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MOTION OF AN UNARTICULATED HELICOPTER BLADE WITH

APPLICATICN TO THE PROBLEM OF VIBRATION OF THE
RIGID ROTOR HELICOPTER

GENERAL INTRODUCTION

JUAN DE LA CIERVA'S WORK

The helicopter is a rotary wing aircraft which
derives its 1ift and the force which propels it for-
ward from one or more large rotors. The rotors are
engine driven and are displaced with the axes of
rotation in a more or less vertical position., This
type of aircraft has achieved some prominence in
recent years and little more will be salid about its
general characteristics.

It was preceded by the autogiro, a sister rotary
wing ship which, in some respects, it resembles closely.
The autogiro was the first of the rotary wing craft to
be taken seriously by the aeronautical world. It was
invented in 1924 by Juan de la Cierva, a highly talented

Spanish aeronautical engineer, For some twenty years



afterwards it was developed and manufactured by several
small aircraft companies in this country and in England.
At one time popular writers were céptured by it much as
by the helicopter today. However, serious question

arose as to its usefulness as compared to the difficulties
involved in its operation and the rotary wing manufac-
turers turned to the helicopter as soon as this craft

showed some elements of practicality.

Al of this is mentioned because the original work
of Sefior de la Cierva has been taken over with little
change by present helicopter designers and because the
problems encountered by de la Cierva form a convenient
introduction to the subject treated in this paper.

There is in particular a story told about the early
work on the autogiro which may, or may not, be true
but which is a good way to begin.

Cierva conceived of his first machine as having
an airplane type fuselage, tail surfaces, landing gear
and tractor propeller and one large horizontally displaced
rotor as the lifting surface. The rotor had four blades
rigidly attached to a central hub. The hub was free to
turn on its vertical axis. In forward flight the rotor
would be tilted slightly backward, would be turned by
the wind and would generate a lifting force. A model

built on this principle worked well but the full sized



ship showed a regrettable tendency to roll over. Cilerva
found the reason for the behaviour of the large machine
and developed what is to all intents and purposes the
present day hinged bladed rotor (helicopter or autogiro)
to solve the problem,

The difference in behaviour between the model and the
full sized machine can be seen from a qualitative look at
the rotor aerodynamics.

The airflow over a section of a rotor blade can be
expected to be most unsteady. It will vary with time in
both direction and magnitude. The blade turns about its
hub at the same time as the hub (and ship) move forward
through the air. This is shown in Figure (1). The most
obvious effect of the superposition of the two airflows
is to produce a greater relative velocity over the advanc-
ing blade (position a) than over the retreating blade (p).
Conseqﬁently, it can be expected that the advancing side
of the rotor will produce more 1ift than the retreating
side and a rolling moment will result. There are other
effects, a change of angle of attack of the blade section
and a change of induced downwash at the section around
the cycle, a stalled region of the rotor on the retreat-
ing side. The net result is an asymmetry of lift distri-
bution which leads to a large rolling moment and a some-

what smeller pitching moment being transmitted to the



fuselage by the rotor.

The large ship experienced these moments; the model
seemed to avoid them. The answer lay in the large relative
flexibility of the model rotor blades. The flexible blade
responded to the moments of the lifting forces along it
and deflected. Figure (2) shows the situation in that
case, The blade is in static equilibrium under the influ-
ence of the aerodynamic, centrifugal, gravity and accelera-
tion forces, The moments transmitted to the hub were now
a great deal less than the moments produced by the aero-
dynamic forces., Relief was given mainly by the centrifugal
forces which exerted opposite moments about the blade root,
Thus all moments transmitted were much reduced and the
model was able to fly.

Cierva went to the limit of the flexibility and on his
large ship put a free horizontal hinge at the root of the
blade. In this system no moment could be transmitted at
the blade root. The blade itself experienced a flapping
motion about the hinge which was mainly a harmonic motion
at rotor frequency. Figure (3) shows such a blade in
equilibrium under the influence of the various forces.

This was an excellent solution. The flapping motion
was at most of the order of 10° and did not detract from
the ships flying characteristics.

There was one more difficulty. Figure (3) shows that



the projection of a point of the blade on a rotating
radial line moves back and forth along the line as the
blade flaps., This effective movement of a mass radially
along a rotating axis gives rise to the so called Coriolis
acceleration, This is shown replaced by its reversed
effective force in Figure (4). The moment produced at

the root about an axis perpendicular to the flapping pin
by this force and the fluctuating drag forces made it
necessary, from a structural point of view, to install a
vertical pin at the root. This pin was put a bit outboard
of the horizontel pin and the two formed more or less of

a universal joint at the root. Figure (4) shows the equi-
librium picture about this hinge. Again the centrifugal
force is the restoring force. Motion about the vertical
pin proved a bit more troublesome than motion about the
horizontal pin., For reasons that will be stated later,

it was felt necessary to experiment with and use various

types of dampers to restrain motion about this pin.

This then was the form of rotor which Cierva developed

for his autogiro, - a set of universally hinged blades

variously demped about the vertical pin. The most generally

used helicopter rotor designs are essentially the same.,
This type of helicopter rotor will now be more completely
described, its characteristics discussed and the reasons

given for the trend among many manufacturers to the



unhinged'or rigid rotor.

2. THE HINGED HELICOPTER ROTCR

A composite of the hinged rotors currently used might
be described as follows:

Three light blades, constructed of steel tube spar,
plywood ribé, fabric or plywood covering, each some 18-25
ft. in length are attached to a central hub. The attach-
ment is made through a horizontal pin, a vertical pin and
a bearing which allows the blade to turn about the axis of
its spar (for controlled pitch change of the blade). The
horizontal pin is inboard and its axis may be at some angle
other than 90° to the spar axis. Figure (5) shows the angle
to be 60°. The rotor is said to have a 30°o§ angle. Incor-
porating a4{Fangle of this size in the rotor has two effects.

1 - The amplitude of flapping is reduced.
2 - The azimuth angle at which the maximum flapping
occurs is shifted.

Both effects are described with respect to awﬂﬁg rotor.
The vertical pin is next outboard. An hydraulic damper
connects the blade directly outboard of the vertical pin to
the hub, The damper is installed primarily to prevent an
unstable mechanical vibration from occurring during rev-up
(ground resonance). The freedom of the blade about the

vertical pin makes this condition possible. The pitch change



bearing is outboard of the second pin and a control arm
attaches somewhere beyond this,

The rotor has upper and lower stops on the flapping
rin to prevent the blades from folding too far up or down
during zero or slow rpm gust conditions or extraordinary
maneuvers. - Two stops are provided on the vertical pin,
The blade may rest against the back stop during rev-up.

The machines of the Sikorsky, Kellett and P-V
organizations use this rotor with minor modification.

Consider the ideal flapping rotor (i.e. omit for the
moment questions of maintenance, ease of manufacture, etc,)
The following advantages and disadvantages of the rotor
have been found to exist: -

The principal advantages:

1. The problem of unbalanced moments is solved.

2. The blade stress situation is favorable because

of the flapping hinge. The blades are light.

3. The rotor minimizes sudden effects of any sort

(sharp gust, etc.), for the first effect of
such conditions is a motion of the blade
about the horizontal pin and not a trans-
mission of moment.
There is one principle disadvantage. Both the inherent
flexibility of the blades and the pin method of attachment

to the hub leads to a rotor which is singularly unrestrained



in its motion. Restraint is provided by various accelera-
tion forces which under many circumstances may not exist
or are very difficult to predict. In the tail rotor type of
ship this means the design difficulty of mounting the rotor
high above the ship to provide adequate ground (or tail)
clearance.  This is an annoying design consideration for
the tail rotor ship but becomes an extremely serious
problem in the case of ships with other rotor configurations.
(Figure 6). In the coaxial rotor configuration, the large
distance required between two flapping rotors to exclude
collision has unfortunate effects on the design. The
closely intermeshed rotor configuration (each rotor tilted
outwards) using flapping rotors has not been able to avoid
blade collision difficulties. In the side by side and
tandem types, weight and space saving which might be brought
about by the partial intermeshing of the rotors is made
difficult to achieve because of the consequent increase in
the possibility of blade collision. This, then, is the main
disadvantage of the ideal flapping rotor.

Aside from these intrinsic qualities, the following
practical difficulties exist: -

1. The hinge, damper and control systems are
at best drag inducing, expensive and
troublesome to adjust and maintain.

2. The rotor is temperamental. It must be



cared for constantly to achieve reasonably
smooth operation. This characteristic is
usually ascribed to inequality among
dampers, or blades which are either im-
properly balanced or easily changed by
‘weather condition. How much of this
delicateness is due to components which
are different in flapping and rigid

rotors is not known. Rigid rotors have

not yet been built and flown extensively.

3. THE RIGID ROTOR

A rigid rotoer is one in which the blade attachment
to the hub is much like that of a variable pitch airplane
propeller. The only motion allowed the blade is the con-
trolled angular motion about the piteh change axis. There
is no other stipulation. Blade construction may be of the
same type as the flapping rotor.

A listing of the properties of the rigid rotor is
much a reversal of the properties given for the flapping
rotor. Its most obvious disadvantages are: -

1. The unbalanced moment problem is not solved.
In general some moment will always be trans-
mitted to the rotor hub and use must be made
of two oppositely turning rotors to prevent

a resultant moment on the fuselage.,
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2. Construction of blade, hubs, etc. there-
fore tends to be heavier than that of the
flapping rotor,

3. Sudden effects are transmitted.

The advantage: -
Strict restraint of the blades is main-
tained. The only appreciable motion
possible is the bending of the rather
stiff blades,

As has been mentioned, rigid rotors have not been
extensively flown. Serious encouragement was given the
helicopter in the United States only some 5 or 6 years
ago. The first ships naturally enough followed autogiro
practice and used the Cierva rotor. The industry is now
in the stage where a number of small compeanies are experi-
menting with many different types of machines. Some of
the designers, those concerned with the four rotor con-
figurations of Figure (6), are considering or using the
rigid rotor. The reason for the change is largely a
matter of the freedom of the flapping rotor, although it
is undoubtedly hoped that the other flapping rotor diffi-
culties will be eliminated as well.

A few such ships have been built and flown. None are
as yet successful., Little reliable information is avail-

able about any of them but the impression is unmistakably



given that those which are far enough advanced to fly
forward have encountered serious difficulty with rotor
vibration. The vibrations are ill-defined. No strict
investigation of them has been made known. This thesis
takes the first step in the investigation of the most
obvious cause of such vibration. A more precise state~

ment of the work follows:

11
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SUMMARY

The present investigation concerns itself almost
completely with the derivation and solution of the
equations of motion of the helicopter blade. The
fluctuating aerodynamic forces which cause flapping in
the hinged rotor bend the blades of the rigid rotor in
a vertical plane. The effect of the bending is to cause
fluctuating moments on the rotor hub. This pure bending
oscillation is the most obvious cause of vibration and
is treated here. Coupled motions are not considered and
are effectively eliminated by the assumption that the mass
center, agrodynamic center and elastic axis are at the
point on each cross section of the blade and that the
elastic axis is a straight line.} 7

Although this work was undertaken to investigate
rotor vibration, it has broader significance, It is,
in effect, the ess ential step which makes possible the
rational analysis of all rigid rotor dynamics and aero-
dynamics., It is directly comparable in importance to
the solution of the problem of the blade flapping motion
in hinged rotor work. For example, once the bending of
the blade in forward flight is known such information as

1. Fatigue stresses in the blades
2. Control lag angle required

3. Maximum deflection of the blades, etc.

is immediately available.
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The Thesis is Divided into the Following L Sections

I. The derivation of the bending forces which exist in

forward flight along a blade, The differential

force is expressed as a 3 harmonic Fourier series
in terms of the azimuth position of the blade. The
coefficient of each term is a power series in blade
radius., The aerodynamic theory is based on work by
Glauert (Ref. 1).

IJI. The calculation of the natural modes and frequencies

of the blade.

a) The method of Myklestad (ref. 2) is summarized.
By considering the blade made up of a finite
number of discreet masses, a tabular method is
developed which allows the calculation of the
natural modes and frequencies of the blade in
its centrifugal field.

b) A sample blade is considered and the 3 lowest
modes and frequencies are found.

I1I. The derivation and solutions of the equations of motion.

LaGrange's equation is applied to the system using
as generalized coordinates arbitrary functions of
time which multiply the two lowest modes. The
generalized force is derived in terms of the aero-
dynamic force. There result two simultaneous second

order, linear differential equations with variable



coefficients., The solution of the equations is a
pair of infinite Fourier series in terms of the
azimuth angle, The series are approximated by their
constant and first harmonic terms. The final
solution for the blade motion is given by a set of

6 simultaneous algebraic equations in terms of the
blade and flight parameters, This application of
the LaGrangian was suggested by work of M. A, Biot.
(ref. 3)

IV A Numerical Example

a) The calculation of the motion of the sample blade
is darried out and plotted at a condition of
forward flight at 100 mph.

b) The moments on the hub of a coaxial ship using
2, 2 bladed rotors (blades of calculation IVa) are

plotted.

The immediate practical application of this theory
has been the object through this investigation and a
sufficient number of variables are included to describe

blades of current design.
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SECTION I
THE AFRODYNAMIC FORCES ON A ROTATING BLADE

NOMENCLATURE

P radius of the blade.

Y2 coordinate distance along the blade span.

ég coordinate distance perpendicular to blade span,

defining position of deflected blade with

respect to its unbent position.
c chord length at any blade section.

&, chord length at the root of any tapered portion
of the blade,

VA coefficient describing the rate of decrease of
chord with span for any tapered portion of the
blade., For a blade linearly tapered from root
to tép. C=¢o- ch{}

The plane to the rotor disc is the plane perpendicular to
rotor shaft passed through the rotor hub.

& geometrical blade setting of the blade at its
root measured from the line of no 1lift of the

airfoil section.

(2 coefficient describing the rate of change of

blade angle with span in a linearly twisted blade.
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Thusd=4, -4 4 indicates linear washout from root

to tip.

geometrical blade angle at any stetion along

the span, in general a function of £ and time,

azimuth position of the blade measured in the
direction of rotor rotation. The blade in its

downwind position is at zero angle of‘;?

velocity of flow induced through the rotor dise,

" assumed constant over the disc,

component of the resultant velocity of the air
relative to the blade in a plane perpendicular

to the blade span.

component of perpendicular to the blade span
and lying in the plane formed by the blade span

and the rotor axis of rotation.

component of K& which is perpendicular to both

k%% and the blade span.

thrust component of resultant aerodynamic force

on segment of bladest. 47 is parallel to k%z

constants which are used to define the cyclic

control imposed on the rotor, Arbitrary
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feathering control produced by a swashplate

may be expressed as 4= 9,%}/ # é’;my ’
absolute angle of attack of the blade element
the induced angle; angle between/ #Viyin redians
speed of angular rotation of the rotor,

Angle of attack of the rotor disc; the angle
between the flight path and the rotor disec,

positive when the disc is tilted forward.



The aserodynamic derivation is based on steady flow wing

theory, i. e. aerodynamic forces are determined by instan-
taneous values of velocity and angle of attack at each
blade element. The following facts are, however, incom=-

patible with the assumption of steady flow.

1. The blade element oscillates vertically with an ampli-
tude which is large as compared to the chord.

2. The blade element changes its pitch periodically,

3. The velocity at the elemenﬁ varies greatly.

L. The blade operates in a wake produced by itself, other
blades of the rotor and other rotor (s).

The induced effects are obviously not as predicted by
steady flow theory. Nevertheless, the Glauert steady flow
theory (ref.l) has been widely applied in helicopter work
and has given results which have been found reasonable.
More specifically, the calculation of the flapping motion
of hinged blades, a degenerate case of the present problem,
has been carried out using this theory and has proved to
be in satisfactory agreement with experiment.

A more exact theory has not yet been developed. Points
1 & 2 have been considered for the case of small oscilla-
tions by Von Kéiméh and Sears (Ref L) and point 3 by Isaacs
(Ref. 5). No rigorous evaluation of the error involved in

the Glauert theory may be made on the basis of these partial



refinements. The one calculation which can be made

indicates a small error.*

*Assuming small vertical oscillations, the effects of
deviations 1 & 2 are found to be small. The reduced

frequency of the system as defined in the Karman paper

is of the order of .04.

22
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THRUST LOADING OF THE BLADE
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The following assumptions are made
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Dealing first with the constant part and collecting harmonics
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SECTION TTA

TEE NATURAL MODES AND FREQUENCIES OF THE ROTATING BLADE

The Myklestad method%for the calculation of the natural
modes and frequencies of a rotating blade is summarized
here.

The theory of normal coordinatés indicates that, at a
natural frequency, the rotating cantilever beam considered
will vibrate in such a manner that the following conditions
are satisfied:

1. The transverse motion of all points on the beam
will be harmonic and in phase, i.e. %‘:Z it #y)

2. The motion will exist without application of
external forcing functions. The external forces
acting on a point mass will be only those of
inertia and centrifugal force.

3, The motion will be consistent with the elastic
characteristics of the beam.

. The boundary conditions of the system will be
satisfied. | .
They are: a) deflection at the root

b) slope at the root

By a proper mathematical statement of the four conditions

it is possible to find both the frequencies at which this
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motion will exist and the mode of motion at each frequency.

The system is assumed to consist of a finite number of

discreet masses connected by a massless elastic beam.

| HE

y

? Mauss M Mz _’”fl
7 . » — —s

/)

 PE———"

/

7 An

/

// K/ ot

The ELASTIC COEFFICIENTS at the m'th section are defined

as follows:

T FRCE

_____~_--422;__~ b/
L y

SNONSRINASRRNNNSN

Pl

!

|

Slope/@;” and deflectioncé”_produced by unit force at the tip

Yoam ppn

.) UNIT BENDING  MOMENT™

NN

Slope /ﬁgﬁ and deflection¢4%~produced by unit moment at the tip
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The third of the necessary conditions is then expressed by

the following relations:

o

M m+/ 1

/m. = %m'/ # Ay Aty + S 04*4‘ * Mo, @

/
Where ):/ and A/, are the shear and bending moment at the nth mass*

By the first condition the inertia loading on the i’ th mass is

My Wt : wﬂ‘. S5 and M» nmay now be expressed in terms
of the inertia loading and the centrifugal force. The small
angle and small deflection assumptions of beam theory are made.

y,,, Ay of.. are expressed harmonically as follows:
74{" %n (/oa/Z{

ﬂdn = ;M M({/f

where in general /’ gf[

*Note the reversal of the sign of / in this section of the work.
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22
LENTRIFOGAL frlE
X o
INERT2 ] Faeckt
A o g —
S = J_ ey, Gt ~ P wi kiR ol Lt @
<=/ <=/

_ _ A _
Mo = {Z””iﬂ'zyx_ 6/7!(/7(/)(4")(4:) - 2_/;(4'[('_/2 z[}z ‘/m/@ﬂj______@
=
L=/

Where & is a natural frequency

/2 is the speed of angular motion of the blade

Equations 1, 2, 3 and 4 now express all of the conditions
necessary for motion in a natural mode except the boundary

conditions.

Substituting 3 & 4 in 1 and 2, rearranging, cancelling A@dﬁ‘

and dropping the bars above the amplitudes of deflection

and slope, the following equations are obtained.

2
4;f/ A /c’f”dgn 21 AW%*QlJZZ/) - Ap,. j§'4%47”;7¥‘
A=t A=

wF fmintiord) - nE (i)

%,
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%‘("L/ - %" 1417‘/!41/”' /—7«,) Z/”"(X“-'QL
A=/
v‘/& Now. ~en.) Z’t/m‘wzy,;
A=/

* K/’“ Mta. "Q{’m/ Z @4'4{/2/4‘/)(1"[4'/* /”(4'[4’-['21/%""%1}/

Let the asmplitude of the slope at the tip of the blade be
an arbitrary ang,le% and the amplitude of vibration of
the tip be 1. From equations 5 end 6 it can be seen that

in generalqﬁ_/yg1are then expressable as:

o

fon #- A

U]

Jn

—/ﬁ_ﬂ % 77/»

/C«f»»;&ay are AMPLITUDES COEFFICIENTS. Their value at

each gives the shape of the curve of deflection.

at the blade tip

o(/=¢ . %;a/j/d',ls/
=0 ;’:// 9?’1’0

at the blade root @‘4
Xe = ;/ﬂ */ =0
=p -
* / ?f%




Thus the boundary conditions are introduced.
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Difference formulae may now be found for the amplitudes

coefficients by substituting 7 & 8 in equations 5 & 6

and collecting coefficients of ;é and constants. The

formulae are:

fuss = fon *HinCpu * A, Gt

jé;ff = Aﬂnjé; # A%k,é;; * My &'

N

;/f”"/ = ;¢41 ’('Jaf//;m. # ”Fm;/m 7‘/»1,,,,{/44
;4/;/ = fﬁ'* /441% +%FM£”‘- * Umy 6'41,’

WhieRE

Ue, = Lniz, ~cly

Unn = Ly, ~l,

u

gﬂm Xi2% = 4n Ao IEAL A

S

R &

T
N
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(4?/," E/c”fﬂﬂ ‘jﬂn
/dﬂ/"'— = ;A(-// "‘;4\,

A~

a—

;Z; 444312'J?z¢234ﬁ}7cyj :_lzi /Cz?/&fdkl (% raLLows REIM
4=/

Sl prevI0ts Jaw/zzwy

Lty

Gt = MZ/ / Libp: #4: (49, )

Gy E}il /,/;é; e (d//z/
(= :

By assuming a value for 4 , it is possible to proceed

from tip to root, finding all amplitudes coefficients,

by means of equations 9 through 12 and the three

boundary conditions o = ;é/ v =L, %—‘0

At the root a value is found for o, When o4 1s zero

a natural mode exists. A plot of a{ versus &« then

yields as many of the natural frequencies and modes &s

are desired.

This method is now applied to the blade taken as the

exsmple in this thesis.
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The step tapered hollow steel spar which is the main

structural member of the blade is shown in
So little stiffness in vertical bending is
covering that the steel spar is considered

only elastic member present. The weight of

ribs, etc. is considered.

The essential characteristics of blade are

Figure (7).
added by the
to be the

the covering,

given below

Station" Spar Size" Weight-Lbs
0-12 3.50 x .263 9.09
12-30 3.25 x .22 10.86
30-15 3.00 x .200 9.08
14,5-60 2.75 x .183 9.21
60-74, 2.50 x .170 .02
74=90 2.25 x 148 7.80
90-102 2.00 x .131 5.02
102-114 1.75 x J117 L4 30
114-126 1.50 x .109 3.79
126-145 1.25 x .104 5.17
145-169 1.00 x .104 5.66
169-193 .875 x ,102 l+90
193-210 750 x .102 3.05

Spar size given
as diameter x

wall thickness

85 . 95 Lbs
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Moment of inertia of hollow circular cross section

7= fr(#*2£Y

MeTe ol wrmme ess
[9 = WEI0E LALNIYS
Modulus of Elasticity - b o
‘E.“2¢VA7 /g;»%

Elastic coefficlents

7

1~ Z,

/ - =
/ | |
e R

For a uniform section of length /L

Unit Force products at end Deflection = £°
JEL

Slope = L2
27

Unit Moment produces at end Deflection = (£*
2EL

Slope = L

L1 -
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By superposition of the effects at the end of each section

3 z
Eo = L L 4[4 +ZZZ// 447 00T

37, 7 Z; 7, 27,
bofp = y + 4 4,4,
m iz F (e
E/(/: = Eo'/q = é_L # Z/Z o Z/Z;
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All the material necesgary for the investigation of

the natural modes and frequencies has now been pre-

sented., The results of the calculstion as carried

out for the given blade are presented in the six

charts and tables which follow, They are:

1 - A table of moments of inertia as calculated from
the given blade data.

2 - A table of the constants 4 24, 4, W, A, U s U, 4’
as required for the frequency work.

3 - A sample of the calculations by which a point on
the frequency determination chart /o(, u. w/ is found.

I, - The frequency chart with the three lowest natural
frequencies indicated.

5 - A table of the natural modes as determined by the
formula 7774 where the various quantities are
found from calculations such as shown in 3.

6 - A plot of the three lowest natural modes.
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SECTION III

MOTION OF THE BLADE

The motion of the blade under the applied aerodynamic
forces will now be found. The system is considered
continuous rather than made up of a finite number of
discreet masses.

The motion, in general, will consist of some combina-
of the natural modes. Only the effects of the lowest
two natural modes are considered here but the work may
be expanded with the addition of no new theory.*

The normal modes (normalized by taking unit deflection
at the blade tip) may be described by power series
g = 9;ﬁ¢j AND y& 72/%/

The 6omplete Motion May Be Expressed As

Y= 4.9 * f21e
Where f/= f’ () ) /z"f../z‘/

f, and g& are taken as the generalized coordinates
in an application of the LaGrange equation. The general-
jzed forces are found from the expressions for the aero-

dynamic force.

*The methods which follow were suggested by work of
M. A. Biot. Proofs of the general statements made
in this section may be found in Karman & Biot (ref.6)
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LaGrange's Fquation is

d , 4r |
/7(4«1;?4'/*:’7!%-— = %

Where
7 = the kinetic energy of the system
I{ - the potential energy of the system

@ = the generalized force, as defined later

The Kinetic and Potential Energies
K
= ..Z t L,
7F Z-///7 }’Z dén
o

e o |
T L fir) e e g G

7 -z‘/,f,"z% *z///?%% */f’"/;%%‘é"

Because of the orthogonality of the principle modes

/7/% %’l:a

T+ L g




The theory of normal coordinates also indicates that the
potential energy is simply related to the kinetic energy
through the natural frequencies and may be written as

follows:
7 / “ / L
= 2/, 2 2 z z z
’z‘f’w’/y"é"‘ "Eiz“/z/%/éu

Where W, g N2  AEE IWE LOWEST g AexT FrGHEST
MTURAL FREPUSNE/ES OF THE BLAOE

The Generalized Force

Sw
é/g

Where aﬂé/ is the work done by the external forces on

4&; is defined as

the system during a small change in the

coordinate j&' indicated byagij

In this case the only external load is that of the air

of magnitude 4/7' in length 44 of the span.

;W=//faf/ over the blade

Where ¢{; oceurs becau%e of {;Q‘
J}/ = ag&' yz
aﬁ%:)/97-9Q‘ﬂé)cé%é = aé%;'//;QRQZ(Yﬁﬁ/
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A SEC/ES OF COMSTANIT ALE NOW Lcrantd

A= [ 14t b= [1954
Ay = /;’/’%}' /1/A=/;/74/gz¢/2,

b~ Jot 4 A= [1n'4 4

_ 3
% - ,/;/43"7’ /1/;1"/7,2464_

d7 :0y//fd)' /{/;:/;,2(/64’
2 o
e = fy 45 A [

/?7= 0/;/5% /L;"/‘;,y;f/ﬂéz
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A= Ay w Yz SSTINVTED fE N %

SOLUTION OF THE E@udrions

ASSOME

§r = Qotd smy ra, ot

gz = /ﬁfz/,‘ W% */é‘zw%

THEN

G = dcof-d.my Le - gty my
¥ ¥ ’ ’

a2

iji = “ﬂ,'fm% ‘ﬂz‘w/ gi = -—,&;9}41}/—//2 W/

XESTITYTING W THE ST D E.

~A, 4, 5mf A po i+ (G o~ YL~ At Ay S#14)

# (a0 + 4, smy +dzw;///Z’f/2, ~Ap ot Ay mz%/
7 ///7 oy -, %r;//[‘/f/s A, Sfﬂ;//f-/,éf,&,m% AAMn w//x

/—/)/z [W}A "/{/3 %Z/A/‘ - /}3—;4 /2/4 W/éf-/ifwjé
# /{6 541{2% 7‘/)76/02% f'/ﬂ 511{3% "'di 5103/
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SECTION IVa

NUMERICAL EXAMPLE
The motion of the sample blade in a given flight condition

will now be found.

r
1 The Quantities 4.(#/, ¢:(7), 4.4/, 4."(#)
The following series are adequate for the representation

of the two modes.
// = '””3;%/21 o in feet

ge = = 0073 38,6 % . 006 0 #5540 ¥

4 4= o07084

0, = = o) n . 0001433407

The plot on the following page shows the degree of

the approximation.

2 The Quantities A{a//', /42—

The following aerodynamic parameters are taken
/4(=. jvyf &, =62=0
/= 9853
bo= /34° = . 2267
This corresponds to flight at 100 mph of a ship using

2, 2 bladed rotors of the type being considered. The

weight of the ship is approximately 3000 pounds.
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 THE PV BALE SARANETEDS ACE

G = [59F (7)
Ke = [039

Ke = ©

=128 (F7.)

W= 24 ZAJW%Z

GEAMERAL  <oNGTANT

/ = 002304 5w%_ .

dp = 573

IHEN

Ao = 03223 —. 0/6/Fs2 +.0028374% . pogs 549947
Ar = =07972 Fp22/h - g72 903/ 4 F

A = o

B, = =0534) % £. 0099/ 4%

G = iz r 052960

Co = ~.0/0F 4 £ . 00037 4%
& = =534 £ 000890 %
AN

Aoy = (257 = o2on)

6/~



62~

oM THESE
ARE FOUNG THE Followms Miues o A

A = *.3%/%
Az = . 2814
Ay = «. 8
Ay =+ 7052
/f;‘ = o

Ap = — 205
Av = - 03994
A = ~536¥
Ay= - o892
A= ~26567
Ais = ~/003
Aw = = 0¥237
Ap = - 000 §4

/—;/—(/1/ Z= /. 9600

/1}1— = ~. 07807
/I;’ = g0

(
A/p = —/JZ/%

d// = *.00866
f

Az = -328/
/

Ay = - 15793

/(/y = = 0%7)’7

As =~ qo099

/,I

= — 185€

A,

7 = — o804y

(@)
W/ = /0.368
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0 o = 05/70 0 £2.736 |=/696 = b/300
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WHeH //ﬂo THE FWAL SOLUTION OF

do= +/20
a, = +foo
az = -/5_%

Mro= ~I3
,/7 =~
Az = -9/

THE Mol THEN /5 DESCR/BED BY

g (720 +/.00 sy —/;%@;U/,m;;//z’j

# /-_43 ~. 04 sm o/ - .n/w;///~.0473/5/2 Zf-.maoéé?f%y

WHepE /6 B8 W FEET.

THE MW OF 4 PONT 47 A= 200 MHES /x(= 1) 15
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SECTION IVb

MOMENTS ON THT HUB

The moment transmitted by the blade to the hub

may now be found directly. ZFrom the derivation of
Section ITa, the bending moment at the blade root is
harmonic, in phase with the deflection and has the value

M = (1‘6}bﬂ fé%//)xéz
Where A =4
The moment is in inch pounds
This 1s for the condition of unit deflection at station44=/n}%/€;)

The total moment is then

M = [;, (- Gps'f @// ~f (Gt 65 | xiz

For This Calculation

/2 /‘/6/4?4'/ -é/)/ = S .
& /‘ /ff;é/;f- @’Z/ = ~/37,000 W15

The moments may be checked by the less reliable method

of applying the equation £Z éf;? to the approximation
AE

curves used in Section IVe. The corresponding

values are 60,000 fwp /64000 m L8 . The grester



discrepancy in the second case is to be expected from
the poorer fit of the deflection power series to the

deflection curve ,

Finally

M= 6,898 + % 780 smy - 83330 5(4/

66 -



VIBRATORY LOADS ON THE HUB

T { FEILLING

DREZ7IaN OFF FUGH T

&
-

The right hend rule is used for the representation of

* AIH NG

P
L

moments. The directions of positive rolling and pitching

moments are indicated .
It has been found that #/ may be represented as

M=o +4 m/ * e w)é

M = Mo f
Me ~/W§rr'z)/
M= ~anf (Mo + M smf »Wo m}é/

M wf A A L w2y

fl

|

Me = —~smf (Mo + M, smy +Msto i)

]

~M, smyf M Y o2 M spaf

77—
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The effect for a two bladed rotor is obtained by

adding the loads produced by a blade at azimuth angle;/f¢%°

The moments are then:

Mp= M,y -Me M 024 M= ~Mo sm2f M, 4] o2y

for a single 2 bladed rotor

The constant parts are balanced in steady flight. The
other parts form a second harmonic forcing function

for ship vibration.

- For a coaxial helicopter using such rotors

My = (W) w2y -t A2 ) + (1, s (24) - ~f, w/-Z%//
Mp= —20: ~2p, 2y

Me= (~Mzsmzl -#, +t, ctozs) + (st 5o (-21) M, 2 M w/z%//

B
]

M, +2M, L2y

This assumes that the rotors are geared so as to overlap

at the azimuth positions %:0 Avp °



W THE CHSE WHERE THE BLADES OVERLAP AT = #5° W0 /35 °
j {
My = -2M, -24 smz/

/WZ = ‘ZI’Z "2/%. 5’7]&%

/i
4
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