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ABSTRACT

Anomalous behavior of the lattice parameters of solid
solution alloys of aluminum and gallium in titanium were observed at
app-roximately 3 atomic percent solute. Alloys of silver in titanium
did not exhibit similar anomalies. Anomalies also were observed in
the resistivity and in the coefficient of magneto-resistance for solutes
of Al and Ga. No significant evidence of anomalous behavior of the
Hall coefficient or the magnetic susceptibility with solute concentration
was found.

The effect of solute valency in producing the observed
anomalous changes in physical properties is interpreted, using the
Bloch-Brillouin approximation, as evidence of interaction between the
Fermi surface and the Brillouin Zones. The effects produced by
monovalent Ag and trivalent Al and Ga solutes indicate that titanium
has an alloying valency between 1 and 3 in these alloys. The Brillouin
Zone interpretation indicates that the alloying valency of titanium is
about 1.5 electrons per atom. |

The absence of an effect of solute addition on the suscepti-
bility, the susceptibility-temperature data of Squire and Kaufmann,
and the magnitude of the susceptibility indicate that titanium is anti-
ferromagnetic. The suggested antiferromagnetism is in agreement
with the interpretation of the effects of solute additions on the other

observed physical properties. It is, therefore, concluded that titanium
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has approximately 2 electrons per atom in antiferromagnetic coupling

‘between neighboring atoms, and about 2 electrons per atom in the
conduction band. Neutron diffraction experiments to verify the
suggested existence of a simple hexagonal antiferromagnetic super-

lattice in titanium are urged.
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I. INTRODUCTION

Metals are distinguished from other solids in nature by
certain outward characteristics which permit them to be easily
identified as metals. These characteristics, which are well known,
inq;.:lude such properties as ductility, metallic luster, and electrical
conductivity. Metals possess certain internal characteristics,
responsible for their outward appearance, which are unique in the
general class of solids. Addition of a second atomic species to a
metal may cause the original crystalline array to be abandoned in
favor of some other crystalline array. The degree to which the
second atomic species can be added to the first without changing the
characteristic crystal structure of the pure metal is determined
largely i:)y the difference between the two atomic species. The atomic
characteristics most important in this respect are: atomic éize,
valency, and position in the periodic table. Other considerations are
due to the atoms being arranged in the metal; these are: crystal
structure of the pure metal and the number of electrons which are
not bound to a particular atom in the metal. These outer, 'free',
electrons, it is well known, are responsible for the metallic
properties of metals. In general, the extent to which alloying is
possible, the concentration of metal atoms B on the crystal lattice of
A , depends on the similitude of A and B in the respects listed

above. Since the effects of the free electrons on solid solution



formation is not as readily understood as the other requirements,

- special attention appears to be indicated. The purpose of the
present study is to examine the effect of the outer electrons on solid
solution alloys of titanium.

Introduction of solute atoms substitutionally into the solvent
lattice changes the number of free electrons in the alloy at a rate pro-
portional to the difference in the number of outer electrons of the
solute and‘solvent atoms. The alkali metals contribute 1 electron per
atom, the alkaline earth metals 2, and so on. For the simple metals,
with a few outer electrons above a noble gas structure, the number
of "free'" electrons contributed by each atom, the alloying valency, is
well defined. The transition metals, however, present the question
of how many of the outer electrons are actually "free' in the sense
of the simpler metals. Sufficient latitude exists in the formal
definition of alloying valency for the transition metals that the alloying
valency is variously defined between 0 and 5.8 electrons per atom
(1), (2). This difficulty is discussed in more detail in Section VI.

Jones QS), (4), in about 1934, applied considerations of the
outer electrons, developed earlier by Peierls (5) and Brillouin (6), to
explain the occurrence of the X—phase in Cu-Zn and other binary
alloys. Jones concluded that the limiting concentrations of Cu and Zn
in the a’—phase are determined by the electron-atom ratio, the
numbér of '"free' electrons per atom.

Following Jones' work on the Cu-Zn phases, anomalous



lattice parameter changes in magnesium alloys were reported by

- Hume-Rothery and Raynor (7), Raynor (8), (9), (10), (11), (12),
Jones (13), and Busk (14). The lattice parameter changes reported
by these investigators were found to depend on the difference between
the valency of magnesium and the solute valency. Magnesium
crystallizes in the hexagonal close packed structure which is charac-
terized by the parameters a, the atom to atom distance in the basal
plane, andi_c_:., the atom to atom distance in the axial direction of the
hexagonal prism. In addition to the volume change due to the solute
size, it was found that the axial ratio, c/a, depended monotonically
on the solute valency. This effect was explained with the same con-
siderations employed by Jones on the Cu-Zn alloys. Busk, in his
extensive review of the magnesium alloys (14), found that the shear
strain in the magnesium alloys, the change in the axial ratio, could
be simultaneously described for all solutes provided he assigned an
alloying valency, slightly different than the chemical valency, to the
solutes.

Titanium, since it crystallizes in the hexagonal close
packed structure, provides an opportunity for solute effects similar
to those found in the Mg alloys. The hexagonal close packed lattice is
unique among the most common crystal structures of metals (h.c.p.,
b.c.c., and f.c.c.) in the ability to exhibit shear strain in addition to
dilataﬁon with solute addition. The present study describes the effect

of solute additfions on the lattice parameters of the tifanium lattice.
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The changes in the lattice parameters of the titanium lattice are

" found to be similar to those found in the Mg alloys. Theoretical
interpretation of the lattice parameter changes suggests that changes
in other physical properties, accompanying the lattice parameter
anomalies, should be found. Titanium, being a transition element
(with the atomic configuration 3d2 452), offers an opportunity to
correlate the effects of solute additions in a non-transition element
(Mg) with a transition element.

Sections II and III describe the preparation and measure-
ment of lattice parameter, resistivity, magnetic susceptibility, Hall
coefficient, and coefficient of magneto-resistance of titanium alloys
with solutes of aluminum, gallium, and silver. These solutes were
selected because of their wide range of solubility in titanium. The
observed physical properties were selected for their sensitivity to
electron-atom ratio in the alloys. The results of these measurements
are presented in Section IV. In Section V the Brillouin zones and
energy zones are derived from fundamentals as a basis for the inter-
pretation of the experiments. The space group and point group
symmetry elements of crystal lattices require, in general, additional
symmetry of the Brillouin zones. These requirements are discussed
and the energy zones for the hexagonal close packed lattice are
calculated. Section VI presents a discussion of the experimental
resuli;,s of Section IV in terms of the energy zones developed in

Section V. The work is summarized and conclusions are presented



in Section VII.



II. EXPERIMENTAL METHODS

A, Alloy Preparation:

The alloys employed in this study were prepared from the
pure metals. Titanium metal, prepared from the teiraiodide, was
obtained from the New Jersey Zinc Company. Aluminum, employed
in all but the initial survey alloys, is of spectroscopic quality
supplied by the Jarrel-Ash Company. The Eagle Pitcher Sales
Company supplied the pure gallium metal. Spectroscopic quality
silver was obtained from the Jarrel-Ash Company. The impurity
analyses of these metals is presented in Table 1.

Alloy preparation was accomplished by melting the pure
metals in a Kaufmann type furnace (15). This furnace consists of a
water -cooled copper hearth and an adjustable water-cooled molyb-
denum electrode contained in a pyrex cylinder mountied on rubber
gaskets in brass end plates. The assembly is provided with a
connection to a vacuum manifold and a source of helium. Melting
is accomplished by striking an arc between the molybdenum electrode
and the metals on the hearth in an atmosphere of helium at a few
pounds per square inch above atmospheric pressure.

Clark's studies (16) indicate that the lattice parameters of
titanium are sensitive to contaminants. The lattice parameters of
remeited specimens were found to be independent, within experimental

accuracy, of melting. Changes in ductility and hardness, which are



Table 1

IMPURITY ANALYSIS OF TITANIUM, ALUMINUM,
GALLIUM, AND SILVER

Titanium from New Jersey Zinc Co., Lot No. IT-417

Impurity Concentration
N 0.002%
Mn 0. 015
Fe 0. 005
Al 0,008
Mo 0. 001
Pb 0. 0045
Ni 0. 0035
Cu 0. 0025
Mg 0. 0015

Rockwell F average 77.

Aluminum from Jarrel-Ash Co.; Johnson, Matthey & Co., Ltd.,
London; Suppliers

Spectroscopic Analysis

Impurity Concentration
Mg 0.001%
Cu 0. 0005
Si 0. 0005
Ag 0. 0003
Fe 0. 0002
Mn 0. 0001
Cd 0. 0001

Gallium from Eagle-Pitcher Sales Co., Joplin, Mo.
Lot No. 2-3694-900 - Guaranteed Purity 99. 95%
principal impurity: Pb  0.02%



Table 1 (continued)

Silver from Jarrel-Ash Co.; Johnson, Matthey & Co,, Lid.,
Liondon; Suppliers

Spectroscopic Analysis

Impurity Concentration
Cu 0.0001%
Ca 0.0001
Na 0. 0001
Fe )

Mg )
Mn )
Pb ) trace: faint spectroscopic evidence
Si )
ca )
Sn )



also sensitive to impurity content, weré found to be only slightly

- changed after melting. Therefore, it was concluded from the examina-
tion of several pure titanium specimens, which were repeatedly
melted, that no significant contamination occurred during melting,.

| Extreme care was exercised throughout all stages of alloy
preparation in handling and cold forming to prevent the inclusion of
surface contaminants in the alloys. The pure metals and alloys were
washed in a solution of HF, HNO3, and HZO’ followed by an acetone
rinse.

The titanium alloys with aluminum and silver were melted
by placing the pure metals in the furnace together. In order to melt
the alloys with gallium, it was necessary to diffuse the gallium into
the titanium prior to melting. This was accomplished by making a
crucible and tight fitting cover of titanium. The gallium metal was
placed in the titanium crucible, and the crucible was sealed in an
evacuated vycor capsule. The crucible was slowly heated to 700°C
during 6 hours and held at 700°C for 18 hours. During this treatment
the gallium diffused completely into the titanium capsule. The weight
change for.the 5 gram assembly was less than 0.3 milligram in each
case. After the diffusion treatment the alloy was meltied in the same
manner as the other alloys. Mixing of the metals was accomplished
by convection currents in the molten alloy, and by repeatedly remelt -
ing thé alloy ingot, turning it over each time.

Alloy analysis was provided by the weights of the alloy
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constituents prior to melting and the requirement of a total weight
change of two milligrams or less in the five gram specimen during
melting. No chemical analyses were made; the requirement of a
small weight change during melting was considered adequate. Alloys
exhibiting a weight change in excess of two milligrams during melt-
ing were abandoned. The composition of each specimen, determined
from the constituent weights, is presented in Table 2.

The alloy specimens were cold rolled after melting to
break up columnar grains formed in cooling from the melt. Annealing
and local homogenization of the cold worked alloys was accomplished
by heating in evacuated quartz capsules at a temperature of the order
of 10000C for approximately twenty-four hours. Zirconium strip or
wire was included in each capsule to act as a getter to reduce con-
tamination to a minimum. If was intended that this first anneal be
performed in the beta phase. However, for the titanium alloys with
gallium, there was no available phase diagram. Therefore, the
temperature for annealing the alloys with gallium was based on
experience with the other solutes and repeated trial.

After the first anneal the alloy specimens were formed to
the desired shape. Thin foil, desired for the experiments was formed
from the small annealed ingots by cold rolling. Only in the alloys of
low solute concentration was it possible to obtain foil 0. 020 to 0. 040
inche;.s thick without cracks by cold rolling. Therefore, the alloys

were cold rolled to 0. 040 inch foil or until cracking began. The cold
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Table 2

ALLOY HEAT TREATMENT

Melting

Atomic % Wgt. Chng. Homogenize Anneal
Spec. No. Solute AW/W 0C, Hrs. °c, Hrs.
Ti #1 0 not melted @  ----- oL
Ti #2 0 not melted ceem= emmm-
Ti #4 0 0.001 950°,10 hr. . --=a-
Ti #5 0 0. 0003 950°, 24 hr. c—-—
Ti #6 : 0 0. 0001 950°,24 hr. = -----
TiAl #24 0 0. 0002 950°,24 hr. = —-me-
TiAl #9 1. 466 0.0002 9509, 24 hr. 800°, 4 hr.
TiAl #14 1.897 0.0001+ 950°, 24 hr. 800°, 4 hr.
TiAl #15 2.194 0. 0001 950°, 24 hr. 800°, 4 hr.
TiAl #16 2.661 0.0001- 950°, 24 hr. 800°, 4 hr.
TiAl #17 3.153 0. 0001~ 950°, 24 hr. 800°, 4 hr.
TiAl #18 3. 480 0.0001- 950°, 24 hr. 800°, 4 hr.
TiAl #7 4. 386 0.0001- 950°, 24 hr. 800°, 4 nr.
TiAl #19 5.509 0.0001- 1000°, 24 hr. 850°, 8 hr.
TiAl #12 6. 696 0.00008 1000°, 24 hr. 850°, 8 hr.
TiAl #10 8.267 0. 00009 1050°, 24 hr. 850°, 8 hr.
TiAl #20 9.410 0.0001 1050°, 24 hr. 850°, 8 hr.
TiAl #13 10,372 0. 00007 1050°, 24 hr. 850°, 8 hr.
TiAl #8 12. 310 0, 0001 1080°, 24 nr. 900°, 8 hr.
TiAl #22 13. 421 0.0001 10809, 24 hr. 900°, 8 hr.
TiAl #23 15. 185 0.0001 1080°, 24 hr. 900°, 8 hr.
TiAl #36 18.10 0. 0001 1100°, 24 hr. 900°, 8 hr.
TiAl #28 22.04 0. 0001 1125°, 24 hr. 900°, 8 hr.
TiAl #32 23. 89 0. 00006 1160°,24 hr. 900°, 8 hr.
TiAl #30 25.13 0.0001 1180°, 24 hr. 900°, 8 hr.
TiAl #34 27.96 0.00009 1200°, 24 hr. 900°, 8 hr.
TiAl #33 29. 81 0.0001 1220°, 24 hr. 900°, 8 hr.
TiAl #29 32.41 0.0001 1250°, 24 hr. 900°, 8 hr.
TiAl #31 34.50 0. 0001 1250°, 24 hr. 900°, 8 hr.
TiAl #35 39,175 0,0001 1250°, 24 hr. 9009, 8 hr.
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Table 2 (cont'd.)

Powder Final
: Recrystallize Specimen Anneal

Spec. No. °C, Hrs. Anneal oC, Hrs
Ti #1 600°, 1thr.  ___.
Ti #2 600°, 1hr.  ____.
Ti #4 600°, 1 hr. ————
Ti #5 600°, 1hr. -
Ti #6 600°, 1 hr. 800°, 24 hr
TiAl #24 600°, 1 hr. 800°, 24 hr
TiAl #9 620°, 1 hr. 800°, 24 hr
TiAl #14 625°%, 1 hr. 800°, 24 hr
TiAl #15 6402, 1 hr. 800°, 24 hr
TiAl #16 650", 1 hr. 800°, 24 hr
TiAl #17 6502, 1 hr. 800°, 24 hr
TiAl #18 670°, 1 hr. 800°, 24 hr.
TiAl #7 690°, 1 hr. 800°, 24 hr
TiAl #19 700°, 1 hr. 800°, 24 hr.
TiAl #12 725°, 1hr. ..
TiAl #10 725°, 1he. ..
TiAl #20 750°, thr. -
TiAl #13 750°, 1.  ____.
TiAl #8 775°, thr.  ____.
TiAl #22 775°, 1hr. s
TiAl #23 800°, thr., ..
TiAl #36 800°, thr.  ia
TiAl #28 900°%, 1hr. = mme-
TiAl #32 900°, 1 hr. c———
TiAl #30 900°, 1 hr. = eceo-
TiAl #34 900°, 1 hr. = eee--
TiAl #33 900°, 1thr. = -ee--
TiAl #29 900°, 1 hr. = aeo--
TiAl #31 900°% 1hr. = ceeo-
TiAl #35 900°, 1hr. = cmea-
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Table 2 {(cont'd.)

Melting
Atomic % Wgt. Chng. Homogenize Anneal
Spec. No. Solute AW /W °C, Hrs. °c, Hrs.
TiGa #6 0. 4825 0. 0001 975°, 24 br. 800°, 4 hr.
TiGa #1 1. 090 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #7 1.135 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #9 1.815 0.0001 975°, 24 hr. 800°, 4 hr.
TiGa #2 1.833 0.0001 975°, 24 hr. 800°, 4 hr.
TiGa #3 2.570 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #10 2. 694 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #11 2.804 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #12 3. 146 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa #5 3.493 0. 0001 975°, 24 hr. 800°, 4 hr.
TiGa X 3.72 0. 0002 975°, 24 hr. 800°, 4 hr.
TiAg #5 0.53 0. 0001 1000°, 12 hr. 825°, 8 hr.
TiAg #2 1. 09 0.0001 1000°, 12 hr. 825°, 8 hr.
TiAg #1 1.53 0.0001 1000°, 12 hr. 825°, 8 hr.
TiAg #6 1.94 0. 0001 1000°, 12 hr. 825°, 8 hr.
TiAg #10 2.54 0. 0002 1000°, 12 hr. 825°, 8 nr.
TiAg #7 2.97 0.0001 1000°, 12 hr. 825°, 8 hr.
TiAg #9 3.51 0. 0002 1000°, 12 hr. 825°, 8 hr.
TiAg #3 3.94 0.0002 1000°, 12 hr. 825°, 8 hr.
TiAg #8 4.95 0.0002 1000°, 12 hr. 825°, 8 hr.
TiAg #4 5.70 0. 0002 1000°, 12 hr. 825°, 8 hr.
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Table 2 (cont'd.)

Final
Recrystallize Anneal

Spec. No. °c, Hrs. °C, Hrs.

TiGa #6 600°, 1 hr. 800°, 24 hr.
TiGa #1 620°, 1 hr. 800°, 24 nhr.
TiGa #7 625°, 1 hr. 800°, 24 hr.
TiGa #9 650°, 1 hr. 800°, 24 nr.
TiGa #2 650°, 1 hr. 800°, 24 hr.
TiGa #3 680°, 1 hr. 800°, 24 hr.
TiGa #10 690°, 1 hr. 800°, 24 hr.
TiGa #11 7002, 1 hr. soog, 24 hr.
TiGa #12 7207, 1 hr. 800", 24 hr.
TiGa #5 720, 1 hr. 8002, 24 hr.
TiGa X 720 , 1 hr. 800, 24 hr.
TiAg #5 550°, 1 hr. 825°, 24 hr.
TiAg #2 6007, 1 hr. 825°, 24 nr.
TiAg #1 600, 1 hr. 8252, 24 hr.
TiAg #6 600°, 1 hr. 825°, 24 hr.
TiAg #10 600°, 1 hr. 825°, 24 hr.
TiAg #7 620°, 1 hr. 825°, 24 hr.
TiAg #9 640°, 1 hr. 825°, 24 hr.
TiAg #3 640°, 1 hr. 825°, 24 hr.
TiAg #8 650°, 1 hr. 825°, 24 hr.
TiAg #4 650°, 1 hr. 825°, 24 hr.
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rolled foil was trimmed to sheets approximately 3/4 x 2 inches,
- washed in acid, and sealed in evacuated vycor capsules with a Zr
getter for further annealing.

The second homogenizing anneal was begun by heating in
the beta phase for one hour, followed by cooling to the alpha phase.
The alloys were held in the alpha phase near the &, &+ /5 boundary
for approximately eight hours to insure complete transformation of
the alloy to the alpha phase. The annealing temperature for each
specimen is given in Table 2. The alloys were quenched in the vycor
capsules following this anneal.

The thin foils, previously cold rolled to 0. 040 inches thick,
were cold rolled slightly, to promote recrystallization with further
annealing, and bent to the radius of the X-ray camera. The foils,
too brittle to be cold rolled to 0. 040 inches thick, were cold rolled
slightly, but not enough to cause any additional cracking. Since
these thick alloy specimens could not be bent to the radius of the
X-ray camera, the cylindrical surface was generated by grinding
these specimens. A brass disc, machined to the diameter of the
X-ray camera, was fitted with #400 waterproof polishing cloth and
mounted on the spindle of a 14-inch lathe. The alloy specimen was
mounted in a lucite disc in the manner of a metallurgical specimen.
The lucite disc, in turn, was mounted in a holder on the lathe tool
post. | The alloy specimen was held against the turning polishing cloth

with the lathe cross feed. A small mount of water applied during the
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grinding was found to be helpful in removing debris from the polishing
+ cloth. After the cylindrical surfaces were generated, the specimen
was removed from the lucite disc by notching the lucite and striking it
sharply with a hammer. All traces of lucite were removed by pro-

longed washing in acetone. A final washing in HF and HNO, was

3
employed to remove possible surface contaminants and prepare the
specimens for the subsequent recrystallizing anneal.

The temperature and time of the recrystallizatioﬁ anneal
were determined from trial X-ray diffraction patterns. In general,
increased solute concentration required a higher annealing tempera-
ture to develop sharp X-ray diffraction lines. Since solid specimens
were used, small grains were necessary to prevent spotty diffraction
lines. The time and temperatures yielding the best results on trial
X-ray patterns, and used for the lattice parameter determinations,
are given in Table 2. The titanium-aluminum alloys above 20 atomic
percent aluminum were too brittle to be rolled, and hence required
different preparation methods described in Section II B.

Attempts to prepare single crystals of these alloys met
with failure. If was felt desirable fo examine single crystals at later
stages of the investigation, especially to evaluate the extent of the
anisotropy. Due to the allotropy, a straight-forward application of
Bridgman methods (17) cannot be expected to be profitable. The
straiﬁ-anneal method (18) was attempted, but it was only partially

successful in the pure iodide titanium specimens. In the aluminum
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alloys even 1/2 atomic percent aluminum proved to increase the
‘nucleation rate prohibitively for any further attempt. The develop-
ment of single crystals of titanium alloys evidently requires elaborate

investigation which is considered beyond the scope of this study.

B. X-Ray Diffraction Techniques:

A careful survey of available diffraction techniques indicated
that care was necessary to achieve the desired accuracy in the lattice
parameters. As a result of work published by Clark (16), it was
apparent that even small concentrations of oxygen or nitrogen have a
pronounced effect on the lattice parameters, especially ¢, of titanium.
A comparison of Clark's results with those of others, together with
the experimental methods, suggested that powder specimens as used
in Debye-Scherrer type cameras are unsuitable. This conclusion
was supported in preliminary determinations of lattice parameter.
The proposed explanation, which was not extensively investigated, is
that in preparing the alloy powder to be used in a Debye-Scherrer
camera, oxygen and nitrogen are adsorbed on the surface of the
powder: Such a surface condition is probably also achieved in the
case of solid specimens. The primary consideration is a large
difference in the surface to volume ratio between powder specimens
and solid specimens. For powder grains of the order of 10 microns
in diameter, a surface to volume ratio of 0.6 x 106 cm per cc is

obtained. A smooth metal surface will present about 1014 surface
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atoms per square centimeter. If a mono-molecular surface layer
of oxygen atoms is formed on the presentation of a surface of
titanium to air at room temperature, then from above it is seen
that this layer will contain about 0, 6 x 1020 oxygen atoms per cc of
titanium powder (at the density of solid titanium). This amounts to
an oxygen concentration of the order of 0.5 atomic percent. For a
suitable solid X-ray specimen an atomic concentration of the order

7 to 10_8 can similarly be expected. On the basis of Clark's

of 10~
results, a variation in lattice parameter of 0. 01 R in the ¢ para-
meter and 0.003 & in a parameter can be expected for the powder
specimen. The expected variation in the case of the solid specimen
due to surface adsorbed contaminants is much less than the desired
accuracy of 0.00003 Ao. in parameter determination. Therefore, it is
concluded that lattice parameter accuracy of the order of plus or

-5 O
minus 5 x 10 > A requires the use of solid specimens for X-ray

diffraction measurements.

1. Solid Specimen Method

Of the two common methods of obtaining X-ray diffraction
results from solid specimens, it was found that employing a focusing
camera was superior to the back-reflection method using a Laue
camera and monochromated X-rays. The focusing camera permitted
the application of statistical methods to the determination of lattice

parameter from the diffraction lines to a degree not possible with
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flat film methods.” The determination of lattice parameters is discussed
- in detail in Section IIL,

The focusing camera employed in this study was a 21 cm
asymmetrical camera of the type designed by Jette and Foote (19),
rﬁanufactured by George Wyland, Ramsey, New Jersey. Film calibra-
tion, which is normally accomplished by the use of calibrated knife
edges at the ends of the film, was achieved by the use of molybdenum
powder painted on the edge of the specimen, the diffraction lines from
the molybdenum powder serving as calibration lines on the film. The
calibrated knife edges built into the body of the camera were found to
shift slightly (of the order of a few minutes of a degree) upon dis-
assembling and remounting the specimen. This shift was thought to
be due to a very small displacement occurring between the specimen
and film holder and the body of the camera. A convenient solution
was found in the addition of a calibrating material. Molybdenum was
chosen for its accurately known lattice parameter, and a desirable
number and location of diffraction lines with respect to the titanium
lines. The molybdenum employed was in the form of a fine powder
obtained from the Westinghouse Electric Corporation. Purity of the
Mo powder was certified to be better than 99. 99 percent. Accurate
lattice parameter determinations of Mo are due to Spieser (20) at
Ohio State giving a equal 3. 14665 A. The average of a series of 6
determinations of lattice parameter of the molybdenum powder with a

Norelco 11 cm powder camera was found to be 3. 14667 A at 27°C
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with a lstandard deviation for this seriés of 0. 00009 X. Accordingly,
the parameter of the molybdenum was taken as 3. 14665 K in an
subsequent calculations.

The solid specimens, either bent foil or cylindrically
ground and prepared in a manner previously described, were painted
with a mixture of the Mo powder and banana oil in a narrow stripe on
the cylindrical face. The diffraction of X-rays from the specimen in
the camera occurred both from the titanium alloy and the stripe of
Mo powder.

The X-ray target was copper in all latlice parameter
determinations presented, using the Ko(1 and K., characteristic
radiation. In order to improve definition of the diffraction pattern on
the film, the nickel filter was placed immediately in front of the film
to reduce noncoherent scattering and fluorescence by the specimen in
a manner discussed by Barrett (21).

It was found impractical to attempt to control specimen
temperature at some arbitrary temperature; however, after about one
hour the heating due to the camera motor and the X-ray power supply
caused the camera and specimen to reach a stable maximum tempera-
ture of ZTOC. Temperature control was accomplished by maintaining
a specimen and camera temperature of 2.70C in all exposures by
adjusting the amount of ventilation around the camera.

It is well known that the use of single emulsion film in

asymmetrical X-ray cameras is desirable in reducing parallax of the
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diffraction lines on the film. In this case, however, it was found that
single emulsion film offered no improvement in accuracy over double
emulsion film for the diffrac'tion lines employed in the analysis. The
increased parallax in double emulsion films was compensated by
increased contrast and improved film grain size in the double emulsion
film employed. In addition, the diffraction lines used in the analysis
occurred at Bragg angles where the effect of parallax between the

two emulsions of the film was low, Figure 1. Since the errors due

to parallax are systematic, they are largely eliminated by the
statistical methods employed in the analysis of the filmms. After a
survey of available X-ray filmms with the above considerations in mind,
it was found that Eastman "No-Screen' X-ray film offered the best
compromise between the advantages displayed by various types.
Accordingly, the double-emulsion type was used in all diffraction

studies.

2. Debye-Scherrer Studies

Liattice parameter measurements extended to the solubility
limit were accomplished with the powder method, by necessity.
Recognizing the previously mentioned objection to the powder method
in this study, it was hoped that at higher aluminum concentrations the
expansion of the lattice due to absorbed gases would decrease.
Estimation of the error incurred by this method was achieved by

comparing the lattice parameters obtained by the powder method with
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the 1at1;ice parameters of solid alloy specimens. At 18 atomic per-

- cent aluminum the difference between the ¢ parameter determined
frqm a powder specimen andi a solid specimen is 0.0015 jg, while

for pure titanium the difference is 0. 005 A or more. It was assumed,
therefore, that the error due to using powder methods was less than
0.003 K in the range 22 to 36 atomic percent aluminum.

The preparation of the powder specimens duplicated the
methods employed on the solid specimens up to the point of fitting
the solid specimens to the camera. At this point in the preparation
powder was obtained by filing the specimen. After screening and
magnetically separating any file particles, the powder was sealed in
evacuated vycor capsules for annealing. The powder was annealed at
9000C for one hour (Table 2).

After annealing, the powder was placed in small, thin wall
quartz tubes for X-ray diffraction. The camera used in this study
was an 11 cm Norelco (North American Phillips Co. ) powder camera.
Filtered copper characteristic radiation was used. Realizing the
errors inherent in the powder method employed here, no attempt was
made to control the specimen temperature during exposure. Monitored

specimen temperatures were observed to be 25°C + 30C,

C. Physical Properties:

The alloys which were sufficiently ductile to be rolled to

thin foil were further treated prior to the determination of electronic
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properties. The previous annealing tr.eatment developed a very fine
grain structure suitable for X-ray diffraction studies. To minimize
the grain boundary area in tilese alloys they were subjected to a

further anneal. The specimens were sealed in individual evacuated
vycor capsules with a small strip of Zr getter and held at 800°C for

24 hours.

1. Resistivity

The alloy specimens were trimmed to rectangular foils
suitable for mounting in the specimen holder illustrated in Figure 2.
Realizing the limiting errors in the resistivity measurements arise
in the dimensional measurements, extreme care was exercised in
obtaining smoothly trimmmed specimens.

The resistance measurements were obtained using a Kelvin
Double Bridge (L.eeds & Northrup Co.). The foils were appl;oximately
0. 020 inches thick and 3/8 inch wide. The distance between the
potential probes was 0.500 inch. During the resistivity measurements
temperature was controlled by immersing the specimen and holder in

0
an oil bath at 23 C.

Z. Magneto-Resistance

The change of resistance in a magnetic field, perpendicular
to the field, was measured for the specimens used in the resistivity
determination. The apparatus is illustrated in Figures 2, 3, and 4.

The magnet used has a 4-inch square soft iron core with Armco iron
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pole tips. Power was supplied from a fegulated motor-generator

- set at 80 volts and 20 amperes maximum.

A uniform magnetic field is required over the area between
_the potential probes oﬁ the specimen. In this instance a uniform field
was obtained over a cylindrical volume 3.5 cm in diameter and 1.2 cm
long by the use of 120 degree conical pole tips of Armco iron. The
design details and field profiles are presented in the paragraph
entitled ""Magnet Design'.

In order to obtain sufficient sensitivity in the galvanometer
circuit of the Kelvin Bridge a d. c. amplifier was substituted for the
galvanometer. The output of the amplifier was used to drive a 0-1
volt vacuum tube voltmeter (Figure 5). While this system provided
sufficient sensitivity, it had poor drift characteristics. Thus the
"null" adjustment at zero field had to be checked both before ‘and
after making the resistance measurementis in the magnetic field.

The bridge slide wire was employed for the ''coarse' adjustment of
the bridge, a ''fine" adjustmeht was provided by a 1000 ohm "Helipot"
connected in parallel with the bridge slide wire. In this fashion
resistance changes of the order of 10“7 were observable.

Thermal drift of the resistance was considered to be the
most troublesome error encountered. A partial solution was effected
by enclosing the specimen, holder, and pole faces in an oil bath
(not shown in Figures 2 and 3). Thermal drift was not completely

removed however, and satisfactory reproducibility of experimental
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data required that readings be taken rapidly. The standard deviation
: of'Bt, the coefficient of magneto-resistance, was found to be of the
order of + 5 x 10-14 oersted.2 and adequate for the purposes of the

present study.

3. Hall Coefficient

The Hall coefficient, a measure of the shift in equipotential
surfaces in a conductor due to an applied magnetic field, was
measured with apparatus similar to that used for magneto-resistance.
Tungsten potential probes 0. 030 inch diameter were mounted in the
lucite specimen holder in such a manner that a potential difference
normal to both the current and applied magnetic field was measured,
The potential appearing between the tungsten probes was amplified
by a d.c. amplifier whose output was read ona 0 - 1 volt vacuum
tube voltmeter (Figure 6). Providing the input impedance of the d.c.
amplifier is sufficiently high, the Hall voltage can be read as the
amplifier output. A Brush (Brush Instrument Co.) model BL-932
d. c. amplifier was used which provides an input impedance of 9
megohms. Calibration of this amplifier permitted the output to be
read directly in input microvolts.

Temperature control of the specimen was accomplished by
immersing the specimen and holder in an oil bath in the manner
described under '"Magneto-resistance', Thermal drift was not

troublesome in this instance, since the Hall potential is rather
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insensitive to small temperature changes.

4, Magnetic Susceptibility

The experimeﬁtal determination of magnetic susceptibility
in weakly paramagnetic or diamagnetic materials requires elaborate
equipment. Thebwrite‘r is indebted to the Atomic Energy Research
Department of North American Aviation for provision of susceptibility
apparatué.- The apparatus employs the Fereday method of determin-
ing the suscepilzibility (22), in which the force on a specimen placed in
a constant magnetic force field is determined.

The measurement of the small forces from paramagnetic
titanium and titanium alloys was found to be best accomplished by an
electrodynamic balance. In such a balance a small coil of wire is
flexibly supported about a permanent magnet core (much 1ike the
voice coil in a speaker - in fact it was found convenient later‘to use
the magnet and coil from a 10-inch speaker). The coil then supports
the specimen in the magnetic field. By use of a mirror system
attached to the moving coil, ‘the magnetic force on the specimen can
be balanced by a small current in the coil. A microammeter measur-
ing the current in the coil can be calibrated in dynes by the use of
standard weights in place of the specimen (Figure 7).

Any ferromagnetic impurities contribute heavily to the
observed magnetic forces on the specimen. However their dependence

on field strength differs from the paramagnetic specimens and thus
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may be corrected by the use of an analytic method described in
-~ Section III. The use of the Fereday method in this manner provides
susceptibility determinations which are estimated to be accurate to

+0.1x 10.6 cgs.

D. Magnet Design:

The determination of the coefficient of magneto-resistance
and the Hall coefficient requires a uniform magnetic field. The
design of suitable pole tips can be accomplished from the following
simple consideration. Clearly a symmetrical field will be produced
by a solid of revolution. If a cone is taken then the only parameter
to be determined is the cone angle. In Figure 8 such a conical pole
tip is shown with the half cone angle 8. The field H at 0 along the
cone axis due to the surface magnetization I of an element on the sur-
face of the cone is:

AH 21_21'_!2.(.5 dr (2-1)
(r 24 x2) /e

The total field is then:
Vm
r x_dr

H = ZTTI J (V_2+x2)3,/2 (2-2)

v

(]

Assuming y and ¥, are fixed by the magnet dimensions, the field

is maximized if:

H

X

.Hence:
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X = 72; r. | (2-3)
o i_s found to be:
O =55° (2-4)

The total field from both pole tips is then:

H=28¢1b = €3

For high fields it is found convenient to increase the cone
angle slightly to compensate for saturation at the pole faces. It is
estimated that a 600 cone half-angle is a suitable compromise.

A typical field plot is presented in Figure 9. Since it was
inconvenient to monitor field strengths simultaneously with magneto-
resistance and Hall coefficient measurements, the field strength was
determined as a function of magnet current and gap distance. Repre-
sentative data are presented in Figure 10.

The determination of the magnetic susceptibilities by the
Fereday method requires that the specimen be located in a region
where the translational magnetic force is constant. For a para-

magnetic material this requires that:
2
grad (H”) = constant (2-6)

. where H is the field intensity.

The mathematical formalism for the calculation of the
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appropriate pole tip contours is given by Davy (23). Davy gives the

- transformation:

3 31672

5% =Ar-e (2-7)

where 5, Y and & are shown in Figure 11, and A is
an arbitrary constant.
Davy relates the imaginary part of (2-7) to the equipotential lines, so

that these are:

38 '
A y}/z sin {-_2-): constant (2-8)

Thus the equation of pole tip profile is given by (2-8) since H will
be normal to the equipotential surfaces. It is shown by Davy that
profiles of the form (2-8) satisfy the requirement (2-6) of the Fereday

method.



-39.

a|jyosqd dil 38jod Ayiqudaossng

i.\ .
dil
'/, 8lod uoJ)|

i

ANNNNNNN

NNNNANRNNRNNN

4

dig
9jod uo0J|

NS

ISu0H uummm UiSeely

Il @inbig




-40-

III. CALCULATION METHODS

A, Determination of Lattice Parameter:

The determination of lattice parameter from the diffraction
lines on a film may be accomplished in a variety of ways. The method
de%reloped by M. U. Cohen (24) appears to be most desirable from the
standpoint of acculfa;:y of lattice parameters. This method provides
a means of’.employing the data themselves for correction of system-
atic errors while simultaneously achieving the best fit for the random
errors. Cohen combined the method of least squares (25), (26),
with a correction for systematic errors in the diffraction pattern.
Various treatments of the systematic errors have been suggested
(27), (28), (29). Following Cohen's analysis, the systematic errors
due to finite slit width, absorption, and displacement of the specimen

from the camera circumference were estimated to vary as:

§ sin?e < fsin é, (3-1)

where & is the Bfagg angle and ¢ is 7-28,
Combining the systematic errors with a least squares calculation, in

the manner used by Cohen, yields:
—

2

4

‘ng 5 , ;Z)’éﬁ 194§4ék ;E;§ Sik &y

(3-2)

T T e st s pst? e “nue®



SN 3

)
5,_‘ 555m¢

h, k, 1 are the indices of the diffracting planes,

|
QA

4 is the Bragg angle,v a and c are the lattice

parameters, and D is the magnitude of the

syStematic error.
This result can be further improved by removing the implicit assump-
tion that iand c are independent parameters in the least sqﬁares
calculation. Efforts in this direction add greatly to the amount of
work required and do not appear to significantly increase the accuracy.
The interested reader ils referred to articles by E. R. Gohen (30) and
R. T. Birge (31) in the literature. The value D is a measure of the
amount of systematic error in the measured values of £i. In all
determinations it was found that a large D value, indicating a large
systematic error, was coincident with obvious camera misalignment
as evidenced by careful examination of the film.

The random error can be checked by recomputing sinZ-O-i
from the calculated values of va and c. It was found that the random
‘errors in sin @i (corrected for systematic errors) amount to less
than 0,0005. The resultant lattice parameters are judged accurate to
at least one part in 105.

kThe determination of lattice parameter for the Debye-
Scherhrer specimens was accomplished by similar methods. Due to

the inherent errors of powder specimens of titanium alloys mentioned
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earlier, the correction of systematic errors was considered unjusti-

- fied. The observed values of & were substituted in the equations:
i LSk =S
2. - .2
. 7 ? z

N )&2 ¢ | = 2 |
‘ 3&2 21—;0(‘. § +4—-——-—C2 J{ - Z%‘ Son 97,
7 i

where the symbols have the same meaning as

(3-3)

previously ascribed.

Equation (3-3) corresponds to Equation (3-2) for the case of focusing
camera, and was obtained in a similar manner.

Random and systematic errors were not evaluated for the
Debye-Scherrer results because they are overwhelmed by the error
due to the presence of adsorbed gases in the specimen. Experimental
comparison between powder and solid specimens indicated the Debye-
Scherrer parameters are in error of the order of +0. 002 § in the c

parameter.

B. Resistivity:
The resistivity of the foils was determined from the

relation:

f = %ﬁ (3-4)

Where{o is the resistivity in ohm-cm, R is the

specimen resistance in ohms, A is the area
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normal to the current in cmz, and 1 is the
distance between the Kelvin bridge potential

probes in cm..

The maximum error in/o may be estimated from:

5-%) i} 8522) . 5(AA3 + é%) (3-5)

where é indicates the maximum error of the
variable enclosed in brackets.,
For the specimen size used in resistivity measurements (0. 030 x
1/2 x 1/2 inches) and an uncertainty of 0, 0003 inches in thickness
and 0. 001 inches in length and width, Equation (3-5) indicates an

uncertainty of 0.014 in the resistivity.

C. Magneto-Resistance:

The classical theory of magneto-resistance was first
developed by Peierls (32). For isotropic materials there are, in
principle, two magneto-resistance parameters B; and Bp for
resistance measured transverse and parallel, respectively, to the

magnetic field. Peierls defines B; for isothermal specimens in

moderate fields to be:

f=f (1+ B H) (3-¢)

where/D is the resistivity in the magnetic field,

100 is the i‘esistivity in the absence of the field,
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and H 'is the field intensity.
" Evidently the units of B as defined in Equation (3-6) are oersted 2,
Clearly (3-6) can be written in terms of specimen resistance

in order to eliminate the determination of resistivity:
2
R=R (1+B;H), (3-7)

The magneto-resisbtance coefficient is then given by:

_ R-R. _'.. -
Bt - Ro HZ (3 8)

The resistance was determined with the field off and then
with the field on. Using the Kelvin bridge for resistance determina-
tions and field intensity of the order of 20 kilogauss the uncertainty
. -13 -2 i
in By was of the order of 5 x 10 oersted . Increased sensitivity
provided by employing the Brush d.c. amplifier reduced the uncertainty

0"]‘3 oersted-z.

in Bt to of the order of 0.5 x 1
Evidently the uncertainty in Bt can be further reduced by

requiring a parabolic dependence of resistance change with field

strength, and applying least square methods similar to those employed

in the lattice parameter determinations. This is expressed by the

relation:

) N BoR L
> e, H: =& (3-9)

where Ri and Hi are the transverse resistance in

the field and the field intensity respectively for
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the i th measurement.
"By making a series of determinations of the resistance and field
intensity for varying field intensities the uncertainty in Bt was reduced

to of the order of 0.3 x 10_13 oersted_z.

D. Hall Coefﬁciént:

The Hall coefficient relates the magnitude of an e.m. f.
developed across a conductor in a magnetic field, where the Hall
e.m.f., the current in the conductor, and the magnetic field are
mutually perpendicular. The effect was at first classically defined to
be proportional to the current in the conductor and to the magnetic
field intensity/(33). In the absence of the magnetic field H, the
potential observed between two points P and F (Figure 12) on

opposite sides of the specimen is:

\V,=i% (3-10)

where f‘o is the resistance between P and P
in the direction of the current i.
When a magnetic field is added in the direction shown in Figure 12

/.
the potential between P and P is:
V=V, +7/5 (3-11)

where VH is the Hall potential,

The Hall potential is defined classically according to:
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/=R ’H—E—z-' | (3-12)

where H is the magnetic field intensity, i is
the current, w is the specimen thickness, and
R is thé Hall coefficient.
In terms of the eiperimentally observed quantities the Hall coeffi-

cient is:

w (V=-V)

R - T{?T—;—l;l— (3-13)

In practice it was found quite easy to reduce Vo, the potential differ-
ence in the direction of the current i, to a very low value. A zero
adjustment on the amplifier was employed to bias the amplifier the
amount Vo’ thus eliminating the necessity of taking the difference
manually.

A magnetothermal effect contributing to uncertainties in
the Hall coefficient is the Ettingshausen effect. The Ettingshausen
effect produces a temperaturé gradient across the Hall specimen
and thus a temperature difference between Hall potential probes.
‘The tungsten probes and the titanium specimen form a thermocouple
circuit in which the Ettingshausen temperature difference produces
a thermal e.m.f. additive to the Hall e.m.f. Experimental data on
the Ettingshausen effect are not available for Ti, but assuming that
titanium behaves in this respect like Cr and Fe, the contribution to

the Hall coefficient is of the order 2 x 10~14 volt-cm/amp-oersted.
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Since all the specimené were quite thinv(N 0. 050 inch) and surrounded

' by an oil bath for teméerature stabilization, it was estimated that the
Ettingshausen contribution to the Hall coefficient was less than

Z x 10”7 4 v-cm/amp-oersted. Since the Ettingshausen contribution

to the Hall coefficient was of the order of the accuracy of the determina-

‘tion of R it was neglected.

E. Magnetic Susceptibility:

In determining the magnetic susceptibility of paramagnetic
materials by the Fereday method, the magnetic force on the specimen

Fy and the magnetic field intensity H have the relation:

Fo- 5 v[k-«) W) (3-14)

where V is the volume of the specimen, and K
and Ka are volume susceptibilities of the
specimen and surrounding medium respectively.
In terms of the specific susceptibilities Equation (3-14) can be

written:

=% V[(’(-KA.) H?’] (3-15)

K Ka
where X = 7 and XA = ’F‘; are the specific
susceptibilities, m is the mass in grams,
and /0 is the density.

Providing the magnetic field has a constant grad (Hz) and
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the specimen is magnetically isotropic Equation (3-15) reduces to:

| )
B = %(X—XA) v H ; (3-16)

In order to proceed from Equation (3-16) to a determination
of susceptibility, vthe electromagnetic force balance must be calibrated.
It was found that n@ethods developed by Hutchison and Reekie (34) and
McGuire and Lane (35) were suitable for the present experiment.
Briefly these methods consist of measuring the coil current by observ-
ing the voltage drop across a temperature-compensated standard
resistor with a potentiometer, and determining the force using cali-
brated weights in place of thé specimen. Field measurements complete
the requirements implicit in Equation (3-16) to the determination of
the susceptibility.

Experimentally the susceptibility obtained from Equation
(3-16) is too large due to ferromagnetic impurities. Liarge errors are
possible with apparently negligible concentrations of ferromagnetic
impurities. It can be computed that five parts per million (5 x 10"4
‘atomic percent) of ferromagnetic impurity contribute a 70 percent
error in the apparent susceptibility of silver at a field intensity of

10, 000 oersteds. A modification of a method suggested by Honda (36),
Owen (37), and Vogt (38) may be employed to eliminate the contribution
of fe;;romagnetic impurities. Providing the ferromagnetic impurities

are saturated, the force due to them is:
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F=meo 4 (1)

where \:{; is the force due to the ferromagnetic

impurity, m is the specimen mass, c¢ is the

impurity concentration, ¢ is the specific satura-

tion intensity, and s is the direction of the

divergeﬁce of the field H (in the direction of
2y

grad (H ) in this case).

2
Combining (3-16) and (3-17) and dividing by m grad (H ) yields:

ca -
)(q,__ X + Wy (3-18)

where Ft is the total force, X'a is the apparent
susceptibility from the force measurement, and
X is the true susceptibility (less k’air’ of course).

Equation (3-18) defines a linear dependence between )La and 1/H
whose intercept at 1/H -0is X.

The systematic errors originating from ferromagnetic
impurities were eliminated by a linear least squares fit of
’ X"a to 1/H. A typical case is presented in Figure 13 for pure

titanium.
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IV. EXPERIMENTAL RESULTS

The experimental results for titanium rich alloys of
aluminum, géllium, and silver are presented below. The solute con-
centrations in the solid solution region are shown in the phase diagram
of the titanium-aluminum system, due to Bumps, Kessler, and
Hansen (39), and in the titanium-silver phase diagram, due to
Adenstedt and Freeman (40), Figures 14 and 15 respectively. The
titanium rich end of the titanium-silver phase diagram has also been
investigated by Worner (41), and found to be similar to Adenstedt's
and Freeman's diagram. The titanium-gallium system has not been
investigated; however, it is thought to bear some resemblance to the

titanium-aluminum system at the titanium rich side,

A, Lattice Parameter:

The lattice parameters of pure titanium are c = 4. 68321 &
and a =z 2.95030 X; these values are accurate within + 0, 00005 X
The agreement with the values given by Clark {16), namely: c =
4.6833 & and a = 2.9504 _g, is quite satisfactory.

The change in the lattice parameters with solute concentra-
tion is shown in Figures 16, 17, 18, and 19. These data are presented
in tabular form in Tables 3, 4, and 5.

The curves of lattice parameters with aluminum concentra-
tion display an unusual behavior at 2.9 atomic percent aluminum

(Figure 16). The a parameter decreases uniformly with aluminum
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Table 3

Spec. No. At. % Al. c a
1 0 4. 68302 2.95075
2 0 4.68299 2.95024
5 0 4.68295 2.94994
6 0 4, 68312 2.95010
24 0 4.68310 2.95023
9 1. 466 4. 68318 2.94758
14 1.897 4,68313 2.94680
15 2.194 4.68316 2.94629
16 2.661 4.68314 2. 94552
17 3.153 4,68278 2.94441
18 3. 480 4. 68211 2.94370
1 4. 386 4. 68096 2.94161
19 5.509 4.67912 2.93664
12 6. 696 4. 67742 2.93435
10 8.267 4,67575 2.93431
20 9.410 4.67448 2.93215
13 10,372 4.67385 2.93055
8 12,310 4.67334 2.92690
22 13.421 4.67017 2,92512
23 15.185 4, 66802 2.92211
36 18.10 1 4,.66420 2.91750
28 22.04 solid 4,65911 2.91040%
32 23.89 powder 4.65812 2.90672
30 25.13 | 4. 65620 2.90528
34 27.96 4.65198 2.90026
33 29.81 4, 64981 2.89733
29 32.41 4. 64573 2.89240
31 34,50 4,64214 2.88949
35 39.75 4. 64023 2.88680

- *Lattice parameters from a powder pattern of specimen number 28
were: ¢ = 4. 66082, a = 2.91041.
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Table 4

TITANIUM-GALLIUM LATTICE PARAMETERS

Ti Ga No. At. % Ga c a
6 . 4825 .68721 . 94910
1 1;090 . 68808 . 94763
7 1. 1345 . 68796 . 94750
9 1.8152 . 68715 . 94604
2 1.833 . 68706 . 94600
3 2.570 . 68261 . 94430
10 2. 6941 . 68163 . 94400
11 2.8042 . 68097 .943éi
12 3. 1459 . 67990 . 94282
5 3.493 . 67901 . 94208
X 3.72 . 67838 . 94170
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‘Table 5

TITANIUM-—SILVER LATTICE PARAMETERS

Ti Ag No.  At. % Ag. c a
5 1 0.53 4. 68459 2.94882
2 1.09 468602 2.94771
1 1.53 | 4. 68724 2.94673
6 | 1.94 4.68838 2.94597
10 2.54 4. 69002 2.94478
7 2.97 4.69110 2.94390
9 3.51 4. 69252 2.94302
3 3.94 4.69371 2.94223
8 4.95 | 4. 69640 2.94070

4 5.70 4.69842 2.93933
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concentration, but theA_c_:- parameter remains constant (within

f 0. 0001 ﬁ) up to 2.9 atomic percenti and then decreases uniformly.
Onv"the basié of Vegard's law and the smaller atomic diameter of
aluminum, a linear decrease in both parameters is expected. A
further deviation of the c lattice parameter irom a linear dependence
on solute concentration occurs in the alloys with aluminum at approxi-
mately 10 atornic percent aluminum. The deviation from a linear
dependenc‘e is small (of the order of 0,05 percent change in‘slope),
but is believed to be real. The a parameter does not appear to
deviate significantly from the linear dependence on soluie concenira-
tion; behaving in this aspect as it does at the < parameter abnormalities
at lower solute concentration. No additional deviations in the lattice
parameters from a linear dependence on aluminum concentration
occur within experimental accuracy.

The (X, &+ ¥) phase boundary at 900°C in the titanium-
aluminum system is determined from the intercept of the lattice para-
meters (Figure 17) to be locdted at 36. 2 atomic percent aluminum,
This agrees well with investigétion by Bumps, Kessler, and Hansen

(39), which locates the phase boundary at 36.5 atomic percent Al.

The lattice parameters for solid solutions of gallium in
titanium are shown in Figure 18. The a parameter decreases
linearly vﬁth gallium concentiration, but the c parameter increases
at firAst, and then decreases. While no abrupt discontinuity in slope

is apparent, the linear dependence of lattice parameter on solute
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concentration does not begin until a concentration of about 2. 8 atomic
percent gallium is reached., The lattice parameters decrease
linearly with gallium concentration from 2.9 to 3.8 atomic percent
Ga.

In the alloys of silver in titanium the lattice parameters
change linearly with the concentration of silver in the range 0 to 5.5
atomic percent Ag. The ¢ parameter increases with silver concentra-
tion and the a parameter decreases. The lattice parametei‘ curves
of the alloys with silver agree with those given by Worner (41) in the
direction of the parameter change, but do not agree in the numerical
values of the lattice parameters. The lack of complete agreement is

thought to be due to differences in the experimental methods.

B. Resistivity:

The resistivity of pure titanium is found to be 52.7 micro-
ohm cm at 23°C. This value is in good agreement with the resistivity
given by Wyatt (42) as 54. 98 micro-ohm cm at 77 F (25°C).

The addition of solutes to titanium increases the resistivity
for solutes of aluminum, gallium, and silver. The curves of
resistivity increase with solute concentration are shown in Figure 20.
The data are presented in Table 6. The simple theory of electrical
resistivity in alloys as developed by Matthiessen (43), (44), Guenther
(45), and Linde (46) predicts a linear relationship between resistivity

and solute concentration. The curves of resistivity with solute
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Table &

RESISTIVITY OF TITANIUM ALLQYS

Spec. No. At. % , 0 - uQom
{
TiAl #6 pure Ti : 52.7
TiAl #41 0. 46 56.2
TiAl #42 0.86 61.8
TiAl #9 ’ 1.47 . 69. 4
TiAl #43 1.70 72.2
TiAl #14 1.89 81.3
TiAl #15 2.19 80.8
TiAl #16-1 2.66 88.9
TiAl #16-2 2. 66 92.5
TiAl #17 3.15 89.6
TiAl #18 3.48 92.0
TiAl #7 4.38 96.3
TiGa #6 0. 48 57.6
TiGa #1 1.09 £3.6
TiGa #7 1.13 67.1
- TiGa #9 1.81 77.0
TiGa #2 - 1.83 81.6
TiGa #3 2.57 95. 5
TiGa #10 2. 69 94. 3
TiGa #11 2.80 95.1
TiGa #12 3.14 92.9
TiGa #5 3.49 96.7
TiGa #X 3.72 96.5
TiAg #5 '0.53 55. 3
TiAg #2 1.09 60.6
TiAg #1 1.53 64. 1
TiAg #6 1.94 63.9
TiAg #10 2.54 71.0
TiAg #7 2.97 75.9
TiAg #9 3.51 - 73.4
TiAg #3 3.94 79.1
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concentration for alloys of aluminum and gallium in titanium increase
: af a greater than linear rate for Al and Ga concentrations less than
about 2. & atomic percent. In addition, a change in the slope of the
resistivity-solute concentration curve occurs at about 2. 6 atomic
percent for both Al and Ga solutes. Above about 2.6 atomic percent
the resistivity increases linearly, in agreement with theory, with Al
énd Ga concentration. The non-linear par‘ts‘ of the resistivity curves
occur at the samerconcentrations of Al and Ga at which anomﬁalous
behavior of the c lattice parameter is observed, except that the
resistivity assumes a normal behavior with solute concentration at a
lower concentration of Al and Ga (2. 6 instead of 2.9 atomic percent).
The resistivity increase due to a silver solute is proportiional
to the concentration of Ag in agreement with Matthiessen's rule. The
linear resistivity change with silver concentration is in accord with
the linear change in lattice parameters with Ag concentration, in spite

of the violation of Vegard's law in the latter case,

C. Magneto-Resistance

The magneto-resistance coefficient, Bt’ for current normal
to the magnetic field for the titanium alloys with aluminum, gallium,
and silver is displayed in Figure 21 and in Table 7.

The coefficient of magneto-resistance for pure titanium is
found to be 6.6 x 10713 cersted™?. This value is larger than the value

for alkali metals, Li, Na, ..., and the noble metals, Cu, Ag, and Au,
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Tahle 7

MAGNETO-RESISTANCE OF TITANIUM ALLOYS

Solute
Concentration -13 -2
Spec. No. At, % B, x 10 " (cersted )
Ti #6 pure Ti 6.6
TiAl #41 0.46% Al 7.0
TiAl #9 1.47% Al 8.6
TiAl #14 1.90% Al 8.8
TiAl #15 2.19% Al 9.2
TiAl #16 2.66% Al 8.8
TiAL #17 3.15% Al 3.9
TiAl #18 3.48% Al 2.5
TiAl #7 4. 38% Al 1.4
TiAl #19 5.50% Al 1.5
TiGa #6 0.48% Ga 6.8
TiGa #1 1.09% Ga 7.2
TiGa #7 1.13% Ga 7.0
TiGa #9 1.81% Ga 7.2
TiGa #2 1.83% Ga 7.5
TiGa #3 2.57% Ga 6.9
TiGa #11 2.80% Ga 5.6
TiGa #12 3. 14% Ga 2.6
TiGa #5 3.49% Ga 1.4
TiAg #5 0.53% Ag 4.0
TiAg #2 1.09% Ag 1.9
TiAg #1 1.53% Ag 1.6
TiAg #6 1.94% Ag 1.1
TiAg #10 2.54% Ag 1.7
TiAg #7 2.97% Ag 1.4
TiAg #9 3.51% Ag 1.5
TiAg #3 3.94% Ag 1.4
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but is less than the values for less metallic elements such as Sb, As,
- Cd, Ba, and Bi. While the order of magnitude of Bt found in this
study is certainly beyond doubt, some question of its exact value

exists. B_is found to be dependent upon specimen orientation in the

t
specimen holder of the order of £ 10_13 oersted_Z in the specimens
examined for this effect. This is thought to be?_aue to an anisotropy

éf B, with crystallbgraphic direction. Movement of the specimen in
the specimen holder causes the potential probes to make cohtact in a
different region of the specimen. Since the potential probes are srﬁall
enough to contact individual grains separately in the specimen, it
seerns possible the change in Bt’ caused by moving the specimen,

may be due to the dependence of B, on crystallographic direction. The
use of polycrystalline specimens prevented further investigation of
this effect.

The coefficient of magneto-resistance increases slightly in
the titanium alloys with aluminum and gallium up to solute concentra-
-tions of about 2.9 atomic peréent. At about 2.9 atomic pérce:qt Al
and Ga a rapid decrease in Bt occurs with increasing solute concentra-
‘tion. Further increase in the concentration of Al and Ga above 3
atomic percent does not produce a significant change in B;.

The addition of silver to titanium causes the coefficient of
magneto-resistance to decrease monotonically in the range 0 to 2

atomic percent Ag. Further increase in the silver concentration above

2 atomic percent has little effect on B;.
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D. Hall Coefficient

The Hall coefficient for alloys of aluminum and silver in

titaniu:m‘is presented in Figure 22.and Table 8. The Hall coefficient

13 1

for pure titanium is found to be +1.82 x 10" ~~ volt-cm-amp ™ *-

oersted™1, Previously Scovil (47) reported the Hall coefficient for

o-13

-1 -
titanium as +3.0 (+0.1) x 1 volt-cm-amp ~-oersted 1’. Foner

o-13 volt-cm-amp” 1.

(48) has given the Hall coefficient to be +0.95 x 1
oersted-l. Foner examined several specimens of varying degrees of
purity and concluded that non-metallic impurities decrease the Hall
coefficient. One specimen Foner examined, containing of the order of
1 atomic percent oxygen, was found to have a negative Hall coefficient.
It is thought that the difference between Foner's result and that of
the present study is due to different degrees of purity of the specimens.
'Scovil's value of 3.0 x 10-13 is not understood; however, it rmay be
due to a high degree of preferred orientation in the specimen, thus
incorporating any crystallographic anisotropy heavily in the measure-
ment.

The change in the Hall coefficient with solute additions of
Al and Ag is small compared to the changes in lattice parameter,
resistivity, and magneto-resisiance in these alloys with Al and Ag.
In addition, no marked difference in the change of the Hall coefficient
occurs between Al and Ag solutes, as observed in thg other physical
propérties. The Hall coefficient does not exhibit any significant

change at 3 atomic percent Al
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Table 8

HALL COEFFICIENT OF TITANIUM ALLOYS

Solute
Concentration
Spec. No. At. P a;:;fr;ersted
Ti $#6 pure Ti 1.82 x 10713
TiAl #9 1.466% Al 1.90 x 10713
TiAl #18 3.48% Al 1.73 x 10713
TiAl #7 4.38% Al 1.51 % 10713
TiAg #2 1.09% Ag 1.68 x 10713
TiAg #9 3.51% Ag .44 x 1071
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E. Magnetic Susceptibility

The magnetic susceptibility of alloys of aluminum and
silver in titanium is shown in Figure 23 and Table 9. Pure titanium
is paramagnetic with a susceptibility of 3. 31 x 10_6 emu (cgs). This
susceptibility is in good agreement with the value given by Squire and
Kaufmann\(49) from measurements on high purity Ti (50). The addi-
tion of solutes of Al and Ag to titanium causes almost no change in
the susceptibility for solute concentrations less than 5 atomic percent.
In addition, there is no significant difference in the susceptibility

between alloys with Al and with Ag.

F. Significance of Experimental Results

The experimental results indicate that solute additions in
titanium cause anomalous changes in some physical properties with
solute additions. The changes in lattice parameter with sohllte con-
centration suggest that the lattice parameter anomalies result from
an effect of the solute valency. In this respect the lattice parameter
changes are similar to those found in the magnesium alloys by Hume-
Rothery, Raynor, and Busk. Like the magnesium alloys, the lattice
parameter changes in the titanium alloys produced by the trivalent
solutes (Al and Ga) are different than those for the monovalent
solute (Ag). The different changes in the lattice parameter produced
by trivalent and monovalent solutes suggests that the alloying valency

of titanium in these alloys is between 1 and 3.
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Table 9

SUSCEPTIBILITY OF TITANIUM ALLOYS

Solute
Concentration

Spec. No. At. % X

Ti #6 pure Ti 3.31 x 107°
TiAl #9 1.466% Al 3.27 x 1078
TiAl #16 2.661% Al 3.24 x 107°
TiAl #18 3.48% Al 3.22 x 10°°
TiAl #7 4.38% Al 3.21 x 10'6
TiAg #2 1.09% Ag 3.11 x 10°°
TiAg #9 3.51% Ag 3.14 x 107°
TiAg #8 4.95% Ag 3.02 x 107°
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The effects of the solute valency evidently influence the

' changes in other physical properties of the titanium alloys. The
changes in resistivity and magneto-resistance with solute concentra-
tions are similar for the trivalent solutes Al and Ga, but are different
for the monovalent solute Ag. The solute valency has a reduced
influence on the Hall coefficient and susceptibility of the alloys, whose
explanation is not immediately evident. These changes in other
physical properties, in addition to the lattice parameters, with

solute addition further reinforces the suggestion of the influence of
solute valency in the titanium alloys. Since these changes in resistivity
and magneto-resistance, with solute concentration in addition to the
changes in lattice parameter, are different for monovalent and tri-
valent solutes, it is concluded that titanium has a valency between 1

and 3 in these alloys.
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V. BRILLOUIN ZONES FOR TITANIUM

The interpretation of the experimental results in terms of
the electron theory of metals requires the formulation and solution
of the appropriate eigenvalue problem. In this section the back-
ground and preliminary formulation of the problem is reviewed in
preparation for the following detailed discussion. The perturbation
calculation, presented in the first part of this section to emphasize
the relation between the crystal lattice and the mathematical result,
is given in similar form in texts on the theory of metals, e.g.,
Seitz (51), Wilson (52), and Mott and Jones (53).

The suggestion by Drude (54) and Lorentz (55) that metals
contain free electrons, and the application of Fermi-Dirac statistics
to this suggestion by Sommerfeld (56), remains the basis of the
electron theory of metals. The electrons, in the electrostatic potential

well of the metal, can be described by the Schrodinger equation:

HYE = M,/,, 4 (5-1)

where H is the Hamiltonian operator, wop is the
energy operator, and SP is electron wave function.

Since only electrons in stationary energy states are of interest,

(5-1) may be replaced by:
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/_/% = k/k % (5—2)

where Wp is the energy of the R# stationary state,

and ‘//e is the corresponding wave function.

An approximation must now be introduced in order to solve
Equation (5-2). This is necessary since H in Equation (5-2) con-
tains the coordinates of all the electrons in the solid if electron-
electron interactions as well as electron-ion interactions are to be
included. If the electron-electron interactions are ignored, then
Equation (5-2) can be solved explicitly. There are a number of
objections to neglecting the electron-electron interactions, which are
examined as the occasion warrants and are discussed briefly later.
For the present the calculation can proceed treating the electrons
independently (subject, of course, to Fermi-Dirac statistics) in a
- potential '"well", the metal, with a periodic potential perturbation,
the local potential in the neighborhood of the metal atoms.

With the above assumption, Equation (5-2) can be separated

and written for each electron:

pA
2 Sm m -
Vi + L (W - Vi g 3)) 4 =0 (5-3)
where m is the electron mass, h is Planck's
constant, and V is the potential.

It is to be noted that V(x, y, z) is periodic with the period of the lattice.

For example, if V(x,y, z) refers to a cubic lattice with a distance a
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between atoms, then:

Vfy,3) = Vitta, 7.})=V{x,?m,9)=)/ﬂcy,;ua). (5-4)

Bloch (57) has investigated equations of the form (5-3) and

has shown* that the solutions are of the form:

4=, (x.z/:})em/e'r (5-5)
where Xg(’('f;) is a periodic function with the period

of the lattice, r is the vector from origin to the

point (x, vy, z), and k is a vector of dimension

reciprocal length,

While Bloch's development of Equation {5-5) is certainly
acceptable and attractive, it is desirable later to examine the
dependence of the wave functions SLé and the energy eigenvalues Wk
on the lattice symmetry. The perturbation method has the desirable
property in this respect of displaying the lattice symmetry in the
most appropriate manner.

The eigenfunctions and eigenvalues obtained from the per-

turbation calculation are:

*The proof given by Bloch for Eq. (5-5) is very similar to Floquet's
theorem; see for example Whittaker & Watson, '""Modern Analysis",
4th edition, p. 412, Cambridge Univ. Press, L.ondon, 1950,
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The energy becomes infinite, according to Equation {5-6), if:
a (4
Q) W=y
—r ert(E__é/)d (5-7)
b) 2e £0
A
The infinity occurring in (5-6) when the conditions (5-7) are satisfied
is due to the treatment of the problem by non-degenerate perturbation
theory. The ""proper'' wave functions may be constructed from linear
combinations of the zeroth order wave functions. Using the resulting
wave functions, the perturbed eigenvalues may be calculated.

Corresponding to the conditions (5-7) two energy eigenvalues are

_obtained:

W, = We 2 / ¢/;"‘;;, b de (5-8.)

with no acceptable eigenvalues lying between the two eigegvalues.
The conditions for the energy discontinuity in V‘/k, Equation (5-8),
are exactly the same as those for the infinity in the non-degenerate
solution, namely, Equations (5-7).

The relations (5-7) for the energy discontinuity may be
related directly to the crystalline properties by examining them in

more detail. The first becomes:
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-—

[kl =]k

o ifk—E)7

The second vanishes unless C has the periodicity of the
lattice. Values of (/E‘_»é/) satisfying this requirements are called K .

Then:

b-k =K.
These last two relations can be combined in a single expression:

- %
£ - —Z’g = 7 (5-9)

Equation (5-9) presents the well-known condition for the
energy discontinuities. The polyhedra formed in /e-SPace by

Equation {(5-9) are the equally well-known Brillouin Zones (58).

A. Brillouin Zones:

It is to be emphasized at this point that the preceding
development has not employed any detail of the- crystal lattices
except the general specification of periodicity of the potential, a
characteristic common to all crystals. In addition, it is important
to note that the conclusions thus far are independent of the exact
functional form of the perturbing potential Vp.

From the condition that exp2/‘ft'/~7""‘has the same periodicity
as the lattice and the definition of K , it can be seen that the space of

E has the same translation properties as the reciprocal space of the

lattice. The primitive translation vectors of the reciprocal lattice

are derived from the primitive translation vectors of the real lattice
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by the transformation:
T X G
L7 mxnw

N Nt Ve Nyl s Nagat? e

= 2, x 2 (5-10)
fz 7 %vEom
f% = T x 7
Tx Ty

where ¢, T,, and Tjare the primitive translation

vectors of the real lattice, and ﬂ s f’z , and f3

are the primitive vectors of the reciprocal lattice.
In this reciprocal lattice (k-space) the K vectors are primitive
translation vectors connecting the reciprocal latfice points. Equation
(5-9), then, describes a set of planes in this space. The polyhedra
formed by these planes are the Brillouin Zones. Not all of the zones
thus formed are unique; in fact a better understanding of the electron
behavior is afforded by a reduction of the Brillouin Zones which lie

beyond the first.

B. Reduced Zones:

The possibility of representing the Brillouin pattern in a
different manner than the extended zones from Equation (5-9) is
suggested by the translation properties of the wave functions. By
substitution in Equation (5-6) it may be seen that the translation
E_.»,é— + K which transforms the wave function ¢,€ to 51'/27‘,5 leaves

the wave function unchanged, i.e.:
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Yere = % - (5-11)

Similarly, the translation E"’E*/Z transforr;ns the energy
surfaces into the first zone. Since, in general, W]g is not equal to
\A/k+,4 , the energy may be represented as a multivalued function of
k with k restricted to values lying within the first of the planes
(5-9). The difference in energyZ l/ee'across the zone face is obtain-
able from the degenerate perturbation calculation (5-8). The energy
gap is solely dependent in this approximation on the matrix element

Vzé’- Some of the conditions which permit the Brillouin conditions
(5-9) to be fulfilled and yet require that certain of the vk,k/ vanish will
presently be discussed.

It is important to the proper application of the perturbed
free-electron approximation to more complex structures to realize
that the only properties of the structure that have been employed in
the development to this point are: (1) the translational periodicity of
the lattice described by the primitive vectors ¢, L., G ; and (2)
the existence of a perturbing potential Vp having the same translational
periodicity as the lattice. These properties are sufficient to develop
the Brillouin Zones in both the extended and reduced schemes for any
translationally periodic lattice. The first four zones for the hexagonal
lattice are presented in Figures 24 and 25 together with the appropriate
parting lines in the reduced zones. The outer zones may be

constructed in various ways, but these are of no real difference since
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they lead to identical reduced zone figures. For example, all hexa-

" gonal lattices (e.g. simple hexagonal, graphite, hexagonal close
packed, and Wurtzite lattices) lead to the same Brillouin Zones since
they all have the same translational periodicity of the simple hexagonal
lattice.

These considerations suggest that there exist further condi-
tions for the existence of energy gaps on the Brillouin planes beyond
the Brillouir; conditions. An extensive discussion of the properties
of energy bands and Brillouin Zones is beyond the scope of this study;
however, it appears desirable to develop such concepts which yield
significant variations in the energy band structure to be employed in

the interpretation of the present experiments.

C. Time-Reversal Symmetry:

The reality of the Hamiltonian can be shown to res.ult in
additional symmetry in the representations of the wave functions
and the associated eigenvalues Wk. The consequences of the reality
of the Hamiltonian on the energy eigenvalues in wave number space
have been studied extensively by Wigner (59) and Herring (60) with
group theory methods. Herring refers to the additional symmetry due
to the reality of the Hamiltonian as time-reversal symmetry since
the eigenfunctions are interchanged upon an interchange of t;xe time
axis. The additional symmetry which results is the addition of

inversion symmetry types to the eigenvalues Wk . Such additional
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symmetries, Herring pbints out, may be accomplished with a center
‘of inversion, two-foldv rotation axes, glide plus translation, or a
suitable combination of these. Certain other symmetry forms, in
addition to these, may be required for eigenvalues for k satisfying
the Brillouin condition. For the presgnt purpose it is sufficient to
recognize that additional symmetry of the eigenvalues is required by
the reality of the Hamiltonian, and that this additional requirement is
at least inversion symmetry of the eigenvalues, i.e., W,'Z = W—k . The
determination of the additional symmetry form required of the % ,
i.e., center of inversion, two-fold axes, etc., requires extensive
consideration by group theory or its equivalent if the condition is not
automatically satisfied.

The inversion symmetry of the eigenvalues is automatically
assured in the hexagonal lattice providing only that the Brillouin planes
pass through the points k= I—i/z This is always satisfied for the
hexagonal lattice when the reduced zone form of specifying the eigen-

values is employed. The use of certain possible outer zone forms may

not satisfy this requirement.

D. Structural Symmetry Requirements:

In addition to the symmetry requirements imposed on the
wave functions by translational periodicity of the lattice, the Brillouin
conditions, and the reality of the Hamiltonian, further symmetrical

requirements may be imposed by point group and space group
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symmetries of the lattice. All thg symmetry elements required of

the wave functions can be expressed in group theory form (61). While
the application of group theory in this manner relieves the investigator
of a certain effort with respect to completeness, it does not present a
clear physical picture of the structural analogies and, in general,
presents the results in such a way as to be uﬁavailable to the investi-
gator unfamiliar with group theory methods. The point group and
space group symmetries, therefore, are discussed only on the basis
of individual symmetry element requirements rather than in the

abstraction of formal group theory.

The lattice symmetry elements consist of point group
symmetry elements, which are those symmetry elements exhibited
at a lattice point, and space group elements, which require a spatial
element in the symmetry description. The association of point group
and space group symmetry elements with the wave functions may be
accomplished by the transformation properties of the symmetry
element. Consider a particular symmetry element S. This symmetry
element has the property that it maps the lattice space R into the
lattice space R’ in a one-to-one mapping such that R is indistinguish-
able from R. Since the wave functions in the original lattice space R
must be the same as those in the space R’ and since these lattices

are indistinguishable, the wave functions must be invariant under the
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operation S*. This is:

E/:: S'e
and %(”’} = S %(V} ((5_12)

This symmetry requirement on the wave functions must
evidently also be imposed on the energy eigenvalues which are deter-
mined from the wave functions. Similarly the energy discontinuities

ng’ on the zone faces must satisfy a corresponding requirement since
the perturbing potential Vp must be unchanged by the operation S.

Consider, for example, a four-fold axis. The symmetry
operation S is then a rotation of /2, where n is any integer. The
transformation carries the vector ¥ into the vector 7’ by a rotation
of #7/2 about the four-fold axis. If the requirement that ‘/{e,("): ¢e,1("1}
is to be met, the vector E; must be carried into the vector Jé—/’ by the
rotation of %72 about the four-fold axis. Similarly, the energy
states must also display the four-fold symmetry since these are
developed according to (5-6) from the wave functions and e vectors.
By analogous considerations it may be seen that if E’, is a vector to a
Brillouin plane, then g,” must also terminate at a similar plane. This

latter property is assured if the set of primitive translation vectors

possesses the symmetry of the point or space group element. If,

*Actually the wave functions must either be symmetric or antisymmetric
under the operation S. Since inversion is required, it is not necessary
to consider in detail the antisymmetric case.
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however, the symmetry element is not implicitly included in the set
‘of primitive translation vectors, additional considerations will be
required to determine the required form of the energy zone.

The Brillouin Zone determined by the planes satisfying (5-9)
is to be distinguished from the energy zone which is derived from
the conditions (5-9) and further symmetry considerations. It is to
be emphasized that the Brillouin Zones resulting from the conditions
(5-9) will not be acceptable descriptions of the energy zones for all
possible crystal structures. While a complete discussion of this sub-
ject is beyond the scope of this dissertation, a brief discussion of this
conclusion is presented as a basis for the subsequent development of
the appropriate energy zone for the hexagonal close packed lattice.
Unfortunately, the available textbooks (51), (52), (53), fail to present
a complete description of the symmetry requirements of the energy
zones. The interested reader is referred to articles by Herring (62),
Bouckaert, Smoluchowski, and Wigner (63), and Hund (64), which
treat in some detail certain phases of the general problem of energy

zones by advanced group theory.

E. Energy Zone Forms:

Consider, as in the preceding section, that the vector k,
terminates on a plane satisfying the Brillouin condition (5-9). The
symmetry element that transforms the vector F into ¥’ preserves

the wave function ‘/é and transforms the vector /é, into :é,/ . Further,
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the unperturbed energy W!g is unchanged by this transformation. The
‘energy perturbation ka: on the Brillouin plane is unchanged by the
transformation. The potential perturbation Vp must remain unchanged
by the transformation since it has all the symmetry of the lattice.

The wave functions ‘:‘é remain unchanged by the transformation, thus
the product "!’: VF ‘Plc must be invariant under the transformation. Hence
the matrix element Vgg' must be invariant under the symmetry
operation since its integrand is invariant. Thus, if E. terminates on
a Brillouin plane, either (1) E,: also terminates on a similar Brillouin
plane, or (2) the Brillouin plane does not represent an energy surface
since VYp§¢ must vanish on the surface. The case (1) contributes no
really new information to the construction of the energy zones; the
conclusion that similar zone faces had equal energy gaps could have
been obtained from less fundamental considerations. The case (2),
however, constitutes a significant addition to the required properties
of energy zones. The degeneracy condition includes all possible
planes of degeneracy, and hence the postulate cannot be satisfied in
the manner (1) by the construction of zone surfaces in addition to

those given by (5-9). The only remaining possibility is that the energy
gap, ka' , must vanish on such planes. This principle can reasonably
be extended to show that the planes forming the energy zones must
satisfy the appropriate point group and space group symmetry
elements of the crystal lattice. This requirement is, of course, in

addition to the requirements previously stated.
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Group theory accomplishes the same result as the above
“treatment, but in a less intuitive fashion. It provides, in addition,
some information about the behavior of the degeneracy of certain
states at the edges of the faces of the energy zones. This additional.
information is of importance in only a small fraction of the inter-
pretive problems where this theory is useful, and hence is not dis-

cussed here.

F. Energy Zones in the Hexagonal Close Packed Lattice:

The foregoing theory will now be employed to construct the
energy zones for the hexagonal close packed lattice of the titanium
alloys of this study. Since the energy zones for the hexagonal close
packed lattice which satisfy ti1e symmetry requirements are different
than the Brillouin Zones given in some texts (52), (53), the calculation
is developed in detail. |

The translational periodicity of the hexagonal lattice is

described by the vectors:

V3 a/z 0 o
_/ = - “/Z , 2_:2 = a , 'Ej-a =[O (5_13)
o C

where these vectors are illustrated in Figure 26, and
c and a are the hexagonal lattice parameters.
The hexagonal close packed lattice is characterized by an atom at
(%7%,%% , % % )in addition to the one at (0,0,0). The

reciprocal lattice is described by the vectors:
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/e [-ga 0
= _ o ‘ - _ '_% ~ _|o
{(’) o ' /02 o ! ﬂ" " (5-14)

Thus the .rec.iprocal lattice is hexagonal with the parameters 2//31
and ’/C, corresponding to the parameters a and c in the real lattice.
This reciprocal lattice is shown in Figure 27 in approximately correct
proportion to Figure 26.

The Brillouin Zones are constructed in the reciprocal
lattice space by the relations (5-9). The space of E and the reciprocal
lattice space are taken as identical; thus the set of E vectors may be
chosen the same as the primitive vectors, {3 , of the reciprocal
lattice. The planes satisfying the Brillouin condition are normal o
and bisect the K vectors. The first zone is shown in the reciprocal
lattice space in Figure 27. The outer zones are shown in Figures 24
énd 25. If the reduced zone scheme is used, only the first zone need
be constructed and the form of the remaining zones need not be con-
sidered further.

The inversion symmetry required of the energy zones is
seen to be satisfied by the hexagonal prism in Figure 27. In addition,
it is necessary to consider the requirements of the remaining symmetry
elements of the hexagonal close packed lattice. All symmetry require-
ments of the simple hexagonal lattice ( Déh) with 1 atom at the lattice

point (000) are automatically satisfied since the set of primitive

translations possess all the remaining symmetry elements of the
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lattice. The close packed hexagonal lattice ( Dgh) with an additional
atom at (2/3, 1/3, 1/2) has the same set of primitive translations,
but has a different set of symmetry elements. The Brillouin Zones
are the same in both cases, since the primitive translations are the
same. It might, however, be expected that the energy zones in the
latter case are different due to the additional symmetry elements.
Verification of this intuitive notion may be obtained by carrying out
the indicated symmetry operation for each individual symmeiry
element in the case of the hexagonal close packed lattice. The
characteristic symmetry element introduced in the hexagonal close
packed lattice over the simple hexagonal is the c¢ glide resulting from
the plane of atoms (2/3, 1/3, 1/2). The other symmetry elements do
not affect the zone structure in the reduced zone scheme and are not
discussed in detail.

The c glide transforms the space lattice into itself by a
displacement along the z axis of c¢/2 and reflection in a plane normal
to a vector of the form:

a/z/3
(o}
o (5-15)
lying in the basal plane. The reflection in the plane normal to (5-15)

takes the vector Y into the vector whose components are:

_
ZJV:J’Y%'

v Lad
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Thus the glide 0peratioﬁ transforms the vector:

a _ K
Yy I 3
YI} into V'«a, . (5-16)
% Gt 2

Calling the operator which performs this operation Sc,

indicating a c glide, the wave function 4’,6 must then satisfy:
Gr) = S ¢, (r)
Y (r) = Y(r)

where the transformed function may be the conjugate

)
)
) (5-17)
)

of L/é without violating the requirement.
Using the relation (5-17), the energy perturbation Vee' at the zone
surfaces may be examined. Writing the expression for the energy
perturbation
*
Ve = [ Y (r) Yotr) Yool) e

it is seen that this must transform as:

Vee' = [ & W) S Gy b, (519

The periodic potential Vp is invariant under the glide transformation
since either (0, 0, 0} or (2/3, 1/3, 1/2) are equivalent origins for the
description of the hexagonal close packed lattice*. Thus Vp(r ) is

identical with Vp(r’) and either Vp( r ) or Vp(r’) may be written in the

*

This is evident by considering the hexagonal close packed lattice to be
constructed from two identical simple hexagonal lattices, one centered
at (0, 0, 0), the other at (2/3, 1/3, 1/2).
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expression for Vma’.
If Bloch functions are employed in (5-18), the expression

becomes:

ik-F 152
Vg~ gsc{xh(r}ezﬁ évf’(") Sc {Xle (‘,)ezrrcle r } dr (5-19)

The expression (5-19) becomes appreciable at the zone boundaries,

i.e., for R satisfying the relations (5-9). For a vector K terminating

on the planes forming the ends of the hexagonal prism, the planes

o
O
s
2c,

the expression (5-19) becomes:

normal to:

/-Sc{Xk exp( 2 E(z"{;) F)} VP(I") SC {Xﬁ exy(zﬁi%("zz)'?“}d’t (?—20)

Equation (5-20) is identical with the expression for the energy perturba-
tion by the assumption that ka' is invariant under the transformation

Sc. Hence the equality:

iF x iZ
Jhra)pgklde = [ Gl ) e o) az
must hold. This can be written:
Ver' = e’ Vee' =~ Vee' (5-21)

Evidently the matrix element VEE must vanish on the zone faces

(o, o, i-'z‘lz;‘). Therefore the energy must be a continuous function of

k across the (001) faces of the first Brillouin Zone. The correct
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energy zone is thus distinct from the Brillouin Zone since the energy
‘varies continuously from the first to the second zones.
The next zone face in the (001) direction occurs at z - '_i:-c';'.

The glide transformation yields a factor of exp(zﬁ‘i-%%) in the wave

functions so that the relation analogous to (5-21) in this case is:

it
Vi =€ Ver = Ve (5-22)
Therefore,the energy difference across the zone faces does not vanish
from symmetry requirements.
In the extended zone scheme, planes satisfying the Brillouin
condition occur at + ch ,t++ ,+32 ,+t2, etc. The glide symmetry

2¢ ¢

removes the energy gap on the planes + 'ZLC , i-_g_c , + 25(—: , etc. There-
fore, the correct energy zones for the hexagonal close packed lattice
occur as pairs of the Brillouin Zones.

The volume of each Brillouin Zone for the hexagonal lattice
is @/Z CZ; Cg. For a lattice of Nl’ NZ.’ N3 primitive cells in the x, vy,
z directions respectively, there are N1N2N3 energy states. The total
volume of such a lattice is N1N2N3 ."gaz’c . The total number of
energy states in each Brillouin Zone is N1N2N3, or one energy state
per primitive cell in the crystal. Each energy state accommodates
two electrons by the Pauli Principle, Since the primitive lattice cell
contains two atoms, each Brillouin Zone corresponds to an electron-

atom ratio of 1. Since each energy zone contains two Brillouin Zones,

each energy zone contains two electrons per atom when all the energy
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states are occupied.
| Assuming the energy perturbation at the energy zone faces
is small, the approximate electron-atom densities can be computed
by geometrical considerations. The inscribed sphere which just
Ce
touches the first Brillouin plane in the (001) direction contains g'%[ @)
energy state s/ato.m. For titanium with an axial ratio of c/a - 1.58
or C‘z/ak‘ = 0.548, the electron density is approximately 0.18 electrons
per atom. The first planes of the energy zone to be encountered upon
further increasing the electron density are planes of the form (100).
The volume of the inscribed sphere touching these planes is 4/31 ak3
and contains %Ir'g %ﬁelectrons per atom. For titanium this electron
density is 1.1 electrons per atom. The next planes of the energy zone
to be encountered are planes of the form (001), which correspond to
an electron density of 1.46 electrons per atom. These values can be
extended to higher energy zone faces by simple analogy with the pre-
ceding discussion.
Calculation of exact electron densities is extremely difficult
on the basis of present theory and will not be treated in detail. A
semi-empirical method, however, may be used which serves only as

an approximation to the necessary correction. This correction will

be discussed briefly in Section VI.

G. Corrections for Electron~Electron Interactions:

In the foregoing discussion no mention has been made of
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electron-electron interactions. While the ad hoc assumption of a
'small perturbation in potential precludes an exact treatment of these
interactions, approximate methods exist which might be employed.
Inclusion of these corrections is omitted in the present study since
the amount of the correction is small and‘ the methods required are
quite complex. The correlation energy has been estimated by

D. Pines (65) in titanium and similar metals and found to be small

(of the order of 10 percent correction). The exchange correction is
of the same order of magnitude as the correlation correction; its
inclusion in the present treatment is even less justified (66). A care-
ful consideration of these corrections on the present model in titanium
would alter the results iess than 20 percent in energy and even less

in the other parameters. Inclusion of these effects does not appear to
be justified in view of the doubtfulness of the accuracy of the perturbed
free electron model in the description of transition metals and addi-
tional complexity of theory resulting from even an approximate
treatment of the corrections., Detailed discussions of correlation
effects have recently appeared by Pines (67) and Stoner (68) to which
little could be added. Exchange corrections are treated in detail by
Seitz (51). Recently, an excellent review of the application of
theoretical methods to transition metals and alloys has been written
by Hume-Rothery and Coles (69). The completeness of this review
1eave;s little to be added for application to the present study. It may

be noted that the conclusions reached by Hume-Rothery and Coles are
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not unfavorable to appliéation of the perturbed free electron ireat-

ment to transition metals.
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'VI. DISCUSSION

Transition metals are characterized in the atomic state
by unsaturated "d" quanturn states. Titanium has the atomic con-
figuration 3d2 452 and hence has 4 electrons in quantum states beyond
a noble gas structure. In a metal crystal these four outer electrons
occupy energy states considerably above the lower states of the argon
configuration. The four outer electrons of titanium may be represented
in the energy zones developed in the previous section, and occupy
energy states in the energy zones up to the number required to
accommodate 4 electrons per atom. The maximum number that can
be accommodated in any one zone is 2 electrons per atom. Thus the
four outer electrons of titanium will occupy at least two energy zones.

The addition of solute atoms substitutionally in the titanium
lattice produces a dilatation of the lattice since the solute atoms, in
general, are not of the same atomic volume as the titanium atoms.
The local dilatation strain around a solute atom is distributed between
many neighboring atoms so that the strain energy is minimized. Above
very small solute concentrations the dilatation is nearly uniform in
the lattice. The dilatation in the lattice is a linear function of the
number of solute atoms in the lattice. The linear dependence of
atomic volume on the solute concentration (Vegard's Law) is found to
be obeyed in many solid solutions.

Addition of solute atoms also changes the number of electrons
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which are I;LOt bound to a particular atom if the valency of the solute
“atom is different than the valency of the solvent atoms. Providing
the concentration of solute is sufficiently small and the solute and
solvent atoms have different valencies, the number of loosely bound
electrons changes as the difference in valency and the solute concentra-
tion. The solute atoms are also assumed to be randomly distributed
in the lattice. If the solute atoms are distributed in a regular
pattern, the Brillouin Zones of the alloy are different than the
Brillouin Zones of the pure solvent, since the periodicity of the alloy
lattice is not the same as the solvent lattice. A common example of
such a regular array is the superlattice alloy CusAu. In dilute
sqlutions such ordering, even in local regions, is unlikely.

The dilatation of the solvent lattice by the addition of the
solute creates a perturbation of the electron energy in the pure solvent
lattice. The form of the energy zones was shown in the previous
section to be dependent only upon translational periodicity of the
lattice. The energy perturbation at the zone boundaries, however,
depends upon the functional form of the perturbing potential. The
distribution of electrons near the energy zone boundaries will
necessarily be changed by a dilatation of the lattice. The change in
the energy distribution is negligible for all the unbound electrons
except those in energy states very near surfaces of the energy zones.

The local potential around the solute atoms Will usually be

different than the potential in the neighborhood of the solvent atoms.
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In a perturbed free electron approximation, this difference is usually
neglected in its effect on the energy perturbation. Since this amounts
to a second order correction in the eigenvalues, neglecting the differ-
ence in the local potential in the neighborhood of the solute atoms is
probably justified in dilute solutions.

In the following paragraphs the alloy model described above
is examined in more detail to develop an explanation of the experimental
results presented in Section IV, The discussion, based on the energy
zones derived in Section V, is directed first toward mechanical
property changes resulting from changes in the electron energy distri-
bution due to solute additions, and then toward electrical property
changes. Next the experimental results are compared with the property
changes based upon the energy zone model, and a description of the
electron structure of pure titanium is developed with the close packed
hexagonal energy zones. Finally the resultant energy zone structure
is compared with some of the current theories of metals of transition

elements.

A. Lattice Strains:

The hexagonal close packed lattice is characterized by the
lattice parameters ¢ and a, Figure 26, For ideal close packed lattices
these are in the ratio c/a = m = 1.633. In most hexagonal close
packed metals the axial ratio, _:., is somewhat different than the ideal

ratio; in titanium the axial ratio is c/a = 1.587. Due to solute-solvent
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size difference, vsolute atoms added to the hexagonal close packed
lattice produce a change in the average atomic volume which is
linear with solute concentration. The resulting changes in the para-
meters c and a vary linearly with the solute concentration, while the
axial ratio is invariant with solute concentration.

The energy zone for the hexagonal close packed lattice pro-
vides a unique oPportunity for non-isotropic lattice deformations. The
planes of energy discontinuity are located at different energies in the
(100) and (001) directions in the hexagonal lattice. Upon addition of
electrons in the hexagonal energy zones, the Fermi surface, the sur-
face of highest occupied energy states, encounters the zone face in
the (100) direction before encountering the zone face in the (001)
direction. Jones (3) suggests that when the Fermi surface overlaps

planes of the energy zones it produces a "

stress' on the crystal. If
the Fermi surface overlaps the energy zone surface moderately, the
total energy of the electrons can be reduced if the surface of the

energy zone is shifted to higher energies. Similarly if the Fermi.
surface lies below the surface of the energy zone, the total energy of
the electrons can be reduced if the surface of the energy zone is shifted
to lower energies. The number of energy states enclosed in the
energy zone must, however, remain constant during any displacement
of the energy zone surfaces. Thus only those lattices whose energy

zones are not cubically symmetrical about the coordinate axes of

reciprocal space can asymmetrically deform in order to lower the
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electron energy a;'id maintain a constant volume. In the hexagonal
‘lattice, deformation of the zone can occur by contraction in the (001)
direction and expansion in the (100) direction. The distortion of the
energy zone in this manner necessitates a shear strain in the crystal
lattice in the opposite sense: ¢ expands and a contracts. Jones refers
to this effect as a "'stress' on the crystal in the appropriate crystallo-
gropic direction produced by the electrons. This terminology is
apparent from considering that the ''stress', -gfad E, acts in such a
way as to produce the shear strain in the crystal equivalent to the
distortion of the energy zone. Jones has evaluated such a "'stress"
for § -phase alloys in the copper-zinc system. Goodenough (70),
following Jones' suggestion, calculated the ""stress' for other Fermi
energies in hexagonal close packed lattices. Both writers found that
the electron energy reduction is of the order of magnitude to be
expected from the observed shear strain by approximate considera-
tions of the interactions involved. Experimental evidence of this
strain is given, in addition to Jones' work, by Hume-Rothery and
Raynor (7) in magnesium alloys.

The effect of the perturbation on the energy of the outer
electrons can be considered, for convenience, as an interaction
between the Fermi surface and the energy zone, as suggested by
Jones. Calculation of the interaction between the Fermi surface and

the energy zone involves the evaluation of integrals of the form:
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)
5 Vo' dE (6-1)

where the meaning of these symbols is the same

as previously ascribed.
The assumptions necessary for quantitative evaluation of integrals
of the form (6-1) do not appear to be justified for most real metals;
however, a qualitative understanding of the change in the interaction
on changes in the Fermi level is easily obtained. The change in
energy of a state R due to the perturbation is Vg . The energy
perturbation for ]El less than \é“ satisfying the Brillouin condition
is negative and increases in magnitude as k tends to E . At e
equal El the energy gradient %‘Z is zero, Thus the Fermi sur-
face will contact the planes of the energy zones orthogonally. The
density of energy states is therefore increased at the Fermi surface
when a contact with the energy zone is made. These states are reduced
in energy below the corresponding unperturbed energy states by the
amount Vle',la’ . If the Fermi surface is near the surface of the energy
zone, the energy of the elecirons near the Fermi surface is reduced
by the amount (6-1) if a contact can be made. Contact can be achieved
by the lattice shearing in such a way that the surfaces of the energy
zone near the Fermi surface are shifted toward the Fermi surface
while the energy zone surfaces farther from the Fermi surface are
shifted away. The ''stress' on the crystal suggested by Jones is

therefore of the form of (6-1).
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The Fermi surface contacts the energy zones for the hexa-
‘gonal close packed lattice (Figures 24 and 25) on the (100) faces at
an electron-atom ratio of ab01;1t 1.1. The (001) face contact§ occur
at about 1.5 electrons per atorn. While the details of the interactions
associated with these contacts are difficult to determine, a qualitative
relation between lattice strain and electron-atom ratio can be obtained
by examining the nature of the interaction with increasing electron-
atom ratio. As the electron-atom ratio increases, the interaction
between the (100) faces of the energy zones and the Fermi surface
increases. A shear strain increasing the axial ratio c/a will reduce
the energy of the energy states near the Fermi surface until the Fermi
surface contacts, and overlaps, the (100) faces of the energy zone.
Thus an axial ratio greater than 1.63 can be expected for electron-
atom ratios near 1.1. As the electron-atom ratio increases, the
overlap of the Fermi surface beyond the (100) faces increases. The
energy states near the overlapped Fermi surface are reduced by a
shear strain reducing the axial ratio below 1.63. As the electron-
atom ratio continues to increase, the interaction between the Fermi
surface and the (001) faces becomes increasingly important. The
shear strain reducing the (001) face interaction increases the axial
ratio. The overlapped (100) face interaction and {001) face inter-
action compete until just before the (001) face contact is made.
Wheﬁ the Fermi surface nearly contacts the (001) faces, the (001)

interaction is greater than the (100) interaction, and the axial ratio
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increases abruptly. After the (001) contact between the Fermi sur-
face and the energy zone at about 1.5 electrons per atom, the axial
ratio can be expected to incre.ase, but less rapidly than just prior to
the (001) contact. The behavior of the axial ratio with electron-atom
ratio is shown schematically in Figure 28. The exact behavior is
strongly dependent on v;g_{g/ , particularly, at high electron-atom
ratios, therefore Figure 28 should be regarded as only approximate.
The shear strain produced by the interaction of the Fermi
surface and the energy zone provides an explanation of the deviation
of the lattice parameter curves (Figures 16, 17, 18, 19) from
Vegard's Law. The solutes aluminum, gallium, and silver have
atomic diameters 2.86 A (71), 2. 82& *, and 2.88 A (71) respectively.
Titanium is larger than these solutes with the atomic diameter
2.93 A (71). Addition of aluminum, gallium, or silver in titanium
decreases the atomic volume of the alloy to less than the atomic
volume of pure titanium, corresponding to the smaller atomic dia-
meter of the solute. The axial ratio does not remain constant
when these solutes are added, and in the case of aluminum and gallium
the ¢ parameter does not decrease with increasing solute concentra-
tion at low concentrations. The shear strain produced by the inter-

action of the Fermi surface with the (001) face of the energy zone

*The atomic diameter of gallium was obtained by extrapolating to pure
gallium the atomic volume of solid solutions of Cu-Ga (72) and Ag-Ga
(73).
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increases the axial ratio as contact between the (001) face and the
‘Fermi surface occurs. The interaction between the (001) face and
the Fermi surface decreases ‘as a larger contact area is achieved.
Increased contact is provided by increasing the shear strain, i.e.,
the axial ratio, or by increasing the electron-atom ratio. The solid
solutions of aluminum and gallium in titanium (Figures 16 and 18)
exhibit such behavior at low solute concentrations. Gallium in
titanium (Figure 18), especially, exhibits this change in axial ratio.
If the deviation of the c lattice parameter from Vegard's Law is
taken as measure of the interaction of the Fermi surface and energy
zone, then the addition of aluminum and gallium at first increases the
interaction up to a solute concentration of about 2 percent, followed by
a decreasing interaction to about 2. 8 percent. It is not possible to
decide on the basis of the a;dditions of trivalent aluminum and gallium
if the parameter variation is due to an increasing or decreasing
electron-atom ratio. Nor is it possible to determine from the
aluminum and gallium additions whether the (001) face involved is the
first zone face at an electron-atom ratio of about 1.5, or the second
zone face at an electron-atom ratio of about 3.5. These uncertainties
are resolved by additions of a monovalent, divalent, or quadrivalent
solute. Divalent and quadrivalent solutes are not soluble in titanium
to the extent required for suitable comparison with aluminum and
gallium. The monovalent solute, silver, provides a comparison with

the trivalent solutes. The ¢ and a parameters change linearly
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with solute concentration (Figure 19), and do not exhibit the anomalous
behavior of the ¢ parameter with trivalent solute concentration. The
uniform parameter change with the concentration of silver indicates
that contact of the Fermi surface and the energy zone does not occur
with the addition of silver. Together with the parameter changes
observed for solutes of aluminum and gallium, this indicates that the
eiectron—atom ratio decreases with the addition of silver and
increases with additions of aluminum and gallium. For a decreasing
electron-atom ratio, the Fermi surface, overlapping the (100) faces
and not in contac£ with the (001) faces, interacts with the energy zone
to increase the axial ratio. This shear strain is superimposed on
the change in atomic volume of the alloy with addition of silver. The
titanium-silver alloys exhibit this behavior with an increasing c
parameter and a decreasing a parameter with addition of silver.
These changes in lattice parameter with solute concentra-
tion indicate that titanium has an alloying valency for addition of
solutes of aluminum, gallium, and silver of about 1.5 electrons per
atom. The Fermi surface, according to this hypothesis, is enclosed
by the energy zone in the (001) direction and overlaps the zone in the
(100) direction. Increasing the electron-atom ratio in titanium
(addition of aluminum or gallium) strongly increases the interaction
between Fermi surface and the (001) face of the energy zone, producing
anomalous variations of the c¢ lattice parameter. Decfeasing the

electron-atom ratio (addition of silver) causes the Fermi surface to
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shrink and therefore decreases the interaction with the energy zone,
hence the axial ratio increases without abrupt lattice parameter
changes. Continued increase or decrease of the electron-atom ratio
brings the Fermi surface again in the region of the energy zone.

The next planes of the energy zone encountered by the Fermi surface
by decreasing the electron-atom ratio are the (100) planes at 1/2 ﬁ .
The Fermi surface contacts these planes at an electron-atom ratio of
about 1.1. An electron-atom ratio of 1.1 is reached at a silver con-
centration of 80 atomic percent silver. Since the solubility of silver
in titanium is less than 7 atomic percent silver, no change of slope of
the lattice parameters with solute concentration is to be expected in
the range of solubility of silver. The lattice parameter curves for
the titanium-silver alloys bear out this expectation.

Increasing the electron-atom ratio above 1.5 electrons per
atom causes the Fermi surface to overlap planes of the energy zone
in both the (001) and (100) directions. The (100) overlap, beginning
at an electron-atom ratio of about 1.2, continues to increase, while
the (001) overlap can be expected to begin at an electron-atom ratio
of about 1.6 elecirons per atom depending on the ng: The occurrence
of overlap of the (001) faces changes the interaction of the Fermi sur-
face and the (001) faces of the energy zones a smaller amount than the
initiation of the contact between the (001) face and the Fermi surface,
at least for small to moderate values of Vmg,’ . The shea.r strain of

the crystal to be expected from the overlap interaction is difficult to
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predict with any accuracy since it is strongly dependent on \/ek’ .
Jones' calculations (3), for a highly idealized situation, indicate a
slight Fermi surface overlap of the (001) face of the energy zone
should produce a shear strain increasing the axial ratio c¢/a of the
alloy. The lattice parameter curves for the titanium-aluminum alloys
show a slight increase in c/a at about 9 atomic percent aluminum,
which is manifested particularly by the ¢ parameter, The corres-
ponding electron-atom ratio is approximately 1. 6, which shows good
agreement with thé electron-atom ratio at which the overlap might be
expected., The limited solubility of gallium in titanium (~ 5 atomic
percent) prevents an additional experimental comparison of the behavior
of the ¢ lattice parameter at 9 atomic percent aluminum.

Increases in the electron-atom ratio above 1.6 electrons
per atom do not produce any rapid changes in the interaction of the
Fermi surface and energy zones until either contact on the next (100)
faces of the energy zone is made, or the last states of the first energy
zone become occupied. Whether the (100) face contact or the completion
of filling of the first energy zone is accomplished at lower electron-
atom ratios is dependent on Vu;_. However, in either case the
electron-atom ratio is of the order of 3 electrons per atom. The
solubility limit of aluminum in titanium (36 atomic percent aluminum)
corresponds to about 2. 0 electrons per atom, therefore no change in
slope .of the lattice parameter-solute concentration curves is expected

above about 10 percent aluminum. The experimental lattice parameter-
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solute curves for the titanium-aluminum alloys agree with this
hypothesized lattice parameter behavior within experimental accuracy*.
The lattice parameter curves for titanium alloys suggest
that the solvent alloying valency of titanium for non-transition solutes
is approximately 1.5 electrons per atom. No contradictions to this
conclusion are presented by lattice parameter variation with solute

concentration for the solutes aluminum, gallium, and silver.

B. Electrical Properties:

The alloying valency of titanium and variations of the lattice
parameter curves suggest that anomalous behavior in other physical
properties may be found to provide additional support to the conclusions
indicated by variations in lattice parameter. In general, the varia-
tions in electrical properties can be expected to be less pronounced,
and more difficult to interpret, than the lattice parameter chalnges.

In the following paragraphs the experimental curves of resistivity,
susceptibility, Hall coefficient, and magneto-resistance coefficient
are compared with the conclusions derived from the lattice parameter

variations.

C. Resistivity:

While an exact theory of electrical conductivity in metals is

*Experimental accuracy above 20 atomic percent aluminum is reduced
to + 0,002 £, see Section III.
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lacking, qualitative epranations, based on formal theory, seem to
acceptably describe most metals. Matthiessen's rule (43), which
represents only a first approximation to the electrical conductivity,
nevertheless shows good agreement with experiment in many cases.
Matthiessen's rule states that the resistivity of a metal or alloy is
separable into an ideal resistivity, ((% , for the pure metal and a
residual, temperature independent resistivity, ﬁ, » due to impurities,

etc. Thus the observed resistivity may be written:

PR fe e

According to Matthiessen's rule, solute additions, in small concentra-
tions, produée a resistivity increase proportional to the solute
concentration. In many instances this proportionality is closely
obeyed (74). Qualitatively Matthiessen's rule, in the case of solute
additions, states that the scattering cross section of each solute atom
is independent of the solute concentration. In most dilute alloys the
contribution to the resistivity is largely scattering off the solute ions
in the lattice. The interaction of the Fermi surface with the energy
zones may, however, contribute significantly to the electron scattering
and hence to the resistivity. As the electron-atom ratio increases
and the Fermi surface approaches the energy zone, the concentration
of holes (empty electron states) increases in the part of the Fermi
surface near the energy zone planes. These empty states can contri-

bute to increased resistivity by providing a nonconducting energy state
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for transitions by electrons actively participating in the conduction
process at a free portion of the Fermi surface. The process is
similar to the s-d transitions which are thought to be responsible for
the high resistivity of the transition metals (51, p. 271). In this case,
however, the s-d scattering is not significantly altered by small con-
centraﬁons of solutes, but the in-band scattering is thought to change
with electron-atom ratio. As the Fermi surface increases with
electron-atom ratio the density of states at the Fermi surface also
changes. The contribution to the change in the resistivity by the
change in the density of states should be very small, probably less
than the experimental accuracy.

The slope of the resistivity-solute concentration curves
(Figure 20) increases in the range 0 to 2. 6 percent for solutes of
aluminum and gallium, followed by a smaller constant slope above 2.6
percent aluminum or gllium. The addition of aluminum or gallium in
titanium, therefore, does not obey Matthiessen's rule that the scatter-
ing from each solute atom is independent of the concentration. The
additional resistivity increase can be accounted for by assuming that
a resistivity contribution due to in-band scattering is significant, and
represents the difference between the observed resistivity dependence
on solute concentration and the linear resistivity-solute curve predicted
by Matthiessen's rule. When a solute concentration of 2.6 percent is
reache.d, the additional scattering due to in-band transitions begins

to decrease. The concentration at which the contact between the
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F‘erm'i surface and the energy surface occurs, however, cannot be
predicted due to the extreme cvomplication of the in-band scattering
problem. The anomalous resistivity dependence on solute concentra-
tion for solutes of aluminum and gallium does seem to be related to
the valency of the solutes and an interaction of the Fermi surface with
the energy zone, since the resistivity increase due to additions of

silver is in agreement with Matthiessen's rule.

D. Magneto-Resistance:

The increase of resistance in a magnetic field has been
evaluated theoretically in only a few simple cases, which do not
strictly apply to the interpretation developed to explain the lattice
parameter and resistivity changes. However, an insight into the
observed behavior of the coeificient of magneto-resistance can be
obtained from the existing theory.

Theoretical treatments of magneto-resistance are given
by Mott and Jones (53, p. 280), Davis (75), and Sondheimer and
Wilson (76) for nearly free electrons. The coefficient of magneto-

resistance is given by Davis for nearly free electrons in the form:

14

B =(“%’Z)2 LI, (6-3)

where:
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The symbols appearing in (6-4) are:

S is the relaxation time for the electron distribution,

fo is the electron distribution function when no fields are
present,

Q is the differential operator 5%2572 gi gbz

Evidently (6-3) involves integrals of the form:

225 [2E FE 6.5
‘(3 26 L 2k, &2 d (6-5)

under the simplest pessible assumptions. For free electrons E is
2 2
equal to h k /2m and Equation (6-3) vanishes. If the Fermi surface

is near a surface of the energy zone,

E=E°+ Veu

3

and the magneto-resistance coefficient (6-3) does not vanish. The
. . 9
most important contribution to Bt comes from the terms ZgZ2 . Ii,
E
for simplicity, it is assumed that Bt is a function of 352 only, a
qualitative interpretation of the experimental curves of the magneto-

resistance coefficient (Figure 21) in terms of the model suggested by

the lattice parameter and resistivity results.
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‘As the Fermi surface approaches the surface of the energy
E
zone  ~p2 assumes large values and hence the magneto-resistance
is large. When contact between the Fermi surface and the energy zone
. il
occurs over a large area, fewer energy states with large 7J5%&2
remain to participate in the conduction process and the magneto-
resistance decreases. Approximately, then, the interpretation of
contact between the Fermi surface and the (001) face of the energy
zone, occurring with the addition of aluminum and gallium to titanium
at about 2. 8 percent solute, seems to explain the change in Bt with
aluminum and gallium additions. The coefficient of magneto-resistance
decreases rapidly with addition of silver, agreeing with the previous
interpretation of a decreasing electron-atom ratio with silver addi-
tions. The decrease in the electron-atom ratio with silver addition
2’
results in a decreasing 5gz and hence a decrease in B;. Thus the
behavior of the coefficient of magneto-resistance is qualitatively

consistent with the lattice parameter and resistivity changes in the

titanium alloys.

E. Hall Coefficient:

The Hall coefficient, like the coefficient of magneto-resistance,
" is difficult to express quantitatively except in a few very simple cases.

Davis (75) finds for the Hall coefficient the relation:

3
47> L
L=—ce I,}z ) (6-6)
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where I, and I, are given by (6-4), and I, is:

_ Ok 9€ /26D _ 26D \/ pE
I = “/92?2%2 2&,26 ~ 2%, Pk )/3 9‘5)43— (6-7)

The relation (6-6) is written for a single band, for conduction by holes
in addition to electrons, the contribution to the Hall coefficient by
holes must be included. Since the Hall coefficient of titanium is positive,
the contribution to the Hall effect must be primarily due to holes par-
ticipating in the conduction process.

The absence of a pronounced change in the Hall coefficient
for aluminum concentrations of about 3 percent, analogous to the effect
observed in the magneto-resistance coefficient is surprising at first,
since both effects seem to be similarly dependent on E(k). The Hall
coefficient, however, may be much more sensitive to crystallographic
direction than the magneto-resistance coeifficient, as Shockley-
suggests (77). A qualitative examination of the relation between Hall
coefficient and crystallographic direction seems to indicate that the
fact that polycrystalline specimens are employed in this study is
responsible for the small change of the Hall coefficient with solute
concentration. The empty corners of the zones together with the
narrow region between the Fermi surface and the (001) zone faces
probably contribute a large density of empty states for conduction in
those directions. Thus the Hall coefficient for conduction along the
(001) axis of the zone is large and positive. In the (100) direction the

Fermi surface is not adjacent to faces of the energy zone; the
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conduction is largely by electrons, and therefore the Hall coefficient

can be assumed to be negative. The Hall coefficient in all crystallo-
graphic directions is averaged in the polycrystalline specimen with

the result that while the Hall coefficient in the (001) direction may

change significantly, the average in all directions may not be appreciably
changed.

Further support to the suggested explanation of the Hall
coefficient behavior is provided by the experiments of Shindler and
Salkovitz on polycrystalline magnesium alloys (78). Shindler and
Salkovitz found the Hall constant for magnesium changed approximately
10 percent over the range of solute additions in which the axial ratio
exhibited anomalous behavior. The change in axial ratio in Mg alloys
is interpreted by Hume-Rothery and Raynor (7), Raynor (9}, and
Busk (14) to be due to interaction of the Fermi surface and the energy
zones of magnesium. Therefore, from the results of Shindler and
Salkovitz and the present study, it is not clear whether a larger change
in the Hall coefficient might not be expected in single crystal specimens,
and the small change in magnesium alloys and titanium alloys is due

to the use of polycrystalline specimens.

I, Magnetic Susceptibility:

Magnetic susceptibility of metals arises from two separate
contributions: the diamagnetic susceptibility of the orbital (bound)

electrons, and the paramagnetic susceptibility of the conduction
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electrons. The diarﬁagnétic contribution in most cases is very small
compared to the paramagnetism of the conduction electrons, and
therefore can be neglected. The conduction electrons contributing to
the paramagnetism can only be those at the Fermi surface since the
electrons occupying lower energy states are assumed to be paired
spin-wise in each state, and hence contribute no net magnetic moment.
Neglecting correlation and exchange effects of the conduction electrons,
but including the diamagnetic contribution due to the translational

motion of the conduction electrons, the susceptibility is:

-4 (], o

where /“B is the electron magnetic moment, and (%/éc is the density
of energy states at the Fermi surface. Equation (6-8) should be
regarded as only approximate quantitatively for any real metal; how-
ever, (6-8) indicates the strong dependence of susceptibility on the
density of energy states at the Fermi surface. Furthermore, addi-
tional refinements of the theory* (51, p. 576), do not remove this
dependency on the density of energy states. The susceptibility predicted
by Equation (6-8) is sensibly independent of temperature, since the

. . er)?
temperature enters, in an expansion about T = o, as /—_E]_L) and

T
higher powers. At room temperature E/Ef is about 0. 005, hence

*Recently, Stoner (68) and Hume-Rothery and Coles (69) have presented
the susceptibility in terms of the collective electron approximation.
The r;lelations given by these writers are similar in their dependence
on L| to the expressions given in the text.

(22)e,
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(k%f)z= ‘;.5 x 10-6 so that X' can be expected to change by less than
0.0025 percent due to increasing the temperature from 0° K to 3000 K.

The change in the paiamagnetic susceptibility of titanium
with solute addition is shown in Figure 23. The paramagnetic suscepti-
bility of titanium (3.3 x 10_6) is of the order of 10 times larger than
predicted by Equation (6-8). This is not a serious objection, since
Equation (6-8) is only approximate, but it is a troublesome discrepancy
which alone might justifiedly be overlooked. A serious discrepancy
between the theoretical predictions and experiment occurs in the
effect of solute additions on the observed susceptibility. From the
results of the experiments previously discussed, a strong dependence
of susceptibility on solute additions would be expected. It is pertinent,
therefore, to examine the expected susceptibility change with solute
addition carefully before abandoning the explanation of the other experi-
ments.

The fotal susceptibility of the conduction electrons is com-
posed of Pauli (spin) paramagnetism and the translational diamagnetism.

The relation is:

Xtata./ = ]‘/'S/oin * ktrﬂh&
an 2 dn
G -58(8) S () @

Evidently, the use of polycrystalline specimens cannot be responsible
for the susceptibility behavior. The term X’ spin is independent of
crystallographic direction, since electron spin is not directly related

to real space. Only the diamagnetic term ztrans. can exhibit a
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dependence on crystallogi'aphic direction, and this is not likely to be

more than 50 percent of the value of X

trans,® °OF 3t most a 12 percent

variation in X—total with crystallographic direction.

According to the approximate theory, X total depends
linearly on /dn/dféf . If the interpretation of the previous experi-
ments is correct, the Fermi surface increases with addition of
aluminum and contacts the (001) face of the energy zone at about 2.5
percent aluminum. The density of energy states should increase in this
range, due to the perturbation terms, to a sharp maximum; and decrease
rapidly above 2.5 percent aluminum. Addition of silver decreases the
electron-atom ratio causing the Fermi surface to shrink away from
the (001) face of the energy zone. The density of energy states should
therefore decrease gradually with addition of silver. Since the suscepti-
bility is a linear function of density of energy states, X should exhibit
the same general behavior. Figure 29 shows, for comparison, this
theoretical variation of susceptibility and the observed susceptibility.
The theoretical values are adjusted to the observed value for pure
titanium,

The complete lack of agreement between the calculated
susceptibility of the conduction electrons and the observed susceptibility
is of sufficient importance to require careful consideration. Therefore,
from the susceptibility results it appears the following conclusions are
possiblé:

(2) The interpretation of the previous experiments is incorrect,
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(b) The apparent susceptibility is not due to the conduction
electrons,

If (b) above is the cc;rrect interpretation of the susceptibility
results, then the origin of the observed susceptibility must be in an
electron energy band lying below the conduction band, but above the
ionic states of the argon configuration. The energy levels in pure
titanium must appear as shown in Figure 30. This hypothesis is not
unreasonable on the basis of previous experiments; it provides an
explanation of the observed valency effects of trivalent aluminum and
gallium and monovalent silver by locating 2 electrons per atom of the
4 outer electrons of titanium below the conduction band so that the
alloying valency is of the order of 2 electrons per atom, as previously
assumed. The abnormally high resistivity of pure titanium can be
explained in terms of transitions of conduction electrons to holes in
the bound band as Seitz (51, p. 535) suggests. The resistivity-
temperature curve, Figure 31, of pure titanium reported by Wyatt
(42) is of the form to be expected from Seitz's analysis. In addition,
the contribution to the specific heat by the electrons, as shown by
the linear dependence of Cp on temperature near 0° K, is observed
(68) to be smaller (by of the order of a factor of 10) than expected
from the magnetic susceptibility of titanium. Since the electromic
specific heat and the susceptibility due to the conduction electrons are
depend.ent in the same way on the density of states, it is .somewhat

puzzling why the agreement is so poor.
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'The ad hoc assumption of a2 bound energy band contributing
heavily to the susceptibility requires some explanation about how this
can occur. The wave functions for electrons in this band must
strongly resemble the atomic 3d wave functions, since the electrostatic
term of the Hamiltonian in this region cannot be severely perturbed
from that for the free atom. The appropriate wave functions for these
electrons, as a first approximation, may be constructed from atomic
""d" wave functions; essentially this is the tight binding approximation
of Bloch (57) and Jones and Mott (79). The cellular approximation of
Wigner and Seitz (80), satisfying the symmetry properties of the lattice,
may also be a suitable description of the wave functions in the bound
band. Unfortunately the calculation is long and tedious and has never
been done for titanium. The calculation for copper made by Krutter
(81) has been extended by Slater (82) to the transition elements below
copper in the periodic table. While there are a number of objections
to extending Krutter's calculation to titanium, it is interesting to note
that Slater's treatment of Krutter's calculation predicts a bound band
in titanium, Figure 32.

Whether the tight binding or Wigner-Seitz approximations
are used, it is clear that the wave functions will have the characteristics
of "d'" atomic wave functions. These wave functions of the electrons
associated with one atom overlap the wave functions of the neighboring
atoms, | since the distance of separation is only 1. 12 time.s the d-shell

radius. Therefore, the exchange and correlation effects are certainly
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important contributions to the total energy. Zener (83) suggests that
the exchange and correlation contributions insure antisymmetric spin
coupling of these electrons, and therefore the d-function spins couple
to form an antiferromagnetic exchange. In hexagonal close packed
metals, according to Zener, the magnetic moments of the electrons
are all aligned on any (001) plane, but the spins on adjacent (001)
planes are aligned oppo'sitely to the former. The magnetic lattice for
titanium is simple hexagonal with, say, the + eleciron magnetic
moment located at (000) and the - moment at (2/3, 1/3, 1/2), as shown
in Figure 33.

Zener's antiferromagnetic model satisfies the requirements
of the second (b) alternative resulting from the disagreement of
susceptibility and the interpretation of the other experiments. An
antiferromagnetic bound band can be expected to be occupied by the
two outer electrons of titanium which, according to the interpretation,
do not appear in the conduction band. The observed susceptibility is
due largely (of the order of 90%) to the antiferromagnetic bound band,
with a small (of the order of 10%) contribution from the conduction
electrons in agreement with the electron specific heat., Confirmation
of an antiferromagnetic structure in titanium could be immediately
obtained from the detection of a simple hexagonal magnetic superlattice
by neutron diffraction studies; however, neutron diffraction studies of
titanium have not been reported. Studies of other properties in addition

to those mentioned, which are less direct than neutron diffraction,



-133-

@%;/2/

. //\&L/ ‘L/ -
H
| l —L4 [
): } el ’ Eal 3
’ R/ 4
Figure 33 Antiferromagnetic

Superlattice In Titanium



-134-

substantiate the assumed antiferromagnetic structure in titanium.

Van Vleck (64) from theoretical considerations predicts that
the susceptibility due to antiferromagnetic coupling shows a tempera-
ture dependence. Van Vleck computes X (T = 0°K) = 2/3 X (T -

T curie), and that X (T) is nearly a linear function of temperature
between 0° K and Tc. Van Vleck's theory agrees well with known anti-
ferromagnetic crystals such as MnQO. The variation of susceptibility
with temperature for titanium found by Squire and Kaufmann (49) is
shown in Figure 34, together with that predicted by Van Vleck's theory.
The remarkable agreement between the experimental and theoretical
curves probably is fortuitous, since the assumptions made by Van
Vleck in developing the theory may not be entirely justified in titanium.
The Squire and Kaufmann data, obtained by the less reliable Gouy
method, nevertheless show excellent agreement with room temperature
measurements made by the Fereday method in the present study, and
are believed accurate.

Squire and Kaufmann, in their paper, quote J. C. Slater as
suggesting that the titanium susceptibility may both show a temperature
dependence and be due to the conduction electrons. The spin para-
magnetism of the conduction electrons, Equation (6-8), may be
strongly temperature dependent if the density ( %— %cis temperature
dependent. Slater suggests that this may occur due to a slight splitting
of the Band which is sensitive to atomic spacing and hence to temperature.

In this way ( %Z:.Z ) is a function of temperature and not approximately
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constant as assumed. The addition of solutes changes the electron-
atom ratio and hence (% sz R vbut causes no significant change in { .
Therefore Slater's suggestion is not correct; the assumed antiferro-
magnetic structure of titanium with Van Vleck's theory must be the
correct interpretation of Squire and Kaufmann's data.

The addition of solutes can be expected to change (% )Ef
less than 30 percent, and hence change k,spin due to the conduction
electrons by less than 30 percent. X., spin of the conduction electrons
is assumed to be of the order of 10 percent of the total susceptibility,
from the electron specific heat, hence /Kobserved should change of
the order of 3 percent or less due to solute additions. The observed
susceptibility change, Figure 23, is approximately 3 percent or less
in agreement with both the electron specific heat and the antiferro-
magnetic characteristics.

The evidence in favor of an antiferromagnetic structure due
to a bound band occupied by 2 electrons per atom seems overwhelming.
In lieu of neutron diffraction results, the evidence based on other

experimental data seems adequate to conclude that the assumed anti-

ferromagnetic structure does exist in titanium.

G. Electronic Structure:

The previously discussed experimental results appear to
unambiguously suggest an electron structure in titanium consisting of

two separate energy bands, each containing approximately two electrons.
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The lower band, in whiéh the electron wave functions are very nearly
the same as the atomic 3d wave functions, is antiferromagnetic. The
antiferromagnetic superlattice of the lower band, Figure 33, may have
sufficient exchange energy associated with overlapping wave functions
to be partly responsible for the low axial ratio c¢/a of titanium. This
is not unreasonable on the basis of impurity effects on the axial ratio
and susceptibility. Adsorbed oxygen, for example, increases the
axial ratio (16) and markedly decreases the susceptibility. While the
lower antiferromagnetic band is responsible for the susceptibility of
titanium, it has little effect on the other properties studied. The
addition of solutes, and the changes so produced, are largely the
result of electronic effects in the upper, or conduction, band. The
upper band appears to contain about 1.5 electrons per atom from a
Bloch-Brillouin analysis of the physical properties. The wave functions
in the upper band must be a mixture of '"s'" and '"d" type functions with
plane wave functions. The Bloch wave functions employed in this
analysis are certainly no better than a rough approximation. A more
sophisticated analysis, tight-binding, Wigner-Seitz, or the O.P.W,
method described by Slater, might be expected to give a more reliable
estimate of the number of electrons in the conduction band than the
Bloch approximation. It is to be emphasized that the energy zones
appear in some form in more elaborate methods, and the conclusions
of ene.‘;'gy zone interactions are probably much more accurate than the

calculated density of energy states.
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The energy band structure of pure titanium shown in Figure
" 30 is probably a good approximation to the actual band structure.
Howe‘ver, the band structure is developed by somewhat indirect
analysis in this study. Soft X-ray studies are necessary to more
accurately establish the band structure.

Because of the double band structure of titanium, it is
difficult to make any general statements of alloying valency. If
titanium plays the role of the solvent in the alloy, the titanium valence
in the alloy is about 2. If titanium is the solute atom, the valency may
be either 2 or 4 electrons per atom depending on the potential near
the solvent ions. The valency may, in addition, depend on the
crystal structure of the alloy and on the lattice parameter. Certain
compounds of titanium exhibit this double valency character, e.g.,
TiO and TiOZ. Titanium monoxide is a stable, electrically conducting
compound indicating a valence of 2; while titanium behaves as if

quadrivalent in titanium dioxide.
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VII. SUMMARY AND CONCLUSIONS

The solid solution alloys consisting of solutes of aluminum,
gallium, and silver in the titanium were investigated for changes in
five physical properties due to the solute concentration in the alloys.
In four of the five properties studied, lattice parameter, resistivity,
coefficient of magneto-resistance, and Hall coefficient, evidence was
obtained which indicates that: (1) the valency of the solute determines
the manner in which these four properties change with solute addition;
(2) the valency of titanium, as a solvent, is approximately 2 electrons
per atom; and (3) analysis of the property changes in the alloys by the
Brillouin-Bloch-Jones methods yields results consistent with experi-
ment and indicates a solvent valency of titanium of 1.5 electrons per
atom. The analysis of the data in the energy zone scheme requires
that the correct energy zones be used. The energy zones for the close
packed hexagonal lattice in both the extended and reduced schemes are
developed by carrying out the perturbation calculation. The symmetry
requirements of the point group and space group elements are dis-
cussed by methods due to Wigner, Seitz, and Herring, and the calcula-
tions for the hexagonal close packed lattice are presented. The form
of the resulting energy zones differs from those given in the texts by
Mott and Jones (53) and Wilson (52). These differences are shown to
be due to symmetry requirements the latter zones do not satisfy.

The magnetic susceptibility does not exhibit any change with
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solute additions. The Pauli spin paramagnetism of electrons in the
conduction band is discussed to show that such changes are to be
expected from the spin paramagnetism of the conduction electrons.

It is concluded from the-re sults of additional experiments of others,
principally the temperature dependence of the susceptibility and the
electron specific heat, together with absence of a solute effect on the
susceptibility, that the major contribution to the observed suscepti-
bility is from electrons in a bound energy band, containing 2 electrons
per atom, below the conduction band. Van Vleck's theory of antiferro-
magnetic exchange coupling of the electrons in the bound band predicts
susceptibility and electron specific heat effects which exhibit remark-
able agreement with the observations. It is concluded on this basis
that the metallic electronic structure of pure titanium consists of two
bands: (1) the upper conduction band containing about 2 electrons per
atom; and (2) a lower antiferromagnetic band containing 2 electrons
per atom., This proposed electronic structure of titanium shows agree-
ment with the present experimental studies and other pertinent data.

It is suggested that the lower antiferromagnetic band consists
of anti-parallel spin coupling between neighboring planes of the form
(001) in the hexagonal close packed titanium lattice. If the exchange
coupling is as suggested, titanium must have a simple hexagonal
magnetic superlattice., It is urged that neutron diffraction studies of

pure titanium be executed to confirm the validity of this suggestion.
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- VIII. SUGGESTIONS FOR FURTHER WORK

The conclusion suggested by this study that titanium has an
antiferromagnetic superlattice indicates the desirability of neutron
diffraction studies. Experimental confirmation of the existence of a
magnetic superlattice is extremely desirable. Soft X-ray emission
spectroscopy is also desirable to determine the widths of the energy
bands in titanium; however, the intensity of the X-rays will probably
be uninterpretable due to the diffiéulty of calculating transition proba-
bilities and the possibility of a significant Auger effect. The writer,
in this respect, is grateful to Prof. J. H. Krumhansl of Cornell
University for pointing out that the band widths might be obtained in
an easier manner in this case by photoelectric emission.

The agreement between the lattice parameter anomalies and
other physical property changes suggests further investigation in this
direction. Among the properties which might be expected to exhibit
similar behavior with solute additions in titanium are thermoelectric
power and electronic specific heat. Additional interest is attached to
thermoelectric power in these titanium alloys, since little experimental
information is available to make direct comparison between thermo-
electric power and electronic configuration in the metals. Thus
thermoelectric power determinations in the titanium alloys may lead
to a better understanding of the factors influencing thermoelectric

power in alloys in general.
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" Investigation of ternary titanium solid solution alloys should
be undertaken to determine the extent to which the analysis of the
present study can be applied to alloys with two atomic species as

solutes,
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