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ABSTRACT

The boundary layer approximation to a given flow problem is not
invariant if different coordinate systems are used in the approximation
process. However, a correlation theorem (Theorem 1) is given, which
states that the boundary layer solution with respect to any given system
can be found, by a simple substitution, from that with respectto any other
system. On the basis of this theorem, the dependence of the solution on
the choice of coordinates is investigated in detail. The skin friction is
invariant, but the flow field is not invariant. At large distances from
the wall, the flow field given by boundary layer theory depends almost
entirely on the choice of coordinates, rather than onthe physical problem.

This dependence may be used to obtaina complete matching between
the boundary layer solution and the external flow, in the following sense:
Theorem 2 states how a coordinate system can be found such that the
boundary layer solution with respect to this system is validas anapprox-
imation for the entire flow field. It contains the external flow and the
flow due to displacement thickness.

The discussion is restricted to steady, two-dimensional, incom-
pressible flow without separation. These restrictions, however, are

not essential for many of the results.



I. INTRODUCTION

For a given problem, the approximate solution givenby boundary
layer theory depends on the system of coordinates used when the sim-
plifying assumptions of boundary layer theory are applied to the Navier-
Stokes equations. In general, different systems of coordinates lead to
boundary layer equations which are not equivalent, that is, their solu-
tions represent different flow fields. A well-known example of this is
given by the boundary layer solutions for flow past a semi-infinite flat
plate, when rectangular or parabolic coordinates are used in the approx-
imation process.

The object of this thesis is to investigate in detail how different
boundary layer solutions to the same flow problem are related to each
other, and how a given solution is influenced by the coordinate system.
It is found that the relation of boundary layer solutions to the external
ﬂow and to flow due to displacement thickness depends essentially on
the choice of coordinate system. The discussion is restricted to in-
compressible, steady, two-dimensional flow without separation. How-
ever, many of the results hold much more generally and will be dis-
cussed in a later paper.

The main result of this paper is contained in Theorem 2. Nor-

mally one uses boundary layer theory in the following way in order



to obtain a picture of the complete flow field of a viscous fluid (outside
the wake): The fiow field is divided into two separate regions, that is,
a boundary layer region where the flowfield is obtained fromboundary
layer equations, and an outer region where the Euler equations are
used to obtain an external flow, corrected for the displacement effect
of the boundary layer. There has been considerable discussion about
where and how to patch the two parts of the flow field, and about how
to proceed to higher order approximations. However, according to
Theorem 2, a system of coordinates can be found such that the bound-
ary layer solution with respect to this system gives an approximation
which is valid in the whole flow field. Both the external flow and the
flow due to displacement thickness are includedanalytically in this ap-
proximation and hence the problem of patching is automatically elimi-
nated. A coordinate system with these properties will be referred to
as optimal. In Section VI the problem is discussed to what order such
an optimal boundary,_layer solution is valid. In general it gives a
better approximation to the exact flow field than does the composite
flow field described above. It also appearstoform a reasonable start-
ing point for finding higher order approximations, that is, approxima-
tions which are definitely outside the scope of boundary layer theory.
Tofind the optimal system of coordinates it is in general neces-
saryfirst to compute the external flow and the flow due to displacement
thickness. But once this system has beenfound one may use Theorem 1,
which states that the boundary layer solution with respect to one coordi-

nate system, say an optimal one, may be found by a simple substitution



into the solution with respect to any other system, say a conventional
one. |

Concrete examples illustrating the application of the above gen-
eral theorems are given in Section V.

In this paper the concepts of the boundary layer solution and the
solutions for external flow and flow due to displacement thickness are
defined with the aid of two special limiting processes. This viewpoint
has previously been adopted by several authors, for example, H. Weyl
(Ref. 1), K. O. Friedrichs (Ref. 2) and G. E. Latta (Ref. 3), This
method is actually only a formal and more precise restatement of
Prandtl's original method, and hence not widely used. However, it
appears very natural for deriving the results of the present paper and
the reasoning will actually be based on a systematic use of the two
limiting processes.

There are many examples in the literature of the use of various
systems of coordinates in connection with boundary layer theory, and
in particular it has been noted that they give the same skin friction and
agree approximately within the boundary layer region proper. To the
author's knowledge, however, no systematic study of the relation be-
tween the solutions based on the various systems has been undertaken
and, in particular, the two theorems referred to above appear to be
new. The starting point for the present investigation was actually the
following result due to M. D. Van Dyke (Ref. 4). Consider Oseenflow
past a semi-infinite flat plate. If rectangular coordinates are used to
make a boundary layer approximation, the resulting approximation re-

sembles essentially the Blasius solution, and is valid only in the
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the boundary laygr proper. On the other haﬁd, if parabolic coordinates
are used, the boundary layer approximation satisfies exactly the full
Oseen equations (cf. Example 2 in Section V). This result wasfurther
analyzed by P. A. Lagerstrom, who pointed out how in other special
cases coordinates may be found which are optimal in the sense de-
scribed above {Ref. 5). He also suggested to the author the general
problem of finding optimal coordinates, and guided the present study.
The ideas developed by G. E. lLatta in Ref. (3) have also influenced
the author. A closer comparison of Ref. (3) with the results and meth-
ods of the present paper would undoubtedly shed further light on the
problems studied here. This comparison has, however, as yet not
been carried out.

A preliminary announcement of the results of this paper was

given in Ref. (6).



II. BOUNDARY LAYER APPROXIMATIONS AS

LIMITS OF EXACT SOLUTIONS

The Navier-Stokes Equations. The equations for steady, vis-

cous, incompressible flow are

(W.V)‘aj = -Vp vv’&? (1a)
VAo (1b)

where v is the kinematic viscosity and g is the pressure divided by
density.

In two-dimensions, the kinematical form of (1) is obtained by
taking the curl of (la) andintegrating (1b) by means of the stream func-

tion v , which gives

'Ef- W = 79w (2a)
0= -9
A (2b)
M o= ‘%:E& , o= - %:; (ZC)
where w is the vorticity., In arbitrary curvilinear coordinates, ’g.‘ s
(¢- 3, ;2 = 4 ) the corresponding equations can be éxpressed as
) pu NP Y "y v '
Mmoo = = {4 4 LR P Du (1a)
Dyt & % ) 'g‘) ﬁ%—— % DER D'i’b
i
3 M *
— = 0 1b!
5o (1b')
k3 DM,‘*/ i . . . .
D%’ here denotes the covariant derivative of a vector -density

(cf. Ref. 7, p. 82).



and
Ydw D v D - oy 2 § 2w
(B - R o= ¥ & (et 5%) (2a1)
- - L 2 Y
© Ty o7 (Vi 4 551 ) (2b')
W= o= - 2y
T ¥ (2¢t)

Here ¥ , @ and v have been treated as absolute scalars. The
velocity components M and v may be considered defined by {2c). In
the language of tensor analysis (cf. Ref. 7) they are actually the con-
travariant vector density components of the velocity.* It should be
noted that the square of the magnitude of the velocity vector is

ALLMS( i / 14! so that the value of ).A-l is not equal to the
value of the projection of the velocity vector on the S—L axis (cf. Sec-
tion III below).

In this paper we shall be concerned with viscous flow past (or to-
wards) a rigid body. The curve representing the surface of the body
(called the wall) need not be closed, but may, for example, correspond
to a semi-infinite flat plate or a wedge. It will be required, however,
that no other boundaries are present.

The boundary conditions at the surface of the body are then
A= VO at the wall (3a)

~¢ must then be a constant at the wall, which will be normalized to

ZeYo.

%
Weyl (Ref. 1) restricts himself to conformal coordinates in which
case M and v are also covariant vector components of the velocity.



At infinity the customary boundary conditions are (in suitable

Cartesian coordinates)

q - UT, po A an x> - o |yl

?

(3b)

However, for sufficiently divergent infinite bodies there is no potential
solution of the equations for non-viscous flow which satisfies (3b). In

this case we require that

Y
e

— | at infinity (3c)
where «\/P‘ represents one of the solutions for potential flow past the
body. Evidently (3b) is a special case of (3c).

The term exact solution for flow past a body will henceforth be
used to denote a solution of (1) or (2) with the boundary condition (3a)
satisfied at the body and (3b) or {3c) at infinity. More precisely, the
term will denote a class of solutions with v as a parameter (0<v<Yo)
where all solutions satisfy identical boundary conditions. Boundary
layer theory is concerned with approximations to the exact flow field
vfor small values of v . It will be introduced below with the aid of two

limit processes.

First Limit Process. Let (b(P, V) be a function of position and

viscosity. Here P is used as an abbreviation for the coordinates
(% ,m ) of a point. In the first limit process, denoted by Liml , P s
held fixed while v tends to zero: The resulting limit is denoted by

subscript " o ",

(f) = Llim (P, V) = tim (P )
{be ‘ /b vio0 :bP Kixed (4)

If this limit process is applied to the exact solution for flow past a



solid, that is, to ~y (P 1), “L (p,#)and j(7v), the resulting limiting func-
tions repfesent a flow which will be referred to as the external flow.

In applying the first limit process to equations (1) and (2) at a
point where the derivatives appearing in (1) or (2) actually tend to the
corresponding derivatives of the limiting functions (which may be called
a regular point), one may simply replace + by b, s etc,, and put
v = ¢ in the equations. The resulting equations are the Euler equa-
tions, that is, the equations of motion of a perfect fluid.

Applying the first limit process to the boundary conditions, how-
ever, it is seen that, since w -+v = o atthe wall, wu, - v, = o atthe
wall, while + /qr—a | at infinity. There is, in general, no solution
of Euler's equations, satisfying the Euler equations at every point of
the flow, which also satisfies these boundary conditions, so that all
points of the flow cannot be regular in the above sense.

While many types of irregular behavior are conceivable, the type
made prominent by experience consists of a discontinuity in the tangen-
tial velocity (a vortex-sheet discontinuity), which represents a line of
slip in the perfect fluid. The behavior under the first limit process at
such a discontinuity is not regular, As v -0 at a point on the line
of discontinuity, the viscous terms in (1) or (2) do not tend to zero, and
Euler's equations are not approached in the limit. Once such lines of
slip in the perfect fluid are permitted, Euler!s differential equations
are not everywhere satisfied, and an infinite number of perfect-fluid
flows becomes possible. The relevant one, that is, the limit which is
actually approached, is decided by the action of viscosity, in a manner

which, as yet, is not understood in many essential respects.



In ordinary problems, experience and physical arguments show
that the. line of slip occurs right at the wall, following the wall for some
distance downstream from the point of impingement of the streamline
coming from upstream infinity, but that it may eventually separate from
the wall, defining a wake. It is to be expected that the limits v, (P),
Mi’z P, Hoe (P) , actually exist and satisfy Euler's equations, at least
outside the region of the wake, which is essentially unexplored at the
present time.* The present discussion will, however, be restricted
to flows where no separation occurs. Then, all the streamlines come
from upstream infinity, the flow is irrotational and satisfies Laplace's
equation. The action of viscosity is restricted to the determination of
circulation about the body, in accordance with the Kutta condition. -,
can then be found by solving the corresponding potential problem.

If the relevant solution of Euler's equations, ,u,i'z , is used as a
starting point, the only essential effect of introducing v small, but
greater than zero, is'to replace the discontinuity by a rapid, but con-
tinuous transition, which is nearly completed within a narrow region
(boundary layer). Perturbation problems of this nature are referred
to in recent literature as singular (see Ref. 3 and references giventhere).

In a regular perturbation problem, the successive perturbations
are obtained by successive application of the first limit process, which
is essentially equivalent to expanding the solution in powers of a small
parameter. In a singular perturbation problem, however, W - Mj'“z

non-uniformly in any region containing boundary points. Hence, at

*
This is briefly commented on further in Section VI,
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v > 0 ; the limit ,u,;',z' breaks down as an approximation, sufficiently
close to the boundary. An approximation for the continuous transition
across the boundary layer may be found by the application of a second
limit process.

Second Limit Process. Let ¢ be a small parameter which in a

sense measures the effective thickness of the transition region. Inthe
present case ¢ will be taken proportional to ¥+ . More generally

v may be a function of & such that

iwm X = consh. # 0 (4)

2
£E»>0 &

A system of coordinates (¥ , » ) will be chosen with the only restric-
tion that v be zero at the wall. If is customary also to require {(cf.,
for example, Ref. 8, p. 119) that the lines § =constant be orthogonal
to the wall. This assumption will not be made here. The wider choice
of coordinate syster‘ns thus provided will be essential for obtaining the
principal result of this paper.

In the second limit process, the point P will not be fixed but
will move toward the wall along a curve % =constant in such a way

that the ratio

m o= g (5)

is fixed, in other words, keeping §¥ and ¥ constant. Let q) (p,v) as
before be a physical quantity depending on position and viscosity. The
limiting function approached in the second limit process will be denoted

by 1h5. (3,m) or Mm‘ ’b— and defined by

/hﬁ-(.?,;\,) = lumﬁ/b = M’}y(i‘;l,,i) (6)

E=+0;%,7 fixed
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Here % is used as an abbreviation for the coordinate system (% ,m ).
Note that the first limit of by depends on % only; the second limit, on
the other hand, depends also on the choice of coordinates. To empha-
size this, ¥ is used as a subscript in the notation introduced by (6).
Now consider anb exact solution as described by v , m ,v , 0 , i -

We define

_ ¥ —
'\yz—é- Ny =

, w=£tw0 (7)

oS

?
The boundary layef approximation to the quantities &% , u,v, W, 1
may then be defined as the limiting functions :i'/.s s My, 1_}'; s 5; , and
Koz - that is

\7;=M3W9 g = Mg i, oo, (8a)

The following notation will also be used
- - W

Yoo e, Yyt eVy, w‘=;’ (8b)
The slight inconsistency in the notation should be kept in mind: Y is
not obtained by applying the second limit process to v , but by apply-
ing it to Y/¢ and afterwards multiplying it by ¢ . I now 4 is again
replaced by m /e , Yy , etc. are functions of 3y , m and v . The
flow field which has Yy as stream function is the flow field given by
boundary layer theory. (The relation of Ny to wuy, wy , etc. will
be discussed below, see {10b) and ff.) The definition of the boundary
layer approximation thus introduced is formally different but actually
equivalent to Prandtl's definition (cf. also Refs. (1), (2), and (3)). It
is an approximation with respect to a coordinate system ¥ . A differ-

ent coordinate system would in general give rise to a different approxi-

mation as discussed in Section III.
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The functiops ¢3 s My, VY, ®; , and fvy depend on the two vari-
ables ¥ and m/¢ only,and their variation with the latter variable rep-
| resents the transition across the boundary layer. Note that the boundary
layer approximation is formally defined wherever the Y -coordinates
are defined, hence a flow field is formally given even outside the bound-
ary layer proper. It is this complete flow field that will be discussed
in the present paper.

Y. » My , etc. satisfy the Prandtl boundary-layer equations

3
which actually may be obtained by applying the second limit process to

Eqgs. (1') or (2'). As an example, (2*) become

2% ) _ 3% 3\ 5. = \an, a4 2 m (92)
(M 03 Em) ’ (A AT R

—— 22 Py

©y = 3w T (9b)

Here the subscript "\, " indicates that the quantity in question has been
2 22
evaluated at the wall: %zw (x) = v (%,0), etc.
Note that the relation of ¥ to s and v is unaltered by the sec-

ond limit process

ALl R (10a)
Im L&

Similarly
2 P
_:_YY = M$ 3 —’\-!’7 = --’\.T’ (IOb)
M 23

As a consequence (1') and (2%) remain equivalent after the second limit
process has been carried out. The flow field described by Yy is the
same as that described by 4, and vy . On the other hand, the rela-

tion of w to this flow field has been altered. The vorticity of the flow
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L
. . L) d v .
field de‘scnbed by v, is -—~W Sy (igi g EY ) . Asis

seen by (9b) this is in general different from Wy .

The boundary layer approximation may also be defined as the
solution of (9) with certain approximate boundary conditions which will
be discussed later. For the present, however, it will be regarded as
the result of applying the second limit process, in the manner described

above, to the exact solution of the Navier-Stokes equations.
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III. COMPARISON OF DIFFERENT BOUNDARY LAYER SOLUTIONS

The boundary layer approximations to an exact solution of the
Navier-Stokes equations are.not uniquely determined, but depend both
on.the choice of dependent variables used to represent the flow field,
and on the independent variables, that is, the coordinates.

As remarked above, the v and the (u,v ) representations are
equivalent. In general, however, different representations lead to dif-
ferent approximations. For example, when (% ,n ) are orthogonal co-
ordinates the flow field is often represented by means of velocity com-
ponents (U ,V ) in the sense of vector geometry (cf. Ref. (8), p. 101
and especially Ref. (7), p. 114). The magnitudes of U and V are
then equal to the projections of the velocity vector on the local coordi-
nates axes. They are connected with the contravariant vector densities
M , v through the relations

w=h, 3, YU, v=h (5 )V (11a)
where |
ds® = W, d¥ 4 b, d?
is the square of the line element. Applying the second limit process
one obtains
wy = hoy Uy Ty =y Yy (11b)
where
hi = hy (500 amd V=%
Thus the original metrical relations (l1la) no longer hold except at the
wall. The flow field corresponding to sy and Vi will then be differ-

ent from that corresponding to U, and V3 . The example of the
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(U,V ) representation also shows that, in general, the boundary layer
approximation does not satisfy the exact continuity equation. * How-
| ever, the y and the (uw,v ) representations have the special property
of preserving the exact continuity equation under the boundary layer
approximation. In the following only the + and the equivalent {(m ,~r )
representations will be used. While a further investigation of the role
of the dependent variables may be of interest, it will not be carried out
in the present paper, which is mainly concerned with the role of the de-
pendent variables.
The flow field will, in general, also depend on the choice of the

function & . In the following it will therefore be assumed that

€ = constant-. {v . The choice of the constant will not affect the
flow field.

Main Correlation Theorem. Consider now two boundary layer

approximations to the same exact solution, one based on the system of
coordinates Y% = (y,#) and the other one on another system X = ({s, ).
Here m and ¢ respectively are assumed to be zero at the wall. The
two flow fields may be represented by the stream functions Y, and Vi
respectively. Their relation is then described by the following corre-
lation theorem:

Theorem 1. K ;= 4(5,”) is given,then the boundary layer
solution with respect to X can be found directly by the substitution

formula

:v-x = %(EX)FLX) (lZa.)

E3
Cf. Ref. (8), p. 119.
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where -
¥y = 1”‘”":{.5 = §(f»0) (1zb)
m = Y M = M .o
M x ANW‘X‘ 1 (3_70-‘)6’,00. (12¢)

The evaluations of the limits (12b) and (l2c) are easily shown to
be correct by considering § and m as functions of ¢ for a fixed p ,
and using the fact that m and o vanish at the wall. Equation (12a)can
be obtained directly, if it is assumed that ¥ (3,7 ,¢) is a continuous
functionof 5 , M and ¢ (in the space of those variables), at ¢ =0 .

The validity of the theorem can be checked also by verifying that
Wx , as given by (l12a), satisfies the appropriate boundary layer equa-
tions (cf. (9)). The theorem states that the result of applying }Jmn,x to
¥ is identical with that of first applying lim, and then Llim

The dependence of the boundary layer solution on the choice of
coordinates can now be studied with the aid of (12). Since Y is treated
as an absolute scalar Yy and Y, represent the same flow field if and

only if the systems ¥ and X are connected by the relations

E(p,C6) = ¥ (py0) (132)
oy = [0m) .
’VL(P) ) (25)c=o g (13b)
Equivalent relations are
¥ = q“f{a\ (13a?)
m = 4‘)?_({’)0’ {13b%)

where Ihl and q)z are arbitrary functions. According to (13a) only
the shape of the curves ¥ = constant, but not their spacing ("labelling")

has an effect on the boundary layer approximation. Equation (13b)
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implie's. that a relabelling of the curves m = constant other than
n —> constant . sy , would alter the flow field given by the boundary
layer approximation. On the other hand, certain changes of shape of
the m -curves do not change the flow field.

The flow fields given by Y5 and v, will now be compared inthe
case when v and x are arbitrary systems, not necessarily related
by (13).

Conditions at the Wall. In general it should be noted that, since

v = M - 0 at the wall,the first and second limit processes are identi-
cal there. Since the first limit is independent of ¥ , the same must
then be true for the second limit at the wall. It is then a direct conse-

quence of the boundary condition (3a) that at the wall

Mg (5,0) = Vs (5,0) = 0 (14)

independent of the system of coordinates.

Furthermore, we have the important relation that the skin fric-
. tion obtained from the boundary layer approximation is indepéndent of
the choice of coordinates. This can be seen directly, as follows. Let
T denote the exact skin friction (the subscript "y " being omitted

from the usual notation for cdnvenience). In analogy with (8) define

T=5% |, Ty~ MS% and ’t7=e%-,. Then
"C.s = E-‘U-Y = & 1;/_":; Lf_' r({,ﬁ]] ‘15)

Since the limit on the right does not depend on the nature of coordin-
ates, T, =T, atany point on the wall,
Whenever the no-slip condition (3a) holds, the exact skin friction

is simply e times the vorticity at the wall
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’c = W = - 22 ()1,\‘/\
R T VIR G T (16a)
Passing to the limit
22 Ay
- ¢ Ty 16b
T'S /%'-h)'sw f"‘%w (")%1.)” ( )

Thus, in computing Ty from the velocity field given by the boundary
layer approximation, one may use the exact relation between stress
and rate of strain. However, if the no-slip condition does not hold, Ty
would denote the skin friction computed by means of an appropriate ap-
proximate relation, derived from the exact relation by the passage to
the limit. If the exact stress relation is used, the skin friction may
not be invariant when slipping occurs.

Differences at a Distance from the Boundary. At the boundary

the choice of coordinates is irrelevant in the sense discussed above.
Within the boundary layer proper, that is, within a distance of order ¢
from the wall, the flow associated with \ks and +x should agree up to
" and excluding terms of order &£ . This follows from Theorem 1.

However, at a distance from the boundary, w" and <, may dif-
fer radically. According to (12), the flow { ~_ ) may be regarded as
an image of the flow ( Y ), obtained by the following mapping: leta
point P go into an image point Q in such a way that, if the t - and
m -affices of P are

¥ (PY = a, n(P =k, (12e)

the point Q@ is determined by the relations

(@ =2, eq (y=b (12f)

Then; the stream funciion has the same numerical values at Q and
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at P fhat is

| N (@) F v (P (12g)
Thus, a streamline ~ =« will be the direct image of the streamline
«ys = £ , but, in general, the coordinate curves will not be direct im-
ages under this mapping. However, if X and ¥ are connected at the

wall by the special relations

pu=8y, () =1, (12h)

%, becomes equal to @ and em, to o , so that the x -affices of @

become

P(Q)sa.=g(\>)’ o(@) = Ir = m(f) (12j)

Thus, if (12h) holds, the coordinate curves as well as the streamline
curves map as direct imnages. This means that a given streamline,
Ay = £ , passes through the same coordinate affices in both flows.
Now, keeping conditions (12h) imposed at the wall (with respect
to some fixed Y -system), one may deform the X -coordinates in an
6therwise general manner. In particular, in any region external to
the wall, of the type m > m, >0 , any desired continuous deformation
of the X-coordinates can be performed without violating (12h). Since
the direct-image relations then hold, it is clear that, within a region
of this type, the family of streamlines may be deformed into any de-

gired continuous image of itself by a suitable choice of X .
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Thus, ata distance from the boundary the flow field obtained
from the boundary layer approximation depends almost exclusively on
the choice of coordinates rather than on the physical problem. For this
reason it is customary to disregard the boundary layer approximation
entirely outside the boundary layer. The boundary layer solution is as-
sﬁmed valid as a certain approximation up to the edge of the boundary
layer where it is patched on to a potential solution. However, the view-
point taken in this paper is different. One may make positive use of
the dependence of v, on the choice of ¢ by searching for special sys-
tems of coordinates such that ¥ approaches the exact solution v as
closely as possible. Then \yz would be a valid approximation even
outside the boundary layer region proper. The problem of such "opti-

mal" systems of coordinates will be discussed in the following section.



-20-

Iv. COMPARISON WITH EXACT SOLUTION.

CHOICE OF OPTIMAL COORDINATES

In the preceding s_ectidn it was shown how the boundary layer
solution, as described, for example, by Y‘s , varies radically with
the choice of 3 . The question was raised whether one couldturnthis
fa.ct to good advantage by choosing t in such a way that Y, is in some
sense very close to vy , even outside the boundary layer regionproper.
The conditions that such a \V‘ would have to satisfy, need to be speci-
fied more precisely. It is certainly natural to require that My and vy
satisfy the .same boundary conditions as & and v at infinity. A
stronger requirement would be that nean infinity Y, agrees with ¥ up
to a certain order in ¢ . One may actually require that  and «yg
agree up to and including first order terms in & everywhere outside
the boundary. An equi_valent requirement is that \\,; contain, in a sense
to be defined, the external flow and the flow due to displacement thick-
ness. (The latter flow is actually the first order perturbatidn of ~,
outside the boundary. )

Below it will be shown that systems of coordinates } may be
found such that \yt satisfiesv this requirement. Such systems will be
called optimal. The Discussion in Section VI will briefly touch upon
the question whether other requirements on \y; would be preferable.

Behavior of ¥y for m Large. First Order Approximation to

Y for M F0 . A fundamental assumption of boundary layer theory

is that, for a flow property rb—
(17)

Y (L ) = b (Jiw, )

;L-om N\’-bﬂ
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.provide'd the limits exist. Applying (17) to w yields

(18)

Applying (17) to v or v , or to v or ¥ , however, leads in general
to trivial results. To find the behavior of ¥ and vy for = large,
higher order external perturbations have to be considered.

Previously, the external flow had been defined as

Yo 7 Mo, ¥, gy T liwe, e, efe (19a)
We shall now consider this definition to be valid only for m, # 0 and

extend it by continuity to the wall:

Youw = L '\\/e(i,'v\),

Mooy = M g (%, M), e (19D)
M+ 0 m >0

Note that if (19a) is applied even for m =0 , ~¥, would have been con-
tinuous there whereas am, in general would be discontinuous.

Due to the presence of the boundary layer, it is to be expected
that the first external perturbation is of order & , that is,
-*’

0

Y, (P) & & w,(P) + o(g) (20)

e’

{E
where /bi/w\,l ar& =0

Thus the first order perturbation may be
defined by a repeated application of the first limit process
(). S 2
Yo = M, T (m #0) (21a)

You = ¥, (3,0) = bm ! (5 m)

R (21b)

Again it is necessary to extend the definition to m = 0 by continuity

since M\ u”"*’ is zero whereas “"lzw , as will be seen by (23),
&

is in general different from zero.

Now, for « small,
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Dl,\y 2
\V‘Q Maw M * (BW\:)W %— *
Hence
k""""; (‘g}}= Mogw ™M, and L'/m; ("\’"Ewa) = W; - Mow M

Applying (17) to b4 "5'*@ one then finds that

_— /

¢.;“MLW’VL-‘>”'¢’EW on o —> 00 {22)
or

Ny o~ Mg b e Y e Nor A lerge (22")

Since

— — n —

AYT— Row " = & (Mg"“‘zw)é”\f
it follows from (22) that

Yow = S (g - oo ) A (23)

o

This relation shows how «pi . may be evaluated from any given bound-
ary layer approximation. On the other hand, since «L//z may be defined
by (21), the integral in (23) must be independent of the choice of r .
This may also be checked from (12). It may be seen that «{/’2 satisfies
the Laplace equation and hence represents potential flow. A\/p_ may
then be determined if one uses (23) as a boundary condition, together
with the additional condition that ¥ /~,-> 0 at infinity. It follows
from the preceding discussion, in particular from (23), that x{/; rep-
resents the external perturbation flow due to displacement thickness.
«{/E represents a flow past the body so that the body surface is a

streamline f\\fa= 0 . '\\’; , on the other hand, represents a flow that

seems to emanate from a source distribution at the wall.
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First Order Approximation to Yy for M # 0 . The first limit

process may be applied to the boundary layer solution \‘/Y in the same
manner as was done to v . The flow field represented by the limit
Yo Wwill be called the external flow contained in the boundary layer
solution. Since, for a fixed m , 3 tends to infinity as ¢ tends to

z'ero, one may use equation (22) in evaluating the limit:
‘*"Sa = 9‘-"’“"‘ /\P’S = M’ﬂW,VL (243.)

The associated velécity component g, = g‘\—:—l‘/-‘l' = M,y mMmay be found
directly as M\(MS) for m # 0 , and extended to the wall by continu-
ity. Thus, for a fixed ¢ , the curves of My versus m with ¢ as
parameter will have the line i = &4,, = constant as a limiting curve
for &£ tending to zero. The external flow field contained in the bound-
ary layer approximation has thus a constant ¥ -component of velocity.
This is of course due to the fact that 4 ¢ depends on m and ¢ only in
the combination » /¢ so that the limiting value Moo is s (g, 0) .
On the other hand, the Y -component of the exact solution Iﬁay have a
more complicated dependence on v, and ¢ . Hence, its correspond-
ing limiting curve w , (3, %) may vary with v and need coincide with
M ey only at the wall.

Similarly, one may define the external first perturbation con-

tained in the boundary layer approximation and use (23) inits evaluation:

S M LY B
[

i
Its value for » = 0 is defined as the limiting value when » - 0

Since \\/,;2 is independent of » it follows that /.)./3,2 is zero and

'U'{Sﬂ - _ ?_()“;',zw = ~,y - Hence Vr/a. and v; , regarded as functions



-24-

of m , must coincide for m = 0 , but as m varies,the former must
remain constant, whereas the latter may vary.

Optimal Coordinates. The boundary layer solution will be said

to contain the external flow of the exact solution, whenever
Nee E Vo that is Yo = Mow M (252)
and to contain the flow due to displacement thickness, whenever

: / /
'Y';:y = "P,z that is vy = Vow (25b)

A coordinate system will be called optimal if both these equations
are satisfied. Assuming that +, and ”"/e are given, let X = (P,o') be
such an optimal system. It can be seen immediately that (25b) is satis-
fied if and only if «%‘ is a function of P only. In other words, it is
sufficient (and necessary) to choose the curves p = constant to coin.

cide with streamlines of the flow due to displacement thickness. (25a)

is satisfied if and only if w, = Ve .

"™ M gw » 80 that m, is a function

of p only. This can be accomplished by taking ¢ = ¥ Most gen-

2 L
erally, one may choose ¢ = %(P\ '\\/L where "“ ((b\ is an arbitrary

function of p - Then um, = L Mg+ Hence, the following theorem

hep
has been proved.
Theorem 2. The coordinate system <y = (3 ) is a particular

optimal system, in the sense that (25a) and (25b) are satisfied, if

% = N\/:z , M=V, (262)

Any other system X = (P,O’) is optimal if and only if it is related to

the above system by

p- hotsy , O %2(5\”1 (26b)
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where '%‘ and f, are arbitrary functions. The flow field givenby the
boundary layer approximation is the same for all optimal systems, but
will be different if any other system is chosen.

The last statement follows directly from a comparison of (26b)
and (13%).

It will now be shown that the optimal boundary layer solution, as
formally defined by the requirement {25) also has the other properties
discussed at the beginning of this section. First it will be checked
that it satisfies all the boundary conditions imposed on the exact solu-
tion. The conditions at the wall (3a) are satisfied according to (14).
At infinity ¢ approaches a potential solution which actually is ~ o s
whereas Y, approaches *\/SL . Inow v, = Yye it follows that W‘S
satisfies the correct boundary condition. Note that according to the _
same boundary condition oy should approach w,(x o) . Ontheother
hand, for any boundary layer solution, Moy (y 00) = g (5, 0. To satisfy
the correct boundary condition at infinity for My one should then make
W (%,0) = Myl 00) . An easy way of achieving this is to choose mn= VY,
as in (26a) since in this case M, = constant = 1.

So far only the relation Wy, ® V, has been used. If in addition
«ygg_ = ‘VL then v and Yy agree to first order at infinity and actually
in any region which excludes the boundary. This follows directly from
the fact that for M#EO ,

Y o= v, +ev 4 oe(e) (20)

and also

Yy = Yyo tEV, + c(E)

3

A further evaluation of the result will be attempted in Section VI.
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Construction of Optimal Approximation. In general, the optimal

system cannot be determined a priori. However, one may proceed as
follows. First the external flow +, is found by solving a potential
flow problem. Then a boundary layer solution Yy with respect to any
convenient system of coordinates is found by solving boundary layer
equations (9), or equivalent equations, using (14) and (18) as boundary
conditions. By evaluating the integral in (23) one finds *\}»’2 ., and then
the flow due to displacement thickness by solving Laplace's equation
for «y; . Y, and '\P’e being known, an optimal system X is directly
given by (26). Finally, to find ¥, it is not necessary to solve the cor-

responding equation. Y, may be obtained from Y by a direct sub-

stitution in accordance with (12).
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V. EXAMPLES

- Example 1. Flow Towards a Flat Plate

.
X
Fig. 1

The stream function

N = m-x’b(@ (27a)
where 'u?l = \ﬂ); , and

’bm N 'k/t” —(/LI)Z 1 =0 (27b)
fk(o) = /B’(os = 0 ’L’(.oo) =1, =) ~ Q -L (27¢)
£= [1- 4] dg (27d)

represents an exact solution of the Navier-Stokes equations for Y4>0,
satisfying the conditions -~ = %}g =0 at y4=0, v~ U xy - X '
as Y - oo (cf. previous comments and Eq. (3c)). Thus ¥ represents
a flow normal to an infinite wall, as in Fig. 1 (see Refs. (1) and (2)).

Holding VY, x and \A fixed, and letting v - ¢ , we obtain the

external flow. Thus,

Y, = Jim, (70 x f U5 4) = - cUx (28)
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Choosing the boundary layer thickness parameter as ¢ = rf ,

<

and regarding U as constant under the limit process, the boundary
layer approximation with respect to the X-y coordinates is found by

applying the fim , process. Thus,

Yy = lim, F oo dim, Ux R = Ux G (292)
or,
v, = 6%, = WU xh@ (29b)

Finally, the flow due to displacement thickness is found as:

’\‘,; - M‘(m x/b(@—Ux‘k)z - cVUx (30)

£

Thus, the optimal % -coordinates are ¢ - ‘b| ('\’(é), or, since the
choice of /b‘ is inconsequential, ¥ = X . The optimal m -coordinates
are = ’\-Z(E)-'\ys . Since the choice of fj, does not affect the result,
we can take f,(3)= |/Vg, thatis, " = \3 . Thus, in the presentcase,
the x-% coordinates lead to the optimal boundary layer approximation,
which, as may be seen by comparing ‘*z with & , happens to satisfy

the full Navier-Stokes equation.

Example 2. Oseen Flow Past a Semi-Infinite Flat Plate

In this example the Oseen equations will be regarded as a model
for the Navier-Stokes equations rather than as an approximation.. In
other words, the Oseen equations will be taken as the fundamental "ex-
act" equations and we shall be concerned with approximations to these
equations. The results of the present paper apply, of course, equally

well to the Oseen equations as to the Navier-Stokes equations.
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The Oseen e;quation for + is:
(797 - u§) Ty -0 (31a)

The boundary conditions for a flat plate are

W:gﬂ\é:a ax\,azo, X >0 (31b)
-g—’\—(;—)U, %/—;E——)O m[%l—éw,m‘gp X —> — 00 (31C)

The stream function v, is obtained from the equation resulting by

the analogous passage to the limit, that is,

-
s V Ny =0 (32a)

and the boundary conditions:

?
ﬁl’{-»u, %—-1“-»0 miu&\—-)w,x—a—w

(cf. Section 2), corresponding to the assumption of no separation.

Yo =0 ab Y =0, Xx>0; (32b)

Furthermore, in view of symmetry of the viscous problem about the

X -axis, it is expected that the circulation is zero. Thus, |
W,E, = U% (32(:)
Next, choosing ¢ = ﬁf , {3la) is written in the form:

: : 2" L 22y o
(AR IE ST AR (330

Holding Xy _\é (and nominally, U ) constant, and letting & —» 0 ,
v - W—i , that is, to the boundary layer approximation with respect

to rectangular coordinates, we obtain:

_azx) ) (33b)

N, = ﬁ§1= 0 ok % =0, X>»0 | (33c)
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Furthérmore, at infinity, the boundary conditions are:

—

Y, ~ Vg + Y (33d)
where V., is unknown.

Hence, the boundary layer approximation with respect to rectan-

gular coordinates is:
- =2
— 4 ot 4 \ -3
¥, = 2UX SE ‘Vzm +‘—_-f(£ A - ) (33e)

This gives

= (34a)

Putting ~ =, + £V in Eq. (31a