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ion is mede of a circular Jet lssuing

C

from en orifice into an air stream flowing perallel to the jet eaxis
and in the same direction &s the Jjet. The eanelysis is divided inte two

ortions:

el

1. The regicn immedistely downstresm of the orifice in

2. The region downstream of the end of the potential cone

in which the jet is fully developed.
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The solution for these two portions are fitted torether at th

disappesars ziving e complete sclution for

at which the poitential o
the whole jet,

3

Numericsl computations sre mede for severel ratios of free sitreanm

Joie

velocity to jet velocity to determine the spreasa of the jet, velocity on

[N

the axis of the jet, and spresd of the surface on which the velocity is
one half the sum of the jet velocity and free stream velocity.
™

Squire and Trouncer's results are plotted as a comparison with those

obtained in this anelysis,
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The purpose of this anelysis is to provide a comparison of

jaxy

(S

charscteristics of a round turbulent jet discherging into a moving

[#]

air stream with the knowr cheracteristics of a jet discharging intbo

air at rest, DSoth jet end free stream are essumed to have the same
density snd the flow is assumed to be incompressible,

e
[

At the present time theres exis no setisfactory theoriles for

[45]

owaver, the integratved forms of the eguations of

.

turbulent mixing, &

-

motion, along with some dimensional reasoning, csn be used to give

some usaful resulis,

)

The solution of the round jet in s general stream has been

alreedy carried out by Squire and Trouncer. In their solution the shesr
. : k . @ ..

stress is beased on Prandtl's momentum trensfer btheory which 1s known

to be in error, 1t therefore seems worth while to investigats this

problem uvsing the intepral egustions and also making use of experimental

dete for obtaining the shear stress in the mixing regions,

Use of the integral form of the squations was first proposed by

. (3) , @)
ven Karwmen 3 one of the esrliest epplicetions was by Polhausen , in

: . . . ; . . (s
investigeting laminar boundary layers in s pressure gradient, Sutton )

squat

, ®)
in laminer boundary layer investligations., Liepmenn and waufer have

e
O
s

originally used the integrated form of the mechanical enerpy

also applied this method to some simple two dimensional turbulsent

In the intgprated form of the eguetions of motion the only

assunption necsssary is that for the velocity profile across the

ion. This can be mede quite sccurately and for & closer



[aw)

¥

comparison to the work of Squire and Trouncer the seme veloclity profile
that they use will be assumed in this solution,

In fansforming the momentum equation to the integrated form
the term containing the sheer drops out. 1t is therefors necessary to

introduee the mechanical ensrgy equaetion. UThis equation,

independent of the momentum egueticn, is necesssry in order to introduce

g term conteaining the shear stress.



The following notetion will be used,
g
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Mixing Region

o

Nozzle BExit End of
Potentiel Cone

Fig. 1

Distance from nozzle exit slong jet exis
Distance from jet exis

Distence from nozzle exit to end of ‘the potential cone
Radius of the potential cone at any point
Radius of the outer jet boundery at any point
Dismeter of nozzle exit

Veloeity perellel to jet exis at any point
Jet velocity st noszzle exit

Free streem velocity

Velocity on the jet axis et x = x,

Velocity of the stresm ncrmel to the jet exis
Stresm density

Shear stress
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Lil. ANALYSIS
L. Region between the exit and the end of the potentisl cone,
the three [undamental eguatiocns are
Centinuity

Arw) | o(rv) _

o X ar
vomentum
oL U _ 1 3
QU TRV o = Far (FT)

Wechanical energy

our L au +ouy QU LU B oy
ar r or
These three equetions ere integreted bvetween the
bounderies of the mixing region and are then

Continuity

b

G
wonentum
b
2 | dbb
adi W rdr +U5Ubb+u ada —u, b dx =0

(€N
wechanicel energy

b
d
iz(%u rdr +% SULUpb + fuda di—‘u%j‘& -& | zr Ztdr
a
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4 function is assumsd for the velocity profile

across the jet such that

U = ubJr-u-“%i‘?—[% cos'rmz}
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dvr
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Pubstituting into the contiruvity egustion

3x | [ub+ (—*L?:—u—"qt(ﬂz)ﬂb—(bﬂ)dyj[{b—a)dyj

U b+ waa §2 ~u b=o0
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Expending
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Integrating
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Diflersatialbing and collecting termns

B & pasCH b0 o
A (Ueeu) (T, 1)

B - (u«—ub)(%ﬂ "IJ

C = (uc\"ub)(lz“l')

bebituting into the momentum equetion

a‘d‘“ v “”%g] @b~ + (a-b)' 7] dy

d& sz. _é_lg =O

+U Vb tuza g 15

Expanding and integrating

ddx[ U (ab-57) = 4 (a-b) + Uy (Ua-U ) (@b-6)1,

T ub(‘«(a.—‘ub)(a—b)":[ + M(ab—b‘)l3

N ~ub)( b I]+uvb+uqa da Y db -5
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- [ $edn
= j:»zw“@ d%

Uifferentiating and collecting terms

[DoutEbf [EaJrHo]a‘y**ubUblo =0 (2)
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T 2 T e Dk e 11 . . ~ b1 b aia
in particular it will be assumed here that the

v (94" 13 S N do oy R
Sunction £\ can bs represanted Ly

gop =Ry’ coslﬂ(?g-%)

substlituting into the mechan lcaL energy equatio

_lzﬁ‘r[ub{. u«;“a {:(%} [(a(a b)+(a b))z]d;z

2 3 C“o
FFUyb gy - sub i

- --J‘Q(w u&g(?z)[b (o-a7][-(o- o4 4]

Lxpanding and integrating

% { [“u; + }2‘_ L(;(C(cwélb)l-, + %.' ub@(«'ub)l I3
L 3 b-bl +l-Ltul+2,,%/, - I
+ g Ua-u) Lgj|@ - 2WUe T 3 U, (Ua-ts) L,
a 2
I URONRL S ROV g ) PN }
rUS UL tula ii Uy b 3—2

= Tr(uc\-ub)a(IT—Ia)b + T("(uccubflga



I, =f £ 6pdy
I = | %fe0dy
I,= [ Yaaop dn
18 j )Z—FO()gO()d)Z

[Gaﬂ—\b]g; +[Ha+5b] I +Ur U b =Ka +L b

epp ey o -
waeras

G = U -t} + 3uy (Uatie)], + 2 U (Ua-w) T,
=+ '5; (Ua- UeYI

H= U uatp)(3T,-3I)+ Upau’(31,- 2 1,)
t (Ua-Us) (f Is-% I.)

T = W e tp)3T,-3I) + Un(Ua-te)(2]e -2 1,)
+ (Ue-et,) (T, - % Ts)

- 3
- 3
L = TM({ua-us,) (I*:‘Is)
Eliminating v, in equation (1) and equation (3]

Coa+Hb]9e +[Hat T 98 - ¢ [Aa+BE 2

‘ub{BaJer} ax =Ka+lLb

@



[Cy ub"Al +[H -u, LB [b‘i—i“*-a%—}f]+[}u;q%: Ka +Lb

ad‘)zlo(at +Z@ab +”b"(oz] = Ka+Lb

Using the chain rule of differentiating, d( ) = d . db
d X db dx
the above ac ti

ve equation becomes

~
N’

[20a g3 +2Ba+ 2L} +276] S = Ka vl
{KQ*’U’]db = (2 xa +2@b) +2@a+2‘mb )

Elimis &u;r Vb in eo JaleIo \1 and \GX

{ba BB 55 +[Ear g8 — U [AlrBL] 92
‘ub[Ba-er} %L; =0
K:D ubA]QaT( -\-[E ubB:}[Q dx b%%] +[F‘*HbC]b%% =0

T ooy menw i 4 3 o
inucgraixﬂ%

Sa"+2eab +Pb + 2 -0 (5)

where
= DoUwA c = E-U4,B = F-u,C
8 2 J C; - EL ) Cb - ————Efi__

Z = constant of integration
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subscituting equetion (5) into equation (2)

Ko+ Lo] 2 = (2xa+ 200~ £282) 1 2par 27b

1 d¥ ._igﬁ’“oﬁe)a’u(fm&wk@alo%’d‘é—CP(%)lJ
z db — €Eb + Sa

¥ }\ + A b >\3b

1 ~ -+
2 db ~ §a r€b = Ka+lb
_ 5@-&6
A= TSR
_ (5 -e)(S €
Ao = S(ek—sL)
y L = K(LS-RE)FKHKR L)+ e~ §()
E K(L& - Ke)

s R
Lo eguevidn (o)

So+Elb = V-28 +E (€ —d8)




Ao )
L= -+
AFZ8 + (€= $8) Ka+ll

KL daN—2s+ (e 48 _bdb
~2-->\,b bR -€" +As Ka +Lb

This expression can be integrated and gives

i26+b"(6’- $6)
—/\b Ax $E-e*

4 =

—_ r’*‘_ Ao D™ G) + ¢
AaCely (i~ 7 e ¢, e )+
2(c,+) b\lcz+l ¢ (e, )Xer-c,8) ~ ¢,

where

N
Co LS -Ke
e KZ$
! (LS-KKe)
o = K*(¢s —€?)
T (Ls-Ke)"

Y =constant of integration

Y can be found by the boundary condition that x=0
where b = fi/g. Ubtaining the perameters =x snd b in

dimensionless form Lhe result becomes
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T o R i el O
azn dJZT g »\/C__.,._r+ __. ,\[(cl“)[_(zc) Czég)j’?‘c'

E D . o g e - % Ve ] 4 ¥
d* 2 d'\(cz“'l 9 ‘\‘c"ﬂ lg(';. ’\/(C.,_H)[(Z-;‘_)"_ C)_ v 2¢,

M s

The constant of integretion Z is cbtesined from the
boundary condition that a=uL=045 at x=0 so

-

The only remeining constant to be determined is ‘,Q
which appears in the shser term., From sxperimental datsa
e L .
obtained by Liepmenn end Leaufer it is found that nesr the
Jjet exit S(Z)MAx. = 02.0072, Irom sxperimental dsta
cbtained by Corrsin 1t is found thet in the fully developed
region 3(‘7():\/\“. = 0.022, Zoth of

" * $ e 4 : ;. 1 s Uy
the case ol a jet discharging into still air or <37 =0,
B a

(1)
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Differentiating our asssumed function it is found that
GO, 0ccurs et the point where J=0.692 and O max. = 0.224%
The constant k must be given some average value such that
9(’()01“.5'0:' the average shear profile will be between 0.0072
and 0.224,
®

From experimental data™ it 1s known thet the end of the

potential cone is at a point about 9 radii downstream of the

exit of the jet for the limiting case where zf*k:O. In order
for 5‘" = 9 when X2 =0 and a=0
* /2 R TV H =

) wax. = 0.01757

emd TR = 0.07388
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B. Region downstream of the end of the potential cone.

At the point downstream of the jet exit where x=x,
the potentiel cone disappears end the variable, a, no
longer appears, Downstream of this point the velocity on

the jet axis, u, , will become a variable decreasing with x.

c

The assumption for the velocity profile in the region of

the potential cone was

uk—'u b"rJ
U=U, + -———2~£[l — COS’IT(‘E_?J

WU = U, + .[..Af_"_tf(_b_[\ —~ €0S W(QB:_‘")]
This reduces to

_ Ue-Ug __l"]
U =u, +__<‘_,z__[\ + Cos ™ ¢
or

W= U+ 52 F o

where

Jr(}k) = |+ cos T

r‘=b/u.
o\r=bc\}»
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The continuity equation in this region then becomes

[ bbj/%d}k + Ye- Ubbj—{z(jk)d/u]-l-?fbb U,b dx =0

This can be reduced to

db '
IV &+ 40, - ®

whers

Iy f/w@w&f*
V= Ue-u

Substituting in the momentum equation

de[uébj‘pdp + Up(Ue=Uy) szop¥(») d)t,(

+(_“_°___‘W, f/om( (/k)d/-{{'f-ublfbb urb 8

4

Which reduces to

| T db . du. _
[4Iﬁu,,\/+I,o\l ]ZT +\_ZL1U,O +I,o\f]b Te t2u,vy=0 @)

where

[ b
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In the mechanical energy equation the shesring stress is
given by
2
¥ = p(Uc-up) O
The function SQPJ must be such that the shear profile will

resemble that illustrated in Fig. 2. This will be
/A.
g =1 T [ Fydp
Mo
Z = constant
Substituting into the mechanieal energy equation

a%[ub‘sbtjlﬂ.d/k + 2 ur(Ue-up) (OZ.LM ‘F(/u) d/\,x

. sl 3
+ % U (We—U b)LbJ',M,‘{: ()VL) C‘)k + 'é‘ (Ue-Uy) b j‘f*‘(' 9‘*) dﬂ]
af! ’
+(,L:U‘bb -u:bcd—l? =—b(u¢_-ub)J /wg()x)ﬂc(},\)d/u
which reducss to
- x db
[SLQLA;V +3 1 .u.V +<L*Iu\lg]g—,{
[}.I 2, .3 V32T b 7—]°‘_‘*s.|.u"v- =TV
+]Z2 Lol +1I.oubb "'_851" V{dx © - 12

L=, wP () dp
I, :fo JIIOS f-'()“\) c\)x

(1)
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Eliminating v, in equation (8) and equation (9)

ooV e L] 28 +frpn T b 22

WTRERT EES R

db Isu\o-FI-no\/ CI\/

——
— — .

b =T 2TusTV Y

Integrating

\09 b = ——'ilocj‘f_zquub—kl,o\!]"‘li‘oS N + l03 C,

C

b = ' — 1
AN (2Tou, + X oV) | ()
db _ _ b Tow+LV 4V
d)( - V ZIgLLb+I/oV V

db ¢ (Tsup+1,V)  dV

—
—

dY g ®(2Iu, +I,N)" dX
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in equations (&) and (10) end substituting

b . . .
for %; above we get a single equation which is

ks

IsT, ug +I L uN+5 LT,V dV _ 21‘7_\/5/7_
(2ToUy +I,,\V)" dx C,

This may be integrated to give

—._BIH_ISS u X -_— [
ClInIpi/z ° 51Il \/

V
Ve
1 I\ V
+ (Lo (Lo
( ) Y Q. (12)

The constant of intsgration C may be found by the

boundary condition +that at x=x V = ug

C. = 5 5. +2((R) J%‘“
z| L E
- f‘(‘{-‘i) %bz" C-:.%\,,LI 5h X
L(ﬁ»‘ (Il Z -I:o> Uy

.= U, -,

The constant of integration C, may be evaluated frox
& ol |

where

these seme boundary conditions end from equation (£) when

2 =0
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(87;- - %"; l][z19+l,o %*SL— I)j([(—l%%_—-“ %fbﬂ—I,D—I ~La, L,

o
o

Substituting these values of € snd €, the [inal

solution is obbtained.

|
cue (1) gl . 0-%) "

i [19 ~To| &, J"i[rn”’l_'wzl[“ %fu‘_l

5

IID | 3/2. 3 I:Q I.N:/’-In _I'IOS/Z
X 24-14"1:,,_ %a"%b + 81;1,1_

X2 <%«1— %b%) + (g« “- % *) (2)

whare

HEquation (11) becomes

z*‘ [: t \H_IIO ub+(219 Imﬂ

s =7 =2

B
Py

¢ mey be round by solving for b when a=0 in

equation (5)., Using this value of b find the correspondin

value of x in equation (7) which will be Xo o

EBguation (13 gives x as a function of (uc—ub)

Equation (14) zives b as a funetion of (ug-u)e It does
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[

not seem necessery to get an explicit expression for x
and b, By assuming valuss of (11C—ub) corresponding values

of x and b are found and b is plotted against =x in

]

0%

ig, 3.

Now the constant ’l appearing in the shear stress
expression must be eveluated. In the fully developed region
downstrean of the end of the pobtential cone g(fk)mx';0.0ZZ,

From the sssumed function of g(}l) it is found that

I (MWmax =0.4382 or L =0.05116,



22

I1I, DIscussion

The results plotted for the region containing the potential
cone are the results obtained by Squire and Irouncer, In using the
derived equation for x and b (equation 7) in the potential cone
region the final results obtained did not eppesr physically reeason-
able, particularly at higher velocity ratios of free stream to jet.
Due to the enormous amount of computetion necessary to recheck these
results Squire and Trouncer's results were used in this region,

The very close cowparison of the two analyses in the fully

developed region would seem to indicate thaet the integrated equetion

iy

solution that has been used here should give fair egreement in the

potentiel cone region,

5

The basic enelysis of the potentiel cons region is known to be
correct through equation (5). This equation gives & relation betwsen
the spread of the jet and the width of the potential cone., The

remainder of the analysls withia this same region or the computations

may be in error., Howsver, the method of solution is outlined for any

future investigation of this problem,
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APPENDIX I

Evaluation of dimensionless integrels sappearing in the

equations of motion,

The dimensionlsss integrals appearing in the eguastions
of motion all mway be expanded into integrals of forms found
in standard intsgrel tables., Following are the results of

these integrations.

I ,=[°¥(7)d>z = H\—Cosmﬂd)( = —1.00
I =j"°)zjt(az)d>z = f[ﬁ— cos Ty [4dy = —o0.002
I, =y$“‘(7()dy(=j’[¢— eos Tt %]Lc\)( = -1{.500
I =f,.’zr(7)d7=f,"[‘*%ﬂ’z]l?(d’l = —l\ss
:j"’jt”(@dsz . Y[_l— cosnyldy = -2.500

o

4

I

s

1= [ Pepdy = (li- eosmil7dy = - 2014
I ‘i "9@ {opdy = S o{%fws’”(“z'%) smmyldy =—006815 %104
7, ‘

I. - jo7z qbz)wcl(y)é)z :j‘k)z“mslﬂ‘ (7- i)sm*n\)zcbz = —0.04305 x/0"fe
3 ) f



L, f ‘?(}L)d/tk f[HCOsﬂﬂMdM* 0,298
L5 |m

gl
S/A (/u“)d}* J[\+ QoS’ﬂ‘/u]/&C{/bL 0.485

o

7 (WA = [l + Cos TT‘M] /U\clju 0. 346

1. /u g()“)\c()a)d/x

j\-n:ZALMTI‘/\A l+¢os Tt“/u‘] #L(Cosﬂ/\&-q.ﬂ‘/,\smrr/u_o]

(]

=~ 003987



APPENDIX II
Integrations necessary for solubtion of the equations.

Ao Integral appearing in the eguation for the region
containing the potentisl cone.

- P bdb
17 Koaslo

Substituting for & from eguation (5
1- bdb
—Keb +8 N4 b~ a5 (o —2)

which reduces *to

b db
b +\1 C\L “Czbl‘

1L=c,

where
Co=—2
Le-Ke&
Ct .. K'&D

b (LS —Ke)

_ K(95-€?)
T (Ly-KE)

Retlonelizing the denominator

> Lafer— o Jdb
CJ (B - bacr-c,b

bl(cl'{' D - CI’L

T-



. =cj beb . . Cog [er-¢,b" bdb
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B. Integral sppeering in the equation for the region

downstream of the end of the potential cone.
t[ - ‘% 1,tkb +'<1 jI L&b\/ *’V’L
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