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Summary

An accurate method of determining secondary stresses in
thin-walled, uniform beams of closed cross-section is herein pre-
sented. The cross-sections are assumed to be preserved by closely
spaced rigid diaphragms. In Part I the integro-differential equation
governing axial displacements is formulated and solved for a beam
without longitudinal stiffeners. In Part II the corresponding sum-=-
mation-difference equation is developed and solved for a beam with
stiffeners (flanges and stringers). The cross-section, loading dis-
tribution and end conditions are assumed to be arbitrary.

By introducing generalized difference equations the mathe-
matical analysis for the stiffened beam may be performed in a
manner exactly analogous to the process used for the unstiffened
beam. A separation of variables in the homogeneous equation
leads to the natural st.fess or displacement modes for a cross-
section. The solution of the non-homogeneous equation is then
expressed as an expansion in terms of the natural stress modes.
Particular attention is given to cross-sections with single sym-

metry and double symmetry.
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Historical Note

Reference will be made only to papers which give exact solu-
tions for beams having rigid bulkheads with monocoque (unstiffened)
or semimonocoque (stiffened) sections. In most cases the solutions
for semimonocoque sections are those obtained by replacing the true
section by an idealized section in which the normal stresses are
carried on a finite number of stiffeners and uniformly distributed
shear flows are carried on the connecting webs or wall elements.

If an idealized crdssnsection has only three stiffeners, or
flanges, the distribution of axial stress must be planar and there
are no secondary stresses. The doubly-symmetrical rectangular
idealized section with four flanges was introduced and analyzed by
Ebner (1) (1933). This cross-section has one secondary stress mode
which occurs under torsional loading. Ebner considered such mod-
ifications of the problem as the effects of web buckling, shear de-
formation of the ribs and finite rib spacing. The solution for the
four-flange doubly symmetrical section was also determined inde-
pendently by Grzedzielski (2) (1934).*% This author recognized the
importance of idealizing the cross-section for stress analysis pur=-
poses. A comparison of the solution for the four-flange section in
torsion with experimental tests on a box beam was given by Kuhn

= oz e e e

* The formulas of ref. 2 are derived in a different manner in ref.:
3 where a corrected formula is given for the rate of twist at the
root of a cantilever beam.



(3)

A four=-flange section with curved webs' of arbitrary shape
was analyzed by Kirste (5) (1937). This author gave the location
of the principal shear axes for any arbitrary cross-section. He
also gave the formulas for the associated shearing section prop-
erties. The torsional section constant was called the ''central
moment of inertia', while the areas resistant to horizontal and
vertical shear were called the '""reduced areas''. This author also
located the zero-warping axis for a four-flange beam. He showed
that warping displa.cements in a four-flange beam are due entirely
to the torque about the zero-warping axis,

The first exact solution for a secondary stress mode in
bending was given by Kuhn (6) (1937). The cross-section consid-
ered by him was a rectangular, five-flange, open section in which
the bottom wall was missing. The section was symmetrical about
a vertical axis and had a single central stringer on the top wall.
Experimental test results were compared with the theoretical
solution.

-

A general solution for stiffened beams of arbitrary cross-
section was given by Ebner and K8ller (7) (1937). The beam was
assumed to have rigid or elastic stiffening rings at finite spacing
and to carry bending or torsional loads. The secondary self-
equilibrating stress distributions were chosen in an arbitrary
manner., Energy principles were used to determine the spanwise

variation of the secondary stress distributions. The underlying
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viewpoint of the analysis consisted of regarding the structure as

a space framework. The calculation effort required by the method
is so extensive as to make the. method impracticable except for a
beam having a small number of stiffeners and sfiffeQing rings.
The specific cross-sections considered in detail by Ebner and
Kb8ller were elliptical sections with four stiffeners and with six
stiffeners having double symmetry. They also considered a cir-
cular section with twelve stiffeners and double symmetry. These
authors did not introduce the principal shear axes or the assoc-
iated section properties. A comparison wasr given between theory
and experiment for a beam of circular cross-section.

Following the method of analysis that had been given by
Kirste, a more comprehensive treatment of the four-flange beam
of arbitrary cross-section was given by Drymael (8) (1941). This
author gave many new formulas and equations for the three-flange
section and the four-flange section. He gave a careful, detailed
study of the geometric properties of the shear-carrying area of
idealized stiffened sections. He showed that the '"reduced areas"
are a maximum and a minimum with respect to the principal shear
axes. He also showed that the '"central moment of inertia' is a
minimum when computed with respect to the principal shear axes.
Formulas applicable to arbitrary cross-sections were given for
lateral deflections due to shearing strains in thin-walled beams.

Strangely enough, these formulas, even today, are not well-known
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even though the deflections dﬁe to shearing.strains are of appreciable
importance in aeroelastic and dynamic analysis of airplanes.

The first exact analysis for a beam of monocoque, or un-
stiffened, cross-section was given by von Kérmé_n and Chien (9)
(1946). Their solution is limited in its applicability to sections hav=
ing double symmetry. They considered only the toréion case and
assumed the beam to have closely spaced rigid diaphragms. The
integro-differential equations governing the axial displacements
were formulated and solved for a semi-infinite cantilever beam
acted upon by a torque at the tip. Stress distributions were obtained
for a rectangular section and a rectangle-like section with rounded
corners ¥

A very general and comprehensive exact analysis of beams
with rigid diaphragms was given by Hadji-Argyris and Dunne (10)
(1947). The end conditions, loading conditions and cross-section
were considered to be arbitrary. Conical as well as uniform beams
were analyzed with multicell or single-cell cross~sections. Both
open and closed crossmsectiotns were considered with and without
stiffeners. It is impossible to summarize the contents of the paper
here because of its great length. The method of analysis used by
these authors is entirely differe*%t from that employed by von Kirméan
and Chien. The dif‘ferencesbbetween the methods are discussed in
the text. These authors found a zero-warping axis to be associated

* This cross-section was mistakenly illustrated by von Kirméan and

Chien as a dumbbell-shaped section., This fact was made known to
the author by Hsu Lo, Aero. Dept., Purdue University,
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with each secondary stress mode corresponding to the axis found by
Kirste for the four-flange section. They illustrated clearly the
large difference which may exist in the' positions of the zero-warp-
ing axis and the shear center for a four-flange beam. A detailed
analysis of a four-flange tapered wing with cut-outs was presented.

Specific formulas were given by Kempner (11) (1947) for a
six-flange doubly symmetrical hexagonal Zse@:tion. A five-flange
open section, obtained by removing the bottom webs and bottom
stringer, was also considered. The beam was subjected to vert-
ical bending loads orily. Theoretical solutions were compared with
experimental results which had been previously published by Pet-
erson (12) (1945).

A rather simple method of analysis was given by Levy (13)
(1947) for beams with arbi¢rary stiffened cross-sections but limited
to beams with finite bulkhead sPacczingo The loading was assumed to
consist of concentrated loads applied at the intersections of the ribs
and spars. The solution involved the use of equilibrium conditions
and an energy principle ,' The method is applicable to beams with
cut-outs and sweepback., However, a comparison of theoretical
solutions by Levy's method with experimental results, for a swept
beam, was given by Bisplinghoff (14) (1949) and did not show satis-
factory agreementu‘ Deflections rather than stresses were com-=

pared. In the theory of Levy and the beams tested by Bisplinghoff
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the ribs of the swept beam were parallelto the plane of symmetry
of the airplane.

The solution for a swept beam with closely spaced dia-
phragms was given by W. H. Wittrick (15) (1948). The method of
analysis used was an extension of the theory of Hadji-Argyris and
Dunne (10) to include the effect of sweepback. The general integro-
differential equation for the stress function for a beam of arbitrary
cross=-section was formulated. Specific solutions were given for
uniform and exponentially varying section torque and bending moment,

An exact solution for a single cell monocoque (unstiffened)
beam with clesely sgaced diaphragms was given by R. A. Adadurov
(16) (1948). The cross-section and loading were assumed to be
arbitrary. This author introduced a stress function having its
first derivative proportional to the axial displacements and second
derivatives proportioﬁal to the stresses. The method is actually
a minor modification of the method of von KArmAn and Chien (9),
but is extended to arbitrary cross-sections ancd loading. The
author?s method of solution is unwieldy because he failed to intro-
duce the principal shear axes. No specific solutions were obtained.

Two specific solutions for swept beams were given b;r
Thompson and Wittrick (17) (1949) using the theory that had been
previously published by Wittrick (15) . The first solution was given

s

for a singly symmetrical trapezoidal section with four flanges and

closely spaced diaphragms located in a skewed position with respect



(8)
to the axis; of the béam., The walls were assumed to carry both
normal and shearing stresses. The loading consisted of a con=
centrated moment and a concentrated torque at either end ‘(the
St. Venant problem). In the second example the cross=-section
was a doubly symmetrical rectangle and the loading was assumed
to produce a section torque varying exponentially.

A general analysis of stiffened beams with arbitrary cross=-
sections was given by Duberg in a thesis submitted to éhe Univers-
ity of Illinois (Feb., 1948). An abstract of this thesis was pub-

\
lished subsequently by Duberg (18) (1949). The problem treated
by this author may be regarded as an extension of the four-flange
problem treated by Kirste and Drymael to secfions with more than
four stiffeners . The me’;hod of solution used by Kirste and Drymael
cannot be extended directly to more than four flanges and new meth-
ods of solution are required. Duberg's method of solution resembles
that of von KArman and Chien in that the axial displacements were
chosen as the unknown to be determined. Principal shear axes
play an essential role in this method of a.nalysi.s and convenient
formulas were given for their calculation. The formulas corres-
pond closely to those given ’;)y Kirste and Drymael. Numerical
methods were employed to obtain two solutions for cantilever beams

having rectangular cross-sections with single symmetry. Both

finite rib spacing and closely spaced ribs were considered.
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The method of analysis to be given in this paper may be
considered as an alternative to the method of Hadji-s-Argyris and
Dunne. It corresponds to, and employs ideas contained in, the

papers by Kirste, Drymael, von Karmén and Chien, and Duberg.

/
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PART I

Introduction

In Part I the beam will be assumed to have a thin-walled,
unstiffened cross-section. It will be assumed to consist of a single
cell without corners. This is the simplest and most convenient

' 1
section to consider in developing a rational theory for the determin-
ation of secondary stresses in thin-walled beams of arBitrary cross=-
section. The loading conditions and end conditions for th? beam
may be of any arbitrary nature. The beam is assumed to be of
uniform section with no cut-outs.

The wall of the cross=section is assumea to be sufficiently
thin that one may consider the stresses to be unif(:rmly distributed

T
over the thickness of the wall. The thin shell then acts essentially
as a membrane. The shell is assumed to be stabilized by closely
spaced rigid diaphragms which preserve the cross-sectional shape
of the beam under the action of loads. It will be assumed through-
out the analysis that the diaphragms are infinitely stiff in their own
planes but completely free to warp out of their planes. This as-
sumption is the only one which has a significant effect upon the
final results and is, thus, the principal source of any error which
may be contained in the solution.

Upon replacing the real, physical beam by a similar beam

having rigid diaphragms, one obtains a well-defined problem in
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stress analysis for which exact solutions can be obtained. Such
exact solutions of the similar beam may, in most cases, be re=-
garded as 'accurate' (but not exact) solutions for the real, phys-
ical beam. One may also obtain approximate solutions for the
similar beam with rigid diaphragms. Such solutions may be re-
garded as '"approximate' solutions for the real physical beam.

2

Many such '"approximate' solutions have been published for beams

having simple cross-sections.
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Symbols
A = cell area
Ay . =area of a monocoque cross-section

n
Ay = horizontal shear-resistant area
Ay = vertical shear-resistant area
Cri
CHi = section constants associated with the i-th stress mode
Cvi
E = Young's modulus
. E
E = L-/uz
£ = transverse distribution of axial displacements or normal
stresses

F = stress function
g = spanwise variation of axial displacements
G = shearing modulus of elasticity
h = spanwise variation of normal stress
H = horizontal section shear
I, = central moment of inertia
IP = polar moment of inertia
L, = moment of inertia about X-axis
Iy = moment of inertia about y-axis
J = torsion constant

M = bending moment about x-axis
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bending moment about y-axis

normal stress-flow in monocoque sections
applied horizontal loading

applied vertical loading

axial force in beam

shear flow

radius to a tangent

tangential coordinate

applied torsional loading

wall thickness of monocoque sections
section torque

horizontal displacement

vertical displacement

vertical sec‘trion shear

axial displacement

rectangular coordinates

centroidal coordinates

angle between tangent and x-axis

shearing strain

normal strain

angle between principal bending axes and principal shear axes

characteristic number
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G
=A Tt » (also Poisson's ratis)

angle-of-twist (rotation)

tangential displacement

normal stress
N

2
$
g
¢
T

shearing stress
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Fundamental Equations of Elasticity

The beam and coordinate system are shown in Figure 1.
Boundary conditions on stresses or displacements must be known
at each end of the beam. A segment of the curved wall is shown
in Figure 2(a). It is convenient to introduce the coordinate s

. Which is measured around the periphery of the beam along the
centerline of the wall. A point in the wall of the beam may be
located by giving the values of s and z rather than the values of
x, y and z. The coordinate s and the shear flow q are considered
to be positive in the counterclockwise direction as shown in Fig-
ure 2(a).

The differential element dsdz is shown in Figure 2(b)
with the forces which act on it in the axial direction. The re=
maining forces which act on the element are shown in Figures

2(b) and (c). Assuming that Hooke's law is applicable, the

stresses and strains are related by the following well-known

equations:
O,-p05 =E¢g, (1)
Os-p0, = E€g (2)
Tsz = Gysz (3)

Due to the as‘sumpti.on of infinitely stiff -diaphragms , one
may immediately set €, equal to zero, since such diaphragms

would prevent any strain in the wall in the tangential direction.
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Using equation (2) the following is obtained:
€, =0, 0r, g =p0, (4)

From this equation the tangential normal stress may be computed
at any point after the axial normal stress distribution has been

determinhed. Equation (4} may be substituted in equation (1) to ob-

tain O in terms of €, -

- (_E ,
where E'=-_E (5b)
1-p2

The strains at a point may be expressed in terms of the
axial displacement w and the tangential displacement & by the fol-

lowing well-known equations:

. |

€, = o (62)
_ 8w 8%

Ysz =3z * Bz (6b)

The axial displacement is measured as positive in the positive di=
rection of the z-axis while the tangential displacement is pos.itive
in the positive direction of the s coordinate, i.e., counterclock-
wise. The stress Gg and the strain ¢ do not appear in the anal-
ysis henceforth and the subscripts of the remaining stresses and

strains will be dropped with the following change of notation:

Gzo,dz’ €=€s, T:Tsz’ Y= Yoy

Multiplying equations (6) by the appropriate moduli of elasticity

gives the following formulas for stresses in terms of displacements:



¢ =E'5y (72)
T _G5§ +G 3o (7b)

The last fundamental equation which is required for the
analysis is that which expresses the law of equilibrium of forces
acting on a differential wall element in the axial direction. These

forces, as shown in Figure 2(b), lead to the following well-known

"

equation:
o6 Ov 8
5zt 85 0 ®)
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Formation of thg Second-Order Equations

Equations (7a), (7b) and (8) must be solved simultaneously.
These three equations contain the four unknowns, ¢ , T , ¥ and w.
By combining these equations in various ways, three different second
order differential equations may be obtajned. These three equations
express relations between the displacement € and one of the three

variables ¢, T, or w in the following forms:

ot E' 0w %

+ )
asZ G 822_ 9s 0z
52 E!' 3¢ 83§
—_— 3E!¢ =0 9b
9s2 G 98zl 9s 9z & , (90)

827 E' 9t ., 8%

9s2 G 8z2 = 98z3

=0 (9a)

=0 - (9C)

The first of the above equations may be obtained immediate-
ly by substituting equations (7a) and (7b) into equation (8). Equation
(9b) is most easily derived by differentiating equation (9a) with re-
spect to z and multiplying each term by E*!. Substitution of equa-
tion (7a) then gives equation (9b). In order to derive equation (9c)
one may differentiate equation (7a) with respect to s and equation

(7b) with respect to z to obtain,

80 _ 9w

8s  Bsva
or,

G dc_, 85w

E! 8s  ~ 0sd=z
and,

2 2
M _g8w 8%
0z 8s0z 9z 2

Subtracting from the above equation the preceding one gives,
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| 2
8t _ G 86, 8°%
5z &' 95 on 2

Differentiating the above equation with respect to z and equation (8)

with respect to s gives,

and,

Adding the above equations and multiplying by E'/G gives
equation (9c).
The fact that equation (9b) may be obtained from equation
(9a) indicates that there is a close mathematical association be-
tween the axial displacement w and the normal stress G . A stress
function F, introduced by Hadji-Argyris and Dunne (10), bears a
similar close relationship to the shearing stress. In extending
the analysis to semimonocoque, or stiffened, sections it is advan-
tageous to use shear flow as an unknown rather than shearing
stress. The shear flow and normal-stress flow are defined by
| the equations,
p=t,0 , q:tw‘t (10a,b)
where t_ is the wall thickness and will be considered to be a con-
stant for convenience. The stress flows are related to the stress

function by the equations,

oF oF
p:—ag s qZQOBEE (lla,b)
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In equation (1lb) the term q_ is the shear flow that may be computed

from the section torque T with the formula from the torsion theory

of St. Venant.

T
o 55 (12)

where A is the area of the cell formed by the centerline of the wall.
If equations (11} be substituted into equation (8), the equation of
X
equilibrium, it will be seen that the equation is satisfied by any
stress function. |
It is now possible to obtain a second order equation relat-
ing F to the displacement ¥ . Multiplying equations (7) by t, and

substituting equations (11) into them gives,
$

oF ow
— — i ¢
85 - By 5o
_OF ow 9g
or, E! 8F Sw 8Y B!
— — = o ¥ — — N
Goz - "Etwgs ~Etwazt @ %

Differentiating the first of these equations with respect to s, the

last with respect to z, and adding gives,

2 2 2

o0°F E? 9°F 0 E' 8
S S gy 28_% % (13)
9s2 G 08z 9z2 G oz :

A second order equation may be obtained for the shear flow by dif-

ferentiating with respect to z.

2 ' 2 3

0 ar E?' 9 oF 8°%
—- ————q‘o)+—-——-(=——-mq + EYf. —=2 =0
9s2 9z G Bzz 9z o) W aZZ
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The quantity q, may be, inserted into the first term since it is a

function of z only. Substituting equation (1lb) gives,

2

8%qg E!' 9 3 14
29, E 29 gy 2E (14)
8s G 9z2 9z3

It should be noted that this equation is also obtained i;fnmediatel‘y
by multiplying through equation (9¢c) by ty,.

It is now seen that the éolution to the stress problem may
be obtained by solving any one of the four equations (92), (9b),
(13) or (14). In each case the first step must be the elimination of
the tangential displacement § . This elimination from equations
(9a) or (9b) is obtained through considerations of equilibrium be-
tween internal stresses and.external loads. On the other hand,
the elimination of § f.rom;equations (13) and (14) is obtained through
consideration of the necessity for continuity of the axial displace=
ments., Consequentlyrthe process of solution for equations (9a)
and (9b) is entirely different from that required for equations (13)
and (14). Thus the two possible methods of solution differ, essen-
tially, in the order in which one must introduce the concepts o'f
equilibrium and continuity into the analysis. The analyrsis of
Hadji-Argyris and Dunne (10) involved the solution of equation (13)
while the analysis of von KArméin and Chien (9), and also that of
Duberg (18), is based upon equation (9a). The analysis of this
paper will be based on both equations (9a) and (9b). No further

consideration will be given to equations (13) and (14).
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Principal Shear Axes and Associated Section Properties

In the development of an exact analysis in which axial dis=
placements, or normal stresses, are considered to be the unknowns,
it is found to be very convenient tz» use coordinate axes in the cross-
section which have been called the principal shear axes. Convenient
formulas for computing the location of these axes were given by Du-
berg (18). At any given point of the wall a tangent to the centerline
may be drawn as shown in Figure 3(a). The radius from the origin
of the principal shear axes to the tangent is indicated as r while
the angle made by the tangent with the positive direction of the x-
a,xis; measured positively in the counterclockwi-se direction from
the axis, is indicated as a . The location of the principal shear

axes are defined in terms of r and a by the condition that the fol-

lowing three integrals must vanish:

§ tyw r cos ads =0 (15a)
§ ty r sin ads =0 (15b)
§ ty cos a sin ads =0 (15¢)

The integration is to be carried over the area of the crossseé‘tiono
In the case of a singlem‘cell section such an integration becomes a

line integral and hence the symbol for a line integral has been used
for convenience. (This integrating symbol would not bé appropriate

for a multicell section.)
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The principal values of three section properties, which are
associated with the principal shear axes, may be defined by the

following formulas:

I. = §tw r%ds (162)

Ayr = %t cos? a ds (16b)
H A

Ay = §t sin? a ds (16¢)
\4 W

‘The first of these section properties was introduced by Kirste (5)
and called the central moment of inertia. The magnitude of this
constant lies intermediate between that of the torsion constant J

and the polar moment of inertia I

IPEICEJ

The constant Ay may be considered as the area resistant to hori-

zontal shear and A, may be considered as the area resistant to

A

vertical shear. The sum of the "horizontal'" and "vertical" shear
areas is seen, from equations (16b) and (16c),to be equal to the

total area of the wall of the beam.

AH + AV =.Aw
where,

Ay = § by ds

The areas Ay and Ay were aISO':‘ihtroduced by Kirste (5) and called

"reduced areas' .
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Elimination of the Tangential Displacement

' In order to eliminate the tangential displacement & from
equafions (92) and (9b), it is necessary to make further use of the
assumption of rigid bulkheads. Due to this assumption a cross-
section of the beam experiences ''rigid body" displacement under
the action of load. The horizontal displacement u and the vertical
displacement v are parallel to the principal shear axes and must
in general, be regarded as the translations of the origin of the
principal shear axes. The rotation, or angle-of-twist, of the cross-
section is indicated by ¢. These disPIa:cements , and the corres=
ponding contribution that each makes to the tanéenti‘al displace=
ment & , are illustrated in Figure 3. Due to,fotation about the
origin the tangential displacement is given by the product ré. Due
tolhorizontal translation of the cross-section the tangential dis-
placement is u cos a. Due to vertical trans}atibn of the cross-

section the tangential displacement is v sin a. These individual

effects may be superimposed to' obtain the formula,
E =ré+ucos.a +vsina (17)

If the above equation were used to eliminate §, one would
obtain a relation between the unknowns w or 6" and the displace~
ments ¢, u and v which a-i':é: also unknown. It is necessary to find

a relation between ¢, u and v and the applied loads in order to
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obtain a direct relati?n between w or O and the applied loads.

The required relations are obtained by equating the section torque
and section shears, as computed by statics from the external
loads, to the section torque and section shears as computed by an
appropriate i%tegration of the internal shearing stresses. (Sec-
ondary stresses-in indéterminate beams will not be discussed),
Thus the section torque T, the horizontal shear H, and the vert-
ical shear V, are related to the internal shearing stresses by the

following equations:

% twtrds = T (182)
% tyTcos a ds = H ' (18b)
% tyTsin ads = V (18¢)

In equations (18) the shearing stress may be eliminated to
obtain a relation between the taﬁgéntial displacement and the loads

by substituting equation (7b).

G%twr—agds-l-(}%twr azds- T
dw. ; ES
G%twcos e 5% ds + G%tw cos a —j - ds = H

. Ow. 3 . 9& B
G%tw sin a = ds + G%‘tW sin a Bz ds =V
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It is now necessary to ..eliminate the tangential displacement from
the above equations by substituting equation (17). In making this
s’u‘pstitution it will be found that in each equation two integrals
vanish because of the applicability of equations (15) which define
the location of the principal shear axes. After substitution of

equation (17) and (15), the above equations become,

bw do 2,
G§twr'a'gds +G'a-£§twr ds =T

, ow ‘ du 2
G§twcos ags d‘s+G-&;%twcos ads =H

. ow dv .2 .
G%tw sin a 37 ds +G&;§tw sin _ra,d,s =V

In the above equations the second integral in each equation
is seen to be one of the section propertie"si'*.m-rhich were previously
-introduced by equations (16). Due to__»tﬁé":use of principal shear
axes one may solve the above eqqaticé‘ns' for the derivatives of ¢,

u and v independently rather than i{;Ving to solve a simultaneous
system. This is the reason for eniplo\yihg the principa'n.l shear axes
as reference axes. Inserting the section constants and solving for

the cross-sectional displacements gives,

dé T 1 ow

g _ _* __* o : 1
iz - GI, "1, § bw® 35 98 (192)
du . H 1 ' aw

— T ——— - co— t ¢ —_— a 19b
dz GAH AH§ w €08 @ ds S ( )

(19¢)
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- The above equations may be substituted into equation (17) if it is

first differentiated to obtain,

8%  d¢ du ) dv
32—1' EE +cosadz +s1nadz

Substituting equations (19) into the above equation gives,

0 T i )
g r H cosa +Vsma, rcgtwr gds

‘az , GIC , GAH , GAV I c
cos a ow sin a . ow _
- AH§twcosa-ra;ds-—A-\—r—§tws1na jaf-;ds

The above equation gives § as a function of the applied
loads and w. Thus it is seen that this equation may be used to
eliminate § from equation (9a) to obtain an equation relating
the axial displacements to the applied loads. -Substituting the

above equation into equation (92) gives, .

1 dcos q§t ':'a’wds 1 dsina t s:i,naaW ds
- T cos a 5z ds- - —Qtysinao—
wW B AV ds (ZO&}

T dr H dcosa V dsina

GI, ds GAH ds GAV ds

This partial integro-differential equation, with the appropriate
bouﬁdary conditions, defines the relation between the axial dis-
placements aAnd the loads., A corresponding equation for G may
be obtained by d}fferentiating with respect to z and multiplying

through by E?.



-1 dcos a dg- 1 dsin a ) oG
—_— '—'—_§tw cos a —E ds - 5+ ——-f-—~§tw §1n a féﬁ;ds

=E* t dr pyg dcos a PV d sin a
EV t dr pg dcosa ¥ osina
G(IC ds +AH ds A., ds

\'4
(20b)

On the right hand side of equation (2 Ob) t is the torsional load per

unit of length, pgy is the horizoﬁtal component of resultant load

per unit of length, and Py is the vertical component of resultant

load per unit of length.

At the root of a cantilever beam, or the end of a fixed-
ended beam, the boundary condition is tha‘n;:‘ w is zero. At the tip
of a cantilever beam, or the end of a _;simpiymsupported beam,
the boundary condition is that © is;_,z’ero . This latter condition
may be interpreted as meaningk that 8W/Bz is zero. A third type
of boundary condition may arise when slgleariné or normal stresses

of known distribution are being applied to the free ends of the

beam.
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Deflections Due to Shearing Strains

Before proceeding to a solution of the equation it is worth-
while to draw a few simple conclusions concerning the deflections
of the beam from the equations of the previous section. Egquation

(17) for § may be substituted into equation (7b) for T to obtain,

dw dé » du . dv ‘
T=G—§+GrEE+Gcos ad—'-z-+(}sv1na-a; (21)

It is convenient to consider, for the moment, that the beam is
loaded in such a way as to produce rotations only without trénsm

lations. Equation (2l) would then become,

S A
dz -~ G 8s
: _ ow
Y 5

This equation indicates that the aﬁ‘gfle;»of,;twist may be considered
to consist of two parts, the first beiﬁg;‘d.ue to‘ shearing strains

and the second ~due to axial displa.ce‘ments . If this equation is
multiplied_through by t,rds and integrated over the cross-section,
equation (19a) will be obtained'.. Tﬁis indicates immediately that
the first term on the right side of equation (192) ggves the rate-
of-twist (change of rotation per unit of length) due to shearing
strain, while the seicond term gives the rate-of-twist due to axial
displacements. A ‘similar interpretation can be given to the

terms on the right hand side of equations (19b) and (19c).
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It is of considerable practical importance to be able to
compute deflections of thin-walled beams due to shearing strains.
The proper formulas for this purpose are obtained from equations (19)

by setting w equal to zero,.

ﬂ T

3 - G (222)
C

du H '

== (22b)

dz GAH

dv __V_  (22¢)

dz AV

These formulas were given by Drymael (8). Equations (22) are
exact formulas for the derivatives of the deﬂectio’ns due to shear-
.

ing strain of a beam with rigid diaphragms . -It,is of considerable
interest to note that the deﬂec"tions due to ;Hearing strains are
independent of the distribution of the shi.tje:a»ring stress on the cross-
sections . |

In the case of torsion there ‘is no practical need for com-
puting the angle-of-twist due to shearing strains at various points
along the span., ﬁowever , equation (22a) is useful in giving the
rate-of-twist at a fixed-eﬁd where w = 0. This is useful in cer-
tain methods. of deﬂe&ion calculation. In the case of horizontal
or vertical bending, equations (22b) and (22c) enable the designer
to compute the deflections due to shearing strains at various

points along the span. This gives an indication of the physical

significance, as well as the practical utility, of the section
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constants Ic ) AH and AV"

When the axial displacement w is known it may be substi-
tuted into the integrais which appear in equations (19) in order to
determine the deflections. By substituting an approximate solu-
tion for w into equations (19) one may obtain an approximate solu-
tion for the deflections. In order to show the relationship between
equatidﬁs (19b) alnd (19¢) and the engineers customary equations
rélating bending deflections and loads, the axial displacements
may be assumed to have planar distribution. Itis more conven-
ient to substitute for normal stresses than axial'.displacements .

: ~
Equation (19b) and (19c) may be differentiated Wlitgl respect to z

to obtain .
aés  PH L S L
22 T GAg T EA W oS¢ Fs °° (23a)
2 1 - C
d v pV 1 06~
1V 2V %t sina 4 23b
02 G EEAV‘ w Sin a as s (23b)

The normal stress in equations (23) may be assumed to be
< v

given by the flexure formula in the form,

"l

Myx My

I, L

d<i

P
G == ¢ (24)
A, ‘

In equation (24)/the distances ¥ and ¥ are measured from the cen-
troidal axes of the cross=-section. The moments My and My and

the moments of inertia I, and I are computed with respect to the

y

centroidal axes. In general, the centroidal axes, or principal
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bending axes, do not coincide with the principal shear axes.
Equation (24) may be substituted into equations (23) to ebtain
approximate formulas for the curvatures of the beam. This
substitution is explained in detail in Appendix A and leads to

the following equations:

dZu ‘PH Mycos e ) M,sin 6

. = - (258.)
N 422 GAy~ ET E'L,
2 =P -
dcv i} v N Mysm e M,.ccos 6 (ZSb)
2 : T = 1 '
dz GAV E IY E Ix

In these equations © is the angular difference between the po-

' o~
sition of the principal shear axes and the principal bending axes.
In the great‘majority of sections 6 will ‘ée, 'sma(.ll and will have
the value of zero when the cross‘wsecﬁon;h';ts an axis of symmetry.
it @ is small énough that the terms comtaihing sin @ may be dropped

and the cos @ replaced by unity, equatic;ris (25) take the following

well=-known form:

a2y pH My 6

= - - 2
az? GAg TET_ (262)
dév _ _ Py M,
az2 GAy E'T_ (26b)

In equations (26) the first term on the right hand side is an exact
formula for deflections due to shearing strains while the second
term is an approximate fbrmula for the deflections due to axial
displacements or, as is more commonly stated, due to normal

strains,
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Simplifications Due to Symmetry of the Cross Section

A maximum amount of simplification arises inv the anal=
ysis when the cross-section of the beam is symmetrical about both
of the principal shear axes. In this case the centroidal axes are
also the principal shear axes. The general integro-differential
equation for w may be replaced by three independent equations in
which the action3 of torsion, horizontal bending and vertical
bending become completely separated. From considerations of
double symmetry it is found that equation (20a) must be replaced

by the following three equations:

— = = - == e ds = - —— —
9s G 8z2 1_ds 8" T a1, s (272)
2 8 Z, . ,
S xgr Ef 9 W 1 dcosa twqwa@yds:- H dcosa (27b)
9s¢ ' G 98z% A, ds s GA., ds
2 2. . Lol .
9°w E! 8°w 1 d sine dw V. d sina
i - sina 5= = - (27¢)
227G omi A ds S 8s = GAy ds

Equation (27a) was derived and solved by von KArman and Chien
(9). The development of equations (27‘) is;'given in Appendix B.

A corresponding system of equations may be derived fof the stress
distribution in a beam with doubly symmetrical cross-sections.

These equations are as follows:

2 2 ‘
8¢ E! 8% 1 dr do E% dr (282)

p e g T e—— e

—_—  — -— =0y ds =.
2t G 922 L. ds | W' Bs GI. ds
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2 —
8¢ E? 826“ 1 dcosa o E'prdcos
—5t+ == 5 - ~—— Pt cos a 0y = IH ¢ (28b)
85 G 8z Ay ds W s GA._ ds

H

9% E' 3% 1 dsina 8¢ E'pV d sin a
St e ——— sin a z—ds = = (28c)
ds G 8z° Ay ds 8s GAy ds

Every term of equation,(Z?a) or (28a) is antisymmetrical about
 both the x-axis and the y-axis. Every term of equation (27b) or
(28b) is symmetrical about the x-axis and antisymmetrical about
the y-axis. Every term of equation (27c) or (28?) is symmetri-
cal about the y-axis and antisyfnmetrical about the x-axis.

If a cross-section has only one axis of symmetry, the
general equation for\ w is replaced by two equations. For the

C

. s e . .
case of a cross-section which is symmetrical about the x-axis

the equations take the following forms

82w+ E? aZw 1 ‘d cos a i_ﬁz "H dcosa (292)
8s2 G 8z2 Ay ds tweos a3 ds = -GAg ds
82w E' 82w 1 dr bw 1 d sina e sina ¥ s
32t G pe? T, ds) W B T TA IS WIS
¢ (29b)
_ T  dr V dsina
“GI ds - GAy ds

Equations (29) are derived iﬁ Appendix B. Equation (29a) indi-
cates that the solution for axial displacements.due to horizontal
loads may be considered sepéra:tely from the action of vertical
and torsional loads. Every term of equation (29a) is symmetri-

cal about the x-axis while every term of equation (295) is anti-

symmetrical about the x-axis.
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For the case of a cross-section which is symmetrical on]?y
’ ~

about the y-axis, the equations for w take the following form:

8%w , E 82w 1 dsin a L dw V d sina
—s + — - : gina Fgr-ds = - =54 ———
z A2 ds v (30a)
8%w L E 8%w 1 dr dw 1 dcosa ow
8s2 G 022 I_+ds | W 05 Ay ds  J'weos a pgds
- ___I_ gig __H dcosa ‘ (30b)~
G, ds “GA_ ds :

=
‘Equations (30) are derived in Appendix B, Every term of equation

(30a) is symmetrical about the y-axis while every term bf equation
(30b) is antisymmetrical about the y-axis. It is obvious that equa-
tions for the normal stress, corre'scpp_nding to equations (29) and
(30) may be readily derived. -

A few comments concerning the ;ef-fe:‘ct.s of symmetry upon
deflections may be of some interest. Coﬁéidering a cross=section
having double symmetry, the solution for w from equat‘ions (27)
may be substituted into equations (19) to obtain the deflections of
the beam. It will be found that torsﬁonal loads produce rotations
only, horizontal loads produce hotfizontal translations only and
vertical loads produce vertical translations only. For the case
of a cross=section which is symmetrical about the x-axis, the
solution of equations (29) may be substituted into equations (19)

as before. It will be found that horizontal loads produce only hor=-

izontal displacements. However, vertical loads produce both
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vertical displacements and rotations; and torsional loads a«lsb
produce both vertical displacements and rotations. In the case
of é cross=section which is symmetrical about the y-axis, vert-
ical loads produce only vertical displacements but there is an
interaction effect between horizontal loads and torsional loads.
Such interaction effects do not occur in elementary beam theory

wherein one considers only primaty stresses.
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Solution of the Homogeneous Equation

The solution of the non-homogeneous equation which governs
the axial displacements, or the normal stresses, may be determined
by assuming that the unknowh may be expanded into an infinite series
of appropriate orthogonal functions which individually satisfy the
boundary conditions and the-conditions of continuity. The orthogonal
functions which are appropriate for the analysis may be determined
by considering the solution of .the homogeneous equation and the
boundary conditions . In the case of cantilfver beams, simple beams
or fixed-ended beams, the end conditions are honébgeneous . The
transverse distribution of the solution must be continuous and single-

v}

valued, or periodic.
Y

The case which is most easiolﬁ.y undgf.séood and. capable of
being given the simpleét explanation of the-"metﬁ,hod of solution is
that of a bea;n with doubly symmetrical cross-section acted upon by
torsional loading only. It was this casie which Wals trefateé. by von
Karman and Chien, although their considerations were limited to
a cantilever beam of s@mimi%.finite length acted upon by a torgue at
the tip. In the bresen‘t analysis the loading distribution and end
conditions will remain arbitrary.

The homogeneous equation governing the axial displacements

in a cross-section with double symmetry is obtained by setting the

right hand side of equation (27a) equal to zero.



82w mr 8w 1 dr ow . (312)
3 + " T -T" T r m-ds =
9s? ' G oz I ds 9s

The corresponding equation for normal stresses becomes,

2 2 ,

9 E' 8 1 d 1oy

_§‘+____.g:_.__5 t,r — ds = 0 (31b)_
9s G oz I. ds Os

A standard well-known method for the selution of homogeneous
partial differential equations is to assume that the unknown may
be expressed by a separation of the variables., The same method

may be employed in solving the above integro-differential equations.

The displacement and stress may be assunfed to thave the following

forms:
w = £5) glz) -  (32a)
Co=f(s) h(z) (32b)
where h =E?! %% | (32c)

The relationship between g and h arises from the relationship ‘be-

tween w and 0" as expressed by equation (7a). It is also clear from

A

N
equation (7a) that, if w and G" can be expressed by a separation of

the variables, then the transverse distribution of both functions

a

must be the same.

Substituting equation (32a) into equation (31a) gives,

2 2.
d“f E' d°g g dr ‘ daf
+ — —— B =

Dividing through by the product fg and transposing the first and
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third terms gives,

2 2
E' d% _ 144 1 drg, o S (33)
Gg 4z f gsé ﬂc ds | ¥ ds

Since the left side is a function of z only while the right side is a
function of s only, each side may be equated to a constant indepen-

dently. Equating the left side to G gives,

a%g  oxX* |
dz2 = E! g~
or a2g 2 (342)
dzz w}* €
5 G)\Z .
where, )J = TRBv ' (34b)

The corresponding equation for the spanwise distribution of @ is

obviously,

2
d“h 2
22 -pPh=0 (34c)

2
Equating the right hand side of equation (33) to A gives the follow-

ing equation for the transverse distribution of w or ¢":

2
d“f 2 1 dr daf
__+Kf=--—-——§t r = _ 35
dsZ Ic ds w” ds =0 (35)

It is convenient for the analysis to introduce the following integra-

tion by parts:

. df dr
%twrﬁgds = m§twffd~g ds (36)

The bracketed term, which usually arises in an integration by parts,

vanishes here because f must be continuous and periodic. Although
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equation (35) is an integro-differential equation it is convenient in
certain phases of the analysis to consider the integral in the equa-
tion as a section constant for the beam. If the stress distribution
were known it could be substituted into the integral which, in turn,
could be evaluated to obtain a scalar constant that would be de-

- pendent only upon the properties of the cross-section. This sec-
tion constant, which is associated with torsional loading, may be

indicated as CT and defined as follows:

daf . dr
CT =.=§ twr Eds—§twfagds (37)

Using equation (37), equation (35) may be converted into either of

the following forms:

2 ‘ *

d“f 2 1 dr dr

e f 4 — S8 =L gs =

2 + Nf + T 33 §twf - ds =0 (38a)
2 C

a4 42, OT dr

F+ Af+1— 55 =0 (38Db)
S [ .

It is of some interest and benefit to draw a comparison, at
this point, between the present problem of determining transverse
stress, or displacement, distributions, and the natural vibrations
of a thin ring. The analogy is of a physical nature only, since the
problems do not correspond mathematicallyo The ring that is to be
considered lies in a plane and has a doubly symmetrical shape. It
is to be considered as a free body vibrating in space without a grav-

itational field. The only vibrational displacements that are to be
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considered are those that are normal to the plane of the ring. There
will be four infinite sets of modes that could be excited as follows:
(2) doubly symmetrical (b) doubly antisymmetrical (c¢) symmetrical
about x-axis only (d) symmetrical about y-axis only, where the x-
ahd y-axes are in the plane of the ring. In a similar manner there
will arise four infinite sets of natural ""displacement modes' or
"'stress modes' in a cross-section having double symmetry. Each
type of mode will be '"excited" by a particular type of loading. The
relationship between type of mode and loading is as follows (see

Appendix B):

Mode Loading
(2) Doubly symmetrical _— Axial force
(b) Doubly antisymmetrical — Torsion
(c) Symmetrical about x-axis ——= Horizontal bending
(d) Symmetrical about y-axis —— o= Vertical bending

The analogy with a vibrating ring is useful in suggesting termin-
ology, in visualizing the stress distributions that are being deter=
mined ancél in suggesting calculation techniques for idealized stiff-
ened cross-sections that are to be treated in the second part of
the paper.

Solutions of equation (38a) exist only for certain character-
istic values of the parameter A, Ordinarily characteristic num-

bers are determined by boundary equations. In the present case
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the function f(s) is governed by continuity and periodicity condi-
tions which do not provide a characteristic equation. (In the
case of a section with corners, the condition of continuity at
the corners provides the characteristic equation.) The char-
acteristic equation was obtained in a simple manner by von Kar-
man and Chien by setting the line integral in equation (38a) equal
to unity. The resulting equation determines an infinite set of
values of A. Inspection of equation (38a) shows that, if the
line integral is replaced by any convenient constant, then the
equation becomes a non-homogeneous differential equation which
can be readily solved. The solution for f(s) will \c‘:ontain the num-
ber A and hence there will be an infinite number of stress modes.

Unfortunately the simple method used by von Kérmén and
Chien to form the characteristic equation cannot be extended di-
rectly to arbitrary cross-sections. Consequently a method of
forming the characteristic equation will be presented which can
be extended to arbitrary cross-sections. Equation (38b) suggests

the following form of the general solution:

f=AsinAs +Bcos As + Cpd(s, ) (39)

I

where ¢ remains to be determined. Substituting equation (39) into

equation (38b) gives the following equation for ¢:

a2 .2 1 df
+ __ 1l dr (40)
ds‘z K ¢ IC‘ dS
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The function ¢ is the particular integral of equation (40) and is a
function of the coordinate s and the parameter A .

It is now necessary to show that the constants of integration
A and B must vanish for non-circular sections. The stress mode £
is doubly antisymmetrical. It is convenient to choose the origin of
the coordinate s on one of the axes of symmetry. The term sinXAs
may be made d\oubly antisymmetrical by a proper choice of values
of A . At first thought this would seem to be an appropriate method

X

of determining the characteristic values of A . Since dr/ds is anti-
symrr:etrical it is seen from equation (40) that ¢ must be antisyfa«
metrical. However, the term cos A s is symmet;ical about the axis
upon which the origin of s is chosen and, hence, B must be set equal
to zero.

In order that the term sin A s shall be antisymmetrical it

is necessary that A have one of the values A given by the follow-

ing formula,

L TP )

where L is the circumfiference of the centerline of the wall of the
cross-section. The geometric quantity dr/ds may be assumed to

be expanded into a Fourier series as follows:

o

dr 5 . 4iqs
EE e ¥ (#2)
1=

H
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The function ¢(A,s) may also be expressed as a Fourier series,

4dims

o
¢, 8) =Z biO\n) sin — (43)
i=1

Substituting equations (42) and (43) into equation (40) leads to the

following formula for b;:

aj
b, = ——— 44
i > 2 (44)
w; = >\n
J
4iw .
where W, = 3 , 1=1, 2, 3,000 (45)

For each ¢_, as defined by equation .(43), there will be one term in
the series for which w; equals Ap and hence for which b; becomes
inf;nite . Hence the only possibility fox a finif:e solution for <{>n to
exist isffor all of the a; values to be zero. This means that dr/ds
must vanish, which would be true only for a circular section. An
examination of equation (40) shows that if dr/ds vanishes the func-
tion ¢ must either be zero or be proportional to the quantity sin As.,
In the latter case ¢ would add nothing to the formula for f as given
by equation (39) and hence may be assumed to be zero for a circular
cross-section. For the non-circular section it is impossible to ob-
tain a finite solution for ¢ by choosing A to make sinAs antisym-
metrical. The only alternative in this case is to choose A equal to
zero. Thus the following formulas for the stress distribution have
been derivea.:

Circula;.se'ction: f=A sinAs (46a)
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Non-circular section: f=Cp ¢ (N,s) (46D)
In the case of the circular section A is given by equation (41). For
the non-circular section a characteristic equation must now be de-
rived.
Multiplying through equation (46b) by dr/ds and integrating

¥

over the cross-section gives,

dr dr
t f— = —
§ W s ds CT% tw¢ Is ds

_ dr
or, CT—CT§ tw(bﬁds
2
dr
t ¢—=— ds =1 Crn=0 4
or, § W¢ds T (47)

Equati:on (47) may be regarded as 5 homogeneous algebraic equa-
tion in which C is the unknown and thus remains arbitrary. Crg
plays the role of an amplitude factor which must be determined
subsequently by introducing a normalizing condition for the stress

modes. The coefficient of CT must vanish and hence,
dr
§ byt gs 98 =1 (48)

Equation (48) is the characteristic equation which determines the
values of A and agrees with that given by von Karmén and Chien.
The above derivation of the characteristic equation can be extended

to arbitrary cross-sections as will be shown in the next section.
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The section constant is determined by introducing the fol-

lowing normalizing condition:

2 4q -
§twf ds = 1 (49)

This normalizing condition is more convenient in the analysis, for
both monocoque and semimonocoque sections, than the engineering
types of normalizing laws which might be suggestedoby the vibration
analogy. The method of solution for the natural stress modes should
now be clear. The function ¢ is determined in terms of A by solv-
ing equation (40). Expansions in Fourier series should be useful

for this purp:ose . The functions ¢ and dr/ds are then substituted
into equation (48) to determine the characteristic values of A.

The stress modes are then known except for the coefficients CT

AN
which are determined to satisfy equation (49).
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Stress Modes for Arbitrary Cross-Sections

The solution for the stress modes and characteristic num-
bers for arbitrary cross=-sections will be stated briefly. If the
right hand side of equations (20) is replaced by zero and a separ-
ation of variables is introduced, the following equation will be

found to govern the transverse distribution of displacements or

stresses:
a4 N2f Cr ar CHdcose ©Vdsina _
G2 NI @t AR Es Ay ds 7 (50a)
Crp=0¢t 34 5
where T = Q tef g7 ds B (50Db)
d cosa
Cy = § thES-—'—’- ds (50c)
c. =&t ¢dsina 4 (504)
v W ds S

The solution of equation (50a) may be written as follows:

~<

f=Cpodp(X,s) + Crtm (X,s) + Cydy (N,s) (51a)

where ¢q, ¢p and ¢V are governed by the following equations:

2
d o N . IF (51p)
ds? T == 1. ds
2
d gy 2 1 dcosa
+ Wy = - (51c)
352 H Ay ds
2
d ¢y 2 1 d sina : (51d)
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Terms containing constants of integration in the formula for f have
been omitted since they may be shown to vanish for non-circular
sections by arguments similar to those used in the previous sec=
tion. Since, in the preéent case, bending as well as torsional
action is being considered, the complete solution must include
the planar stress distributions of ordinary engineering beam
theory. These primary modes must satisfy equation (50a). The

1
planar distribution may include the effect of an axial force as
well as bending moments-.

If a planar distribution of stress is assumed, it will be
found that the section constant CT has the value zero by evaluating
the integral w}lich it represents. The value of A which is assoc-
iated with the planar modes is also zero. If qu and by are defined
to have the linear distributions (a + x) and (b + y) respectively in
equation (51a) for f, this planar distribution will be found to sétiss
- fy equation (50c) if N a}nd CT are set equal to zero. This existence
of a solution for a zero value of A is a feature of the present prob-
lem which is not found in the solution of homogeneous second order
differential equations with homogeneous boundary conditions (the
Sturm-Liouville problem).

The characteristic equation may now be developed by the
same method that was used in the prgvious section, Equation (51a)

must be multiplied through successively by the following quantities:
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dr/ds, d cos a/ds, d sin a /ds. Integration over the cross=-section

in each case gives the following three linear algebraic equations:

_ dr dr
CT = CT §tW¢TEdS + CH§tw¢Ha-gds
5 2a)
dr (

N d cosa d cosa ,_

(5 2b)
1 + CV§ tw¢v gscos e 4s
_ d sina d sina
c ¢ d sina (52¢cy

Equations (52) are a homogeneous system of three algebraic equa-
tions in which CT , CH and CV are the unknowns. ; The integrals
which appear are functions of A and may be regarded as scalar co-
efficients of the equations. After transposing all terms to one side
.

of the equations the determinant of the coefficients may be isolated
and set equal to zero. This provides the characteristic equation
which determines the, values of A . The calculation task of deter-
mining the characteristic values of A is clearly a formidable one
for arbitrary cross-sections. For each ‘A a solution of equations
(52) exists for relative values of Cp, CH and.CV, Their specific

magnitudes must be determined from the normalizing condition as

expressed by equation (49).
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Orthogonality of the Stress Modes

In order to obtain a solution to the general non-homogeneous
equation for stresses or disPIéLcements it is necessary to determine
the orthogonality properties of the stress modes which have been de-
fined. Since this argument follows customary well-known mathe-
matical methods, it will be given only for the doubly antisymmetrical
modes (the torslion case) in a beam having a cross-section with
double symmetry.

Equation (38b) may be written for the m-th and n-th stress

modes as follows:

2

d%fm C d
2 Tm 4ar _ '
ds? T N fm tT TG 0 (532)

<
- c
n 2 Tn dr
c

Equation (53a) is to be multiplied through by f_, equation (5 3B) by £

and both equations integrated over the cross-section.

2 ¥ C C
a4, 2 | TmCTn _
§fn dSZ twds + xmﬁ fnfmtw ds + IC — =0 (54&)
dzfn 7\2 CTnCTm 54
£, — b
™ gs2 fwds + My fnfntyds + =0 ( ()
W Ie

The first term in each of these equations may be integrated by parts

\ to obtain,
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a2, . %dfn af

f ——— t ds = — —— t d
dSZ w ds dS w S
.2
d~f df

fn_ Bt ds =- fm —2t ds
ds‘Z ds ds w

The bracketed terms vanish since the stress mode and its deriva-
tive must be continuous and periodic. These formulas show that

the first terms of equations (54a) and (54b) are identically equal.

Hence by subtracting equation (54b) from (54a) one obtains,

2 2
o\ >\n ) § f £ t,ds =0
Since the A\'s férm a discreet set of numbers, the first factor in

the above equation does not vanish and the following orthogonality

condition is obtained:

§ fmfntwds =0 (55)

»

A similar development of equation (55) can be formulated for arb-
itrary cross-sections,

In deriving the solution of the non-homogeneous equation for
stresses or displacements itkis convenient to have one additional -
relationship which may now be derived. Making use of the normal-
izing condition as given by equation (49) it may be seen that, when
m = n, the second te.rm of equation (54b) is equal to }%n or ')%m
When m doés not equal n, the second term of equation (54b) vanishes
due to equation (55). Thus equation (54b) may be rewritten in the

\ following mapner:



2 C
d“fy CTm%Tn _ 2
m— t ds + T = )\m 6mn (56a)
ds ¢
0, m%# n
where Smn = (56b)
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Solution of the Non-Homogeneous Equation

Again the action of torsional loads on a beam having cross-
sections with double symmetry will be considered first. The equa-
tions that must be solved are equations (27a) and (28a). The dis-

placements and stresses may be assumed in series form as follows:

oo :
w = Zl £ (s) gn(z) (57a)

) £.(s) b (z) (57b)

n=

o

ot

Substituting equation (57a) into equation (27a) gives,

2
E! 2
ngf. +szdg 1dr§t dfnd
n 1.2 e g —-| ds
— ds - I dz2 I, ds W' n ds
T dr
“GI_ ds
C

Interchanging the order of summation and integration in the third

term of this equation, and introducing C  as defined by equation

(37) gives,
§ g dzfn_'_E!E P dzgn 1 dr c T dr
R ———— Prv— —-—— g o az—
- n dsz G4z n dz Ic z Tn®n GIC ds

The above equation must now be multiplied through by £, and inte-

grated over the cross -section.

1 dr T dr
+ T fn g tyds chTngn =- G V@ t ds

The integrals which occur in the second series of this equation may
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be evaluated from the normalizing condition and the orthogonality
condition for the stress modes. All terms of the series vanish ex-
cept the m-th term. After introducing C  and rearranging terms

the equation becomes,

E!' d%g Z a2f, CTmCTn| CppT
G de2 VY- MmTrtds+ I |7 GI

The quantity in the brackets has a finite value only when m = n.,
Substituting equation (56) into the above equation will give the equa-
tion governing the spanwise variation of the m-th displacement
mode. The subscript m may be changed to n for convenience to give

the equation for the n-th mode as follows:

2
Eidgn 2 CIT

Y = -
G dz 2 n gn GIC

Multiplying through by G/E! and introducing M oas defined by equa-

tion (34b) gives, ~

2
d°g, 2 CornT
52z Pt ET (582)
C

‘The corresponding equation for the stress distribution is,

2
d"h, _ 2 b= CTn‘t
dz2 n o Ié

(58b)

The complete solution can now be obtained. After computing

the transverse stress modes as previously explained the constants
: 1
Cpp 2nd /L\n are known for each mode. Equation (58a) may then be



(55)
solved for the spanwise variation of the displacements due to the
applied loads. The solution of equations (582) or (58b) may be

written in either of the following forms:

H S _ S
gn =Ae " + Be /An +w‘(5) (59&)
g, =Asinh M s+ B cosh s+ P(s) (59b)

~
The coefficients A and B may be determined from the boundary

conditions after the particular integral xlf(s) has beeg determined
for the given 1oading..

In the case of a2 beam of arbitrary cross=section without
symmetry the same mathematical miethod may be applied to equa-
ti.ons (20). The r;suiting equation for the spanwise variation of

axial displacements is,

, |
d%g, 2 CpnT CuaT Gy, T

- _ __Vn
M, Bn T T ET EA_ E'A (60)
n c H v

dz?
A corresponding equation may be written for the stress distribu-
tion. Egquations (59) also give the form of solution for equation
(60). It is of interest to note that a zero-warping axis for the n-th
mode may be located by setting the right hand side of equation (60)
equal to zero. However, it is not a.p”parent that there is any prac-
tical value to be gained by locating this axis in the present method
of analysis.

Associated with each normal stress mode there is also a
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shearing stress distribution. These .shearing‘stresses»are com-=-
puted for each normal stress mode independently by integrating
equation (8), the equation of equilibrium. This integration is
also required in primary stress analysis and hence is well-known.
The constant of integration for the secondayy shear flow is deter-

P

mined from the condition that the resultant torque must be zero.
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PART II

Introduction

In Part II a method of analysis is to be presented which is
directly applicable to beams of practical cross-sections such as
occur in airplane wings and fuselages. The beam will be assumed
to have a thin-walled stiffened cross-section which may be of single-
cell of multicell design. The type of cross-section which is actually

S
to be analyzed is the idealized stiffened section which results from
the customary engineering idealization thatis used in primary
stress analysis of airplanes. The loading distribution and end con-
ditions will again be considered as arbitrary.

As before the beam will be assumed to contain closely spaced
internal rigid diaphragms which stabilize the shell and preserve the
cross=sectional shape., There are two sources of error in the

T
present analysis. The first is the idealization of the cross=section
and the second is the assumption of rigid bulkheads. As explained
in Part I, it is possible to obtain "approximate' solutions or "ac-
curate' solutions for stresses and disPIacemehts . Only accurate
solutions will be considered herein.

The introduction of generalized difference equations permits
the analysis of a /semimonocoque , or stiffened, section be be devel-
oped in a manner that is exactly analogous to the method of solu-

tion which has been previously given in terms of analytic functions for

monocoque sections. The use of generalized difference equations
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provides certain conveniences and simplifications which are not
found in the customary algebraic treatments of the stiffened beam:.
The differencing symbols have been specifically defined for ap-
plication to the stress analysis problem of idealized multicell

cross-sections,
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Additional Symbols

area of j-th stiffener

central area associated with the k-th web
total area of stiffeners

stiffener number

web number

length of k-th web

axial force in j=-th stiffener

warping stiffness of the k-th web

= geometric discontinuities at the j-th stiffener

matrix of stiffener areas

matrix of warping stiffnesses

matrix of geometric discontinuities
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The Difference and Summation Symbols

The idealized semimonoéoque section which is to be anal-
yzed has a finite number of stiffeners which carry all of the normal
stress and the shear flows are distributed uniformly over the con-
necting webs. The idealization is illustrated in Figure 4 where a
small portion of the cross-section of 2 beam is shown. The flange
and stringers of the true section are replaced by idealized stiff-
eners centered on the webs. The idealized stiffeners also include
an "effective width" of web material as is commonly employed in
primary stress analysis. In the idealized section it is assumed
that the webs which connect the stiffeners are straight. The curv-
ature of the webs is neglected. The idealization of a créésmsection
for secondary stress analysis need not be highly accurate for de-
sign purposes although for research studies some improvement in
the accuracy of the idealization may be found desirable.

The normal stresses on a cross-section act over the area
of the stiffeners only. The normal stress 03, acting on the j-th
stiffener, may be multipligd by the stiffener area a; to obtain the
axial force pj on the stiffener. The axial forces acting on three
stiffeners on a straight wall are shown in Figure 5(a). The shear-
ing stresses are distributed uniformly along each individual web.
The shearing stress ’tk/, acting on the k-th web, may be multiplied

by the wall thickness tx to obtain the shear flow g; acting on the web.
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The distribution of shear flow over a cross-section is given by a
stepped diagram as illustrated in Figure 5(b).

| The above definitions in :regard to stresses are equally

h)

useful in primary or secondary stress analysis. In the second-
ary stress problem displacements must also be considered. Due
to the fact that each idealized web has been assumed to be straight,
the tangential displacement §j of points on the k-th,web will be a
constant for the web and the transverse-distribution of E"k will be
a stepped diagram. The function %; will thus behave in the anal-
ysis in a manner similar to the stress T, and the product tkgk
may be vregarided as a '"flow=type" quantity. The axial displace-
ments must be considered to be defined at the stiffeners, the dis-
placement Wy occurring at the j-th stiffener. It must be assumed
that the axial d{splacements have a linear variation over each web,
The resulting distribution of axial displacements is given by a
broken line diagram as shown in Figure 5(c). The distribution of
axial displacements must be a continuous function from physical
considerations.

All quantities entering into the analysis which are dependent
upon the transverse coordinates are completely defined by giving
their values either at the stiffeners or at one point on each web.
Those funcﬁons which are defined over the webs are uniformly

distributed over each web. Those quantities which are defined by

their values at the stiffeners are given a subscript "j". Those
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quantities which are defined by their values over the webs are
given a subscript "k'".

Just as two types of functions arise in the analysis, so it is
necessary to define two types of differencing symbols. The symbol
Aj indicates a differencing operation which produces a function
that ;.s deﬁned by its values at the stiffeners. The symbol Ay in=-
dicates a differencing operation which produfces a function that is
defined over the webs. The differencing symbols may be defined
most conveniently by applying them to particular functions. The
difference Axwj may be defined as the difference between the value
of W at the forward stiﬂener and the value at thé\rearward stiff-
ener relative to the k-th web. If the forward stiffener is stiffener

no. a and the rearward stiffener is stiffener no. b, the difference

. is defined by,

AkWJ

MWy = Wy = Wy (61)

This definition is illustrated in Figure 5(c). The above difference
must be divided by the length L of the k-th web to obtain the slope,
or derivative, of the function. The correspondence between deriv=

atives and differences is as follows:

Os Lk Aij

Throughout the analysis for multicell sections the positive direction

for the coordinate s and all "flow=-type' quantities is counterclock-
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wise along the outer shell and in the positive direction of the co-
ordinate axes on the interior webs.

The symboll Aj is defined as the difference between outflow
and inflow at the j-th stiffener. This definition of a differencing
symbol is of a rather general hature since it may be applied at
a flange having any number of connecting webs. The difference
quk'is illustrated in Figure 5(b) for a stringer with two connect-
ing webs. If the web ahead of the j-th stiffener is web no. ¢ and
the web behind the j-th stiffener is web no. d, the difference qu_k

is given by,

859 = 9c - 94 (62a)

In this case no ¢lear correspondence between derivatives and dif-
ferences is apparent. A second example of the difference Aj.qk
is shown in Figure 6 where the j-th stiffener is connected to web
nos. a, b and c¢c. The positive directions of the shear flows are

indicated., The difference quk becomes,
Aj A =9 - 95 = 9 (6 2p)

In addition it is necessary to introduce summations for the
idealized stiffened sections?corresponding to the various integrals
which occurred in the analysis of Part I. Two types of summations
must be introduced to indicate summation over all of the stiffener

areas or summation over all of the web areas. Three simple
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examples of summations over the stiffener areas are as follows:

J J ’

= 0. x. = X

My Zaj i%y ZPJ X (63b)
J J

My '_’Z_ ajg—j};j =ij§j (63ch
J J

It is apparent that these summations give the axial force and bend-
ing moments on the cross-section. Three simple examples of the

second type of summation are as follows:

T = Z t Trly T = quLkrk ‘ (64a)
k k

H = Z t, Tyl cos ay = Z Qi Ly cos ay (64b)
k k

V= Z t, Ty Ly sin ay = Z q L, sin ay (64c)
k k

These summations give tﬁe section torque and shears. The gegp-
metric quantities Iy, €OS ap and sin aj are constant over the k=th
web since the web is assumed to be straight in the idealized section.
It may be worthwhile to note that the introduction of general-
ized difference equations in one dimensional problems would be of
no practical value. In such problems difference equations become

useful only when the regularity of the structural layout leads to
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""'standard difference equations' such as those treated in Chapter
XII of reference 19. In problems of two or more dimensions,
however, it is found that generalized difference equations are of
considerable value. They not only provide a mathematical method
of complete generality for deriving the equationé governing the
axial displacements or stresses from the basic equations of elas-
ticity but, more importantly, they make clear the possibility of
using the method of separation of variables in spite of complete
irregulariﬁy of the structural layout which may occur. The method
of analysis for an idealized stiffened multicell section may be car-
ried out, step by step, in a manner exactly parallél to the method
used in Part I for the single cell monocoque section which is more
easily understood. The method of separation of variables leads
automatically to the natural stress modes for the cross-section.
The posdible utility of generalized difference equations in other
planar or spatial structures, such as gridworks, remains to be

investigated.
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Fundamental Equations of Elasticity

Since the present analysis is exactly parallel to that given in

Part I, it need be stated only briefly. The analysis will be made

¢learer by frequent comparison with corresponding equations in

Part I. The stresses are related to the strains by the formulas,

G’j = Eej ; (65a)
Tk = Gy

(65D)

The strains are related to the displacements by the following form-

ulas:
BWJ
€j = 3=z (668.)
1 8% (66b)
R s N

Equations (66) are comparable t¢ equations (6) of Part I. From

equations (65) and (66) it is seen that the stresstes may be expressed
h%

in terms of the displacements by the formulas,

ow
L= F 3 7
G'J s | (67a)
G 9%k
T ST AWt G

o 5o (67b)

The stress flows are given by the following formulas:

8 3
. = - Wj 6
Pj a.G. = E)aj--—- ( 8a)

JJ
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Gtk 8§k

8%k (68D)
= Gﬁk Akwj + Gtk B

e

where ﬁk == (68c)
k

The quantity ka may be called the warping stiffness of the k-th
web. The forces which act on a differential length of a stiffener
are shown in Figure 7. The equation of equilibrium for the stiff-

ener becomes,

dp;
3 g, = 69
P + Aqu 0 = (69)

This equation corresponds to equation (8) of Part I.
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Development of the Equation for Axial Displacements

In the present analysis the equation will be derived only
for the axial displacement. Equations for the other functions may
<
be readily derived. Substituting equations (68) into equation (69)

gives the following equation relating the displacements:

2

E dWJ+G¢A( A, w.) + Ga(t EEE)-O 70
%3 3,2 i Pl '8z ) T (70)

X

This equation corresponds to equation (9a). The second term in
this equation is a second order difference quantity.

Before eliminating the tangential displacement it is nec-
- essary to-dntroduce the definition of the principal shear axes and
the associated section properties. The principal shear axes are

located by the condition that the following three summations must

vanish:
Z Ly cos ap =0 (71a)
k .
k
ZktkLk cos ay sin a, = 0 (71c)

The associated section properties are as follows:

2



_ 2
Ay —thLk cos” ap 172b)
k

Convenient methods for, calculating these section properties are
given in Appendix C.

Corresponding to equation (17) of Part I the tangential dis-
placement of all points on the k-th web is relfated to the cross-

sectional displacements by the formula,
. = Tb + ucos ap +vsin ay (73)

The section torque and shears have been expressed in terms of
the shear*flows by equations (64). If equation (68b) for the shear
flow is substituted into equations (64), the following equations are

obtained:

z Z 8%k
G - tk cos akAij + G . tkLk cos a; - = H

8% i
GkEtk sin QkAij + GztkLk‘mmk ~5n v

Substituting equation (73) and omitting those summations which

vanish according to equations (71), the above equations become,
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[ G@ZtL 2 -7
thkrkAkwj+ dz ik

k
GZtkcosakAW-l-GdzZtL cos k=H
k
GZtk sin oy A w j"'GdzZtkL sm k’=V

Introducing the section properties as defined by equations (72)

gives, after rearranging terms,

do _ T 1)
GI_ "1,

4
dz Kk tkrkAij (742)
o - Ghg - AH ; t COS QA Wj ( )
dv \4 1 g .
— Te—— n — t, sin ay A, W, (74c
dz GAy Ay'q k k Ax%j N

These equations were given by Drymael (8).
The- required formula for § ; which will permit its elimina-
tion from equation (70% may now be obtained by differentiating equa-

tion (73) with respect to z and then substituting equations (74).

8%  Try H cos ajp V sin ay

5z "G, '~ GAg ' GAy

cos a
Ik Z b TRARW; = __ilf.z ty cos aypAyWj
IC k AH k

sina k

Ay

Zt sin ax ARW;
m k kYj
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This formula may be substituted into equation (70) to obtain the

following equation governing w:
J

2
45 B2y * & 2522 T I APTR/ Pk AV
Z c %

1 1
= A Asp Z Pepe &Wi = A, Asp Z PVKAKW;
g PHKG PHK X7 Ay SiPvi g j

T H v

:..—]':— A.ka= =5 A.p = =7 A:p
Gc j GAp, “i"Hk ~ GAy TJ"Vk

(75)

In equation (75) the flow=-type quantities Pk and Pvk have

PHKk

been introduced in accord with the following definitions:

PTk = *kTk , (762)

PHK = tx oS a g (76b)
Q

PVk =t sina (76¢)

Equation (75), which is for arbitrary cross-sections, may
be replaced by simplified groups of equations for sections having
single or double symmetry just as in Part I.

In Part I an integration by parts was introduced after the
variables had been separated. This integration by parts could have
been introduced earlier in the original partial integro-differential

¢
equation but there was no apparent reason for so doing. In the
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present case an appreciable simplification of the form of the equa-
tion may be obtained by performing a summation by parts (corres-
ponding to an integration by parts) providing one simultaneously
introduces new symbols for the geometric differences APy etc.

Consequently the following definitions are introduced:

Ypj = APk = Ajttrid (772)
YVJ = Aijk = AJ(tk sin @_k) (77@)

Convenient methods for computing these geometric discontinuities
are given in Appendix D. The operation of summation by parts may
now be performed on the summations which occur in equation (75)

to obtain the following formulas:
O
b J

Z PHKAKY) = - ¥ WA PHK = "“%‘!ijj (78b)
k

N
; PyiAk™) ZJ ViliPvk T Zj ;v (78¢c)

The validity of the above summations by parts is demonstrated in
Y
J
Appendix E. Equation (75) may now be written in the following

form:



E ; j
(79)

s YVj E T H y v .
et _ 'Y W, = = 'G_"I“ ‘Y . Em e o mm T °
AV 3 Vi c 'Tj GAH Hj GAV Vi
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Simplifications Due to Symmetry of the Cross=Section

The arguments which permit the replacement of the general
equation for axial displacements by groups of simplified equations
are identically the same as those used in Part I. Hence it is not
necessary to repeat the arguments but merely to state the equations.
In the case of a cross-section having double symmetry the four com-

ponents of axial displacement are governed by the following four

equations:
E  d%w;
. —a.—3 _
8iPrdrv) + G 2 oz -0 (802)
Z,
LE LS & (80b)
AjV}kAkwj) tG 2 4,2 I jYTjo =- GI_ YTj
120 .
8Pty + T 257,27 A 45 Vg T T GAy YHj (80c)
2
E d WJ YVJ Z Vv
A, A J+FE a, + —— W. = = .

In the case of a cross=-section which is symmetrical about
the x-axis the two components of displacement are governed by the

following two equations:

d‘zw.

E Yog: H

. . — a. J Hj

8i{(BrlkV) Y G2 ——5 t 7 i, ZVHJ i~ - GA. YHj

dz H (81a)
E
JX
25(fFaxvy) +G 25 Yriwy + zJYVJ j
‘ (81b)

T v
= Gl VTj = GAy ij
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In the case of a cross=section which is symmetrical about the y-axis
the two components of displacement are governed by the following

two equations:

(82b)
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Solution of the Homogeﬁeous Equation

The solution of the non-homogeneous problem may again
be expressed in terms of the natural displacement modes which
arise from the homogeneous equation after a separation of the
variables. The axial displacement may be assumed as the product

of a function of j by a function of z.
wy = £; g(z) (83)

For convenience the doubly-symmetrical cross-section will be
considered with torsional loading (the antisymmetrical modes).
The shomogeneous equation is obtained from equation (80b) by set-

ting the right hand side equal to zero.

2

B dvvj YTjX

A AW, +=a.- + == w,. =0 (84
J(ﬂk KWy G252 TR S )

If equa‘tion\(83) is substituted into equation (84), the var-
iables may be separated in the same manner as explained in Part
I. The spanwise and transverse distributions are found to be gov-
erned by the following two equations:

2 2

d7g
dZZ _)"\ g = 0 (85&)

A([J’kz\kf +7\af +——Zy f (85b)
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where = T
] f'\ - E

Unfortunately the method of solution for the stress modes which
was used in Part I is not particularly convenient here. The solu-
tion of equation (85b) may be obtained by several different meth-
ods. Equation (85b) involves only one independent variable. In
such cases, as has been previously noted, the use of generalized
differences offgrs no assistance in the solution of the problem al-
though they do permit the writing of the equation in a condensed
form.

In order to solve equation (85b) it is necessary to recog-
nize that it represents a homogeneous system of lénear algebraic
equations which must be solved simultaneously. For simple
crossmsegtiéns having only a few stiffeners the equations may be
solved by direct algebraic ﬁethods - For sections having a large
number of stiffeners numerigal methods of solution must be em=
ployed. In order to proceed to the solution of the original non-
homogeneous problem, it will be assumed that the natural stress
modes have been computed.

The equations which govern the stress modes for other
types of loading and symmetry conditions will now be stated briefly.
For a beam with a doubly symmetrical cross-section acted upon by
horizontal loads, the stress modes are symmetrical about the x-

axis and are governed by the following equation:
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YHJ X '
J(ﬁkAkf) + 7\& fj + — AL : Yijj =0 (862)

For a beam with a doubly symmetrical cross-section acted upon
by vertical loads, the stress modes are symmetrical about the

y-axis and are governed by the following equation:
2 Yv; Z

If the cross=-section of the beam has single symmetry about
the x-axis ,“the symmetrical modes are governed by equation (86a)
while antisymmetrical modes are governed by the following equa-
tion:

A Af)+7\2af + 1T
J (ﬂk k) i T L4
c J

i Z
J (87a)
-+ Y .f' = 0
A
v VT

Yrst;

When the cross=section of the beam has single symmetry about
the y-axis, the symmetxical modes are governed by equation (86b)
and/the antisymmetrical modes are governed by the following equa-

tion:

A, f, +7\af +__T_zz + HJZ (87b
2B A Yot A ety = )

If the cross-section is completely unsymmetrical the stress modes
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are governed by the following equation:

£) + Was \ﬂiz £

VH;j 5 Yvj

—_ J = (88)
+ . YH-f- + Yv-f- - 0

AH j JJ AV 3 JJ
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Solution of the Non-Homogeneous Equation

Before solving the non-homogeneous equation it is nece=-
ssary to prove the orthogonality of the stress modes and to in-
troduce a law of. normalization as in Part I. Since the proof of
orthogonality follows the same method used in Part I it will be
omitted. The‘condition of orthogonality and law of normalization

may be stated in one equation by using a Kronecker delta,

Z af f = 8 (89a)

J Jjm jn mn
where, 1, m=n
Smn =
0, m#n (89b)

In equation (89a) f;  and fjn are the m-th and n-th modes respec-

jm

tively. Equation (85b) may be written for the n-th mode to obtain,

2 YTj
. £.) 1 —_— C =0
AJ(/jkAk J)+>\n‘aJ in + T Cra (902)
where,
Copy * ijTj £ (90b)

Multiplying through equation (902) by fjnd and summing over all

stiffener areas gives, after introducing equations (89),

Z CTmCrn 2 5 )
j f‘mnAj(@kAij) + I. - T xm mn (91)
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Equations (89) and (91) may now be employed in solving the non-
homogeneous equation.
A beam having a cross-section with double symmetry and
acted upon by torsional loading will again be considered. The
axial displacement may be assumed to be given by a finite series

as follows:

w5 =anjn g (2) | (92)

Substituting this formula into equation (80b) gives, after interchang-

ing the order of summation in the third term,

Equation (93) must now be multiplied through by fjm and

summed over all stiffeners. Reversing the order of summation in

the first two terms gives,

2 .
Z E d®gn
X g f. a(B, a f, —x——z ;——-—-—- af. f.
n ] nJmJﬁk kJn) G Fage Jimim

p oIm Zc - ¢
I. 4 TnSn™ " 7GI Tm
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Introducing equations (89) and rearranging terms gives,

2
a4g ’ Cr.. C Cr T
E m Tm™~Tn ~Tm-
G g4 * Z g, ijmAj(ﬂkAkfjm) * I =- Gl
n J

Substituting equation (91) and changing the subscripts m to n gives,

(7
2
E 98 2 CxgT
G dzz - >\ng‘n -7 GIC
or, (94a)
a%, 2 _ CzaT
2 = Ma8n E I,

Equation (94a), with the end conditions, gives the spanwise distrib-
ution of each stress mode and thus completes the solution for the
displacements,

Similar'equations may be developed for the spanwise distrib-
ution of stress modes with other types of loading and symmetry con-
ditions. Since the mathematical method of development of the equa-
tions is the -same in all cases, the equations will be merely stated
without proof. For a doubly-symmetrical section subjfcted to hor-

izontal loading the stress modes are determined by,

e ~plg = CEn® (94b)
dzz }ln n E AH
where,
= 4
Ctin %YHj fjn. (94<)

For a doubly-symmetrical section subjected to vertical loading the

stress modes are determined by,
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d gn »2g _ CynV (944)
where,
= 4
Cyvn %yvjfjn (94e)
o)

When a cross-section has single symmetry about the x-axis,
the symmetrical stress modes are governed by equation (94b) while

the antisymmetrical modes are governed by the equation,
g
a2g CprpT  Cy,V

2 -
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