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When we observe our visual environment, we do not perceive all its components as be-
ing equally interesting. Some objects automatically and effortlessly “pop-out” from their
surroundings, that is, they draw our visual attention, in a “bottom-up” manner, towards
them. In a first approximation, focal visual attention acts as a rapidly shiftable “spotlight,”
which allows only the selected information to reach higher levels of processing and repre-
sentation. Most models of the bottom-up control of attention are based on the concept
of a saliency map, that is, an explicit two-dimensional map that encodes the conspicuity
of objects in the visual environment. Competition among neurons in this map gives rise
to a single winning location that corresponds to the next attended target. Inhibiting this
location automatically allows the system to attend to the next most salient location. A first
body of work in this thesis describes a detailed computer implementation of such a scheme,
focusing on the problem of combining information across modalities, here orientation, in-
tensity and color information, in a purely stimulus-driven manner. The model is applied
to common psychophysical stimuli as well as to very demanding visual search tasks. Its
successful performance is used to address the extent to which the primate visual system
carries out visual search via one or more such saliency maps and how this can be tested.

We next address the question of what happens once our attention is focused onto a
restricted part of our visual field. There is mounting experimental evidence that attention
is far more sophisticated than a simple feed-forward spatially-selective filtering process.
Indeed, visual processing appears to be significantly different inside the attentional spotlight
than outside. That is, in addition to its properties as a feed-forward information processing
and transmission bottleneck, focal visual attention feeds back and locally modulates, in a
“top-down” manner, the visual processing and representation of selected objects. The
second body of work presented in this thesis is concerned with a detailed computational
model of basic pattern vision in humans and its modulation by top-down attention. We
start by acquiring a complete dataset of five different simple psychophysical experiments,
including discriminations of contrast, orientation and spatial frequency of simple pattern
stimuli by human observers. This experimental dataset places strict constraints on our
model of early pattern vision. The model, however, is eventually able to reproduce the
entire dataset while assuming plausible neurobiological components. The model is further
applied to existing psychophysical data which demonstrates how top-down attention alters
performance in these simple psychophysical discrimination experiments. Our model is able
to quantitatively account for all observations by assuming that attention strengthens the
non-linear cortical interactions among visual neurons.

Together, the two aspects of attention studied in this thesis lead us to consider the essen-
tial role of non-linear computations in visual processing. We suggest that visual processing,
even at its earliest levels, is best characterized not by linear response functions and spatial

convolutions, but rather by non-linearly interacting computational devices.
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Selecting only a subset of the available sensory information before further detailed pro-
cessing is crucial for efficient perception. In the visual modality, this selection is frequently
implemented by suppressing information outside a spatially circumscribed region of the vi-
sual field, the so-called “focus of attention.” In primates, the identification of behaviorally
relevant objects and the analysis of their spatial relationships involves either rapid, saccadic
eye movements or so-called “covert” (i.e., without eye movements) shifts of visual attention.
In a first approximation, focal attention acts as a rapidly shiftable “spotlight,” which allows
the selected information to enter short-term memory and to remain there long enough to
reach conscious and cognitive levels of representation. By employing such spatially serial-
ized analysis strategy, primate brains achieve unparalleled performance, given the limited
computational resources available, in scene interpretation and understanding. While at-
tention can be controlled in a voluntary manner, it is also attracted in a “bottom-up,”
automatic and unconscious manner to conspicuous, or “salient,” visual locations. This last
property is of particular behavioral importance, because it constitutes a powerful alerting
system which allows primates to instantly become aware of unexpected predators. The first
part of this thesis is concerned with a detailed and neurobiologically-plausible model of the
bottom-up control of visual attention.

What then happens when we focus our attention to a restricted part of our visual field?
As we just mentioned, focal attention is often thought as a gating mechanism, which selec-
tively allows a certain spatial location and certain types of visual features to reach higher
visual processes. The question then naturally arises of the nature, computational char-
acteristics and neurobiological implementation of such information processing bottleneck.
Experimental work, in particular psychophysical experiments in humans and electrophysio-
logical experiments in the awake behaving monkey, suggest that the attentional bottleneck
is not unidirectional. Indeed, it has been observed in our and other laboratories that fo-
cal attention modulates behavioral performance in simple pattern discrimination tasks, a
finding which is paralleled by observations of a “top-down” modulation of neuronal ac-
tivity by attention. Thus, it appears that early visual processing is significantly different
inside than outside of the attentional spotlight. The second part of this thesis describes a
detailed biological model of early spatial vision and how such model provides a quantitative
computational account of the observed attentional modulation of early visual processing.

The present document is organized as follows. In Part II, we present a simple compu-
tational model which attempts to mimic the low-level, automatic and unconscious neuronal
mechanisms responsible for attracting our attention to salient objects in our environment.
After a brief introduction and review of existing modeling work on saliency-based atten-
tional guidance in Chapter 1, we extensively describe the proposed model in Chapter 2.
Our “bottom-up” model closely follows the neuronal architecture of the earliest hierarchical

levels of visual processing. The retinal input image is first decomposed into a multiscale
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representation, and further into a set of topographic maps selective for particular visual at-
tributes. Such “feature maps” are composed of visually responsive neurons whose responses
already are much more sophisticated than the pixel sensors of electronic cameras: For ex-
ample, such neurons may maximally respond to oriented edges, isolated bright spots on
dark surrounds, local motion contrast, or several types of local color contrasts. In addition,
complex cortical interactions further shape the response of these neurons, in particular by
enforcing a strong spatial competition for activity. The outputs of all feature maps are com-
bined into a unique “saliency map,” which encodes for local conspicuity in a more abstract
manner, independent of the particular visual features which render an object salient. At
any given time, a so-called “winner-take-all” neural network selects the most active loca-
tion in the saliency map and draws the attentional spotlight towards it. Subsequently, the
selected object is suppressed in the saliency map, such that the winner-take-all will select
the next most salient location. With time and in the absence of cognitive or volitional
influences, the system generates attentional scanpaths which indicate which locations were
selected as being of interest to the model. In Chapter 3 we study a number of applications
of our model, ranging from its successful reproduction of simple visual search experiments,
to systematic studies of its performance as a target detection system when analyzing com-
plex natural scenes. Finally, in Chapter 4, we review our computational results within the
broader frameworks of biological and artificial vision systems, and propose further directions
of research.

Part III is devoted to experiments and modeling on human pattern vision, and to a
detailed computational account of how “top-down” attention modulates early vision. This
Part consequently directly follows and complements Part II, by studying in detail what
happens once attention is focused onto a particular region of the visual scene.

After a brief introduction in Chapter 5 to the experimental and computational methods
to be used, we start by describing experiments in Chapter 6 and modeling in Chapter 7
which are aimed at deriving a simple, unifying model for early pattern vision in humans.
We use psychophysical experiments to constrain and validate our model until it accurately
reproduces human performance. Indeed, human psychophysics, an experimental method
which aims at inferring the computational architecture of the visual system by measuring
observer responses to simple visual stimuli, has emerged as one of the most advanced and
well characterized experimental methods in humans. Psychophysical thresholds for stimulus
contrast, orientation, and spatial frequency have been studied for several decades. Quan-
titative accounts of these thresholds have become increasingly refined and usually involve
a population of “noisy filters” tuned to different orientations and spatial frequencies. Al-
though earlier models postulated filters that are independent of each other, there are serious
shortcomings to this approach. More recent models postulate an interaction between filters

with spatially overlapping receptive fields, specifically, the normalization of individual filter
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responses relative to the total response of the local filter population (“divisive inhibition”).
An intriguing parallel to these perceptual accounts can be found in certain models of visual
cortical responses to stimulus contrast and orientation. Despite marked differences in detail,
the models in question consider a population of neurons with overlapping receptive fields,
broadly tuned to a range of different orientations, and normalize individual responses rela-
tive to the population response. OQur experiments are directly targeted towards a detailed
quantitative characterization for such interactions, by using spatially localized stimuli pre-
sented in the near-peripheral visual field. Acquiring a consistent dataset, in three observers,
consisting of five simple experiments, allows us to derive strong computational constraints
on early visual processing. Closely related to previously proposed models of basic pattern
vision, we thus formulate our model as a “consensus” or “unifying” neuronal model, which
simultaneously accounts in a precise quantitative manner for the broad range of experimen-
tal results acquired in our laboratory, while assuming neuronally plausible components.
While this model is developed to account for vision when attention is fully available to
the pattern discrimination task studied, we then apply it in Chapter 8 to human data by
Lee (Lee, 1999), which shows how top-down attention has a modulatory influence on early
visual processes. Indeed, it has been extensively established using a number of experimental
methods in primates that shifting attention away from a visual stimulus reduces, but does
not abolish, visual discrimination performance. This residual vision with “poor” attention
can be compared to normal vision with “full” attention to reveal how attention alters
visual perception. Large differences have been reported between residual and normal visual
thresholds for discriminating the orientation or spatial frequency of simple patterns, and
smaller differences for discriminating contrast. We specifically investigate the meaning
of this observed attentional modulation of visual thresholds using our unifying model of
spatial vision. Our model quantitatively accounts for all observations, and predicts that
the effects of attention on visual cortical neurons include increased contrast gain as well
as sharper tuning to orientation and spatial frequency. Together, these two effects suggest
that attention activates a winner-take-all competition amongst overlapping visual filters.
Together, our models of bottom-up and of top-down attention have taught us a number
of simple lessons on basic computational principles in early primate vision. Our results and
findings are summarized in Part IV. In particular, we put our experience in perspective
within the broader concept of neuronal receptive fields and early vision. We suggest that
visual processing, even at its earliest hierarchical levels, is best characterized not by linear
response functions and spatial convolutions, but rather by highly non-linear and interacting

localized computational devices.
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Most biological vision systems (including Drosophila; (Heisenberg & Wolf, 1984) appear
to employ a serial computational strategy when inspecting complex visual scenes. Particular
locations in the scene are selected based on their behavioral relevance or on local image cues.
In primates, the identification of objects and the analysis of their spatial relationship usually
involves either rapid, saccadic eye movements to bring the fovea onto the object, or covert
shifts of attention.

It may seem ironic that brains employ serial processing, since one usually thinks of them
as paradigmatic “massively parallel” computational structures. However, in any physical
computational system, processing resources are limited, which leads to bottlenecks similar
to those faced by the von Neumann architecture on conventional digital machines. Nowhere
is this more evident than in the primate’s visual system, where the amount of information
coming down the optic nerve—estimated to be on the order of of 108 bits per second—
far exceeds what the brain is capable of fully processing and assimilating into conscious
experience. The strategy nature has devised for dealing with this bottleneck is to select
certain portions of the input to be processed preferentially, shifting the processing focus
from one location to another in a serial fashion.

Despite the widely shared belief in the general public that “we see everything around us,”
only a small fraction of the information registered by the visual system at any given time
reaches levels of processing that directly influence behavior. This is vividly demonstrated
by change blindness (O’'Regan et al., 1999; Simons & Levin, 1997) in which significant
image changes remain nearly invisible under natural viewing conditions, although observers
demonstrate no difficulty in perceiving these changes once directed to them. Overt and
covert attention controls access to these privileged levels and ensures that the selected
information is relevant to behavioral priorities and objectives. Operationally, information
can be said to be “attended” if it enters short-term memory and remains there long enough
to be voluntarily reported. Thus, visual attention is closely linked to visual awareness (Crick
& Koch, 1998).

But how is the selection of one particular spatial location accomplished? Does it involve
primarily bottom-up, sensory-driven cues or does expectation of the targets characteristics
play a decisive role? A large body of literature has concerned itself with the psychophysics
of visual search or orienting for targets in sparse arrays or in natural scenes using either
covert or overt shifts of attention (for reviews, see (Niebur & Koch, 1998) or the survey
article (Toet et al., 1998)).

1.1 Two-Component Framework of Attention

Much evidence has accumulated in favor of a two-component framework for the control of

where in a visual scene attention is deployed (James, 1890/1981; Treisman & Gelade, 1980;
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Bergen & Julesz, 1983; Treisman, 1988; Nakayama & Mackeben, 1989; Braun & Sagi, 1990;
Hikosaka et al., 1996; Braun & Julesz, 1998; Braun, 1998b): A bottom-up, fast, primitive
mechanism that biases the observer towards selecting stimuli based on their saliency (most
likely encoded in terms of center-surround mechanisms) and a second slower, top-down
mechanism with variable selection criteria, which directs the “spotlight of attention” under
cognitive, volitional control. Whether visual consciousness can be reached by either saliency-
based or top-down attentional selection or by both remains controversial.

Preattentive, parallel levels of processing do not represent all parts of a visual scene
equally well, but instead provide a weighted representation with strong responses to a few
parts of the scene and poor responses to everything else. Indeed, in an awake monkey freely
viewing a natural visual scene, there are not many locations which elicit responses in visual
cortex comparable to those observed with isolated, laboratory stimuli (Gallant et al., 1998).
Whether a given part of the scene elicits a strong or a poor response is thought to depend
very much on “context,” that is, on what stimuli are present in other parts of the visual
field. In particular, the recently accumulated evidence for “non-classical” modulation of a
cell’s response by the presence of stimuli outside of the cell’s receptive field provides direct
support for the idea that different visual locations compete for activity (Sillito et al., 1995;
Sillito & Jones, 1996; Levitt & Lund, 1997). Those parts which elicit a strong response are
thought to draw visual attention to themselves and to therefore be experienced as “visually
salient.” Directing attention at any of the other parts is thought to require voluntary
“effort.”

Both modes of attention can operate at the same time and visual stimuli have two
ways of penetrating to higher levels of awareness: Being willfully brought into the focus of

attention, or winning the competition for saliency.

1.2 Bottom-Up Attention and the Saliency Map

Koch and Ullman (Koch & Ullman, 1985) introduced the idea of a saliency map to accom-
plish preattentive selection (see also the concept of a “master map” in (Treisman, 1988)).
This is an explicit two-dimensional map that encodes the saliency of objects in the visual
environment. Competition among neurons in this map gives rise to a single winning loca-
tion that corresponds to the most salient object, which constitutes the next target. If this
location is subsequently inhibited, the system automatically shifts to the next most salient
location, endowing the search process with internal dynamics.

Many computational models of human visual search have embraced the idea of a saliency
map under different guises (Treisman, 1988; Wolfe, 1994; Itti et al., 1998b; Niebur & Koch,
1996; Olshausen et al., 1993). The appeal of an explicit saliency map is the relatively

straightforward manner in which it allows the input from multiple, quasi-independent fea-
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ture maps to be combined and to give rise to a single output: The next location to be
attended. Electrophysiological evidence points to the existence of several neuronal maps,
in the pulvinar, the superior colliculus and the intraparietal sulcus, which appear to specif-
ically encode for the saliency of a visual stimulus (Robinson & Petersen, 1992; Rockland
et al., 1999; Gottlieb et al., 1998; Colby & Goldberg, 1999).

However, some researchers reject the idea of a topographic map in the brain whose
raison d’étre is the representation of salient stimuli. In particular, Desimone and Duncan
(Desimone & Duncan, 1995) postulate that selective attention is a consequence of interac-
tions among feature maps, each of which encodes in an implicit fashion, the saliency of a
stimulus in that particular feature. We know of only a single implementation of this idea
in terms of a computer algorithm (Hamker, 1999).

We here describe a computer implementation of a preattentive selection mechanism
based on the architecture of the primate visual system. We address the thorny problem of
how information from different modalities—in the case treated here from 42 maps encoding
intensity, orientation and color in a center-surround fashion at a number of spatial scales—
can be combined into a single saliency map. In the next Chapter, we show how our algorithm
qualitatively reproduces human performance on a number of classical search experiments,

and evaluate it with a number of real scenes.
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Chapter 2 Architecture of the Proposed Model
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2.1 Overview

The present model is limited to the bottom-up control of attention, i.e., to the control of
selective attention by the properties of the visual stimulus. It does not incorporate any top-
down, volitional component. Furthermore, we are here only concerned with the localization
of the stimuli to be attended (“Where”), not their identification (“What”). A number
of authors (Olshausen et al., 1993; Beymer & Poggio, 1996) have presented models for the
neuronal expression of attention along the occipital-temporal pathway once spatial selection
has occurred.

We make the following four assumptions: First, visual input is represented, in early
visual structures, in the form of iconic (appearance-based) topographic feature maps. Two
crucial steps in the construction of these representations consist of center-surround compu-
tations in every feature at different spatial scales, and within-feature spatial competition
for activity. Second, information from these feature maps is combined into a single map
which represents the local “saliency” of any one location with respect to its neighborhood.
Third, the maximum of this saliency map is, by definition, the most salient location at a
given time, and it determines the next location of the attentional searchlight. And fourth,
the saliency map is endowed with internal dynamics allowing the perceptive system to scan
the visual input such that its different parts are visited by the focus of attention in the
order of decreasing saliency.

Fig. 2.1. shows an overview of Koch and Ullman’s (1985) and of our model. Input is
provided in the form of digitized images, from a variety of sources including a consumer-

electronics NTSC video camera.

2.2 Extraction of Early Visual Features

Given an input image, the first processing step consists of decomposing this input into a set
of distinct “channels,” by using linear filters tuned to specific stimulus dimensions, such as
luminance, red, green, blue and yellow hues, or various local orientations. The number and
response properties of the linear filters implemented in the model have been chosen according
to what is known of their neuronal equivalents in the early stages of visual processing in
primates (see below). In addition, such decomposition is performed at a number of spatial
scales, to allow the model to represent smaller and larger objects in separate subdivisions

of these channels.

2.2.1 Pyramidal Representation

Different spatial scales are created using Gaussian pyramids (Burt & Adelson, 1983), which

consist of progressively low-pass filtering and sub-sampling the input image. In our im-
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Figure 2.1: Schematic representation of Koch and Ullman’s (1985) and of our model. (a)
Original model of saliency-based visual attention, adapted from Koch and Ullman (1985).
Early visual features such as color, intensity or orientation are computed, in a massively
parallel manner, in a set of pre-attentive feature maps based on retinal input (not shown).
Activity from all feature maps is combined at each location, giving rise to activity in the
topographic saliency map. The winner-take-all (WTA) network detects the most salient
location and directs attention towards it, such that only features from this location reach a
more central representation for further analysis. (b) Schematic diagram for the model used
in this study. It directly builds on the architecture proposed in (a), but provides a complete
implementation of all processing stages. Visual features are computed using linear filtering
at eight spatial scales, followed by center-surround differences, which compute local spatial
contrast in each feature dimension for a total of 42 maps. An iterative lateral inhibition
scheme instantiates competition for salience within each feature map. After competition,
feature maps are combined into a single “conspicuity map” for each feature type. The seven
conspicuity maps then are summed into the unique topographic saliency map. The saliency
map is implemented as a 2-D sheet of Integrate-and-Fire (I&F) neurons. The WTA, also
implemented using I&F neurons, detects the most salient location and directs attention
towards it. An Inhibition-of-Return mechanism transiently suppresses this location in the
saliency map, such that attention is autonomously directed to the next most salient image
location. We here do not consider the computations necessary to identify a particular object
at the attended location.
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plementation, pyramids have a depth of 9 scales, providing horizontal and vertical image
reduction factors ranging from 1:1 (level 0; the original input image) to 1:256 (level 8) in
consecutive powers of two (Fig. 2.2). A 5 x 5 Gaussian filter is applied to each level of the
pyramid before the decimation operation which yields the next level. Because successive
convolutions by Gaussian filters are equivalent to a single convolution by a Gaussian filter
(with a width which can be computed formally), pixels at various levels of the pyramid
represent the responses of Gaussian filters with increasing width; in our case, the Gaussian
width of a pixel at scale o + 1 is equal to v/5 times the width at scale o.

With r, g and b being the red, green and blue channels of the input image, an intensity
image I is obtained as I = (r 4+ g + b)/3. I is used to create a Gaussian pyramid I(o),
where o € [0..8] is the scale. While more accurate expressions exist for the computation of
luminance from a chromatic image, usually these expressions are dependent on a particular
color acquisition, encoding or representation system (Foley et al., 1990). For example,
luminance is defined in the YIQ system (used for commercial television broadcasting in the
U.S.A., using the NTSC encoding) as 0.2997+0.587¢g+0.114b (Foley et al., 1990). Since our
model was designed to be used with images from a variety of sources, we have not considered
such more sophisticated recipes. It should also be pointed out that the luminous efficiency
function for the human eye, i.e., the eye’s response to light of constant luminance, peaks at
a wavelength of about 550nm, corresponding to yellow-green light (Foley et al., 1990). This
should be taken into account when trying to more closely reproduce the response properties
of luminance-selective neurons.

The r, g and b channels are normalized by I in order to decouple hue from intensity.
However, because hue variations are not perceivable at very low luminance (and hence are
not salient), normalization is only applied at the locations where I is larger than 1/10 of
its maximum over the entire image (other locations yield zero r,g and b). Four broadly-
tuned color channels are created: R =r — (g +b)/2 for red, G = g — (r + b)/2 for green,
B =b—(r+g)/2 for blue, and Y = r + g — 2(|r — g| + b) for yellow (negative values are set
to zero). Each channel yields maximal response for the pure, fully-saturated hue to which
it is tuned, and yields zero response both for black and for white inputs. Four Gaussian
pyramids R(c),G(0), B(o) and Y (0) are created from these color channels. Fig. 2.3 shows
a rendition of the chromatic selectivity of the four color-sensitive channels implemented in
the model. This representation, like in the case of luminance described above, is very crude
and only approximate. For instance, it does not account for the fact that the three types
of color-sensitive “cone” photoreceptors in the human retina have their peak sensitivities at
wavelengths of light which are not necessarily matched to the primary colors used in digitized
images. (Although these three types of cones are often referred to as “red,” “green” and
“blue” types, with peak sensitivities at 580nm, 545nm and 440nm, they actually maximally

respond to orange, yellow and blue hues, respectively; also, sensitivity to blue is almost ten
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Figure 2.2: Pyramidal representation of the input image. The original image is shown on
top, and rests at level 0 in the pyramid. Each subsequent level is obtained by low-pass
filtering the previous level and downscaling it by a factor 2 in the horizontal and vertical
directions.
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times smaller than to red or green (Foley et al., 1990).) The very simple expressions used
here to compute R, G, B and Y are hence very simplified and approximate, which is mostly
justified by the fact that they are also very simple and fast to compute.

Local orientation information is obtained from I using oriented Gabor pyramids O(c, ),
where o € [0..8] represents the scale and 6 € {0°,45°,90°,135°} is the preferred orientation.
(Gabor filters, which are the product of a cosine grating and a 2D Gaussian envelope,
approximate the receptive field sensitivity profile (impulse response) of orientation-selective
neurons in primary visual cortex (Leventhal, 1991).) The fast implementation proposed by
Greenspan et al. is used in our model (Greenspan et al., Jun. 1994). Some of the oriented

filters and their responses on a test image are shown in Fig. 2.4.

2.2.2 Center-Surround Receptive Field Profiles

Each feature is computed in a center-surround structure akin to visual receptive fields.
Using this biological paradigm renders the system sensitive to local spatial contrast in a
given feature rather than to amplitude in that channel.

Center-surround operations are implemented in the model as differences between a fine
and a coarse scale for a given feature: The center of the receptive field corresponds to a
pixel at level ¢ € {2,3,4} in the pyramid, and the surround to the corresponding pixel at
level s = ¢+, with 6 € {3,4}. We hence compute six feature maps for each type of feature
(at scales 2-5, 2-6, 3-6, 3-7, 4-7, 4-8; see Fig. 2.5). Across-scale difference between two
maps, denoted “©” below, is obtained by interpolation to the finer scale and point-by-point
subtraction. Using several scales not only for ¢, but also for § = s — ¢, yields truly multiscale
feature extraction, by including different size ratios between the center and surround regions
(contrary to previously used fixed ratios (Milanese et al., 1995)). Seven types of features,
for which wide evidence exists in mammalian visual systems, are computed in this manner
from the low-level pyramids: As detailed below, one feature type encodes for on/off image
intensity contrast (Leventhal, 1991), two encode for red/green and blue/yellow double-
opponent channels (Luschow & Nothdurft, 1993; Engel et al., 1997), and four encode for
local orientation contrast (DeValois et al., 1982; Tootell et al., 1988).

2.2.3 The Feature Maps

The six feature maps for the intensity feature type encode for the modulus of image lu-
minance contrast, i.e., the absolute value of the difference between intensity at the center
(one of the three ¢ scales) and intensity in the surround (one of the six s = ¢ + ¢ scales).
Center-surround differences (& defined previously) between a “center” fine scale ¢ and a
“surround” coarser scale s yield the feature maps. The first set of feature maps is concerned

with intensity contrast, which in mammals is detected by neurons sensitive either to dark
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Figure 2.3: Color-selective channels implemented in the model, which emphasize chromi-
nance information while attenuating the influence of luminance. Left: Original test images.
Right: Composite renditions of the responses from the four luminance-normalized color
channels R,G,B and Y.
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Figure 2.4: Orientation-selective Gabor filters. (a) Grey-scale renditions of the filters for
three of the spatial scales and the four orientations implemented. (b) A test image and the
responses from the filters shown in (a).
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centers on bright surrounds, or to bright centers on dark surrounds (Leventhal, 1991). Here,
both types of sensitivities are simultaneously computed (using a rectification) in a set of six
maps Z(c, s), with ¢ € {2,3,4} and s = c+ 4, 6 € {3,4}:

Z(c,s) = |I(c) © I(s)] (2.1)

A quantity corresponding to the double-opponency cells in primary visual cortex is
then computed by center-surround differences across the normalized color channels. Each
of the six red/green feature maps is created by first computing (red-green) at the center,
then subtracting (green-red) from the surround, and finally outputting the absolute value.
Accordingly, maps RG(c, s) are created in the model to simultaneously account for red/green
and green/red double opponency (Eq. 2.2), and B)Y(c, s) for blue/yellow and yellow/blue
double opponency (Eq. 2.3):

RG(c;s) = [(R(c) — G(c)) © (G(s) — R(s))] (2.2)

BY(c,s) = |(B(c) =Y (c)) © (Y(s) — B(s))| (2.3)

The orientation feature maps are obtained from absolute center-surround differences
between the orientation-selective channels. These maps, O(c, s, #), encode, as a group, local

orientation contrast between the center and surround scales:
Oe,5,0) = [0(c, 6) © O(s,0)| (2.4)

It is possible in our implementation to use an arbitrary number of orientations, but we
noticed that using more oriented filters than the four abovementioned did not alter the
performances of the model drastically.

In total, 42 feature maps are thus computed: Six for intensity, 12 for color and 24 for
orientation. Fig. 2.6 shows, for an example image, all the feature and conspicuity maps

described in this Section.

2.3 Combining Information Across Multiple Maps

Our modeling hypotheses assume the existence of a unique topographic saliency map. The
purpose of the saliency map is to represent the conspicuity — or “saliency” — at every
location in the visual field by a scalar quantity, and to guide the selection of attended
locations, based on the spatial distribution of saliency. A combination of the feature maps
provides bottom-up input to the saliency map, modeled as a dynamical neural network. At

each spatial location, activity from the 42 feature maps consequently needs to be combined
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Retinal Image

Figure 2.6: The multiscale feature maps, the conspicuity maps and the saliency map. In the
intensity channel, six feature maps are computed, which simultaneously encode for on and
off center-surround luminance contrast for the six center-surround scale pairs used (i.e., with
center scale ¢ € {2,3,4} and surround scale s = c¢+4, § € {3,4}). Six maps in the red/green
color channel simultaneously encode for red/green and green/red double-opponency. Sim-
ilarly, six maps in the red/green color channel simultaneously encode for red/green and
green/red double-opponency. Finally, six maps for each of four orientations (0,45,90 and
135°) detect local orientation contrast and edges. Shown at a larger magnification with
the feature maps is a “conspicuity map” for each feature type, which combines information
across all feature maps for that feature type. How the 42 feature maps can be combined
into the single scalar saliency map is the topic of the next Section.
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into a unique scalar measure of salience. One major difficulty in such combination resides in
the fact that the different feature maps arise from different visual modalities, which encode
for a priori not comparable stimulus dimensions: For example, how should a 10° orientation
discontinuity compare to a 5% intensity contrast?

In addition, because of the large number of maps being combined, the system is faced
with a severe signal-to-noise ratio problem: A salient object may only elicit a strong peak
of activity in one or a few feature maps, tuned to the features of that object, while a
larger number of feature maps, for example tuned to the features of distracting objects,
may show strong peaks at numerous locations. For instance, a stimulus display containing
one vertical bar among many horizontal bars yields an isolated peak of activity in the map
tuned to vertical orientation at the scale of the bar; the same stimulus display, however,
also elicits strong peaks of activity, in the intensity channel, at the locations of all bars,
simply because each bar has high intensity contrast with the background. When all feature
maps are combined into the saliency map, the isolated orientation pop-out hence is likely
to be greatly weakened, at best, or even entirely lost, at worst, among the numerous strong
intensity responses.

In what follows, we propose several feature combination strategies: Naive summation,
learned linear combination, contents-based global non-linear amplification, and iterative
localized interactions. Next, we will pursue our description of the model by assuming that
one of these four schemes has been selected, and by generically denoting by the “feature
normalization operator N (.)” the computational processes applied to each feature map
before it is fed to the inputs of the saliency map. In the next Chapter, we present a detailed
comparison of the four versions of our model associated with these feature combination

strategies.

2.3.1 Naive Summation

The most simple approach to solve this problem is to normalize all feature maps to the same
total dynamic range (e.g., between 0 and 1), and to sum all feature maps into the saliency
map. In this simple case, the feature normalization operator N (.) is the identity operator
(and it is assumed that the feature detection mechanisms have been calibrated such as to
yield similar response ranges). This strategy, which does not impose any a priori weight on

any feature type, is referred to in what follows as the “Naive” strategy.

2.3.2 Learning Linear Combinations

Supervised learning can be introduced when specific targets are to be detected in the images
presented to the model. In such case, each feature map is globally multiplied by a weighting

factor. The final input to the saliency map is then the point-wise sum of all such feature
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maps. The feature normalization operator in this case consequently corresponds to a non-
topographic multiplication by a scalar number. For each feature map, this number, the
map’s weight, is determined from a number of example images in which desired targets
have been outlined. The training procedure then consists of increasing the weights of those
maps which respond the targets better than to anything else, while decreasing the weights
of those maps which either respond poorly to the targets, or respond better to non-target
objects.

All feature map weights are trained simultaneously, based on a comparison, for each
feature type, of the map’s response inside and outside manually outlined image regions
which contain the desired targets. A binary mask is hence first created for each image in
the training set, in which 1 represents target regions and 0 non-target regions. In order to
account for the fact that, at lower spatial scales, the boundaries of the targets in the feature
maps may not exactly correspond to the high-resolution target outlines, the binary target
masks are subsequently transformed into fuzzy representations: A 3/4 chamfer distance map
D is created (Borgefors, 1991) from the target contours, i.e., a gray-level map encoding, at
each image location, an approximation of the Euclidean distance between this location and
the closest target region. Using this distance map, in what follows we will consider as being
inside the target regions all locations z where D(z) < Dy, with Dy, fixed; similarly, we will
consider as being outside the target regions all locations z where D(z) > Doy, with Dyyt
fixed. The distance thresholds D;, and Dy, when larger than 0, allow locations directly
at the boundaries of the target regions, and yielding unreliable responses at coarse scales,
to be ignored by the training procedure (Fig. 2.7).

The learning procedure for the weight w(M) of a feature map M consists of the follow-

ing:
1. Compute the global maximum Mg, and minimum m,4,, of the map M;

2. Compute its maximum M;, inside the manually outlined target region(s) and its

maximum M,,; outside the target region(s);

3. Update the weight following an additive learning rule independent of the map’s dy-

namic range:
w(M) < w(M) + n(Min — Mout)/(Mgiob — Mglob) (2.5)
where 1 > 0 determines the learning speed. Only positive or zero weights are allowed.

This learning procedure promotes, through an increase in weights, the participation to
the saliency map of those feature maps which show higher peak activity inside the target

regions than outside; after training, only such maps remain in the system while others,
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Figure 2.7: Selection of targets for supervised training. Top-left: Original image. Top-
right: In this example, we wish to specialize the model for the task of detecting pedestrians.
In this training image, the pedestrians have been manually outlined, and a binary target
mask was created. Bottom-left: A 3/4 distance map computed from the contours of the
target masks. The grey-level assigned to each pixel in this map represents the approximate
Euclidean distance between that pixel and the nearest target contour. Note how this dis-
tance saturates (white color) far from the contours due to the limited grey-level range in
the map. Bottom-right: Distance thresholds D;, and D,,; of about 3 pixels each have
been applied to the distance map. The “inside” regions are shown in white, the “outside”
region in grey, and the border regions which are ignored by the training algorithm in black.
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whose weights converged to zero, are no more computed. The initial saliency map (before
any attentional shift) is then scaled to a fixed range, such that only the relative weights of
the feature maps are important; potential divergence of the additive learning rule (explosion
of weights) is hence avoided by constraining the weights to a fixed sum.

Note that here we only consider local maxima of activity over various image areas,
rather than the average activity over these areas. This is because local “peak” activity is
what is important for visual salience: If a rather extended region contains only a very small
but very strong peak of activity, this peak is highly salient and immediately “pops-out,”
while the average activity over the extended region may be low. This feature combination

strategy is referred to in what follows as the “Trained” strategy.

2.3.3 Contents-Based Global Non-Linear Amplification

When no top-down supervision is available, we propose a simple normalization scheme,
consisting of globally promoting those feature maps in which a small number of strong
peaks of activity (“odd man out”) are present, while globally suppressing feature maps
eliciting comparable peak responses at numerous locations over the visual scene. The feature

normalization operator N (.) then consists of the following (Fig. 2.8):

1. Normalize all the feature maps to the same dynamic range, in order to eliminate across-

modality amplitude differences due to dissimilar feature extraction mechanisms;

2. For each map, find its global maximum M and the average m of all the other local

maxima;

3. Globally multiply the map by:

(M —m)>. (2.6)

Only local maxima of activity are considered such that N(.) compares responses as-
sociated with meaningful “activation spots” in the map and ignores homogeneous areas.
Comparing the maximum activity in the entire map to the average over all activation spots
measures how different the most active location is from the average. When this difference
is large, the most active location stands out, and we strongly promote the map. When the
difference is small, the map contains nothing unique and is suppressed. This contents-based
non-linear normalization coarsely replicates the biological mechanism of localized excitation
and lateral inhibition, in which neighboring similar features inhibit each other (Cannon &
Fullenkamp, 1996). This feature combination strategy is referred to in what follows as the

“Global non-linear amplification” strategy.
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Figure 2.8: Contents-based global non-linear amplification. This operator determines a non-
topographic feature map weight from the difference between the strength of the strongest
peak of activity and the average strength of other peaks of activity in the map. Conse-
quently, maps in which one or a few locations stand out will be amplified, while maps in
which many locations show similar activity will be suppressed. Such operator is one of the
key elements of our model, because it allows it with the severe signal-to-noise ratio faced
when attempting to combine 42 feature maps into a single scalar saliency map. For exam-
ple, in the image shown in this figure, intensity maps will show numerous strong responses,
because each white bar has maximum contrast to the black background. Such strong ac-
tivity can in many cases mask the relatively weak orientation pop-out seen in the oriented
map, unless it is suppressed by an operator such as the one proposed here.
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2.3.4 Iterative Localized Interactions

The global non-linear normalization presented in the previous Section is computationally
very simple and is non-iterative, which easily allows for real-time implementation. However,
it suffers from several drawbacks. First, this strategy is not very biologically plausible, since
global computations, such as finding the global maximum in the image, are used, while it is
known that cortical neurons are only locally connected. Second, this strategy has a strong
bias towards enhancing those feature maps in which a unique location is significantly more
conspicuous than all others. Ideally, each feature map should be able to represent a sparse
distribution of a few conspicuous locations over the entire visual field; for example, our
global non-linear amplification would suppress a map with two equally strong spots and
otherwise no activity, while a human would typically report that both spots are salient.

Finally, the computational strategy employed in the previous Section is not robust to
noise, when noise can be stronger than the signal (e.g., speckle or “salt-and-pepper” noise);
in such stimuli, a single pixel of noise so high that it is the global maximum of the map would
determine the map’s scaling (such problem is however unlikely, since feature maps usually
are built, from the noisy input image, using feature extraction mechanisms optimized to
filter out the noise).

In this Section, we derive a generic model which does not impose any strong bias for
any particular feature dimension. To this end, we implemented a simple within-feature
spatial competition scheme, directly inspired by physiological and psychological studies
of long-range cortico-cortical connections in early visual areas. These connections, which
can span up to 6-8mm in striate cortex, are thought to mediate “non-classical” response
modulation by stimuli outside the cell’s receptive field. In striate cortex, these connections
are made by axonal arbors of excitatory (pyramidal) neurons in layers IIT and V (Rockland
& Lund, 1983; Gilbert et al., 1996; Gilbert & Wiesel, 1989; Gilbert & Wiesel, 1983).
Non-classical interactions are thought to result from a complex balance of excitation and
inhibition between neighboring neurons as shown by electrophysiology (Sillito et al., 1995;
Sillito & Jones, 1996; Levitt & Lund, 1997), optical imaging (Weliky et al., 1995), and
human psychophysics (Polat & Sagi, 1994a; Polat & Sagi, 1994b; Zenger & Sagi, 1996).

Although much experimental work is being deployed in the characterization of these
interactions, a precise quantitative understanding of such interactions still is in the early
stages (Zenger & Sagi, 1996). Rather than attempting to propose a detailed quantitative
account of such interactions, our model hence simply reproduces three widely observed
features of those interactions: First, interactions between a center location and its non-
classical surround appear to be dominated by an inhibitory component from the surround
to the center (Cannon & Fullenkamp, 1991), although this effect is dependent on the relative

contrast between center and surround (Levitt & Lund, 1997). Hence our model focuses on
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non-classical surround inhibition. Second, inhibition from non-classical surround locations
is strongest from neurons which are tuned to the same stimulus properties as the center
(Sillito et al., 1995; Knierim & van Essen, 1992; Ts’o et al., 1986; Gilbert & Wiesel, 1989;
Malach et al., 1993; Malach, 1994). As a consequence, our model implements interactions
within each individual feature map rather than between maps. Third, inhibition appears
strongest at a particular distance from the center (Zenger & Sagi, 1996), and weakens both
with shorter and longer distances. These three remarks suggest that the structure of non-
classical interactions can be coarsely modeled by a two-dimensional difference-of-Gaussians
(DoG) connection pattern (Fig. 2.9).

The specific implementation of these interactions in our model is as follows: Each feature
map is first normalized to a fixed dynamic range (between 0 and 1), in order to eliminate
feature-dependent amplitude differences due to different feature extraction mechanisms.
Each feature map is then iteratively convolved by a large 2-D DoG filter, the original image
is added to the result, and negative results are set to zero after each iteration. The DoG
filter, a section of which is shown in Fig. 2.9, yields strong local excitation at each visual

location, which is counteracted by broad inhibition from neighboring locations. Specifically,

we have:
2 q)2+ 2 2 _m2+92
o Cinh 202
DoG(z,y) = 5oz € U T gg—e ik (2.7)
TOg, 2o

In our implementation, oe; = 2% and 04, = 256% of the input image width, c.; = 0.5 and
Cinh = 1.5 (Fig. 2.9). At each iteration of the normalization process, a given feature map

M is then subjected to the following transformation:

where DoG is the 2D Difference of Gaussian filter described above, |.|>¢ discards negative
values, and Cj,;, is a constant inhibitory term (Cj,, = 0.02 in our implementation with
the map initially scaled between 0 and 1). Cj,j introduces a small bias towards slowly
suppressing areas in which the excitation and inhibition balance almost exactly; such re-
gions typically correspond to extended regions of uniform textures (depending on the DoG
parameters), which we would not consider salient.

The 2D DoG filter, which is not separable, is implemented by taking the difference
between the results of the convolution of M by the separable excitatory Gaussian of the
DoG, and of the convolution of M by the separable inhibitory Gaussian. One reason for this
approach is that two separable 2D convolutions (one of which, the excitatory Gaussian, has
a very small kernel) and one subtraction are computationally much more efficient than one

inseparable 2D convolution. A second reason is boundary conditions; this is an important



28

Bottom-up 5
feature —»

extraction

rectification

. 0 .
v < jmage width —»

to saliency map DoG filtering

20 A

e 6

Figure 2.9: Iterative within-feature competition for salience. (Top) Illustration of the spa-
tial competition for salience implemented within each of the 42 feature maps. Each map
receives input from the linear filtering and center-surround stages. At each step of the pro-
cess, the convolution of the map by a large Difference-of-Gaussians (DoG) kernel is added to
the current contents of the map. This additional input coarsely models short-range excita-
tory processes and long-range inhibitory interactions between neighboring visual locations.
The map is half-wave rectified, such that negative values are eliminated, hence making the
iterative process non-linear. Ten iterations of the process are carried out before the output
of each feature mapped is used in building the saliency map. (Bottom) “Truncated filter”
boundary condition consists of only computing the dot product between filter G and map
M where they overlap (shaded area), and of normalizing the result by the total area of G
divided by its area in the overlap region.
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problem here since the inhibitory lobe of the DoG is slightly larger than the entire visual
field. Using Dirichlet (wrap-around) or “zero-padding” boundary conditions yields very
strong edge effects which introduce unwanted non-uniform behavior of the normalization
process (e.g., when using zero-padding, the corners of an image containing uniform random
noise invariably become the most active locations, since they receive the least inhibition).
We circumvent this problem by truncating the separable Gaussian filter G, at each point
during the convolution, to its portion which overlaps the input map M (Fig. 2.9). The
truncated convolution is then computed as, using the fact that G is symmetric around its

origin:

M) = =20 S Meigl) (2:9)

Eie{overlap} G5 ic{overlap}

Using this “truncated filter” boundary condition yields uniform filtering over the entire
image (see, e.g., Fig. 2.10), and, additionally, presents the advantage of being more biologi-
cally plausible than Dirichlet or zero-padding conditions: A visual neuron with its receptive
field near the edge of our visual field indeed is not likely to implement zero-padding or
wrap-around, but is likely to have a reduced set of inputs, and to accordingly adapt its
output firing rate to a range similar to that of other neurons in the map.

Each feature map is subjected to 10 iterations of the process described in Eq. 2.8.
The choice of the number of iterations is somewhat arbitrary: In the limit of an infinite
number of iterations, any non-empty map will converge towards a single peak (except for
a few unrealistic, singular configurations), hence constituting only a poor representation
of the scene. With few iterations, however, spatial competition is weak and inefficient.
Two examples of the time evolution of this process are shown in Fig. 2.10, and illustrate
that using on the order of 10 iterations yields adequate distinction between the two example
images shown. As expected, feature maps with initially numerous peaks of similar amplitude
are suppressed by the interactions, while maps with one or a few initially stronger peaks
become enhanced.

While the effect of this scheme seems similar to that of the previous scheme, the dynamics
of this new scheme are however much more complex than those of N(.), since now the map
is locally altered rather than globally (non-topographically) multiplied; for example, a map
such as that at the top of Fig. 2.10 converges to a single activated pixel (at the center of
the initial strong peak) after a large number of iterations. Note finally that, although the
range of the inhibitory filter seems to far exceed that of intrinsic cortico-cortical connections
in primates (Gilbert & Wiesel, 1989), it is likely that such inhibition is fed back from higher
cortical areas where receptive fields can cover substantial portions of the entire visual field,
to lower visual areas with smaller receptive fields. In terms of implementation, the DoG

filtering proposed here is best carried out within the multiscale framework of Gaussian
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Figure 2.10: Demonstration of the iterative competition scheme. (Top) Iterative spatial
competition for salience in a single feature map with one strongly activated location sur-
rounded by several weaker ones. After a few iterations, the initial maximum has gained fur-
ther strength while at the same time suppressing weaker activation regions. (Bottom) Iter-
ative spatial competition for salience in a single feature map containing numerous strongly
activated locations. All peaks inhibit each other more-or-less equally, resulting in the entire
map being suppressed.
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Pyramids (Itti et al., 1998b). It is interesting to note that this within-feature spatial
competition scheme resembles a “winner-take-all” network with localized inhibitory spread,
which allows for a sparse distribution of winners across the visual scene (see (Horiuchi et al.,

1997) for a 1-D real-time implementation in Analog-VLSI).

2.4 The Conspicuity Maps

After normalization, the feature maps for intensity, color, and orientation are summed across
scales into three separate “conspicuity maps,” one for intensity, one for color and one for
orientation (Fig. 2.1b).

Feature maps are combined into three “conspicuity maps,” Z for intensity (Eq. 2.10),
C for color (Eq. 2.11), and O orientation (Eq. 2.12), at the scale (0 = 4) of the saliency
map. They are obtained through across-scale addition, @, which consists of reduction of

each map to scale 4 and point-by-point addition:

4 c+4
I= D N9 (2.10)
c=2 s=c+3
4 c+4
C=D P W(RG(c,9) + N (BY(c,s)) (2.11)
c=2 s=c+3

For orientation, four intermediary maps are first created by combination of the six
feature maps for a given 6, and are then combined into a single orientation conspicuity

map:

4 c+4
0= > (EB @ N 039)) (2.12)
}

0€{0°,45°,90°,135° c=2 s=c+3

The motivation for the creation of three separate channels, Z, C and O, and their individ-
ual normalization is the hypothesis that similar features compete strongly for saliency, while
different modalities contribute independently to the saliency map. The three conspicuity

maps are normalized and summed into the final input S to the saliency map:

S=-(WN@ +N(C)+N(0)) (2.13)

W

The motivation for the creation of three separate channels and their individual normal-
ization is the hypothesis that similar features compete strongly for salience, while different
modalities contribute independently to the saliency map. Although we are not aware of any

supporting experimental evidence for this hypothesis, this additional step has the compu-



32

tational advantage of further enforcing that only a spatially sparse distribution of strong
activity peaks is present within each visual feature type, before combination of all three

types into the scalar saliency map.

2.5 The Saliency Map and Generation of Attentional Scan-
paths

At any given time, the maximum of the saliency map corresponds to the most salient
stimulus to which the focus of attention should be directed next, in order to allow for
more detailed inspection by neurons along the occipito-temporal pathway. To find the most
salient location, we have to determine the maximum of the saliency map.

This maximum is selected by application of a winner-take-all algorithm. Different mech-
anisms have been suggested for the implementation of neural winner-take-all networks (Koch
& Ullman, 1985; Yuille & Grzywacz, 1989); in particular see (Tsotsos et al., 1995) for a
multi-scale version of the winner-take-all network. In our model, we used a two-dimensional
layer of integrate-and-fire neurons with strong global inhibition in which the inhibitory pop-
ulation is reliably activated by any neuron in the layer (a more realistic implementation
would consist of populations of neurons; for simplicity, we model such populations by a
single neuron with very strong synapses). When the first of these integrate-and-fire cells
fires (winner), it will generate a sequence of action potentials, causing the focus of attention
(FOA) to shift to the winning location. These action potentials will also activate the in-
hibitory population, which in turn inhibits all cells in the layer, hence resetting the network
to its initial state.

In the absence of any further control mechanism, the system described so far would
direct its focus of attention, in the case of a static scene, constantly to one location, since the
same winner would always be selected. To avoid this undesirable behavior, we follow Koch
and Ullman (Koch & Ullman, 1985) and introduce inhibitory feedback from the winner-
take-all (WTA) array to the saliency map. When a spike occurs in the WTA network, the
integrators in the saliency map transiently receive additional input with the spatial structure
of a difference of Gaussians. The inhibitory center (with a standard deviation of half the
radius of the FOA) is at the location of the winner; it and its neighbors become inhibited
in the saliency map. As a consequence, attention switches to the next-most conspicuous
location (Figs. 2.12, 2.13). Such an “inhibition of return” (Fig. 2.11) has been well
demonstrated for covert attentional shifts in humans (Posner et al., 1982; Kwak & Egeth,
1992). There is much less evidence for inhibition-of-return for eye movements in either
humans or trained monkeys (Motter & Belky, 1998).

The function of the excitatory lobes (half width of four times the radius of the FOA) is

to favor locality in the displacements of the focus of attention: If two locations are of nearly
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Figure 2.11: Dynamics of attentional focusing. Dynamical evolution of the potential of some
simulated neurons in the saliency map (SM) and in the winner-take-all (WTA) networks.
The input contains one salient location (a), and another input of half the saliency (b);
the potentials of the corresponding neurons in the SM and WTA are shown as a function
of time. During period (1), the potential of both SM neurons (a) and (b) increases as
a result of the input. The potential in the WTA neurons, which receive inputs from the
corresponding SM neurons but have much faster time constants, increases faster. The WTA
neurons evolve independently of each other as long as they are not firing. At about 80 ms,
WTA neuron (a) reaches threshold and fires. A cascade of events follows: First, the focus of
attention is shifted to (a); second, both WTA neurons are reset; third, inhibition of return
(IOR) is triggered, and inhibits SM neuron (a) with a strength proportional to that neuron’s
potential (i.e., more salient locations receive more IOR, so that all attended locations will
recover from IOR in approximately the same time). In period (2), the potential of WTA
neuron (a) rises at a much slower rate, because SM neuron (a) is strongly inhibited by
IOR. WTA neuron (b) hence reaches threshold first. (3)—(7): In this example with only
two active locations, the system alternatively attends to (a) and (b). Note how the IOR
decays over time, allowing for each location to be attended several times. Also note how the
amount of IOR is proportional to the SM potential when IOR is triggered (e.g., SM neuron
(a) receives more IOR at the end of period (1) than at the end of period (3)). Finally, note
how the SM neurons do not have an opportunity to reach threshold (at 20 mV) and to
fire (their threshold is ignored in the model). Since our input images are noisy, we did not
explicitly incorporate noise into the neurons’ dynamics.
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equal conspicuity, the one closest to the previous focus of attention will be attended next.
This implementation detail directly follows the idea of “proximity preference” proposed by
Koch and Ullman (Koch & Ullman, 1985).

The time constants, conductances, and firing thresholds of the simulated neurons are
chosen so that the FOA jumps from one salient location to the next in approximately 30—
70 ms (simulated time; (Saarinen & Julesz, 1991)), and so that an attended area is inhibited
for approximately 500-900 ms (see Fig. 2.12). These delays vary for different locations
with the strength of the saliency map input at those locations. The FOA therefore may
eventually return to previously attended locations, as it is observed psychophysically. These
simulated time scales are related to the dynamical model of integrate-and-fire neurons used
in our model (see http://www.klab.caltech.edu/~itti/ for the implementation source

code, which clearly specifies all parameters of the simulated neurons using ST units).

2.6 Outlook

In this Chapter, we have proposed a conceptually simple model for the bottom-up control of
visual attention in primates. Our model is based on a coarse replication of the early levels of
biological visual processing. When possible, fast implementations were used for the various
components of the model, which further makes it only an approximation of neurobiological
vision systems.

The model implements a number of simple visual features and relies on two major
computational principles: First, we use a single topographic saliency map to guide attention,
and, second, a substantial amount of computation is done at the earliest stages of visual
processing, in particular when our iterative feature normalization is used.

In the next Chapter, we will see that this simple model demonstrates surprisingly pow-
erful performance at analyzing real color scenes. In the following Chapter we analyze some
of the key components of the model which are responsible for this success and propose

directions for further research.
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Figure 2.12: Demonstration of the model using global non-linear amplification. The input
image had a resolution of 512 x 384 pixels in 24-bit color. Feature maps are extracted from
the input image at several spatial scales, and are combined into three separate conspicuity
maps (Intensity, Color and Orientation) at scale 4 (32 x 24 pixels). The three conspicuity
maps that encode for saliency within these three domains are combined and fed into the
single saliency map (also 32 x 24 pixels). A neural winner-take-all network then successively
selects, in order of decreasing saliency, the attended locations. Once a location has been
attended to for some brief interval, it is transiently suppressed in the saliency map by the
inhibition of return mechanism (dark round areas). Note how the inhibited locations recover
over time (e.g., the first attended location has regained some activity at 274 ms), due to
the integrative properties of the saliency map. The radius of the focus of attention was 64
pixels.
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Figure 2.13: Demonstration of the model using iterative competition for salience. This
figure follows the same principle as the previous one; one difference, however, is the feature
normalization operator used, here the iterative competition for salience scheme. Note how
both the feature maps and the saliency map are much sparser than with the global non-
linear amplification scheme used in the previous figure. A systematic comparison of the
four feature combination strategies proposed in this Chapter is detailed in the following
Chapter.
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Chapter 3 Applications of the Model
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3.1 Overview

One of the most stringent tests for any artificial vision system is to evaluate its performance
on real scenes. Such evaluation of our model is the main objective of the present Chapter.

We start by testing the model and its individual components with a number of simplified
laboratory stimuli. We show that the model is capable of reproducing some aspects of human
visual search when using simple arrays of prototypical visual patterns.

We then apply the model to a variety of digitized color images representing natural
indoor and outdoor scenes. We use a wide variety of images, typically from databases
submitted to us by external collaborators. This means that, rather than using very high
quality images all acquired using a controlled and noise-free process, we evaluate our model
on a realistic sample of images, ranging from low-resolution frames acquired by a consumer-
grade video camera mounted on a moving vehicle to very high-resolution scans of 35mm
slides.

We will see throughout this Chapter and further discuss in the next Chapter that one of
the keys to the successful performance of our model at analyzing such images is our inclusion
of non-linear computation at the earliest levels of processing, in the form of non-classical

long-range suppression.

3.2 Test Images

We have extensively tested the model with our own or others’ test images. These usually
simplified images allowed us to examine in detail the functioning of the different components
of the model.

One of the simplest possible tasks is the detection of bright spots on dark backgrounds,
or dark spots in bright backgrounds. This task is solved reliably by our model, and the
focus of attention immediately jumps to such stimuli. If there is more than one such
stimulus, the system scans them one-by-one, in the order of decreasing contrast from the
background. The same is true for stimuli that have a color or orientation different from
that of the background. Progressively more complex images, involving color, orientation or
combinations of these features can then be studied. Some examples are shown in Fig. 3.1.
In general, the model behaves in a sensible manner when using either the global non-linear
amplification or the iterative competition for salience as feature combination strategies.
Many such simple examples, however, do not work when using either naive summation or
hand-crafted feature weights. In particular, the latter two methods are not robust to the
strong speckle noise added to some images in Fig. 3.1.

Of particular interest is the feature normalization operator. In our experience, this com-

ponent is key to the performance of the model with natural scenes; indeed, this operator
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Figure 3.1: Model predictions for simple test images. When using either the global non-
linear amplification or the iterative competition for salience as feature combination strate-
gies, attentional scanpaths generated by the model agree with our common-sense expecta-
tion; for example, of several oriented bars on a vertically oriented background, the most
salient one should be that with largest orientation difference to the background. These
simple results are however often not obtained when using either naive summation or hand-
crafted feature weights, especially when noise is present in the images.
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allows us to discard all feature maps which contain noisy or unreliable responses over ex-
tended regions of the input image, and to enhance the feature maps which contain isolated
salient locations (Fig. 3.2).

The iterative competition for salience scheme yields best results, in particular when
several distant locations are salient in the image to be analyzed. This operator is also of
critical importance when high amounts of noise are present; in what follows, we show in a
more systematic manner how an initially barely conspicuous target is either suppressed or
made to stand out of its background through these interactions.

This simple experiment used only one feature map of 32x32 pixels, which contained
one “target” and five “distractors.” Both target and distractors were represented by disks
of diameter 5 pixels. All stimulus images had background noise drawn from a uniform
distribution of amplitude 25 (on an arbitrary scale also used below for target and distractor
activities). One hundred stimuli were randomly generated for each condition. The “target
to distractor ratio” (TDR) was defined as the activity at the target divided by the activity
at the most salient distractor. In the first condition, initial distractor activity was 100
and initial target activity was 115 (initial TDR 1.15). For the 100 stimuli of that type,
final TDR was 1.28 +/- 0.68 (mean +/- S.D.), i.e., the competitive process resulted in a
strong increase of the TDR. In the second experiment, initial distractor activity was 200
and initial target activity was 215 (initial TDR 1.075), on the same arbitrary scale. For the
100 stimuli of that type, final TDR was 1.05 +/- 0.60, i.e., the competitive process resulted
in a decrease in TDR. It is worth noting that the model predicted highly variable outcomes,
as indicated by the S.D. of the final TDR; final TDR varied substantially from one instance
to another, depending on the exact spatial configuration of target and distractors.

These experiments show that, although an initial TDR of 1.075 is insufficient for a
target to pop-out, and yields global inhibition of all elements in the map including the
target, an initial TDR of only 1.15 was sufficient to yield reliable enhancement of the target
(to a final TDR of 1.28). These experiments hence demonstrate the double role of our
iterative competition process, which suppresses regions of uniform activity and enhances

locally conspicuous objects.

3.3 Pop-Out and Conjunctive Search

A first comparison of the model with humans can be made using the type of displays used
in “Visual Search” tasks (Treisman, 1988). A typical experiment consists of a speeded
alternative forced-choice task in which the presence of a certain item in the presented
display has to be either confirmed or denied. It is known that stimuli which differ from
nearby stimuli in a single feature dimension can be easily found in visual search, typically in

a time which is nearly independent of the number of other items (“distractors”) in the visual
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Figure 3.2: More examples of iterative competition for salience. Note how this operator al-
lows several locations to simultaneously remain salient, while suppressing regions of uniform
activity.
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Figure 3.3: Ilustration of how competition between salient locations in a feature map alters
target-to-distractor saliency ratios. Gray-level images and middle-column plots represent
the initial feature map, i.e., the presumed input from the preattentive feature extraction
stages (grayscales have been distorted to make the difference between target and distractors
visible). Right-column plots represent the feature map after spatial competition. All plots
are scaled to the maximum activity in the map, in order to make relative differences obvious.
In condition (a), the target is initially 15% more active than the distractors; this relative
difference is sufficiently large to allow the target to suppress all distractors more than the
distractors can suppress the target. In this case, competition increases the initial difference
between target and distractors. In condition (b), the relative difference is now lower, at
about 7.5%. Because of this low relative difference in saliency, target and distractors inhibit
each other by approximately the same amount. As a result, the difference between target
and distractors is attenuated further by the competitive process.
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scene. In contrast, search times for targets which differ from distractors by a combination
of features (a so-called “conjunctive task”) are typically proportional to the number of
distractors (Treisman & Gelade, 1980).

We generated three classes of synthetic images to simulate such experiments: (1) one
red target (rectangular bar) among green distractors (also rectangular bars) with the same
orientation; (2) one red target among red distractors with orthogonal orientation; and
(3) one red target among green distractors with the same orientation, and red distractors
with orthogonal orientation. In order not to artifactually favor any particular orientation,
the orientation of the target was chosen randomly for every image generated. Also, in order
not to obtain ceiling performance in the first two tasks, we added strong orientation noise
to the stimuli (between -17 and +17 degrees with uniform probability) and strong color
speckle noise to the entire image (each pixel in the image had a 15% uniform probability to
become a maximally bright color among red, green, blue, cyan, purple, yellow and white).
The positioning of the stimuli along a uniform grid was randomized (by up to + 40% of the
spacing between stimuli, in the horizontal and vertical directions), to eliminate any possible
influence of our discrete image representations (pixels) on the system. Twenty images were
computed for a total number of bars per image varying between 4 and 36, yielding the
evaluation of a total of 540 images. In each case, the task of our model was to locate
the target, whose coordinates were externally known from the image generation process, at
which point the search was terminated. We are here not concerned with the actual object
recognition problem within the focus of attention. The diameter of the FOA was fixed to
slightly more than the longest dimension of the bars.

Results are presented in Fig. 3.4 in terms of the number of false detections before
the target was found. Clear pop-out was obtained for the first two tasks (color only and
orientation only), independently of the number of distractors in the images. Slightly worse
performance is found when the number of distractors is very small, which seems sensible
since in these cases the distractors are nearly as salient as the target itself. Evaluation
of these types of images without introducing any of the distracting noises described above
yielded systematic pop-out (target found as the first attended location) in all images. The
conjunctive search task showed that the number of shifts of the focus of attention prior to
the detection of the target increased linearly with the number of distractors. Notice that
the large error bars in our results indicate that our model usually finds the target either

quickly (in most cases) or only after scanning a large number of locations.

3.4 Search Asymmetries

In some instances of visual search, where human observers detect the presence or absence of

a special “target” visual pattern in an array of identical “distractor” patterns, search time
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Figure 3.4: Pop-out and conjunctive search reproduced by our model. Model performance is
shown on noisy versions of pop-out and conjunctive tasks of the type pioneered by Treisman
and Gelade (1980). Stimuli consisted of arrays of isoluminant red and green colored bars
with strong speckle noise added. Dashed lines: chance value, based on the size of the
simulated visual field and the size of the candidate recognition area (corresponds to the
performance of an ideal observer who scans, on average, half of the distractors prior to target
detection). Solid lines: performance of the model. Error bars: one standard deviation.
The typical search slopes of human observers in feature search and conjunction search,
respectively, are successfully reproduced by the model. Each stimulus was drawn inside a
64 x 64 pixels box, and the radius of the focus of attention was fixed to 32 pixels. For a
fixed number of stimuli, we tested 20 randomly generated images in each task; the saliency
map and winner-take-all were initialized to zero (corresponding to a uniformly black visual
input) prior to each trial.
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asymmetries have been reported when target and distractor patterns are interchanged. A
classical explanation for this finding is that targets which contain “richer features” are easier
to find among simpler distractors than the opposite. For example, a curved line segment
is detected faster among straight segments than the opposite, presumably because it has
the added property of curvature. Our model seems ideally suited to testing this classical
understanding of the origin of the asymmetries, because it allows us to directly look at the
responses of the target and distractor patterns in individual feature maps. Consequently,
we conducted simulations using search arrays with target and distractor elements which
have been shown to yield search time asymmetries in humans (Fig. 3.5).

The generation of stimuli for these simulations, and the analysis of the data, was per-
formed by Farinaz Therani, who was a student with me during the summer of 1999.

Stimulus arrays were generated by an automatic program. Search elements were ran-
domly jittered by up to 60% of their size and rotated by up to £10°. Uniform color speckle
noise with 10% probability was finally added. For 20 target/distractor pairs (e.g., “Q”
among “O” or open among closed circles), we generated 20 instances of arrays containing
4x4 to 10x10 elements (seven sizes in total). The resulting 5600 images were evaluated by
our model, and simulated search times were collected.

For control target/distractor pairs, for which no asymmetry is found in humans (e.g.,
red among green squares, or vertical among horizontal bars), the model did not either ex-
hibit spurious asymmetries. For pairs yielding asymmetry in humans, the model generally
reproduced the asymmetry. With some pairs, however, the model initially predicted an
opposite asymmetry; careful examination of the model’s internals revealed that such failure
was due to luminance imbalance between target and distractor. After luminance correction,
the correct asymmetries were obtained. In all asymmetry cases, the model showed signifi-
cantly stronger activity in at least one feature map for the easily-found target (Fig. 3.5).
Our simulations hence confirm in a computational manner that asymmetries may be due
to an “added property” in the target that is easy to detect.

It should be noted, however, that the asymmetries exhibited by the model often are
much more extreme than what is observed in humans; for example, in the “Q” among
“O” search of Fig. 3.5, “Q” is the first attended location when it is the target, while
“O” is the last one when it is the target. This simply is due to the fact that our simple
attention focusing mechanism, using a winner-take-all network to explore targets in order
of decreasing salience, is not capable of detecting the presence of a locally empty space in
the saliency map. Whether humans have this capacity or whether they simply find the

non-salient target by chance is subject to further investigations.
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Figure 3.5: Search time asymmetries reproduced by our model. (a) Examples of search
arrays used in our simulations. In humans, finding and ellipse among many circles is easier
(as measured by faster reaction times) than finding a circle among many ellipses. Similarly,
finding a letter “Q” among many letters “O” is easier than the opposite. (b) The model
reproduces the basic asymmetry observed in humans. The model’s difference in search times
is, however, extreme in some cases, while only a small difference in search time is usually
observed in humans. (c) As expected, the search element which is easier to find (in this
case, the letter “Q”) yields a much stronger activity when it is alone (i.e., when it is the
target) in some feature maps (here, orientation, and to a lesser extent, intensity) than the
search element which is harder to find. As a consequence, the “Q” among “O”s search
yields a clear pop-out signal in the saliency map, while the “O” among “Q”s display yields
very low salience for array elements (the saliency maps have been scaled to their maximum
activity; the brighter background on the right map indicates lower overall activity).
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3.5 Robustness to Image Noise

The model, using either the global non-linear amplification or the iterative competition for
salience as feature combination strategies, proved very robust to the addition of noise to
such images (Fig. 3.6). This was particularly true when the properties of the noise (e.g.,
its hue) were not directly conflicting with the main feature of the target.

Our model hence makes the prediction, which could be tested in human observers, that
noise which is only weakly detected by the feature maps responsible for a target popping
out should only minimally affect search time. If such result were to be verified in humans,
it would argue, according to our model, for the fact that feature maps in different channels
do not strongly interact. Indeed, it is because we have chosen in our model’s architecture
to separately treat color, intensity and orientation information in three non-interacting
“conspicuity” maps that we find that black and white salt and pepper noise only minimally

affects the detection time for a red target (Fig. 3.6).

3.6 Search Performance in Complex Natural Scenes

We tested our model on a wide variety of real images, ranging from natural outdoor scenes to
artistic paintings. All images were in color and contained significant amounts of noise, strong
local variations in illumination, shadows and reflections, large numbers of “objects” often
partially occluded, and strong textures. Most of these images can be interactively examined
on the World-Wide-Web, at http://www.klab.caltech.edu/~itti/attention/. Overall,
the results indicate that the system scans the image in an order which makes functional
sense in most behavioral situations.

It should be noted however that it is not straightforward to establish objective criteria
for the performance of the system with such images. Unfortunately, nearly all quantitative
psychophysical data on attentional control are based on synthetic stimuli similar to those
discussed in the next section. In addition, although the scan paths of overt attention (eye
movements) have been extensively studied (Yarbus, 1967; Noton & Stark, 1971), it is unclear
to what extent the precise trajectories followed by the attentional spotlight are similar to the
motion of covert attention. Most probably, the requirements and limitations (e.g., spatial
and temporal resolutions) of the two systems are related but not identical (Tsotsos et al.,
1995; Rao & Ballard, 1995). Although our model is mostly concerned with shifts of covert
attention, and ignores all of the mechanistic details of eye movements, we attempt below a
comparison between human and model target search times in complex natural scenes, using

several databases of digitized images.
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Figure 3.6: Influence of noise on detection performance, illustrated with a 768 x 512 scene in
which a target (two people) is salient by its unique color contrast. The mean + S.E. of false
detections before target found is shown as a function of noise density for 50 instantiations
of the noise. The system is very robust to noise which does not directly interfere with
the main feature of the target (left; intensity noise and color target). When the noise has
similar properties to the target, it impairs the target’s saliency and the system first attends
to objects salient for other features (here, coarse-scale variations of intensity).
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3.6.1 Comparison of Feature Combination Strategies

We used three databases of natural color images to evaluate the different feature combination
strategies proposed above (Fig. 3.7). The first database consisted of images in which a red
aluminum can is the target. It was used to demonstrate the simplest form of specialization,
in which some feature maps in the system specifically encode for the main feature of the
target (red color, which is explicitly detected by the system in a red/green feature map (Itti
et al., 1998b)). The second database consisted of images in which a vehicle’s emergency
triangle was the target. A more complicated form of specialization is hence demonstrated,
since the target is unique in these images only by a conjunction of red color and of 0°
(horizontal), 45° or 135° orientations. These four feature types are represented in the
system by four separate and independent feature maps (Itti et al., 1998b). The third
database consisted of 90 images acquired by a video camera mounted on the passenger side
of a vehicle driven on German roads, and contained one or more traffic signs. Among all
90 images, 39 contained one traffic sign, 35 contained two, 12 contained three, 2 contained
four, and 1 contained five traffic signs.

All targets were outlined manually, and binary target masks were created. A target was
considered detected when the focus of attention (FOA) intersected the target. The images
were 640 x 480 (red can and triangle) and 512 x 384 (traffic signs) with 24-bit color, and the
FOA was a disk of radius 80 (red can and triangle) and 64 (traffic signs) pixels. Complete
coverage of an entire image would consequently require the FOA to be placed at 31 different
locations (with overlap). A system performing at random would have to visit an average of
15.5 locations to find a unique, small target in the image.

Each image database was split into a training set (45 images for the can, 32 for the
triangle, 45 for the traffic signs) and a test set (59, 32 and 45 images respectively). Learning
consisted, for each training set, of 5 randomized passes through the whole set with halving
of the learning speed 7 after each pass.

We compared the results obtained on the test image sets with the four proposed feature

combination strategies:
1. “Naive” model with no dedicated normalization and all feature weights set to unity;
2. Model with the “global non-linear amplification” normalization;
3. Model with 12 iterations of the “Iterative” normalization;

4. “Trained” model, i.e., with no dedicated normalization but feature weights learned

from the corresponding training set.

We retained in the test sets only the most challenging images, for which the target

was not immediately detected by at least one of the four versions of the model (easier
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Traffic signs Red can Emergency triangle

45 + 45 images 45 + 59 images 32 + 32 images

Figure 3.7: Example images from the three image databases studied. The number of images
for training 4+ test sets are shown for each database.
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images in which at least one version of the model could immediately find the targets had
been previously discarded to ensure that performance was not at ceiling). Results are
summarized in Table 3.1 and Fig. 3.8.

The naive model, which represents the simplest solution to the problem of combining
several feature maps into a unique saliency map, performed always worse than when using
global non-linear amplification. The simple contents-based non-linear normalization indeed
proved particularly efficient at eliminating feature maps in which numerous peaks of activity
were present, such as, for example, intensity maps in images containing large variations in
illumination. Furthermore, the more detailed, iterative implementation of spatial competi-
tion for salience yielded comparable or better results, in addition to being more biologically
plausible.

The additive learning rule also proved efficient in specializing the generic model. One
should be aware, however, that only limited specialization can be obtained from such global
weighting of the feature maps: Because such learning simply enhances the weight of some
maps and suppresses others, poor generalization should be expected when trying to learn
for a large variety of objects using a single set of weights, since each object would ideally
require a specific set of weights. Additionally, the type of linear training employed here
is limited, because sums of features are learned rather than conjunctions. For example,
the model trained for the emergency triangle might attend to a strong oblique edge even if
there was no red color present or to a red blob in the absence of any oblique orientation. To
what extent humans can be trained to pre-attentively detect learned conjunctive features
remains controversial (Niebur & Koch, 1998). Nevertheless, it was remarkable that the
trained model performed best of the four models studied here for the database of traffic
signs, despite the wide variety of shape (round, square, triangle, rectangle), color (red,
white, blue, orange, yellow, green) and texture (uniform, striped, lettered) of those signs in
the database.

In summary, while the “Naive” method consistently yielded poor performance and the
“Trained” method yielded specialized models for each task, the iterative normalization op-
erator, and its global non-iterative approximation, yielded reliable yet non-specific detection
of salient image locations. We believe that the latter two represent the best approximations
to human saliency among the four alternatives studied here. One of the key elements in the
iterative method is the existence of a non-linearity (threshold) which suppresses negative
values; as we can see in Figs. 2.10 and 3.2, in a first temporal period, the global activity
over the entire map typically decreases as a result of the mutual inhibition between the
many active locations, until the weakest activation peaks (typically due to noise) pass be-
low threshold and are eliminated. Only after the distribution of activity peaks has become
sparse enough can the self-excitatory term at each isolated peak overcome the inhibition

received from its neighbors, and, in a second temporal period, the map’s global activity
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— Emerg. triangle
---- Traffic signs (first) -

Traffic signs (all)

Red can

0
Naive Global Ampl. | Iterative Trained
Red can | 2.90 +2.50 | 1.67+2.01 | 1.24+1.42 | 0.35+1.03
Triangle | 2.44 4+ 2.20 1.69 £+ 2.28 1.42 +1.67 | 0.87 +1.29
Traffic! | 1.84 +2.13 | 0.49+1.06 | 0.52+1.05 | 0.24 +0.77
Traffic? | 3.26 £2.80 | 1.274+2.12 | 0.70 +1.18 | 0.77 +1.93

Table 3.1: Average number of false detections (mean + standard deviation) before target(s)
found, for the Red Can test set (n=>59), Emergency Triangle test set (n=32) and Traffic
Signs test set (n=45; 17 images with 1 sign, 19 with 2, 6 with 3, 2 with 4 and 1 with 5). For
the traffic sign images which could contain more than one target per image, we measured
both the number of false detections before the first target hit, and before all targets in the

L before first sign found. % before all signs found.

image had been detected.
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Figure 3.8: Breakdown of results for “Traffic Signs” database, according to the number of
targets (signs) per image. Along the vertical axis is plotted the total number of attentional
shifts generated by the model in order to find all targets. The straight line (y = x) represents
performance of an optimal detector which finds one new target for each new shift. Our model
performed very close to this optimal.
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naive

global
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Figure 3.9: Comparison of the internals of the four versions of the model, for one image
from the “red can” test set, in which a red aluminum can is the most salient object. The
can appears with medium strength in the color maps, due to its color contrast with the
background (the response is not the strongest possible because the background is not green,
and only red/green and blue/yellow color contrasts are computed). The curb, however, ap-
pears very strongly in all intensity maps, and also less strongly in the horizontal orientation
maps. In the naive version of the model, the color activity from the can is outnumbered
by the activity elicited by the curb in a larger number of intensity and orientation maps.
As a result, detection of the can is accidental, while the model is scanning the curb. The
global non-linear amplification strategy yields strong suppression of the horizontal orien-
tation, because more localized activation peaks exist in the vertical orientation, as well as
some suppression of the extended curb in the intensity channel. The color channel, with
its strong singularity, is however globally enhanced and yields correct detection of the can.
The iterative strategy yields complete suppression of the horizontal orientation as well as
overall much suppression of all regions which are not among the few strongest in each fea-
ture map. The red can clearly becomes the most salient location in the image. Finally,
training using other images with similar views of this red target of vertical orientation has
entirely suppressed the intensity and horizontal orientations, such that the saliency map is
dominated by the color channel. The trained model hence easily finds the can as the most
salient object.
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starts increasing again. If many comparable peaks are present in the map, the first period
of decreasing activity will be much slower than if one or a few much stronger peaks effi-
ciently inhibits all other peaks. In Fig. 3.9, we show a comparison of the internal maps
for the four versions of the model on a test image. This figure demonstrates, in particular,
how the “Iterative” scheme yields much sparser maps, in which most of the noisy activity
present in some channels (such as the intensity channel in the example image) is strongly

suppressed.

3.6.2 Comparison to Spatial Frequency Content

By construction, the saliency map may be considered as topographically encoding for the
probability for a generic observer to attend to given locations in the visual scene (consid-
ering only simple tasks and viewer-independent image features). It is hence important to
quantitatively compare the model’s attentional fixations to human attentional fixations,
which unfortunately are not directly measurable. Although trajectories recorded with eye-
tracking devices may differ substantially from attentional trajectories (Tsotsos et al., 1995),
it is reasonable to assume that the first few human eye fixations produced upon brief pre-
sentation of an image are mostly guided by bottom-up, saliency-driven mechanisms, before
scene interpretation and other top-down mechanisms become active.

Reinagel and Zador (1999) used an eye-tracking device to analyze the local spatial fre-
quency distributions along eye scan paths generated by humans while free-viewing grayscale
images. They found the spatial frequency content at the fixated locations to be significantly
higher than, on average, at random locations. Here we investigate whether our model would
reproduce the findings of Reinagel and Zador. In the following two Sections, we present
quantitative comparisons between human and model times to find a target in a complex
natural scene, and preliminary experiments with eye movement recording done in our lab-
oratory.

We constructed a simple measure of spatial frequency content (SFC): At a given image
location, a 16 x 16 image patch is extracted from each I(2), R(2),G(2),B(2) and Y(2)
map, and 2D Fast Fourier Transforms (FFTs) are applied to the patches. For each patch, a
threshold is applied to compute the number of non-negligible FF'T coeflicients; the threshold
corresponds to the FFT amplitude of a just perceivable grating (1% contrast). The SFC
measure is the average of the numbers of non-negligible coefficients in the five corresponding
patches. The size and scale of the patches were chosen such that the SFC measure is sensitive
to approximately the same frequency and resolution ranges as our model; also, our SFC
measure is computed in the RGB channels as well as in intensity, like the model. Using
this measure, an SFC map is created at scale 4 for comparison with the saliency map
(Fig. 3.10).

Model predictions were compared to the measure of local SFC, in an experiment similar
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Figure 3.10: Comparison of the saliency map to the map of spatial frequency content.
Examples of color images (a), the corresponding saliency map inputs (b), spatial frequency
content (SFC) maps (¢), locations at which input to the saliency map was higher than 98%
of its maximum (d; yellow circles), and image patches for which the SFC was higher than
98% of its maximum (d; red squares). The saliency maps are very robust to noise, while
SFC is not.
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to that of Reinagel and Zador (1999), using natural scenes with salient traffic signs (90
images), red soda can (104 images), or vehicle’s emergency triangle (64 images). Similar to
Reinagel and Zador’s findings, the SFC at attended locations was significantly higher than
the average SFC, by a factor decreasing from 2.5 + 0.05 at the first attended location to
1.6 £ 0.05 at the 8th attended location. Although this result does not necessarily indicate
similarity between human eye fixations and the model’s attentional trajectories, it indicates
that the model, like humans, is attracted to “informative” image locations, according to the
common assumption that regions with richer spectral content are more informative. The
SFC map was similar to the saliency map for most images (e.g., Fig. 3.10.1). However,
both maps differed substantially for images with strong, extended variations of illumination
or color (e.g., due to speckle noise): While such areas exhibited uniformly high SFC, they
had low saliency because of their uniformity (Figs. 3.10.2, 3.10.3). In such images, the
saliency map was usually in better agreement with our subjective perception of saliency.
Quantitatively, for the 258 images studied here, the SFC at attended locations was sig-
nificantly lower than the maximum SFC, by a factor decreasing from 0.90 £+ 0.02 at the
first attended location to 0.55 + 0.05 at the 8th attended location: While the model was
attending to locations with high SFC, these were not necessarily the locations with highest
SFC. It consequently seems that saliency is more than just a measure of local SFC. The
model, which implements within-feature spatial competition captured subjective saliency
better than the purely local SFC measure.

The SFC measure was used as a means to more quantitatively compare the performance
of the model to humans. Three databases of images were used: the first database was
composed of 90 color images acquired by a video camera mounted on a vehicle driving
on German roads. The camera was oriented towards the front-right direction, in order to
capture most traffic signs on the passenger side of the road. The second database consisted
of 104 color natural scenes (outdoor and indoor) in which a red aluminum can was a salient
target, and the third database consisted of 64 color natural scenes (outdoor and indoor) in
which a vehicle’s emergency triangle was a salient target. For each image and irrespectively
of the nature of the attended locations (target or non-target), ratios of the SFC at a given
attended location to the average or maximum of the SFC map were computed (Fig. 3.11).
Whether or not the model was attending to targets, it was generally attending to locations
that we would subjectively consider salient (e.g., a blue traffic sign on a green background,
or a strong edge between a tree and the sky).

The SFC at attended locations was found to be significantly higher (as a population, for
each database) than the average SFC, in agreement with human experiments (Reinagel &
Zador, 1999). Although this result does not necessarily indicate similarity between human
eye fixations and the model’s attentional trajectories, it indicates that the model, like hu-

mans, is attracted to “informative” image locations, according to the common assumption
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Figure 3.11: Ratios (mean + standard error) of the spatial frequency content (SFC) locally
evaluated at attended locations to the average SFC (top curves) and maximum SFC (bottom
curves). In order to account for possible small positional differences between peaks in SFC
and in saliency (see, e.g., Fig. 3.10.1), local SFC was computed as the maximum SFC over
a 3 x 3 neighborhood, in the SFC map, of the attended location. While the local SFC was
significantly higher at attended locations than on average, it was significantly lower than
the maximum SFC.
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that regions with richer spectral content are more informative. This result is coherent with
the fact that the preattentive feature extraction mechanisms, based on center-surround op-
erations at several spatial scales, may be viewed as a bank of spatially bandpass filters.
However, although there was good agreement between the SFC map and the saliency map
in many images (see for example the second row of Fig. 3.10), and although our SFC
measure was richer than a simple analysis of the luminance channel, we found substantial
disagreement between the SFC map and the saliency map for certain classes of images.
These include in particular images with strong variations of illumination or color over large
spatial extents: while such areas exhibit uniformly high SFC, they have low salience because
their large extend does not make them particularly unique or conspicuous (Fig. 3.10, first,
third and fourth rows). In such images, the saliency map was usually in better agreement
with our subjective impression of which locations were the most conspicuous (see for ex-
ample Fig. 3.10, first row). This result was quantitatively confirmed by the fact that, for
the three image databases, local SFC at attended locations was significantly lower than
the maximum SFC (Fig. 3.11). While the model was attending to locations with high
SFC, these were not necessarily the locations with highest SFC. It consequently seems that
salience is more than just a measure of local SFC. In particular, the model implements,
through N(.), within-feature, spatial competition of candidate conspicuous locations for
salience; this represents a major advantage compared to the SFC measure, which is purely

local.

3.6.3 Comparison to Human Search Time with Complex Natural Images

We propose a further test in which the model’s target detection performance is evaluated
using a database of complex natural images, each containing a military vehicle (the “tar-
get”). Contrary to the previous studies presented above, which used low-resolution image
databases with relatively large targets (typically about 1/10th the width of the visual scene),
this study uses very-high resolution images (6144x4096 pixels), in which targets appear very
small (typically 1/100th the width of the image). In addition, in the present study, search
time is compared between the model’s predictions and the average measured search times
from 62 normal human observers (Toet et al., 1998).

The 44 original photographs were taken during a DISSTAF (Distributed Interactive
Simulation, Search and Target Acquisition Fidelity) field test in Fort Hunter Liggett, Cal-
ifornia, and were provided to us, along with all human data, by the TNO Human Factors
Research Institute in the Netherlands (Toet et al., 1998). The field of view for each image
is 6.9 x 4.6°. Each scene contained one of nine possible military vehicles, at a distance
ranging from 860 to 5822 meters from the observer. Each slide was digitized at 6144x4096
pixels resolution. Sixty-two human observers aged between 18 and 45 years and with visual

acuity better than 1.25 arcmin™' participated to the experiment (about half were women
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and half men). Subjects were first presented with 3 close-up views of each of the 9 possible
target vehicles, followed by a test run of 10 trials. A Latin square design (Wagenaar, 1969)
was then used for the randomized presentation of the images. The slides were projected
such that they subtended 65 x 46° visual angle to the observers (corresponding to a linear
magnification by about a factor 10 compared to the original scenery). During each trial,
observers pressed a button as soon as they had detected the target, and subsequently in-
dicated at which location on a 10x10 projected grid they had found the target. Further
details on these experiments can be found in (Toet et al., 1998; Bijl et al., 1997).

The model was presented with each image at full resolution. Contrary to the human
experiment, no close-ups or test trials were presented to the model. The most generic
form of the model described above was used, without any specific parameter adjustment
for this experiment. Simulations for up to 10,000 ms of simulated time (about 200-400
attentional shifts) were done on a Digital Equipment Alpha 500 workstation. With these
high-resolution images, the model comprised about 300 million simulated neurons. Each
image was processed in about 15 minutes with a peak memory usage of 484 megabytes (for
comparison, a 640 x 480 scene was typically processed in 10 seconds, and processing time
approximately scaled linearly with the number of pixels). The focus of attention (FOA) was
represented by a disk of radius 340 pixels (Figs. 3.12, 3.13 and 3.14). Full coverage of the
image by the FOA would hence require 123 shifts (with overlap); a random search would
thus be expected to find the target after 61.5 shifts on average. The target was considered
detected when the focus of attention intersected a binary mask representing the outline
of the target, which was provided with the images. Three examples of scenes and model
trajectories are presented in Figs. 3.12, 3.13 and 3.14; In the first image, the target was
immediately found by the model, while, in the second, a serial search was necessary before
the target could be found, and, in the third, the model failed to find it.

The model immediately found the target (first attended location) in seven of the 44
images. It quickly found the target (fewer than 20 shifts) in another 23 images. It found
the target after more than 20 shifts in 11 images, and failed to find the target in three images.
Overall, the model consequently performed surprisingly well, with a number of attentional
shifts far below the expected 61.5 shifts of a random search in all but six images. In these
six images, the target was extremely small (and hence not conspicuous at all), and the
model cycled through a number of more salient locations.

The following analysis was performed to generate the plot presented in Fig. 3.15: First,
a few outlier images were discarded, when either the model did not find the target within
2000 ms of simulated time (about 40-80 shifts; six images), or when half or more of the
humans failed to find the target (three images), for a total of eight discarded images. An
average of three overt shifts per second was assumed for the model, hence allowing us to

scale the model’s simulated time to real time. An additional 1.5 second was then added
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Figure 3.12: Example of image from the database of 44 scenes depicting a military vehicle
in a rural background. The algorithm operated on 24-bit color versions of these 6144x4096
pixel images and took on the order of 15 min real time on Dec Alpha workstation to carry
out the saliency computation. (Top) Original image; humans found the location of the
vehicle in 2.6 sec. on average. (Bottom) The vehicle was determined to be the most
salient object in the image, and was attended first by the model. Such a result indicates
strong performance of the algorithm in terms of artificial vision using complex natural color
scenes. After scaling of the model’s simulated time such that it scans two to four locations
per second on average, and adding a 1.5 sec. period to account for the human’s latency in
motor response, the model found the target in 2.2 sec.
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Figure 3.13: A more difficult example from the image database of military vehicles. (Top)
The input color image. Humans found the location of the vehicle in 7.5 sec. on average.
(Bottom) The target is not the most salient object, and the model searches the scene in
order of decreasing saliency. The algorithm came to rest on the location of the target on
the 17th shift, after 6.1 sec (using same time scaling as in the previous figure).
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Figure 3.14: An example of model failure in the image database of military vehicles. (Top)
The input color image. Humans found the location of the vehicle in 8.0 sec. on average.
(b) The target is extremely small, and not salient at all. The model hence failed to find it.
Inspection of the feature maps indicated that the target yielded responses in the different
feature dimensions which are very similar to other parts of the image (foliage and trees).
This image is one of the eight which was excluded from our analysis in Fig. 3.15 because
either humans or the model failed to reliably find the target.
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to the model time to account for human motor response time. With such calibration, the
fastest reaction times for both model and humans were approximately 2 seconds, and the
slowest approximately 15 seconds, for the 36 images analyzed.

The results plotted in Fig. 3.15 overall show a poor correlation between human and
model search times. Surprisingly, however, the model appeared to find the target faster than
humans in 3/4 of the images (points below the diagonal), despite the rather conservative
scaling factors used to compare model to human time. In order to make the model’s
performance equal (on average) to that of humans, one would have to assume that humans
shifted their gaze not faster than twice per second, which seems unrealistically slow under
the circumstances of a speeded search task on a stationary, non-masked scene. Even if eye
movements were that slow, most probably would humans still shift covert attention at a

much faster rate between two overt fixations.

3.6.4 Comparison to Human Attention

Our model is mostly concerned with shifts of covert attention, which, as mentioned above,
may substantially differ from eye movements. A study has however recently started in our
laboratory, led by Drs. Steffen Egner and Christian Scheier, which proposes to attempt to
build a saliency map from human observer responses measured using either eye movements,
finger pointing or mouse pointing. The motivation for measuring human responses in three
different manners is to try and decouple image-based saliency, which should be independent
of the response mechanism, from the particular mechanistic contingencies of each of these
three response modalities.

Three classes of images are being studied: Search arrays, web pages, and natural scenes
(Fig. 3.16). Each image is presented for four seconds, and the observers are instructed to
either look or point towards the image locations which they find attract their eyes. Data is
collected using a custom system, MediaAnalyzer, developed by Drs. Egner and Scheier. In
the particular case of eye movements, the system uses a consumer-electronics video camera
to image one of the observer’s eyes during the experiment.

While only preliminary results are available at the time of this printing, several general
remarks can already be made. First, at least for the first few fixations, the responses
obtained wia the three possible response modalities are highly correlated. This directly
supports the idea that, at least for the first few fixations, bottom-up processes may play a
significant role at directing attention and subsequent eye or hand movements. Second, our
model so far correlates reasonably well with the observers’ responses, again, at least for the
first few fixations.

Several shortcomings of our model have however already been pointed out by this ex-
periment, which relate to the fact that it does not incorporate any top-down processing:

For example, observers have a tendency to explore first locations which are closer to the
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Figure 3.15: Mean reaction time to detect the military target for 62 human observers and
for our deterministic algorithm. Eight of the 44 original images are not included, in which
either the model or the humans failed to reliably find the target. For the 36 images studied,
and using the same scaling of model time as in the previous two figures, the model was faster
than humans in 75% of the images. In order to bring this performance down to 50% (equal
performance for humans and model), one would have to assume that no more than two
locations can be visited by the algorithm each second. Arrow (a) indicates the “pop-out”
example of Fig. 3.12, and arrow (b) the more difficult example presented in Fig. 3.13.



Figure 3.16: Examples of comparison to human eye movements. Eye movements were
recorded using a video-based pupil tracking system. Locations of the image visited by the
observer are indicated by the small red circles. The larger blue circles indicate the locations
attended to by our model. The model was run for a longer time than the human recording,
which explains why it visited more locations than the human observer. For the first few
visited locations, however, we find an encouraging correlation between the model and human
data.
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fixation cross presented between each image to be analyzed. Our model at present does not
incorporate any such prior bias, and does not favor any particular spatial location (beyond
the selection which is made on local bottom-up saliency) when inspecting a new image. Our
model also has a tendency to generate fewer fixations than humans do; this aspect of our
model could easily be adjusted by playing with the inhibition-of-return and proximity pref-
erence rules already implemented. Because this Chapter, however, is mostly concerned with
purely bottom-up attentional control in the absence of any top-down mechanism, we will
leave such further enhancements of our model, with the goal of better matching real human

attentional scanpaths by incorporating a number of top-down biases, to future studies.

3.7 Application to Image Compression

By construction of the model and its biological inspiration, we may consider that the saliency
map topographically encodes for the probability for a generic observer to attend to given
locations in the visual scene. While this only is a gross approximation of the behavior of
such generic observer (see next Section), it however can be argued that at least the first
few image locations visited by an observer are selected based on their bottom-up saliency.
Using our saliency map as such probability measure provides a powerful means of spatially
modulating the signal-to-noise ratio (SNR) of image compression algorithms, such that
salient objects receive a high SNR while non-salient objects are compressed with high loss
and low SNR.

We built a non-standard compression program exploiting this principle (Fig. 3.17).
The algorithm developed is based on the JPEG algorithm. In JPEG, image patches are
transformed using a discrete cosine transform (DCT; a lossless operation similar to a Fourier
transform), after which a variable amount of loss is introduced through quantization of the
DCT’s results by using a small number of possible values for each DCT coefficient. The
quantized results are then further compressed using a lossless Huffman encoding. The
steps in the quantizer are fixed in the JPEG standard and have been determined through
psychophysical experiments. In our implementation of saliency-based compression, we spa-
tially varied the quantizer according to the local measure of salience: At locations with
high salience, a finer quantizer was used, which approximated the actual DCT coefficients
in a more faithful manner. This faithful approximation also resulted in a high number of
bits being necessary to encode the quantized results. Progressively coarser quantizers were
used at locations with progressively lower saliency, hence resulting in progressively higher
compression ratios and higher losses. Because we vary the expression of the quantizer in a
spatially dependent manner, a feature which is not supported by the JPEG standard, im-
ages compressed with our algorithm cannot be viewed using standard JPEG decoders. Note

finally that our algorithm requires the saliency map be included (after lossless compression
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Original Image
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Original JPEG Saliency-based
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Figure 3.17: Saliency-based image compression. By spatially modulating the coarseness
of the JPEG quantizer based on the local measure of saliency, our algorithm yields more
faithful reproduction of salient image locations at the detriment of less salient image loca-
tions, for a given total compressed image size. In this example, the same compression ratio
was achieved both by JPEG and by our algorithm (in which the saliency map is stored
with the compressed image, to allow decompression). Significantly lower loss was, however,
introduced by our algorithm in salient locations such as the person’s face (see magnified
excerpts in bottom row), at the expense of introducing higher losses in other image regions.
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using a Huffman code) with the compressed image in order to allow decompression; this,
however, has only a minimal impact onto the final compressed image size, because of the
low spatial scale of the saliency map (which is reduced by a factor 16 in z and y compared
to the original image).

With this algorithm, it is possible, for a given desired compressed image size, to devote
a larger fraction of that size to salient objects than is done using JPEG. Visually, images
compressed with our algorithm are more pleasant to look at, because the locations which we
are likely to visit are compressed with lower loss. Note, however, that often our algorithm
appears to perform worse than JPEG for the same compression ratio when using standard
image quality metrics such as average SNR, simply because our method introduces higher
losses in often extended non-salient image regions in order to be able to preserve the often
smaller salient locations with higher fidelity.

Saliency-based image compression would be most successful with animated sequences,
in which the observer would mainly attend to salient locations and not suffer from the high
losses introduced at non-salient locations, as the latter would only be perceived by coarse,
extrafoveal visual mechanisms. It would finally be important when developing a commer-
cial saliency-based image compression algorithm to ensure that no new salient location is
created by compression artifacts at originally non-salient locations. This aspect currently
is not accounted for by our compression algorithm. Ideally, it would require the saliency

computation algorithm and the compression algorithm to work in tandem.

3.8 Application to Artistic and Advertising Design

Our model is a purely bottom-up model; it will consequently not tell exactly where a
typical observer would look, but rather what are the conspicuous regions in the image.
While this may seem to be a subtle difference, it is of importance, since the model may
miss some features which we consider very conspicuous by training (e.g., eyes and facial
features, for which humans develop special pattern-specific neurons, not implemented in
the model). Nevertheless, we evaluated the appropriateness of this model to the evaluation
of artistic designs, with particular emphasis onto the evaluation of our own scientific posters
(Figs. 3.18, 3.19, 3.20) and of some magazine covers (Fig. 3.21).

Potentially, the fact that the model only emulates the bottom-up part of our visual
system may turn out to be even more interesting than if it were trying to fully emulate an
average human observer: Indeed, we all have a fairly good idea of what an average observer
would see in a given scene. The model, however, can point us to the fact that some aspects
of the design might be suboptimal at grabbing an observer’s attention (Fig. 3.21).

For example, much of the text in Fig. 3.21 has very poor contrast with the underlying

textured dress in the second image, and was fully ignored by our model. In some images of
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Figure 3.18: Initial model predictions on one of our scientific conference posters. The model
is immediately attracted to several of our surface renderings because of their large size, high
color contrast and high luminance contrast. Only later does the model visit the poster’s
overview box (towards top-center), which we wanted to be the first attended location.
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Figure 3.19: Model predictions on a revised design of our poster. The initially salient surface
plots have been shrunk and colored with less-contrasted hues. As a direct consequence, we
can see how their response in all three conspicuity maps have been reduced compared to
the previous figure. In addition, more saturated colors have been used for the overview box,
which has clearly become the most salient box in the poster.
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Figure 3.20: Model predictions on another of our posters. This time, our poster has been
carefully designed with special care given to the saliency of its individual elements. Our
model almost exactly follows the order in which the different sections of the poster are
numbered, hence suggesting that no further design improvement is necessary.
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magazine covers similar to those shown, the magazine’s bar-code was selected by the model
because it was determined to be similarly or more salient than other locations in the image,
such as the magazine’s title. In some very crowded images, the model sometimes does not
find anything more interesting than some large, coarse-scale edges (e.g., of a body against
a background), while such edges may not have been intended by the designer as becoming
some of the most conspicuous image locations.

These findings I think are non-trivial for human observers to realize, because top-down
influences naturally make us concentrate on other parts of the picture, such as a pretty
face, while reviewing a given design with no time constraint. However, our model’s predic-
tions certainly indicate that a non-negligible probability exists that the first glance of some

observers will go to these uninteresting (in terms of selling the magazine) locations.

3.9 Outlook

In this Chapter, we have shown that our model is capable of closely replicating human
performance on a number of visual search tasks. In addition, we have explored a number of
applications of the model, for example to target detection, image compression or advertising
design evaluation.

We have shown that one of the key features of our model was its ability to represent
simple visual features in contert, in particular by evaluating in detail our iterative within-
feature competition for salience scheme, and by comparing the model to a simple measure
of spatial frequency content. In the next Chapter, we discuss these results in terms of both

biological and computational vision systems.
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Figure 3.21: Model predictions on two magazine covers. Three snapshots have been taken
during the model’s attentional trajectory simulation for each cover. For clarity, only the
focus of attention is displayed. Although we do not claim that the trajectories generated
by the model would necessarily match those generated by human observers, we believe that
the model can prove useful in the evaluation of these designs. For example, based purely
on bottom-up cues and without any knowledge of the semantic content of these images,
the model ignores large portions of the text in the second image; instead, it finds that the
publication’s bar-code is more salient, and visits it.
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Chapter 4 Neurobiological and Computational

Implications
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We have demonstrated that a relatively simple processing scheme, based on some of
the key organizational principles of pre-attentive early visual cortical architectures (center-
surround receptive fields, non-classical within-feature inhibition, multiple maps) in con-
junction with a single saliency map performs remarkably well at detecting salient targets in
cluttered natural and artificial scenes.

Key properties of our model, in particular its usage of inhibition-of-return and the
explicit coding of saliency independent of feature dimensions, as well as its behavior on some
classical search tasks, are in good qualitative agreement with the human psychophysical
literature.

It can be argued, based on the tentative scaling between simulated model time and hu-
man time described in the experiment using military images (disregarding the fact that our
computer implementation required on the order of 15 minutes to converge for the 6144x4096
pixel images versus search times on the order of a 2-20 seconds for human observers, and
disregarding the fact that our algorithm did not deal with the problem of detecting the
target in the focus of attention), that the bottom-up saliency-based algorithm outperforms
humans in a demanding but realistic target detection task involving camouflaged military
vehicles.

One paradoxical explanation for this superior performance might be that top-down
influences play a significant role in the deployment of attention in natural scenes. Top-
down cues in humans might indeed bias the attentional shifts, according to the progressively
constructed mental representation of the entire scene, in inappropriate ways. Our model
lacks any high-level knowledge of the world and operates in a purely bottom-up manner.

This does suggest that for certain (possibly limited) scenarios, such high-level knowledge
might interfere with optimal performance. For instance, human observers are frequently
tempted to follow roads or other structures, or may “consciously” decide to thoroughly
examine the surroundings of salient buildings that have popped-out, while the vehicle might

be in the middle of a field or in a forest.

4.1 Computational Implications

The main difficulty we encountered was that of combining information from numerous
feature maps into a unique scalar saliency map. Most of the results described above do
not hold for intuitively simple feature combination schemes, such as straight summation.
In particular, straight summation fails to reliably detect pop-outs in search arrays such as
those shown in Fig. 3.4. The reason for this failure is that almost all feature maps contain
numerous strong responses (e.g., the intensity maps show strong activity at all target and
distractor elements, because of their high contrast with the black background); the target

consequently has a very low signal-to-noise ratio when all maps are simply summed. Here,
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we proposed a novel solution, which finds direct support in the human and animal studies
of non-classical receptive-field interactions.

The first computational implication of our model is that a simple, purely bottom-up
mechanism performs surprisingly well on real data in the absence of task-dependent feed-
back. This is in direct contrast to some of the previous models of visual search, in which
top-down bias was almost entirely responsible for the relative weighting between the feature
types used (Wolfe, 1994).

Further, although we have implemented the early feature extraction mechanisms in a
comparatively crude manner (e.g., by approximating center-surround receptive fields by
simple pixel differences between a coarse and a fine scale versions of the image), the model
demonstrates a surprising level of robustness, which allows it to perform in a realistic manner
on many complex natural images. We have studied the robustness of a pop-out signal in
the presence of various amounts of added speckle noise, and have found that the model is
almost entirely insensitive to noise as long as such noise is not directly masking the main
feature of the target in spatial frequency or chromatic frequency space. We believe that
such robustness is another consequence of the within-feature iterative scheme which we
use to allow for the fusion of information from several dissimilar sources. This result also
represents a simple prediction of the model which could be tested in human observers.

That our model yields robust performance on natural scenes is not too surprising when
considering the evidence from a number of state-of-the-art object recognition algorithms
(Poggio, 1997; Niyogi et al., 1998; Malik & Perona, 1990; Simoncelli et al., 1992). Many
of these demonstrate superior performance when compared to classical image processing
schemes, although these new algorithms are based on very simple feature detection filters,

similar to the ones found in biological systems.

4.2 Neurobiological Implications

While our model reproduces certain aspects of human search performance in a qualitative
fashion, a more quantitative comparison is premature for several reasons.

Firstly, we have yet to incorporate a number of known features. For instance, we did
not include any measure of saliency based on temporal stimulus onset or disappearance, or
on motion (Hillstrom & Yantis, 1994). We also have not yet integrated any retinal non-
uniform sampling of the input images, although this is likely to strongly alter the saliency
of peripherally-viewed targets (but see Fig. 4.1 for a prototype). The main reason for not
using such pre-processing in our simulations is that it renders the model less invariant with
respect to spatial scale, as the non-uniform filtering process implies a given viewing distance.
In a hardware implementation where a fixed set of cameras are used, it has however been

shown by Toepfer et al. (1998) that using such representation can significantly accelerate
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processing when all of the linear filtering operations are properly adapted to the new complex
logarithmic input space. In our model, we expect that using such biologically-plausible
retinal processing stage would yield more realistic attentional scanpaths, particularly for
shifts of overt attention.

We also have not yet addressed the detailed timing differences found in the well-known
asymmetries in search tasks (Treisman & Gormican, 1988), although our model appeared
to reproduce the basic finding of an asymmetry. Spatial “grouping” acting among stimuli
is also known to dramatically affect search time performance (Driver et al., 1992) and has
not been dealt with here. In principle, this can be addressed by incorporating excitatory,
cooperative center-surround interactions among neurons both within and across feature
maps. And, as discussed above, our model is completely oblivious to any high-level features
in natural scenes, including social cues.

More importantly, a number of electrophysiological findings muddy the simple architec-
ture our model operates under (Fig. 1b). Single-unit recordings in the visual system of the
macaque indicate the existence of a number of distinct maps of the visual environment that
appear to encode the saliency and/or the behavioral significance of targets. These include
neurons in the superior colliculus, the inferior and lateral subdivisions of the pulvinar, the
frontal-eye fields and areas within the intraparietal sulcus (Laberge & Buchsbaum, 1990;
Robinson & Petersen, 1992; Kustov & Robinson, 1996; Gottlieb et al., 1998; Colby & Gold-
berg, 1999). What remains unclear is whether these different maps emphasize saliency for
different behaviors or for different visuo-motor response patterns (for instance, for atten-
tional shifts, eye or hand movements). If saliency is indeed encoded across multiple maps,
this raises the question of how competition can act across these maps to ensure that only a
single location is chosen as the next target of an attentional or eye shift.

Following Koch and Ullman’s (Koch & Ullman, 1985) original proposal that visual
search is guided by the output of a selection mechanism operating on a saliency map, it
now seems plausible that such a process does characterize processing in the entire visual
system. Inhibition-of-return (IOR) is a critical component of such search strategy, which
essentially acts as memory. If its duration is reduced, the algorithm fails to find less salient
objects because it endlessly cycles through the same number of more salient objects. For
instance, if the time scale of IOR was reduced from 900 ms to 50 ms, the model would detect
the most salient object, inhibit its location, then shift to the second most salient location,
but it would subsequently come back to the most salient object, whose inhibition would
have ceased during the attentional shift from first to second object. Under such conditions,
the algorithm would never focus on anything else than the two most salient locations in
the image. Our finding that IOR plays a critical role in purely bottom-up search may
not necessarily disagree with recently suggested evidence that humans appear to use little

or no memory during search (Horowitz & Wolfe, 1998); while these authors do not refute
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Figure 4.1: Non-uniform sampling by a retina. We implemented a simple input filter which
replicates some of the features of the human retina (resolution fall-off with eccentricity, no
blue cones in the fovea, blind spot at about 15° eccentricity). Two transformed versions of
the original image on top are shown in the bottom row, for two different fixations.
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the existence of IOR, a precise understanding of how bottom-up and top-down aspects of
attention interact in human visual search remains to be elucidated.

Whether or not this implies that saliency is expressed explicitly in one or more visual
field maps remains an open question. If saliency is encoded (relatively) independently of
stimulus dimensions, we might be able to achieve a dissociation between stimulus attributes
and stimulus saliency. For instance, appropriate visual masks might prevent the attributes
of a visual stimulus to be read out without affecting its saliency. Or we might be able to
directly influence such maps, for instance using reversible pharmacological techniques in
animals or transcranial magnetic stimulations in human volunteers (TMS)?

Alternatively, it is possible that stimulus saliency is not expressed independently of
feature dimensions but is encoded implicitly within each specific feature map as proposed
by Desimone and Duncan (Desimone & Duncan, 1995). This raises the question of how
interactions among all of these maps gives rise to the observed behavior of the system for
natural scenes. Such an alternative has not yet been analyzed in depth by computational
work (see, however, (Hamker, 1999)).

Mounting psychophysical, electrophysiological, clinical and functional imaging evidence
(Shepherd et al., 1986; Andersen et al., 1990; Sheliga et al., 1994; Kustov & Robinson, 1996;
Corbetta, 1998; Colby & Goldberg, 1999) strongly implies that the neuronal structures
underlying the selection and the expression of shifts in spatial attention and occulomotor
processing are tightly linked. These areas include the deeper parts of the superior colliculus;
parts of the pulvinar; the frontal eye fields in the macaque and its homologue in humans,
the precentral gyrus; and areas in the intraparietal sulcus in the macaque and around the
intraparietal and postcentral sulci and adjacent gyri in humans.

The close relationship between areas active during covert and during overt shifts of
attention raises the issue of how information in these maps is integrated across saccades,
in particular given the usage of both retinal and occulo-motor coordinate systems in the
different neuronal maps (see, for instance, (Andersen, 1997)). This is an obvious question

that will be explored by us in future computational work.

4.3 Outlook

We can now wonder about the relationship between the saliency mechanism, the top-down
volitional attentional selection process, and awareness. We will describe in the next Part of
this thesis a quantitative account of the action of spatial attention on various psychophys-
ical thresholds for pattern discrimination, in terms of a strengthening of cooperative and
competitive interactions among early visual filters. How can such a scheme be combined
with the current selection process based on purely bottom-up sensory data? Several possi-

bilities come to mind. First, both processes might operate independently and both mediate
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access to visual awareness. Computationally, this can be implemented in a straightforward
manner. Second, however, top-down attention might also directly interact with the single
saliency map, for instance by influencing its constitutive elements via appropriate synaptic
input. If the inhibition-of-return could be selectively inactivated at locations selected under
volitional control, for example by shunting (Koch, 1998), then the winner-take-all and the
attentional focus would remain at that location, ignoring for a while surrounding salient
objects. Although such feedback to the saliency map seems plausible and is functionally
useful, it certainly does not constitute all of the top-down attentional modulation of spatial
vision (Lee et al., 1999a). Finally, independent saliency maps could operate for the dif-
ferent feature maps and both saliency and volitional forms of attention could access them
independently. Current experimental evidence does not allow us to unambiguously choose

among these possibilities.



82

Part 111

Experiments and Modeling on
Human Pattern Vision and its
Modulation by Top-Down
Attention



Chapter 5 Introduction

83



84

Perceptual thresholds for stimulus contrast, orientation, and spatial frequency have been
studied for several decades (Nachmias & Sansbury, 1974; Wilson, 1980a; Legge & Foley,
1980; Watt & Morgan, 1985). Quantitative accounts of these thresholds have become
increasingly refined and usually involve a population of “noisy filters” tuned to different
orientations and spatial frequencies. Although earlier models postulated filters that are
independent of each other, there are serious shortcomings to this approach (Bowne, 1990;
Wilson & Wilkinson, 1997). More recent models postulate an interaction between filters
with spatially overlapping receptive fields (Wilson & Humanski, 1993; Foley, 1994; Zenger
& Sagi, 1996), specifically, the normalization of individual filter responses relative to the
total response of the local filter population (“divisive inhibition” (Carandini & Heeger,
1994)). This normalization accounts naturally for several otherwise puzzling observations,
among them the initial decrease and later increase of contrast discrimination thresholds
with increasing stimulus contrast (Foley, 1994; Zenger & Sagi, 1996) (“dipper function”
(Nachmias & Sansbury, 1974; Legge & Foley, 1980)) and the relative constancy of orientation
and spatial frequency thresholds over a wide range of stimulus contrasts (Bowne, 1990; Itti
et al., 1998a).

An intriguing parallel to these perceptual accounts can be found in certain models
of visual cortical responses to stimulus contrast and orientation (Ben-Yishai et al., 1995;
Somers et al., 1995; Carandini et al., 1997). Despite marked differences in detail, the models
in question consider a population of neurons with overlapping receptive fields, broadly
tuned to a range of different orientations, and normalize individual responses relative to the
population response. The normalization, which in some cases is implemented as a divisive
inhibition, sharpens orientation tuning (Somers et al., 1995) and renders it less dependent
on stimulus contrast (Carandini et al., 1997). Thus, response normalization may account

for both perceptual and neuronal sensitivity to contrast and orientation.

5.1 Computational Models of Spatial Vision and Orientation
Tuning

Recently, strikingly similar models have been formulated for psychophysical measurements
of spatial vision thresholds and for the dependence of single-unit responses in striate cortex
on simple stimulus dimensions such as contrast, orientation and spatial period. A key idea
that emerged in both domains is that of “divisive inhibition” between differently tuned
filters (neurons) (Heeger, 1992; Heeger, 1993; Heeger et al., 1996).

In the early 1980s, several computational models were proposed as a unified account
for spatial vision thresholds (Legge & Foley, 1980; Phillips & Wilson, 1984). These models
consisted of linear 2D filters tuned for various orientations and spatial periods, followed by

a non-linear transducer function and a decision stage which compares one or more responses
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to a decision criterion. Recently, several models incorporating divisive inhibition between
differently tuned filters have demonstrated significantly better reproduction of psychophys-
ical data, in particular with respect to the observation that orientation tuning of the filters
appears to be relatively independent of stimulus contrast (Foley, 1994; Wilson, 1993; Zenger
& Sagi, 1996).

Models of orientation (or direction) tuning of neurons in striate cortex must contend
with two seemingly contradictory facts: Extracellular blockage of inhibition reduces or
eliminates tuning (Sillito, 1979; Nelson, 1991) while intracellular recordings do not show
the expected difference in the tuning of inhibitory and excitatory inputs (Ferster, 1987) nor
any effect on tuning of intracellular blockage of inhibition (Somers et al., 1995). These facts
are reconciled by the notion of “recurrent excitation” within a cortical column (a columnar
volume of cortex containing cells of similar tuning) (Douglas et al., 1991; Douglas et al.,
1995a; Somers et al., 1995). In this view, geniculate input is responsible only for rela-
tively broad tuning (e.g., 120° Full Width at Half Maximum (FWHM) orientation tuning)
but recurrent excitation coupled with mutual inhibition between nearby columns signifi-
cantly sharpens tuning (e.g., 40° FWHM orientation tuning). Although inhibition between
nearby (but differently tuned) columns is critical, it is masked in intracellular recordings
by massive recurrent excitation (and inhibition) from the same column, accounting for the
various findings mentioned above. Interestingly, detailed computational models (Somers
et al., 1995; Ben-Yishai et al., 1995; Suarez et al., 1995) suggest that the combination of
mutual inhibition and recurrent excitation is well approximated by the “divisive inhibition”
idea. (The biophysical mechanism originally proposed for divisive inhibition — shunting
inhibition near the soma — is not supported by the data (e.g., (Ferster & Jagadeesh, 1992)).

The composition of the “inhibitory pool,” that is, of the population of filters which in-
teract in an inhibitory manner, is somewhat controversial. Heeger (1992) and Foley (1994)
equally include filters of all orientations, which implies that even orthogonally oriented
stimulus components interact with each other (“cross-orientation inhibition”). However,
neither contrast masking data (Phillips & Wilson, 1984; Zenger & Sagi, 1996) nor intra-
cellular recording (Ferster, 1987; Douglas et al., 1991) show evidence of cross-orientation
inhibition. Zenger and Sagi (1996) assume that the inhibitory pool of a filter tuned to 0°
consists of filters tuned for £45°. Models of neurons in striate cortex postulate weighted
“near-orientation inhibition,” that is, a Gaussian inhibitory function centered at 0° and
with a half-width of about £60° (Somers et al., 1995). Near-orientation inhibition is an at-
tractive possibility for anatomical reasons, since it could be accomplished by indiscriminate
short-range connectivity (see below).

Thus the “consensus model” emerging from psychophysics and single-cell recording com-
prises the following components: (i) linear filters (neuronal receptive fields) broadly tuned

to orientation and spatial period; (ii) amplification of each filter (neuronal) response by
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self-excitation; (iii) mutual inhibition between filters (neurons) with similar tuning. The
perceptual function of such a circuit would be to both sharpen filter (neuronal) tuning and

to render it relatively independent of stimulus contrast.

5.2 Short-Range Connections in Striate Cortex

Striate cortex is organized in such a way that adjacent volumes of cortex process nearby
regions of visual space and similar stimulus orientations (Hubel & Wiesel, 1962). Injection
of tracer substances reveal a rich variety of connections (Fitzpatrick et al., 1985; Blasdel
et al., 1985). A useful distinction can be made between short-range connections, mediat-
ing interactions between neurons with overlapping receptive fields and spanning cortical
distances smaller than 1mm, and long-range connections, mediating interactions between
neurons with non-overlapping receptive fields and spanning cortical distances of several mm.

Short-range connections are mediated by both horizontal and vertical arborizations of
excitatory (e.g., pyramidal cells) and inhibitory cells (e.g., basket cells). Short-range inter-
actions are indiscriminate and do not respect the boundaries of functional columns (Amir
et al., 1993). Connections between lower and upper layers appear limited to a horizontal
range of 500 pm or less (Allison et al., 1995). In the cat, the longest horizontal reach among
short-range connections is provided by large basket cells in layer III, whose arborizations
span 1 mm or more (Kisvarday et al., 1994). Synaptic terminals of large basket cells are
found in columns of all orientation preferences, including similar (43% of all cells have an
orientation tuning of £30°), oblique (35% =%(30 to 60)°) and orthogonal (22% (60 to 90)°)
orientation preferences (Kisvarday et al., 1994). Large basket cells are thought to play an
important role in orientation and direction tuning in cat striate cortex (Kisvarday, 1992;
Eysel, 1992).

In short, the organization and connectivity of striate cortex provides ample opportunity
for establishing an “inhibitory pool” of neurons tuned to different orientations, certainly for

differences of 60° or less, but to some extent even for differences of up to 90°.

5.3 Long-range Connections and Nonclassical Receptive Fields

Long-range connections in striate cortex are made by axonal arbors of excitatory (pyrami-
dal) neurons in layers IIT and V (Rockland & Lund, 1983; Gilbert & Wiesel, 1983). Besides
range, they are distinguished by their “patchy” terminations which seem to respect the
boundaries of functional columns. Indeed, long-range connections link functional columns
of predominantly similar stimulus selectivity (65% of cells have an orientation tuning of
+22°, and 30% a tuning of +45°) (Ts’o et al., 1986; Gilbert & Wiesel, 1989; Malach et al.,

1993; Malach, 1994). Interestingly, the average reach of long-range connections increases
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markedly at increasing levels of the cortical hierarchy (from 2.1 mm in area V1 to 9 mm in
area 7a) (Malach et al., 1993).

Combined optical imaging and electrophysiological recording shows that long-range con-
nections have both excitatory and inhibitory effects at their target regions, the latter me-
diated by inhibitory interneurons (Weliky et al., 1995). Both effects are limited to regions
of similar orientation preference and the balance between excitation and inhibition can be
altered by changing the intensity of stimulation.

Since long-range connections link neurons with non-overlapping receptive fields, they are
able to mediate effects of stimuli outside the “classical receptive field.” Such effects have
been known for some time, but their full complexity is only recently being appreciated. In
striate cortex, responses of orientation-tuned neurons are enhanced by the presence outside
the classical receptive field of figure-ground boundaries (Lamme, 1995; Zipser et al., 1996)
and collinear stimuli forming a contour (Kapadia et al., 1994), suppressed by a dense texture
of similarly-oriented stimuli (Knierim & van Essen, 1992), and either enhanced or suppressed
by a sinusoidal grating, depending on its contrast and orientation (Sillito et al., 1995; Levitt
& Lund, 1997). In the latter case, the presence of a sinusoidal grating outside the classical

receptive field can completely alter orientation tuning inside the classical receptive field.

5.4 Background on Attentional Modulation Effects

In this background Section, we briefly review relevant single-unit and psychophysical studies

of attention.

5.4.1 Single-Unit Studies of Attention

In the awake macaque, neuronal responses to attended stimuli can be 20% to 100% larger
than to otherwise identical unattended stimuli. This has been demonstrated in visual cor-
tical area V1 (Press et al., 1994; Motter, 1993), area V2, and area V4 (Spitzer et al., 1988;
Motter, 1993; Motter, 1994a; Motter, 1994b; Maunsell, 1995; McAdams & Maunsell, 1996a)
when the animal discriminates stimulus orientation, and in areas MT and MST when the
animal discriminates the speed of stimulus motion (Treue & Maunsell, 1996). Neuronal
contrast sensitivity in area V4 is, on average, 30% larger to attended than to unattended
stimuli (Reynolds et al., 1994a). Even spontaneous firing rates are 40% larger when atten-
tion is directed at a neuron’s receptive field (Luck et al., 1997). Whether neuronal responses
to attended stimuli are merely enhanced (McAdams & Maunsell, 1996a) or whether they
are also more sharply tuned for certain stimulus dimensions (Spitzer et al., 1988) remains
controversial.

The enhancement of neuronal responses often depends on the presence of unattended

stimuli nearby and for this reason is thought to reflect an attentional bias in sensory in-
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teractions (Motter, 1993; Press et al., 1994; Reynolds et al., 1994b; Reynolds et al., 1995;

Luck et al., 1997). In essence, stimuli at different locations appear to suppress each other’s
neuronal responses and attention seems to bias this competition in favor of attended stim-
uli (Desimone & Duncan, 1995; Maunsell, 1995). This competitive bias is encountered
both between stimuli located in the same, classical, receptive field and stimuli located in
non-overlapping receptive fields (Press et al., 1994).

A seemingly different kind of attentional response enhancement in area V4 occurs in
parallel across the visual scene as a result of the attentional selection of a stimulus attribute
such as color or luminance (Motter, 1994a; Motter, 1994b) or shape (Chelazzi & Desimone,
1994). Finally, neuronal responses in area V4 may be modulated by the relative positions
of receptive field and attentional focus in the manner of a gain field (Connor et al., 1996;
Connor et al., 1997).

5.4.2 Psychophysical Studies of Attention

We concentrate on psychophysical studies that measure discriminability d’ (Green & Swets,
1966), since results expressed in terms of d' are more directly comparable to those of single-
unit studies (e.g., (Salzman & Newsome, 1994)) than results expressed in other terms (e.g.,
reaction time). When attention is manipulated by “cueing,” d' for discriminating a sim-
ple shape is significantly larger at cued (more attended) than at uncued (less attended)
locations (Miiller & Findlay, 1987b; Downing, 1988; Nakayama & Mackeben, 1989). How-
ever, d for other visual tasks is less sensitive to cueing. For example, d’ for detecting a
sudden luminance increment is little affected by cueing (Miller & Findlay, 1987a; Miiller
& Humphreys, 1991), and the same is true for detecting a singular element in an array of
otherwise uniform elements (a situation called “pop-out;” (Nakayama & Mackeben, 1989)).

Another way to manipulate attention is to compare the concurrent discrimination of
two targets (each partially attended) with that of only one target (which is fully attended).
When the two discriminations concern simple shapes (e.g., letters), concurrent performance
(d') is invariably lower than separate performance (e.g., (Bonnel et al., 1987; Bonnel &
Miller, 1994; Duncan et al., 1994)). However, when the discriminations concern luminance
increments, there is little or no reduction in performance (Bonnel et al., 1992).

In short, attention seems to increase the discriminability of some features (e.g., letter
shape) but not others (e.g., luminance increments). However, we know of no systematic
comparison of attentional effects on different discrimination thresholds and of no attempt to
account computationally for such effects observed on a wide variety of tasks (but see recent
modeling effort by Dosher and Lu (1997) which interpreted, using a model, attentional

effects on contrast thresholds as a reduction of internal noise).
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Chapter 6 Human Pattern Discrimination
Thresholds in the Near Periphery
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6.1 Overview

This Chapter describes the new psychophysical dataset acquired in our laboratory for the
present study. We here present the two main motivations for acquiring such dataset and
briefly summarize our experiments and results.

First, most previous studies of contrast masking used spatially extended patterns (at
least for the mask) and thus did not distinguish interactions between spatially overlapping
and non-overlapping filters. To our knowledge, only two previous studies used spatially
localized target and mask patterns (Gaussian half-widths < 0.5°) and thus specifically ad-
dressed interactions between overlapping filters (Zenger & Sagi, 1996; Foley & Chen, 1997).
In both cases, target and mask patterns were presented near the fixation point (eccentricity
< 0.8°). We used spatially localized patterns (Gaussian half-width < 0.7°) presented at
varying locations at 4° of eccentricity. The peripheral presentation is a potentially impor-
tant difference to earlier work, as foveal and peripheral vision are known to differ (Wilson,
1991; Snowden & Hess, 1992). Both the small pattern size and the peripheral presentation
were intended to emphasize interactions between spatially overlapping filters, while reducing
possible non-classical surround interactions. We hoped that this limitation would render
our results more tractable computationally by our model which is limited to one location
in visual space (see next Chapter).

Our experiments consisted of measuring simple contrast masking thresholds for pairs of
overlapping Gabor patches. The contrast, orientation and spatial frequency of one of the
two patches was varied systematically, and contrast threshold for the second, superposed
patch was measured. Contrast masking experiments were chosen, as mentioned previously,
because presumably they would allow us to characterize the cortical interactions responsi-
ble for the observed interaction between the two overlapping Gabor patches. As contrast
masking studies provide no direct evidence as to the tuning widths of individual filters, we
conducted two further experiments in which observers discriminated orientation or spatial
frequency of target patterns in the absence of any mask. Orientation and spatial frequency
discrimination thresholds reflect the tuning width of visual filters and are expected to be
relatively independent of filter interactions (Burbeck & Regan, 1983; Bradley & Skottun,
1984; Bowne, 1990). As Bowne (Bowne, 1990) and Wilson (Wilson, 1991) have pointed
out, the low dependence of orientation and spatial frequency thresholds on stimulus con-
trast provides an important constraint for visual filter models.

The second main concern of this experimental study is that acquiring a set of five
distinct experiments, using consistent stimuli across experiments, might allow for simulta-
neous quantitative model predictions of all the data for each of several observers. Indeed,
although several groups have extensively reported detailed separate simulations of more

complete versions of each of our five experiments, the only attempt we know of which tried



91

to provide a simultaneous, unified account of a wide range of different experiments was by
Bowne (Bowne, 1990). Bowne failed to simultaneously replicate discrimination thresholds
for increment contrast, orientation and spatial frequency, using in particular a variant of
the successful model by Wilson (Wilson, 1986). After a detailed theoretical analysis of
this failure, he concluded that all models of this type are incapable of such simultaneous
prediction. Bowne further suggested that assuming task-dependent noise at the level of the
decision process (which relates neuronal responses to psychophysical thresholds) could allow
for a simultaneous prediction. Such task-dependent central noise, however, greatly reduces
the value of models, since almost anything can be predicted by appropriately adjusting the
amount of central noise for each task studied, and since this central noise cannot easily be

measured (because the physiological correlates of the decision process are not known).

6.2 Psychophysical Experiments

We studied the discrimination of Gabor stimuli in the near periphery with respect to con-
trast, orientation, and spatial frequency. Seven naive observers participated to the exper-
iment. The observers were asked to observe simple pattern stimuli briefly flashed on a
computer screen, and to report what they saw by pressing one of two possible keys. Below,

we detail the technical aspects of the data collection procedure.

6.2.1 Stimulus Generation

Stimuli were generated with an SGI Indigo workstation. “Color bit stealing” (Tyler, 1997)
was used to reduce the minimum luminance step of the display from 1.5% to 0.2%. Screen
luminance varied from 1 to 90cd/m? (mean 45¢d/m?), and room illumination was 5¢d/m?.
Displays subtended 16 x 13° of visual angle for a viewing distance of 80cm.

All tasks employed a temporal two-alternative forced-choice (2AFC) paradigm.
In this stimulus presentation method, two alternative targets are successively presented in
random order, and the observer makes a comparative judgment between the two targets
(Fig. 6.1). For example, the observer may report whether the target with higher contrast
was presented first or second. Because this method uses comparative discrimination, it
greatly reduces observer bias which may buildup, with other methods, after repeated trials.
For example, in a simpler “Yes/No” paradigm, where only one target is presented and
the observer reports on an attribute of the target (e.g., present or absent), drifts or even
discontinuities are often observed in the decision criterion used by observers: One day,
observers may be more lenient and report “Yes” even when they are uncertain, while another
day, they may report “Yes” only when having high confidence about their perception. A
more formal treatment of this issue is presented in the next Chapter, where we compare

in computational terms the 2AFC and the “Yes/No” paradigms, within the framework of



Stimulus 2 (250ms)

Blank (300ms)

Stimulus 1 (250ms)

Blank (300ms)

Cue (250ms)

Fixation until keypress

Figure 6.1: Stimulus presentation and sequencing for the experiments described. In this
example, observers had to discriminate stimulus contrast, which is the only parameter
distinguishing between the two stimuli. For the trial shown, the correct answer was to press
the key labeled “1” (of two possible keys, labeled “1” and “2”) since the contrast of the
stimulus presented first was higher than that of the stimulus presented second.
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ideal-observer decision.
Each trial consisted of the following (Fig. 6.1):

1. A fixation cross was presented at the center, and remained there until the observer

decided to initiate the trial by pressing a key;

2. A circular cue of 1° diameter was flashed for 250 ms around the future target location.
The location of this cue (and of the subsequent stimuli) was chosen randomly along a
circle, such that it always was at 4° eccentricity. The role of the spatial randomization
was to avoid habituation at a specific location of the visual space, and the role of the

cue was to eliminate spatial uncertainty;
3. A 300 ms blank interval followed;

4. The two alternative targets were then flashed in random order, for 250 ms each,

separated by a 300 ms blank interval.

5. Observers could then give their response to the question (known to them before each
series of trials), under no time pressure, by pressing one of two possible keys. Observers
subsequently received auditory feedback (a beeping sound in case of error, no sound

in case of correct answer), and the next trial was initiated.

The total duration of each trial hence was 1350 ms, not including the response time.

6.2.2 Staircase Procedure

In each experiment, a single stimulus parameter was varied from trial to trial. Such pa-
rameter could for example be the stimulus contrast, orientation or spatial frequency, and
its nature was known to the observer. Consequently, there was no task uncertainty in our
experiments. For one of the two possible targets, this parameter was fixed, and for the
other, it was varied from trial to trial. During one “block” of 100 trials, only this param-
eter was varied from trial to trial, while all other physical characteristics of the stimulus
remained identical. Acquiring several blocks of trials with identical settings allowed us
to collect enough data to compute the observer’s “threshold” (see below) for that setting.
Each threshold computation yielded one datapoint. Repeating this procedure for a variety
of stimulus settings allowed us to collect 32 datapoints in this experiment, over the course
of approximately six weeks at one hour per day.

During each block of 100 trials, the alternative targets were modified following a stair-
case procedure. Such procedure consists of starting a given block of trials with two easily
distinguished alternate targets; for example, if contrast is the stimulus parameter distin-

guishing between the two possible targets, initially one target would have very high contrast
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and the other very low. As observers correctly report which target has higher contrast, the
contrast difference between the two alternative targets is progressively reduced. When this
difference has become so small that observers start making errors in discriminating between
the two alternative targets, it is slightly increased back. After a while, it is hence expected
that the contrast difference will start oscillating around the point at which observers can
just barely discriminate between the two alternative targets. By analyzing the data ob-
tained through the course of such block of trials, we can compute, as shown below, the
observer’s threshold.

The specific staircase procedure employed consisted of the following:

1. After four correct answers in a row, the value of the parameter which distinguished

between the two targets was decreased by a fixed amount;
2. After two incorrect answers, this parameter was increased by the same amount.

Typical staircases obtained in that manner are shown in Fig. 6.2.

6.2.3 Threshold Computation

Threshold was defined as the value of the stimulus parameter yielding 75% correct discrimi-
nation. Because the observer’s psychometric function, i.e., the function which expresses the
probability of correct answer for each possible value of the stimulus parameter, was only
approximated by the trials collected during a few blocks, we used the following analytical
method to reliably compute threshold values from the data.

The ideal psychometric function was modeled by a Weibull function with two degrees
of freedom (Watson, 1990; Weibull, 1951). This function has a sigmoidal shape and is

expressed as:

fl@)=1- %exp (~(a2)?) (6.1)

We fix 8 to the commonly used value of 2 and determine « using a linear least-squares
method. In what follows, we define by z;,{i € [1..p]} the values assumed by the stimulus
parameter which is varied from trial to trial, by y; the probability of correct answers for a
given z; (as measured from the observer’s responses), and by n; the total number of trials
performed for that x;.

We start by rewriting f(x;) = y; as:

az; = [~ In(2 — 2;)]? (6.2)
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Figure 6.2: Staircase procedure and computation of threshold. The left plot shows the
evolution with time of the stimulus parameter (e.g., contrast) which distinguishes between
the two alternative targets, for 100 successive trials along the horizontal axis. After every
four consecutive correct responses, the stimulus parameter was decreased by a fixed amount,
and after every two consecutive incorrect responses, it was increased by the same amount.
Several curves are shown for several blocks of trials with identical experimental settings.
Although discrimination initially is easy, it progressively becomes more difficult as observers
give correct answers. After approximately 30 trials, the value of the stimulus parameter
starts oscillating around the observer’s “threshold” value. The right plot represents the
same data, but now plotted as a measure of probability of correct response for each stimulus
parameter value (broken line). The smooth curve represents the fit of a Weibull function to
the broken line curve. The “threshold” is computed from the intercept of this curve with
the line of 75% correct performance. Error bars were computed using a binomial model for
the data.
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The least-squares minimization problem can then be written as:

2 [~In(2 —291))7
o, _ |Fne-2m) 63
z [~ In(2 — 23)]

For each value z;, we consequently use the squared error:
1 2
€ = [(— In(2 — 2y,;))5 — aazi] (6.4)

We wish to minimize, with respect to «, the total weighted error:
e= Z nje; (6.5)

where the weighting of each datapoint by a coefficient n‘.l is chosen empirically (we could
have used n;, various powers of n;, or exp(n;); the role of this weighting is to give low

priority in fitting datapoints for which only very few trials were collected). At the minimum,
de/0a = 0, which yields:

Y —ontx [(— In(2 — 29;))% — ami] =0 (6.6)

1€[1..p]

; niw; (—In(2 — 2y;)) 8
o= Zze[l..p] i ( 4( . Y )) (67)

Once a has been computed in this manner, threshold, 7 is obtained from the fitted

Weibull function at the point where the probability of correct answer is T = 0.75 (Fig. 6.2):

. 1 1

f('TT) =T, 1.e., T = a (_ 111(2 - 2yz))ﬂ (68)
To compute a confidence interval on this threshold z7, we model our trials as being

drawn from a binomial distribution. This gives us a confidence interval (standard deviation)

for the value of T. We then use a linear approximation of the Weibull function f around

threshold to convert that confidence on 7' into a confidence on zp. Let’s consider that

a total of n trials are drawn from a binomial distribution with probability T'; then the
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probability of obtaining m positive outcomes is:

Pum::<”>1m%1—zwkm (6.9)
m
The mean of this distribution is n7" and its variance nT(1—T'). This directly transcribes, for
the proportion of correct trials m/n, into a mean of T and variance of T'(1 —T') /n. That is,
by assuming that the observer’s responses are drawn from such distributions, we can derive
a variance on the threshold performance T'. This requires us to estimate the total number
of trials which were drawn for stimulus parameter z7; since most of the time z7 does not
exactly fall onto one of the discrete values x; for which observer responses were collected, we
estimate this total number using a linear interpolation between the total number of trials
collected for the two closest values of x; around x7. We now simply convert the variance
on T, 02 = T(1 — T)/n, into a variance, UJ%T on z7 by using the slope of f at the point
(xr,T):

fl(z) = %aﬁxﬁfl exp (—(a:v)ﬂ) (6.10)

Hence, since o, = o/ f'(z7):

T —T)/n
Tar = tafzb-1exp (—(az)h) (6.11)

From each set of staircase data corresponding to a given experimental setting, we are
consequently in a position of computing the corresponding observer threshold, z7, as well

as an error bar on this threshold, og,..

6.2.4 Experimental Data Acquisition

Seven naive observers participated in the experiments. For each of our five tasks, observers
received 15-24 blocks (of 100 trials each) of training and collected data for 45-90 blocks.
Three observers completed all five tasks. Observers performed 10-12 blocks per daily hour-
long session, typically shared between two different tasks. Each threshold estimate reflects
1,000-1,800 trials (two to three half-sessions). Four percent of all blocks were excluded
because the staircase failed to converge. In total, data for in excess of 225,000 trials was
collected. A set of programs was developed to automatically transfer the data to a master
server after each session, create archives, and analyze results. This automatic process was
of great value since it was necessary to analyze, for each observer, every day’s data in order
to guess suitable starting conditions for the following day’s experiments.

As mentioned previously, targets appeared at a constant eccentricity of 4°, but at random
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polar angles. The targets were Gabor stimuli or superpositions of Gabor stimuli (spatial
frequency 1.4 to 5.6¢cpd; half-width at half-maximum equal to the spatial period). At 4°
eccentricity, cortical magnification is approximately 1.7mm/°, compared to approximately
10.0mm/® in the fovea (Cowey & Rolls, 1974). Thus, the stimulus diameter of approximately
0.7° (2 cycles at 2.8cpd) corresponds to approximately 1.2mm in primary visual cortex, that
is, less than the average diameter of a hypercolumn (Blasdel & Salama, 1986). Presented
in the fovea, the same stimulus would have excited approximately 35 hypercolumns.

Exp. 1 involved Gabor stimuli of different contrast (2.8cpd, vertical orientation, cosine
phase). Observers reported which target had higher contrast and threshold was established
in terms of incremental contrast (Nachmias & Sansbury, 1974; Legge & Foley, 1980; Foley,
1994). Exp. 2 concerned Gabor stimuli of different orientation (2.8cpd, contrast 0.05-0.9,
cosine phase). Observers reported which target was tilted clockwise from vertical, and
threshold was measured in terms of tilt angle (Skottun et al., 1987). Exp. 3 used targets of
different spatial frequency (vertical orientation, contrast 0.05-0.9, cosine phase). Observers
reported which target had lower (coarser) spatial frequency, and threshold was measured in
terms of the spatial frequency ratio in octaves (Skottun et al., 1987). Two further experi-
ments concerned the discrimination of two superimposed Gabor stimuli. One was present
in both intervals (“mask,” contrast 0.5, random phase) while the other appeared in only
one interval (“target,” 2.8cpd, vertical orientation, cosine phase). Observers reported which
interval contained the target stimulus, and threshold was measured in terms of target con-
trast. In Exp. 4, mask orientation was varied between blocks (0-90°) but spatial frequency
remained fixed (2.8cpd) (Phillips & Wilson, 1984). In Exp. 5, mask spatial frequency was
varied between blocks (0.5-2oct.) but orientation was fixed (15° from vertical) (Wilson
et al., 1983).

6.3 Experimental Results

Psychophysical results from seven observers are shown in (Fig. 6.3). On average, the
detection threshold for Gabor patches of 2.8cpd, sub-tending approximately 0.7° at 4°
eccentricity, is reached at a contrast of approximately 0.025 (Fig. 6.3; Exp. 1). This is
higher than the previously reported detection threshold contrast of 0.005, for gratings of
2.0cpd sub-tending 0.75° and presented in the fovea (Legge & Foley, 1980). Presumably,
the discrepancy is due to the greater eccentricity (Greenlee, 1992; Thibos et al., 1996) of
our stimuli.

The minimal contrast increment threshold (“dipper”) occurs at a pedestal contrast
of Stec &= 1.2 times the detection threshold Cy,, and is two to three times smaller than
Cy, (Fig. 6.3; Exp. 1). This is in good agreement with previous studies, where the
corresponding values are around 1.3 and 2.5, respectively (Legge & Foley, 1980). At higher



99

Exp. 1: Increment contrast Exp. 2: Orientation Exp. 3: Spatial period
< < <
z 2 z
g g 8
12} 1% 2]
b : 2
N & J
sk ] C ]
0.1 - - 0.16 - —
A i L i
1) T g E 012} -
3 o 3 - 3 L i
< r N < oosl B
2 -
0.01F - , B N
3 1L i 0.04 - B
0 L 1 1 1 1 1 1 1 1 1 ] 0 L | | | | | | | | | }
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
c c
Exp. 4: Contrast masking Exp. 5: Contrast masking
s s
z ¢ O Lz
9] [9)
%]
< o O LB
N N
O sc
T
/N AW
£ £
2 Q * Az
o )
< <
V IR
3 B X Ml
0 | | | | | | | | | 0 1 i 1
0 20 40 60 80 0.5 1 2
Mask 6 - Target 6 (°) Mask w/ Target w

Figure 6.3: Experimental data from seven psychophysical observers. Three observers com-
pleted all five experiments (LB, LZ and SC), and others completed either two or three
experiments (AW, AZ, IR, MI). All experiments involve a temporal two-alternative forced-
choice discrimination between Gabor stimuli at 4° of eccentricity (insets). Exp 1: Contrast
increment threshold, AC, as a function of contrast, C. Exps. 2 and 3: Orientation and rel-
ative spatial frequency discrimination thresholds, A8 and Aw/w, as a function of contrast,
C. Exp. 4: Contrast threshold elevation, AC/Cy,, as a function of relative mask orienta-
tion (Cy, is the detection contrast threshold, leftmost point of Exp. 1). Exp. 5: Contrast
threshold elevation, AC/Cyy, as a function of relative mask spatial frequency.
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pedestal contrast, increment thresholds increase with a Weber exponent of approximately
0.6, consistent with the range of exponents (0.6 to 0.8) reported in previous studies (Legge
& Foley, 1980; Wilson, 1980b; Foley, 1994). This close agreement is reassuring because it
suggests that our peripheral thresholds reflect similar neural mechanisms than the foveal
thresholds measured by previous authors.

In the limit of high contrast, average thresholds for orientation discrimination are ap-
proximately 2° (Fig. 6.3; Exp. 2) and average thresholds for spatial period discrimination
approximately 0.050ct. (Fig. 6.3; Exp. 3). Both values are at the upper end of the
range reported previously for orientation discrimination (0.3-2°) and spatial period dis-
crimination (0.02-0.05 oct) with relatively small patterns (Hirsch & Hylton, 1982; Burbeck
& Regan, 1983; Wilson & Gelb, 1984; Vogels & Orban, 1990). Presumably, the relatively
high discrimination thresholds are due to the eccentric stimulus location (Greenlee, 1992).

Our experiments on contrast masking are similar to those reported by Wilson and col-
leagues (Wilson et al., 1983; Phillips & Wilson, 1984). In our case, the presence of a mask-
ing pattern of different orientation elevates contrast thresholds up to approximately 4-fold
(Fig. 6.3; Exp. 4), and a masking pattern of different spatial period elevates thresholds
up to approximately 2.5-fold (Fig. 6.3; Exp. 5). The corresponding threshold elevations
reported previously for stimuli presented in the fovea are approximately 8-fold and 5-fold,
respectively (Phillips & Wilson, 1984; Wilson et al., 1983)). The difference may reflect
either the smaller stimulus size or the greater stimulus eccentricity in our situation.

No threshold elevation is observed if target and masking patterns differ by more than 60°
in orientation (Fig. 6.3; Exp. 4). This contrasts with previous reports of an approximately
2.5-fold threshold elevation with orthogonal target and masking patterns (“cross-orientation
inhibition” (Heeger, 1992; Foley, 1994)). However, the latter studies used large masker
stimuli (extending over 7° x 5° of visual angle in the fovea (Foley, 1994)), and thus are
likely to reflect interactions between both overlapping and non-overlapping visual filters.
Our stimuli were designed to primarily probe interactions between overlapping visual filters.

Three of our experiments measured contrast increment threshold for patterns of 2.8cpd
and a pedestal contrast of 0.5, allowing us to assess the consistency of our observations.
In Exp. 1, target and mask patterns of identical orientation and phase produced an ap-
proximately 3.6-fold threshold elevation (Fig. 6.3; Exp. 1). In Exp. 4, target and mask
patterns varied in relative phase, but still produced an approximately 4-fold threshold eleva-
tion (Fig. 6.3; Exp. 4). Finally, in Exp. 5, target and mask patterns differed in orientation
(by 15°) and also varied in relative phase, producing an approximately 2.5-fold threshold
elevation (Fig. 6.3; Exp. 5).
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6.4 Outlook

This dataset represents the first completely consistent dataset, to our knowledge, using five
different tasks at 4° of eccentricity. As stated in the introduction of this Chapter, our two
main motivations for acquiring such dataset were as follows.

First, we wanted to use localized stimuli in the near periphery, with the goal of only
exciting a small number of cortical hypercolumns. Under these conditions, we believe that
our data mostly reflects short-range, local cortical interactions, with little or no contribution
from non-classical surround interactions. This is an important feature of this dataset in view
of the modeling effort presented in the next Chapter, since only short-range interactions are
included in our model. Indeed, we found that some of our results differed substantially from
previously published foveal results; most importantly, the largest differences were found for
the contrast masking experiments, which are believed to reflect cortical interactions among
visual filters.

Second, we wished to obtain data on multiple tasks using a consistent set of stimuli and
observers. Since previously published data concerned, to our knowledge, no more than two of
our five experiments for any given observer, attempting to simultaneously model more than
two experiments from such data would have created uncertainties and difficulties because
of inter-observer variability. Indeed, we did observe significant inter-observer variability
in our data (Fig. 6.3). In addition, different experiments from different groups usually
employed different experimental conditions, stimulus shapes, presentation paradigms, or
presentation time, all of which are additional confounds when trying to fit a single model
to all the data. The availability, through our effort, of the entire dataset of five experiments
for three observers eliminates such uncertainties and difficulties. As a direct consequence, it
becomes possible to address the question of whether a single, unified model can reproduce

our dataset in its entirety. This question is the subject of the next Chapter.
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Chapter 7 A Unifying Model of Spatial Vision



103

7.1 Overview

We propose a quantitative model relating the responses in small populations of visual filters
to human psychophysics. The model consists of linear spatial filters which interact through
non-linear excitatory and inhibitory pooling. Statistical estimation theory is used to derive
human psychophysical thresholds from the population response. The model reproduces
human thresholds for contrast increments, contrast masking, orientation discrimination
and spatial period discrimination (as detailed in the previous Chapter) with a unique set of
parameters. The success of this unified model suggests that a wide range of spatial vision
thresholds reflect the same neural level of processing, presumably orientation- and spatial
frequency-selective neurons in striate and extrastriate cortex.

The architecture of the model can be divided into three successive processing stages: The
first stage consists of a set of linear visual filters tuned for spatial period and orientation;
in the second stage, the outputs of the linear stage interact through non-linear excitatory
and inhibitory connections. Physiological noise is introduced at the outputs of this stage.
Finally, the third stage uses the entire population of noisy responses from the second stage to
perform an ideal-observer discrimination between two stimulus patterns. The output of the
model, for any two spatial patterns, is a quantitative measure of the system’s performance
at discriminating between these patterns. It can be directly compared to experimental data.

The present study is not primarily focused on possible detailed biophysical implemen-
tations of the model. Rather, the early stages of the model should be understood as a
phenomenological, possibly consensual account for the observed physiology of visual neu-
rons (or small populations of such neurons) in area V1. Furthermore, the last (decision)
stage of the model, which is much more difficult to characterize in biological systems, is
implemented in a more abstract manner using results from statistical estimation theory. In
the discussion for this Chapter, we will however provide a number of cues towards possible
biophysical implementations or circuits which may serve as plausible biological correlates
for the model components.

In this Chapter, we detail the architecture of the model. We then present the methods
developed to fit the model to our psychophysical data presented in the previous Chapter.
Further, we present some of the methods which we devised to evaluate the quality and
robustness of these fits. Because our model is only constrained by the data, using an
automatic fitting procedure which involves no human bias, we then examine whether the
best-fit model assumes neurally plausible components. We finally discuss the meaning of
such successful account of a wide variety of spatial vision thresholds by a unique model,
with a special emphasis onto which model features are critical for this success. This study
will be extended in the next Chapter, in which we show that our model can also, in a very

simple manner, account for the modulation of all of the measured psychophysical thresholds
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by focal visual attention.

Because this Chapter is mathematically much more involved than any other Chapter
in the present thesis, we relay most of the mathematical details to a set of mathematical
Appendices at the end of the Chapter.

7.2 The Model

The model comprises three successive levels: Linear filtering, divisive inhibition, and a
statistically efficient decision strategy (Fig. 7.1). We examine all of the model components

in detail in this Section.

7.2.1 Linear Filters

We use a population of overlapping spatial filters, all centered at the same point of visual
space, but tuned to a variety of spatial periods A € A and orientations 8 € ©. To facilitate
comparison with cortical neurons and increase computational efficiency, filters are defined
in terms of their tuning functions, rather than in terms of the spatial structure of their
receptive field. For sinusoidal grating stimuli, we assume Gaussian tuning with respect to
both the logarithm of spatial period A\g (with standard deviation o) and orientation Og
(with standard deviation op). Thus, the response of a filter with preferred period A and
preferred orientation 6 to a sinusoidal grating of contrast C's, period Ag and orientation fg

is given by:

Bxo(Cs; As, 0s) = Cs Aexp (— (oglhs) = L) _ (0 _29)2) (7.1
oy 20y
where A is a gain coefficient. Note that this definition specifies filters in the Fourier domain
and disregards phase information. To obtain responses to arbitrary stimuli, two spatial fil-
ters with identical tuning but quadrature phase can be reconstructed and combined (Pollen
& Ronner, 1981; DeAngelis et al., 1992). The reconstructed spatial filters closely resemble
Gabor functions and neuronal receptive fields (Fig. 7.2).

Since we assume, for genericity reasons, that our filters have Gaussian tuning curves in
response to sinusoidal grating stimuli, for the Gabor stimuli used in our experiments, we
compute the responses numerically. Indeed, it is important to keep in mind that the tuning
properties (i.e., the curve representing filter responses as one stimulus parameter is system-
atically varied) of any filter are dependent on the spectral characteristic of the stimulus
(Fig. 7.3); in what follows, the generic term of “tuning width” should be understood as

the width of the tuning curve obtained for sinusoidal gratings.
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Figure 7.1: Model architecture, represented schematically in the style of Wilson and col-
laborators. The model consists of three successive stages: (1) A bank of linear visual filters
tuned to different orientations and spatial frequencies, (2) non-linear interactions between
visual filters in the form of a power law and divisive inhibition, (3) addition of independent
noise and statistically efficient decision based on the entire filter population.
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Figure 7.2: Visual filters used in the model. Filters are defined in terms of their separable
Gaussian tuning functions for the orientation # and logarithm of the spatial period A of a
sinusoidal grating stimulus (left). The spatial shape of the visual filter can be reconstructed
though an inverse Fourier transform. Both even- and odd-symmetric filters are shown
(middle and right). Their shape is very similar to the multi-lobed functions used by other
models. Pairs of reconstructed even- and odd-symmetric filters can be used to compute the
response to arbitrary stimuli.
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Figure 7.3: Tuning curves for grating and Gabor stimuli. Filters in the model are assumed
to be specifically tuned to the spatial period A and orientation 6 of full-field sinusoidal
grating stimuli. The Gaussian tuning curves for orientation (a) and spatial period (b)
defined by Eq. 7.1 are shown here for gratings with period Ag and orientation fg (solid
curves). When Gabor stimuli are used, such as in our experiments, with same A\g and fg,
tuning curves for both spatial period and orientation are slightly broader (dashed curves).
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7.2.2 Divisive Inhibition

The response of each linear filter is normalized relative to the total population response (“di-
visive inhibition” (Heeger, 1992)) (Wilson, 1993; Foley, 1994; Zenger & Sagi, 1996; Thomas
& Olzak, 1997; Carandini et al., 1998). The functional consequences of this normalization
include a non-linear transducer (Nachmias & Sansbury, 1974; Wilson, 1980b) and reduced
contrast-dependence of orientation and spatial frequency tuning (Wilson, 1993). The nor-

malized response R) g of a filter tuned to (A, 0) is:

(Exp)”

8)° + Z Wio(X,0') (Ex o)
(V,0)EAXO

Ryp=

5 +tn (7.2)

where

(log(X) —log(N)2 (8 — 9)2) (7.3)

WaalX.0) = exp (- e - g
is a 2D Gaussian weighting function centered around (A, #) whose widths are determined
by the scalars ¥y and ¥, (Fig. 7.4). In Eq. 7.2, n is a positive constant representing
background activity (“dark current”). The denominator includes a constant S and the
weighted sum of all filter responses, and represents divisive inhibition. The exponents y
and ¢ determine the resulting transducer function. Depending on their values, one obtains
a linear (y = 1,0 = 0,5 = 0), power-law (S = 0), or sigmoidal (S > 0,y > 4) transducer,
with a saturating (v = d) or non-saturating (v # J) response.

It is convenient to replace A and S with two alternative parameters which are easier
to interpret. We use the detection threshold Cy, for a Grating stimulus of 2.8cpd and the
position of the transducer’s inflexion point Sfac (Sfac = Ciniexion/Ctn)- If all other model
parameters are fixed, each choice of the pair (Cy, Spqc) yields a unique pair (4,5). The
procedure used to compute (A, S) involves an iterative search over the value A which yields
a detection contrast threshold of C}y; at each step during this search, S is computed using

the closed-form solution detailed in APPENDIX 7.6.

7.2.3 Noise Model: Poisson®

Following normalization, independent Gaussian noise is added to each filter response. In
analogy to visual cortical neurons, we assume that the variance increases with the response

mean:

V)\%e - Rg\t,a (74)
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Figure 7.4: Schematic representation of the excitatory and inhibitory pool of units inter-
acting with a given model unit. Each node in this diagram represents one unit in the
population, tuned to orientation € and spatial period A. The pools are represented for the
unit at the origin of the plot. The excitatory pool (top peak) is the single unit of interest.
The inhibitory pool has a Gaussian shape in the orientation and spatial period domains,
with widths determined by the scalar model parameters Yy and X,.
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where « is a constant. For visual cortical neurons, « is typically slightly larger than unity
(Softky & Koch, 1993; Teich et al., 1996; Geisler & Albrecht, 1997). Note that this noise
assumption differs from most psychophysical models, which assume Gaussian noise of con-
stant variance (Green & Swets, 1966; Sachs et al., 1971; Wilson & Bergen, 1979; Legge &
Foley, 1980; Thomas & Olzak, 1997).

7.2.4 Decision Stage

We use a statistically efficient decision stage to predict behavioral thresholds from the noisy
responses of model units. This “ideal observer” decision accounts significantly better for
our psychophysical data than the suboptimal (Pouget et al., 1998) decision strategies used
in other models (see Results).

We consider the noisy response vector R = {R)9; A € A,0 € O}, with a mean given by
Eq. 7.2 and a variance by Eq. 7.4. For each stimulus attribute (, we postulate a statistic
T(R;¢) which estimates the value of ¢ from the noisy response R. The discrimination
performance (see APPENDIX 7.8 and Fig. 7.5) in a 2AFC experiment involving two stimuli
with attributes ¢; and (s is given by (Green & Swets, 1966):

erformance = 1 ler moan(T'(¢1)] — mean[T(¢)] '
Perf 2 + 2 f ( V2(var[T(¢1)] + var[T((2)]) ) (72

where erf is the Normal error function. We assume that T'(R; () is “ideal” in the sense that
it is both unbiased and efficient. The lack of bias implies that the estimator T' exhibits no
systematic bias towards either higher or lower values of {, in other words mean[T'({)] = (.
Efficiency implies that var[T'(¢)] reaches the Cramér-Rao bound, the theoretical lower bound
for the variance of any unbiased estimator (Scharf, 1991; Cover & Thomas, 1991). The
Cramér-Rao bound equals the inverse of the Fisher information J(¢), such that var[T'({)] =
1/J(¢). It follows that:

erformance = 1 ler |61 — ¢
o A (\/2(1/J(C1) ¥ 1/J(§2))) (7.6)

The Fisher information Jy g for a single unit with response R g and variance V)\2 0= RS,

is (APPENDIX 7.7):

1 + a?
RS, 2R3,

R ) : (7.7)

Jne(€) = ( a¢

In other words, information is distributed over the population and the units that respond
maximally do not necessarily provide the most information. As the Fisher information is

additive in the case of independent noise (Snippe & Koenderink, 1992; Cover & Thomas,
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% correct
discrimination

Figure 7.5: Ideal observer discrimination with our model. In a simulation of our psychophys-
ical experiments, two alternative stimuli are presented to the model. The two stimuli differ
only in their value of one of the stimulus parameters, v (here, orientation). For each stimu-
lus, our statistically efficient decision stage yields a Gaussian distribution whose mean is at
the stimulus parameter v and whose variance is the inverse of the Fisher information. Ideal
observer discrimination then computes the probability of correct discrimination, based on
the overlap between these two Gaussian distributions (APPENDIX 7.8).
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1991), the total Fisher information for the entire population of units simply is:

T = Do) (7.8)
A0

Fig. 7.6 illustrates the distribution of Fisher information computed for stimulus con-
trast, orientation, and spatial frequency across units with different tuning properties. Note
that information about each stimulus attribute is concentrated in different subpopulations
of units. Due to our relatively sparse distribution of model units, we compute thresholds
numerically (through iterative adjustments of ¢ until threshold performance is reached).
The closed-form solutions that hold for dense distributions of model units (APPENDIX 7.9
and (Mato & Sompolinsky, 1996; Seung & Sompolinsky, 1993)) are less accurate, especially
near contrast threshold.

This decision stage can readily be generalized to other psychophysical paradigms. For
example, performance in a “Yes/No” paradigm can be obtained by altering Eq. 7.6. A
formal treatment of both the “Yes/No” and the “2AFC” paradigms in the context of ideal
observer decision is presented in APPENDIX 7.8. Another possible generalization concerns
decision uncertainty (Magnussen et al., 1996; Dai et al., 1996; Dai, 1994; Verghese & Stone,
1995). In the present experiments, there is no decision uncertainty, since always the same
stimulus parameter (known to the observer) varies from trial to trial within each block.
When this is not the case, and the decision involves several stimulus parameters, Eq. 7.4
has to be generalized to var[T] = J(Z)~!, where Z is the vector of all relevant stimulus

parameters.

7.2.5 Alternative Decision Stage

For comparison, we also used an alternative decision stage based on the Minkowski norm
used in many popular psychophysical models (“Quick probability summation,” (Quick,
1974; Wilson & Gelb, 1984; Phillips & Wilson, 1984; Foley, 1994; Bowne, 1990)). The

discriminability of two stimuli with {; and (3 is computed as:

1
Q

D¢, G) =] Y. IRro(G) — Rap(C)[® (7.9)

(M\0)eAxO

where @ is the Minkowski exponent (values above 3 yield similar results (Bowne, 1990)).
Threshold is reached when D = 1.
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Figure 7.6: Fisher information with respect to stimulus orientation, contrast and spatial
frequency. Fisher information is the inverse of the variance of an unbiased and efficient esti-
mator of the stimulus parameter (Section 7.2.4 and Eq. 7.7). Each surface point represents
the information encoded in the response of one model unit. The volume under the surface
represents the total information encoded by a population of units with independent noise
and tuned to 24 orientations and 24 spatial periods. Arrows indicate the spatial period Ag
and orientation #g = 0 of the stimulus. Note that the unit tuned optimally for the stimulus
does not contribute to the Fisher information for orientation or spatial period.
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7.3 Model Predictions of Our Dataset

7.3.1 Predictions Using Our Standard Model
Specific Implementation of the Model Used

We implemented the model described above with 60 filters (spatial frequencies 1.4, 2, 2.8, 4
and 5.6cpd, and orientations 0, 15, 30, ..., 165°). The parameters for gain A, background
activity 7, orientation tuning width oy, and spatial frequency tuning width o) (in octaves)
were identical for all filters, resulting in an overall total of only ten free parameters (Ta-
ble 7.1). Best fitting parameter values were computed separately for each of the three
subjects who completed all experiments (LZ, LB, SC). The total fit error was computed as
the root of the squared percentage errors summed over all data points. Using percentage
errors rather than absolute errors ensured that all data points carried numerically equal

weight.

Fitting Procedure

Best fits were computed with two automatic procedures, with no operator bias towards
“plausible” values. The first procedure used a ten-dimensional simplex algorithm (Press
et al., 1992) with simulated annealing overhead (Metropolis et al., 1953; Kirkpatrick et al.,
1983). From several randomly chosen starting points, the annealing schedule was initiated
with a “temperature” ¢ that induced random parameter variations of +15% at each trans-
formation of the simplex. Every 200 simplex transformations, the annealing amplitude was
reduced on a schedule ¢ o log(1 + k), where k is the number of simplex iterations. The pro-
cess was terminated when the annealing amplitude became smaller than +0.25%, at which
point a final deterministic fit was carried out. The annealing schedule was sufficiently slow
to ensure eventual convergence towards the global minimum (Geman & Geman, 1984).
The second procedure also used several randomly chosen starting points but approached
the best fit with the help of Powell’s deterministic algorithm using Brent’s minimization
method (Press et al., 1992).

Because of the high computational demands of our minimization problem, several ma-
chines were used to evaluate diverse variations of the model, diverse observers, or diverse
parameter starting points (Fig. 7.8). A WWW-based interface was developed to dispatch
and collect results to and from these remote machines, as well as to monitor their health
in real-time (Figs. 7.8 and 7.9). This technical development proved critical to the man-
agement of the high complexity of our study. Indeed, a complete fit took several days
to converge; with these tools, we were able to properly use in excess of 15 simultaneous
machines without introducing any uncertainty in the collection of results and their inter-

pretation.
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Iterative computation of each threshold
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Figure 7.7: Procedure used to fit the model to the data. Each threshold was computed with
the model as described in this part, using an iterative method which adjusted the stimulus
parameter differentiating between the two possible targets until threshold performance was
used. Because we use a general noise model, sparse filter population, and non-linear filter
interactions, such computation could not be carried out in closed-form. After all thresh-
olds were predicted by the model, a global fitting error was computed. A ten-dimensional
downhill simplex was used to adjust the ten model parameters such as to minimize the
fitting error. A simulated annealing overhead was added to ensure convergence towards
the global minimum of the error. Finally, the algorithm was allowed to run from multiple
randomly chosen starting points, and we verified that it always converged towards the same
minimum error. For supplemental verification purposes, a second minimization method was
implemented, the deterministic multidimensional optimization method of Powell, used as an
overhead to a 1D Golden-section bracketing algorithm followed by Brent’s 1D minimization
(Press et al., 1992).
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Figure 7.8: Multi-machine system used to carry out the model fits. Several minimizations
were dispatched in parallel to multiple machines in our and other laboratories. In order
to properly manage such parallel processing, a WWW-based interface was created, which
allowed each machine to automatically report on its results to a master server, and receive
new instructions for a further fit.
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Figure 7.9: Multi-machine monitoring system. Because of the distant physical location
of several machines used for our fits, and of the tendency of their interactive users to
crash or reboot them, a WWW-based remote Unix administration system was used to
monitor their health. This system was a prototype of a broadcast-capable Unix system and
network administration tool which I was by that time developing with Distributed Network

Technology, Inc. (Denver, CO) and Kaptech, S.A. (Paris, France).
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Fit Results

For each of the three complete data sets, the best fit of the model is shown in Fig. 7.10.
The model accounts quantitatively for all observations and in almost all cases predicted
and measured thresholds agree to within the accuracy of the measurement. The model
reproduced the dipper-shaped results of Exp. 1, the almost “flat” contrast dependence in
Exps. 2 and 3, as well as the masking effects of Exps. 4 and 5. Some of the reasons for this
success become clear when we consider the effective properties of individual model units.
The effective transducer function was sigmoidal at low contrast and non-saturating at high
contrast (Fig. 7.11a), explaining the results of Exp. 1 and their conformance to Guilford’s
law, which states that AC «x C%,0.5 < z < 1. The effective tuning for orientation was
about 30% sharper than that of the linear units prior to the interactions (Fig. 7.1), and
the effective tuning for spatial period was about 35% narrower (Fig. 7.11cd), explaining
the low thresholds for discriminating orientation and spatial period. The flat contrast
dependence of these thresholds will be considered in a separate section.

The parameter values which yielded the best fit for each of the three complete data
sets are listed in Table 7.1. Each value is given with a “tolerance range” (expressed as a
percentage). This is the range in which a given parameter can vary such that the total fit
error remains within 5% of its minimal value, when all other parameters are optimized to
keep the fit error as small as possible (APPENDIX 7.10). Most tightly constrained (to within
2% of their respective values) were the exponents v and §. In the observer average, the
optimal values were approximately v = 3.5 and § = 3.0, that is, substantially larger than
the values inferred from physiology (Heeger, 1992; Carandini & Heeger, 1994). The tuning
widths o, o), noise exponent «, contrast threshold Cyj,, and transducer inflexion Sy, were
constrained to within 15% of their respective values. The width of orientation tuning was
approximately 35° full-width at half-maximum (FWHM) at the linear and approximately
25° at the non-linear stage. Similarly, the width of spatial period tuning was approximately
1.50ct and 0.8oct FWHM at the linear and non-linear stages, respectively. The noise expo-
nent « was slightly larger than unity (values near 1.1). Less well constrained were the values
for orientation pooling width ¥y (25° FWHM to within 25%) and for background activity
n (to within 40%). The spatial period pooling width ¥ was only weakly constrained by
our data, mostly because the measured contrast masking thresholds depended only weakly

on the spatial period of the mask.

Stability of the Fits

ENVELOPES OF MODEL PREDICTIONS. As the computation of tolerance values is based on
the entire data set, it does not reveal the relative importance of different parts of the data

set. To obtain some information on this point, we computed threshold predictions for the
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Figure 7.10: Measured and predicted thresholds for three observers (LB, LZ and SC).
Measured thresholds (symbols with error bars) represent the mean and standard deviation
for each observer. Predicted thresholds represent the optimal model fit (solid line) and the
family of all model fits with up to 5% higher fit error (grey regions). Predicted thresholds are
close to measure thresholds, often to within the accuracy of the measurement. In general,
the grey regions closely "hug” the measured thresholds, demonstrating that the model fit
is robust and not accidental. The narrow parts of the grey regions indicate which parts of
the data constitute particularly tight constrains for the model.
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Name Symbol LB LZ SC
Excitatory exponent 5y 3.24+0.02% 3.8+1% 3.6 +0.1%
Inhibitory exponent ) 2.7+1% 3.0+ 2% 3.0+1%
Noise exponent a 1.1+ 8% 1.3+ 2% 1.0+ 1%
Background activity n 3.84+31%  1.7+10% 12.34+40%
Spatial period tuning width ax (oct) 0.76 £9%  0.54+10% 0.64+ 9%
Orientation tuning width ag (°) 17.8+16% 125+ 7% 16.5 + 6%
Spatial period pooling width ¥ (oct) 71+297% 5.7+£550% 1.2+291%
Orientation pooling width ¥ (°) 14.5+23% 12.0+16% 11.0+12%
Contrast detection threshold Cin 0.026 £13% 0.025+3% 0.026 £ 13%
Transducer inflexion point Stac 1.26 + 1% 0.62 + 8% 0.80 = 8%
Residual fit error 16% 14% 17%
Linear spatial period FWHM* (oct) 1.79 1.27 1.51
Linear orientation FWHM ) 41.9 29.4 39.1
Pooled spatial period FWHM (oct) 1.12 0.68 0.71
Pooled orientation FWHM (®) 27.5 18.0 26.1

* Full-width at half-maximum (FWHM) is computed as 20 +/2log(2) for the linear filters,
and is measured at the output of the second stage (for a grating of contrast 0.1) for the
pooled filters.

Table 7.1: Best-fit model parameters for observers LZ, LB and SC. Note that a = 1
corresponds to Poisson noise. y—§, always positive for our data, determines the asymptotic
slope of the contrast response function.



121

Transducer function Orientation tuning Spatial frequency tuning
T T T T ] 1 | : (] 1 T 7 | :
a 2 L 2 I\ c |l
o 80F 1 S g3 S \n 135
%) 7 o3 7 \ ° 2
c L m (O] O = (0] \ D =
2 = 52 s [\ 152
9 a0t 1 g == S| \\ 125
x =z % < T \\ % <
i ] S T E T N 1w !
SoH INES S 0 S~ [
0 1 1 > BN - '
0 0.4 08 ° e 10 o8
c w/ preferred w g =
Orientation pooling Spatial frequency pooling
T T T T T 1
= 1F u .E
3 d n Q e g
S r 1= 2 z
£ 3 E

5} |9} <

S I 1= 3 1

o i ; -

= 1% £ 2

St 1 2 3

D- O Il D_ O 1 1 -

-40 0 40 1 10
N8 (°) w (cpd)

Figure 7.11: Functional properties of the optimal model for observer SC. (a) The effective
contrast response function exhibits the sigmoidal shape postulated by most psychophysical
models. (b) and (c¢) The effective tuning functions for orientation and spatial frequency are
approximately Gaussian, but 30-40% narrower than the original tuning functions (dashed
lines). (d) and (e) Relative weights with which different filters contribute to divisive in-
hibition. Inhibition derives from filters tuned to similar orientations (difference less than
approximately 40°). The range of spatial frequencies contributing to divisive inhibition is
only poorly constrained by the data.
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family of all models yielding fit errors less than 5% above the optimal fit (APPENDIX 7.10).
The envelope of the resulting predictions is narrow in the “more important” parts and
broad in the “less important” parts of the data set (Fig. 7.10). By this criterion, the most
important parts of the data set are the high-contrast regimes of Exps. 1, 2 and 3 (C > 0.1).
Exps. 4 and 5 appeared important as well, as the predicted envelopes are quite narrow.
In the low-contrast regime of Exp. 1, the predicted envelopes are wide but only concern
3% of the entire contrast range of that experiment. Least important are the low-contrast
regimes of Exps. 2 and 3, where predictions diverge widely. This analysis shows that the
data did closely constrain the model and that, overall, the model was not sensitive to small
departures from the optimal parameter values. This demonstrates that the optimal fit is
robust and non-accidental.

CROSS-SECTIONS OF THE ERROR-OF-FIT FUNCTION. Another important test was to
evaluate the precision with which each model parameter was constrained by the entire
experimental dataset. This was investigated by computing local orthogonal cross-sections
of the fitting error along individual parameters (Fig. 7.12). Although these do not capture
all possible local parameter variations around the best-fit point, they are computationally
tractable and provide a reasonable idea of how sensitive the model’s predictions are with
respect to each of the parameters. This test also is important because our computation
or tolerance ranges on the best-fit parameters involved a second-order approximation of
the fitting error by its Hessian at the best-fit point (APPENDIX 7.10). The explicitly
calculated cross-sections prove us that such approximation was valid (since we can see in
Fig. 7.12 that the error function is well behaved and can reasonably be approximated by
a hyperparaboloid). The results indicated that all parameters were — to varying degrees —
constrained by the data, and were in good agreement with the results obtained with our
analytical method when all parameters are allowed to vary (APPENDIX 7.10).

PARTIAL DATASETS. Although different experiments to some extent constrain different
properties of the model, there is no straightforward correspondence between each experi-
ment and the model parameters it constrains. Attempts to fit a randomly initialized model
to partial datasets (e.g., including only one experiment) did not yield readily interpretable
results, because each subset of the entire dataset inevitably left some parameters uncon-
strained. However, it is informative to investigate how the local error sections of Fig. 7.12
would vary if they were computed only for partial datasets. We investigated all 31 possible
binary combinations of the 5 experiments (obtained by assigning a weight of either 0 or 1 to
each experiment’s contribution to the fitting error). Two characteristic changes in the error
sections were expected when computing the fitting error from a given partial combination:
First, a shift of the minimum in a given section would indicate that the five experiments
did not agree on the best value for the corresponding parameter. The best fit found would

then represent a compromise between conflicting constraints imposed by the various experi-
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Figure 7.12: Local variations of the error of fit (EOF) around the best fit point, for an
average (not shown) of the datasets of observers LB, LZ and SC. Each of the ten parameters
was individually varied by up to £50% around its best-fit value, in steps of 0.25%. Those
parameters for which steeper curves around the best-fit point are observed, such as the
excitatory () and inhibitory (6) exponents, are more strongly constrained by the data.
The spatial period pooling width (X)) was only very weakly constrained. This method
is less complete than the formal analysis presented in APPENDIX 7.10 and used to derive
parameter tolerance ranges in Tables 7.1 and 7.2. Indeed, here, all parameters except the
one varied in a given section are held fixed; in contrast, in the method of APPENDIX 7.10,
all parameters are allowed to arbitrarily vary (within the only constraint that the fitting
error should not exceed a given threshold value). However, this figure demonstrates that the
error function is well behaved around the best-fit point and can reasonably be approximated
by a hyperparaboloid, which is a prerequisite for the method of APPENDIX 7.10 to be valid.
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ments, rather than an optimum satisfying all experiments simultaneously. Second, study of
the local curvature of the error function around the minimum in each section would indicate
which combination of experiments — or which individual experiment — is mainly responsi-
ble for constraining a given parameter. This would allow us to establish a correspondence
between experiments and model parameters.

Of the 31 possible binary combinations of the five experiments, the five in which one
experiment is omitted from the computation of the fitting error proved the most interesting:
Each of these combinations reveals, for each parameter, whether the omitted experiment is
important for constraining that parameter. For instance, if gy became poorly constrained
when the orientation discrimination experiment (Exp. 2) was ignored, we would conclude
that Exp. 2 plays a critical role in constraining oy. For each partial dataset, every param-
eter was varied around its best-fit value, and the partial fitting error was computed. The
local minimum in each of the resulting error sections indicated the locally closest parameter
value which fitted best the partial dataset (see ranges in Table 1). In addition, we com-
puted a measure of how strongly each parameter was constrained by each partial dataset
(Fig. 7.13).

Remarkably, ignoring any one experiment did not change any parameter dramatically,
as is detailed below and in Table 1. Exp. 1 was mainly responsible for constraining Sy
and Cly,, although ignoring any one experiment yielded local minima for both parameters
in £2% range (i.e., all experiments agreed very closely on these parameter values). Exp. 2
constrained the orientation tuning width (oy), to a value 8% lower than would have satisfied
the other experiments. Exp. 3 constrained the spatial period tuning width (o), to a value
within £3% of that satisfying the other experiments. Exp. 4 constrained the orientation
pool width (3y), and was in part responsible for keeping the noise level (a) low. Exp. 5
did not appear to significantly constrain any parameter, while we would have expected it to
constrain Xy, if the measured data had been more reliable and more complete. Exp. 5 was,
however, in part responsible for keeping the noise level («) high. It cannot be argued that
Exps. 4 and 5 conflicted with respect to the parameter «, since predicted values differed
by less than 3%. The pooling exponents v and § (i.e., the high-contrast regime of the
transducer function) were the most strongly constrained parameters, and were constrained
by all partial datasets to values in £1% range. Finally the background activities (e,7)
and the spatial period pooling width (3)) were poorly constrained, but ignoring any one
experiment did not significantly alter their values (values varied within +10% range, while
it is shown in Fig. 7.12 that variations by up to 50% would not increase the fitting error
by more than 3%).

There is a clear correspondence between the high-contrast part of Exp. 2 and oy, the
high-contrast part of Exp. 3 and o), and the region for 5 —25° masks orientations in Exp. 4

and ¥y (Figs. 7.10, 7.13), but we expected a clearer correspondence between Exp. 5 and



125

2%

no Exp. 3
Ay r 1
112.5% —
0
5% w
2
NS r q Ao
A
0 103% — —
100%| 100% — =
OSpe T O
0
100%|
Ae r
0
100%
An r 1
0 all Exps.
10% 112.5% — —
Aa r
0 S
m
50%
103% — AOC. —
Adg A
100% — —
0 s B | | —

50%
Ao, L /

0 <]
50% —

A@253)

ol Tﬁﬁ 1T |
< NN

- A

no Exp. 1
no Exp.
no Exp.
no Exp
no Exp
all Exps

Figure 7.13: Robustness of the best-fit model parameters with partial datasets, also for
the average of the datasets of observers LB, LZ and SC, like in Fig. 7.12. For each
binary combination of experiments, parameters were varied around their best-fit values
by up to +£200% in steps of 0.25%. Bars indicate the magnitude of parameter variations
around their minimum which yielded an increase of 3% in the fitting error (see insets and
Fig. 7.12). Increased bar height for a given parameter when one experiment is ignored
(first five columns), relative to the height when all experiments constrain the model (last
column), indicates that this experiment was responsible for constraining that parameter.
For instance, the spatial period tuning width o) (eighth row) became largely unconstrained
when the spatial period discrimination experiment (Exp. 3) was ignored (third column and
insets at right). Exp. 3 was consequently mainly responsible for constraining o).
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Y. As expected from the sections in Fig. 7.12, the exponents v and d, which determine
the high-contrast regime of the model, are critically constrained by all experiments. It is
particularly remarkable in this case that all experiments agree very closely on the values
of these parameters (this was true for all 31 possible partial dataset combinations). The
fact that only Exp. 1 constrains Sy, is easily understood because this parameter is only
critical for the very-low contrast regime of the model (C' < 5%), which is not present in the
other experiments. Contrarily, although more strongly constrained by Exp. 1, Cy, is also
constrained by all the other experiments: Its value indeed reflects the general sensitivity of
the model, and hence affects all fine discriminations. Similarly, it is not surprising that «, €
and 7 are not specifically constrained by any given experiment, as they also determine the
overall sensitivity of the model for any type of discrimination.

EIGENVECTORS OF THE HESSIAN OF THE ERROR-OF-FIT FUNCTION. Finally, we were
interested in knowing which parameter combinations are most critical for model predictions.
To this end, we computed the eigenvectors of the Hessian of the error surface in parameter
space and sorted them by their associated eigenvalues (APPENDIX 7.10)). For all three
observers, the largest eigenvalue was associated with a vector almost collinear to the contrast
threshold Cyj,. This reflects the fact that Cy, determines the overall sensitivity of the model
and that its value modulates all predictions (both low- and high-contrast). The next largest
eigenvalue was associated with the difference between exponents v—4¢, which affects all high-
contrast predictions and determines the asymptotic slope of the contrast response function
in Fig. 7.11a. Intermediate eigenvalues were associated with more complicated parameter
combinations and were not consistent across subjects. However, in all observers the two
smallest eigenvalues were associated with the pooling widths 3y and 3y, respectively.

SUMMARY. Through all of the stability analysis presented here, it appears that the
best fit obtained for each observer is non-accidental and robust to small changes in model
parameters. Computing envelopes of the model predictions allowed us to precisely charac-
terize the contribution of each datapoint to the overall constraint set by our data onto our
model; overall, we concluded from this analysis that every datapoint was useful in constrain-
ing the model. Examining accurately-computed cross-sections of the error-of-fit function
demonstrated that this function appears well behaved around the best-fit point; this was
of particular importance since our method for the computation of tolerance ranges for the
best-fit parameters assumes that the error-of-fit function can be locally approximated by
a hyperparaboloid. Examining how partial datasets constrained our model revealed that
there was no apparent conflict between any of the five experiments in our dataset; indeed,
when any one experiment was ignored, the resulting best-fit parameters were close to those
obtained when using all experiments. This analysis also unraveled a number of simple
correspondences between experimental datapoints and model parameters. Finally, comput-

ing the eigenvectors of the Hessian of the error-of-fit function showed us to which linear
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combinations of parameters the model was most or least sensitive.

7.3.2 Variants of the Model

We explore in this Section three variations around our model. These variations concern the

number of filters used, the noise model, and the decision strategy.

Number of Units

How does the number of model units (60 units with 12 preferred orientations and 5 preferred
spatial frequencies) affect our conclusions? Given out decision model, which combines
information from all units, the number of model units should be of little consequence as
long as it is not too small. The reason is that the number determines how densely the
Fisher information surface is sampled, but does not alter its shape (Fig. 7.6). Indeed,
when we increased the number of units to 270 (30 orientations and 9 spatial frequencies),
we observed no significant threshold changes except for an approximately 10% reduction in
masking thresholds (Exps. 4 and 5). A further increase to 1296 units (72 orientations and
18 spatial periods) produced no significant change in the results (i.e., no prediction changes
by more than 5%).

Noise Model

We depart from previous models by assuming that response variance increases with the
response mean (“Poisson noise,” V/\27 o =13, with a = 1). A simpler alternative is to assume
that response variance is constant (“constant noise,” V)\Q’a = ) (Wilson & Gelb, 1984; Foley,
1994). Constant noise is a reasonable assumption as long as filters are independent and the
contrast response follows a simple power law. In this case, the dependence of the signal-to-
noise ratio Ry g/V) ¢ on stimulus contrast, orientation, and spatial frequency turns out to be
the same for constant noise and Poisson noise (APPENDIX 7.9). In the present case, however,
filters interact through divisive inhibition and the contrast response follows a sigmoidal law.
Thus, in principle, Poisson noise and constant noise are no longer interchangeable. However,
when we fit the data of observer SC with a variant of the model using constant noise, we
obtain a good fit as well (Fig. 7.14). Nevertheless, the relatively broad envelopes around
the best fit indicate that the constant noise model is less constrained by data and, in

particular, that background activity (n) remains entirely unconstrained (Table 7.2).

Decision Strategy

Another difference to earlier models is the decision stage. We use a maximum likelihood
approach (Fisher information) whereas most previous models have used an approximation

known as the Minkowski norm (Bowne, 1990). This approach assumes that threshold is
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Figure 7.14: Measured and predicted thresholds for two variants of the model (observer
SC). The first column shows the fit of the standard model, for comparison. The second
column shows the fit of a model variant using “flat noise” instead of “proportional noise.”
The quality of the fit is comparable to the standard model, but is less robust for contrast
masking experiments (as indicated by relatively broad grey regions). The model in the
third column uses sub-optimal decision based on Minkowski norm. The fit is inferior to the
standard model, in particular with respect to the contrast masking experiments. Thus, the
statistically efficient decision contributes significantly to the success of the standard model.
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Name Symbol SC SC - const. noise SC - Minkowski
Excitatory exponent 5y 3.6 +£0.1% 3.5+0.1% 4.9+ 2%
Inhibitory exponent 0 3.0+£1% 3.0+1% 4.0+ 2%
Noise exponent e 1.0+1% 0 0.8+1%
Background activity n 12.3+40%  15.6 +4166.7% 1.7+ 67%
Spatial period tuning width ox (oct)  0.64+9% 0.62 + 7% 0.43 + 5%
Orientation tuning width oy (°) 16.5 + 6% 17.1 +£ 6% 12.5 + 2%
Spatial period pooling width 3, (oct) 1.2+ 291% 0.6 +£138% 1.4+ 719%
Orientation pooling width Yo (°) 11.0 £ 12% 10.8 + 6% 9.3 £ 10%
Contrast detection threshold Cin 0.026 + 13% 0.025 + 12% 0.023+11%
Transducer inflexion point Stac 0.80 + 8% 0.80 + 4% 1.37+ 6%
Residual fit error 17% 17% 20%
Linear spatial period FWHM* (oct) 1.51 1.46 1.01
Linear orientation FWHM ) 39.1 40.3 29.4
Pooled spatial period FWHM (oct) 0.71 0.86 0.43
Pooled orientation FWHM (®) 26.1 28.0 18.5

* Full-width at half maximum (FWHM) is computed as 20+/2log(2) for the linear filters,
and is measured at the output of the second stage (for a grating of contrast 0.1) for the
pooled filters.

Table 7.2: Best-fit model parameters for the variants of the model studied.
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reached when the Minkowski norm of the differences in the mean responses to two alternative
stimuli (expressed as multiples of the square root of the response variance) reaches unity
(Section 7.2.5). To assess the importance of the decision stage for the quality of the
model predictions, we fit the data of observer SC with another variant of the model using
the Minkowski norm as a decision stage. Fig. 7.14 and Table 7.2 show the results with an
exponent () = 3. Although the predicted thresholds agreed well with the results of Exps. 1,
2 and 3, the predictions for Exps. 4 and 5 were rather poor.

The inferior predictive power of the Minkowski decision relates to its differential treat-
ment of contrast masking thresholds, on the one hand, and orientation and spatial frequency
discrimination thresholds, on the other hand. As illustrated in Fig. 7.6, contrast informa-
tion is concentrated in one, but orientation and spatial frequency information is in two filter
subpopulations. The Minkowski decision differs from the Fisher information decision in how
information from the two subpopulations is combined: While the Minkowski discriminabil-
ity increases by a factor of 21/Q, the Fisher discriminability increases by a factor of 21/2
(APPENDIX 7.9). As a result, the Minkowski decision with @ > 2 either overestimates orien-
tation and spatial frequency thresholds or underestimates contrast and masking thresholds,
depending on how the overall sensitivity of the model is set. Thus, the Minkowski decision
contributes to the problems encountered by previous models in accounting simultaneously
for different types of thresholds (Bowne, 1990).

7.3.3 Contrast Dependence of Thresholds

In an influential paper, Bowne has pointed out that a large class of models cannot explain the
differential contrast dependence that the thresholds of human observers typically exhibit
in the high-contrast regime (Bowne, 1990). For most observers, relative thresholds for
contrast improve substantially with stimulus contrast (AC/C oc C~%3) while thresholds
for orientation, spatial frequency, and other attributes improve little or not at all (e.g.,
Af < C %), Contrary to this observation, many filter-based models predict that the
contrast dependence of all thresholds should be the same (see also APPENDIX 7.9).

As our model accurately predicts the contrast dependence of all investigated thresholds,
we wished to understand where Bowne’s seemingly general argument fails. To this end, we
manually adjusted model parameters to obtain (i) Guilford’s law for contrast thresholds
(AC o C%™) and (ii) no contrast dependence for orientation thresholds (Af o< const)
(Fig. 7.15.a,b). The key for obtaining this differential contrast dependence turns out to
be the sigmoidal shape of the contrast response function. This sigmoidal shape distorts
the orientation tuning curves in a contrast-dependent manner (Fig. 7.15cd). In the region
that determines orientation thresholds (i.e., £15°), the slope of the tuning function increases
less with contrast than the height (as illustrated in Fig. 7.15¢), and in the context of our

decision model this shortfall suffices to keep orientation thresholds constant.
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Figure 7.15: Differential contrast-dependence of thresholds. The model has been manually
tuned such as to simultaneously predict increment contrast thresholds (a; Exp. 1) following
Guilford’s law (AC oc C*™), but contrast-independent orientation thresholds (b; Exp. 2)
(A9 o C79%93). Looking at the internals of the model reveals that, although the unit
responses, Ry g, increase for units of all orientations (c), the increase is more pronounced
at the tails of the orientation tuning curve (d). As a result, the slope of the tuning curve at
+15° increases more slowly than its height. Specifically, as contrast increases from C = 0.2
to C' = 0.9 curves, R) g increases by a factor 3, whereas OR) 9/00 increases only by a factor
1.75 (for 6 £+ 15°). As a result, the Fisher information with respect to contrast, which is
approximately proportional to (OR) 9/00)?/R, g, does not increase with C.
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To see this point, consider the dependence of the Fisher information on the slope and

height of the tuning function:

Tyrg = (0R,0/00)" (7.10)

’ Ry
For the most informative units (§ = +15°), the height R) g increases approximately 3-
fold between contrasts 0.2 and 0.9, while the slope (OR, 9/00) increases only approximately
1.75-fold. As a result of the lower increase of the slope, R) g and (OR) 5/ 00)? increase by the
same factor, and the Fisher information remains the same. This explains why orientation
(and, similarly, spatial frequency) thresholds exhibit so little contrast dependence in the

high-contrast regime.

7.4 Discussion

7.4.1 Common Basis of Spatial Vision

To ascertain whether different aspects of spatial vision reflect the same level of visual pro-
cessing, we have measured two types of thresholds with Gabor patterns presented at 4°
of eccentricity. To our knowledge, this is the most extensive data set yet collected with
consistent stimulus geometry and psychophysical procedure. Previous studies have tended
to focus on one type of threshold at a time — contrast increment thresholds (Legge &
Foley, 1980; Wilson, 1980b; Foley, 1994), orientation and spatial frequency discrimination
thresholds (Hirsch & Hylton, 1982; Burbeck & Regan, 1983; Wilson & Gelb, 1984; Vogels
& Orban, 1990; Bradley et al., 1985; Garcia-Perez & Sierra-Vazquez, 1996), or contrast
masking thresholds (Wilson et al., 1983; Phillips & Wilson, 1984; Phillips & Wilson, 1984;
Wilson et al., 1983; Foley, 1994) — and thus were unable to address this larger question.
The impetus for re-considering the basis of spatial vision at this time is provided by recent
single-unit work in cat and monkey, which suggests that the behavioral thresholds in ques-
tion might reflect neuronal response properties as early as primary visual cortex (Geisler &
Albrecht, 1997; Carandini et al., 1997; Sompolinsky & Shapley, 1997).

To test the hypothesis that spatial vision reflects a common neural basis, we employ
a “consensus model” that combines components from several models of psychophysical
(Wilson & Humanski, 1993; Foley, 1994; Zenger & Sagi, 1996; Thomas & Olzak, 1997) and
neuronal sensitivity (Seung & Sompolinsky, 1993; Carandini et al., 1997; Deneve et al.,
1999) to spatial patterns. To facilitate comparison with the presumed neural substrate, we
substituted, whenever possible, the more “generic” components of neural network models
for the more specialized components customary in psychophysical models (e.g., filter type,

noise model, decision stage). However, the basic architecture of our model (e.g., filter
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population, divisive inhibition) is fully consistent with previous psychophysical models.

We fit the ten parameters of our model to 34 threshold measurements from five separate
experiments. The fitting procedure affords an effectively exhaustive search through the
ten-dimensional parameter space, and includes several randomly chosen starting points
as well as two independent methods of iteration. The overall quality of fit is high, and
the residual error is almost always smaller than the precision of measurement. To test the
consistency of the result, we fit the model to separate data sets from three different observers.
In spite of substantial differences in the threshold data, the best-fitting parameter values
are almost always consistent and differ by 10% to 30% of their value between observers.
To assess robustness of fit, we compute a “tolerance region” around the optimal value
of each parameter, within which the overall quality of the fit degrades by less than 5%
(APPENDIX 7.10). Almost all parameters were tightly constrained by data, some to within
a few percent of their optimal value. The robustness of the fit is illustrated graphically by
the “gray regions” in Figs. 7.10 and 7.14, which are generated by allowing all parameters
to vary within their respective tolerance regions. In sum, our results demonstrate that a
single model accounts quantitatively for all investigated thresholds, and these results are
fully consistent with a common basis of spatial vision.

This conclusion is further strengthened by the high degree of interdependence between
different types of thresholds. When we investigated which thresholds constrain different
parts of the model, we found that most parts are constrained by all three types of thresholds,
albeit not to the same degree. For example, the increase of visual responses with contrast
(“transducer function”) is constrained not only by experiments that vary contrast explicitly
(Exps. 1, 2, and 3), but also by those that do not (Exps. 4 and 5). Similarly, the dependence
of visual responses on orientation and spatial frequency (“tuning functions”) is constrained
both by experiments that explicitly vary orientation and spatial frequency (Exps. 2, 3, 4,
and 5) and by experiments that do not (Exp. 1). Thus, the fact that our model accounts
for a broad range of thresholds is a genuine result, and not the artificial consequence of

adjusting a different model component to satisfy each type of constraint.

7.4.2 Relationship to Previous Models

Following previous psychophysical models (Wilson et al., 1990; Thomas & Olzak, 1997),
we postulate visual filters tuned to a range of orientations and spatial frequencies, but
all centered at the same spatial location. However, we depart from previous models by
assuming similar response characteristics for all filters (i.e., same contrast gain, background
noise, width of orientation tuning, and width of spatial frequency tuning in octaves). This
reduces the number of free parameters without compromising the quality of the fit for
our particular data set, which is restricted to thresholds measured at a spatial frequency

of 2.8cpd. Naturally, this limits the applicability of our model to spatial frequencies other
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than 2.8cpd. We note, however, that even our restricted data requires the inclusion of visual
filters operating at multiple scales, in that a model with filters of a single scale produces
substantially inferior fits, particularly for Exps. 4 and 5 (results not shown).

We chose visual filters defined by their polar response in the Fourier domain, which
exhibit Gaussian tuning in orientation and spatial frequency. As functions of visual space,
these filters closely resemble the multi-lobed functions employed by other models, except
that they are not separable along x- and y- dimensions. We saw no particular need to retain
separability, as this property is unlikely to have any functional bearing. The advantage of
filters with Gaussian tuning is that they render the effect of non-linear interactions more
transparent and easier to characterize. As discussed below, the effective tuning function
is shaped by non-linear interactions between visual filters and departs from the Gaussian
ideal.

Like with many recent models (Wilson et al., 1990; Wilson & Humanski, 1993; Fo-
ley, 1994; Zenger & Sagi, 1996; Thomas & Olzak, 1997; Foley & Chen, 1997; Wilkinson
et al., 1997), we normalize the responses of visual filters by “divisive inhibition” (Albrecht
& Geisler, 1991; Heeger, 1992). However, the parameters of divisive inhibition in our model
depart from precedent in two notable respects: First, responses are taken to a relatively
high exponent before being subjected to divisive inhibition (i.e., approximately 3.5 in the
numerator and 3.0 in the denominator of the expression for divisive inhibition), as compared
to the standard values of v = § = 2 used in physiological models. As the exponents are
among the most tightly constrained parameters of the model, this implies that before divi-
sive inhibition takes effect visual responses are a sharply accelerating function of contrast.
Second, only filters tuned to a relatively narrow range of orientations contribute to divisive
inhibitions. This “near-orientation inhibition” is consistent with the findings of a number of
previous studies (Phillips & Wilson, 1984; Crook et al., 1997), but conflicts with the clear
evidence for “cross-orientation inhibition” reported by other studies (Olzak & Thomas,
1991; Foley, 1994). The difference may be that the latter group of studies used spatially
extensive stimuli, raising the possibility that “cross-orientation inhibition” may originate
at more distant stimulus locations than “near-orientation inhibition.” Nevertheless, the
orientation pooling width ¥y is well constrained by our data (Fig. 7.16).

The one parameter only loosely constrained by our data was the range of spatial fre-
quencies contributing to divisive inhibition. Previous studies have advocated both a broad
range (DeAngelis et al., 1992; Bowen & Wilson, 1994) and a narrow range of spatial fre-
quencies (Ramoa et al., 1986; Heeger, 1992). To decide the issue, it would be necessary to
collect additional data with target stimuli of other spatial frequencies.

The main difference to other models, however, is that divisive inhibition simultane-
ously governs all functionally relevant properties of our model so that all types of threshold

measurements reflect on this part of the model. For example, divisive inhibition deter-
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Figure 7.16: Influence of pooling across orientations on model predictions, here shown using
a fit of our model to the “fully attended” (red) data of Lee et al. (1999) for Exp. 4. (Top)
In the absence of any pooling across orientations, our model predicts a “dipper” when
target and mask orientations differ by approximately 40°, but this feature is absent from
our data. (Middle) With “full pooling,” that is 3y — oo and all filters contributing equally
to the inhibitory pool, our model predicts a significant elevation of threshold even when the
magk is oriented 90° away from the target. Such “cross-orientation inhibition” however is
absent from the data. (Bottom) A good fit is obtained when only neighboring orientations
participate to the inhibitory pool of each unit, as was automatically determined by our
fitting procedure.
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mines the sigmoidal shape of the effective contrast response function (“transducer”), which
closely resembles the ad hoc transducer functions used by previous psychophysical models
(Legge & Foley, 1980; Wilson et al., 1983; Wilson, 1993; Foley, 1994; Thomas & Olzak,
1997). Similarly, divisive inhibition shapes the effective tuning for orientation and spatial
frequency, which is 30% to 35% sharper than the Gaussian tuning of individual filters.
Lastly, divisive inhibition determines the extent to which tuning for orientation and spa-
tial frequency changes with contrast. Specifically, the height of the tuning curves increases
more rapidly with contrast than their width decreases, ensuring that orientation and spatial
frequency discrimination thresholds are relatively independent of contrast. The intercon-
nectedness of different functional properties stands in sharp contrast to previous models,
which postulate separate components to account for transducer function, tuning function,
contrast-dependence of the tuning, and so on.

To predict psychophysical thresholds, it is necessary to make some assumptions about
noise. We postulated that the variance of the noise distribution increases with the mean
(“proportional noise” or “Poisson® noise”), consistent with other recent models (Seung &
Sompolinsky, 1993; Deneve et al., 1999). Previous psychophysical models have employed
noise of constant variance instead (“flat noise”) (Legge & Foley, 1980; Wilson et al., 1990;
Foley, 1994; Thomas & Olzak, 1997). Although the different noise assumptions are not
interchangeable in general (APPENDIX 7.9), the practical difference in the present context
is small, in that model variants with proportional and flat noise afford essentially the same
quality of fit. We nevertheless prefer proportional noise, because it ensures that model
responses are directly comparable to neuronal responses (see below).

The final part of our model is the decision stage. Building on previous work on
maximum-likelihood decisions (Seung & Sompolinsky, 1993; Pouget et al., 1998; Deneve
et al., 1999), we have extended the Fisher-information framework to arbitrary psychophys-
ical discriminations and sparse filter populations. This was made possible by relying on
exact numerical computations rather than analytical approximations, which can be quite
misleading (APPENDICES 7.8 and 7.9). The advantage of a statistically efficient decision is
that it requires no task-specific assumption and thus is able to predict the relative levels of
different types of thresholds. In fact, our statistically efficient decision agrees significantly
better with observer thresholds than the sub-optimal decision strategies widely used in other
psychophysical models (“Minkowski norm”) (Thomas & Olzak, 1997; Bowne, 1990). Specif-
ically, our optimal decision strategy yields orientation (and spatial frequency) discrimination
thresholds 60% lower than the Minkowski norm, when contrast discrimination thresholds
are the same, and thus corresponds much better to the threshold relationship that is actually
observed. Our results bear out the theoretical analysis of Pouget and colleagues (Pouget
et al., 1998), who found that sub-optimal strategies yield larger discrimination thresholds.

Indeed, these larger discrimination thresholds are incompatible with the observed masking
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thresholds.

7.4.3 Relationship to Physiology

The response of neurons in primary visual cortex typically saturates at a given contrast and
is best described by a “hyperbolic ratio” function (Albrecht & Hamilton, 1982; Heeger, 1992;
Geisler & Albrecht, 1995). This is at variance with our model, where responses continue
to increase with contrast (as a power function with an exponent of approximately 0.5). A
likely reason for the discrepancy is that model responses reflect the average response of a
diverse population of neurons which saturate at different contrasts (Albrecht & Hamilton,
1982; Foley, 1994).

The tuning width of neurons in primary visual cortex of macaque has been estimated
to be 20 £+ 9° for orientation and 0.76 + 0.30oct for spatial frequency (half-width at half-
maximum, or HWHM) (DeValois et al., 1982; Hirsch & Hylton, 1982; Skottun et al., 1987;
Geisler & Albrecht, 1997). This agrees reasonably well with the effective tuning half widths
of our model units, which are 14° for orientation and 0.56o0ct for spatial frequency, if one
considers that psychophysical performance is likely to reflect the best tuned neurons of a
diverse population (Bradley et al., 1985; Vogels & Orban, 1990; Britten et al., 1992; Zohary
et al., 1994; Shadlen et al., 1996). We note also that tuning widths in primary visual cortex
appear to be independent of contrast (within the accuracy of physiological measurements)
(Skottun et al., 1987), which is once again consistent with our model (to the precision of
experimental data).

The variance of neuronal responses is roughly proportional to the mean, the exact re-
lation being a power function with an exponent of 1.1 to 1.2 (Softky & Koch, 1993; Teich
et al., 1996; Geisler & Albrecht, 1997). Our model agrees closely with these values, as the
best-fitting exponent ranged between 1.0 and 1.3. Note, however, that our model assumes
that responses vary independently from each other. This is not quite true in cortex, although
the conditional covariance between visual cortical neurons is small (i.e., the correlation not
due to the stimulus) (Zohary et al., 1994; Gawne et al., 1996). In our model, a population of
units always contains more information than the most informative individual unit, because
Fisher information is additive for independent noise. In cortex, however, individual neu-
rons may encode as much information about a stimulus as the animal as a whole (Bradley
et al., 1985; Vogels & Orban, 1990; Britten et al., 1992; Zohary et al., 1994; Shadlen et al.,
1996). The reason for this discrepancy may lie in conditional covariance between neuronal
responses, as the information of individual units would no longer be additive.

A particularly interesting issue is the neural basis of divisive inhibition. Although di-
visive inhibition was originally considered the result of shunting inhibition at the level of
individual neurons (Carandini & Heeger, 1994), it is now simply thought to provide a con-

venient description of the collective behavior of neural circuits in primary visual cortex



138
(Somers et al., 1995; Douglas et al., 1995b; Carandini et al., 1997; Holt & Koch, 1997;

Ahmed et al., 1997). The function of these circuits remains controversial and may have to
do with contrast adaptation, with the sharpening of neuronal tuning, or simply with gain
control (Ferster & Koch, 1987; Bolz et al., 1989; Heeger, 1992; Somers et al., 1995). The
circuits we describe in terms of divisive inhibition are likely to be found among short-range
intrinsic connections in primary visual cortex (Toyama et al., 1981; Blasdel & Salama,
1986; Katz et al., 1989; Crook et al., 1997; Das & Gilbert, 1999). This is suggested by the
functional organization of primary visual cortex and the fact that the circuits in question
involve neurons with overlapping receptive fields and similar tuning properties. Recurrent
excitation and inhibition within cortical columns are likely to play an important role as
well (Douglas & Martin, 1991; Hata et al., 1991; Douglas et al., 1995b). Indeed, detailed
computational models combining short-range inhibition and recurrent excitation exhibit
functionalities which are very similar to divisive inhibition (e.g., sharpening of orientation
tuning and reducing its dependence on contrast) (Somers et al., 1995; Carandini & Ringach,
1997).

Another feature of the interactions implemented in the model was that we found the
width of the inhibitory pool to be narrow in the orientation domain. This property results
from masking data, which does not exhibit any cross-orientation inhibition. As regards the
excitatory pool, our model used a single unit. This connectivity is directly supported by
studies of intrinsic connections in cat hypercolumns (e.g., (Hata et al., 1991)), where exci-
tatory connections are predominantly found between cells with same tuning, and inhibitory
connections between cells with similar tuning but not between cells with orthogonal tuning
(see also refs. (Ferster, 1986; Ferster, 1988)). For the time being, our model does not make
a clear prediction towards narrow (Ramoa et al., 1986; Heeger, 1992) or broad (DeAngelis
et al., 1992; Bowen & Wilson, 1994) pools in spatial period.

Although our decision stage is purely abstract, and not intended as a model of any
particular level of cortical processing, it is interesting to note that neural networks are well
suited to compute statistically efficient estimates of stimulus attributes such as contrast, ori-
entation, or spatial frequency. In fact, several network architectures have been proposed as
maximum-likelihood estimators (Seung & Sompolinsky, 1993; Mato & Sompolinsky, 1996).
Particularly relevant to our model is a non-linear recurrent network for estimating stimulus

orientation (Pouget et al., 1998; Deneve et al., 1999).

7.5 Outlook

In this Chapter, we have seen that our model indicates that a wide range of spatial vision
thresholds reflect a single level of visual processing, most likely corresponding to primary

visual cortex. Furthermore, the visual processing in question is described quite well by di-
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visive inhibition among overlapping visual filters. Both conclusions follow from our finding
that using divisive inhibition simultaneously predicts — and in return is simultaneously
constrained by — contrast increment thresholds, orientation and spatial frequency discrim-
ination thresholds, and contrast masking thresholds. The parameters of divisive inhibition,
as inferred from threshold data, are tightly constrained. For the most part, they are in
excellent agreement with what is known about visual processing at the level of primary
visual cortex. The one exception is the range of spatial frequencies contributing to divisive
inhibition, which is only weakly constrained by our data. In accounting for a wide range of
behavioral thresholds, we found it important to employ a statistically efficient decision that
avoids any bias in favor of one threshold or another. To this end, we described a generalized
Fisher- information approach that can be adapted to arbitrary psychophysical tasks (see
APPENDICES).

In the next Chapter, we will see how the present model also accounts for top-down
modulation of psychophysical thresholds by visual attention (Lee et al., 1997a; Itti et al.,
1999; Lee et al., 1999b).
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7.6 APPENDIX: COMPUTATION OF INHBIBITORY CONSTANT

We derive a closed-form expression for the inhibitory constant, S, which ensures that the
inflexion point of the transducer function will be located at a given stimulus contrast. In
our model, this procedure is used to replace, in our results, the parameter S (which has
no easy intuitive meaning if the range of activity, number, and weighting of the different
units is taken into account) by a more intuitive parameter, Sy, (which relates the lowest
contrast increment threshold in Exp. 1 to the contrast detection threshold).

The model, in its most general form where all parameters can have different values for
the different scales A € A, is formulated as, for a stimulus of contrast cg, period Ag and

orientation fg:

((0s = O nj2m/2)”  (log(As/N))?
E)p = Gycsexp (— 217;/2 n2)” _ | g;ag/ ) (7.11)
N X
and the pooled response is:
A (E YA
Ryp=—— (A(Bro ¥ 1)) =+ (7.12)
(S)\) A4 Z W)\’g()\ ,0 ) (A)\I (E)\/’al + 6)\1))
(X,0)EAXO

Note that this is the most general formulation of our model, and is slightly more complex
than the simplified expression used in the body of this Chapter. For a given stimulus shape

(As,0s), we can simplify the expression for E) g as:
E) g = aygcs (7.13)

i.e., we absorb the tuning curves in a contrast-independent coefficient o ¢ and only keep
the linear dependence of E) y with cg explicit. Obviously, the values of «) ¢ are different
for different stimuli (Ag,6s). The coefficients a g are unrelated to the noise exponent o
used elsewhere in this Chapter, and should not be confused with it.

Given all the other parameters, we want to compute the set {Sy; A € A} which will yield
an inflexion in the transducers for a fixed set of contrasts {c;,; A € A}. To this end, we
need to compute the second derivative of R) ¢y with respect to cs; this second derivative will
be zero at the inflexion point. Note that the contrast at the inflexion point approximately
corresponds to the contrast at which lowest thresholds are found in Exp. 1 (this approximate
correspondence is dependent on the noise model). To compute the second derivative of Ry g

with respect to cg, we write, using the shorthand notation Vf, f' = df /dcs:
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N
N 7.14
ot (7.14)
N  ND'

a2 1
D D2 (7.15)
1

=3 (DQN” _ DND" —2DN'D' + 2ND'2) (7.16)

with (caution, N and D both depend on A and € though this is not made explicit here in

order to simplify the notations):

N
NI
NII
D

DI

DII

(Ax(arges +ex)™ (7.17)
MArang (Ax(angcs + €)™ (7.18)
M — 1) A30e3 g (Ax(arges + €)™ > (7.19)
SO+ Y WiV, 8) (Ax(aw pes +ex)™ (7.20)
(N,0')EAXO
! pl oy—1
oA Z Ayay gWyg(X,0') (Av(axecs +ex)) (7.21)
(N,0)EAXO
6 _
Moy —1) Z Ailail,GIWAye(A,,gl) (A,\I (a,\/,gics + 6,\/)) A2 (7.22)

(N,0")EAXO

For D # 0 (which is always true), R} , =0 & D3R'>(,9 = 0. Hence, R} , is zero when:

D?N" — DND" —2DN'D' + 2ND"* =0

(7.23)

Of all the variables in the above equation, only D depends on S), such that we can

rewrite D as:

D= (S)\)(s’\ 4+ Dy =Uy + Dy

(7.24)

We now solve Eq. 7.23 for Uy, which will give us S):
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(U2 + D2 + 2U\Do)N" — (Ur + Do)(ND" + 2N'D') + 2ND"* = 0 (7.25)
N"U? + (2DyN" — ND" — 2N'D"\Uy, + (7.26)

(D2N" — Dy(ND" +2N'D') + 2ND'?) = 0 (7.27)

aU +bUy+c = 0 (7.28)

A = b —dac (7.29)

v, = PEVA a0

2a

Hence U), hence S). Thus, using the desired contrasts at inflexion ¢;, as the value of
cs for the different scales A € A, we obtain the corresponding set of inhibitory constants
{Sx; A € A}.

Several variations of the model exist, but all differences are in the expression of the
noise, which is not used here. As a consequence, we may have VA € A, Ay =1 and n) =0, if
these parameters are absorbed in the noise formulation. The computation of S) presented

here does not change under these assumptions.
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7.7 APPENDIX: FISHER INFORMATION IN THE GENERAL (GAUS-
SIAN CASE
It has been shown by others that, for a Poisson random variable with rate {, Fisher infor-

mation for a function depending on ¢, f(¢) is equal to (Seung & Sompolinsky, 1993; Pouget
et al., 1998):

(7.31)

In our model, however, we use a more general noise model, which can take any form
which can be reasonably well approximated by a Gaussian. This includes the “Poisson®”
noise model described in the main body of this Chapter. The use of such more general noise
model requires us to derive Fisher information corresponding to that model.

Consider a Gaussian random variable z with mean p and variance o2, both of which are
functions of a stimulus attribute (. We now derive the Fisher information of z with respect

to ¢. The probability of observing = given (, p(z|(), and its derivative with respect to (,
p'(z¢), are:

p(zl¢) = G\Z—W exp (—%) (7.32)
al0) =ptald) (Ef ol + 21 - 2 739

If we denote the expectation of f(z) with respect to to p(z|¢) with E[f(x)],

+o0
Euwn=/' f@)p(a¢)de (7.34)

—0oQ

the definition of Fisher information (e.g., (Cover & Thomas, 1991)) yields:

2
J¢) =E (ffclogp(XK))]
1)
-7 _p(X;C)2]
_ N
o |(5 s K2

1
= [(MQO'QIU,I 2p30p'a' + 2ua3u'0' + ,u o' 2u2020' + 040'2)
o6

+ (—2u02u'2 +6plop'o’ — 2030’ — Apdo 24 4u020'2) E[z]
+ (02,1/2 — 6uop'c’ + 6u20' — 2020 ) E[z?]
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(7.35)

where p' and ¢’ are the derivatives of u and o with respect to ¢, respectively. In the special
case of 02 = pu® (Poisson® noise), the Fisher information becomes
12 «

J(C) = ’;—2 [u""”‘ + ;] (7.36)
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7.8 APPENDIX: IDEAL OBSERVER DECISION IN THE GENERAL
GAUSSIAN CASE

We consider a stimulus parameter ( and two visual stimuli S; and S5 corresponding to
parameter values (; and (2. When S; is presented (i € {1,2}), the observer builds an
internal estimate of (;. Because the estimation process is noisy, we describe the estimate of
¢; by a Gaussian random variable G(u;, o) of mean y; and standard deviation ;. In the main
body of this Chapter, we used unbiased (u; = ¢;) and statistically efficient (o7 = 1/7(¢:))
estimation (Fig. 7.5). Without loss of generality, we assume p; < po.

Although some of the results presented here are well known in some particular cases,
like, for example, when o1 = o9 (Green & Swets, 1966), I have not found any complete
treatment of the general case just exposed. Here, I consequently propose to carry out the
full derivations in the general Gaussian case, which is what is required for our model where

a variety of noise models can be used.

7.8.1 YES/NO TASK

The Yes/No paradigm uses a single stimulus presentation for each trial, consisting of either
S1 or So. The observer performs a forced choice between two hypotheses: In hypothesis H 4,
which the experimenter presents with probability P(H 4), S1 is present, and in hypothesis
Hp, presented with probability P(Hg) = 1—P(H4), S is present. The noisy observation is
described by a random variable X, such that P(X) = P(X|H)P(Ha) + P(X|Hp)P(Hp).
In the Yes/No case, P(X|H,) is distributed from G(u1,01) and P(X|Hp) from G(usz,02).

The ideal observer makes a maximum a posteriori (MAP) decision: He or she wants to
maximize P(Hr|X) with respect to I' € {4, B}, i.e., the probability that a given stimulus

was present knowing the unique observation. The map decision rule hence is:
Hy
P(HA|X) 2 P(Hp|X) (7.37)
B

This is optimal in the sense that the total number of errors is minimized on average (as-

suming that misses and false alarms are equally penalizing). Using Bayes theorem,

P(X|Hr)P(Hr)

P(HIX) = == 5,

(7.38)

we can show that MAP is equivalent to a maximum likelihood (ML) decision for this task:

The MAP observer is equivalent to basing the decision on the likelihood ratio L:

_ P(X|Ha) "3 P(Hp)

= P(X|Hy) 1, P(H)

(7.39)
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Two decision criteria D and D' are thus derived, as the crossover points between the two
weighted distributions P(H 4)G(p1,01) and P(Hp)G(u2,02), by solving for d in:

P(H d—p)? P(H —d)?
(Ha) exp (—( '1;1) ) = (Hp) exp (—7@2 5 ) ) (7.40)
o1V21 207 o2V2T 203
Taking the logarithm on both sides yields a quadratic equation in d, such that:
p — 120t = 03 — 0109/ (1 — o) + 2(07 — 03) log(P(Hp)o1/(P(Ha)2))
o} — o}
pf _ H20f =03 + 0102/ (i — p2)” + 2(07 — 03) log(P(Hp)o1/(P(Ha)o5))
o} — o}
(7.41)

When |01 —09| — 0 and P(H4) = P(Hp) = 1/2, the expression for D extends by continuity
to the classical result (Green & Swets, 1966) using a unique criterion D — (uo—p1)/2 (while
D' — +o00, depending on the sign of oo — 01). In general, however, the MAP observer uses
both criteria to make a decision (Fig. 7.17.a). Because this seems unecological, we assume
in what follows that human observers only approximate the ideal MAP decision, by solely
using the criterion D that is between p1 and po; the observer then reports H4 when z < D
and Hp when z > D. Using this unique decision criterion, the probability of error is given

by the weighted integral of the two tails of the distributions around the crossover point:

P(error) = P(X > D|Ha)P(Ha)+ P(X < D|Hp)P(Hp)
_ PN (< @-mP), P [P (@-m)?)
oise f, = () e g [ e ()4

_ P(HA) D—ul P(HB) UZ_D

- it (o) P (22)

1 P(H D — P(H - D
Performance = 1 — P(error) = 2 + (2 A)erf( \//%1> + (2 B)erf (MZ 7 )
o1 g2

where erf(z) = \% Iy exp(—t?)dt = 1 — erfc(z) is the cumulative Normal distribution.

7.8.2 TWO-ALTERNATIVE FORCED-CHOICE (2AFC) TASK

The two-alternative forced-choice (2AFC) paradigm uses two stimulus presentations for each
trial. The goal of this double presentation is to eliminate potential problems associated with
systematic observer bias in the determination of D for the Yes/No task. For temporal 2AFC,
the observer makes a forced-choice decision between two possible hypotheses: In hypothesis
Hy, stimulus S; appears first, followed by S, (or in spatial 2AFC, S is on the left and S,
on the right); in hypothesis Hpg, So appears first, followed by S; (or S is on the left and Sy
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Figure 7.17: Ideal observer discrimination. (a) Yes/No decision: The MAP decision rule
consists of deciding that the unique observation z originated from the distribution (u1,01)
ifft D' < x < D (and originated from (u2,02) otherwise). Human observers most probably
only approximate MAP decision by ignoring D’; their probability of error is then given by
the shaded area. (b) 2AFC decision: Given the particular first observation z, represented,
MAP decision dictates that z, originated from (u1,01) and the second observation zg
originated from (uo,09) iff 3 > zo and z3 > z (otherwise, z, originated from (u2,09)
and z from (u1,01)). Human observers most probably ignore the second condition, and
only base their decision on the comparison between z, and z3 (and in this example make
a wrong decision, in the MAP sense, when z, < 23 < ).
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on the right). The observer hence makes two observations, described by random variables
X, for the first presentation of each trial and Xg for the second presentation, such that
P(Xa,Xg) = P(Xa,Xg|Ha)P(Ha) + P(Xa, Xg|Hp)P(Hp).

The MAP decision consists of maximizing P(Hr|X,, Xg) with respect to I' € {4, B}.
Like in the Yes/No case, MAP is equivalent to ML, such that the decision is made on the
basis of the likelihood ratio L:

H
r— P(Xa,Xﬂ|HA) zA P(HB)

P(Xa, Xg|Hp) £, P(Ha) (7.42)

We assume conditional independence between X, and Xg with respect to H4 and Hp; this
simply means that the system’s noise is uncorrelated between both stimulus presentations
in a given trial (e.g., if the delay between both presentations is long enough for the system

to reset). Hence (using the same Gaussian distributions as in the Yes/No case):

P(Xo|Ha)P(Xg|Hy)

L
P(X,|Hp)P(Xp|Hg)
(ta —p1)?  (z5—p2)® | (3a—p2)* | (z5—m)’

log(L) = — _
og( ) 20% 205 + 20% + 20%

To — T

= = 2 2ﬂ (2(‘731‘1 — otpa) + (Ta + xﬂ)(U% - U%))
20903

H
The problem of solving log(L) zA log(P(Hp)/P(H4)) hence yields the following rules:

Hp
Hy 20252 log(P(Hp)/P(Hy4
oo > a5 (vatop)ot—of) 2 A2 OBLHBPWHA) gz, 52,
Hg Lo — Zp
Hp 25202 log(P(Hg)/P(Hy4
oo <zgy  (vatop)ot—of) 2 A BLHPWHA) oz, 52,

Hap Lo — Tp
(7.43)

Like in the Yes/No case, it would seem unecological for human observers to use such
complicated multicriteria decision rules (but note their substantial simplification when

P(Hy) = P(Hp) = 1/2; see Fig. 7.17.b for an example). It is consequently assumed that
Hp

humans only approximate the MAP ideal observer, by solely using the first rule, z, 2 zg,
Ha

irrespectively of the results from the second rule. The probability of error is then given by
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(using the fact that G(ua,09) — G(u1,01) = G(ua — p1,1/03 + 03)):

Plerror) = P(Xo > Xj|HA)P(HA) + P(Xa < X5|Hp)P(Hp)
= P(Xo—Xp>0Ha)P(Ha) + P(Xo — X3 < 0|Hp)P(Hp)
P(H

- )erfc i )-I—P(HB)erfc (M)
C 2 T \VaeTre) 2 \VEeT e

= Lo [ H2m
2 207 +03)
1

1 — 1
01 2
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7.9 APPENDIX: COMPARISON OF NOISE AND DECISION MODELS

It is instructive to compare different noise and decision models for filters with relatively
simple response properties, for which the different approaches yield similar, and in some
cases identical, results. Of course, this close correspondence breaks down for filters with
more complex response properties, such as those used in our model. First we derive the
Fisher information for Poisson and constant noise, and then compare decisions based on

one filter, on all filters, and on the Minkowski norm.

7.9.1 POISSON NOISE

Consider a visual filter 7 tuned to orientation 6; and spatial frequency w; whose response is

a Gaussian random variable with mean R; and variance V;? given by

_(6—51')2 _(u.)—u)i)2
Ri=Acdfe %9 e % V? = BR; (7.44)

where A is the sensitivity, f the power of the contrast dependence, oy and o, the tuning
widths for orientation and spatial frequency, 8 the noise level, and ¢, 6, and w are the
contrast, orientation, and spatial frequency of the stimulus. Note that such a filter differs
from those used in our model by neglecting background activity, by using a power function
for the contrast dependence, by fixing @ = 1 and by being independent of other filters (i.e.,
filters with other tuning properties).

To derive the Fisher information with respect to ¢, 8, and w we note that:

OR; IR; OR; 0—0; OR; W — W
_ - — _R, 4
Oc c’ 00 i ag ’ ow R (7.45)

2
0y

Equation 7.7 yields the Fisher information with respect to attribute ¢
2 2
Boo (IR (mL) s L ()
! R2 \ & 8 2 R? \ & B
(7.46)

7.9.2 (CONSTANT NOISE

Identical results can be obtained for constant noise, at least for the simple visual filters

considered here. Let
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_ (6_97;)2 - (w—wi)z

R; = VA ?e 5 ¢ 4l V2 =

1

D

(7.47)

where the constants have been chosen to facilitate comparison with the case of Poisson
noise. Note that the signal-to-noise ratio R;/V; is four times larger with constant than with

Poisson noise. The derivatives for constant noise are

8RZ’ fRZ aRz 0— 9, aRz W — W
= =—Ri——~ =-Ri—— 4
dc 2¢ a0 " 202 Ow R 202 (7.48)

and the Fisher information with respect to attribute ( is

¢ _ 4 8R,~)2
% B(BC

fQRZ 0—0.)2 R? w—w)?R
Jf:c_QFZ Jf:%?’ J;U:(Uiz;oﬁ (7.49)
w

This result is identical to the one obtained for Poisson noise.

7.9.3 MOST INFORMATIVE FILTERS

The threshold in a 2AFC experiment can be related to the Fisher information by letting

performance equal 3/4 and reformulating Eq. 7.6 to

o TG 1 (zetan) b il
ac=la CQ'_’“\/ 2 T VTG &)/2) kel oy
(7.50)

If we base the decision on only one filter, we can choose the most informative filters, in
other words, the one with the largest Fisher information. For contrast discrimination, J;
is maximal when 6; = § and w; = w. For orientation discrimination, Jie is maximal when
(6; — 0)? = 203 and w; = w and for spatial frequency discrimination, J{ is maximal when
(wi — w)? = 202 and 6; = 6. The thresholds that result from a decision based on these
filters can be obtained from Eqns. 7.46 or 7.49:

Ac Jé; ,303 Bo?
— ~ 2k —— Af =~ V2 — Aw ~ V2 Y .51
- k”AfQCf 0~ ek”Acf WV ekVAcf (7.51)
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7.9.4 ALL FILTERS

Alternatively, we may base the decision on all filters by computing the Fisher information
for the entire population. For simplicity, consider a population of filters spaced Af and
Aw apart and covering the entire orientation/spatial-frequency plane. The total Fisher

information for this population is

Jiot = ZJ M A ZJAOAwN p—— / / J;600w (7.52)

0;,w; 0;,w;

where p is the filter density in units of 1/0po,. As the filter density increases, the

approximation becomes more and more exact. With the help of

Ry
o [0
209 2

\/%T,/e}(p[ 209)2]69:1 \/27,/ 209

we obtain the following expressions for the total Fisher information and the discrimination
threshold:

¢ P c 2nogo, Afclp Ac \/? B
Jthagaw / / JE606w =" fGa — ~ A\ kT ey (7.53)

0 p 0 2mo,Ac p \/5 Boi
Tiot 090, //JZ 000w Boy o 7rk Aclp (7.54)
27ragAcfp /2 Bo?
w ~ - w
o J 806w ~Bou Aw =~ ﬂk Acts (7.55)

Note that the contrast threshold based on all filters is smaller than the threshold based
on the most informative filter, by a factor of 1/4/27. The difference in orientation and

spatial frequency thresholds is even larger, with a factor of 1/\/exn.

7.9.5 MINKOWSKI NORM

The Minkowski norm has been one of the most popular ways to model a perceptual de-
cision (Quick, 1974; Bowne, 1990). As thresholds reflect the magnitude of the response

difference to two stimulus alternatives, one expects that thresholds will be proportional
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to the derivative of the response R; with respect to a stimulus attribute . Specifically,
one may postulate that threshold is reached when the response difference AR; equals the

standard deviation V; of the response:

OR;
a¢

AR; 1
Vi

OR;
a¢

AC=V;

AR; = ‘ AC=1 (7.56)

When the decision is based on multiple filters, threshold is reached when the Minkowski

norm of the ratios AR;/V; reaches unity:

AR; Q]9

Vi

(7.57)

s

%

The ratios AR;/V; stand in a simple relation to the Fisher information, which is obtained

both for constant noise and for Poisson noise:

AR; i‘aRi
Vi VB | &¢

In the special case of (), the Minkowski norm predicts the same thresholds as does Fisher

AC = \/JT-CAC (7.58)

1/2

information, except for a proportionality constant:
1/2 )
= A {Z Jf] AC = ——  (7.59)
i

bo [Z(Avﬁ)z NS

In the general case (Q > 2), however, the predictions of the Minkowski norm differ from

those of Fisher information. This is particularly true when information is distributed over

many filters. To see this, consider a population of N filters with identical AR;/V; = 4/ Jf =

Nar

= N9 /2 (7.60)

AR;\©
ACMinlcowsk:i = [Z ( Vi Z)
i

—1/2
ACFisher = [Z Jf] = N71/2 [JC]_1/2 (7.61)
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The factor by which the Minkowski norm overpredicts thresholds, N'/2-1/@Q grows with
increasing N if Q) > 2.
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7.10 APPENDIX: FORMAL ANALYSIS OF MODEL FITS

The robustness and stability of model fits can be analyzed with the help of two approxi-
mations: a linear approximation of the threshold function and a quadratic approximation
of the fit error function. These approximations allow us to derive analytical expressions for
(i) the region around the optimal value to which each parameter is constrained by data and
(ii) the varying extents to which different data points constrain the model.

Let X be the vector of ten model parameters, and X the best-fit value of these pa-
rameters. Each threshold prediction ¢;(X) for each datapoint 4 is linearized around X

as:

ti(X) = ti(Xo) + J;} (X — Xo) (7.62)

where J;, is the Jacobian of ¢; at X(. Similarly, the fit error to the data e(X) is

approximated by the second-order formulation:

e(X) = e(Xo) + J. (X — Xo) + (X — Xo) "Ho(X — Xo) (7.63)

where J, is the Jacobian and H, the Hessian of e at Xy. At the minimum of e in X,
we know that J, = 0 and H, is symmetric and positive.

To determine the tolerance range within which model parameters are constrained by
data, we need to project the subspace e(X) < e(Xy) + € onto each parameter’s axis (see
(Press et al., 1992), Chap. 15 and Fig. 7.18). This projection yields a measure of the
maximum variation obtained for each parameter when all parameters are allowed to arbi-
trarily vary while keeping the fit error within e of the best fit error. We can write this
projection problem as a constrained optimization problem: Denoting E; the basis vector

corresponding to the axis of parameter j, we want to extremize:

E] X subject to (X — Xo) H(X — Xo) <¢ (7.64)

To carry out this extremization, we write the Lagrange multiplier for this problem:

B X -\ ((X — Xo)THo(X — Xo) — e) (7.65)

Differentiating this expression, successively with respect to each parameter, yields a

system of equations which we can write in matrix form:
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Figure 7.18: Approximation of the error surface near the point of best fit, X(0). The error
surface is approximated by a paraboloid based on the Hessian matrix at Xy. With this
approximation, all points at which the fit error e(X) < e(Xg) + € are contained by an
ellipsoid (thick line). The actual iso-contour at which e(X) < e(Xj) + € is indicated by
the arrow. For each parameter, the ”tolerance range” within which e(X) < e(Xp) + € is
obtained by projecting the ellipsoid onto the associated axis (dashed lines).
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Ej — 2X\H (X — Xo) = 0 (7.66)

Using this equation and the expression for the constraint, we solve for A and then for

X:
€
X=Xot |——+—HE; (7.67)
\| B/ H'E; "

E[X = E] Xo+\/¢E] H, ' E; (7.68)

and the tolerance range for parameter j (given in Table 7.1) is defined as the difference

hence

between EJTX o and the maximum or minimum of EJ—-'—X :

oj = \/¢E] H. 'E; (7.69)

To determine the relative importance of different data points in constraining the model,
we need to investigate the extent of the variations in each threshold prediction ¢;(X) when
X is allowed to arbitrarily vary while ensuring e(X) < e(Xj) + e. Since H, is symmetric
and positive, we can transform, through diagonalization of H., this quadratic constraint
into a simple spherical inequality: We first decompose H, as H, = VDV ™!, where D is
diagonal and V is an orthogonal change-of-basis matrix. Because H, > 0, all its eigenvalues

are positive, such that:

H, = VDY?p2y—1 (7.70)

Additionally, because V is orthogonal, V™! = VT. We can now rewrite the constraint

as:

(X — Xo)'VD'2DY?VT(X — Xy) < € (7.71)



158

(D1/2VT(X - XO))T (DWVT(X - XO)) <e (7.72)

WTW <, ie., W[ <e, with W =DY2VT(X — Xp) (7.73)

Consequently, the region of the parameter space where e(X) < e(Xjy)-+e is the interior of
the hypersphere ||IW||2 = €. In order to compute the envelopes of all model predictions when
the parameters are inside this hypersphere, we need to find the minimum and maximum
of each ¢;(X) subject to the constraint ||[W]|? < e. Since we locally approximate ¢; by the
linear form t;(X) = t;(Xo) + J; (X — Xo), we trivially know that the extrema of this linear
form will be obtained for X such that ||IW||?> = ¢; indeed, we simply write:

ti(X) = t:(Xo) + JTV-TDTV2D2VT (X — X,) (7.74)

t(X) = t;(Xo) + KW (7.75)

with K = D~/ 2VTJti, such that the extremization problem becomes that of finding
the minimum and maximum of #;(X,) + KW subject to ||W||> < e. Because we have
reduced the function to extremize to a simple dot product between two vectors, we now see

that these extrema will be obtained when W is collinear with K, and more precisely when:

K
||

W = ++/e (7.76)
Finally, for the two values of W which extremize t;, we can compute the minimum and

the maximum of the model prediction for datapoint ¢ from Eq. 7.75:

X = ;(Xo) + Ve||K]| (7.77)

With this method, we can estimate the extrema of the range of threshold predictions
obtained from arbitrary parameter values X within a certain neighborhood of the best-fit
point Xy (e(X) < e(Xp) +¢€). The accuracy of this estimate is limited only by the accuracy

of the (very reasonable) approximations for ¢; and e.
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Chapter 8 Modeling Attentional Modulation of
Spatial Vision
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8.1 Overview

Although attention profoundly alters visual perception (Helmholtz, 1850/1962; James,
1890/1981; Pashler, 1997), it is not equally important to all aspects of vision. For ex-
ample, attention is of little or no help to many detection tasks (e.g., detecting a luminance
increment (Miiller & Findlay, 1987b; Downing, 1988)) and the degree to which it bene-
fits discrimination tasks varies widely with the discriminated attribute (e.g., discriminating
color, orientation, form (Treisman & Gormican, 1988; Cheal & Lyon, 1994; Braun & Julesz,
1998); see the general introduction to this Part of the thesis for more introductory and
background material on attentional modulation). In this Chapter, we start by summarizing
experimental results (Lee, 1999) on how attention alters thresholds for discriminating con-
trast, orientation, and spatial frequency of simple patterns, and for detecting one pattern in
the presence of another, superimposed pattern of different orientation or spatial frequency
(Lee et al., 1997b; Lee et al., 1999a). Together, these measurements characterize the visual
mechanisms that underlie basic pattern vision.

We then report that attention modulates the response normalization that seems to
underlie basic pattern vision. To achieve this computational account, we use the model
presented in the previous Chapter and apply it to the data of Lee et al. First we show
that the model is capable of accurately reproducing the observations in the fully attended
condition, as well as in the poorly attended condition. After these two separate fits, we
manually explore a number of alterations of the model, using manipulations which have been
proposed by several groups to account for a variety of attentional modulation observations.
We conclude from these preliminary manipulations that only when attention alters the
strength of interactions is the correct modulatory effect on thresholds reproduced by the
model. We confirm this result by running joint optimizations, in which two versions of
the model, which only differ by a subset of model parameters, are jointly fit to the double

datasets.

8.2 Attentional Modulation of Spatial Vision Thresholds

We briefly describe the experimental method used by Lee et al. (1997b; 1999a) to measure
attentional modulation of human psychophysical thresholds, and show their results. These
experiments have been extensively described in Dr. Lee’s Ph.D. thesis (Lee, 1999). We

consequently refer the interested reader to Dr. Lee’s thesis for further details.

8.2.1 Attentional Manipulation

Although visual thresholds are usually measured when stimuli are fully attended, here a

concurrent task was used to establish thresholds when stimuli are at best poorly attended
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(Braun & Sagi, 1990; Braun, 1994; Braun & Julesz, 1998). The concurrent task in question
forces observers to withdraw attention from peripheral stimuli and to focus on stimuli near
fixation (Fig. 8.1). This psychophysical manipulation is highly effective and causes sub-
stantial perceptual deficits in the periphery, similar to the deficits obtained after a lesion in
visual cortical area V4 of the monkey (Braun, 1994). However, the perception of peripheral
stimuli is not entirely abolished. Practiced observers enjoy a significant residual vision out-
side the focus of attention and render reliable threshold judgments about peripheral stimuli,
especially when the display is uncluttered and contains only a few salient stimuli (Braun &
Julesz, 1998; Braun, 1998a).

Observers discriminated contrast, orientation, or spatial frequency of a luminance-
modulated pattern appearing at varying locations of 4° eccentricity (“peripheral target”)
(Fig. 8.1.A). To draw attention away from this pattern, observers were asked to discrim-
inate whether five shapes near fixation (“central targets”) were the “same” or “different.”
When observers carried out both tasks, they concentrated attention on the central task,
which they were instructed to consider the primary task, and thus left the peripheral target
“poorly attended” (double-task thresholds). In contrast, when observers viewed the same
display but performed only the peripheral task, they “fully attended” to the peripheral tar-
get (single-task thresholds). The comparison of single- and double-task thresholds reveals

if and how attention alters visual perception.

8.2.2 Stimulus Generation and Experimental Paradigm

The experimental setup was virtually identical to the one used for our experiments; indeed,
our experiments were modeled after those of Lee et al. A number of differences, however,
existed: A dual-task paradigm was used to manipulate attention; the tasks consisted of
a Yes/No discrimination, because the 2AFC paradigm used in our experiments was im-
practical under dual-task conditions; consequently, the simple Gabor stimuli used in our
experiments were replaced by stimuli better suited to the Yes/No discrimination.

Stimuli were generated on a Silicon Graphics Indigo with a 1280 x 1024 pixels color
monitor. Viewing was binocular at =~ 120 cm distance, such that 1° =~ 80 pixels. Room
luminance was 3cd/m?, average screen luminance was 30cd/m?2, with linear increments of
0.07cd/m? obtained by Gamma correction and “color bit stealing” (Tyler, 1997). Cen-
tral targets appeared at 0 — 0.8° eccentricity and measured 0.4° across. Peripheral targets
appeared at 4° eccentricity, in a circular aperture of 1.5° (Fig. 8.1 shows timing infor-
mation). They were either sinusoidal gratings (Fig. 8.2.B,C) or vertical stripes whose
luminance profile was given by the 6th derivative of a Gaussian (Fig. 8.2.A,D,E). Mask
patterns were generated by superimposing 100 Gabor filters, positioned randomly within
the circular aperture (Fig. 8.2.A,D,E). When the spatial frequency was not varied, it was
4cpd (vertical stripes in Fig. 8.2.A,D,E; sinusoidal gratings in Fig. 8.2.B; superimposed
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Figure 8.1: Measurement of visual thresholds with either full or poor attention. (A). Se-
quence of fixation, stimulus, and mask displays (schematic). Observers fixate the center of
all displays. The stimulus comprises a central and a peripheral component, which appear at
varying locations of constant eccentricity. The central component consists of 5 Ts and/or
Ls (“central targets”) and observers report “same,” (i.e., 5 Ts or 5 Ls) or “different,” (i.e.,
4Ts+ 1Lor4Ls+ 1T). The peripheral component consists of the luminance-modulated
patterns shown in Fig. 8.2.A-E (“peripheral target”). For example, the peripheral com-
ponent might be a grating pattern of vertical or tilted orientation, in which case observers
would report “vertical” or “tilted.” The mask display limits visual persistence of central
targets. (B) Single-task (peripheral target ‘fully attended’): observers fixate the center
but respond only to the peripheral task (see Fig. 8.2). (C) Double-task (peripheral target
‘poorly attended’): observers fixate the center and respond first to the central task and
second to the peripheral task.
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Gabors in Fig. 8.2.A,D). The mask contrast was 0.5 when it was constant (Fig. 8.2.D,E).
Thresholds were established with an adaptive staircase method (80 trials per block), i.e.,
by adjusting target contrast, orientation, or spatial frequency in each trial according to
the success or failure of previous trials (e.g., (Watson & Pelli, 1983)). The figures show
results from two naive observers. Symbols represent the average threshold across observers
(between 12 and 20 blocks of trials per symbol). Error bars represent the average of the
standard deviations computed for each observer. In the double-task situation, observers
were required to match or exceed a certain level of central performance (the level achieved
when the central task is carried out alone). Approximately 15% of double-task blocks were
discarded because of poor central performance. In both single- and double-task situations,
observers fixated the display center, ensuring identical visual stimulation. The brief presen-
tation effectively precluded shifts of fixation towards the peripheral target (Fischer et al.,
1993).

8.2.3 Experimental Results

The results of Lee et al. can be summarized as follows. When peripheral targets are fully
attended, contrast detection thresholds (for zero mask contrast) are about 20% lower, and
contrast discrimination thresholds (for mask contrasts greater than zero) are about 40—50%
lower than when peripheral targets are poorly attended (Fig. 8.2.A). In addition, the
decrease of the discrimination threshold as mask contrast increases from zero (dipper) is
evident only when targets are fully attended. Note that the target position varies from trial
to trial (in order to forestall eye movements) and that positional uncertainty of this kind is
known to reduce the dipper (Palmer, 1995; Solomon et al., 1997; Foley & Schwarz, 1998).
Therefore, it is possible that our data underestimates the depth of the dipper.

The effects of attention on spatial frequency and orientation discrimination are even
more pronounced (Fig. 8.2.B,C). Spatial frequency thresholds are about 60% lower and
orientation thresholds about 70% lower when peripheral targets are fully attended, com-
pared to when they are poorly attended. Note that both types of thresholds remain essen-
tially constant for contrast values above 20%.

Interactions between superimposed stimuli of different orientation or spatial frequency
(target and mask; Fig. 8.2.D,E) are also altered by attention. When target and mask
have similar orientation or spatial frequency, attention lowers the maximal threshold by
about 50% (consistent with Fig. 8.2.A, mask contrast 0.5). As target and mask become
progressively more different, fully and poorly attended thresholds decrease towards the same
baseline level. The baseline is comparable to thresholds without mask (Fig. 8.2.A, mask
contrast 0.0), indicating minimal interactions between targets and masks of very different

orientation or spatial frequency.
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Figure 8.2: Attentional modulation of spatial vision thresholds, as observed by Lee et al.
(1997; 1999). The experiments are identical to those presented in Fig. 6.3 and Chapter 6,
except for the following differences: First, a dual-task paradigm was used to manipulate
attention, and yielded data for both a “fully attended” and a “poorly attended” conditions.
Second, the tasks consisted of a Yes/No discrimination, because the 2AFC paradigm used
in our experiments was impractical under dual-task conditions. Third, the simple Gabor
stimuli used in our experiments were replaced by slightly more complex stimuli, better suited
to the Yes/No discrimination. (A) Increment contrast discrimination (our Exp. 1); (B)
spatial frequency discrimination (our Exp. 3); (C) orientation discrimination (our Exp. 2);
(D) contrast masking, variable mask orientation (our Exp. 4); and (E) contrast masking,
variable mask period (our Exp. 5).
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8.2.4 Implications for Modeling

The observed attentional modulation appears complex and task-dependent. Indeed, rather
small attentional effects are found on contrast discrimination, while very large effects are
found on orientation and spatial frequency discrimination. Furthermore, the contrast mask-
ing experiments suggest a non-trivial selective enhancement of some thresholds by attention,
while others remain unaffected, depending upon the precise configuration of target and mask

stimuli.

8.3 Computational Account of Attentional Modulation

In this Section, we attack the challenging problem of trying to use our model to derive
a simple, unified computational understanding of these seemingly complex experimental
results. We start by deriving simple computational constraints from a simplified model,
and then use the detailed model presented in the previous Chapter to provide a detailed

computational account of the observed data.

8.3.1 Simplified Model

As extensively discussed in the previous Chapter, the visual thresholds measured here are
thought to reflect the activity of a population of “noisy filters” selective for stimuli of
different orientations and spatial frequencies (Wilson, 1980a; Legge & Foley, 1980; Watt &
Morgan, 1985). In the simplified model, we define a filter tuned to orientation # and spatial
period A by:

Ex0(Cs, As,0s) = CsAexp (— (log(AS)Q_QIOg(’\))Z _ (s _29)2> +B  (8.1)
oy 20}

that is, in the same manner as previously presented (Eq. 7.1), except for the addition of

a constant background activity, B. As we saw previously, when the properties of such fil-

ters are inferred from behavioral threshold measurements, they tend to match the response

properties of neurons in visual cortical areas V1 and V2 (DeValois & DeValois, 1988; Wil-

son et al., 1990; Geisler & Albrecht, 1997). Accordingly, each visual filter is thought to

correspond to a population of visual cortical neurons tuned to a particular orientation and
spatial frequency.

Can the observed effects of attention be understood simply as a change in the properties

of individual visual filters? To answer this question, we first examine the case in which filters

are independent, so that the output of each filter, R, g, is a monotonic (and perhaps non-

linear) function of its linear response, E) 9. We also assume that the variance of the filter
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output, V)\Qa, is given by:

Vg =B(Rro +¢) (8.2)

where [ is the “light noise” and ¢ is the “dark noise.” This provides a good approximation
of the response variance of visual cortical neurons (Geisler & Albrecht, 1997). Note that
this noise model is slightly different from the Poisson® model used in the previous Chapter;
the main motivation for such difference is the better theoretical tractability of the present
formulation, which we propose to examine here for independent filters.

Given these assumptions, the observed 20% difference between contrast detection thresh-
olds with full and poor attention implies that either the gain A decreases or the light noise
increases by about 20%. However, the observed 60% to 70% difference in spatial frequency
and orientation thresholds requires a far larger change in A and/or 8 (about 80%).

Indeed, if the “transducer function” R) g = t(E) g) is linear over small ranges of contrast,
and if the decision between stimulus alternatives is statistically efficient, we can derive
simple proportionality relationships for the contrast detection threshold, ACy;, and the

orientation and spatial period discrimination thresholds, Afy;s and AMg;s:

Acdet X % (83)

Agdis X 09” Aﬂc AAdis 0.8 O')\H AIBC (84)
S ]

These relations indicate the extent to which filter parameters such as 3/A, oy, and o)

must change to produce a given change in thresholds. Note that not all thresholds depend
on the same parameters. This model and the above expressions hence implies that, if we
assume only a change in gain A or light noise 8, we find the inconsistency mentioned: The
change derived from the contrast detection thresholds is far too small to account for the
observed differences in orientation or spatial frequency thresholds.

To reconcile our observations about different thresholds, already based on this simplified
model, we therefore have to assume that attention alters not only the gain or noise of visual

filters, but also the tuning widths, oy and o), for orientation and spatial period.

8.3.2 Detailed Model

In this Section, we use the detailed model presented in the previous Chapter, with the

exception that the same noise model as above is used, in order to simplify comparisons
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between the simplified and full models:

Vi, =B(Ryu +e) (8.5)

As a consequence of this new noise model, we can eliminate the linear gain coefficient
A from our model, which is now included in the noise coefficient 8. Finally, an additional
parameter is added, like in the simplified model, which expresses background activity at
the linear filtering stage, B.

We start by showing that our model is capable of separately reproducing the observed
data in either attentional condition. This result indicates that the model components and
degrees of freedom are suited to explaining not only, as extensively studied in the previous
Chapter, fully attended thresholds, but also poorly attended thresholds. This is an impor-
tant result, which is not a matter of course as the internal characteristics of the best-fit
models differ substantially; in particular, we find a significant difference in the noise vari-
ance, as well as in the power-law and divisive inhibition exponents, between both attentional
conditions.

Next, we manually explore a number of simple parameter manipulations around the
best-fit model to the fully-attended data. The manipulations investigated include separate
modifications of filter gain, noise variance, filter tuning, inhibitory pool size and interaction
strength. Of all these manipulations, only the alteration of the exponents v and ¢ which
govern the strength of interactions between filters yields a good prediction of the poorly-
attended dataset.

In order to verify this finding in a systematic manner, we conduct two sets of simulta-
neous fits to the entire dataset (including both attentional conditions), using an extended
model which makes two sets of predictions by allowing some of its parameters to change
according to the attentional condition. In the first simultaneous fit, only v and § are per-
mitted to assume different values in the two attentional conditions; all other parameters
are constrained to identical values for both conditions. In the second simultaneous fit, all

parameters except for v and § are allowed to change with attention.

8.3.3 Separate Fits to Either Attentional Condition

When we fit our model (10 free parameters: v, d, 0y, 0y, Xg, X, S, B, 3, €) separately to ei-
ther single- or double-task data, we obtain good agreement between predicted and observed
thresholds with physiologically plausible parameter values (solid curves in Fig. 8.3).

Note the realistic values for filter tuning, oy and o: the half-widths at half maximum
of model units are 12° to 15° and 0.42o0ct to 0.520ct, compared to approximately 20 + 9°
and 0.76 & 0.30oct for neurons in monkey visual cortex (Geisler & Albrecht, 1997)). Note
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Figure 8.3: Separate fits to the data. Solid curves represent fits computed separately for
single- and double-task data (all 10 parameters are permitted to differ). Parameters marked
“n.s.” were not significantly different when allowing the fitting error to increase by up to
5% above its best-fit value.
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also that orientation and spatial frequency thresholds remain constant for contrast values
above 20% (Fig. 8.3.B,C) and that the curves for full and poor attention appear displaced
vertically rather than horizontally. This shows clearly that attention changes more than
contrast gain, since a difference in gain of the linear filter stage would merely produce a
horizontal displacement. The main discrepancy between model and data is that the model
predicts a more pronounced dipper for contrast discrimination thresholds than is actually
observed (Fig. 8.3.A). Since the data may underestimate the dipper (Lee, 1999), this
prediction may in fact be correct.

That a single set of parameter values accounts for all thresholds observed with either
full or poor attention is not a matter of course. One might have expected that attending to
stimulus orientation would affect visual processing differently than, say, attending to spa-
tial frequency. In such case, different versions of our model would have been necessary to
predict the different experiments. Instead, our results indicate that, under each attentional
condition taken separately, a single model is capable of predicting all experiments. Conse-
quently, not only do our results support our claims that the model represents a reasonably
“unifying” account for basic spatial vision, but also they are consistent with the possibility

that attention alters visual processing in the same way for all examined tasks.

8.3.4 Manual Alterations of the Model

In a preliminary step, we explore a number of manual alterations of the model (Fig. 8.4). To
this end, we started by fitting the model to the “fully attended” dataset, and subsequently
manipulated some of the model’s parameters in an attempt to predict the “poorly attended”
data. For computational tractability of the manual interventions, these preliminary simula-
tions only concerned contrast and orientation discriminations, and used a simpler version of
our model, which only comprised one spatial scale. The manipulations investigated includes
separate modifications of filter gain, noise variance, filter tuning, inhibitory pool size and
interaction strength.

The parameters of the model were automatically adjusted to fit human psychophysical
thresholds for contrast and orientation discrimination tasks, in the fully-attended condition.
The model consisted of 60 orientations spanning 180° and one scale at 4 cycles per degree.
The multidimensional simplex algorithm with simulated annealing overhead described in
the previous Chapter was used to determine the best fit of the model to the fully-attended
data. The free parameters adjusted during the automatic fits were: the noise level, the
pooling exponents, the inhibitory pooling constant, the filter tuning widths, the inhibitory
pool size, and the background firing rates (9 parameters in total, since there was no pooling
across scales in this single-scale model).

As shown in Fig. 8.4, a change in both exponents v and § which govern the strength

of interactions between the model units yielded a successful transition from predicting the
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Figure 8.4: Manual alterations of the model. In these preliminary experiments, a simple
version of our detailed model (one scale, 60 orientations) was fit to the “fully attended”
data, after which a number of parameters were manually altered in an attempt to obtain
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yielded satisfactory results.
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fully-attended data to predicting the poorly-attended data.

The results from this computational effort suggest that attention does not simply change
one particular property of early visual units (e.g., gain). Rather, we found that a combi-
nation of change in gain and tuning best explain attentional effects, as obtained through a
modification of the strength of interactions between oriented units: Units interacted very
strongly when attention is present, yielding a sigmoidal transducer and sharpening of the
tuning curves. In the near absence of attention, interactions were much weaker, yielding a

transducer closer to a simple power law, and no sharpening of the tuning curves.

8.3.5 Simultaneous Automatic Fits to the Entire Dual-Task Dataset

Although there are several differences between the parameters obtained with full and poor
attention, the change in the exponents of the power law, v and §, is especially noticeable.
This was confirmed by a quantitative analysis of how well each parameter was constrained
by the dataset (see Methods, Model fits and Fig. 8.3.F): All parameters except for v, d
and (8 were not significantly different between both attentional conditions, when tolerating
a small yet noticeable degradation of the quality of fit by less that 5%.

Additionally, the special role of these exponents was further underlined by the manual
manipulations just described. We consequently decided to further study, this time in a
systematic and unbiased manner, how well a single modification of the two exponents v and
¢ could account for the attentional modulation of all observed thresholds.

To isolate the consequences of this change, we fit the model simultaneously to both
single- and double-task data, while allowing only v, § to take different values depending
on attention (12 free parameters). In other words, 7, § take two values while all other
parameters take a single value. This assumes that attention alters only the strength of the
interaction between filters. Even with this restrictive assumption, we obtain acceptable fits
with physiologically plausible parameter values (“12D joint fits,” solid curves in Fig. 8.5.A-
E, two leftmost columns in Fig. 8.5.F).

Contrariwise, when we allow all parameters ezcept -y, d to take different values depending
on attention (18 free parameters), there are no acceptable fits with plausible parameter val-
ues (“18D joint fits,” dashed curves in Fig. 8.5.A-E, two rightmost columns in Fig. 8.5.F).
The best possible fit turns out to be rather poor, and predicts neither the dipper in the
contrast discrimination thresholds (Fig. 8.5.A) nor the maximal extent of contrast mask-
ing (Fig. 8.5.D,E). Furthermore, even this poor fit requires unrealistic parameter values
(Fig. 8.5.F): Attention would have to alter the tuning widths of visual filters (oy from 17°
to 5° and o) from 0.7oct to 0.3oct) and, in addition, would have to “turn on” inhibitory
pooling in the orientation dimension (34 from 0.60y to 50y), without changing it in the
spatial frequency dimension (X, from 1.20) to 1.30)). Such drastic changes in cortical

interactions do not appear to be plausible.
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Figure 8.5: Joint fits to the data for both attentional conditions. Predicted thresholds
when attention changes some model parameters but not others. The solid curves represent
a simultaneous fit to both single- and double-task data, in which only the exponents y and
0 take different values depending on attention (12 free parameters). Observed and pre-
dicted thresholds agree reasonably well, and parameter values are physiologically plausible
(two leftmost columns in F). The dashed curves represent the optimal joint fit when all
parameters ezcept the exponents 7, d take different values depending on attention (18 free
parameters). Neither the dipper (A) nor the maximal extent of contrast masking (D,E) are
predicted, and parameter values are unrealistic (two rightmost columns in F). Parameters
marked (n.s.) were not significantly different when allowing the fitting error to increase by
up to 5% above its best-fit value.
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Figure 8.6: Effect of attention on early visual processing. Predictions based on 12-
dimensional joint fit in Fig. 8.5.F. Attention increases the contrast gain (3.3-fold, A),
causes the contrast response to assume sigmoidal shape at low contrast (B), sharpens ori-
entation tuning (by 40%, C) and spatial-frequency tuning (by 30%, D). To the extent that
the visual filters of our model reflect individual neurons in visual cortex, this predicts that
attention both increases the gain and sharpens the tuning of such neurons.
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In short, the effect of attention can be reproduced in a quantitative manner by selectively
increasing the exponents of the power law, v and §, but not by changing other parts of the
model. For example, changes of noise parameters, (3, ¢, tuning of linear filters, oy, o, or
size of the inhibitory pool, g, ¥, cannot account for the observed effects of attention.
The question as to why larger values of v and ¢ should account for attention is taken up in

the discussion.

8.4 Discussion

The observations of Lee et al. tightly constrain any effect attention may have on the
visual filters and/or the interactions amongst filters that are thought to underlie basic
pattern vision. Comparison with a computational model shows that the observed effects of
attention are consistent with stronger interactions amongst filters, but not with a change in
noise parameters without change in interactions, as is sometimes thought (Bonnel & Miller,
1994; Lu & Dosher, 1998). Essentially, the effects of attention on different thresholds are
too disparate to be accommodated by a single change in noise parameters.

In the framework of our model, the strength of the interactions amongst filters is con-
trolled by the exponents of a power law, v and §. The immediate reasons why larger
exponents (i.e., values of 3.5 instead of 1.5) account for the observed effects of attention
are as follows: Higher exponents accentuate the sigmoidal shape of the contrast response
function at small contrasts (Fig. 8.6.A), which explains the enhanced dipper of the con-
trast discrimination curve. The altered contrast response also reduces background activity
and, thus, lowers contrast detection thresholds. At larger contrast, higher exponents entail
an 3.3-fold increase in contrast gain (Fig. 8.6.B), which accounts for lower contrast dis-
crimination and contrast masking thresholds. Additionally, higher exponents sharpen the
tuning for orientation (by 40%, Fig. 8.6.C) and spatial frequency (by 30%, Fig. 8.6.D),
which sharply reduces thresholds for discriminating orientation and spatial frequency.

The more fundamental reason is, however, that larger exponents activate what is best
described as a winner-take-all competition amongst visual filters. Fig. 8.7 shows how atten-
tion (larger exponents) shifts the distribution of responses across the population of filters.
Attention accentuates existing differences between filter responses, boosting filters that re-
spond relatively well to a given stimulus, while suppressing filters that respond relatively
poorly. Another way of putting it is that the distribution of responses is far narrower with
full than with poor attention. This explains the perceptual advantage conferred by atten-
tion: Attention enhances the sensory representation by restricting responses to the filters
tuned best to the stimulus at hand. To the extent that visual filters can be identified with
individual neurons in visual cortex, our model thus predicts that attention changes both

the gain and tuning of such neurons.



175

T | Y \‘\\
05— TN
e Ty
| - ~
040 ---"" Fullyattended -+~ | | s
) Poorly attended ! ‘ ‘ N
% - L | s
§_0.3 I | " | o
2 T i |
02 _ - } ‘L [
01l —— i
0
20 ~

Stimulus __—» 0

orientation -10 0.02
Filter orientation =20 0 Contrast

Top-down, feedback
attentional gating

Figure 8.7: Attentional change in the response distribution. The top plot shows predictions
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orientations between —20° to +20° to a grating stimulus of orientation 0° and contrast
between 0 to 0.05 (threshold regime). Responses to fully and poorly attended stimuli
are represented by the red and blue surfaces, respectively (shown interleaved for clarity).
By strengthening a winner-take-all competition amongst visual filters, attention restricts
responses to the filters tuned best to the stimulus at hand. The bottom plot shows a simple
functional schematic of the top-down modulatory action of attention as inferred from our
model.
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Our model is consistent with recent findings in the visual cortex of humans and monkeys.
Attentional changes in neuronal activity have been reported in several early visual cortical
areas, including areas V1, V2, V4, and MT/MST (Moran & Desimone, 1985; Motter, 1993;
Treue & Maunsell, 1996; Luck et al., 1997; Roelfsema et al., 1998; Gandhi et al., 1998;
Brefczynski & DeYoe, 1998). Furthermore, the notion that attention modulates a local
competition in visual cortex has been proposed independently on the basis of theoretical
(Niebur & Koch, 1994; Tsotsos et al., 1995) and single-unit studies (Desimone, 1998). In
the macaque, attentional modulation of responses in the visual cortex is weak or absent if
only a single stimulus is present in the receptive field, suggesting that attention modulates
interactions between neurons with overlapping receptive fields (Moran & Desimone, 1985;
Luck et al., 1997).

Our model is consistent with reports that attention increases contrast gain in areas V2
and V4 of the macaque (McAdams & Maunsell, 1996b; Reynolds et al., 1997). Whether
attention sharpens the orientation tuning of visual cortical neurons remains unclear from
these experiments (Spitzer et al., 1988; McAdams & Maunsell, 1996b). Indeed, our results
suggest that an approximately 35% in sharpening of the tuning curves accompanies the
predicted 3.3-fold increase in gain. A very small sharpening of the tuning curves, of the
order of 1% to 1.5%, would consequently be expected to correspond to the 10% to 15%
gain modulation observed in single-unit studies; while such sharpening has not been ob-
served (Treue & Trujillo, 1999), it may just be for technical reasons related to experimental
precision in the measurements. Unfortunately, while dual-task experiments appear to yield
much stronger attentional modulation than the simple “attend to location” paradigms typ-
ically used in electrophysiological studies, it seems impractical to attempt to conduct such
experiments (which already are quite difficult for human observers) with awake monkeys.

We suggest that one interesting manner in which an experimental paradigm suitable for
monkey experiments could be designed is through the use of functional imaging techniques
in humans. Indeed, using BOLD-contrast imaging, we have been able to see (and others
before us (Gandhi et al., 1998)) large attentional effect in areas V1 and V2 when performing
simple visual discrimination tasks. In addition to providing direct support for our general
result that attention increases, through top-down feedback, activity in these early cortical
areas (Fig. 8.7), variations around these simple imaging experiments could be used to cal-
ibrate and optimize the strength of attentional modulation obtained for given experimental
paradigms. Indeed, a 4-minute scan is sufficient in our experience to derive quantitative
measures, to some degree, of how strong an attentional modulation can be expected for a
given set of stimuli and task instructions (Fig. 8.8).

It is also worth noting that our model predicts that fully focussed attention sharpens
orientation tuning in the parts of visual cortex that mediate basic pattern vision (presumably

areas V1 and/or V2). Increased competition in area V4 or MT could, however, result in
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Figure 8.8: Using fMRI to prototype and optimize attentional modulation experiments.
This figure shows strong attentional modulation in areas V1 and V2 during an experiment
conducted by Drs. Jochen Braun, Linda Chang and Thomas Ernst at the Harbor-UCLA
Medical Center (Torrance, CA), and is part of a broader study of visual segmentation by
these investigators. (a) I am lying in the scanner and viewing, through a system of binoc-
ulars and mirrors, stimuli presented on a CRT screen shielded from the ambient magnetic
field by several layers of y-metal. (b) The experiment uses a blocked paradigm in which
observers discriminate between the stimuli shown. The only important experimental char-
acteristic for the purpose of this illustration is that observers can either passively view the
stimuli (implying a state of low and diffuse attention), or have to actively perform a shape
discrimination task (implying strongly focused attention). (c) Activation along the pos-
terior calcarine sulcus is much stronger when observers have to engage attention onto the
task compared to when they passively view the stimuli. Repeating these experiments for a
variety of stimulus configurations allowed the investigators to optimize the strength of the
observed effect; here we suggest that similar methods could be used to rapidly design and
optimize experiments to be eventually performed in monkeys.
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sharpening for a more complicated stimulus dimension.

Finally, we do not wish to claim that attention is restricted to local interactions at one
particular level of visual cortex. More than likely, attention has additional effects on long-
range interactions at the same level and indeed at all levels of visual cortex. Nevertheless,
our results show that the activation of a winner-take-all competition amongst overlapping

visual filters explains many basic perceptual consequences of attention.

8.5 Outlook

In this Chapter, we have seen that the simple model of basic pattern vision presented in
the previous Chapter is capable of predicting attentional modulation of a variety of psy-
chophysical thresholds in a simple and task-independent manner. This result was obtained
by first deriving a set of modeling constraints from the data by Lee et al., using a simplified
model in which different filters do not interact. We then used our detailed model to carry
out fully detailed quantitative simulation of the entire dataset.

Not only was the model able to reproduce all thresholds separately for either attentional
condition, but we also found that a simple change in the strength of interactions among
visual filters was sufficient to simultaneously transition all the model’s predictions from
poorly-attended to fully attended thresholds. This allowed us to advance the very sim-
ple computational hypothesis that attention activates a winner-take-all competition among
early visual filters.

In the next Part of this thesis, we present a general discussion which relates to both

aspects of our work, the bottom-up and top-down functional expression of visual attention.
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This last part of the present thesis summarizes our findings and their meanings in terms

of computation in neurobiological systems.

8.6 Summary of Our Results on Modeling Bottom-Up At-

tention

In Part II of this thesis, we have proposed a detailed model for the control of visual
attention based uniquely on bottom-up, image-driven cues.

We have shown that the problem of combining several multiscale feature maps into a
unique saliency map can be best solved, in a generic manner, by endowing the feature
maps with simple spatially competitive dynamics. We have then shown that using a sim-
ple winner-take-all network and inhibition-of-return mechanism was an efficient neuronal
implementation for a simple attention focusing mechanism.

Despite the fairly crude implementation of our model, we have found that it is capable
of strong performance at detecting salient objects in complex natural scenes. These results
were obtained using images which always contained some amount of noise, or degradations
due to their storage format, and had not been carefully optimized for the model. Indeed,
most of our results are based on databases of images which were submitted to us by external
collaborators. In addition, most scenes studied were complex, with typically a large number
of objects, sharp contrasts in illumination conditions and color appearances, shadows and
occlusions. This contrasts with many computer vision models which are too often restricted
to grayscale images containing a small set of simple shapes on a uniform background.

Although the reproduction by our model of simple visual search tasks could have been
expected, it was not a matter of course when using the noisy stimuli which we described.
With our stimuli which contained speckle noise, spatial jitter noise, and array element
orientation noise, the basic difference between pop-out and conjunctive search was not
always obtained when using a “naive” model, in which all feature maps are simply summed
into the saliency map. One of our main findings was the realization that including some
non-linear dynamical computation already at the earliest levels of processing was key to the
performance of the model, especially when comparing it to humans.

A second important finding was that our model performs close to, or even sometimes
better than, humans do on similar tasks. This result was achieved even though our model
implements one of the most severe information processing bottlenecks possible: In our
model, the attentional focus is entirely controlled by activity in a scalar map, the saliency
map, which is 16 times smaller in z and y than the input image. Despite such drastic
reduction of information, by a factor 768 between the trichromatic retinal input and the
saliency map, our model often behaves as if it had a clear knowledge of all the details of

the scene. This remarkable result represents strong evidence for the computational validity
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of Koch and Ullman’s (1985) original idea that a single, explicitly represented saliency map
could efficiently guide attention. This very concise and explicit representation is in sharp
contrast with a number of theories of attention, in which attention is an implicit, emergent

property to which all visual areas directly contribute.

8.7 Summary of Our Results on Modeling Spatial Vision
Thresholds

In Part III of this thesis, we have proposed a very small model of just one hypercolumn in
primary visual cortex. Despite its small size, with an input layer comprising just 60 spatially
bandpass filters, this model was able to produce a simultaneous quantitative account of
34 human psychophysical thresholds, for five different classes of pattern discrimination
experiments.

Such result was obtained in part through our original use of a generic theory for ideal
observer discrimination in any type of psychophysical task. Using such framework allowed
us to overcome the problem, previously reported as unsolvable, of simultaneously predicting
contrast and orientation discrimination thresholds using a single set of model parameters.
This framework was directly developed following existing models which had used similar
concepts in simplified situations. Here, we have been able to extend it to a realistic situation,
in which any discrimination task may be considered, and in which a sparse population of
analyzing filters may be used.

Also of importance was our insistence in carrying out fully detailed numerical simulations
of the full non-linear model, and in avoiding linear or constant approximations each time
they were not fully justified and accurate. Although this resulted in our model taking
several days of computation time to converge towards a full prediction, and required the
development of specific computer process dispatch and management tools, we believe that
it also allowed our model to predict some of the more detailed features of our experimental
dataset. Indeed, we have described in several instances throughout this thesis both that
simplified versions of our model could only yield fairly approximate or sometimes wrong
predictions, and that important results such as the capability of simultaneously predicting
contrast and orientation thresholds was due to an apparently insignificant detail, namely a
slight broadening of the tails of our units’ tuning curves with contrast.

Our results are also remarkable in the fact that, in addition to its small size, our model
is very coarse in its implementation. Indeed, it does not include any refinement such as
synchronization among neurons, spike timing, or even any spiking for that matter. Although
our model only represents a functional account for the putative neuronal circuits responsible
for basic pattern vision, we have found that when all model parameters were left entirely free

to be determined by our psychophysical data, they converged towards plausible neuronal
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values. This strong result indicates that our formulation of the model, using simple linear
filtering followed by non-linear interactions in the form of power law and divisive inhibition
among neurons with similar tuning properties, may well represent a unifying understanding
of the basic functional principles underlying perception of simple patterns.

In part, our successful account for a wide variety of thresholds is due to our acquisition
of a coherent dataset in several human observers. By using localized pattern stimuli with
always the same shape, and by presenting them in the near periphery such that they would
presumably only excite one hypercolumn in primary visual cortex, our dataset represents

one of the most comprehensive accounts for basic spatial vision.

8.8 Summary of Our Results on Modeling Top-Down Atten-

tional Modulation

When we further applied our model of basic pattern vision to the dual-task dataset of Lee
at al., a first remarkable result was that this model, which had originally been designed
to account for thresholds under full attention, presented no difficulty in simultaneously
predicting all thresholds under poor attention as well. This strong result reinforces the
idea that our model may well represent a unified functional account for the earliest cortical
stages of visual processing in primates.

In addition, not only were the internal characteristics of the model fit to the poorly
attended dataset reasonable, as they had been for the fully attended dataset, but they
directly pointed us towards a simple computational explanation for the observed attentional
modulation. Indeed, although the separate fits to the fully and poorly attended thresholds
had been conducted independently, and involved, in each case, random starting parameter
values and no other constraint onto the model than dictated by the fitting error to the data,
we found that only three model parameter differed significantly between both attentional
conditions, namely one noise parameter and two parameters regulating the strength of
interactions among model units.

By carrying joint fits of a dual model to the entire dual-task dataset, we further showed
that the attentional modulation in noise, alone or combined with any additional modulation
in any parameter except for those regulating the interactions among units, could not explain
the observed psychophysical expression of top-down attentional feedback. The initially
different value of the noise parameter observed in the separate fits hence appeared not to
be critical to the results. A final joint fit in which attention could only alter the values of
the two exponents v and § which expressed the strength of interactions yielded a successful,
quantitative and simultaneous account for all dual-task observations.

These results led us to propose, on the basis of the increase in gain and sharpening

of the tuning curves resulting from the strengthening of interactions with attention, that
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attention activates a winner-take-all competition among early visual filters. On the one
hand, one remarkable aspect of this theory is that it represents an extremely simple, task-
independent and prototypical account for attentional modulation, and is entirely expressed
at the earliest stages of cortical visual processing. This contrasts with, although it does not
necessarily preclude or contradict, former theories which envisioned attentional modulation
as the result of a very complicated, task-aware and thus cognitively-controlled, process.
On the other hand, our theory appears to yield a much richer variety of predictions
than previously proposed much simpler theories based on electrophysiological experiments,
which regard attentional feedback as a multiplicative gain modulation. While we have seen
that, if we scale the attentional effects observed in our psychophysical experiments down to
the level of the effects observed in physiology, our theory would also reduce to a small gain
modulation with negligible sharpening of tuning, we have also provided strong experimental
and modeling evidence that such gain modulation cannot simultaneously explain the mod-
ulation of all of our observed thresholds. As electrophysiological experiments typically only
concern a few of our 34 datapoints, we conclude at present that more single-unit studies, if
possible demonstrating stronger attentional modulation, will in the future provide a critical

test for our theory.

8.9 Computation in Neural Systems

As it has probably become clear to the reader, the common emerging theme in the various
parts of this thesis is that non-linear computation at the earliest levels of visual processing
are the main contributors to the observed performance of the models which we developped.

Our models, both the one concerned with bottom-up and the one concerned with top-
down attention, use linear filtering stages as front-ends. One of the main conclusions from
our bottom-up model, however, was that combining the results of these linear pre-processing
stages into the saliency map yielded very poor predictions; this prompted us to include more
computation into the very first levels of processing, by implementing a non-linear spatial
competition for salience in every feature map.

Similarly, one of the main conclusions from our model of early pattern vision and its
modulation by top-down attention was that the predictive power of the model, and its
ability to explain the observed effect of attention, entirely lied in the non-linear interactions
among visual filters. Not only are these interactions the component of the model which
allowed us to produce a simultaneous fit of all of our data, but they also are the component
which is modulated by attention.

To conclude this thesis, I consequently would like to leave the reader with the simple idea
that the more computation we have added to the earliest stages of our models, the better

and closer to human vision have the predictions of these models become. This convinced
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me that early stages of visual processing are far from being adequately modeled by simple
linear filters and convolution operators. While such classical approximation may reasonably
well capture the amount of processing achieved by visual neurons when stimulated with a
bright dot or a moving bar on a uniformly dark background, we have seen that this is no
more the case as soon as several stimuli are presented in the visual environment, at which
point both long-range and short-range non-linear connections become predominant factors

in shaping the neuronal responses.
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