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ABSTRACT

This research consists in the experimental and theoretical
investigation of the finite deflection and buckling of two similar
structures; the low arch or slightly curved beam and the shallow
spherical dome, both subjected to lateral loads. These structures
are of interest because the large interaction between bending and
axial forces causes their load-deflection behavior to become non-
linear at very low values of the deflection, Due to the wide
difference in the methods of solution of these two problemé they are

separated into two parts, each having its own abstract.



TABLE OF CONTENTS

PART 1

BUCKLING OF LOW ARCHES OR CURVED BEAMS

OF SMALL CURVATURE

Summary

Introduction

Symbols

General Analysis

Sinusoidal Arch Under Sinusoidal Loading
Effect of Initial Axial Compression

Initial Shape of Arch Other Than Sinusoidal
Um'.formiy Distributed Pressure

Ceni;ral Concentrated L.oad on a Sinusoidal Arch
Central Concentrated Load on a Nonsinusoidal Arch
Elastic Supports at Ends

Lateral Elastic Supports

Buckling Load Based on Karman and Tsien's Criterion.

Experiments
Conélusions
References

- Tables

Figures

>Page

11

15

17
23
29

31

'35

37
41
45
49
50
51

59



TABLE OF CONTENTS
PART II
A NONLINEAR THEORY OF BENDING AND

BUCKLING OF THIN ELASTIC SHALLOW SPHERICAL SHELLS

Page

Abstract | 76
Symbols » 78
I. INTRODUCTION 81
II. THEQRETICAL ANALYSIS ' 91
Derivation of Equations ‘ 91
Expansion in Terms of Wo( = W /t) .95

Boundary Conditions ‘ 97

First Order Solution | 99

Power Series Solutions : 99
Numerical Solutions 100

111, EXPERIMENTAL PROGRAM : 104
Equipment 104

Oil Tests »’ ' » 105

Air Pressure Tests o 107

Summary of Experimental Results 108

Iv. CONCLUSIONS | 110
Appendix 112
References 115
Tables 116

Figures ' 121



NACA TN 2840

‘NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS

TECHNICAL NOTE 2840

BUCKLING OF LOW ARCHES OR CURVED BEAMS
OF SMALL CURVATURE
By Y. C. Fung and A. Kaplan

California Institute of Technology

Washington
November 1952




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2840

BUCKLING OF LOW ARCHES OR CURVED BEAMS
OF SMALL CURVATURE

By Y. C. Fung and A. Kaplan
SUMMARY

When a low arch (a thin curved beam of small curvature) is subjected
to a lateral loading acting toward the center of curvature, the axial
thrust induced by the bending of the arch may cause the arch to buckle
g0 that the curvature becomes suddenly reversed. The critical lateral
loading depends on the dimensions and rigidity of the arch, the elasticity
of the end fixatlion, the type of load distribution, and the initilal
curvature of the arch. A general sclution of the problem is given in
this paper, using the classical buckling criterion which is based on the
stability with respect to infinitesimal displacements about the equilib-
rium positions.

For a sinusoidal arch under sinusoidal loading, the critical loac
can*be expressed exactly as a simple function of the beam dimension
parameters. For other arch shapes and load distributions, approximate
values of the critical load can be obtained by summing & few terms of
a rapidly converging Fourier series. The effects of initial end thrust
and axial and lateral elastic support are discussed.

The buckling load based on the energy criterion of Karman and Tsien
is also calculated. The results for both the classical and the energy
criteria are compared with experiments made on a seriegs of centrally
loaded, pin-ended arches. For larger values of & dimensionless param-
eter Aq, which is proporticnal to the ratio of the arch rise to the

arch thickness, the experimental critical buckling loads agreed quite
well with the classical criterion, but, for smaller values of XAq, the

experimental critical loads were appreciably below those calculateé from
- the classical criterion, although they were always above those cobtained
from the energy criterion.

INTRCDUCTION

An arch subjected to lateral loads may become elastically unstable.
Generally speaking, there are two possibilities of buckling:
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(1) If the rise of the arch (a in fig. 1) is of the same order as
the span of the arch, then it is possible for the arch to buckle at the
critical pressure in the mode indicated by the dashed curve in figure 1.
Buckling of this type can be safely assumed to be "inextensional," as
suggested by Lord Rayleigh, and, as such, has been discussed by
E. Hurlbrink, E. Chwalla, R. Mayer, E. Gaber, E. L. Nicolai, and
S. Timoshenko. (See Timoshenko's book, reference 1, for references to
original papers.) In all these studies, circular arches under uniformly
distributed lateral loading are assumed, with various types of end
fixations.

(2) If the rise a of the arch is much smaller than the span L,
(fig. 2), then the induced axial thrust plays an important role in the
elastic stability. The beam may become unstable and suddenly reverse
its curvature, Jjumping, for example, from the solid-line position in
figure 2 to the. dashed-line position.

It is the object of the present paper to treat arches of small rise;
therefore, ‘the buckling deformation will be "extensional” rather than
"inextensional.” It will be shown that the variation in the initial
curvature of the beam has a very important effect on the critical load.
Furthermore, with a view to possible applications to thin-wing design
problems, beams acted on by initial thrust and those with elastic sup-
ports will be discussed.

¢ The same problem has been treated before by Biezeno (referente 2),
Marguerre (references 3 and U4), Timoshenko (reference 1), and Friedrichs
(reference 5).1 Biezeno and Timoshenko derived the fundamental dif-
ferential equation in the same manner as this paper, while Marguerre
and Friedrichs derived their equations by variational principles. The
resulting equations are the same. Biezeno treated a circular arch under
a concentrated load at the center and Marguerre and Friedrichs, a cir-
cular arch under uniformly distributed pressure; all arrived at the main
features of the buckling problem, but the calculations are rather involved.
Timoshenko assumed that the center line of the deflected beam as well as
the initial shape 1s a half wave of a sine curve and arrived at a very
simple solution. The restriction of the buckling mode to the symmetrical
one, however, sometimes gives the critical buckling load manyfold too
high in a certain range of arch rise.

The buckling criterion used by the authors of references 1 to 5
is the classical one which is based on the stability with respect to

Iarter completion of the present work, it was learned that Hoff and
Bruce (reference 6) treated a similar problem from the point of view of
dynamic stability. Part of Hoff and Bruce's work coincides almost
identically with the present report.
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infinitesimal displacements about the equilibrium positions. But
Friedrichs, in reference 5, also calculated the buckling load on the
basis of Tsien's energy criterion, which is based on finite displace-
ments. The energy criterion yields a buckling load much lower than
that obtained from the classical criterion. It is not evident which
of these two criteria corresponds to the real practical situation.
Therefore in this paper, both criteria will be used and the results
will be compared with experiments. : -

This work was conducted at the California Institute of Technology
-under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics. :

SYMBOLS
A cross-sectional area of beam
a "rise of arch
E Young's modulus
F ~ dead-weight load (in section "Buckling Load Based on Kdrmén

and Tsien's Energy Criterion")

H ‘ axial compression at ends of beam

Hy initial thrust in beam

I moment of inertia (or second moment) of cross section of beam
K = ner2far3

— 2
K Ll;l ' ‘/%(Xlg 1o
- 36 [ A2 - 13

L span of beam
.M bending moment; positive when it tends to put‘upper side of

beam in compression

bending moment due to lateral forces alone
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shearing force in beam; positive when \jp Q dx produces
Ax
positive moment

lateral pressure per unit length of beam; positive downward
(in negative y-direction)

characteristic lateral pressure per unit length of beam
thickness of beam

strain energy

change in thrust in lateral support

total load beam can sustain without buckling

actual and initial curve of center line of beam, respectively
épring constant of arch support

spring constant of lateral support

‘distance spring-supported end of beam is displaced

deviation ratio (am/al)
radius of circular-arc arch
bending stress in beam

axial stress in beam

op = (ﬂEEI/Le)/A

¢

total energy for dead-weight loading

Subscripts:

class
conc

‘Cr

classical criterion
concentrated loading

critical
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energy
exp
max
sire

unif

energy criterion
experimental
maximum

sinusoidal loading

uriform loading

Nondimensional coefficients:

Let

Then -

o0

y0=Z apL sinm_gx_

m=1

0o
y = 2 byl sin
m=1

q = g f(x).
agl (A
‘o= T
B = bl A
m =2 |1
n o S [E
0BT V I

2

_ HglL
ﬂEEI

o)
S
T,

3

o= 2a'l

nlET

manx

;; 2, 3,

.lJ 21 37 LS
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GENERAL ANALYSIS

Consider a thin curved beam of small curvature, one end of which
is hinged, that is, it is free to rotate but is fixed in position, while.
the other erd of the beam is attached to a spring, with a spring con-
stant «o. When the spring-supported end is displaced by a distance A,
the thrust induced in the spring will be

E = Hy + aA (1)

where X, is the initial thrust built in the beam. (See fig. 3.)
Before the application of the lateral load q(x), the axial load in the
beam is Hg and the beam center line is represented by the following

Fourier series:

Vo = é apl sin E%E (2)

m=1

Under the lateral load q, the displaced center line can be written
as ,

o]

023 bt otn 5

m=1

Assume that ]yo! and [y] are much smaller than I, and hence
,am| and !by| are much smaller than 1; that the beam is made of
homogeneous material, of constant cross section, and with small curvature

so0 that (dy/dx)e is negligible in comparison with 1; ard that the
thickness of the beam is much smaller than the radius of curvature of the
beam. Then the usual beam theory gives

EI (é.)i - °> =M (%)

dx2 dx2

2No gererality is lost by treating this case of one end spring
instead of the case with both ends of the beam elastically supported
because the springs at both erds can be replaced by a single spring at
one end.
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where M 1is the increase in bernding moment due to the application of
a(x). From statics,

X
M:L Q dx - (Hy - Hovo) (5)
Substituting equation (5) into equation {4) and differentiating tﬁice,
remembering that %% = -q and that the axial thrust in the beam H can

be regarded as constant by the assumption of small curvature, the equa-
tion of equilibrium is obtained:

in 2 2
d - da
R A (VN S LR (6)
ax dx

To fird the thrust H, it is noted that the shortening of the
center line of the beam is

_%f ‘:dx 9_51 ax - A A (7)

where spmall quantities of higher orders are neglected. It is assumed
that the end support spring is rather strong, so that A is very small
compared with L. (Otherwise the problem becomes one of a simple bending,
with no possible difficulty.) Hence :

2
celle @l
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On the other hand, the deflection A 1is connected with the spring
constant o« by equation (1). Eliminating A between equations (1)
and (8), substituting equations (2) and (3) for y and y, into the
result, and integrating, there is obtained

R .
H=H, + B “EAY Izlg(am2 -bmg) (9)
v
where
Q
B = — g (10)
a + =

Substituting equations (2) and (3) again into equatior. (6) and using
equation (9), there is obtained now the equation of equilibrium expressed
in terms of the Fourier coefficients:

L : H . n2 ;
_ T EI I . mMIX 0 o) : X
-q = =3 _ m'(by - ap) sir —— T _ m=(ay - by) sin - -
)
T EA o2f. o 2 2 . mwx
3 47 g m (%n - by ) m by sin <= (11)
: m m

The boundary conditions are already satisfied.

Expand q = qof(x) into a Fourier series:

. mrx -
q = qof(x) = d, }:: kp sin - (i2)
i
where
T,
2 . mnx
ky = T f(x) sin - d&x
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On equating the coefficients of the corresponding terms in the right—.
hand sides of equations (11) and (12), there is obtained a set of an
infinite number of simultaneous equations:

- T
5{: ne(bn2 - ETF§ ey + (n%EIm - HOZJ )(bm - ap) = -kp

n= L3

ﬂhEA
BAL
(m=1,2, 3, . ..) (13)

To simplify the expressions, introduce the following notations:

ﬂ
amLJK meJK
m =7\ Pm = 5 \T
- ()
L 2
L H,L
R =0 \‘/—%T 5 = —
orET eET
-
Then equations (13) become
[¢] 00
BmBZnEBDQ-BE N W =-%km+km(m2-s)
n=1 n=1 m
(m=1,2,3,...) (15

Here Ay and B represent the rise of the arch, being half the ratio
of the amplitude of the mth harmonic in the initial and the deflected
curve to the radius of gyration of the beam cross section; R is a
dimensionless quarntity specifying the lateral loading; and S 1is the
ratio of the initial axial compression to the Euler column buckling load
of the beam. WNow f(x), X\p, and S are known ir the problem; it
remains to find the relation between R and By, from which the corre-
spondence between the load and deflection can be traced and the stability
of the beam determined.

Sometimes the Fourier series of the moment curve converges much
faster than that of the loading itself. In such cases it is advantageous
t0 use equations (4) and (5) directly instead of egquation (6). Let the
static bending moment of the lateral loading alone be written as Mg:
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M, = qoLF(x) (16)

where d5 is a characteristic lateral pressure with the physical dimen-

sions of force per unit length of the beam. Let F(x) be expanded into
a Fourier series, so that

2]

Mg = qoL2 2:: Ky sin E%i (a7
m=1
where
_2 . mné
Km = T F(t) sin - dg

O.

Following the same reasoning as before, one arrives at the equations:

(m=1,2,3, ...) (18)

Both equations (15) and (18) will be used later. They are a system
of an infinite number of simultaneous equations for which a general
treatment is not known. However, there are many important cases where
the number of equations can be reduced into a finite number; then a
complete discussion is possible. Several examples will be given below.

Equations (4) and (5) may be written as
2 a2 Mo(x) H
ey , H Jo . 20 o)

vy = + ==
32 | EI o2 ET ' ET Yo

= G(x) ' (19)
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where G(x) is a known function. The general solutiorn is

¥y = Cq cos vx + Cp sin vx + %\J“X G(t) sin v(x - t) 4t {20)
‘ 0]
where
v = H
~VEI

The constants C; and Cp must be determined according to the boundary
conditions at the ends y = 0 for x =0 and L. The solution y(x)
can then be substituted into equation (8) and v computed. This gives
a relation between v and the external load. Biezeno and Friedrichs
based their calculations on this relationship. Marguerre, on the other
hand, used the energy principle and the methods of Ritz and Galerkin to
obtain approximate solutiors. The method of the present paper, based,
orr the Fourier analysis, is due to the work of Y. S. Huang.3 Recently,
the same method was used by Hoff and Bruce (referernce 6). ‘

It is clear from equation (20) that the deflection ard the critical
load are continuous functionals of yp{x) and My(x). Hence infini-
tesimal changes in yo(x) and Mg(x) would always cause ar infini-
tesimal change in the critical load.

SINUSOIDAL ARCH UNDER SINUSOIDAL LOADING

Consider the simplest case of a low sinusoidal arch subjected to
a ginusoidal load distribution:

ﬂ
o e
Yo = 271 s8in 7? (0 < a1 << 1)
r (21)
= X
a =gy sin 5

Professor of Aeronautics, Central University, Nanking, China.
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The general equations of equilibrium (15) then become, in this
particular case,

~
o0
B BE B2 -2 + 1 -8)=-R+ xa(L-8)
1 j o8 1 1 ;
n=1
B2<BZn2Bn2-BXlE+1+-S =0
n=1
> (22)
N 2
Bm(BZ n°By2 - A% +m° - 8] =0
n=1

This set of equations must be solved for By. In order to get a

qualitative investigatior inte the nature of the solution, first consider
the simplest case of an arch rigidly hinged at both ends, so that a =«
or B =1, and with zero initial axial thrust S5 = Hg = 0. The more

general case will be considered later.

An obvious set of solutions of equations (22) is

Bp=B3=...=0

(23)
B3 - By (M2 -1) = - R =

If the relation between By and R 1is plotted, the curves in
figure 4 are obtained. Depending upon the values of A1, there are
several possibilities: (1) If A7 $ 1, the curves have monotonic slope;
consequently, they determine the load-deflection curve uniquely. There
is no question of instability. (2) If A1 > 1, then there are two real
extremes and, for values of R ir betweer these extremes, every loading
may have three possible positions of equilibrium. Following, for example,
curve IV in figure 4, the deformation of the beam can be traced as follows:
When the lateral loading is gradually increased from the starting point a,
the deflection gradually ircreases according to curve IV (the rise of the
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arch decreases). When the point M 1is reached, any further increase
of loading will make the beam Jump to the configuration corresponding
to the point N and then follow the right-hand branch of the curve.

In between M and N, any increase in deformation needs no addition
of loading and therefore is unstable. Hence M 1is the critical point,
with the critical condition given by

N
dR
T - ©
r - (o)
o
————dR2<o
dB;
-

 From equations (23) and (24), the critical values of By and R can

be obtained:
_ A
, 2
by -1
_ 1
(Bl)cr - ““g’“‘

Rep = M+ \[%(xf - 1‘)3

> (25)

If M <1, Rer 1is imaginary; hence no instability will occur.

This checks with the former discussion based on the uniqueness of the
load-deflection curve.

The above solution, equatious (23), however, is not unique. FEqua-
tions (22) can allow a solution with one B,, in additior to Bj, to be

L

different from zero. In this case

~

B1(B12 + 2B 2) - (22 - 1By =2 -R

Ble + neBn? = Xle - °

y

hThese two cases exhaust the possibilities, as can be seen by writing
down the rest of the set of equations (22), which gave the result that all
other B's must vanish.
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have the solutior ~
R - A.
B. = 1
1
n2 -1
e (27)
2
R - A
P82 <02 - 2 - ( 1)
2
n -1
.

Equations (27) indicate that By can exist (with real value) only in a
definite range of R. The deformation history of a beam subjected. to
gradually increasing lateral loadirg can now be traced as in figure 5:
Along ab, Bp = 0, the curve is that of equations (23). - Along &bc,’
B, # O, the deflectior curve becomes

y = b1l sin I + byl sin IX (28)

If the point © 1is real and lower than M, then it is the critical
roirt where the beam will have a tendency to buckle. The point b is
given by

- 2 2
Bl = )\.1 - n j

By =0 e (29)

R =2 - (0 - 1)a2 - o

Equations (29) will yield the lowest critical value if the following
conditions are satisfied:

(1) R, .Bl, and B, are real

(2) The R given by equations (29) is less than the R given by
equations {25)

(3) The By given by equations (29) must be greater than that

given by equations (25); otherwise, the beam will buckle in
the first mode, at point M
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(4} The particular number n is so chosen that the corresponding
Rer 18 & minimum

Conditions (1), (2), and (3) are satisfied if and only if
M2 2 i(ng - -l-> o (30)
- 2

Condition (4) is satisfied only if r = 2. Hence the complete expression
for the critical loading is obtained:

~
Rer = M +\[g=(m® - 1) (1 < 53)

> (31)
Rer = M + 3%12 -4 (M > (5_"—5))

The relation hetweer the critical loading and the beam-rise ratib is
illustrated in figure 6. The solid lines are the actual critical condi-

+ions. The dashed lines are either imaginary or not the lowest ¢critical
load.

It is interesting to note here that for Ay < ¥5.5~ 2.345 the
bﬁckling mode of a low sinusoldal arch is symmetrical but for Xy > $5’5

the buckling mode imitates that of a high arch, for which the deforma-
tion is essentially inextensional. As illustrated in figure 7, the arch
deflects (flattens) at first under the increasing lateral loading from
the initial position I to the state IT, when the second mode Bo staris
entering into the picture. The mode of the beam during buckling, when

it jumps from the upper to the lower side, is a curve like III in
figure 7.

EFFECT OF INITIAL AXTAL COMPRESSION

Still restricting this discussion to the simple case of a sinusoidal
.arch under a sinusoidal loading and with fixed hinged supports at both
ends, let an initial compressive force H; act or the beam, so that
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is different from zero, S Tbeing the ratio of the initial axial compres-
siorn to the Euler column buckling load of the beam. The equation of
equilibrium is giver by equasions (22) with B = 1. The solution of

this set of equations is again either

By #0, Bp=B3=...=0
or

By # 0, B, # 0, all the other By's vanish

One is led to the following conclusions:

-
For V1 - 8 < r S \[5.5 - S,
Rop = (1 - 8)Ap + Jg%(XIE +s-1)3
} - (32)

and for A > \5.5 - §,
Rep = (1 - 8)Ap + 3fM° +8 - &

-

The effect of the initial axial compression is included in this formula.
As expected, the increase of the initial axial compression will decrease
the critical load, as can be easily verified by the fact that

oR

cr /

0 \
% < _ 33)

for the full range of S, 0 £ 8 =1 (S cannot exceed 1). Furthermore,
the lower limit for instability is now

M o= V1 -8 (3%)

For Xi smaller than this value, the bar is stable; no buckling is pos-
sible. This lower limit decreases with increasing S wuntil 8 = 1, wher
the beam will fail as a simple Euler column, Ror Dbecoming zero.
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The values of the critical load R., &s a function of Ay, with

values of S5 as parameters, are given in figure 6 and table I. A
clearer presentation of the effect of S 1is a curve of the change in
the critical load cﬁRcr)S against X\j, where

(ARCI”)S - (Rcr) 8=0 (_Rcr) S=5 | (35)

This is given in figure 8.

From equations (32), it is seen that when Ay is large,ksay, with
magnitude of the order of 2.5 or larger, (ARcr)s is almost linearly
proportional to S. As a crude approximation, one may take

R
(s} - o Lo o

INITIAL SHAPE OF ARCH OTHER THAN SINUSOIDAL

In order to fird the effect of the irregularities in the initial
shape of the arch or the buckling load, some simple cases of low arches
whose center lines are nonsinusoidal will be considered. By comparing
such solutions with the previous one, the significance of such varia-
tions in form can be estimated. Let the initial shape of the center
line of the arch be given by the equation:

. X . mmx
Yo = &L sin — + apL sin —= (37)

(A‘few examples are shown in fig. 9.) Assume again for simplicity that
the lateral loading q is sinusoidal, given by equation (20), and that
the ends of the arch are hinged and without initial thrust, so that

Hy =S5 =0 and B = 1. The fundamental equations (15) become
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"\
E 2, 2 2 2, 2 _
Bl( n By~ - Xl -m km + l) = -R + Xl
n .
3u( nang - xle - m?km?>+ m2> = mexm L (38)
n
Bk<>L” N W L k2> =0 (for all k £ 1, m)
n
» 7

Again two possibilities exist: (1) A solution consists of By # 0 and
Bp # 0, but with all other B's vanishing; (2) a solution with one By,
other than By and Bj, different from zero. They must be discussed
separately. '

In the first case, By and R may be regarded as functions of Bj
and the second of equations (38) differentiated to determine dBy /dBj .
From the sign of dBm/dBl it can be observed that, when the load R 1is
gradually increasing, the amplitude of By (i.e., |Bm|) will increase
irrespective of the initial sign of Ay. Furthermore, by differentiating
the first of equations (38) to obtain dR/dB1, it can be observed that,
in the prebuckling stage, the amplitude B; will decrease when the
load R increases. Hence the critical condition is given by

— =0 (39)

Carrying out the differentiation and reducing, the equation governing
Bp at the critical condition is obtained:

Byt + cBy +d =0 (%0)
where

2 2y 2 2
o Bmfraty® ot e
2(m? - 1)

3n2h 2
T o(n - 1)
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Equation (L0O) can have at most two real roots. If the two real
roots are different, Then the one nearer to A, 1s the true critical

value provided that the corresponding (Bl)cr ard Rpy are alsoc real.

-If equation (40) has no real root, then there is no critical load and
the beam is stable.

With the critical value of 3B, s0 determined, the critical values
of By and R can be obtaired from equatiors (38) as follows: '

\

mgkm

2 2
(Bl)cr = '(En')—;; + )\.12 - me EBm) cr - )\,m2 + 1
> (k1)

Am

R, =M + (m° - l)(Bl>cr - w? (_Em—);(Bl)cr

cr

4

It is interesting to note here that the critical load is independent of
the sign of MAy. This is so because a change in sign of X, changes

the sign of *he roots (Bp)e, of equation (L40). But since (Bp)er/Anm
does not change sign, (Bl)cr from the first of equations (41) is not

affected by the change ir sign of A,. Hence the conclusion follows
from the second of equations (41). This is rather unexpected. It shows
that under sinusoidal loading the two apparently different curved beams
in figures 9(b) and 9(c) have exactly the same critical load.

Tquation (40) can be solved graphically or numerically. The results
of such calculatiors for the cases m = 2 and 3 are given in figures 10(a)
and 10(b). The magnification of the amplitude of the higher harmonic,
initially at Ap, into (Bm)cr at the critical point, is clearly seen

from figure 10. The reduction of the critical load due to the presence
of Ap will be discussed later when the second possible solution is
obtaired. The parareter used in the curves of figure 10 is not Ay

but the deviation ratio:

5. 'm _°m (42)
M

This ratio indicates the deviation from a sinusoidal form better than
the parameter Xm iteelf.
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It remains to discuss the second possible solution which includes
one nonvanishing By (k # 1, m). In this case the solution of equa-

tions (38) is w

R - X\
1
B = -
L2
B K -mg)»m e (43)
2 2
6, 2
o 2 >  p.p 2 m- Ay R - M)
k Bk = )\41 + m )\m -k - -

(k2 -m2)e (k2 - 1)

The relation between By and R 1is again an ellipse of a similar

nature to that for a sinusoidal arch under sinusoidal loading. The
instant when By will appear is the critical point. Herce the condi- ,
tion Byx = 0 leads to

Rer = 2 + (¥ - 1hM2 - 6%+ mPay |1 - —B—— (uh)

This will lead to a fundamental critical value 1f the four conditions
enumerated under equations (29) are satisfied. Whether equations (41)

or equation (44) gives the critical load depends on the initial shape
of the beam.

If m = 2, equation (L4h) always gives a higher Rgpr than equa-
tions (41). Hence the critical load is determired by equatiorns (41).
No B3, By, and so forth can appear during buckling.

If m 23, equation (4k4) with k = 2 gives the lowest R,
provided that A 1is greater than a certain constant, say (Xl)o' For
M less than (Xl)o, equations (41) give the lowest R.,. The point
(Xl)o is the point ot tangency of the curves of Rer against Aq
computed according to equations (41) and (Lk4), respectively.

Again it is evident from equation (L4) that the critical load is
independent of the sign of Ip.
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The combined results of equations (41) and (44) are shown in
figure 11, and the numerical results are given in tables II and III.
In table IT, (Bm)or &and Rer computed according to equations (40)

and (41) are listed. Comparing tables II and III, it is seen that in
certain ranges of X1, equations (41) give the lower R.yp, while in

another range equation (44) gives the lower Rgp. Furthermore, at
smaller values of Aj;, even if X > 1, (Bl)cr and Rgy may become

imaginary, as shown in table II. The physical meaning of this is that
the process is then a continuous one. There is no sudden change of
configurations. The beam, under bending, simply yields continuously to
“the increasing external load.

These examples illustrate the serious nature of the effect of
the A, terms. When the loading is symmetrical, a very slight com-
ponent of ursymmetry in the curved beam lowers the critical load con-
siderably. For example, in case of a sinusoidal loading acting on a
sinusoidal beam, an unsymmetrical second harmonic in the initial curve
with an amplitude ratio of 1 percent in the initial form lowers the
critical load by approximately 10 percent. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical
modes. .

On the other hand, for a symmetric lcading, the effect of higher
harmonics that are symmetrical is much less pronounced. A similar
effect should be expected when the beam is sinusoidal but the lateral
loading deviates from a sinusoidal distribution.

.An important special arch form is a circular arc with a radius Poe
Within the present approximation, there may be written

2
L1, 1 nnx
Yo = 5— x(L - x) = i (45)
° ~ 2o, 2 L. BT

This corresponds to an arch rise of LE/BDO at the center. The coef-
ficients Ay form a rapidly decreasing sequence. In fact,

2
4L
8 = aop = 0
04
1
a, =0 a
2 2n+l
(2n + l)3
a, = 1 a
372771
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The effect of the higher harmonics is regligible. If 85, a7, and so

forth are neglected, then the Rcer (sinusoidal loading) of a circular
arch can be found from figure 11(b) or table III (m = 3) by taking

5L>"3_l
X‘ 27

’,—J

The difference in R, 1s readily seen to be small.

To illustrate the fact that a5, a7, and so forth may be neglected

without causing appreciable error, the case of the unsymmetrical buckling
mode will be considered. Equations (43) should be modified, when k = 2,
into

o, 2 2, 2
;{: n“B," = Z{: n“ApS -k
n

n
R - X
1
By = — =
1 3
A
1
By =
m(m? - &)
Now
Z ngkne = )\,l Z le = (l + Gl)klg
n=1,3,5,... n=1,3,5,... B
2
A 2
o2n 2 _ E 1 M ,
}E: m“Bp~ = (m2 2 T 25(1 + 62)
m=3,5,Ty++. m=3,5,7,.+. !
where
€ £ 0.01436

Ile

0.07325
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The critical load is given by the equation:

R-xV 2
<__7§_:> + (1 + eg)%%; = (l + el)xlﬁ -k

Neglecting the effect of A5, A7, and so forth on Rgp 1is to neglect
the effect of €7 and €, on the root R of this equation. It is
clearly Justifiable.

UNIFORMLY DISTRIBUTED PRESSURE

In this section the critical load of a sinusoidal arch under
uniformly distributed pressure will be discussed. From the results of
the preceding sections, it is expected that the deflected curve of the
arch would not remain sinusoidal and that an unsymmetrical component
would in general enter intc the buckling mode. For simplicity, again
consider a simple sinusoidal arch, with ends hinged and without initial
end thrust, so that 3 =1, Xy = X3 =. .. =0,and S =0. The

lateral pressure is denoted by Qg Per unit length of the span. Hence

the bending moment in the beam, due to the lateral forces alone, with-
out counting the contribution of the axlial thrust, is

Mg = % qox(L - x)
2 N i
= L oin 2 (16)
™ n=1,3,5,... O

It is convenient here to use equations (18) because the Fourier series
of * My converges much faster than that of the lateral loading itself.

From equations (18), there can be obtained

Bm(jz: n23n2 - M2 4 m?) - ;§§ R + 8yphq (m =1, 3, 5 - - )
i \

Bm(ji: nanE - Xle + m?) =
n

H

where 61m

il
il

|
o

(m

2, b, 6, . . )
J (47)

i

1 if m=1; 8y =0 if m # 1.
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It is evident that when the load is applied, R # O, all the B's
with an odd subscript would in general differ from zero. It is also
clear from the second of equations (47) that only one of the B's with

ar even subscript can differ from zero, because E nQBn2 cannot be

equal to two different values of Xle - m°. As before, these two cases
would be separately treated.

Consider first the simpler case in which one of the B's with an
even subscript is different from zero. 1In this case the deflection
curve of the beam is unsymmetrical. Let the nonvanishing B be Bok,

where k 1is an integer. TFrom the second of equations (47), then
Z n®B 2 = M2 - bk (48)

Hence from the first of equations (47),

S 4 -
Bm-mg - m{?(' mn3R+ 51m’~1> (m=1,35...) ~(u9_)

Squaring Bp, multiplying by m?, and summing, there is obtained

2
Z "B, 2 = ____l__F(xl - %R) ¥

T (l - Lxe

16R° § 1 \ 1l 2
" m=3,5, ose n (m hk )

Equating this to kle - 4 according to equation (48), an equation is
obtained relating Bokx with R. This relation is an ellipse, as in the

section "Sinusoidal Arch under Sinusoidal Loading." The critical condi-
tion is reached when
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which implies that

Bpx = O (51)

With condition (51), the critical load Reyr 18 given by thne following
equation derived from equations (48) and (50):

16 g2 }E: 1 __ B\R ; o L NP
m=1,3,5,... n{n? - ) (1 - 1) (1 - %k2)2 !

(52)

The series in the coefficient of R2 converges very fast. If all terms
except the first one are neglected, the error is less than 1/2 percent.
Hence equation (52) is essentially equivalent to

bi

(E R - xl>2 = (& - 1)2(x12 - 12 (53)

Comparirg this equation with equations (29) for the case of a sinusoidal
arch under sinusoidal loading, it can be seen that they are almost

identical except that R in equations (29) is replaced by % R and n

is written here as 2k. One of the roots of equatior (53) which would
repregsent the critical Load on the bear must satisfy the four conditions
stated below equations (29). In a manrer completely analogous to the
treatment of sinusoidal loading under equations (29), one concludes that
k must be equal to 1 and that the solution exists only when Ay 1is

equal to or greater than J5.5. The critical load is then

Rer = E(Xl +73VX12 - A) ) E(Rcr)sine : (kl z 575) (54)

where R . means the critical R of a sinusoidally distributed
Cr'/sine

lateral pressure.

If the full series in the coefficient of RE in equation (52) were
- taken, then, since %k = 1, and

L i 4977 x 10°%
m=3§,‘7,... w4(w? - )7
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equation (54) is modified by a factor of approximately (1 - 0.005), or

T

Rer = 0.995 Z(Rey) oy o0 (2 B5) (59

Turning now to the other possible solution, that all the B's
with an even subscript vanish, one sees by analogy to the case of a
sinusoidal arch under sinusoidal loading that this mode of deformation
would lead to a critical buckling load only if A7 is sufficlently small.
Let

n?B ? = ¢ (56)
n=1,3,5,... :
Then equations (47) give
By = 1 L S (m =1, 3,75, C L) (57)
C - M2 + m2 ﬂm3

From equations (57) compute mgBm? and sum:

0 g

C =
m
16 1
) ) - M2 o2
" m=1,3,5,... - <C = orm )
A2
%RM_ L + L (58)

C-M°+1 C-M2+1

This gives a relation between C and R but is rather useless because
of its complexity. A more practical solution can be obtained by suc-
cessive approximation. According to equations (57), for a given R,

By decreases rapidly with increasing m. As a first approximation,

then, neglect the effect of B3, By, . . . and obtain from equa-
tions (47), m = 1, the equation of equilibrium:

B3 - (M2 - 1)By = - % R+ A
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which is again almost identical with equations (22) for the case of a
girusoidal arch under sinusoidal loading, except that R in equa-

b

tions (22) is now replaced by % R. Fence analogously,

iI=

(Bl)cr T3

ls
A
] B
+
g
no
=
—
>
’_l
no
1
].._l
~—
L=
A"
~—~
Ut
L

Rer = 7,

I
+1a
T

o]

R
Na—
1153
H-
=
o
TN

I.._J
A
>
}_J
A
RN
Ul
‘ S

For the second spproximation, neglect the effect of B5, By, and
so forth, but consider B3. Now equations (L7) may be written as
2 2 ) A
2
BlZDBn—}\,l +9>=—;R+Xl+8Bl
A
¢ (60)
2, 2 2 L A
B3<Z;an—kl+9)_—§:(-ER )

Hence at the buckling point,

Reyp A+ %(xf - 1)3

1
(E% _ 27
B = =
Her R v s (e, (1807 - 23 (R1)e;

cr cr

Al

Substituting into equations (60), which now become a relation
combining By and R, and using the criterion dR/dB; = O for buckling,

-there is obtained
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~
(Br)er = {502 - 2 -
> (61)
T 4 o 3
Ry = EIE; . V97(kl -1 -k (< 55)
o/
where
2
A" 2 3
A o* VL— M©-1-k
Lo L 1 27( 1 ) (62)

36 M2 - 13

Since k is always positive, the critical load Rer glven by equa-

tions (61l) is always smaller than the first approximation given by
equations {59). But the difference is really very small because
k << 1. Values of k are giver as a function of XA in table Iv.

Since (Bm)Cr decreases very fast with increasing m, the con-

vergence of the successive approximation is very good. From a com-
parison of equations (62) and (59), there appears no need for further
approximations.

It can be concluded that, with an error less than 1/2 percent, the
critical value of R for a uniformly distributed loading is equal
to n/L times that of a sinusoidal loadirg.

Interpreting the result somewhat differently, compare the total

load that an arch can carry when the load is distributed first uniformly
and then sinusoidally. Let W Dbe the total load. Then since

Wunit = 9ol

and

no

Weine = 7 % L

and since Rgpr 1s based on g,

2
(wcr)sine _ ?(Rcr)sine _ E/TT _ ﬁ_
(Werdynir  (Rerdunif T/h T a2

(63)
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Expressed in words, if W 1s the total lateral load an arch can
sustain without buckling when the load is distributed uniformly over the

span, then the same arch can sustain only a total load of j% W 1if that

T
load is distributed sinusoidally. Thus concentrating a load toward the
center of the arch lowers the critical buckling load.

CENTRAL CONCENTRATED LOAD ON A SINUSOIDAL ARCH

The case of a concentrated load acting at the midpoint of the span
can be analyzed in the same manner as for the case in the preceding
gection. Only a very brief explanation will be given below.

Assume again that the arch is initially sinusoidal, rigidly hinged

at both ends and without initial end thrust, so that B =1,
Ay = X3 =...=0,and S = 0. The lateral load is written as

W= qlL - (6h)

The bending moment due to the lateral forces alone is

r

1 L
= < < =
5 Wx for (O S xS 2) _
_ » WL 2 1 . mnx
Mg =< =2 5 (-1) = sin ==
% W(L - x) for (% £x ¢ L) m=1,3,5,... .
~ ' (65)

The equations of equilibrium are

2n 2 2 2) _ nx 2 ’
BHI(ZHBH - )\,1 +m> —-sin—E——§R+8mX1
n
(m=1,2,3,...) (66

For the unsymmetric mode of buckling, if this mode is possible, the
lowest R., occurs when Bp # 0, which implies that

}:: n°B,° = Xle -4
= :
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and the critical load is given by the smallest positive root of the
equation:

h)»
5 1R-§x12+u=o
2 (n? -u) 9 9
m=1,3,5,...

Letting

1 _L1l+c
2(m2 - 4)2 9
m=1,3,5,... (m )
where ¢ 1is approximately 0.0409,
S S - 8,2 _y , 6
Rer ST ) A+ 3V&l o+ (9 A )e (67)

or

. 1

Rer = §(Rcr)sine

The numerical results of equation (67) which are used in the testing
. . 1 . .
program are tabulated in table V and compared with §(Rcr)sine in flg-‘

ure 12. For the symmetrical mode of buckling, steps analogous to those
in the preceding section lead to

Rop = %121 + /%(xlﬁ‘ -1 -x)3 (m < (5:5) (68)

where

k being the constant given by equation (62) and table IV.
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Hence R, for a concentrated load i1s approximateiy equal to one-
half of Rgy for a sinusoidally distributed load.

As in the preceding section compare the load carrying capacity of
a low arch with respect to various distributions of the loading. Thus

(wcr>conc . 1/2 )

T
(wa)sine 2/ i

le

W
( c )81re j% ? (69)

( cr)unif T

oo . 6
(Mer)unir = ¥ J

These ratios are within 2 percent of the corresponding ratios of
the total loads causing equal center deflections of a simply supported
beam under the three load distributions. This indicates that, for any
symmetrical load distribution, the buckling load Wcr is proportional
to the total load (of the specified distribution) which causes unit

Al

center deflection of a straight simply supported beam.5
CENTRAL CONCENTRATED LOAD ON A NONSINUSOIDAL ARCH

Because the experiments to be described were carried out or a
series of approximately sinusoidal arches with a central concenrtrated
load, a more complete investigation of this case will be made. First
the case A} # 0 and i3 # O will be studied and the difference in
the influence of A3 on Rer for sinusoidal load and Rer for a
central load will be shown. Then the case in which X} # 0, XM #£0,

and A3 # 0 will be investigated. The results of the second case are

more complicated and are used principally to show when the simple super-
position of the effects of Ay and A3 1s not possible.

5'I‘his result was previously shown by Timoshenko (reference 1) for
the case of symmetrical buckling mode.
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For a pin-ended arch without initial thrust (B = 1, S = 0), the
equation of equilibrium for a concentrated center load is

E 2(, 2 2 2! 2R _, mn 2
Bm[: n(xn-Bn)-m —;1—551n—§-- A

(m=1,2,3,...) (70)

If only XA #0 and A3 # 0, equations (70) become

-
a2 s 902 - ] - a)<en o,
n
Jae(xl2 + 9x32 - Z 0°B,° - LL) =0 e (71)
n
2 o 22 o
33(x1 + g -}n:an —9)=-§R-9k3
-~

For the case of buckling in the unsymmetric second mode one can

solve for 5:: neBn? from the second of equations (71). Substituting
T
this into the other two of equations (71), solving the resulting equa-

tions for By and B3, ard again forming the sum E:: nQBn2 an equa-
' n

tion is obtained connecting R, A, x3, and Bo. At the critical

condition By vanishes. Thus one arrives at an equation governing the
critical load:

ne(n?

2 : 1 L 36 8 .o 504
YR _ﬁ)_g+R(-_xl+_x3)-§xl +oz—
n=1,3,5,...



NACA TN 2840 33

Letting

k = 1.0409

there is obtained

1 81 81 _ \2 5> 113hL

It is interesting to note that in contrast with the sinusoidal load
case, the sign of x3 is important, and (Rcr)conc no longer approaches

1 81
E(Rcr)sine unless 55 Xs << M. In fact, the effect of i3 on the

ratio (Rcr)conc/(Rcr)sine can be appreciable.

81

- The 5 k3 terms in equation (72) arise from the cross product in
the squaring of the right-hand side of the last equation of equations (71)

to obtain B32. If the case is considered in which only Ay and Xy

are different from zero, there is ro correspondirg cross product and
therefore it can be expected that Ap will have the same proportional

effect on R., for a centrally loaded arch as for a sinusoidally loaded
arch. Physically this difference in the effect of XAy 'and X3 seems

reasonable since the central load occurs at the maximum amplitude of
the A3 wave, but at a node of the iy wave. '

For the case in which M\, Ap, ard X3 differ from zero it is

known from the section "Initial Shape of Arch Other Than Sinusoidal”
that buckling always occurs in the second mode and that the influence

" of the higher modes is small. Therefore all Bp's with m >3 will
be neglected. Letting B =1 ard S = 0, the equations of equilibrium
are
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3
B} 0?22 - B2 - 4B,2 - 9B2 - 1) =R - )y (738)
-1
3
B, ) A2 o Bf o u? - 9By - b | = -l (73b)
\1
.
- | 2, 2 2 2 2
B3§n)\.n-Bl-hB2—9B32-9=-§R-9>»3 (73c)

These equations are to be solved for the critical values of By,

Bp, By, and R under the critical condition OR/dB; = O. The solution
can be effected in the following steps:

(1) Eliminate R Dbetween equations (73a) and (73c) and use
equation (73b) to obtain an equation connecting By and Bo:

)2 Ao )2
2 o o . . Ao
<3 -4 _B2> ¥ 9(5 £ ——B2> B2 + 2(3 - b _132)(’”1 + B1rg)B; -

Ao \2 L,
9(? + b §a> (325 - MBEE + E::ngxne - h) + (xl + 81X3)2 =0 (T4)

(2) Differentiate equations (73a) and (73b) with respect to Bj
and use the'critical condition BR/BBl = 0 and equation (73b) to obtain

OBp /3B and 8B3/8Bl at the critical point. The results are expressed
in terms of By, Bo, and B3.

(3) These expressions for (BBQ/BBI)Cr and (BB3/BBl)cr are

substituted into equation (73a) after differentiating it with respect
to Bj. Using the critical condition OR/OB] = O and eliminating B3

through equation (73b), an equation for (Bl) in terms of (Bg)cr

; cr
is obtained:
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2:_}__,‘-& >\‘2 10 >\42 E‘B 2_ 22 2)\“2
(Bl)cr 16 ’ (B2)cr ) (BQ)cr Xe( g)cr o g T (73)

+

By plotting equations (74) and (75) a compatible solution can be found.
This solution will not hold for s = O, but 1% is valid for x3 = 0,
although no simplification will result. The results for a series of
arches with Ap/) = 0.005 and X3/kl = 0.04, which are representative
of the test specimens to be described ir the experimental section, are
tabulated in table VI and plotted in figure 12. Comparing this with
figure 11 it is seen that the combined influence of Ap and X3 is
stronger than the sum of their separate influences for lower values of Aj;
but for higher values of kl(klg > 5.5) the principle of superposition
can be used. This is not unexpected since for low values of Ay the

presence of Ap causes the mode of buckling to change fromisymmetrical
to unsymmetrical and thus changes the influence of XA, on Rer.

In figure 13 the process of loading is pictured for two examples in
the above sequence of arches, ore below the dividing value of "A] = V5.5
and one above. The charges in amplitudes of the three modes x; - B,
Bo - Ap, and B3 - X3 are plotted as functions of the load¢ R for

AM =2 and A = L. It is to be noted that, for the lower value of
A s Bg does not increase rapidly until just before buckling occurs,

while, for Xl = L4, Bp starts increasing rapidly at a point appreciably
before the buckling point. For both cases B3 increases at an almost

constant rate until Jjust at the point of buckling.
ELASTIC SUPPORTS AT ENDS

So far the ends of the arch have been considered as rigidly hinged.
Since ideal rigid hinges cannot be realized in the testing machire, it
‘is expected that some deviation in the experimental buckling load from
the theoretical value may exist owlng to the yielding of the supports.
In order to obtain some quantitative measure of the effect of support
displacement, an example of an arch with elastic supports will be
considered. '

Assume that the supports are perfectly elastic. Let « Dbe the
spring constant of the support so that a displacement A would produce
a thrust of magnitude oA. Without loss of generality it can be assumed
that one end is rigidly hinged, and the other is elastically supported,
as shown in figure 3. The effect of the support rigidity on the
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equilibrium is expressed by the parameter pB, defined by equation (10).
The equations of equilibrium are either equations (15) or (18).

As an example, consider a sinusoidal arch loaded laterally by a
sinusoidally distributed load of intensity aq per unit length:

L oTx
Yo alL sin T

X
q = q, sin-ir

The equation of equilibrium is given by equations (22). The solution .
obtainable in the same manner as in the section "Sinusoidal Arch under
Sinusoidal Loading” is’

. =)
3
Rop = (1 - S)Ap + Vg7 . (V; < S (Xl)o) |
r(76)
' BA2 - b+ S -
Rep = (1 - S)Ap + 3V 5 (xl > (X1)0>
, J

where (xl)o ‘is the smallest positive real root of the equation:

(Bk‘lg - 44 S) = '2_)-)_:-3-([3)"12 -1 + 8)3 (77)

The effect of the nonrigidity of the support (B < 1) is shown in fig-
ure 14 and table VII. The values of (xl)o as a function of B are

also given in that figure and table. The limiting case, o —> o and
B——>1, checks with the results of the sections "Sinusoidal Arch under
Sinusoidal Loading" and "Effect of Initial Axial Compression.”

If the support offers no resistance to the axial thrust, that is,
it is perfectly flexible, then o =0 and B = 0. In this case there
is no critical buckling load; the arch deflects continuously because the

lower limit of Ay, l/VE; below which no buckling can occur, now tends
to infinity.
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Similarly other loading conditions may be treated. For example,
if p differs from 1, the ratios of Rgy for a uniformly distributed

load, a sinusoidally distributed load, and a concentrated load at the
center are again, respectively, ﬂ/h, 1, and 1/2.

LATERAL EIASTIC SUPPORTS

In application to certain wing desigrn problems, it is desired to
investigate the effect of lateral elastic supports on the buckling load
of the arch. As an example, consider an arch having an elastic support
at the center, as shown in figure 3. Let a' be the spring constant
of the support. Then the change in thrust in the spring is

veafa - (o)) | (78)

where A' - (A‘)o is the change in the deflection at the midspan. No
generality is lost by assuming (A')O to be zero, if initial thrust in
the spring is counted as a lateral force.

Now when the deflection curve of the arch is given by equations (2)
and (3))

n-1 .
A - (A, = (-1) 2 (ap - by)L (79)

m=1,3,5,...

The moment contributed by V is then (cf. equation (65))

2VL (—I)T _l_ .. mnx ‘ (80)

Combining equations (78), (79), and (80) ard adding (MO)V to the right-

hand side of equation (4), there is obtained, after some reduction, the
equations of equilibrium (equations (18) modified):
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n n

Bm(é Ez: n2Bn2 - %{: ngx 2+ n® -5 = -neKmR + xm(m? - S) +

n-1
. mEw P 2
sin = — -1) (xn - Bn) (81),
n=1,3,5,.

where Km- is given by equation {17) and

3 N
2L
= —EE— ! 82
9 v a | (82)

Slnce a 81mply supported beam with a unit concentrated load at its

center has a deflection of Ny L 2 ‘L under the load, M 1is

18 ET ™ ﬂh EI
approximately the ratic of a' +to the spring constant of a simply sup-
ported beam having the linear dimensions of the arch.

Consider a sinusoidal arch subject to sinusoidal loading. For
simplicity let the initial thrust be zero and let the end hinges be
rigid. Then if m # 1,

B =1
5 =0
My = 0
1
K, = &
1
2
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The governing equations are

BID-(Z neBnQ - )\.12 + mg) = —SlmR + 811&)\.1 +
n

(‘
m-1 n-1 :
(-1) 2 = 1l - j{: (-1) 2 B, (if m is odd)
{ m n=1,3,...
(83)
0 (if m 1is even)
-
let
. '\
a1
Q=2 - Z (-1) 2 By
n=1,3,...
f (8k)
P = 07 Bp°
n=1,3, J
then
M - R + 2uQ
By = -
P+l -°
m-1
By = (-l)—g_ 2hQ (m odd and 2 3)
me(P + m? - Xlz)

'With these values for Bp, there is obtained

R - A
P+1- A m?(PE + me - Xle)

m
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First calculate the critical load for unsymmetric buckling where
Bo, # O for some n. Then according to equatiors (83),

P =22 - b (86)
But P is also given by
b - }Z: n2n 2
m
o ; M - R)(A - R + bug
S e S CLE L PSS
20 - 1) (- ) ~
m=1,3,... (87)

Neglect all except the m = 1 term of the series and substitute
the value of P “rom equation (86): '

(xl -R + euQ)2
(l - ltne)2

= Xlg - W - hneBgng - (88)

The critical condition is again Bo, = 0. Solving equation (85) for Q
ard substituting together with By, = O into equation (88), ore obtairs

' 1/ 5 5
= a + (40 - 1) Jle - bn® 4 2u Wl e Rl

R =
. (4n2 - 1) (1 + 2ua) + 2u

where




NACA TN 2840 L1
This expregsion is a minimum for n = 1, hence

| a = -0.3087
e (89)

o
Rcr.= (Rcr)Sine ¥ 3+ O.lh?u[%xl ) (Rcr)Sin;]

J

‘These values are given in table VIII and plotted in figure 15 for
u=0, 0.5 1, 1.5, 2, and 3.

In this solution the effect of the higher modes (m 2 3) on the
force exerted by the spring, which enters by the series zi: ————l;————,
me{m? - &)

ig ircluded, but the effect of the higher modes in lowering the buckling
N
m2(m2 - 4)2

neglected. In the analogous case of the arch with a concentrated central
load this results in a maximum error of 3 percent for A < 10 and for

this case it should be no more.

load, which enters by the faster converging series E

Consider next the case of symmetrical buckling which occurs for the
smaller values of A1. As a first approximation neglect the effects of
all the Bp's except By. Then from equations (83), there is obtained
under the critical condition OR/3B] = O the critical load:

3/2

Rer = M (1 + 2u) + vg;(xlg -1 - 2u) (90)

A procedure similar to that used in the section "Initial Shape of
Arch Other Than Sinusoidal" can be applied to find further approxima-
tions. The results of such a calculation, with the effects of By and

B3 included, are given in table VIIT and are plotted in figure 15.
BUCKLING LOAD BASED ON KARMAN AND TSIEN'S ENERGY CRITERION

It is well-known that the classical buckling criterion, on which
the calculations of the preceding sections are based, leads to erroneous
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results for cylindrical and spherical shells; while a furdamentally
different criterion, first proposed by Kdrmén and Teien, whose latest
version is giver in reference 7, gives much closer agreement with exper-
iments. The criterion of Kdrmén and Tsien (henceforth referred to as
erergy critericr) is that the buckling load is reached wher the total
energy in a possible (buckled) equilibrium state is equal to the total
erergy in the unbuckled state. In other words, if the total potential
erergy is such that it is permissivple for the structure to Jump from

the unbuckled state to a buckled state, ther the structure will actually
Jump.

" Both the classical and the energy criteria have been applied to
curved beams and shells. In some cases the classical criterion gives
closer agreement with experiments; in others, the erergy criterion gives
better results. The reason, as pointed out by Tsien, is tkat in some
cases the energy "hump" betweern two equilibrium states (one buckled and
one unbuckled) of the same energy level is large and in other cases it
is small. If the hump is small, the ever present small disturbances
will enable the structure to jump from the unbuckled state to the more
stable buckled state. Otherwise, this jump will be hindered. The
crucial decision of the proper criterion deperds muchk on what one means
by a "practical" experimental setup or a "practical" service condition
of the structure.

The energy criterion has been appiled to the low arch problem by
Friedrichs (reference 5) who found a great reduction in Rer based on
the energy criterion from that based on the classical criterion. In
order to decide which criterion actually applies to the buckling of low
arches, the experimental setup to be described in the next section
will be accepted as practical and the theoretical results will be com-
pared with experiments.

In applying the energy criterion, one must distinguish a constant
deflection loading (a rigid testing machine) from a constant force {dead-
weight) load. In the former case the change in total energy in buckling
is Just equal to the change in the internal strain energy, while in the
latter case it is equal to the change in the strain energy mirus the
force times the displacement. However, a laterally loaded arch cannot
buckle if the point of loading is not allowed to Jjump; hence only the
dead-weight loading case will be considered.

For dead-weighkt loading the total energy is

g=U-w (91)

wheré U 1is the strain energy and W 1is the work done by the lateral
loading. The energy ¢ can be expressed as a function of the
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deflection &. Then according to the energy criterion, buckling would
occur under a dead weight F provided that

#(®,)

F(8y)

7(85)
(92)

F(2)

where 07 and 62 are two deflection configurations. Now the strain

energy U, under the assumptions of the section "General Analysis,” is
giver by

L 2
2, g2 72 - 1.2)L
U = % EI (%_% - Zé) dx + i———jiﬁfl—l— (93)
dx dx '
o

From equations (2), (3), and (9), equation (93) becomes

U =K }E: m® {}xm - Bm)e[g + %(xm + Bm)é] + 5 - Bméﬁ- (9%)

m

where

2
K = ﬂuEI
AL3

The work done by the external load in the buckling process is

L
W =‘J; Wyo - ¥) &x (95)

For a sinusoidally distributed loading,

W= 2KR(M - By) (96)
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while for a concentrated load at the midspan

Z m-1
W= UWKR (-1) 2 (M - Bn) (97)
m=1,3,5,...

The buckling load according to the energy criterion can then be obtained
easily.

inusoidally Distributed Loading on a Sinusoidal Arch

It was shown in the section "Sinusoidal Arch under Sinusoidal
Loading” that the only equilibrium position of a sinusoidal arch urder
sinusoidally distributed load is the one for which all the By's
(m=2,3 .. .) vanish. Fence if S = 0 (zero initial thrust),

AN

' (r - B2 + %(xl + Bl)ﬂ - 2R(M1 - By)

(98)

d
]

M o+ B(m® - 1) - B3

The buckling conditions that ¢(Bl') = ¢(Bl") and R(Bl'> = R(Bl") are
fulfilled when R = Ay at which

% =B1% - Mm%+ 5(M° - B,2)2 (99)

and §(By) = #(-B)). A substitution of R = Xy into the second of
ecuations (98) gives the arch rise at the critical condition:

(Bl)cr = Xle -1

or

Hence

(100)
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Central Concentrated Load on a Sinusoidal Arch

Assuming no initial thrust (S = 0), from equations (9L) and (97)

=P,

- (xl - Bl)EE + %(xl + Bﬁ%] - uR(xl - Bl) +

m-1

>‘ Eﬁ*ﬁf (1 - % Bm2> + WR(-1) 2 B, | (101)

m=3,5,.

From equations (66)

- 2p 2 2 .
2R—kl—Bl(§m:mBm - M +1> (102)

If all the Bp's except By are neglected, the above equations

become identical with those for the sinusoidal loading if R is replaced
by 2R. Thus approximately, Rqyr for the concentrated center load is
ore-half of that for the sinusoidal load. This is the same approximate
ratio as for Rey of the sinusoidal and the concentrated loadings based
on the classical criterion.

The ratio of Rgr based on the energy criterion to that based on
the classical criterion is plotted in figure 16 for sirusoidal loadings
on a sinusoidal arch. This same ratio holds approximately for the
central -load-on sinusoidal arches.

EXPERIMENTS

A series of pin-ended arches having rigid simple supports were
loaded with a central concentrated load in the testing apparatus shown
in figures 17 and 18. The ideal end conditions were approximated as
closely as possible by supporting the arches or knife edges mounted in
a heavy steel frame having =z stiffness approximately 100 times that of
the specimen. Allowing a 20-percent reduction in this stiffness due to
the flexibility of the krnife edges and fittings results in a value of B
equal to 0.988. A reference to the section "Elastic Supports at Ends"
and figure 14 shows that a maximum error of about 1 percent will result
from considering the supports as perfectly rigid.
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The knife-edge fittings were provided with sockets which alired
the ends of the specimen with the knife edges. (See fig. 19.)

The most critical problem in setting up the specimens for testing
was the spacing of the supports. A looseness or ar initial compression
results in a change ir the initial arch shape and an appreciable error
in the buckling load. In the tests the spacing adjustment was made by
a wedge controlled by a screw which was rotated until the play between
the specimen and the knife edges was Jjust eliminated.

The specimens were cut from 24S-T3 and 755-T6 sheets and milled to
l/2-inch width. The strips were then rolled to the desired curvature
on a three-roll roller. To reduce the effect of roll eccentricity
several passes were made at each setting of the rolls, the rolls belng
indexed to a new position at the start of each pass.

The curvature of each specimen was measured at 12 stations by a
dial gage wkich could be read up to ten-thousandths of an inch, placed
between knife edges 2 inches apart. These curvatures were numerically
integrated to find the shape of the specimen for which a 12-term Fourier
expansion (half-range sine series) was made. The first three coefficients
are given in table IX. As a check on the accuracy of the method the
central rise of the arch as predicted by the numerical integration was
compared with the actual rise as measured with a veérnier height gage. -
The difference was no more than U4 percent of the arch rise for each
specimen measured. The central arch rise as predicted by the Fourier
coefficients agreed with the numerical integration within 1 percent.

The Fourier coefficients A3, Ap, and i3 were used in calculating

the theoretical critical load. Ir such calculations use is made of the
fact noted in the section "Central Concentrated Load on a Nonsinusoidal
Arch" that, whereas for smaller Xp (say, A < 2.4) the Jjoint effect

of Ay and X3 or Rey 1s not equal to the sum of the effects of Xy
and \3 separately, for larger Xij (say, A > 2.&) the effects of o
and x3 are superposable. Hence Tfor kl < 2.4 the more exact method
of the aforementioned section was used, but for A} > 2.4 the effects
of X and ‘x3 were calculated separately and added together algebra-
ically. The effect of Ay 1is given by equation (72). That of X,,

according to the previous argument, can be obtained, percentagewise,
from figure 11(a) or table IITI.

Although no attempt was made to determine the arch shape during
the loading process, visual observatiorn showed that the test performance
at least approximately agreed with the theoretical predictions. The
gradual increase in the third mode with the load, resulting in a flat-
tening of the arch and then a reversal of curvature for the -higher values
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of Ay, was noted. TFor values of kl > 2.4 the rapid increase in the

unsymmetric second mode just before buckling was quite evident. The
clearest indication of the onset of buckling, however, was obtained by
noticing the vibration of the specimen as the individual weights were
epplied. Even a very careful application resulted in a slight vibration
in the fundamental mode. When the load approached withirn a few pounds
of the critical load there was a rapid decrease in the frequency of this
vibration. Further load applications were made ir extremely small
increments.

The theoretical and experimental results are listed in table IX
and plotted in figure 16. In figure 16, the ordinate is the ratio of
Rey determined by the test to that computed theoretically according to
the classical criterion. In the same figure, the dashed line shows the
ratio of Rgy given by the energy criterion to that given by the clas-
sical criterion. This curve is based on the simple sirusoidal arch
(XE = KS = O). For arches used in the experiment X, and X3 were SO

small that the variation of the ratio R R ' does not
€Y/ energy/ \ ©¥/ class.

vary much from the dashed curve of the figure.

It is seen that the test results agree quite well with results
based on the classical criterion for higher values of A] but drop
appreciably below them for the lower values. All the test values,
however, lie gbove the energy criterion curve. Although calculations
for the series of arches representing the test specimeng indicate that
buckling would occur for Aq 2 1.05, no buckling was observed for

» S 1.38.

A calculation of the stresses in the specimens at buckling was
made to determine if yielding occurred. With Hg =0 and B =1 the
axial compressive force is given by equation (9). Using the nordimen-
gional rotatior it becomes

B
Uc = —A-
o) .
2 T A

For a sinusoidal arch with a sinusoidal load all the Bp's except

. 1
By are zero at the critical buckling load and (B 2 - z(2 -1
L. & ' ( 1')cr 3( L )

for 1 5 xlg £5.5 and (Bl)cre = xlg - 4 for XlQ 2 5.5. Therefore
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] %(1 + 20°) (for 1€ 22 < 5.5)

( C)cr _ Hop , (104)
g TP T
P N (for kle 2 5.5)

where P = HEEI/LE is the Euler buckling load of the beam and op = P/A.
Thus it can be seen that the critical compressive force is just equal to
the Fuler load if X} = 1. As A} increases the critical force increases
until it reaches the Fuler load for buckling ir. the second mode. At

this point the arch buckles unsymmetrically and the critical compressive
stress remains constant for all higher values of A1+ This performance

is also typical of symmetrical arches with a central concentrated load,
but for arches with a slight asymmetry, as is the case for the specimens
tested, the value Her/P = 4 1is approached only as A\ becomes large.
The values of Hgp/P for a series of arches are given in table VI.

The maximum bending stress at any point x 1is given by
2 d“y
0 = 1 Et<§41 - -7 (105)

where 1t 1is the thickness of the specimen. In terms of the nondimen-
sional Fourier coefficlents this becomes

= ﬂeEt ¢_ }:: E(Xm. Bp) sin —= m X (106)

The bending stresses at the midspan were calculated for the series of
arches with XAp = 0.005)%; and X3 = 0.0hOkl which are representative

of the actual test specimens. The results are shown in table VI together
with the total maximum stress for t = 0.25. The total stress for any
other thickrness is obtained by multiplying the last column of table VI

by the factor 16t2.

All the specimens tested had maximum stresses well below the yield
gtress of the material at the buckling point. Yieldirg occurred in the
prost-buckling stage for all the specimens except those hav1ng the very
lowest values of Aj.
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CONCLUSIONS

A Fourier analysis has been used to solve the problem of buckling
of low arches under a lateral loading acting toward the center of
curvature. The conclusions may be summarized as follows:

1. Yor a sinusoidal arch under a sinusoidal loading, the analysis
gives a very simple exact solution for the nonlinear equation of equi-
librium. The criticali load can be expressed as a simple function of
the beam dimension parameters. On the basis of the classical buckling
criterion, it is shown that the buckling mode is symmetrical for arches
having a nondimensional parameter XA less than Vﬁ?ﬁ and 1s unsym-

metrical for Ay greater than V5.5. This dividing value is affected

gomewhat by the initial thrust in the arch and the elasticity of the
support.

2. For arch shapes other than sinusoidal but under sinusoidal
loading, it is shown that symmetrical deviations have only minor effects
on the buckiing load, while unsymmetrical modes of deviation cause
serious reduction of the buckling load. The buckling mode is always
unsymmetrical if the initial shape of the arch contains unsymmetrical
modes. For sinusoidal loading the critical load is independent of the
sign of Ap(m > 1); thus a pair of different arches can have the same

critical load.

. 3. For a load distribution that deviates from sinusoidal, the
unsymmetrical comporents again have serious effects. The critical load
will be deperdent upon the sign of Xm(m > 1). For symmetrical load
distributions, the buckling loads are approximately proportional to the
total loads (under the respective distributions) that are required to
rroduce a unit deflection at the center of a straight simply supported
beam without axial restraint.

4, Comparison with experiments shows that the classical criterion
of buckling is applicable for larger values of A1, say, XA} > 3. But
the classical criterion overestimates the buckling load for very flat
arches. The experimental buckling load is always higher than that
estimated according to the energy criterion of Kérmdn and Tsien but has
a tendency to approach that criterion as \; decreases. For \—>1

(with exact value deperding on the initial thrust and support conditions),
" the arch deflects continuously and there is ro buckling phenomenon.

California Institute of Technology
Pasadena, Calif., January 2L, 1952
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TABIE I

VALUES OF Rer AS A FUNCTION OF INITTAL THRUST AND ARCH RISE

1.2

S 1-s)t/2| 1.0 1.4 1.6 1.8 «2.0
0 1.000000 1.000000 1.312338 [ 1.762039 | 2.349955| 3.090387| L4.000000
.1 .853815 .912172 1.232735 | 1.680056 | 2.263209| 2.997755| 3.900829
.25 .649519 .798113 1.120608 | 1.562302 | 2.137273] 2.862332] 3.755138
.50 353553 .636083 .950784 | 1.379012 | 1.938017| 2.645717] 3.520288
1.00 | 0 . 384900 .665108 | 1.056166 | 1.576551] 2.24k738] 3.079201

) Moo (5.5 - 5)1/? 2.k 2.6 3 3.5 b
0 5.096309 6.019436 6.379947 | 7.583975 | 9.708204|12.116843| 14.392306
.1 4.990180 5. 765646 6.251454 | 7.413459 | 9.47h954] 11.81891114.035515
.25 )u.833707' 5.392701 6.053234 | 7.154805 | 9.123864] 11.371428}13.500000
.50 | 4.580028 4.792269 5.709987 | 6.716641 | 8.535621|10.624117|12.606599
1.00 | 4.069398 | 3.67h235 | 4.983975 |5.817216 | 7.348470| 9.124145|10.816653
R , . <

ohge NI VoVl

16
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VALUES OF (Bm)cr, (Bl)cr, AND R., COMPUTED FROM EQUATIONS (L0) AND (41)

TABLE IT

NACA TN 2840

(a) m=2
)\'l )‘2 (BE)CI‘ . (BE)CI‘/)'2 (Bl)cr RCI’ LE (BE) cr (Bg)cr/ )"2 (Bl)cr RCI'
ApfA = 0.01 Ap[A1 = 0.05
1.0 |0.010 | 0.0133% 1.334 Imag.l | Imag. {0.05 | 0.06655 1.331 Imag. Tmag.
1.2 | .012| .01773 1.478 0.3828 | 1.312{ .06 .08824 1.471 0.3785 | 1.306
1.4 | .01k | .02372 1.69k L5656 | 1.761 | .o7 L1170 1.672 .5635 | 1.7h2
1.6 ] .016] .03259 2.037 L7214 ) 2.348 | .08 .1569 1.961 7257 | 2.297
1.8 | .018 [ .OhT7kh 2,636 .8660 | 3.084| .09 .2121 2.357 .8886 ] 2.958
2.0} .020 | .07663 3.832 1.0110 | 3.978| .10 2817 2.817 1.0690 | 3.689
2.2 1 .o22| .1339 6.088 1.1947 | 4.999 | .12 .3568 3.243 1.2699 | 4. 4h3
2.4 | .o24 | .19%90 8.294 14443 [ 6.036 | .12 4302 3.585 1.4808 | 5.190
2.6} .026] .2534 9.748 1.7077 ] 7.022 ] .13 .5002 3.847 1.6931 ) 5.919
3.0 | .030 | .3%28 11.43 2.2099 | 8.856 | .15 .6307 4. 204 2.110 7.322
3.5 .035{ .4386 12.53 2.7936 | 10.99 175 -78k0 L. 480 2.609 8.997
L.o| .ok | .5267 13.17 3.3467 | 13.02 .20 L9271 4.636 3.096 |10.616
M)Ay = 0.1 A = 0.2
1.0 [c.10 [0.1325 1.325 Imag- Imag. | 0.20 | 0,2606 1.303 Imag. Inag.
1.2 .12 L17h2 1451 0.3640 | 1.289 | .ok .33h9 1.396 0.296 1.2%0
1.4 | .1k .226Y 1.617 .55480 | 1.692 | .28 L4187 1.495 Lho76 | 1.562
1.6 .16 .2910 1.818 1235 | 2.179) .32 L5094 1.592 L6668 | 1.925
1.8 .18 .3662 2.035 L8oko | 2.724 | .36 .6039 1.677 8272 | 2.309
2.0 .20 L LT3 2.237 1.0715 | 3.298 | .4 .6998 1.749 .9838 | 2.702
2.2 | .22 .5295 2, ko7 1.25k2 1 3.879 1 .L4k L7955 1.808 1.1381 | 3.096
2.4 1 .24 .6108 2.545 1.4388 1 L.u551 .48 .8906 1.855 1.2902 | 3.k89
2.6 .26 .6900 2.65k4 1.6226 [ 5.022 | .52 .9848 1.894 1.4403 § 3.879
3.0 | .30 .8U32 2.811 1.9848 | 6.1301) .60 | 1.170 1.951 1.7354 | 4.648
3.5.1 .35 |1.027 2.934 2,426 7.470 ) .70 { 1.398 1.997 2.096 5.590
Lo} .40 11.205 3.013 2.816 8.709 | .80 | 1l.622 2.028 2.450 6.518
A‘Q/A'l = 0.3 >“2/>"l = 0.4
"1.0|0.30 |0.3829 1.276 Imag. Imag. | 0.40 | 0.5002 1.250 Imag. Imag.
1.2 .36 . 482k 1.3% 0.1111 | 1.202 | .u8 L6212 1.294 Imag. Tmag.
1.k} .ke .5879 1.k00 3746 ) 1453 .56 L7456 1.332 Imag. Imag.
1.6 .8 .6968 1.452 5429 | 1.733 ] .6k .8716 1.362 0.3177 | 1.612
1.81 .54 | .8071 1.495 L6907 | 2.024 | .72 .9980 1.386 637 | 1.853
2.0} .60 .9208 - 1.535 .8093 | 2.319] .8 | l1.12h4 1.405 L5916 | 2.091
2.2 | .66 {1.028 1.5587 L9620 | 2.615| .88 | 1.250 1.421 L7082 | 2.331
2.4 .72 11.137 1.580 1.0911 ) 2.911§ .96 } 1,376 1.433 .8181 ) 2.571
2.6 | .78 |1.246 1.598 1.2174 { 3.205 | 1.04 | 1.500 1.443 .9236 | 2.810
3.0 .90 {1.463 1.625 1.4640 | 3.789 |1.20 | 1.7k9 1.458 1.1242 | 3.288
©3.511.05 |1.730 1.648 1.7640 | 4.510 {1.40 | 2.058 1.470 1.3688 | 3.881
| 4.0 [1.20 |1.996 1.663 2.0581 | 5.224 {1.60 | 2.365 1.478 1.6048 | b.h71
lImaginary. \\%S&Aﬁ’/
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TABLE II

53

VALUES OF (By)er, (B1)cp, AND Ry, COMPUTED FROM EQUATTONS (40) AND (41) - Concluded

(b} m=3
Mol M| B [(B3)er/M] (Bl)er| Ber | M3 f(B3er |(B3)erfs| (Bl)er| Ber |
A3fM = 0.01 x3/xl = 0.05
1.0( 0.010| 0.01125 1.125 Imag. | Tmag. | 0.05 | 0.05623 1.125 Imag. | Imag.
l.2| .012| .01k02 1.168 0.3779( 1.312 .06 07001 1.167 0.3762| 1.308
1.4 Olk| .01712 1.223 56T 1.762 .07 08540 1.220 .5617( 1.750
1.6 .016{ .02069 1.293 LT342§ 2.36k4 .08 1030 1,287 .7183 | 2.323
1.8 .018| .02490 1.383 .86221 3.088 .09 1236 1.374 .8530] 3.035
2.0 .020| .02998 1.499 1.0000| 3.996 .10 1473 1.473 1.0025| 3.894
2,21 .022| .03642 1.655 1.12651 5.083 A1 1758 1.598 1.1k25| 4.903
2.k .o24k| .okk6O 1.858 1.26111 6.381 .12 2098 1.748 1.2817| 6.054
3.0 —=moc| cmmmeme m——— RSP . RPN SRS (STIORTPI R (R
' 0 (USISRRSVRS U RS NNSUOSU I U (O e i B T
1.0} 0.20 | 0.1112 1.122 0.14631 0.9969} 0.20 | 0.2234 1.117 Imag. | Imag.
1.2f .12 1395 1.162 .3693 | 1.295 24| 2760 1.150 0.3172( 1.255
1.4y .1k 1696 1.211 .5538] 1.716 281 .3321 1.186 .5110} 1.610
1.6| .16 .2032 1.270 L7109 | 2.2k9 .32 .3919 1.225- L6694} 2,036
1.8] .18 .2h08 1.338 .8587| 2.893 .36 4549 1.264 .81631 2.516
2.0] .20 .2828 1.4k 1.0025] 3,649 Lo} L5203 1.301 L9601 ) 3.038
2.2 .22 3292 1.496 1.1466 | 4. k476 Ay | L5877 1.336 1.101 { 3.589
2.4 .24 3794 1.581 1.2950 | 5.386 A8 L6562 1.367 1.2416] 4.159
2.6 .26 Ji32h 1.663 1.44861 6.348 52 L7125k 1.395 1.3821 | 4.7k0
3.0  mmme | mmmee ] e | s | eme- .60 L8644 1.441 1.6620| 5.913
TN (USRI PR (VU U . .80 l1.209 | 1.512 2.3557( 8.821
AgfAp = 0.3 x3/x1 = 0.4

1.0{ 0.30 | 0.3327 1.109 Imsg. | Imag. | 0.40 | 0.4h02 1.101 Imag. | Imag.
1.2] .36 .ho82 1.13% 0.2086] 1.213 A48 L5370 1.119 Imag. | Imag.
1.5 .42 L4867 1.159 L4133 1.501 561 L6358 1.13% 0.26681{ 1.420
1.6 .48 5677 1.183 .58541 1.828 G| L7360 1.150 ho8 ) 1,677
1.8 .54 .6503 1.204 .7293| 2.184 .72 1 .8371 1.163 .5833] 1.951
2.01 .60 7341 1,224 L8636 2.556 801 .9385 1.173 7100} 2.233
2.2] .66 .8185 1.240 .99ko | 2,938 .88 | 1.0k0 1.182 .8283 | 2.520
2.4 .72 . 9032 1.254 1.1216| 3.326 .96 | 1.1ke 1.189 .9hoo | 2,808
2.6) .78 .9881 1.267 1.25864 1 3.716 | 1.04 | 1.243 1.196 - | 1.0525 | 3,097
3.0 .90 | 1.158 1.286 1.4932| 4.496 | 1.20 | 1.hk6 1.205 1.2508 | 3.666
3.5 1.05 | 1.369 1.303 1.7944 | 5.465 | 1.40 1 1.699 1,213 1.5276 | 4.391
4,0}1.20 | 1.579 1.315 2,092 | 6.423 1£qu%1 1,219 1.78181 5.101
| P




TABIE ITI

VALUES OF R., FOR A SINUSOIDALLY LOADED ARCH HAVING NONZERO X, AND X\, COMPUTED FROM EQUATION (L)

[Dashed‘lines indicate that there 1s no critical load]

e

(8) m=3
A
M/ % 11 1.0 1.2 1.4 1.6 1.8 2.0 2,0 2.4 2.6 3.0 3.5 4.0
0.01 1.0000 | 1.3121 | 1.7615| 2.3637 | 3.0881 | 3.9955| 5.0877 | 6.3812| 7.5720 | 9.6960 | 12.1039 | 14.3783
05 | eemea 1.3079 | 1.7499{ 2.3228 | 3.0349 | 3.8945| 4.9029 | 6.0540 | 7.2662 | 9.3967 | 11.7881 | 14,0371
A | e 1.2953 | 1.71611 2.2493 | 2.8926 | 3.6492| 4, 4765 | 5.3864 | 6.3485 | 8.3545 | 10.7127 | 12.8865
2| mmmeae 1.2547 | 1.6105| 2.0359 | 2.5164 | 3.0383 | 3.5892 | 4,1589| 4.7396 | 5.9134 | 7.3769 | 8.8213
3 | e 1.2132 | 1.5011 | 1.8285 | 2.18k40 | 2.5562 | 2.9384 | 3.3260| 3.7159 | 4.496k | 5.4650 | 6.h4228
PR T (RN [ 1.4195| 1.6772 | 1.9510 | 2.2332| 2.5196 | 2.8081 | 3.0971 | 3.6657 | 4.3906 | 5.1012
(b) m=2
AL
1.0 1.2 1.4 1.6 1.8 2.0 . . . . . .
)"2/*1 2.2 2.k 2.6 3.0 3.5 4.0
0.0L | cmcmn= 1.3121 | 1.7612 | 2.3476 | 3.0837 | 3.9775 | 4.9991 | 6.036L | 7.0223 | 8.8561 |10.9893 | 13.0235
05 | memeea 1.3060 | 1.Th22 | 2.2970 | 2.9577 | 3.6889 | 4.b435 | 5.1904 | 5.9191 | 7.3218 | 8.9975 | 10.6163
D N 1.2887 | 1.6917| 2.1790 | 2.7243 | 3.2982| 3.8788 | L.4548 | 5.0223 | 6.1296 | T7.4705 | 8.7094
I~ 1.2397 | 1.5616 | 1.9248 | 2.3091 | 2.7019 | 3.096k4 | 3.4892 | 3.8788 | 4.64T5 | 5.5905 | 6.5179
R S . 1.2017 | 1.4534 1 1.7328 | 2.0236 | 2.3185 | 2.6150 | 2.9106 | 3.20L49 | 3,7888 | L.5102 | 5.22W0
b ORI, (R R 1.6120 | 1.8530 | 2.0910 | .2.3306 | 2.5705 | 2.8102 | 3.2878 | 3.881L4 | L. L71k

owge NI YOVN
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TABLE IV
VALUES OF k FROM VALUES OF R

EQUATION (62)

TABLE V

cr

55

FOR A SINUSOIDAL ARCH

WITH A CENTRAL CONCENTRATED LOAD

M k M Rer
1.0| 0.1929 x 10-3 o,k { 3.089
1.2 .3578 2.6 1 3.678
1.4 L7075 3.0 k.716
1.6} 1.408 3.5 5.890
1.8 2.767 k0| 7.000
2.0| 5.486 k.51 8.072
2,2110.83 5.01 9.122
2.4{21.70 5.5 | 10.156
6.0 | 11.179
6.5 112.193
7.0 | 13.201
7.5 1Lk.204
8.0 | 15.206
8.5 { 16.203
9.0 | 17.195
TABLE VI
CRITICAL CONDITIONS FOR CENTRALLY LOADED ARCHES WITH
‘o = 0.005%; AND Ag = 0.0Lk0)\;
[
Max. critical
M (Bl>cr (Bg)cr Rer (B3>cr (Gé)cr (?b)cr,max stress
oG Op (psi)
(1)
1.2} 0.3713 | 0.0088 0.6511 0.075| 1.28 3.85 -~ 8.4 x 103
1.5 .6310] .01351 .996| .108| 1.84 4.50 10.4
2.0 .9805 | .03263 | 1.878{ .196| 2.79 T7.21 16.3
2.5] 1.%003 | .1157 3.048 | .290| 3.57 9.7h4 21.8
3.0 1.9770 | .2175 h.193 | .380| 3.73 11.63 25.1
Lo} 3.040L | .3605 6.2361 5411 3.78 15.16 30.9
5.0 4.039 4831 8.140 | .693{ 3.79 18.7 36.8
6.0 | k.990 .5991 9.986 ! .842 ] 3.80 22.3 “ho,6
7.0 5.922 L7120 |11.800} .990| 3.80 25.9 48.5
8.0 6.841 .8231 [13.596 ] 1.136| 3.81 29.5 54,5
9.0 7.752 .9332 [15.380}11.282| 3.81 33.1 60.3

lHighest outer fiber stress in arches
mers (E = 10.3 x 106 psi, T = 18 in., and

representative of
t = 0.25 in.).

test speci-

“Iﬂ!’,”'



TABLE VII
EFFECT OF FLEXIBILITY OF SUPPORT ON CRITICAL LOAD

(a) Values of Royr as a function of )

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 | 2.6 3.0 3.5 k.0

. . 1.762 2.350 3.680 4.000| 5.096 | 6.380 | 7.584 | 9.708 | 12.12 | 14.39
----- 1.288 1 1.716 | 2.277| 2.983 { 3.850 | L.895 | 6.135 | 7.391 | 9.564 | 12.01 | 1k.30
1 D

..... 1.265] 1.671 ] 2.204 ] 2.876 | 3.701] 4.694 | 5.873 | 7.166] 9.402 | 11.88 | 14.20
----- 1.226 | 1.584 | 2.062| 2.664 | 3.404 | 4,295 | 5.349 | 6.584 | 9.000 | 11.58 | 13.95
----- 1.200 | 1.504 | 1.924 | 2.457 1 3.155| 3.897 | 4.829 | 5.917| 8.439 [ 11.17 | 13.62
---------- 1.437 1 1.795| 2.256 | 2.823| 3.505 | 4.312 | 5.255| 7.587 | 10.59 | 13.16
--------------- 1.681] 2.066 | 2,544 | 3,121 | 3.803 | 4k.598| 6.565 | 9.686 | 12.48
(b) Solution of equation (71) NAA

B (M)o

1.0 2.345

.95 2.406

.90 2.471

.80 2.602

.70 2.803

.60 - 3.028

.50 ~ 3.317

9%

Ctige NL VOVN
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TABLE VIII

VALUES OF Rgpr FOR A SINUSOIDAL ARCH WITH A CENTRAL

ELASTIC SUEPORT AND g = g4 sin

L

q 0.5 1.0 1.5 2.0 ! 3 0
)\'1_ . . .‘ . L -
1.h2 2.82 No solution in this
1.60 3.3k
1.74 3.87 5.10 region
1.80 4,11 5.32
2.00 5.06 6.25 T.61 9.28 12.L6
2.20 6.21 7.40 8.54 9.62 11.66
2.40 7.43 8.43 9.38 10.29 12.00 -
3.00 10.45 11.17 11.84 12.49 13.70
3.50 17.73 13.32 13.87 14,40 16.40
4.00 14,92 15.42 15.89 16.34 17.20

NACA

o7



58 NACA TN 2840

TABLE TIX

THEORETICAL AND EXFERIMENTAL DATA

. Length | Width | Thickness | . A Iy Buckling | (Rer) (Rer)
Specimen . . X 1 2 3 1load exp eXp
o (in.) | (in.) (in.) (li) m!
1 18. 0.500 0.24%9 3.78 | 0.0138 | 0.136 82.7 5.19 0.880
2 17%% Lhg5 .1885 | 9.12 .0055 | .34k 85.7 16.37 1.00L
3 18 .500 .2L9 k.o L0097 | .16 107.0 €.72 .955
b 18 499 .2kg 3.32 L0055 | .11k 73.7 4,63 .915
5 1 %% .501 .2hg 2.63 Oh17 | .097 33.9 2.11 .653
6 18%5 L1493 .249 1.83 L01Lk6 | ,063 1€.2 '1.ok Ryt
T 18 ©.502 .250 471 .08k2 | 159 98.5 6.07 .88k
8 18 ©L502 251 L. o7 .0k96 | 167 gh. k4 5.72 .976
9 18 .50k .251 3.67 L0666 | .16k 80.0 L.83 .988
10 18 505 .250 3.30 02781 .123 60. 4 3.70 .781
11 18 .502 .250 3.90 L0264 - 126 96.7 5.95 1.003
12 18 .505 .250 5.31 .0015 | .185 139.8 8.55 .926
13 18 .503 .250 5.07 L0957 | .131 115.8 6.98 .925
1k 17%% .502 L3T7h 1.86 L0076 | .0582 83.3 1.02 .630
15 17%% .500 375 | 1.67 | .o170 | .o610| 73.0 .886 .703
16 17%% .501 .37k 1.38 .0013 | .obsg (2) | mmmeme | eamee
17 17%2 .501 3T 1.265| .0141 | .ok72 (2 | emeeee | e
18 17%% .502 374 |2.44 | L0015 | .0850 | 157.3 1.93 666
19 1??% .499 37 2.08 L0043 | 0707 | 129.9 1.60 773
3
20 17%% .503 378 13w | o2k | Losoo | (2) | emmmee | oo
21 17%% .502 37 |e.u3 | Lotz | L0883 176.9 2.16 145
22 18 .501 .186 6.08 .0058 | .e37 48,2 9.70 .930
23 18 g itels] .185 6.43 .0031 | .236 53.6 10.96 .978
25 18 .500 .185 7.23 L0225 | .257 62.5 12.89 1.031
25 18 .500 .186 9.15 L0007 | .311 73.0 1L.73 1.016

1 -
Mzterial: Specimens 1 to 13 and 22 to 25, 248-T3; specimens 14 to 21, T58-T6.

E = 10.3 x 107 psi. e
> 3 ps . NACA_~
Specimen did not buckle.
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Figure 1.- Buckling mode for a high arch.

a
Pr=—H £ =V

Figure 2.- Possible buckling mode for a low arch.
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Figure 3.- Coordinate system.
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Figure L4.- Relation between By and R for symmetrical buckling of a
sinusoidal arch under a sinusoidal load.

NACA

Figure 5.- Relations between By, Bj, and R for a sinusoidal arch
' which buckles in the -nth mode.

09

Otge NI VOVN



16
14
12 g
q//
T
Qg Sin —Lx— V,{{l\ /
° ./‘,ﬂl".h.\‘ ~~ /#
o b — & /
” N7
8 g\&;?
J //
6 /]
7
74
4
§Z7
/P/—— R= A+ 3V )\2 4
///
""éé//A ‘ i y
0 5 o 15 20 25 30 35 2.0
A | ‘

Figure 6.- Critical load on a sinusoidal. arch as a function of arch rise.

x;ilf_ qoLhJ_
1=73

otge NI vovN

19



NACA TN 2840

62

*YoJ® TBPIOSNUIS B JO AIO03STY UOT}BWMIOISI -*) 2JInITJ




3.5

3.0

.25

/

/

5:0-

25

/
— ]

/
¢

—

5

1.0

1.5 2.
A

0 2.

-] - 30

owge NI VOVN

Figure 8.- Change of critical load due to initial thrust Hy.
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() m = 2; ap/ay = -1/3.

(b)) m = 3; a3/a1 = -1/3.

~RKGR

(¢) m=3; ag/a; = 1/3.

Figure 9.- Examples of low arches having nonsinusoidal center lines.
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Figure 10.- Solution of equation (40) for m =2 and m = 3.
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(Rcr)conc_ ~

'_(Rcr co"c()\2 = —|2°/o)\|’X3=4°/o)\|)

A

Figure 12.- Repr for arches under a concentrated central load.
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Figure 13.- Variation Wifh load of first three modes of two centrally

' loaded arches having Mp/Ay = 0.005 and Ag/hy = 0.040.
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Figure 1kh.- Effect of support flexibility on critical load.
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Figure 19.- Knife-edge fitting.
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A general solution, based on the classical buckling
criterion, is given for the problem of buckling of
low arches under a lateral loading acting toward the
center of curvature. For a sinusoidal arch under
sinusoidal loading, the critical load can be ex-
pressed exactly as a simple function of the beam
dimension parameters. For other arch shapes and
load distributions, approximate values of the critical
load can be obtained by summing a few terms of a
rapidly converging Fourier series. The effects of
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energy criterion of Karman and Tsien is also calcu-

lated. Results for both the classical and the energy
criteria are compared with experimental results.
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PART II

A NONLINEAR THEORY OF BENDING AND

BUCKLING OF THIN ELASTIC SHALLOW SPHERICAL SHELLS



76
ABSTRACT

The shallow spherical dome subjected to lateral pressure is a
structure for which the deformation departs appreciably from the linear
theory at very small values of the deflection amplitude. It is also.one
for which the buckling process is characterized by a rapid decrease in
the equilibrium load once the buckling load has been surpassed. For
structures having this type of buckling characteristic, the question arises
as to whether the proper buckling criterion to apply is the classical
criterion, which considers equilibrium with respect to infinitesimal dis-
placements or the finite displacement ""energy criterion" propﬁsed by
Tsien.

In this paper the problem of the finite displacement and buckling of
a shallow sphericél dome is investigated both theoretically and experi-
mentally. In the theoretical approach the nonlinear equations are con-
verted into a sequence of linear equations by expanding all of the variables
in powers of the’center deflection and then equating the coefficients of
equal powers. The basic parameter for the shallow dome is proportional
to the ratio of the central height of the dome, h, to its thickness, t. For
smali values of this ratio the expansions converge rapidly and enough
terms are computed to determine the buckling locad. For higher values
of h/t, convergence deteriorates rapidly and the buckling load is not
cémputed. However, even for these higher values of h/t the deflection
shapes are determined for deflection amplitudes below the amplitude at
which buckling occurs. These deflection shapes are characterized by
their rapid change as h/t increases and by the fact that, over most of

the range of h/t studied, the maximum deflection does not occur at the
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center of the dome.

The experimental program was carried out on a series of clamped-
edge, eight inch base diameter shells, subjected to uniform pressure.
The defleétion shapes and the buckling loads agreed quite well with the
values computed theoretically. It was also found that there was no
significént difference between the buckling loads observed using air
pressure and those observed using oil pressure. Thus it is concluded
that for the shallow domes studied the classical buckling criterion holds

rather than the "energy criterion'" proposed by Tsien.



78

SYMBOLS

Ay, Chn, £,  integration constants
d base radius of shell
Qn, é,,,c‘,? coefficients in power series expansion of F2 in terms
of Ax ; see Eq. (A-5)

£z7
(s —u%)

G’m?n) Aﬂ coefficients in power series expansion of FZ in terms
of AX ; see Eq. (A=T7)

£ Young's modulus

A functions of f and w ; see Eq. (28)

jf,) coefficients of expansion for Sr in powers of Wo
Y ‘central height of shell above base plane

k =V lr-a?)

/14)15 radial bending moment per unit length

/% circumferential bending moment per unit length

My radial membrane force per unit length

M circumferential membrane force per unit length
o ‘ / 2 /"g

P coefficient of expansion for P in powers of Wo

Q shear force per unit length perpendicular to middle

surface of shell

14 pressure on surface of shell; positive when directed
downward
A initial radius of curvature of shell

A horizontal distance from axis of symmetry of shell
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T e M
. a”
Je - £eo
z thickness of shell
« radial displacement of middle surface of shell

measured tangential to initial surface and positive in
the outward direction

w vertical displacement of middle surface of shell
measured perpendicular to initial surface and positive

in the downward direction
wy, = (A4=0)

W=
W, = “%
Wy, coefficient of expansion for W in powers of Wo
X= 4 |
Z, initial distance of point on middle surface of shell
above the base plane
ol segment angle of a possible deflected surface

Ay By & functions of €, and @, , see Eq. (35)

< semi-included angle of shell
S finite difference interval

f,'f_ radial strain

EL‘ circumferential strain

- x°

e sin ul(r/R)

&, particular integral of Eq. (26) for £
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ot

Poisson's ratio
bei A ber' A + (1 - ber A
circumferential position angle

integrals of W _; see Eq. (29)

) ber' A
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I. INTRODUCTION

The development of the theory of bending of thin-walled spherical
shells has a long record. A survey of the problem can be found in
Refs. 1 and 2, The fundamental equations are developed by |
Hans Reissner (1912) who shows that for a thin-walled spherical dome
that is not shallow, the membrane stresses in the shell maintain
equilibrium with the external pressure, while the bending of the shell
has relatively little effect except near the edge of the shell where the
shell adjusts itself quickly to the prescribed boundary condiﬁons.
Bending in the shell is therefore essentially an "edge effect" or'boundary
layer' phenomenon, Asymptotic solutions of the bending problem have
been obtained by Blumenthal (1912), Havers (1935), Jacobsen (1937) and
others on the basis that the parameter (R/t)2 is very large, where R is
the radius of the spherical shell and t its wall thickness. Botil symme -
trical and nonsymmetrical loading and edge conditions are discussed,
including the case of a dome supported on columns.

The asymptotic solutions are, however, not valid for shallow
sphérical shells, * for which the effect of edge conditions is no longer
limited to a thin layer near the edge and the interaction of bending and
membrane stresses is strong., In 1946 Eric Reissner (Ref. 3) developed
the governing equations for shallow spherical shells on the explicit
assumption that the ratio h/a is so small that (h/a)z is negligible in

comparison to h/a, h being the height of the dome and a its base radius.

* By shallow is meant a spherical segment for which the ratio of the
height to the base radius is small, say, less than 1/8.
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(See Fig., 1.) A few special cases are solved in Ref. 3.

Eric Reissner's solutions are based on linearized equations.
Since the effect of bending on the membrane stresses is strong in the
case of a .shallow dome, one naturally asks the question: to What.
extent is the process of linearization valid? Expressed in terms of the
ratio of the vertical deflection at the center of the dome to the wall
thickness, wo/t, the question is: how soon does the solution deviate
from linearity as wo/t increases?

To answer this question the nonlinear problem is treated,using a
perturbation method,in the present paper. The particular problem of a
shallow spherical shell with a clamped edge carrying a uniform pressure
is chosen so that a convenient experimental comparison can be made.
It is shown that the behavior of the shell depends fundamentally upon a

parameter A which is defined as
2 R a“ ‘
AN=Vilr-utl e (1)

where is the Poisson's ratio, and t, a, and R are as previousl
p y

defined (see Fig. 1). The range of wO/t in which the linear solution is
valid is small indeed. For example at A =4, the equilibrium
pressure given by the linear solution is respectively 9, 23, and 50 per-
cent too high when wo/t is 0.1, 0.25, and 0.5,

Consider now the problem of buckling of thin-walled spherical
shells. For a complete sphere under uniform pressure, the classical
solution, on the basis of linearized equations, is obtained by Zoelly
(1915), Schwerin (1922), and Van der Neut (1932). (See Ref. 2, p. '491.)

The buckling stress (,, is given by
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(2)
where q ié in the intensity of external pressure. This stress has the
same magnitude as the critical stress for an axially compressed k
cylindrical shell of radius R and of thickness t, It is relatively high in
comparison with experimental results. The corresponding b.uckling mode
predicted by the theory is also at variance with laboratory experience.
To reconcile the differences between theory and experiment von Karman
and Tsien in 1939 (Ref. 6) introduced a new concept into the theory of
elasticity: the "lower buckling load". They discovered that for values of
pressure ¢ considerably below that given by Eq. (2), quite different
stable states of equilibrium exist, which could be revealed only by aban-
doning the classical linearization of the problem. The minimum of such
values of q is the "lower buckling load" A If q exceeds qK’. the
chances are great that buckling will occur. In Ref. 4 the lower buckling
load is computed (subject to a number of simplifying assurﬁptions) with
respect to a special class of buckling modes. Friedrichs in Ref. 5 avoids
some of the arbitrary assumptions by applying asymptotic integration in
the manner of a boundary layer theory. Application of Friedrich's
equations, however, yields no minimum buckling load, and it is pointed
out (Ref. 6) that the minimum obtained in Ref. 4 is due to the special
f(;rm of displacements assumed in that investigation.

The final "energy criterion'" of buckling is formulated by Tsien

in Ref. 6. It is stated that under average laboratory and actual service

‘conditions the most probable equilibrium state is the state with the
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lowest possible energy level. In other words it is assumed that there
are disturbances of sufficient magnitude so that the transitions from
higher energy levels to lower energy levels are always possible. Two
conditions must be satisfied in defining the '""possible energy leve_ls”:.
(1) the corresponding external forces and internal stresses must be in
equilibrium; (2) the geometric restraint and loading conditions, if any,
must be satisfied. Tsien points out that these necessary cohditions for
possible energy levels are not checked in Refs. 4 and 5. When the
check is applied, a lower buckling load is obtained for spherical shells
on the basis of Friedrichs' equations (Ref. 6). The agreement with
experiments is good.

It appears that these arguments apply equally well to spherical
domes as to the complete sphere. Therefore, the first theoretical
question to be settled is whether the ''classical criterion' of buckling
or the '""energy criterion'" should be used in calculating the criﬁcal
buckling load. The classical buckling criterion is based on the
assumption that a given state of equilibrium of a shell becomes un-
stable when there are equilibrium positions infinitesimally near to that
state of equilibrium under the same external load.. Thus in applying the
classical criterion an equilibrium state is compared with its neighbor-
ing equilibrium states and the incipient buckling is revealed by a nega-
tive slope of the load-deflection curve, i.e. when an inc‘rease of
deflection corresponds to a decrease in the corresponding applied
load. The important contrast between the classical criterion and the
energy criterion is that in the former only continuous load deflection

process is considered, while in the latter a jump to the state of lower
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energy level is permitted even though the intervening states involve
higher energy levels. The linearization of the governing equations,
ordinarily made purely for mathematical simplicity, should not be
regarded as a part of the classical criterion.

Although the energy criterion seems plausible, nevertheless it
can only be verified by comparison with experiments. The energy
criterion necessarily yields a buckling load which is never greater
than that given by the classical criterion. If there is a wide difference
between the two buckling loads the problem becomes simply to choose
the criterion that gives closer agreement with the experiménts.

For shallow spherical domes the buckling load calculated on the
basis of the classical criterion, but without linearizing the governing
equations, is known only in very few cases. In the comparison with
experiments presented in Fig. 20 of Ref, 6, the curve labeled ''classical
theory" is really the one given by Eq. (2), which is applicable to a
complete sphere and is calculated from linearized equations. When the
nonlinear equations applicable to shallow spherical dome are used the
buckling load is lower than that given by Eq. (2). For example when

/\ ‘= 4 the calculation of the present report gives a buckling load which
is about one-half that given by Eq. (2). Thus the wide difference
between the classical theory and experiments exhibited in the figure
cited above may be entirely caused by an improper mathematical
process.

To clarify the argument further, let us consider the case of a flat
arch, as a two-dimensional analog of the spherical dome., For such an

arch two buckling modes are possible. If the arch rise is high, it
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buckles in the mode shown in Fig, 2: the centerline of the arch re-
mains essentially "inextensional". If the arch rise is small, it may
buckle downward with a sudden reversal of curvature, as shown in
Fig. 3: a phenomenon sometimes described as "oil-canning" or
""durchschlag". The axial compressive strain plays a dominant;role in
the latter case and linearization of the governing equations is not per-
missible. A detailed study made in Ref. 7 shows that in pfacﬁce the
classical criterion agrees better with experiments, except for very
low arches (arches whose rise is of the order of the wall thickness)
for which the energy hump tends to vanish and the gap betwéen the two
criteria tends to be closed.

For shallow spherical domes the prevailing buckling mode is of
the oil-canning type, in which the membrane stress plays an important
part, and is basically a nonlinear phenomenon.

There exists only one paper on the oil-canning of shalléw spherical
domes basé-d on the classical criterion. This is Biezenq‘s work (Ref. 8)
which treats a shallow dome whose edge is free to expand so that the
membrane stresé ‘in the radial direction vanishes on the edge; and the
dome is subjected to a concentrated load acting at the center. The
following equations (which are equivalent to those of the present paper)

are obtainéd:

o vz A V4 el
Y

I~ 2 = _P/Z (/_Méj _/_/-ﬂ
[ Ay e £r o i

(3)
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where P is the central load, V‘aa—/w— is the slope of the deflection
4

surface in a meridianal section, w is the radial displacement normal

to the original spherical shell, and v, is the component of displace-

ment normal to the axis of symmetry, i.e.
V0=ucos€-Wsin6. -~ (6)

(See Fig. 1.) Other symbols are defined in the table of notations of
the present paper. Biezeno makes the following simplifying assump-
tions to obtain a solution: (1) ‘that the term on the right hand side of
'Eq. (3) may be neglected; (2) that in Eqgs. (3), (5), and on the right
hand side of Eq. (4), the slope of the radial displacements V can be

written as

‘ /2 -
V¥ -6 5+% 2 /095 @

wheré CI1 and CZ are two undetermined constants. Eq. (4) is then

solved with proper boundary conditions. Let the solution be denoted by
% » which, of course, is different in form than (7) Biezeno then

determines the constants C1 and C, by requiring that }f/ and ¢

yield the same values of vertical displacement at the edge of the plate

( 22 = a) and at the center ( /z = 0), The load - deflection curve can

then be calculated from (7) and the buckling load determined.
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The influence of Biezeno's simplifying assumptions on the
buckling load is not easy to assess; and there exist no experimental
results to compare with the theory.

The case considered in the present paper is that of a shell
clamped at the edge and subjected to uniform lateral pressure. The
equations of equilibrium (equivalent to Eqs. (3), (4), (5)) are solved
as perturbation series expresséd in powers of the parameter 'wo /t,
i. e, the ratio of the deflection on the axis of symmetry and the wall
thickness of the shell, The load- deflection curve so determined is
used to obtain the buckling load. |

Relatively few assumptions are made in the present calcyh.lvation.
Unfortunately the perturbation series seems to deteriorate rapidly for
large A, so the result is satisfactory only for A of order 5 or

-srnaller. In this range of A the buckling loads computed on the
basis of the classical criterion agree quite well with experiments.

On the other hand, the calculation of the buckling load on the
basis of Tsien's energy criterion also offers considerable difficulty.
If the formulas ofb Ref. 6 are extended to cover the shallow shells
StL:ldi_.ed in the present paper it is found that the so-called "lower
buckling load' has an equal or higher value than that given by Eq. (2)
when A € 10. This unreasonable result is obtained because the

4 energy expressions and the mode shape assumed are not sufficiently
accurate. It is not clear how to improve the results. Theoretical
deflection curves derived from the bending theory do not permit a very
simple representation. In any case, the refinement of Tsien's calcu-

lation would have been a major endeavor. For the same reason the
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calculation of the buckling load on the basis of classical criterion using
the Rayleigh-Ritz method is not pursued. Therefore the most convenient
theoretical determination of the critical buckling load remains an open
question. | The author believes, however, that the shallow spherical
shell behaves in a manner similar to the low arch; that for shellé; not
too flat the energy "barrier" for jumping into the state of the lowest
energy level is so high that the classical criterion gives the correct
buckling load corresponding to the average laboratory and actual service
conditions; and that for a very flat shell the energy barrier becomes
lower and the two criteria tend to yield the same buckling load.

One more point should be mentioned before the presentation of the
main analysis. In Ref. 5, Friedrichs suggests that it may be pb‘ssible
that a boundary layer occurs at the edge of a certain segment, the width
of which in its turn shrinks to zero with the thickness of the shell,  This
suégegtion seems plausible because as the shell becomes thinner and
thinner the bending of the shell becomes less and less important. In
the limit t —> 0 the deflected surface must be "applicabie" to the
original surface.* In the upper part of Fig. 4 the shell represented by
the dotted line is applicable to that represented by the solid line; in
other Words, a deformation of the solid line into the dotted. line involves
no strain energy due to the membrane stresses. To account for the
small but finite bending energy of the shell the deflection surface

may take the form represented by the lower figure of Fig. 4. A

* Two surfaces are called "applicable" to each other in differential
geometry if one can deform into the other by continuous bending with-
out stretching or tearing the surface.
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boundary layer may be developed at the segment angle o< . This
cénjecture, however, turns out to be wrong for a shell subjected to
uniform external pressure; since it can be shown that the segment
angle o¢ tends to zero at a higher order in t (the shell thickné:ss)
than does the boundary layer thickness. Therefore the boundary layer
can be developed only at a pole o = 0 which is the case presented in

Ref, 5,
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II. THEORETICAL ANALYSIS

Derivation of Equations

Consider the spherical shell segment of radius R, base diameter
2a, height h, and constant thickness t, shown in Fig. 1. The ir;itial
position of a point in the central surface is given by the cylindrical
coordinates r, ¢ , Z,» where r is the radial distance frorﬁ the
center, measured parallel to the base, ¥ is the circumiferential
angle, and z is the vertical distance, measured upward, frém the

base plane. It is assumed that h/a is small enough that
= ta o gl — == - £ _—/?2
Z, =h* A A 4 #F =

._._"/Z.o ~ — £

a’/z A

The deformation of the middle surface is assumed to be radially

(8)

s?mfnetric and is therefore specified by u , measured tangential to
the middle surface in the outward radial direction, and w , measured
perpendicular to the middle surface in the downward diréction. The
deflections are considered to be finite, but small enough so that

dew ) € _
c//‘z/ can be neglected with respect to unity.

' Since under these conditions, the magnitudes of vectors tangential
to the middle plane are equal to their components parallel to the base
- plane, the equations for forces and moments in the middle plane are

identical with those for a flat plate. That is

C-;;':-ézm) My - n@ =0 | o

%/f!%j—%gO | (o
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where Nr and Nt are respectively the radial and circumferential
membrane stresses, Mr and Mt the corresponding bending moments,
and Q the shear stress in the direction perpendicular to the deformed

middle surface., Vertical equilibrium of a central cylindrical section

of radius r , Fig. 5, requires that

7 o2
@:— 4 /270//1 —f%/a//z, ——z‘.‘_/ (11)

<A I
where q is the applied pressure. Substituting Eq. (11) into Eq. (9)

and using the approximation Eq. (8) results in
i (/‘(/”/(}-—/% +///(tg0//t+/z/‘4z(/f,z_a/w = O | (12)
oy 2 ' ~ a4 s

The bending moments are expressed in terms of the deflections

using the strain deflection relations

o _da , ) w

ffc—y;*z(o//z/ 2 T (13)
4w |

€ = % =

where f/z and f'é are the longitudinal strains of the middle

surface in the radial and circumferential directions respectively. Then

= R I A A

= £t fu w du _w | s [ ew) (14)
& /_ﬂe/z =" “ldn z*z/*—m/j

M, =_D(d%% , % %) pfy --pfs i, 0/20//
* dx? 7% o ¢ X" —"/—(d/zz
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Using these expressions for Mr and M

where D =

.+ Ba. (12) becomes

V4
O, & [ 1 S T )) e A [ G //zo//z
/zo’/‘z//? e (e f 7 Z -5/ ? -9
This is the first basic equation. Now from Eq. (13)

Ll LN M) 2

~
so that
Ll ot S N M g Sz f 16
o £;<0//z//z Zz — X e # L /\’/Z (16)

These values are substituted in the first of Eqs. (14) to obtain a

second relation between Nt and Nr

Ny o £ [ 7L & LM s Mo 7 ) o Lyaal)?
o J— 22 [ FE ok AN - e = ,?"‘Zé%/ (17)

+ (M )]

Combining this equation with Eq. (10), the second basic equation

is obtained

o & 1 DN, )y £ e f ), L DY o
"o /‘Zd/z( /%)"25“(0/,«5/" Pl (18)

Knowing w and N_, Nt can be obtained from Eq. (10). In the

" problem to be studied q is a constant so that Eq. (15) becomes

g S s o oz _ o), £
L) % (Adfd/jz-%(ﬁ’ e A (19)

These equations are transformed into non-dimensional form by

the use of the following variables
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Z=—§ W:z‘;—” A< /27— e’
- a< a”
‘5/2"’2_—63 /14( “5;‘=———-[L‘J /Vz:‘ (20)

2 :
The parameter A can also be expressed as (see Fig. 1)

/\?::A/E‘@ sin?h =~ i e’ o
Z

/\zz/(_/l s1n 28 —.—/(_é.(/f'-cosﬁjﬁ—'?/(’_’i'
t s-cos B @ z .

(21)

Thus for the assumed range of ,5 , A ‘ is proportional to the
ratio of the central height of the dome to its thickness and can there-
fore be interpreted as representing the ratio of the compression
stiffness to the bending stiffness.

On substituting these new variables, Eqgs. (18), (19), and (10)

become
d [r 2 A% |
dx Io’x y ZX( e Tx (22)
e & _
x dx 70’1 }} A (A% x oc( )T s (23)
_ :
S¢ == (x Sk) (24)

With A =0 (R.= o ) these are Karman's equations for the
finite deflection of a flat plate, expressed in polar coordinates. Their
derivation is exactly analagous to Chien's (Ref. 9) derivation of the

equations for the finite deflection of a flat circular plate.
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Expansion in Terms of Wo (= wo /t)

As in Chien's paper the procedure used for solving these equations
is to consider the center deflection ratio W(0) = W _ as a parameter and

to expand all of the variables in powers of W _. Thus

Pzp,Wo + o2 W™ + 2 167 #
W= oy (K)Wo + lip (RDNG 7ty (OAG T+ - - (25)

Ty =S (X )Ao + o (DG “r S5 (g T+ - -

These expansions are valid for small enough values of the de~
flection ratio Wo, but their exact range of convergence is unknown,
For the caée of the flat circular plate Chien obtained good convergence
for values of W  as high as 4.

‘Substitution of these series in Eqs. (22) and (23) and the equating
of equal powers of Wo results in a sequence of pairs of simultaneous
equations of fn and W Each of thése pairs of equations: can then be

combined to obtain an equation for f alone

%0_2_[7’%[ ”/ ’2?/74//—— A%Pn -7 (263)

or
AV, 6 d% 2 I 34767 LA B -
i Rt Y= 2A A 7 (26b)

plus an equation for W in terms of fn

w £ 2 _ ,
ne & = = (x25)- 55 #+ £ (27)
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where En is a constant, and Fn and /(ﬂ o 2Te the following functions

Fl = 0

Fé: ST z’Z ,z:o'iz //

R T % ’5% il 0’,z a’z)/ (28)
- g

s d |1 [ Owy, S ),
7L/l'a’,a: X vl oy Jdr *—2_(0’1/‘

¥ =0 2 =/ ;y"'d"’

y

C/a// 0/“/1- O/IZ 0/“//“’0/
Z:o,dz dr X /(ff dzd:z(g)

On making the substitution

71

Eq. (26) becomes

o’é(?_,,da’z// A 7/ = ,o,,__,:,, | (30)

which can be recognized as the equation for the lateral deflection of a
linearly tapered beam on an elastic support whose spring constant is a
linear function of position along the span. This interpretation is useful
'in the numerical work which follows.

The solution of the homogeneous part of Eq. (19),i.e. the comple-

mentary function is

= Z/ Apber’Ax + BpbedAx » Cp Ko’ A ,z+ﬂ,,ke/"/fj/
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where

ber'z = d ber =z
dz
and the ber and bei functions are defined in terms of Jo’ the zero
order Bessel function of the first kind, by
I, (z13/2') = ber z + ibei z

3/2)

with an analogous relation between ker z and kei z and K (z1

Boundary Conditions

The boundary conditions for a clamped edge shell subjected to a

radially symmetric distributed load are

‘C(L‘/l’ o ‘/“’—-0 Sy is finite;
ox
@t =/, wW=TY (4.0 (31)
o x

In terms of the expansion coefficients, Eq. (25), the remaining
boundary conditions become

Wy =9, %%&:0

xX=/ (32a
(7)o # z’d‘%‘ o | (22

Because of the nature of the expansion there is the additional

condition that

/ 7=/
Wy (0) = , (32b)
o, ~H>2E

The constant E_ can be eliminated by combining (32a) and (32b)
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so that the boundary condition on w , becomes

| /, n=/
Wy, (0) -y ()= (32¢)
. o, 7=°
Let &5 be the particular solution corresponding to F;; on the

right hand side of (19), then the complete solution for f becomes

-767:;///’/756/: Ax ~/—5/75€/'//i;(]7“9/7 "'é? - (33)
while
W, __[Aﬁbe/ Ax - 5,,,56/1,\112_/\_2?;@ éﬂ/____g 45

Substitution of these values into the boundary conditions (32) and

their solution for An’ Bn’ and fon results in

A, = ;/[[q,,? ber'A+ By (7 —éesz)/ (34a)

Vol =70{/?(’7 ber A -8y be/'/l/ (34b)

pn=— G- }/og-@a}(beﬂ_ A+ b er A/H\/ée/z/\ée//l —ée//léexd)o(j

/{/,L/.{)// bcf/(/\)bf/Z/{ ~bedber /DfAb@//iﬁf/*Jn (34c)

where

P = berA ber A +[/—ée/c/{/ée/z A (35a)

=/

%7 = //xdl/i’é’n)/ - 220, 0) (35b)

ZA

=L g/ z‘*é'/ |
“ A [ o xo’z /%75 =/ | (35¢)
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¥, = /")‘2/9,7 +_{_ den
P = x| z=r (35d)

First Order Solution

The particular solution, 91, of the first order equatién is; zZero
and the equations for Al’ Bl’ and P reduce to

A, =Abex’) B, = Abec
&P AP (36)

g = _AT (1ta)(be%A+be% A \)eA(bextbert —ée/ﬂbfd/f)/
S0r-A2p
The values of Al, Bl’ and p; are given in Table 1, while ‘the
valueé of W and fl are given in Tables 2 and 3, and are plotted in
Figs. 7 and 8 reépectively. This first order solution is identical with
the linear solution previously found by E. Reissner (Ref. 3). »
For the higher order equations no solution was found in terms of

known functions and so it was necessary to resort to power series

expansion and numerical methods.

Power Series Solutions

‘Judging from the work of Chien it was felt that calculation of the
first two terms, P and Pys of the expansion for the pressure P would
permit at least an approximate determination of the bucitling load.
Therefore a power series solution for &> was obtained even though it
was realized that the succeeding solutions could not be obtained by this
method because of the involved form of the functions F o The procedure

and formulas used are shown in the Appendix. Since the expansions are
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all in terms of A X it was necessary to restrict the calculations to
values of A € 8. The values of Py obtained are shown in Table 4
and plotted in Fig. 6. These values are negative for small values of
A But become positive at A = 6.5 and are rapidly increasing
at A = 8, Since buckling can only occur when some of the pn's are
negative it was clearly necessary to obtain the higher order terms of

p,- These additional values of p, were obtained numerically.

Numerical Solutions

The differential equation (26) contains the unknown parameter P,
and also has the unwieldy boundary condition that S . is finite, at
x =0, As a result a complete numerical solution would be very; diffi=-
cult, Therefore only the particular solution is determined numerically,
using arbitrary boundary conditions. The required boundary conditions
are then satisfied using the known solution of the homogeneous equation.

In terms of the finite difference approximations

Fl) =55 fFlxes)-Flx- -5)f
//‘ - -_/— 3 . B
£l =4 /f(z # G2 fC8)n S (2SN

(37)

#£0x) =Z_d/(;//():+ 25)-2F L+ )r 2771~J)—f/z-—2a")}
.//?z) =;/;/f(,wa;j— TS S+ 6;’(,&)—4%(,2'—0%//2:—24?/

where J is the difference interval; Eq. (26) (with the constant term,

-3/8 /’n/\e

y , omitted) becomes
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57 5‘ +Aj9”(X) ( J-iz P 7Lza’z n (274

<
% gq,_, 45 #a) o (o Doy 45 )lx028)

s 8, (x—24) =/6,(x)

J‘ J’

The desirable boundary conditions for & o 2re the ones which
give a smooth solution. For the tapered beam analogy of Eq. (30) the
obvious boundary conditions meeting these requirements are those
representing unsupported ends. When these boundary condiﬁons are

transformed in terms of the variable x they become

ol =0, 9on _ d6n _ o
:  dx 78 %d

at X=/, o= s _ o
g2 dx?

(39)

A first attempt to solve the finite difference equation (39) by
relaxation was unsuccessful due to slow and erratic convergence,
Instead, Crout's method of solving simultaneous equations (Ref. 10)
was used to detérinine the values of &  at 1l points ( 4 =0.10) at
once. This could be done rapidly, but unfortunately 11 points ‘were
not enough to accurately determine the end values and derivatives
which were required; Instead of decreasing the spacing to 0. 05

‘throughout, it was decided to add two end sections from 0 to 0.3 and
from 0.7 to 0.1 with 0.05 spacing. ‘The solutions in these end sections
were joined with the original solution at the 0, 30 and 0 70 stations
where the function and its first derivat_ive were matched. Since the

higher derivatives were small at the junction points (especially for

A =4 and 7) this method was adequate, but did cause some trouble
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when higher derivatives were required for the succeeding calculations.

Calculations of 6, were made for A =4, 7, 10 and 13, while
for A = 4 and 7 the calculations were continued to determine 93
and 94. As A increases convergence of the series for P deterio-
rates rapidly and the function Gn has increasing large osciilatiéns. It
was decided therefore not to continue the calculations for A = 10 and 13,
The values of Py obtained are shown in Table 4, while the values of wo
and fn are shown in Tables 2 and 3, and plotted in Figs., 9 and 10,

For A =4 the convergence of the series for p, Was very satis-
factory, the contribution of the fourth order term still being small at
the critical buckling load. In Fig. 15 is shown a 1.3101; of load P ifersus
the center deflection ratio Wo and in Fig. 11 are shown the deflection
modes fér several values of the center deflection ratio Wo. These
deflection modes have their maximum at the center, and as Wo grows
they become increasingly peaked toward the center.

For A = 7, however, the convergence is poor and the coeffi-
cients P, all being positive, no buckling can be determined using just
four terms. The kconvergence is good enough to determine the deflection
shépgs W for small values of Wo and these are plotted in Fig. 11.
These deflection shapes give an explanation of why P, is positive (which
implies increasing stiffness with respect to the center defleétion as the
‘load increases) since they show that the maximum deflection is no
longer at the center and that with inéreasing load the center deflection
becomes a progressively small portion of the maximum deflection. This
characteristic is corroborated by the experimental measurements.

The deflection modes for A = 10, which are also shown in

Fig. 11, exhibit the same characteristic, but with the posiﬁon of the
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maximum deflection moved outward toward the edge. However, since
these curves are calculated using only two terms of the expansion for
W, these curves should not be taken as indicating accurately what
happens at the larger values of Wo'

The rapid change which must occur at buckling from a sHape in
which the maximum deflection occurs near the edge to one in which the
maximum deflection occurs at the center is probably also.an explana-
tion for the poor convergence. Since the experimental results show
that at A = 10 the maximum deflection is again at the center it may
be that for these higher values of A the convergence is éctually
improved. However, to obtain accurate values of Gn for these higher
values of A it would be necessary to start with a smaller finite
difference interval than was used here.

Since the influence of the P3 and Py terms at the buckling load
for A = 4 was small, it was felt that for A< 5an adequafe approxi-

mation to the buckling load could be obtained using just the first two
dP

g

=0 so

terms p, and Py- The critical conditions occur when
that for
P = p,Wo+p,Wo°
= pyWo + p,Wo

the critical conditions are

~ A A2
Ocn = 4 e'/t =
2F 7/
This value of /éﬁ is plotted in F'ig. 18 where it is compared
with the experimental results. The minimum value of A for which

Pcr exists is that for which the critical deflection equals the initial

height of the dome, that is for Wo = h/t.
cr
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III. EXPERIMENTAL PROGRAM

EiquiEment

An experimental program was carried out on a series of shallow
domes having a base diameter of eight inches, nominal radii of ‘
curvature of 20 and 3’0 inches, and thicknesses varying from 0.032 to
0.102 inches. The edges of the specimens were held betwéen two rings
which were bolted to a circular plate, Figs. 12 and 13, thus providing
a rigid built-in edge support and a closed pressure chamber. A sepa-
rate set of clamping rings were used for each of the two radii of
curvature. The specimens were subjected to a uniform normal load
using both oil and air pressure; the oil provided an approximation to
a constaﬁt volume characteristic during buckling while the air pro-
vided a constant pressure characteristic.

The specimens were made by spinning from flat sheet, AAfter
unsuccessful attempts to heat-treat aluminum spinnings, magnesium
alloy QQ-M-44 was selected because of its favorable rati§ of yield
stress to Young‘é modulus compared to other nonheat-treated metals.
Magnesium also has the advantage that since it is .spun while hét most
of theb residual stresses are eliminated. This is evidenced by the small
separation when a radial cut is made in é. magnesium spinning. Because
of the difficulty of spinning such shallow shells the preliminary speci-
mens were very disappointing, but by a combination of spinning on
concave and convex molds the quality was greatly improved. Unfortu-
nately it is still not as good as would be desired.

Pressure measurements were made using a Bourdon tube for

pressure over 20 psi and a-mercury manometer for pressures under
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20 psi., Exceptions were two of the early specimens having low
buckling loads which were tested using the Bourdon gage., This gage
of course gives a closer approximation to a constant volume charac-
teristic than does the manometer.

Deflection measurements were taken with a 1/1000 inch scale
dial gage riding on a channel beam fastened at its ends to a circular
ring which rotated in a groove cut in the upper clamping ring. | Read-
ings were made to the nearest 1/2 thousandth of an inch. Traverses
were made on two or more diameters to determine the initial shape of
the shell and were repeated at intervals during the loading. ._Intermed-
iate measurements were also made of the center deflection. Bécause of
the variations of the specimens from a true spherical form the question
arose as to what should be taken as the radius R from which the
parameter A was calculated. It was decided to assume that the
central rise h would determine the radius since A can be simply
expressed in terms of h (Eq. (21) ) and because experience with the
buckling of shallpw arches showed that for arches having the same
central height small symmetrical variations in shape have only a small
eff.e\cti on the buckling load. In Fig. 14 the variations from the assumed
radii are shown for typical examples of each of the six combinations of
the two nominal radii, 20 and 30 inches, and each initial sheét thickness
0.033, 0.054, and 0.102. It is seen that the variations increased

markedly with the thinness of the sheet and the flatness of the dome.

QOil Tests

The o0il pressure tests were made first, and two or more tests of
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each combination of thickness and radius were made. The early
preliminary tests made on aluminum samples all showed a very distinct
unsymimetrical buckling mode. This is believed due to the high resi-
dual stresses resulting from the spinning operation since the majority
of the magnesium specimens buckled symmetrically, In the cases in
which unsymmetrical buckle did occur in the magnesium specimens
the mode was not of the overall unsymmetrical form such as tile un-
symmetrical mode of vibration of a flat circular plate., Rather it
appeared that the buckles themselves were inherentljr symmetrical
but were aisplaced from a central position on the shell, pr(;bably due
to initial asymmetries of the shell, |

The unsymmetrical buckling only occurred in the range of A
between 6.0 and 8.6 and was associated with a prebuckling deflection
mode in which the displacement at about half the radius from_the
center was greater than that at the center.

In Flg (14) are shown the deflection curves of the specimens.
There is a distinct change in the deflection modes as A increases.
For A near 4 the deflection is peaked at the center and decreases
ste‘adily towards the edge. As A increases, the peak gradually
flattens out, until at A = 5.45 the maximum deflection no longer
occurs at the center. Instead at large deflections there are two peaks
.symmetrically placed at about a half radius from the center. With a
further increase in A the peaks move outward until finally when

A= 8. 8 a third peak appears in the center. This gradlially becomes
the predominant peak. These trends agree very well w‘ii’;h the theoretical

deflection curves for A = 4, 7, and 10 shown in Fig. 8.

-
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In Figs. 15 and 16 are plotted the pressure vs. center deflection
curves of the specimens. For low valuesof A , ( A < 5), the
specimens buckled in a continuous manner. As more oil was pumped
into the chamber the pressure increased more slowly, reached a
maximum and then decreased. But for A > 5, the process was
discontinuous. Usually there would be a slight movement of the shell
without the addition of oil followed by a sudden jump to a low‘ex; pressure
and a greater displacement. There was no regular trend in the ratio
of the pressure after buckling (Pcr)Z to the buckling pressure P, as

A increased and also surprisingly no significant differeﬁ_ce in this

ratio between the tests made using the Bourdon tube and those using

the manometer.

Air Pressure Tests

For the air pressure tests an accumulator tank was cohnected
to the air line close to the testing fixture so that the buckling process
was practically a constant pressure process. Buckling ;)ccurred very
suddenly and Wirth‘ a sharp report. The final buckled shapes were
syinmetrical with deflections very much larger tﬁan those of ti"le oil
tésts;. Deflection traverses were made during loading but it was
inadvisable to make them at loads approaching the expected buckling
" load. Two examples of these deflection traverses are‘shown in
Fig. l4d.

The specimens remained in their buckled position after the
pressure was released. An approximate determination of the pressure
required to unbuckle them was made by unbolting the ciamping rings,

inverting the rings with the specimens still placed between them and
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then bolting the inverted assembly to the base plate. The pressures

required to unbuckle the specimens were considerable and are included

in Table 3.

Summary of Experimental Results

The physical parameters and buckling loads of all the specimens
are shown in Table 5. In Fig. 17 are plotted the buckling loads as a
function of A . The oil pressure tests are shown with black dots,
while the air tests are shown with open circles. For the oil tests the
points at the lower ends of the dashed lines indicate the value to which
the pressure jumped during the buckling process, while a wing on the
left of a lower circle indicates an unsymmetrical buckling mode. When
plotted on log-log paper the results tended to follow two intersecting
lines. In Fig. 17 the corresponding power-law curves are shown.

In Fig. 18 the experimental buckling loads are compared with
the theoretical loads calculated using two terms of the series for

A< 5, and the one point calculated using four terms :for A =4,

In Fig. 15 the corresponding load-center deflection curves are also
compared. Although the experimental results are low compared with
the theory, the difference (approximately 15 percent at A = 4) is
not great considering the variations of the initial shapes from a true
spherical surface. Part of the difference can be attributed to yielding
which occurred at the higher loads, especially for the specimens
having values of A near 5. It is felt that the results are close
enough to corroborate the theory proposed and establish the applica-

bility of the classical criterion for buckling for the low range of A .
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From Fig. 17 it is clear that the type of loading, air or oil has
little if any effect on the buckling load. This is in direct contrast with
the behavior predicted by Tsien's Yenergy criterion', for in that
theory when the buckled and unbuckled energy levels are compared
the loss in potential energy of the load during buckling must be |
included. Thus in the buckling process the strain energy canvipcrease
an amount equal to the loss in potential of the load. Since the loss in
potential energy is a maximum when the pressure remains constant,
the allowable increase in strain energy is greatest ana theref.bre
buckling in a constant pressure system should occur at a lower load
than for any system in which the pressure decreases during buckling.

vA‘s this is not found to be the case, the energy criterion does
not appear to hoid for the shallow shells which were tested. In terms
of the theory the intermediate energy "hump' is too high to be

overcome,
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IV. CONCLUSIONS

In th»is paper an attack upon the problem of the finite deflection
of a shallow spherical shell has been made. The theoretical approach
"has been to transform the nonlinear equations into a sequence of ‘
linear equations by expanding all the unknown functions in powers of
the nondimensional center deflection Wo and equating coeffiéients of
equal powers of W o The initial equation can be solved exactly in
terms of the ber and bei functions, but the succeeding equations have
had to be solved either by power series or numerically., For small
values of the parameter, A , the resulting expansion for the pressure
converges rapidly enough that a determination of the buckling load can
be made ﬁsing only four terms of the expansion. For higher values
of /\ the convergence deteriorates rapidly, so that for ) greater
than 5, no determination of the buckling load can be made. Hdwever,
for deflections smaller than the critical buckling deflection, the de-
flection modes can be determined for a much wider range -of A .
These deflection modes change rapidly with )\ and for values of A
near 7 have the surprising characteristic that the fnaximum defiection
occuré approximately halfway between the center and the edge of the
shell.

The results of the experimental program agreed sﬁbstantially
with those of the theoretical analysis. The buckling load near A =4
was only about 15 percent below the theoretical value while the trend
of the buckling loads as )\ increased was approximateiy the same

as predicted by the theory. The deflection modes also showed the
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same characteristics as predicted by the theory. The experimental
buckling mode was inherently symmetrical as assumed in the theory;
the few exceptions can be attributed to large initial asymmetries in
the specimens.

Tests were made with both air and oil pressure, which
approached the extremes of constant pressure and constant volume
buckling characteristics, respectively. The buckling loads obtained
by the two methods showed no significant difference. This is in
conflict with predictions based on Tsien's "energy criteria" for
buckling. Since the experimental results agree with classical criteria
for the small values of A, it is concluded that the "energy criteria®™
are not applicable to the buckling of shallow spherical shells subjected

to lateral loading;
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APPENDIX

Infinite Series Expansion

After substituting the expressions for fn and w

n Eq. (33),

into Egq. (28') for FZ’ it becomes

/= gfi_é_’(/l, ber ANx - Bber'Ax)

~
N

- W4 e -7 = / 2 ‘ "7
_//;;\é//béi(éé/ /‘X—é“/‘x)*(/'/"@%e’“we’/(y (A-1)

2 . e
_ s __4;{/4,59//1z_5,ée/zﬂxj
Fex\dx? x dx

The particular integral of Eq. (26) corresponding to the first
term of Eq. (A-1) is
L

8, = -_;_’, /:’\/f (//,Af/'//lx —-E,ée/z’/?x) (A-2)

The particular integral for the remaining terms of FZ (al1
quadratic in ber' and bei') is obtained by expanding in series. The

series expansions for ber' AX and bei' Ax are

L1~
Cbex AX = Z(_)” (% Ax)
’ n=1

(en-1)/2n)/ , (A-3)

éé’/'//?z X (—)/7 (—2/- XX)4/7-//
i @Een)l(crn+s)/!

In terms of the above series the expansion of the quadratic terms

of F2 becomes
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22

£ = - /;4 4,8 [a,, +b,,+:"(/v+/)(2/?f-/)c,7,._,j("’z)
Lo A
f/ﬂ/{ 5;75/; »4/7/2/7*/}{4/‘90'/7-52&,7)//’)_2{? ”-7 ‘
where
Ay = —)h /
n=C mzm (2r2- 2m)! (E17-2rm7+1) /(E177)/ (E077+1) /
(A-5)

=(-)7 /
n = (~) mZ/ (271=2m141)/(277 - 227+2)/(Erm7-1)! (2177)/

Cy =(~- /
“ ) é: (2n-2m)l(2mn—-rmn+/)/(#~7) 7177/

The corresponding particular integral of Eq. (26) is

& =L K° [Aw(ﬂ Ax)7, (4%, el Ax)T A

Where

= en(ér-7) Cr- 4, — /-
7 4”2(¢” /)/ { /7 ) 4 Fr =/ é 7~/ C/ﬁ / ’7%/

-7

7 “Zn=)%fEn-0*] /( THE) Qg et ?h—/jh <
///; den-1)b,., + C,_, ~h, / > 2

Z

- /
(2r-1) % ft2n-1)% j
?a =h, ©
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The values of do, g and h1 are arbitrary with respect to the
recursion formula of the differential equation, but when Eq. (A-6) is
combined with Eq. (A-2) it is required that

dy =~ b, =L L

o T F v - (A-8)
in order that &, = 612, # Q; have the proper limiting value as
A — O.

The coefficient ?, is completely arbitrary and for convenience

was taken as equaling unity.

The infinite series expansion for ;ﬂ ;> is

Z =Z A, d,,ﬂ,‘gé //) /4/7#’_/4 5, C,, (JX/¢7 (A-9)

~ h=o

92 and its derivatives, and ¢ 5 are substituted in Egs. (35)
to determine 4 and £ which are in turn substituted into the

boundary conditfions Eqgs. (34) to obtain AZ’ BZ’ and Py-
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TABLE 1

Values of Al’ Bl’ and Py

A A B, P
0.5 -4.875 155.9 5.333
0.7 -3.481 56.78 5.361
1.0 -2.434 19.39 5.441
1.5 -1.614 5.614 5,877
2.0 -1.194 2.200 7.061
3.0 -0.7298 0.4093 14,35
4.0 -0.4275 -0.06698 35.97
5.0 -0.1835 -0.2078 89.55
6.0 -0.005114 -0.1892 206.2
7.0 0.07882 -0.09905 426.1
8.0 0.07857 -0.01571 784.7
9.0 0.4214 -0.02332 1311
10.0 0.009895 0.02615 2043
11.0 -0.005344 0.01498 3031
12.0 -0.007743 0.004468 4343
13.0 -0.004895 -0.0009003 6048
14.0 -0.001736 -0.002132 8219
15.0 -0.00003355 -0.001506 10932




TABLE 2

/Va.lues of W for

A =4, 7, 10, 13

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.75
0.80
0.85
-0.90
0.95
1.00

A =4 A=7 A= 10 =13
1. 0000 0 0 0 1.000 0 0 0 |1.000  © 1. 0000
0.9965 -0.0021 -0.0018 - .0008 | 1.0011 0.0080 0.020 0.052 |1.0002 -0.0014 | 0.9999
0.9859 -0.0082 -0.0072 - .0032 | 1.0044 0.032 0.079 0.206 |1.0010 -0.0053 | 0.9995
0.9683 -0.0181 -0.016 - .0068 | 1.0093 0.070 0.173 0.453 |1.0025 -0.0091 | 0.9988
0.9436 -0.0312 -0.027 -0:0l11 |1.0152 0.121 0.300 0.782 |1.0053 -0.011 |0.9979
0.9116 -0.0470 -0.039 -0.015 |1,0211 0.182 0.449 1,173 [1.0099 -0.018 |0.9970
0.8724 -0.065 -0.051 -0.019 |1.0254 0.250 0.614 1.604 |1.0168 0.017 |0.9964
0.7725 -0.101  -0.073 -0.023 |1.0214 0.386 0.938 2.435[1.0381 0.112 |0.9993
0.6453 -0.130 -0.081 -0.019 |0.9825 0.477 1.141 2,952 |1.0625 0.300 |1.0148
0.4958 -0.141  -0.074 -0.0092 | 0.8832 0.480 1.129 2,903 [1.0608 0.517 |1.0438
0.3338 -0.126  -0.053 0.0006 | 0.7016 0.366 0.863 2.187 [0.9708 0.614 | 1.0437
0.2533 -0.110  -0.039 0.0034 | 0.5787 0.289 0.684 1.777 [0.8672 0.581 |0.9955
0.1769 -0.087  -0.025 0.0037 | 0.4391 0.191 0.473 1.242(0.7149 0.463 |0.8851
0.1085 -0.059  -0.013  0.0031 | 0.2920 0.106 0.280 0.740 |0.5169 0.306 | 0.6945
0.0525 -0.032  -0.0048 0.0018 | 0.1528 0.040 0.127 0.348 |0.2938 0.139 |0.4290
0.0143 -0.0087 -0.0011 0.0052 | 0.0448 0.0087 0.032 0.089 [0.0931 0.034 |0.2960

0 0 0 0 0 0 0 0 0 0 0

LT



Valiles of fn for

TABLE 3

A =4, 7, 10, and 13

A =4 A =7 A=10 | A=13
% £, £, £ £, £, £, fq £y £, fl'

0.00 | -4.244 1.353 0.180 0.0788 | -16.246 -2.038 -7.04 -17.56 | -37.21 | -65.43
0.05 | -4.240 1.354 0.180 0.0781 | -16.250 -2.069 -7.11 -17.77 | -37.21 | -65.43
0.10 | -4.227 1.358 0.183 0.0760 | -16.262 -2.159 -7.34 -18.38 | -37.22| -65.42
0.15 | -4.206 1,364 0.186 0,0724 | -16.282 -2.305 -7.71 -19.38 | -37.23 | -65.41
0.20 | -4.176 1.372 0.191 0.0675 | -16.306 -2.504 -8.21 -20.72 | -37.25| -65.40
0.25 | -4.137 1.381 0.196 0.0612 | -16.334 -2.749 -8.82 -22.36 | -37.27 | -65.39
0.30 | -4.089 1.391 0.200 0.0538 | -16.360 -3.030 -9.52 -24.23 | -37.32| -65.37
0.40 | -3.968 1.409 0.207 0.0361 | -16.392 -3.670 - 11.08 -28,39 | -37.45| -65.37
0.50 | -3.811 1.418 0.207 0.0169 | -16.353 -4.293 - 12.54 -32.25|-37.64| -65.44
0.60 | -3.623 1.410 0.198 -0.0002 | -16.178 -4.760  -13 .58 -34.92 | -37.82 | -65.67
0.70 | -3.409  1.377 0.184 -0,0127 | -15.795 -4.952 - 13.92 -35.80 | -37.76 | -65.95
0.75 | -3.294 1.350 0.176 -0.0163 | -15.507 -4.929 - 13.83 -35.57 | -37.54 | -65.96
0.80 | -3.177 1.317 0.167 -0.0179 | -15.153 -4.837 - 13.58 -34,94 | -37.12| -65.73
0.85 | -3.060 1.278 0.159 -0.0182 | -14.737 -4.697 - 13.22 -34.02 | -36.46 | -65.09
1 0.90 .2.945 1.236 0.152 -0.0180 | -14.271 -4.530  -12.79 -32.91 | -35.56 | -63.92
0.95 | -2.837 1.193 0.146 -0.0175 | -13.780 -4.360  -12.33 -31.75|-37.46| -62.18
1.00 | -2.737  1.153 0.141 -0.0170 | -13.304 -4.206 - 11.90 -30.65 | -33.30 | -60.12

811
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TABLE 4

A P, Ps3 Py
Power
Series Numerical

1.0 -1.120

1.5 -2.726

2.0 -4.919

3.0 -12.39

4.0 -26.47 -26.5 3:77 1.08

5.0 -45.2

6.0 -38.1

7.0 -53.7 56. 6 314 801

8.0 219

10.0 392

13.0 537
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TABLE 5
Experimental Data
4 =0.32, E = 6.5 x 100 psi

Hvydraulic Pressure Tests

Method of pressure
Spec t h A Ay P, measurements * (Pcr)Z
inches inches psi
1 10.101 0.251 4,04 36.2 12.3 B --
2 [0.099 0.253 4.08 32.5 11.8 B --
3 (0.101 0.256 4.16 35.8 12.1 B -
4 10.100 0.365 4.80 60.5 21.0 B --
5 (0.101 0.376 4.94 72.5 24.8 B --
6 |0.053 0.240 5.45 15.9 61.3 M 25,3
7 10.053 0.251 5. 57 12.1 54.3 M 25.3
8 |0.052 0,297 6.08 15.2 71.3 B 48.3
9 10.055 0.380 6.75 31. 0 122.4 B 60.0
10 [0.051 0.410 7.22 27.5 147 B 85.1
11 [0.051 0.422 7.40  25.2 136 B 60.9
12 [0.031 0.303 8.04 4.2 165 B 106
13 |0.032 0.361 8. 59 6.02 201 M 124
14 (0.031 0.353 8.69 6.52 185 M 137
15 ]0.033 0.394 8.82 7.33 213 M- 111
16 {0.033 0.410 8.98 8.96 255 M 179
17 |0.029 0.444 10.1 7.5 354 B 201

Air Pressure Tests

Spec _ t . h A ey Pcr Pressure re'quir.ed
inches inches psi to unbuckl-e specimen

18 |0.101 0.382 4.98 73.5 24.9 I13215

19 ]0.101 0.426 5. 26 99.5 33.8 35

20 10.055 0. 265 5.62 16.85 65.2

21 |(0.054 0.413 7.10 33,6 143 12.6

22 |0.032 0. 347 8.45 5.67 190 1.8

23 10.033 0.399 8.91 11.70 310 3.3

* B = Bourdon Gage, M = Manometer
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FIG. 13 - VIEW CF TESTING FIXTURE
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