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ABSTRACT 

I. Experimental Investigatioil of an  Arc-Heated Supersonic Free Jet 

An experimental investigation of the flow field of a highly 

ionized supersonic free jet has been carried out in a continuous-flow 

test facility. Measurements of impact pressure, mass flux, total 

enthalpy and stagnation point heat transfer profile were made in this 

flow field with two water cooled probes. 

Argon gas, a t  a flowrate of 0.5 grn/sec, was heated in a 

magneto-plasma-dynamic a r c  heater without an external magnetic 

field operating from between 280 amp and 40 volts ts 1000 amp and 

25 volts. The total pressure ranged from between 28 and 35 mm Hg, 

at constant flowrate, and the atom -ion number density was approxi- 

mately 1 o1 cmm3 a t  the exit plane. The average total enthalpy 

calculated from a heat balance ranged from between about 5,000 

to 10,000 B T U / ~ ~  , while the probe measurements showed that the m 

peak total enthalpy on the jet centerline near the exit plane was about 

three times the average total enthalpy, 

The impact and mass flux measurements showed that the flow 

was hypersonic, source-like, chemically frozen, and in other details 

very much like the under-expanded free jet flow of a perfect gas. 

By combining these measurements with the t o t d  enthalpy measure - 
ments it was shown that the fraction of the total energy contained in 

ionization was about 0.6 which is quite close to the equilibrium stag- 

nation value. For  equilibrium stagnation conditions, the total tern - 

perature ranges from between 1 2 . 0 0 0 ~  to 2 0 , 0 0 0 ~ ~ .  The species 

mass fraction ranges from 0,2 f o ~  the atoms and 0 , 8  for the singly- 

ionized iona, fta 0.8 for the singly-ionized ims and 0.2 for doubly- 
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ionized ions. 

Examination of the electron energy equation showed that 

within a few diameters from the exit plane the electrons become 

energetically isolated from the ions and the electron heat conduc- 

tion te rrn dominate s . 
A preliminary attempt to correlate the stagnation point 

heat transfer  measurements along the axis shows that the elec- 

t ron temperature (TE #TI in general) plays an important role. 

1. Analysis of One-Dimensional Isentropic Flow for Partially 
Ionized Argon 

Bne -dimensional isentropic -f ow variables of partially ionized 

argon have been calculated by coupling the isentropic flow equations 

with the partition-function method of deriving equilibrium thermody- 

namic proper ties. Tabulated gas properties and flow variables a r e  

presented for stagnation conditions of 0. I, 0.5, 1.0, 2.0, and 3. 0 

atm pressure and temperatures from 6, 000 to 14, 0 0 0 " ~  in 1, OOOOK 

increments. The gas properties computed for this flow process 

include the sound speed, entropy, enthalpy, electron concentration, 

ionization fraction, electrical conductivity and static-to-stagnation 

ra t ios  of temperature, pressure, and density. Flow variables in- 

clude velocity, mass  flux, a r ea  ratio, and Reynolds number per 

centimeter. Compared to results  obtainable f rom perfect gas rela- 

tionship s (neglec tiqg excitation and ionization), the r e  sults indicate 

that electronic excitation, and especially ionization effects, signifi- 

cantly alter the flow variables, particularly a t  the lower stagnation 
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pressures and higher temperatures considered. However, with the 

exception of the effect of one excited state (the first excited state of 

the ion) on the equilibrium-composition equation, the thermodynamic 

properties calculated by neglecting excitation yielded results which 

were within 1% of those predicted by including excitation. 
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I. INTRODUCTION PART I 

For  certain experiments at low densities the flow field pro- 

duced by an under-expanded free jet has a number of decisive advan- 

tages over the flow field produced by the more conventional wind 

tunnel nozzle operating a t  the same stagnation-to-vacuum chamber 

pressure  ratio, pt/ptank. Fo r  instance the boundary layer displace- 

ment effects present in conventional nozzles a r e  absent in the f ree  jet 

because al l  pressure  waves reflected from the f ree  shear layer which 

bounds the jet laterally a r e  members of the same family of character- 

is t ics which coalesce t o  form the bar re l  shock. 

Consisting primarily of a plenum chamber, either a sonic 

orifice or sonic nozzle, and a vacuum chamber into which the efflux- 

ing gas i s  expanded, the f ree  jet test facility has been used extensively 

in molecular beam studies [ P, 2 and others compiled by French 

( 3 )], a s  well a s  low density aerodynamic studies ranging from con- 

tinuum to f r e e  molecule flow (4, 5, 6 ,  '9, 8 ). The inviseid flow , 

solution for the underexpanded f ree  jet was obtained by Owen and 

Thornhill ( 9 ), Love e t  al. ( 4 ), Ashkenas and S4erman ( 8 ) and 

Sherman ( P 0) by the method of characteristics. The survey paper on 

molecular beams by French ( 3  1 includes a bibliography sf numerous 

investigators who have been concerned with the production of molecu- 

lar beams from continuum sources. Recently Chou auld Talbot (1 1) 

proposed a model for an ionized argon free jet which included the 

effect of radiation, elastic and inelastic species collisions, unequal 

electron and heavy species temperature, auld different 'sradialu and 

P'lmgitudinal's species temperature. However, they did not include 
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the effect of electron heat conduction whose importance i s  measured 

by one over the Peclet number, Pe, (= RePr) ,  which was of order one 

for  the high degree of ionization cases  which they considered. 

Of particular interest  in the present investigation i s  the possi- 

bility of using an a r c  heater to provide a high enthalpy, low density, 

highly ionized, super sonic f ree  jet continuous flow facility. The 

present state- of-the-art of a r c  heater technology does not permit the 

design of such a device to meet certain a priori  performance require- 

ments. Rather, the success of such an approach i s  usually the result  

of an a r c  heater development program which involves almost a t r ia l  

and e r ro r  iteratipn of design changes which eventually leads to an 

acceptable a r c  heater design. During the past decade most  of the 

effort in a r c  heater development was directed toward increasing the 

average total enthalpy of such devices in order to provide reentry 

simulation for ablation and heat t ransfer  studies. Very little experi- 

mental work has been done to  relate the measurement of a r c  heater 

performance quantities, such a s  a r c  current  and voltage drop, aver-  

age total enthalpy, and a r c  heater plenum pressure, to local flow 

quantities such a s  temperature, pressure, mass  flux, and total en- 

thalpy. In fact no one has completed a flow field calibration for any 

substantially ionized steady gas flow test  facility. The problem of 

interpretation of probe measurements and survival of the probe itself 

in this hostile environment have complicated the use of diagnostics 

tools, and thus have allowed only rather slow progress even in such 

a fundamental task as flow field calibration. 
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The a r c  heater used in the present investigation is one version 

of the so-called Magneto-Plasma-Dynamic (MPD) source (Section 11.4 

which has been studied by a number of investigators ( 12, 13, 14, 15 ) 

during the past four years. The MPD source was chosen because of 

i t s  current use in several phases of plasma technology, the spectro- 

scopic purity of the jet it  produces (Section 111. l), and the fact that 

recent studies of the effluxing supersonic jet have been made. With 

the exception of a few investigators ( 15, 16), the current interest in 

this source has been directed towards i ts  potential use a s  a Hall cur- 

rent accelerator (1  2, 13, 14 ) which i s  obtained when an externally 

applied field, a "donut" coil or solenoid, i s  aligned with the jet axis 

\ and positioned to circumscribe the a r c  discharge region. 

Central to  the concept of a f ree  jet, a s  envisioned in the pres- 

ent investigation, i s  that the a r c  discharge be restr icted to a region 

very near the electrodes, so  that the electromagnetic effects on the 

effluxing jet far  from the orifice a r e  at most small perturbations to 

the flow field of an otherwise source-like f r e e  jet. In this regard 

several investigators ( 17, 18, 19)  have measured the current  distr i-  

bution in such a jet f rom an MPD source with an applied magnetic 

field. Of particular interest here i s  the experimental investigation 

by Powers (1 7) who measured the induced magnetic fields with a 

water-cooled Hall-effect sensor to deduce the current density distri- 

bution from Ampere's law (which relates the current  density to the 

magnetic field and i ts  spatial derivatives) in the jet effluxing from an 

MPD source. His MPD source had a 2 c m  long, 45O half-angle nozzle 



expansion whose exit diameter  was D " 5.3 cm. Surveys taken a t  
ex  

5 c m  ( X / D . ~  5 1) f rom the exit plane with nitrogen showed that B (r)  8 

was approximately proportional to  the applied field and decreased t o  

ze ro  when the applied field was reduced to zero. F r o m  Ampere's 

law, this resul t  implies that the radial  and axial components of cur-  

rent  a r e  zero. The azimuthal current  density could not be determined 

nearly a s  accurately, but was much l e s s  than the raqial  and axial 

components when operating with the applied field. With the maximum 

applied field of 1500 Gauss, Powers (1 7) found that substantially l e s s  

current  was contained in the jet when operating with argon a s  com- 

pared with nitrogen. On the basis of his investigation there  i s  good 

reason to believe that the electromagnetic effects on the jet produced 
\ 

by an MPD source operating without an  applied field a r e  confined to 

the discharge region a t  the exit plane. The other investigators 

(18,  19) gave no experimental r e su l t s  without an applied field nor was 

their investigation nearly a s  comprehensive a s  the work by Powers 

Kelly, Nerheim and Gardner (1 5 )  and Nerheim (20) determined 

the electron temperature spectroscopically near  the exit plane of the 

MPD source operating a t  a main gas  flowrate of 0.3 gm/sec argon 

and a t  1000 and 1600 amp. in the low voltage mode (operating modes 

s f  the MPD source a r e  discussed in Section II. 2 and 111. 1). The com- 

bined range of electron temperature caused by changes in axial and 

radial  position and a r c  current  level was between 16,300 f. 1 0 0 0 ~ ~  

and 17,800 f 5 0 0 ~ ~  where f 1,000 and f 5 0 0 ~ ~  r e f e r s  t o  the e r r o r  

band of the measurements.  These measurements made in the intense 
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core  of the jet showed that the electron temperature was nearly 

independent of radius for the two axial positions investigated a t  1 and 

5 cm (x/D, of about 1/2 and 3)  f r om the exit plane. F r o m  an exit 

plane static p ressure  measurement and the measured electron tem- 

perature, the Saha equation was used to estimate electron number 

density. F o r  an argon plasma in which the electrons a r e  in equilib- 

r ium a t  this temperature and p ressure  some multiply-ionized 

species exist. Under these conditions the energy of ionization alone 

for  a fully singly-ionized gas was shown to exceed the average total 

enthalpy calculated f rom an energy balance of the MPD source. F r o m  

this resul t  they (15) concluded that the electron number density must 

be much lower than that required for  equilibrium with the measured 

electron temperature. An alternative explanation of this  resul t  i s  

that not all  the gas  effluxing f rom the jet i s  fully singly-ionized; rather, 

the MPD source produces a very highly-ionized core  of gas  but a much 

cooler region of un-ionized, radiating gas  outside this core  region. 

The incompleteness of the flow field studies made by fo rmer  

investigator s leaves a nurn ber of questions unanswered concerning 

the usefulness of the MPD source to provide a highly-ionized super- 

sonic f ree  jet in which aerodynamic studies can be conducted. F o r  

instance, no measurements have been reported to  show the s t ructure  

of the flow field and i t s  s imilari ty o r  dissimilari ty to the " c l a ~ s i c a l ' ~  

underexpanded f ree  jet. The objectives of P a r t  I of this investigation 

were  three-fold: (1)  to design and develop a low density, high enthalpy 

t es t  facility; (2) to  build and develop suitable diagnostic probes t o  
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withstand steady operation in an extremely hostile plasma envir on- 

ment; and (3)  to use these probes to  study and define the flow field of 

an arc-heated, highly-ionized argon f ree  jet. 

The experimental equipment and measurement technique i s  

described in P a r t  I, Section 11. The results  of the impact pressure, 

mass  flux, total enthalpy, and stagnation point heat transfer measure- 

ments, which were made primarily in the supersonic part of the jet, 

a r e  described in Par t  I, Section 111. Probe corrections as well a s  

transport properties of argon a r e  discussed in the Appendixes. 

Included also in Par t  I of the Appendixes i s  a discussion of - 
transport properties for argon as well as a comparison between two 

current methods of predicting transport properties. 



11. EXPERIMENTAL EQUIPMENT AND MEASUREMENT TECHNIQUE 

11.1 . Low Density Facility 

The vacuum facility shown schematically in Fig. 1 i s  equipped 

with an  Edwards Model 30 B5 Speedovac vapor booster pump having 

an  unbaffled peak speed of 9,000 to 10,000 l i ters/sec in a i r  between 

about 1 o - ~  and 6.5 x 1 o - ~  mm Hg, and about 8,300 liters/sec for 

argon over the same pressure range. The booster pump has an ulti- 

-4 mate vacuum of about 10 mm Hg. This pump is  backed with a 

Beech-Russ Model 325-D rotary piston pump whose displacement 

i s  about 8,000 l i ters/sec and has  an ultimate vacuum of about 0.1 - 
mm Hg. The performance characteristic of the facility is shown in 

Fig. 2. This characteristic may vary somewhat from tes t  to tes t  

depending upon out gas sing, external a i r  leaks and occasional internal 

water leaks from the water cooled equipment such a s  the heat ex- 

changer, a r c  heater ,  and probe. The ultimate vacuum of the vacuum 

facility is about 10 microns Hg. The leak ra te  i s  about 30 microns 

Hg/hr. 

The results  of a simple calculation given in Section 111.2 

relates jet flowrate, inj, static pressure  behind the disk shock, 

P2 (p2 " ptank) and stagnation temperature-to the disk shock posi- 

tion. x of a highly underexpanded f ree  jet a s  
S 

F o r  the conditions of the cold flow tes ts  conducted here,  (Znj E 0.5 

gm/sec), 



x S 3 in. s 

Under these same conditions, the disk shock and maximum bar re l  

shock diameters a r e  approximately 1.5 in. and 1.8 in. respectively. 

The heated jet, a t  the same flowrate, was about twice this size. 

11.2 . Arc Heater 

The a r c  heater shown in Fig. 3 i s  a modified design of the 

so -called MPD (Magneto -Plasma-Dynamic) a r c  heater used a t  the 

J e t  Propulsion Laboratory*. The J P L  MPD a r c  heater was modified 

f i r s t  by eliminating the copper cathode base and then by changing 

from tangential to radial gas injection. These modifications were 

made in o rder  to eliminate a r c  attachment a t  the braze joint between 

the 2% -thoriated tungsten rod and the copper base and to eliminate 

the destabilizing effect on the a r c  due to the tangential injection 

scheme. Probably because of the diffuse a r c  discharge a t  these - 

pressures ,  neither tangential injection nor the tangential [ F ~ =  J ,B~]  

body force produced on the discharge by an axially aligned solenoid 

i s  needed to rotate and hence distribute the discharge attachment 

uniformly between the cathode and anode surfaces. 

The a r c  starting procedure was a s  follows: An open-circuit 

voltage of 320 v. was applied between the anode and cathode a t  a 

welder setting near 1,000 amp and a t  an  elevated gas flowrate of 

* The J P E  MPD a r c  heater had a conical copper cathode mount whose 
base converged from the aft or  cooled end of the cathode a t  45O and 
intersected the 2% -thoriated tungsten (cathode) rod (which ran through 
the copper base) at a b rass  braze joint. It also utilized tangential 
gas injection and did not have the cathode shield shown in Fig. 3 .  



about 1 gm/sec. Because of the high open circuit voltage, the a r c  

i s  self -starting. After the discharge was initiated the flowrate was 

reduced to 0.5 gm/sec to eliminate any back streaming of diffusion 

pump oil. 

Gas flowrate, flowrate and temperature r i se  of the coolant 

and electrical power input were measured and recorded for each tes t  

and used to cagculate average total enthalpy and energy transfer  

efficiency. A description of the water and gas flowmeters, thermo- 

couples, voltmeter and ammeter a r e  given in Section II. 4, and a 

discussion of the a r c  heater performance and discharge model a r e  

given in Section 111.1. 

11.3. Diagnostics Probes and Instrumentation 

11.3.1. Hemisphere -Cylinder Impact Pressure  Probe 

In order  to maintain the structural integrity of any probe ex- 

posed in steady state to the extremely high enthalpies produced by 

the a r c  heater described in Section 11.2, provision must be made for 

water cooling in addition to any radiation cooling already present. 

The hemispherical-nosed 0.148 in. outside dia.,  0.046 in. 

inside dia. , stainless steel water-cooled impact pressure probe 

shown in Fig. 4 employs an annulus and a single tube baffle which 

form the water-cooling jacket. All joints were silver soldered 

except the tip which was heli-arc welded. In this regard it  should 

be mentioned that the advantages of using stainless steel tubing, a s  

compared to copper tubing, include ease  of machining and welding, 

wide selectivity of tube s izes ,  and resistance to corrosion. The 



major disadvantage of using stainless steel in this application was its 

low thermal conductivity which i s  about 1/20 that of copper. 

A Haynes 25 radiation cooled shield was used to provide addi- 

tional thermal protection for the manifold, Although this shield was 

bolted to the probe base and a s  such received some additional cooling 

by conduction, melting occurred at  the point where the probe leading 

edge shock impinged on the shield while probing in the vicinity of the 

jet exit. 

The probe water flow rate was maintained a t  about 2.5 gm/sec 

and was sup$ied at  about 50 psig from the laboratory tap. 

In addition two bare -wire copper -constantan thermocouples 

were installed close to the probe manifold, one inside the inlet and 

the outlet of the water supply lines in order to measure the probe 

water temperature r i se ,  and another copper-constantan thermocouple 

was located in the aft section of the impact tube to measure gas tem - 

perature. Instrumented in this way, this impact pressure probe had 

the capability of being used a s  a total enthalpy measuring probe using 

the calorimetric technique developed for  subsonic flow by Grey et  al,  

(21) who used a probe of nearly the same design. 

Numerous tip burnouts with subsequent leakage of probe water 

occurred when making impact pressure measurements near the jet 

exit plane, i. e. , for X/D* between 1 and 2 while operating the a r c  

heater at 1,000 amps. An estimate of the maximum allowable probe 

heat flux was obtained by calculating the heat flux at  the upper limit 

of nucleate boiling, qUls from the experiments by Welsh (22) who 

correlated qU1 a s  a function of average coolant velocity, uas and 



degree of subcooling, ATsub = (Tsat -T ), for water flowing in elec- a 

trically-heated stainless steel tubes. Tsat is the saturation tempera- 

ture of water corresponding to the local water pressure and Ta i s  the 
s 22 

local average o r  bulk temperature of the coolant. We1,sh (22) gave 

the empirical relationship 

2 
%A = 0.0476 (0. 132ua + ATsub) B T U / ( ~ ~ '  sec)  

with ua and ATsub in ft/sec and OF respectively. Since ua 5 10 ft/sec 

and ATsUb "(300 - 80)OF, coolant velocity played a secondary role 

a s  compare? to degree of subcooling o r  local water pressure ,  here  

4Ul 
"10 B T U / ( ~ ~ ~  sec) for p 50 psig. Subsequent measure - water 

ments of stagnation point heat flux indicated that this impact probe 

may have been subjected to a heat flux nearly twice this value of q ul* 

Because of this high heat flux, the probe experienced numerous 

burnouts and was finally replaced by the probe discussed in Section 

11.3.2. # 

11.3.2. Combined Impact P re s su re ,  Mass Flux and Total 
Enthalpy Probe 

The possibility of making more than one measurement, con- 

secutively, with the same probe, a t  a given jet operating condition 

and probe position led to the design of the combined impact pressure ,  

mass  flux and total enthalpy probe shown in Fig. 5. 

This probe differs in design from the hemispherical nosed 

impact pressure probe (Section 11.3.1. ) in three important ways: 

(1) removable and hence interchangeable probe tips; (2) an external 

coolant passage designed to shield the calorimeter which is the 
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internal coolant passage; and (3)  a water cooled probe shield, a l l  

shown in Fig. 5. One disadvantage of this probe design is i t s  large 

after-body size; however, this feature i s  not too serious a s  long a s  

measurements a r e  confined to supersonic flow regions. 

This probe was fabricated using stainless steel and was in- 

strumented with thermocouples in a manner conceptually the same 

a s  the hemispherical nosed probe (Section 11.3.1.  ). The purpose of 

the external coolant passage was to isolate the calorimeter thermally 

from the tip support and after-body heating. As a result of this de- 

sign, the manifold had to be split several  t imes a s  shown in Fig. 5 
\ 

and hence "0'' ring seals  were required on mating surfaces to pre-  

vent coolant leakage. 

Chamfered tips of various size were machined from molyb- 

denum, tungsten and carbon. F o r  the reasons discussed in  Appendix 

A the tips us id  for mass  flow, pu, measurements in supersonic flow 

were required to have sharp leading edges. The leading edge thick- 

nesses of the molybdenum and tungsten tips were between about 0.0005 

and 0.001 in. a s  measured with a Kodak contour projector, whereas 

tip cracking and chipping difficulties during machining limited tip 

leading edges of the carbon tips to about 0.0015 in. a t  best. A Leeds 

and Northrup Model 8622-C portable optical pyrometer was used to 

measure tip temperatures a s  high a s  2 , 8 0 0 ~ ~  for  tungsten and some - 
what lower for carbon tips for probe measurements a t  X/D* = 1. 

Tips made from molybdenum (melting point P! 2 , 9 0 0 ~ ~ )  melted under 

similar  conditions. 

Flow rates of probe water ranged from 7 to 40 gm/sec and 



from 1 to 20 gm/sec for the external and internal passages respec- 

tively. In order  to increase the cooling margin o r  upper limit of 

nucleate boiling, a pressurized water system was installed to supply 

untreated tap water to the probe a t  150 psig. This step increased 

the margin of safety by about 4070 o r  to an upper limit of nucleate 

boiling, qU1, 2 discussed in Section II, 3.1, of about 14 BTu/in sec. 

Even with the thermal shielding provided by the probe tips the forward 

joint of the coolant passages melted and the stainless steel  tubing had 

t o  be replaced by copper tubing having nearly the same dimensions. 

No further burnouts were encountered. 
\ 

All impact pressure  measurements reported here  with this 

probe in hot flow were made with the 0.15 dia. tip. An 8 in. piece 

of 1/4 in. dia. copper tubing joined the aft end of the impact pressure 

tube to the Statham pressure transducer described in Section II. 3 .4 .  

Also joined to the aft end of the impact pressure  tub9 was a larger  . 

P in. inside dia. copper tube to which was clamped a 4 ft. piece of 

flexible, but non-collapsible, vacuum hose. This hose was joined 

through a nipple in the top of the tank to valve A (shown in Fig. 6 

of the mass  flux sampling system, A detailed discussion of the mass  

sampling technique is given in Appendix A. When the probe was used 

to measure total enthalpy, a stubby tip was used (see Fig. 5 )  so that 

radiative and convective heat transfer  from the tip to the aspirated 

gas sample would be eliminated. The inside diameter of the impact 

pressure  tube was chosen large enough so that a measurable thermo- 

couple signal could be obtained from the calorimeter when operating 

the probe where the total enthalpy flux was quite small,  i. e. , for 
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X/D* >> 1. Knowledge of three measured quantitie a ,  the aspirated 

gas flowrate, the calorimeter water temperature r i s e ,  and water 

flowrate, was enough to  calculate the total enthalpy of the gas. 

The most serious problem associated with measuring the 

total enthalpy concerned heat leakage from the calorimeter to the 

external coolant passage a t  the tip joint. A theoretical model of the 

heat transfer to the calorimeter was developed and applied in Appen- 

dix B in an attempt to account for the tip heat leakage. 

II. 3.3. Stagnation Point Heat Transfer  Probe 

The stagnation point heat transfer  probe shown in  Fig, 7 has 

an  external coolant passage which cools the shoulder'O of the hemi- 

sphere and the cylindrical afterbody and an internal o r  calorimetric 

coolant passage which cools the 60O included angle copper sensor 

portion of the hemispherical probe tip. The internal water passage 

was isolated f ipm the external water passage by a 8. 001 in. "airts 

gap at the tip and a 0.01 0 in. gap from somewhat beyond the tip to 

the manifold to minimize calorimeter heat leaks. With the exception 

of the copper sensor the probe was fabricated from stainless steel. 

Joints were silver soldered aqd tihe manifolding of the coolant pas - 

sages was sealed with "8'' rings. Although not shown in Fig. 7 ,  

1 /4 in. dia. water-cooled copper tubing was silver soldered to the 

manifold shield to provide additional thermal isolation of the calori- 

met ry  manifolding. 

Three se r ies  -connected bare-wire copper-constantan thermo- 

couples were used in the water inlet and outlet lines to measure f i e  

calorimeter water temperature r ise.  Typical water temperature 



-1 5- 

r i s e  between the inlet and outlet of the calorimeter ranged from 

between 7 and 4 0 ' ~  a s  probe position ranged from between 1 and 

12 anode diameters from the exit. The water flowrate was about 

7 gm/sec in the external coolant passage and ranged from between 

about 1.5 and 7 gm/sec in the calorimeter. An iron-constantan 

thermocouple was silver soldered to the aft  end of the sensor to 

provide the stagnation point wall temperature. 

Knowlegge of the calorimeter water flowrate and temperature 

r i se  permitted the calculation of the average heat transfer  rate to 
I 

the sensor, qa. In Appendix C a correction i s  developed for the 

effect of finite sensor a r ea  and angle-of-attack so that qa may be 

related to the stagnation point heat transfer  ra te ,  qs. 

11.3.4. Instrumentation 

The vacuum tank (Fig. 1 ) pressure and the mass  flux col- 

lector tank (Fig. 6 ) pressure  were measured in  the preliminary 

cold flow par t  of the investigation by a Vacustat gauge which i s  a 

miniature McLeod gauge. However, due to the poor resolution and 

lack of repeatability, this gauge was replaced by a three pressure-  

ranged McLeod gauge manufactured by Todd Scientific Co. 

The impact pressure  measurements in cold flow were made 

with a f 0.05 ps i  differential pressure transducer (Statham Model 

No. PM97TC f 0.05-350, Serial No. 11242). F o r  reasons of t rans-  

ducer safety, the vacuum tank was used a s  a reference pressure 

which was measured with the Vacustat. The combined e r r o r s  in 

impact pressure  due to lack of repeatability of the Vacustat and the 

small  pressure  fluctuations inherent in the diffusion ejection pumping 



system were estimated to be a s  much a s  5% in cold flow. The im- 

pact pressure measurements in hot flow were made with a 0-1 psia 

Statham pressure transducer (Model No: PA731 TC -1 -350, Serial 

No. 12448) which was calibrated using the McLeod gauge. The cal-  

ibration i s  shown in Fig. 8 .  The pressure transducer was encased 

in a water -cooled "can" and located about 8 in. from the impact 

pressure  probe in order to remove i t  from the region of direct jet 

impingement. A shielded cable led from the transducer through a 

hermetically sealed bulkhead to the zeroing potentiometers (balance 

circuit) ahd d. c .  power supply. The signal was amplified and 

either plotted on a Moseley X -Y plotter o r  read on a digital volt- 

meter  (Kintel 501 B o r  Fairchild's Digital Integrating Voltmeter 

Model Number 7100). A schematic diagram of the pressure  meas-  - 
uring circuit i s  shown in Fig. 9. A Beckman Fitgo Model RP-B1 

d.c. amplifier was used for the hot flow measurements and either 

a Sanborn Model No. 1500-8608 o r  Astro Model No. 885 d.c. ampli- 

f ier  was used for  the cold flow measurements. The accuracy of 

the combined transducer and recording system was within about 1%.  

The a r c  heater,  vacuum tank heat exchanger, and probes 

were water cooled. Temperature measurements required for calori- 

metry were made with copper -constantan thermocouples fabricated 

and installed with Swagelok fittings a s  shown in Fig.10. Those probe 

thermocouples which were installed in the inlet and outlet tubes of 

the probe manifold (not shown here),  were stainless steel sheathed 

magnesium oxide-wrapped thermocouple formed from stock supplied 

by Thermo Electr ic o r  Eeeds and Northrup which was modified to 



include a Swagelok fitting. 

Very often a difference in temperature between the inlet and 

outlet of a cooling circuit was required rather than the absolute 

value. In these instances, either the inlet o r  outlet temperature 

could be considered a s  a reference temperature and the thermo- 

couple output was related to the temperature difference, AT, through 

a conversion factor which was a constant 45.5 m v P F  within 1 %  for  

thermocouple grade copper-constantan thermocouple wire for small 

AT'S above room temperature. This conversion factor,  which i s  

just the s h p e  of the temperature v s  . milli-volt output curve, a s  

obtained from the Leeds and Northrup Conversion Tables for Ther - 
mocouples (23), was also verified for the temperature range of 

application by using a laboratory grade mercury-filled glass ther - 

mometer having an accuracy of about 1 /2OF. 

Probably due to stray currents made possible by the joint 

anode-cathode coolant passage of the a r c  heater ,  bare-wire thermo- 

couple s in the anode -cathode coolant passages did not yield repeat- 

able data for otherwise steady operating conditions. This problem 

was solved by using the glass insulated thermocouple shown in Fig.10. 

All thermocouples except those associated with the total 

enthalpy and stagnation point heat transfer  measurements were read 

out on a Brown (Minneapolis-Honeywell), 0-5 mv, 24 point str ip-  

chart recorder. The outputs from the total enthalpy probe and 

stagnation point heat transfer probe thermocouples were amplified 

by a Leeds and Northrup (Model No. 9835B) stabilized d. c. micro- 

volt amplifier whose output was recorded on a Moseley Audograph 



Model 7001 X-Y Recorder. The combined e r r o r  of amplification 

and recording of these measurements i s  l e s s  than about 170 . 
The water flowrates through the vacuum tank heat exchangers 

and probe shield were measured by calibrated Venturi meters  to 

within an accuracy of about 2%. The a r c  heater water flowrate was 

measured by a Fischer and Por te r  Precision Bore Flowrator, tube 

No. FP-1  -35-G-10/80, calibrated to 170 of full scale from 0.1 to 

0.9 lbm/sec. The probe water flowrates were measured with Fischer 

and Por te r  Tr i -Fla t  Precision Bore Flowmeters having 1/4 in. dia. 

tubes using glass and tantalum floats which were calibrated to 170 

of full scale reading from 25 to 100($o of full scale. 

The argon flowrate to the a r c  heater  was measured with a 

Fischer and Por t e r  Model No. 10A0735M Precision Bore Flowrator 

which was calibrated a t  1 % of the scale reading from 0.10 to 0.56 

gm/sec at 50 psig and 7 0 O ~ .  

The voltage across  the a r c  was measured with a Simpson 

Model 1700 Multi-Range DC Voltmeter Standard a s  well as recorded 

on the Brown str ip-chart  recorder. The a r c  current  was measured 

with a Simpson Model 1701 Multi-Range DC Ammeter. 
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III. RESULTS AND DISCUSSION 

III. 1.1 Arc Heater Performance 

Probably the leas t  under stood operating feature of the un- 

shielded cathode a r c  heater (Fig. 3 ,  but without cathode shield), 

was its two modes in t le lect r ical t '  characteristic a s  shown in Fig. 11. 

The discharge was initiated a s  described in  Section 11.2 a t  1000 amp. 

with an argon flowrate of 0.5 gm/sec and the resultpnt a r c  voltage 

was typically 17 to 19 v. This condition i s  called the low voltage 

mode (LVM). Generally, but not always, after 15 minutes to one- 

half hour, the a r c  voltage began to r i se  and fall  aperiodically for 

about five minutes. Then, quite suddenly, typically in a mat ter  of 

five seconds, a r i s e  in voltage occurred to about 23 to 25 v., o r  

what was called the high voltage mode (HVM), and again the voltage 

and current levels were steady. (See for instance the transition a t  

200 amp. shown in  Fig. 11. ) During the five -minute transition, the 

chamber pressure also rose  and fell with the voltage. The reverse  

transition from the HVM to the LVM was observed only seldomly at 

200 amp. when the voltage would drop from about 40 to 20 v., again 

at constant current.  This reverse transition was never observed 

at 1000 amp. 

By using an anode (see Fig. 12) modified to include a static 

pressure  tap, for one test shownin Fig. 13, the effect of operating the 

a r c  heater inthe LVM and HVM on a r c  heater plenum pressure ,  pc , 

and exit pressure ,  pex , was investigated. Although p i s  a rather 
C 

strong function of input power, P, as well a s  operating mode Y pe,, is 

weakly dependent on P and appears to be independent of operating mode. 



Without any heating of the gas the ratio of plenum -to-tank 

Pressure pc/ptak i s  large enough that choking occurs a t  the mini- 

mum area  o r  in the annulus. Fo r  the LVM i t  i s  suspected that the 

discharge is confined to the aft (upstream) end of the annulus formed 

by the cathode and anode, whereas for  the HVM it i s  confined to a 

region near the exit plane. Operation in the LVM i s  analogous to 

the case of heat addition to a gas flowing in a pipe for which the exit 

Mach number was one (choked f low) prior to the heating process. 

The effect of heat addition causes pc to r i se  above its value in cold 

flow, This increase in p is  necessary to offset the loss  in total 
C 

pressure  caused by heat addition a s  well a s  to provide the increased 

total pressure necessary a t  the sonic condition to maintain a con- 

stant flowrate, i. e. . [pt / (Tt) l / j  = constant. Since less  heating 
sonic 

occurs pr ior  to the sonic condition for the HVM, p i s  lower than 
C 

that observed for the LVM. 

Although a r c  heater performance and limited probe measure- 

ments were obtained in the LVM, it  became quite difficult, if not 

impossible, to finish a set  of profile measurements in the f ree  jet 

without being disrupted, by a complete change in operating mode 

(transition) which had measurable effects on the f ree  jet a s  well. 

Therefore a ser ies  of modifications of the a r c  heater led to the in- 

stallation of a boron nitride cathode shield over much of the jointly 

exposed electrode surfaces a s  shown in  Fig. 3 . The gas was now 

injected through the annulus formed by the slot between the cathode 

and the insulator. The a r c  again started in the LVM. However 

'after several minutes the voltage began to r i s e  monotonically and 



steadily over about a five minute transition into the HVM. The 

shielded cathode characteristic is  also shown in Fig. 11 for a typical 

test.  

Arc heater  operation a t  about 150 amp. and below was un- 

stable in the sense that the a r c  discharge and jet plume either pulsed 

noticeably o r  deflected appreciably from the normal jet centerline. 

Significant erosion of the copper anode almost always accompanied 

this abnormal operation. Operation of the a r c  heater a t  higher 

(0.7 gm/s) and lower (0.3 and 0.11 gm/s) flowrates was unsatisfac - 
& 

tory for similar  reasons. ' 

Although no detailed spectroscopic assessment of impurity 

presence and level was made in this investigation, such an attempt 

was made a t  the J e t  Propulsion Laboratory by Nerheim (24) who 

operated the J P L  MPD a r c  heater (without the cathode shield) a t  

the same gas flowrate and power input a s  were used here. Numerous 

spectra,  between 2900 and Tri-X cutoff, were taken using a 3 

meter  J e r r e l l  Ash spectrograph, but none of them revealed any of 

the persistent copper o r  tungsten lines. Since there i s  no indication 

that the copper anode erodes from tes t  to test the absence of copper 

spectral lines i s  not surprising. The tungsten cathode does erode; 

however, in view of the absence of any tungsten spectral lines the 

erosion rate must  be extremely small  during the steady state oper- 

ation, o r  clusters of tungsten atoms leave the cathode and radiate 

with a continuous spectrum, o r  erosion occurs during initiation of 

the a r c  when occasional sparks a r e  observed, 



A performance parameter often used a s  a measure of the 

amount of energy added to the gas by the a r c  discharge i s  the average 

total enthalpy , hta. This parameter is  defined from consideration 

of the energy balance in the region of the a r c  discharge. Consider 

a control volume of gas bounded by surface s a s  shown in the sketch. 

control volume v 

-- 
cathode o r ~  discharge 

F o r  this simple model the integral energy equation for a gas volume, 

v,. bounded by a rea  s is, 

net flux of total electrical heat transferred 
enthalpy through energy input to the gas through 
the a r ea  to the volume surface bounding 

V = -a, 

where - n denotes the outward unit normal vector to the fluid. This 

integral formulation i s  now applied to the following simple model, 

in  which the incoming enthalpy is negligible. The second term in 

the equation i s  rewritten, using Green's theorem, a s  

-!V= (@)dv = - 1 @ * nds = (@anode-@cathode ) I =  VI  

where E = -V @ and V * J = 0 have been used. - - 
By defining a mass  average total enthalpy a s  



and denoting the right side of the energy equation a s  P - Q where 

P = VI, h becomes ta  

Other performance quantities of interest ,  the average heat 

loss  to the coolant, Q,  and energy transfer  efficiency, q, were 

calculated from the gas flowrate, calorimeter water temperature 

r ise  and electr ical  power measurements a s ,  

and 

P-Q q = - 
P 

The results of these calculations for hta9 a ,  and q, a r e  shown in 

Figures 14 ,  15, and 16. Q, h and q for the shielded cathode tests  ta  

a r e  bracketed by the range of these quantities for  the unshielded 

cathode tests  in the LVM and HVM. In the HVM the a r c  voltage, 

a t  constant current ,  was higher for the shielded cathode tests  but 

the heat loss ,  Q,  was substantially higher so that the net effect was 

to yield higher average total enthalpy and energy transfer  efficiency 

for the unshielded cathode tests.  Since, however, a r c  heater oper- 

ating stability was fa r  more important than high efficiency, the 

shielded cathode a r c  heater i s  believed to be superior to the un- 

shielded design for purposes of this investigation. Corresponding 



to the range of h * shown in Fig. 15 , an average total tempe rature , 
ta 

Tta, and species 

ionized ions, =I' 

mass fractions for the atoms, cA, and the singly- 
** 

for equilibrium conditions have been tabulated here 

f o r  reference purposes. These quantities, shown in the table, were 

obtained from the equilibrium therrnodynam ic calculations of Baum 

and Cann (25) corresponding to our measured values of h and plenum ta 

pressure 8 PC* 

Conditions a t  Powe s t  Conditions a t  highe st 
input power, Fig. 15 input power, Fig. 15 

LVM and 
HVM with- 6300 
out cathode 1.0 l o m 4  12300 0. 5 0.5 

shield 

HVM with 
cathode 9800 0.9 0. l El600 0. 7 8.3 
shield 

Ideally it would have been desirable to operate a t  a negligible 

ionization level a s  well a s  with the shielded cathode a rc  heater. How- 

ever this flexibility could have been achieved in this investigation only 

a t  the expense of continued operation without the cathode shield and 

the uncertainty and disruption of the transition f r sm the LVM to the 

HVM. 

*The total enthalpy measured at  the centerline sf the jet i s  approxi- 
mately 3 hta (see Sectiori III.3.4). 

* The extent to which the plasma can be considered to be in equilib- 
rium, i.e., considered to have equal species temperatures, and to 
have the species composition determined by ,the law og mass  action, 
is a subject which will be considered later irP interpreting the resulds 
sf the probe measurements, 



Since the radial component of current ,  J ,  c rosses  the in- 

duced azimuthal magnetic field, Be, an axial body force acts  upon 

the  plasma which can be represented a s ,  

The integral form of Ampere's law i s  

Applying Stokes' theorem to the left hand side, Be, becomes 
I 

In order  to estimate the size of this body force, two simple discharge 

models a r e  c ~ n s i d e r e d  

a s  follows: 

Discharge Model for  LVM: 

Boundary Conditions: 
P&I 

(i) Be (rr  0) = - 2nr 

R < r < R o  
C 

(ii) B e ( r , l )  = 0 

(iii) - J =  0 x C  0 r > R c  
4 

x > 1  f o r a l l r  

where I is  the total a r c  

current  and Rc and R a r e  the cath'bde and anode radii  respectively. 
0 



Discharge Model for HVM: 

Boundary conditions: 

pox (ii) Be (r,  0) = - 27rr 

Flow 

(iii) B e ( r , I )  ='O 

(iv) - J = 0 x < O  r > R c  

x > l  f o r a l l r  

where the current entering the cathode a t  x = 0 has  been assumed to 

be of constant current  density. 

From Ampere's law, 

and Fx becomes 

- 

rd r  

0 

The body force for the LVM becomes 
pol 2 

= Z n l R o _ i  (2nr) - r d r  = I n  - 0 x R (LVM) 

R 2po C 

C 



and for the HVM, 

R 
1 bol r 4 R o p 1 2  

- (r) rd r  +I 0 

x +o c (G) r dr ] 
R 

C 

In MKS units, p0I2/4n becomes 

pola I 2 - = 0.1 (-) Newton's 
4n 1000 

where I is  in amperes. Since Ro/Rc = 2, F ~ ~ ~ ~ / F ~ ~ ~ ~  = 1.25. 

The resultant pressure force on this same volume of gas is 

approximately 

From the resultp shown in Fig. 13, Ap = pP, -pex " 20 mmHg a t  200 

amp and 3 0 mmHg at  1000 amp and thus px ranges from 0.6 to 0.9 

Newtons/(meter)'. The ratio of the - J x - B force to the total force 

becomes 

for  the conditions of these tests. 



111.2. Unheated F r e e  J e t  

III. 2.1. Physical Model of the Flow Field 

Interpretation of the results of the probe measurements i s  

facilitated if f i r s t  a brief review of the flow field of an underexpanded 

f ree  jet efflwring from a sonic nozzle i s  undertaken. From the theo- 

retical and experimental work of a number of investigators ( 1, 4, 6 ,  

8 )  , the underexpanded f ree  jet may be modeled schematically a s  

shown in Fig. 17. The main features of the flow field of interest  here  

include the hyper sonic source -like variation of flow quantities along 

rays  emanating from the origin (x = 0, r = O), the oblique shock and 

f ree  shear layer surrounding the jet laterally, and the disk (normal) 

shock which terminates the supersonic flow in the vicinity of the jet 

axis. The rapid expansion of the gas a t  the exit plane into a quiescent 

gas a t  low pressure ,  ptank << pt, produces the bar re l  shock. Incipi- 

ent shock formation occurs a t  the intersection of the last expansion 

characteristic from the lip of the nozzle and the f i r s t  reflected 

characteristic from the boundary. 

The flow field calculations by Ashkenas and Sherman (8 ) a r e  

particularly helpful in determining flow quantities; these authors give 

simple semi-empirical formulas derived from the results of the 

method of characteristics solution for the inviscid flow field without 

shock waves. The relationships for centerline Mach number and 

radial density distribution a r e  

x-x y-1 1 ,l [ ~ ; ~ ~ - l ] - l  
M ( Z )  = A (.+I - - (-1 A(- 
D* * 2 y-1 



and 

2 - = C O S  8 COS 
2 n8 

p(0,x) (z$ 
where the radial and axial coordinates ( r ,  x) a r e  related to the (ray) 

distance from the source, R,  by R' = r2  + x2. F o r  y = 5/3, A =  3.26, 

x o / ~ ,  = 0.075 and @I = 1.365. Other quantities of interest,  such a s  

the density and pressure ,  can be calculated from the compressible 

flow relationships. In this regard, the compressible flow tables of 

Wang, Peterson and Anderson (26) and those by Pra t t  and Whitney 

Aircraft (27) a r e  helpful for y = 5/3. 

As can be seen from a simple calculation, the maximum size 

of the expansion field of an underexpanded source-like jet is related 

to the pumping speed of the facility. From the momentum equation 

in hypersonic flow, the static pressure behind the disk shock i s  ap- 

proximately 

F o r  source-like flow in which the streamlines emanate a s  rays from . 

the origin the continuity equation yields, 

where 8 is the polar angle. Fo r  a simple source, f(8) i s  a constant 

which can be related to the je t  flowrate & a s  
j 

By combining these results with the energy equation in the same 
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approximation, u," d m ,  one obtains, for R, = xs, the disk shock 
P t 

position along the jet axis, 

where R i s  the gas constant per unit mass. 

For  y = 5/3 and Tt = 522 R ,  and the pump characteristic shown in 

Fig. 12, xs becomes 

x E 3 in. s 

for 0 s  6Ic 0.4 gm/sec whereas a t  0.5 gm/sec, xs " 2 in. &/p2 is 

related simply to the volumetric pumping speed, Q, a s  

in the approximation that p2 = Ptank' 

By evaluating 61. at  the sonic conditions, one obtains 
J 

where D* is the orifice or sonic nozzle diameter. 

For  y = 5/3 and p2 = ptank, this becomes 

whereas Ashkenas and Sherman (8) found experimentally for argon, 

a i r ,  and nitrogen that 





III. 2.2. Centerline Impact Pressure  and Mass Flux Meas - 
urem ent s Without the Cathode 

In order to establish the centerline flow field of the cold jet 

using only the plenum (stagnation) chamber pressure,  pc, and tem- 

perature, Tc , and impact pressure measurements, pi, the cathode 

was removed, thereby eliminating the cathode wake and providing 

an adiabatic -isentropic flow between the plenum and the probe. The 

Mach number distribution between x = 1 and the disk shock was de- 

termined from the p. and p measurements and is  shown in Fig. 18 
1 c 

The free jet theory of Ashkenas and Sherman (8) is  shown for ref- 

erence. These measurements cover a 10 to 1 range in probe tip 

diameter and a 5 to 1 range in jet Reynolds number based on sonic 

conditions and anode diameter D* = 3/11.". Typical probe Reynolds 
f'u d 

number, Reid -9 based on probe diameter, d , free-stream 
P p i  P 

pu, and impact conditions downstream of the shock, range between 

about 5 and 400 over the Mach number range shown. The viscosity * 

for atomic argon a t  room temperature and below was evaluated from 

the Sutherland viscosity law ( 28, p. 225; with the Sutherland constant 

equal 147'~).  The scatter in the experimental data seem to have 

obscured any trend due to probe size or Reynolds number which might 

have occurred. Indeed it was shown in Appendix E that with the 

exception of the effect of strong axial Mach number gradient for  

* The transport properties of argon a r e  discussed in Appendix D. 



the 0.335" tip data, for which the correction applied to M at x = 1 

was about 1 O%', neither the Mach number gradient correction nor the 

viscous correction to pi exceeded about 4% which was within the 

scatter  of the data and hence was neglected. The scatter  in the data 

i s  believed to be caused primarily by the lack of stability of the 

pressure  transducer eeference vacuum (tank ambient pressure) and 
1 

the repeatibility of the vacuum pressure  gauge a s  diicussed in 

Section 11.3.4. The results a r e  in good agreement with the theory 

except for the Mach number at x = 1 which i s  consistently 20% higher 

than the theory of Ashkenas and Sherman (8). This discrepancy may 

be caused by the difference in initial 'conditions at the exit plane be- 

tween theory and experiment. 

The mass  flux measurements, pu, in cold flow were made 
b 

without the cathode and were confined to the region of supersonic 

cone flow along the axis. By combining this measurement with the 

stagnation ,pressure,  pc , and temperature, , which were measured Tt 

in the plenum, f ree  stream Mach number, M, could be calculated 

and compared to the known Mach number distribution (shown in Fig. 

18) obtained from the impact pressure and plenum pressure  meas-  

urements. This calibratiOn procedure was used in order to verify 

the probe sampling model used to calculate the operating range for 

the steady state and-collector tank sampling techniques discussed in 

Appendix A. On the basis  of this verification in cold flow the probe 

sampling model was extended to the hot flow jet conditions. Fig. 19 

shows a comparison of the Mach number distribution obtained in  cold 

flow (without the cathode) from the impact pressure measurements, 



from pu measurements using the calculated operating range, and the 

f ree  jet theory of Ashkenas and Sherman (8). The steady state samp- 

ling technique yields results which generally predict higher Mach 

numbers (lower pu) than the collector tank method. However a de - 
tailed comparison between the two techniques was not made. The 

results  do show that either sampling technique appears to be valid 

within about a 10% scatter  band about the mean of the measurements. 

The operating range calculated for  the steady state sampling tech- 

nique provided a good estimate of the operating boundary, However 

the operating range calculated'for the collector tank sampling tech- 

nique was too pessimistic, a s  discussed in Appendix A, Section A. 3. 

After using both sampling techniques in hot flow, it was found 

that the collector tank method (Section A. 3) always measured sub- 

stantially ( 1 4 0 % )  la rger  pu's than the steady state sampling method. 

The largest  disagreement occurred a t  x = P. 

This difference in sampling range may be accounted for in 

the following way. If in fact  the shock wave was inside the probe, in 

the aft position shown in Fig. 20 , the operating range of the collector 

tank sampling technique would be extended but that for the steady 

state sampling technique would be reduced and in fact marginal a t  

- 
x = 1. With the shock in the aft position a t  higher Mach number the 

pressure  Poss i s  larger  than that proposed in the original model for 

the shock wave a t  the tip. Although this Poss reduces the line pres  - 
sure  drop it also reduces the overall pressure  differences between 

the tip and either the collector tank whose initial pressure is 0.1 p Hg 

o r  the pump inlet pressure  whose pressure  is constant for  a given 
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flowrate. The sum of the pump inlet pressure  and line losses is  quite 

close to the pressure downstream of the shock and the steady state 

sampling technique i s  marginal for  the heated jet a t  = 1. After 

checking the mass  balance (Section III.3.3) by integrating the mass  

flux profiles a t  2 = 1,  it  was clear that the collector tank sampling 

technique was correct.  This method was then used for all pu meas- 

urements in hot flow. 

ILI. 2.3. Radial Impact Pressure  Profiles with the Cathode 

A reference set  of impact pressure profiles were made in 

cold flow with the cathode in place for comparison to the hot flow 

profiles discussed la ter  on in Section 111.3.2. The profiles shown 

in Fig. 21 extend from x = 1 to 22. The impact pressure  decreases 

rapidly with both axial and radial distance a s  expected in a supersonic 

source -like flow field until either the disk shock (M E 6 . 6 )  is  crossed, 

for  flow near the axis,  o r  the flow i s  turned by the curved oblique 

shock wave, which bounds the core flow laterally. This region of 

the  flow field i s  qualitatively the same a s  that described ear l ier  for 

' 
the f ree  jet in Section III. 2.1. and shown schematically in Fig. 

In this region the impact pressure ,  p achieves a relative maximum i' 

a s  the lateral  shock and free shear layer i s  crossed. An impact 

pressure  recovery and a stagnation pressure loss occur across  the 

= 0.18. [ ( ), and ( ), refer  to quantities upstream and 

downstream of the oblique shock wave, respectively. ] Downstream 

of the wave the Mach number r i ses  slowly and the stagnation pressure 

r i s e s  rapidly so that the impact pressure continues to r i s e  until M 



and p peak; then M, pt and p. ( = pt2) decrease rapidly to their edge 
t 1 

- values of M = 0 and pt = pi - Ptank* That a relative maximum in 

total pressure is achieved between the shock and the quiescent gas 

can be visualized by observing that the inviscid solution yields the 

isentropic (plenum) stagnation pressure  at the jet boundary and the 

shocked stagnafion pressure  a t  the shock boundary whereas the de- 

velopment of thg f ree  shear layer lowers this stagnation pressure  

maximum a s  well as moves if: radially inward. Since the static 

pressure  i s  constant in 'this region the Mach number reflects the 

same variation a s  the stagnation pressure.  Near the exit where 

the oblique shock strength is negligibly small and f ree  shear layer 

very thin the stagnation pressure and impact pressure  r i se  rapidly 

from their ambient condition to the inviscid jet edge condition. 

Jus t  downstream of the disk shock the Mach number is  about 

0.46. The petiphery of the disk shock forms the intersection point 

of the lambda shock a s  shown in Fig. 17 . The gas  above this slip 

line but somewhat inside the outer edge of the external f ree  shear 

layer i s  supersonic. The slip line (discontinuity in velocity) created 

a t  this intersection causes another f ree  shear layer to develop which 

reaccelerates the strongly shocked core flow along the axis to low 

supersonic speeds, e.g., M E 1.4 at x =  22. 

A discussion of the effect of the cathode wake will be given 

when the heated jet profiles a r e  compared to the unheated profiles 

in Section 111.3.2. 

Downstream of the influence of the cathode, which generates 

a relative minimum of impact pressure ,  the impact pressure profiles 



a r e  qualitatively similar  to those measured by Chow (5) and Sherman 

(7) who operated a i r  f ree  jets effluxing from a sonic nozzle. 

Although this set  of profiles gives a good overall description 

of the f ree  jet expansion, asymmetries in the magnitude of maximum 

impact pressure  on either side of the centerline monotonically in- 

c rease  from a negligible value a t  x = 1 to a maximum of 25% a t  ';;= 7, 

and then decrease again to zero as the locus of impact pressure  max- 

ima move toward the centerline of the jet. Careful realignment of 

the cathode to the anode reduced the asymmetry to l e s s  than about 

5% in subsequent tests.  

111.3 Heated F r e e  J e t  

3 .1  Physical Model of the Flow Field 

The a r c  heated jet investigated here and shown in Figs. 22 

and 23 bears  a remarkable resemblance to the a r c  heated f ree  jet of 

Sherman and Talbot (29) (as  discussed by Grewal and Talbot (30)) 

using argon and to the cold f ree  jet investigated by Collins (31) who 

used a nitrogen afterglow flow visualization technique with nitrogen 

and argon in the Je t  Propulsion Laboratory low-density facility de - 
scribed by Ashkenas and Sherman (8). In particular the bulb-like 

incandescent central region extending from the orifice, the dark r e -  

gion surrounding this "bulb", and the rather sharp outer boundary (or 

bar re l  shock) terminating the dark regionare the most important fea- 

ture  s visually observed. The color photograph (Fig. 23) exaggerates 

the blue par t  of the emission spectra from the jet. To the unaided eye, 

the jet appears white. The jet shown in Figs. 22 and 23 was operated 

at a total pressure  of about 23 mrn Hg. and an average total enthalpy 



of 7000 B T U / ~ ~  m, for an a r c  discharge a t  600 amp. and 26 v. Based 

on equilibrium stagnation conditions the average total temperature i s  

about 12, OOOOK and the ion m a s s  fraction about 0.25. 

An estimate of the recombination ra te  was obtained in Appen- 

dix F by use of Petschek and Byrons' (32) ionization rate.and the 

equilibrium constant. The resulting expression for nE was integrated, 

holding TE constant, to yield the reaction time necessary to achieve 

70% of the initial number density. By combining these resul ts  with 

the measured jet velocity of about 25,000 ft/sec, and hence a typical 

flow time of about sec. based on the anode diameter, the upper 

curve shown in Fig. 24 was obtained. The results  show that recom- 

bination i s  negligible for any position in the jet. For  this condition, 

/t trecomb flow >> 1, and the flow field i s  said to be chemically frozen, 

or that frozen flow prevails. 

The frozen flow Mach number may be as much a s  12 prior to  

the normal shock along the centerline. Since the compression rat io 

across  the shock wave is about 200 and the tank pressure  is about 

250 pHg. the pressure just upstream of the shock, p is about 
a0 lo 

1 pHg. Using a frozen flow model and T ~ 3 0 0 ~ ~ ~  these conditions 001 

correspond to a mean f ree  path of X about c m  for the ion-ion, 
00 1, 

ion-electron and electron-electron eollisions. 

Not only a r e  there too few collisions to  maintain chemical 

equilibrium, but after about one anode diameter from the exit plane 

there a r e  too few collisions to maintain kinetic equilibrium between 

the ions and the electrons as shown by the lower curve of Fig. 24. 



As can be seen by considering one encounter between two particles of 

large mass disparity (see also pp. 80-81 of Spitzer (33)) about 10 5 

electron ion collisions a re  required to equilibrate their energy (or 

temperature) difference. Thus, if the electron temperature r e  - 
mained constant throughout the expansion for the same conditions 

described earlier,  the electron-ion and electron-electron mean free 

path would be about 1 mm, immediately upstream of the shock. 

The flow visualization observed in this jet i s  caused by the 

density and temperature dependent radiation processes involved in 

recombination for radiative transition between excited states whose . 

energy levels a r e  separated by less  than about 4 ev. This radiation 

i s  in the visible spectrum. The strong inverse temperature depend- 

ence of this recombination process led Grewal and Talbot (30) to con- 

clude from their analysis of the normal shock wave structure of a 

slightly ionized gas that upstream conduction of heat by the electrons 

behind preheated the electrons and quenched the radiation in the dark- 

e r  region separating the "bulb" and the barrel  shock, This situation 

i s  in contrast to the treatment of the atom-ion shock which undergoes 

conventional Rankine-Hugoniot jump conditions for all  quantities, 

From the impact pressure measurements made in the present inves- 

tigationthe barrel  shock (atom -ion shock) i s  observed to correspond to 

the sharp outer boundary of the dark region, so that the location of the 

dark regionalso observed by Grewaland Talbot (30) for a slightly 

* 
ionized gas may also be the same for a highly ionized gas a s  well. 

* However, from the estimates made here,  TE Y constant throughout 
this region. Hence it i s  not a t  all clear that the dark region i s  
caused by the mechanism described by Grewal and Talbot (30) for 
the conditions of this investigation. 
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In fact the analysis by Jukes (34) and Jaffrin and Probstein (35) for 

a fully ionized gas  also predict the rather broad region of elevated 

electron temperature which extends upstream of the compression zone 

of the shock.' 

Features of these models (30, 34, 35) which a r e  essential to  

the explanation of the "dark spaceff i s  that "far" upstream and down- 

s t reamof  the shock wave TE = TI and the heat fluxes vanish, 

V. qE = V. qI = 0. However, an analysis of the electron energy equa- - - 
tion (Appendix F S  applied to the flow field here indicates that these 

constraints a r e  not a good approximation to the conditions observed 

in this f ree  jet. Beginning a t  about one anode diameter downstream 

of the exit plane both inelastic and elastic energy transfer processes 

a r e  negligible; after about two diameters the electron heat conduction 

term, 0. qE , dominates the convective t e rms  a s  well. The solution - 
of the energy equation for this case, V. qE = 0, yields a T(x) which - 
decreases a s  a weak function of x. Because of their isolation from 

the ions, which undergo an adiabatic expansion to fir s t  approximation, 

and the weak decay of TE with x, the electrons a r e  a t  an elevated 

temperature, TE > Tp for X/D 2 Z. F o r  these conditions the elec- 

trons probably undergo an isothermal compression through the disk 

shock. Thus T (x) i s  a t  best a very weakly decreasing function of x E 

throughout the bulb-like region of interest here. The initial levels 

(at x = 0) of TE and TI, for which TE may already be larger  than T 
I' 

a r e  the result of a rather complicated, non equilibrium heating pro- 

ce s s  in the a r c  discharge which has not been studied here. 
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For  the largest  probe (0.47 in. tip dia. ) used in this investi- 

gation a dark space just upstream of the shock wave was visible for 

X/D, 4 4  as shown in  Fig. 25. This phenomenon was also observed 

by Sherman and Talbot (29) [shown photographically in the work of 

Grewal and Talbot (30)] for end on flow over a 5/8 in. dia. cylinder 

in a weakly ionized flow of a r c  heated argon from a conical nozzle 

at stagnation conditions of 300 m m  Hg., 5 0 @ ~  and ion mass  fraction 

of 0. 006. 

The flow field of the a r c  heated f ree  jet was investigated by 

making impact pressure ,  mass  flux and total enthalpy measurements. 

The stagnation point heat transfer  measurements discussed la ter  on 

in  Section III.3,5 a r e  compared to theory which is  based upon knowl- 

edge of the flow field gained by the f i r s t  three measurements dis-  

cussed in this section. 

III. 3.2 Impact P re s su re  Measurements 

The impact pressure  was measured with a water cooled probe 

having either a conduction-radiation cooled sharp tungsten o r  carbon 

tip (D = 0.15 inch, tip thickness E 0.001 -0.002 inch) o r  a hemi- 
P 

sphere cylinder geometry (Do = 0.148, Di = 0.042 inch) which was 

completely water cooled. These probes and the instrumentation 

have been described in Section I1 and a r e  shown in Figures 4 and 5. 

A typical set  of impact pressure  profiles taken with the sharp tip 

* The probes used in this investigation were not biased to either 
electrode but were allowed to  achieve a floating potential for which 
no net current  is received from the plasma. Fo r  operation a t  
I = 1000 amp. and V = 24 v. (anode potential) the probe potential, 
Vp, was 20 v. fo r  a11 probe positions in the plasma (for I = 200 amp., 
V = 42 v. and V = 40 v. ). The cathode was a t  zero  potential. 

P 



probe is shown in Fig. 26 for a 200 and 1000 amp. test. By com- 

parison to the profiles of Fig. 21 for the cold flow jet which was 

discussed and compared in Section 111.2 to the "classical1' under- 

expanded free jet of Ref. 8, the differences a r e  in fact what one 

might expect for a heated jet at  low Reynolds number. The cathode 

wake is not observed in hot flow and the off axis impact pressure 

peak has progressively less  strength throughout the flow. As will 

be discussed later,  the gas effluxing from the heatqd jet has a 

strong radial total enthalpy gradient and is probably chemically 

frozen. The exit plane Reynolds number, ReD*, (ReDa " 2500) 

based on anode diameter and the centerline properties of a nearly 

full singly ionized flow i s  of the same order a s  ReD* for the cor- 

responding cold flow. This result, along the centerline, i s  caused 

by the decrease in p associated with the larger (Coulomb) collision 

cross  section for a fully singly ionized gas. The Reynolds number 

of the muck cooler gas at  the periphery of the anode which forms 

the oblique shock wave i s  much smaller because p is  much larger. 

(The decrease in p due to lower temperature is  offset by the increase 

of p attributed to the smaller atom-atom collision cross section. ) 

At a fixed axial position the effect of lowering Re i s  to increase the 

cathode wake thickness and decrease the velocity defect. The 

result is that the centerline dip in the impact pressure observed 

for the cold jet is  not present in the heated jet, and the presence 

of the cathode wake is not distinguished by this measurement, The 

off centerline impact pressure rise i s  less  in hot flow than cold 

flow probably because the free shear layer i s  merged with the 



la tera l  shock wave and no total pressure  recovery, which would 

further increase pi, i s  observed beyond the shock a s  discussed in 

Section ICI. 2 for cold flow. The ba r r e l  shock configuration i s  

l a rger  due to a larger  pressure  ratio, Pt/Ptank ( larger pt), for 

the heated tes t s  but in other respects the heated jet appears to 

be a f ree  jet which is unaffected by the electromagnetic phenomena 

of the a r c  heater  discharge. Fig. 27 shows the ratio of centerline 

impact pressure  p to stagnation pressure ,  pt, for typical 0, 200, i' 

and 1000 amp tests.  Pi/Pt obtained from the f ree  jet theory of 

Ashkenas and Sherman (8) i s  also shown. k.1 cold flow, ( 8  amp.) 

two sets  of data a r e  shown: one with and one without the cathode 

in  place. pt was measured in the plenum chamber in the absence 

of the cathode shield for the cold flow data only. In hot flow, pt 

was calculated from the semi-empirical relationship given by 

Ashkenas and Sherman (81, xs/II, = 0. 67(pt/ptank)1/2 which r e -  

lates shock position to  jet pressure  ratio. xs was obtained from 

the axial impact pressure  distribution shown in this figure and 

Ptank 
was measured with the McLeod gauge. F o r  these tes ts  the 

total enthalpy ranges over a factor of about 500 o r  from about 65 

to 32,000 B T U / ~ ~ .  

The measured p./p distribution var ies  approximately a s  
-21 2 1 t 

- - -2.0 
x for both current  levels whereas pi -- x in the hypersonic 

source flow approximation and in the theory of Ashkenas &d Sher- 

man (8) for  ';; 2 2, Ma>, 4.5. Their (8) measurements show that 
-2-  07 - 

Pi- X for  the x range between about 2 and 100. The percent 

difference in slope is within the maximum scatter  of the pi 



measurements. This agreement further substantiates the belief 

that the flow is  frozen and hypersonic. 

At X/D* = 1 the scatter in the hot and cold flow data i s  less  

than 10% and the mean of the data a r e  about 15% below this theory. 

Further downstream, 2 S X/D* G xs/D,, differences between the 

two sets of cold flow data f i r s t  increase and then decrease a s  the 

impact pressure minimum or  disk shock i s  approached. Shock 

position and pressure ratio a re  in good agreement for the cold flow 

. data and thus these quantities appear to be independent of the pres- 

ence of the cathode. Differences in Pi/Pt downstream of the shock 

a r e  caused primarily by the larger tank pressure , ptank9 for Test 

104 as  compared to Test 81. Over this same range of x/D*, the 

two sets of hot flow data remain within about 25%. However, the 

hot flow data drop substantially below the theory for X/D* 3 3. 

This result i s  probably obtained for the following reasons. Since 

the total enthalpy decreases rapidly with radial distance away from 

the centerline, neighboring streamlines achieve progressively lower 

adiabatic limit velocity. Viscous shear forces decrease the center- 

line velocity and hence the impact pressure. 

From the approximate relationship derived in Section 111.2.1 

shock position, xs , for constant y and flowrate, fn., varies a s  
J 

1 /4 
Xs " ht  tank Using this relationship to calculate the shock 

position for the cold and hot flow data yields values of xs which a r e  

50, 5, and 7% lower than those measured with the impact pressure 

probe for the 8, 200 and 1000 amp. data respectively a t  fn = 0.52 
j 

gm/sec. For the hot flow data, the total enthalpy used in this 



expression was the frozen total enthalpy deduced from the impact 

pressure and mass  flux measurements to be discussed in Section 

III.3.4.  The agreement in hot flow i s  good but in cold flow rather 

poor. Somewhat better agreement in cold flow i s  obtained by using 

- the empirical relationship of Ashkenas and Sherman (8). xs/I3+ - 

0.67 (Pt/Ptank)l valid for  Pt/Ptank> 1 5, which yields a value of 

xs about 20% below that which was measured. 

Radial impact pressure profiles a t  X/D* = 1 for 0, 200, and 

1000 amp. a r e  shown in  Fig. 28. The total pressure  was obtained 

for the hot flow a s  described ear l ier  for  Fig. 27 whereas p was 
t 

taken a s  the a r c  plenum pressure , in cold flow, which was con- PC 

ducted without the cathode shield and with and without the cathode. 

The gross features of the cold and hot flow profiles including the 

presence of the cathode wake and distinct bar re l  shock in cold flow 

a s  compared to hot flow were discussed ear l ier  with regard to 

Figs. 21 and 26. The predicted impact pressure  profiles shown 

in Fig. 28 were derived for hypersonic flow starting with the mo- 

mentum equation across  a normal shock wave a s  

Fo r  a given axial position, x, p may be related to i t s  centerline i 

value a s  

Ashkenas and Sherman (8) have determined this density ratio empiri- 

cally from the method of characteristics solution a s  



2 2 = cos e cos ae 
p 0,x 

where a = n/(2#) (= 1.15 for = 5/3) and 9 = tan-' r/x. Normalizing 

p. by the total pressure,  pt, and using the density ratio just dis - 
1 

cussed, the momentum equation becomes, 

pi(r'x) - pi(0,x) 2 - 2 cos 9 cos a0 
Pt Pt 

~ ~ ( 0 ,  x) 
where depends on M and Y only. 

Pt 
Based on the solution of Ashkenas and Sherman (8), M depends 

on X/D and y .  Because of the presence of the cathode, the correct  

value of D may be somewhat less  than the anode diameter, D* = 0.75 

in. Since x = 0.75 for these profiles, X/D* = 1 and M = 2.44; how- 

ever, on the basis of an equivalent diameter, D , which i s  based on e 

the area of the annulus bounded by the anode and cathode, 7rD:/4 = 
2 2 r(D*-Dc)/4, De = 0.65 in. , X/D, = 1.15 and M = 2.85. The predic- 

tion i s  shown a t  both Mach numbers . 
Of marked significance in Fig. 28 is  that the hot flow profiles 

a r e  generally in far  better agreement with the free jet theory than i s  

the cold flow profile which remains substantially above both the theory 

and the hot flow data. The effect of the cathode on the cold flow field 

alters the profile shape and magnitude from the free jet theory a t  
- X s X 
X =  1. For  - 2 - >, 2 the profile shape i s  in agreement with theory 

D* D* 
but not its magnitude whereas the position of the disk shock (Fig. 27) 

i s  unaffected by the presence of the cathode. 

Inevitably the question of the viscous correction to the impact 



pressure measurement ar ises .  Probe Reynolds number, Reid , 
P 

based on tip diameter, measured pu and the viscosity prediction of 

Chapman (36) for a fully singly ionized gas, evaluated at  p. and the 
1 

calculated frozen total temperature, ranges from approximately 

220 to 6 for  200 amp, and from 35 to 0.5 for PO00 amp. between 
- 
x = P and the disk shock. Although there exist no data o r  theory 

for the combined ionization and viscous correction to impact pres - 
sure,  estimates based on the data of Ashkenas and Sherman (8) 

and 'potter and Bailey (3 7), discussed in Appendix E, suggest that 

the correction to the data a t  200 amp. is no more than 37% but would 

reduce p. by a s  much a s  a factor of two a t  the disk shock for the 
. 1 

-1000 amp. tests. By comparison, pi measured at 1000 amp. with 

the total enthalpy probe tip shown in Fig. 6 shows that for a factor 

of three larger  Reid differences between the two probes could 
P 

not be differentiated from the scatter of the measurements which 

is within about 1070. According to the above sources a factor of 

three in Re in the region Re. G 1 causes a 30% change in impact id 
P 

id 
P I 

pressure correction which however the measurements do not con- 

firm. * In addition, results given later  on when p. and pu a r e  used 
1 

to  obtain u, will not support viscous corrections of a factor of two. 

In view of these arguments it i s  believed that the viscous corrections 

'determined at lower stagnation temperatures without ionization can- 

not be extended in a simple way to the results obtained here nor i s  

* It i s  not really clear that Reid is  the " ~ o r r e c t ' ~  Reynolds number 
to correlate the viscous correctfon for the case of a highly cooled 
wall. The possibility of reconciling this apparent contradiction by 
choosing a Reynolds number evaluated at the arithmetic mean tem - 
perature between the stagnation and wall conditions, is discussed in 
Appendix E. 



this correction crucial to the interpretation of p.. Therefore, no 
1 

viscous correction was applied to the impact pressure measure- 

ments. 

The impact pressure variation with the average total enthalpy 

is  shown in Fig. 29. This information is needed for the stagnation 

point heat transfer predictions used in Section 111.3.5. The pressure 

ratio 9 pt/ptank controls the disk shock location and thus some of 

these data may have been taken in the region within the disk shock 

where the impact pressure has a minimum. 

LII. 3.3 Mass Flux Measurements 

Mass flux, pu, measurements were made in the supersonic 

portion of the hot f ree  jet using the transient sampling technique 

described and used irn Section IU. 2 for the centerline pu measure- 

ments in the cold jet. The combined impact pressure,  mass  flux, 

total enthalpy probe shown in Fig. 5 and described in Section II,3.2 

was used to make the hot-flow measurements. Near the exit of the 

jet, for x = 1 and 2, the shock position around the probe was generally 

visible so that a marked difference in shock wave location was ob- 

served when the sample was taken. As the sampling valve was 

opened, the curved detached shock wave moved downstream to a 

position close to the probe body and appeared to be attached at  the 

leading edge. This observation provided additional evidence that 

the shock wave was g '  swallowed" and that the undisturbed stream - 

tube having the frontal a rea  of the probe was captured. For  3 

the shock wave became very diffused and difficult to see because of 

low density, and validity for streamtube capture res t s  on the 



operating range criterion established for  the cold flow measurements 

and described in Appendix A. The pu samples were confined to the 

supersonic region within the ba r r e l  shock whose position was estab- 

lished by the impact pressure  measurements prior  to sampling. 

Fo r  steady, inviscid, adiabatic flow fo r  which the velocity is 

constant - - u ' max in hyper sonic flow, the continuity 

equation yields - a simple, axisymmetric radial source flow 

solution 

which i s  valid within the ba r r e l  shock. By introducing the jet flow 

rate and measured pu, this becomes 

mi) 

-1  r where cose, 8 = tan -, corrects  pu for  angle of attack, and R i s  
X 0 

the anode radius. In an  attempt to show the deviation of the pu data 

from a simple source distribution, the above expression is shown 

in Figs.  30 and 31 fo r  the 200 and 1000 amp. tests.  The agreement 

with the source flow solution i s  good. Part of the scatter in the data 

a r i s e s  from tes t s  in which the probe tips had eroded due to melting 

o r  sublimation of the tip material.  This erosion caused blunting of 

the sharp tip and changed the sampling a r e a  somewhat. The tip 

diameter and thickness were measured with an  optical comparator 

before and after each tes t  so that a probe tip a r ea  correction could 

be applied to the results  in those instances in which erosion 



occurred. 

Profiles of pu normalized by their centerline values a r e  shown 

in Fig. 3 2  for x from one to six. In this instance, rather than cor- 

recting pu for angle of attack effects a s  before, this correction was 

3 
included in the simple source flow curve shown a s  cos 8 where 8 = 

-1 r tan - Includedalso inthis  figure i s  a m o r e  general, axisymmet- 
X 

2 r ic  radial source flow distribution of the form p =  g ( 8 ) / ~  for which 

Sherman (10) empirically determined the function g(8) = cos 2 
3 

from the method of characteristics solution for the free jet. Q, i s  

a function of Y alone so that n/2@ = 1.15 for  y = 5/3, No conclusion 

can be drawn about which distribution is correct; however the trend 

for large r/x shows that the 200 amp. data a re  in better agreement 

with the simple source distribution, whereas the 1000 amp. data a re  

in better agreew ent with the more general source distribution. 

The validity of these source flow distributions depends on 

the assumption that the velocity i s  radial and constant (the adiabatic 

limit) throughout the free jet. From these assumptions the free jet 

i s  irrotational and inviscid, and hence isentropic throughout. Accord- 

ing to the discus s ion of the electron energy equation in Appendix F, 

heat conduction is almost certain to be important several anode 

diameters downstream of the exit plane and i s  probably the dominant 

term in the electron energy equation in the vicinity of the disk shock. 

Further,  it will be evident from the total enthalpy measurements, 

discussed later on, that the total enthalpy i s  not uniform across the 

jet a t  X/D* = 1 . The extent to which these two non ideal effects 

might have modified the source distribution was not specifically 



studied in the present investigation. 

At X/D* = 1 ,  where the f ree  shear layers a r e  small,  the mass  

flux integral, = pUends, was calculated by using a curve fit  to 
j S - -  

the radial pu profiles shown in Fig. 32. Fo r  the 200 amp. and 1000 
* 

amp. tes ts ,  the total flowrate calculated in this way was 4 and 19% 

lower than the metered total flowrate. Based on these results ,  the 

pu sampling tpchnique is believed to be working moderately well in 

this extreme environment. 

The variation of centerline pu measurements with average 

total enthalpy is shown in Fig. 33 a t  200 and 1000 amp. for 1 4; <7. 

The data were taken up to an  x within about one diameter, D*, of the 

disk shock which occurred at about an x of 6 and 8 for the 200 and 

1000 amp. tes ts  respectively. The dashed curves represent  a best 

fit  straight line. through the data and will be used in Section 111.3.5 

in obtaining Reynolds number for the stagnation point heat transfer  

correlation. A 5 to 20% increase in pu over the enthalpy range is 

believed to be caused by the increased - -  JxB body force present a t  

1000 amp., a s  compared to the 200 amp. , which has components 

that radially pinch and axially accelerate the effluxing ionized gas 

(Section 111.1 ). 

III. 3.4 Total Enthalpy Probe 

The total enthalpy measurements were made with a water- 

cooled probe having a conduction-radiation cooled sharp leading 

*These results  depend upon the location of the jet boundary (for the 
limits of integration) which is not too well defined from the impact 
pressure  measurements. 
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edge carbon o r  tungsten tip (D = 0.47 in. ) shown in Fig. 5 and dis - 
cussed in Section 11.3.2. A common wall separates the inner 

passage for calorimeter coolant from the outer passage for heat 

shield coolant, and heat leakage across  the wall between the two 

had to be estimated and entered a s  a correction to the measured 

total enthalpy. Because of the numerous assumptions and uncer- 

tainties of an analytical heat transfer  model, an  experimental cali- 

bration would be fa r  superior; however, no calibrated low-density, 

high-enthalpy flow field was available for  this purpose. Thus, the 

enthalpy probe heat transfer  model discussed in Appendix B was 

devised to determine the probe correction, which appears a s  a 

function of probe Reynolds number, Prandtl number, the inner 

(I% ) and outer (ri? ) coolant passage flow ra tes  and the tip tempera- c e 

ture ,  T By varying ri? and a t  one location (z, Re, Pr, and 
P -= c e 

T fixed), the internal consistency of the probe correction model 
P 

could be checked by demanding that the corrected total enthalpy be 

the same. In this way, one would not be assured of having the 

correct  model, but this too could be checked in an integral sense 

through energy conservation, as will be done la ter  on for the data 

at x = P. The results of such an attempt a r e  shown in Fig. 34. 

The e r r o r  band which is centered a t  the average of the corrected 

measurements widens prohibitively beyond ';; = 1 and thus points to 

the incorrectness of the model in view of the measurement repeat - 
ibility which is generally within about i 10 per cent, This scatter 

is believed to  be due to one o r  all of three sources. The f i r s t  is 



the fact that the calorimeter signal decreases rapidly a s  x increases 

so that any heat leaks within the calorimeter not accounted for in the 

present model become more important a s  the probe moves down- 

stream. Secondly, the heat transfer  through the gas a t  the probe tip 

could become a very serious source of e r r o r  a s  Re decreases rapidly. 

Then, finally, sthe simple models of heat transfer  from the gas and 

water to the wdlls used for the calorimeter a r e  suspect. The las t  

source of e r r o r  can be e l inha ted  by redesigning the probe by making 

it  similar to the stagnation point heat transfer  probe in which the 

calorimeter was isolated from the external coolant passages. This 

possibility was considered a t  the outset of this investigation but was 

rejected because the resulting probe would have bee6 about twice its 

present size. 

The total enthalpy profiles ac ross  the jet a t  x = 1 a r e  shown 

in Fig. 35 for the 200 and 1000 amp. tests.  The data a r e  normalized 

by the averaged centerline total enthalpy shown in the legend for both 

current levels. These data have been corrected for calorimeter 

heat leakage a s  discussed ear l ier .  The corrections reduced the 

measured total enthalpy by 6 to 14 per cent for  the ZOO0 amp. tests  

and ranged from reducing to augmenting the measurements by 13 to 

12 per cent respectively for the 200 amp. tests.  Valid measure- 

ments for r/x > 1 were complicated by low thermocouple calorimeter 

signals introducing repeatibility problems. With strong total en- 

thalpy gradients presentp h may vary by a s  much*as 30 per cent t 

ac ross  the probe diameter. Under these conditions of maximum 

gradient, the probe measurements overestimate the total enthalpy 



by less  than 10 per cent, whereas the centerline total enthalpy is  

underestimated by about 4 per cent. These e r r o r  estimates a r e  

based upon flow models for which pu and ht vary linearly in the 

region of maximum gradient and parabolically near the centerline. 

Using these flow models the total enthalpy measured by the probe, 

h was calculated a s  
tp' 

and compared to the probe centerline enthalpy a t  the probe tip. The 

integration was carried out over the sampling a rea  of the probe. fi 
P 

i s  the aspirated gas flowrate. In view of the rather limited data 

comprising this profile and the other uncertainties present in the 

total enthalpy measurement, no correction for finite probe size was 

made. 

An energy integral, P-Q = 1 pht 2 * fj ds,  was calculated to 

check the energy balance at  X/D* = 1. By curve fitting the pu pro- 

files from Fig. 32 and the ht profiles from Fig. 35, the energy 

balance closed within about 20% at  200 amp. and 1 0% at  1000 amp. 

In the hypersonic flow approximation ( ~ ' 4 0 0 )  the impact 
00 

pressure is  approximately equal to the free-stream momentum flux. 

With the independent measurements of p. and pu, discussed pre- 
1 

viousPy 
lPOO 

can be obtained, Since the typical flow time is  much 

shorter than the time required for recombination, tflow /t recomb << 1, 

(Fig, 24) the composition of the expanding gas will be fixed or  



"frozen" throughout and ua, will be a constant. In the approximation 

of steady, inviscid and non-radiating flow, the energy equation yields 

constant total enthalpy along a streamline which provides a simple 

energy integral for  the centerline flow properties, 

where hI = ~ c ~ h ; O ) - a n d  the energy due to electronic excitation has 

2 
been neglected. Now for frozen flow and Ma -a, (T,-0 and 

u -t constant) this may be rewritten, 
00 

CI 

where the second term in the brackets i s  the frozen ionization energy 

fraction. h has been calculated from the pi and pu measurements 
t f 

and i s  shown to be constant in Fig. 3 6  for the 200 and 1000 amp. 

tests.  The measuredvalues of ht at;= 1 ,  from the enthalpy probe, 

a r e  also shown in the legend a s  well a s  hI/ht calculated from the 

equation above. F o r  purposes of comparison, (hI/ht)Equil. was 

calculated at the stagnation equilibrium conditions. These values 

of hI/ht, calculated in these two ways, show good agreement. In 

fact ,  the agreement i s  within the scatter in the data used to deduce 

these results. It i s  believed that the results shown in Fig. 36  con- 

vey the fact that the flow i s  hypersonic and frozen and that the ioniza- 

tion energy fraction can be estimated by assuming an equilibrium 

X condition a t  the anode exit plane (- = 0). Corresponding to these 
D, 

equilibrium conditions a t  200 amp. and 1000 amp., the species mass  

fraction ranges from 0.2 for the atoms and 0.8 for the singly-ionized 
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ions, to 0.8 for the singly-ionized ions and 0. 2 fo r  the doubly-ionized 

ions respectively. At the sonic conditions (x/D* % 112) these resul t s  

correspond, to  electron number densities of about 1.6 X 1015 ~ r n - ~  

at 200 amp. and 2.4 x 1015 ~ r n ' ~  a t  1000 arnp. 
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111.3.5 Stagnation Point Heat Transfer Measurements 

From the results of the impact pressure,  mass f l u x  and total 

enthalpy measurements and the discussion of the flow field given in 

Section 111.3 the stagnation point heat transfer measurements made 

here can be brought into proper perspective. The flow field along 

the axis of the free jet i s  highly ionized, chemically frozen and hyper- 

sonic. Within about one or  two anode diameters from the exit plane 

the electrons become isolated energetically from the ions and a re  

believed to remain at  nearly constant temperature throughout the 

region of interest in the free jet. On the other hand, the ions undergo 

an adiabatic expansion to the f i rs t  approximation. The ions and elec- 

trons a re  in close proximity, in order to preserve charge neutrality 

(nE E n ) and the ions a re  moving a t  the adiabatic limit velocity I 

corresponding to the frozen total enthalpy. Primarily due to the 

small electron mass,  and thus large speed of sound, aE = a 

270 aI, the electrons a re  moving a t  low subsonic speed throughout. 

The presence of a body in the flow field, e. g. , the stagnation 

point heat transfer probe, must now be considered. As mentioned 

ear l ier ,  the probes used in this investigation were not biased to 

either electrode but were a t  floating potential so that no current was 

drawn from the plasma. A sketch of the stagnation point flow field 

i s  shown on the next page in order to facilitate the following discus- 

sion. For  reasons similar to those already mentioned, for probe 

locations in which X/D* > 2, the electrons a r e  believed to undergo an 

isothermal compression through the probe bow shock wave. This 

compression decreases the electron-ion and electron-electron mean 
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Estimates of the flow quantities shown below the sketch a r e  based on 

frozen flow of fully singly-ionized argon from a free je having stag- 
nation number density and temperatrue of 0 . 6 ~ 1  ~ ~ ~ c m - '  and 20, 0 0 0 ~ ~  
respectively . 
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free path from about 1 mm upstream of the shock to about 0.1 mm 

downstream of the shock. For  nearly al l  conditions, the ions a r e  

compressed adiabatically and exhibit the conventional Rankine- 

Hugoniot shock jump conditions corresponding to frozen flow for a 

monatomic gas. Because of the inverse square temperature depen- 

dence of the coulomb cross  section, the ion-ion mean free  path 

- 3 ranged from between about 10 cm upstream of the shock to a s  

large a s  0.1 cm downstream of the shock. 

What happens in the boundary layer must also be explained 

from consideration of a two fluid model of weakly interacting elec- 
* 

trons and ions. Except for the low range of Reynolds number the 

velocity boundary layer is  distinct from the shock wave. In this case 

an ambipolar diffusion model may be valid; in this model electron- 

ion pairs diffuse to the surface through counterdiffusing atoms which 

come from the surface. However account must be taken of the ele- 

vated electron temperature (T > TI = TA) in the diffusion model. 
E 

In the thin sheath (C C r ) near the wall, charge neutrality 
P 

is not preserved. F o r  the case of interest here ,  (probe current 

J = 0) the probe potential is somewhat less  than the plasma poten- 
P 

tial. A large fraction of the electrons which enter the sheath is  

repelled from the surface so that the electron and ion particle fluxes 

reaching the surface a r e  equal. Arm e stirnate of the thickness of the 

sheath based on the Debye length, AD. i s  about - l o e 4  cm for 

* Reynolds number behind the shock wave was based on the measured 
pu and viscosity from the Fay mixture rule (38) (see Appendix D) 
based on the frozen stagnation temperature and the measured impact 
pressure. 
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the conditions here. The mean free path of the ions i s  smaller and 

that of the electrons larger than this sheath thickness, i, e. , the 

sheath is  collision dominated for the ions and collision free for the 

electrons . 
A reasonable model then for stagnation point heat transfer 

in the f i rs t  approximation i s  shown in the sketch above. The electron 

temperature is  a s  s u e d  constant throughout and in general unequal 

to the ion temperature a t  the edge of the boundary layer, (TI),# (TE)e. 

The boundary layer and the shock wave may be assumed to be dis- 

tinct over much of the operating range. The flow through the shock 

wave and into the boundary Payer i s  fully singly-ionized and chemi- 

. cally frozen. In this region heat transport occurs by ambipolar dif- 

fusion of species and by conduction, A thin sheath a t  the surface of 

the probe screens a large fraction of the "hotf9 electrons Prom the 

wall where the electrons and ions recombine. 

Even for this simplified model no solution exists at present. 

This problem has all  the difficulties of the stagnation point Langmuir 

probe problem and i s  further complicated by the uncertainty in the 

values of the transport properties. However, before discussing the 

results of the stagnation point heat transfer measurements made 

here,  three theoretical predictions, which a r e  related to the present 

problem, will be discussed briefly, These predictions apply to the 

following cases: 



Geometry and Flow 

1. Stagnation Point 

F o r  partially 
ionized argon 
and helium. 

2, Shock Tube End 
Wall 

F o r  partially 
ionized argon. 

3. Shock Tube End 
Wall 

Conditions in Source 
the Boundary Layer 

l a  Equilibrium Flow Finson and Kemp (39)  
l b  Frozen Flow 

Equilibrium edge 
conditions; no sheath 
a t  the wall 

2a. Equilibrium Flow Fay  and Kemp (40) 

2b. Frozen Flow 

Equilibrium edge con- 
ditions; no sheath at 
the wall. 

2c. Frozen Flow 
with no Ionization 

Frozen Flow Edge 
Condition 

3a. Frozen Flow Camac and Kemp (41) 
with TE # TI 

F o r  partially Equilibrium edge 
ionized argon. condition; sheath 

included with probe 
current J = 8. 

P 

Finson and Kemp (39) solved the stagnation point boundary 

layer equations using variable fluid properties, Pr . C = Pp/Pepe .Le, 

and an ambipolar diffusion model over a range of freestream ioniza- 

tion fraction between 0 and 1670 for argon and between 2 and 67% for 

xenon. They considered the limits of equilibrium and frozen flow 

in the boundary layer having equilibrium edge conditions for an  elec- 

tr ical ly neutral, equal electron, ion, and atom temperature gas and 

did not consider a sheath region. Transport properties were evalu- 

ated by applying the Fay mixture rule (38). The boundary layer 
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similarity transformations of Fay and Kemp (40) were used to reduce 

the non-linear partial differential equations to non-linear ordinary 

differential equations, which were then solved numerically. The 

freestream conditions of interest were chosen so a s  to allow a com- 

parison with the measurements of Rutowski and Bershader (42) for 

the hemisphere in argon, and Reilly (43) for the two dimensional body 

(circular cylinder) in argon and xenon. F o r  the axisymmetric body 

the agreement is good at  low degrees of ionization, but the theory is 

about 20% above the mean of the radiation-corrected data points a t  

higher degrees of ionization. For  the two dimensional body the agree 

ment between experiment and theory (particularly for xenon) is  not 

nearly a s  good. The scatter in the data is  large; the mean of the 

experimental data a t  M = 8 where the degree of ionization i s  about 

2% is about 40% below the prediction. However a s  pointed out by 

Finson (44) this result may be caused by a faulty heat transfer gauge. 

The frozen and equilibrium boundary layer heat transfer predictions 

a r e  within 30% of each other. 

Fay and Kemp (40) have calculated the convective heat trans- 

fe r  to a shock-tube end-wall from reflected shock heated argon for 

1) equilibrium and frozen boundary layer models for which the bound- 

a ry  layer edge i s  in ionization equilibrium and 2) frozen boundary 

layer with no ionization in the boundary layer for which the edge 

conditions a r e  just those of a shock heated (un-ionized) frozen gas 

whic-h exists a t  the end-wall prior to the onset of ionization. They 

then compared these predictions to the measurements of Camac 

and Feinberg (45). The duration of measurement was sufficiently 
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sufficiently long that f i rs t  the un-ionized and then the ionized gas was 

exposed to the end-wall. The measured heat transfer rates did not 

change a s  a result of the relaxation process. Before a s  well a s  after 

the onset of ionization the measurements agreed reasonably well with 

the heat transfer prediction for the un-ionized gas a s  compared to 

the frozen and equilibrium predictions, which a r e  low by a s  much a s  

40 and 30% respectively. (Note also a point misplotted for 2F4E1 of 

the frozen prediction a t  Us  = 3 in Fig. 2, p. 670, Ref. 40.) Fay 

suggests that the effect of unequal electron and atom -ion temperatures 

may be the unknown factor which wodd account for this anomaly. 

Camac and Kemp (41) have predicted the effect of unequal 

electron and ion-atom temperature on heat transfer for the end-wall 

shock tube problem for a special case. They used the continuum 

boundary layer equations with ambipolar diffusion up to the edge of 

the sheath, where a molecular description was matched to the con- 

tinuum description. The boundary layer edge condition was taken to 

be in equilibrium and the end-wall was assurne d to be a t  the floating 

potential for which - Jq=0. With either temperature or chemical non- 

equilibrium present complete similarity was not possible; however 

a local similarity approach was believed to be satisfactory provided 

the nonsimilar terms containing time varied slowly so that time could 

be treated a s  a parameter. Their solution represented one external 

condition in time, with two different values of the elastic collision 

rate constants 0 and ao, and gas phase recombination neglected. 

The conditions behind the reflected shock were 



T r 1 6 , 0 0 0 ~ ~  
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Since a few collisions exist in the sheath they varied the ion velocity 

at the sheath edge from the maximum drift velocity 

the collision dominated equilibrium value based on tlje wall temper- 

When the elastic energy exchange between the 

electrons and the heavy species was neglected, the range in ion 

velocity a t  the sheath edge resulted in only a 6% difference in heat 

transfer .  These results ranged between 5 and 10% respectively 

below the case for which complete temperature equilibration through- 

out the boundary layer was specified, Because of the negative sheath 

potential the electrons a r e  insulated from the wall, and in  fact the 

electron temperature drops to only one -half its edge value at the 

sheath when the collision rate constant i s  zero. F o r  the case of equal 

temperatures at the edge of the boundary layer,  the effect of unequal 

temperatures in the shock-tube end-wall boundary layer has a small  

effect on heat transfer ,  a t  leas t  for the one condition investigated 

there. However in the present case (TE)e + (TI)e in general. 

Axial heat transfer profiles taken between 1 C X/D+ 4 12 in 

axial intervals of the anode radius Ro = 3/8 in. a r e  shown in Fig. 37 

for 5 operating conditions of the a r c  heater,  I = 200, 400, 600, 800 

and PO00 amps. The conditions of operation of the a r c  heater were 

suck as t o  provide about a factor sf two in total enthalpy, 18,300 G 

ht  d 3 2,200 B T U / ~ ~ ,  , a s  the ionization fraction, a!, ranged between 
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t t 

-78 and 1.0 . a = 1.0 means that complete single ionization of argon 

is completed at the two highest currents. According to the energy 

estimates of Section 111.3, there may be 20% by mass  of doubly- 

ionized argon present. Estimates of ht,  and subsequently Ttf and a, 

shown in Fig. 37 at P = 400, 600, and 800 amps. were  obtained by 

assuming that the centerline total enthalpy depended linearly on the 

average total enthalpy hta, between 200 and 1000 amps. where ht was 

measured. h could be monitored continuously during each test,  ta  

The frozen total enthalpy , htf comprising the random thermal 

energy and kinetic energy, was obtained in a similar  way, 

The stagnation point heat transfer measurement was made 

over a 30° half-angle spherical cap which compris.ed the calorimeter 

sensor of the stagnation point heat transfer  probe shown in Fig. 7. 

The heat transfer  distribution over this sensor was assumed to obey 

the distribution proposed by Lees (46) for the hemisphere, 

which has been verified by Kemp, Rose and Detra (47) and Hickrnan 

and Giedt (47a). The integration sf this distribution over the sensor 

a rea ,  including the effect of angle-of-attack, to relate the average 

heat flux measured by the probe to the stagnation point value, i s  ca r -  

r ied out in Appendix C. Fo r  measurements along the axis, this 

correction, the ratio of average to stagnation point heat transfer  

rate,  was taken to be qa/qs = 0.88 corresponding to M; +me At 

M = 2, qp/qs = 0.89. The heat transfer  ra te  is seen to decrease 
(30 
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rapidly with X/D+ or  approximately a s  6 (or x / D + ) - ~  for hyper - 
* 

sonic source flow) until a small relative maximum in the profile 

occurs a t  each current  level, e.g., a t  X/D,S 6 and 8 for the 200 

and 1000 amp. conditions respectively. 

The level of T was not measured in this investigation. How- E 

ever the measurements of T (and estimates of TI) by Kelly, Ner- E 

heim, and Gardner (1 5) (discussed in Section 111.3) show that TE i s  

significantly higher than TI near the exit plane (X/D*" 1.3) of a 

similar arc-produced free jet. These observations a r e  the basis of 

a plausibility argument explaining the differences in the heat transfer 

ra tes  measured here  a t  200 and 1000 amp. From the more recent 

measurements by Nerheirn (20) i t  is observed that TE is nearly in- 

dependent of a r c  current,  i.e., T variations with current  a r e  E 

within the uncertainty band given for TE between 1000 and 1600 amp. 

1 at m = 0.3 gm/sec for - <, X/D* ( 3.  2 
Indeed this type of argument 

j 

seems to be supported by the data here. If we scale the heat flux a s  

kAT 
q-- 

%he rmal  

where 

and replace the temperature difference by the total enthalpy, we 

':This point i s  where the disk shock was visually observed to be from 
the distinct changes in luminosity of the gas. As observed and dis- 
cussed in Section 111.3 the minimum of the impact pressure occurred 
a t  this same point. 



obtain 

¶BE* 

and 

where the Spitzer thermal conductivity (33) has been used. Thus if 

the value of TE i s  invariant with a r c  current, 

" ~ 2 0 0  amp. ,. - 13,500 'I4 18.300 
qnq ' 5,530 '32,200 

"UBOOO amp, 

= 0.48 (at X/D* = 1) 

whereas the measured ratio is 0.57 (Fig. 37) o r  about 15% higher 

than predicted. The fact that the measured q at  1000 amp (x/D, = 1) 

appears somewhat low (in Fig. 37) makes this argument even stronger. 

F o r  equal electron and ion temperature, for which the conductivity 

was evaluated at  the frozen total temperature of the mixture (-38,000% 

a t  1000 amp. and - 1 4 , 0 0 0 ~ ~  a t  200 amp. ), the heat flux ratio would 

have been 0. B 8 or about a factor of 3 Bower than the measurements. 

Ef these arguments a r e  carried one step further. the data can be COP- 

related in a somewhat more conveantionaP manner. In particular, the 

data caw be compared to the frozen boundary layer prediction by 

Finson and Memp (39) in the same spirit  of the caPcdations just made. 

The effect of elevated electron temperature would have to be reflected 



in lowering the Prandtl number because their theory does not include 

the effect of unequal temperatures. Use of the numerical solutions 

by Finson and Kemp (39) is  facilitated by the work of Back (48). 

Back (48) predicted the laminar boundary layer heat transfer 

on a flat plate from a partially ionized monatomic gas for constant 

freestream velocity for equilibrium and frozen boundary layer models 
* 

using constant transport properties and the ambipolar diffusion 

assumption. By comparing his constant transport properties predic- 

. tion to the variable transport properties solution of Finson and Kemp 

(39) a t  the stagnation point, Back was able to obtain a simple curve 

fit to the exact solution a s  shown in Fig, 38. F o r  Pr 4 0.05, two 

new curves have been drawn to better approximate the exact solution, 

For the case of the fully catalytic cold wall (zIw E 0 ,  g w l  0 )  
- 1  

gw 
axisymmetric stagnation point (- = .495) the prediction for &e 

1 -gw 

entire Pre r a g e  i s  

where 

C1 = 0.86 Pre - I 3  Valid for frozen and (2) 
equilibrium boundary 
layers for Pre 1 .05 
(Back, 48) 

* The validity of using heat transfer predictions based on constant 
transport properties depends upon the success of determining the 
correct reference conditions in the boundary layer at which the prop- 
erties a re  to be evaluated so that agreement with exact solutions is 
obtained. This technique Bas been successfu8 for a nurnbe~ of bound- 
a r y  layer heat transfer problems (e,g, @ 46# 49, and HI, 



- 
C1 - '0b46 Valid for the frozen 0.60 Pre 

boundary layer for 
(3 

Pre '05 

- - 0.'39 pre - O b 6 l  Va l idfor theequi -  
librium boundary 

(4) 

layer for pre? .05 

The modified Newtonian approximation for  the pressure dis- 

tribution on hemispheres seems to be adequate (51., kt  least  to 

S 28 and 0 4 0 S 70°) in lbw Reynolds number flows ibf argon 
P 

so that the velocity gradient may be approximated as 

2 
in the hyper sonic approximation, Mm > > 1 . 7 was taken to be 5/3. 

Shown in Fig. 39 a r e  the data normaPized by the heat flux caP- 

@dated  by using f ie  frozen boundary prediction, Eqs, B and 3, with . 

the following assumptions: 

(i) Transport properties evaluated at pi, Ttf, and 

(except the A data points in Fig. 39) by using the 
t 

Fay mixture rule (38). (See application of this 

mixture rule to argon in Appendix D). 

(ii) Velocity gradient based on urn = JZhtf instead of 

(iii) ht is constant along the axis for 1 4 x / ~ *  4 8; 

measured values of ht a t  X/D* = 1 were used. 

The impact pressure,  pi, was measured; a was deduced from the 

results shown in Fig, 3 6 and is given in Fig. 37; and the frozen total 

temperature, , wae calculated from the measured frozen total Ttt I 



enthalpy, htf (derived from the measured p. and iu  as discussed in 
1 

section 111.3) a s  

where 

The open circles and solid triangles apply to the data for 

which al l  species a r e  a t  the frozen total temperature, Ttf9 a t  the 

edge sf the boundary layer. The 208 amp data, compared in  this 

way, lie nearly 2.5 times above the 1000 amp. data, a s  observed 

earl ier .  F o r  the 1008 amp. data the Prandtl number is seen to 

take on i ts  fully singly-ionized value for argon. (See the transport 

properties discussion in Appendix ID. ) 

If the data a t  200 amp. a r e  correlated by using the Prandtl 

number for a fully-ionized gas (see the open triangles in Fig. 39) 

the data compare favorably with the 3.000 amp. data, (Note that good 

agreement is also observed with the data collected by Cheng (52) for 

this same Reynolds number range.) One way of interpreting this 

result  is a s  follows: although the gas i s  not fully ionized, elevated 

electron temperature (TE)e > (TI)e would have the effect of lowering 

Pre, i. e., from siinple kinetic theory arguments, 

In this way (TE), at 200 amp. was estimated to be 2 3 , 0 0 0 ~ ~  o r  about 
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a factor of 1.5 larger than (TI)e. The electron temperature a t  1000 

amp. corresponds to the ion temperature (TE), = (TI), " 3 0 , 0 0 0 ~ ~ .  

The electron temperature a t  these two current levels differs only by 

about 30%. This result seems consistent with the measurements of 

Kelly, Nerheim , and Gardner (1 5) and Nerheim (20). Their meas - 
urements, made a t  1000 and 1600 amp. , show that T is insensitive E 

to  changes in current level. However, the electron temperatures 

estimated here range between 5,000 and 10, OOOOK higher than they 

measured. 

Although the a r c  heater used in this investigation was identical 

to that used by them without the cathode shield (see Fig. 3 and dis- 

cussion in Section 11.2) operation with the cathode shield could be 

quite different. Fo r  instance, conditions a t  1000 amp. and m = 0.5 3 
gm/sec were: 

(Private communication Ref. 24) 
Heater Used in Refs. 15 and 20) Heater Used Here 

I = 1000 amp. 1 = 1000 amp. 

Thus, on the average, our average total enthalpy, hta, i s  one-and- 

one-half times their value. (It is observed that hta scales approxi- 

mately a s  the a r c  voltage drop, V.) This differential in hta is 

equivalent to raising the temperature of a fully singly-ionized argon 

gas of equal species temperature by 8 , 0 0 0 ~ ~ .  

The energy added to the electrons by the electric field, E, 



varies directly a s  E at constant current density. If TE were scaled 

in this way, where E V/L, one would expect TE to be about a factor 

of 1.5 higher for the tests conducted here a t  1000 amp. 

As a result of these plausibility arguments, i t  is  believed that 

the electron and ion temperatures a re  sub stantially higher than those 

reported in Refs. 15 and 20. What is not understood i s  why TE 

2 3 , 0 0 0 ~ ~  a t  200 amp. and S 3 0 , 0 0 0 ~ ~  at  1000 amp. 

Radial profiles of stagnation point heat flux, qm, are shown 

in Fig. 40 for the a r c  heater operating a t  200 and 1000 amp. for 
- 
x = X/D* between 1 and 12. Corrections applied to the measured 

(average) h e a t - f l u ,  qa, to obtain qm, were for the effect of finite 

sensor area and angle-of-attack and were developed in Appendix C 

and shown in Fig. 41. Heat flux measurements were made over a 

radial distance of about 4 in. at  each axial position; however, the 

profiles shown for  1 < x 6 6 were terminated in the data reduction 

scheme when the angle of attack, a, became 40° in order to be con- 

4 sistent with the approximation made in Appendix C that a << 1. 

Only one -half of the profile is shown for each current level. 

Entire profiles (not shown here) at  one current level were symmetric 

up to about the disk shock location ex = 6 and 8 at 200 and 11000 amp. 

respectivel.y). Beyond this point asymmetries in q s f  P 0-2070 were m 

not uncommon. In addition a radial shift as large as 570 was ob- 

served between the geometric axis aligned with the a r c  heater and 

the measured maximum in q me 
The trend established for along the centerline shown here 
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a s  well a s  in Fig. 37, for which qm at 200 amp. i s  about one-half & 
at 1000 amp., continues to be true for the radial profiles. Any effect 

of the barrel  shock wave on heat transfer i s  either small or  has been 

smoothed out by the use of this large stagnation point heat transfer 

probe (r = 1/4 in.). 
P 



IV. SUMMARY OF RESULTS AND SUGGESTIONS FOR FUTURE WORK 

IV. 1 Surnpary of Results 

The work carried out in this experimental investigation in- 

clude s the building of a low density, high enthalpy continuous -flow 

test facility; the development of a probe which can be used for meas- 

urements of impact pressure,  mass f lux and total enthalpy and a 

stagnation-point heat -transfer probe to withstand an extremely hostile 

plasma environment; and the use of these probes in an attempt to 

define the flow field of a highly ionized, supersonic free jet. 

Test Facility 

The test  facility has the flexibility of operating a t  low gas 

flowrates (< 0.5 gm/sec) when using the diffusion-ejection pumping 

system and operating a t  highef flowrates when the wind tunnel com- 

pressor facility i s  used. One version of the so-called Magneto- 

Plasma-Dynamic a r c  heater was used to heat the gas to average 

total enthalpies ranging from between about 5000 to 10,000 B T U / I ~ ~ .  

Operation of the a r c  heater a t  0.5 $m/sec argon flowrate, over a 

range of current from 200 to BOO8 amp., provided a stable discharge 

and a flow field of high purity. The atom-ion number density was 

15 -3 about P O  c m  at  the exit plane of the a r c  heater, 

Probe Development 

All probes were water cooled to allow continuous operation 

in the hostile plasma envirornment encountered here. Probe tips 

made of molybdenum, tungsten and carbon were used for the com- 

bined impact pressure # mass flux and total enehafpy probe, in order 

to maintain a sharp Peading edge, This feature was necessary to 



insure swallowing of the shock wave while making the mass flux 

measurements in supersonic flow. It also delays the onset of viscous 

effects which complicate the interpretation of pressure measurements, 

The mass flux sampling technique was developed in the supersonic 

flow field of an unheated free jet. 

An important feature incorporated into the design of the 

stagnation point heat transfer probe was a 0.001 in. "airtt gap which 

thermally isolated the outer heat shield cooling passage from the 

inner calorimeter. Stagnation point heat transfer rates ranged as 

high a s  about l 3 BTU/' 2 in sec, 

Heated Free  Je t  Investigation 

These probes were used in am attempt to define the flow field 

of a highly ionized a r c  heated free jet. Based upon eke Chapman (36) 

viscosity for a fully-ionized gas, the Reynolds number was about 

2508 a t  the exit plane and remained at about this value along the cen- 

terline of the free jet, The total pressure ranged betv6een about .. . .. 28 

and 35 mmHg. The impact pressure and mass flux measurements 

indicated that the flow was source-like, chemically frozen, and in 

other details very much like the underexpanded free jet flow of a 

perfect gas. Near the exit plane, X/D* = 1. where the f ree  shear 

1aye.r is small, the validity of f i e  pu measurements was demon- 

s trated. 

The enthalpy measurements made on the centerline, at  x / ~ * = l ,  

ranged from between 18,000 B T U / ~ ~ ~  a t  200 amp. to 32,000 BTu/lbm 

at 1008 amp, These values a r e  about a factor of P O  higher than those 

reported by others, who used this size probe or smaller (0,47 in, 



dia. inlet), in supersonic flow. These centerline values were ap- 

proximately three times the mass average total enthalpy deduced 

from a heat balance on the a r c  heater. Thus, use of the average 

total enthalpy to infer local flow field quantities in the free jet, i s  

completely misleading. 

By combining these total enthalpy measurements with the 

impact pressuFe and mass flux measurements just mentioned, the 

fraction of the total energy contained in ionization was shown to 

range between q. 7 a t  200 amp. and 0.6 a t  1000 amp, Using equi- 

librium conditions for reference purposes, the total temperature 

ranges from between 12, O O o O  a t  200 amp. to 20, OOOOK at  1000 amp. 

FOP this same curre& range9 the species mass fraction ranges from 

0,2 for  the atoms and 8.8 for &he singly-ionized ions, to 0.8 for 

the singly-ionized ions and 0.2 for the doubly-ionized ions respec- 

tively, Reasonable approximation to other flow quantities along 

the centerline i s  obtained by assuming that the gas i s  fully singly- 

ionized and chemicaUy frozen to recombination, and that the flow 

is  hypersonic. The electron energy equation was examined, and it 

was concluded that within a few diameters from the exit the electrons 

become energetically isolated from the ions and the electron heat 

conduction term dominates. These conclusions substantiate the 

results of electron temperature (TE) measurements made (by others 

(15 and 20)) at the exit plane and 3 diameters downstream, which 

show that to a f i r s t  approximation, TE constant. Solution of the 

electron heat conduction equation, for tihis simple case, indicates 

a very weak deaay of TE dong the axis. 



Radial profiles of stagnation point heat transfer were obtained 

between one and twelve diameters downstream of the exit plane. No 

theory exists which accounts for the effect on heat transfer of unequal 

species temperature for  the conditions encountered here. A prelirni- 

nary attempt to correlate the results along the axis in the supersonic 

region (1 S X/D+ 4 a), shows that the electron temperature (TE# TI 

in general) plays an important role. If i t  is  assumed that TE i s  

nearly independent of current level, the data at the two current levels 

correlate quite well. Elevated electron temperature was taken into 

account in the evaluation of the thermal conductivity (in the Prandtl 

number) in order that the data could be compared to the heat transfer 

prediction by Finson and Kemp (391, Their prediction i s  only 

strictly valid for equal species temperatures throughout and chemical 

equilibrium a t  the edge of the boundary layer. In this regard, the 

one fluid modef. cannot provide the exact solution to this problem; 

however, it may establish the trend of the data a s  a result of unequal 

temperature. 

lev. 2 Suggestions for Future Work 

As  a result of the present investigation, a number of problems 

a r e  suggested for future work  

(1 ) A n  experimental investigation to determine the electron temper - 
ature and density in the supersonic portion of the free jet used here. 

Near the exit plane ( x / D * ~  3) the electron temperature can be meas- 

ured spectroscopically, For  all Bocations the possibility exists for 

measuring TE and n by swinging a small uncooled Langmuir probe E 

through this jet. 



(2) A theoretical and a continued experimental investigation to solve 

the stagnation point heat transfer problem. In particular a two-fluid 

model must be used to determine the effect on the stagnation point 

heat transfer rate of unequal species temperature and of probe poten- 

tial which is ,  in general, dsferent from the plasma potential. 

(3) An experimental investigation of the dark space which exists 

upstream of the disk shock (see Fig. 15) in the free jet a s  well a s  

upstream of the bow shockwave from the total enthalpy probe (see 

Fig. 25). With regard to the former instance, the Langmuir probe 

measurements (suggested as (1) above) in this region and through 

the disk shock of the free jet should answer some fundamental ques - 
tions about the variation of electron temperature, Of particular 

interest, in'the latter instance, i s  the possibility of altering the 

structure of this dark space by changing the potential on the body. 
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APPENDIX A: MASS FLUX SAMPLING TECHNIQUES 

A. 1 Mass flux measurement 

Mass flux, pu, can be measured in a supersonic stream if the 

shock wave can be I '  swallowed1' in the diffusor section of a probe 

thereby capturing the undisturbed streamtube bounded by the probe 

tip perimeter. This technique has been used successfully by several 

investigators (54, 55, 56 )  who measured pu in much lower enkhalpy 

flows than reported here. The probe must have a sharp leading edge 

of small enough' included angle so a s  to insure shock attachment while 

taking the mass  sample thereby eliminating mass  spillage a t  the tip. 

In addition the vacuum supply for the probe must have sufficient 

pumping capacity, with line losses included, so that the pressure 

a t  the probe tips? a t  the required flowrate, is less  than the static 

pressure downstream of the shock, Both a steady-state sampling 

technique using a vacuum pump and a transient sampling technique 

3 
. using a 4 ft  evacuated collector tank were employed. 

The purpose of this appendix is to establish the operating 

range of the pu sampling technique in hot flow, To do this, models 

of the two sampling techniques used here a r e  developed to allow 

calculation of their operating ranges in te rms  of jet conditions and 

sampling conditions. The centerline pu measurements made in the 

known flow field of the cold free jet a r e  shown to be valid a s  long a s  

conditions fall within the calculated operating range. This same 

model of the sampling technique is then used to predict the pu probe 

operating range in hot flow. 

Since the mass  flux measurement involves flowrates 



typically between 1 0-8 and 1 o m 5  lbm/sec, the probe line Reynolds 

number range between l o m 2  to 10/in. Knudsen number based on probe 

tip conditions is  no greater than about .01. Thus the Hagen- 

Poiseuillelaminar flow result is used to relatb probe line pressure 

drop to flowrate. This solution i s ,  

To introduce mass flowrate, Ifi, and to account for @e change in 

density the expression i s  rewritten in te rms of the average density 
- ( P ~ + P ~ )  
P = i  R T  9 

D~ where q = -  L and 

9 Bbm ft 
= 256pR T 

= 1.30-0 - 
sec 

0bfl2 

for argon a t  5 2 ~ ~ ~ .  

Now if this result i s  applied to a series of 3 tubes of different 

lengths Lo, L1, L2 and diameters DO, Dl D2,, the result is. 

A. 2 Steady State Mass -flux Measurement Technique 

With valves A and B open and valve C closed (see Fig. 6 ) 

the mass flux sample is  pumped from the probe inlete through the 

probe lines, through the vacuum pump and finally into an inverted 

water -filled calibrated beaker. The time elapsed to displace the 

water from the calibrated beaker to the free surface of the water 



reservoir was recorded with a stop watch. For  instance a t  = 1 and 

Dprobe 
= .14911 a 250 ml beaker was filled typically in 2 min. where- 

a s  at  ;;: = 5 a 50 ml beaker was filled in 10 min. From this measure- 

ment and knowledge of the gas sample volume and i ts  density a t  1 

atm the flowrate and hence the mass flux was calculated for a given 

tip diameter. When valve B was closed, the output of the pump was 

immeasurable over a 30 minute period indicating that the pump was 

not leaking in any external air .  

The operating range was calculated by using the modified 

Poiseulle relationship in which the resistance of the circuit between 
* 
valves A and B is  negligible so that the result i s ,  

where p2 i s  the pressure at  the probe tip and p is  the pump inlet 1 

pressure corresponding to the pump performance a t  I%. Thus for 

given tube diameters and lengths and vacuum pump characteristic 

the results can be plotted a s  shown in Fig, 42, curve 1. For  a 

given probe diameter and static pressure behind the shock, pa, the 

actual mass flowrate must fall below and to the right of the pump , 

performance curve, otherwise the pump capacity will be exceeded, 

the shock will not be swallowed, and the mass flowrate measured in 

this way will be too Bow. The impact pressure measurements in 

cold flow (Fig. 18 ) showed that for purposes of estimating the oper- 

ating range, the impact pressure distribution predicted by Ashkenas 

and Sherman (Ref. 8 ) could be used. Thus for any given total pres- 

surer  total temperature and probe size, the probe flowrate could be 



plotted a s  a function of p2, the static pressure  behind the shock. In 

Figure 42, for  instance, curves 2 and 3 a r e  shown a t  the same total 

pressure  for probe diameters -035 and .149" in cold flow (Tt = 

522O~).  Whereas the .035 in. dia. probe, curve 2,  can be operated 

for  x = 3, the .149 diameter probe i s  satisfactory a t  x = 1 and in 

question a t  x = 2. In fact experimentally pu was measured at 
- 
x = 2 in cold flow. The Mach number obtained from this pu and 

the measured tptal pressure was about 60% higher *an that shown 

in Fig. 42 for x = 1. From this example, and others not given here ,  

the model used to predict the operating range is believed to be r e -  

liable. Comparison of these results to the known cold flow field 

i s  discussed in Section III. 2.2. The operating range cri terion of 

the sampling technique appears to be valid in cold flow. 

Preliminary results obtained by flow field v sualization and 

impact pressure  measurements given in  Section III.3.2 indicated 

that the hot jet was remarkably similar in structure to the cold jet. 

The operating range criterion for the pu measurements for  the hot 

flow was then calculated on the basis of the f ree  jet solution given 

by Ashkenas and Sherman (8) and the measured impact pressure 

measurements. Thus, for a given x, pu in hot flow was taken equal 

to pu in cold flow; however, the total j e t  pressure  and temperature 

was higher in hot flow (the total gas flowrate was kept constant a t  

.5 gm/sec for both cases).  Curves 4 and 5 of Fig. 42, which were 

calculated in this ways show that the effect of heating the jet i s  

to increase the operating range of the pu measurement technique. 
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In fact, whereas the -149 dia. tip probe could not be used for = 1 

in cold flow, the operating range in hot flow was extended to include 

the entire supersonic flow field of the jet. 

A. 3 Collector Tank Mass Flux Measurement 

In this method of measuring pu the collector tank, Fig. 6 

was evacuated to about 0.1 pHg. Then valve B was closed and valve 

A was opened for a measured time period during which the gas was 

collected in the collector tank. The collector tank pressure was 

then measured with a McLeod gage again and the mass entering the 

probe was calculated from the simple mass balance, 

t f 
Mass of gas collected Mass of gas contained 
by collector tank, initially in the probe line 

a t  the impact pressure. 
This gas does not enter 
the probe a s  part of the 
gas sample but does 
enter the collector tank 
and must be subtracted 
from the collected mass. 

PirV 
R T  

f 
Residual mass of 
gas contained in 
the probe line when 
valve A is closed. 
This gas enters the 
probe but does not 
enter the collector 
tank and must be 
added to the col- 
lected mass. 

When the mass f l u x  probe operates correctly, i t  intercepts the on- 

coming undisturbed streamtube so that the flow rate is  constant in 

time. Thus, when the above expression i s  converted to mass flux 

and rewritten slightly, it becomes, 

where 



lbm pu = mass flux, - 2 ft  sec 
V = collector tank volume plus the line volume between 

3 value C and B (4.35 f t  ) 

v = probe line volume between valve A and the probe tip 

Ap = collector tank pressure r i se ,  pHg. 

- A - p.-pif, where pif i s  the final pressure of the probe line 
'1 

just prior to closing valve A and p. is the impact 
1 

jqessure, mm Hg. 

. t = sample t ime, i. e. , time that valve A is open, sec. 

L A = area of probe tip, f t  . 
f t  -lbf 

W = gas constant for argon, 38,7 lbm 

T = collector gas temperature, 7 0 ° ~ .  

With the units prescribed above, pu becomes, 

The second term in the bracket ranges typically from about .05 to 
' 

.25. 

The operating range for this pro measurement technique must 

now be determined. The essential idea i s  the same a s  before, The 

shockwave must be swallowed to allow stream tube capture, The 

pressure a t  the probe tip must be less  than the static pressure down- 

stream of the shock, p2, while the constant flowrate sample is taken. 

Thus for a given sample flowrate, Pkl and static pressure behind 

the shock, p2, the maximum collector tank pressure,  pctmx which 

is associated with the maximum sampling time, becomes, from 



Eq. 1 -A where the pump inlet pressure has been replaced by p 
ctrnx' * 

- Tl"2 
where q = - . 

1+12 
The minimum collector tank pressure, at  t = 0, i s  

where the last  item is  the pressure contribution of the probe line gas 

which i s  assumed to be swept instantaneously into the collector tank 

as  valve A is opened at  t = 0. pcti9 the initial collector tank pres- 

v sure,  was typically between 0.1 and 1 yHg. whereas pi p ranged 

from 180 pRg. a t  x = 1 to 1 yHg. a t  = 6. The maximum sampling 

time is that associated with the pressure r ise  between pctm and 

Pctmx' 

The rate of collector tank pressure rise is related to gas 

sample flowrate through the perfect gas law a s ,  

I% is then eliminated from Eq. 1-A and the result is integrated to 

obtain the sample time a s ,  

where 



2 when t and p a re  in seconds and lbf/ft respectively. (p2 i s  the static 

pressure behind the shock. ) 

In order to calculate the probe operating range for given jet 

conditions i t  was assumed, a s  discussed previously, that the free 

jet character of the inviscid flow field i s  not changed radically by gas 

heating. The results of these calculations for the probe operating 

range a re  shown in Fig. 20 for the ,149'' diameter probe tip with 

the jet operating 1000 amperes and l /2 g m / s e ~  total flowrate. How- 

ever in addition to using the free jet theory of Ashkenas and Sherman 

(81, the hypersonic approximation ( M ~  -. oo) was applied to their 
00 

theory to provide the hypersonic source flow model to calculate the 

operating range also shown in Fig. 20 . Experimentally it was 
> 

found that the operating range calculated in this way was too pessi- 

mistic in both cold and hot flow. For  instance in hot flow a t  x = 1 

the permissible sampling time was from two to three times longer 

than the calculated sampling time, probably because the theory over- 

predicts pu a t  = 1. However if a t  this highest Reynolds number 

condition (Reid = 400) the shock i s  not at the tip but rather in the 
P 

aft position shown in Fig. 20 , the operating range is extended by 

about a factor of 3, as shorn for the @us calculated points. The 

less  favorable pressure recovery for the aft shock position decreases 

the sampling line pressure drop and thus increases the sampling 

time, 



APPENDIX B: TOTAL ENTHALPY PROBE CORRECTION 

The total enthalpy probe correction alluded to ear l ier  in 

section II1.3. Q 'is described briefly in this appendix. Inter coolant 

passage heat transfer which occurs across a s  well a s  along the 

walls of the paobe i s  considered by combining the one -dimensional 

heat conduction equation in the outer, dividing, and i p e r  walls 

with the energy equation for the coolant. The heat eransfer between 

the water and the wall is approximated by an appropriate film coef- 

ficient, temperature difference product which is valid for fully 

developed l a4 ina r  flow in an  annulus. A model for the gas side 

heat transfer which accounted for low Reynolds number effects in 

a simple way was added to complete the set  of equations. The 

details of the computer solution which was solved on the computer 

a r e  not included here. The solution sought was the response of 

the calorimeter, Qc to an input (energy/time), (1 from the gas 
g 9  

for fixed outer, in,. and inner., rh 9 coolant passage flowrates, c,  

R eynolds number and probe (tungsten) tip ternpe rature,  which was 

measured with an optical pyrometer and entered a s  a boundary 

condition. Fig. 38 is typical of the solution obtained for several 

Q and one set  of coolant flowrates a s  a function of WePr. Since 
C 

the measured total enthalpy is obtained from the c d o r h e t e r  energy 

input Q and measured gas flowrate I . as ht = the cor- 
C g 

rected total enthalpy i s  calculated as, 

- h t meas'd 
h t co r r td  - 



Because of the prohibitive scatter in the corrected data (Fig. 34 for 
- 
x > 1 )  this model does not appear to be adequate beyond ';; = 1 ,  A 

discussion of this result and the probable errors of this correction 

model i s  given in Part I, section'XII;i+%+. 



APPENDIX C: CORRECTION FOR THE EFFECT OF FINITE SEN- 
SORAREAANDANGLEOFATTACKONTHE 
STAGNATION POINT HEAT TRANSFER MEASURE- 
MENTS 

Measurements made with the stagnation point heat transfer 

probe shown in Fig. 40 were corrected for the effect of finite sensor 

a rea  and angle of attack. At locations several anode radii down- 

stream of the exit plane of the jet, negligible e r ro r  is  made by 

assuming that the free stream flow i s  both radial (source-like) and 

constant across the sensor for a given probe location. 

The applicability of the stagnation point heat flux distribution 

given by Lees (46) for a hemisphere has already been discussed in 

Section III. 3.5, This distribution, f i e  ratio of local-to-stagnation 

point heat flux, can be writeen, 

where @ = 0.722 - 0.667 2 (C -1 ) 
YmMm 

- - - - 
8 i s  the polar angle (z the polar axis) for a coordinate system (x,y,z) 

centered at the origin sf the hemisphere; x passes through the stag- 

nation point and the origin of the jet source and is thus inclined a t  

angle tr to the jet axis which i s  parallel to the x axis or probe axis. 

The total heat transferred to the probe become s , 

Where 8 and -$ a r e  tihe polar and azirrrutlhal angles corresponding to 

the (x,y,e) axes, 
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The heat flux distribution in 8, Eq. C-1, must be transformed 

to a function of 8 and $ in order that the simple integration limits in 

Eq. C-2 be retained. The two coordinate eystems a r e  related by 

- 
x = x cos a! f y sin a! 

where x and y may be eliminated by 

x = R cos 8 

y = R s i n e  cos # 
- 

to obtain, where R = R ,  

X - = cos 8 cos a (1 + cos$tan 8 tan a) 
?i: 

By noting that 

- 
8 = tan 

and that 

-2 -2 -2 ITZ = x  + y  + z  

one obtains 

By substituting Eq. C -3 into C -4 and expanding both sides, dropping 

-4 terms of fourth order or higher, L e e .  e . 8 4  a4, << 1, one obtains 



Substituting this relationship into Eq. C- l  and integrating Eq. C-2 

3 with sin 8 0 - 8 / , the ratio of average to stagnation point heat 6 
flux becomes 

where the average heat flux over the sensor (spherical cap of radius 

Pi and half angle 8 ) area is defined a s  
P P 

4 to the same approximation (8 Cc 1). In this investigation 
P 

7r Bp = -g rad. ( 3 0 ~ ) .  

5 4, W h e n y m = ~ a n d a ! = O ,  0 .884-60 .89for2CMm4m.  The 
4s 

effect of angle sf attack, a ,  onm this ratio, shown in Fig. 41, i s  seen 

to be quite important as is the effect of Mm fo r  large a. The correc- 

tions applied to the data were taken from Fig. 41 corresponding to 

M 4-00. 
a0 



APPENDIX D: TRANSPORT PROPERTIES OF IONIZED ARGON 

One limitation on the prediction of heat transfer rates from 

ionized gases is the uncertainty in the values of transport properties 

such a s  viscogity, thermal conductivity and diffusion coefficient 

which enter the Prandtl number, Lewis number and Chapman-Rubesin 

(57) function (C = pp/pe)re). In P a r t  II of this thesis (computor 

printout given in Ref. 58) it was shown that for temperatures above 

about 7.000 to 8 , 0 0 0 ° ~ ,  (Q! = 2.6 x 1 om4 and 1.6 x 1 o - ~  respectively 

a t  1 atm. ), the thermally and calorically perfect gas assumptions 

for equilibrium argon must be modified to account for ionization 

effects on flow quantities. As will be seen la ter ,  the predicted effect 

of ionization on equilibrium transport properties becomes significant 

for thermal conductivity a t  7 , 0 0 0 ~ ~  or  somewhat less  , depending on 

the pressure, The purpose s f  this appendix is to discuss and com- 

pa re  the results of two current theories which were used to predict 

transport properties for ionized argon. These properties were used 

irn the heat transfer predictions which a r e  discussed in Section 111.3.5. 

The experimental problem of measuring transport properties 

directly becomes difficult a t  temperatures f a r  below that for which 

significant ionization occurs. In this regard the NBS (59) tables 

provide values of viscosity from 50 to l . 5 0 0 ~ ~  and thermal conduc- 

tivity from 90 to 1 , 5 0 0 ~ ~  a t  1 atm. which were obtained by a corre - 
lation of experimental data from many sources for argon. Except 

for the viscosity measurements of Bonilla (60) from 270 to 2 , 0 7 0 ~ ~  

with a capillary efflux viscometer, and the sound absorption and 

speed measuremeits by Carneval e t  a%. (61) between 3 0 0 - 8 . 1 0 0 ~ ~ .  



even the viscosity for atomic argon is not known with certainty above 

about 1 , 5 0 0 ~ ~ ~  a s  shown by Back (62) at 0.1 atm. The overall trend 

of the viscosity data (250 4 T i  8 , 0 0 0 ~ ~ )  is however predicted fairly 

well by the theory of Amdur and Mason (66) who calculated transport 

properties for r a r e  gases and nitrogen between 1,000 and 15, 0 0 0 ~ ~  

by the Chapman-Enskog procedure (63) using force laws from molecu- 

lar beam scattering data. They considered only translational degrees 

of freedom and hence neglected electronic excitation and ionization 

for  argon. 

Back (62) also shows the shock tube heat transfer measure- 

ments of thermal conductivity by Smiley (64), 1,000-3, OOo°K, and 

Lauver (651, 7 9 0 - 8 , 6 0 0 ~ ~ ,  for atomic argon. Again, the overall 

trend of the data is fairly well predicted by Amdur and Mason (66) 

from 250 to 8 , 0 0 0 ~ ~ .  Camac and Feinberg (45) used shock tube 

endwall heat transfer measurements behind the reflected shock for 
5 

freestream temperatures ranging from 20,000 to 7 5 . 8 0 0 ~ ~  to measure 

thermal conductivity before ionization begins. They showed good 

agreement, over the entire temperature range, with the 3/4 power 

temperature dependence of the thermal conductivity a s  predicted 

by Amdur and Mason (66) for 1,000 < T S 1 5 , 0 0 0 ~ ~  for atomic argon. 

As can be seen from this brief review of transport property 

measurements, available data a r e  insufficient to establish any trends 

of these properties a t  temperatures for  which ionization effects a r e  

believed to be important. Thus, one must rely upon theoretical 

predictions for transport properties. Two of these predictions which 

a r e  in current use a r e  the Fay 438) mixture rule, which is based on 
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simple kinetic theory arguments, and the theory by de Voto (67), 

which entails the Chapman-Enskog procedure (63). 

The Fay (38) mixture rule has the advantage of indicating 

the role of individual species contribution to the transport properties 

of the mixture, and of being readily amenable to calculating transport 

properties for cases in which a solution by the more rigorous 

Chapman-Enskog procedure (63) is  not available, e. g. , the cases 

of ionization nonequilibrium (frozen boundary) and unequal species 

temperatures (41 ). On the other hand, the mixture aule (38,67) has 

to be modified to include the @oulomb cross section when charged 

species a re  present so that the correct results a r e  obtained in the 

limit of full ionization a s  discussed in Refs. 3g, 68 and 70. Although 

the mixture rule, so modified, is correct in the limits of no ioniza- 

tion and full ionization, the values of the transport properties in the 

intermediate range must be used with caution. F o r  this reason, the 

transport property calculations by de Voto (69) for  argon a re  dis- 

cussed next and compared later with those calculated by the Fay (38) 

mixture rule, Which has been formulated for argon by Fay and Kemp 

(40) and Finson (44). In this way the validity s f  the approximate 

method (38) may be assessed for equilibrium argon. 

de Voto (69) studied the rate of convergence of consecutive 

orders of approximation of the Chapman-Enskog procedure (63) to 

the transport coefficients for ionized argon. He used the fourth order 

approximation for thermal conductivity and thermal diffusion coef - 
ficient , and the third order for viscosity and electrical conductivity, 

in order to show that the third order and second order approximations, 



respectively, were adequate for the se quantities for equilibrium argon. 

Whereas the third approximation of the thermal conductivity joins 

smoothly to the Spitzer (33) value a t  1 atrn. and 15, 000O~,  the second 

order approximation is too low by more than a factor of two. The 

poor agreement of the second approximation with Spitzer's (33) ther- 

mal conductivity was also noted by Athye (70) who attpibuted this 

behavior to Spitper f s (33) neglect of the contribution of ion-ion inter - 
actions, 

, 
In addition, de Voto (69) calculated the transport coefficients 

for argon by including the next higher order terms in the charged- 

particle cros s sections. FoPlowing an approximate method developed 

by Liboff (71 ), de Voto (69) used the Coulomb potential for close en- 

counters and a shielded Debye potential for the more distant encount- 

ers .  One of the interesting results of this procedure was that the 

third order approximation to the thermal conductivity (including the 

higher order cross section terms) is  consistently higher than the 

Spitzer's (33) value, e.g., 3.80 x l o m 3  compared to 3.05 x l o m 3  

cal/(cm sec OK) at  15, OOOOK and 1 atm, 

The Fay (38) mixture rule applied to argon by Fay and Kemp 

(40) and Finson (44) and used here to calculate transport properties 

wiPl be outlined briefly. The thermal conductivity, k, and viscosity, 

p, a r e  represented by a sum of the contributions due to each species 



where 
1 / 2  

2mj 
U 

, and 
3.1 

Xi, ki, pi, Q.. and rn. are the species mole fraction, pure species 
1.J 1 

thermal conductivity and viscosity, effective hard-sphere collision 

c ross  section between species i and j and the species mass  respec- 

tively. In this regard, k. and p. a r e  
3. 1 

and the binary diffusion coefficient, D.. , i s  
1.1 

The expressions for ki and p. and the expression for D.. a r e  given 
1 =J 

in equation (1 0.21,l) and equations (9.81,l and lO,22,2) respectively 

of Chapman and Cowling (28). 

If the mixture rule i s  to be valid in the limiting cases of no 

ionization (a  = 0 )  and full ionization (a= I) ,  then its a priori  formula- 

tion must be altered. Often this amounts to altering the hard-sphere, 

temperature-independent collision c ross  sections so that k (for in- 

stance) takes on the value of atomic argon for negligible ionization 

and ionized argon for a fully singly-ionized gas, The details of this 



procedure a r e  given by Fay (38), Fay and Kemp (40), and Finson (44). 

For  the thermal conductivity of argon Fay and Kemp (40) give 

where kA and k a re  the thermal conductivities of atomic argon s 

(Amdur and Mason (66)) and fully singly-ionized argon (Spitzer (33)), 

respectively. Since ki - k was neglected relative to kE in I 

the formulation of k. Use of the Lorentz (33, p. 87) conductivity for 

the electron gas in the mixture rule would overestimate the Spitzer 

(33) conductivity by about a factor of four in the limit of full ioniza- 

tion. Agreement with the Spitzer (33) conductivity a s  a 4 1  was 

achieved by defining the electron thermal conductivity a s  

(Note that kE S BO k for a singly-ionized gas). 
LORENTZ s 

By applying the mixture rule in a similar way for the viscos- 
1 

ity, Finson (44) and Back (62) give 

where the pA and p refer to the atomic and ionic values of viscosity P 

*In the f i rs t  term on the right-hand side of Eq. 3.22 of Finson (44) 
a factor sf a has been omitted; however in subsequent equations it 
has been included. 



for argon. Since p.- (mi)'/' the contribution of the electrons was 
1 

neglected relative to the heavy species. By introducing a constant 

species Prandtl number, Pri = 2/3, Eq. D-8 can be rewritten in 

te rms of species thermal conductivity rather than species viscosity a s  

The calculations of Anndur and Mason (66) for the thermal 

conductivity for atomic argon was approximated by a power Paw a s  

k A =  5 .8  x 10 -7 T3/4 cal 

emo s e c O ~  

The thermal conductivity of a fully singly-ionized gas is given by 

Spitzer (33, pp, 87-88) a s  

(D-I 1) 

where A i s  the ratio of the Debye distance to the impact parameter 

for a 9 0 O  deflection of an electron-ion encounter given by Spitzer 

-3 where T i s  in OK and nE i s  in cm For  low temperature and high 

electron densitys the Debye distance is less  than the average electron 

spacing mE1'3 and should be replaced by the latter in determining 



which should be used as long as ht 4 12n. For all the calculations 

made here using the mixture rule, the Debye length was greater than 

"E so that rather than At was used in Eq. D-11 for thermal 

conductivity . 
Fay and+Kernp (40) approximate the cross  section ratios over 

the temperatug range of interest by 

and 

where T i s  in OK, 

The Prandtl number was calculated a s  

where k and p a r e  given by Eqs. D-7 and D-9 respectively, 

Consideration of the momentum equation for  a quiescent gas, 

in which binary diffusion of atoms and ion;ePectron pairs takes place, 

i s  given by Fay and Kemp (40) to define the ambipolar diffusion 

coefficient as 

where DM i a  the atom-ion diffusion coefficient. The Lewis number, 
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based on the ambipolar diffusion coefficient, is 

By substituting Eq. D-15, with DAI taken from .Eq. (D-61, into Eq. 

D-16 the Lewis number becomes, 

where k, kA and QAI/QAA a r e  given in Eqs. D-7, D-10 and 0 -13  

respectively. 

F o r  equilibrium conditions the ion mass  fraction, a, was 

obtained from Arave (72) and Part II of this thesis up to about 16,.000% 

and from Cann and Ducati (731, B a r n  and Cann (25), and Drellishak, 

e t  al. (74,?5), a t  higher temperatures. 

h Figs. 44, 45, 46 and 47 thermal conductivity, viscosity, 

Prandtl number and Lewis number, calculated from the Fay  (38) 
* 

mixture rule, and obtained from de Voto (76) , a r e  shown a s  a func- 

tion of temperature for pressures  ranging in atmospheres from 10 - 4 

to 1.0 atm. and 1 0-2 to 1.0 a h .  for each model respectively. These 

transport properties a r e  also tabulated in Tables D. l and D. 2. 

Although the f i r s t  and second ionization potentials for  argon a r e  sepa- 

rated by about 12 electron volts, incipient double ionization occurs 

* de Voto caPcullated these transport properties as outlined in Ref. 77, 
with the exception that here  he included the next higher order  t e rms  
(terms of order  unity) in the charged particld c ross  sections, 



before al l  atoms a r e  f i rs t  singly-ionized, so that in fact the fully 

singly-ionized gas i s  hypothetical in this case. In this regard, the 

transport properties calculated from the Fay (38) mixture rule 

were  terminated somewhat arbitrari ly at that temperature, for  a 

given pressure ,  at which the electron number density, nE, was equal 

to the combined number density of the "heavy" species o r  nuclei, 

i.e., nE = nA t n t nII, as determined from the thermodynamic I 

calculations of Baum and Cann (25). Since nE n f 2nII, this cutoff I 

may also be written a s  nA = yI. The terminal points of the curves 

correspond to an ion mass  fraction, a, ranging from 0.991 at 

1 3 , 0 0 0 ~ ~  and 1 0 ' ~  atm. to 0.964 a t  2 0 , 0 0 0 ~ ~  and 1 atm. 

F o r  purposes of convenience, the transport properties cal- 

culated by means of the Fay (38) mixture rule and those obtained 

from de Voto (76), calculated by the Chapman-Enskog procedure 

(63,68), will be denoted a s  ( )Fay and ( )de Vote respectively. 

F o r  reference purposes the thermal conductivity of atomic 

argon (66 )  given here  a s  Eq. D-10 was included in Fig. 44. Two 

effects of ionization on thermal conductivity a r e  related to the Cou- 

lomb cross  section of the ionized species. Initially, for small 

degrees of ionization a t  low temperature, k decreases a s  T increases 

because of the increasing importance of the electron-ion (Coulomb) 

c ros s  section which i s  much larger  than the electron-atom cross  

section. This effect i s  especially noticeable a t  the lowest pressures  

where the T ~ / ~  dependence of kA i s  completely obliterated. At 

somewhat higher degree of ionization the inverse square temperature 

dependence of the Coulomb cross  section gradually changes the 
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temperature dependence of k to T ~ ' ~ ,  which i s  necessary to match 

the Spitzer (33) thermal conductivity for a fully-ionized gas. The 

degree of ionization, a, a t  which these effects occur is shown along 

with k Fay and ICde Voto in tabular form in Table D. 1. The least  

favorable comparison of k Fay kde Voto occurs a t  the lowest tem- 

perature shown ( 6 .  OOOOK), where kde Vote and kA a r e  in agreement 

but k i s  about 15 to 20% high. It can be shown a s  the results 
Fay 

indicate in the table below, that even before the gas is "fully singly- 

ionized", k 
Fay  

may be quite close to k Spitze r ' Conditions for which 

0.95 G kFay/kSpitser l 0: 

P 
atrn 

1 om4 P O ,  000 .90 

The values of kde Vote (76) shown in Fig. 44 correspond to 

the de Voto calculations which included the next higher order t e rms  

in the charge-particle c ross  sections, so that kde Vote l ies above 

k ~ p i t z e r  
(and hence k ) by about 1 5 to 20% in the limit of a fully 

Fay 
singly-ionized gas, as discussed previously. However, de Voto 

shows (69, Figs. 13 and 15) that k calculated to third order in the 

conventional manner, without the higher order t e rms  in the c ross  

sections, agrees  with k Spitzer as Q-P. 
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The variation of viscosity with temperature and pressure 

for argon i s  shown in Fig. 45 for the same range of pressure and 

temperature and for the two transport property models discussed 

before for thermal conductivity. The initial rise of p a t  low tem - 
perature and high pressure i s  in good agreement with the T 3 /4 

dependence of calculated by Amdur and Mason (66) and approxi- 

mated by a power law a s  p = 3.1 x 1 0 - 6 ~ 3 / 4  gm/(cm sec) with T in 

0 K. The subsequent decrease of p can be visualized by considering 

p to vary inversely with some effective collision cross section which 

i s  QAA initially and Qn finally where QAA< QIA < QII. The initial 

- 3 decrease in )r for a = 10 -1 o m 2  is caused by the increasing number 

of atom-ion collisions for which C2=/QAA " 5 (Eq. D-13) a t  6 , 0 0 0 ~ ~ .  

The value of p continues to decrease rapidly at  higher temperature 

where more ions a r e  present so that the still larger ion-ion or  

Coulomb cross section becomes important. Then a s  the gas becomes 

nearly fully singly-ionized and Coulomb encounters dominate, the 

, inverse-square temperature dependence of Q causes p to r ise  rapidly I1 
5 / 2  a s  T . 

Except for the conditions at  1 atm. where pFa is a s  much a s  
Y 

25% below )lde Votes the agreement between these theories i s  good. 

That only the second approximation for pde Vote was required may 

be the reason for the somewhat better agreement between the viscos- 

ities than for the thermal conductivities shown in Fig. 44. 

The Prandtl number variation with temperature and pressure 

is shown in Fig, 46. PP decreases rapidly from about 213 to 8.0085 

as a varies from 0 to l a  This decrease i s  caused by the Joint rapid 



decrease of p and increase of k caused by the ionization effects 

already mentioned. At 6 , 0 0 0 ~ ~  Pr is  low by about 30%. This 
Fay 

discrepancy i s  caused primarily by the over estimation of k by 

a s  discussed earlier. For  Ct S 1,  and 0.01 a h . ,  Pr N k ~ a y  Fay - 
0.01 1 whereas Prde Vote E .0085. 

The variation of Lewis number, pDam c ( ~ + a ) / k ,  with tern- 
PA 

perature and pressure i s  shown in Fig. 47. Because of rapid increase 

of thermal conductivity with temperature the Lewis number decreases 

-2 from about 0.5 a t  room temperature to about 3.5 x 10 a t  2 0 , 0 0 0 ~ ~  

and 1 a h .  LgFay varies from a value about 30% low a t  6 , 0 0 0 " ~  to 

about 30% high a t  2 0 . 0 0 0 ~ ~ .  Since the ambipolar diffusion coeffi- 

cient, D , increases with temperature and varies inversely with 
amb 

pressure (Eqs. D-6 and D-15) Le decreases less  rapidly than Pr 

and exhibits an inverted pressure dependence compared to Pr. 

Comparisons made between the transport properties calcu- 

Bated from the Fay (38) mixture rule and the Chapman-Emskog 

procedure (63) used by de Voto (69) show that the mixture rule pre- 

dicts the trends in the transport properties for argon caused by the 

effects of ionization quite well. With certain exceptions, the mixture 

rule generally predicts the transport properties to within 15 or  20%. 

On the basis of this fa ir  agreement with the more rigorous theory 

for the equilibrium transport properties, the mixture rule was used 

in Section IIL3.5 for those cases for which chemical non equilibrium 

was present (frozen boundary layer edge conditions). 

The variation of ele ctrical conductivity, a, with temperature 

and pressure is shown in Fig. 48, $l[n Par t  II, a was calculated by 
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using the theory of Lin, et al. (78) (shown a s  points in Fig. D. 5) who 

1 1  1 
suggest a parallel conductance approximation, - = - + - which = ac OS 

combines the conductivity, oc , for a slightly ionized gas which i s  

governed by close range electron-atom encounters, with the Spitzer 

(33) conductivity, as ,  which is valid for the fully-ionized gas. The 

curves represent the third approximation to cr by the Chapman-Enskog 

procedure (63) calculated by de Voto (69) in which the! higher order 

terms in the charged particle collision cross  sections have been 

ignored. When these higher order terms a re  retained, a can be a s  

much as  about 18% higher a s  shown in Fig. 12 of de Voto (69) at  1 

and 100 mm Hg for 5,000 S T  < 20,000°~. The theory of Lin et  al. 

(78) is  in good agreement with de Voto (69) for the higher tempera- 

tures but i s  a s  much as  a factor of 3 too high at 6 , 0 0 0 ~ ~  and 0.1 

atm. As pointed out by de Voto (69, p. 461, the mean free path 

conductivityp o , is essentially related to the f i rs t  approximation 
c 

to the electron-ion diffusion coefficient for which he shows that the 

fourth approximation is required a t  Power temperatures. 



TABLE D. 1 

Variation of Transport Properties with Temperature at 1.0 atm 

for Argon Calculated by Fay Mixture Rule Outlined in Appendix D 

OK 
cal , - gm 

cm secOIS cm sec 

* 
2.388-5 = 2.388 X 

** ** 
FOP Q! I a , Q! Prom Ref. 

*t 
For a! > q , a! from Ref. 



TABLE D. 1 

Variation of Transport Properties with Temperature at 10-I atm 

for Argon Calculated by Fay Mixture Rule as  Outlined in Appendix D 

T x a! k P Pr Le 

OK cal - gm 
c m  s e c O ~  cm sec 



TABLE D. 1 

Variation of Transport Properties with Temperature at lo-' atm 

for Argon ~alculathd by Fay Mivture Rule as Outlined in Appendix D 

T x lod3 a! k P P r  ~e 

.OK 
cal - gm 

a m  s e c ' ~  c m  sec 



TABLE D, 1 
- 3 Variation of Transport Properties with Temperature at 10 atm 

for Argon Calculated by Fay Mixture Rule as Outlined in Appendix D 

T % .a k H Pr Le 

OK 
cal - gm 

ern s e c " ~  CM sec 
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TABLE D. 1 

Variation of Transport Properties with Temperature at lom4 ahn 

for Argon Calculated by Fay Mixture Rule as Outlined in Appendix D 

T x CI! k P Pr L e  

OK 
cal - gm 

cm sec OK crn sec 
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TABLE D. 2 

Variation of Transport Properties with Temperature 

at 1.0 atm for Argon Calculated by de Voto (76) 

a' kxl o3 px10 pr Le u 
mhos 

cal - gm c m  

c m  s e c O ~  c m  sec 



TABLE D. 2 

Variation of Transport Properties with Temperature 

at 0.1 atrn for Argon Calculated by de Voto (76) 

T X ~  o3 a kx103 px10 Pr Le qr 
4 

cal - E mhos 
OK 

- 
0 cm sec K cm sec cm 



TABLE D, 2 

Variation of Transport Properties with Temperature - 3 

at 0.01 atm for Argon Calculated by de Voto (75) 

TXI o - ~  (2 kx1 o3 ~1x10 Pr Le o 4 

OK 
cal - &E mhos 

cm s e c O ~  crn sec cm 
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APPENDIX E 

IMPACT PRESSURE PROBE CORRECTIONS 

Potentially the three mode important corrections to the impact 

pressure measurements a re  those caused by probe displacement, low 

Reynolds number effects, and thermal transpiration. Based upon the 

results for un-ionized flows, these corrections, except for isolated 

conditions, a r e  estimated to be within the scatter of the measure- 

ments and thus, except for the effect of probe displacement a t  x/D*= l 

in cold flow, no corrections were applied to the impact pressure 

measurements. 

In a supersonic flow field which has a strong Mach number 

gradient, the free stream Mach number, Mm, (and hence the impact 

pressure) may vary significantly over the shock wave standoff dis - 
tance. The measured impact pressure corresponds to M, a t  the 

shock position and not the probe position. In the present case of an 

accelerating flow the measured value of pi is too large and the Mach 
, 

number deduced therefrom must be corrected (increased) approxi- 

mately a s  

where M M and A a re  the Mach number a t  the probe tip location 
PI  s 

in the undisturbed stream, the shock Mach number, and the shock 

standoff distance respectively. In cold flow A was calculated from 



the flat nosed axisyrnmetric body formula* for inviscid flow, -- A =  .43 
Rb  

for  c * 0.1, for constant free stream Mach number given by Hayes 

and Probstein (79, p. 201) and & 1% 1 was estimated from Ashkenas 

1 dM, 
M dx 

- and Sherman's (8) Mach number distribution. For  example, - - - 
.6/cm a t  X/D* = 1 where M = 2.4. For  the D = 0.335 in. dia. a t  

P 
X/D* = 1 N N 0.1 and a 10% correction to M was made. Generally 

P 
for  the smaller probe tips, D 60.15 in., N 60.03 a t  X/D* = 1 ,  and 

P 
for X/D* > 2, N 6 .01  so that the correction to M would be about 1% 

P 
and was therefore neglected for all impact pressure measurements. 

In hot flow for large x/D*, prediction of A i s  very difficult 

because of the dependence of A on the interaction between the shock- 

wave and the merged viscous Payer and possible rarefaction effects. 

Bailey and S h s  (80) have measured shock detachment distances for 

spheres and flat-nosed bodies in heated argon (T ~ 4 0 2 0 ~ ~ ,  2 5 3  
It * 

Re S 200, 4 5  I&5 9). A value of Re N 40, where A / R ~  r i ses  
2Db 2Db 

rapidly (Fig. 3 (80)) with decreasing Reynolds number, corresponds 

to X/D* S 4-5 in the f ree  jet, where d ~ / d x  N 1/2 per cm o r  about 

one-third the value a t  x/D* N 1. For this reason and the fact that 

the small tips (D N . I 5  in. ) were used in hot flow, no correction to 
P 

p. was made. 
1 

The second correction deals with the well-known problem of 

interpretation of impact pressure measurements in Pow density gas 

flows, and has received renewed attention with the use sf arc-heated 

* 
Pot te r  and Bailey (51) have shown experimentally, a t  one Reynolds 

number (Rez, 2106), that A is unaffected by orifice-to-body diarne- 
t e r  ratio betw&em 0 and ,85 for flat nosed bodies. 
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low density wind tunnels. In particular the recent work by Potter and 

Bailey (51,819 who considered argon and helium be sides nitrogen, 

and others (82, 83, 84 ) has been helpful in clarifying the role of y , 

heat transfer and probe nose geometry on these measurements. 

Potter and Bailey's (51,81) range of conditions for argon and helium 
m 
I 

W 
is  5 5 ~ e ~ ~  ym $1000, 4 4 ~ ~ 5 1 6 ,  O . l S T  ,< 1.0, 

A. aw c 1 - 2 5 lg4, 270 4 Re, & 50,000 (in)-' and 3005 Tt < 4 , 2 6 0 ~ ~ .  D 
P 

The experimental work with a i r  by Ashkenas (85) (discussed later on), 

Matthews (86) and Sherman (87) using flat -nosed, externally cham - 
fered, and internally chamfered and source -shaped probes respec - 
tively should be mentioned. In this regard it should also be men- 

tioned that the possibility of delaying viscous effects somewhat in 

cold flow for argon a s  compared with a i r  appears attractive because 

of the y effect on the Re, -M, variation shown in ~ i g .  49 . The 

asymptotic limit of Re, for large M, is  less  than 30% below Remmax 

+ 0 for air .  Because which occurs at M, "2, whereas Re,+- 2 
Moo 

of the 512 power dependence of viscosity on temperature for a fully 

singly ionized monatomic gas it can be shown that Re, increases 

2 
with M,, i.e, , Re, - M, for M,>> 1. Since, however, in each 

P l case Re2 4 0 ,  a s  7 for argon and a s  7 for a i r ,  a s  M,+,, viscous 
M, %m 

effects must become important eventually. 

Before discussing some of the results of Potter and Bailey's 

(51 ,8P ) investigation, i t  i s  helpful to recall the variation of measured- 

to-inviscid impact pressure ratio, (p.) /(Pi)I with, say, free stream 
1 m 

Reynolds number, Re,, shown for Ashkenass ( 85) air data in Fig. 

w a (pill i s  obtained from the Rayleigh supersonic Pitot formula. 
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In addition to those quantities already mentioned, (Pi)m/(Pi)I depends 

also on the gas temperature in the pressure gauge volume and the 

length-to-diameter ratio of the impact tube a s  free molecule flow is 

attained (88). In fact in that regime the pertinent pressure ratio is  

pg/p, where pg is the pressure in the gauge volume. An explanation 

of the overall variation of (Pi)m/(Pi)I vs . Re, i s  attempted by Daum , 
Shang, and Elliott (83,84 ) and Bailey and Potter ((37), Fig. 16) who 

use the flow regimes as  defined by Hayes and Probstein (79). Briefly, 

the initial decnease in pressure ratio with decreasing Re, i s  due to 

vorticity interaction and viscous effects accompanying the merging 

of boundary layer and shock wave into a viscous layer region. Sub- 

sequently the increase in pressure ratio is  caused by rarefaction 

effects on the shock wave. 

As suggested by the analysis of Matthews (86), (Bailey and 

Potter 61,81)) use i s  made of Re )'- to correlate (Pi)m/(Pi)I, 
2rp 

instead of Re, or  Re2, in an attempt to account for the variation in 

the data with the free stream Mach number. For  convenience in 

assessing the viscous correction a s  a function of the variables men- 

tioned earlier,  the location and value of the minimum in pressure 

ratio, denoted a s  

and s 

and the location of the unity pressure ratio, denoted as 



a r e  shown in table E. 1 for some data for the flat nosed, externally 

chamfered, and hemispherical nosed probes taken from Ashkenas (85), 

and Potter and Bailey (51 ,81 ). Much more data than a re  included in 

table E. 1 a r e  given in Ref. 51 . Acting a s  kind of a "bench m a r k f f ,  

i t  is  noted that the data of Ashkenas (85), shown in Fig. 50 here,  

and Potter and Bailey (51,81 ) agree for the externally chamfered 

probes under similar conditions for y = 1.40. Further it i s  seen 

that the externhlly chamfered and flat-nosed probes a r e  in good agree- 

ment for T =+ T and y = 1.40 and that the viscous effects occur pw aw 
L 

at  much higher Reynolds numbers for the hemispherical nosed probe 

under similar conditions, a s  was shown by Sherman (87) for a i r  in 

which he compared internally chamfered and source -like probes. 

Finally for  flat nosed probes used in argon and helium, the minimurn 

in (Pi)m/(Pi)I is  about 2% less  than that for diatomic gases, and the 

effect of the cooled probe moves the unity pressure ratio to a higher 

Reynolds number, which i s  quite close to the r e s d t  for the probes 

a t  the adiabatic wall temperature in N2 and air. A further study of 

the data (81) shows that the inviscid limit for which = 1,  

appears to have occurred for Re YPZ/P, ~1000-2000 for all gases 
2 r 

P 
and probe geometries. No data for monatomic gases exist for 

ReZr )'pa 6 5. As an example of what happens in this low Reyn- 
8, 

olds number region the data of Ashkenas 4 85) for a i r  a re  shown in 

Fig. 50 . The pressure ratio rises rapidly to over 3 in some in- 

stances for Re l K ~ 0 . 1 - 0 . 2 5  where Reynolds number is no 
2rD 

1. 

longer the significant variable when rarefied gas effects become 

dominant. Bailey and Potter (81 ) point out that variations of: 



(p.) /(Pi)I caused by y and wall cooling effects a r e  less  than 3% 
i m 

for a given nose shape at  a given Reynolds number, 

At present no impact probe calibrations a r e  available which 

might explain the effect of appreciable ionization, high probe wall 

cooling, T ~ / . I ~  1.01,  and viscous effects on (p.) in this same 
i m 

Reynolds number range. In addition the effect of large probe poten- 

tial,  relative to its floating value (electric field effects), on 

(Pi)m/(Pi)I is  not known but is almost certain to play an important. 

role. 

For  the present investigation in cold flow the corrections to 

(pi)m were no greater than about 2 0/0, or  within the scatter of the 

data, so that no correction was applied. In hot flow, 1GRe - <lo0 P 2rp P a  
and p /pa was taken a s  y+ l /y - l  = 4. The effect of relaxation of elec- 2 

tronically excited states and recombination tends to increase p2/p, 

so that the Reynolds number shown should provide a Power bound, 

A 2o0 externally chamfered carbon or tungsten tip (see Fig. 5 ) 

which had a body-to-tip diameter ratio of 5 was used in hot flow, 

Down to about a Re2, y w  of l o 9  the lower limit to the cooled 
P 

probe data for argon, 9 1 . For lower Reynolds num - 
bers,  the data of Ashkenas (85) and several data points Prom Enken- 

hus (88) shown in Fig. 50 provide an estimate of (Pi)I/(Pi)I which 

ranges from'about 1. l to 1.7 a s  Re2, yPZ/P, ranges from 65 to 1. 
P 

As pointed out in Section III. 3 a probe tip having 3 times the normal 

innpact pressure probe tip was used to check the change in (p.) over 
1 m 

the range of conditions of this investigation. Both probes yielded 

the same results within the scattep of the hot flow data, which i s  



about 1 070 , In particular for the lowe s t  Reynolds number, a factor of 

three in Reynolds number should produce a variation in (pi)m of 30%. 

It was concluded on this basis and the fact that the determination of 

h from the pu and p. measurements seems consistent, that the cor- ff  1 

rections to (p.) a re  less  than 10% and thus should be neglected be- 
$ m 

cause no theory or  calibration for the actual flow case i s  available. 

That Ashkenae! data shown in Fig, 50 do not seem to provide good 

estimates of (pi)m/(Pi)I in that region should perhaps qot be surprising 

for any number of reasons already mentioned. * 

The last  correction to be considered for (pi)m i s  due to the 

effect of thermal transpiration. Arney and Bailey (89,90) have given 

the ratio of pressures, between the cold and hot end of the 

impact tube, a s  a function of Knudsen number, Knc, at the cold end, 

and tube temperature ratio, T=/T~. For the most adverse conditions 

* 
On the other hand, i f  the 9'correct'P probe Reynolds nupnber, R e  

upon which the viscous correction depends, should instead be P' 
based an eome intermediate o r  reference temperature, Trp between 
the boundary layer edge and wall temperature, the Reynolds number 
used here, Rei,  would have to be increased a s ,  

' 

for the frozen flow fully ionized gas boundary layer. I£ Tr were the 
arithmetic mean temperature between the edge of the boundary layer 
and the wall, 

and (Pi),/(Pi)I would dec tease from 1.5 to 1 for the lowest Reynolds 
number, encountered here, Reir S 1. This result supports the ob- 
servation made earlier that the dscous  correction to impact praasura 
measurements is within the scatter s f  the data, 



1 of this investigation, Knc 4 0.01 and T ~ / T ~  S T ,  1.0 > pc/Ph > 0.98. 

(A similar calculation made from the data of Howard (91) gives 

1 .0  > > 0.99.)  The corrections to (pi)m, due to thermal 

transformation, are less than 2% and have been neglected. 



Ashkenas (85) 
T = T  pw aw 

2 < M , 6 7  

6 also Fig. 6 , 
Bailey and Potter 
(51 11 
Bailey and Potter 
(51) 6Fig.81 
T = T  

PW aw 

ibid 
Fig. 3 
3.9< Mq<6.O 
T = T  pw aw 

ibid 
Fig. 10 
T = T  pw aw 

ibid 
Fig, 7 
T = T  pw aw 

TABLE E. 1 Impact Pressure  Probe Correction Data 

Y Gas Probe type -E?F min. 

1.40 a i r  Externally .98 30 14 
chamfered . . 

1.40 
N2 

Externally ,98 28 
chamfered 

1.40 
N2 Flat  -nosed . 98 

probe 

1,4Q N2 'Incomplete" . 98 
Hemispherical- 
nosed probe 

1.6'7 argon Flat-nosed ,96 
and probes 

helium 
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APPENDIX F: ELECTRON ENERGY EQUATION AND RECOMBINA- 
TION TIME 

Electron Energy Equation 

By starting with the species energy equation derived from the 

'~ol tzmann equation (Chapman and Cowling (28)) and using the Newton- 

ian s t ress  -rate -of -strain relationship and Fourier's heat conduction 

law the electron energy equation becomes 

Neglecting the terms which contain mE 'I2 and mE, and considering 

steady flow the energy equation becomes, 

B E  - 
where the body force has been rewritten a s  LE = - - (z i s  the elec - 

m~ 
tronic charge). The term containing the electric field can be rewrit- 

- 
ten by using a simple electron conduction relationship. -enEXE = 0 - E 

-2 where o = e nE/mE vEI0 The result is  

- 
e n E I E  E= -n m v V 2 

E E EI-E 

which, in the absence of high applied - E fields i s  a t  most of order 

(since v m~ -I/') and thus will be neglected. EI- "E 

The energy source term AE i s  comprised of electron-ion 

elastic and inelastic collisional energy transfer processes. Rather 

than use the electron-ion elastic energy transfer expression calcu- 

lated by Petschek and Byron (32) ,  an expression will be derived here 

which i s  in excellent agreement with them but i s  visualized more 
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simply. Spitzer (33) has shown that the temperature equilibration 

time, t between electrons and ions, initially a t  different tem - 
eq ' 

peratures , i s  related to the electron-electron self collision time 

tee, by the mass ratio, 

This result can be interpreted a s  meaning that the fraction of initial 

kinetic energy transferred to the ion (or electron) from an electron 

(or ion) is  about mE/mI as  can be verified by considering the energy 

exchange in an elastic collision between two hard spheres of large 

mass disparity. The elastic energy transferred from the electrons 

to the ions i s ,  

where the average random kinetic energy of each specie has been 

expressed in terms of i ts  internal energy. 

The inelastic energy transfer terms a r e  more complicated 

primarily because the excitation and de -excitation rate processes 

for ionization and recombination are  not well under stood. In fact 

the recombination i s  believed to be a collisional-radiative process 

schematically described as  

where the asterisk denotes high electronic excitation of the atom 

and large electron kinetic energy obtained by collisional de-excitation 

of the higher quantum levels of the atom, and hv denotes energy 



emitted by radiative de-excitation of the quantum levels close to the 

ground state. Bates et al. (92) realized that the overall process 

could not be adequately expressed by two independent processes, 

one, a three -body collisional recombination process valid in the limit 

of nE +a, and two, a two-body radiative recombination process valid 

in the limit of nE + 0  (but high ionization fraction). They calculated 
* 

the recombination coefficients for hydrogen-like , optically thick 

and thin plasmas (92,931 a s  well a s  the radiation emitted (94). Their 

rate equation is 

where a and S a r e  the collisional-radiative recombination coefficient 

and the collisional- radiative ionization coefficient r e  spec tively. The 

term in parentheses i s  referred to a s  the collisional-radiative decay 

coefficient. As stressed by Bates et  aP. (92,93) the choice of express- 

ing the rate equation as  a two body process must not be taken to mean 

that two body processes predominate. En the supersonic free jet 

where recombination processes a r e  dominant the plasma i s  probably 

characterized a s  optically thin, except possibly toward lines of the 

Lyman series. The recombination coefficients may be obtained from 

Bates et aP. (92,93) for either case, However, over the limited range 

nE 4 10'' cmm3 8 ,000  C TE C 2 0 . 0 0 0 ~ ~  the three body elec - 
4- 

tron-ion recombination rate (A 9 e 9 e + A  + e)  of Makin and Keck 

# 
*Hydrogen-Pike refers to atoms which have the classical electron 
orbits around a charged core. 



(95) generally conservatively describes the rates given by Bates e t  al, 

(92,93) for all their radiation models in addition to those already 

mentioned and i s  given in terms of a a s  

3 -3 where a, T ,  andnEhave theun i t scm /sec, OK, andcxn respec- 

tively, 

Since the electrons do not receive all  the energy of recombi- 

B n ~  nation ( - - at  I> 0) the inelastic energy term must include that 

energy radiated by the radiative de -excitation processes. The inelas - 
tic energy transfer becomes 

-anE 

'inel = -8I- I - 'rad 

where Qhel > 0 for the recombining plasma and Qrad has been calcu- 

lated for hydrogen-like atoms by Bates and Kingston (94). Talbot, 

Chou, and Robben (96) have expressed Qhel similarly, however they 

curve fitted a, S, and Qrad individually from Bates e t  al. (92, 93.94) 

by a 12 term double series in nE and TEe In addition they chose 

'rad so that the net energy of recombination given to the free elec- 

trons was the same for  argon as  for hydrogen in the optically thin 

 an^ 
%ad = 'rad hydrogen - ('ar - k' 

By collecting all the terms in the electron energy equation 

the result becsmes, 



The importance of various terms can be determined by non- 

dimensionalising the energy equation. 
- 

Let u = u u  - 0- 

- 15 (where n = 2x1 0 cm-' w p n  "E = nEOnE - = l /Fgnd scales as Si - for 
25> X 1/21 0 o 

= k e 5 / 2  
k~ Eo 

where the ( 1 quantities are reference variables whose values are 
0 

typical for the free jet operating conditions at  at given axial location, 
- 
x By noting that eE = 3/2 ( K / ~ ~ ) T ~  and hE = ~ / z ( K / ~ ~ ) T ~  and 

0 

using the nondimensional quantities above, the energy equation be - 
comes 

where PeE = pEuocpE/kEo is  the electron Peclet number which is the 

ratio of convected to conducted energy flux, By using the result of 

the pu measurements diacuseed in Section FTI.3 and the source flow 
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approximation, the Spitzer (33) thermal conductivity (at To = 20, OOOOK 

and i n A =  6 ) ,  uo 6 = 10 cm/sec, L = 1 cm and the recombination co- 

efficient from Makin and Keck (95),  the relative importance of each 

of the terms can be estimated. 

The coefficients of the las t  three terms a r e  shown in the 

following table, where the reference variables ( )o containing nEo 

take on their estimated values a t  a given zo (but To = 20, OOOOK 

6 u = 10 cm/sec, and L = P cm remain constant. 
0 

With the exception of the inelastic energy term,  which i s  neg- 

ligible, the convective, conductive and elastic energy trannsfer a r e  

about of equal importance at  x = 112. However by Go 2 2 the elec - 
0 

tron conduction term is dominant. For  these conditions V. qE = 0 - 
and this expression may be integrated to yield, 

b o w  * The ratio of particle flow time to equilibration t h e ,  - t is 
(v,), hE/m*) e¶ 

just 
uo/L 



) a re  the known temperature and where TEl and Gl ( s  TokEo 

- 
heat flux at a given position, R1. Reasonable estimates of TEl and 
- 
9 ~ 1  show that TE i s  a very weakly decreasing function of 8. 

Recombination Time 

The atom-electron ionization rate for argon given by Petscheck 

and Byron (32) is  T 

V 

k~ 
where T = 13 5, OOOOK and kI i s  the ionization rate constant. The ex 

recombination rate, kR, may be obtained from k through the equi- I' 

librium rate equation 

(at equilibrium) 

for the reaction 

Carrying through the algebra and evaluating the physical 

constants, one obtains for the recombination rate. 



-31 cm -6 
where c2  = 0.234 x 10 (F 1 

and Ti = 182,900'~. 

Holding T constant and integrating this expression one ob- E 

tains , 

The recombinatipn time, trecomb , shown in Fig. 24 and discussed in 
- 

1 Section III. 3 . 1 ,  is defined by choosing $- = - . For the range of 
"&j fi 

n~ and TE encountered here, use of the recombination coefficient 

from Makin and Keck (95) would yield the same results, 
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BALANCE PRESSURE X - POSITION 
CIRCUIT TRANSDUCE R POTENTIOMETER 

MOSELEY 

X - Y  PLOTTER 

A 

N o t e :  
(i) x-position potentiometer had cn separate balance 

circuit and power 'supply not shown here.  

(i i) Circled numbers indicate pin positions . 
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Figure 10. Calorimeter Thermocouple 
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Figure 21, Impact Pressure Profiles in Cold Flow 
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Figure 30. Comparison of Measured Mass Flux 
to Simple Source Flow Model at 200 ampo 



Figure 31. Comparison of Measured Mass Flux to Simple Source 
Flow Model at 1000 amp. 
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Sherman's (Ref. P 0 )  Modified Source Flow Model 
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Figure 37. Centerline Stagnation Point Heat Flux Distribution 
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Figure 42, Steady State Mass Flux Sampling Operating Range 
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Figure 46. Variation of Prandtl Number with Temperature 
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I. INTRODUCTION PART I1 

Argon i s  used extensively in shock tube, plasma-jet,  and 

plasma-tunnel applications a t  temperatures that a r e  sufficiently high 

for  electronically excited states and ionization to exist. These 

effects may cause significant deviation from a perfect gas,  in which 

electronic excitation and ionization a r e  not considered; for  instance, 

thermodynamic properties become a function of pressure  a s  well a s  

temperature. The difficulties encountered in measuring equilibrium 

thermodynamic properties of gases or plasmas at these temperatures 

a r e  so great that these properties must be predicted by methods of 

statistical mechanics. As shown in Section IP, the equilibrium ther-  

modynamic pr ope rtie s may be calculated by the partition-function 

method when the energy levels and degenerdcies of the species a r e  t 

known. 

The punpose of this investigation was to celculate flow varia-  

bles for  an  isentropic expansion of partially ionized argon for  stagna- 

tion conditions ranging in temperature from 6,000 to 1 4 , 0 0 0 ~ ~  and 

in pressure from 0. l to 3 atm. Equilibrium properties for  argon 

which have been calculated for this process include the sound speed, 

entropy, enthalpy, electron concentration, ionization fraction, elec- 

t r ica l  conductivity, and static -to - stagnation ratios of tempe rature , 

pressure ,  and density. Local values of velocity, mass  flux, a r ea  

ratio, and Reynolds number per centimeter, have also beer1 calculated 

The radiation-pres sure contribution to the therm odynamic properties 

is negligible at these temperatures; however, lowering of the ioniza- 

tion potential by electrostatic effects may be significant. The argon 
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atoms, ions, and electrons a r e  treated a s  a mixture of perfect gases 

which obey Maxwell- Boltzmann statistics. However, the mixture i s  

not a perfect gas,  because the molecular weight varies and the en- 

thalpy becomes a function of pressure  a s  well a s  temperature. The 

author realizes that the equilibrium flow solution i s  an idealized 

model of an actual flow process for which reaction ra tes  a r e  indeed 

finite and particle transit  t imes may be of the order  of milliseconds 

o r  less .  However, the solution of this limiting case does represent 

an essential step toward the understanding of electronic excitation 

and ionization effects in the flow of partially ionized argon. 

A brief survey of the contributions of othe r inve s tigations 

follows. Cann and Ducati ( I ) ,  using the thermodynamic properties 

s f  Gilmore ( 2 ) ,  calculated equilibrium thermodynamic properties 

of argon a t  temperatures from 1,000 to 1 4 . 0 0 0 ~ ~  in 1 , 0 0 0 ~ ~  incre-  

-4 rnents and pressures  from 10 to 10 atm in 0.5-atm increments of 

log1 Their calculations included doubly-ionized atoms . Energy 

levels corresponding to one electron excited in the n = 5 shell were 

covered. Their results appear in tabular form a s  well a s  on a Mol- 

Pier diagram. 

Boslmjakovic, e t  al .  (3)  calculated equilibrium thermodynamic 

properties of argon, including multiple ionization, for ternpe ra tures  

2 
up to 1 0 0 , 0 0 0 ~ ~  and pressures  from to 10 atrn. Insufficient 

detail relating to the choice of energy levels of the species makes 

it difficult to assess  the validity of the results,  which appear as a 

Mollie r diagram. 

Knoche ((4) made similar  cafcuPations a t  temperatures up to 



2 
9 0 , 0 0 0 ~ ~  and pressures  from approximately 1 om4  to 10 atm. He 

included multiple ionization and black -body radiation pre  s sure. At 

100, OOo°K, this radiation contributes an  additional partial pressure  

of 0.25 atm. Again, the choice of pertinent energy levels of the 

species was not mentioned. The results a r e  presented in  several 

graphs, which include a Mollie r diagram. 

Arave and Huseby (5) calculated the same properties for  

temperatures from 3,000 to 1 6 , 0 0 0 ~ ~  in increments of 1 Oo°K and 

-4 2 
a t p r e s s u r e s f r o m  10 t o 1 0  a t m i n i n c r e m e n t s b l 1 0 a t m .  Their 

choice of energy levels of each species i s  discussed in Appendix A. 

The results agree very well with the results  of Cann and Ducati ( l ) $  

although only singly-ionized atoms were included in their  calculations. 

More recently, Baum and Cann (6) a s  well a s  Drellishak, 

Knopp, and Cambel (7) have calculated equilibrium thermodynamic 

properties of argon, including quadruply-ionized species. The 

results of Baum and Cann, which appear in tabular form and as a 

MoPlier diagram, range between B ,008 and 25, 0 0 0 ~ ~  in 1 , 0 0 0 ~ ~  

-4 2 
increments and between 10 and 10 atm in 0.5-atm increments 

of logl The findings of Drellishak, Knopp, and Cambel appear 

in tabular form and range between 5,000 and 3 5 , 0 0 0 ? ~  in 1 0 0 ~ ~  

increments for  pressures  of 0.1, 0 . 5 ,  1.0,  2 .0 ,  and 5.0 atm. In 

both investigations, allowance was made for Powering of the ioniza- 

tion potential due to charged-particle field interactions. Olsen (8) 

used spectroscopic measurements for  selecting a best method of 

treating the plasma corrections fowe ring the ionization potential, 

terminating the partition function, and contributing to the total 



pressure  by means of Debye polarization. Some of the results  of 

these three investigations (and that of Ref. 1 ) a r e  shown in Table 1 

for comparison with thermodynamic properties calculated in this 

investigation. From the singly-ionized gas model used here ,  prop- 

er t ies  a r e  predicted which a r e  within 1% of those cited in the other 

investigations a t  1 0 , 0 0 0 ~ ~ ;  whereas, a t  1 4 , 0 0 0 ~ ~  and 1 a tm,  enthal- 

pies a r e  predicted which a r e  1 ,  3 ,  and 10% lower than those of 

Olsen (8), Drellishak, Knopp, and Cambel (71, and Baum and Cann 

( 6 ) ,  respectively. This departure i s  apparently a result of lowering 

the ionization potential, which increases the ion mass  fraction and, 

hence, the energy associated with ionization a t  a given temperature 

and pressure.  No attempt will be made here  to reconcile the 10% 

spread in predicted enthalpy cited in these investigations. The 

results  of Cann and Ducati (l),  including doubly-ionized atoms but 

not lowering of the ionization pbtential, a r e  within O. 270 of the results 

of this investigation and hence show how insensitive the properties 

of partially ionized argon a r e  to multiple ionization for  the limited 

temperature and pressure range sf this study. 

Although Mollier diagrams of the type shown in Refs. P 

through 4 a r e  quite versatile in defining the equilibrium state of a 

gas by following its thermodynamic processes , in published form 

they do not reflect the accuracy of the state sf the a r t  of the present 

theories , which a r e  gene rally within B O/o agreement below 1 0 , 0 0 0 ~ ~  

(at 1 atm). Furthermore,  time -consuming iterative calculations 

a r e  required to determine the sonic conditions for the isentropic 

flow process. The results of the calculations given here  facilitate 



the use of these flow variables for purposes of analysis. Since there 

i s  some experimental and theoretical evidence (Refs. 9 and 10) that - 
certain argon plasma flows near 1 atm pressure and 10, OOOOK tem - 
perature a r e  in thermodynamic equilibrium, information of this kind 

is quite valuable in arc -jet performance and heat -transfer calcula- 

tions, At lower pressures,  where nonequillibrium conditions may 

exist,  the equilibrium values can serve a s  a reference. 



11. THERMODYNAMIC PROPERTIES DETERMINED 

B Y  PARTITION-FUNC TION METHOD 

The theory underlysng the use of partition functions for cal- 

culating thermodynamic properties of a gas is described in Refs. 11 

and 12. This method is briefly outlined below and then applied to 

s ingl y-ionized argon. 

For  a system of N indistinguishable particles, the internal 

'energy and entropy a re  related to the partition function a s  

The partition function for a system of N particles, QN, i s  related 

to the partition function per particle Q as ,  

By choosing one mole of particles . N = No, and the definition of 

enthalpy, Eqs. (1  ), (2) and 43) may be combined to yield the enthalpy 

and entropy per mole in terms of the partition function per particles 

Stirlingss formula, I n  N1 2 M I n  M - N, has d s o  been used in deriving 

Eqs, (4) a d  ( 5 ) -  

By assuming that the translational and internal degrees of 

freedom a r e  independent, the partition function per particPe may be 
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written as  the product of translational and internal parts: 

Then, by methods of statistical mechanics, it i s  found that the 

translational part i s  

where V i s  the volume occupied by the particle whose temperature 

and mass a re  T and rn , respectively and h is Planck' s constant. 

Similarly, the internal part of the partition function is found to be 

where 

Equation (9) represents a sum over all internal energy states due to 

the ith type of internal energy of the particle ; i. e , , rotational, vibra- 

tional, and/or electronic excitational. Only electronic excitation i s  

pertinent to a monatomic gas and, as  nuclear effects a re  negligible, 

(i) the superscript i will be omitted from Qint. Since certain of the 

electronic energy states En a re  very closely spaced or a re ,  in fact. 

degenerate, a number gn of them are counted a s  degenerate a t  the 

nth energy level. Then, Eq. ( 9 )  may be written a s  



Hence, the partition function per particle becomes 

The energy levels En and degeneracies g a re  given in Appendix A. n 

The energy level lo i s  the zero-point energy of the particle above 

an arbitrarily chosen zero-point energy level for a l l  particles and 

i s  also given in Appendix A. 

It is desirable to express the volume V in Eq. (1 1)  in terms 

of pressure and temperature. By combining the f i rs t  and second 

laws of thermodynamics for a reversible process and using the defi- 

nition s f  the Helmholtz free energy, A = U - TS, the pressure may 

be calculated as  

The Helmholtz free energy per mole i s  

Hence, the equation of state for 1 mole of indistinguishable particles 

becomes 

The partition function of each species , A, A', and e-  , for 

the argon atom, argon ion, and free electron, proceeds directly 

from Eq. (1 1 )  and Appendix A, Since the 3iogariehrn of the partition 

function divided by Avogadrog s number will be used frequently, it , 
i 

i s  convenient to express the results a s  

I 



Q(A) 5 In- = z I n  T + 1.866 
No 

By combining Eqs, (4) and (1 11, the enthalpy becomes 

The last two terms of Eq. (1 8) represent the contribution of elec- 

tronic excitation and ionization to the enthalpy of an arbitrary 

species. The enthalpy of each species may be written at once from 

Eq. (18) and Appendix A as  



The entropy of each species is  calculated from Eq. (5), which 

is in terms of the species partition function and species enthalpy 

already calculated. Thus, the entropy per mole of any species i i s  

The partition function for a mixture of gases obeying Maxwell- 

Boltzmann statistics (1 2), i. e. , for argon atoms and ions and free 

electrons, is 

The total. number of particles is 

By substitution of Eq. (23) into Eqs. (1) and (2) and by use of the 

definition of enthalpy , it can be shown that except POP the entropy, 

the properties per mole of this reacting gas mixture may be simply 

calculated by summing the species properties previously obtained 

for a mole of indistinguishable particles, In generalizing Eqs. (1) 
I 

and (2) to a mixture, the number of each species N(i) is  held con- 

stant, along with the volume V, in perform ing the differentiation of 

Eq. (23). The mixture properties per mole, N = No, become 



where the summation is over the component species A, At, and e m ,  

and the values of H(i)  and S(i) a re  obtained from Eqs, (19), (201, (21), 

and (22). Ths second term in the brackets of Eq. (25) is conven- 

tionally called the entropy of mixing term. The mole fractions X(i) 

may be expressed in terms of the ion mass fraction 

Neglecting the mass of the electron compared to that of the ion, a 

becomes 

where N(n) is  the number of nuclei in one mole No d the mixture. 

The second equality in Eq. (26) folBows from the fact that the gas is  

singly -ionized and neutral. Noting that 

and using Eqs. (25a) and (249, f i e  atom mass fraction becomes 

Using Eqs . (26) and (27) and the definition of mole fraction 

X(i) = IV(i)/NOV the X(i) become 



For applications of our interest the enthalpy and entropy per 
I 

< 1 

unit mass rather than per mole, i s  a more convenient quantity. "Ex- 

pressed in nondimensional form and written out in full, they become 
0 

[ + a l n  4 + 2 exp 



where R i s  the gas constant per unit mass of argon, T i s  in degrees 

Kelvin and p is in atmospheres. In addition, the fact that the ratio 

of the unionized to ionized gas molecular weights is  (1 + a) has also 

been used in obtaining Eqs. (30) and (31 ) (see Eq. 37). 

The Helmholtz free energy of the mixture needed to calculate 

the pressure, becomes 

The pressure is  calculated from Eq. (1 2 ) ,  in which X(i) a s  well a s  T 

i s  held constant in performing the differentiation. The result i s  

XT X (i) .= - V 
i 

which is seen to be an expression s f  Daltonq s law of partial pressures 

for one mole of gas mixture. Rewriting Eq. (33) in terms of the ion 

mass fraction a, the equation of state becomes 

The gas constant per unit mass of argon R is written 

Since the equation of state may also be written as 

- 
where f i  refers to the molecular weight of the ionized gas. Eqs. 

(34), (351, and (36) yield 



f i  - = (1 + a) (3 7) 
/Ti 

This expression was used in obtaining Eqs. (30) and (31) for the 

mixture enthalpy and entropy. 

As a consequence of applying equilibrium thermodynamics to 

a reaction, the Gibbs free energy change between the products and 

reactants in their standard state of unit pressure AF0 is related to 

the pressure equilibrium constant K a s  

The Gibbs f ree  energy, defined a s  F = H - TS, written for N(i) moles 

of the ith species i s  derived from the species entropy and entha1py 

expressions on a per-mole basis (Eqs. 4 and 5) by replacing No by 

N ( ~ ) N ~ .  The result i s  

t -  
Applying Eqs . (38) and (39) to the ionization reaction, A 9 e , 

the Gbbs  free energy change a t  unit pressure becomes 

The equilibrium constant in Eq. (38) is, by definition, 



The partial pressures in Eq. (41) may be expressed in te rms  of 

mole fractions by Dalton's law to obtain 

Combining Eqs. (40) and (42), the equilibrium composition equation 

becomes 

The argon ion and atom mass have been assumed equal in Eq. (43), 

i 
and the electron internal partition function which reduces to the spin 

degeneracy of 2 has been used. By substituting the values of the 

internal partition function and expressing the constant te rms  in units 

consistent with temperature in degrees Kelvin and pressure in a&os - 
pheres , Eq. 743) becomes 

- - - - - - - - - -  
* Note that the exponent -1 3 5 0 8 / ~  in the denominator of Eq. 44 of 
Ref. 20 should read - ~ 3 5 0 0 0 / ~  a s  shown here  in Eq. 44. 
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1x1. FLOW EQUATIONS 

In this Section, the results of equilibrium thermodynamics 
P 

obtained in Section I1 for partially ionized argon a re  combined with 

the conservation equations for one -dimensional, varying-area, 

adiabatic, inviscid flow. As a consequence of these assumptions, 

the flow is  isentropic. 

- 
S = S, (constant) 

The conservation equations a r e  a s  follows: 

Continuity: 

puA = I% (constant) 

Ene r gy : 

- 2 u - H+-= 2 HT (constant) 

The momentum equation i s  not needed explicitlys since for isen- 

tropic flow, it i s  automatically satisfied by the energy equation. 

The Mach number was calculated from i ts  defining relation 

The equilibrium sound speed was callculated from 

The equations ira this Section and in Section U were solved 

simultaneous8y on an PBM 7090 computer to yield the isentropic 

flow variables discussed in Section HV. 



The computer printout was too lengthy (258 pages) to include 

here but i s  included in Appendix D of Ref. 20. Table 1 shows the 

thermodynamic properties a t  stagnation conditions and Table 2 eon- 

tains conversion factors. Briefly, f ie  calculation procedure was as 

follows: 

1. Stagnation pressure and temperature were prescribed 

for a particular case and, with a! obtained from Eq. (44), 

the entropy was calculated from Eq. (31) and subse- 

quently held constant for the entire computation of the 

case. 

2. A temperature bellow the stagnation value was then 

chosen, and the total entropy equation, Eq. (31 ), was 

solved simultaneously with Eq. (44) to yield values 

of pressure and ionization f rackion. 

3.  Step 2 was repeated at consecutively lower values of 

temperature down to 1 , 0 0 0 ~ ~ .  Hence, the state of the 

gas was known throughout the isentropic process. 

4. A mass -flux (pu) distribution was computed to locate 

the maximum pu, which is also the sonic condition for 

each case. A Mach number of unity a t  the sonic con- 

dition served a s  a check for this calculation. 

Figures 1 and 2 show the effect of electronic excitation and 

ionization on temperature ratio and pressure ratio a s  a function of 

a rea  ratio for stagnation conditions of 1 0 , 0 0 0 ~ ~  and 0. B and 1.0 

atm. At any given a rea  ratio, it may be seen that the temperature 



and pressure  ratios a r e  above the perfect-gas values for which 

electronic excitation and ionization a r e  neglected. As stagnation 

pressure  is decreased, the values deviate further from the perfect- 

gas results.  Although not shown on these Figures,  the values also 

deviate further from perfect -gas results a s  the stagnation temper - 
ature  is increased. Temperature and pressure  ratios a r e  within 

170 of the perfect-gas values for stagnation temperatures l e s s  than 

about 7 ,  0 0 0 ~ ~  for the stagnation-pressure range considered. 

Figure 3 shows the deviations of maximum mass  flux values 

from those calculated for the perfect-gas conditions. In Fig. 4, 

the same variables a r e  plotted, except that in this case,  the ioniza- 

tion fraction i s  assumed constant a t  the stagnation conditions and 

electronic excitation is  neglected. Figure 4 shows that the mass  

flux ratio appears to be approaching a minimum a t  the higher tem- 

peratures. This trend occurs because the gas is highly singlly- 

ionized (a = 0.2 to 0.8). Ef the stagnation tempe ra ture  were in- 

creased appreciably above the value which yields @ = 1,  the T * 
singly-ionized gas model would predict a = P also. (Figure 9 

shows the beginning of this trend. ) By neglecting the small effect 

* * 
which excitation has  on C (pu) /(pu)O would be 1 again because 

P ' 
the gas i s  frozen, with a! = 1 between the stagnation and sonic con- 

* * 
ditions. Of course,  a t  the high temperatures a t  which (pu) /(pu)O= 1, 

the singly -ionized gas model i s  no longer valid. However, due to 

the fact that the f i r s t  and second ionization potentials a r e  separated 

by about B 2 etr, even at 1 4 , 0 0 0 ~ ~  and 0.1 am (a = 0.81, the doubly- 

-4 
ionized ion miass fraction is l e s s  than 11 0 ; hence, the singly-ionized 



gas model may be expected to provide valid results even though a! is 

quite large. 

The ratio of equilibrium sound speed to frozen-composition 

sound speed is  presented in Fig. 5 a s  a function of temperature and 

pressure. The trends shown here a r e  similar to those for the mass  

flux ratio d i s ~ ~ s s e d  for Fig. 4. The equilibrium sound speed was 

calculated from a: = (ap/ap);; by differentiation a s  pa@ of the corn- 

puter program gnd from the closed-form approximation given in 

Appendix B (Eq. B-7). The agreement was excellent for the condi- 

tions of the tests .  This implies that electronic excitation does not 

noticeably affect the sound speed for the ionization model and range 

of conditions considered. 

Even though &is  i s  an inviscid flow anaPysis, it is of interest 

to mention a convenient flow parameter, Reynolds number per centi- 

meter ,  which is  shown in Fig, 6 at  the sonic conditions a s  a function 

of stagnation temperature and pressure. This flow parameter,  eval- 

uated a t  the PocaP static conditions, Pies between 400 and 11,000 cm -1 

over the range of stagnation temperatures and pressures  considered. 

Because of the marked ionized gas effect on predicted viscosity 

(51, shown in Fig. '7, the ReynoPds number per centimeter atiaizns 

a minimum value for each stagnation pressure.  Had a conventional 

power-law reJation between viscosity and temperature been assumed, 
* 

( R ~ / D )  would have decreased monotonical~y with increasing temper- 

ature. 

The ionization fraction, which lies between 1.4 X 1 0-5 and 

0.  $ for the range 0 P  stagnation conditions considered, is shown as 
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a function of temperature and pressure in Fig. 8 and a function of 

a r ea  ratio in Fig. 9. A comparison of these values of a! (Fig. 8) 

with those calculated by the method proposed by Saha (13), shows 

that the Saha equation values of a! a t  0.1 atm a r e  38 to 5570 of the 

values of a! predicted here  between 6,000 and 1 4 , 0 0 0 ~ ~ .  The Saha 

equation, which does not include the degenerate energy levels o r  

electronic excitation, can be obtained from Eq. (43) by equating 

the internal partition-function te rms  to unity. An improvement 

to the Saha equation can be made by including the ground-state- 

degeneracies value of 8 a s  the sole internal partition-function con- 

tribution. The prediction, which includes this correction, yields 

values of a ranging between 86 and 94% of those calculated by in- 

cluding the excitation te rm s .  Several other investigators include 

ground-state degeneracies and further assume that the excitation 

t e rms  a r e  frozen a t  a temperature typical of the temperature level 

under consideration. This prediction compares more favorably 

than the others but has limited utility if deviations larger  than 1% 

a r e  undesirable. F rom Eq. (441, it i s  seen that only one of the 

excitation te rms  is of importance, so that the composition equation 

may be written in the following form: 

0 where the units a r e  T, K and p, atm. F o r  the stagnation conditions 

considered, this equation yields values of a which a r e  within 0. P 70 
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of those predicted by Eq. (44), including all  excitation terms. Thus, 

Eq. (50) may be used instead of the predictions, which a r e  not uni- 

formly valid in this temperature and pressure range. 

The question naturally a r i ses  a s  to whether o r  not the enthalpy 

and entropy equations (Eqs. 30 and 31) may be similarly reduced in 

com plexity without compromising their validity. Table 1 shows the 

value s of enthalpy and entropy calculated by negle cting excitation 

but using the composition equation (Eq. 50), which includes the effect 

of one excited state. A comparison shows that the enthalpy and 

entropy a r e  less  than 0.5 and 1.0% (respectively) Power than those 

values (reported here a s  shown in Table 1 ) calculated by including 

a l l  excitation terms. The resulting enthalpy and entropy equations 

a r e  

- 
- 2  

W P 
(1 - QI) 

1-a! 

where the units a r e  T ,  OK and p, atm. Thus, Eqs. (so), (51 ), and 

(52) may be substituted for Eqs. (441, (3 O ) ,  and (3 P ) for composition, 

enthalpy, and entropy of singly-ionized argon when B '$0 accuracy is 

sufficient. These values of enthalpy and entropy a r e  shown h Table 

1 for purposes of comparison with other predictions. Ionization 

fraction is not shown, since the agreement between the prediction 

and the simpljlfied composition equation (Eq. 501) was within 0. I%, 
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Figure 9 shows the ratio of static-to-stagnation ionization 

fractions a s  a function of a rea  ratio for several stagnation temper- 

atures and 1 atm stagnation pressure. At high stagnation temper - 
atures,  the static temperature and, hence, the ionization fraction, 

decrease l e s s  rapidly due to the fact that increasing kinetic energy 

does not occur solely a t  the expense of decreasing static enthalpy 

o r  temperature but includes ionization energy being returned to the 

flow process. At low stagnation temperatures, ionization fraction 

decreases rapidly, a s  does the temperature, since a negligible 

amount of ionization energy is present. 

The electrical conductivity a ,  calculated from the results 

of Ref. 14 given a s  Eq. (C -1) in Appendix C, is shown a s  a function 

of temperature and pressure in Fig. 1 0 .  The electrical conductivity 

2 3 lies between 2 X P O  and 8 x P O  mhos/m for the temperature and 

pressure range considered. In Fig, 11, the electrical conductivity 

* 
is shown a t  the sonic conditions (T a s  a function of stagnation tem- 

perature and pressure. 

?.n these Figures the electrical conductivity increases directly 

with a; thus, the trend of cr vs .T is similar to that of the ionization 

fraction shown in Fig: 8. At high temperatures, the pressure de - 

pendence i s  inverted from that a t  low temperatures. These trends 

a r e  a consequence of the assumed conductivity model. In this model, 

the  conductivity of a slightly ionized gas, which varies inversely 

with pressure and is dominant a t  low temperatures, is combined 

with the conductivity of a fully ionized gas, which increases rnono- 

tonically with pressure and becomes dominant a t  high temperatures. 
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Table 1 gives the thermodynamic properties at the stagnation 

conditions for the ionization model used here. Included also are 

numerous comparisons with other investigations, which, in general, 

agree quite well with the singly-ionized gas model below 1 0 , 0 0 0 ~ ~ .  



V. CONCLUSIONS 

Thermodynamic properties and one-dimensional, isentropic 

flow variable s of singly -ionized argon have been calculated over the 

stagnation tempe rature and pressure  ranges of 6,000 to 1 4 , 0 0 0 ~ ~  

and 0.1 to 3 atrn , respectively. Conclusions from these calculations 

include the following: 

1. F o r  the range of stagnation conditions considered 

here ,  the singly-ionized gas model of argon provides 

thermodynamic properties that a r e  generally in  good 

agreement with those of other investigations for 

which multiple ionization was included. Good agree - 
ment below 1 0 , 0 0 0 " ~  i s  obtained with the results  

of those investigations that include lowering sf the 

ionization potential a s  a result of charged-particle 

field interactions, 

2 .  Electronic excitation and ionization effects become 

increasingly important a s  stagnation temperatures 

increase and stagnation pressures  decrease. How- 

ever ,  for the range s f  this investigation, it was 

found that, except in the composition equation, 

electronic excitation could be neglected and the 

1% accuracy still  retained with those values pre - 
dicted in which excitation i s  included. As an example 

of these effects, static -to - stagnation temperature 

and pressure ratios a r e  shorn to be significantly 

higher than those calculated by assuming a perfect 
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gas (or no ionization and electronic excitation) for 

stagnation conditions of 10, 0 0 0 ~ ~  and 1 atm . 
3.  The mass  flux a t  the sonic conditions differs 

significantly from both the perfect gas (without 

ionization o r  electronic excitation) and frozen 
I 

composition values calculated for stagnation tern - 
peratures above about 7 , 0 0 0 ~ ~ .  Thus, electronic 

excitation and ionization effects may be expected 

to ipfluence all area-ratio-dependent quantities 

significantly. 

4. Reynolds number per centimeter a t  sonic conditions 

is seen to decrease with decreasing stagnation 

pressure,  then to increase with increasing stagma- 

tion temperature a s  a result of ionized gas effects 

on viscosity. 

5 .  Ionization f raction and electrical conductivity a r e  

observed to decrease rapidly with increasing 

supersonic a rea  ratio. However, for stagnation 

conditions a t  high ionization levels, where trans - 
Bation and ionization energies a r e  of the same order ,  

ionization fraction and conductivity decrease much 

more slowly with increasing a rea  ratio. 

The results clearly indicate -that electronic excitation and, 

particularly, ionization effects a r e  important in nearly every aspect 

of defining the thermodynamic flow variables of an isentropic, 
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varying area flow of partially ionized argon. 

It should be pointed out that this method of calculation can 

readily be extended to higher temperatures by including additional 

energy levels and multiple ionization, 
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APPENDIX A 

Energy Levels for Ionized Argon 

The energy levels of the species were obtained from Moore 

(15)* 

Specie s &fi OK 

The energy of the f i rs t  excited state of the argon atom rep- 

resents an average of five energy Bevels very near 1 3 5 , 0 0 0 ~ ~ .  The 

infinite series of energy levels contributing to the internal partition 

function may be cut off after the f i rs t  few terms because of the rela- 

tively low temperatures a t  which these caEcu1ations are made. For  

instance, the highest energy levels included here contribute terms 

-10 of order e to the internal partition function. The energy levels 

used in this study were also employed by Arave and Eluseby (5) to 

calcuPate the thermodynamic properties of singly -ismized argon, 
, 
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APPENDIX B 

Speed of Sound in a Partially Ionized Monatomic Gas 

For  the pressure and temperature range of this investigation, 

i t  was observed that electronic excitation had a negligible effect on 

the equilibrium speed of sound. By treating a monatomic gas as a 

mixture of perfect gases comprised of atoms, ions, and electrons, 

and neglecting electronic excitation, the equilibrium speed of sound 

may be calculated a s  a function of the ionization fraction and tem- 

perature. 

The definition of the equilibrium sound speed ae is 

This may be combined with general thermodynamic relations to 

obtain 

The enthalpy used to eliminate the specific heat in Eq. (B-2) is 

- 
RT (1 + a)+ cur N = Y  

The equation of state i s  

p = (1 + a) pRT 

Combining Eqs. (B-21, (B-31, a d  (B-4) one obtains 



where 

Equation (B-5) was also obtained by Wenard (I 6 )  by a similar 

procedure. Unfortunately, a subsequent e r r o r  in his analysis inval- 

idates his final results. Derivatives of the ionization fraction may 

be eliminated by the Saha equation, 

2 5/2 
a - constant - -2 - P 31-a 

Thenp the following Pe obtained: 

Speed of sound was calculated by Eqs. (IB-1) and (B -7 )  and found to 

give identical results when a was calculated from the computer 

program which included the effects of electronic excitation. When 

a was calculated from the Saha equation (Eq. B-6Bs the agreement 

was within 1%. 'This indicates that the effect of electronic excitation 

on sound speed for the conditions in this investigation is negligible, 



APPENDIX C 

Electrical Conductivity of Argon 

The electron mobility and, hence, the electrical conductivity 

a r e  dictated by close encounters between the electrons and neutral 

atoms for a slightly ionized gas a s  a result of the inverse fourth 

power interactgon potential, and by distant encounters between elec- 

trons and ions $or a completely ionized gas in which the Coulomb 

interaction i s  d~minant .  Lin e t  al. (14) suggest that the intermediate 

range between a slightly ionized gas and a completely ionized gas can 

be approximated by a ser ies  -resistance expression, 

where a and a represent the conductivities due to the close and c d 

distant encounters for a slightly ionized and completely singly- 

ionized gas, respectively. 

Following Ref. 14,  the electrical conductivity s f  a slightly 

ionized gas s f  rigid spherical atom s was taken from Chapman and 

Cowling (1 7) and that of a completely ionized gas from Spitzer (1 8). 

- After some algebra one obtains 

0 2 The units a r e  a. rnhodmeter;  T ,  K; p, atm; and 5, cm . The 
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variation of the effective electron-atam cross-section S with 

electron temperature was obtained from a curve in Ref. 14, which 

was originally obtained by Townsend and Bailey 19). 



AREA RATIO ~ /a "  
Figure 1 , Static -to - stagnation-temperature Ratio as a Function 

of Area Ratio at 1 O p  OOO°K Stagnation Temperature 



Figure 2. Static-to-stagnation-pressure Ratio as a Function of 
Area Ratio at 18, OOOOK Stagnation Temperature 
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Figure 5, Ratio of Equilibrium to Frozen-flow Sound Speed 
as  a Function of Pressure and Temperature (Eq. B-7) 



STAGNATION TEMPERATURE Bg, "K 

Figure 6. Reynolds Number per Centimeter at the Sonic Condi- 
tion as  a Function of Stagnation Temperature and 
Pressure 



f EMPERATORE O K  

Figure 7, Viscosity of Argon as a Function of Temperature and 
Pressure 



Figure 8, Ionization Fraction as a Function of Temperature 
and Pressure (Eq, 44) 



AREA RATIO A/A' 
Figure 9.  Ratio of Static -to - stagnation Bomization Fraction as a 

Function of Area Ratio for a Stagnation Preseure of 
1.0 a h .  





STAGNATION TEMPERATURE T j ,  08( 

Figure P11. Electrical Conductivity at the Sonic Condition 
as a Function of Stagnation Temperature and 
Pressure 





 table 2. Conversion from metric to English units 

Quantity English units Metric units Conversion 
factor 

In metric To obtain English From metric Multiply metric 
units units in units in quantities by 

Temperature OR "M 1.800 

Density ~b /tt3 m kg/m3 0.06243 

EPe ctrical 
conductivity ( in.) - 1 

Sound Speed ft/sec m/sec 3.281 

Mass flux 
2 1bm/in. sec 

2 k g  sec 1.422 x 1 0 - ~  

Velocity ft/se.c m/sec 3.281 

Reynolds - 3. - 1 
number irm, ~ 1 x 2  2.540 

EPe ctron nmnmber/in. 3 nmber / cm 3 
concentration B6,39 


