereas McNutt (1988) estimated a geoid anomaly of 12 meters. A
similar range in geoid amplitudes has been reported for the Hawalian Swell
(Sandwell and Poehls, 1980; McNutt and Shure, 1986; Richards et al., 1988).
Although geoid anomalies of this amplitude can be interpreted in terms of com-
pensation within the lithosphere, this does not preclude the existence of density
anomalies deeper within the mantle. Kiefer et al. (1986), Robinson et al. (1987),
and Ceuleneer et al. (1988) have all shown that inclusion of a low-viscosity
asthenosphere can lead to apparent compensation depths in convection models
that are arbitrarily small. Richards et al. (1988) analyzed the spectral content
of the geoid anomalies associated with hotspots globally and with the Hawalian
Swell in particular and concluded that density anomalies are required at sub-
stantial depths in the mantle beneath hotspots in order to explain the observed

spectral slope.

Seismic tomography provides another tool to probe the deep structure of
hotspot swells. Richards et al. (1988) showed that there is a strong correlation
between the global distribution of hotspots and seismically slow regions in both
the upper and lower mantles. The slow seismic velocities are assumed to be due
to hotter than normal mantle. Higher resolution images of individual hotspots

can be obtained using regional scale studies. Zhang and Tanimoto (1989)
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inverted surface wave data for the Pacific Ocean region. In their Love wave
velocity anomaly maps, they found a circular low velocity region near Hawaii
that extends from the surface down to a depth of 200 km, the largest depth for
which they inverted the Love wave structure. Tryggvason et al. (1983) exam-
ined P-wave travel time data for the Iceland region and inverted for velocity
| anomalies down to a depth of 375 km. Their results show a pipe-like low velo-
city anomaly that extends to the base of their inversion region. This low velo-
city anomaly is clearly distinguishable from adjacent parts of the Mid-Atlantic
Ridge.

Geochemical data can also be used to constraint hotspot models. The
basalts produced at hotspots can be distinguished from mid-ocean ridge basalts
in several ways. In this paper, we consider only one type of data, the isotopic
ratio 3He / “He . In basaltic glasses from the Mid-Atlantic Ridge, the helium iso-
topic ratio is observed to be between 6.5 and 11 R, with most samples cluster-
ing near 8 R, where R is the atmospheric value of the 3He / *He ratio (Kurz et
al., 1982). In contrast, several hotspots show evidence for elevated He isotope
ratios. For example, basaltic glasses from the Loihi seamount near Hawaii
have helium isotope ratios of 20 to 32 R (Kurz et al., 1983). Basaltic glasses
from Iceland have values as high as 26 R (Kurz et al., 1985). Olivine pheno-
crysts from basalts produced by the Reunion hotspot have helium isotope
ratios in the range 13 to 15 R (Kaneoka et al., 1986). However, not all hotspots
have elevated levels of 3He. The helium isotope ratio of the Azores hotspot, for
example, is indistinguishable from adjacent parts of the Mid-Atlantic Ridge
(Kurz et al., 1982).

As a noble gas, helium is likely to behave as an incompatible element and
thus to preferentially partition into the melt phase whenever a parcel of mantle
material undergoes partial melting. Much of this He is then likely to be out-
gassed to the atmosphere. Because He is primordial, whereas “He is produced
by radioactive decay of U and Th, mantle material that has experienced partial
melting and degassing should have a low 3He / *He ratio. Thus, samples with
high He isotope ratios are generally interpreted as coming from mantle material
that has not been previously outgassed. Assuming that the helium isotope

ratios measured at mid-ocean ridges are typical of material in the upper part of
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the mantle, then material with high He isétope ratios are likely to come from
greater depths, such the lower mantle, the D" layer, or the core. The evidence
- for high He isotope ratios therefore suggests that at least some hotspots have
deep sources, a conclusion that is consistent with the inferences based on geoid
anomalies and seismic tomography data that were described above. For a more
detailed discussion of the possible role that mantle plumes play in transporting

He within the mantle, see Kellogg and Wasserburg (1990).

The volcanic activity and the topography data described above clearly
require the existence of thermal anomalies within the lithosphere or mantle at
hotspots. A variety of models have been proposed. Wilson (1963) and Morgan
- (1972 a,b) proposed that hotspot swells and their associated volcanic island
chains are formed by cylindrical convective upwellings, or mantle plumes, that
rise from deep within the mantle. Such upwellings can form as the result of
convective instability of a thermal boundary layer within the mantle, for exam-
ple at the core-mantle boundary (e.g., Yuen and Peltier, 1980; Christensen,
1984; Olson et al., 1987). Hofmann and White (1982) favored a somewhat
different plume model, in which hotspot volcanism is due to recycling of oceanic
crust, with old subducted slabs being reheated at depth and ascending again as
thermo-chemical plumes. McKenzie et al. (1980) and Watts et al. (1985) sug-
gested a different type of convective model, in which hotspot swells form over
the upwelling limbs of elongated convective cells. Turcotte and Oxburgh (1978)
and Sleep (1984) suggested that hotspot volcanism is due to magma erupting
through propagating lithospheric cracks.

The foregoing observations place significant constraints on plausible
hotspot models. For example, in the propagating crack or delamination model,
material from the uppermost mantle should be emplaced in the crack, but this
fails to expla’m the high 3He / “He ratios observed at some hotspots. Also, the
geoid spectrum expected for a pure propagating crack model is much flatter

than the observed spectrum (Richards et al., 1988).

The elongated convective upwelling model has a number of difficulties. In
such a model, we would expect adiabatic decompression to lead to partial melt-

ing and volcanism along the entire length of the upwelling. In fact, the
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Hawaiian Swell and some other hotspot swells have well defined age versus dis-
tance progressions in their volcanic histories (Duncan and Clague, 1985), with
active volcanism confined to one end of the swell. This is consistent with a
cylindrical, plume-like upwelling but not with an elongated upWelling. On the
other hand, more complex distributions of volcanic activity, as in the Cook-
Austral chain (Okal and Batiza, 1987) or the Easter Island "hot line" (Bonatti
et al., 1977), could conceivably be related to elongated convective upwellings.
In the case of the Hawalian Swell, an elongated upwelling is also inconsistent
with the observed shape of the seiSmic low velocity anomaly (Zhang and Tani-
moto, 1989). The elongated upwelling model also has difficulties explaining
several aspects of hotspot topography. The square-root of age subsidence
behavior of hotspot swell topography is readily understood in terms of conduc-
tive cooling of the lithosphere. On the other hand, if a swell is supported con-
vectively along its entire length, it is not obvious why such a pattern should
arise. Also, the sharp bends in the trends of hotspot tracks such as the
Hawaiian-Emperor swell and other Pacific hotspot swells would require equally
sharp bends in the geometry of convective upwellings, but there is no obvious

mechanism for producing such distorted upwelling geometries.

The mantle plume hypothesis appears to be consistent with the various
constraints outlined above. The existence of deep upwellings can explain the
geoid and seismic tomography data and the high 3He/*He ratios observed at
some hotspots. The restriction of the upwelling to a narrow, cylindrical region
can explain the observation that active volcanism is typically concentrated at
only one end of a swell. The elongated topographic swell simply reflects the
thermal heating of the lithosphere as it passes over a plume. This thermally
elevated region is then carried away from the plume by the motion of the plate.
Thus, the topographic planform of the swell does not necessarily reflect the
convective planform of the underlying convective upwelling. We therefore
believe that mantle plumes are the most likely cause of many terrestrial
hotspots, a conclusion that is consistent with the opinions advanced by many
other workers in recent years (e.g., Courtney and White, 1986; Robinson et al.,
1987; Davies, 1988§ Richards et al., 1988; Sleep, 1990). However, this does not
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preclude the possibility that some hotspots may be produced by other mechan-

isms.

Numerical Modeling Procedures

The foregoing discussion suggests that hot, upwelling mantle plumes are a
likely cause of at least some hotspot swells. This paper focuses on numerical
modeling of the topographic uplift, geoid anomalies, and heat flow anomalies
associated with mantle plumes. In this section, we describe the numerical
modeling procedures which we use. In subsequent sections, we describe how our
plume models are influenced by the model geometry and by various mantle
parameters, such as the Rayleigh number, the variation of viscosity with depth,
and the aspect ratio. We then discuss how our models compare with observa-

tions of possible plume swells on Earth and Venus.
Finite Element Calculations

We use a finite element code to solve the coupled system of differential
equations that govern mantle convection. We non-dimensionalize the governing
equations by scaling distance according to the cylinder depth d, temperature

according to the temperature contrast AT across the cylinder depth, and time

. d? . cor s
according to = where K is the thermal diffusivity. In some models, we use a

flux boundary condition rather than a temperature boundary condition at the

(F +Hd)d
K

base of the convecting layer. In this case, we define AT = , where F

is the applied basal flux, H is the volumetric heating rate, and k is the thermal
conductivity. In non-dimensional form, the governing equations are the

incompressible continuity equation (conservation of mass),

V-V =0, ‘ (1)
conservation of momentum,
. —VP +V-7+RaTk =0, (2)
and conservation of energy,
f%trl;+V-VT=V2T+u. (3)
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In equé,tions 1 to 3, P is the pressure, T is the temperature, t is time, and k is

a unit vector in the vertical direction. 7 is the stress tensor, whose elements are

given by

oV,

T, =27 8: | (4a)
av

T =21 8;’ (4Db)
V.
av,  dv, 4

w5 T E ) (4d)

For axisymmetry, 7,,=7,,=0. V; and V, are the radial and vertical com-
ponents of the velocity field and 7 is the viscosity. These governing equations

are solved using the finite element code of Daly and Raefsky (1985).
In writing the momentum equation, we have neglected inertial terms,

which is appropriate because the Prandtl number, Pr = ——QE, is in excess of 10%°
P

for the mantles of Earth and Venus. The solutions to equations 1 to 3 are con-

trolled by two dimensionless parameters. One is the Rayleigh number,

o AT 33
Ra=P8aATd , (5a)
nNK
which governs the vigor of the convection. In equation 5, p is the density, g is
the gravitational acceleration, o is the thermal expansion coefficient, and the
other variables are as defined above. In models with an applied basal flux, we

can rewrite Ra as a flux Rayleigh number,

_pga(F+Hd)d*

RaF nl{k

(5b)
The second dimensionless parameter is the internal heating parameter (McKen-
zie et al., 1974),

 Hd
P =FTHa (6)

it governs the relative strength of basal and internal heating, with p=0
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corresponding to heating entirely from below and u=1 to purely internal heat-
ing.

Although some workers have recently begun reporting re‘sults of three-
dimensional numerical mantle convection models (Houseman, 1988, 1990;
Glatzmaier, 1988; Baumgardner, 1988; Bercovici et al., 1989a,b), we have
chosen to work with two-dimensional models. By restricting our models to two
dimensions, we are able to perform calculations at higher grid resolution than
is possible for 3D modeling with current computers. As a result, we are able to
calculate well-resolved models at Rayleigh numbers that approach those

believed to exist in the mantles of Earth and Venus.

Our models are calculated in cylindrical axisymmetric geometry, which
reflects our belief that mantle plumes are quasi-cylindrical structures. Our use
of cylindrical geometry distinguishes our plume models from many existing stu-
dies of mantle plumes in Cartesian geometry (Parsons and Daly, 1983; Detrick
et al., 1986; Robinson et al., 1987; Robinson and Parsons, 1988; Ceuleneer et
al., 1988). As we show later, the choice of model geometry has a strong effect
on calculations of topographic uplift and geoid anomalies. Only a few studies
exist in the literature on geoid and topography for axisymmetric convection.
Courtney and White (1986) calculated a limited suite of cylindrical axisym-
metric models and compared their results with observations of the Cape Verde
Rise. Their models were restricted to an isoviscous mantle with a conductive lid
to simulate the lithosphere. Richards et al. (1988) examined the effects of
temperature-dependent rheology on plume geoid and topography. Their study
assumed a fixed temperature field and solved only the incompressible equations
of motion. Bercovici et al. (1988) examined geoid and topographic uplift for
spherical axisymmetric convection, but they restricted their study only to iso-
viscous convection at Rayleigch numbers less than 27 times critical, well below

the range relevant to Earth, Venus, and Mars.

Our calculations have been done using the cylindrical axisymmetric con-
vection, code of Daly and Raefsky (1985). This code solves the incompressible
equations of motion using a penalty function formulation (Hughes, 1987, Sec-

tion 4.4) and bilinear shape functions. In the penalty function formulation, the
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incompressible continuity equation is not explicitly solved. Rather, a slightly
compressible form of the continuity equation is imposed as a Lagrangian multi-
plier type constraint on the solution to the equations of motion. This con-

straint is parameterized by the choice of the penalty parameter, “)\; incompressi-

bility is achieved in the limit A — 00. A must be chosen large enough to

make the solution approach incompressibility and yet small enough to avoid

numerical difficulties. Following Daly and Raefsky (1985) and Hughes (1987),

we use 2\— = 10". In this formulation, it is not necessary to directly solve for the
n

pressure, which is obtained instead from the relationship P = —AV:V. The
energy equation is solved using a streamline-upwind Petrov-Galerkin formula-
tion (Brooks and Hughes, 1982). This method is more accurate than either the

Galerkin method or normal upwind methods for advection-dominated flows.

The code steps between solutions of the energy equation and of the equa-
tion of motion. For a given temperature field, it calculates the corresponding
vellocity field, which is then used to update the temperature equation for the
next timestep. The code uses an implicit time-stepping routine which allows us
to efficiently obtain steady-state solutions (Hughes, 1987). We discuss time-
dependent solutions in a subsequent section. Daly and Raefsky (1985) reported
a number of comparisons between their code results and laboratory convection
experiments and analytic boundary layer models. These comparisons provide a

good check on the accuracy of the code.

For mechanical boundary conditions, we assume zero vertical velocity and

free-slip (zero shear stress) on the top and bottom of the cylinder,

Vv, = =0. (7a)

V= —%=0. (7b)

For thermal boundary conditions, we apply an insulating sidewall condition

along the axis and outer rim of the cylinder,

oT
w = 0. (8&)
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In models which are heated entirely from bélow, we assume constant tempera-
ture boundaries, T=0 on top and T=1 on the bottom. For models that are
partially heated from within, we still apply T=0 on the top but find it con-
venient to impose a flux boundary condition on the bottom, \

T _F

S (88)

where F is the specified basal heat flux and k is the thermal conductivity.
Scaling Parameters

The various scaling parameters that we have used to dimensionalize our
calculations are identified in Table 1, along with the specific numerical values
that we have assumed. Comments on several of these numerical values are in
order. We assume that the convective layer thickness, d, is that for whole
mantle convection. For Earth, this is 2900 km, or somewhat less if part of the
D" layer is a chemically distinct region. Because Venus is about 300 km smaller
in radius than Earth, its mantle is probably 100 to 150 km thinner than
Earth’s mantle (Basaltic Volcanism Study Project, 1981, pp. 682-685). We
have therefore adopted d=2800 km for use in our models. The value of AT
given in Table 1 does not represent the entire temperature change that occurs
vertically through the mantle. For example, because we assume incompressible
convection, it is inappropriate to include temperature differences associated
with the adiabatic gradient or with phase transitions. For the purpose of
modeling geoid anomalies, topographic uplift, and heat flow anomalies, the
more critical parameter is actually the horizontal variations of temperature
within the mantle. As we discuss in more detail in a later section, our choice of
AT leads to a temperature contrast between the plume center and the mean
mantle of about 300 °C, a value which agrees with several lines of observational

constraints.

Several of the parameters in Table 1, particularly p, o, and K, are expected
to vary with depth in the mantle (Anderson, 1987). In our models, these
parameters are assumed to have constant values. Because the geophysical
observables of interest are most sensitive to the upper part of the plume’s ther-

mal structure, we have chosen values of these parameters which are
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representative of upper mantle conditions. Viscosity is also expected to be a
strong function of depth. As discussed in a later section, we have explicitly

included this in our models.
Calculation of Topographic Uplift and Geoid Anomalies

Having obtained the temperature and velocity fields for a given convection
model, we can calculate various quantities, such as topographic uplift and geoid
anomalies, for comparison with observational data. We calculate topographic

uplift from the vertical normal stress,

Z

Tw = 21 Oz

—P. (9)

For each element in the top two rows of elements, we calculate an element
average value of 7,, which is assigned to the element center. We convert the

. . « e Mok
non-dimensional 7,, to dimensional units by multiplying by -é—, or

pgaATd
Ra

depth-dependent viscosity profile (See Figure 9). We project these values to the

equivalently by . Here 7, is the viscosity used to normalize the

surface nodes using a modified version of the pressure-smoothing algorithm of
Hughes (1987, Section 4.4.1) and then calculate the horizontally averaged value

of the vertical stress at the surface, 7,, .

Once we have obtained 7,, and 7,, at the surface, we calculate surface

topography, éh, from the relationship

(Fzz - 7-zz)

Ps g

§h = (10)

ps is the density of the surface layer that is uplifted. For continental hotspots,
ps is the same as p,, because both crust and mantle material is uplifted. For
oceanic hotspots, p; = p, — Py, Where p, is the density of seawater. In the
results given in this paper, we have set Ps = Pm—Pw; thus, for continental
hotspots it is necessary to multiply our results for topography by

Pm—Pw

= 0.70. 11
- (1)

We use a similar procedure to calculate the topography at the base of the
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convecting layer. Although we are not directly interested in this quantity as an
observational test of our models, it is necessary to include the effects of density

anomalies at this interface in calculating geoid anomalies.

Because the geoid is a surface of constant gravitational potential, U, we
must first calculate U before calculating the geoid anomaly. At or above the
surface of a planet, the potential must satisfy Laplace’s equation, V2U=0.In
cylindrical geometry, Laplace’s equation is most readily solved by expanding
the radial variations of temperature and of topographic uplift in terms of a
series of Bessel functions of the form Jy(k,r), where k; is a horizontal
wavenumber. With such a series expansion, the external potential varies verti-
cally as exp(—k,z). At the surface (z=0), the potential is therefore given by
_27G Jo(kyr)
B g n ky

oU

[ps ohl + (p. — pp) Oh exp(—k,d)

d
e { T"(z) exp(—kyz) dz ] (12)

In equation 12, 6h} and 6h2 are the n-th harmonics of the surface topo-
graphic uplift and the core-mantle boundary uplift. Similarly, T"(z) is the n-th
harmonic of the temperature field at depth z. G is the gravitational constant.
We do not consider the zero-th order gravitational potential and instead begin
the sum at n=1, so that U represents the anomalous potential. For models
with 33 horizontal nodes, the Nyquist condition shows that we can resolve har-
monics up to n=16. Based on the shape of the potential spectrum, essentially
all of the power in the spectrum occurs for n<10. In order to determine the
values of the harmonic coefficients and the depth integral in equation 12 as
accurately as possible, we use the finite element shape functions to interpolate
the temperature fields onto 129 x 129 node meshes. The integrations are then
done using a midpoint rule. We have experimented with interpolating the solu-
tions onto even finer grids, but find that this does not significantly alter the

integration results.

Although equation 12 formally includes the core density, p., in practice it

is not necessary to specify a value for p. This is because, by analogy with
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equation 10, the .density contrast and the topbgra_phic uplift are inversely

(Tzz - -Fzz)

related, with a constant product, namely (p, —pp) ¢ hc"=————é———. Similarly,

the value of the potential does not depend on whether or inét an ocean is
presént.

oU
et
Equation 12 shows that there are three contributions to the geoid anomaly.

The geoid anomaly is related to the potential by the expression N =

The first two terms in the braces are the contributions of the mass anomalies
created by uplift of the top and bottom surfaces of the convecting layer. The
third term represents the contributions of mass anomalies due to thermal
expansion of material within the convecting layer. For a convective upwelling,
the first two contributions are positive and the third contribution is negative.
The sign of the potential, and hence of the geoid anomaly, depends on the rela-
tive balance of the three terms. For the models described in this paper, the
topographic mass anomalies dominate, so that the geoid is positive over the
upwellings.

In the work that follows, we present both geoid anomalies and topographic
uplift in dimensional form, based on the scaling parameters of Table 1. In
Table 2, we have tabulated the peak values of the geoid and topography (along
the axis of the cylinder) in non-dimensional form. Table 2 also identifies the
model parameters that define each model calculation. The non-dimensional
geoid and topography results given in Table 2 are related to the dimensional

values by the relationships

Gp.. o AT d?
SN=—Lm . SN (13a)
and
Pm
bh= aATd éH . (13b)
Ps

In equations 13a and 13b, N and dh are the dimensional geoid and topogra-
phy along the plume axis and the primed values are the corresponding non-

dimensional values. The other variables are as defined above.
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Calculation of Nusselt Number and Heat Flow Anomalies

In addition to the geoid and topography of a plume, we are also interested

in the heat transported by plumes. The non-dimensional heat flux is simply

oT
Q=V,T——-. (14)

Following Ho-Liu et al. (1987), for each element, we calculate Q at the 2x2
Gaussiaﬁ quadrature points and sum the values at the four quadrature points
to determine an average flux for the element. The Nusselt number, Nu, is deter-
mined by integrating over all elements in order to determine a volume-averaged

heat flux.

The surface heat flow anomaly is calculated by taking Q(r) along the sur-
face and removing the average Q in order to determine the anomalous heat

flow. The surface heat flow anomaly is converted to dimensional form by multi-

plying by E%, where k is the thermal conductivity.

Grid Resolution Requirements

In any numerical convection study, it is important to demonstrate that
the numerical grids used have fine-enough spacing to resolve the non-linear
physics. We have carried out an extensive series of resolution checks on our
plume models using two different grid types. In one, the nodes are uniformly
spaced in both the radial and vertical directions. In the second, nodes are uni-
formly spaced in the radial direction but non-uniformly spaced in the vertical
direction, with spacing in the upper boundary layer being four times higher

than it is with the uniform grid, as shown in Figure 1.

A representative set of results are shown in Figure 2, which examines the
effect of varying grid resolution on a constant viscosity, Ra=10° cylinder. This
figure presents the results of geoid anomaly, topographic uplift, and Nusselt
number when calculated on grids with 17 x 17, 33 x 33, and 65 x 65 nodes. In
Figure 2, the peak geoid and topography at the center of the upwelling and the
globally averaged Nusselt number are shown as a percent deviation from the
results for the 65 x 65 uniform grid model. The symbols represent calculated

values, which are connected with line segments to illustrate the trends in the
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data. The triangles and solid lines represént results from the uniform grid
models. The squares and dashed lines represent results from the non-uniform
grid models. For calculations of Nusselt number (Figure 2c¢), the two grid types
give results that differ negligibly, so only one curve is shown. Based on the
behavior of the curves in Figure 2, it is clear that the model results would
change by only a small amount if carried out on grids larger than 65 x 65
nodes. SOmewhat surprisingly, Figures 2a and b indicate that the convergence
as a function of grid size is somewhat more rapid on the uniform grid than on
the non-uniform grid. Both grids‘do eventually converge to the same values,
however. In spite of the more rapid convergence of the uniform grid, in this
study we have generally made use of a non-uniform grid such as that shown in
Figure 1. We have done so because, as described in a later section, the high
vertical resolution (11-22 km) in the upper boundary layer of the non-uniform
grid enables us to mimic the variation of viscosity with depth expected in a

thermal boundary layer.

In the results which follow, our calculations are generally carried out on
33x 33 and 65 x 65 grids. All models with Ra>10° were calculated using both
grids to check convergence. Models with lower Rayleigh numbers were calcu-
lated on the 33 x 33 grid, with a selected set of these models checked for con-
vergence using the 65 x 65 grid. Based on the resolution tests in Figure 2 and
our other resolution tests, we believe that the calculations reported here are
typically within + 2 to 3% of their true values if calculated on a grid of infinite
resolution. One exception to this is the geoid anomalies calculated for models
which include an asthenosphere (Viscosity Model 3 of Figure 9). For these cal-
culations, our resolution tests suggest that our highest resolution results may

be as much as 5 to 10% higher than their true values at infinite grid resolution.

The other area of problematic resolution is the heat flow anomaly in
models with constant viscosity. Because the thermal boundary layer is thinnest
along the axis of the upwelling, our ability to resolve the boundary layer strue-
ture is poorest in this region. Our resolution studies show that for constant
viscosity models, even our highest resolution grids do not accurately determine
the heat flow anomaly near the plume axis, and for this reason, we do not show

heat flow anomaly results for the constant viscosity case in this paper.
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HoweVer, because the Nusselt number is defined in terms of a volume-averaged
heat flux, we are able to accurately determine Nu in these models, as shown in
Figure 2c. In most of the models deseribed in this paper, we have used a high
viscosity near-surface layer to mimic the effects of temperaﬁture—dependent
viscosity. The inclusion of such a layer tends to thicken the thermal boundary

layer, so that our heat flow anomaly results are well-resolved in these cases.

Basal versus Internal Heating

In terrestrial planets, mantle convection is driven by a combination of
basal heating, due to heat flowing from the core into the mantle, and internal
heating, due to radioactive decay and secular cooling of the mantle. In most of
the models presented in this paper, we assume an internal heating parameter of
©=0.0, and as noted earlier, we scale our models with a value of d appropriate
for whole mantle convection. We recognize that for whole mantle convection
models of the Earth, ¢4 must be closer to 1 than to 0. Nevertheless, we believe
that our models actually do provide a reasonable model for the thermal struc-
ture of mantle plumes. As we see it, there two key questions which must be
considered. Do plumes form if u is close to 1?7 If plumes do form, what is the
temperature contrast between a plume and the surrounding mantle? We

address these issues in turn.
Do Plumes Form in a Mostly Internally Heated Mantle?

The value of p is important because it determines whether or not plumes
can form. As shown in Figure 3a, if u=1, no bottom boundary layer forms and
consequently no plume can form. This is true whether or not viscosity is
assumed to be temperature-dependent (Parmentier et al., 1975). However, if
there is some basal heating (u<1), then a bottom boundary layer must form.
‘In a medium whose rheology is temperature-dependent, boundary layer insta-
bilities can then lead to the formation of narrow upwellings in a geologically
short period of time (e.g., Olson et al., 1987). Plumes will therefore form even

when u is large. An example of this is shown in Figure 3b, where we show a
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calculation at ©#=0.8 and Rap=1-105. A fising plume is clearly visible in this

model. For comparison, Figure 4 shows a model with u=0.0.

In spherical geometry, the heat flow out of the core is concentrated into an
area that is only about 25 % of the area of the Earth’s surface. Thus, for a
given p, a model calculated in spherical geometry will have a basal heat flux
per unit area which is nearly 4 times that of our cylindrical models. Thus,
plumes at large @ in spherical geometry will be even more pronounced than
indicated in Figure 3b. We therefore believe that our assumption of pu=0 does

not significantly affect our results.
The Temperature Contrast between Plumes and the Surrounding Mantle

The second key issue is the magnitude of the temperature contrast, 6T,
which exists between the plume and the surrounding mantle. (Note that 6T is
a different quantity than AT, which we used earlier to denote the variation of
temperature with depth. See Figure 4.) The value of §T is important because
the geoid anomaly, topographic uplift, and heat flow anomaly all scale linearly

with the size of the temperature contrast.

For AT=1000°C as given in Table 1, Figure 4 shows that 6T is about
300°C. Several lines of observational evidence suggest that this is in fact a rea-
sonable estimate of the temperature contrast between plumes and normal man-
tle. One type of constraint on the magnitude of 6 T comes from petrology. Wyl-
lie (1988) showed that 6T of up to 300°C is consistent with the petrology of
Hawaiian basalts. McKenzie and Bickle (1988) estimated that a temperature
contrast of about 200°C is necessary to produce the excess crustal thickness
observed at hotspots such as Iceland. This estimate presumably refers to the
average thermal contrast in a plume, so that the peak value must be somewhat
larger than 200°C.

Geophysical arguments can also help constrain 6 T. Richards et al. (1988)
developed a kinematic model of thé interaction between the radial outflow of
material away from a plume and the flow driven by plate motions. They con-
cluded that the stagnation line between the two flow regimes is consistent with
the observed shape of the southeastern end of the Hawaiian swell, provided

that T is around 300°C. In principle, observations of heat flow anomalies can



-19 -

also help constrain 6T. Our choice of thermal scaling predicts heat flow
anomalies that are consistent with observations, although as discussed in
greater detail in a later section, our heat flow results do not tightly constrain

the allowed value of 4 T.

As Figure 4 shows, § T is essentially the same as the temperature difference
which occurs vertically in the lower thermal boundary layer. We can therefore

obtain an independent estimate of § T from the relationship

F= 5_T , (15)
oz

where k is the thermal conductivity and 6z is the thickness of the lower thermal
boundary layer. As before, F is the heat flux into the base of the convecting

layer.

Gubbins et al. (1979) estimated a total core heat flow of 2.5—5.0-1012 W is
needed to drive the Earth’s magnetic dynamo. This corresponds to a value of F
between 16 and 33 mW m™2. On the basis of thermal history models, Steven-
son et al. (1983) estimated F for the Earth between 17 and 25 mW m~2. Mel-
chior (1986) gave an estimated lower bound on F of 20 mW m~2. Brown
(1986) estimated that k varies between 12 and 18 W m™! K™! at conditions
near the core-mantle boundary. He noted, however, that there is little experi-
mental constraint on this value and also gave several models with substantially
smaller k. 6z can be estimated from models of the seismie structure of the D"
layer. Young and Lay (1987) gave seismic velocity versus depth profiles that
indicate D" thicknesses of 200 to 280 km. If we adopt as representative values
F=25 mW m™2, k=15 Wm™! K™}, and =200 km, Equation 15 leads to
6 T=330°C.

“Obviously, each of these methods for estimating 6 T has uncertainties asso-
ciated with it. Taken together, the various constraints suggest that 6T is
likely to be in the range 200 to 300 °C for at least some plumes, with a prefer-
ence towards values at the upper end of the range. Sleep (1990) has recently
reached a similar conclusion. For Venus, the lack of a magnetic field has been
interpreted as indicating that F for Venus might be a only 50 to 80% of the
heat flux from Earth’s core (Stevenson et al., 1983). A straightforward
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application of Equation 15 would then suggest that 6T is also a up to a factor
of 2 lower on Venus than on Earth. However, the smaller value of F will also
lead to a thicker lower thermal boundary layer on Venus (larger 6z). Jeanloz
and Richter (1979) used a boundary layer analysis and showed that the tem-
perature contrast across a boundary layer should be proportional to FO75 . As
a result, § T for Venus should be similar to, but somewhat less than, its value
on Earth. Given the uncertainties in the precise value of 6T, we will use the

same thermal scaling for both planets.

Cylindrical versus Cartesian Geometry

Figure 5 illustrates the differences between the thermal structures for
Cartesian convection (Figure 5a) and cylindrical axisymmetric convection (Fig-
ure 5b). Both models are isoviscous, heated entirely from below, and have
Ra=10%. In the Cartesian model, the upwellings and downwellings exhibit a
180° rotation symmetry. In the cylindrical model, the temperature contrast
across the upwelling plume is much larger than the temperature contrast across
the downwelling. Because of the cylindrical geometry, the upwelling flow along
the axis of the cylinder is confined to a narrow area and hence must be quite
vigorous in order to transport the required amount of heat. On the other hand,
the downwelling return flow on the outer rim of the cylinder occurs in a larger
total area. Consequently, the thermal anomalies and flow velocities must be less
in the downwelling than in the upwelling, producing the asymmetric thermal

structure shown in Figure 5b.

In Figure 6, we compare the geoid anomalies and topographic uplifts as a
function of distance from the upwelling for the two thermal models of Figure 5.
The cylindrical results are shown as solid lines and the Cartesian results are
shown as dashed lines. The Cartesian results are calculated in a manner analo-
gous to that described above for the cylindrical models, except that the
wavenumber expansion is in terms of cos(k,x) rather than Bessel functions. The
Cartesian results are approximately symmetric about the center plane of the
convection cell, with the lows over the downwellings having 10 to 20% larger

amplitudes than the highs over the upwellings. The symmetry about the
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midplane is not exact because the thermal anomalies have a rotation symmetry

rather than a reflection symmetry.

In contrast, the results for the cylindrical model are noticeably asym-
metric, with the amplitudes of the highs being 2.5 to 3 times the amplitudes of
the lows. This reflects the asymmetry in the underlying thermal structure.
Notice also that the amplitudes of the geoid and topography highs in the
cylindrical case are about twice as large as in the Cartesian case. This reflects
the more concentrated upwelling flow in the cylindrical case. Figure 6 clearly
shows that it is important to choose the correct geometry when modeling the
geoid and topography of mantle plumes. Given the evidence cited above for
quasi-cylindrical upwellings under hotspots such as Hawaii, we believe that our
models are more realistic than previously published models that used Cartesian

geometry.

Although the geoid and topography are distinctly different for cylindrical
and Cartesian geometries, the heat transport properties of the two geometries
are quite similar. For isoviscous cylindrical models, we find Nu=10.42 at
Ra=10° (Table 2, Model 6) and Nu=21.73 at Ra=10°% (Table 2, Model 10).
Blankenbach et al. (1989) recently published a benchmark comparison of ten
different Cartesian convection codes. They gave consensus estimates of
Nu=10.53 and 21.97 for the cases Ra=10° and 10% in Cartesian geometry.
These results differ from our cylindrical results by only about 1%95. Nusselt
numbers for axisymmetric, isoviscous convection were previously published by
Jones et al. (1976). Although our models do not correspond exactly to any of
the models in Jones et al., their Nusselt number when the Rayleigh number is
100 times the critical value is about 10% less than expected from our Ra-Nu

curve in Figure 13c.

Parameterization of Viscosity in the Upper Thermal Boundary Layer

B‘eca‘use viscosity is a strong function of temperature, it is expected to
vary by many orders of magnitude between the surface of a planet and the

convecting interior. Although our models do not include temperature-dependent
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rheology, we have attempted to mimic the effect of temperature on boundary
layer rheology by imposing a vertical variation of the form

s(1- %

n(z) = 10 LA (16)
Equation 16 defines a viscosity profile which is normalized relative to a mantle
viscosity of 1.0. The surface viscosity (at z=0) is 105, and the viscosity
decreases exponentially with depth, reaching n=1 at z=7, which defines the
base of the high viscosity zone. Our parameterization of 7(z) within the mantle
(z>y) is discussed in the next section. In practice, equation 16 is approximated
by a sequence of 3 to 7 step function changes in 7, depending on the choice of
~. For our normal choices of S=3 and ~+=0.0469, six steps are used, with the

viscosity changing by a factor of V10 at each step.

We have investigated the effects of various values of S and 7y via two sets
of model calculations. In the first, illustrated in Figure 7, we vary S and hold ~y
fixed at a non-dimensional value of 0.0469, which corresponds to a dimensional
depth of 130 km. This value of «y is chosen to correspond to the thickness of
the lithosphere in old oceanic regions. In these calculations, the viscosity within
the mantle (below the upper boundary layer) is independent of depth and the
Rayleigh number is 10°. We vary S between 0, corresponding to a constant
viscosity model, and 5, corresponding to a surface viscosity that is 10° times

the interior viscosity.

The effects that variations in S have on the geoid anomaly, topographic
uplift, Nusselt number, and heat flow anomaly are shown in Figures 7a, b, c,
and d, respectively. The geoid anomaly, topographic uplift, and heat flow ano-
maly are all evaluated at the plume axis. In each graph, the triangles represent
the calculated model points, which are connected by line segments for ease of
perceiving trends in the results. Each of the curves in Figure 7 drops sharply as
the surface viscosity increases from 1 to 10% and changes much more gradually
with further increases in surface viscosity. The sharp drop in Nu and heat flow
anoma‘dy with increasing S is easy to understand, because increasing the surface
viscosity forces a thickening of the upper boundary layer and leads to smaller

heat flows. The decrease in geoid and topography with increasing S may seem
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more surprising, because a high viscosity surface layer enhances the coupling
between the convecting layer and the surface, which might be expected to lead
to larger topographic uplifts and geoid anomalies. Although this coupling effect
certainly occurs, it is more than offset by changes in the thermal structure that
are induced by changes in S. As an examination of the isotherm contours in
Figures 4 and 5b shows, the horizontal variations in temperature within the
mantle are much larger in isoviscous models (Figure 5b) than in models that
include a high viscosity surface layer (Figure 4). The larger temperature con-
trasts in the isoviscous case lead to the larger geoid and topography shown in

Figures 7a and b.

In a second series of model calculations, we hold the surface viscosity fixed
using S=3 and vary < over the range 0.0234 to 0.0547, which corresponds to
dimensional lid thicknesses of 65 to 150 km. The effects of varying -y over this
range are shown in Figure 8, which shows how géoid anomaly, topographic
uplift, Nusselt number, and heat flow anomaly vary with ~. The triangles
represent calculated points and the connecting line segments are least squares
fit to the model results. Figure 8 shows that over the range of lid thicknesses
that we have investigated, the geoid anomaly, topographic uplift, and Nusselt
number only vary by 5 to 10%. The variations in heat flow anomaly are much

larger, about 40%.

In the work that follows, we have adopted S=3 (surface viscosity = 10°%)
and ~=0.0469 (Lid thickness = 130 km) as the parameters that define the lid
viscosity in our models. Although the viscosity in the boundary layer of real
planets clearly varies by much more than the 3 orders of magnitude assumed
here, the results of Figure 7 make it clear that results obtained using a viscos-
ity contrast of 10% will not differ significantly from models with much larger
viscosity contrasts. Our nominal lid thickness of 130 km is comparable to the
lithospheric thickness in the old parts of oceanic plates. This is a reasonable
choice, because several of the hotspots of greatest interest, such as Hawaii,
Cape Verde, and Bermuda, are located on oceanic lithosphere of age 90 million
years or greater. Of course, some other hotspots, such as Iceland and the
Azores, are located on spreading centers, where the lithospheric thickness is

nearly 0. On Venus, the high surface temperature implies that the boundary
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layer thickness should be somewhat less than on Earth. Kaula and Phillips
(1981) estimated a thermal boundary layer thickness of slightly less than 100
km for Venus. Figure 8 shows that the difference between lid thicknesses of 100
and 130 km is slight for both the geoid and the topography. In «recent years, 2a
number of numerical models have used a conductive lid, in which both the
vertical and horizontal velocity components are set to zero, as a means of simu-
lating the thermal boundary layer structure (Courtney and White, 1986;
Detrick et al., 1986; Robinson et al., 1987; Ceuleneer et al., 1988). We believe
that our models, in which the viscosity varies continuously with depth, are
somewhat more realistic than models in which there is a discrete change
between conduction and convection. In practice, however, the difference

between the two approaches is likely to be small.

Effects of Variation in Mantle Viscosity with Depth

The effects of depth variation of viscosity have been widely recognized
both in studies of long-wavelength geoid anomalies (Richards and Hager, 1984;
Ricard et al., 1984; Kiefer et al., 1986; Hager and Clayton, 1989; Hager and
Richards, 1989) and in studies of the topographic uplift and geoid anomalies of
individual mantle plumes (Robinson et al., 1987; Richards et al., 1988; Robin-
son and Parsons, 1988; Ceuleneer et al., 1988). Within the mantles of silicate
planets, the viscosity may vary continuously with depth due to the effects of
pressure on rheology. The viscosity may also undergo discrete jumps at phase
changes. In this paper, we consider the effects 6f three layers of constant viscos-
ity. The transition depths between the layers are at non-dimensional depths of
~4=0.143 and -y =0.25, corresponding to dimensional depths of 400 and 700
km. This choice of parameterization was made both because it provides a con-
venient way of parameterizing 7(z) with 2 minimum number of parameters and
also because it enables a straight forward comparison with results obtained by
Hager'and Clayton (1989) and Hager and Richards (1989) on the depth varia-
tion of mantle viscosity on Earth. In the following discussion, we refer to the
layer between 130 and 400 km as the asthenosphere, the layer between 400 and

700 km as the upper mantle, and the layer below 700 km as the lower mantle.
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‘Figure 9 shows the three standard viscosity models used in this study.
The viscosity profiles are all normalized relative to the lower mantle viscosity.
All three models have a high viscosity lid defined by the parameters y=0.0469
and S=3, as described in the previous section. Viscosity model 1 (Figure 9a)
has a high viscosity lid and an isoviscous mantle. In viscosity model 2 (Figure
gb), the asthenosphere and upper mantle layers have a viscosity that is 0.1
times the lower mantle viscosity. In viscosity model 3 (Figure 9¢), the astheno-
sphere viscosity is 0.01 times that of the lower mantle and the upper mantle

viscosity is 0.1 times the lower mantle viscosity.

In models in which viscosity varies with depth, one must choose which
viscosity to use in defining the Rayleigh number. One possibility is to attempt
to define a vertically averaged viscosity. An alternative method, followed here,
is to choose one of the layer viscosities to define Ra. We use the lower mantle
viscosity to define Ra. This is a reasonable choice because the lower mantle
layer always occupies at least 75% of our model cylinder. Robinson et al.

(1987) and Ceuleneer et al. (1988) used a similar procedure in their calculations.

Figure 10 shows profiles of geoid anomaly, topographic uplift, and heat
flow for our three viscosity models at Ra=10%. The results for viscosity model
1 are shown in solid lines, viscosity model 2 results are in dashed lines, and
viscosity model 3 results are in dot-dashed lines. These models correspond to
models 23, 26, and 29 of Table 2. The presence of a low-viscosity astheno-
sphere reduces the efficiency with which deep convective stresses are able to
couple with the surface. Thus, viscosity model 3 produces a weaker topographic
uplift than is produced by the other models. As shown in Figure 10b, the peak

topographic uplift is 7.4 km for viscosity model 1 and 3.6 km for viscosity
model 3.

The geoid anomaly depends on contributions both from the mass
anomalies at the uplifted surface and on thermally induced density anomalies
within the convecting mantle. As Figure 11 shows, changing the viscosity
model‘ at fixed Ra does have some effect on the thermal structure. The most
pronounced effect is in the region of the low viscosity zone. In this region, the

plume is significantly narrower than in models without a low viscosity zone. As
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noted by Richards et al. (1988), when a parbel of material enters the low viscos-
ity zonme, its velocity increases, so conservation of mass requires that the plume
become narrower. Also, in models with a low viscosity zone (Figure 11b), the
near-surface outflow of material away from the plume is confined to the low
viscosity layer, whereas in models without a low viscosity zone (Figure 11a),
the outflow occurs over a broader depth range. The decreased positive mass
anomaly at the uplifted surface in models with a low viscosity zone is more
important than the decreased negative mass anomalies within the mantle, so
that inclusion of a low viscosity zbne leads to significant decreases in the geoid
anomaly. As shown in Figure 10a, the peak geoid anomaly decreases from 165
meters for viscosity model 1 to only 25 meters for viscosity model 3. If the
asthenosphere viscosity were decreased below 0.01, then the additional decrease
in topographic uplift could lead to a geoid anomaly that is negative over the

upwelling.

Heat flow profiles are shown in Figure 10c. This figure suggests that the
sufface heat flow is relatively insensitive to the choice of viscosity model. How-
ever, as discussed in the next section, this result may be incorrect. It seems
likely that the surface heat flow should actually be somewhat higher for viscos-

ity model 3 than for the other two models.

Effects of Variation in Rayleigh Number

In Figures 12 and 13, we examine how varying the Rayleigh number effects
the geoid, topographic uplift, and heat flow associated with a mantle plume.
In Figure 12, we show profiles of these quantities as a function of distance from
the center of the plume for Ra=10° (solid line), Ra=3-10° (dashed line), and
Ra=10% (dot-dashed line). The results are for our viscosity model 3 and

correspond to Models 27, 28, and 29 of Table 2.

Figures 12a and b show that both the geoid anomaly and the topographic
uplift are decreasing functions of Ra. Using the scaling parameters of Table 1,
the peak geoid anomaly over the upwelling decreases from 30 meters at

Ra=10° to 25 meters at Ra=10%. As we show in Figure 13a, the geoid
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anomalies of our other viscosity models are much more sensitive to variations
in Ra. The peak topographic uplift over the upwelling also decreases in ampli-
tude, from 5.6 km at Ra=10° to 3.6 km at Ra=10°.

In performing the calculations shown in Figure 12, we have held the quan-

pga AT d3
K

tity fixed, so that increasing Ra is equivalent to decreasing 7. As

shown in our earlier discussion of the calculation of topographic uplifts, this
assumption implies that the dimensional normal stress, 7,,, and hence the
topographic uplift, is a decreasing function of Ra. The physical reasons that
cause the topographic uplift to decrease with increasing Ra are readily under-
stood. The surface topography produced by mantle convection receives contri-
butions both from thermal anomalies in the near-surface thermal boundary
layer and from thermal anomalies in the upwelling and downwelling limbs of
the convection cell. As one proceeds to higher Ra, the upwellings, downwellings,
and thermal boundary layers all become narrower. (Compare Figures 4 and
11a.) Density anomalies within the thermal boundary layer produce topography
in a manner which is essentially equivalent to Pratt compensation, so that as
the boundary layer is thinned, the amount of topographic uplift that it can
support is decreased. The narrowing of the upwellings and downwellings with
increasing Ra implies that in the spectral domain, there is an increasing
amount of power at short wavelengths. These short wavelengths do not couple
as efficiently to the surface as longer wavelengths do, and hence they produce
less topographic uplift. Together, these two eflfects produce the observed

decrease in topographic uplift with increasing Ra.

In contrast with our assumption, Davies (1986) increased Ra by increasing
AT, which implies that that topographic uplift increases with increasing Ra.
Although controlling the value of Ra by varying the value of AT is a fluid
dynamically acceptable choice, it produces misleading results when applied to
real planets. Because viscosity is a strong function of temperature, small
increases in AT will lead to large decreases in . Thus, we prefer to hold AT

constant and vary Ra by varying 7.

The geoid anomaly over a mantle plume is the sum of positive contribu-

tions from topographic uplift of the surface and of the core-mantle boundary
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and a negative contribution from hot, low density material in the upwelling
plume. As shown above, the surface topographic uplift is a decreasing function
of Ra, and in the same manner, the core-mantle boundary uplift is also a
decreasing function of Ra. The narrowing of the upwellings and downwellings
with increasing Ra implies that their contribution to the geoid anomaly is also
a decreasing function of Ra. The net sum of these contributions leads to an
overall deycreas_e. in the geoid anomaly with increasing Ra, as shown in Figure

12a.

Figure 12¢ shows profiles of the surface heat flow anomaly versus distance
from the upwelling plume for three different values of Ra. The line patterns are
the same as used in Figures 12a and b. As one proceeds to higher Ra, the
thinner thermal boundary layer will of course lead to higher average heat flow,
and hence to higher Nusselt numbers. As Figure 12¢ shows, increasing Ra also

leads to increasing values of the surface heat flow anomaly.

In Cartesian geometry, it is well known that if the Rayleigh number is
high enough that well developed boundary layers form, then the Nusselt
number can be written as a power law function of Ra. A similar relationship
between Ra and Nu also exists in cylindrical geometry, and relationships can
also be found between Ra and the geoid, the topographic uplift, and the peak
heat flow. In Figure 13, we show the relationships that we find between Ra and
the other quantities. These results are plotted as log-log figures, so that a
power law relationship follows a straight line. The triangles are results for con-
stant viscosity, the squares are for viscosity model 1, the pentagons for viscos-
ity model 2, and the stars for viscosity model 3. In each case, the lines
represent least squares best fitting lines. The least squares fits were calculated
using only points with Ra >10°. For the constant viscosity model, the derived
power laws also provide a good fit to model results with Ra as low as
Ra=23-10*. For viscosity model 1, the results for Ra=10* begin to deviate
from the power law relationship. This reflects the absence of well developed

boundary layers at this relatively low Ra.

Table 3 shows the derived power law parameters. They are expressed in

terms of f(Ra)=a-(Ra)®, where a and b are constants and f(Ra) is a quantity
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such as geoid or Nu. The geoid, topography, and heat flow results refer to the
peak values of these quantities along the axis of the upwelling. They are
dimensionalized using the values in Table 1 and are in units of meters (geoid),
kilometers (topographic uplift), and mW m~2 (heat flow). |

Figure 13a shows that the geoid anomalies for viscosity model 3 are a
much weaker function of Ra than is observed for the other viscosity models.
We find a power law exponent of only b=-—0.084 for viscosity model 3,
whereas the other viscosity models have exponents in the range -0.27 to -0.29.
There is also some suggestion of curvature in the Ra-geoid relationship for
viscosity model 3, but we can not fully define this on the basis of only 3 model
points. In the Cartesian geometry results of Robinson and Parsons (1988, Fig-
ure 10), the geoid anomaly also appears to be a weaker function of Ra in
models with a low viscosity layer than in models without a low viscosity layer.
However, this flattening of the Ra-geoid relationship does not appear to be as
strong in the work of Robinson and Parsons (1988) as it is in our results. A
quantitative comparison can not be made because they did not tabulate power

law parameters for their results.

We noted earlier that for our constant viscosity models, our values for Nu
agree closely with those observed in Cartesian geometry. Consequently, the
power law parameters for the two geometries are also quite similar. For exam-
ple, Ho-Liu et al. (1987) gave b=0.326 for the isoviscous Cartesian case. Using
the same volume averaging technique as used by Ho-Liu et al.,, we find

b =0.319 for our isoviscous cylindrical models.

Although all of the models reported in this paper use a free-slip top boun-
dary, the models with a high viscosity lid have very low flow velocities at the
top surface and behave as if the top surface were nearly rigid. In Cartesian
geometry, both analytic and numerical studies of convection with rigid boun-
daries show that the power law exponent in the Ra-Nu relationship is about 0.2
(Roberts, 1979; Mitrovica and Jarvis, 1987). Our high viscosity lid models pro-
duce similar results, with b in the range 0.17 to 0.20 for our three viscosity
models. For a given lower mantle viscosity, viscosity model 3 has a smaller

vertically-averaged viscosity than the other two viscosity models. Consequently,
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at a given Ra, viscosity model 3 has a higher Nu than the other two viscosity

models (Figure 13c).

The heat flow anomaly results for the three models with high viscosity lids
show vastly different slopes when plotted as a function of Ra. The three models
give virtually the same heat flow at Ra=10%. If projected to still higher Ra,
viscosity model 1 would predict a higher peak heat flow than the other models.
Given that the overall heat flow is highest for viscosity model 3, it seems
surprising that viscosity model 1 could ever have a higher peak heat flow than
viscosity model 3. This suggests that the heat flow systematics given in Figure
13d may not provide a useful basis for projecting the behavior of the peak heat
flow at higher Ra.

Effects of Variation in Aspect Ratio

- The aspect ratio of a convection cell is defined as the distance from the
upwelling to the downwelling, divided by the depth of the cell. Until now, we
have assumed an aspect ratio of 1. This is consistent with the experimental
results of Nataf and Richter (1982). On the other hand, Christensen and Yuen
(1988) numerically studied a two-dimensional Cartesian box of aspect ratio 12.
The individual convection cells that developed within the larger box typically
had an aspect ratio of about 1.5, with some variation about the mean.
Hotspots in the Pacific Ocean, such as Hawaii, might seem to provide evidence
for plume aspect ratios exceeding 2. Although material that comes up through
the Hawaiian plume is eventually subducted in the western Pacific, we argue
that this is not an appropriate measure of the horizontal scale of mantle plume
flow. For the purpose of understanding the thermal structure of an upwelling
plume, we are actually more interested in the area at the base of the convecting
layer that feeds each upwelling. Judging from the spacing between hotspots, an
average aspect ratio for terrestrial mantle plumes is about 0.5, although there
is likely to be some variation about this value. For example, vigorous plumes
such as Hawaii may have "feeding zones" in the lower thermal boundary layer

that are larger than normal, implying aspect ratios that are also larger than
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normal. In this section, we examine how varying the aspect ratio over the

range 0.5 to 1.4 affects a plume’s structure.

Figure 14 illustrates how varying the aspect ratio affects the thermal struec-
ture of a plume. Figure 14a shows a cylindrical model with a hiéh viscosity lid
(viscosity model 1), Ra=10% and an aspect ratio of 1.4. In comparison with a
similar model of aspect ratio 1.0 (Figure 4), the upwelling plume in Figure 14a
is significantly broadened. This broadening is necessary to transport the addi-
tional heat introduced at the base of the cylinder when the aspect ratio is
increased. A similar broadening is also observed with increasing aspect ratio for
isoviscous cylindrical models. Figure 14b shows an isoviscous Cartesian model
with Ra=10° and aspect ratio 1.4. Comparing Figures 5a and 14b, we see
that very little broadening of the upwellings and downwellings occur in the

large aspect ratio Cartesian case.

Figure 15 shows how varying the aspect ratio affects the geoid anomaly,
topographic uplift, and Nusselt number for cylindrical geometry plumes. The
models shown in Figure 15 have Ra =10°, use viscosity model 1, and vary the
aspect ratio. The geoid anomaly and topographic uplifts refer to the peak
values on the axis of the cylinder, while the Nusselt number is a volume-

average.

As shown in Figures 15a and b, both the geoid and the topography are
approximately linear functions of the aspect ratio. The solid lines are least
squares best fits and the triangles are model results. These fits can be

expressed as

ON ’
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In equation 17a, 6N is the geoid anomaly, 6N, is the geoid anomaly at aspect
ratio 1.0, and A is the aspect ratio. Similarly, in equation 17b, éh is the topo-
graphic uplift and 6h, is the topographic uplift at aspect ratio 1.0. Although

the formal linear correlation is good for the topography results (r? =0.99), there
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is cleaﬂy also some concave downward curvature in the results shown in Figure
15b. The broadening of the plume with increasing aspect ratio implies an
increased amount of long-wavelength loading. Because long wavelengths couple
more efficiently to the surface than short wavelengths, this impiies an increas-
ing topographic uplift with increasing aspect ratio. The increased mass

anomalies due to the higher topography leads to a larger geoid.

Figure 15¢ shows that Nu has a maximum value between aspect ratios 0.8
and 1.0. In Cartesian geometry, both Hansen and Ebel (1984) and Olson
(1987) found Nu maxima at aspect ratios slightly less than 1.0.

Time-Dependent Convection

As noted earlier, our finite element calculations use an implicit time step-
ping routine. This allows us to use time steps that ére significantly larger than
allowed by the Courant condition in explicit time stepping routines. As a
result, we are able to obtain steady-state solutions efficiently whenever such
solutioné exist. Using this technique, we have found steady solutions for all of
the models listed in Table 2, where steady-state is defined as no change in
either the heat flux or kinetic energy of the flow at the level of 1 part in 10° for
100 or more time steps. However, use of large time steps with an implicit tech-
nique may produce an apparently steady solution that would actually be time-
dependent if calculated using the Courant condition time-step. We have there-
fore examined several of our models using the Courant time-step and running
the calculation for the equivalent of several over-turn times in order to deter-

mine if the solutions are truly steady-state.

Several parameters are believed to affect the development of time-
dependent convection. Jarvis (1984) suggested that high Rayleigh numbers
should favor time-dependent convection. Ceuleneer et al. (1988) found that pro-
nounced contrasts between upper and lower mantle viscosities also favors the
development of time-dependence. Based on these considerations, we have tested
our model 29 for possible time-dependence. This model uses Ra=10°% and

viscosity model 3 (asthenosphere viscosity = 0.01:lower mantle viscosity).
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When calculated on a 65 x 65 grid using a Courant time-step, we find that this
model is weakly time-dependent. Specifically, we observe the formation of
instabilities in the upper thermal boundary layer that detach from the top
boundary layer and descend along the outer side wall as discrete blobs. The
upwelling plume, in contrast, appears to be steady. Over the course of several
’over-turn times, we observed variations in the peak geoid and peak topographic
uplift of 3 to 4% and variations of 2% in the volume-averaged Nusselt number.
Because of the relatively weak time-dependence observed for this model, we
have not tested our other Ra=10% models for time-dependence. At higher
values of Ra, however, it seems possible that all three of our standard viscosity
models will become time-dependent. Inclusion of temperature-dependent rheol-

ogy would probably also enhance the development of tvime-dependent flow.

Several recent studies have shown that large aspect ratios can lead to
time-dependent convective flow (Christensen, 1987; Hansen and Ebel, 1988;
Weinstein et al., 1989). We have therefore tested our model 34 for possible
time-dependence. This model was calculated on a 33 x 33 grid. It has Ra=10°
and an aspect ratio of 1.4 and uses viscosity model 1. When calculated for 1000
Courant time-steps, we find no evidence for time-dependent behavior in this
model. We have not tested our models that use internal heating for possible

time dependence.

Comparison of Model Results and Observations

In this section, we compare the results of our plume models with observa-
tions. We consider two terrestrial hotspots, Hawaii and Cape Verde. Hawaii is
chosen because it is the archetypal hotspot. Cape Verde is chosen because it is
a well studied hotspot on a slow moving plate. We also briefly discuss the

applications of our models to Beta Regio, a highland structure on Venus.

Based on modeling of the Earth’s long-wavelength geoid, Hager and col-
leagues have estimated the variation of viscosity as a function of depth in the
Earth’s mantle (Hager and Richards, 1989; Hager and Clayton, 1989). Their

preferred Earth model most nearly resembles our viscosity model 3. The main
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difference between their preferred model ahd our model 3 is in the astheno-
sphere viscosity. Hager and colleagues preferred an asthenosphere viscosity that
is 0.003 times the lower mantle viscosity, a factor of 3 less than the astheno-
sphere viscosity used in our model 3. As Figure 10 shows, uhsing a smaller
asthenosphere viscosity will decrease the amplitude of both the geoid and the
topographic uplift. Our parameterization of the viscosity within the upper
boundary layer also differs from that used by Hager and colleagues, but this is
unlikely to significantly affect the geoid and topography results.

Hager and Clayton (1989) used their estimated viscosity profile, estimates
of mantle density anomalies inferred from seismic tomography, and the Earth’s
observed heat flow to place bounds on the lower mantle viscosity. They
estimated a lower mantle viscosity of at least 3:10% Poise is necessary in order
to prevent the heat flow out of the mantle from exceeding the observed value.
Using this value of 7 along with the parameter values from Table 1 implies
that Ra is about 7-10°. On this basis, we calculated models with Ra up to 108,
More recently, Hager (1989) has lowered this estimate to 3-10%2 Poise. In the
earlier work of Hager and Clayton (1989), tomographic data on the density
heterogeneity spectrum was used only out to spherical harmonic degree 6, and
the density heterogeneity spectrum was assumed to be relatively flat at shorter
wavelengths. However, Gudmundsson et al. (1990) recently found that in the
Earth’s lower mantle, the heterogeneity spectrum is strongly dominated by the
longest wavelengths. Hager (1989) incorporated this effect into his new model,
and also considered the effects of a low-viscosity zone in the D" layer. With
these two effects included in the model, he finds that a lower mantle viscosity
of 3:10%2 Poise is consistent both with the observed heat flow and with the
observed plate velocities. This new viscosity estimate implies that Ra is about
7-108 for the Earth. Because of the computational expense of calculating prop-
erly resolved convection models at high Ra, we have not calculated models
beyond Ra=10%. However, we can use the power law relationships derived
above to estimate what the geoid, topographic uplift, and heat flow should be
at higher Ra and can then compare these projections with observations. Table
4 shows the results of these power law projections. For each viscosity model,

the results at Ra=10°% are based on our model calculations and the values at
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Ra=510% and 107 represent power law projections. The two higher values of
Ra were chosen to bracket the estimate of 7-10° derived using Hager’s (1989)

lower mantle viscosity.

‘Table 4 shows that for viscosity model 3 and Ra between i"rlO6 and 107 ,
Nu should be between 15 and 17. An estimate of Nu for the Earth can be
derived from the average boundary layer thickness. For isoviscous Rayleigh-
Benard convection in Cartesian geometry, the temperature contrasts across the
upper and lower boundary layers are the same (Figure 5a). One can therefore
estimate Nu from the ratio of half the depth of convecting layer to the boun-

dary layer thickness,

Nu-_-ﬂél) , (18)

where d is the convecting layer thickness and ¢ is the thickness of the boundary
layer. Inclusion of temperature-dependent rheology, spherical geometry, and the
depth-dependence of the thermal diffusivity will alter the relative values of the
temperature contrasts across the two boundary layers, but Equation 18 is still
useful as a means of estimating an approximate value of Nu. Oceanic plates on
Earth have a maximum thickness of 125 km and average about 90 to 100 km
thick. Assuming whole mantle convection, Equation 18 then implies Nu in the
range 14.5 to 16, consistent with our viscosity model 3 results and our pre-
ferred range for Ra. Given that mantle plumes probably transport only a
small fraction of the Earth’s mantle heat flow (e.g., Davies, 1988; Sleep, 1990),
it may seem inappropriate to compare the Nusselt numbers from our single cell
plume models with estimates of the Earth’s Nu. However, in a series of models
at fixed Rap and variable y, we find that Nu varies by only about 10 % as "
varies from 0 to 1. We therefore believe that it is reasonable to compare our

model Nusselt numbers with the Earth’s Nusselt number.

The Cape Verde Rise

The Cape Verde Rise is a hotspot swell on the African plate. Extensive
volcanic activity extends back to 20 million years ago, although Courtney and
White (1986) summarize evidence suggesting that some volcanic activity

extends back to 50 million years ago, or possibly to even earlier dates. The
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velocity of the African plate in the vicinity of Cape Verde is quite low,
although the precise value depends on the choice of location for the pole of
rotation. Davies (1988) suggests a velocity of less than 0.5 cm year~!, while
Sleep (1990) suggests a velocity of 1.2 to 1.8 cm year~ !, Thesé velocities are
sufficiently low that the lithosphere should be able to reach thermal equilibrium
’With the underlying plume.

Courtney and White (1986) estimated a peak geoid anomaly of 7.6 + 0.3
meters. Crough (1982) estimated a peak geoid anomaly of 8 meters, and
McNutt (1988) estimated a peak geoid anomaly of 12 meters. The peak topo-
graphic uplift was estimated to be 1.9 + 0.2 km by Courtney and White
(1986), 2 km by Crough (1982), and 2.4 km by McNutt (1988). The different
estimates are apparently due to different methods of filtering the data. Crough
(1982) estimated a swell width of 1600 km. Courtney and White (1986) meas-
ured the heat flow at 7 points on the Cape Verde Rise and estimated that the
peak heat flow anomaly is 16 £ 4 mW m™2 higher than it should be for 125
million year old oceanic crust. Von Herzen et al. (1989) reexamined Courtney
and White's heat flow data and suggested that the peak heat flow anomaly
might be only 5 to 10 mW m™2.

In comparing the Cape Verde Rise geoid anomaly and topographic uplift
with the model results in Table 4, it is clear that viscosity models 1 and 2 can
not satisfy the observations for reasonable values of Ra. Viscosity model 2
would require Ra=10%® and viscosity model 1 would require an even larger Ra
to predict geoid and topography values comparable to those observed. On the
other hand, viscosity model 3 predicts a peak geoid anomaly of 22 meters and a
peak topography uplift of 2.3 to 2.7 km if Ra is in the range 5:10°% to 107. The
predicted range of uplifts overlaps the observational estimates of 1.9 to 2.4 km,
but the predicted geoid is a factor of of 2 to 3 higher than observed. If the
asthenosphere viscosity is reduced by a factor of about 2 from its value in
viscosity model 3, then the predicted uplift would be reduced by a few hundred
meters and the predicted geoid would be reduced into the observed range of 8
to 12 meters. We conclude that a viscosity structure similar to that favored by
Hager and Clayton (1989) and Hager and Richards (1989) is consistent with the

geoid anomalies and topographic uplifts observed on the Cape Verde Rise.
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One possible difficulty with our models is in the width of the topographic
swell. As noted above, the Cape Verde Rise is about 1600 km wide, and many
other terrestrial hotspots have comparable dimensions. Our models, on the
other hand, predict elevated regions that are about twice this size. One way to
reduce the model swell width would be to assume an aspect ratio of less than 1.
’Temperature-dependent viscosity should also tend to make plumes narrower
and may help to explain the difference between the model results and the

observed swell widths. Further study will be necessary to assess this.

Table 4 shows that viscosity model 3 predicts a peak heat flow anomaly of
about 9 mW m™2. This is nearly two standard deviations less than Courtney
and White’s (1986) heat flow estimate but is within the range of values
estimated by Von Herzen et al. (1989). There are several difficulties in compar-
ing our models with observations. As noted above, our power law slope for the
viscosity model 3 heat flow seems anomalously low. At Ra=10°%, viscosity
model 3 produces a heat flow anomaly of 7.3 mW m™2. Assuming that this
value is correct and that viscosity model 3 should really have the same power
law slope as viscosity model 1 (b = 0.258), then this projects to a peak heat
flow of 24 mW m™2 at Ra=107. These two estimates (9 and 24 mWm~2 prob-
ably bound the true heat flow anomaly of viscosity model 3 at Ra=10".
Although these bounds encompass Courtney and White’s (1986) observations,
the uncertainties in the model results are too large for the heat flow data to

provide useful constraints.

Two further difficulties also exist. We have used an imposed high-viscosity
lid to mimic the effects of temperature-dependent viscosity. In our models, the
lid is of constant thickness, whereas in the temperature-dependent viscosity
case, the high viscosity layer would be thinner near the plume axis than else-
where. This should lead an increased heat flow anomaly near the plume axis in
the temperature-dependent viscosity case. This problem might also affect the
heat flow results of Courtney and White (1986) and of Robinson and Parsons
(1988), who used a constant thickness conductive lid in their modeling. On the
other hahd, the formation of magma will tend to buffer the temperature, and
hence the heat flow anomaly, in the upwelling plume. This buffering effect

could be quite large, with Courtney and White (1986) estimating a decrease in
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the heat flow of as much as 15 mW m™2. Pyresumably, these two effects at least
partially offset one another, but the quantitative balance between the two has

not yet been assessed.
The Hawazian Swell

The Hawaiian Swell is generally believed to be the most vigorous hotspot
on Earth (Davies, 1988; Sleep, 1990). Volcanic activity in the Emperor
seamounts extends back to at least 75 million years ago (Duncan and Clague,
1985). Evidence for any earlier volcanic activity that may have been produced

by the Hawaiian hotspot has been subducted into the Aleutian trench.

Estimates of the geoid anomaly at Hawaili range between 8 meters
(Sandwell and Poehls, 1980; McNutt and Shure, 1986) and 13 meters (Richards
et al., 1988). This is similar to the range of geoid anomalies reported for the
Cape Verde Rise. On the other hand, estimates of the topographic uplift of the
Hawaiian Swell in regions away from shield volcanoes is slightly more than 1
km (Sandwell and Poehls, 1980; Crough, 1983), much less than that observed
for Cape Verde. One possible explanation for this difference is that the
asthenosphere beneath Hawaii is either thicker or less viscous than it is beneath
Cape Verde. This could account for the lower topographic uplift at Hawaii, but
would also have a large effect on the geoid. Alternatively, because the Pacific
plate is moving over the Hawaiian hotspot at nearly 10 cm year™! (Davies,
1988), the lithosphere may not reach thermal equilibrium with the underlying
plume. This would imply that the actual topographic uplift should be less than
predicted by our steady-state models. The effect on the geoid anomaly in this

case could be relatively small.

There is currently some uncertainty about the magnitude of the heat flow
anomaly on the Hawaiian Swell. Von Herzen et al. (1982) obtained data for 8
sites along the strike of the swell between Hawaii and Midway. This data set
shows a peak heat flow anomaly of about 8 mW m™2. More recently, Von Her-
zen et al. (1989) measured the heat flow at 8 sites on a survey line perpendicu-
lar to the strike of the swell. The new survey results suggest that the heat flow
on the swell may not be significantly higher than for points off of the swell.

Von Herzen et al. (1989) suggested that the lack of a detectable heat flow
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anomaly may be due to magmatic buffering of the plume’s thermal structure.
Given the uncertainties in both the observations and in our model heat flow

results, a detailed comparison is unwarranted at the present time.
Beta Regio, Venus

Beta Regio is one of several prominent highland regions on Venus that are
sometimes collectively referred to as the Equatorial Highlands. Beta reaches a
peak elevation of about 4.5 km and has a quasi-circular planform, with a diam-
eter of 2500- to 3000 km (U. S. Geological Survey, 1984). The peak geoid ano-
maly, based on spherical harmonic degrees 2 to 18, is 90 meters and is strongly
correlated with the topography (Bills et al., 1987). Airy isostasy models of
Beta’s gravity anomaly require compensation depths in excess of 300 km (e.g.,
Esposito et al., 1982; Phillips and Malin, 1983). This is implausibly large,
implying that most of the geoid and topography are related to density
anomalies within the convecting mantle. Radar observations indicate the pres-
ence of shield volcanoes and rift zones (Campbell et al., 1989). All of these

observations are consistent with the presence of an upwelling plume.

The results in Table 4 must be modified in two ways before applying them
to Venus. Because Venus lacks an ocean, the topographic uplifts given in Table

4 must be multiplied by a factor 0.7 (Equation 11). The geoid anomalies in

Table 4 must be multiplied by the factor %=1.10, which is the ratio of the

gravitational accelerations on the two planets. Venus and Earth are similar in
size and presumably also in total heat flow. Assuming that the two planets
have similar Ra, it is clear that viscosity model 3 can not account for the
observed geoid and topography at Beta. On the other hand, viscosity model 1
at Ra=107 does satisfy the observations reasonably well. This implies that
Venus lacks an Earth-like low viscosity zone in its asthenosphere and upper
mantle, a conclusion that is consistent with our earlier modeling of Venus’s
long-wavelength admittance spectrum (Kiefer et al., 1986). Our models predict
swell widths that are consistent with the observed widths of Beta Regio and of
other highland regions on Venus. It is not clear what causes plume swells to

be nearly twice as broad on Venus as they are on Earth. A more complete
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discussion of the application of our plumé models to Beta Regio and other
highland regions on Venus may be found in Kiefer and Hager (1990; Chapter
2).

‘Summary and Conclusions

‘Observations of geoid anomalies, topographic uplift, heat flow, distribu-
tion of volcanism, and seismic velocity anomalies suggest that at least some
terrestrial hotspots, including several of the most prominent ones, are due to
convective upwellings that extend from deep in the mantle to the surface and
have an approximately cylindrical geometry. In this paper, we have examined
the geoid anomalies, topography, and heat flow associated with mantle convec-
tion in cylindrical axisymmetric geometry. Most previous numerical models of
mantle plumes have used a sheet-like, two-dimensional Cartesian upwelling. We
find, however, that sheet-like and cylindrical upwellings produce significantly
different geoid and topography signatures. Our models do not include the
effects of spherical geometry or temperature-dependent viscosity, although both

factors deserve consideration in future studies.

In dimensionalizing our results, we assume that convection extends
throughout the mantle and that the temperature contrast between the upwel-
ling plume and normal mantle is about 300 °C. This choice of § T is consistent
with several geophysical and petrological constraints. For reasonable values of
Ra, our models can explain the observed geoid and topography of the Hawaiian
Swell and the Cape Verde Rise, provided that the asthenosphere’s viscosity is
at least a factor of 100 less than the lower mantle’s viscosity. This viscosity
profile is in good agreement with that derived from modeling of Earth’s long-
wavelength geoid done by Hager and Richards (1989). Our models are also
broadly consistent with existing heat flow observations, but this does not pro-
vide a strong constraint because of uncertainties in the model results. One
difficulty with our aspect ratio 1 models is that they predict swell widths that
are about a factor of two broader than observed for terrestrial hotspots. This
may be due in part to terrestrial plumes having aspect ratios of less than 1 and

in part to our neglect of temperature-dependent viscosity.
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We have also applied our models to observations of Beta Regio on Venus.
The geoid anomaly and dynamic uplift at Beta are both significantly larger
than for any terrestrial hotspot. Assuming that Venus and Earth have similar
heat flows and hence similar Ra, our model results indicate that Venus must
lack an Earth-like low viscosity asthenosphere, a conclusion that is consistent
vwith our earlier modeling of Venus’s long-wavelength admittance spectrum

(Kiefer et al., 1986).



- 42 -

References

Anderson, D. L., A Seismic Equation of State: II. Shear Properties and Ther-
~modynamics of the Lower Mantle, Phys. Earth Planet. Int., 45 307-323,
1987.

Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial

Planets, Pergamon Press, Elmsford, NY, 1981.

Baumgardner, J. R., Application of Supercomputers to 3-D Mantle Convection,
in The Physics of The Planets, edited by S.K. Runcorn, pp. 199-231,
John Wiley and Sons, 1988.

Bercovici, D., G. Schubert, and A. Zebib, Geoid and Topography for Infinite
Prandtl Number Convection in a Spherical Shell, J. Geophys. Res., 93,
6430-6436, 1988.

Bercovici, D., G. Schubert, and G. A. Glatzmaier, Influence of Heating Mode on
Three-Dimensional Mantle Convection, Geophys. Res. Lett., 16, 617-620,
1989a.

Bercovici, D., G. Schubert, and G. A. Glatzmaier, Three-Dimensional Spherical
Models of Convection in the Earth’s Mantle, Science, 244, 950-955,
1989b.

Bills, B. G., W. S. Kiefer, and R. L. Jones, Venus Gravity: A Harmonic
Analysis, J. Geophys. Res., 92, 10,335-10,351, 1987.

Blankenbach, B., F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen,
H. Harders, G. Jarvis, M. Koch, G. Marquart, D. Moore, P. Olson, H.
Schmeling, and T. Schnaubelt, A Benchmark Comparison for Mantle



- 43 -

Convection Codes, Geophys. J. Int., 98,’ 23—38, 1989.

Bonatti, E., C. G. A. Harrison, D. E. Fisher, J. Honnorez, J.-G. Schilling, J. J.
Stipp, and M. Zentilli, Easter Volcanic Chain (Southeast Pacific): A Man-
tle Hot Line, J. Geophys. Res., 82, 2457-2478, 1977.

Brooks, A N., and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin For-
mulations for Convection Dominated Flows with Particular Emphasis on
the Incompressible Navier-Stokes Equations, Computer Methods 1n

Applied Mechanics and Engineering, 32, 199-259, 1982.

Brown, J. M., Interpretation of the D" Zone at the Base of the Mantle: Depen-
dence on Assumed Values of Thermal Conductivity, Geophys. Res. Leit.,
13, 1509-1512, 1986.

Campbell, D. B., J. W. Head, A. A. Hine, J. K. Harmon, D. A. Senske, and P.
C. Fisher, Styles of Volcanism on Venus: New Arecibo High Resolution
Radar Data, Science, 246, 373-377, 1989.

Ceuleneer, G., M. Rabinowicz, M. Monnereau, A. Cazenave, and C. Rosemberg,
Viscosity and Thickness of the Sub-Lithospheric Low-Viscosity Zone: Con-
straints from Geoid and Depth over Oceanic Swells, FEarth Planet. Sci.
Lett., 89, 84-102, 1988.

Christensen, U., Instability of a Hot Boundary Layer and Initiation of
Thermo-chemical Plumes, Annales Geophysicae, 2, 311-320, 1984.

Christensen, U. R., Time-Dependent Convection in Elongated Rayleigh-Benard
Cells, Geophys. Res. Lett., 14, 220-223, 1987.



- 44 -

Christénsen, U., and D. Yuen, On the Aspect Ratio of Rayleigh-Benard Con-
vection Cells, Geophys. Res. Lett., 15, 597-600, 1988.

Clague, D. A., and G. B. Dalrymple, The Hawaiian-Emperor Volcanic Chain:
Geologic Evolution, U. S. Geological Survey Professional Paper 1350, 5-
54, 1987.

Courtney, R. C., and R. S. White, Anomalous Heat Flow and Geoid Across the
Cape Verde Rise: Evidence for Dynamic Support from a Thermal Plume in

the Mantle, Geophys. J. R. Astr. Soc., 87, 815-867, 1986.

Crough, S. T., Thermal Origin of Mid-Plate Hotspot Swells, Geophys. J. R.
Astr. Soc., 55, 451-469, 1978.

Crough, S. T., Geoid Height Anomalies over the Cape Verde Rise, Marine
Geophys. Res., 5, 263-271, 1982.

Crough, S. T., Hotspot Swells, Ann. Rev. Earth Planet. Sci., 11, 165-193,
1983.

Crough, S. T., and D. M. Jurdy, Subducted Lithosphere, Hotspots, and the
Geoid, FEarth Planet. Sci. Lett., 48, 15-22, 1980.

Daly, S. F., and A. Raefsky, On the Penetration of a Hot Diapir Through a
Strongly Temperature-Dependent Viscosity Medium, Geophys. J. R. Astr.
Soc., 83, 657-681, 1985.

Davies, G. F., Mantle Convection Under Simulated Plates: Effects of Heating
Modes and Ridge and Trench Migration, and Implications for the Core-
Mantle Boundary, Bathymetry, and the Geoid and Benioff Zones, Geo-
phys. J. R. Astr. Soc., 84, 153-183, 1986.



- 45 -

Davies, G. F., Ocean Bathymetry and Mantyle Convection: 1. Large-Scale Flow
and Hotspots, J. Geophys. Res., 93, 10,467-10,480, 1988.

Detrick, R. S., and S. T. Crough, Island Subsidence, Hotspots, and Lithospheric
Thinning, J. Geophys. Res., 83, 1236-1244, 1978.

Detrick, R S., R. P. Von Herzen, B. Parsons, D. Sandwell, and M. Dougherty,
Heat Flow Observations on the Bermuda Rise and Thermal Models of

Midplate Swells, J. Geophys. Res., 91, 3701-3723, 1986.

Duncan, R. A., and D. A. Clague, Pacific Plate Motion Recorded by Linear
Volecanie Chains, in The Ocean Basins and Margins, Vol. TA, The Pacific
Ocean, edited by A. E. M. Nairn, F. G. Stehli, and S. Uyeda, pp. 89-121,
Plenum Press, 1985.

Esposito, P. B., W. L. Sjogren, N. A. Mottinger, B. G. Bills, and E. Abbott,
Venus Gravity: Analysis of Beta Regio, Icarus, 51, 448-459, 1982.

Glatzmaier, G. A., Numerical Simulations of Mantle Convection: Time-
Dependent, Three-Dimensional, Compressible, Spherical Shell, Geophys.
Astrophys. Fluid Dynamacs, 43, 223-264, 1988.

Gubbins, D., T. G. Masters, and J. A. Jacobs, Thermal Evolution of the
Earth’s Core, Geophys. J. R. Astr. Soc., 59, 57-99, 1979.

Gudmundsson, O., J. H. Davies, and R. W. Clayton, Stochastic Analysis of
Global Traveltime Data: Mantle Heterogeneity and Random Errors in the
ISC Data, Geophys. J. Int., 102, 25-43, 1990.

Hager, B.‘H., Dynamics and Constitution of the Earth’s Interior (abstract),
EOS, 70, 1334, 1989.



- 46 -

Hager, B. H. and R. W. Clayton, Constraiﬁts on the Structure of Mantle Con-
vection using Seismic Observations, Flow Models, and the Geoid, in Man-
tle Convection: Plate Tectonics and Global Dynamics, edited by W. R.
Peltier, pp. 657-763, John Wiley and Sons, 1989. -

Hager, B. H., and M. A. Richards, Long-Wavelength Variations in Earth’s
Geoid: Physical Models and Dynamical Implications, Phil. Trans. R. Soc.
London A, 328, 309-327, 1989.

Hansen, U., and A. Ebel, Experiments with a Numerical Model Related to
Mantle Convection: Boundary Layer Behavior and Small- and Large Scale

Flows, Phys. Earth Planet. Int., 36, 374-390, 1984.

Hansen, U., and A. Ebel, Time-Dependent Thermal Convection - A Possible
Explanation for a Multi-scale Flow in the Earth’s Mantle, Geophys. J.,
94, 181-191, 1988.

Hofmann, A. W., and W. M. White, Mantle Plumes from Ancient Oceanic
Crust, Earth Planet. Sci. Lett., 57, 421-436, 1982.

Ho-Liu, P., B. H. Hager, and A. Raefsky, An Improved Method of Nusselt
Number Calculation, Geophys. J. R. Astr. Soc., 88, 205-215, 1987.

Houseman, G., The Dependence of Convection Planform on Mode of Heating,
‘Nature, 332, 346-349, 1988.

Houseman, G. A., The Thermal Structure of Mantle Plumes: Axisymmetric or

Triple-Junction?, Geophys. J. Int., 102, 15-24, 1990.

Hughes, T. J. R., The Finite Element Method, Prentice-Hall, Englewood Cliffs,
NJ, 1987.



- 47 -

Jarvis, G. T., Time-Dependent Convection Vin the Earth’s Mantle, Phys. Earth
Planet. Int., 36, 305-327, 1984.

Jeanloz, R., and F. M. Richter, Convection, Composition, and the Thermal
State of the Lower Mantle, J. Geophys. Res., 84, 5497-5504, 1979.

Jones, Cv. A., D. R. Moore, and N. O. Weiss, Axisymmetric Convection in a
Cylinder, J. Fluid Mech., 73, 353-388, 1976.

Kaneoka, I., N. Takaoka, and B.G.J. Upton, Noble Gas Systematics in Basalts
and and a Dunite Nodule from Reunion and Grand Comore Islands,

Indian Ocean, Chemical Geology, 59, 35-42, 1986.

Kaula, W. M., and R. J. Phillips, Quantitative Tests for Plate Tectonics on
Venus, Geophys. Res. Lett., 8 1187-1190, 1981.

Kellogg, L. H., and G. J. Wasserburg, The Role of Plumes in Mantle Helium
Fluxes, FEarth Planet. Sci. Lett., in press, 1990.

Kiefer, W. S., M. A. Richards, B. H. Hager, and B. G. Bills, A Dynamic Model
of Venus's Gravity Field, Geophys. Res. Lett., 13, 14-17, 1986.

Kiefer, W. S., and B. H. Hager, The Role of Mantle Convection in the Origin of
the Tharsis and Elysium Provinces of Mars (abstract), MEVTV-LPI
Workshop: Early Tectonic and Volcanic Evolution of Mars, LPI Technical
Report 89-04, 48-50, 1989.

Kiefer, W. S., and B. H. Hager, A Mantle Plume Model for the Equatorial
Highlands of Venus, to be submitted to J. Geophys. Res., 1990.



- 48 -

Kurz, M. D., W. J. Jenkins, J. G. Schilling, and S. R. Hart, Helium Isotopic
Variations in the Mantle Beneath the Central North Atlantic Ocean,
FEarth Planet. Sci. Lett., 58, 1-14, 1982.

Kurz, M. D., W. J. Jenkins, S. R. Hart, and D. Clague, Helium Isotopic Varia-
- tions in Volcanic Rocks from Loihi Seamount and the Island of Hawaii,

FEarth Planet. Sci. Lett., 66, 388-406, 1983.

Kurz, M. D., P. S. Meyer, and H. Sigurdsson, Helium Isotopic Systematics
within the Neovolcanic Zones of Iceland, Farth Planet. Sci. Lett., 74,
291-305, 1985.

Louden, K. E., D. O. Wallace, and R. C. Courtney, Heat Flow and Depth
Versus Age for the Mesozoic Northwest Atlantic Ocean: Results from the
Sohm Abyssal Plain and Implications for the Bermuda Rise, Earth Planet.
Sci. Lett., 83, 109-122, 1987.

McKenzie, D. P., J. M. Roberts, and N. O. Weiss, Convection in the Earth’s
Mantle: Towards a Numerical Simulation, J. Fluid Mech., 62, 465-538,
1974.

McKenzie, D., A. Watts, B. Parsons, and M. Roufosse, Planform of Mantle
Convection beneath the Pacific Ocean, Nature, 288, 442-446, 1980.

McKenzie, D., and M. J. Bickle, The Volume and Composition of Melt Gen-
erated by Extension of the Lithosphere, J. Petrology, 29, 625-679, 1988.

McNutt, M., Thermal and Mechanical Properties of the Cape Verde Rise, J.
Geophys. Res., 93, 2784-2794, 1988.



- 49 -

McNutt, M., and L. Shure, Estimating the Compensation Depth of the
Hawaiian Swell with Linear Filters, J. Geophys. Res., 91, 13,915-13,923,
1986.

Melchior, P., The Physics of The Earth’s Core, Pergamon Press, Elmsford,
- NY, 1986.

Mitrovica, J. X., and G. T. Jarvis, A Numerical Study of Thermal Convection
Between Rigid Horizontal Boundaries, Geophys. Astrophys. Fluid Dynam-
1cs, 38, 193-224, 1987.

Morgan, W. J., Deep Mantle Convection Plumes and Plate Motions, Am.
Assoc. Petroleum Geol. Bull., 56, 203-213, 1972a. ‘

Morgan, W. J., Plate Motions and Deep Mantle Convection, Geol. Soc. Am.
Memorr 132, 7-22, 1972b.

Nataf, H. C., and F. M. Richter, Convection Experiments in Fluids with Highly
Temperature-Dependent Viscosity and the Thermal Evolution of the

Planets, Phys. Earth Planet. Int., 29, 320-329, 1982.

Okal, E. A., and R. Batiza, Hotspots: The First 25 Years, in Seamounts,
Islands, and Atolls, Geophysical Monograph 43, edited by B. H. Keating,
P. Fryer, R. Batiza, and G. W. Boehlert, pp. 1-11, American Geophysical
Union, Washington D. C., 1987.

Olson, P., A Comparison of Heat Transfer Laws for Mantle Convection at Very

High Rayleigh Numbers, Phys. Farth Planet. Int., 48, 153-160, 1987.



- 50 -

Olson, P., G. Schubert, and C. Anderson,.Plume Formation in the D" Layer
and the Roughness of the Core-mantle Boundary, Nature, 327, 409-413,
1987.

Parmentier, E. M., D. L. Turcotte, and K. E. Torrance, Numerical Experiments
- on the Structure of Mantle Plumes, J. Geophys. Res., 80, 4417-4424,
1975.

Parsons, B., and S. Daly, The Relationship Between Surface Topography,
Gravity Anomalies, and Temperature Structure of Convection, J. Geo-

phys. Res., 88, 1129-1144, 1983.

Phillips, R. J., and M. C. Malin, The Interior of Venus and Tectonic Implica-
tions, in Venus, edited by D. M. Hunten, L. Colin, T. M. Donahue, and
V. 1. Moroz, pp. 159-214, Univ. of Arizona Press, Tucson, 1983.

Ricard, Y., L. Fleitout, and C. Froidevaux, Geoid Heights and Lithospheric
Stresses for a Dynamic Earth, Annales Geophysicae, 2, 267-286, 1984.

Richards, M. A., and B. H. Hager, Geoid Anomalies in a Dynamic Earth, J.
Geophys. Res., 89, 5987-6002, 1984.

Richards, M. A., B. H. Hager, and N. H. Sleep, Dynamically Supported Geoid
Highs over Hotspots: Observations and Theory, J. Geophys. Res., 93,
7690-7708, 1988.

Roberts, G. O., Fast Viscous Benard Convection, Geophys. Astrophys. Fluid
Dynamacs, 12, 235-272, 1979.

Robinson, E. M., B. Parsons, and S. F. Daly, The Effect of a Shallow Low
Viscosity Zone on the Apparent Compensation of Mid-Plate Swells, FEarth



-51-

Planet. Sci. Lett., 82, 335-348, 1987.

Robinson, E. M., and B. Parsons, Effect of a Shallow Low-Viscosity Zone on
the Formation of Midplate Swells, J. Geophys. Res., 93, 3144-3156, 1988.

Sandwell, D. T., and K. A. Poehls, A Compensation Mechanism for the Central
Pacifie, J. Geophys. Res., 85, 3751-3758, 1980.

Sleep, N. H., Tapping of Magmas from Ubiquitous Mantle Heterogeneities: An
Alternative to Mantle Plumes?, J. Geophys. Res., 89, 10,029-10,041,
1984.

Sleep, N. H., Hotspots and Mantle Plumes: Some Phenomonology, J. Geophys.
Res., 95, 6715-6736, 1990.

Stevenson, D. J., T. Spohn, and G. Schubert, Magnetism and Thermal Evolu-
tion of the Terrestrial Planets, Icarus, 54, 466-489, 1983.

Tryggvason, K., E. S. Husebye, and R. Stefansson, Seismic Image of the
Hypothesized Icelandic Hotspot, Tectonophysics, 100, 97-118, 1983.

Turcotte, D. L., and E. R. Oxburgh, Intra-plate Volcanism, Phil. Trans. R.
Soc. London, A288, 561-579, 1978.

U. S. Geological Survey, Topographic and Shaded Relief Maps of Venus, Mis-
cellaneous Investigations Series Map 1-1562, 1984.

Von Herzen, R. P., R. S. Detrick, S. T. Crough, D. Epp, and U. Fehn, Thermal
Origin of the Hawaiian Swell: Heat Flow Evidence and Thermal Models, J.
Geophys. Res., 87, 6711-6723, 1982.



-52-

Von Herzen, R. P., M. J. Cordery, R. S. Detrick, and C. Fang, Heat Flow and
the Thermal Origin of Hot Spot Swells: The Hawaiian Swell Revisited, J.
Geophys. Res., 94, 13,783-13,799, 1989.

Watts, A. B., D. P. McKenzie, B. E. Parsons, and M. Roufosse, The Relation-
- ship Between Gravity and Bathymetry in the Pacific Ocean, Geophys. J.
R. Astr. Soc., 83, 263-298, 1985.

Weinstein, S. A., P. L. Olson, and D. A. Yuen, Time-Dependent Large Aspect-
Ratio Thermal Convection in the Earth's Mantle, Geophys. Astrophys.
Fluid Dynamsics, 47, 157-197, 1989.

Wilson, J. T., A Possible Origin of the Hawaiian Islands, Canadian J. of Phy-
sics, 41, 863-870, 1963.

Wyllie, P. J., Solidus Curves, Mantle Plumes, and Magma Generation Beneath
Hawaii, J. Geophys. Res., 93, 4171-4181, 1988.

Young, C. J., and T. Lay, The Core-Mantle Boundary, Ann. Rev. FEarth
Planet. Sci., 15, 25-46, 1987.

Yuen, D. A., and W. R. Peltier, Mantle Plumes and the Thermal Stability of
the D" Layer, Geophys. Res. Lett., 7, 625-628, 1980.

Zhang, Y. S., and T. Tanimoto, Three-Dimensional Modelling of Upper Mantle
Structure Under the Pacific Ocean and Surrounding Area, Geophys. J.
Int., 98, 255-269, 1989.



Pm

AT

- 53 -

Table 1. Scaling Parameters

Mantle Density

Gravitational Acceleration

Thermal Expansion Coefficient
Vertical Temperature Contrast
Depth of Convecting Layer
Thermal Diffusivity

Thermal Conductivity

3.3gm cm™3

980 cm s~ 2 (Earth)
887 cm s~ 2 (Venus)
3.10-5 oC-1
1000 °C

2800 km

1072 cm? sec™
3WmlK™!
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Table 2. Model Parameters and Results
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0.0855
0.0557
0.0399
0.0762
0.0667
0.0608
0.0588
0.0578
0.0633
0.0624
0.0616
0.0600
0.1019
0.0609
0.0447
0.0312
0.0259
0.0192
0.0138
0.0057
0.0054
0.0047
0.0194
0.0315
0.0442
0.0765
0.0916

0.1289
0.1374
0.1365
0.1449
0.1414
0.1373
0.1570
0.1485
0.1214
0.1038
0.1317
0.1046
0.0911
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0.0962
0.0935
0.0889
0.1185
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0.0754
0.0615
0.0627
0.0519
0.0417
0.0464
0.0377
0.0299
0.0430
0.0598
0.0747
0.1048
0.1166

Nu

11.24
10.62
10.42
11.24
10.62
10.42
7.03
8.94
14.85
21.73
8.86
6.28
5.40
5.24
5.20
6.09
5.84
5.61
5.21
2.99
5.29
6.66
8.45
6.49
7.95
9.73
7.51
9.08
11.22
5.06
5.30
5.41
5.30
5.17
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Notes on Té.ble 2

(1) S and ~ are parameters which define the variation of viscosity with depth in
the upper boundary layer. See Equation 16. Note that where S=~=0 in Table
2, the boundary layer viscosity is independent of depth. |

(2) n, and 7, are the viscosities of the asthenosphere and upper mantle layers,
norinalized relative to a lower mantle viscosity of 1.0. The asthenosphere is
defined to be the region between non-dimensional depths z=0.0469 and

=0.1406. The upper mantle is defined as the region between z=0.1406 and
=0.2578. See Figure 9.

(3) AR is the aspect ratio of the convection cell, defined as the distance from

upwelling to downwelling divided by the cell depth.

(4) Grid indicates the number of nodes used in each direction. Models 1-3 used a
grid that is uniformly space in both dimensions. The remaining models used a
grid with uniform radial spacing and non-uniform vertical spacing, with high
vertical resolution in the upper boundary layer and lower vertical resolution else-

where. See Figure 1.

(5) G and T are the non-dimensional geoid anomaly and topographic uplift

along the axis of the plume, defined by Equations 13a and 13b.
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Table 3. Power Law Parameters

Constant Viscosity
Viscosity Model 1
Viscosity Model 2
Viscosity Model 3

Constant Viscosity
Viscosity Model 1
Viscosity Model 2
Viscosity Model 3

Geoid
a b
8.710°  -0.269
9.1-10°  -0.290
3.2:10°  -0.273
8.1-100  -0.084

Nusselt Number

a

0.27
0.51
0.86
1.01

b

0.319
0.203
0.176
0.174

Topography
a b
66 -0.121
72  -0.164
62 -0.182
51 -0.192
Heat Flow
a b
0.22 0.258
1.06  0.147
4.13 0.050
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Table 4. Projection of Results to Higher Ra

Ra=10% 5-10° 107

Viscosity Model 1

Geoid 165 104 85
Topography 74 5.8 5.1
Nusselt Number 8.5 11.7 13.5
Heatflow Anomaly 7.8 11.8 14.1

Viscosity Model 2

Geoid 73 47 39
Topography 5.0 3.7 3.3
Nusselt Number 9.7 13.0 14.7
Heatflow Anomaly 8.0 10.2 113

Viscosity Model 3

Geoid 25 22 21
Topography 3.6 2.7 2.3
Nusselt Number 11.2 14.8 16.7
Heatflow Anomaly 8.2 8.9 9.2

Results are scaled using quantities in Table 1. Geoid results are in
meters, topographic uplift in kilometers, and heatflow anomaly in mil-
liwatts per square meter. All three quantities are values at the surface
along the axis of the upwelling plume. Nusselt numbers are non-

dimensional and are averaged over the entire convection cell.
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Figure 1. Element distribution in the 33 x 33 node non-uniform grid. Vertical
grid resolution is high in the top boundary layer (between non-dimensional

heights 0.9375 and 1.0) and lower elsewhere. Radial resolution is uniform.
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Figure 2. Convergence behavior versus grid size for models 1-6. Triangles are
calculated results for uniform grid, squares are calculated results for non-
uniform grid. Results are all expressed as percent differences relative to highest
resolution uniform grid case. a) Peak Geoid Anomaly, b) Peak Topographic
Uplift, and ¢) Nusselt Number.
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Figure 3. Temperature contours for internally heated models at Rap =1-10°. a)
ﬂ=1.0 and b) u=0.8 . In both cases, the central axis of the cylinder is at the

left. The contour interval is 0.1 of the temperature variation in the cylinder.
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Figure 4. Isotherms for bottom-heated convection at Ra=10% (Model number
21). AT is the temperature contrast across the depth of the cylinder. 6T is the
temperature contrast across the lower thermal boundary layer and the rising
plume. &z is the thickness‘of the lower thermal boundary layer. Contour inter-

val is 0.10 .
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Figure 5. Isotherms for isoviscous, bottom-heated convection at Ra=10° for (a)
Cartesian geometry and (b) cylindrical axisymmetric geometry (Model 3). Con-

tour interval is 0.10.
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Figure 6. Profiles of geophysical observables versus distance from plume center
for cylindrical geometry (solid lines, Model 3) and Cartesian geometry (dashed
lines). a) Geoid anomaly and b) Topographic uplift.
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Figure 7. Effects of varying surface viscosity on a) Peak Geoid Anomaly, b)
Peak Topographic Uplift, ¢) Nusselt Number, and d) Peak Heatflow anomaly.
Surface viscosity is shown normalized relative to a mantle viscosity of 1.0 . Lid

thickness is 130 km (v = 0.0469). Models 5 and 11-15.
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Figure 8. Effects of varying high-viscosity lid thickness on a) Peak Geoid Ano-
maly, b) Peak Topographic Uplift, ¢) Nusselt Number and d) Peak Heatflow
Anomaly. Surface viscosity=10% (S=3). Models 13 and 16-19. Triangles are

'mo_del results, solid lines are best fit least-squares lines.
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Figure 9. Viscosity versus depth profiles for three standard viscosity models
used in this study. Viscosity profiles are normalized relative to a lower mantle
Viscoéity of 1.0. All three models have high viscosity lids defined by S=3 and
~=0.0469. a) Viscosity model 1 has an isoviscous mantle. b) Viscosity model 2
has an upper mantle viscosity 0.1 times the lower mantle viscosity. c¢) Viscosity
model 3 includes an asthenosphere with viscosity 0.01 times the lower mantle

viscosity.



- 80 -

£11S00SIA\ 507

0T 0T {0T (0T 10Tz 0T OT z0T 0T 0T ;0T 0T ¢OT 0T {0T (OT ;.07 5.01

L N LR Gl Gl
(q

1 —l

S[OPO L}HSOOSIA

008¢c

00v<

000<c

0091

0021

008

oov

(urxy) yideQ



- 81 -

Figure 10. Profiles versus distance from plume center of (a) Geoid anomaly, (b)
Topographic uplift, and (c) Heatflow anomaly for viscosity models 1 (solid
line), 2 (dashed line) and 3 (dot-dash line). Ra=10°. (Models 23, 26, and 29).
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Figure 11. Isotherms as a function of viscosity model at Ra=10°. a) Viscosity
model 1 (Model 23). b) Viscosity model 3 (Model 29).
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Figure 12. Profiles versus distance from plume center of (a) Geoid anomaly, (b)
Topographic uplift, and (¢) Heatflow anomaly for Ra=10° (solid line),
Ra=3-10° (dashed line), and Ra=10° (dot-dash line). All three models use
viscosity model 3. (Models 27, 28, and 29).
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Figure 13. The lines are power-law fits to model results as discussed in the text.
Triangles are models with constant viscosity (Models 6-10), squares are models
using viscosity model 1 (Models 20-23), pentagons are models using viscosity
model 2 (Models 24-26), and stars are models using viscosity model 3 (Models
27-29). a) Log Rayleigh Number versus Log Geoid. b) Log Ra versus Log
Topography. ¢) Log Ra versus Log Nusselt Number. d) Log Ra versus Log
Heat Flow Anomaly.
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Figure 14. Isotherms for bottom heated convection at Ra=10° and aspect ratio
1.4. a) Cylindrical geometry (Model 34). b) Cartesian geometry. Contour inter-
val is 0.10.



- 96 -

5

—

snipey

&

1Ys1eH




ooue}sI(J




- 98 -

Figure 15. Effects of varying aspect ratio on a) Geoid anomaly at plume center,
b) Topographic uplift at plume center, and ¢) Nusselt number. The triangles
are the model results for Models 13 and 30-34. The lines in panels a and b are

best fit straight lines to the model results, as discussed in the text.
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Introduction

For the most part, topography on Venus is rather flat. Altimetry data
obtained by the Pioneer Venus Orbiter (PVO) indicate that only 5 per cent of
the mapped surface of Venus differs from the mean planetary radius by more
than 2 km. Indeed, k60 pef cent of the surface lies within only 500 meters of the
modal radius (Pettengill et al., 1980). Most regions of substantial topography
on Venus are highlands; the deepest basin on Venus, Atalanta Planitia, is only
1.5 to 2 km below mean planetary radius (MPR). In contrast, the Equatorial
Highlands rise 4 to 6 km above MPR and the mountain belts of Ishtar Terra
rise 6 to 10 km above MPR (U.S. Geological Survey, 1981, 1984). An under-
standing of the origin of the highland regions of Venus is fundamental to our
understanding of the geology and tectonics of Venus as a whole. We have
presented models of Ishtar Terra elsewhere (Kiefer and Hager, 1990b; Chapter
4); in this manuscript we focus on the Equatorial Highlands and show that

they are probably the result of rising mantle plumes.

The Equatorial Highlands of Venus consists of four main regions: Atla
Regio, Beta Regio, Ovda Regio, and Thetis Regio. Each of these structures has
a circular to oval-shaped surface planform with a characteristic size of 2000 to
3000 km. The geographic relationships among the various parts of the Equa-
torial Highlands are illustrated in Figure 1. This map shows the topography of
Venus expanded in spherical harmonics out to degree and order 18 (Bills and
Kobrick, 1985). The map is in cylindrical projection and has a horizontal reso-
lution of 2100 km. The contour level is 500 meters, with regions below MPR
shaded in grdy. We show the topography in this form to facilitate comparison
with the geoid data shown in Figure 2. Higher resolution topography maps
have been published by the U. S. Geological Survey (1981, 1984).

Ovda and Thetis have sometimes been referred to collectively as Aphrodite
Terra. This nomenclature derives from the work of Masursky et al. (1980),
who arbitrarily distinguished between rolling plains, defined as regions with
elevations between 0 and 2 km, and highlands, defined as regions with eleva-
tions greater than 2 km above MPR. This choice of nomenclature has contri-

buted to the perception that Ovda and Thetis are parts of a single, linear
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highlahd unit and may have influenced Some Iater tectonic interpretations,
such as the spreading center hypothesis of Head and Crumpler (1987). We note,
however, that Ovda reaches a peak elevation of 4.5 to 5 km above MPR and
that Thetis reaches a peak elevation of 3.5 to 4 km, whereas the topographic
saddle between Ovda and Thetis has an elevation of only 2 km. The regions of
peak elevation in Ovda and Thetis are separated by about 3500 km. We there-
fore believe that Ovda and Thetis are best interpreted as distinct, quasi-circular

highland units.

Figure 2 shows a map of Venus’s geoid based on the degree 18 spherical
harmonic expansion of Bills, Kiefer, and Jones (1987). Figures 1 and 2 clearly
show the strong positive correlation between geoid and topography on Venus
(Sjogren et al., 1980; Kiefer et al., 1986a; Bills et al., 1987). Atla Regio has a
peak geoid anomaly of 120 meters, the largest observed on the planet. Beta and
Thetis also have large geoid anomalies of 92 meters and 73 meters, respectively.
The peak geoid anomaly at Ovda is about 35 meters. For comparison with the
Venus data, in Figure 3 we show Earth’s geoid for spherical harmonic degrees 2
to 18 (Lerch et al., 1985). It is readily apparent that Earth’s long-wavelength
geoid is essentially uncorrelated with the positions both of continents and of
spreading centers. This conclusion has been statistically verified by Richards

and Hager (1988).

PVO altimetry data shows that all four of the main structures in the
Equatorial Highlands contain interconnected topographic valleys or chasmata
(U.S. Geological Survey, 1981, 1984; Schaber, 1982). These troughs sometimes
exceed 2 km in depth (see, for example, Figure 11b) and have typical widths of
75 to 100 km. However, because of averaging over the PVO altimeter’s meas-
urement footprint and because of the spacing between measurements, the
troughs may be both narrower and deeper than indicated by PVO data. On the
basis of PVO data, McGill et al. (1981) and Schaber (1982) both suggested that
the troughs are extensional rift zones. The geology of Devana Chasma, the
trough that runs through Beta Regio, can be studied in greater detail using
radar imagery from the Arecibo Observatory (Campbell et al., 1984; Stofan et
al., 1989). The Arecibo observations are also consistent with a rift zone

interpretation for Devana Chasma. The Arecibo imagery also reveal the
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presence of two prominent shield voleanoes in Beta Regio, Rhea Mons and
Theia Mons (Campbell et al., 1984, 1989; Stofan et al., 1989). The limited data
available on the chemical composition of the surface are consistent with the

presence of basalt (Surkov et al., 1984, 1986, 1987).

Models for the Formation of the Equatorial Highlands

A variety of models have been suggested for the formation of the Equa-
torial Highlands. One class of models proposes that the Highlands are regions
of thickened crust, formed either by volcanic activity or by crustal convergence
over a region of downwelling mantle. Other models propose that the Highlands
are spreading centers or are due to uplift by hot, upwelling mantle plumes. We

consider these various types of models in turn.

Crustal Thickening Models

A conceptually simple model for supporting high topography is to have a
region of thickened crust compensated by means of Airy isostasy. This type of
model for the Equatorial Highlands has been tested by various workers using
gravity data obtained by the PVO spacecraft. If modeled in terms of Airy isos-
tasy, Atla, Beta, and Thetis would all require compensation depths of several
hundred kilometers (Esposito et al., 1982; Phillips and Malin, 1983; Kiefer and
Bills, 1984; Herrick et al., 1988). Numerous workers have suggested that the
crustal thickness in the plains of Venus is no more than 25 to 30 km (Zuber,
1987; Banerdt and Golombek, 1988; Grimm and Solomon, 1988; Zuber and
Parmentier, 1990; Kiefer and Hager, 1990b; Chapter 4). If the Equatorial High-
lands are supported by Airy isostasy, then the crust beneath the highlands
should be 20 to 30 km thicker than in the plains. This implies a crustal thick-
ness in the Highlands of less than about 60 km, much less than required to

satisfy the gravity data.

Even if one were to assume that the crustal thickness in the plains is more
than 25 km, the base of the crustal roots in the highlands must not extend
below the base of the thermal lithosphere or else the highlands could not be
supported for geologically long periods of time. Kaula and Phillips (1981)
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estimated that the thermal boundary layer thickness on Venus should be less
than 100 km. Turcotte (1989a) suggested that if most heat transport in the
lithosphere of Venus occurs magmatically in "heat pipes,” then the lithosphere
could reach a thickness of 150 km or more. However, Turcotte’s model requires

1

a magma flux of 200 km® year™!, an order of magnitude higher than on Earth.

The observed density of impact craters sets an upper limit of about

2 km? year™!

on the extrusive volcanism rate (Grimm and Solomon, 1987), so
that if Turcotte’s model is correct, 99% of all magmatic activity on Venus
must be intrusive, with no moreb than 1% occurring as extrusive flows. On
Earth, extrusive activity is typically 10 to 20% of all magmatic activity (Crisp,
1984). Although it may be possible to satisfy the conditions required by the

heat pipe model, we think that it is preferable to explore other models.

We therefore conclude that the Airy model can not plausibly explain the
geoid anomalies observed at Atla, Beta, and Thetis. This does not preclude the
existence of Airy-compensated crustal thickness variations in these regions, but
it does require that significant density anomalies exist within the mantle. This
implies that mantle convection plays a significant role in supporting these
features. The geoid anomaly at Ovda is substantially smaller than in the other
parts of the Equatorial Highlands. In principle, Ovda’s geoid anomaly could be
explained entirely by density anomalies within the lithosphere (e.g., Herrick et
al., 1988; Sotin et al., 1989; Kiefer, 1990). However, as shown later in this

paper, mantle convection models can also explain Ovda’s geoid anomaly.

Banerdt (1986) suggested that Ovda is a region of thickened crust overly-
ing mantle material which is denser than normal. The dense, downwelling man-
tle material could entrain crustal material into the convergence zone, producing
the hypothesized crustal thickening. Bindschadler and Parmentier (1989) have
suggested that this type of model may apply to both Ovda and Thetis. This
crustal convergence/mantle downwelling model is similar to a model preferred
by many workers for Ishtar Terra (e.g., Morgan and Phillips, 1983; Banerdt,
1986; Kiefer and Hager, 1990b; Chapter 4). Because this model contains density
anomalies in the mantle as well as the lithosphere, it can in principle satisfy the
observed geoid anomalies. However, this model predicts that the Ovda and

Thetis should be in compression (Banerdt, 1986), whereas the apparent rift
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zZones Suggest that they are actually undei‘going extension. Bindschadler and
Parmentier (1989) suggested that downwelling under Ovda and Thetis may
have ceased, so that the highland topography may currently be undergoing
viscous relaxation. In this model, the observed chasmata would be relaxation
features. If the crustal convergence model is correct, then we would expect the
‘formation of mountain belts flanking a high plateau, as is observed both at
Ishtar Terra on Venus and at the Tibetan Plateau on Earth. However, no such
mountain belts are obvious in the PVO altimetry for Ovda and Thetis. Such
mountain belts may have formed and later relaxed away, but in that case they
may have left behind a signature in the form of compressive folds and thrust
faults on the margins of Ovda and Thetis. Magellan imagery should be exam-

ined for such features.
Spreading Center Models

In a series of papers, Crumpler, Head, and their colleagues have proposed
that Ovda and Thetis are spreading centers, analogous to terrestrial mid-ocean
ridges (Crumpler et al.,, 1987; Crumpler and Head, 1988a,b; Head and
Crumpler, 1987, 1989; Sotin et al., 1989). Both geological and geophysical
observations have been suggested as tests of this model. As noted above, the
long-wavelength geoid and topography are strongly correlated on Venus, a
situation that is quite different from that observed at terrestrial spreading
centers. This suggests that Ovda and Thetis are not similar to terrestrial
spreading centers. Sotin et al. (1989) recently argued that the geoid and topog-
raphy are also strongly correlated at spreading centers on Earth. However, as
discussed by Kiefer (1990; Chapter 3), the conclusions of Sotin et al. refer only

to wavelengths that are not detectable in the existing Venus gravity dataset.

The amplitudes of the geoid anomalies and topography also provide clues
to the mechanisms that produced the highlands. Using a cooling plate thermal
model, Kiefer (1990) showed that spreading centers on Venus would produce
geoid anomalies of only 8 meters, much less than that observed at either Ovda
or Thetis. Similarly, spreading centers on Venus should produce topographic
uplifts of no more than 1.5 km (Kaula and Phillips, 1981), which is also much

less than the observed values. Moreover, Grimm and Solomon (1988) and Black
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et al. (1990) both found that the observed topography does not follow the
square-root of distance subsidence profile expected if Ovda and Thetis are
spreading centers with approximately constant spreading velocities. The only
good fit to the expected subsidence profile occurs near longit‘ude 180° (see
Profile LL’ in Figure 5 of Head and Crumpler, 1987). Although these observa-
tions do not rule out the existence of spreading centers in Ovda and Thetis,
they do require that both the geoid and topography of these regions must be

dominated by processes other than the hypothesized spreading centers.

Geological observations have also been used to argue for the spreading
center model. For example, Crumpler et al. (1987) argued for the existence of a
series of seven parallel linear structures, which they termed "cross-strike discon-
tinuities," or CSDs. Crumpler et al. interpreted these features as analogous to
terrestrial transform faults. However, Kiefer (1990) reexamined the evidence for
the CSDs and concluded that existing (pre-Magellan) data does not require the
existence of CSDs. If any CSDs exist in this region, Magellan radar imagery
willl be necessary to verify the existence of the CSDs and to characterize their

structure.

Crumpler and Head (1988a) suggested that a symmetry axis could be
defined in Ovda and Thetis. The proposed symmetry axis is orthogonal to the
orientation of Crumpler et al.’s (1987) CSDs. Crumpler and Head (1988a) pro-
posed that the topography to the north and south of this axis shows a bilateral
symmetry pattern. They further suggested that the bilateral symmetry sup-
ports their spreading center model. They proposed that topographic plateaus
formed at the spreading center axis during episodes of high volcanic activity.
These plateaus later rifted apart and spread to their present locations, produc-
ing bilaterally symmetric topography (Crumpler and Head, 1988b). However,
Grimm and Solomon (1989) found that no statistically significant bilateral

symmetry pattern is detectable in the PVO altimetry for Ovda and Thetis.

Head and Crumpler (1989) recently argued that impact cratering statistics
require that the equatorial region of Venus is on average somewhat younger
than regions further north. They also noted that the equatorial region seems to

be dominated by extensional tectonism, whereas at least some parts of the
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northern latitudes are dominantly compressional. Although both observations
are consistent with their spreading center model, neither observation uniquely

requires a spreading center interpretation.

We conclude that none of the existing data requires the existence of
spreading centers in Ovda and Thetis. Although the existence of spreading
centers in these areas can not be completely excluded at present, both the geoid
and topography in these areas clearly must be dominated by processes other

than spreading centers.
Mantle Plume Models

Upwelling mantle plumes have been widely suggested as an explanation for
Beta Regio and possibly for other parts of the Equatorial Highlands (McGill et
al., 1981; Morgan and Phillips, 1983; Phillips and Malin, 1983; Campbell et al.,
1984; Kiefer et al., 1986a; Banerdt, 1986; Kiefer and Hager, 1988; Stofan et al.,
1989). The mantle plume model is consistent with the observations cited above
of basaltic shield volcanism and extensional tectonism in the Equatorial High-
lands, and is also consistent with the observed quasi-circular planforms of the
highlands. As we show in this paper, the plume model can also quantitatively
explain much of the observed geoid anomalies and topography. For these rea-
sons, we favor the plume model as an explanation for the origin of the Equa-
torial Highlands.

Initial attempts to quantify the geoid and topography signatures expected
for convective upwellings on Venus were made by Kiefer et al. (1986a) and
Kiefer and Hager (1988). The material presented in this manuscript represents
a more detailed treatment of the material presented in abstract form by Kiefer
and Hager (1988). We begin by describing the numerical procedures that we
have used to model mantle plumes and then examine how our model results
compare with observations of geoid anomalies and topography in the Equa-
torial Highlands. On the basis of these models, we conclude that Venus’s
asthenosphere is more viscous than Earth’s asthenosphere and suggest that this

may be due to Venus’s mantle being drier than Earth’s mantle.
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Numerical Modeling of Mantle Plumes

In this section, we briefly discuss the numerical procedures that we have
used in our plume modeling. For a more detailed description, see Kiefer and
| Hager (1990a, hereafter referred to as KH; Chapter 1). We have used a finite
~ element code developed by Daly and Raefsky (1985) to solve the conservation
laWs for mass, momentum, and energy in a cylindrical, axisymmetric geometry.
Courtney and White (1986) have previously presented some cylindrical axisym-
metry plume models for the Earth. By assuming axisymmetry, the convection
problem is reduced to two dimensions, enabling us to do well-resolved calcula-
tions at Rayleigh numbers that approach those expected for Venus and Earth.
In contrast, existing three-dimensional spherical geometry models have gen-
erally been restricted to very low Ra (Machetel et al., 1986) or are substantially
underresolved in the horizontal dimensions (Baumgardner, 1988; Glatzmaier,
1988; Bercovici et al., 1989). Although such studies may provide useful qualita-
tive results on convective planforms, they can not be used for quantitative stu-
dies of the topographic uplift and geoid anomalies created by high Rayleigh

number convection.

An alternative type of two-dimensional model uses Cartesian geometry
and treats plumes as infinitely long, sheet-like upwellings. This type of model
has been used in many recent studies of terrestrial mantle plumes (e.g., Robin-
son et al., 1987; Robinson and Parsons, 1988; Ceuleneer et al., 1988). However,
in KH we showed that the Cartesian and cylindrical geometry models produce
significantly different geoid anomalies and topographic uplifts. We favor the
cylindrical geometry because it provides a better representation of the overall
shape of the various portions of the Equatorial Highlands. This is most clearly
true for Beta Regio and Atla Regio. Even for the most elongated part of the
Equatorial Highlands, Ovda Regio, the cylindrical geometry model is probably
at least as good an approximation as the the infinitely long Cartesian sheet
model. Our models neglect the possible effects of sphericity on plume structure.
We expect that the differences in the geoid and topography signatures calcu-

lated for plumes in cylindrical and spherical geometries should be much smaller
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than the differences shown in KH between cylindrical and Cartesian geometries,

but this certainly merits further study.

oV
For mechanical boundary conditions, we apply V,=0 and — =0 on the

0z
top and bottom of the cylinder, where V, and V, are the radial and vertical

T

Oz

stress) condition. We have also examined several test cases in which we applied

components of the velocity. The condition =0 is the free-slip (zero shear

a no-slip (V, =0) condition on the top surface and find that the resulting geoid
and topography profiles differ by only a few percent from their values in the
free-slip top case. This is because the high viscosity surface layer in our models

(see Figure 6) cause low flow velocities, so that the surface behaves as if it were

av
nearly rigid. On the side walls, we apply V,=0 and —2=0. For thermal

ar
boundary conditions, we apply a constant temperature condition on the top
and bottom and an insulating condition (no heat flux, %—T=O) on the
r

sidewalls.

The calculations presented in this paper are all calculated on a 65x 65
grid. This grid uses uniform spacing in the radial direction and has enhanced
resolution in the vertical dimension of the upper boundary layer (see Figure 1
of KH). Based on the resolution tests described in IKKH, we believe that the geoid
anomalies and topographic uplifts given here are typically within 2 to 3% of
the true values of these quantities if calculated on a grid of infinite resolution.
The models that include a low viscosity asthenosphere (viscosity model 3 of
Figure 6) may be somewhat less accurate than this, but as shown below, these

models are not applicable to Venus anyway.

For various combinations of mantle parameters, we have used the finite
element code to calculate steady-state temperature and stress fields. An exam-
ple temperature field is shown in Figure 4, which shows an isotherm diagram
for a representative solution. The contour interval is 0.1 of the total tempera-
ture contrast across the cylinder. This figure shows a rising plume along the
symmetry axis of the cylinder (r=0) and a downwelling ring of material along

the outer wall of the cylinder. All of the models described in this paper are
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heated entirely from below and neglect the contribution of radioactive heating
within the convecting layer. For whole mantle convection, it is likely that inter-
nal heating dominates over basal heating, but we nevertheless believe that our
models provide a good representation of the thermal structufe of a mantle
plume. Provided that there is at least some flow of heat from the core into the
’base of the mantle, a thermal boundary layer must form at the base of the
mantle, and instabilities in this boundary layer will insure that plume-like
upwellings form. Indeed, in KH we showed an example of a cylinder that is
80% internally heated and which has an upwelling plume along the axis of the
cylinder. Inclusion of spherical geometry will concentrate the core’s heat flow
into a smaller area, thus enhancing the formation of a lower thermal boundary
layer and rising plumes. The key issue, therefore, is not whether or not plumes
will form in Venus’s mantle, but rather the magnitude of the temperature con-
trast between the rising plumes and the surrounding mantle. We return to this

issue when we discuss scaling parameters below.

Once we have obtained the temperature and stress fields for a given model,
we can calculate the expected topographic uplift and geoid anomaly associated
with the model. By comparing the results of various models with observations,
we can place constraints on the allowed range of mantle parameters on Venus.
The topographic uplift, 6h, can be calculated from the total vertical normal

stress, 7,,, by the relationship

TZZ

6h = ,
Pm &

(1)

where p,, is the mantle density and g is the gravitational acceleration. Even
though a low density crust is likely to be present in most regions of Venus, it is
still appropriate to use the mantle density in Equation 1 because both crust
and mantle material are uplifted by the plume. For sub-oceanic hotspot swells
on Earth, p, must be replaced by (p, —py) in Equation 1, where p,, is the den-
sity of seawater. Thus, for a given thermal and viscosity structure, the topo-
graphic uplift over a mantle plume will be less on Venus than for sub-oceanic

regions on Earth. Because of the high surface temperature on Venus, the elastic
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lithosphere must be thin, implying that flexural resistance to uplift will be

negligible at the long wavelengths of interest in this paper.

The geoid is a surface of constant gravitational potential, s0 in order to
calculate the geoid anomaly associated with a mantle plume, we must first cal-
_culate the gravitational potential, U. At or above the surface of a planet, the
gravitational potential must satisfy Laplace’s equation, V2U=0. This equa-
tion is most readily solved by expanding the radial variations of temperature
and of topographic uplift in terms of a series of Bessel functions of the form
Jo(kyr), where k; is a horizontal wavenumber. With this series expansion, the
external potential must vary vertically as exp(—k,z). One can therefore show

that the potential at the surface (z=0) is given by

T Jolk,r
6U(r)=2ng o(k )

n

[pm 6hsn + (pc _pm) 6hcn exp(—kn d)

d
— pm o [ T%(z) exp(—k, z) dz ] (2)
0

In equation 2, pn and p, are the densities of the mantle and core, G is the
gravitational constant, o is the thermal expansion coefficient, and d is the
thickness of the convecting layer. 0hS and dh are the n-th harmonics of the
surface topographic uplift and the core-mantle boundary uplift. Similarly, T"(z)
is the n-th harmonic of the temperature field at depth z. The first term within
the braces is the contribution to the potential of the mass anomaly at the
uplifted surface, the second term represents the contribution of mass anomalies
associated with convectively-induced topography on the lower boundary of the
convecting layer, and the final term represents the contributions of mass
anomalies due to thermal expansion of material within the convecting layer.
For a convective upwelling, the first two terms are positive and the third term
is negative. The sign of the potential, and hence of the geoid, depends on the
relative balance of the three terms; for the models shown here, the geoid is

always positive over the upwelling plume. In writing equation 2, we have left

out the zero-th order gravitational potential, U = _G_YTM—’ where M is the
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planetary mass and R is the planetary radius. Equation 2 therefore represents
the anomalous gravitational potential, 6U, associated with the convecting sys-

tem.

‘Note that although equation 2 includes the core density, in practice it is
‘not necessary to actually specify a value of p, because by analogy with equation
1, the topographic uplift at the top or bottom of the convecting layer is

inversely proportional to the density contrast at the boundary, i.e.,

r
(Pc — Pm) 5hc=—-;i. Similarly, the value of the potential does not depend on

the presence or absence of an ocean, contrary to a recent assertion by Phillips
(1990).

Once we have obtained 60U, we can evaluate both the geoid anomaly,

6N=—ﬁj—, and the gravity anomaly, g=——82 . Because the gravity ano-

g 0z

maly is the derivative of the potential, it enhances the value of short-
wavelength components relative to longer wavelength features. We are
interested in structures that may extend deep into the mantle and which are
therefore sensed only by the long-wavelength part of the potential. We there-
fore prefer to work with geoid anomalies rather than gravity anomalies. In this
paper, we compare our plume model geoids with the eighteenth degree spherical
harmonic geoid model of Bills et al. (1987) (Figure 2), which has a horizontal
resolution of 2100 km. It is not possible to exactly match the wavelengths in
our models with those of the Bills et al. geoid. In the work presented here, we
include only the first three harmonics in our model geoid -calculations,
corresponding to wavelengths longer than 1850 km. In KH, we present results
for the first 16 harmonics of the model cylinder, which corresponds to essen-
tially 100%‘ of the power in the geoid spectrum. The results given here contain

at least 90% of the power present in the more complete geoid spectra.

In order to facilitate comparisons between models and data, all of the
model results presented here are expressed in dimensional form. Non-
dimensional results are tabulated in KH. The scaling constants that we use are
given in Table 1. Our choice of d=2800 km for the convecting layer thickness

corresponds to whole mantle convection. The value AT =1000°C does not
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represent the entire change in temperature between the top and bottom of the
mantle. Because we assume incompressible convection, it is inappropriate to
include temperature changes associated either with the adiabatic gradient or
with phase transitions in our estimate of AT. For AT=1006°C, Figure 4
shows that there should be about a 300°C difference in temperature between
the,center of a plume and the surrounding average mantle. This choice of AT
gives a temperature contrast of about 700°C across the upper thermal boun-
dary layer, which is somewhat less than the 1000°C temperature contrast

predicted by the boundary layer model of Kaula and Phillips (1981).

The relative temperature contrasts across the upper and lower boundary
layers depend on a number of parameters, including the ratio of internal heat-
ing to basal heating and the temperature dependence of the rheology, as well as
the choice of spherical or planar geometry. The models presented here do not
incorporate some of these factors and therefore do not simultaneously produce
the correct temperature contrasts across both boundary layers. Because we are
primarily interested in the geophysical signatures of upwelling plumes, we have
chosen a thermal scaling that is reasonable for mantle plumes. In KH, we
argued that a 300°C temperature contrast between the center of an upwelling
plume and the average mantle is consistent with the petrology of basalts pro-
duced by hotspots, with estimates of the core heat flow needed to power the
Earth’s geodynamo, and with observations of heat flow anomalies at terrestrial
hotspots. Sleep (1990) recently reached a similar conclusion. We assume that
a similar temperature contrast can also be applied to upwelling plumes on
Venus. This choice of AT underestimates the likely temperature contrasts in
downwelling regions on Venus, so the geoid and topography that we predict for

downwellings are probably underestimates.

In the past, Pratt compensation has sometimes been used to calculate the
geoid and topography expected from density anomalies within the convecting
mantle (e.g., Banerdt, 1986). Although thermal density anomalies exist both in
convecting systems and in the Pratt isostasy model, in the Pratt model the
density anomalies have fixed positions, whereas in mantle convection the den-
sity anomalies drive viscous flow. The two models predict significantly different

relationships between geoid and topography. In Figure 5, we compare the
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admittance, which is the ratio of geoid anomaly to topographic uplift as a
function of wavelength, for Pratt and convection models. The lines are for
models that are uniformly Pratt compensated over depth ranges of 100, 200,
and 400 km. The triangles are the admittance values calculated for the plume
“model of Figure 4 and can only be defined for wavelengths that are harmonics
of the model cylinder. It is clear that the convection model differs significantly
from the Pratt models, a result which is consistent with the conclusions of

Kiefer et al. (1986a) and of Robinson et al. (1987).

Model Results

In this section, we describe how various mantle parameters affect the geoid
and topography signatures of a mantle plume. We focus here on two particular
issues, the effects of varying viscosity with depth in the mantle and of varying
the Rayleigh number. A more complete discussion of the effects that these and
other parameters have on plume structure can be found in KH. In the following

section, we apply these models to observations of the Equatorial Highlands.

We have performed calculations using three standard viscosity models,
shown in Figure 6. All viscosities shown in this figure are normalized relative to
a lower mantle viscosity of 1. All three models use a high viscosity near-surface
layer (the "lid") to mimic the effects of temperature-dependent viscosity on the
rheology of the thermal boundary layer. This layer is 130 km thick, within
which the viscosity decreases by 3 orders of magnitude from the surface to the
base of the lid. The viscosity contrast between the surface and the base of the
lid on Venus is undoubtedly much larger than 3 orders of magnitude, but as we
showed in KH, increasing the viscosity contrast beyond 3 orders of magnitude
has a very small effect on either the geoid anomaly or the topographic uplift
associated with a plume. The lid thickness of 130 km corresponds to the lithos-
pheric thickness of old oceanic plates on Earth (Parsons and Sclater, 1977).
Because of the high surface temperature on Venus, the lid is probably some-
what thinner on Venus than it is on Earth, but as shown in KH, decreasing the
lid thickness by a factor of 2 has only a 5 to 10% effect on the geoid and
topography.
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Within the mantle, viscosity may vary ‘continuously with depth due to the
effect of pressure on rheology and may also undergo discrete jumps at phase
transitions. We have parameterized the mantle viscosity into 3 layers of con-
stant viscosity: an asthenosphere from 130 to 400 km depth, an upper mantle
layer from 400 to 700 km depth, and a lower mantle from 700 to 2800 km
- depth. We use this parameterization both for simplicity and to facilitate com-
parison of our results with the viscosity profile derived by Hager and Clayton
(1989) and Hager and Richards (1989) for the Earth. The layer depths at 400
and 700 km correspond approximately to the two major phase transitions
known to occur in the mantle. Viscosity model 1 (Figure 6a) has a uniform
viscosity mantle. In viscosity model 2 (Figure 6b), the asthenosphere and
upper mantle layers have a viscosity of 0.1 times the lower mantle viscosity. In
viscosity model 3 (Figure 6c), the asthenosphere viscosity is 0.01 times the
lower mantle viscosity. Model 3 is similar to the viscosity profile favored by
Hager and Clayton (1989) and Hager and Richards (1989) for the Earth. The
main difference is that Hager and colleagues prefer an asthenosphere viscosity

which is a factor of 3 less than that used in our viscosity model 3.

The depth-dependence of viscosity is well known to affect both the geoid
and the topography associated with convective upwellings and downwellings
(e.g., Richards and Hager, 1984; Kiefer et al., 1986a; Robinson et al., 1987;
Ceuleener et al., 1988). This is illustrated in Figure 7. The three models shown
all have a Rayleigh number of 10%. Inclusion of a low viscosity asthenosphere
prevents convective stresses in the interior from coupling efficiently to the sur-
face. Consequently, the peak topographic uplift is reduced in models with low
viscosity layers in the upper mantle. As Figure 7b shows, going from viscosity
model 1 to viscosity model 3 decreases the peak uplift by a factor of 2. As we
noted above, the geoid anomaly over a plume depends on contributions both
from density anomalies at the uplifted surface and from density anomalies
associated with temperature anomalies in the plume. These contributions are
similar in magnitude but opposite in sign, so small changes in the amplitude of
the topographic uplift can lead to large changes in the associated geoid ano-
maly. In Figure 7a, we see that going from viscosity model 1 to viscosity model

3 changes the peak geoid anomaly by a factor of 7. If the asthenosphere
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viscosity were reduced to a value even less than that used in viscosity model 3,
the topographic uplift could be reduced to such an extent that the geoid ano-

maly over the upwelling plume would be negative.

‘The vigor of convection is controlled by the Rayleigh number,

_ pga AT d3
ne

Ra (3)

with larger values of Ra indicating more vigorous convection. In equation 3, 7
is the viscosity and the other variables are identified in Table 1. Because 7
varies with depth in our models, we have used the lower mantle viscosity to
define the value of Ra. This is an appropriate choice because the lower mantle
constitutes at least 75% of the volume of our model cylinders. Robinson et al.
(1987) and Ceuleneer et al. (1988) used a similar procedure to define Ra in their
calculations that used depth-dependent rheology.

Figure 8 shows that increasing Ra causes both the geoid anomaly and the
topographic uplift of a plume to decrease. Increasing Ra causes the upwelling
plumes and downwelling sheets to become thinner, which in the spectral
domain implies that there is an increasing amount of power at short
wavelengths. However, short wavelengths do not couple efficiently from the
interior to the surface, so that for fixed buoyancy (pgaAT), the surface uplift
produced by a plume must decrease as Ra increases. The thinner upwellings
and downwellings and the decreased amount of topographic uplift imply that
all of the terms which contribute to the geoid anomaly decrease with increasing

Ra. The net result is that the geoid decreases in amplitude as Ra increases.

Comparisons of Models and Observations

In this section, we compare the results of our plume models with observa-
tions of geoid anomalies and topography in the Equatorial Highlands of Venus.
We focus in turn on each of the four main parts of the Equatorial Highlands,
Beta, Atla, Thetis, and Ovda. For each region, we compare our models with
North-South and East-West profiles of topography and of geoid anomalies. The
topography data was obtained from a digital database that is a part of the
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Lunar and Planetary Institute’s Geophysical Data Facility. The geoid profiles
are based on the Bills et al. (1987) spherical harmonic model. In each figure, the
heavy solid line represents the observations and the other lines are our models.
The model lines use the same pattern as in Figure 7, with Viséosity model 1
using the short-dashed line, viscosity model 2 using the long-dashed line, and
viscosity model 3 using the dot-dashed line. These models are all calculated at
Ra=10%. The mantle of Venus probably has a Rayleigh number that is about
an order of magnitude larger than this, but because the computational cost is a
strongly increasing function of Rd, we have not attempted models larger than
Ra=10%. At the end of this section, we discuss how our conclusions are likely

to be affected by a larger Ra.

In studies of terrestrial hotspot swells, it is common practice to filter the
long-wavelength geoid by subtracting the spherical harmonic degrees 2 to 10
geoid from the total geoid and then analyzing only the residual geoid. This
filtering has sometimes been done using an untapered filter (e.g., McKenzie et
al., 1980). In other cases, it has been done using a tapered filter to avoid "ring-
ing" in the spatial domain results (Sandwell and Renkin, 1988). The rationale
usually presented for this long-wavelength filtering is that terrestrial hotspot
swells are typically less than 2000 km in width and are therefore assumed to be
unrelated to geoid anomalies of much longer wavelength. However, Richards et
al. (1988) showed that the Earth’s degree 2 geoid is strongly correlated with the
distribution of hotspots. This correlation may simply mean that both the
degree 2 geoid and the distribution of hotspots are controlled by long-
wavelength convective structures in the Earth’s mantle. However, it seems
likely that the thermal structures that produce hotspots must make some con-
tribution to even the very long-wavelength geoid. Therefore, in the following
discussion, the geoid anomalies include all of the terms from degree 2 to degree
18 in the Bills et al. (1987) spherical harmonic model. As we will show, our
plume models can explain a substantial fraction of the geoid in the the Equa-
torial Highlands. However, our models should not be expected to explain all of
the observed geoid anomalies. For example, regional variations in crustal thick-
ness may arise from volcanic activity, leading to topographic variations. Such

variations would also produce some geoid anomalies, although they would be
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small if the crust is only a few tens of kilometers thick. More importantly,
there are likely to be convective structures within the mantle of Venus that are
unrelated to the mantle plumes that we have modeled. These other structures

will also contribute to the long-wavelength geoid.

As Figures 7 and 8 show, our models predict that the geoid anomaly and
the topographic depression over downwellings will have amplitudes that are
about 40% of the amplitudes of the corresponding quantities over the upwel-
lings. The basins surrounding the Equatorial Highlands typically have depths
of 1 to 1.5 km below MPR, while the highlands reach elevations of about 4 km
above MPR. Similarly, the geoid lows in the flanking basins have smaller
amplitudes than the geoid highs in the highlands. These observations are
broadly consistent with our model predictions. However, as noted above, the
thermal scaling that we use probably underestimates the amplitudes of the
geoid and topography in the downwellings. Because of this, in the comparisons
that follow, we focus only on the upwelling portion of the model profiles and
cut off the comparisons at a distance of about 2000 km from the center of the
upwelling.

Beta Regio

Beta Regio rises to a peak elevation of about 4 km above MPR. It is
approximately circular in planform, with a North-South size of about 2400 km
and an East-West size of about 2200 km (U.S. Geological Survey, 1984). Beta
has a peak geoid anomaly of 92 meters (Figure 2). Because of the availability of
Arecibo radar imagery, Beta is the best studied of the four main parts of the
Equatorial Highlands. Beta contains two distinct topographic peaks, Rhea
Mons and Theia Mons, that are separated by about 800 km. On the basis of
their dome shaped topography and the presence of lobate, flow-like structures
that radiate away from the topographic peaks, Rhea and Theia are generally
regarded as shield volcanoes (Campbell et al., 1984, 1989; Stofan et al., 1989).

A major topographic depression, Devana Chasma, runs North-South
through Beta and extends southward towards Phoebe Regio. Devana varies in
width from 100 km to 300 km and in depth from less than 1 km to more than

2 km. It is generally regarded as a rift zone, perhaps analogous to the East
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African rift zone system on Earth (McGill et al., 1981; Schaber, 1982; Campbell
et al., 1984; Stofan et al., 1989). Numerous radar bright lineaments exist within
Devana and typically parallel the trend of the topographic valley. These linea-
ments may represent the traces of individual faults or fault zoneé (Campbell et
“al., 1984; Stofan et al., 1989). A second topographic valley, Hecate Chasma,
runs away from Beta to the southwest, through Asteria Regio, and towards

Atla Regio. Hecate may be another rift zone.

In Figure 9, we compare our plume model results with observations of
topography (Figure 9a) and geoid anomalies (Figure 9b) in Beta Regio. The
East-West profiles are taken along Latitude 28° N, and the North-South profiles
are taken along Longitude 283°. The two profiles intersect in the approximate
center of Beta. The origin for the horizontal distance scale is the intersection of
the two profiles. Figure 9a shows that viscosity model 2 (long-dashed line) gives
the best overall fit to Beta’s topography. On the East-West profile, the two
main discrepancies between viscosity model 2 and the data are near -1000 km
and +800 km, where the data falls significantly below the model. These loca-
tions correspond to the locations of Hecate Chasma and Devana Chasma. Rift-
ing in these locations may have locally thinned the crust, leading to lower than
predicted elevations. On the North-South profile, viscosity model 2 is a good
match to the broad shape of topography on the southern part of the profile.
Between +250 km and +750 km, the observations are substantially higher than
model 2 predicts. This corresponds to the location of Rhea Mons. Volcanic
activity at Rhea has presumably produced local thickening of the crust, leading
to topography that is higher than predicted by our plume thermal model.
Further to the north, the observed topography falls off more rapidly with dis-

tance than predicted by any of our models.

Geoid results are shown in Figure 9b. On the East-West profile, viscosity
model 2 gives the best fit to the shape of the observed anomaly, but it underes-
timates the peak geoid amplitude by about 15 meters. Of course, there are a
continuum of possible model parameters. For example, the fit between the
model and the data could be improved by slightly increasing the upper mantle
viscosity, producing a model intermeditate between viscosity models 1 and 2.

However, given the simplifying assumptions that have gone into the modeling,
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an effort to more precisely "tune" the viscosity model is unwarranted. Model 2
is also clearly the best fit to the North-South geoid profile, although the fit is
not as good as on the East-West profile. As was the case for the topography,
the data falls off more rapidly to the north than predicted by the model.

Atla Regio

 Atla Regio is about 2000 km across and reaches a peak elevation of about
5 km abdve MPR. It is somewhat less circular in planform than Beta, with the
long axis striking Northeast. Atla contains two distinct topographic peaks,
Ozza Mons and Maat Mons (U.S. Geological Survey, 1984). These may be vol-
canic shields analogous to Rhea and Theia Mons in Beta Regio. Atla lies near
the intersection of several chasmata, Ganis Chasma, Parga Chasm, and Dali
Chasma (Schaber, 1982; U.S. Geological Survey, 1984). These features may be
rift zones analogous to Devana Chasma. Atla has not yet been studied with
high resolution radar imagery. Magellan imagery will be needed to assess the
detailed tectonic and volcanic processes that have operated in Atla. The peak

geoid anomaly in Atla is about 120 meters (Figure 2).

Figure 10 compares topography and geoid anomaly data for Atla with our
plume model results. The figure format is identical to that used in Figure 9.
The East-West profiles are taken along 3°N Latitude, and the North-South
profiles are taken along Longitude 198°. On the North-South topography
profile (Figure 10a), viscosity model 2 provides the best overall fit, particularly
on the southern half of the profile. The broad valley between +250 km and
+750 km may be a part of a rift system that connects to Ganis Chasma. The
topography highs further north (+1000 to +1500 km) are part of a small, iso-
lated highland structure that might be the result of volcanic activity. On the
East-West profile, the observed topography lies significantly above model 2
between 0 and +800 km. This is in the vicinity of Ozza Mons. We assume that
voleanic construction contributes to the topography in this area. Further east,
near +1500 km, the topography lies about 1 km below our model predictions.
This trough is near the intersection of Ganis Chasma and Parga Chasma. On
the western side of the profile, between -2000 and -500 km, the observations lie

consistently about 1 km below model 2 and actually provide a closer match to
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Viscosity model 3. However, if we had centered our model profiles 200 to 300
km further east, near Longitude 200 to 201°, then viscosity model 2 would pro-
vide a better fit to the profile as a whole. We have chosen to center our models

at 198° Longitude because this is the location that best fits the géoid profiles.

Geoid results for Atla Regio are shown in Figures 10b and c. Figure 10b
shows that the observed peak geoid anomaly lies half-way between the results
for our viscosity models 1 and 2. Although we could adjust the viscosity struc-
ture to match the peak amplitude, such intermediate models would not provide
a good fit to the overall shape of the geoid profiles. In Figure 10c, we have
added a constant offset of 35 meters to our model geoids. We interpret this
offset as arising from long-wavelength convective structures within the mantle
of Venus that are not included in our aspect ratio 1 models. With the inclusion
of this offset, viscosity model 2 provides an extremely good fit to the East-West
geoid profile, although the observed profile is slightly narrower than the model.
Neither viscosity model 1 nor model 3 can be adjusted to fit the data using just
a constant offset. Model 3 is too flat to fit the curvature in the data, while
model 1 varies too rapidly with distance to fit the observed profile. The offset
model 2 also provides an adequate fit to the North-South geoid profile,
although there is some discrepancy on the northern part of the profile. If we
had used a slightly sloping offset that dipped to the south, there would be even

better agreement between model 2 and the observations.
Thetis Regio

Thetis Regio is about 3000 to 3500 km across in the East-West direction
and 2500 to 3000 km across in the North-South direction. Thetis reaches a
peak elevation of about 4 km above MPR (U.S. Geological Survey, 1984). The
peak geoid anomaly is 73 meters (Figure 2). On the south side of Thetis, the
topographic valley Virava Chasma runs approximately East-West and may be
a rift structure (Schaber, 1982; U.S. Geological Survey, 1984). In places, Virava
is more than 2 km lower than the surrounding terrain (Figure 11a). Unlike Atla
and Beta, Thetis does not contain distinet, circular topographic peaks that
might be interpreted as shield volcanoes. However, Senske and Head (1989)

have reported the presence of several circular radar-bright spots in low
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resolution PVO radar images of Thetis Regio. Théy believed that these features
may be volcanic, but a detailed assessment of the morphology of these features

must await Magellan imagery.

In Figure 11, we compare our plume models with observations of topogra-
phy and geoid anomalies in Thetis. The figure format is the same as in Figures
9 and 10. The East-West profiles are taken along 9° South Latitude, and the
North-South profiles are taken along 131° Longitude. On the East-West topog-
raphy profile (Figure 11a), viscosity model 2 provides a good fit to the eastern
two-thirds of the profile. On the western end of the profile, from -700 km west-
ward, the observed topography is up to 3 km higher than predicted by model 2
and is even significantly higher than predicted by viscosity model 1. This topo-
graphic peak, centered near -1500 km on the East-West profile, might be the
result of voleanically thickened crust. This possibility can be addressed using
Magellan radar imagery by looking for evidence of volcanic activity in the
vicinity of 115° Longitude and 9° South Latitude. An alternative possibility is
that the upwelling beneath Thetis is somewhat elongated in the East-West
direction, so that the topographic peak near -1500 km would have a significant
dynamic uplift component. On the North-South profile, viscosity model 2 pro-
vides the best overall fit to the data, although the actual topography is some-
what broader and has a flatter top than the model predicts. The prominent
valley in the observed profile near -700 km is Virava Chasma. We assume that
rifting in this area has led to local thinning of the crust, producing the low
topography.

Figure 11b compares our models with the observed geoid anomaly in
Thetis. Although viscosity model 2 provides the best match to the observed
peak amplitude, it does not do a good job in reproducing the shapes of the
observed profiles. Indeed, on the East-West profile, an offset viscosity model 3
would provide a better match to the total profile. On the North-South profile,
model 2 is the best fit to the northern half of the profile, but the fit is not as

good as those shown previously for Atla and Beta.

The Thetis geoid anomaly is somewhat broader than the region of high
topography, and the peak geoid anomaly is offset to the southeast of the peak
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topography. Comparing Figures 1 and 2, We see that Thetis is the only one of
the four main Equatorial Highlands for which the peak geoid and the peak
topography are noticeably offset. The topography to the south of Thetis is
moderately elevated, typically lying between 1 and 1.5 km aboLve MPR (U.S.
 Geological Survey, 1984). This elevated region extends as much as 2000 km
south of Thetis Regio. Two topographic valleys, Artemis Chasma and Quilla
Chasma, exist in this area and might be rift zones (Schaber, 1982; U.S. Geolog-
ical Survey, 1984). The geoid high, topographic elevation, and possible rift
zones are all consistent with the ‘possibility that a broad thermal upwelling
exists in the region south of Thetis Regio. This upwelling might be distinct
from the plume that we have inferred to exist beneath Thetis. Alternatively,
the Thetis Regio plume might be embedded within a broader upwelling that
extends to the south. Magellan imagery should provide information on the tec-
tonic and volcanic styles of Thetis Regio and the area to the south of Thetis.
This data may help to better define the relationships between the convective

structures hypothesized here.
Ovda Regio

Ovda Regio is the most elongated part of the Equatorial Highlands. It is
4000 to 4500 km across in the East-West direction and 2000 to 2500 km across
in the North-South direction. Ovda reaches a peak elevation of slightly more
than 4 km above MPR (U.S. Geological Survey, 1984). The peak geoid anomaly
is 35 meters (Figure 2). On the southern side of Ovda, two topographic valleys,
Ix Chel Chasma and Kuanja Chasma, might be rift features (Schaber, 1982;
U.S. Geological Survey, 1984). Senske and Head (1989) reported the presence of
several circular, radar-bright spots in PVO radar imagery. They suggested that
these may be volcanic features, although the morphology of these features is

not yet well known.

In Figure 12, we compare our plume model results with observations of
topography and geoid anomalies in Ovda. The figure format is the same as
before, with the North-South profiles taken along 91° Longitude and the East-
West profiles taken along 6° South Latitude. Figure 12a shows that viscosity
model 2 provides the best match to the peak amplitude of the topography, but
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none of the models adequately fit the shapes of the observed profiles. Our
assumption of axisymmetry clearly breaks down here, although we nevertheless
believe that the axisymmetric models are at least as good an approximation as

the alternative two-dimensional model of infinitely long Cartesian sheets.

Figure 12b shows geoid results. In contrast with the three regions analyzed
above, viscosity model 3 provides the best fit to the peak amplitude and the
overall shape of the geoid anomaly profiles in Ovda. Model 3 is a good fit to
much of the East-West profile, except in the eastern-most part of the profile,
where the observed anomaly begins to rise into Thetis Regio. Model 3 is also a
good fit to the North-South profile, except south of -1000 km, where the data
amplitude decreases more rapidly than predicted by the model.

In KH, we showed that a two-dimensional, Cartesian geometry convection
model produces geoid anomalies and topographic uplifts that are about a factor
of two less than for a cylindrical axisymmetric model using the same model
parameters. Given that the topographic planform of Ovda suggests a convec-
tive upwelling whose geometry is intermediate between the end member models
of axisymmetry and Cartesian geometry, it seems reasonable to believe that the
geoid anomaly associated with the upwelling is also intermediate in amplitude
between the two end member models. This might partially explain why Ovda’s
geoid anomaly is so much less than at the other parts of the Equatorial High-
lands, but it is unlikely to be a complete explanation. It therefore may be
necessary to invoke an asthenospheric viscosity that is lower in the Ovda region

than elsewhere in order to explain the observed geoid.

Considerations of the possible effects of time-dependent convection and
temperature-dependent rheology may provide an explanation for regional varia-
tions in the asthenospheric viscosity. As discussed in KH, our plume models
typically reach steady-state, but if temperature-dependent viscosity were
included, the thermal structures might be time-dependent. Such time-
dependence might take the form of hot blobs of material that travel up the
plume as solitary waves (Olson et al., 1987; Schubert et al., 1989). When such a
blob is discharged from the plume, it should spread laterally at the base of the

thermal boundary layer. The sudden addition of a large volume of hot material
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to the asthenosphere could produce a local decrease in the asthenosphere’s
viscosity. This could decrease the geoid anomaly associated with the plume. If
such a blob has recently ascended the Ovda plume, it could explain the rela-

tively low amplitude geoid anomaly observed in Ovda.

However, decreasing the asthenosphere’s viscosity also decreases the topo-
graphic uplift of a plume (Figure 7b), so we must find another mechanism for
producing the observed topography. If a large, hot blob has recently reached
the near-surface in Ovda, we can reasonably expect that this hot material will
produce an enhanced rate of volcanic activity. Volcanic construction might
therefore play a significant role in producing the observed topography in Ovda.
Assuming that the volcanically-induced crustal thickening is Airy compensated
at shallow depths, it could produce several kilometers of topographic relief with
little effect on the long-wavelength geoid. If this hypothesis is correct, then we
would expect to find evidence for recent voleanic activity in Magellan imagery
of Ovda Regio. On the other hand, if Magellan imagery shows that Ovda is
old, with many impact craters and little or no recent volcanic activity, then the
time-dependent hot blob model would not be a viable explanation for Ovda's

geoid and topography.
Scaling Model Results to Larger Ra

In the foregoing discussion, we compared observations with models calcu-
lated at a Rayleigh number of 108. In this section, we examine how our conclu-
sions would be affected by other choices of Ra. The main results described in
this section are summarized in Table 2, where we show results for the peak
geoid anomaly and peak topographic uplift for our three viscosity models at
four different values of Ra. Table 2 also includes results for the Nusselt
number, Nu, which is a dimensionless measure of the heat transporting ability
of a convective structure. We calculate Nu using the volume-averaging tech-
nique of Ho-Liu et al. (1987). In Table 2, the results for Ra=10° are based on
the finite element calculations shown in Figure 7. The results for larger values
of Ra are based on power-law projections of the form f(Ra)=a-(Ra)®, where
f(Ra) is geoid, topography, or Nu, and a and b are power law parameters given
in Table 3 of KH.
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Héger (1989; see also discussion in KH) estimated that a lower mantle
viscosity of 3:10%2Poise is consistent with both the Earth’s overall heat flow
- and the observed plate velocities. Assuming whole mantle convection, this
choice of lower mantle viscosity implies a Rayleigh number of about 7-10%. For
the Earth-like viscosity model 3, our calculations imply a Nusselt number for
the Earth of about 15, which is consistent with the observed average thickness

of oceanic plates.

In comparing models for Venus and Earth, we follow Solomon and Head
(1982) in assuming that the two planets have similar heat sources per unit
mass and hence similar total heat flows. Because we have defined the Rayleigh
number in terms of the lower mantle viscosity rather than a vertically-averaged
viscosity, for fixed Ra the various viscosity models will have different values of
Nu. Our assumption of similar heat flows is equivalent to assuming that Earth
and Venus have similar Nu. This statement implicitly assumes that essentially
all of Venus’s heat flow comes from sources in the mantle and core. If radioac-
tive elements were strongly concentrated into the crust of Venus, as suggested
by Turcotte (1989b), then the heat flow out of the mantle of Venus could be
much less than out of Earth’s mantle, and yet the two planets could have simi-
lar total heat flows. In this case, Nu could be less on Venus than on Earth.
However, given the available data on the radioactive element concentrations
obtained by Soviet landers (Surkov et al., 1984, 1986, 1987) and estimates that
the crust on Venus is typically less than 30 km thick (Zuber, 1987; Banerdt
and Golombek, 1988; Grimm and Solomon, 1988; Zuber and Parmentier, 1990;
Kiefer and Hager, 1990Db), it seems likely that the contribution of crustal heat
sources to the total heat flow is small. For example, in the thermal models of
Kiefer and Hager (1990b; Chapter 4), the crust typically contributes less than
10 mW m™?, which is less than 14% of Solomon and Head's (1982) estimate of
74 mW m™2 for the globally averaged heat flow on Venus. We therefore
believe that it is reasonable to assume that Earth and Venus have comparable

Nusselt numbers.

As Figures 9 to 12 show, viscosity model 2 at Ra=10°% provides a gen-
erally satisfactory explanation for the geoid and topography of the Equatorial
Highlands. However, Table 2 shows that this model has a Nusselt number of
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slightly less than 10, which on the basis of the préceding discussion is probably
too small for Venus. Our results imply that viscosity model 3 can be excluded
as a model for the mantle of Venus. Even at the rather low Ra of 10°,
corresponding to Nu=7.5, we find a peak geoid anomaly of onl)lr 33 meters for

viscosity model 3, less than half that observed at Atla, Beta, and Thetis.

On the other hand, for viscosity model 1 in the range of Ra between 107
and 3107 , we predict peak geoid anomalies of 70 to 90 meters and peak topo-
graphic uplifts of 3 to 3.5 km. The predicted Nu is 14 to 17, which overlaps
our estimate of Earth’s Nu. These results show that much of the geoid and
topography observed in the Equatorial Highlands could be the result of uplift
by mantle plumes. Although viscosity model 1 assumes that the mantle of
Venus is isoviscous, it may also be possible to satisfy the observations with a
viscosity model in which the upper mantle is a factor of several less viscous

than the lower mantle.

- Although the peak amplitudes of the geoid and topography are strong
functions of Ra, the shapes of the model profiles depend only weakly on Ra.
This can be quantified by considering the full width at half maximum (FWHM)
of the model curves. For viscosity model 2 at Ra =108, we find FWHM of 1800
km for the geoid profile and 1500 km for the topography profile. For com-
parison, a power-law projection of viscosity model 1 to Ra=107 gives FWHM
of 1600 km for the geoid and 1400 km for the topography. Thus, these two
models differ in width by only 7 to 11%. Because of this, we believe that the
viscosity model 2 results in Figures 9 to 12 provide a good estimate of how
viscosity model 1 at Ra =107 would fit the overall shapes of the observed geoid

and topography profiles.

Discussion of Inferred Viscosity Profile

The foregoing discussion shows that a nearly isoviscous mantle is con-
sistent with observations of the geoid and topography in the Equatorial High-
lands. In this section, we show that such a viscosity model is also consistent

with the long-wavelength admittance spectrum of Venus, as well as with the
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slope of the geoid spectrum. In contrast, a model similar to viscosity model 3
has been shown to be consistent with the Earth’s long-wavelength geoid (Hager
and Richards, 1989; Hager and Clayton, 1989) and with the geoid and topogra-
phy observed at terrestrial hotspot swells (Richards et al., 1988;‘KH). We dis-
cuss possible reasons for the differences in the viscosity profiles of Venus and

Earth at the end of this section.
The Long- Wavelength Admittance Spectrum

Kiefer et al. (1986a) developed a model for the long-wavelength admittance
spectrum of Venus and concluded that in order to fit the observed admittance
spectrum, Venus could not have a low-viscosity asthenosphere. Subsequently,
we showed that our original model had to be modified in two ways. First, all of
the model admittance results in Figure 3 of Kiefer et al. (1986a) need to be
multiplied by a factor of 3.3 (Bills, Kiefer, and Jones, 1987). This has the effect
of allowing models in which the upper mantle viscosity is a factor of a few less

than the lower mantle viscosity to satisfy the observed admittances.

A more important issue concerns the density contrast model used in these
calculations. In the work of Kiefer et al. (1986a), we did not solve the energy
equation to determine a thermal structure. Rather, we assumed a prior: that
the density contrasts associated with convection were independent of depth.
This is a reasonable first approximation to the pipe-like structure of a mantle
plume, but it neglects the structure of thermal boundary layers. With this
assumption, we solved the incompressible equations of motion using the propa-
gator matrix technique of Richards and Hager (1984). From the resulting flow
field, we calculated the dynamic topographic uplift and geoid anomalies, and

hence the admittance, as a function of spherical harmonic degree.

As shown by Jarvis and Peltier (1986) and Kiefer et al. (1986b), the ther-
mal boundary layers have a spectrum that is dominated by the longest
wavelengths, whereas within the interior of the convecting layer, the spectrum
of the plume thermal structure has power distributed over many wavelengths.
A correct parameterization of the boundary layer structure is important,
because the upper thermal boundary layer makes a significant contribution to

the dynamic topography but virtually no contribution to the long-wavelength
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geoid. A precise analytic treatment of how this affects the model admittances is
quantitatively difficult, but the general effect is to cause some flattening of the

model curves at the lowest harmonic degrees.

In spite of these difficulties, the general conclusion of Kiefer et al. (1986a)
- about the viscosity profile of Venus is correct. As shown in Figure 3 of Kiefer et
al. (1986a), Venus has an admittance spectrum that is positive at all resolved
wavelengths, whereas a model using the Earth viscosity profile of Hager and
Richards (19'89) produces a band of negative admittances centered near degree
6. There are good reasons for believing that Earth has a negative admittance in
this wavelength band. At spherical harmonic degrees 4 to 9, the Earth’s geoid
is dominated by positive geoid anomalies over subduction zones (e.g., Hager,
1984). As downwelling structures, subducting slabs should produce negative
dynamic topography, which Hager and Clayton (1989) estimated to be about
400 meters in peak amplitude. Back-arc basins in the western Pacific are
observed to be deeper than expected based on their age (Sclater et al., 1976;
Watanbe et al.,, 1977), which is consistent with the expectation of negative
dynamic topography. The combination of positive geoid anomalies and nega-
tive dynamic topography implies that the Earth’s admittance is negative for
degrees 4 to 9, consistent with the Earth model prediction of Kiefer et al.
(1986a). The observation that the admittance spectrum of Venus is positive in
this same wavelength range requires that Venus can not have an Earth-like,
low viscosity zone in its asthenosphere and upper mantle. This supports the
conclusion reached above based on our modeling of individual parts of the

Equatorial Highlands of Venus.

Phillips (1990) has also recently concluded that Venus lacks a low viscosity
asthenosphere. Phillips presented his results in terms of apparent compensation
depth, but this quantity is interchangeable with the admittance used by Kiefer
et al. (1986a). The work of Phillips therefore supports our previously presented
conclusions about the viscosity profile of Venus (Kiefer et al., 1986a; Kiefer and
Hager, 1988).
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The Geoid Spectral Slope

A compact way to describe the magnitude of the geoid as a function of
wavelength is to use the rms amplitude, oy, defined as
5

L
3 (Chv+Stm)
M=0 '

= . 4
L oL +1 (4)

In equatibn 4, Cyp and Sy are the cosine and sine coefficients at harmonic
degree L and order M. As shown in Figure 13, the long-wavelength rms geoid
spectrum for Venus can be approximated by a power law of the form
o, ~A-L71®%, where A is a constant. The power law fit shown in Figure 13 is
based on spherical harmonic degrees 3 to 14. Degree 2 is omitted from the
analysis because it is significantly depressed relative to the trend of the higher
harmonics. Degrees 15 to 18 are omitted because of the possible effects of alias-
ing at these wavelengths (Bills et al., 1987). In contrast with Venus, the Earth’s
geoid spectrum is a somewhat steeper function of wavelength, with oy, decaying

as approximately L2 (Figure 14).

We believe that the different spectral slopes of the two planets may be
related to their different viscosity profiles. At the longest wavelengths, the flow
pattern essentially averages over the entire depth of the mantle and is not
strongly sensitive to the presence of a shallow low-viscosity zone. Thus, at very
long wavelengths, the geoid amplitudes should be comparable on Venus and
Earth. Indeed, there is good agreement in the values of oj, at degrees 3 and 4,
although at degree 2, oy, for Venus is only 40% of its terrestrial value. As one
goes to increasingly higher harmonic degrees, or shorter wavelengths, the
influence of a low viscosity asthenosphere will be felt more strongly by the flow
field. As shown earlier, a low viscosity zone causes the geoid amplitude to
decrease, so with increasing harmonic degree, the Earth’s spectrum should
increasingly fall below the geoid spectrum of Venus, as is observed. Although
qualitative, we believe that this argument can help explain the difference in the
spectral slopes of the two planets and further supports the claim that Venus

lacks a low viscosity asthenosphere.



-132 -

Comparison of the Viscosity Profiles of Venus and Earth

Based on the preceding discussion, it seems likely that Venus and Earth
have significantly different mantle viscosity profiles, with Venus lacking the low
viscosity asthenosphere that characterizes Earth. Although inclusion of effects
such as temperature-dependent or stress-dependent rheology may alter our con-
clusions about the absolute viscosity profiles of the two planets, our conclusions

about the relative differences between the two planets are probably robust.

The lack of a low viscosity zone on Venus may be a result of the mantle of
Venus being drier than Earth’s mantle. The possible importance of water in
determining the rheology of Venus was first emphasized by Weertman (1979) in
a discussion of viscous crustal flow. Chopra and Paterson (1981, 1984) and
Karato et al. (1986) have shown that the presence of water in olivine rich
materials substantially weakens the rheology in comparison with dry materials.
Comparisons of laboratory data with our viscosity models is somewhat
difficult, because the lab results are typically non-Newtonian (stress dependent),
whereas our models use Newtonian rheology for computational simplicity. How-
ever, for a fixed differential stress level, the strain rates of "wet" samples are
typically one to two orders of magnitude higher than for dry samples. This
implies that the presence of water lowers the effective Newtonian viscosity by 1
to 2 orders of magnitude. As in all laboratory rheology studies, the strain rates
used by Chopra and Paterson and by Karato et al. are about 10 orders of mag-
nitude larger than the strain rates likely to characterize the mantles of Venus
and Earth. We assume, however, that some water weakening of rheology will

also occur at lower strain rates.

Chopra and Paterson (1984) estimated that only 100 ppm of water is
necessary in order for the viscosity of dunite to be substantially altered by the
water. Michael (1988) estimated that the Earth’s upper mantle water content is
between 100 and 450 ppm. This suggests that the Earth’s mantle viscosity
profile may be significantly affected by the presence of water. If the mantle of
Venus is much drier than Earth’s mantle, then the absence of a water weaken-
ing mechanism on Venus could explain the inferred lack of an upper mantle

low viscosity zone. However, we do not rule out the possibility that other
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mechanisms may contribute to the observed differences in the viscosity profiles

of Venus and Earth.

One way that Venus’s mantle could presently be dry is if Venus never
accreted significant amounts of water from the solar nebula, as in the equili-
brium condensation model of Lewis and Prinn (1984, Table 4.6). The likelihood
of radial mixing in the solar nebula (Wetherill, 1986) implies that Venus should
have accreted at least some water, although the initial water budgets of Earth

and Venus need not have been the same.

Even if Venus and Earth initially accreted comparable amounts of water,
the upper mantle of Venus could now be drier than Earth’s upper mantle if
Venus has lost water over geologic time. One possibility, proposed by Kaula
(1990), is that water has been drained into the lower mantle of Venus. How-
ever, it is not obvious why this same process did not occur on Earth. An alter-
native possibility is that Venus has lost water to space. On Earth, water that
is outgassed from the mantle can be bound into hydrous minerals and returned
to the mantle at subduction zones. Because of the high surface temperature on
Venus, the formation of hydrous minerals is inhibited (Nozette and Lewis,
1982). Outgassed water should therefore enter the atmosphere, where it can be
photochemically dissociated. The hydrogen will escape to space, producing a
permanent loss of water. If Venus had a hot, greenhouse atmosphere for most
of its history, this process could have caused it to lose most of its initial water
budget. The Pioneer Venus entry probe determined that the deuterium to
hydrogen ratio (D/H) in the atmosphere of Venus is about 100 times the terres-
trial value (Donahue et al., 1982). This result is consistent with the loss of sub-
stantial water from Venus, although Grinspoon (1987) argued that other
interpretations of the D/H ratio are also possible. Assuming that the high D/H
ratio on Venus is due to isotopic fractionation during escape of hydrogen to
space, Donahue et al. (1982) estimated a minimum water loss that is equivalent
to 0.3% of a terrestrial ocean mass. However, they also concluded that it would
be "astonishing” if the water loss were not considerably larger than this lower
limit, and suggested that the equivalent of a terrestrial ocean could have been
lost. Hunten et al. (1989) concluded that Venus may have lost several ocean

masses of water without violating the D/H ratio constraint. These results
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suggest that loss of water may play a significant role in explaining the lack of

an asthenosphere on Venus.

Summary and Conclusions

- The four main parts of the Equatorial Highlands, Atla, Beta, Ovda, and
Thetis Regiones, are each quasi-circular in planform, with characteristic hor-
izontal sizes of 2000 to 3000 km, and reach peak elevations of 4 to 5 km above
the mean planetary radius. These highland units are associated with large,
positive geoid anomalies and with topographic valleys that are believed to be

rift zones. Shield volcanoes have been documented in Beta Regio.

Although Airy-compensated crustal thickness variations can contribute to
the high topography of the Equatorial Highlands, the average crustal thickness
would have to be implausibly large in order for crustal thickness variations to
be the dominant source of the observed geoid. Spreading centers have been pro-
posed to exist in Ovda and Thetis, but presently available data do not neces-
sarily require the existence of spreading centers in these areas. Even if spreading
centers do exist in Ovda and Thetis, a cooling plate thermal model shows that
no more than 20 to 30% of the observed topography and geoid could be related
to the spreading centers. The large amplitudes of the geoid anomalies observed
in the Equatorial Highlands requires the presence of substantial density

anomalies within the convecting mantle.

In this paper, we consider the possibility that the Equatorial Highlands are
the surface expressions of hot, upwelling mantle plumes. We have developed a
series of mantle plume models using a cylindrical, axisymmetric finite element
code and depth-dependent, Newtonian rheology. We scale our results by assum-
ing whole mantle convection and that Venus and Earth have similar mantle
heat flows. In order for the plume model to explain the observed geoid and
topography in the Equatorial Highlands, we favor a model in which the Ray-
leigh number is about 107 and the viscosity of the asthenosphere and upper
mantle is no more than a factor of a few less than the viscosity of the lower

mantle. Our best model fits are for Beta Regio and Atla Regio. Mantle plumes
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may also play significant roles in Thetis Regio and Ovda Regio, but the

required models are more complicated than for Beta and Atla.

The shape of Venus’s long-wavelength admittance spectrum and the slope
of its geoid spectrum are both consistent with the lack of a low viscosity zone
in the upper mantle of Venus. In contrast, models of the Earth’s long-
wavelength geoid require a substantial upper mantle low viscosity zone. The
lack of an asthenosphere on Venus may be due to the mantle of Venus being

drier than the Earth’s mantle.
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Table 1. Scaling Parameters

Mantle Density

Gravitational Acceleration
Thermal Expansion Coefficient
Vertical Temperature Contrast
Depth of Convecting Layer
Thermal Diffusivity

3.3 gm cm™
887 cm s~ 2
3-107° °C~!
1000 °C
2800 km

10~2 e¢m? sec™

3

1
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Table 2. Model Results
Ra=10% 5-108 107  3-107

Viscosity Model 1

Geoid 182 115 94 69
Topography 5.2 4.0 3.5 3.0
Nusselt Number 8.5 11.7 13.5 16.8

Viscosity Model 2

Geoid 77 50 41 31
Topography 3.5 2.6 2.3 1.8
Nusselt Number 9.7 13.0 14.7 17.8

Viscosity Model 3

Geoid 25 22 21 19
Topography 2.5 1.9 1.6 1.3
Nusselt Number 11.2 14.8 16.7 20.2

Geoid results are in meters and topographic uplifts are in kilometers. Both quan-
tities are values at the surface along the axis of the upwelling plume. Nusselt
numbers are volume averaged values. Results for Ra=10% are from our finite
element modeling and other values are based on power-law projections, as
described in the text. Results are scaled using the quantities in Table 1. In order
to facilitate comparison of geoid results with the spherical harmonic expansion of
the geoid by Bills et al. (1987), only horizontal wavelengths longer than 1850 km

are included in the geoid results tabulated here.
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Figure 1. Topographic map of Venus, based on the spherical harmonic model of
Bills and Kobrick (1985). The contour interval is 500 meters, with lows shaded.

Cylindrical projection.
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Figure 2. Geoid map of Venus, based on the spherical harmonic model of Bills,

Kiefer, and Jones (1987). Contour interval is 10 meters.
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Figure 3. Geoid map of Earth, based on the spherical harmonic model of Lerch

et al. (1985). Contour interval is 10 meters.
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Figure 4. Temperature contours for a cylindrical plume at Ra=10°% using
viscosity model 2 of Figure 6. The contour interval is 0.10 of the total tempera-

ture difference in the cylinder.
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Figure 5 Comparison of admittances for the convective model of Figure 4 (tri-
angles) and for Pratt compensation at 100 km, 200 km, and 400 km depth.
Although the convective admittances are defined only for wavelengths that are
harmonics of the model cylinder, the results are connected by golid lines for
ease of perceiving trends in the results. The very low admittance at a
~ wavelength of 1400 km may not be significant, because for this particular
model, both the geoid and the topography have very low power at this

wavelength.
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Figure 6. Viscosity models used in this study. All viscosities are normalized
relative to the lower mantle viscosity. a) Viscosity model 1. b) Viscosity model

2. ¢) Viscosity model 3.
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Figure 7. Geoid anomalies and topographic uplifts versus distance from the
upwelling axis for Ra=10°. Viscosity model 1 is shown in short dashed lines,
viscosity model 2 is shown in long dashed lines, and viscosity model 3 is shown

in dot-dashed lines. a) Geoid anomalies. b) Topographic uplifts.
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Figure 8. Geoid anomalies and topographic uplifts versus distance from the
upwelling axis for viscosity model 1. Ra=10° is shown in short dashed lines,
Ra=3-10° is shown in long dashed lines, and Ra =10°% is shown in dot-dashed

lines. a) Geoid anomalies. b) Topographic uplifts.
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Figure 9. Comparison of model results with observations of Beta Regio. The
solid lines are data and the other lines are the model results from Figure 7. a)

Topography. b) Geoid anomalies.
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Figure 10. Comparison of model results with observations of Atla Regio. The
solid lines are data and the other lines are the model results from Figure 7. a)
Topography. b) Geoid anomalies. ¢) Geoid anomalies as in Figure 10 b, except

that model geoids have had 35 meters added to them. See text for explanation.
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Figure 11. Comparison of model results with observations of Thetis Regio. The
solid lines are data and the other lines are the model results from Figure 7. a)

Topography. b) Geoid anomalies.
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Figure 12. Comparison of model results with observations of Ovda Regio. The
solid lines are data and the other lines are the model results from Figure 7. a)

Topography. b) Geoid anomalies.
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Figure 13. The RMS amplitude spectrum of the Bills et al. (1987) Venus geoid
model. The solid line is the spherical harmonic model and the dashed line is a

- power law approximation to the spectrum, as described in the text.
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Figure 14 The RMS amplitude spectrum of the Lerch et al. (1985) Earth geoid
model. The solid line is the spherical harmonic model and the dashed line is a

power law approximation to the spectrum, as described in the text.
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Ovda Regio and Thetis Regio are two of the most prominent highland
units on Venus. Crumpler, Head, and colleagues have advocated that Ovda
and Thetis are terrestrial-type spreading centers (Crumpler et al., 1987;
Crumpler and Head, 1988; Head and Crumpler, 1987, Sotin et al., 1989).
Grimm and Solomon (1989) discussed several aspects of the spreading center
" model. I examine several other aspects of the spreading center model in this
manuscript. I focus primarily on the possible relationship between the observed
geoid and the hypothesized spreading centers. I also discuss possible weaknesses
in the evidence advanced by Crum‘pler et al. (1987) for cross-strike discontinui-

ties in the Ovda and Thetis regions.

Spreading Center Geoid Anomalies and Topography

Geoid and topography data provide one means of assessing the spreading
center model. Although it is not possible to exclude the spreading center
hypothesis on the basis of either geoid or topography alone, it is possible to set
strict limits on the extent to which a spreading center can contribute to the
observed geoid and topography. Both Head and Crumpler (1987) and Sotin et
al. (1989) have acknowledged that other processes can contribute to the
observed topography, focusing primarily on crustal thickening due to volcanic
activity at hotspots. Sotin et al. showed that their model can also satisfy the
observed gravity in Ovda, but they did not discuss the relative contributions of
each part of their model to the total gravity anomaly. One of the purposes of
this paper is to show that spreading centers, as an end member process, can

account for no more than a small fraction of the observed geoid anomalies in
Ovda and Thetis.

Terrestrial spreading centers are essentially uncorrelated with the long-
wavelength geoid (Richards and Hager, 1988), whereas on Venus geoid and
topography highs are strongly correlated (Kiefer et al., 1986; Bills et al., 1987).
On Earth, the density anomalies associated with spreading centers occur pri-
marily in the upper hundred kilometers of the mantle and produce only small
long-wavelength geoid anomalies. Most of Earth’s long-wavelength geoid is due

to density anomalies at much greater depths in the mantle (Hager and
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Richards, 1989). The lack of correlation between terrestrial spreading centers
and the geoid implies that spreading centers are not closely related to upwelling
from deep within the mantle. There are local exceptions to this general rule in
places such as Iceland, which is formed by a mantle plume that happens to be
located near a spreading center. The strong correlation of geoid and topography
on Venus suggests that the Equatorial Highlands are related to deep convective

structures.

Recently, Sotin et al. (1989) argued that there is also a strong correlation
between spreading centers and gravity anomalies on Earth and cited work by
Madsen et al. (1984) to support this claim. Madsen et al. examined gravity
anomalies within 100 km of the crest of the East Pacific Rise, whereas the
correlations addressed here concern much longer wavelengths (XA > 2000 km,
Bills et al., 1987). Wavelengths of 100 to 200 km are not even detectable in
PVO gravity data. Near periapse, the Doppler tracking of the PVO spacecraft
was averaged over 5 second intervals, which corresponds to a sampling length
of 40 km. The Nyquist condition therefore indicates that wavelengths as short
as 80 km are theoretically resolvable, but in practice signal-to-noise ratio con-
straints prevent this theoretical limit from being achieved. Bills et al. (1987)
estimated that the noise level in the PVO gravity data is 3 mgal. At short
wavelengths, we can neglect the sphericity of Venus and use a planar approxi-
mation, so that gravity anomalies attenuate with altitude as exp(—2md/\),
where d is the altitude of the spacecraft above the surface and \ is the horizon-
tal wavelength of the gravity anomaly. The minimum detectable wavelength is
a function of the amplitude of the anomaly at the surface, but for moderate
amplitude anomalies, a good rule of thumb is that X\ >3d is necessary for the
anomaly to be detectable above the noise level. The PVO spacecraft was at an
altitude of 250 to 350 km when over Ovda and Thetis, implying that only
wavelengths longer than 750 to 1000 km are detectable. Thus, the discussion of
short-wavelength correlations between spreading centers and gravity anomalies

in Sotin et al. (1989) is not relevant to data presently available for Venus.

On Venus, the topographic relief of possible spreading centers is reduced
substantially in comparison with Earth, both because of the lack of oceans on

Venus and because the high surface temperature implies a thinner thermal
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lithosphere. Kaula and Phillips (1981) estimated that the maximum difference
in elevation between spreading centers and old lithosphere on Venus is only
about 1.5 km. The plains of Venus, whose average elevation essentially
corresponds to the mean planetary radius (MPR), are the appropriate com-
parison to old oceanic lithosphere on Earth. Ovda reaches a peak elevation of 5
’km. above MPR and Thetis reaches a peak of 4 km above MPR (U.S. Geologi-
cal Survey, 1984), both substantially higher than expected for a spreading
center. Thus, even if spreading centers exist in Ovda and Thetis, other
mechanisms must still be invoked to explain 60 to 70 % of the peak topogra-
phy in Ovda and Thetis.

Sotin et al. (1989) presented a model for the Ovda Regio gravity anomaly
in which the observed gravity receives contributions both from thermal
anomalies in the lithosphere that are associated with the spreading plates as
well as from topographic variations that are due to regional variations in cru-
stal thickness. Their model requires that the crust is about 30 km thick in cen-
tral Ovda and 11 to 17 km thick on the northern and southern flanks. They
suggested that the regional variations in crustal thickness are due to a sudden
increase of 100 to 200°C in the temperature of the mantle beneath Ovda,
which would lead to increased magma production and a thicker crust. Such
regional variations in upper mantle temperature would also contribute to topo-
graphic uplift and to the gravity anomaly, but these contributions are not

included in the model of Sotin et al.

Sotin et al. (1989) and Black et al. (1990) used a cooling half-space ther-
mal model out to ages of several hundred million years in performing their
gravity modeling. Based on terrestrial experience, the half-space model overesti-
mates the amount of thermal subsidence at large ages and consequently the
gravity anomalies predicted by this model will also be too large. For example,
Sotin et al. apply the half-space model out to ages of about 300 million years,
implying a thermal lithosphere that exceeds 200 km in thickness. Unless Venus
has a mean heat flow that is much less than Earth’s, such a lithospheric thick-
ness is not plausible. A better thermal model is the cooling plate model, in
which the thermal lithosphere asymptotically approaches a maximum thick-

ness. For the cooling plate model, Sandwell and Schubert (1980) gave the
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relatioriship for N(t), the geoid height as a function of plate age, t. Rather than
calculate a detailed profile of geoid height versus age (or distance) to compare
with observations, I simply calculate the peak geoid anomaly created by a cool-
ing plate by calculating the difference in the geoid at t=0 and at t — oo. I find
that

AN = N(t=0) — N(t —o0)

; 2 | p2 a2 (T, —T,)?
— 27GL m ( m s) +meOl(Tm—TS) . (1)
g 8(pm—ps) 6

In equation 1, G is the gravitational constant, g is the gravitational accelera-
tion (887 cm sec™?), L is the plate thickness as t — oo, and « is the thermal
expansion coefficient (3:107° °C™1). T, and T, are the temperatures of the sur-
face and the mantle and p,, is the mantle density (3.3 gm cm™3). p, is the den-
sity of the material overlying the solid surface. For Venus, p, is the atmospheric
density and is effectively 0, but it would be the density of water for oceanic
regions on Earth. Following Kaula and Phillips (1981), I assume L. =100 km
and T, —T,=1000 °C, which implies AN =8 meters. This calculation treats
Venus as a flat planet rather than as a sphere. The effect of sphericity is to
decrease this value further (Hager, 1983). For comparison, the degree 18 spher-
ical harmonic geoid of Bills et al. (1987) gives a peak geoid anomaly of 35
meters at Ovda and 73 meters at Thetis. Thus, most of the geoid anomalies
observed in Ovda and in Thetis must be due to density anomalies that are

unrelated to a spreading center thermal structure.

If we consider a spreading center on Venus with the maximum possible
topographic uplift of 1.5 km (Kaula and Phillips, 1981) and 8 meters of geoid,
then following Sotin et al. (1989), we can calculate the required crustal thick-
ness on the assumption that the remaining topography and geoid are due to
Airy compensated crustal thickness variations. Ovda Regio has a peak eleva-
tion of 5 km (U.S. Geological Survey, 1984) and a peak geoid anomaly of 35
meters (Bills et al., 1987), so the Airy model must account for 3.5 km of topog-
raphy and 27 meters of geoid. I estimate an admittance (the ratio of geoid to
topography) of F =0.0077 and estimate an Airy compensation depth, D, using

equation 4 of Kiefer et al. (1986). This calculation is only approximate because
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this relationship is for a single wavelength, whereas the admittance calculated
here contains many wavelengths. Nevertheless, the resulting compensation
depth estimates yield some insight into the nature of processes that may be
operating in Ovda and Thetis. - ‘

Assuming a crustal density of p,=2.8 gm em ™3

and a wavelength of
4000 km (spherical harmonic degree 10), the isostatic compensation depth in
Ovda must be about D =60 km if the Airy mechanism is to account for all of
the geoid and topography that is not explained by the spreading center thermal
model. This estimate of the required crustal thickness is about twice that of
Sotin et al. (1989). My result differs from Sotin et al. because the cooling plate
model, which is more realistic, produces a smaller geoid than the half-space
model used by Sotin et al. Consequently, my calculations require a larger geoid
anomaly from the crustal thickening model and lead to larger values of D.

Herrick et al. (1988) gave an estimate of Ovda’s compensation depth that is

similar to that derived here.

A number of workers have estimated that the crustal thickness in the
northern plains of Venus is at most 30 km (Zuber, 1987; Banerdt and Golom-
bek, 1988; Grimm and Solomon, 1988; Zuber and Parmentier, 1990; Kiefer and
Hager, 1990b; Chapter 4). If the spreading center hypothesis is correct, then at
least some of these northern plains were formed by the Aphrodite spreading
system. Sotin et al. (1989) estimated that the crustal thickness which could be
produced by possible spreading centers on Venus is probably less than 30 km.
Both of these considerations suggest that the crustal thickness in Ovda can not
be as large as the 60 km estimated above, implying that the Airy model and
the spreading center model together can not fully explain the observed geoid
anomaly in Ovda Regio. I therefore believe that at least some of the Ovda
geoid anomaly is related to density anomalies within the mantle of Venus, as in
the mantle plume model of Kiefer and Hager (1990a; Chapter 2). However,
because of the approximate nature of the Airy isostasy calculation described
above, the possibility that the required compensation depth is somewhat less
than 60 km can not be ruled out. This leaves open the possibility that all of
the Ovda Regio geoid anomaly is due to density anomalies within the crust and

lithosphere.
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Thetis Regio has a peak elevation of 4 km (U.S. Geological Survey, 1984)
and a peak geoid anomaly of 73 meters (Bills et al., 1987). If the Airy model is
applied to Thetis, it must account for 2.5 km of topography and 65 meters of
geoid. This implies an admittance F =0.026 and a required compénsation depth
D =230 km, which is much larger than any reasonable estimate of the lithos-
pheric thickness on Venus. The Airy model can not plausibly account for most
of the geoid anomaly observed in Thetis Regio. Most of the Thetis geoid ano-
maly must therefore be related to density anomalies within the mantle. The
mantle plume models of Kiefer and Hager (1990a) can explain much of the
observed topography as well as the amplitude of the observed geoid anomaly.
However, the observed geoid anomaly is broader than predicted by a simple

plume model.

Cross-Strike Discontinuities

Crumpler et al. (1987) mapped a set of seven parallel linear features,
which they termed cross-strike discontinuities (CSDs), in Ovda and Thetis.
They characterized the CSDs as 2000 to 4000 km in length and 100 to 200 km
in width, with an average separation between CSDs of several hundred km.
The CSDs strike at about N20°W, at a high angle to the approximately East-
West strike of the long axes of Ovda and Thetis. They proposed that the CSDs
are analogous to terrestrial oceanic transform fault zones or fracture zones.
This proposal was motivated in part by an assertion that substantial lateral
offsets can be observed across the CSDs, but the evidence for such offsets is not

obvious.

-For each CSD, Crumpler et al. cited between 3 and 6 features in the
Pioneer Venus Orbiter (PVO) altimetry as structures that helped to define the
trend of the CSD. They characterized these topographic features as troughs,
truncated ridges, linear boundaries, and "displaced contour lines." Many of the
topographic features that Crumpler et al. tabulated in their Table 1 represent
small chahges in the trends of individual contour lines. Unfortunately, many of
these features are of uncertain validity. The PVO altimeter had a vertical

uncertainty of 200 meters and a measurement footprint of about 20 km on a
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side near periapse (Pettengill et al., 1980). However, because the measurements
are widely spaced, the effective resolution of the resulting topographic maps
(U.S. Geological Survey, 1984) is more like 50 to 100 km in the Equatorial
region. Because of these resolution limitations, some of the small-scale topo-
graphic features that Crumpler et al. used to identify CSDs, particularly “dis-
'placed contours, may in fact be products of the contouring procedures used in
compiling the topographic maps rather than true features on the surface of

Venus.

Even if the topographic maps accurately reflect the small-scale structure, it
is not clear that some of the features identified by Crumpler et al. are useful in
identifying linear tectonic zones. For example, they cited a "displaced contour”
at 8° S, 95° E, on CSD 3. This marks the head of a trough that strikes to the
southwest. They cited "truncated ridges" at 5° S, 138° E and at 9° S, 139° E as
support for the location of CSD 7. These two points help define the northwest
and southeast walls of a trough that strikes North-Northeast. On CSD 4, they
cited a trough at 5° N, 95° E. This point is on the northern rim of a trough
whose orientation meanders somewhat. In the location where the CSD crosses
the trough, the trough strikes approximately East-West. The orientations of

these troughs are all quite different from the proposed North-Northwest strik-
ing CSDs.

Crumpler et al. also used two East-West altimetry profiles obtained by
Arecibo. These profiles represent the topography averaged over 10 km (East-
- West) by 100 km (North-South) regions, with a vertical uncertainty of 100 to
150 meters. Crumpler et al. presented such data for 3 of their 7 CSDs. CSD 2
lies along the western wall of a trough in the Arecibo altimetry. This profile
shows a small blip near 74° E, which Crumpler et al. identified as the location
of the CSD. However, this blip is less than 100 meters deep, less than the
stated vertical resolution of the profile. The base of the trough is actually
about 100 km east of CSD 2. The other two CSDs for which data are given are
topographically lower than the surrounding terrain by several hundred meters
to a kilometer. However, several other topographic depressions of comparable

amplitude also exist in the Arecibo altimetry profiles but were not identified as
CSDs.
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The third data set used by Crumpler et al. was PVO synthetic aperture
radar (SAR) imagery, which mapped small-scale surface roughness at a horizon-
tal resolution of 20 to 30 km. They characterized the CSDs as regions of dis-
tinct gradients or abrupt changes in radar brightness. In most cases, the SAR
data in their Figure 2 does not appear to strongly correlate with the locations
of the proposed CSDs. However, it is possible that other representations of the
SAR data may show linear features more clearly. The two most prominent
CSDs in the PVO SAR data are CSDs 2 and 5. However, these two CSDs are
on the western and eastern margins of Ovda Regio, where the elevation changes
rapidly. There is a known correlation between radar brightness and elevation
on Venus (e.g., Head et al., 1985). It seems possible that at least some of the
radar brightness gradients identified in the vicinities of CSDs 2 and 5 may be
related to this global elevation-dependent pattern rather than to the supposed

transform fault zones.

The foregoing considerations suggest that the Crumpler et al. (1987) CSD
hypothesis can not be considered conclusive at the present time. Magellan data

will hopefully provide clear evidence for either the existence or non-existence of
the CSDs.

If Magellan provides evidence for the existence of the CSDs, this would
significantly strengthen the case for some type of crustal divergence in Ovda
and Thetis. However, this would not necessarily mean that the CSDs are
transform faults and that terrestrial style plate tectonics is operating on Venus
(Grimm and Solomon, 1989). The key feature of plate tectonics is the existence
of rigid plate motions, at least in oceanic regions. In terrestrial continents,
deformation is often distributed over broad zones that are hundreds or
thousands of kilometers in dimension, and the language of plate tectonics can
not be readily applied (Molnar, 1988). The differing tectonic styles of oceanic
plates and continents reflect their differing rheologies: the oceanic lithosphere is
strong, whereas regions of thick continental crust lead to a weak continental
lithosphere that is incapable of behaving rigidly over long distances. The high
surface temperature on Venus means that the mechanical lithosphere should be
relatively thin and weak. Tectonic deformation on Venus may therefore occur

in a diffuse or broadly distributed style. There is substantial evidence for such
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diffuse deformation in places such as the’ Ishtar Terra mountain belts, the
Atalanta Planitia ridge belts, and in the various tessera units (e.g., Basilevsky
et al., 1986). On the other hand, there is not yet any compelling evidence for
rigid lithospheric motions on Venus. Unless Magellan imagery prévides evidence
for rigid motions, use of plate tectonics nomenclature such as "transform fault"
or "spreading center" may be inappropriate to describe features whose mechani-

cal behavior may be quite different from terrestrial plate tectonic structures.

If Magellan data confirm the existence of CSDs, then a detailed com-
parison of their structure with the structure of oceanic transform fault zones
may indicate the extent to which rigid lithospheric motions occur on Venus.
One apparent difference between the CSDs and terrestrial transform fault zones
is their widths. Crumpler et al. (1987) characterized the CSDs as being 100 to
200 km wide. In contrast, oceanic transform fault valleys are typically less than
20 km wide and the fault zone itself may be only a few kilometers across (Fox
and Gallo, 1986). Transform fault valleys tend to be deepest at nodal basins
where they cross the spreading center axis (Fox and Gallo, 1986). If Magellan
obtains sufficiently high resolution altimetry data, the CSDs should be exam-
ined to see if they have the same behavior. The style and distribution of tec-
tonic and volcanic features within the discontinuity zones should also be com-

pared with observations of such features in well studied transform fault zones.

Summary

In this paper, I have shown that spreading centers as an end member pro-
cess can explain at most only a small fraction of the observed geoid anomalies
in Ovda and Thetis. Spreading centers can also account for no more than
about a third of the observed topography in these areas. Given that both the
geoid and the topography in these areas must be dominated by processes other
than spreading centers, the case for possible crustal spreading must ultimately

rest on geologic evidence, such as that which Magellan will hopefully provide.
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Bécause of the similarity in size between Venﬁs and Earth, comparisons of
the two planets should yield insights into the nature of tectonic processes on
large terrestrial planets. The Ishtar Terra region of Venus contains the highest
known topography on the planet, as well as distinctive tectonic units. As a
result, understanding the processes that formed Ishtar is important to our

understanding of tectonic processes on Venus.

In this paper, we develop a model for the origin and evolution of Ishtar
Terra. We bégin by reviewing a variety of observations that can be used as
modeling constraints. We then examine several possible models and show that
the most plausible model is one in which Ishtar is a zone of crustal convergence
over a region of mantle downwelling. We develop a simple fluid mechanical
model for this crustal convergence and show that this places constraints on the
thickness of the crust in the Ishtar region. On the basis of this flow model, we
suggest a possible origin for some of the deformation observed in Fortuna
Tessera. We also discuss possible origins for the volcanic activity observed in

Ishtar Terra.

Observational Constraints

Models for the formation and evolution of Ishtar Terra can be constrained
with a variety of observations. These include topography, gravity, tectonism,

voleanism, and crater density.
Topography

The major structural elements of Ishtar Terra are identified in Figure 1.
Topographic profiles of selected parts of Ishtar are shown in Figure 2. These
topographic profiles are based on Pioneer Venus Orbiter (PVO) altimetry obser-
vations (Pettengill et al., 1980; USGS, 1984). The topographic data used in
Figures 1 and 2 were obtained in digital form from the Lunar and Planetary
Institute’s Geophysical Data Facility. The topography is referenced to a mean
planetary radius (MPR) of 6052 km (Bills and Kobrick, 1987).
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Ishtar Terra is centered on Lakshmi Planum, a 1500 km wide oblong to
irregularly shaped plateau with an average elevation of 3 to 3.5 km. To the
south, Lakshmi is bounded by a steep, sloping escarpment, Vesta Rupes. In
turn, Vesta is bounded on the south by the basin Sedna Planitia,y which has an
elevation of about -1 km (Figure 2a). Lakshmi is surrounded on the west,
north, and east by the mountain belts Akna Montes, Freyja Montes, and
Maxwell Montes. Akna and Freyja are each about 300 km wide, 700 to 1000
km long, and reach elevations of about 6 km (Figure 2b). Maxwell Montes is
500 km wide, 1000 km long, and reaches an elevation of about 10 km. To the
east of Maxwell, Fortuna Tessera lies between 1 and 5 km elevation, with a
general decrease in elevation to the east (Figure 2¢). Maxwell Montes is by far
the highest known topography on Venus. Outside of Ishtar Terra, the highest
elevation known on Venus is approximately 6 km in Atla Regio (USGS, 1984).

Grawty

Like most highland regions on Venus, Ishtar Terra has a large positive
gravity anomaly associated with it. In the eighteenth degree spherical harmonic
expansion of Bills et al. (1987), the peak geoid anomaly at Ishtar is over 60
meters. In addition to the main gravity anomaly over Ishtar, there is also a
significant anomaly extending to the southeast of Ishtar, which has been stu-
died in more detail using individual PVO gravity profiles by Sjogren et al.
(1984) and by Janle and Jannsen (1984). Sjogren et al. found that they could
not explain the southern gravity anomaly using their isostatically compensated
topography model, suggesting that there is an additional source of excess mass
at depth. They suggested that it may be analogous to the gravity anomalies
observed at terrestrial subduction zones. They modeled the southern anomaly
as a disk of radius 1000 km, centered at 51.5° North and 8° West, with a sur-
face density of 100 kg em™2. If this surface density contrast is due to colder
than normal temperatures uniformly distributed throughout a 100 km thick
lithosphere, then it corresponds to a lithospheric temperature that is about
100° C colder than normal. Janle and Jannsen suggested that the southern ano-
maly is d‘ue either to cold, dense, downwelling lithosphere or to high density
volcanic intrusives. They favored the downwelling lithosphere interpretation on

the basis that it seemed more consistent with the observed tectonics.
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Tectonism

A variety of tectonic structures can be seen in radar images of the Ishtar
Terra region. Interpretations of tectonic features are based on two distinct
radar data sets, ground-based data obtained by the Arecibo Radio Observatory
(Campbell et al., 1983; Stofan et al., 1987) and orbital data obtained by Ven-
era 15 and 16 (Barsukov et al., 1986; Basilevsky et al., 1986), which provide
complementary information. The Arecibo data have a horizontal resolution of 1
to 3 km and were obtained using a radar wavelength of 12.6 cm at an incidence
angle of 60 to 70 degrees from the vertical. The Venera data have a horizontal
resolution of 1 to 2 km and were obtained at a radar wavelength of 8 cm and
an incidence angle of 10 degrees. At the large incidence angles obtained in the
Arecibo data, the strength of the reflected radar signal is strongly dependent on
the surface roughness on a horizontal scale comparable to the radar
wavelength, but relatively insensitive to topographic slopes at much longer
wavelengths. On the other hand, at the small incidence angles in the Venera
data, the strength of the radar backscatter is a strong function of the topo-
graphic slope at wavelengths much longer than the radar wavelength (Elachi,
1987, Sec. 6.1). The Venera radar system illuminated the surface to the west of
the spacecraft ground track, so that radar bright surfaces represent predom-
inantly east-facing slopes and radar dark surfaces represent predominantly
west-facing slopes. Bindschadler and Head (1989a, Figure 5) provide a good

illustration of this concept.

The dominant tectonic structures observed in the Ishtar region are the
banded structures observed in the Akna, Freyja, and Maxwell Montes moun-
tain belts. These structures were first mapped in Arecibo radar imagery as
regions of high radar backscatter, and hence high small-scale roughness (Camp-
bell et al., 1983). The Arecibo data reveal a series of parallel, linear, radar
bright bands, separated from one another by regions of lower radar back-
scatter. The individual bands are typically 10 to 20 km wide and up to several
hundred km long. They are found in all three of the major mountain units in
Ishtar, and in each case, the rad\ar bright bands strike in a direction parallel to
the long axis of the mountain ﬁopography. Venera 15 and 16 radar imagery

also show parallel sets of radar bright and radar dark bands within the
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mountain belts, indicating the presence of signiﬁcaht topographic slopes on hor-
izontal scales of meters to tens of meters (Barsukov et al., 1986; Basilevsky et
al., 1986). Bindschadler and Head (1989a) suggested that the correlation of
high topographic slopes and high small-scale roughness may be due to down-
slope mass wasting, which would produce debris piles at the base of topo-
graphic slopes and hence lead to enhanced levels of small-scale roughness. They

referred to this process as "tectonic weathering."

The linearity of the banded structures, their great length, and their ten-
dency to parallel the dominant topographic trends all strongly suggest that
they are of tectonic origin. Clearly, the type of stress that produced the banded
terrain provides a key constraint on models for the formation of Ishtar Terra.
As Solomon and Head (1984) pointed out, the banded terrain could in principle

be of either extensional or compressional origin.

Several different research groups (e.g., Solomon and Head, 1984; Basilevsky
et al., 1986; Crumpler et al., 1986; Head, 1990) have used a variety of morpho-
logical observations to favor a compressional origin for the mountain belts.
One argument for compression in the mountain belts is a structure in Akna

Montes which appears to be a partially overthrust crater (Crumpler et al.,
1986).

In some places the radar bright bands wrap around and merge with adja-
cent bands (Solomon and Head, 1984). On Earth, such band closures are strik-
ing both in radar images (Arvidson et al., 1988) and air photos of the
Appalachian mountains and are due to the differential erosion of sedimentary
layers in plunging anticlines and synclines. Solomon and Head (1984) therefore
interpreted the existence of band closures as indicating a compressive origin for
the Ishtar bands. Although some examples of band closure can be seen both in
Arecibo and in Venera imagery, they seem to be relatively rare considering the
total areal extent of the mountain belts. This may in part be a resolution
effect. As Arvidson et al. (1988) showed, band closure in the Appalachians is
hard to detect at a radar resolution of 1 to 2 km but is easily detected at a
resolution of 200 to 300 meters. Magellan may therefore provide much stronger

evidence for band closure. However, even if the mountain belts are of
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compressive origin, it is not obvious that Magellan should detect many exam-
ples of band closures. On Venus, the lack of liquid water implies that the ero-
sion rate is low in comparison with Earth, so sedimentary layers may not be
common. Of course, layers of basalt flows could be folded to for‘m the banded
terrain, but in the absence of significant erosion it is not clear that they would
produce a radar signature comparable to that observed for the Appalachian

mountains.

Observations of possible asymmetric structures in the radar bright bands
have also been used as an argument for compressive deformation. Markov
(1986) and Pronin (1986) have both noted that in Akna Montes, the banded
structures are asymmetrically shaped, with short, steep east-facing slopes and
more gentle west-facing slopes. In western-most Maxwell Montes, they found
the opposite situation, with steeper dipping slopes to the west. Markov (1986,
Figure 3) suggested that these asymmetric ridges formed by the emplacement
of a series of thrust sheets, with the individual thrust faults dipping away from
Lakshmi Planum. Crumpler et al. (1986) argued that the asymmetry of the
Akna ridges resembles that of lunar mare ridges and hence favored a compres-
sive origin for the Akna ridges. However, there are several possible difficulties
with these interpretations. Both Basilevsky (1986) and Pronin (1986) noted
that in central and eastern Maxwell Montes, the eastern faces of the mountain
ridges commonly appear steeper than their west faces, contrary to Markov's
preferred thrusting model. A more general difficulty is that details of the ridge
asymmetry may be distorted by the viewing geometry. Because the Venera
radar illumination is from the East, east-facing slopes will appear foreshortened
relative to west-facing slopes (Elachi, 1987, Figure 6-29). Thus, a symmetric
ridge could appear asymmetric in a radar image. If Magellan is able to obtain
radar imagery of Ishtar viewed both from the east and from the west, this
potential ambiguity could be resolved and a definitive determination of possible

ridge asymmetry could be made.

Another type of deformation that has been suggested to occur in the
mountain belts is strike-slip faulting. Vorder Bruegge et al. (1986) mapped 9
structures in Maxwell Montes that they termed cross-strike discontinuities, or

CSDs. Based on matching patterns of radar bright and dark material, they
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concludéd that the CSDs were right-lateral strike-slip faults, with individual
displacements of 20 to 120 km and a total displacement of 540 km across all 9
CSDs. They carried out a hypothetical retro-deformation of these strike-slip
offsets and concluded that Maxwell Montes once had a surface plz;nform similar
to the current planforms of Akna and Freyja Montes. Their model thus pro-
vides a possible explanation for the observed differences in the current plan-
forms of Maxwell and Akna. However, given that the bright and dark bands in
Maxwell have a quasi-periodic spacing, it is not clear that one can uniquely
define a preferred set of offsets along the proposed CSDs, or even that any
offset is necessary at all. For example, the boundary between radar bright
material in Maxwell and radar dark material to the northwest is an approxi-
mately linear structure at the present time (Vorder Bruegge et al., 1986, Figure
1a). However, in their retro-deformation (their Figure 1c), this boundary is split
into four separate segments, with a total offset of about 200 km, implying that
the current linearity of this border is merely coincidental. We therefore regard
the strike-slip deformation hypothesis as an interesting but unproven idea.
Crumpler et al. (1986) proposed the existence of both left- and right-lateral
strike-slip faults in Akna and Freyja Montes. As in the case of Maxwell
Montes, it is not clear that one can adequately define a preferred strike-slip

offset in these regions on the basis of current data.

In contrast with the banded structures observed in the mountain belts,
most of Lakshmi Planum is an area of moderate, relatively uniform radar
backscattering in Venera imagery, with little evidence of tectonic deformation
(Barsukov et al., 1986, Figure 8). Most of Lakshmi is radar dark in Arecibo
imagery, indicating a surface that is smooth at a scale of 10 cm (Campbell et
al., 1983; Stofan et al., 1987). There are two major exceptions to the general
lack of tectonic structures in Lakshmi. One is a set of lineaments located near
the eastern margin of Lakshmi, between Longitudes 355° and 0° near 62° North
Latitude. Venera data shows about 6 such lineaments, each 100 to 150 km long
and striking North-Northwest (Barsukov et al., 1986, Figure 8). These features
have the radar signature expected of topographic valleys, and hence may be
graben, indicating possible extensional deformation. In Arecibo data, these

structures show levels of radar backscatter that are higher than the adjacent
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plateali but not as high as in the mountain belts (Campbell, 1983; Stofan et
al., 1987). This implies that the lineaments are regions of moderate small-scale
roughness. The second major tectonic structure on Lakshmi is an elevated
region near 345° Longitude and 65° North Latitude that has been dissected by
a closely spaced set of ridges and groves. Basilevsky et al. (1986) indicated that
this structure has been embayed by material from the surrounding plateau,
indicating that it is relatively old. A smaller patch of what may be similar

material is visible in Venera data near 328° Longitude, 72° North Latitude.

South of Lakshmi Planum is the structurally complex Vesta Rupes, which
forms the transition zone between the high plateau of Lakshmi and the lowland
plains to the south. In the northern part of Vesta, Venera data shows a 50 to
100 km wide belt of ridges and groves that strike in a direction which approxi-
mately parallels the contact between Lakshmi and Vesta. These ridges and
grooves are up to 100 km in length and have a characteristic spacing of 10 to
15 km. Further south in Vesta, towards lower topographic elevations, the
ridges and grooves become much shorter and the terrain takes on a more
chaotic appearance (Basilevsky et al., 1986). In Arecibo imagery (Stofan et al.,
1987), Vesta Rupes is relatively radar bright, indicating substantial small-scale
roughness. The distribution of radar bright and radar dark regions is structur-
ally complex, but there is a tendency for structures to parallel the Lakshmi Pla-
num margin. The various structures observed in both the Arecibo and the Ven-
era data are probably tectonic in origin, but it is unclear if they represent fold-

ing or faulting and if the deformation is extensional or compressional.

A final group of terrains in the Ishtar region that are probably related to
tectonic processes are the tessera. Tessera, sometimes also referred to as parquet
terrain, are characterized by multiple sets of intersecting ridges and groove sys-
tems. The ridges and grooves have characteristic spacings of 10 to 25 km and
are observed to intersect at a variety of angles. Tessera units are widespread in
the portion of Venus imaged by Veneras 15 and 16 (Basilevsky et al., 1986;
Sukhanov, 1986). Various models for the formation of tessera were discussed by
Bindschadler and Head (1989b). In the Ishtar region, the largest tessera unit
occurs in Fortuna Tessera, to the east of Maxwell Montes. Smaller tessera units

are observed adjacent to Akna Montes, Freyja Montes, and portions of Vesta
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Rupes (Barsukov et al., 1986; Basilevsky et al., 1986). We discuss the nature of
tectonic processes that may have operated in Fortuna Tessera more completely

in a later section.
Volcanism

The Ishtar Terra region contains a number of features of probable volcanic
origin. Two such features, Colette and Sacajawea, occur in Lakshmi Planum
and have been described by Barsukov et al. (1986), Stofan et al. (1987), and
Magee and Head (1988a). Both are elliptical depressions; Colette is 80 by 120
km in size and Sacajawea is 140 by 280 km. PVO altimetry indicates that both
structures have depths of 1 to 1.5 km relative to Lakshmi Planum (USGS,
1984). In Venera 15 and 16 radar imagery, Colette is surrounded by a sharply
defined set of lineaments that are roughly concentric with the main rim. A
series of sinuous, radar bright regions, with typical widths of 10 to 20 km and
lengths of 100 to 300 km, are oriented radial to Colette and are probably lava
flows. These flow structures, together with Colette’s elliptical shape, suggest
that Colette is probably a volcanice caldera. In Arecibo radar imagery, Colette is
quite bright, indicating a surface that is rough on a horizontal scale of 10 em.
Sacajawea is located about 500 km east-southeast of Colette. In Venera
imagery, Sacajawea is much less distinct than Colette and lacks obvious flow
features. In Arecibo imagery, Sacajawea shows some radar bright segments but
is not as prominent as Colette. Despite the lack of distinctive volcanic features,
Sacajawea’s elliptical planform favors a volcanic rather than an impact origin.

Its relatively muted appearance probably indicates that it is older than Colette.

In addition to Colette and Sacajawea, much of the rest of Lakshmi’s sur-
face may also be of volcanic origin. Magee and Head (1988b) reported the pres-
ence of a number of domes and cones that they consider to be volcanic. These
structures have a wide range of sizes, from a few kilometers up to 75 km, and
are sometimes observed to have summit pits. The location of many of these
features appears to be structurally controlled. Magee and Head also suggested
that the Lakshmi Planum plains are probably a series of lava flows. In some
cases, they identified plains units with specific source regions. In other cases,

specific sources could not be identified, but the plains were nevertheless
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suggestéd' to be volcanic on the basis of observed embayment relationships. In
northwest Ishtar, near the junction of Akna and Freyja Montes, Gaddis and
Greeley (1989) described a basin that is 200 by 250 km in size and has a max-
imum depth of about 1.5 km relative to its surroundings. They‘snuggested that
‘this structure may be volcanic, but diagnostic landforms are difficult to identify
and the origin of this basin must be considered as uncertain at the present

time.

Cleopatra Patera is a 100 km diameter circular structure that occurs on
the east flank of Maxwell Montes. In comparison with its surroundings, Cleopa-
tra is radar dark both in Arecibo imagery (Campbell et al., 1983) and in Ven-
era imagery (Barsukov et al., 1986), indicating that the floor of Cleopatra is
relatively smooth both at a scale of order 10 ¢m and at a scale of several
meters. Cleopatra is clearly superimposed on the banded terrain in Maxwell
Montes, indicating that it is younger than the banded terrain. Cleopatra’s ori-
gin has been somewhat controversial. Ivanov et al. (1986) suggested that Cleo-
patra is a double ring impact structure. Basilevsky and Ivanov (1990) con-
cluded that Cleopatra might be either an impact crater or a volcanic caldera
and asserted that in either case it is morphologically unusual. Schaber et al.
(1987a) advanced a number of arguments in favor of a volcanic origin of Cleo-
patra, the most persuasive of which involve Cleopatra’s topographic relief. Ven-
era 16 altimetry shows that Cleopatra has two distinct floor levels. The inner
floor is quite flat and 2 to 2.5 km deep relative to the rim. The outer floor is
somewhat rougher and only about 1 to 1.5 km deep. Cleopatra is much deeper
than expected for a 100 km impact crater on Venus. Based on a gravity scal-
ing of Pike’s (1980) depth-diameter relationship for lunar impact craters, a
depth of only about 0.8 km is expected. Venera altimetry data for two other
Venus craters in the size range 100 to 140 km diameter, Cochran and Klenova,
show that both are only 0.7 to 0.8 km deep. Moreover, the substantial
difference in elevation between inner and outer floors is unlike the behavior
expected for double ring impact basins. On the other hand, these topographic
relationships are quite consistent with a volcanic caldera. Basilevsky and
Ivanov (1990) argued that Cleopatra’s depth could be consistent with an

impact origin if the layer of impact breccia that normally occurs on the floor of
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an impact crater somehow managed to escape from Cleopatra, but their pro-
posed mechanisms for accomplishing this are not convincing. On the basis of
Schaber et al.’s topographic arguments, we believe that Cleopatra is probably a

voleanic structure.
Cratering Age

A final constraint on models for Ishtar is its age. Basilevsky et al. (1987)
identified about 12 features in Ishtar that they regarded as probable impact
structures. Mbst of these are in Basilevsky et al.’s morphological freshness class
2 and have well defined rims. Some of the larger ones also have central peaks.
These structures are unambiguously impact features. On the other hand, the
more degraded class 3 features are harder to identify reliably. Some of these
features might well turn out to be volcanic structures in higher resolution
Magellan imagery. None of the impact craters observed in Ishtar have the radar
bright rim deposits observed in fresh, morphologic class 1 craters elsewhere on

Venus.

In order to estimate the cratering age of a planetary surface, one must
know both the observed crater density and the cratering rate. Unfortunately,
both quantities are in dispute for Venus. For crater diameters D > 8 km,
Basilevsky et al. (1987) gave an average crater density of 1.2:107% km™2 for the
1.15°10% km? surveyed by Venera 15 and 16. Although their Figure 17 shows
that Ishtar’s crater density is somewhat higher than for their survey area as a
whole, they concluded that the statistical uncertainties in their data are large
enough that Ishtar’s crater density is indistinguishable from the crater density
of the entire survey area. On the other hand, Plaut and Arvidson (1988) and
Burba (1989) argued that regional variations in crater density can be statisti-
cally distinguished in the Venera data and that Ishtar’s crater density is
perhaps twice the average value. Because Magellan will obtain radar imagery
with a resolution approaching an order of magnitude higher than Venera, it
may be possible to identify many additional small craters. This could improve
the crater density statistics and therefore might provide a definitive resolution
to this debate. On the other hand, the dense atmosphere of Venus inhibits the

formation of small impact craters, so if a dense atmosphere has existed for
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most of the history of Venus, then there may not be many small impact craters

present.

Basilevsky et al. (1987) combined their estimate of Venus’s crater density,
together with a scaled version of Hartmann et al.’s (1981) lunar cratering flux,
to estimate an average age for Venus's surface of nearly 1 billion years.
Schaber et al. (1987b,c), on the other hand, favored a much younger average
age, of order 100 to 200 million years, although they conceded that an average
age of 400 to 500 million years is possible. These two contrasting estimates
differ primarily in their choice of cratering flux. The Hartmann et al. flux
represents an average over the last 3.3 billion years. Schaber et al. based their
estimates on the Earth’s Phanerozoic cratering record along with estimates of
the cratering rate due to currently observed Earth and Venus crossing
asteroids. This gives a significantly higher cratering flux and hence a younger
average age. Combining the uncertainties in both the crater density and the
cratering flux, Ishtar may range in age from 100 million years to as much as 1

to 2 billion years.

Models for the Origin of Ishtar Terra

Models for the formation of Ishtar’s high topography can be divided into
two main classes. One class are thermal models, in which Ishtar’s topography is
supported by high temperatures in the lithosphere or in the mantle beneath
Ishtar. This class of models can be further subdivided into two sub-classes,
active mantle upwelling and lithospheric delamination. Basilevsky (1986) and
Pronin (1986) have suggested that a convective upwelling is centered under
Lakshmi Planum. Pressure release melting would occur within the upwelling,
accounting for the observed volcanism in Lakshmi. They also suggested that
the radial outflow of material away from Lakshmi would produce a zone of cru-
stal convergence and compressive deformation that could explain the mountain
belts observed in Ishtar. The mechanism for localizing the crustal convergence
in the region of the currently observed mountain belts was not specified by
these workers. Presumably, it must involve the existence of convective

downwellings near the mountain belts. Basilevsky suggested that the convective
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downwélling would occur in the lowland basin Atalanta Planitia, but this is
6000 km away from Ishtar and downwelling in Atalanta could not create a

localized zone of crustal convergence within the current mountain belts.

Upwelling mantle plumes are now widely accepted as the cause of Beta
Regio and perhaps other parts of the Equatorial Highlands (McGill et al., 1981;
Morgan and Phillips, 1983; Kiefer et al., 1986; Kiefer and Hager, 1988; Ban-
erdt, 1986). We have modeled these mantle plumes using finite element tech-
niques and have shown that the plume model can quantitatively account for
the observed topography and geoid anomalies in the Equatorial Highlands
(Kiefer and Hager, 1988, 1990a; Chapter 2). The plume model is also con-
sistent with evidence for shield volcanism and rifting in the Equatorial High-
lands. However, if the upwelling plume model is applicable to features such as
Beta Regio, then the strong contrast in tectonic styles between Beta and Ishtar
make it unlikely that Ishtar was formed by an upwelling plume. Our finite ele-
ment models show that the surface topography over a rising mantle plume has
a dome-like shape, although this can be modified by volcanic activity and by
rift-zone formation. This is consistent with the topography of Beta Regio and
other features in the Equatorial Highlands but inconsistent with the flat pla-
teau surface in Lakshmi Planum. Also, the upwelling model predicts exten-
sional deformation near the upwelling. As summarized above, there is some evi-
dence for extensional deformation in Ishtar, but it is minor in comparison to
the observed compression. In contrast, extensional rifting dominates in the
Equatorial Highlands (McGill et al., 1981; Schaber, 1982; Campbell et al., 1984;
Stofan et al., 1989). Finally, it is difficult to account for the observed mountain
belts in the context of a plume model. No such structures are observed near

Beta Regio or other likely plume sites in the Equatorial Highlands.

A second thermal mechanism for creating Ishtar’s high topography is
lithospheric delamination, in which the cold thermal boundary layer is
detached from the surface and replaced by hot mantle material. As discussed
by Morgan and Phillips (1983), if the lithosphere’s thermal structure is approx-

imated as a simple linear geotherm and if complete delamination occurs, then
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the predicted uplift is
§h=051aAT, (1)

where 6 h is the uplift due to delamination, [ is the lithospheric thickness prior
to delamination, « is the volumetric thermal expansion coefficient, and AT is
the temperature contrast across the lithosphere. Kaula and Phillips (1981) used
boﬁndary layer theory to estimate [ = 100 km and AT =~ 1000 K for Venus.
Adopting these values and o = 3:107° per degree yields an estimate of
oh = 1.5 km, which is not adequate to explain the observed height of either
Lakshmi Planum or the surrounding mountain belts. Moreover, an isolated,
elevated plateau is in deviatoric tension relative to its surroundings (Bott and
Kusznir, 1979), and thus lithospheric delamination acting alone could not pro-
duce the observed compressive deformation. It is possible, however, that lithos-
pheric delamination has played some role, in combination with other mechan-

isms, in producing Ishtar’s observed topography.

A second class of models for Ishtar invoke variations in crustal thickness
as an explanation for the high topography. One mechanism for producing
lateral variations in crustal thickness is volecanism. Clearly, volcanism has
occurred in Ishtar and has probably contributed to crustal thickening. How-
ever, volcanic construction, like lithospheric delamination, would lead to exten-
sional deformation of the high topography, and thus cannot be the sole
mechanism responsible for forming Ishtar. It is also possible to create lateral
variations in crustal thickness by tectonic processes. This is illustrated schemat-
ically in Figure 3, which shows a zone of crustal convergence and thickening
overlying a region of downwelling mantle. The mantle flow entrains crustal
material and causes it to pile up over the downwelling. Because the crust is less
dense than the mantle, isostasy requires that the region of thick crust will be
topographically higher than its surroundings. Although the mantle downwelling
illustrated in Figure 3 is symmetl‘ic about a vertical plane, the downwelling
could also have an asymmetric structure, as is the case for terrestrial subduc-
tion zones. An axisymmetric downwelling can be ruled out, because with such a
downwelling geometry, the azimuthal normal stress, T44, IS moOre compressive

than the radial normal stress, 7,.. This implies mountain belts that are radial
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to the center of the downwelling, whereas the observed mountain belts are

approximately concentric about Lakshmi Planum.

The crustal convergence model can produce both the crugtal thickening
needed to explain Ishtar’s high topography and the horizontal compression
necessary to explain the tectonics, and we therefore favor it as the dominant
mechanism in the origin of Ishtar Terra. Similar models have been advocated
by other workers (Morgan and Phillips, 1983; Banerdt, 1986; Bindschadler and
Parmentier, 1989; Vorder Bruegge and Head, 1989; Head, 1990). The Tibetan
Plateau and Himalaya Mountains provide a terrestrial aﬂalog. Like Lakshmi
Planum, Tibet is a high, flat plateau surrounded on several sides by mountain
belts. Moreover, Lakshmi and Tibet have similar horizontal dimensions. The
mean elevation of Tibet is 5 km (Bird, 1978), somewhat higher than Lakshmi,
whereas the peak elevation in the Himalayas, 9 km, is somewhat less than the
peak elevation in Maxwell Montes. The overall similarity between the two

regions supports the crustal convergence model for Ishtar Terra.

Nevertheless, it seems likely that other mechanisms also played a role in
the formation of Ishtar Terra. As noted above, voleanism has undoubtedly con-
tributed to Ishtar’s formation. Lithospheric delamination may also have
occurred. Houseman et al. (1981) modeled the thermal evolution of the mantle
underlying terrestrial continental convergence zones. In such an environment,
the cold thermal boundary layer may become detached from the surface layer
and sink into the mantle on a timescale that may be as short as 10 million
vears. England and Houseman (1989) recently argued that such a delamination
event may be necessary to explain the development of normal faults in the
Tibetan plateau within the last 5 million years. Houseman et al.’s delamination
time scale should also be applicable to Venus, so given Ishtar’s estimated
cratering age in excess of 100 million years, it seems likely that Ishtar has
experienced one or more delamination events during its history. If most or all
of the mantle lithosphere delaminates during one of these events, then the base
of the crust will be exposed to temperatures of order 1400 °C. This is one possi-

ble cause of volcanic activity in Ishtar Terra.
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Viscous Crustal Flow Due to Topographic Gradients

The high surface temperature on Venus allows viscous flow of crustal
materials to occur at relatively shallow depths (Weertman, 1979; Smrekar and
Phillips, 1988). In this section, we develop a simple model of viscous flow in
Venus’s crust and the coupling of this flow to flow in the mantle. This work
was presented in abstract form by Kiefer and Hager (1990b). The basic model
is shown in Figure 4a. Variations in topographic height, h, are assumed to be
due to isostatically compensated variations in crustal thickness. Viscous flow
within the crust is driven both by a basal velocity, v, which is imposed by the
mantle flow field, as well as by lateral pressure gradients within the crust that
are associated with topographic gradients. Figure 4b considers a possible later
stage in the evolution of the viscous crustal flow and will be discussed in

greater detail later.

- We assume that the horizontal planform of the flow has a sheet-like or
planar structure, with no variation along strike, thus allowing us to neglect the
out-of-plane component of velocity. Although this assumption is certainly not
applicable to Ishtar Terra as a whole, the observed topographic contours sug-
gest that is a reasonable approximation in some regions, for example in For-
tuna Tessera. The topographic profiles shown in Figure 2 show that the
regions of high topography are in excess of 1000 km in lateral extent. As we
will show later, the thickness of the crust is likely to be significantly less than
100 km. Because the horizontal length scale is so much larger than the vertical
length scale, on average the horizontal flow velocity, v,, should be much larger
than the vertical flow velocity, v,. We therefore set v, =0 and solve only for
v,. With these two approximations, we have a one dimensional problem and it

is possible to derive an analytic solution for the flow, even when using a non-

Newtonian rheology.

We choose a coordinate frame in which z increases from the surface down-
ward. The depth of the crust-mantle interface, D ,, , is determined from the

Airy isostasy condition:

Do.x=D+h

maXx

Pe
b (pm_pc) ], (2)
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where h is the topographic height relative to mean planetary radius, D is the
reference crustal thickness when h=0, and p, and p,, are the densities of the

crust and mantle. The solution takes the form

p 8Vx ! ’ " ! !
VX(Z) =V, t f 97/ dz’ =v, + 2 f 6xz(Z ) dz’(3)
Dmax Z Dmax

where €,, is the shear strain-rate. The integral is carried out in the direction of
decreasing z because the velocity boundary condition is imposed at the base of

the crust, at z=D,,,, . The shear-strain rate can also be written as

—E

€ = AT LT, exp RT0)

’ (4)

where 7, is the shear stress, 7 is the second stress invariant, R is the gas con-
stant, T(z) is the temperature at depth z, and A, E, and n are rheological
parameters that depend on the type of material. Over the depth range of

interest in this problem, the effects of pressure on the rheology can be ignored.

Given our assumption that v, =0, it is clear that —2 =0. The continuity

0z

equation then requires that —— =0, so that the deviatoric normal stresses T,y

Ox

and 7,, must both equal zero.

At the summit of the mountain range, the topographic gradient and hence
the pressure gradient that drives the viscous flow change sign. The crustal flow
driven by the pressure gradient therefore goes to zero at the summit and will

take on non-zero values of opposite sign on the two sides of the summit.

~ is not zero. Indeed, as shown in Figure 4b and as

X

discussed more fully later, it is possible that v, is the dominant velocity com-

Clearly, in this region

ponent in the summit region, so that models of the crustal flow in the vicinity
of the mountain belts must explicitly solve the coupled momentum equations
for both v, and v,. For a temperature- and stress-dependent rheology such as
that given in equation 4, the two dimensional flow problem is analytically
intractable and must be analyzed using numerical techniques. However, in loca-

tions which are substantial distances from the mountain belt summits, it is a



reasonable approximation to assume that X =0. Similar approximations

Ox

are made in other geologic flow problems, for example in analytic boundary

layer models of mantle convection. We return to this issue when we discuss
| specific applications below. With these approximations, the only stress in the
problem is 7,,, and the stress invariant in equation 4 can simply be replaced by

T,,» Combining equations 3 and 4, we have

VX(Z) =Vy,+2 f A(TXZ(Z’ ))n eXp

——— dz’ .5
b RT(z)

We determine 7, from the horizontal momentum equation,

oP OTyx Oy,
_8X+8x+82_0' (6)

, Oy, P
However, because 7,, =0, equation 6 reduces to 5, = a7 and hence
z
dP
T (2) = ZK +C. )

We assume that the lateral pressure gradient arises from lateral variations in

the height of isostatically compensated topography, so that

oP ch
@';—chax ) (8)

where —gx—h is the topographic slope and g is the gravitational acceleration. The

constant C in equation 7 is determined from the free-slip condition, 7,, = 0 at

the surface. The free-slip surface condition is satisfied if equations 7 and 8 are

combined and rewritten as
oh
sz(z) =P g ‘BTZ . (g)

Together, equations 5 and 9 constitute the desired solution to the problem. In
practice, we carry out the integral in equation 5 numerically using a trapezoid
rule, typically using a step size dz=0.5km. A test calculation using

dz=0.1 km changed the calculated velocities by only 0.2 %.
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The rheological law (equation 4) requirés that we specify temperature as a
function of depth in the crust. Neglecting the possible contributions of lateral
advection and shear heating to the thermal structure, T(z) satisfies the vertical
heat conduction equation, ‘

AT

oz2

k

+ H(z) =0, (10)

where k is the thermal conductivity and H is the volumetric heat generation
rate due to radiometric heating of the crust. Following Sclater et al. (1980), we

assume that the radioactive heating decays with depth as
H(z) = H, eXp(’TZ) . (11)

One boundary condition is that T(0) = T, where T is a specified surface

temperature. The other boundary condition is that the surface heat flow, q{(0),

is given by

Dma.x
oT —
q0) =k, =a, + | Hoexp(5-)dz
/ 0 A

—-D
= qy, + H\ |1 — exp(——)

N (12)

Equation 12 is simply a statement of conservation of energy, where qy is the
heat flow from the mantle into the crust and D, ,, is the total crustal thickness

as defined in equation 2. With these boundary conditions, T(z) takes the form

. dp H\ ) —Drax
T(z) = T, + T k% exp( N )|z
+ n 1— ekp(—>—\——) . (13)

Equation 13 shows that T(z) depends on four different combinations of
dp Ho . .
, —, and \. We assume that T is the atmospheric

k' k
temperature at the surface, given by the relationship

thermal parameters: T,

T, =737K —7.7K/km *h . (14)
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In equation 14, 737 K is the surface temperatureb at MPR and 7.7 K km™! is
the observed atmospheric lapse rate (Seiff, 1983). The crustal convergence
hypothesis assumes that Ishtar is a region of cold, downwelling mantle and
hence should have relatively low heat flow. We adopt a nominal value of
qQp, = 25 mW m™2 based on observations of reduced heat flow in terrestrial
 shield regions (Sclater et al., 1980, Table 8). We have no information on the
crustal composition in the Ishtar region, so we assume that Venera and Vega
lander observations in the equatorial regions of Venus can also be used to
characterize the Ishtar region. Although we have no direct knowledge of the
mineralogy of Venus's crust, major element analyses obtained by X-ray fluores-
cence spectroscopy at 3 landing sites are consistent with a basaltic composition
(Surkov et al., 1984, 1986). We therefore use laboratory data for diabase to
estimate both the thermal conductivity and the rheological parameters needed
in our model. Clark’s (1966) compilation of thermal conductivities gives k for
diabase in the range 2.09-2.35 W m~! K™! in the temperature range 273 K to
673 K. Clark’s data shows some tendency for decreasing k as T increases,
reflecting the decreasing efficiency of phonon transport with increasing tempera-
ture. However, at still higher temperatures, such as those which characterize
Venus's crust, the radiative contribution to thermal conductivity becomes
increasingly important (Solomon et al., 1981, Sec. 9.4.2). We adopt a nominal
value of k=25Wm 'K™!, which leads to a nominal value of

q
_ki =10 K km™1. This is probably a lower bound on the geothermal gradient

at Ishtar and hence our estimates of the temperature in Venus’s lower crust will
also be lower bounds. The temperature dependence in equation 5 then implies

that our velocity estimates will also be lower bounds.

The abundances of the radioactive elements K, U, and Th have been meas-
ured at 5 near-equatorial sites by gamma ray spectroscopy. Four sites, Veneras
9 and 10 and Vegas 1 and 2, give Similar results, with average abundances of
0.41% K, 0.6 ppm U, and 2.0 ppm Th (Surkov et al., 1987). For our assumed
crustal density of 2.8 gm em™3, this corresponds to a volumetric heating rate of
H,=3.6-100" Wm™3. The Venera 8 lander measured substantially higher

radioactive abundances, corresponding to H, = 1.5107 W m™3 (Surkov et al.,
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1987). Because our model assumes that crustal material undergoes net conver-
gence, we assume that X\ changes in proportion to the total amount of crustal
thickening. Thus, if we use N to denote the value prior to crustal thickening
and X\ to denote the value after crustal thickening, the two duantities are

related by

)\ — >\, [Dmax

mex |, (15)

where D and Dp,, are defined as before. On Earth, values of N can be
estimated from reduced heat flow data. Sclater et al. (1980, Table 8) give data
for a number of continental heat flow provinces, with N ranging from 4.5 to 16

km. We therefore adopt a nominal value of N = 10 km. This implies that
H, N
k

lated using equation 13 and the nominal thermal parameters described above.

has a nominal value of 1.4 K km™!. Figure 5 shows a geotherm calcu-

This model is initialized with h=3 km and D=20 km, corresponding to a total
crustal thickness of D ., = 40 km. The surface temperature is 714 K, the basal

temperature is 1145 K, and the surface heat flow is 31 mW m™2.
Parameter Studies

As the foregoing discussion shows, crustal flow velocities depend on the
values of a number of parameters. In this section we present the results of a
series of parameter studies in order to show quantitatively how the flow is
affected by various parameter values. In a later section, we apply the model to
observations of Fortuna Tessera and show that it places constraints on the

maximum allowed crustal thickness.

The results of the parameter sensitivity studies are shown in Figures 6, 7,
and 8. In each of the panels of these figures, the solid line represents the same
reference model. The parameters used in this model are summarized in Table 1.
in each figure, we vary a single parémeter and hold the other parameters fixed.
The figures show flow velocities, v, , as a function of depth. We have set the
basal velocity v, =0, so that the flow velocity simply represents the flow of
crustal material down-slope. We consider the effect of non-zero basal velocities

in a later section. Because a free-slip surface is assumed, the velocity profile is
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a monotonic function of depth and rea.ches’ its maximum velocity at the sur-
face. Depth is expressed relative to MPR, so that negative depth corresponds to
topography above MPR. Crustal thickness is specified in terms of its reference
value in the plains, D in Figure 4a. For the assumed value of h¥3 km, D=20

km corresponds to a total crustal thickness of D, ,, =40 km.

- One class of model parameters are the rheological law constants, A, E, and
n, that are needed in equation 4. Given the evidence cited earlier for a basaltic
composition crust on Venus, we assume a diabase rheology. Two sets of labora-
tory determinations of the diabase flow law are available. Shelton and Tullis
(1981) give A = 8.8:1078 bar ™ sec™! , E = 260 kJ mole™! , and n = 3.4 . Car-
istan (1982) gives A =5.45107°bar®sec”!, E =276 kJ mole™!, and
n = 3.05 . The reason for the very large difference in the value of A from the
two sets of experiments is unclear. It could be due to differences in the composi-
tion of the samples used by the two experimental groups, or it may simply
represent the real uncertainty in the value of A. Figure 6 shows the resulting
ﬂow velocities as a function of depth for these two rheological laws. Our refer-
ence model is shown as the solid line and uses the Shelton and Tullis flow law.
It gives a peak flow velocity of 4 cm year™!, whereas the Caristan model

reaches a much larger peak velocity of 100 ecm year™! .

Our philosophy is to choose material constants conservatively, so that the
resulting flow velocities will be lower bounds. In the work that follows, we
therefore make use of the Shelton and Tullis flow law unless otherwise indi-
cated. Grimm and Solomon (1988) pointed out that the compositions reported
by the Venera landers are closer to the composition of Caristan’s experimental
samples than they are to the samples used by Shelton and Tullis. As a result,
Grimm and Solomon favored the use of Caristan’s rheology in their crater
relaxation calculations. If this reasoning is correct, then the actual flow veloci-
ties could be more than an order of magnitude larger than calculated in this
paper.

A second class of model parameters involve the topographic height, h, the

topographic gradient, —g—xh— , and the crustal thickness, expressed in terms of

either D or D,,, . Figure 7 shows the effects of varying these parameters. In
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Figure 7a, we fix D =20 km and vary the value of <3 . As shown in equa-

Ox

tions 5 and 9, the outflow velocity is a strongly increasing function of topo-

graphic gradient. The peak velocity increases from 0.4 cm ye'ar'f1 for a surface

slopev of —g% = 0.2° to 16 cm year™! for a slope of B_h = 0.6°, a factor of 334 .

ox
Figure 7b examines the effects of varying crustal thickness. We fix oh = 0.4°

Ox
and vary D from 15 to 25 km, corresponding to D, from 35 to 45 km. The

outflow velocity increases rapidly with increasing crustal thickness, from
0.7 em year™ at D, = 35 km to 20 cm year™! at D, =45 km . This is due
in part to the fact that the shear stress is an increasing function of depth
(equation 9). More important, however, is the effect of increasing temperature

with depth, which causes an exponential increase in velocity.

The third important class of parameters are those that affect the crust’s

. a .
thermal structure. Increasing the value of ——b—, —2 or N leads to increased

k
interior temperatures and hence to higher flow velocities. Figure 8 shows the

. q . q . . -
effects of varying _° . Reducing —kb— from its nominal value of 10 K km™! to

k
8 K km™! decreases the flow velocity to 0.6 cm year™!. Increasing X to

12 K km™! gives a peak flow velocity of 23 cm year™! . If H, is increased from
its nominal value to the Venera 8 value of 1.5:107% W m™3, the outflow velo-
city increases from its nominal value of 4 ¢cm year™! to 46 cm year™. On the
other hand, if we assume no crustal heating, H,=0, then the peak outflow
velocity is reduced to 1.7 cm year™!. The value of N has only a modest effect
on the calculated flow velocities. Increasing N to 15 km increases the peak
outflow velocity to 5.8 cm year™!; decreasing N to 5 km decreases the peak
outflow velocity to 2.4 cm year™. The limiting case N — 00 corresponds to a
uniform distribution of radioactive elements within the crust. For the other
parameters of our nominal model, this corresponds to a basal temperature of
1220 K and a surface heat flow of 39 mW m~2 and has a peak outflow velocity

of 25 cm year™!.
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Surface Boundary Condition: Free-slip versus Rigid

In the preceding discussion, we assumed that the entire crust behaved
viscously and that the surface boundary condition is free-slip, or zero shear
stress. Strictly speaking, this boundary condition is appropriate because
Venus’s atmosphere ‘is incapable of exerting a significant shear on the crust.
With these assumptions, Figures 6 to 8 show that v, can reach large values at
the surface. However, with a temperature of order 700 K, Venus’s near-surface
region has a very high effective viscosity and may be more properly treated as a
plastic medium rather than a viscous medium. At greater depths and higher
temperatures, of course, the crust will behave viscously. The near-surface layer
can exert a shear stress on the portion of the crust that flows, so that a free-
slip boundary is no longer appropriate. If the plastic layer is continuous across
the surface, the appropriate outer surface boundary condition is a rigid boun-

dary, v, =0.

We have modeled the effects of a strong surface layer using a modification
of the formulation described above. Because most of the shear strain occurs
near the base of the crust, where the viscosity is low, for the purpose of calcu-
lating a flow velocity profile it does not matter whether the near-surface is
treated as a plastic or viscous medium, and we therefore continue to assume
that the rheological law given by equation 4 applies to the entire crust. The
important point is that the surface boundary condition has been changed from
T4z =0 to vy, =0. In this case, the integration constant in equation 7 can no
longer be determined analytically. Instead, it is determined by combining
equations 5, 7, and 8 and iteratively searching for a value of C that satisfies
the boundary condition. A rigid surface substantially reduces the flow velocities
relative to the free-slip case. If we use a rigid top with the parameter values
given in Table 1, we find that the peak flow velocity is only 21073 ecm year™
and is reached near a depth of 30 km. In contrast, with these same parameters
and a free-slip top, we found a peak flow velocity of 4 cm year™! (Figure 6,
solid line). If we increase D to 60 km (corresponding to a total crustal thickness
of Dy .x =80km), we get the result shown in Figure 9. In this case, the peak

flow velocity is 22 cm year™! and is reached near a depth of 70 km. As Figure



- 220 -

7b shows, a compérable flow velocity is reached in the free-slip top case when D
is only about 25 km. The general form of the velocity profile shown in Figure 9
is similar to that found by Webb and Stevenson (1987) in their study of sub-

sidence of volcanic features on Io.

If the strong outer portion of the crust is not horizontally continuous, but
instead fails because its yield stress is exceeded in some places, then the condi-
tion vx=O is no longer appropriate as a surface boundary condition. Such
failure zones would result in a region of crust cut by a series of faults. These
failure zones would effectively decouple the various segments of unbroken crust
from one another. Within each segment of strong crust, the flow velocity is
determined by the average topographic, rheologic, and thermal parameters for
that segment of crust. Differences in flow velocity between various segments of
crust are accommodated by horizontal extension or compression within the
fault zones. In this situation, profiles of flow velocity should resemble those
shown for free-slip tops in Figures 6 to 8. An appropriate analogy can be made
to the motion of lithospheric plates on Earth. If the Earth’s outer layer were
horizontally continuous, we would not expect to see plate motion at the Earth'’s
surface. However, both spreading centers and subduction zones behave as weak

zones that decouple the various plates from one another, allowing the observed

plate velocities to occur.

As we discussed earlier, there is substantial evidence for tectonic deforma-
tion in Ishtar Terra, particularly in the mountain belts and the tessera.
Although some of this may represent folding, faulting has undoubtedly
occurred as well. Presumably at least some of these faults penetrate to the
base of the plastic layer, and thus could have created weak zones within the
crust. We therefore believe that the results obtained for the free-slip top boun-
dary are a more accurate description of the crustal flow than the results
obtained for a rigid top boundary. Nevertheless, we include the rigid boundary

results here for completeness.
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Applications of the Crustal Flow Model

Until now, we have assumed that the basal velocity; v,, is zero, which
implies that the crustal flow is entirely down-slope. However, if a large enough
basal velocity is applied, then there can be a net movement of crustal material
- up the topographic slope. This net up-slope crustal flow is required if Ishtar is
to be formed by the crustal convergence mechanism. In this section we exam-
ine the réquired magnitude of v, and show that this places constraints on the

maximum allowed crustal thickness.

In order to determine the minimum value of v, required to build Ishtar,

we calculate the volume flux, Q, of material through a vertical plane,
Dmax
Q= [ vy(z)dz , (16)
0

where v, is the flow velocity given by equation 5. We define the no net flux
velocity, vng, such that Q = 0 when v, = vy . Because velocities are taken to
be positive down-slope, we must have vy < 0. Our hypothesis is that Ishtar
formed as a result of crustal convergence, which requires that Q < 0. Clearly,

for Q < 0, we must have v, < vyp < 0.

An example is shown in Figure 10. The flow law and thermal parameters

used in this calculation are given in Table 1. For this calculation, we have used

h=3.1 km and —g%=0.41°. These values differ slightly from those in Table 1

and were chosen to be representative of Fortuna Tessera, as discussed below.
With these model parameters, the peak flow velocity is v,(0)—v, =5.6 cm
year~! and the no net flux velocity is vyp = —5.2 cm year™!. Figure 10 illus-
trates the resulting velocity profile. Near the base of the crust, the flow is up-
slope (negative flow velocity), whereas the near-surface material is flowing
down-slope at a velocity of 0.4 cmyear™!. If we had chosen

v, < —5.2 cm year™!, then net up-slope transport would have occurred.

As shown in Figure 4, the crustal flow pattern is likely to vary over time
as Ishtar is built up. In the early stages of Ishtar’s formation, the topography

will be low and hence the pressure gradient will‘ be small. As shown in Figure



4a, during this period, the crustal flow will be directed up the topographic gra-
dient at all depths within the crust. Later, as the topography increases, the
increasing pressure gradient will cause the near-surface layer to flow down-
slope, although the material near the base will continue to ﬁolw up-slope in
resp‘onse to the applied basal velocity. This is the situation illustrated in Fig-
ures 4b and 10. The complete circulation pattern clearly requires a region of
vertical flow to connect the incoming basal flow with the outgoing near-surface
flow. As shown in Figure 4b, we suggest that this vertical flow occurs in the
vicinity of the mountain belts. v, is likely to be significant over a horizontal
distance of order the crustal thickness. At greater distances from the mountain
belts, the flow should be predominantly horizontal, as we assumed in deriving
the flow solution. There must also be some mechanism for accommodating the
crustal outflow at the base of the topographic slope. We assume that this
occurs in some way, although with our present knowledge of the geology of

Venus it may be premature to identify specific regions where this occurs.

We can use the calculated magnitude of vyp as a discriminant to deter-
mine what combinations of model parameters are allowed. Of course, we do not
know what the actual basal velocity is in the Ishtar Terra region, but it is pos-
sible to place bounds on the allowed value of v,. The basal velocity is deter-
mined by the convective velocity in Venus’s mantle. Because Venus and Earth
are of comparable size and are likely to have similar total heat sources, convec-
tive velocities in the two mantles should also be comparable. On Earth, plate
velocities presently range up to about 10 cm year™! (Minster and Jordan,
1978). We therefore adopt v, < 20 cm year™! as a conservative upper bound
on the allowed basal velocity. For a given set of model parameters, including
topographic slope, crustal thickness, flow law, and thermal parameters, we cal-
culate the réquired value of vyp . If the absolute magnitude of vy is greater
than 20 cm year™!, then net up-slope transport of crustal material is impossi-
ble and we conclude that the given set of model parameters is inconsistent with
a crustal convergence origin for Ishtar Terra. On the other hand, if vy is less
than 20 cm year—!, then net up-slope transport of crustal material can occur
and the given set of model parameters is consistent with a crustal convergence

origin for Ishtar. This logic is similar in some ways to that of Grimm and
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Solomon (1988), who placed bounds on allowed crustal conditions based on

their viscous relaxation models for impact craters on Venus.
We have calculated vy for a range of possible model parameters. In these

calculations, we have used values of h and oh that are appropriate for a por-

Ox

k'tion of Fortuna Tessera between Longitudes 19° and 29° and North Latitudes
61° to 66°, a region which is approximately 500 km by 500 km in size. In this
region, PVO altimetry (USGS, 1984) shows that the topographic contours run
predominantly North-South, although this does break down in the southeast
corner of the study region. We therefore expect the crustal flow to have a
sheet-like structure, with predominantly East-West flow velocities. This sheet-
like flow satisfies one of the assumptions made by our flow model. As Figure 2¢
shows, the topographic elevation falls from 4.7 km at 65° North, 19° East to

1.5 km at 65° North, 29° East. We therefore use as average values h = 3.1 km
oh

and — = 0.41° in the following calculations. The topographic slope will of

Ox

course vary locally about this average value. Our calculated flow velocities
should be regarded as an average value for the entire region. Our study region
is located 700 to 1150 km away from the summit of Maxwell Montes, a dis-
tance which we assume is large enough so that we can safely neglect the details

of possible vertical flow in the summit region.

The results of our Fortuna Tessera flow modeling are presented in Figure
11. The various curves in Figure 11 show the value of vyp as a function of

crustal thickness for various choices of flow law and thermal parameters. In

oh

these calculations, we have set h = 3.1 km and §X—=0.41°, as discussed

above. Except as indicated below, the thermal parameters and flow law param-

eters used are as given in Table 1.

Figure 11a shows the effects of various flow law parameters on the
required basal velocity. The crustal thickness is expressed in terms of the refer-
ence thickness in the plains surrounding Ishtar, D in Figure 4a. As discussed
above, vyp must always be negative, so the velocities shown in Figure 11 actu-
ally refer to the absolute magnitude of vy . One way of interpreting Figure 11

is to consider a particular value of the basal velocity, in which case the various
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curves set upper limits on the crustal thickness for which net crustal conver-
gence is possible. For example, if the basal velocity is assumed to be 20 cm
year~!, then for the Shelton and Tullis (1981) diabase flow law (solid line), we
must have D < 25 km in order for net crustal convergence to 6ccur. For this
-rheology and basal velocity, if D > 25 km is assumed, then net up-slope tran-
~ sport of crustal material does not occur, and Ishtar Terra could not have
formed by means of crustal convergence. If we assume a smaller basal velocity

of 10 cm year™!

, then for the Shelton and Tullis flow law, we must have
D < 22 km in order for net crustal convergence to be possible. As discussed
above, convective flow in Venus’s mantle controls the value of v,, with

20 cm year™!

as a generous upper bound on its allowed magnitude. Neverthe-
less, in Figure 11 we show results for basal velocities as large as 50 cm year™!
to make the point that even assuming extremely large values of v, does not
permit substantial increases in the allowed maximum value of D. For example,
with the Shelton and Tullis flow law and v, =50 cm year™!, D < 28 km is
necessary for net crustal convergence to be possible. Because the Caristan flow
law is much softer than the Shelton and Tullis flow law, it places tighter res-
trictions on the allowed values of D(long-dashed line). For v, =20 cm year™!,
it requires D < 15 km in order for net crustal convergence to be possible.
Because laboratory experiments must be performed at strain rates that are
5 to 10 orders of magnitude higher than are found in typical geological applica-
tions, large extrapolations are necessary in applying laboratory results to geolo-
gic modeling. As a result, while we regard the laboratory flow laws as guides to
the possible viscous behavior of rocks, we also consider the effects of perturba-
tions to the flow law parameters from their laboratory values. Thus, the short-
dashed line in Figure 11a, labeled "S&T A/10", is for an arbitrary decrease by
a factor of 10 in the Shelton and Tullis value for the pre-exponential viscosity
constant, A. For this stiffer flow law, net crustal convergence is possible at
v, =20 cm year™! provided that D < 33 km. On the other hand, if the Shelton
and Tullis value of A is arbitrarily increased by a factor of 10 (dot-dashed line,
labeled "S&T 10xA"), then D < 18 km in order for net crustal convergence to

occur.
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The effects of changing the temperature dependence of the viscosity law
can be addressed either by varying E or by varying the thermal parameters. In
Figure 11b, we use the nominal Shelton and Tullis flow law parameters and

consider the effects of changing the value of basal heat flow. The solid line uses

‘our nominal value of — =10 K km~! and is identical to the solid line in Fig-

k
ures 11a. Decreasing 1—b increases the viscosity at depth and hence allows net
crustal convergence to occur with thicker crusts. Thus, for v, =20 cm year™},
b -1 . X . DB -1 .
——1;—=6 K km™" requires D < 44 km, while T=8 K km™" requires that D <

32 km. For (i{—};)=12Kkm"1 , we must have D < 19 km, while

q
2 _15 K km™! requires that D < 14 km in order for net crustal convergence

k
to be possible.

In summary, if Ishtar Terra formed by crustal convergence, then for our
nominal set of model parameters, the reference crustal thickness, D, must be
less than 25 km. Increasing the allowed basal velocity above its nominal upper
bound of 20 cm year™! only increases the allowed value of D by 2 to 3 km.

There are 3 ways in which our nominal model could be altered to permit larger

values of D. One way would be to decrease the assumed values of gkt:— and %,
which would lead to colder interior temperatures and hence allow net crustal
convergence for larger values of D. The conductive heat flux could be reduced
by assuming that most of the heat transport in the lithosphere is transported
magmatically in "heat pipes” (Turcotte, 1989). Turcotte’s model requires a glo-
bal average magma flux of 200 km? year™!, which is more than an order of
magnitude higher than Earth’s observed magma flux. On the basis of a model
for the resurfacing of impact craters, Grimm and Solomon (1987) estimated an

upper limit of 2 km? year™!

for extrusive volcanism on Venus. Thus, if
Turcotte’s model is correct, virtually all magma on Venus must form intrusive
structures, with less than 1% occurring as extrusive eruptions. On Earth,
extrusive eruptions are typically 10 to 20% of the total volume of magmatic

activity (Crisp, 1984). There is no obvious reason why extrusive volcanism
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should be so much less likely on Venus thah on Earth, and we therefore doubt
that the heat pipe mechanism is as effective as Turcotte has suggested. Thus,
we consider it unlikely that the geothermal gradient in the Ishtar region is
significantly colder than our model geotherm. If anything, the re;al geotherm is
likely to be hotter than in our model, requiring that D be less than 25 km for

net crustal convergence to be possible.

A second way in which the upper bound on D could be increased is if the
flow law is substantially stiffer than we assumed. As noted earlier, we have
used the stiffest of the available diabase flow laws in performing our modeling.
The pre-exponential constant, A, would have to be changed by more than an

order of magnitude, in order to change our bound on D by more than 10 km.

A final possibility is that the surface behaves as a rigid boundary rather
than as a free-slip boundary. For our nominal model parameters and a rigid
top, net crustal convergence is possible for D < 50 km. However, as noted

above, we think it is unlikely that Venus’s surface behaves as a rigid boundary.

Discusston of Crustal Flow Models

It has long been recognized that viscous crustal flow is likely to be impor-
tant on Venus, and a variety of attempts to model this process have been pre-
viously presented by other researchers. The first was Weertman (1979), who
estimated vertically-averaged strain rates for flow away from an isostatically
compensated elevated region on Venus. Assuming a dry quartzite rheology, he
found a maximum total crustal thickness of 26 km for the elevated region. This
thickness corresponds to D .. in our model and is about 20 km less than the
upper limit that we found in the preceding section. There are several reasons
for the differences between our results and Weertman’s results. Weertman'’s cri-
terion for determining the maximum allowed crustal thickness was that the
vertically averaged strain rate must be less than 10717 sec™! in order for the
elevated crustal block to survive for 10° years. Unlike our model, Weertman did
not allow for a basal velocity to be imposed by the mantle on the crust.
Because a non-zero basal velocity can resist the tendency of the high topogra-
phy to spread, our model allows a larger value of D. Also, Weertman used a

geothermal gradient of 15.2 K km™!, which is larger than we use in our
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nominal model. This also contributes to the differences in the the two sets of

results.

Solomon et al. (1982) presented a model of the viscous relaxation of
impact basins that used a constant Newtonian viscosity layér overlying an
- inviscid halfspace. With this simplified rheological structure, they solved both
for the vertical flow velocity as well as one horizontal flow velocity. Stephens
et al. (1983) applied this same model to the viscous relaxation of Ishtar Terra.
They found that in the absence of dynamic support of topography, Maxwell
Montes would decay to negligible relief in less than 1 billion years, although
they cautioned that this is probably an upper limit because of uncertainties in

what average viscosity should be assigned to their viscous layer.

Grimm and Solomon (1988) generalized the Solomon et al. (1982) relaxa-
tion model to include a series of horizontal layers, thus allowing the inclusion
of temperature-dependent, and hence depth-dependent, viscosity. This model is
formulated in terms of Newtonian rheology, although they have attempted to
include stress-dependent rheology in an approximate way by estimating a
volume-averaged effective stress from their initial topographic distribution and
using this stress to evaluate an effective Newtonian viscosity. Bindschadler and
Parmentier (1987, 1989) have also considered relaxation models with depth-
dependent Newtonian viscosity. They have focused both on estimating time
scales for viscous relaxation and on determining the distribution of tectonic

features expected in a viscously relaxed terrain.

The only prior model of viscous relaxation on Venus to fully incorporate
stress-dependent rheology is that of Smrekar and Phillips (1988), who con-
sidered a one-dimensional flow model, solving only for v, as a function of
depth. They estimated the minimum crustal thickness necessary for viscous
crustal flow to occur on Venus, whereas we have attempted to place bounds on
the maximum allowed crustal thickness. As a test of our numerical code, we
have also performed several of the calculations reported in Smrekar and Phil-

lips, with generally good agreement.

The bound on crustal thickness that we derived above, D < 25 km, can

be compared with several independent estimates of crustal thickness on Venus.
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Zuber (1987), Banerdt and Golombek (1988)-, and Zuber and Parmentier (1990)
have used the spacing of tectonic features on Venus to place bounds on the cru-
‘stal and lithospheric structure. They noted that in many places on Venus, there
are two characteristic length scales for the spacing of tectonic stfﬁctures, 10 to
20 km and 100 to 300 km. They suggested that these characteristic spacings
are determined by the thicknesses of elastic layers in Venus’s lithosphere. The
shorter spacing is due to an elastic zone in Venus’s upper crust, while the larger
spacing is related to an elastic layer in the sub-crustal lithosphere. The require-
ment that an elastic layer exists beneath the crust, together with reasonable
limits on the geothermal gradient, places an upper limit on the thickness of the
crust. Zuber (1987) and Zuber and Parmentier (1990) found that D < 30 km,
while Banerdt and Golombek (1988) found D < 15 km.

Grimm and Solomon (1988) have used models of the viscous relaxation of
impact craters to place an upper bound on crustal thickness. They assumed
that when first formed, impact craters on Venus have a topographic profile
that can be determined by gravity scaling from observations of lunar craters.
They allowed this profile to relax viscously for 50 to 500 million years. This
range of relaxation times was chosen based on bounds on the average age of
Venus’s surface inferred from crater densities. Grimm and Solomon compared
the depth-diameter ratios for their relaxed model craters with Venera 15 and 16
observations of large craters. They concluded that the average crustal thickness
must be less than 20 km or else the relaxed craters would be shallower than
observed. Grimm and Solomon used a volume-averaged effective stress to evalu-
ate an effective Newtonian viscosity for their flow calculations. This procedure
tends to overestimate the viscosity and hence underestimate the flow velocity in
high stress regions. However, as relaxation proceeds, the declining topographic
amplitude leads to smaller stresses and higher effective viscosities. Grimm and
Solomon did not update their effective stress estimate as the calculation pro-
ceeded, so their results overestimate the rate of relaxation during the later
stages of relaxation. These two effects must offset one another to some extent.
It is not clear how they alter the inferred bounds on crustal thickness, but it

seems unlikely that the net change will be very large.
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Thus, the bounds that we infer on crustal thickness appear to be generally
consistent with those inferred in the earlier work of Zuber (1987), of Banerdt
and Golombek (1988), of Grimm and Solomon (1988), and of Zuber and Par-
mentier (1990). Although each of these models makes assumptioﬂs that may be
questioned, we find the general concordance of results to be encouraging. We
therefore suggest that 25 to 30 km is a likely upper limit to the crustal thick-

ness in the plains of Venus.

In contrast with this estimate of crustal thickness, an Airy isostasy model
for Ishtar’s gravity anomaly leads to an estimated crustal thickness of 150 km
(Sjogren et al., 1984). For any reasonable geothermal gradient, a 150 km thick
crust must contain a region near its base that is partially or entirely molten.
This material will have a very low viscosity resulting in large viscous flow velo-
cities. Under these circumstances, it would be impossible to maintain the
observed topographic relief in Ishtar Terra for geologically significant periods of
time. This is true whether one chooses a free-slip or rigid surface boundary con-
dition. We therefore conclude that the crust cannot be as thick as the Airy isos-

tasy model suggests.

This does not mean that the Airy model does not apply to the Ishtar
region, but it does require that other processes be occurring as well. Because
shallowly compensated topography does not produce much long-wavelength
geoid, most of Ishtar’s geoid anomaly must be related to density anomalies
within the mantle beneath Ishtar. Hager (1984) showed that in order to pro-
duce a large positive geoid anomaly over a region of downwelling mantle, the
viscosity in the upper part of the mantle must be significantly less than the
viscosity deeper in the convecting layer. Grimm and Phillips (1990) recently
advanced similar arguments. However, we have shown elsewhere that both the
global admittance spectrum and the geoid anomalies observed for features such
as Beta Regio and Atla Regio are best fit if Venus’s mantle is nearly isoviscous
(Kiefer et al., 1986; Kiefer and Hager, 1988, 1990a; Chapter 2). One possible
way out of this apparent paradox would be to assume that the upper mantle
on Venus is about one order of magnitude less viscous than its lower mantle.
With this type of viscosity structure, inclusion of temperature-dependent rheol-

ogy in the calculations of mantle flow could alter the coupling of mantle flow
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stresses with the surface in such a way that the‘geoid could be positive over
both upwelling and downwelling regions (Richards et al., 1988). Although this
model is qualitatively consistent with the existence of positive geoid anomalies
both at Ishtar and in the Equatorial Highlands, it is not yet kﬁown if it can
‘quantitatively explain the observed geoid amplitudes and shapes. Clearly,
developing a model for the Ishtar geoid anomaly will provide an important

additional test of the crustal convergence model.

Anderson (1980, 1981) and Kaula (1990) have also favored a relatively
thick crust on Venus. They argued that because basalt is less dense than man-
tle material, it can not be recycled back into the mantle. Thus, in this model
the crustal thickness increases with time until the basalt enters the eclogite sta-
bility field. Eclogite is denser than upper mantle material and is therefore able
to sink into the mantle. Anderson and Kaula therefore concluded that thickness
of Venus’s crust is controlled by the depth to the basalt-eclogite phase boun-
dary, which Anderson estimated to occur at 100 to 170 km depth. As described
above, crustal thicknesses of this magnitude are inconsistent with the observa-
tion that substantial topography exists on Venus. The models of Anderson and
of Kaula overlook the possibility that positively buoyant basalt can be recycled
into the mantle if it is attached to a sufficient quantity of cold, negatively
buoyant mantle. Because crust can be recycled into the mantle in regions of
mantle downwelling, it may be possible for Venus to maintain an equilibrium
crustal thickness that is much less than that predicted by arguments involving
the basalt-eclogite phase transition. The possibility of crustal recycling on
Venus has not yet been quantitatively modeled but is clearly an issue that
should be studied further.

Extensional Deformation in Fortuna Tessera?

Within Fortuna Tessera, there is an unusual type of tessera, termed the
Chevron Tessera by Vorder Bruegge and Head (1989). At a horizontal scale of
10 km, they characterized the Chevron Tessera as being similar in appearance

to other tessera units, with intersecting sets of ridges and grooves. At a
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horizontal scale of 100 to 200 km, on the other hé.nd, they described the Chev-
ron Tessera as having a disrupted or buckled appearance. Although tessera
units are common on Venus, the large-scale disruption observed in the Chevron
Tessera is not known to exist in tessera units elsewhere on Venus. Vorder
Bruegge and Head proposed that the Chevron Tessera formed by the collision

and compressional deformation of a series of distinct crustal blocks.

While substantial compressive deformation has probably occurred within
Fortuna Tessera, several features within the Chevron Tessera may be indicative
of extensional deformation. An examination of a mosaic of Venera 15 and 16
radar imagery (USGS, 1989) reveals that the structures that define the indivi-
dual blocks within the Chevron Tessera are often parallel pairs of lineaments.
These lineament pairs have characteristic spacings of a few tens of kilometers
and characteristic lengths of a few hundred kilometers. They have a range of
orientations. Some strike North-northwest, for example Lasdona Chasma near
70° N, 37°E. Others strike nearly due North, for example Morana Chasma near
70° N, 25°E. Still others strike North-northeast, for example Hina Chasma near
65° N, 22°E. Typically, the western lineament of a given pair is radar bright,
indicating predominantly east-facing slopes, whereas the eastern lineament is
radar dark, indicating predominantly west-facing slopes. Thus, these lineament
pairs have the radar signature expected of a topographic valley. One possible
explanation for these valleys is that they are graben and hence formed by

extensional deformation.

Extensional deformation within Fortuna Tessera has been previously advo-
cated by Sukhanov (1986) and by Kozak and Schaber (1989). Sukhanov argued
that many of the features described above are graben and that the structure of
Fortuna Tessera formed entirely by the flow of crustal material down the topo-
graphic slope. In his view, there is a plume-like upwelling under Ishtar, and the
flow of mantle material away from Ishtar Terra serves to enhance the down-
slope flow of the crust. In contrast, the mantle flow pattern sketched in Figure
3 is directed in toward Ishtar, with downwelling occurring under Ishtar. Kozak
and Schaber argued that a large North-South rift zone occurs in the central to
eastern part of the Chevron Tessera, which they claimed is a portion of a glo-

bal rift system on Venus. While we believe that there may be some extensional
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deformation in Fortuna Tessera, we see no reason to connect this into a global

tectonic system such as that advocated by Kozak and Schaber.

As we showed in Figure 10, in some circumstances it is possible for the
near-surface layer to be flowing down the topographic slope even though the
- crust as a whole may be undergoing net up-slope transport. We speculate that
the apparent graben which we described above may be related in some way to
this down-slope flow of the near-surface crust, although we cannot model the
deformation in detail using the one-dimensional flow model. We noted earlier
that it is likely that the Ishtar region has undergone one or more delamination
episodes. If such a delamination event occurred beneath Fortuna Tessera, then
the crust in this region would be subjected to a sudden increase in the basal
heat flux, q,. The magnitude of the increase in g, will depend on the extent to
which the sub-crustal lithosphere is thinned during delamination. As shown in
Figure 8, increasing q, causes the down-slope flow velocity to increase. The
enhanced heat flow will decline with time as the thermal boundary layer forms
again by conductive cooling and by lateral advection, and thus the down-slope
flow velocity will also decline with time following the delamination event.
Thus, Fortuna Tessera may have been subjected to alternating periods of net
up-slope and net down-slope flow, and this may have played a role in the for-

mation of the distinctive Chevron Tessera landforms.

Mechanisms for the Origin of Volcanism in Ishtar Terra

We now consider possible mechanisms for producing the volcanism
observed in Ishtar Terra. Mantle upwelling cannot account for the observed
topography and tectonics of Ishtar, so pressure-release melting can be ruled out
as a magma generating mechanism at Ishtar. On Earth, island are volcanism
shows that magma can also be generated in regions of mantle downwelling.
However, it seems likely that magma generation in either an oceanic subduction
zone or a continental collision zone requires the presence of water as an aqueous

phase (Wyllie, 1988). Hydrous minerals undergo dehydration reactions when
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exposed to sufficiently high temperature, providing the source of the necessary
aqueous phase in terrestrial subduction zone volcanism. On Venus, however,
the high surface temperature will inhibit the formation of hydrous mineral
phases. For example, Nozette and Lewis (1982) found that for a nominal
atmospheric water mixing ratio of 10™%, tremolite is only stable at elevations
of more than about 9 km above MPR, and hence could only form near the
summit of Maxwell Montes. In the absence of hydrous phases, it seems

unlikely that Earth-like subduction zone volcanism can occur on Venus.

There are at least two other mechanisms that could contribute to the vol-
canism observed in Ishtar. One is basal melting of the crust. As initially noted
by Anderson (1980), if Venus's crust is thick enough and the geothermal gra-
dient is large enough, then the temperature near the base of the crust can
exceed the basalt solidus, producing a partial melt. We note that for our nomi-
nal thermal model and the upper limit crustal thickness inferred from our flow
model, we never find a crustal temperature that exceeds the basalt solidus as
given by Anderson’s phase diagram. Indeed, as we discussed above, we doubt
that the base of the crust can generally be at its solidus, because in that case,
the viscosity would be quite low and viscous flow would be so rapid that it
would be impossible to support differences in topographic elevation for geologi-
cally significant periods of time. It therefore seems unlikely that Colette and
Sacajawea can be due to basal melting of Lakshmi Planum. It may be possible,
however, for localized zones of basal melting to occur if g, or H, are larger than
in our nominal thermal model. Maxwell Montes has the highest topography in
Ishtar and hence must have the deepest crustal root. If basal melting occurs
anywhere on Venus, Maxwell is the most likely location at which it might

occur. This could help explain the formation of Cleopatra Patera.

As discussed above, lithospheric delamination can also lead to volcanism.
If multiple delamination events have occurred, then volcanism in Ishtar may
have had an episodic history. Following a delamination event, there would be a
burst of volcanic activity that would gradually decay as the crust cooled. A
later delamination episode could then lead to renewed volcanism. It is possible
that the differing amounts of degradation observed at Colette and Sacajawea

could be due to these structures forming during different delamination events.
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Summary and Conclusions

In this paper, we have presented a model for Ishtar Terra that accounts
for most of Ishtar’s observed features. Ishtar is probably a zone of crustal con-
vergence overlying a region of downwelling mantle. This convergence explains
the predominance of compressive tectonics and leads to a region of thickened
crust, which explains the observed high topography. Volcanism in Ishtar is
probably related both to heating of the crust under Lakshmi Planum during
delamination events and to basal melting of the crustal roots underlying the

mountain belts.

We have developed models of the crustal flow in the Ishtar region. For rea-
sonable upper limits on the mantle flow velocity, we find that the crust in the
plains surrounding Ishtar cannot be more than about 25 km thick. This result
is in good agreement with independent estimates of crustal thicknesses on
Venus that other research groups have made based on modeling of the spacing
of tectonic features and of impact crater relaxation. On the other hand, our
upper limit on crustal thickness is much less than that inferred from Airy isos-
tasy models of Ishtar’s gravity anomaly. In general, Venus’s crust cannot be so
thick that its base is partially or entirely molten, or else it would be impossible
to support the observed topography for geologically significant periods of time.
It may, however, be possible for isolated regions of basal melting of the crust to
exist either in regions of very thick crust or of high heat flow. Our model
requires that substantial density anomalies exist within the mantle beneath Ish-

tar, but we have not modeled this in detail.

Although we treat Ishtar as a crustal convergence zone, our crustal flow
models indicate that under some circumstances there can be outflow of crustal
material in the near-surface region. This suggests the possibility that there may
be some extensional deformation within Ishtar Terra, which could explain pos-
sible graben in Fortuna Tessera and Lakshmi Planum. Because of the one-
dimensional nature of our crustal flow model, we cannot presently define the
details of the flow field in the vicinity of the mountain belts. This will be the

subject of a later investigation.



- 235 -

References

Anderson, D.L., Tectonics and Composition of Venus, Geophys. Res. Lett., 7,
101-102, 1980.

Anderson, D.L., Plate Tectonics on Venus, Geophys. Res. Lett., 8 309-311,
1981.

Arvidson, R.E., M. Schulte, R. Kwok, J. Curlander, C. Elachi, J.P. Ford, and
R.S. Saunders, Construction and Analysis of Simulated Venera and Magel-

lan Images of Venus, Icarus, 75, 163-181, 1988.

Banerdt, W.B., Support of Long-Wavelength Loads on Venus and Implications
for Internal Structure, J. Geophys. Res., 91, 403-419, 1986.

Banerdt, W.B., and M.P. Golombek, Deformational Models of Rifting and
Folding on Venus, J. Geophys. Res., 93, 4759-4772, 1988.

Barsukov, V.L., A.T. Basilevsky, G.A. Burba, N.N. Bobinna, V.P. Kryuchkov,
R.O. Kuzmin, O.V. Nikolaeva, A.A. Pronin, L.B. Ronca, .M. Chernaya,
V.P. Shaskina, A.V. Garanin, E.R. Kushky, M.S. Markov, A.L. Sukhanov,
V.A. Kotelnikov, O.N. Rzhiga, G.M. Petrov, Y.N. Alexandrov, A.L
Sidorenko, A.F. Bogomolov, G.I. Skrypnik, M.Y. Bergman, L.V. Kudrin,
I.M. Bokshtein, M.A. Kronrod, P.A. Chochia, Y.S. Tyuflin, S.A. Kadni-
chansky, and E.L. Akim, The Geology and Geomorphology of the Venus
Surface as Revealed by the Radar Images Obtained by Veneras 15 and 16,
Proc. Lunar and Planetary Sci. Conf. 16, J. Geophys. Res. (supplement),
91, D378-D398, 1986.

Basilevsky, A.T., Structure of Central and Eastern Areas of Ishtar Terra and

Some Problems of Venusian Tectonics, Geotectonics, 20, 282-288, 1986.



- 236 -

BasileVsky, A.T., A.A. Pronin, L.B. Roncé, V.P. Kryuchkov, A.L. Sukhanov,
and M.S. Markov, Styles of Tectonic Deformations on Venus: Analysis of
Venera 15 and 16 Data, Proc. Lunar and Planetary Sci. Conf. 16, J. Geo-
phys. Res. (supplement), 91, D399-D411, 1986. ‘

Basilevsky, A.T., B.A. Ivanov, G.A. Burba, .M. Chernaya, V.P. Kryuchkov,
O.V. Nikolaeva, D.B. Campbell, and L.B. Ronca, Impact Craters of Venus:
A Continuation of the Analysis of Data from the Venera 15 and 16 Space-
craft, J. Geophys. Res., 92, 12,869-12,901, 1987.

Basilevsky, A.T., and B.A. Ivanov, Cleopatra Crater on Venus: Venera 15/16
Data and Impact/Volcanic Origin Controversy, Geophys. Res. Lett., 17,
175-178, 1990.

Bills, B.G., W.S. Kiefer, and R.L. Jones, Venus Gravity: A Harmonic Analysis,
J. Geophys. Res., 92, 10,335-10,351, 1987.

Bills, B.G., and M. Kobrick, Venus Topography: A Reappraisal (abstract),
Lunar and Planetary Science, 18, 71-72, 1987.

Bindschadler, D.L., and J.W. Head, Characterization of Venera 15/16 Geologic
Units from Pioneer Venus Reflectivity and Roughness Data, Icarus, 77,
3-20, 1989a.

Bindschadler, D.L., and J.W. Head, Models of Venus Tectonics: Evaluation and
Application to Tessera Terrain (abstract), Lunar and Planetary Science,
20, 76-77, 1989b.

Bindschadler, D.L., and E.M. Parmentier, Tectonic Features Due to Gravita-
tional Relaxation of Topography (abstract), Lunar and Planetary Science,
18, 75-76, 1987.



- 237 -

Bindséhadler, D.L., and E.M. Parmentier, Mantle Flow Tectonics and a Weak
Lower Crust: Implications for Formations of Large-scale Features on

Venus (abstract), Lunar and Planetary Science, 20, 78-79, 1989.

- Bird, P., Initiation of Intracontinental Subduction in the Himalaya, J. Geo-
phys. Res., 83, 4975-4987, 1978.

Bott, M.H.P., and N.J. Kusznir, Stress Distributions Associated with Compen-
sated Plateau Uplift Structures with Application to the Continental Split-
ting Mechanism, Geophys. J. R. Astr. Soc., 56, 451-459, 1979.

Burba, G.A., Crater Density in the Northern Part of Venus: Areal and Topo-
graphic Patterns (abstract), Lunar and Planetary Science, 20, 123-124,
1989.

Campbell, D.B., JJW. Head, J.K. Harmon, and A.A. Hine, Venus: Identification
of Banded Terrain in the Mountains of Ishtar Terra, Science, 221, 644-
647, 1983.

Campbell, D.B., J.W. Head, J.K. Harmon, and A.A. Hine, Venus: Volcanism
and Rift Formation in Beta Regio, Science, 226, 167-170, 1984.

Caristan, Y., The Transition from High Temperature Creep to Fracture in

Maryland Diabase, J. Geophys. Res., 87, 6781-6790, 1982.

Clark, S.P., Thermal Conductivity, Handbook of Physical Constants, Geologi-
cal Society of America Memoir 97, 459-482, 1966.

Crisp, J.A., Rates of Magma Emplacement and Volcanic Output, J. Volcanol.
Geotherm. Res., 20, 177-211, 1984.



- 238 -

Crumpler, L.S., J.W. Head, and D.B. Campbell, Orogenic Belts on Venus, Geol-
ogy 14, 1031-1034, 1986.

Elachi, C., Introduction to the Physics and Techniques of Remote Sensing,
John Wiley and Sons, New York, 1987.

England, P., and G. Houseman, Extension During Continental Convergence,
with Application to the Tibetan Plateau, J. Geophys. Res., 94, 17,561-
17,579, 1989.

Gaddis, L.R., and R. Greeley, Volcanism in NW Ishtar Terra, Venus (abstract),
Lunar and Planetary Science, 20, 319-320, 1989.

Grimm, R.E., and R.J. Phillips, Gravity Anomalies and the Geodynamics of
Lakshmi Planum (abstract), Lunar and Planetary Science, 21, 437-438,
1990.

Grimm, R.E., and S.C. Solomon, Limits on Modes of Lithospheric Heat Tran-
sport on Venus from Impact Crater Density, Geophys. Res. Lett., 14,
538-541, 1987.

Grimm, R.E., and S.C. Solomon, Viscous Relaxation of Impact Crater Relief on
Venus: Constraints on Crustal Thickness and Thermal Gradient, J. Geo-

phys. Res., 93, 11,911-11,929, 1988.

Hager, B.H., Subducted Slabs and the Geoid: Constraints on Mantle Rheology
and Flow, J. Geophys. Res., 89, 6003-6015, 1984.

Hartmann, W.K., R.G. Strom, S.J. Weidenschilling, K.R. Blasius, A. Woronow,
M.R. Dence, R.A.F. Grieve, J. Diaz, C.R. Chapman, E.M. Shoemaker, and
K.L. Jones, Chronology of Planetary Volcanism by Comparative Studies



- 239 -

of Planetary Cratering, pp. 1049-1127 in Basaltic Volcanism on the Ter-

restrial Planets, Pergamon Press, New York, 1981.

Head, J.W., Formation of Mountain Belts on Venus: Evidence for Large-Scale
Convergence, Underthrusting, and Crustal Imbrication in Freyja Montes,

- Ishtar Terra, Geology, 18, 99-102, 1990.

Houseman, G.A., D.P. McKenzie, and P. Molnar, Convective Instability of a
Thickened Boundary Layer and its Relevance for the Thermal Evolution
of Continental Convergent Belts, J. Geophys. Res., 86, 6115-6132, 1981.

Ivanov, B.A., A.T. Basilevsky, V.P. Kryuchkov, and I.LM. Chernaya, Impact
Craters of Venus: Analysis of Venera 15 and 16 Data, Proc. Lunar and
Planetary Sci. Conf. 16, J. Geophys. Res. (supplement), 91, D413-D430,

- 1986.

Janle, P., and D. Jannsen, Tectonics of the Southern Escarpment of Ishtar
Terra from Observations of Morphology and Gravity, FEarth, Moon, and
Planets, 31, 141-155, 1984.

Kaula, W.M., and R.J. Phillips, Quantitative Tests for Plate Tectonics on
Venus, Geophys. Res. Lett., 8 1187-1190, 1981.

Kaula, W.M,, Venus: A Contrast in Evolution to Earth, Science, 247, 1191-
1196, 1990.

Kiefer, W.S., M.A. Richards, B.H. Hager, and B.G. Bills, A Dynamic Model of
Venus's Gravity Field, Geophys. Res. Lett., 13, 14-17, 1986.

Kiefer, W.S., and B.H. Hager, Mantle Plumes on Venus: A Model for the Equa-
torial Highlands and a Possible Connection with the Ovoids (abstract),



- 240 -

Lunar and Planetary Science, 19, 601-602, 1988.

Kiefer, W.S., and B.H. Hager, A Mantle Plume Model for the Equatorial High-
lands of Venus, to be submitted to J. Geophys. Res., 1990a.

Kiefer, W.S., and B.H. Hager, Crustal Convergence and Mantle Downwelling in
the Ishtar Terra Region of Venus (abstract), Lunar and Planetary Science,
21, 629-630, 1990b.

Kozak, R.C., and G.G. Schaber, New Evidence for Global Tectonic Zones on
Venus, Geophys. Res. Lett., 16, 175-178, 1989.

Magee, K.P., and J.W. Head, Colette and Sacajawea: Characterization, Com-
parison, and Interpretation of Major Caldera Structures on Lakshmi Pla-

num (abstract), Lunar and Planetary Science, 19, 711-712, 1988a.

Magee, K.P., and J.W. Head, Lakshmi Planum: A Distinctive Highland Vol-
canic Province (abstract), Lunar and Planetary Science, 19, 713-714,
1988b.

Markov, M.S., Structural Ensembles in the Northern Belt of Deformations on

Venus and Possible Mechanisms for their Development, Geotectonics, 20,
306-313, 1986.

McGill, G.E., S.J. Steenstrup, C. Barton, and P.G. Ford, Continental Rifting
and the Origin of Beta Regio, Venus, Geophys. Res. Lett., 8, 737-740,
1981.

Minster, J.B., and T.H. Jordan, Present-day Plate Motions, J. Geophys. Res.,
83, 5331-5354, 1978.



- 241 -

Morgan, P., and R.J. Phillips, Hot Spot Heat Transfer: Its Application to
Venus and Implications to Venus and Earth, J. Geophys. Res., 88, 8305-
8317, 1983.

‘Nozette, S., and J.S. Lewis, Venus: Chemical Weathering of Igneous Rocks and
| Buffering of Atmospheric Composition, Science, 216, 181-183, 1982.

Pettengill, G.H., E. Eliason, P.G. Ford, G.B. Loriot, H. Masursky, and G.E.
MecGill, Pioneer Venus Radar Results: Altimetry and Surface Properties, J.
Geophys. Res., 85, 8261-8270, 1980.

Pike, R.J., Geometric Interpretation of Lunar Craters, U. S. Geological Survey
Professional Paper 1046-C, 1980.

Plaut, J.J., and R.E. Arvidson, Comment on "Impact Craters of Venus: A Con-
tinuation of the Analysis of Data from the Venera 15 and 16 Spacecraft"”
by A. T. Basilevsky et al., J. Geophys. Res., 93, 15,339-15,340, 1988.

Pronin, A.A., The Structure of Lakshmi Planum, an Indication of Horizontal

Asthenospheric Flow on Venus, Geotectonics, 20, 271-281, 1986.

Richards, M.A., B.H. Hager, and N.H. Sleep, Dynamically Supported Geoid
Highs over Hotspots: Observation and Theory, J. Geophys. Res., 93,
7690-7708, 1988.

Schaber, G.G., Venus: Limited Extension and Volcanism Along Zones of Lithos-

pheric Weakness, Geophys. Res. Lett., 9, 499-502, 1982.

Schaber, G.G., R.C. Kozak, and H. Masursky, Cleopatra Patera on Venus:
Venera 15/16 Evidence for a Volcanic Origin, Geophys. Res. Lett., 14,
41-44, 1987a.



- 242 -

Schaber, G.G., EM Shoemaker, and R.C. Kozak, Is the Venusian Surface
Really Old? (abstract), Lunar and Planetary Science, 18, 874-875, 1987b.

Schaber, G.G., E.M. Shoemaker, and R.C. Kozak, The Surface Age of Venus:
Use of the Terrestrial Cratering Record, Solar System Research, 21, 89-
- 94, 1987c.

Sclater, J.G., C. Jaupart, and D. Galson, The Heat Flow Through Oceanic and
Continental Crust and the Heat Loss of the Earth, Rev. Geophys. Space
Phys., 18, 269-311, 1980.

Shelton, G., and J. Tullis, Experimental Flow Laws for Crustal Rocks
(abstract), EOS, 62, 396, 1981.

Sjogren, W.L., B.G. Bills, and N.A. Mottinger, Venus: Ishtar Gravity Anomaly,
Geophys. Res. Lett., 11, 489-491, 1984.

Smrekar, S., and R.J. Phillips, Gravity-Driven Deformation of the Crust on
Venus, Geophys. Res. Lett., 15, 693-696, 1988.

Solomon, S.C., T.J. Ahrens, P.M. Cassen, A.T. Hsui, J.W. Minear, R.T. Rey-
nolds, N.H. Sleep, D.W. Strangway, and D.L. Turcotte, Thermal Histories
of the Terrestrial Planets, pp. 1129-1234 in Basaltic Volcanism on the
Terrestrial Planets, Pergamon Press, New York, 1981.

Solomon, S.C., S.K. Stephens, and J.W. Head, On Venus Impact Basins:
Viscous Relaxation of Topographic Relief, J. Geophys. Res., 87, 7763-
7771, 1982.

Solomon; S.C., and J.W. Head, Venus Banded Terrain: Tectonic Models for
Band Formation and their Relationship to Lithospheric Thermal



- 243 -

Structure, J. Geophys. Res., 89, 6885-6897, 1084.

Stephens, S.K., S.C. Solomon, and J.W. Head, On the Age of Venus Highland
Topography: Constraints from the Viscous Relaxation of Relief (abstract),
Lunar and Planetary Science, 14, 747-748, 1983.

Stofan, E.R., J.W. Head, and D.B. Campbell, Geology of the Southern Ishtar
Terra/Guinevere and Sedna Planitae Region on Venus, Earth, Moon, and
Planets, 38, 183-207, 1987.

Stofan, E.R., JJW. Head, D.B. Campbell, S.H. Zisk, A.F. Bogomolov, O.N.
Rzhiga, A.T. Basilevsky, and N. Armand, Geology of a Rift Zone on
Venus: Beta Regio and Devana Chasma, Bull. Geol. Soc. Am., 101, 143-
156, 1989.

Sukhanov, A.L., Parquet: Regions of Areal Plastic Dislocations, Geotectonics,
20, 294-305, 1986.

Surkov, Y.A., V.L. Barsukov, L.P. Moskalyeva, V.P. Kharyukova, and A.L.
Kemurdzhian, New Data on the Composition, Structure, and Properties of
Venus Rock Obtained by Venera 13 and Venera 14, Proc. Lunar and
Planetary Sci. Conf. 14, J. Geophys. Res. (supplement), 89, B393-B402,
1984.

Surkov, Y.A., L.P. Moskalyova, V.P. Kharyukova, A.D. Dudin, G.G. Smirnov,
and S.Y. Zaitseva, Venus Rock Composition at the Vega 2 Landing Site,

Proc. Lunar and Planetary Sci. Conf. 17, J. Geophys. Res. (supplement),
91, E215-E218, 1986.

Surkov, Y.A., F.F. Kirnozov, V.N. Glazov, A.G. Dunchenko, L.P. Tatsy, and
O.P. Sobornov, Uranium, Thorium, and Potassium in the Venusian Rocks

at the Landing Sites of Vega 1 and 2, Proc. Lunar and Planetary Sci.



- 244 -

Conf. 17, J. Geophys. Res. (supplement), 92, E537-E540, 1987.

Turcotte, D.L., A Heat Pipe Mechanism for Volcanism and Tectonics on Venus,
J. Geophys. Res., 94, 2779-2785, 1989.

U.S. Geological Survey, Topographic and Shaded Relief Maps of Venus, Miscel-
laneous Investigations Series Map [-1562, 1984.

U.S. Geological Survey, Maps of Part of the Northern Hemisphere of Venus,
Miscellaneous Investigations Series Map 1-2041, 1989.

Vorder Bruegge, R.W., JJW. Head, and D.B. Campbell, Cross Strike Discon-
tinuities on Maxwell Montes, Venus: Evidence for Large-Scale Strike-Slip

Faulting (abstract), Lunar and Planetary Science, 17, 917-918, 1986.

Vorder Bruegge, R.W., and J.W. Head, Fortuna Tessera, Venus: Evidence of

Horizontal Convergence and Crustal Thickening, Geophys. Res. Lett., 16,
699-702, 1989.

Webb, E.K., and D.J. Stevenson, Subsidence of Topography on lo, Icarus, 70,
348-353, 1987.

Weertman, J., Height of Mountains on Venus and the Creep Properties of
Rock, Phys. Earth Planet. Interiors, 19, 197-207, 1979.

Wryllie, P.J.,‘ Magma Genesis, Plate Tectonics, and Chemical Differentiation of
the Earth, Rev. Geophys., 26, 370-404, 1988.

Zuber, M.T., Constraints on the Lithospheric Structure of Venus from Mechan-
ical Models and Tectonic Surface Features, Proc. Lunar and Planetary

Sci. Conf. 17, J. Geophys. Res. (supplement), 92, E541-E551, 1987.



- 245 -

Zuber, M.T., and E.M. Parmentier, On the Relationship between Isostatic
Elevation and the Wavelengths of Tectonic Surface Features on Venus,
Icarus, 85, 290-308, 1990.



b

oo

- 246 -

Table 1. Reference Model Parameters

Basal Velocity
Topographic Height (relative to MPR)

Topographic Gradient

Reference Crustal Thickness
Crustal Density |
Mantle Density

Basal Heating Thermal Gradient

Crustal Heating Parameter

Radioactive Element e-folding Depth
Viscosity Law Constant
Viscosity Activation Energy

Viscosity Stress Exponent

0 cm year™!

3 km

0.4°

20 km

2.8 gm em™3

3.3 gm cm™3

10 K km™!

0.14 K km™2

10 km

8.8:1078 bar ™ sec™!
260 kJ mole™!

3.4
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Figure 1. Map of features in the Ishtar Terra region. Regions whose elevation is
below mean planetary radius are shaded in dark gray; regions between 0.0 and
2.8 km are shaded in light gray. Regions between 2.8 and 4.0 km elevation are
unshaded. Regions above 4.0 km are shaded with diagonal ‘ lines. Within
~Maxwell Montes, the 6.0 and 8.0 km contour levels are also shown. The solid
lines mark the locations of topographic profiles shown in Figure 2. Note that
the full extent of Akna and Freyja Montes is not shown in this map because
the Pioneer Venus altimetry used to construct the map only extends to about
74° North Latitude.
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Figure 2. Topographic profiles across selected parts of Ishtar Terra.

a) North-South profile along Longitude 330° from 50° to 70° North Latitude.
Profile extends from Sedna Planitia, up Vesta Rupes, and into Lakshmi Pla-
num.

' b) East-West profile along 70° North Latitude from 290° to 330° West Longi-
tude. Profile extends from Mnemosyne Regio, over Akna Montes, and into

Lakshmi Planum.

c) East-West profile along 65° North Latitude from 15° West to 60° East Longi-
tude. Profile extends from Lakshmi Planum, over Maxwell Montes, and into

Fortuna Tessera.
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Figure 3. Schematic illustration of our crustal convergence model for Ishtar
Terra. Downwelling flow in the mantle creates a zone of crustal thickening, and

hence of high topography, over the downwelling.
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F igure‘ 4. a) Schematic illustration of the viscous crustal flow model. Crustal
flow is driven both by pressure gradients due to gradients in isostatically com-
pensated topography, as well as by a basal velocity, V,, imposed by convective
flow in the mantle. The reference crustal thickness in the plai'ns, away from

regions of crustal thickening, is D.

b) A possible later stage of viscous crustal flow, with inflow near the base and
outflow near the surface. The transition of material from inflow to outflow is

accommodated by a region of predominantly vertical flow under the mountain

belts.



b)




- 257 -

Figure 5. Geotherm versus depth for the reference model given in Table 1. The
surface temperature is 714 K, the temperature at the base of the crust is 1145

K, and the total surface heat flow is 31 mW m™2.
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Figure 6. Profiles of horizontal flow velocity versus depth. The solid line uses
the Shelton and Tullis (1981) diabase flow law. The dashed line uses the dia-

base flow law of Caristan (1982). All other model parameters are as given in
Table 1.
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Figure 7. a) Effect on flow velocity of changing surface slope. The dot-dash line
has surface slope 0.2°, the solid line has surface slope 0.4°, and the dashed line

has surface slope 0.6°. All other model parameters are as given in. Table 1.

b) Effect on flow velocity of changing crustal thickness. The dot-dash line has
D=15 km, the solid line has D=20 km, and the dashed line has D=25 km.
These values correspond to total crustal thicknesses (D,,) of 35, 40, and 45

km respectively. Other model parameters are as in Table 1.
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q
Figure 8. Effect on flow velocity of changing basal heating. Values of Tb are 8

K km™! for the dot-dash line, 10 K km™! for the solid line, and 12 K km™! for

the dashed line. Other model parameters are as in Table 1.
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Figure 9. Horizontal flow velocities for a model with a rigid top boundary. All
model parameters are the same as in Table 1 except that the reference crustal
thickness is D=60 km. '
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Figure 10. An example of a no net flux velocity profile. The topographic slope,

Zx—h=0.41°, and the mean topographic elevation, h=3.1 km, are adopted as

mean values for Fortuna Tessera. The thermal parameters and flow law are as
~given in Table 1. Positive flow velocities indicate downslope flow and negative
velocities indicate upslope flow. The basal velocity of -5.2 cm year™! was chosen
using eqliation 16 so that the net horizontal mass flux through the total crustal
column is 0. Note that most of the crust is flowing downslope at a velocity of

about 0.4 cm year™! and that upslope flow occurs only near the base of the

crust.
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Figure 11. Upper limits on crustal thickness as a function of the magnitude of
the allowed basal velocity. The topographic elevation and topographic slope are
representative of Fortuna Tessera, as discussed in the text. Except as indicated
below, other model parameters are as given in Table 1. Crustal thickness limits
are expressed in terms of D, the reference crustal thickness in the plains away

from regions of crustal thickening.

a) Effects of varying the flow law parameter, A. The solid line is for the nomi-
nal A value of Shelton and Tullis (1981). The short dashed line is for A a fac-
tor of 10 less than given by Shelton and Tullis. The dot-dash line is for A a
factor 10 larger than given by Shelton and Tullis. The long dashed line is for
Caristan’s (1982) diabase flow law.

b) Effects of varying the basal heating parameter, -(;—(b—. The solid line is for 10

K km™!. The other models are 6 K km™!, long dashed line; 8 K km™!, dot-
dashed line; 12 K km™!, short dashed line; and 15 K km™1, double-dashed line.
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