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ABSTRACT

The purpose of this thesis is:

1) To investigate the applicability and to compare the accuracy of
existing perturbation methods of non-linear mechanics for the so-
lution of transient response problems, and

2) To describe a new analytical approximate method for the solu-
tion of certain types of non-linear problems involving pulse exci-

tation, This new method combines the advantages of engineering

accuracy with ease of applicability.

In the course of this study it is found that the solution of
homogeneous non-linear equations can be obtained readily and with
sufficient accuracy by the perturbation methods of Kryloff and
Bogoliuboif or Lindétedt, even for large non-linearities. Greater
accuracy can be attained by the use of the newly developed bi-
linear approximation, The advantage of the bi-linear method be-
comes more pronounced when the step function or the single pulse
response of the system is investigated. It is shown that the bi-
linear method is the only convenient analytical approximate method
available for the solution of general pulse excitation problems in-

volving non-linear spring-mass systems.
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I. INTRODUCTION

A. Engineering Significance of the Non-linear Transient Problem

Most linear equations. dealt with in engineering are the results
of idealization of non-linear systems. When the non-linearities are
small such an idealization is justified by the fact that it enables one
to .describe the system with sufficient accuracy and relative ease.
However, no matter how small the non-linearities é,re, their removal
from the problem may cause significant changes in the characteristic
behaviour of the solution. For example, ultra and subharmoniec forced
oscillations, and the so-called "jump phenomenon'" are only found in
non-linear systems. In the case of transient, or pulse excitation,
such drastic changes in the character of the motion are ordinarily
not involved., However, there are modifications in the displacement
and frequency which can be of the order of fifteen-twenty percent even
if the non-linear force is never in excess of ten percent of the linear
force. Since engineering design in many fields is pushing closer and
closer to the limits of critical stresses and optimum utilization such
changes cannot be neglected.,

It is also quite probable that with better understanding of non-
linear problems it will be possible to make intentional use of them,
instead of discarding them as parasitic effects, There is already a
move in this direction, for example, in the design of shock mounts,
which employ non-linear elements to improve the response character-
istics of the system.

The primary purpose of the treatment of transient response

in this thesis is to in{restigate this relatively neglected aspect of
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non-linear mechanics. To the author's knowledge there has never
been a systematié search for a method of solution for problems in-
- volving pulse excitation, and there exists no approximate method
suitable for at least a large class of problems involving transients.

Numerical and graphical methods are, of course, available
which have an almost unlimited range of applicability. They are,
however, long and tedious, and never exhibit answers in a general
form. Even though in theory their errors can be made extremely
small, in practice there is a maximum accuracy which cannet be
exceeded. This is particularly true of the graphical methods where
increasing accuracy necessitates fhe measurement of smaller angles

and distances.,

B. Applications of Existing Techniques

Unfortunately most of the classical approximate methods
are not useful in the general treatment of the transient problem.
With the exception of the Kryloff and Bogoliuboff method they are
all developed for steady state oscillations only. The applicability
of these methods to the homogeneous and step function response
of non-linear equations justifies a careful analysis of their inher-
ent limitations, which can Be briefly summarized as follows:

1. Kryloff and Bogoliuboff Method: This is most useful
of the classical approximate methods. It is, in principle, a per-
turbation procedure in which the elimination of secular terms
gives the required frequency and amplitude corrections. Its ap-
plication to pulse excitations is limited to the solution of the rec-

t‘anguiar pulse, where the system exhibits oscillations of a single



-3-
frequency only; i.e., when the pulse length has no effect on the fre-
quency of the osciilations.

2. Equivalent Linearization Method: When the non-linearities
are sufficiently small that the amplitude and the frequency are slowly
varying functions of time, the equivalent linearization method, or as
it is sometimes called, the 'first order Kryloff Method" gives good
results. Its.main difference from the classical Kryloff and Bogoliu-
boff procedure lies in the elimination of higher harmonic terms by
an averaging process. It is, therefore, subject to the same limita-
tions in application to transient oscillations.

3. Classical Perturbation: In the Kryloff procedure the fre-
quency and the amplitude are assumed to be slowly varying functions
of time, In the classical perturbation method they are taken as con-
stants and the correction terms are again found by the elimination of
secular terms., This method is also limited, in its application to
transient problems, to the solution of rectangular pulses only., Its
value lies in its simplicity, and as will be shown in the body of the

thesis in its accuracy for a greater range of non-linearities.

C. Line Segment Approximation of Functions and the Bi -Linear
Method '

Perhaps the most important new technique to be presented in
this thesis is a method for line-segment approximation of the non-
linear functions. It is a well-known principle that any function can
be approximated by a number of straight line segments "properly
chosen'', Each line can be determined by its slope and a point
through which it passes;this point is usually picked to be the tran-

sition point where two segments meet. By "properly chosen' it is
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meant that the slope and the transition points are determined such
that the mean squaré error between the function and the curve formed
by the series of line segments is minimized within a range of variables.
It is obvious that by increasing the number of line segments the approxi-
mation is improved, but also the complexity of the problem increased.

Extension of this idea to the solution of non-linear equations
is evidenf. Any non-linearity, which is a function of the dependent
variable only, can be described by a number of line segments which
are determined to approximate the non-linear function as closely as
possible. The problem, then, resolves itself to the solution of the
same number of linear equations as there are line segments, with
the proper matching of displacement and velocity at the transition
points. Solution of this problem becomes more and more involved
as the number of line segments is increased. The determination
of optimum slopes and the transition points requires the solution of
(2n-1) non-linear algebraic simultaneous equations if the number of
line segments is . (n).

There are certain simplifications which bring the method
of linear approximations within the realm of practicability. Most
functions encountered in practice can be satisfactorily approximated
by two line segments only. In addition it is possible to choose the
slope of the first line segment as the slope of the function at the
origin without appreciable loss of accuracy. This simplifies the
problem to the determination of the second slope and the transition
point only by minimizing the mean square error. In the text of the
thesis the above procedure will be referred to as the "improved

bi-linear approximation', and the term ''bi-linear approximation"
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itself will be used to indiéate a simpler approach in which the second
slope is chosen a.é the slope of the non-linear function at the point
- of the maximum linear deflection.

It will be shown that for any non-linearity which can be ex-
pressed as a power in the dependent variable, the second slope and
the transition point are simple functions of the maximum amplitude
for both the bi-linear and the improved bi-linear approximations.

It will also be shown that for small non-linearities the solution of
the problem is insensitive to the exact choice of the maximum de-
flection used to calculate the parameters of the bi-linear approxima-
tion, and hence that the choice of the linear maximum amplitude for
this purpose gives satisfactory results. For very large non-lineari-
ties an iterative process can be developed to converge on a solution
which has a small constant error in the maximum displacement.

Resolution of the non-linear differential equation into two
linear ones makes it possible to treat problems of pulse excij:ation
with relative ease. Even for problems to which other approximate
methods are applicable, the accuracy of the solution can be increased
by the bi-linear approach. However, one of the most significant ap-
plications of the line segment approximations will be in the field of
electrical analog computing. It has always been difficult to form
or synthesize exactly the non-linearity in an equation for the pur-
poses of electrical analog computations, The analysis indicates
that the approximation of the non-linearities by two or more line
‘segments will give results which are well within the accuracy of

an analog computer.
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‘In principle, the steady state forced oscillations and the
response of the sysfems with linear damping can be solved by the
bi-linear method. However, in these cases the problem is some-
what complicated by the necessity of solving transcendental equa-
tions involving trigonometric as well as exponential functions.
However, a few qualitative experiments carried out on an elec-
trical analog computer showed that the line segment approxima-
tion of the non-linearities did not change the character of the solu-
tion of forced oscillations. Jump phenomenon as well as the ultra
and sub harmonic oscillations can be obtained by such an approxi-

mation,

D. OQutline of Thesis

To conclude this introduction, a brief outline of the suc-
ceeding chapters will be presented to clarify the relationship be-
tween the various parts of the thesis.

Chapter I treats the homogeneous non-linear equation de-
scribing a spring-mass system with a cubic non-linearity. Several
previously mentioned methods are compared by means of numerical
examples, and the application of the bi-linear method of this thesis
is shown.

In Chapter II, extensions of several classical methods to
the problem of step excitation are made and specific examples are
worked out and compared. The new bi-linear method is then ap-
plied and a detailed study of the error involved in this method pre-

sented.
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- Chapter III shows the application of the bi-linear technique
to the solution of. single pulse response of several problems which
could not be solved by the usual approximate methods. These so-
lutions are compared with results of a numerical iteration method
to establish the accuracy to be expected.
In Chapter IV a brief treatment of the influence of small

linear damping on the transient problem is given.
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II. TRANSIENT RESPONSE OF A SPRING-MASS SYSTEM
WITH CUBIC NON-LINEARITY IN SPRING FORCE

Chapter 1. ‘Hon'iogeneous Solution

In order to treat a pure impulse, or a single rectangular
pulse forcing function, it is important to solve first the homogen-
eous non-linear equation. It will be shown that when the initial
velocity is zero, there is an exact analytic solution in terms of
elliptic cosines for a cubic non-linearity in spring force. Some
of the so-called approximate methods based on the assumption of
small non-linearity are shown to give good results even when the

non-linear forces are several times the linear ones.

A. Kryloff and Bogoliuboff Method (Refs. 1, 2)

Let the differential equation be

S';+w02x+ tx3=0 . (1-1)

with the initial conditions that
att=0 x(0)= X and x(0) = X
Following the usual Kryloff procedure (see Appendix A), the
deflection x, amplitude (2), and the frequency (¥) are expanded in
terms of the non-linear parameter &. (a) and () are assumed to

be slowly varying functions of time such that

a=Ala)e, ¥ =w +e¥(a) (1-2)

and hence the second derivatives of (a) and (¥) are small compared

to the first derivatives and can be neglected. Since
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x=acos V¥ +¢ xl(a,v_J) + 0(&2)

(1-3)
X = -aw  sin® + £ [A cos¥ -a¥ sin¥ +w —]
and
. 2 2 4°x)
x = -aw_ cos¥+¢ [ZAw sinf - 2aw 7 cos‘P+w —_— (1-4)
o 2
dy
Substituting (1-2) and (1-3) in Equation (1-1) and collecting terms
one gets:
—szx1+x = ____73a3 +2_a__ ) cos¥ +=—=sin¥y - cos3y (1-5)
ay 1 4wo “b o 4 02

(1-6)

putting A and ¥ from'Equation (1-6) into Equations (1-2) and inte-
grating:
a = constant and

(1-7)
? - 3 az

where ¢ is a constant of integration to be determined from the initial
conditions. It is obwvious that if x, = 0 ¢ =% ; and if io =0 ¢ =0.
The solution of Equation (1-5) gives x; as

a3
——-—z cos3 ¥, (1-8)

and the solution will then be:

. 3
X = a cosY¥ + ta 2c053¥’ (1-9)

32w
o

to the first approximation.
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Initial' Conditions:
1) Pure impulse - x(0) = 0, %(0) = X

In this case ¢ = % and the Equation (1-9) takes the form:

' 3 2

x = a sinnt + -2 sin3.N.t where {l= w +-?i£ a_ (1-10)
2 o 8% w
32wo o

since x(0) = :'{o, an equation for the amplitude (a) is obtained as:

2
9¢ 5 15¢ 3 .
———ga” t a” taw_-x =0 (1-11)
256w 32w ° °
o o
if the E_Z term is again neglected:
s 32w’ 32w
a~ + 15 2 -~ —T5% x°=0 (1-12)

It is seen that the Equation (1-12) has only one real positive
root which gives the required amplitude.
2) Pure displacement - x(0) = %, x(0) = 0
In this case ¢ = 0, and the Equation (1-9) becomes:
&a3 2

. 3 _a
cos3fit with N =w + 3§ — (1-13)
32‘%2 o 8 w

X = a cosfLt +

If the initial condition x(O') =X, is substituted in Equation (1-13) an

amplitude equation is obtained as

,.wZ 2
3 o “o -
a +32'—E—a“32—€— xo—-O

Again the cubic equation gives the amplitude uniquely, since
it has only one positive real root,
3) Mixed Initial Conditions: x(0) = x_, x(0) = x_

If these conditions are applied to the Equation (1-9), they

give rise to two non-linear transcendental equations which deter-

mine . These equations are:
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3
a cosd + £a 2cos3¢=xo (1-14)
32w
(&)
3 %
a sing + 252 gin3g = - 2 (1-15)
3201)o ok

It will be apparent from the exact solution of the differential
equation that the higher harmonic amplitudes of the solution are
less than 5 percent of the fundamental one even wifh very large
non-—linea_rities. If, on this basis, one neglects the terms of cos 3¢
in the differential equation, the mixed initial conditions can be solved

readily. Equations (1-14) and (1-15) will then be:

a cosd = X,

(1-16)
5{0
a sing = - I (1-17)
which will give the amplitude equation as:
X
2?2224+ 2 ora®n? . .n%c%3%=0
o ne o
5 (1-18)
but n% - w? e 32
o 4
Hence
4 4 “o® 2,2 4, 2 2 2
a +(§'—Z—-xo )a —'T‘c(xo tx, Y )=0 (1-19)

This is a quadratic equation in (az), but it will always have

one and only one real positive root. Then:

2

a? %(%"2_ - x, )+/_(____ tx %) +ag % 2 (1-20)

‘The phase angle ¢ will be found to be:
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¢ = cos_

1% 1-21
. (1-21)

B. The Method of Equivalent Linearization (Ref, 2)

This method will give very much the same result as the above
Kryloff ;nd Bogoliuboif except that the solution will no longer contain
the third harmonic. The frequency squared correction term as
found from Equation (5-21') in Appendix A will be % aaz, and the so-

lution can . be expressed as

X = a cos (At+p) with .(LZ = ui)z +731- f.az (1.22)

Determination of initial conditions in this case dis . trivial
and the amplitude Equation (1-20), and the phase Equation (1-21)

will remain unchanged.

C. Classical Perturbation or Lindstedt Procedure (Refs. 3,4)

The well-known method of perturbation will be used here
in the solution of the homogeneous equation. The results thus ob-
tained give errors less than five percent in both frequency and
amplitude even when the non—'linear forces exceed the linear ones
by several fold.

Let the linear frequency squared (woz) be expanded in terms
of the unknown frequency w”and the correction term of the order
of €. The solution (x) will also be expanded in a similar fashion.
Hence:

woz =f yew?®  pa - (1-23)

x = x° +txl, (1-24)



-13-
Here x° corresponds to the zeroth order solution that satisfies

the initial conditions. Then:
se 2O e .
x=x +¢ %y (1-25)

putting Equations (1-23) and (1-25) in the differential Equation (1-1)

(x° +e§1)+(w2+au12)(x°+axl) +& (xo+éxl)3 =0

Collecting terms of the like powers of € and equating them

to zero, one gets:
%° +ufx® = 0 (1-26)
"1 +(-u2x1 = —wlzxo-(x ) (1-27)
Initial conditions will be defined as:
x2(0) = x,» %x(0) =x_, x(0) =0, %(0) =0 (1-28)

The solution of Equation (1-27) satisfying the initial conditions (1-28)

will be:
x

) o
X cos¢ cos (wt+d);

for the sake of simplicity the initial velocity will be taken as zero

such that ¢ = 0. Hence:
o
X=X coswt (1-29)

Substituting the value of x° into the Equation (1-27), expand -

ing and collecting terms one gets:

3

x +w2x = - (W 2x + 3x 3) coswt - fo—cosfﬁwt {1-30)
1 1 1 %0 "% 4



-14-
In order to eliminate the secular terms, the coefficient of cosw t

must be equal to zero:

2 3 3 2 3
w —_— = =
1XO+4XO 0 or wl [ X

Hence from Equation (1 -23):

2 2

(.UZ=(.U

A (1-31)

3
tzEx,

Equation (1-30) will then become:
' 3

X

. . 2
x) twx = - —7;-)— cos3wt (1-32)

or

3
X
o
3Zw2

cos3wt (1-33)

X = b coswt +

in order to satisfy the initial condition

X
o

x,(0) =0 b= -
1 32w2

hence

ol )
X, = - coswt - cos3wt (1-34)
1 321»2

The complete solution will then be:
txo3 _ xc’3

2) coswt +¢& > cos 3wt (1-35)
32w 32w

x=(xo-

D. Exact Solution of the Homogeneous Non-Linear Equation

with Cubic Non-linearity in Spring Force {Ref, 3)*

The differential equation will again be taken to be

*N. W..McLachlan obtains this same exact solution and compares it
with the solutions obtained by assuming x to be a finite Fourier Series
of only the fundamental and the third harmonic terms. This approach
gives only slightly better results, and is considerably more tedious

to solve.

~
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;<+w°2'x +‘&x3=0 (1-36)
with the initial conditions
x(0) = x, and x(0) = 0 (1-37)

Let, now, v = x such that ¥ = vv' where v' = %:Z . Putting these

values in Equation (1-36) and separating the variables:
vdv = - (wozx + £ x3)dx

integrating between the limits of X, to x:

A\ x
S vdv = - & (u)ozx +£x3)dx

o X
o
w 2 *
2 o 2. & 4 2, 2 2., & 4 4
voo= -2 —— X +Zx xo= wo (xo -X )-|~-2—(xo -x")
or since the velocity has to be negative
1/2 {o1/2
= _wx %xf) L1+ —f (x 24D (1-38)
dt oo 2o
2w
o
solving for t one gets:
X
_ 1 dz
. o < (x0 -z7) {1+ Z(XO +z )}
o 2 Ui)

(In Equation (1-39) the dummy variable x has been replaced by z.)
Let z = x_ cos Y so that dz = -x_ sin ¢ d$; Equation (1-39)

becomes
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-l x
cos ~ —
. x_
Y a
t—+wo P S 72 °F
{1 + > (1 + cos™¢)
o 2w
o
-1 x
cos =
%o
1 dé |
t = : where (1-40)
(w02+&xoz)1/2 (1—{\Zsin2¢)1[2 2
0 /\2 - &XO

2(w 24 &x 2‘)
o o

The integral in Equation (1-40) is an elliptic integral of the first

kind with amplitude ¢ = cos ™1 XE— , and the modulus A= 1

° Y 2(1+ ;“07“2 )

Thus in standard notation t will be given by: £x

[o]
1 .
t = F(d,A) (1-41)
(w02+£x02)l/2 ¢
where
¢
_ d¢
F{ ,?\)—S (1-42)
¢ J (132 sinZy) 1/2

Since x = X, cosd, from the definition of elliptic functions,

x is found to be:
X=X cnu (1-43)
o

where cu is the elliptic cosine and u = F(d, A ).

The complete period is found by letting ¢ = 2w. Thus:
'n'

4 do

2

4 w

T = 8 = F(5AX1-44)
((.ucz-!-&xoz'(l/2 4 (l-Azsinz't)l/Z (w02+£x02)1]2 2

(because of the symmetry the integration is performed over a

quarter of a cycle and the result multiplied by four).
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'F(E,/\) is a complete elliptic integral of the first kind with
a modulus A, and i's readily obtainable from tables.

The solution of Equation (1-36) for mixed initial conditions
resolves itself to the detérmination of the maximum amplitude of
the oscillations. Once this value is obtained, one can treat the
problem simply by taking the maximum deflection to correspond
to the initial displacement with zero initial velocity. The period
can then be determined exactly from Equation (1-44) in which (xo)
is replaced by the maximum deflection (xm).

If the initial displacement is again X with-an initial velocity
5:0, the maximum amplitude is found by integrating the Equation

(1-36) between the limits of X and x and noting that for x = x

v = 0. Thus:
x
o m
S vdv + S wozx + £x3 dx =0
v X
o o

performing the integration and solving for X

, w? %22 i 2. 2 2 4
X =-— + Y| z ) +£ ZVO +2.u|J0 x, ¥ex (1-45)

E. Effect of Lalﬁe Non—iinear’ities

The effect of large non-linearities on frequency and harmonic

content can be examined as follows:

Let
&x03 p xo3
A =x - and A, = : (1-46)
1770 " 552 3 324,

such that the Equation (1-35) can be written as

x = A coswt + A, cos3wt (1-47)

3
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Then

A3z _ §
Az _ 1 a8
Al 3200 . (1-48)
:—z -
xo

3 1
— = (1 ‘49)
A1 32w’
_ %o
It is seen that as & becomes very large for a given initial displace-
A
ment x  , _Aé —_— 2—13- . This means that the maximum amplitude
1

of the third harmonic in the solution will be only about 4. 5 percent
of the fundamental one.

If one expands the function (cn u) in a Fourier series for

A2l

(which is the limiting value for & very large), the third har-

N

monic amplitude is found to be about five percent of the fundamental.
This is the main reason why a simple approximate approach to the
.problem as outlined above gives such good results.

Only a first correction to the. frequency also gives satisfac-
tory results even for large non-linearities. It can be shown that
the higher order correction terms to the frequency will be of the
form 0(£A1A3)+0(£2A§) +... . Since A3 is shown to be very small

even for large & these terms are small compared to the first cor-

2
1)'

for w 2 converges rapidly enough to allow a good approximation by

rection term which is of the order of (€A Hence the series (1-23)

taking only one correction term.



-19-

F. Comparison of Methods by a Numerical Example

Since it was shown that even for large non-linearities the
' results should be reasonably accurate, an extreme example will
be treated here.

Let ‘-u: =1, X, = 1, &€ = 10 such that the non-linear spring
force is ten times the linear one at maximum deflection.

Then from (1-44) the exact period is found to be:

T = 2.19 {since modulus A= . 674, and F(-‘Zi,,\) =1.82 (1-50)

From Equation (1 -31) the approximate frequency is

2,3 2
W = [ = - = -
)/ > +4ax0 Y8.5 | 2.92 (1-51)
or the period:

21

L 1-52
593 2.15 ( )

T

which is only about two percent less than the exact period,

Equivalent linearization will also give the same result as
(1-52). It will, of course, not include the third harmonic, and hence
its wave form will be a pure cosine instead of an elliptic cosine.

The accuracy of the Kryloff and Bogoliub%ff solution depends

3 ZXo

on the smallness of the non-linearity., If T3 & 1, (Equation
o
(1-31) can be written as:
3 £x02.1/2- 3 axoz

which is the frequency found from the Kryloff and Bogoliuboff method.

It is seen that for large non-linearities such a binomial expression of
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the sqiare root term is no longer accurate.

G. Bi-linear Approximation

The line segment app;roximati‘on outlined in the Introduction
will now be used to find the solution of the homogeneous non-linear
equation. The cubic non-linear spring force will be replaced by
tv}o straight line segments whose slopes match those of the non-
linear function at the points of origin and the maximum deflection.

1)_ _Genera.i Method

Let the slopes be defined as follows:

k=k1 0< \Ix\< 1xtl
(1-54)
and k = k, lx\?\xt\
where k1 and k2 are the two slopes and %, the point at which the
slope is increased from kl to kZ'
The spring forces gl(x) and gz(x) will then be:
gl(x) = kl x 0< Ixl¢ \xt\ and
(1-55)
gz(x) = kzx + xt(kl—kz) | x\> |xt\
These satisfy the additional condition that for x = X,
g(x,) = g,(x,) - (1-56)
The differential equations of motion can be written as:
.X1+k1x1=0 I x\ < X, (1-57)
X, +koxytx (ki -k,) =0 Vx> x (1-58)

Since the initial displacement x> Xy the conditions to be

satisfied are:
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at t

0 x,(0) =x_, ;}2(0) = 0 and

att =t x,(t)=x(t) = p, éz(tt) =% (t) ==
where t, is the transition time (time required for x, to change from
x to xt).

Solving (1-58) and putting in the initial conditions:

I ) +{x +Xt‘k1'kz)§

X, = T cosw,t where w, = YR_E (1-59)
2 2
tt will be found by letting Xy = X, and solving for t, or
k,ox
_ 1 -1 17t _ 1 -1 1
b 5 8 |E k=)@, )= (-0
2 2V TtT 1t 2 2 o
;& -
1 7t
Hence:
k(x -x )tk x
e N 270 1T
r = xz(tt) = - v sin w,t, (1-61)
The solution of Equation (-157) will be:
%y = A cos (w1t+ o) (1-62)

with the conditions that at t = tt xl(tt) = xz(tt) = p, and xl(tt)=x2(tt) =r

Then:

W
it

P = A cos (wltt + ¢)
(-163)
r = -Aw, sin (wltt + ¢)
Equations (~163) determine the amplitude (A) and the phase
angle (¢). The quarter period can be found from the condition that

att = —z-xl = 0. Hence
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“THe=F or T=g- (G- (1-64)

The only parameter not determined explicitly so far is the

transition amplitude X, There are three logical bases for its se-

lection:
It can be picked :so:that:
a) the work done per cycle by the bi-linear and the non-linear spring
forces are the same,
b) the mean square error between the bi-linear and the non-linear
spring forces are minimized, or
c) the spring forces are equal at the maximum displacement point.
Since it is the non-linear spring force that is being approxi-
mated and not the energy, the second of the first two Ghoices’ . -
is more reasonable. The third alternative is somewhat more arbi-
trary than the rest, but it is simpler to apply and gives results which
are very nearly as good as those obtained by using the second alter-
| native. In all the examples worked out the accuracy of the solution
showed a distinct decline where the first alternative was used in-
stead of the second one.
One can also improve the accuracy by taking the second slope
k2 at somewhat lower than the maximum amplitude, say at about 90
to 95 percent of x but this seems more artificial since the proper
choice will depend on the particular problem to be solved. A better
method for the improvement of the accuracy will be discussed in
Chapter 2.

In this example alternative (2) will be used to determine X,
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and the results will be compared in frequency and the amplitude with
th¢ exact solution.airea.dy obtained..

Let (EZI) be the mean square error between the bi-linear and

the non-linear spring forces. Then

X X

t m
g?= 1 j [£,(x)-h(x)] %ax +5 (0% %) -h(x)] % ax (1-65)
m P4 Xt

where gl(x') and gz(x) are defined by Equations (1-55) and h(x) is the
non-linear spring force. X, and X have already been defined as the
transition and the maximum amplitudes.

The condition that E have an extremum is:

a(E”) _

Since gl(x‘) and h(x) are not functions of x

t
2 (m Bg,(x, x,)
E™) _ 1 2 Xy
W'%{[gl(xt)‘h(xt) 23 (gz(x, x.)- h(x)l dx
X
t
-8, (%, ) +h(x, )}
. _ 3g2(x» t) )
Since gl(xt) = gz(xt) by definition, and —55——  is a constant
t

with respect to x, the minimum for E will be given by the value of

X, which is the solution of the equation

Xm -
S [ gz(x,xt)-h(x)] dx = 0 (1-66)
%

for g = kyxix(k;-k,) and

h=k1x +&x3

Equation (1-66) gives:

¢ £ 2,1 ¢ E.2  _
¥ ¥y + 'Z'(kz-kl)+zxm Xt Em Z(kz-kl)— T m 0
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: e sus _ 2 _ 2
But from definition k2 = k1 +.3£ X0 or kz-k1 = 3&xm .

Hence:

3 2 :
xptx x +Tx x -5xm =0 (1-68)

To three place accuracy the solution of (1-68) is:

5 :
* 8% m (1-69)

This means that the transition amplitude x_is only a function

t
of the maximum displacement X and is independent of the non-
linear parameter & . It will be shown in Chapter 2 that such a simple
relation exists for any power of non-linearity.

2) Numerical Example:

The example tretited by the exact method will now be solved

by the bi-linear method. Since h(x) = x+1 0x3 and X, =%, = 1, then

k1 =1, kZ = 31. The spring forces will be
gl(x) = x, gz(x) = 31lx - 30xt (1-70)
For a cubic non-linearity X, was found to be -g— >
Sincex_ =1, x,_ =.625, then
m t

from (1-60) - t, = 0.272
from (1-61) T = }'cz(tt) =-2.2
from (1-63) ¢ =1.021 rad., A =2.29
from (1-64) T =2.20
It is seen that even for a non-linear force which is ten times

as large as the linear one at the point of maximum deflection, such
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a simp'l‘e approach to the problem gives a frequency which is less
than one percent different from the exact value of 2.19.
A comparison of all of the solutions to the homogeneous equa-

tion obtained by different methods is shown in Figure 1.
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Chapter 2.

Transient Response to a Step Function

Previously outlined methods will now be extended to the so-
lution of the step function response of a non-linear spring-mass
system. The solutions obtained will again be compared by means
of several numerica_l examples.

A. Kryloff and Bogoliuboff Method

Let the differential equation of motion be:

mx+K x+bx> =F

or

;{+uu 2x+£x3=F where w2=§-,&=h, and F =£ (2-1')
o o o m’” m o m
Fo
Furthermore let (y) be a new coordinate such that y = x - =2 then
Equation (2-1) becomes: °
v+ wly =g +F°)3 o (2-2
y+ <y = -ty Py (2-2)

Following the classical Kryloff and Bogoliuboff procedure
(see Appendix A), expand (¥), the amplitude (a), and the unknown

frequency (‘P) in terms of the small parameter (¢). Hence:

y = -a cos? + &yl(a,‘P) + O(E_z) (2-3)
g—;’;= w teE $(a), and (2-4)
d .
(—1,%: ¢A + 0(e?) (2-5)

At this point some work can be saved by noticing that since
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the system is a conservative one, the amplitude (a) must remain
constant; this means thatg = 0, so that Equation (2-5) can be dropped.

Differentiating y from Equation ( 2-3) with respect to time,

and putting the value of ¥ in:

- d dY - dy
=y=aPsintrebl =aw sin‘f’+£(a‘f’sin‘l’+woa—¢l—) + 0(e %)

LY

and differentiating it once again
2

2 N _ _ 4"y .
_dj.‘[: y =aw 2 cos¥+& Zawovcos‘l@ ‘Uoz —_ZE (2-6)
at” © dy

Substituting the va.lues of y and y in the differential Equation {(2-2),

and ne% lecting the terms of the order of &Z or higher one gets:

F
w (_2_+ vy = a cos ‘f’ -3 (—-—2-) a cos 'f’+3 (-—z) a cosYy 2
F 3

-(-w—oz) - Zawo‘P cos ¥
o

Expanding cosZ‘F and cos3‘l’ and collecting terms, the final form of

Equation (2-7) becomes:

le_,_ 3::\3 432 (Fo-Z Za‘F v - °) 2‘P+
PPTARS Tl bw Sairy Sy S § had ““2( ; 2) cos 2cos3‘l’
¥ 4w o o
¥ F_ 2
1 o\]3 2 o
- —a + 2-8
23 ){2 2 )J (2-8)
o]

It can be seen from Equation (2-8') that in order to eliminate the pos-
sibility of secular terms in the solution, the coefficient of cos¥ term
must be equal to zero. This gives the frequency correction term as:
2ty

] W, ts W,

O

¥
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Hence the frequency becomes:
: n2 F_ 2

_ 3.2 3 £ o

o

Equation (2-8) will then take the form:
dZ
Yy 3 2 F 1 F0
d.'_,z + Y]. ———2 COS3‘I" —2(-——2)0052‘/) :z(—h)—z) * (2-11)
o o

0 O

Solving the differential equation (2-11) one gets:

o
3 F 2
'3—2—UJ—-2COS3(P+——2 (-———z)COSZ‘l‘ —2(—-—2) [fa +(—2-) } (2-12)
. FO ‘F FO
since = + = - + +
n X=vy F a cos :}—2 £ Yl or
o o
x=-acos¥ +F +& - ——-——-2-3 cos3‘l’+——2-( To Scos2¢- — (f——) (2-13)
——Z 32(0 o _:Z a) w
3 2 F 2
the initial conditions to be satisfied are: [ +(—Z)
%(0) = %(0) =

It is seen that the condition }E(O):O is satisfied by taking the phase
angle ¢ to be zero in Equation (2-10).
The condition that x(0)=0 gives the equation that determines

(a). Hence:

F F F 3

0=-—a+—7-° - & 33 - Z ___)
“% 32w 2 wZ (_7) (wz
o o o o 0 o

or

3 F 2 32w02 Fo FO'Z ac)JZ

a” +32( )a® + a+ 32 —) —| =0 2-14
w 2 £ 2 (wz 3 ( )

o] (o} o}
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“_I'his amplitude equation introduces several limitations on the
non-linearity and the physical parameters of the system. It can be
seen that in order to insure at least one positive real root

Woz F, 2

7 (-5;—2) .
This only means that the non-ligear force should be small compared
to the linear one. It also brings out the fact that the important fac-
tor that affects the accuracy of the solution is the size of the non-
linear force'. :. Since this is one of the original assumptions in
the Kryloff and Bogoliiboff procedure, it is not really an added re-
striction on the method. An interesting fact is that this restriction
does not appear when some of the other methods, such as equivalent
linearization, are applied to the same problem.

One can put a further restriction on the amplitude equation
(2-14) which at first glance seems to be artificial or unnecessary.
Satisfying the above inequality insures only at least one real and posi-
tive root. Since from the physics of the problem, one must eliminate
the possibilities of any negative amplitudes, the condition that one
and only one real root should exist can be applied to the amplitude
equation. This condition states that the discriminant of the cubic
equation must be negative.

For a cubic equation of the form

z3 +pzz+rz+s=0

the discriminant is

=18 prs - 4p35 + ]pzr2 - 41’3 - 2752 (2-15)

For Equation (2.-14), then, the discriminant becomes:

27 2 }

A =323 {(u. p)us ap - 128 25 a”)+32a8 2_4p (2-16)



. -31-
Fo 2 cuOZ
where ‘a = (m) and/g = —-&—-

o
Writing the condition for the existence of one real root only:

32p3 (& - 1) 18 ﬂ(ﬂ)-lzsg(-‘-‘-)z +32(%) - 4 ] <0 (2-17)
[ 32%P 328 B
Letting% =Y, and noting that £ > 0, Equation (2-17) can be re-
written as:
27T 27 2 '
(y-1)(18 3 Y- 128 33 Y )+32¢y-4<0 (2-18)

remembering that 0 < y< 1 for positive real root, the inequality (2-18)

gives the result that y must be between zerc and 0.13; or
0<y%$.13

putting this in terms of the initial parameters one gets:

F_ 2 uéz |
0< (-(:‘32-) (&) .13 (2-19)

0

This second condition limits the allowable non-linearity more
than the initial one, It is an artificial restriction since it is difficult
to find a physical justification for it. The question also arises as to
whether one could allow three_ real roots, only one of which is posi-
tive, thus discarding the negative roots on physical grounds. Such
an approach, of course, eliminates the limitation imposed upon by
inequality (2-19). An interesting point, however, is that in the three
examples treated in which the inequality (2-19) was not satisfied, the
solutions were off as much as 100 percent or more., Although the
complete mathematical explaﬁation is not apparent this condition

seems to guarantee results which are within about ten percent of the
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exact frequency and _arhplitude.

If, instead of stopping at the first approximation as it was
done above, the treatment is carried out through second or higher
approximatiohs, it can reasonably be assumed that the restriction
on the non-linearity will become less and less severe. However,
the complexity of such an analysis makes it impractical to carry
out the calculations. As was mentioned before, such a restriction
does not occur when the problem is treated in somewhat different

fashion, as will be shown below.

B. Method of Equivalent Linearization

The assumption of small non-linear forces made it possible
to formulate an approximate solution of the non-linear equation by
the use of Kryloff and Bogoliuboff's method. The accuracy of the
approximation is limited only by the amount of work that can be
carried out in a reasonable time. In general, however, it is found
that a first approximation with an error of the order of ¢ 2 (nbn-linear
parameter squared) gives satisfactory results.

In the solution of the homogeneous equation it was shown that
the equivalent linearization method simplified the procedure of ob-
taining a first approximation without changing the results. In the
case of a step function response, however, it gives answers which
are different from those obtained by the Kryloff and Bogoliuboff
method. For this reason, the method will be applied here in some-
what more detail than ' was done for the solution of the homogeneous
problgm. It will also be shown that a somewhat new approach to the

same problem gives a better physical insight to the meaning of
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equivalent linearization.

Let the differential equation of motion be written in the form

) 2 .
% tw “x= -Ef(x) +F (2-20)

where f(x) is some non-linear function of x. Since x is a periodic
function of time, and since the solution of Equation (2-20) is assumed
to be quasi-linear such that the resulting oscillations are "almost"

sinusoidal, x can be taken in the form

x = a coswt(the phase angle is neglected because of

zero initial velocity) (2-21)

The problem is now to find a relationship between the ampli-
tude (a) and the unknown frequency (w) such that the differential
equation (2-20) is satisfied as closely as possible by the solution
(2-21). For this purpose,the criterion can be chosen as the mean
square error over one cycle betweenthe left and the right hand sides
of Equation (2-20). This error is to be minimized.

If the mean square error is (EZ'):

2w jw
2 _w { 2
E =5— S x-H% X +£f(x)-Fo} dt (2-22)
o
Putting the value of (x) in from Equation (2-21):
2w o
2 _ w 2 2
E == j {a(wo -wi)coswt +&f(x)-Fo} dt (2-23)
o
since (EZ) is to be minimized by the proper choice of (a) and (w):
aE’ _ |
da
Hence:
2w fw

w
Zn J 2 {a(u)oz-‘uz)coswt+£f(x) -Fo}(woz_wz)coswt dt=0 (2-24)

[s)
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or letting wt =0

2
J {a(woz-wz)cos 0:+£f(x) -Fo] cos8de =0
cs :

Performing the integration
2w

%(“’oz‘“’z)(h') +& S f(x)cos6 d@ =0

o

solving for w?
2w

2_ 2, ¢ -
w” = w +Tr'§ Sf(x) cos8de (2-25)

(o)

It is seen that Equation (2-25) is exactly the same as Equation
{5-21) derived in Appendix A,

In the above analysis nothing was said about f(x). The most
accurate value of the frequency will be obtained if the exact value
of (x) is substituted in f(x); however, if one is limited to first ap-
proximation only, f(x) must then be a function of zeroth approxima-
tion in (x), that is (f(x) = f(a coswt).

There are no complications introduced if (f) is a function of
(:2) as well as (x) The same analysis can also be carried out for
forced oscillations with equal success.

The equivalent linearization method will now be used for the
solution of the step function response of a system with cubic non-
linearity in the spring force.

Let the equation of motion be

mx + kx + bx3 =F

or

w2 3 2_k __b _F
x +w"x +ix =F where w _1?1’6_1—{1’ and F_ == (2-26)
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Again making a transformation of the form

F
= 'Zu_OZ +y (2-27)
(o]

{2-26) becomes

" + Z _ Fo3
ytw 'y =-&(y+ ?z) (2-28)
O

The zeroth approximation of this differential equation (that

is to say for & = 0) will be:
yo =acos ¥ where ¥ =Wt + ¢(t') (2-29)

Then using Equation (5-23) the equivalent spring constant is

found to be:

2w
= ' FO 3 \
K=k+—~— J (a cost + :U—Z) cos¥d (2-30)
o o
or, integrating (2-30)
_ aZ Fo_ 2 _
o

Since A = 0, the equivalent differential equation will be of the form:

" 2 a'A?. FO_Z
y+ w ®+3¢E -{T ) } y=0 (2-32)
o
The solution of {2-32) is
, .2 F_2)M?
y=acos? whereV = w +3¢ T + (:u-—z-) t (2-33)
2 o
Assuming 3¢ az + { Fo) } <1 (2-33) can be rewritten as:
e
o

3 ¢ aZ. Fo 2
(o}

[o]
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- It is seen that this is exactly the same frequency obtained
by the Kryloff ami Bogoliuboff method in Section A. (See Equation
(2-10).

It should also be noted that as & gets larger the frequency
computed by Equation (2-33) will give better results than that com-
puted by (2-34), since the first two terms of the binomial expansion
no longer give the required accuracy. It is reasonable to say that
as the non-linearity gets large one should expand the square of the
frequency in perturbation procedures and not the frequency as was
done in the Kryloff and Bogoliuboff method.

The initial conditions for Equation (2-33) are

F
(0)= - —5 , and y(0) =0 2-35
y(0) o2 y (0) ( )
o
Since the phase angle is zero v(0) = 0 is automatically satisfied.
The condition y(0) = - F—o ives a = - F
b4 o2 g w? .
o
The solution of the differential equation (2-26) will then be

F
-9 . 2-35b
x _-.2.( cos (P) ( )

o

This is the solution to the linear equation (€= 0) with a cor-
rection in frequency. However, the Kryloff and Bogoliuboff method
used before also indicated a correction for the so-called d-c level
which is defined as the position of equilibrium about which the oscil-
lations take place. It will now be shown that a different approach to
the problem will give the required correction to the d-c level.

If one attacks the problem without first making the transfor-

mation, such that the differential equation to be solved is:
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" 2 3'_ :
X + W Tx tExT = F0 (2-36)
the zeroth approximation to this non-linear equation will be:
x = A{l-coswt) (2-37)

where again A and w are slowly varying functions of time. Hence

the equivalent frequency will be:

2T
2 2 ¢ 3 3
w- = e - -
=Wt A”(l-cosB)” cos6 do (2-38)
0
or, integrating (2-38)
2 2 15 2 '
w/ = wO +TEA (2-39)

One can then write the equivalent linear differential equation as:

2

" 15 2;
x+(wo t tA )X=Fo (2-40)

The solution of (2-40') will give:

F
o .
x = (1-coswt) (2-41)
2. 15 2
c% +T£A
where
1/2
2 15 2
w=lw? 18 ca?] (2-42)

or for cases when % £ g._% << 1 one gets:

2
(¢}
w =w (1 13 __&AZ ' (2-43)
o 8 woﬂu )

From the comparison of Equations (2-37) and (2-41) it is

seen that
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A=—T5—— (2-44)

or

F

3 o]
— =0 2-45

4 4
A+ 5 =

15

Equation (2-45) gives the required amplitude equation. It
will be noticed that Equation (2-45) differs in character from Equa-
tion (2-14) in several respects, First and most important is that
it always has one real positive root for the amplitude. There are
no limitations on the size of the non-linearity from the physical con-
siderations. Mathematically, of course, the results will not be
accurate for large non-linearities.

Frequency correction terms corresponding to two methods
will be the same if the amplitude (a) in Kryloff and Bogoliuboff's

)
method is replaced by ;;‘02 .
A more complete comparison and analysis of the above and

the following methods will be made after a sample problem is solved

and the results are checked against the exact solution,

'C. Classical Perturbation or Lindstedt Procedure

From the point of view of accuracy, it is obvious that Kry-
loff and Bogoliuboff's procedure will fail completely when the non-
linearities become of the same order as the linear terms. Of course
the main reason for this lies in the fact that the non-linear frequency
was assumed to be in the neighborhood of the linear one and a power
series expansion in terms of the non-linear parameter in this neigh-

borhood was justified., For positive large non-linearities in the



-39-

spring constant, hqwéver, the non-linear frequency may be several
times the value of the linear term; in this case one would expect that
an expansion of very large numbers of terms would be required for
any reasonably accurate answer. The difficulty of such a procedure
is self evident.

It will now be shown that in cases of large non-linear forces
the so-called classical perturbation procedure gives much better
answers because of the fact that it converges much more rapidly.
The original Equation (2-1) will again be solved by this method.

The differential equation of motion was:

" 2 3
x+u)° X =-£X +F° (2-46)

if the solution is to be taken of the form:
2. .
x=x°+£xl+0(& } {2-47)

The initial conditions will be homogeneous, such that
x,(0) = x_(0) = xl(o') = ;‘cl(o') =0.

Let the linear frequency (woz) be expanded in the neighbor-
hood of the unknown non-linear frequency ( WZ’) in terms of the non-
linear parameter (this is the opposite of the Kryloff and Bogoliuboff
expansion in which wz is expanded in the neighborhood of uéz). If

one neglects the terms of the order of E_Z:

w2 ouf e’ (2-48)

where wlz.is a correction term to be determined from the elimina-

tion of secular terms.
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‘Substituting Equations (2-47) and (2-48) in the differential
equation (2-46) one gets:
" o 2 2 s 3
(xo+£xl)+(w +€w1 )(x°+£ x1)=F0-£(xo+&xl)
Collecting terms of like powers of £, and neglecting the ones with

an order of £°2 or higher, two following equations are obtained:
* +dx =F (2-49)
o o o
and
% +ex = ox 3 wlx (2-50)
1 1 o 1

The solution of Equation (2-49) that satisfies the initial conditions

will be:

F

x _—2 (1-coswt) (2-51)
o Wl

Putting this value of X, into Equation (2-50):

2 2, Fo. L Fol3 3
X, twx w,“(—=)(1-coswt)-{(—5-) (l-coswt) (2-52)
17w 1.2 o2

It (1-coswt) is cubed, and the values of coszw t and cosswt are
substituted by their equivalents %(cosZth + 1) and %(co-s3wt+3 coswt)

respectively, Equation (2-52) becomes:

" 2 F
X tw'x) = - ( )(1 -coswt)

F 3 3 1 (2-53)

) {1-3coswt+ §(l+cos2wt)- Z(cosSwt-l—?:coswt)}
collecting terms and simplifying.
" 2 F
x) tw'x, = ‘d ( ) + (—-—-) }coswt
(2-54)

3 F._3 F_3 ,F  F
(-—) cos2ut + 1 162 3) cos 3wt -w, 229 - (=2
o2 T Voz
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In ordei{that x; be free of any secular terms the coefficient of coswt

must be equal to zero. Hence:
| F 3

or
= - () (2-56)

putting this value of wlz in the frequency equation (2-48) and solving

for the unknown frequency wZ:

F 2
2_ 2,15 i
wé= P =3 (2-57)
or
3 2
5 2
(&) - () -2er =0 (2-58)

It is easy to see that for any positive value of the parameters
Fo, €, and wos there will be only one positive root of the cubic Equa-
tion (2—58') which will give the unknown non-linear frequency (wz).
This is where the classical procedure outlined above differs from the
Kryloff and Bogoliuboff method. Here there is a cubic equation in
frequency squared, while in the Kryloif procedure, the amplitude was
determined from a cubic equation.

It is also important to note that the correction term in Equa-

F 2
tion (2-57) is of the form £( ) » while in the Kryloff method it

F_ 2
was &(__Z) . Since with increased non-linearity the non-linear
&

o
frequency (w) also increases, the correction term in Equation (2-57)

. 2 . . oy
remains small compared to & = even for quite large non-linearities;
F 2 _
however the correction term i( ) from the Kryloff method will
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obviously be proportional to the non-linearity, and hence may be as
large as the zero;ch'order term. This explains why one gets a better
approximation to the frequency, and a wider range of applicability
by using the classical approach.

If Equation (2-54) is solved for Xys and the value of wlz is
substituted from Equation (2-56):
1 F 3 F F 3
x, = b coswt - > (;—) cos2wt + o 32 (——-)c053wt + T(——-) (2-59)

Since the initial condition xl(O) = 0 must be satisfied
F 3
73

b—-—z( )

Putting the above values in Equation (2-47), the solution for (x) is

found to be:
F F pA F 2
x = (—5 2){1+~1—1~f,( % }-(—) il+ﬁé(2)]cosut+

F 3 2-60)
o 1 1
+ & (—2) { - = cos 2wttgs cos3wt
w

2 32
F
Here again all of the correction terms are functions of ¢ (—%)
(2%

and will tend to remain small even for large non-linearities.

In the following pages two examples will be solved by the above
mentioned methods. Comparisons of maximum deflection and half
period will be made with the exact solution obtained by numerical

integration.

D. Numerical Examples

Before any actual calculations are made a short outline of the
procedure used to obtain the exact solutions will be given.

As before the differential equation is:

X twlxtex = F (2-61)
[ 0
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" with the initial conditions x(0) = x(0) = 0.
Let v = x so that §=VS—V
X

Putting the value of X in Equation (2-61) and integrating:

\'S . x
2 3
J' vdv = j (Fo “w, X -EX ) dx (2-62)
o o
or
: 2
%VZ‘F X “‘é xz %x4
= - —— -
or

_dx _ 2 2 ¢t _4 -
vVEar = )/ZFox mw Tx-5x (2-63)
Integrating once more
t = j dx Y (2'64)
2.2 ¢
o )/ZFox- w X -3Xx

The maximum deflection can directly be determined from the condi-

tion: atx=x_, v=0or
m

g(x) = ZFox - Zx

oo (2-65)
m

3% ()

2
X
m o ' m

The non-zero root of Equation (2-65) or the root of the cubic

equation %an + woz x - 2F = 0 will give the required maximum
deflection. The form of the cubic equation shows that there will be
only one real positive root and no negative roots. This real root will
be the maximum amplitude of the oscillations. The half period is

then found by integrating (2-64) by numerical or graphical methods

between the limits x = 0 and x =X . That is:

xm
=5 dx (2-66)
0

v -

Yg(x)
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Example 1. (See Figure 2 for graphical comparison).

The differential equation of motion is taken as

“ 3

x+x+0.1x" =1
and the results of the solutions by different methods are shown in
Figure 2.

a. Exact solution.

Equé.tion (2-65) becomes:

Zx-xz- .05 _x4 =0 which has the roots x = 0 and x = 1. 74
Hence: Maximum deflection X = 1.74
Half period '-g- = 2.85

The integration (2.-66) was performed graphically with an
accuracy of result of + .5 percent.

From the above results the non-linear spring force can be
calculated to be about 17 percent of the linear one.

b. Kryloff and Bogoliuboff solution:

From the values of the pzarameters chosen, it is seen that
w F 2 '

both inequalities (2-19) and -—60—— > (——-%) are satisfied, Equation
w
(2-14) for the amplitude becomes: °
3 2 =
a” +32a" +320a -288=0 (2-67)
Solution of (2.67) gives a = . 83,
From Equation (2-10)
¥V=(1+.026 +.15)t or half period

T _ =« B

il v i 7
The maximum displacement is found from Equation (2-—13) by letting
Y = 7 which gives: x =1L 66

The deviation from the exact value is found to be 6.3 percent in
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frequency and 4.6 percent in maximum amplitude.
c. Egquivalent linearization solution:

The amplitude (A) is found from Equation (2-45) which be-

comes:
3.8 8 . \ :
A tzA-x=0 Solution of (2-68) is A = .78 (2-68)

From Equation (2-39) the frequency is found to be
w= yT+.228 or half period:

T =« _

Z 1706 T 2:-86
Maximum deflection x__ = 2A, or x_ = 1, 56.

m m
The deviation from the exact solution in this case is only 3.8 percent -
in frequency but 10. 3 percent in amplitude.
d. Classical perturbation solution:

The solution of the frequency equation gives:

u32'=1.24 or w= 1,113

—
1.113

The maximum deflection is calculated from Equation (2-60) as:

Half period % = = 2.82

x_=1.80
. - S

This method gives the most accurate results with a deviation
of about 1 percent in frequency and 3.5 percent in amplitude.

In the example worked out above the second and third harmonic
terms, that is to say terms in cosl2wt and cos3wt are only about 4
percent of the fundamental one. That is why the assumption of a pure
sine as a solution gives such good results. It was shown in Chapter 1

that even with larger non-linearities higher harmonics always remain

small compared to the fundamental mode. In fact the maximum value



-46-
the third harmonic can have is about 11 percent which corresponds
to a triangular wave.

There are three important factors that come out from the
above analysis:

1) In the case of hard spring the classical perturbation method
will always give results which are in very good agreement with the
exact solution for steady state oscillations. In fact, in the case of
the homogeneous non-linear equation with cubic spring constant it
is sh‘own that as the non-linearity gets very large the approximate
frequency with only one correction term is within three percent of
the exact one. Convergence of the frequency of forced oscillations
can also be shown to be of the same order of magnitude as in the
homogeneous equation as long as the forcing frequency is in the
neighborhood of the natural frequency of the system. Far enough
away from resonance the effect of sub or ultra harmonic terms may
come in which would tend to distort the wave form on which the
convergence of the perturbation method depends.

2) Kryloff and Bogoliuboff's method is quite accurate for
small enough non-linearities (an aribtrary upper limit of about 15
percent can be set for the non-linear force in order to keep the re-
sults within about ten percent of the exact value). Its most impor-
tant advantage lies in the fact that one can get transient behavior
from such an analysis, while the Lindstedt method gives only steady
state solutions.

3) If the higher harmonic terms are neglected in the solu-

tion, and if only the first approximations are desired, the equivalent



—47 -
linearization method gives the least mean square error in the dif-
ferential equation.
Example 2.
In this case the non-linear parameter is taken as unity. The

differential equation, then, becomes:
X +x+ x3 =1

The results of the solution of this problem by various methods
are shown in graphical form in Figure 3.

E. Bi-linear Approximation for the Step Function Response of

a Non-linear Spring-mass System

The solution of a non-linear differential equation of the form
(2-1) will now be approximated by the bi-linear approach. The pro-
cedure outlined for the homogeneous case will be followed here,
and the results can be checked with the exact solution already ob-
tained.

1') General Approach

The two linear spring forces will be:
gl(x') = kx, .gz(x) = kzx + xt(k1 -kz) (2-69)

Here X, is again used to indicate the transition amplitude
(the value of x at which spring constant is switched from k1 to k2
or vice versa) and x, and 5:0 are again defined to be the initial
amplitude and the velocity respectively. X, is found as the non-
zero root of the equation:

x
j i [gz(x)-h(x)] dx =0 (2-70)

%t
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where h(x) is the non-linear spring force, and e S

displacement.

The initial conditions will be taken as:
x(0) = 0, x(0)=0
The diffgrential equations of motion are:
171

§1+kx =F and 1x} < (xtl

+ k,ox

¥y tlox, +x (ky-kp) =F  xl > Ix)

The initial conditions for X will be:

att=0 XI(O) = 5:1(0) =0 and for x,:
at t= tt xz(tt) = Xl(tt) and xz(tt) = xl(tt)
where t, is the time required for %y to reach X,

the maximum

(2-71)

(2-72)

(2-73)

(2-74)

The solution of Equation (2-72) satisfying the initial condi-

tions is:

H]

O

(1- coswlt)
1

Xl=

7l

where wl = )/-l't—1 since mass is taken as unity.

For ¥ =%, F
X, = —k-f - coswltt)
or
tt=—01—)-1- cosd[ 1 - k]ft ]
o
Hence

. Foml klxt
x,(t,) =—1q— sinwt, = F x (2 - F, )

(2-75)

(2-76)

(2-77)
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- The solution of Equation (2-73) is:
F, -xt(k1 -k,)

X, = kz + A cos (Q)Zt + &) (2-78)

with the initial conditions that at t = tt

: - / k%
xz(tt) =X, and xz(tt) = Foxt(Z - F_ )

Putting these conditions in:

F -x,(k,~-k,)
1l T2 .
X T > k, = -A cosn(W,t, +¢) (2-79)
/ klxt
F_x(2 - T ) = -Aw, sin (W,t, +¢) (2-80)

Solving Equations (2-79) and (2-80) for A and ¢:

2
Fo / xt x1:
A= 1+ (ky-ky N2 g - k) — ) (2-81)
2 f'e) Fo
and
“t “t
k (2-k )
-1 2 F, 1F
& = (tan O —o - Q?_tt) - (2-82)
1‘1{1 _E‘_o

2) Numerical example

The sample problem treated before will be now solved by
the bi-linear method. The élopes k1 and k2 will be determined such
that for x = 0 and x = x they correspond to the slopes of the cubic
non-linearity for which an exact value of half-period and maximum
amplitude have already been obtained.

Since the spring force was taken to be of the form (x+0.1 x3)

and x =1.74
™m

k, =1 and
(2-83)
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For a ‘cubic non-linearity X, was calculated to be:

5 .
X Sgx (see Fig. 4) (2-84)
for k1 =1, kz =1.92, X = 1.74, and x, = 1.09.

the bi-linear problem can be completely solved to give the period
and the maximum amplitude. If the calculations are carried out
one finds that the half period is 2.82, and that the maximum ampli-
tude of oscillations is 1.77. As compared to the exact values of
2.85 for half period, and 1.74 for maximum amplitude they are in
error by about one percent in period and two percent in amplitude,
It should be mentioned here that as much as ten percent variation
in X chosen to determine k2 will change the results by only about
one percent. This shows that the exact choice of transition point
is not very critical in the results. A more general treatment of
this question will be given later.

The complete solution of the bi-linear problem can be ex-

pressed as:

x; =1 -cost and for Ixt <1.09 (2-85)

x, =1.05 + 0,72 cos (1.38t + 137°) Ixt > 1.09 (2-86)

2

The Equations (2-85) and (2-86) are used in comparison of
the wave forms in Figure 2.

3) Error in maximum displacement

It will first be shown that for any non-linearity as a power

in x (not a polynomial in x) the transition point X, is directly propor-~
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tional to the maximum displacement X with a proportionality
constant (a).

X, was determined from the equation:

=z .
m
n
f {k‘zx +x (kg k) - kgx - Ex™ ] dx =0 (2-87)

%t

where klx +éx" is the non-linear spring force. kz was defined
as the slope of the non-linear spring force at the point of maximum

deflection. Hence:

- & L0-1 ' -
k2 kl +n x (2-88)
putting this value in Equation (2-87)

X

m .
n-1 n-1 n
j i néx “x-néx x = -€&x } dx =0 , or (2-89)
*t
- 2 -1 v 1 n+l n+l
%er;l(xri' ¢ ) " IR Ky (kX ek ) =00 (2-90)

Now let X, = ax 3 Equation (2-90) becomes:

n(n+1)(1-2)% -2(1-a"") = 0 (2-91)

One root of the Equa,t_ion (2-91) is a = 1. However this can
be discarded since it is the value that will make the mean square
error a maximum instead of a minimum.

For n = 3 (cubic non-linearity) equation (2-91) gives a = %
to three place accuracy.

So far nothing has been said about the choice of maximum
deflection X from which the second slope k2 ig determined. It will

be shown below that this choice is not very critical and an error
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relationship for the maximum deflection for any power of ﬁon-
linearity will be derived.
Assume that the exact maximum deflection Em, as found

from the solution of the biwslinear equation, differs by an amount

§ from the assumed maximum deflection X such that __i << 1.
x
Hence: m
-z : 8 _=—8 S
X, =%, T & and x =X (14s =) (2-92)
*m
where s is any power.
The differential equations of motion were:
%y + klxl =F ix| < \xtl (2-93)
x, + kzx2 + xt(kl -kz) =F Ix1 > Ix\ (2-94)

letting X = vy and Xy TV, and integrating Equation (2—93) between

t t 2

where Em is the maximum deflection defined by the point where ve-

the limits of 0 < x; <x and Equation (2-94) between x_ <x, < -:Em

locity is zero. Then:

k
1 2,51 2 _

since initial displacement and velocity are zero. And

k
1,2 2 2 -2 2 - Ty
3V - V)t K X)) - xR -x) = Flxp -x) o (2-96)
But k2 = k1 +n€x1;1 and X, = ax putting these values in with the
value of X from Equation (2-92) and simplifying:
k
2 s ) 2, né —n 1 — _ _

X X
m m
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" This is an equation of nth order in the maximum deflection
Ern and can be solved for any value of the parameters. However,
without the necessity of solving Equation (2-97) several useful con-
clusions can be drawn from it.

a. Since :_5—- is of the same order as € which in itself is a
small quantity, th?neffect of & on the determination of the amplitude
is only of the order of 62. This means that the original assumption
x , can be made quite freely as long as it is in the neighborhood of
the correct deflection. This suggests that one can choose, for
example, the linear maximum deflection a8 the 2 in order to cal-
culate the second slope without any appreciable loss of accuracy.

In the example worked out previously x  Wwas assumed to be 1.74

which is the exact maximum deﬂectiqn. If the problem is repeated

with X = 2 which is the linear maximum deflection, one finds that

the values of half period and maximum amplitude become 2. 82 and

1.79 respectively as compared to 2.82 and 1,77 obtained previously.
b. Since the iterative procedure of determining x will

converge on a value where & = 0 Equation (2-97) can be written as:

2 ky _
(1-a) n_zé ;nm tm X -F=0 (2-98)

If the value of (l-a,)‘2 is substituted from Equation (2-91)

(1-an+1) —n k1 _

This gives the best approximation one can obtain by using the bi=
linear method. However the exact maximum amplitude equation can

be obtained from the original differential equation as:



k

F~ % -F =0 (2-100)
2 m

_&_
n+l

x
From the comparison of Equations (2-99) and (2-100) it is seen

that the remainder is only

P n+l
_ta _ xn
n+l m

Since a < 1 as n gets large the remainder will approach zero. This
means that for a given maximum deflection the accuracy of the so-
lution will increase with increasing powers of non-linearity.

In general, then, the bi-linear approach will converge on a
value slightly larger than the exact one.

For cubic non-linearity the two amplitude equations (bi-

linear and exact) are of the form:

-3

426X vk, x_-2F=0 bi-linear (2-101)
m 1" m
=3 - . -
.50 & x - +1<1 X = 2F =0 exact , (2-102)

It is seen that even for very large non-linearities such that
the linear term kl-’zm can be neglected compared to the non-linear
term € ;{.131 the error in ma_.ximum amplitude is only about 5 percent.
For any non-linearity the error will always be less than 5 percent.

In general for any power (n) and coefficient & of the non-

linearity the error in deflection will always be less than

n+l

Exm =100 a3 percent
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‘4) Improved bi-linear approximation

The accurac.y of the results can be improved still further

‘ by the proper choice of the second slope kZ' In the following anal-

ysis kZ as well as the transition amplitude x, are assumed to be

unknown. Again the mean square error in the spring forces are
minimized by the proper determination of x, and k2 both. In other words,

A
if E” is the mean square error

2 2
E™) _ E -
S 0 and —aTZ‘L =0 (2-103)

are satisfied simultaneously.
If from Equation (1-65) EZ is obtained and the operations

(2-1 03) are performed:

xm
n
{kzx + 3 (k) -k, )-kpx -£x } dx = 0 (2-104)
*t
X
o { 1% + (k) ) kx- €] (x-x,) dx =0  (2-105)
2%t xR ko) -k t
p-4
t

Integration of (2-104) gives:

5 (kyk, ) {(xz -x°) -_th(xm-xt)}— P n+l L =0 (2-106)
from (2-105):
%(kz’kl.){(xfn'xi)'%xt(xz B t)} n+2.( ol ?+z) =0 (2-107)

Eliminating (kz—kl) between Equations (2-106) and (2-107)
and again letting X, = ax ., an equation for the proportionality con-

stant (a) is obtained:
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Sy +2

_ 3(n+l1) 1-a" _

at2 = 0 t2) 1_an+1' 0 <a <1 {2-108)
1_an+2. ‘

Since a <« 11 ——?1+— ~ 1 then

. 1-a™
4 =n-1 (2-109)

n+

(kZ-kl) can then be calculated from Equation (2-106) as:

' +1
_ 2¢€ 1-a" n-1 '
2 TR [ F m (2-110)

The equation for the maximum deflection can again be calcu-

lated as outlined previously. This gives:

ky
+ L% -F=0 (2-111)

ntly, & —
(l-27 ") — x m

n
n+ m
The form of the equation is exactly the same as before. How-

ever the accuracy is improved because of the fact that (a) is smaller

than it was before. For the cubic non-linearity a =—§— so that (2-111)

becomes
487 € % +k % -2F =0  bi-linear (2-112)
m 1 " m
500 € X5 +k, %X -2F =0 exact (2-113)
m 1" m

The maximum error in amplitude cannot exceed one percent
no matter how large the non-linearity is.

The discussion of convergence, and the effect of the error in
the initial choice of the amplitude also applies to this case equally

well, and hence will not be repeated here.
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Chapter 3
Response of a Second Order Differential Equation

with Cubic Non-linearity in Spring Force to a Single Pulse

The solution of step function response and the homogeneous
non-linear equation makes it possible to treat the case of the rec-
taﬁgular pulse without any di.fficﬁlty. It was shown in Chapter 2 that
the maximum displacement due to a step function can be found exactly
without the complefe solution of the differential equation, and that
the frequency can be approxirhated quite accurately even for large
non-linearities. Hence the problem resolves itself to one of finding
the step function solution for the duration of the rectangular pulse,
and the homogeneous solution with initial conditions depending on the
pulse length T for t>7T .

If the pulse length T is very small compared to the period
of free oscillations of the system, the problem can be solved as a
case of pure impulse. In such instances the pulse shape will also
be relatively unimportant, since the only function of the pulse is to
impart an initial velocity to the system. However, when 7 is of
the order of, or larger than, the natural period of the system under
study the pulse shape becomes very important.

The rectangular pulse is the easiest to treat from the point
of view that it only involves solutions already obtained or readily
obtainable. It is possible to obtain solutions for the half sine pulse
by using the bi-linear approximation to the non-linear spring force.
The calculation is somewhat more complex than that for the step func-

tion, since it involves the transient solution of forced oscillations.
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Modulation of the forced amplitude by the homogeneous amplitude
necessitates a cycle by cycle analysis of the problem. It is also
necessary to assume a maximum amplitude x which may be used

in evaluating k, and x,. Since it was shown that the exact choice

4
of X will not affect the results appreciably, as long as it is in the
neighborhood of the correct answer, a most obvious approach is

to take the linear maximum amplitude as X for determining X,

and kZ‘ The method will be illustrated below and several problems
of varying order of non-linearity will be solved and checked against
exact solutions obtained by iteration or graphical methods.

When the pulse length T is large compared to the natural
period T, from physical considerations one can assume that any
transients excited had been damped out, and that there ‘are-only
forced oscillations present. In this case, it is relatively simple
to evaluate the amplitude and the velocity at the end of the pulse
and to obtain the complete behavior of the system by any one of the
methods mentioned in previous chapters.

For any pulse shape and duration, of course, one can the-
oretically always solve the problem exactly by the use of numerical
or graphical integration methods., The solution by the bi-linear ap-
proximation is also theoretically possible, but becomes considerably
more complicated than for the simpler cases treated below. Itis
likely that for any pulse shape, the bi-linear method would be shorter

than numerical or graphical integration.
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A. Réctangular Pulse

The treatment of the rectangular pulse is quite simple since
‘the step function response and the homogeneous solutions are readily
available. A particular example is solved and the results are shown
in Figure 5. For this example the pulse height F is taken as unity,
and the system has a differential equation of the form:

3

it
[

X+x+x 0<t< 7T

) - (3-1)
and Xx+x+x =0 t>T and T=q
where U is the pulse length. The initial velocity and displacement
are again zero, and x(’l.’) and 5:("() are the displacement and the ve-
locity at the end of the pulse. The solution for t » T is, then,
simply a homogeneous one with initial conditions x(7), x(7) and can
be treated exactly as outlined in Chapter 1.

For comparison purposes the linear solution is drawn on the
same graph. The effect of non-linearity on both the frequency and

the amplitude becomes quite apparent.

B. Half Sine Pulse

Here the bi-linear method is expanded into a region where
no analytic solutiong, approximate or otherwise, have been obtained
before. The only available tools for such problems as these have
been the use of graphical integration or numerical iteration methods,
both of which are very time-consuming.

The bi-linear method permits a quick and easy way of hand-
ling the class of problems which have solutions in linear mechanics.

The purpose of the following examples is to show the applicability
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of the bi-linear approach to the analysis of a typical transient oscil-
lation problem. TW§ cases of half sine pulse response, one with
‘relatively small and one with large non-linearity in spring force,
are treated.

To check the results obtained by the improved bi-linear ap-
proximation, exact solutions to the problems are obtained by nu-
merical iteration of the differential equations.

Let the differential equation of motion be:

3i+k1x+£x3=sinwt 0<t<T Where'r:g (3-3)

3

1]
o

x+k,x+€&x

1 t>7T (3-4)

For t = T the solutions of the differential Equations (3-3) and (3-4)

must correspond. The initial conditions are:
att=0  x(0) =x%(0) =0 (3-5)

Since an exact solution to Equation (3-4) exists, the main
interest lies in finding an approximation to the differential Equation
(3-3) such that the motion during the pulse can be obtained. The com-
plete analysis requires the solution of a transcendental equation and
hence cannot be done in a.‘ general form.

In the following example a numerical solution will be worked
out by the bi-linear method to show the amount of work involved in
such a calculatioﬁ.

Let the differential equation be

. sin2t 0<t<T
¥+x +x = { 2

3-6)
0 ty % (
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For cubic non-linearity the transition amplitude was calcu-

lated to be:
x, = 0.4 X and the second slope (3-7)
k, =k, +1.35x% =1 +1.35 x° (3-8)
2 1 ' m ) m

(xm) is calculated as the maximum amplitude of the linear solution
of Equation (3-7). Hence:
X + x = sin 2t

The solution with the required initial conditions will be:

1

X =

(2 sint - sin 2t) (3-9)

w|

The maximum value of x in Equation (3-9) within the duration of pulse

is x_ = 0.667. Hence:
m

x, = 0.267 and k

A 5 = 1.60 (3-10)

The two bi-linear equations to be solved are:

%) +x, = sin 2t xl(O) =%,(0) = 0 (3-11)

X, + 1.6 x, - 0.16 = sin 2t x,(t,)=x(t,); :iz(tt)zicl(tt) " (3-12)

where tt is the transition time--~-time which it takes %y to reach the

value X, The solution of Equation (3-11) is:
1 . .
x =3 (2sint - sin2t) (3-13)
from which the transition parameters can be determined as:

X)(ty)=x, = 0.267, t, = 58°, X, (t ) =0.646 (3-14)
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The solution of Equatio'n {3-1 2) which satisfies the conditions

.xz(tt) = 0,267 and :I:Z(tt) = 0, 646 is:

x, = 0.1 +0.582 sin (YT.6 t-4.8°) - > sin 2t (3-15)

The displacement and the velocity at the end of the pulse

can be calculated by letting t = .721;

Ty = 0. 651
*2 ) (3-16)

and

5;2(%) = 0.592

The exact values obtained by numerical iteration to four place

accuracy are:

x(-‘z‘-) = 0.6518 and ;::(1'2-) = 0. 6001

The approximate results obtained are within about half a
percent of exact amplitude and one and a half percent of exact ve-
locity when the non-linear force is about 60 percent of the linear one
at the maximum deflection point'.

If more than one cycle of the system occurs during the pulse
a cycle by cycle analysis is necessary to obtain the complete solution.
In the following example the non-linearity is increased to investigate
its effect on the accuracy of the solution.

Let the differential equation of motion be:

% +x + 5% = sin2t (3-17)
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"Since the effect of non-linearity is to decrease the maximum
amplitude,x = will be assumed to be 0. 60 instead of 0. 667 which was
the linear maximum displacement. This helps the results to converge
faster and aé_ it will be shown below makes it pbssible to get an ac-

curate answer after only one step. Then

x,=0.24 andk,=3.5 (3-18)

If one goes through the process of solving the two bi-linear

equationsf
il +x, = sin2t =l < oxg (3-19)
%&2 + 3.5 kZ - 0.6 = sin2t 1x\ > X, (3-20)

and matching the boundary conditions at t = tt (the transition point)

the solutions are found to be:

%, = 3 (2sint - sin2t) 0<t <t (3-21)
x, =1.98 sin (Y35 ¢t - 1°) +0.172 - 2sin2t t <t <-"?§ (3-22)
where tt = 55,5°, The conditions at the end of pulse are determined
w

by letting t = > and finding the displacement and the velocity from

Equation (3-22). Hence:
x(3) = 0.581 , x(3) = 0.38 (3-23)

It is seen that the increased non-linearity has caused a re-
duction of about 13 percent in amplitude and 47 percent in velocity

at the end of the pulse.
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- The accuracy of the results at any point can be readily checked
without the neceséify of obtaining an exact solution to: the differential
equation (3-17). Since Equations (3-21) and (3-22) satisfy the initial
conditions, their value at any point can be substituted into the differ-
ential equation and an error in acceleration at that pvarticular point
calculated.

For the example solved above at t = % the error in the differ-
ential equation (3-17) is about two percent; this means that the error
in displacement and velocity must necessarily be less than this.

Figure 6 shows a comparison of the bi-linear and the exact

solutions for the case treated above. The linear solution is also in-

dicated on the graph for comparison purposes.
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Chapter 4
The Effect of Small Linear Damping on the

Solution of the Non-linear Transient Problems

Since any physical system will inherently have a certain
amount of damping, it is important to see the effect of such small
damping on the transient solution of a non-linear differential equa-
tion.

For the sake of simplicity the step function response of a
single degree of freedom non-linear system with small linear
damping will be solved by the method of Kryloff and Bogoliuboff
as outlined in Appendix A.

Let the differential equation of motion be:
3&+c:‘c+w2x+£x3=F (4-1)
o o

Again the transformation

F
o
X = + (4-2)
o2 Yy
o
will be made such that the Equation (4-1) can be written as:
2 Fo 3 .
Ftey+ W y=-E(y +—5) R (4-3)
° w
: o

since the damping coefficient {c) is assumed to be small and of the

order of magnitude as € ,(4-3) will be re-written as:

F_ 3
gr'+u)02y= ~€ {(y +-J?Z) +Z y} where = ~ 1 (4-4)
(o]

This means that the zeroth order of approximation can be found

as:
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Yo = ~-a Cos ‘r'

where ¥ and a are slowly varying functions of time.
Expanding v, g:t , and a—— in terms of the small parameter €

and neglecting higher than first order terms in &

y=-acos¥+<& y; t 0(52') (4-5)
and
Teeam) . H=9 0t o (4-6)

Then, from Equation (4-5)

9y
. . 1 2
Y= ac% sin¥-& {A cos¥-a ¥ sin ¥ - %—W}+ 0(e™) (4-7)
and
. 2 z 2 9%y
y=aw cos¥ +¢& ZAL% sin¥ + Zaué"f’cos‘l”-l—(.% 7— (4-8)
b

Putting y and y back in Equation (4-4) and simplifying (terms

higher than linear in (&) are neglected),

a’y 3 F
——2]1+ Yy = - (-%—?— + < 2 )sm‘l’+{3a ) + 3a2 { 02) _ 22 ‘Picosl}‘
dV’ o 4 (% ‘-‘()) (A) (o] (4_9)
2 F 3 F F 2
3a 1 o 43 2 o
( S) cos2¥ + cos3¥ - —5 (—sNHza"H—)
2 (.) QZ 4 Q)Z (%2 (%2 2 ‘%Z
In order to elnnmate the secular terms:
€a-= = - L. -
2A+£——a—0 or A= 5 2 (4-10)

and
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3 F 2 - F 2
3a 3a o _ > _ 3 1 _2 o T
0 +_&) (————2) - Za‘I’_ 0 or ‘f’————-—z w{;}- +(——-—-2) I (4-11)
(s} [o] L% 0 e

of t
_ct
> ,

a:a,o [ (4-12)

and
-ct
: F 2
3 2
7’={%+%('f2') }t-g—c—isao e +6 (4-13)
o (o]
(o]

where § and a are the constants of integration and will be deter-
mined from initial conditions.

It is seen that the form of the solution is exactly the same as
that of Chapter 2, and the amplitude equation determined from the
initial conditions will also be the same with the same limitations
on the non-linearity. The only difference lies in the fact that there
is an exponential decay on the amplitude and hence on the fréquency,
and a phase shift due to the damping.

If one is interested in the response of the system during a
very short interval of time after the application of the pulse the
effect of small linear damping can jﬁstifia.bly be neglected.

The bi-linear approximation can, theoretically, be applied
to problems involving linear damping. However, the work involved
in matching the conditions at transition point is somewhat tedious

due to the presence of the exponential terms.
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III. CONCLUSIONS

Conclusions from each chapter will be summed up as follows:

A. Homogeneous Solution

‘1) The so-called classical approximate methods of non-linear
mechanics (Lindstedt, Kryloif and Bogoliuboff, and Equivalent Lin-
earization) are well suited for the solution of the homogeneous non-
linear problem. Even though they are based on the assumption of
small non-linearities, they give consistently good results for odd
power non-linearities even when the non-linear force exceeds the
linear one several times. In this respect the Equivalent Lineariza-
tion and the Lindstedt methods give better approximation to the fre-
quency than the Kryloff and Bogoliuboff method. This is due to the
fact that in the latter method the frequency instead of its square is
expanded in tefms of the non-linear parameter.  If, however, one
is interested in higher accuracy than can be attained by the first
approximation theory, the Kryloff and Bogoliuboff method proves
to be easier than the Lindstedt method to apply even though the con-
vergence is not as rapid.

2) The bi-linear approximation gives more accurate results
than any of the above perturbation methods, and is easier to apply
to most problems. The accuracy obtained by the bi-linear method
is not significantly decreased by large non-linearities. The method
is limited, however, to problems in which there are no mixed non-
linearities, i.e., the non-linearity must be either in the displace-

ment alone, or in the velocity alone.
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B. Step Function Response

1) The effect of large non-linearities on the accuracy of
ihe solutions obtained by the various classical approximate meth-
ods becomes more pronounced for the step function problem than
for the homogeneous problem. For the Kryloff solution the limi-
tation on the size of the non-linearity appears in a mathematical
form in the amplitude equation. In the other methods larger non-
linearities only result in lowered accuracy. For small non-lin-
earities the Lindstedt method gives the closest approximation
to both the frequency and the amplitude. The equivalent lineari-
zation is the least accurate one.

2) The bi-linear approximation gives better results than
the Lindstedt or the Kryloff methods. The error introduced by
the bi-linear approximation is small and essentially independent
of the size of the non-linearity. It is shown that the initial choice
of the maximum amplitude needed to determine the parameters
of the bi-linear approximation is not critical. The results are
not altered more than one or two percent by a variation of twenty
percent in this initial choice. One can, then, take the maximum
linear amplitude to start the calculation of the parameters. For
very large non-linearities when the linear maximum amplitude
may vary greatly from the non-linear one, it is possible to develop

an iterative extension of the bi-linear method.

C. Single Pulse Response

1) The classical approximate methods are limited to the

treatment of the rectangular pulse. The limitations outlined for



-75-
the step function response will, of course, apply to the single
rectangular pulse response.

2) The bi-linear method proves most useful for the treat-
ment of the single pulse forcing function. It can be used to find the
response of the system to any pulse shape which can be treated
by linear mechanics. Even though it involves a cycle by cycle
analysis it is easier and faster than graphical or numerical meth-
ods. The limitation on the size of the non-linearity is not severe.
However, if the problem is such that a large number of cycles
occur during the pulse and if the non-linear force is big compared
to the linear one, the cumulative error at the end of the pulse
may be appreciable. In such cases, however, it is usually pos-
sible to treat the problem as a steady state forced oscillation,
rather than as a transient problem, thus avoiding the cumulative

error of cycle by cycle analysis.

D. Small Linear Damping

To the degree of accuracy implied by the first approxi-
mation theory described and developed above, the presence of
small linear damping in the system affects the non-linear problem
in the same way as it would a linear system. If one is intereéted
in the first few cycles after the application of a pulse, the assump-
tion of negligible linear damping is justified. The solution of the
problems involving large linear damping is within the scope of the
bi-linear approximation; however procedure in such a case be-

comes somewhat involved.
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APPENDIX A.

Equivalent Linearization and Improved Kryloff Approximations

The method of Kryloff and Bogoliuboff or, as it is sometimes
called, 'the method of slowly varying parameters', is found in a
few text books on non-linear mechanics (Refs. 2 and 3). It differs
from clé.ssical perturbation methods not in principle but in detail.
It is possible to investigate transient states by Kryloff procedure
whereas the classical perturbation only gives steady state solutions.
The equivalent linearization method is a simplification of the first
order Kryloff solution and proves useful in most cases of forced
steady state oscillations. For purposes of reference a brief out-
line of these two methods is given below.

1) Equivalent Linearization Method

Let the differential equation of motion be of the form

% + (%Zx+£f(x,>';)=0 - (5-1)

where f(x,x) is a non-linear function of x and x. The zeroth order

solution of this equation will be:
x = a cos (af +¢) ' (5-2)

where (a) and ¢ are slowly varying functions of time such that the
assumption of quasi-linearity for Equation (5-2) holds. Let

¥ =Wt + ¢. Then:

X = -a u)o sin ¥ (5-3)
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Differentiating (5-3) with respect to time, and keeping in mind
that second derivatives of (a) and (¢) with respect to time are

negligible:
X = -aw sin‘r’-auzcos‘i’ -a W b cos Y (5-4)
o o (]
From differentiating Equation (5-2) one gets:
x=a cc:s"’-awo sinW—aé; sin ¥ (5-5)

Equating (5-5) to (5-3) and sir_nplifying:
-a sin¥=acos¥ -a u sin't —a<i> sin ¥
or
a

<i>sin‘l/=-3'cos‘l’ or c.b=-é-ctfn9-‘ (5-6)

Putting the value of ¢ from Equation (5-6) into (5-4) and substituting

the values of X and x back in the differential Equation (5-1) one gets:

COSZ\P

..é. w sin¥ —é.w + €[f acosY¥, -aw sin\ll] =0
o n ¥ o A

or simplifying

. _ & _ . . _

a —-—Ljo f[a cos ¥, au()) sm‘f’] sin ¥ (5-7)
and

.- & .

¢ _E—“Z- f [a cos ¥, -a(—% s1n‘l’] cos ¥ (5-8)

It can be seen that (a) and (@) are periodic functions with

periods of %‘_';r_ . Since (f) is also a periodic function it can be ex-
(¢]
panded in a Fourier series such that:
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£ [a cos¥, -a o sin‘/’]sin,"f’= ko(a) + ngl Kh(a)cosn'f’w‘Ln(a)Sinn‘F (5-9)

‘and

f [a cosY¥, -a wmn?’jcos‘f— P (a) + ZP (a.)cosn*l’+Q (a)sinn¥ (5-10)

n&l
where
‘ 2w
=2 [ a cos0, -a & sind] sin8do (5-11)
Ko 2w
o
and
2n
P = -zl— f [a cos 0, -a « sinQ] cos0de (5-12)
o
Then
a =-(§- {K (a) + Z K_(a) cosnt +L_(a) 51nn“l‘} (5-13)
n=1
and
- fegm o 2 -
¢ = ) Po(a) + Pn(a) cosn¥ + Qn(a) sinn¥ - {5-14)
o n=1

Since (a) and (¢) are slowly varying functions of time,
they can be assumed to remain constant over one period T; hence,
finding the average value of the right-hand side of Equations (5-13)

and (5-14) over one cycle:

t+T ©o
a-= % j {Ko(a) + Z Kn(a) cos nO+Ln(a) sinng.i de (5-15)
o

n=1
t

and
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t+T

j {P (a) + Z P (a) cosn6+ Q (a) sinnO} doe (5-16)
A o n n

n=1

Since cosn® and sinn® are periodic functions of period - their

average over one cycle will be zero. Hence:

and

. &

a.—-—(:-%)— Ko(a.) (5"17)

b= P (a) or ¥= W +-5_P (a) (5-18)
a A o o acg o

Putting the values of Ko(a) and Po(a) in from Equations (5-11)

and (5-12), one gets:

FA
- _ £ o .o) sinBde (5-19)
2 T v [ f=
()
o 2w
L &£ o .o '
q/— C% +mo— j f(X » X )COSOdQ (5-20)

[e]

‘where x° and x° are the solutions of the differential equation corres-

ponding to the zeroth order of approximation ( € = 0), and are periodic

functions with a period of %—3—- .

Let:

and

Q

If (5-20) is squared neglecting the terms of EZ or higher:
2T
(+)% = %(a) = (%z +£ f £(x°,x%) cos0de (5-21)
o

2%

5\ - __¢ o .0, _. )

= wau{) f(x ,x ) sin@doO (5-22)

o

2%
K=k +% J £(x°,%°) cos0de (5-23)
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Then Equations (5-19) and (5-21) respectively become:

.
) ~ 2
a=-L£ a or a=ae (5-24)
o
2
and
2 = . .
Q7 (a)=k (note: mass is taken as unity) (5-25)

where k is some equivalent spring constant and A an equivalent
damping coefficient.
(5-24) and {5-25) correspond to the solution of a linear equation of

the form
x+Ax+kx=0 (5-26)

which can be called the equivalent linear equation.

Equivalence of the energy per cycle between the Equation (5-26)
and the original non-linear Equation (5-1) can be shown quite easily
and will not be given here (Ref. 2).

It is easy to see that for the equations of the form:
- 2
x+ W x + & f(x)=0 (5-27)

;\ will be zero. Hence in such a case the amplitude (a) remains con-
stant to the first approximation, but the frequency of oscillations is
still a function of the amplitude.

2) Improved Kryloff and Bogoliuboff Method

In the equivalent linearization method the higher harmonics
in the Fourier series expansion of the amplitude and the phase were
dropped due to the averaging process employed. In reality, owing

to the presence of these terms the slowly varying quantities (a) and (¢)
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undergo oscillations of relatively high frequency. The improved
first approximation theory takes into account these higher harmonic

terms. Let the differential equation of motion be:
%+ L%Zx ref(x,%) = 0 (5-28)

Again the displacement x will be expanded in terms of the small non-

linear parameter such that

X=a cos*l’+5x1(a,\r) + 0O( 62) (5-29)

where (a) and 4 are assumed to be slowly varying functions of time

such that
d day Y 2,
d,f = EA(a) and = W +E¥(a) + 0(£7) (5-30)

Differentiating x from (5-29) and putting in the values of da and

dt
g—,:! from Equations (5-30)

dx

e

| +o(e?)  (5-31)

x = -ac% sin W+&[A cos'¥- ‘Pa. sin ¥+ u())

[oR
<

Differentiating (5-31) once more:

2dx1

a¥

Putting the values of x and x from Equations (5-29) and (5-32) into

X = -a wzcosY’+8 [ 2A wsmw-z‘}’a Wcos 'P+&) ]+O(5 ) [ (5-32)

the differential Equation (5-28) and simplifying

2 —
d
X1 +x. = 2A sin‘f’+§—"-{§: cos ¥ - _Lf(acos'l', -a W sin') (5-33)
d‘l’z 1 W @, &)2 o
o

Since f(a cosy, a W siny) is a periodic function with a period of 2w,

it can be expanded in a Fourier series such that:
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f(a cosvy, -a « s1nw) = h + Z h (a.) cos u¥+ g4 (a) sinu ¥
u=1

It is seen that Equation (5-33) can now be written as

2

d"x h

1 __[ZA. 1a )] !29%. hy(a) o

- +x, = == sin ¥ -—l—z—cos‘f’-——- 5-.34
d'f’z 1 “ (% (o} t‘é ‘gz ( )

1 ' .
-7 :éz hn(a) COSn'~P+gn(u) sinn ¥
(8]

In order to eliminate the secular terms, the coefficients of siny¥
and cos ¥ terms in Equation (5-34) must be made equal to zero.

This gives the required frequency, and amplitude correction terms

as:
- h g
¥-—1  andaa=—1 (5-35)
2a W 2 W
[s] o
Hence
. &8 £h,
A=l and ¥= W+ e (5-36)
24

g1 and hl are given as the first Fourier coefficients of the

function (f) by the equations:

N .

hl—-EJ f(a cos¥, —a&émn‘f')cos‘f’d‘r

o
d
an 2w
1 . .

g == f(a cos¥, -2 & sin¥) sin¥d ¥

o

Equation (5-34) can now be solved to give x, as:

) ho . 1 f—‘i hn(a)cosnv + gn(a) sin n¥
(:;2 (A)Z n=2 nz-p}_
o o

(5-37)
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or the solution for x becomes:

h c = h cosnY¥ +g sinny
x=acos‘/’-£——22-+——z—z (5-38)
_ Lg (g n=1 —1

It is seen that Equation (5-38) includes higher harmonic terms
which were not present in the equivalent linearization solution. It
is also evident that, however, for small non-linearities the higher

harmonic terms will be small compared to the fundamental one.
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APPENDIX B

Numerical and Graphical Integration Methods

There are a number of numerical and graphical methods
available for the exact solution of non-linear differential equations.
Each has certain characteristics which makes it more suited for
thé solution of a particular class of problems. In principle, how-
ever, they do not va'ry appreciably, and a representative method
suffices to illustrate the principle.

1) Numerical Iteration (Refs. 5, 6)

The main advantage of numerical iteration methods lies
in their ability to compensate automatically for the error that might
occur during the process of solution. Theoretically there is no
limitation to their accuracy if one is willing to repeat the procedure
a sufficient number of times. For small non-linearities they con-
verge quite readily to give accurate results within a reasonable
time duration.

Let the differential equation of motion be:

iy 2 .

x + Lg x +&f(x,%x,t) =0 (6-1)
or this can be written as:

. 2 .

X = - wWrx - & f(x,x,t) (6-2)

If one solves Equation (6-1) for € = 0, the zeroth order ap-
proximation to the non-linear equation is obtained. Let this be X,e
The next approximation is found by putting the value of X, in the

right-hand side of Equation (6-2) and integrating it twice with
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respect to time. In general this integration has to be performed
numerically since f(x,x,t) can be a complicated function. The
procedure is repeated a number of times until the difference be-
tween successive approximations becomes small. Hence the nth
approximation to Equation (6-1) is obtained by:
t | ,1
x = - {%an_1_+£ f(xn_l,:'cn_l,'t')} at dq (6-3)
o o

It is possible to formulate certain refinements for the above
procedure to make it more suitable for a certain class of problems.
Since these refinements are generously represented in the litera-

' ture, they will not be repeated here (Ref. 6).

2) Graphical Methods:

There are a great number of graphical methods available
for the solution of non-linear differential equations. Most of these
give solutions in the phase plane where the coordinates are the dis-
placemént and the velocity. Lienard's method is representative of
one of the graphical approaches. This method is amply treated in
any textbook on non-linear mechanics and will not be repeated
here (Ref. 2).

Another graphical approach suggested by Jacobsen (see
Ref. 7 in Bibliography) was used in this thesis for the solution of
half-sine pulse response. A short outline of the method is given
below:

Let the differential equation of motion be:

%+ Wi tef(x,%,1) =0 (6-4)
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and let

0= € f(x,x,t) (6-5)

such that Equation (6-4) can be written as:
2
x+t% (x+6)=0 (6-6)

Now let x = v which gives ¥ = v-g-:’? yputting this value in (6-6) and

simplifying:
dx _ v
& " W (6-7)

Suppose that one is interested in the solution of Equation (6-7) for
a very short time duration during which ¢ can be considered to

remain constant. Equation (6-7) can now be integrated to give:

(x+0’)2 + v2 = c2 = constant (6-8)

It is seen that (6-8) is the equation of a circle with radius ¢
and whose center—lies on the point x = -0, v = 0. Starting from
any point (say initial conditions) all one has to do is to calculate d’
from Equation (6-5), and as x = - @ the center, swing a small
circular arc to locate the next point on the phase plane. The phase
trajectory will then be made up of a series of circular arcs whose
center lies on the x-axis. It can be shown that the time is measured
as the length of each arc and can thus be calculated.

The accuracy of the method depends on the smallness of
each step so that during that step @ can be assumed. to remain

constant. On the other hand the smaller the step the greater the
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error’'in measurement of angles and lines, and the larger the
numbei‘ of steps required to complete the trajectory. Since the
errors in a graphical solution will be cumulative, there seems
to be an optimum to the number of steps to be taken and hence a
maximum to the accuracy that can be obtained. The errors in-
duced in the solution of a problem will also depend largely on
the person who performs the operation so that it is difficult to
draw general conclusions as to the accuracy.

It was found that in the solution of half-sine pulse re-
sponse the accuracy was not better than 2.5 percent with inter-
vals as small as two degrees per arc.

The other graphical methods are also faced with similar
difficulties and must be used with caution when a solution of

high accuracy is required.
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