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ABSTRACT

A new profolem in hydrodynamic stabllity is investigated. Given

$wo coﬁ’cigﬁous plane sheets of viscous incompressible fluids, bounded

on one side by a solid wall and unbounded on the other, the pro’oléin is

to study the hydrodynamic stebility when the flulds are in longitudinal,
laminar, uniform shearing mo%ion, The mathematical analysis, based on
small disturbance theory, leads o a characteristic value problem in a
system of two linear ordinary differential equations. The case for which
forces due $o0 gravity and surface tension are negligible compared with
inertia and viscous forces is studied in detail, and the results are pre-

gented graphically for all fluid combinations of possible interest.
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SUMMARY

The present investigation was started by the desire of obtaining
some understanding of the siability of a thin liquid film when it is
dragged over a flat solid surface by a high speed gas stream,

The problem arose originally in connection with film cboling appli-
cations, where an ingtabllity was found to occur at sufficiently»high
liquid flow rates., The ingtability resulted in a loss of liquid from the
£ilm at a much higher rate than the evaporation loss nnder laminar flow

conditions. '

In film cooling applications the gas stream will usually be turbulent,
and all experiments so far have been concerned with such flows. In these
experiments, small wave like disturbances were observed on the liquid-gas
interface even at very low ligquid flow rates, and it appeared that these
might be the non-amplified response of the stable laminar flow to turbulent
fluctuations in the gas. A% higher liquid flow rates, a large écale ine
stability of the interface appeared and it was this phenomenon that resulted
in $he increased liquid loss into the gas stream.

xIt was not clear that the large scale instability was related to the
small waves; however, the first desirabls step in a theoretical snalysis
of the problem, appeared to be a study of the laminar stability of the
shear flow of %wo layers of fluid of different densitles and viscosities.
ihe calculated laminar sublayer thickness in the gasvstream was of the
same order of magnitude as the thickness of the liquid film in the ex-
periments, Hence, 1% seemed reasonable to také as the ldealized model for

the analysis, a laminar shear flow in a liquid film bounded dy a wall on
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one side, and on the other by a semi=infinite gas stream also in uniform
shgaring motion,

It seemed possible that the observed large scale inétability might
result from the turbulence in the gas stream, and hence would not agpear
in the idealized model., The analysis given here shows that this is almost
certainlj the case, However, the stability analysis of the proposed model
ig of interest in itself because of the following fach: uniform shearing
laminar motion of a single fluid bounded on one side by a wall is.known to
be stable with respect to any esmall disturbance {plane Couette motion);
the question then arises of how a discontimulty in viscosity or density
would affect the sitability of uniform shearing motion, |

The basic shear motion is perturbed by a small arbitrary dis%urbance
and its stability is the subject of the analysis. The aim is to dstermine
the value of the parameters for which neutral stability wili regult, i.e.,
for which the disturbance, as a functlon of time, will not grow or decay.
The small disturbance theory has been applied 1n the pash to severai hydro=-
dynemic stability problems of flow of a single flunid. The.following are
among the treated problems: a) plane Couette flow{g’IBD, b) initial stages
of plane Conette flow when the moving wall starts fiom rest (2;); c) plane
Poiseuille flow(22’23), and d) Blasius boundary layer(za).

The dimensionless parameters in the problem are: wave mumber { )
sxpressed in terms of liquid film thickness, liquid Reynblds mmber (R ),
wave veloeity (< ) in terms of initerface velocity, liquid to gas vie-
cosity ratio (™ ), and gas to liguid density ratlo (v ). It is to de
noted that the liguid Reynolds number is simply proportional to the liquid

flow rate, the reason being that the velocity profiles are linear funciions



of %he distance away frcm the solid boundary.

The mathematicel analysis leads to a characteristic value problen
in %wo linear ordinary fourth order differential equatiozis. The fact
that ’cl}e éqnations are linear is a very imporiant one since superposition
of soiutions is permissible. This implies that any arbitrary dis‘éurbanca
can be décomposeé. into its Fourier components, and then the problem has
to be solved only for the case of one general sinmusoidal oscillation, The
solution depends on the evaluation of certain contour integrals (ef.
Appendix B)., The key to the solution rests on the fact that the asymptotic
evaluation of these integrals gives the possibility of expressing the com-
plete characteristic value determinant as an asymptotic expansion in powers
of (XRSVL o Keeping the first two leading terms of the serievs\yi‘elds
the solution in a concepiually simple way,

Since the physical case of interest was the one where gravity and
suffaée tengion forces were small, detalled calculations waré carrled out
for the case where these forces vanished. ‘

The conditions for neutral stability are usually représen’c.ed.. by &
curve of « vs., R with the dimensionless wave velocity < sappearing
as a parameter, In this anelysis, w. and = appear as aé.di’c'ional pare-
neters, The results obtained show that given a com‘oinatio:i of two fluids,
the shape (a loop) of the neutral stability line in the ¥R -plane, is
similer to the one for the laminar boundary layer. The curve has a minimm
Reynolds number below which all disturbances are damped, and two branches,
one having = o as an asympiote, and the other some finite value of X .

The quantities of interest are the values of « and ¢ at the minimam
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Reynolds numbar, A Wy of the effects® of the physical properties
of the fluids on ’shese quantities follows:

(a) As the values of viscosity ratio { m ) and the d.ensity ratio
(» ) tend o unity, the flow becomes completely stable, |

(b) For a given density ratio (L ), an increase in the %alué of
the viscosity ratio { ™ ) always increases the sta’oili’cy,ka:né. in regions
gway from the neutral stability curve, decreases the mlifi&a‘ti@n or
~ damping, |

(e) Por very small values of density ratio (v ) the flow becomes
completely siable,

(d) For a given value of viscosity ratio (), there is a.lfagys a
density ratio (" ) for which the flow is least stable,

(e) As thé density ratio (~ ) tends %o zero, the disturbance wave
length approaches a value very close to ten film thicknesses, and the wave
veloci’sy"becomes spproximately a tenth of the ligquid-gas interfaca velocity,

A check on the correctness of the analysis for some limiting cases is
made by comparing some of the results o’btaineé. with the known universal
stability of plan§ Couette flow between parallel walls of :érhitrax'y spac-
ing. Item (a), as well as (b) when W —=oco , are équivalent. $o Conette
floﬁ, and the results show that, in effect, the flow has been completely
stabilized., |

Less detailed calculatlons are carried out for the case where

* The influence of any parameter is said to be stabilizing when the
result of this influence is to digplace the neutral stability curve
%o the right in the «R =plane, :
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gravity® and surface tension forces are small but not zero, Intuitively
i‘a_ seems that they shenld both have the same effect on the neuﬁral stabil-
ity curve in the «R -plane, Consideration of a vartic‘al displacement
of a avmall. region of the horipontal liquid-gas interface leads %o Wi;he conm
clusion that surface tension and gravity forces act in the seme diraction;
The resui’ss show this éxpectation 50 be correct, and the effect of gravity
or surface tension forces is to destabllize the flow. | _

It can now be said that the model chosen for the snalysis, although
the simplest possible, has yielded a number of new and 'inter%tirig resnlts;
| The most important conclusion to be drawn from this inveétigatienv is
that a discontinuity of viscosity or density has a desta’oilizi:‘ig effect

on uniform shearing motion,

» C‘fravity is assumed %o act normally %o the flow and in th@ direction -
of the solld boundary, ,
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NOMENCLATURE

o guantity obtalned by comparing Rgs. (B.21) through (B,26)
with (B.27)

A amplitude of disturbed liquid-gas interface

c -wave velocity (complex or real) |
_d

D P

D substantial derivative

Db .

F :Ug Froude number

%

g acceleration dne to gravity

% § J& functions defined by Eqs. (0.8), (0.9) and (0,10) respectively

LN imaginary part of
RY real part of
L \&

'I,’I," integrals defined by Bq. (B.30)
LI, I, integrals defined on p.
K a3

. . LJ‘E
\,
2" o

T
&,}j,,&élk.’,,,zg constants of integration
1 varisble defined in Eq. (B.57)
1. radius of curvature of liquid-gas interface surface
ok deformed L, path of integration | |
L,L, paths of integration in the complex plane (cf.Pig. 2)
’ 1.  paths L, ,L, after rotation (cf.Fig. 15)
m<pL  liguid-gas viscosity ratio |

P presgure
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x,y

o= ZT

[N

)

A

xi

fanction defined by Eqs. (D.1) and (D.3)
quantity defined by Bq. (B3.60)
gas-ligquid density ratic

Reynolds number

residue of
.i.o((;a:—c*:)

when used in = it denotes time, otherwise it is a

variable of integration, real or complex é.epending on whether
it has or has not a subscript ‘

variable defined by Bq. (A.8)
om,%, °
disturbance velecities in x, Yy ~direction, respectively;

with a bar they denote & dimensional guantity

liquid~-gas interface dimensional velocity; reference velocity

function defined by Bq. (B.55)

T
3”——" Weber number

Cartesian coordinates; with a bar they denote a dimansional
quantity

complex varisble defined by Bq. (1.8)

wave mmber

function defined by Bq. (B.86)

dimensional thickness of liquid layer; referezic; length
quantity defined by Bq. (8.15) n
functions defined by Bq. (1.15)

T 2

wué, %
disturbance wave lengih

ATiM. @iybe ¢, Tunctions defined by Bq. (5.15)

Vo

dynamic viscosity
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kinematlc viscosity
€ RA ¥
f density
T surface tension coefficient
Ty normal stress component in y -direction
T, cols of integral (B.29), + and -% respectively
Te Reynolds shearing stress
9,2 dimensionless amplitude function of the disturbance stream
function in the ligquld and gas respectively
v, e dimensionless disturbance stream function in the liquid and
gag regpectively
Subscripts
ceib. denotes quantity evaluated at the critical Reynolds number
9 ‘gas, upper fluid
A interface, or imaginary; meaning is clear in each case
) liquid, lower fluid -
oo denotes a quantity evaluated on the neutral stabllity line
P pole
R real, excep’ when used with /?,
T, due to surface tension
42,3 when msed with y or with .=, %, 4y, &, @L,@,@g‘ and

thelr derivatives indicate quantity evaluated at the wall,
interface or at infinity, respectively

Superscripts

*

indicates quantities evaluated after deformatlion of the con=-
tour of integration

indicates derivative with respect to the independent varisble



I. INTRODUCTION

The interest in the present problem stems from the desire of ob-
taining soine theoretical understanding of the phenomenon that occurs
when a liquid film flows over a flat surface, dragged along by a liigh
speed gas., TFor certain liquid flow rates, the film surface becomes
wavy and particles of liquid are detached from the main body, entrained
by the gas, and carried downstream, This situation arises, among the
numerous engineering applications, in connection with £ilm cooling (1)
of a solld boundary. |

A classical prodlem releated to the one mentioned above, is the
one of generation of ocean waves by wind. This problem has been :éacént-
1y investigated thecretically by Lock'2), who is the first to have in-
cluded in the analysis all the physical properties of the alr and ﬁa‘ber.
His calculations are incomplete and the results obtalned rather cumber-
some,

The problem of the stabllity of stratified motion of different

(3)

fluids has been studied by Taylor and Goldstein(n), who didn't in-

clude viscosity in their analyses. Taylor investigated contimoﬁs and
discontimong density and velocity distributions, Goldsteln treated
gimilar problems, his investigation being a generalization to heter-
ogeneous stratified fluids of Rayleigh's(s) work on the ﬁomogenequs

case,

* Mumerical superscripts refer to the references given at the end of
this paper.
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The problem of liquid film stability has been investigated experi-
‘mentally by Kinney, Abramson and Sloqp(G) and by Knuth(l), who wWere ¢on-
cerned with liquid £ilm cooling applications, where the gas stream was
always turbulent. York, Stubbs and Teak(7) studied the mechanism of
disintegration of liguid sheets experimentally, and they proposed an
inviscid model based on an extension of Lamb's work,

The philosophy of the pressnt gpproach to the problem is to -
choose as simple a model of the physical situation as possible, so
that the problem becomes tractable, but still keep enough of the physi-
cal features so that it will contribute %o the understanding of thg
phenomanon. |

The aim of this investigation 1s %o solve the hydrodynsmic stabile
ity problem when two viscous incompressible fluids, in two-dimensional,
laminar, uniform shearing motion {Fig. 1) are perturbed by a small
arbitrary disturbance. One of the fluilds, from now on called liquid,
i1s bounded in the direction normal to the flow by a solid wall and by
the second fluid, celled gas, of semi-infinite extent in the direction
normal %o the flow,

By "solving the problem! is meant to find the relatioaships to be
satisfied by the parameters of the problem so that neutral stabllity
will exist. This impliss that a neutral stability hypersurface, whose
coordinates are the physical varilables involved, could be constructed
that would separate regiong of stability and instability. In other

words, if the physical propertles of the flulds are given, 1t is
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desired to determine the minimum critical Reynolds number® at which ine
sjability begins,

It is realized from the above remarks that the chosen model is
qui%e an idealization of the physical situation. The most serlous criti-
cism is that the gas motion, in the aciual case, is turbulent in most
casas of’interast, and the velocity profile is not a linear function of
the distance away from the wall., Some Justiflcation for th@'present
approach lies in the fact that at least in the laminar sublayer™ of the
vﬁfhulan% flow, the gas is laminar with a near linear velocity profile,
There is still one other reason for the approach used (besides the ob-
vious one of being unable to analytically handle the turbulence), which
ig, that it has been definitely shown by Zondek and Thomas(g) that plane
Coustte flow of a semi-infinite fluid in the direction normal to the
flow, is always stable., Now, this situation is a specilal case of.the
aforementioned model, and it 1ls interesting from =a theoratical'point of
view, to know what the answer to the proposed problem is, ih other ﬁords,
how does a discontinuity in density or viscosity affect thé 85ability of

pure shear motlon?

* Defined, for given flow physical properties, as the sméllast value of
R , for which incipient disturbances will become amplified, il.e., the
smallest valus of R of the neutral stability curve in the «R- plane,

#h The ratio of gas laminar sublayer thickness to ligquid film thickness
in existing experimentes is of the order of unity.
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II., THE BOUNDARY VALUEZ PROBLEM AND ITS SOLUTION

1. The Orr-Sommerfeld Differential Egquation and its General Solution

for Plane Conette FPlow

The task is now t0 mathematically formulate the problem of sﬁabiliﬁy
of two-dimensional laminar motlon, This has been done in the past in
numerous references {cf. Ref. 9). For the sake of completeness a brief
description of the derivation of the disturbance equation will 53 given
here,

Let all coordinates and velocities be made dimensionless by the
use of a reference length 5 + and a reference velocity ﬁ:. .. Consider
a basic flow in the x =direction with a velocity profile U(y) , The

Navier-Stokes and continuity equations in the xy ~plane can be per-

turbed by assuming velocities in the = and y =directions of the form
U(\]) + M rfﬂ,j,k}

/\r(x, y,}:)
(1,1)

and a pressure

P oap(=yb)

vhere the small symbols indicate small quantities, and b is the dimen-
sionless time (i.e. U» « time/0 ). Introducing Bq. {1.1) into the Navier-
Stokes equations leads to two linear pariial differen’cial equations from
which the pressure can be eliminated by cross differentiation and sub-
traction, The result is a linear partial differential equation c‘on'bains-
ing « and v as the dependent variables,xy and E being the independent

variables, The equation of continuity guarantees the existence of =
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stream function VY(z,y,t) , such that

o
M—W
CA
= ? >x

which, when used in the last differential equation obialned, reduées\
it to a linear partial differential equation in terms of only one depen-
dent variable: Y (=<,y,t) . The fact that this equation is linear, is
very important, since this means that superposition of solutlons 1s
allowable. This implies that if any arbitrary disturbance 1s decomposed
into its Fourier components, 1t is then sufficient to solve the problem
for one general simusoidal oscillation., After the solution is obtained,
it will be necessary %o look at all possible frequencies and see imw
they affect the behavior of the solution,

In order to separate the varisbles in the partial differential

equation for the stream function Y , let

.L;L (xc-<t)

Y=yt = Pl e o (1.2)
where “PLy) is the complex amplitude, < is the wave number 5 &8=

sumed positive without any loss of generality, and c 1is the complex

wave velocity

Ca CotiCy

(1.3)

where <. is the wave velocity and c. allows for amplification of
disturbances if c:de , damping of disturbances if C.<o , and

neutral disturbances if c=~o0 . The partial differential equation



for V¥ then reduces to the Orr-Sommerfeld equation

(U—-c)(k(’"_o&‘f) ~U"Y < _f;ﬁ (4" -2z 9" +.>("Lf) . (1.1)
where the primes indicate derivatives with respect to y , and R 1is
the Reynolds number: & , p 1is the density of the fluid and p
the viscosity). F

If the velocity proﬁla of the undisturbed flow is a linear func-
%ion of y , as in the case of interest, V'=o , and Hq. (1.1‘1-)'
becomes
v o) L L w_, 2 4 .

U -e) (4" ~9) = - (§V~2* @ + ') L.5)
which is a linear fourth order total differential equation in the‘go'm-
plex y -plane. As first pointed out by Lin(9), Bq. {1.5) has four
linearly independent solutions, analytlc functions of y and entiré

functions of the parameters ¢ , « and «R , We will now solve Iq.

{1.5)s Let*
) o) = S0) (1.6)
which when used in Eq. {1.5) yields
| 2 _ IMLQ(U%)%@%:O (1.7)
Now, letting
. g @g%+x<o<a>"ﬂv<\)>-q}[w]'f’i e
() and later

* This transformation was first goin’ced out by Orr
independently by Sommerfeld{10J.
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S0 - Al (1.9)
Bq. (1.7)'cou1a be written as
A=y +=2 bz =0 (1.10)

which is the so called Stokes' equation. The solution can be obtained
in terms of contour integrals by using Laplace's method (cf. Ref, 11,
pp. 582-585), The result is

Jb(%) = ﬂ.ka /Q\)l(.z") + 1/&‘9 /?\’2«(;‘-) (1011)

where the factor 2 is introduced for convenience in later calmlations,

}&5 and JQL, are arbltrary constants and

L E -
Lim=- X S;f e (1.12)
< J
R/V 4 zl:+—,; : '
L2 = -\ T (1,13
an
L :
boaa e €
- (1.148)
Jz‘ - Qz)m JL"’?,
L and L, being the contours of integration shown in Fig. 2, /g«.

and «Qv;_ are entire functions of = , and € 4e = ooﬁplax va:ciablé

of integration,
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Jml(z\ and )k;,(;z) could also be written in terms of Hankel functions

of} order onefthird(la) as
5\, A
b = @20) B (227 (1.15)
/ 2 (L) 2. .
@ - (52%) i, (227 (1.16)

14
It will De recalled( ) that the Hankel functions are of oscillating

G :
nature, Hui » the function of the first kind being damped exponential-
ly as |§ Z%I becomes large, while H\/a) increases exponentially under
the same conditions,

From Bgs. {1.9) and (1.11)

<) - 2ks80) +2 ki)

where
=) =4 (=) }( )
1.1

2.4) = A @) | e

which when inserted in Bq. (1.6) gives
fly) -2 Ply) =2 kS )+ 2 ke S (y) (1.18)

The solution of the homogeneous part is
Qlp): de” vk (1.19)

pz, and le being arbitrary constants. =2q. (1.18) can also be

written as



E - «)¥ =t (1.20)

where

=

D 2y

(

and
LLy) . 2 ke 2.(y)+2 /‘zq 2..(y)

Solving for Y gives

W(y)=—‘——(—i~~ [ )ﬁ(y)

24 | Dol D (1.21)

The interpretation of the operator Eq. (1.21) gives the particulér in-

tegral

(1.22)

where the constant of integration is arbitrary, since inclusion of this
constant will glve rise to two terms that can be merged wi’ch‘ the com-
plementary function, Bq. (1.19).

The complete solution of Bq. (1.5) is then

) =k, Aly) + ks ) ¢ ksl 4+ Ry ) - (1.23)
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where
-&y
Yy ==
[ &
C(y) ==

Y aiys ) _aty-b)
¢, (y) = -D—‘LH_J(’ J@‘(H 4t -j_i 4 a,®) a\{:}

‘ Y (y-b Y iyt (1.24)
% U)v= i& SQU ,‘3;&)4& - S,@w ’92@) a\l:}

and U is a variable of integration, S, and <. are given by Eq.
(1.17). |

2. Differential Hguations for the Present Problem

For the case of flow of two stratified fluids two equations of the
type (1.5) will have to be used, one for each fluid, with the prbper
matching conditions at the interface. Iet $ and Uz. used %o render
Eq.. (1;5) dimengionless be, respectively, the height of the liquid sheet
‘and its surface velocity; let small case and capital Greek letters de-
note co:iditions in the liquid and gas respectively, and le£ the sub-
scripts L and g denote quantities evaluated in the_nqﬁm and
gas.. We then have |
Liguig Ges

Disturbance Stream Function*

f‘:%(’:“"e, ' ,“,o((_:c-o‘f}

Y- 9(y)e P-5Q) e (2.1)

* The reason for using the same x and < in the liquid and gas stream
functions, is that (since they are constants) the consideration of &
disturbance occurring at the interface leads %o the conclusion that
the wave number and the wave veloclty must be the same, whether conw
gldered in the liquid or 1in the gas.
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Disturbance Velocities

9 (\V ' <o (z-d,) | ,{_a((x~a‘:)
e 2 G Mo 57 = B
(2.2)
: s (x-cb) o . At (e -eb)
%;—%=-~&‘F(Y)~L '\7‘1:~g—_-4_o¢@@)¢
Orr-Sommerfeld Equations

(T&-&)(‘?"—o&‘?); —fi(\?w'idzw"*dq “?) (o:—y e() (2.3)

(‘\7?" )(.é "—0(2'<_T2) - __&;"E% (@\ _2&2§"+°{” ?é) ( | £ y ﬁoo) (2.1“)
where

S AL  (25)

ST, .
! - o (2.6)

(2.7)
and equating the shear stresses at the interface of the basic flow

gives

i

Ty = 14 AR (y-) (2.8)



The solutions of Hqs. (.?..3') and (2,4) can now be written, from Hq.

{1.21), as
| @?(y)=J’z,}?.(y)‘+Jz,‘(’&Ly) + ks ¥s(y) 4 /Lq i (y) (o =y =1) (2.9)
@(y): V\I §|<.y} +K2@z<y) + K2,§5<y) + K'—-’ T@q(y} (l = y %oa) (2.10)

where the  's are given by Eq. (1.24), and the T 's can be obtalned
also from the same equation with the precantion of using the appropriate

valune of = in the gas, given dy Eq. (1.8).

3. Boundary Conditions

The boundary conditions are identical whether written in terms of
dimensional or dimensionless velocities and coordinates. It will there-
fore be assumed, that dimensionless quantities are being used.

Let subscripts 1, 2 and 3 used with the coordinate y denote, re=-
spectively, the wall, interface and infinity, il.e. Y=o, V. =1 . and
Yaz oo .

At the wall, (y=y,=o) , both components of the disturbance veloci-

ties mst vanigh

g (y) =© | (3.1)

My ly) =0 (3.2)

At _the interface,\y=V.=1] , the following conditions mst hold

a) both fluids move together with no vacuum layer

“between thenm
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i (a) = 95 (yp) =0 B (3.3)

D) no slip between the fluids in the direction of flow
/'L(Q\yz.) - M’?(_y:—) =0 ‘ (3.1;3

¢) the shear stress must be continmons

mE2 o)l 35 - L

d) becausge of surface tension effects, the normal stress

Jumps, 1, e.
: el |- gas

—~ QL _ — Q. )
Pr =% 7 T*‘W ftqt

VAR T 7 7 77 777

where p; (defined in g, {A.3), Appendix A) is the effective pressure
~ caused by surface tension forces. The previous equation can be re-

written as

dag : D _
Mgy T R TRy TR S (3.6)
At infinity, (y::ya:oé) , the disturbances must vanish

\J’:k (\)5) =0 (307)

Mg (h)=o | (3.8)
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Bgs. (3.1) through (3.8) are the eight boundary conditions necesssry
for solving the system of two fourth order differential equations given

by gq_a. (2‘9) and (2.10)0

L4, The Secular Nquation

Bgs. (1.16), (1.17) and (1.24), show that when y->co, T, (y) and
T,(y)—=>c= + In order to satisfy the boundary conditions given in Eqs.

(3.7) and (3.8) 1% is neceasé.ry that in Eq. (2.10)
sz_ : KH =0 ()'l’ol)

which when msed with Hgq., (2.2) allows the boundary conditions, Hgs.

(3.1) to {3.8), to be rewritten as

/?qu)u +J21LP1; +/L=, U?’:l “VXZH Quy =© (h.a)
Jzﬁ(’.i +Jk,“?,_',+«la,t?a'. +L L(’q’. =0 (4.3)
J?.,L?\z */%Lkezz-l'jaa(?;,_ +j2l+ Lp"u. - K1a12_‘ K} @,’2;0 ()4-.2#)
et s d gl Rl r kgl B KT o (4.5)
/pz‘(ot’-‘?.,_ .ﬁP,";,) +/pl,_ (o(.?' Yaa +L€zh:.) + J&; ("(Z B+ (P;’:‘.) + /??“6 ("(-2 Hs + LPhu:.)
o (4.6)
B L) -k (4B v R )= o
J‘Lk}[;%_ Fl(\—c)_!-%ng_"-(“c)k.‘:ﬂq" _"L?"’}'('JE 3[ + —‘—)'l' }R‘Pz.z-[(“ CP."~?>;’%4,~—- (.‘;7‘-’2,_}
. )4[{ - }R%l [(*)R“”%% &%,}JJZ S[ W+]R% [(1 o|R~ *54]% é_(PIn}
%I n
~= m‘“+|=(|—o n,[ R J.a%@‘l 4—@ } o+ ﬁj{g*bmﬂz Bl-c)Rmm—&ﬂa 31}

=0 (4.7)
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where thae notation used is: Wi(y) =¥ ; Ya(y) =%z 5 ete, and

-8
He

(4.8)

S
i
N

R% does not enter in the above relationships because it is clear,
that from Bgs. {2.5) and (2.6)

12.% =Rynm
For the details of the derivation of Bq. (U4.7) reference should be made
to Appendix A,

Thus, the important dimensionless parameters of the problem arise
automatically and are: <,R,¢, w7, F anda W, It is seen that Ry
has disappeared from the problem as a parameter. This seems to be in
line with experimental results (cf. Ref. 1, pp. 362-363), which show
that the inceptlon point of unstable disturbances is independent of the
gas-stream Reynolds nmunber.

If the preceding set of Hqs. (4.2) to (4.7) is to have a non-
trivial solution for the £'s and W 's the following relation, the

so~called secular equation, mmst hdld:



e T -l _,_.‘.._1

b _Mvd) Nz
A

AL

I

e m&m —(e-

R

J&T ot %& ;

T

3 <+ "
e B
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5. Solutions for the Boundary Value Prodblem

The purpose of our calculatlon from now on will be to find the
function that the secular equatlon represents.

From Bqs. (2.7), (2.8) and (4.7) it is clear that

in 1iquida U=y AR ' o=y = }
(5.1)

'ingag v=l+fwx;(y-|)') U’:ryv\, |é—)_oo

The six solutiona.involved are, from Eqgs. (1.8), (w12, (1.13),
(1.17), (1.24), (2.9), (2.10) and (4.1) .

)~ (5.2)
i) = < (5.3)
J -t y-o(( J%)
) = :.L—% Sﬁu Y2, ) b, gx e d‘c,,} (5.4)
v ( | )640*‘5&) )—«c(y-ﬁ) L (
o y) =)\ 5_5,.(‘!73,) “H:L -\l S 4 1 5+5)
~y
ﬁx@) = L (5.6}
Y «(y-b) )yt
NOE :‘z% S.?, Sily) Ay - S@ s,y d%-;} (5.1

S oo < [ 257 e



K (s
2, (&) =M (%x == “ _SL@ it (5.9)
' 2-1§:+—5—
3. ) = A (z,() —Jﬁ S-@ ok (5.10)
Zy = L:;)qa + < ("(R‘) U‘T - )} ' (5011)
Z‘g &(;(RL)% + .b(o(\'l"ww» [@: -\ ;!;C (1< 5}} (5.12)

and for clarity, instead of using y in the liquid and gas, the varisbles
JcL and t} were introduced. In Egs. (5.U4) and (5.5) the lower limit
of integration was teken as y=| Tbecause of convenience for later cal-
culations.® Later on many expressions will have to be evaluated at

=Y = | « With the choice made the calculation is simplified since
several integrals are going to vanish there, i. e. Da, W’Bm,q’”t’:z., Yuz,
Yo Y% and 9ys o In Bq. (5.7) the lower limit was taken as oo
becanse two of the boundary conditions required the solutions to vanish
there: no other choice would have.'been satisfactory. The functions

needed in Fg. (4.9), will now be written down

"Pu = | "{14 = |
qtj\ =~ “Fa.'\ =«
~0l
| K =2 Woz= .z,* B,z 2 (5.13)
«
L‘Qn,, - —OC. «ﬂ/k (‘?3.7), -:,o(.ﬁ; . &13, :—D(-én*

* For a different alternative refer to discussion on p. 23 of this
paper.
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where % (1) means the_vaiue that 2. takes on, when tmfi .
the douwble subscript denoting either 1iquid or gas.
| Thus far, no restrictions of any kind have been made in the pre-
vious analysis,

In the rest of this paper the term "viscous solutions® will often
be used. It refers to any of the functiomns or derivatives of ¥i, ¥y
or %, , regardless of where they have to be evaluated.

The behavior of the viscous solutiong, for XR >>) . wﬁ.ll be dis-
cussed next. It turns out, that this will be sufficient to solve the
problen, One‘ of the major tasks is the evaluation of the integrals in
Bq. (5.13). The only previously existent discussion of & similar in-
tegral, 1s the one by Ha:pf(lf’) who assumed «R small: his discussion
is not satisfactory, especially in view of the results obtained here,
which indicate that «R>| , |

Before analyzing ‘hhé behavior of the solutions for «R>>) , the
determinant of Bq. (4.9) will be changed into a form more convenient for
calculation, The procedure is
 a) divide last row by R |

1) multiply 3rd, 4th and 6th columms by iy JRCE0 L WRrod)

U [}
ey TR T

to the left of a symbol means the

1

respeciively, where the
leading term in the expansion of the corresponding function
(ef. footnote on p. 25 Jj
¢) from Eq. (5.13), insert all the zeros for the terms that vanish;
d) mltiply the 5th column by -1 and rearrange the columms, so

that column 5 becomes 3, 3 becomes U4, and U becomes 5.
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The result is then

/\ \ V,’ O @, £’ °
AL v, O Ry "Dz °
/\ 3 \/a Ta O o c;
| =0 (5.114)
v Yy Ty o °© |
/\ 5 \/5- T5 Qs bs' Cg
/\ & v6 -Té Q—c bg Ce

where the first three columns involve the inviscid terms, (except for

the last row that has terms of O(—{i) , and will be neglected in com-

parison with the terms kept in the calculation) and the last three

columns involve the wviscous solutions, The meaning of the symbols in

Bq. (5.14) is given by the following relationships

N, =%y
Ny =9
Ay =@,
Ny =47

/\5 = "("'Pﬂ_ +Leh‘-'

Ne = [:—L-i—‘:("_c) 4@(-?\1— (1) Gl v (50(7_ q‘]’a - Lﬂ:-') (0(?.).,

(5.15)
\/p e (?2—\
VL el L?,_"
Va = Y,
vh = ('P‘J-,:.

V5 = o(.’_q);’_-*-('?;:

Voo [ 4 ol ]G (e B (3 L -0 ) (4R



~

w

=&,

= 2h

o A

= —‘—~ ("Lz §n_ +§n'..

=" ‘l{_m T F_'(?c)] &, - (=) @.L} b= (>C@L-B0 )(x=)”

i

= (R, 1y

a

Qg = (AR)= %) /1 g,
Az = (’k K)U’. (PB‘;./'(P;';_

. " 0]
R, =~ htnd q)?ﬂ. /’ 32

" (5.15)
b, = («=Y* %y 9, (contd.)

g
}

. Qca)”‘* G /19

bs — (®)* B3 )'9

b, = — Q:’“ia“‘ Do [ Yyn
Cy = Le(R."wwt)\IL &) By
Cy = (oclmmk)”* Bsn /' Dy,

Csn &‘z(&zmﬁ)"‘@n/'@;; 4 («Rn )= B/ '54

C 3 21k 1 1
¢ = %5 [mﬁn-F_g‘__o)]m (R B B - ()= & 2L Rk B

el o |
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7 It‘is 'v_:br"ah remar_king that the lower limit for the integrals of
Hgs. (5.4) and (5.5) could have been taken, as an slternative, to be
zero instead of unity. This wounld have lead to a fourth order deter—
minant instead of the sixth order of Hg. (5.14). Bach element of the
alternate determinant would have been not only more complicated than
the one of Fq. {5.14), but the clear separation between viscid and in-
viscid solutions {of which use is made in Appendix C for the calcula~

tions of the neutral stability lines) wouldn't have been possible.

6. Behavior of the Viscous Solutions for XR.>>| ,

In order to bring out the behavior of the neutral stability curve
(i.e. for given ™,» ¥ and W ) for large values of the parameter *&
it will be sufficien’bv to keep in the asymptotic expansion of the perti-
nent functions, the terms of highest order in «R , As will be shown
later, (p.29 ) the case of interest for neutral stability (cf. g,
(1.3)), is the one where <¢=c<» <l ., The detalled description of the
method used for obtaining the integrals, the order of magnitude of the
errors invelved, and the calculation of ¥, as an exarmple of the pro-
cedure used, are given in Appendix B. The other functions are obtained

in a similar way, and are just qué’sed here,

32

:z(ta.)‘l“’ ‘;LE“ sy A3 E, v
P, = = }z&_ < 40 L(o(z)a]}

T (KRY®
5 (6.1)
' Vo —HBT .z -
! 3 A3,
¢! _ 2_(\‘2) < z:y,l"©3 %, 4,0(1)?
—“-11. CDCQ)‘IS o j
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" 2 i v, <3 %, -3,
Y = (‘1)“”’- ;-_,l'* [.]—4.——.% 4-0(&2‘ )]
\J -'Z y " % 5/;, (6.1)
o T \ A 2,
W,o=_2 (12 :2. (KR) 3 { +«a_ ﬁl. + O(z,_a )] (contd.)
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-‘ - ~4 : ‘5/ —2-21
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LT Yo (O(R.) \ )u, |
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g ~" contd.
("“Z = [ O( Q»m)"a)}
where it can be assumed that, {(c¢f. statement on p. 58 )
SR, Y~ L LDC‘Z‘Y,)
2y, 4 (@R (0) . (6.4)
LN ,i,(oLRmm’c)"’ (=)
>y
W
Maltiplying Bqs. (6.1), (6.2) and (6.3) by” % . &R end
. 3 " Fu2
1‘&."_;_& respectively, leads to
Ty
2 @ o |\ sy L%‘(?:Zlf—-ai/f) ' m, A‘; 2
(o(xa) ’i’l‘; («®) "z, 2y e 4 O[@(K s 1
vy g, Vel <y 2% @Er- =) e —iZEe
Ry _ (KR y o3
aft . )% g ¢ o al 53]
, (6.5)
S R
32

e o)

Il e, 5‘ _ ~ l}I‘.
* Where 'f3L 18 the leading term of B |, i,e, ' JLZ)T_ PhF
gimilerly for other functions used. ™
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then, the térms of interest in Hg. (5.15) become, after use is made of
Ags. (6.5), (6.6) and {6.7)

ay (<) "e +o[WR) 2]

a,

It

A, = 4y +0O KO(R)‘/'LQ;]

. - (6-9)
Qs = @, (RS £ Ay +O(KRY™
Ay = A 4 Lea (X rz_)"'/‘ + o (xrY’
b = b, + b,,_(ouz)"’2 +o[_(&z)""_g*]
boob, +b, (AR)"5+0[(xa)"”4*}
4 (6.10)
bs = bs, (xR + bsa + O [(xR) ”]
be o bay b (R +bes (4R) "+ o[ (R RY ]
Cy= Ca (4 p\)-”" + Caz("(R)"'*-OK"(Q)J/L] \
Cy = Cuy +Cys (KR)”’I 4+ O 0(2‘).‘
y L ].,, f (6.11)
cs= Co (AR)™ +Csa + Csy (¥R) > 4 O[XR)]
CemCo (XRE 1oy (B 4 O [(WR)]
where
=T , _,LI
Ay, = 2 ! C,*% (l—o " Qsa = Thee 4 Q.C)-B/"
-z Y Z .
Ry, = < 1=<) Rgy =~ 1 1-c)’*
N ( @z (6.12)
Qs =\ Ky = :—9 -a&i (!—G)-l
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The seculsr equation (5.14) is expanded in Appendix C in terms of
a sum of products of the viscid and inviscid terms. ZEgs. (6.8) to (6.14)

 are then used for determining the important terms to be kept in the final

result.

7. The Bigenvalue Problem for ¥R —>o°

It 18 shown in Appendix O, Bqs. (C.8) and (0,15), that for the

cage of XR->09 the secular equation reduces to
?)(e(\c.,n,m«.,}:, vu)=o (7.1)

This equetion turns out to be very simple and can be solved expliclily

for < » The reslt is



20

o

2 . . v .
co{_ (L@—+n_mm)+g({% +1—fmw)+ Hoch(x,m, M)M,]_ﬁ_;_m} -
iec[cé/(x@,m).,.ﬂ o
where | |
& wy \a -
oo ;Lj:koc * Ecaj;)oc _'j u,‘(&)vz (7.3)

the radicand being always positive, i.e. ¢ 1s always real, which means

that for RP—s-- the flow is neutrally stable. Also, since for cases

of interest, vomm <! , ¢ 1is always less then unity as R —=>°0 . This

is quite an important conclusion, since for finite Reynolds numbers, the
computation is different, depending on whether ¢ is less or more than

| unity. It will therefore be assumed in all later calculations for
finite Reynolds number,that < </ . The final calculations will bear
out this assumption,

A different approach to the case of infinlte Reynolds mumber, would
be to neglect viscosity at the outset, l.e., in the Orr-Sommerfeld
equations, The differential equations become then of second order and
by relaxing the proper boundary conditions, the problem conld be solved
again, This has been done, {cf. Appendix 0) and there is a discrepancy
in the equation for c¢ , that from a physical point of view, is &
puzzling question that has remained unexplained. From a practical
| point of view, the discrepancy is immaterial since for fluids of inter-
: ést, i. e., liguid-gas combination, lY:: = ,» both results

agree.
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€. The Case of Pinite Reynolds Number

The fundamental equations for the neutral stability curve in the
«R- plane, for a given physical sitmation, (i,e., for fixed gas-liguid
density ratlio: ~v , 11@1‘1&-—gés viscosity ra’sio:v oy , Froude number:

= , and Weber number: W ) are®

o= elx) | (8.1)

{(g.2)

each point on the curve, having a particular wave veloclty < .

The solution of Eq. (8.1) has to be obtained numerically™* because
of the impossibility of solving explicitly for ¢ or «  In terms,
respectively, of X or < , Once the pair of values o« and < is
known, stralghtforward calculation leads to the value of (XP-)V?‘ . 1%
being possible o evaluate R immediately.

" I% is worth while %o digress for a minute in order to point 611%
the meaning of Reynolds number, = =Ry , in the present problem,
Since the velocity profile is a linear function of distance, for given
liquid physical properties, R ié proportional to the liquid flow
rate, and therefore is a constani 6nce the liquid flow rate is known.

Now that a method for determining the neutral stability curve has

been described, it is necessary to find a way of deciding which reglon

* 0f, Egqs. (0.13) and (0.14), Appendix C.

¥ A1l the numerical work was carried out on an IBM Card Progranmed
Elsctronic Caleculator using an 8-digit floating decimal system.
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- oxi either s;de of it,‘is stable and uﬁsta‘bl@. The calculations (for
the analysis refer to Appendix D) indicate,.as is reasonable to expect,
that for a disturbance of .a given wave length, the flow isg stable for
Reynolds numbers smaller than a neutral Reynolds number R, and simi-
larly, "che fiow is unstable for R>R, .

The results obtalned from the present analysis, of which Fig. 3 is
a ‘bypiéal example, indicate that the shape of the neutral stability curves
in the xR -plane ig similar to the boundary layer case. The effect of

varylng the gas-liquid density ratio could be stablilizing or distabiliz-

ing, while increasing the liguld-gas viscosity ratio always siabilizes

the flow, provided » is not very small compared with unity.
The general shape of the neutral stability curve is such that for

A= © , the equation for the curve ils

AR =  constant, (8.3)

this being the lower branch of the curve. Bq. (8.3) can be derived
analytically from Hgs. {C.13) and (C.14%), Appendix C. The upper branch
sgems to be nearly a horizontal tangent forR-=<¢ ; thils was obiained
numericallye

The influence of gravity® or surface tension forces on the asbove

results should be alike, since thej; enter as a sum, in the secular
relation Tq. (4.9), Pig. 4 shows, that for large Froude and Weber
nurbers, their effect is to destabilize the flow, Obviously, surface

tension effects are negligible when the disturbance frequency is small,

* The gravitational field was assumed %o act downwards in the flow con-
figuration given in Pig, l.
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but become very important at large frequencies. The effect on the
neutral stability line is in this case o ralse the upper branch so

that its asymptote for of>>| is
oL constant (8.14)

which, can also be obtained analytically as Eq. (8.3).

All the effects dlscussed thus far, involved the stabllity of the
flow, i.e. they indicate the direction {left or right) in which the
neutral stability curve moves in the xR  -plane, when the flow physi-
cal quantities are varied.

There are two more items that should be discussed before the im-
portant results of the large munmber of calculations made, are summa-
rized, and they are

a) the behavior of the magnitude of the wave velocity.
b) the amplification or damping rate of disturbancesin the
neighhorhood of the neubtral stability line,

In answer %to a), it will just be mentioned that all waves travel
at speeds less than the velocity of the liquid-gas interface, a typilcal
case being given in Fig. 5.

On the neutral stebility curve, the imaginary part, c, of the
complex veloclty < , vanishes, It is possible nevertheless, to com-
pute {cf. dppendix D) the rate of change o:E" c. with respect to
Reynolds number., The important result is that this 1s always a positive

quantity, which as a function of « (Fig. 6), has a peak near the



critical Reynolds number™®, This meens that the curves &= constant, i;‘l
the «R- plane, would.'b& packed close together when in the neighborhood
of ‘bhé eritical vaiue of ¥ ami‘ R .

Since the i@orfant quantities are really the critical quantities,

the summary of a large number of calculatlions will now be presented,

9, Values of Oritical Quantities and Discussion of Results. Comparilson

with Experimenis.

Since the physical case of interest is the one where gravity and
swface tension forces are small, detailed calculatlons wers carried
out for the case of F=W=00, The critical values are presented in
Pigs. 7 through 10 from which, the following facts can be gathered:

{1) Asm and =1, the flow is completely stable,

(2) For a given gas-liguid density ratio {7), an increase in the
liquid-gas viscosity ratio { ™) always increases the stability, and de-
creases the amplification or damping in the region away from the neutral
stability curve.

(3) Tor very smell density ratio ( » ) the flow is completely stable,

{4) Por a given viscosity ratio {™ ) there is always a density
ratio { v ) for which the flow is least stable.

{5) As n=>o the wave numbef { <) tends, approximately, to a value
of 0,6, and the wave welocity { < ) becomes, approximately, O.l,

(6) For %he special case of air and water at a temperature of 100°C
and a pressure of one atmosphere {m = 10, 7 ¥ .0o| ), the value of the

critical Reynolds muwber is 60,000,

* ¢f., footnote on ps 3.



!ﬁhe siénificzmce of the results gquoted in item 1 and 2 ca.ﬁ be under-
stood in terms of the lmown universal gtability of plane Couette flow®
betveen welle of arbitrary spaci:t}g. An explanaticn follows.

In the special case when both fluids havs the same density and
viscosity, (i.e., the case of a single fluid) the velocity profile be-
comes a single stralght line, which coincides with the case of Pel.Te
The result obtained (ite‘m 1) shows this flow to be universally stable,
in agreement with the original result from P.C.F.; a check on the
analvsis is thms obtalned.

When the result quoted in item 2 i§ interpreted for the limiting
case of a very viscous liquid, the motion is again always stable. The
very viscous ligquid could just as well be considered as a solid and this
case again reduces to Couette flow.

From item 2 and the above discussion there is a result that can be
deduced for which caleunlations have not been made, l,e., for any arbi=
trary denslty ratio, the flow is completely stabilized when m=o, The
reason for stabilization, is that this limiting case of the flow oceurs
when the gas becomes so viscous that it could be replaced by a solid
wall, which again reduces to PsCa¥. Detween two walls at a finlte spacing.
Therefore, in Fig. 7 there would exist a curve for some small value of . ,
that would be farthest to the left, and for smaller values of m the curves
would again be displaced more and more to the right as the liquid-gas

viscosity ratio is decreassd.

* From now on abbreviated as P.C.Te
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Iﬁams §vand. 6 will nov be comparéd with experimentally made ohser-
vations. All experiments with liquid filme ‘have been carried out in
horizontal round tubes where the ligquid flows along the inner surface
dragged by a high speed turbulent gas. It should be kept in mind that
while tize gas layer is of infinite thickness in the theoretical model,
the ratlo of laminar sublayer thickness in the gas to liguid film thick-
ness in the experiments was of the order of unilty.

The experimental neﬁtral wave length ( A ) observed by Km:.thu) for
all liquid flow rates wé.s about 10 film thicknesses, Considering that

-.i%;i , Emth's findings check with the critical value of item 5 Since
the wave lengiths in the neighborhood of the critical value are the most
amplified, these might be the only ones visible in an experiment. ZXnuth
might have observed these values, which, although seemingly neutral could
have DPeen slightly amplified.

Item 6 implies that for a liguid film ,005 in, thick the critical
ligquid~gas interface velocity is 100 f'bj sec, which is one order of magni=-
tude larger than the values obitained from experiments in liquid filma.

. This discrepancy would seem to indicate that the observed instabllity is=
not simply laminar instability of uwniform shearing motion, The fact that
the computed critical Reynolds mamber is too high as compared to experi-
mental values could be due to the fact that the welocity profiles of both
fluids in the analysis were assumed to be straight lines, If curved pro-
files were used it is conceivable that the critical Reynolds number could
de‘crfaa.se. This possibility follows from a comparison of the change in
the value of critical Reynolds number when going from plane Uonette

(Req =e= ) to plane Poiseuille flow {Reu=11,560, based on the maximum
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veloeity and width of the channel)., Curvature in the velocity :érofile
of the liquid could exisﬁ in the case of laminar flow when there is a
jpreésnre gradient in the flow direction., There is one thing that has
not been accounted fof in the present or suggested analysis, and that
ig the effect of turbulence of the gas stream, which also possibly ine
fluences the stability of the flow,

Pinite gravity and surface tension have a destabllizing effect
{cf. Pigs. 11 and 12), as sxpected from the discussion in Section &,
This in:t‘luencé of surface tension is reported in Ref. 6, p. 10 and is
of the same order of magnﬁ.tuﬁ.e {within a factor of at most 2) than the
value found analytically,

Before concluding, it will be helpful to try to gain some physical
insight into the stability problem by locking at the energy of the dis=

turbed motion. This will be done in the next section,
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II7, THE REYNOLDS SHEARING STHREHSS

‘ A‘d.iffarent(lg) WEY ofk looking at the stability problem, consisis
in followlng the bfbime history of t‘he disturbance ensergy, which, for damp-
ing or amplification, changss as a result of the action of the Reynolds
shaaring stress T *, 1% will then be enlightning to know what its
distribution is across the streanm. |

Foote and Lin'20) have shown that

ke o .
and
2_3LC4;%
AT _ _ e = (v97 -F |
s fL < 3 ( ) (10.1%)

where &v- 1s the distance or time average of the product «a~ and &

and ¥’ indicate complex conjugates of ¥ and ¢

'A% the in%terface, for the viscous case

gy = ‘7’%—?}(

(10.2)

Gﬁl/ﬁ*%)‘g foce % " (20.3)
intertace

The Invisecid Oase.

The amplitude functioms ¥ and $ for the inviscid case {cf.

*"‘ The;v work done per unit volume per unit time by the dbasic :E'low{lg), is
s §7 » and converis energy from the hasic flow into the disturbance

when %T_f >0 .
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Tqs. {C.16), Appendix C) are real functions. Therefore Bq. (10.1a) shows
that

(cpu?’-?‘f'f) = constan} =o - (10.8)

from which, the Reynolds stresses are zero across the flow., This means
that there is no mechaniam for transferring energy between the dbagic flow
and the dlsturbance, i.e., any disturbance will just subsist, withoutb

damping or amplification,

Ag can be seen, the present method of approach is extremely useful,

since the imporiant result of Section 7, regarding stability, has just

been rederived in a few lines without any calculation,

The Viscid Case.

We will start the study of the viscous case by showlng that the
Reynolds siress is contimous across the layer where U(ﬂ;c,. . Ths

Orr-Sommerfeld Bq. (1.U4) can be rewritten as { < is complex)

e U _ < L€10~ua-(_?|| +o(‘4t()
- q~v~c ¢ (R (T-c) C ) (10.5)

vhich on multinlying by ¢ , subtracting its complex conjugate and

regrouping yields

d (T -Fr¢) = 2, V" MT L [¢VF ~22¢"F & <4
ay S T ov-<? LB T-c

(10.6)

T 202 ¢ ¢+ < 0f
v-z

Bq. (10.6) can now be introduced into Bq. (10.1b) and since U =o ,



we have
L. J"”E -l L e WAL R RIT ) |
dy R v T-c T-< (10.7)

which can be integrated across the layer where U=c¢ |, and remembering

that in our case U=)‘

S dvs = ’t_,,U =c.+o) - 'eﬁ(\) = c—o) = L’Z‘S]

- Cﬂ: ' vig e ¢ &~ ~-e
S R
Bince
vavue ""QMQ"Q)L‘/&"-/S ‘vf@vvéi—fiﬂ'( (Z'Y\.-H) M=D, 1,2, -
and lettlng

L =0

Eq. {10.8) gives for the Jump in Reynolds siress [?:5] across the layer

where V=c

\___—---——'\/’——_”'/ N o—
pure real nure

imaginary

P (10.93

wvhere a particuler m. should be chosen for the branch of the logarithm

being nsed, Since [t«,] mist be real, and 7,% #o | we have a% y=c

(oW T = W - &1 (_eu$ __‘_all ({) 4 NHLPQ -
L?; T +@Ve ~ 2( ) 4> o (10.10)



Therefore

[z.]=0 a% yreem© (10.11)

I:‘in{m) ‘has shown that the Raynalds stress In a viscous fluid grows
posliively a:id. very rapidly with distance away from the wall in a very
$hin layer, and then sitays about constant,

e now have enough information to build the complete picture of stress
distribution for the viscous case. Starting at the wall, the Reynolds
ptress is gzero ‘and as we proceed outwards it grows at a rapld rate. 1t

then levels off, and since viscosity is not very important Bq. (10.4), i.e,,
(¢! -F ¢') = constant

will be almost satisfied {i.e. z-~ constant), There is no jump across
the layer where U =< , As we get to the liquid-gas interface the stress
is discontinuous, the ratio of the values on both sides of the discon-
tinuity being given by Bq. (10.3). The stress on the gas side can not be
zoro, since by Hg. {10.2) this would meen that the stress in the liquid
is zero. TFar away in the gas stream, the Rsynolds stress must vanish,

The diagram showing gqualitatively. this siress distfibu‘bion, is given in
Fig. 13,

Lin(lg) found a prominent relationship in the theory of hydrodynamic
stability in a very simple way., The principle used by him was to equate
fbhe stress in the fluid adjacent to the wall computed by two different
methbd.s: starting from the wall in one case, and from the main strsam in
tha other., This method has not yet been made successful here, the reason

beling that the magnitude of the jump of stress across the interface 1s



e

unknown, only the ratio ls known. In order %o compute ths jump one would
have first to compute the stress at the interface, on the gas side, Dy
calculating the function © . This, would do away with the simplicity
of Lin's method, |
Therefore, 1ooki‘ng at the Reynolds stress in the present case was

not as fruiltful as in Linl's case. It wonld nevertheless be interesting
‘to find the quentitative distribubtion of stress for a self-sxcited dis-
turbance and for a neutral disturbance, This would show whether mos% of

the energy in;pti'b into the disturbance (cf. footnote on p.37 ) comes from
the gas or the liquid. From the functions presented in this paper 1%
would be possible to calculate the Reynolds stress for a neutral dls-
turbance. The case of a self-excited disiturbance is much more complicated
and the necessary amount of numerical work, as envisioned at the present

time, is prohibitive,



IV, CONOLUDING REMARKS

The results obtained here show that laminar instability is nob res-
ponsible for the large scale disturbances o‘néerveﬂ. in liquid £ilm cooling
azperiments.

The study of the distribn‘bion of the Reynolds stress across the
stream still remains a problem the solutlon of which will help in the
physical undsrstanding of the phenomenon of hydrodynamic stability,

It can now be said that the model chosen for the analysis, although
the simplest possible, has yielded a number of new and interesting results,

The most important conclusion to be drawn from this investlgation is
that a discontimity of viscosity or density has a destabllizing sffect

on uniform shearing motion,
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AFPENDIX A
RELATIONSHIPS NAEDED IN THE BOUNDARY CONDITIONS

1. Boundsry Condition Goncerning the Normel Stress at the Interface

From the sketch below, the condition of equilibrium of normal forces

at the interface is given dy:

Pr = Oy =~ ypt (4.1)
iy o ¥° '
qaterfece where pr is the equivalent
- Tyt T
4 Rqvid © pressure due to surface tension
7 T TT T forces and the o's indicate

normal stresses,

Bq. (A.1) can be rewritten as

9 0

Po=2pegy R T AM L TP =0

where the bars indicate dimensional quantities, the 's are the dis-
 turbance velocities in the y-—clirec’tion and the. /»‘s are the viscosi-
ties of the fluids of interest. Letting S be the height, and D—; the
surface velocity of the liguid, we can render the previous equation

dimensionless by mltiplying throughout ’oy%_

2

(pi-p)c -2 ‘“’ﬂ}-‘— (.2)

G Oy ™

S Ong\
?T’z}’“ﬁgz 97>~0

The various terms that enter in Eq. (A.2) will now be determined as a

function of ()’) , the amplitude of the disturbance siream functlon,
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2. Determination of p.

1f ¢ 1s the surface tension coefficient (force per unit length)

and‘ l,b the radins of curvature of the interface surface,

wriltten as

where

hi

. al— 27134,
[+ (2]
the negative sign having been chosen because p.
&y
d,—

x=*

i
L.

when 1s negative, The derivatives in Hq.

in terms of velocliies

dy 4y/de ~

4= di/:’“: - U, +4C
£y (9«7- % Ay} o (@&g
dz* T.+c \D= 3y d=| (Tasz) \o= 23

and since w and W « U,

i PR
4=> T, 9=

Inserting Bqs. (A.5) and (A.6) into (A.4) and then into

‘becomes, after non-dimensionalizing,

where

Pr can be

(4.3)

(A1)

is to be positive

(A1) can be expressed

(A.5)

, the last equation can be rewritten as

(A.6)

(4.3), pr

(A.7)



TS o | ,
Tpy | (4.8)

the unbarred velocities and coordina’ces being dimensionless,

3, Finding 2% , 9% and 2%
=== =7y — 3y
Trom Bq. {2.2)

i (= -ct)
2 gy
dwj ey )
. =LY
Lo (e-eh)
"2_“;1 e i Bl

Before finding Py and Pq o+ we have to find tne form of the deformed

interface surface.

%, Shape of the Deformed Interface Surface

At the interface, ), = and V.= | . It is also clear that
2

.E '

Dt y:)z 'T\ /TI_\
or upon using Bq. (2.2) Jar B g
VAV 7 J 7 7 7 7 /7 77

Lol (ze- <t) '
-t 2 2 y
o« €(Y,) < =—9% 'l'»Uz o (A.10)

Agsuming that the surface ordinate is given by

Lol (x-ct)
Jo= 1+ A< | (A.11)

Tgs. (A.11) and {A,10) lead to:

N
Vo-c



and
L ikx-cb)
¢ (y.) "
T, —c (a.12)

AN

5. Determimation of p, amd P,
The Navier-Stokes equation for the perturded flow in the )a direc-

tion, including body forces, is:

2 (F+v) Lo (B’«T— 4_3 rF>

5= 7% oy sz= | 3y* (A.13)

where 9 is the acceleration due 30 gravity and has a negative sign
Yecange 1t acts in the negative direction of the 7-axis. Bg. {A.13)

can be made dimensionless by mltiplying it by O
vl

2

Bv by _ o1 2Fm) [P é’«f)
ok +v 2> F _ﬁﬁ: oy E(amz+ 5y (A.1k)
whers
U U, 8
= = S ) r - U"
% v
From Bq. (2,2)
Lol (e-ch)
OV L _ure®(y)e
ot ’
A (’-‘C-C£)
OFn LxZ x .
2=z q)(y} *
o 2 Lo (x-ch)
2T L x= Ky (4.15)
2o (x-ct)
T i P(y) 2
) yz

Eq. (4.15) can now be used %o rewrite BEq. {A.14) in terms of X (y)

Lol (x-<b)

I 2(F+e) _ %dzbj_c_,;% c()+4;%“?"},a (a.16)

{
RV 29y F
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From the Orr-Sommerfeld a_qué.t ion
(-] VT s (4 s )

one obte,ins

_io(,z[U_c,.—& %}?H%%’"

e SRR (a17)

which when used in Eq. (A,16) yields

. 3<?+P) T e N . it (x=<t) |

—J_‘_ N Yo .~ _ [} i - A 1V o

U 2y L’“R (v C?ttp U e = (A.18)
and since

.

..(U~C)L?"+U"&P= [—(U—é“P'Kv"‘?’]*'UIY"FUMP - - éﬁ[U—c)(pl]__i (\fvr)

dy |
) dy
Bq. (A.18) becomes
v o(P+p |« a4 o 4 ) ' v Ltlee-<h)
X pn_ g )l A (Ul _~ b )
eV Ay { RK{) Ay BU W]*—dy (¢ ) »412% < =

- which after integrating with respect to ) can be written as

. (Bep) QU"P +P% , (U'C)lte’ e

Le 11 /\p(_(:c~cé)
ET[-J'2 ALR <

~_yE + F(x,&) (A.19)

2
For ksteady motion, the basic flow satisfies the equation

R (4.20)

s;l.nce
fee ) = & (=)

because there can be no dependence on %ime,
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Using Bgs. (A.12) and (A.20), and considering that the conditions

of present interest are at the interface, Bq. (A.19) becomes

5 . 'v | ) . " ,;,o((x_c}:)
g m‘}i"l F e ol -y }pﬁ |

(A.21)

where the subscripi 1 indicates liquid.

Similarly, for the gas

5 : . i (2e-chy
P?’v—//uqy ) %[U"“d * F(—UL-EJ}Q*—[”%'(U’;C)]@ “E%@“’IE 2 {4.22)

6. The Bquation Satisfied by the Normal Stress

The insertion of Hgs. (A.7), (A.9), (A.21) and (A.22) into (A.2)
leads to

04_7'2 ! | . Bl _ L "
{U;_ _21 +U:_£ +m](‘?+{&a'(vl Cz)](.e’___(f }”2‘/@

xRy
{A.23)
! | o3l N £ w{ B _
s e
where
o = 4
o
Since
R I
©y ‘)’%‘ k R, = By
Va0 TR ¢
v, - ULy =)
'D',_'.:_ = v
and letting



Eq. (A.23) becomes

«*
[-— + +|}R\? {(\-c)p_;,ao(}te’ s en
oL

W F ()

| | (A.24)
~TWI[@+;E)JRmm§_[(I-C)Rmm -4 50&]@'—{3 "'}.—_o |
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APPENDIX B
ASYMPTOTIC FORM OF THE VISCOUS SOLUTIONS (%2?%)

. ) ) , .
1. Asymptotic Form of )‘««(Z) R /PU:_(Z) . A, (=) , A, (=) and Related

Functions
From Ref.12, pe. XVII and XVIII

hg Yeog e

—y ST Y Lz -y -
sz(z) T INEET {\~Lizl 335 5* (%ﬂ (3.1)

2. 3
~ZT cang & 4N

j\' -y, .«.,g,_“' =y ~432/L = =3y 3gs -3 O ~9
2) ~o \7_ T e 2 = 2 — Z )
»(2) ¢ Goog T =)

(B.2)
-—‘?t’ Toang 2 L =

Since the values of z of interest will always lie in the right half

plane, or for large xR nearly on the imaginary axis, the reglon of

valldity of the sbove expansions is satisfactory. L, ana K, are

analytic functions, therefore their asymptotic representations can be

formally differentiated to obtaln

. _xET [ v , ~Sk -y .:.3;;/?— ‘
/k\/' 2z g VL‘EW . VL; 17 ..5/1,1 -u/u -;%25/‘
T
where
e "["[:Vz
ﬁ =2 .2 (3.5)

From Bgs. (5.11), (5.12), (5.13) and (B.1) to (B.4) the fo»llowing can

be obdained



oy TERT Wy iR 3
¥s. ~ B 2 Z 2 [\ 4 O(zl‘*)} » (B.6)
LZ:Z/?- .
—»{.%T \% i . -5 3=, ¥, - -
Qv —pa KR (= b2 ) 1'l+©(54?/ )J B
iET Y. -i-%zz; 3. | | »
Yinro 8o By e D_x% Z +O(z}f} (B.8)
qull )“t-siT )'/3 -‘i'% 2‘;‘/:- 1/ 5'/"
~ B L) o Y _ 115 35 38’5) Olz B,
- 1@ ( [;51' “ g T T <l"l2+ 4608 Z’ﬁ T <£ ) (2.9)
| B ARy o Th ozes oo ],
Ve %—% —ig -2 1O, JN &, (2.0

—-(5-1-'5 (ouzwt)yi;% (L a5 0z, 1-{-041@5’; (B.11)

In the above expressions, the following notation has been used,

(cf. Eq. (1.8)).



B L

i,?, =£L(O) 2(&2_)2/3 -4 (0(25/5 e (3012)
2y, =2() = @i)‘@ + (KRS (=) (.13)
_ RS . 2\ -c
= 2 sl i 0
Ze = Z (oo)z__"‘_L_ 4+ < oo |
P 3 ECR'L(W\’: >3 ' A (3‘15>

In the last equation Lo 1is preceded by a positive sign because as
gshown onp, 29 , ¢ Treal, and << | is the case of interest, The
general plan of the calculation is to $ransform these integrals in such

a way that asymptotic methods can be used in their evaluation,

2. Determination of Necessary Integrals., General Plan of Calculation

The gix integrals that need evaluation can be written in condensed
form as

N
S o 2., k) 4l

o

(B.16)

) 2L (b =)
S < Q@) by
The integrals 1esf HEq. (3.16) can be expressed in terms of the in-
tegral representation of the functions they involve as given by Eqs.
(1.12) and (1.13). The independent varisbles b ana &, , will be
expressed in terms of z, and 2. by means of Eqa. (1.9), (5.11) and
(5.12)



s A 1) } dty = — =~ d=
1& + LO(R)[/% '2' (0(12_)'/3
IR L B S A d
% m R o (ogzv,,m%)‘@ ¢ KR me ) =
so tha’
. P
tu(eri®) ook [l Bbed |
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Zp <
FL s & b2
*S . =) _1,21 o 42‘} ~ (B.19)

e L

Since the integrals on the paths L, and Lz are nniformly convergent,

the order of integration can be reversed, so that, in general

2,

:..',q; a.*:-;-g E/ (k T2a)
2 2 d dz:SJf(S 2 d=|dt
£ L";ltl byls z
| 2t 72kt a(h%)g (B.20)
- TF —o&)}a e } b
Ligha

vwhere 2, and =, arve, respectively, the lower and upper 1imit for the

integration on 2 (2%, or Z, ) and a is the appropriate coefficlent
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obtained by comparing with Eqs. {B.17) through {B.19). Therefore, the

six integrals in Bq. {B.16) become

. 2, leb-(—?
“HRYS T4 °<
~2 S L (3.21)
W ke
l £ £ LB
- —L( BN it 2,645
I}lﬂ- =J.Jb *‘8.({1) dt, =_'&____Q =) &(x:z.)”; ach V'S 4
. T («R)" s
by (KR)"
3
“K=)" 2, ‘:‘Jlnk*% ;
" P de (3.22)
Lot S dmys '
v | ,
Yo % eriX) Xz Zp b+ 3 ,
‘%l = 2 LS;,G’L) d{:x = — /E _’Q‘( R 2 («R) Lo 2 dt .
(<R )B TS
° Loy (0(12.)‘/5
-A./(%g_—']l/}%‘t' -2’5_9_5:4‘-!3:—;' (;“: ‘ (
-2 — B.23)
L;_E - A’(:ZE)UB
bk B ~dles i) LX wy [ P E+§
%L=g,& . () db, = 3 @ < 4t
° Ly wRys
. o 2 ‘Z"el\:+;i§1
A'(T(E'i'l; JL, L
-2 Y At . (B.24)
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b-s P — .
Ly KR mE Y3 (. KR o)
- o &
= -oL({‘%ﬂ) )a i ?-Wmtj
- g\ + 6“7 T ————— -Q, x
‘-/V: J < .(7) P o)
)
" im{:-ﬁr-{; e 2 ?-3,}:-1--?
x‘ R RYE i‘&nS L4k __;(“ﬂn"mja Z&g __L__._—_O‘t
£ . i s o
L.‘t i 0(’2—’7,“'{;) 3 L"t +‘“’("‘E”’PM€) 3 (30263

It can be seen from the preceding equations that the fundamental integral

%0 be evaluated is
%E'\-L; '
-1 < .
I = ———-———‘ db (3‘27)
Lt aa '
where L could be either L, orl, and a is real, positive or negetive,
Let

l; = t@ v - o4t = \E‘i At (B.Eg)

where the cuts in the = -plane are taken as indicated in the follow=-

ing sketch where the  and =Z-plane are superposed
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The use of Hgs. {B.27) and (B.28) leads %o

30, +38
Flzl ()< ] .
_ |
I—S T+ LO\.VQ’ d?" (3029)
U

whei'e the two necessary paths of integration are indicated in the pre-

ceding skeitch,
It should be remarked that thus far Bgs. (B.21) to (B.26) and (B.29)

are completely general and no restrictive assumpiion has been made on any

of the parameters involved.
- It will now be assumed that XR>| . This implies that IREYiCa

according to Bg. (5.12),is a large parameter in Eq. {B.29).

3. Detalled Asymptotic Fvaluation of Integral (B.29)

The integral (B.29) can be rewritten as
&la ) ' '
]-—1,2,(%) = 5 ‘-Q(‘Z,?a).ﬁ. dx . (3030)

1
Ll)L'L




where

‘f C‘\")*) = > e —:ﬁ& (3.31)
Vaz

9(2) = (t«i-“c’) .Q:v; | (3‘32)

2 -jzle | o (2.33)

the paths of integration being indicated in figure on p. 58 . _

It turns out that becaunse of the form in which these %wo ilntegrals
enter into the calculation, only the leading term of the asymptotlc ex-
pansion is needed when dealing with T, , while several terms are needed
when using I, . Therefore, the simplest case, L, will be evaluated
firet by the saddle point method, and L1, will be later evaluated by
using fhe method of steepest descent. Both methods are completely des-
cribed in Ref,1ld. In the course of evalué‘cing I, we will slso determine

the leading term of I, .

3a., Evaluation of the Leading Terms of I, and [, by the Saddle Point

Method

The saddle points or cols are given by the zeros of P(t) , l.e.,

the points
' 7, = A
vz
(B.3W)
T, e -2
=
Since f'(v) #© , these are simple cols and it can, therefore, be

expected that two steepest curves intersect at each col:’bn,e of steepest
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ascent and one of steepest descent, The paths of steepest descent are

glven hy

T b)) = constert (B.35)

the constant being adjusted so that they go through the cols. Lei
T = g—!—.&‘_?
vhich when inserted in Bq. (B.35) leads, after using Bgs. (3.32) and
(B.34), to
Jmi[(§3+§_5gvl1) e 20 ~m+ 5@7-7_WS)M%eJ+L[(%B+§_5§qZ)W R :
;3(3’

+Lq+3%zr2_ vf‘)w’s%‘eﬂ = :Tfm& Z a2 el wge}

vhere the top sign goes with the path through the col =, , and the

boftoni one with the path through 7, . The equation for thé g'tseepes‘k

paths then is

3

O O R T R

where the positive or negative sign is for the path through 2, or %,

respectively.

The equation for the level lines through the cols is given by

RI1 ) = constant

or

2

g (|~ 371 +§.) Cﬂ%g - \r) (H-;,%"_ y}?—) = I‘;J—‘g‘ | (3.37)



e

where the negative or positive sign is for the path throngh 2 or =, ,
respectively.

| For «R>>) | the arguments of the several values of = of
interest are = E .

Consider the case © ~~'/2 . Igs. (B.36) and (B.37) then become

1 (1+382- yf)+ g( 290+ €)= tg%é steepest paths through cols

(B.38)

vz(n +38%- 7‘) - %(“5 *+e) = + 32‘@ level lines through cols

where the positive or negative sign is for the path through t; or %, ,
respectively.

in order to determine the location of the valleys and mountains,
get = 1%1»2:;6 in Bgqs. (B.30), (B.31) and (B.32). For the valleys,
the real part of the exponential in Bq. (B.30) should be negativs when
|| —= oo il.e.

ws (2% +—§je) <0

and since the case of interest is © = - -}
2 W+ T <5€—%T<%T + 20T Mmoo, ¥ 32,
or
SOTARTE S HT A T | (2.39)

Setting m-o,1 and 2 the sectors in the 7 =-plane containing the valleys

are determined;
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5 3

LRS-y
(B.40)
Hw<cE L %g T
The sectors excluded in Bq. (B.40) are the mountains, The result 1s
ghown in Fig, 1k,

Tor the case =% Hqs. (B.36) and (B.37) reduce %o

n{H 38702 - g (1-377+87) = £ ;%; steepest paths
, (B.11)
N(+3e*- )8 (12 8) = xS level lines

vhere the positive or negative sign, is for the path through 7 or T
respectively. Comparing these equations with the ones given by Eg. (3.38),
it can be seen that the paths are now just a reflection on the 5-o --axis

of the ones of Eq. (B.38). Similarly, the valleys are now given by

g <sed
LWL LT (B.k2)

\S \

In order to apply the saddle point method, it is necessary to de-
form the original contour of integration (cf. Fig. 15a ’o) to the one %hat
goes through the steepest descent paths (Fig. 14 ). This can be done
without changing the value of the integral, provided no singularility of
the integrand 1s crossed in the deformation prbcess. In the’ present

case, the integrand (cf. Eq. (B.29) has a pole at



T -
3 /5= (B.43)
and since |=|>>) , the pole is very near the origin. If this pole is

crossed in the deformation process, it will give a contribution to the

integral of +27 < x Resgldue at - — =% . The choice of sign
EES )

depends on the direction of the path around the pole, while the location

of the poles depend.s on the values a and = as gilven by Hags. (3.21) to
(B.26). It can be seen from Egs. (B.12) through (B.15) that the poles
location will be different, according to whether <>t or c<<I (i,e.
assuming ¢ is reasl)., Since, as mentioned on p.29 the case of interest
is c=c. <] , the poles will be located with this criterion in mind,

In the following caleulations, we take, for definlteness

— <
ang L o= + 2
and because of the cuts taken in the 2 =plane (cf. p. 58 )
A,‘/z‘ _ ‘&4\1—-
_;_qu
s g=-1
Case of Z, 3 6=~
Z’F‘-_—,«L . « 7 - = LS (~[+.<'.) (a.éo)
(0(2.,)/% \/g (0412,)6&‘/1 (..4/)/2. 6 (XR)C (3‘14}4)
T X (~1+4) (x>0)

T V6 (KR)c
The location of the poles and paths of integration is shown in Pig. 15a,
the important fact is the sector in which they are located. Similarly

for



=Bl

250 =%
o \/wm:w—c) SE o) (3.45)
L =
2. s 9"'11
Ty L - (=<9 ‘
Frs 5 (a>0) } B4

Evaluation of the Integral (B,29)

After the contour of integration has been deformed, the steepest
paths are made to go through the cols, (Fig. 14 ) the contributions to
the integral 1, and L, , Bq. (B.29) will then consist, in general, of

three parts

a) contribution of integrand when in the neighborhood of col z,: T
b) contribution of integrand when in the neighborhood of col?j:I:

¢) contribution of pole, if a pole is crossed in the'process
of defcrﬁing the contour: Lo
The contributio# of a col », %to the integral of interest‘is given
by (cf. Ref. 2, pp. 50=53)

% F@) x g(’l’.’,n)
[eeme v < e

\/1_

where, in the present case
2o

w3

p(2)e —— i o= Cehe - V3 |2

T + A&
V3iz
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15°

T = T F'2)= 6 <€
e ) 2735 ! @)

The use of the above equation, together with Eq. (B.33), leads %o

— .
w W 3T o |
LT =i ® (3.17)
* % _ — —7=£/‘ _‘—EJ v .
I (=) :—W—% P (B.48)
| —a%

The contribution of a pole to the integral, is given by

V5 22 (24
L= 15,11';,123{—— 2
) Ty A
*t F La
>> TR
vhere the positive sign is used i:t‘v the direction of integration arocund
a pole is counterclockwise, and the negative slgn, 1f the j_:ole is

encircled clockwise., Now

v 3 2 () i 2 ()
T+ L . .
+\[§£ T e 22
= iz
and
N c q,?’ : 3
(R O VY- S -~ (e’ —2az)

Vaz 3z (=2 3§z 2%
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from which

L -am
3

IT,(;&) =aTwL 2 (B.ug)
3b. Asymptotic Bxpansion of L. by the Method of Steepest Descents
The integral under consideration is
& =% 0 '
I' (=) =S ¢r,z)e de (.50)

1

where [)" is the part of the deformed path that goes through the col

T, A , and as before
\E
Qez) x ——— (B.51)
Ty &
V32
ixe
fle) = (zerd) < (B.52)
iB ’ :

H'z) conld be expanded as a power series around =% , l.e.

Ble)- Fle) + F'(2) (o) + F ()’

gince f'(u)=o , and all derivatives of F(¥) higher than the third

vanish., Using the values of the derivatives leads to

(‘(”ﬂ): p@éi) - - : | {3-5)4’)

where

z

42

w- = (v-v) e G]:-s“cw(‘t-‘t,)] | (2.55)
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On 2 path of steepest descent, (or ascent)

Jiw He)= congtant

Taking thé imaginary part of Eq. (B.54), and using the preceding relation
gives
T He) = T Hey =~ T wr

from which Jw e =0, 1.e, W ig real. Along a path of steepést ‘descent
from a col, w 1s positive, while along a path of steepest ascent v~
is negative., From now on, W will then be considered positive and
real.

Using Eqs. (B.54) and (B.50), this last one could be rewritten as

the sum of two integrals like

gl by [T g
- A
I(z)= 2 2 9(x,z) - e | (B.56)

M

(=]

The purpose of the followiné analysis is to find the correct expression
for L{’('*c,z)% along the two paths down from the col. |

Finding © as a Tunction of W~

" Since W , a8 given by EBq. (B.55), is regular in a neighborhood of
T, its positive square root is therefore single valued in that neigh-

borhood. Then, from Bg. (B.55)

o e

Vo =A< (r-v)e [-i't,~ (t%,)]vx ' {B.57)

J:‘“’

X A S
==L - (x)e [-5‘2:, —ch:.ﬂ _ {B.58)
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Trom the theory of imverse functions {cf. Ref. 15, pp. 121-123),
Bgs. {B.57) and (B.58) have each a solution for z which vanishes at
V- =0 and is regular near Vw:=0 . Instead of proceeding this way for

finding © , we will consider Hq. (B.54) where

Feey=F(2) = -m
and 'asing qu (3052)

3 *";9

T A P (5.59)
Let
T =—1’V5? "-""Q |
then z*=-;(aa_r—Q—ﬁ Q‘vQB) . (B.60)
3

which when used in Bg. (B.59) leads to

L2 e
2

(B -Q)e =-w
oY

Y, ~«(}8 +3)

R(B-Q) =2 (=) : {B.61)

where A =+V% and (3 —Q)V‘ means the branch that reduces to 3" when
Q=0 « Using now the theory of inverse functions, (cf. Ref.14, pp.3h,
Bq. 8-32 and 8-33)

_p_o—" 3 M-y -,;,(%e.;l‘:) ™ ~
Q=ﬁ24 ol )[JL ] =" (2.62)

er\(%') %a/"

M=
Denoting by " the parametric equation of the path of our integral when
nsing the positive square root of w~ , and by T~ when using‘ the nega~-
tive square root, the previous equation, when inserted into Bg. (B.SQ)b

yields



~my

o SRR I
tizéﬁ_ms % m‘k‘;(&)[* T J(:Jb). (B.63)

™M =

Since /E is real and positive, (%:)L will indicate the directdion in

the 7 -plane of the paths of integration in Egs. (B.50) or (B.56) a%

the col T =<,

=5 )=- iy— | (B.6%)
o ifge-D)
(57 - = -~ (3.65)

In order to determine the correct direction of integration in the

two integrals of the type given by Bq. (B.56), two special cases, for
which the paths of integration are known, will be considered, 1.8, ©= -T;i

and ez{ + This gives

for 6= -TF LEw
(dr* ) __ =
A& (1., 2 :
y L5 : (B.66a)
= 2
(H)ﬂ,.o - 3
. X
g.nd. for &= 5 i
( dvr) __2
dd [p-. 3"l
y (B.66D)
ol



By comparing the results of Eq. (B.66a) with the paths shown in Fig, 1%,

it is seen that % goes in the direction of the desired path of ine

tegration while j’i" goes in the opposite sense. IEqg. {B.50) can now

Pe rewritten in complete form as

" ﬁh"-’fltr'(tﬂ * _ﬁ‘;z\’"w‘ L
M=) = < g 2 G lwr) e | (3.67)

where

, losm Ao - det| — - 2)dz” fii’_-' 5 é}fa\jf
P S o

Prom Eq. (B.63) it is clear that i\‘%\r can be expanded in a power series
in {w » Now %%,2) is analytic in a neighborhood of T-7T, , and
therefore can be expanded in a power series in Vw , Thus, it is

desired to determine the coefficients AL, of

e ‘dt\‘___ff«\ ~ v ' (3.69)
Sl ”Z)A”)Z

when

w=AF = Fay-f (3.70)

By Cauchy's theorem of residumes

Ae ! J‘(’("u*,z) de Al (8.72)
2L 44 = :

where the contour ¢ encloses the point l-o . Bg. (B.71) can be re-

written, after use is made of Bq. (B.70), as
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[1a% ]
2.

A, = afﬂ'/v S:?C'C* H&’ ¥(z)} AT

(3.72)

where | encloses the point T:¥, , The function C(z 1)[F(t') PCFC)J
will next 'beA determined., From Eqs. (B.54) and (B.55)
L) - $) =(=-%) et -2 - (e )]

from which
_@%L - {m+1) = d¢ )("c ?)k
My -t =(=-2) :>: o) LE
(:CI)-JTQT') "(’C !
: - e (8.73)
vhere the d, 's are given by (5 - &2“>
dot(v\, L%t\) -5 ——Lise
— S+ _J_}is-a
diw) = (3T sH e

doln) = (™ s(s+) & (~l)‘i-£ N

Ay(m) = (’3“6‘,)4_5 5(6“") (6'*'2‘)%-' (_I)—H. = » {B.?ll-)

.2
\,4,.559

;\;(w)= (37555-k s(e+1)(5+2).. (e+|<-1) (—~ T -

In the last equatlon the exponent -s+. is used vhen K is odd amd -s
when K is even.
Since L?(f,%) is regular in a neighborhood of ©-z, , it can be

expanded as

o0

ﬁeﬁtﬂ"&) = Z CP1- (r,z) (et _t,)é .
i
where _(a’ﬂ) . (3075)

(“C +~q, \I (_0'}5

Vaz /



From Hgs. (B.73) through (B.75)

% 1}

-5 ) <2y 1
Lp(w'%)&pm)-p(@)] = (z2) 2 Ay () ()
Lze

where
Aoy = oln) e
A () = do () B+ ALY
A, () = Dol +d (Y +aln) o

The use of Bg. {B.76) in conjunction with Bq. (B.72) gives

~(m+y) = I
Am";h_" S (z-7) E AA(M)(Q:-E,) dv

¢! H=o

from which i% follows that

A—M, < An ("’\«)
which when used with Bq. {B.77) gives

Ao = d°(o)(9°
A, ~ o)+ i) F
AL - d,(z)‘?l'rd}(z)?' +dLCL)LP°

' (2.76)

(3.77)

(B.78)

(3.79)

Eq. {B.79) gives the coefficients to be used in Bq, {B.69), which, to-

gether with

6\/2/“‘5 a 01/9«— .t

1
dw a2 i dmr 2




gives

@(zt,z) A2 _ LS A
e

M=o

Similarly -

o0

WG - A

MmO

8o that q(w) of Hq, (B.68) can be expressed as

Glw) = = f: A E("MM“ lml

T )L‘”‘"'] i j: A, [@)‘ "~ f"‘]

T

[
v
M
D
‘J
3
—
N
——

1

= - 2 Asz’lMA‘ = ~2—' Azm. WM~1
or
i -0 (:.n:u,_‘) »
=~ - Alm‘ W™ _
36 MZ - (3.80)

It will now be shown that the function glw) satisfies ﬁhe conditions
prescrived by Watson's Lemma (cf. Ref. 15, p. 218), Since 9(%) is an
analytic function (except for a branch point at the origin) it obviously
has a circle of convergence. From inspection of Bgs. (B.7H), {B.75) and
{B.79) it can be seen that after ~ becomes large enough, the .constan‘ts
A... will become arbitrarily small becemse of the (2n)! in the d.e;
nominator of the d, 's. Let the largest coefficient A.. be called K .
Then

g} < K2

since every term of %(w) is less than every %term in the power series for
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the exponential., The two conditions required by Watson's Lemma{w) are

then satisfied, and the integral of Bq. (B.67) can be written as (cf,

Ref. 3, p. 218)

% = Fe) y = T\( +3) .
['=) ~e AT E Aasy L (3.81)
(E‘z‘a/?_)z _ A, T“(_IQ_/) (4—5‘12‘.&/;) |

The first few constants Aaw , for "= 0, 1 and 2 will now be deter-

mined by the use of Eqs. (B.74), (B.75) and (B.79)-

Determination of the Constants Asm
-y _y, ~iie
A - (Et)) ("") 2 - \ .
+ L a s BW . -y AZe
VA — (+az™) &
ot
- (H—*o.qu") %4%9 (3032)
Similarly
A?— ——‘-—-——~ 5 3 3 ‘
— 3 ‘;_'Z.‘ e B.S
Ao AT { T <.+qz-'4r] - e

_A_‘t | IZSSS ag { +,3,?5 | +§ " L } (B.&84)

Ao 3BT T TE (a2 2 (e (razh)
Using Eqs. (3.52), {B.82), (B.83) and (B.84), Eq. (B.8l) cen be rewritten

ag

(B.85)



wherse
=
LA (B.86)
Using the Binomial Theorem
i mon St ~ [ —an r -%
¥ v - ( |+a.2/’) = T H) - zZ > o (3;87)
rl T (-m-r ) 4
which can be shown (cf, Ref, U, p. &5, Bq. (14)) %o be
. = -c
K - (7‘)‘- T—\ (I"*/\'\;) z
;;;J crT)
or
(rwvu-\) CL '% ‘
=0 z m>o (B.88)

(m=)\

I% will be assumed that the absolute value of = 1s large enough so that
Eq. (B.88) is a convergent series. The various power of ¥ that enter

in Bq. (B.&5) can be evaluated from Bq. (B.88)., 1 (z) then becomes

etemT ; .
Y oy, (32T B, - -3
> LN ! [I-— RTINS s 2z’ -eZatE”

(B.29)

vlazl o7 )5 o(z""
kqaog ‘1@)2 M ( )

which is the desired asymptotic expansion. It is seen that the leading

term is identical with Bq. (B.Y7).
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4, Caleulation of the Viscous Solutions

Yo, Detailed Calculation of “a

From Bqs. (5.4), (B.21) and (B.22)(for s, y=o0)

QBI = }—.L (ﬁf‘ %;)
4 A(e i)
T (R)>

oL
-N@V‘E’gc
<

o,
- ® - —;E'(TZ%ZL‘ (%~ ‘ -~
SER S S PR S ey (24)

~o(er4d) “.‘L«Lﬁi"?‘ EX) Lz
- ° + , A==
2 2 [IT*(,&LHI: CTRE LZJZ,):\za [I*f(ﬂ,)]
where a + or - superscript indicates that « is, respectively,

positive or negative. In this case a = i(ﬁ‘%‘é . It turns out that in
the case of ‘Pg, it is sufficient %o use the leading term of the asymp-
totic expansions, i.e. using Eqs. (B.UT), (B.LU8) and (B.U9) in the above

equation, one obiains:

ik . .
oLle+ . oL ¥,
/L e+ 5] LR, | Yo sy i(Zzg -X) s - -2 -T)
Y, = 2 o =™ i 2, e e 5 5
3 = T (D(E)'/!’ i Z,-V’“ Lo + M 1"/"- 4o |
. (LRY Lo |+(ZE),/3 Ko 4
— ez o e T
- icays Th Vo . %EZA -%) ~i KL ey
™ IR (AR
T — L =,* +aTe
§ - oL "/;, }
(kY M
L 3
' 2 : -
| e R B A B & " R e R )
- wwy UG LSy
£ = Iy 7 Y
e, B - 3}
(D(lelg v (OCR-)V; o
s
R 2 c oL Lz L
-+ L'_%Tz‘ -%)u; e, + I’C_] A'é( =)3 i._Q‘ -Wl/’_ -~y (3%@, “ )
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which on regrouping becomes

3 2 2z
L=t -% Y o Cde iz, o
sy = k. ;;/4 - e"?‘“ “liceys™% 12] _ e"P& &C+~[(o<2)‘/’i’z° 12]}
'y = \13 Xo _ oL A ol Yy
T (9( ) ! ('KXR,)V} Z1, ! + (&R)\/;z‘ﬂp

. >h r N 2 I V; _ﬁ
B o B« Wt~ a4
T A N oL -
_ -~ Lz
- e T
, T T o oL* . o=
Lo B H el gepin g esplte ~* g~ %)
i 0( "‘/1_ D( "I/L
- e ™ o ad

+aT {evﬂg}x (;-‘%’H—E- ;‘{)—&cz .—ewi-/; .;fé _“TEV _sg)-yaécq ‘_ (8.90)

Assuming that <R>] so that

: -1
oL % oL -
[‘* s ® J ~ =

and using Eq. (B.12) for =,

+_0LC

%Ra = A

mIe

o
(&RY>



so that

- 4 4 < 2z )
w=rYs ™2 TR

Similarly, using Bq. (B,13)

_— W2
&@2)”32"" =’°é - <)
and
L Ve - ENES ~ o N - -
S Llff;vf ‘-TJ e Al g =

The preceding relationships, when inserted in Eq. (B.90) lead to

3,

. - T . _==;_3I2- 2
R KA AP P P L ()
oL (kRY: ) 2 L, TR & «=)? /
. . 2 A -—ﬁ < -A i’
T . "‘"(3 Z "T) 4.(1,;%1.,) " &t @3 = *%T) —« (L T)
iz ° A=Y - +TE = - '

o -’LT;’-W ¢ ’-2.3/"
~Sh 1o \; '
g, 22 = 50 o) )
T4 (‘o('p_‘) Iy : (Bp9l

where the definition of JQ given by Bq. (1.,14) has been used,

4h. Comments on the Other Necessary Viscous Solutions

No details will be given of the calculation of ¥\, %. Y%, 3.,

and ®,, , except that in the evaluation of ‘P‘,.,%’., &,, and 3,/
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mors than the leading terms in the expansion of the integrals should be

used,

5. Accuracy of Caleulations

The accuracy of our calenlations, based upon the viscous functions
given in Section 6, Part II, is restricted by the fact that XR was
assumed large. This was interpreted as meaning that Eq. (6.4) ig a good
spproximation to Bqs. {B.12), (B.13) and (B.1lt), and permitted the use
of asymptotic methods. Terms of 0(7%) were neglected compared to terms
of O<’b‘i€) in the secular equation . A check on the assumpti‘on'men-
tioned was done for each calcmnlation of a point on the neutral stabllity
curve, The result of this checking showed that the assumption was in=
correct for small values of = , shown as dotted on Fig, 7 only. |
Nevertheless, the trends in that region are probebly correct. This is
inférred by comparing the dotted sections with the curve for va‘vsovwhich
is valid bvef- almost all of the region shown: they seem to form a reason-

able family,
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APPENDIX C

CALCULATION OF THE NEUTRAL STABILITY CURVES

1. Bxpansion of the Secular Determinant

Using Laplacels method of ex_pansioncln s the determinant of ﬁq.
(5.111-) can be put in the form of a sum of products, each produc_:t con=
sis’bing of two third order determinants, the first and second includ-
ing, respeciively, only inviscid or viscons functions, within the

restriction mentloned in parenthesis after Tq. (5.14):

A Ve © © o < ANV O © o o
Ay Va2 O as bs cs - Ao V, © as bs cs
A Ny Ty | |ac b < As Vo T, a, be <
© )
A,V O © © % =) o © C?
+ | Ax Vo O o O <y - As V, © o o Cy
As Vs Ts a. b < Ne Vo T as bs cg
©, @ '
(6.1)
AV O Q. E; o) AV, O a, b o
+ | A V3 T as bsocs| - Ny Vs T I o o ¢4
Ny Vg Ty a; b oo As Vs Te laé be <o
S ®©
A, v, © Q, b, © A, V, O 2, b ©
+ Ay Vs T °© e S| 4 Ay Vg Ty o o =t
Ae Vo Tol |as bsoes As Ve Tsl| |ae b o
@ ®

continves on next page
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Ay v, © a, b o ANV @ | [a, b, o

Ny Vy Ty o °o G + Ns Vs Ts © o ¢

Ao N, T as bsr cs& NeNg T o o Cy

T s : > b

Ny Vo © a, b, o 1 A Vs © a, b o

Ny Vi T3 as bs Cs + Ay V3 T, o © <
1A Yy Ty a; b C¢ As Vs Ts ?s bs e

1TAa V., © a J"l o | A\a Vo o Ky JD, o
i AP T3 © o &Gy - Ny Vy Ty o 0o <3
ANe Vo T as bs <o As Vs T& Qe b <o |

®» ' @

(c.1)
(contd.)
Ay V. © a, b o Ay Vo © a, b o
Ay Vg Ty o o G - Ne Ve T o o Cs.
ANe Vo T, as bs s Ae Vo Te o O ¢ J
® @
" Ay Va T a, b o Ay Y T a, b o
Ny Vy Ty &, b, © - Ay Ve Ty a, b, o
Ns Ve T a; b % | Ne Ve T as bs cs
@ @
'/\,, Vy Ty @, ID, o | Ny Vy Ty a, b, ©
Tl As ve T a, b, o - As Vs Ts &, b, o |=0
N Ve Te o o < | Ne Ve T¢ 0 O ¢

@ &o
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In what follows, the circled numbers stand for the inviscid part of

AV, o
each term of (C,1), including its algebraic sign, i.e. D= f\\z_ Vo © .
e Vg Te

Zq. (0.1) can be rewritten as

© ey (asbe-achd] +@[es(asbe - 2obs)] +@|Ce(Rabs-ask)- 5 (b - 2eba) ]
+ @0 (a 3’1-“»176)}}@[‘3& (5bu-anbs)] + ®[es (acbn ~aubs )}
| 1 @[es (aska-aube)] + ®[cs (2eb, ~abe)]+ce(a,bs -ach ) +@ [es(@eb ~abe))
+® Icq (ash, —C\.bs)] + B (e, -q.&c)] +@ka (ash ~=.bs)]

r@ (@b b)) + @ [cs(abi-aib)] + @la(abs -asb, )]

+@d LC5(Q.131—Q2.!>1)J:O v (c.2)

The use of Hgs, (5.15), (6.8) through (6.14), and {C.1) in conjunction
with Bq. (C.2), indicates that this last equation can be rewritten,

after division by ("R  as

{Ho@\f—) + H,&c)—&—_{ + Hatore) L+ o} ‘]}expax% («k}{c - - ()" }Z
+ Jo(e(.C) *Jl("‘.f-)ﬁ_’&. + *LC“‘C),T‘{ + D[(*E-)Jﬂ =0 (¢.3)

where the H 's and J 's are complex functions of & and ¢ only, pro-

vided the physical properties of the fluids, i.e. ", , F and W are



fixed. Since for neutral stability, < 1is real, and the cass of inter-
est is «R>>) , Bq. {0.3) will be reduced, in order to solve the problem,

to the bare essentials, and still keep the Reynolds number of dependence,

i.2.

-y '
Ho(ic) + B (G c)ER) ~ =0 o)

or

[— @ Qay {>6| Csy ‘@ 0\7-| £5| Sy, ~ Ry &>|| CSQJ + i@ Qay (l:‘g| Cs —Léi Csa, _LG1 Cs')'
- ® as, 435. cy - D ({"'sg Cya, +£52. Cuy) ~ ® Qa, 'bS|C3| - Ry 43(,, Cs,

@ aubs cn +® [a.. b, o) ~ s (by sz +b, cs.)]-@) @, by C«.} (o(RSV2 =0 .

s
‘ gy i,
which* when multiplied Ty — ;f—-fé§f2_ and after using Eqs. (6.8)

2y

through (6.14) gives

Hogl gy ag] < © (P (-
%) B—g (%\F‘“?‘*} [m(m)"wi@% ot 0 D @ (g
D
R L (0.5)

* Mhe meaning of the symbols is given by Eqs. (6.8) through (6.14).
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Bquating to zero the real and imaginary parts of Tq. (C.5), yields, res-

pectively

ﬁ/\o( <) 4@(2) (§(o< ) =

f(d,c) + (o(izj'/‘ %(ogc)‘—

where

Foe s 3 [olor -0 ()" @ ambe]

S =g Bl o ] vo ) 0o

={i~c)

o8 s [ = 4w (] -0

+®

Hs (<)~ & [0 (-9- @ (2] +@ i

and from the statement following Bq. (0.1)

5 = -2«

© = 4L (1—--—- )/wvjw(,
s

D =0 (AevVe)+ 2Te sk

®=- sL[(VeJ\e)E‘n» 2T, cwkotl

% ik ] A Ainhac
c.)'/z[H —c (— + M‘Li*‘@ ML) ‘

. {6.6)

(c.7)

(c,s)

(€.9)

- {0.10)

(c.11)



P
B = -« [U\c +Ve).z:&—i—ﬁ M&}

®
@ = ~4« (—rg—/\é) :
”(coll)

@ = 2« (\- *,L‘;{)(-\/é\éu-/\é) (contd.)
A=< +1—=\T:Z)+ L4 () x};
v, = [7"\}3' termg T - (“C)"‘]f
L Y

Bgs. (C.6) and (C.7) are the fundamental equationsg for determining the
neutral stability lines in the  «R-plane. Conceptually, the procedure
to be followed is extremely simple: subtract Zq. (C.7) from (C.6) and

obtain, for X2 finilte and not Z8T0,
Gtye) - F (4,¢) =0  (ca?)
which can he solved numerically for < as |
¢ =<(¥) | . (6.13)

The'soiution has %o be obtained numerically because of the impossibility
of solving explicitly for ¢ or « in terms of & or c respectively.
Once the value of ¢ that goes with a value of X is known, (&R)‘Iz ‘becomes,
from Hq. (0.7) |

g’{, o)

(0“2)1 T g;)L&)C) | : | (C.14)

from which TZ can be obdalined,
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In the case of R >— , Eqs. (C.6) and {C.7) reduce to

F(xye) =0 (0.15)

2. The Eigenvalue Problem for R ==

It was just shown how the case of inviscid flow can be investigated
by taking the 1init of the secular determinant, Hq. (5.14) aé R=e0
A different approach would be to neglect viscosity at the outset, 1. e.
in the Orr-Sommerfeld equations. The differential equations, for each

flnid, then become, from Egs. (2.3) and (2.4)

'(UL_C)(\?"_Q("’(P) =0 Oc—’y £ . (0016)
it _Q)(§u,_0(2§)=0 | €y £oo (3‘17)
with the following boundary conditions

at the wall (y=o) 3 vgso

~, = V9 and the pressures are discontimuous

at the interface (y=))
| due to surface tension forces;
end at infinity (y=-) t a0 |
'.fhese boundary conditions, in terms of ¢ and & , become, re=-

spectively
€(0)=o | (c.18)

@)= 8(0) . (6.19)



=87

[%;H+;tzjvm-quwivzmﬂ%w+puCﬂ@@ @-da%%

@(oo) =0

The solutions of Eqs. (C,16) and (C.17) are
- W
R

E = Ky é"]

where Bg. (C.21) has been used,

(C.20)

- (6.21)

(c.22)

(c.23)

The use of Bgs. (0.22) and (C.23) in (0.18) to (C.20) leads to

/Et"}/{t: =0
ki ke K eT=0

Jz,[“_+|+

F(1-¢)

—K\’—z,[m\.+

\
= (\-—c)

+(\ c)pc]‘.@ s L +it— —(\—C)&]uz:(

~f—-(|-c)o¢]_é°‘ = O

(c.24)

"If Bq. (C.24) is %o have a non-trivial solution, the following

equation rmust be satisfied \

—
-z

F(\ -c)

+(1=¢) ].2.4

(c.25)
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Moltiplication of the last column by -/ and the use of Bgs. (5.13)
and (5.15) show that Hq. (0.25) is equivalent to
AV, o

As V3 T3
/\Q VQ Té

= O

(0.26)

the left hand member being ldentical with (7 * of Bq. (C.1), i.e., the

equation for neuntral stability is now

@=0 | (0.2])

while in section 7, Bg. (7.1) (cf. Eq. (C.8)), it was

/ /2 eru ( :
®-)-D(ag) - Wi = 0 (0.28)
Before discussing this discrepancy, we will do a few detalled caleunla-
tions using Tq. (C.27). More information will then be available for the
discussion,

Bq. (€.27), or its equivalent, Bq. (C.25) can be put in the form

e, ! e A
k *r-c‘—e)*']*“[“”“+‘=<‘-c)+<“c)°‘]‘ v (¢.29)

Let

|l—Cc = &

(6.30)

and notice that when F=oo , =0 is not a root of Bq. (0.29). The use

» for ;hs exact meaning of the circled numbers cf. note following Hq.
0.1 » -
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of Hg. (0.30), permits Bq. (C.29) to be written, after multiplying
throughout by. e , 28

et L -.é(i"-;-\-wm—,_'"_"’_. =0
ﬁoé(t Bo(.+m) Y =

which is a quadratic equation in € ., Solving for < yields two roots,
one belng extraneous, introduced when multiplying thmughouf Yy ¢ .

The result is, in terms of c |
e+ 05’"+\-MMJL+4°L ‘ +| 2 B
Vi e (W Tarndod =

c=1- (¢.31)

2 (g *”")

Here again, as in Bq. (7.2) ¢ is always real,and for *m <! , less than
unity. A few special cases will novw be treated and results will be re-
written for convenience, together with similar results calculated from
the equations of Section 7. They will be distingnished by using R =oo

and R-—> oo respectively,

F =W=c0o
¢ = |- (=~ v { KR = oo . (0,325,)
‘ S 4 (%, ) 4




F=W=< ; »=0°
b)) e e
e - chzu [,~ (s Wo()m} X2 = oo ;(G.}B"b)

c=o KR~ oo -~ {C.3k%a)

LR == - (0.3W)

Cxl- , AR = ~ {0.350)

Hgs. (0,31!-) and (0.35) indicate that the results for some épecial,
extreme cases, are identical independent of the limiting process used.
 The agreement would be perfect, for any value of the parameters involved,

1f g (4] (ef. Bqe. (742), (7.3) and (€.31)) would satisfy the
equation
%’_(o(lm'(v\,\_) — Gﬁ&

which here. holds only for = e 3>

Mathematically, the fact that Eqs. (8.12) and (8.13) are not identi-
cal. is not surprising, since there is no reason for them %o be so, be-
cause the limliting processes used for obtaining each result was different,

Let's recall them: in the case of Hqg. (C.27) the viscous forces were con-
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sldered negligible at the outset, and the differential squations changed
frqm fourth to second ofder. This required the relaxing of four bounda-
ry conditions: slip was allowed, @) at the wall, b) at the interface,
and ¢) at infini'ty; and d) at the interface, no condition is imposed on
the shear (which vanishes here because the fluid is inviscid). In the
case of Eci. (C.28), the Reynolds number was made to spproach infinity, in
the final neutral stability equation {cf, Egs. (0.6) and (C.7)).-

From a physical point of view, the disagreement is inaccepta‘bleé no
angwer has been found as yet,

From a practical standpoint, the discrepancy is immaterial, since

for fluids of interest, liquid-gas combinations, -x->>| » both resulis

agree.’



APPENDIX D

DERIVATION OF EQUATION FOR g‘:‘

The equation for neutral stability could be written in general as

PR, e,m, m B W) =0 (0.1)

., where I is an analytic function of a set of real variables oL R, om,

and W , and a complex variable ¢ where

Cx Crea

(D.2)
Since the variables 2, ,F and W are physical constants that can be
arbitrarily fixed, as well as « , the wave mumber, Bq. (D.1) is then

eqaivaient to

P, (’R‘ Cryce) =o

(D.3)
P (R' ¢r,Ci) =0
and teking their total differentials
2%, Lo 2 P- Y =
SR dRr + S ece dee + 8 e dCM © v ; (D.u)
IPe 4r . 2Pe de, + 2% dey =0 «
R e ° Tes (D.5)
del <,
From Hg. (D.U4) and (D.5), e and Ztr  can be solved for
3% , 9% der
de OR dce 4R

e



deer _ _ 9_1—2—+ dee AR
ar 5P (p.7)
Zce
and using Bq. (D.7) in Bq. (D.6) gives

= = (D.8)
QC,— @c,‘; 9Cr BC;_
For an analytic function, the Cauchy-Riemann conditions axe
P ~ 9’?@
sc. B
OP-__ JP:
e Bee
vhich, vhen used in Eq. (D.8) yield
9?(' Q?L Q?r 9?4'. .
S o~ e
de. e < dcc IR {p.9)

P\
=)

vhere the partial derivative on the left hand member has been used on

| BCr +

account of the assumptions at the start of this section.

‘Bq. (D.9) was first given by ZTock(2) who didn't point out .the
reason for i%s validity, the key being that we are deallng with an
analytic function,

Bq. (D.9) is completely general and spplies to any p‘oint on the
(R =~plane regardless whether on the neutral stability curve or not.

From Bgs. (C.6) and (C.7), Appendix C, it can be seen that P- and

P. for the case of neutral stability are given Dby
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_‘/’_ C.
P - Flee) + KRTE Ske) } (9.10)
P . g_’(oz,c_)d—ciﬁ)% FL (%, c)

where ©=C- , Their derivatives with respect to X and < can be
evaluated from Bqs. (C.8) to (C.11), Appendix C. The actual calculations
are quite lengthy, as could easily be seen. When these results are used

in Bq. (D.9), the region of stability in the ¥R -plane can be deter-

mined immedlately.



T Y
ol

A

-
o PQ
= Ug o
o = daas He
=] == / Usly)= "—"tfu,,a N
2 7 5, _
7 liguid ’Az;
‘ i : \z .
y! VA /'"ﬂ x"',_/ }- x / . // / /LjﬂGiy s A e
wall

Fig 1. Undisturbed Velocity Profi

be Investigated

D



~96=

t-plane
we”
1_,/
A
@.m s )
| -3
_ L, |
g;.g - me‘%_ |

Fig.2. Paths for Contour §me§g§§$ in

the Solution of Stokes” Equation



QT

1.0 e T fa/*"

| AU 1
(e T NI
(N AR

e
///
7 //
g

| \\%
| FeW= [ '?2 N
10° o 10° 107

R

Fié.B. Neutral Stability Curves: Wave Number vs.
| Liquid Reynolds Number. Gravity and

Surface Tension Forces %%’E:} Neglected.

Liquid- Gas Viscosity Ratio =10



10 _
F=00
W=I0 \
1.0 >: T
| {
N
\\\;/ F=W= o0
| ummt%g
g |
N
“Istable
| \k\ |
, F=10 7 NN e
. W= o ND IR
r=.,00] \\ |
-2 ??3336 , ’ ) \\\
, 5@*‘ | | X ‘
4 5 8
10 10 R i0 i0

Fig.4. Effect of Gravity and Surface Tension

Forces on Neutral Stability Curves

7



3'@ o )
critical values
r=.03 N
.02 S/
o > );/’
-1 S # :
10 . 7
, /
00l — .,7
— 7
000) / -
o = ?Vﬁf::@
2 =3
[0~ »
-2 ’3_1 -
10 10 .O
o4

Fig. 5. Wave Velocity vs. Wave Number for
Neutral Stability . Gravity and Surface
Tension Forces are Neglected.

Ligquid- Gas \iisméi?y Ratic =10



==100=

10 ~
F=W=00
m=10
e \\
o |/ TN
RO N ” AR N
LD )yl AN
/ P v

stl=s
o5 .Lﬁ
AN
@\
i
MM"“M

10 z |
/. ] R
T /xj%g\
oA
10 10" 0 o

X

Fig.6. Rate of Change of Amplification ?;@ﬁm with
Reynolds Number as a Function of Wave
Number and Gas-Liguid Density Ratio .

Liquid- Gas Viscosity Ratio =]0



;equiny spjoukey Do) 2 Bid

o Hioyy _ v
Kol 00 Kl 0!
\ NN N |
NN LN _, _ @O =fpp=5
AN N | “
TN N
\ N $8AIND
A\
N\ /._/ JO SUOID8S DBLLOp Joj
“ AN N\ 19924400 29 o} usAo.d Om
| ” / 3q jou upbd suoyDINd(DY AN | £
T —+
| | L0l
| ! ,
ol

~10T-



=] 02=

o

if

F=W=00 | I

I0*

chi? ,

o'

i
a:@

Fig.8. Critical Wave Num%eg_



1O

~103=

G

Ccri’f

. m o — Ot e~
/i“fff si”; m
— e, Mwﬁ Hg!{z ,;i//!r

it
=
Rl
L

. o 1) a.“..

o o o o

[k
Fig.9. Critical Wave Velocity



-

Ol

Ol

G-

Ol

g-

13quinp  spjotAsy
UM 104004 uoloodwy o sbubyy o 8Dy 8yl JO SON|DA |DINL) "0} b1y

Ol

)2

O

ol-

W=/ uuhu

3 Eu@% w- m

-RoT-

Ol



~105~

Q
)

0 0
Rcri?

Fig. il. Influence of Gravity and Surface Tension

Forces on Critical Reynolds Number



=106
"

10
— :
“2 | \ lj \\
10 \S
g:w:m‘ //’;fj
N ///;/“ N
107 F=m 7 /"f
W= IO/ s
e
/ ,<j;:=30
W=0o
m=I0 ,;é"/ ] }
g -8 -7 | -5
1o 10 .@Ei 10 10
| (éﬁ)cm o

Fig.12. Influence of Gravity and Surface T%?’l%iﬁ;ﬁ
Forces on Critical of Rate of {J%ﬁ@fa@e |
of Amplification Factor with Reynolds

Number



«107=

gas
i interface
liquid
< _llayer gt which_ U=c
0 T T Cs
O wall '

Fig. 13. Distribution of Reynolds Stress for

a Neutral Oscillation



~108=

Fig. 14 ~ Perspective Drawing in the T-Plane Showin/g' the
Absolute Value of the Integrand and the Deformed
Path of Integration for the Integral (B.29) for the

, ™
Srecial Case 8=-§,



negative a positive a :
Fig. 12a. Location of Poles of Integrand of Eag.

(B.29) for z; (c=c,< 1)

] ' ;
negative a ‘ positive a

Fig. i5b. Location of Poles of !megmnd of Eq.

(B.29) for any z Other Than z, (c=c,<l)



