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ABSTRAG T 

Various experimental and theoretical studies on the 

supersonic flutter of circular  cylindrical shells a r e  discussed. 

Results of experiments in the Mach number range 

2.5 - 3.5 a r e  presented. Three shells with radius-to-thickness ratios 

of 2, 000 were subjected to radial external pressure  loadings and to 

combinations of axial compressive loading and internal pressurization 

while in the presence of an external axially-directed supersonic flow. 

Small amounts of internal pressurization were very 

stabilizing with respect to flutter, but moderate amounts reduced 

stability to the unpressurized level, However, high internal pressures  

completely stabilized the shells. The axial compressive loading was 

slightly destabilizing for moderate amounts of internal pressurization. 

The flutter modes (which were standing waves in the 

axial direction with zero, one o r  two circumferential nodd  lines) 

contained many waves around the circumference (of the order  of 20) 

that travelled in the circumferential direction. This eircumf erentiall y 

travelling wave phenomenon possibly results  from the nonlinear nature 

of cylindrical shells. 



Model integrity was not threatened by even the most 

violent flutter which occurred just prior to buckling under radial 

external pressure  loading and just after  buckling under axial com- 

pressive load$ng. Buckled portions of a shell did not flutter. It 

appears that the large  local curvatures encountered in the buckling of 

a cylindrical shell tend to stabilize the shell locally. However, i t  

a lso  appears that the localized buckling usually encquntered in 

practice reduces the stability of any unbuckled regions of the shell. 

The experimental flutter boundaries a r e  compared 

with various theoretical predictions. Following Voss, a modal 

analysis which satisfies the so-called freely supported shell boundary 

conditions i s  used in conjunction with different aerocfynamic approxi- 

mations - namely piston theory and the potential theory of Leonard 

and Hedgepeth. It was found that the pressurized cylindrical shells 

fluttered at a Lower level of f ree  s t ream energy than predicted by 

the theory. Of the two results, that using piston theory appears to 

correspond closest to the experiment both in stability boundary and 

in critical values of circumferential wave number. Both predictions 

yield a l a rger  stabilizing influence s f  the shell internal pressure  

than observed in the experiment. 

An analysis i s  presented for  calculating the final 

limiting amplitudes sf flutter based on a two-mode, piston theory 

approximation. A GaPerkin procedure i s  used to reduce the nonlinear 

shallow shell equations of Marguerre to two coupled nonlinear ordinary 

differential equations for  the modal amplitudes. An approximate l imit  

cycle solution to these equations i s  obtained by the method of Krylov 

and Bogoliubov. The results  indicate that fo r  practical purposes 



cylindrical shell flutter does not occur below the stability boundary 

for infinitesimal disturbances. The l imit  cycle amplitudes predicted 

by this analysis seem to agree very well with the experimental ones. 

The results further indicate that the flutter amplitude, frequency and 

mode shape should change discontinuously (or jump) as the aerodynamic 

pressure  i s  increased beyond the value for f i r s t  flutter. 



Par t  - 

TABLE OF  CONTENTS 

Title Page - 

Acknowledgment 

Abstract 

Table of Contents 

List  of Ulustrations 

List  of Symbols 

Introduction 

Experiments 

2.1 Introduction 

2. 2 Flutter Tests  

2. 3 Results and Discussions 

2.4 Conclusions 

Comparison with Theory 

3.1 Cylindrical Shell Vibration Frequencies 

3, 2 Aerodynamic Theory Used in Flutter 

Calculations 

3.3 Flutter Boundaries 

3.4 Limiting Amplitudes of Flutter 

3.5 Conclusions 

vi 

viii 

xi 

1 

5 

5 

7 

10 

22 

2 5 

25 

32 



Part - Title Page 

Appendi c e s  

F lu t te r  Model 

Tape Data Handling 

Analytic Expression of the F lu t te r  Modes 

Bench Tes ts  

Static P r e s s u r e  Tes t  

Pot-ential Solution of Leonard and Hedgepeth 

The Boundary Layer  Per turba t ion  Problem 

Associated with the Supersonic F lu t te r  of 

Cylindrical Shells 

Se r i e s  Solution of P+ Equation i n  Appendix G 

About Cr i t ica l  Point 

References 

Tables 

F igures  



F i g u r e  

LIST O F  ILLUSTRATIONS 

Ti t le  Page  

F r o n t  View of Cyl indr ical  P a n e l  F lu t t e r  Model 

i n  Tunnel 16 0 

Back View of Cyl indr ical  Pane l  F l u t t e r  Model 

i n  Tunnel 160 

Cylindrical. F lu t t e r  Model 161 

Inst rumentat ion and Shell. Mounting Detai ls  162 

End Ring Detai ls  163 

View of Model Ins t rumentat ion 164 

C r o s s  Section of Bellows Buckle (h = 0.0039") 164 

Right Yand Side of Buckled Shell; Run No. 34 165 

Left  Hand Side of Buckled Shell; Run No. 34 165 

Expected Buckling c h a r a c t e r i s t i c s  of Thin Shel ls  

(h = 0. 0040") 16 6 

Boundary L a y e r  P ro f i l e s  16 7 

Sample T ime  T r a c e s  s f  Shell Motion 168 

Power  Spec t r a  of Signals Shown in Fig. 12 169 
F lu t t e r  Amplitude vs. Total  P r e s s u r e  17 0 

F lu t t e r  Amplitude vs .  Xnternal P r e s s u r e  f o r  

Buckled (BelPows Mode) Shell 171 

F lu t t e r  Amplitude vs ,  In te rna l  P r e s s u r e  with 

Various  Axial  Loads;  C o r r .  NoDs 187 to  217 172 

F lu t t e r  Amplitude vs. f i terndl  P r e s s u r e  with 

Various  Axial  Loads j  C o r r ,  Noas 228 to 260 17 3 

Flu t t e r  Amplitude vs, In te rna l  P r e s s u r e  with 

Various  Axial Loads;  C s r r .  No's 263-296 and  326-332 174 



F i g u r e  Ti t le  - Page  - 

19 F lu t t e r  Amplitude vs. In te rna l  P r e s s u r e  with 

Various  Axial  Loads;  C o r r .  No's 299 to 325 175 

2 0 Ci rcumferen t ia l  T rave r se ;  C o r r .  No. 112 176 

21 Longitudinal and Ci rcumferen t ia l  T r a v e r s e s ;  

C o r r .  No. 126 177 

22 Longitudinal and  Ci rcumferen t ia l  T r a v e r s e s ;  

C o r r .  No. 162 178 

23 Longitudinal and  Ci rcumferen t ia l  T r a v e r s e s ;  

Cor r .  No. 174 179 

24 Longitudinal and  Ci rcumferen t ia l  T r a v e r s e s ;  

C o r r .  No. 203 180 

2 5 Longi tudind and Ci rcumferen t ia l  T r a v e r s e s ;  

Cor r .  No. 310 181 

26 Longitudinal Variation of P h a s e  Angle of Shell  

Motion 182 

27 Natural  F requenc i e s  of Uns t r e s sed  Cyl indr ical  Shell  183 

F requency  Squared Differences  f o r  Uns t r e s sed  

Cyl indr ical  Shell 184 

Shell  Geome t ry  and Coordinate  System 185 

Cyl indr ical  Shell F l u t t e r  Boundaries  186 

A x i d  Varia t ion of F l u t t e r  Mode 187 

Locus of Frequency  Roots as pa I n c r e a s e s  188 

Locus  of F requency  Roots as p- I n c r e a s e s  189 

Axial  Varia t ion of F lu t t e r  Mode 190 

L imi t  Cycle  Amplitudes 191 

F l u t t e r  F requency  and  P h a s e  Angle Dependence 

on  Amplitude 192 

L imi t  Cycle  Ampli tudes  f o r  Increas ing  Stat ic  P r e s s u r e  193 



F i g u r e  Ti t le  P a g e  

Pickup Cal ibrat ion Curves  

In s t ruGen t  Ar rangemen t  i n  Tunnel Control  Room 

Close-up View of Boundary L a y e r  Rake 

Axial  S t r e s s  Dis t r ibut ion i n  Ins t rumented  Shell  

Cal ibrat ion of Axial Loading Mechanism 

Scheme of Data Recording C i r cu i t ry  

Schematic  Layout of Sta t ic  P r e s s u r e  P o r t s  

Detai ls  of a Static P r e s s u r e  P o r t  

Static P r e s s u r e  Distribution,  R1,, = 3,400 

Stat ic  P r e s s u r e  Distribution, M, = 3.003 

Stat ic  P r e s s u r e  Distribution, M, = 2.605 
Boundary L a y e r  P ro f i l e s  

Mean Velocity P ro f i l e  

Wall P r e s s u r e  Amplitudes (M, = 3,0, k = 0.5) 
Wall P r e s s u r e  P h a s e  Angles (M, = 3.0, k = 0.5) 

Wall P r e s s u r e  Amplitudes (M, = 3,0, k = 0.75) 

Wall P r e s s u r e  P h a s e  Angles (M, = 3.0, k = 0.75) 



LIST OF SYMBOLS * 

shell parameters i n  nonlinear flutter solution; 

Eq. 3.24 

modal amplitudes in nodinear  flutter solution; 

Eq. 3 ,23  

f r ee  stream speed of sound (ips) 

slowly varying amplitudes; Eq. 3. 26 

averages of A$ 38 over one period 

Eq. 3 .34 

complex modal amplitudes in l inear flutter solution 

pressure  coefficient = (pw, - p,)/q, 

3 2 shell bending rigidity = Eh / (312(l - v )) 

YoungP s modulus (psi) 

aerodynamic pressure  parameter  = B y ~ e p w / 3 p s L h  

-2 (sec ) Eq. 3. 24 

v d u e  of f fo r  flutter according to linearized two 

mode solution; Eq, 3 .33 

s t r e s s  function; Eqs. 3.10 and 5.22 

* Note that the synnbofs used in Appendices F, G and H a r e  defined 
there. 



( j  = 1 to 3); Eq. 3 .35 

skin thickness of shell (inch) 

number of circumferential nodal lines between the 

ends of the shell in flutter mode 

k nondimensional frequency = W/ oCm U, 

Eqo 30 7 

(j = l to 4); Eq, 3,JO 

unsupported length of cylindrical shell (inches) 

m number of half waves between ends of shell in 

vibration mode 

MP Me*B Mach numbers locally and in free  stream, 

respectively 

M,(l - k); Appendix F 

(1 + k); Appendix F 

number of circumferentid waves in flutter o r  

vibration mode 

n value of n corresponding to minimum flutter m in 

condition 

N number sf modes in l inear  flutter solution; Eq, 3-12 

N2 No? N x ~  s t r e s s  resultants in  shell due to shell motion and to 
- - -  
Nx* No* N x ~  applied loadings, respectively (Ib/inch) 



P aerodynamic pressure term in Eqs. 3.10 and 3.11 

P, f ree  stream static pressure  (psf o r  psi) 

P- min value of p, corresponding to nmin 

Pcm* Psrn coefficients in aerodynamic pressure  expression, 

Eq. J,14 

Pm pressure differential ac ross  shell skin, positive 

for tensile hoop s t r e s s  (psig) 

value of pm which causes shell to buckle under 

radial external pressure  loading 

pressure  in rubber tubes of axial loading mechanism 

(psig) 

f ree  stream stagnation pressure  (psfa) 

local static pressure on shell (psfa) 

axial compressive load on cylindrical shell (lb) 

f ree  stream dynamic pressure  (psf) 

radius of cylindrical shell (inches) 

Reynolds number based on distance from leading 

edge of cylindrical flutter model 

time (seconds) 

f ree  stream stagnation temperature (degrees F) 

shell displacements; Fig. 29 

f r ee  stream velocity (fps) 



radial deflection shell skin a s  measured by i-th 

pickup (inches) i = 1, 2 or  3 

mean square value of shell skin deflection in 

2 oscillatory motion (inches ) 

root mean square value of shell skin deflection in 

oscillatory motion (inches) 

shell coordinates; Fig. 29 

(i = 1 to 4); Eq, 3.31 

(i = 1 to 4); Section 3.4.1 

Eq. 3.34 

axid wave numbers = m.rr/E, J.rr/h9 respectively; 

Eq. 3,112 

imaginary part of frequency root; Section 3.3.1 b 

gas constant = 1.4 

structurd damping coefficient (csrrespsnds to y 

in Ref, 2 2 )  

Kronecker delta 

increment in x (i = l to 4); Section 3.4.1 i 
-1 . aerodynamic damping parameter = yp_ j psh Jsec ), 

Eq. 3.24 



2 [ 4 , 4 / r r ( ~ ~  - m ) for m + 1 odd; Eq. 3.15 

small nonlinearity parameter = ( n 2 h / ~ ) '  

angular position around model; l o ~ k i n g  upstream, 

positive 8 i s  counter-clockwise and Q = 30° 

corresponds to top of model. (Note, in Appendix E, 

8 = 0 corresponds to right hand horizontal when 

looking upstream). Also see  Fig. E9 for analytic 

work. 

w t  + rl, W t  t vr respectively; Eq. 3.27 

J L / ~  M-a, 

eigenvalue; Eq. 3 , 3 8  

Eq, 3 .6  

Poi s song s ratio 

normalized modal amplitudes al/h, a2 /h  , 

respectively; Eq, 3. 24 

l imit  cycle perturbation vector1 Eq. 3 , 3 6  

2 4 f ree  stream density (lb sec  / in 

2 4 shell material  density (lb sec / in  ) 

d ~ / n  

phase angle s f  flutter mode; Figs. 31 and 34 

argument of modal amplitudes cmt Tables V, VI, VII 



Yl(t). EOZ(t) slowly varying phasest Eq. 3.26 
- 
u?ls ?2 averages of yl, over one period 

Y m vibration mode for clamped-clamped beam; 

Eq. 3.5 

flutter o r  vibration frequency ( radjsec)  

flutter frequency according to linearized two mode 

solution; Eq. 3.33 

r e d  part  of frequency root; Section 3.3.1 b 

linearized modal frequency1 Eq. 3.16 

complex frequency roots1 Section 3.3,l b 

Miscellaneous Notation 

1 
gap ' 

nondimensional parameter which defines approximate 
h 

E(&- 1 flutter boundary for cylindrical shells, See for 

example, Refs, l afld 2 . 



I. INTRODUC TION 

The self-excited oscillation of th in  plates o r  

membranes exposed on one side to a parallel supersonic a i rs t ream 

i s  called panel flutter. The outer skin on almost  all high speed 

flight vehicles i s  supported by variously spaced spars  o r  r ibs which 

divide i t  into individual panels forming an array,  and these panels a r e  

susceptible to this flutter instability especially when subjected to 

in-plane compressive loads. In some cases, the prevention of this 

instability becomes the primary design criterion. 

A thin-walled cylindricdl shell of finite length may 

be considered as a degenerate panel which i s  closed on itself in the 

transverse direction. Such a panel o r  shell may also exhibit this 

flutter instability. In fact, the f i r s t  reported occurrence of the 

phenomenon appears to have been on the V-2 rocket. 

The f i r s t  successfuP experimental observation of * 
cylindrical shell flutter was obtained by the GAECIT a t  the NASA 

Ames 8 x 7 foot supersonic tunnel in May 1962 (Refs. 1 and 2). 

Further experiments carried out by the writer  in  June and August 

1964 were designed to clarify the interaction of flutter and buckling. 

* 
Graduate Aeronautical Laboratories, Cdifornia Institute of 

Technology. 



The nonlinear interaction between buckling and 

flutter of flat panels o r  curved shell segments i s  a complex but 

important problem, mainly because the severest  flutter seems to 

occur in the vicinity of buckling. In the case of flat panels, both 

theoretical aqd experimental results indicate that the flat panel i s  

much more sqsceptible to large  amplitude flutter in *e buckled 

configuration, Theory for this interaction for the complete cylin- 

drical shell i s  not yet available, but the limited results from the 

GALCIT - Amps experiments indicate that the maximum amplitude 

of flutter i s  obtained a s  buckling i s  approached, and that the flutter 

disappears when the shell i s  completely buckled, The shell with 

large buckles seems to ac t  Pike a corrugated shell, whose critical 

flutter speed i s  much higher than that of the circular  shell. These 

results were limited to buckling under radial external pressure  

loading only. 

The buckling of a cylindrical shell under axial 

compression results in  a buckling mode entirely different from 

that of radial external pressure loading. For low values of internal 

pressure, the well-known diamond pattern buckles a r e  obtained, and 

a t  high values, the so-called bellows shaped ones a r e  obtained. See 

for example, the excellent photographs In Ref. 3. Consequently, i t  

was to be expected that the effect of axial csmpressive loading on 

the flutter would be entirely different from that of the radial external 

pressure loading. Hence, further experiments to investigate this 

interaction seemed desirable. 

These experiments were carried out during the 

summer of 1964 at the NASA Ames 8 x 7 foot supersonic tunnel in two 

different phases. The f i r s t  phase consisted s f  measuring the static 

pressure  distribution over the thin shell section sf the cylindrical 



panel flutter model in the absence of flutter. The second phase 

consisted of the actual flutter tests.  The f i r s t  part of this thesis 

describes these experiments and the results  obtained from them. 

In the second part  of this thesis, an attempt i s  made 

to provide some quantitative comparison between the experimental 

results and theory. Although by no means complete, this comparison 

goes f a r  in straightening out some of the controversy ,over this 

problem already present in the literature. 

PreviousEy, i t  was thought that all published theories 

for  cylindrical shell flutter yielded pessimistic results a s  to thick- 

nesses  required to prevent the instability. The influence of the viscous 

boundary Payer, which was ignored in all these theories, was suggested 

a s  a possible explanation fo r  the apparent discrepancy between theory 

and practice. Calculations based on a simple step boundary Payer 

model (a thin region of uniform subsonic flow between the shell and the 

outer uniform supersonic flow) by Anderson and Funjg (Ref. 4 )  revealed 

the possibility of significant changes in the stability boundaries for 

shell flutter with many circumferential waves. 

This problem i s  re-examined herein by using a some- 

what more  realistic boundary Payer model - that of a paraPlel shear 

flow with a velocity profile given by the mean velocity distribution in a 

classical turbulent boundary layer. The oscillating shell surface i s  

approximated b y  an oscillating plane wdB whose deflection i s  sinusoidal 

in both in-plane directions. Viscous effects a r e  neglected with respect  

to flow perturbation quantities, and the resulting equations a r e  linear- 

ized. The f i n d  equations admit solutions with exponential dependence 

on time and the in-plane coordinate directions but must  be integrated 



numerically in the direction normal to the plane. Several examples 

a r e  worked out and a r e  presented in Appendix G. The results  from 

this study a r e  the results of more  recent work by Anderson (Ref, 5) 

indicate that the influence of the boundary layer may have been over 

predicted by an order  of magnitude in the ear l ier  work. 

The experiments revealed that the shell internal 

pressure  was an important parameter for the flutter phenomenon. 

Consequently, calculations including the effect of internal pressure  

were required for comparison purposes. Detailed calculations 

including this effect a r e  presented using an analysis s imilar  to that 

of Voss (Ref. 6 ) ,  but using two main aerodynamic theories - piston 

theory and the potential theory of Leonard and Hedgepeth (Ref. 7). 

Although the use of the lat ter  theory implies a neglect of the leading 

edge effect, i t  seems to be the easiest  way to include three dimensional 

effects while retaining the simplicity of a sine wave modal analysis. 

Finally, a nonlinear flutter analysis based on a two- 

mode, piston theory approximation i s  presented. A Galerkin procedure 

i s  used to reduce the nonlinear shallow shell equations of Marguerre to 

two coupled nonlinear ordinary differential equations for the modal 

amplitudes. An approximate l imit  cycle solution to these equations i s  

obtained by the method of Krylov and Bogoliubov, and i t s  stability i s  

studied by the method of averaging. 



Il. EXPERIMENTS 

2.1 Introduction 

The same basic model used in the 1962 experiments 

(Ref. 1) was used in the new tests.  The cylindrical shells, having 

a diameter of 16 inches and wall thicknesses of 0.0040 inches (hence 

a radius-to-thickness ratio of 2000), were again fabricated by 

electroplating. Over the years the electroplating technique has 

improved so that shells of smoother surface, more  uniform thickness 

distribution, and higher yield point were obtained, A modification of 

the shell suppoit and fabrication procedure was introduced so that 

the shells could be loaded in axial compression. With the new design, 

a test  shell could be mounted on the model in the tunnel in about 

thirty minutes time. 

The model consists of a nose, a center section which 

supports the thin shell flutter model and instrumentation, and a tail 

section which connects the center section to the wind tunnel sting. 

An ideal nose for this model would provide a rapid pressure  recovery 

and uniform flow over the thin shell section. According to aerodynamic 

theory, this ideal nose would have a different shape for each Mach 

number to be tested, Since this was i q r a c t i c d ,  one shape was 

chosen for the middle Mach number with the hope that Mach number 

effects would be small. Cowl number six of Ref, 8 was chosen for 

this purpose, arnd the data given in this reference would seem to 

support this hope, 



Previously, a check on the suitability of this cowl for 

the flutter model was made (in 1962) on a reduced scale model of 2.0 

inches diameter in a 9 x 9 inch supersonic wind tunnel. It  was 

ascertained (Ref, 1) that the variation of static pressure  over the 

length of the pode l  was l e s s  than 2 per cent of the dynamic pressure  

in the range of Mach numbers of interest, and this w8s regarded a s  

satisfactory for  the previous flutter tes ts  whose purpose was mainly 

the determination of flutter characterist ics of pressurized shells. 
t^. 

It i s  well known that the exact variation of static pressure  over a model 

depends to a large  extent on the tunnel, and on the Reynolds number 

(model size). Hence,for more  accurate information, the f u l l  scale 

model should be tested in the 8 x 7 foot tunnel. Now, for the thin 

shells of thickness 0. 0040 inches to be used in the flutter tests,  the 

radial external pressure  loading which causes buckling i s  of the order 

of 0. 05 psig. This pressure  i s  so small that only very small  variations 

in static pressure  over the shell could be tolerated. These consider- 

ations resulted in the decision to investigate the static pressure  

distribution over the thin shell section of the model. 

A description of this investigation and of the results 

obtained from it is given in  Appendix E. It was found that the best  

testing conditions for the flutter experiments would be in the vicinity 

of M,, = 3.0. 



2.2 Flutter Tests 

2. 2.1 Model and instrumentation 

The cylindrical panel flutter model used in these 

experiments i s  the one described in Ref, 1 with some minor modifica- 

tions. Its essential features a r e  illustrated in F i g a l  to 6 .  

The thin shells were constructed by electroplating 

copper onto a wax form. After being cut to length and removed from 

the form by melting the wax, each shell was soldered to two copper 

end rings a s  shown in Fig. 5. The mounting of a shell on the model 

for  testing was accomplished by slipping the shell over the g s O "  ring 

seals from the upstream end of the model (left hand side of Fig. 4) 

after removing the thrust plate. 

The pressure  difference across  the shell pm (internal 

minus external pressure) was varied by varying the pressure  in  the 

sealed annular cavity under the shell, The shell was loaded axially 

in compression by  pressurizing the rubber tubes adjacent to each of 

the copper end rings, a s  shown in Fig, 4. 

Radial motion of the shell was measured by three 

inductance type pickups numbered 1 to 3 in Fig. 6. Pickups 1 and 2 

a r e  mounted on a drum which can be rotated 360 degrees, and pickup 

1 can be moved longitudinally about two thirds the length of the shell. 

Pickup number 3 i s fixed near the downstream end of the shell. A full 

360 degree circumferential t raverse  and a full longitudinal traverse 

in one direction each takes about fifteen seconds. A potentiometer 

connected by gears to each traversing meclhanfsm supplies D. @. 

voltage proportional to the distance o r  angle traversed. The signals 



from the pickups and potentiometers were recorded on magnetic 

tape for  l a te r  analysis. 

A more  complete description of the model and 

instrumentation i s  given in  Appendix A. 

2. 2.2 Experimental procedure 

The flow in the wind tunnel was started a t  a stagnation 

pressure  p of 2 psfa and a shell internal pressure  pm of 4 psig. The 
t, 

low value of pt was chosen to ensure that the manometer fluid did 
e m  

not blow over when the flow became supersonic, and the high value of 

Pm was chosen t~ ensure that the shell did not buckle, After super- 

sonic flow was established, pm was held constant while pt was 
uw 

brought up to the value required for  data. 

Shell No. P (Table I) was tested at M, = 3.381. The 

full range of available p was covered with various values of positive 
t , 

Pme 

ShePP No, 2 (Table II) was tested a t  M, = 2 .  993. At 

f i rs t ,  pm was held fixed while ptmwas varied over the available 

range. Then pm was se t  a t  3 . 9 3  psig, pt_ a t  3170 psf and the axial 

compressive load Px was increased until the shell buckled. The 

axial load was then removed and post-buckling flutter data was 

obtained for  various combinations of pto, and pm 



Shell No. 3 (Table U3) was also tested a t  M, = 2.993, 

A determined effort to systematically cover the near-buckling region 

was made with this shell. Fig. 10 shows the estimated buckling 

boundaries which were used a s  a guide for this test. In o rder  to 

avoid premature buckling of the shell, the tes t  conditions were kept 

below and to the right of the dashed curve. Each of the tes t  paths 

shown was followed for a particular setting of pt . As the l a s t  
0. 

part  of this test, the shell was buckled several  times a s  indicated 

in Table III. 

The actual recording of data on magnetic tape i s  

described in Appendix B. 



Results and Discussions 

All the flutter data a r e  tabulated in Tables I, I1 and III. 

Each table represents a different shell. The frequencies shown were 

obtained from power spectrum analyses of the shell motions and 

represent the predominant frequency present. The circumferential 

wave number n and the circumferential nodal line number j for  each 

flutter mode mere obtained from t raverse  plots like those of Figs. 20 

to 25. The Correlation and Run numbers were used to correlate the 

data recorded by different methods. 

2. 3.1'' Boundary layer 

The boundary layer profiles near  the downstream end 

of the shell a r e  shown in Fig. 11 for  M, = 2. 993. The data points 

near the shell surface ( z  = 0) should be viewed with some caution, 

s ince the finite size of the probes which has been ignored here would 

probably affect the profile shapes, However, the data does give an 

adequate indication of the overall boundary layer thickness. The figure 

indicates that the external flow was composed of a thin inner region 

(about 0.4 inches thick) which looks like a cPassicd turbulent boundary 

layer and a rather extensive outer region containing a small  Mach 

number gradient. This i s  typical of high Mach number flows over a 

test  model. The s'quasP-isentrspic" nature of the outer region i s  a 

result  of the so-called Beading edge interaction. 

No attempt was made to a l ter  the boundary layer flow 

during these experiments, and hence i t s  gross  effect cannot be 

estimated. On the other hand, since most  of the flutter data was 



obtained a t  a constant Mach number and over a very limited range 

of dynamic pressures,  the boundary layer  flow was essentially 

constant.  Hence,the effect of boundary layer changes during the 

experiments should be negligible. 

2. 3. 2 Shell motion 

Almost al l  the shell motion detected during the flutter 

test  can be classified into four distinct types. A sample time trace of 

each of these types i s  exhibited in Fig. 12 and the power spectral 

density associated with each sample i s  shown in Fig. 13. Type (a) i s  

random in frequency and of relatively Pow amplitude and represents 

the response of the shell to the turbulence in the a i rs t ream.  Type (b) 

i s  a relatively clean sinusoidal oscilPation with almost a11 of the 

shell motion condentrated a t  one frequency. This corresponds to the 

shell fluttering in one clean mode. Type (c) i s  a kind of beating 

between two o r  more  sinusoidd os cillations of slightly different 

frequencies and corresponds to the shell fluttering in a combination of 

two o r  more  distinct modes. Types (b) and (c) were obtained only 

when the shell internal pressure  was positive and relatively large. 

Type (d) i s  a highly distorted sinusoidd oscillation of large  amplitude 

with most of i t s  power concentrated at one low frequency and was 

obtained when the internal pressure  approached zero and went 

negative. Only the types (b) to (d) qualify for  the term flutter. 

The differences between the flutter phenomenon 

obtained in an experiment and the tlFmstabiPity's predicted by linear 

theory (that is,  a n  exponential increase sf amplitude with increasing 

time) a r e  quite striking, These differences for the case sf  cylindrical 



shell flutter a r e  clearly explained in Section 6(a) of Ref. 1 and need 

only be summarized here. The main difference i s  that only the 

nonlinear l imit  cycle oscillations a r e  seen in the experiment, and 

their association with the l inear "instability" of the theory i s  merely  

intuitive, 

2. 3 . 3  General effects of the tes t  parameters 

Fig. 14 shows the variation of flutter amplitude with 

stagnation pressure  pt_as the internal pressure  p was held fixed. m 
Although the flutter amplitude increases with stagnation pressure,  i t  

does not increase monotonically. 

According to Anderson and Fung (Ref. 4), small  

va lues  of internal pressure  a r e  very stabilizing, but l a rger  values 

tend to reduck stability to the mnpressurized level, The results  shown 

in Figs, 16 to I9 agree  qualitatively with this prediction. For  example, 

in Fig. 18, flutter was present when pm was near  qero but disappeared 

a s  pm increased, It  appeared again a s  pm reached about 0.50 psig. 

Contrary to the theory however, large  values of p completely m 
stabilized the shell. 

These figures also show that the axial load % was 

destabilizing when pm was positive, in that i t  increased the range of 

pm over which the shell fluttered. This agrees  qualitatively with 

Kobayashivs theoretical prediction (Ref. 9 )  . On the other hand, a s  

can be seen from Figs. 17, 18 and 19, i t  had a slightly stabilizing 

effect on the flutter when pm was near  zero  or  negative, 



The actual amplitude of flutter i s  a very complicated 

function of all the test parameters p t,' Pm and Px. The tabulated 

data indicates that the flutter mode (that is,  the numbers j and n )  i s  

also a very complicated function of the test  parameters.  The non- 

l inear character  of the cylindrical shell, which to a large extent 

determines the final amplitude of the l imit  cycle oscillations, i s  a 

function of the numbers j and n and hence indirectly a function of the 

tes t  parameters, Consequently, any attempt to explain the variations 

in flutter ampl$tude would have to include al l  these effects. 

When Shell No, 1 (0.0040 inch thick) was tested a t  a 

f ree  stream Mach number of 3.381 and maximum staqnation pressure  

of 31 78 psf, no flutter was detected, For  these conditions, the 

parameter  (q, /E(%' - ~ f ' ~ ) l ' ~  R/h was 8.4 and was well above 

the value of 7.0 for which flutter was obtained when M, was 2.993. 

The data from the pressure  tes t  (Appendix E) showed that the overall 
* * 

boundary layer was very  much thicker a t  the higber Mach number. 

This thicker boundary Payer seems to have stabilized the shell. 

2. 3.4 Flutter modes 

Typical examples of the measured mode shapes a r e  

shown in Figs. 20 to 25, and typical longitudinal distributions of the 

phase angle of the shell motions a r e  shown in Fig. 26. The variations 

of the mean square amplitude of flutter in the axial direction showed 

that the flutter modes had zero, one, o r  two circumferential nodal 

lines between the ends of the shell; that i s  j = 0, 1 o r  2 respectively. 

It i s  interesting to note that these nodd  Pines were not evenly spaced 

between the ends of the shell. 

* 
I. e., classical boundary Payer plus "quasi-isentropicst outer 

region. Cf, Section 2. 3. 1. 



The j = 0 case occurred when the shell internal 

pressure  p was near  zero o r  negative for  the unbuckled shell, but m 
i t  also occurred when pm was positive for  the buckled shell (bellows 

shaped buckle). Figs. 22, 23 and 25 a r e  typical examples. For  this 

case, the motion of the shell a t  X/L = 0.15 led that a t  X/L = 0.72 

by about 15 degrees, a s  shown in Fig. 26. 

The j = 1 and 2 cases occurred for positive p and 
m 

various axial loads Px. Figs 21 and 24 a r e  typical examples. For 

the j = 1 cases, the phase angle of the shell motion changed very 

little between the circumferential nodal line and the upstream end of 

the shell. The motion of the shell upstream of the nodal Pine led 

that of the downstream part  by about 160 to 178 degrees, a s  shown in 

Fig. 26. The j = 2 modes were not clean enough to give a good 

measurement sf the phase angle, and the example shown in Fig. 26 

(Corr. No, 126) is not very accurate. 

From these phase angle measurements and amplitude 

plots, i t  may be concluded that the flutter modes were approximately 

standing waves in the axial direction. 

The example depicted in Fig. 20 shows that the 

flutter mode was a standing wave made up of many waves around 

the circumference (n = 20). This example sf a standing wave around 

the circumference was the only one obtained, A11 the other t raverse  

plots were of the circumferentialPy travelling wave type, For example, 

Fig. 24 shows that the mean square amplitude of motion was almost 

constant around the circumference, but the mean square of the 

difference of the signals from a circumferentially traversing pickup 

and the fixed pickup varied between approximately zero and a 

maximum many times around the circumference. h Appendix C, it 

i s  shown that a shelf deflection of the form 



w(x,Q, t )  = f(x) A s i n n o  s i n w t  + B cos nQ c o s a t  

where A i s  approximately equal to B will fit this plot, but one of the 

standing wave form 

w(x, 8, t) = f(x) sin n0 s inwt  

will not. The former  deflection shape may be put in  the form 

(for A = B) 

w( x, 8, t )  = A f(x) cos (nQ - kr) t )  

which i s  a srpseudos' travelling wave moving around the shell a t  an 

angular rate of 180 /n.rr degrees per second, This deflection i s  

"pseudos' in the sense that there i s  nothing in the external flow to 

initiate such a circumferentially travelling wave. 

One might suggest that the origin of this "pseudo" 

travelling wave l ies in the nonlinear nature of the cylindrical shell. 

Evensen (Ref. 10) found this kind of phenomenon in his nonlinear 

forced vibrations of a thin ring and since the nonlinear character 

of cylindrical shell motions in mode shapes with large axial wave 

lengths (that i s, for j small) i s  very much Pike that s f  a thin ring, i t  

i s  not too surprising to find i t  here, See for example, Ref. 11. 



When the cos no mode of a thin ring is driven into resonance and 

i ts  amplitude of motion slowly increased by increasing the magnitude 

of the forcing function, a t  some critical arnplitude the sin nQ mode 

will suddenly appear combining with the cos nQ mode in such a way 

a s  to form a "pseudo" travelling wave. This critical amplitude 

decreases with increasing wave number n and with decreasing 

damping in the ring. Qualitatively similar results would be expected 

to appear in cylindrical shell motions with large n and small j. 

The physical explanation for the phenomenon i s  a s  

follows. When the shell oscillates with a frequency bP in a cos nQ 

standing wave mode a t  large amplitude (for the shell this means 

motions of a t  leas t  the order of the skin thickness), the mean position 

of the shell oscillates with a frequency 2 u.9 a t  small amplitude. This 

means that the ehellts mean position i s  oscillating a t  twice the natural 

frequency of the sin nQ mode (assuming the shell i s  perfect, the 

sin nQ and cos nQ modes have the same natural frequency since they 

represent the same deflection shape even though they a r e  independent 

orthogonal modes) and hence parametrically excites the sin nQ mode. 

As in most parametrically excited vibrations in r e d  systems, there 

i s  a minimum amplitude of the excitation required to produce the 

phenomenon. 

If imperfections exist in the ring o r  the shell, the 

natural frequencies of the sin nB and cos nQ modes will be separated. 

In this case, the second mode w i l l  only appear at small amplitude and 

consequently may not be observable, o r  if the separation i s large  

enough, i t  may not occur a t  all. This possibly is the explanation for 

why this phenomenon was not detected in the tests  of Ref. 1. 



Most of the data from those tes ts  were  obtained from an especially 

thin shell (0.0032 inches a s  compared to 0.0040 inches for  the 

t e s t s  described herein), and it i s  m o r e  difficult to minimize 

imperfections in the thinner shell. Many improvements in shell 

making were  developed in the time between the two tests  so that the 

shells tested most  recently were  undoubtedly of bet ter  quality. 

2. 3.5 Flutter  in the vicinity of buckling 

When Shell No. 2 (0.0039 inch thick) was taken towards 

axial buckling by increasing the axial compressive load Px while 

maintaining a high internal p ressure  p and a high stagnation p ressure  m 

P~ $ 

no flutter was detected. The shell  buckled in  a single bellows 

shaped mode a t  the downstream end a s  shown in Fig. 7. The buckle 

was about 1/16 inch high by l / 4  inch wide and was adjacent to the r e a r  

end ring, being almost  perfectly symmetric  about the shell. The r e s t  

of the shell remained unbuckled. After the axial load was removed, 

the buckle did not pop out indicating that the shell m a t e r i d  had 

yielded. With Px = 0 and pm = 3. 93 psig, the shell was stil l  stable, 

but when pm was lowered to around 1 psig, it fluttered with a much 

l a rge r  amplitude and in a different mode than i t  had before i t  was 

buckled. See for  example, Fig. 23, Fig. 15 shows the variation 

in flutter amplitude with pm and p for this shell in the vicinity of 
t00 

pm = 0, and Fig. 22 shows the flutter mode, The flutter amplitude 

was very much higher on one side of the shell than on the other, 

having a maximum r m s  amplitude of about four shell  thicknesses near  

x /L  = 0.5 and Q = -20'. Note that the data of Fig. 15 i s  only for  a 

particular point on the shell and does not show the maximum flutter 

amplitude. This same type of response was obtained for  the 



unbuckled shell and will be elaborated on i n  the next paragraphs. 

As the l a s t  step, this shell was buckled a t  a pm = -0. 017 psig and 

P = 0. At this p ressure  setting, the buckling mode was of the form 
X 

of four 5 inch waves around the top of the shell with no node between 

the  ends. The buckled region was very  stable, but the unbuckled 

region fluttered quite violently. 

When Shell No. 3 (0.0040 inch thick) was taken toward 

buckling by decreasing pm, different things happened for  different 

settings of p and Px. See Figs. 16 to 19. 
t- 

(i) At pt = 1768 psf, no flutter was detected. 
00 

(ii At pt_ = 2120 psf, l a rge  amplitude flutter was obtained 

a s  pm went to zero  and the amplitude increased to a maximum 

near  a p of one half the cr i t ical  value for  buckling under m 
radial  external p ressure  loading only. The flutter mode was 

of the localized type a s  shown in Fig. 25, with a maximum 

r m s  amplitude of about three shell thicknesses nea r  the 

middle of one side of the shell, A smal l  amount of axial load 

decreased the amplitude but did not change the trend. 

(iii) At ptP = 2475 psf, localized flutter was again detected near  

Pm = 0 f o r  Px = 0, but disappeared as pm went negative. 

When a small  amount of axial load was applied, the flutter 

near  p = 8 did not occur. m 

(iv) At pt, = 2827 psf, localized flutter was again detected near  

pm = 0. As pm went negative, the flutter amplitude f i r s t  

increased and then decreased as p went past half the cr i t ical  m 
value. A small  amount of axial load effectively removed this 

flutter. 



When p was returned to 2475 psf, Px set  a t  
tar 

90 pounds and pm decreased in steps until the shell buckled a t  

pm = -0. 037 psig, no flutter was detected. Only very shallow long- 

itudinal buckles occurred around the top of the shell and were quickly 

removed by im+mediately raising p When the above process was m *  
repeated with Px = 200 pounds, the shell buckled a t  R~ = 0. 010 psig, 

but again no flutter was detected, Again only shallov buckles of the 

diamond patters  type occurred near  the downstream end of the shell 

and did not pop put a s  pm was increased to 0.015 psig. At this 

setting, violent Butter was observed on the forward portion of the 

shell which had not buckled, but the buckled region of the shell was 

very quiet. When pm was then increased to 0.49 psig, the buckles 
b 

popped out and the shell was quiet again. Px was then se t  a t  240 

pounds and p lowered until severe buckling occurred a t  0.098 psig. m 
Figs. 8 and 9 show this buckled state. The buckled region was very 

stable, but the unbuckled forward portion of the shell fluttered 

violently and was clearly observable on the side shown in Fig. 9. 

Although the foregoing results  form a rather obscure 

picture, there a r e  a few pertinent results  of a general nature. For  

the unbuckled shell, the larges t  amplitude of flutter occurred for  pm 

near  zero and slightly negative and was always much la rger  on one 

side of the shell than on the other, The example of flutter-buckling 

interaction obtained in the tests  of Ref, P was also of localized 

nature. In fact, i t  was also Pocalized in the axial direction in that 

the maximum amplitude occurred near  the downstream end on one 

side of the shell. 

The data from the pressure  tes t  (Appendix E) showed 

that the maxlmurn change in static pressure  around the circumference 

of the shell was about 0.3 per cent sf the f r ee  stream dynamic pressure 



when M, was 3. (It i s  perhaps significant to note here  that this 

change in static pressure  could be accounted for by a change in f ree  

stream Mach number of only 0.4 per cent, which i s  of the order of the 

variations to be expected in a wind tunnel). The increase in static 

pressure along the length of the shell was about the same. At the 

highest dynamic pressure used in these flutter tests, this corresponds 

to 0. 010 psi and a t  the lowest, to 0,006 psi. On the other hand, a t  

M, = 2.5 and Q =  274 psf (the f r ee  stream Mach nymber and dynamic 

pressure  of the flutter -buckling example of Ref. 1), the static pressure 

on the shell increased from the upstream to the downstream end by 

about I per cent pf q o r  0.020 psi. These pressure variations, al- 
Qg 

though seemingly very small, can become important when the shell 

internal pressMre i s  near zero. The localized nature of the flutter in 

this near-buckling region probably results  from these non-uniformities 

in the static prgssure distribution over the shell. 

2 .  3 . 6  Experimental limitations 

As mentioned above, the cylindrical shell flutter seems 

to be extremely sensitive to small non-uniformities in pressure dis- 

tribution over the shell when the pressure differential p i s  near zero. m 
These small non-uniformities in pressure  distribution a r e  caused by 

small deviations in model shape and non-uniformities in wind tunnel 

flow. Consequently,it must be realized that the flutter obtained near 

zero pressure differential may not represent the flutter of a shell in 

a uniform s t r e s s  state. 

These considerations also imply a limitation on the 

accuracy of measuring the pressure  differential pm in this region. 

The numbers quoted are the measured differences between the shell 



internal pressure  and the static pressure a s  obtained from a static 

pressure  orifice just upstream of the shell, and this static pressure  

represents only some so r t  of average of the pressure  distribution 

over the shell. 



2.4 Conclusions 

Again a s  in most panel flutter experiments, it was 

found that the instability predicted by l inear theory (an exponential 

increase of amplitude with increasing time) was unobservable. Only 

the limit cycle oscillations were observed and were defined as flutter 

when the power spectral density of the shell motion became sharp a t  

only a few frequencies and the amplitude of motion became large. 

This flutter was a relatively mild oscillation except in the vicinity 

of buckling where i t  was quite violent in some cases,  However, even 

for  the worst of these cases, the wind tunnel experiences showed no 

great  danger of destruction of models. 

Almost al l  the flutter modes observed in these 

experiments were of the circumferentially travelling wave type. That 

is,  the modes contained many waves around the circumference (of the 

order  of 20), but they were not fixed in space. It was found that these 

flutter modes could be described b y  approxdmately equal amounts of 

sin nQ and cos nQ modes oscillating 90 degrees out of phase in time. 

This phenomenon appears to be a result of the nonlinear character of 

cylindrical shells. These flutter modes were standing waves in the 

longitudinal direction with zero, one, o r  two circumferential nodal 

lines between the ends of the shell depending on the testing conditions. 

It was found in qualitative agreement with available 

theory that small amounts of internal pressurization were very 

stabilizing, but moderate amounts reduced stability to the unpressur- 

ized level. On the other hand, contrary to the theory, large  amounts 

of internal pressurization completely stabilized the shells independent 

of axid load o r  previous permanent buckling deformations. 



It was also found in qualitative agreement with the 

theory that axial compressive loading was slightly destabilizing 

for moderate amounts of internal pressurization. On the other hand, 

this loading was slightly stabilizing when the internal pressure was 

near zero o r  negative. 

The unbuckled shell exhibited large amplitude flutter 

when the internal pressure  was near zero o r  slightly negative. The 

largest  a m p l i t ~ d e  occurred for internal pressures  from 1/3  to 1/2 of 

the critical value required for buckling under radial external pressure 

loading. This large amplitude flutter was of a localized nature in that 

the amplitude of shell motion was much la rger  on one side of the shell 

than on the other. The fact that this large  amplitude, localized flutter 

occurred near zero internal pressure  leads one to suspect that i ts  

localized nature was mainly a consequence of the small non-uniformity 

in static pressure distribution over the shell. The shell completely 

buckled under radial external pressure  loading was essentially stable. 

Loading conditions that led to the diamond pattern 

buckling (moderate axial loading and low internal pressure') had a 

completely different effect on the flutter. The shell did not flutter 

a s  buckling was approached. Only after the diamond pattern buckles 

appeared did the shell flutter and then only on the unbuckled portions 

of the shell. This flutter was very violent. 

The shell did not flutter a t  all  either during o r  after 

the buckling process that resulted in the bellows shaped buckle (high 

internal pressure and large axial loading). However,when the internal 

pressure was returned to a low level, this buckled shell then fluttered 

with a l a rger  amplitude than i t  had before i t  was buckled, 



Hence,it appears that the large local curvatures 

encountered in the buckling of a cylindrical shell have a marked 

stabilizing effect on the shell locally. However, i t  must be empha- 

sized that i t  also appears that the localized buckling usually encount- 

ered in practice significantly reduces the stability of any unbuckled 

regions of the shell. 



III. COMPARISON WITH THEORY 

3.1 Cylindrical Shell Vibration Frequencies 

The cylindrical shell vibration data obtained by the 

methods described in Appendix D a r e  compared with theoretical 

predictions satisfying various boundary conditions, This provides 

some insight into the quality of the experimental models, and in 

particular indicates what effective boundary conditions the shells 

really have for different kinds of vibrations. Some of the theory i s  

briefly developed in the following. 

3.1.1 "Freely supportedw ends 

Following Arnold and Warburton (Ref. 121, the boundary 

conditions 

a r e  called "freely supported" ends, The vibration modes 

Pn TX u(x, 8, t )  = cos -- cos nB cos w t 

m m  w(x, 8, t) = sin - cos nQ cos tot E 



satisfy the boundary conditions (3.1) and provide an exact solution 

to the complete linearized partial differential equations governing 

deflections of a cylindrical shell. See for example, Ref. 13. How- 

ever, for present purposes, the simplified Donnell's equations seem 

to be sufficiently accurate. These equations a r e  given in Section 3. 3. 

The frequency equation that results  from substituting 

the modal solutions (3. 2) into Eqs, (3.10) with p = 0 i s  Eq. (3.16) and 

i s  repeated below for convenience. 

where m is the number of a x i d  half waves and n is the number of 

circumferential waves in the vibration mode . 

3.1.2 "Fixed" ends 

FsPPowPng Arnold and Warburton (Ref. l4), the 

boundary conditions 

U = V = W =  Rw = 0 at x = 0 and % E 



a r e  called "fixed" ends. Arnold and Warburton have developed 

approximate expressions for the natural frequencies of a cylindrical 

shell having these end conditions based on an energy approach. 

Forsberg (Ref. 15) has shown that these approximations a r e  within 

a few percent of his "exact" calculations. Consequently, the Arnold 

Warburton expressions should be quite adequate for the comparison 

needed herein. 

3.1. 3 Approximate siFixed" ends 

Even though the Arnold and Warburton expressions 

mentioned above a r e  only approximate, they a r e  still rather eumber- 

some. Hence, it would seem advantageous to have a simpler theory 

for the sffixed" ends case, especially for large  n, since this i s  the 

important region for shell flutter. To achieve this purpose, the 

problem i s  approached in the fol1owhg manner. The eighth order  

Donnel18s Eq. (3.11) with p = 0 i s  used to represent the shell, and the 

axial dependence of the radial displacement i s  approxlmated by the 

expression for the vibration of a clamped-clamped beam, That is, 

w(x, Q, t )  = sin nQ ym(x)  sin O t 

where from Ref. 16, 

Ym(x)  = cosh/r,x - 'OS /m x - k (sinh/umx - sin,umx) (3.5) 
m 



where/ m satisfies the transcendental equation 

c o s h p m  L cos pm L = l  

and 

si"& L + slnh/um L 
k = 

m D 

c o s h p m  L - cos $" 
L 

This approximation for w (x, 43, t )  satisfies the zero deflection and 

slope boundary conditions 

a t  x = O  and L 

but does not seem to satisfy any other special end conditions. Hence 

i t  can be expected that the approximation will be very poor for low 

values of the wave numbers rn and n. However, the approximation 

may be quite reasonable for high values of rn and n for which boundary 

conditions on u and v become relatively unimportant compared to 

those on w. 

The assumed solution (3 .4 )  does not satisfy Donnell's 

equation identically, but may be forced to satisfy it approximately in 

the Galerkin sense. That i s, the solution ( 3 . 4 )  i s  substituted into 

Eq. (3.111, and the result i s  multiplied by % (x), integrated from 



x = 0 to L and the integrated result  se t  equal to zero. (The various 

integrals involved a r e  given in Ref. 17). This procedure yields the 

following frequency equation. 

The theoretical predictions for the three foregoing 

cases  a r e  shown in Fig. 27 along with the experimentdl data for a 

0.0040 inch thick shell. The constants used In the calculations were 

= 0.35 

f's 
= 0.000833 lb secZ/in4 

]E = 16mi l l ionps i  

R = 8.0 inches 

E = 15.4inches 



For  low values of the circumferential wave number 

n, the experimental data l ies  between the predictions for "freely 

supported" and "fixed" ends. This indicates that in this region the 

effective end conditions l ie  somewhere between the two idealized ones 

a s  might well be expected, For  high values of n, these two theories 

approach each other and the experimental points seem to l ie  above 

both predictions. Some of this descrepancy between theory and 

experiment may be due to e r r o r  in measuring the shell thickness h. 

As explained in Appendix A, this thickness measurement was an 

average value based on independent measurements of total shell 

weight, size and density of the electroplated copper and could con- 

ceivably be in e r r o r  by a s  much a s  ten per cent. En the region of 

positive slope on the frequency versus n plots, the frequency i s  

essentially linear with thickness, so that any e r r o r  in thickness i s  

reflected directly into e r r o r  in frequency. The experimental points 

for m = 3 and 4 and large  n were very difficult to obtain and could 
fi 

easily be in e r r o r  both in frequency and value of n. , 

The prediction given by the expression for approximate 

"fixed" ends seems to be remarkably close to the Arnold and W a r -  

burton result. In particular, the two results merge together for high 

values of n. This indicates that use of the clamped-clamped beam 

functions for a flutter calculation should lead to a good approximation 

to the "fixed" ends type of boundary condition especially for  large  n. 

This is further verified by considerations of the two- 

mode flutter solution discussed in Section 3. 3 . h .  There i t  i s  shown 

that when aerodymamic damping is neglected, the level of static 
2 pressure  required for  flutter i s  proportional to ( W  - 2 

23.1 1 



This parameter i s  plotted versus n in Fig. 28 for the three cases  

discussed above. The approximate "fixed1' ends result  i s  seen to be 

remarkably close to the Arnold and Warburton one. The figure also 

indicates how the two different types of boundary conditions would 
2 2 affect the fluttgr condition. The minimum (UZn  - Oln ) occurs a t  

n = 29 for "freely supported" ends and at n = 32 for "fixed" ends. The 

actual level of this minimum i s  higher for the I1fixedl1 ends case by 

about 40 per ceM. 



3.2  Aerodynamic Theory 

One of the most serious limitations in the theoretical 

foundation for the flutter of a cylindrical shell i s  still the aerodynamic 

theory. Almo st all  available theoretical predictions of cylindrical 

shell flutter involve some highly questionable assumptions about the 

nature of the a&rodynamic forces involved. In some cases, this has 

led to rather cgntradictory results.  For  the case  of supersonic flow, 

most of the controversial approximations involved in current  work 

a r e  associated either directly o r  indirectly with three dimensional 

effects. These effects will be explained in some detail in  the following. 

3,2.1 Three dimensional effects in inviscid flow 

The simplest and easiest  aerodynamic theory to 

employ in supersonic flutter calculations i s  of course the l inear piston 

theory (neglecting the aerodynamic damping leads to one form of the 

even simpler SQ-called Ackentet theory, but for the purposes of this 

discussion, no distinction need be made between the two). Even if  the 

shell curvature i s  negligible, the use of piston theory i s  questionable, 

since i t  i s  only rigorously valid for  two dimensional deflections. Hence, 

the question of how good the piston theory approximation i s  may be 

interpreted a s  a question of how important the three dimensional effects 

are .  

One of the easiest  ways to obtain a quantitative answer 

to this question is  to consider axially-directed supersonic flow over an 

infinitely long cylinder whose surface is deformed sPnusoidalPy in 

space and i s  oscillating normal to itself. The l inear potential solution 



for  this problem may be easily obtained (see for example, Ref. 7) 

and the predicted surface pressure  may be compared to that from 

piston theory. The resulting expressions from the potential solution 

a r e  summarized in Appendix F for convenience. Some aspects  of 

this comparison have already been given by Krumhaar (Ref. 18) and 

Anderson (Ref. 19). Both show rather vividly that the surface 

pressures  predicted by the two theories a r e  no longer even approxi- 

mately the same when the ratio between the axial and circumferential 

wave lengths of the surface deflection becomes large. Anderson shows 

results for an example in which the wall is stationary that a r e  typical 

even when the wall i s  moving. When the aforementioned wave length 

ratio i s  large, the potential theory pressure  t e rms  a r e  strongly 

attenuated and have a large  phase shift away from the corresponding 

piston theory terms. 

However, even though the two theories a r e  radically 

different in this case, it i s  unwise to immediately conclude that piston 

theory is of no use. Some physical interpretation of the theoretical 

predictions will serve  to illustrate why. Consider the following 

sketch of a portion of the c ross  section of the cylinder where the air 

flow i s  normal to the paper. 

c ross  flow perturbation 

undeform ed 

f- deflected surface at one instant of time 

Sketch 1: Deflected surface of oscillating cylinder 



According to the piston theory prediction, the wall 

p ressure  a t  point A will be l a rge r  than pa, the static p ressure  

f a r  f rom the cylinder, while a t  points B, i t  will be smal ler  than p, . 
Furthermore,  since the theory i s  s tr ict ly two dimensional, i t  pre  - 
dicts no cross-flow between points A and B. On the other  hand, i t  i s  

apparent that the p ressure  difference between points A and B will 

produce some kross-flow and indeed the potential sojution does yield 

this cross-flow. In effect, i t  i s  this cross-flow which relaxes the 
E 

pressure  differgnce between points A and B and hence resul ts  in a 

wall p ressure  f a r  different f rom that given by piston theory. However, 

the potential theory probably predicts a l a rge r  cross-flow than that 

occurring in a r e d  fluid because of viscous effects. This i s  a resul t  

of the fact that this cross-flow component must  vanish on the surface 

of the cylinder. Furthermore,  the relevant Reynolds number for  

these considerafions may be proportional to the cross-flow component 

of velocity and to the circumferential wave length sf the surface 

deflection. This type of Reynolds number i s  probably ve ry  smal l  and 

hence the forgoing considerations may be very  significant. Fur ther  

verification of this effect would be desirable and could conceivably be 

obtained theoretically o r  experimentally. 

3. 2. 2 Three dimensional effects in viscous flow 

The forgoing discussion leads  conveniently to consider- 

ation of another somewhat different three dimensional effect that i s  

directly associated with the influence of viscosity. This one i s  most  

easi ly developed along the l ines sf boundary layer  theory. The f i r s t  

work on this problem was ca r r i ed  out by Anderson and reported in  

Refs. 4 and 19. 



His boundary layer was idealized a s  an annular region 

of uniform parallel subsonic flow between the cylindrical shell and the 

outer uniform supersonic flow. On the basis of this model, he was 

able to predict an attenuation in amplitude and a shift in phase of the 

pressure perturbations on either a stationary o r  oscillating wall with 

sinusoidal spatial dependence. The amount of attenuation and phase 

shift turned out to be strongly dependent on how three dimensional the 

shape of the surface d d e c t i o n  was and increased rapidly with this 

three dimensionality. However, inherent in this working model for the 

boundary layer was an ambiguity in choice of the thickness of and the 

Mach number in the subsonic layer. Subsequent work by Anderson 

(Ref. 5) indicates that his choice for this thickness in'the ear l ier  work 

was probably too large and consequently led to an over prediction of 

the boundary layer influence by an order of magnituqe. 

As mentioned in the introduction, the author's calcul- 

ations seem to substantiate this l as t  result. These calculations were 

based on a somewhat different boundary layer model - that of a parallel 

shear flow with a velocity distribution given by the mean velocity profile 

in a turbulent boundary layer - from that of AndersonPs. Complete 

details of these calculations and discussions of the results a r e  given in 

Appendix G. The main parameter which governs the influence of the 

boundary layer in the linearized problem i s  the ratio of boundary layer 

thickness to streamwise (axial) wave length of the wall deflection. The 

boundary layer influence decreases a s  this parameter decreases. Fo r  

cylindrical shell flutter with a large number of circumferential waves, 

the pertinent streamwise wave lengths of interest a r e  very large with 

respect to the boundary layer thickness (at leas t  for  the experimental 

configurations reported herein), so that the influence sf the boundary 

layer i s  probably negligible. It must be emphasized however that for 

the case sf axisyrnmetric flutter for  which the pertinent axial wave 

lengths may be quite small, the influence s f  the boundary layer could 

still be important. 



3. 3 Flutter Boundaries 

As mentioned in  the introduction, no detailed 

comparison between experiment and theory for the supersonic flutter 

of a cylindrical shell has been available. Only a few qualitative 

remarks on this subject have appeared in the literature and a s  a 

result, some serious misconceptions have been perpetuated. In the 

following two sections, an attempt will be made to correct  this 

situation in so fa r  a s  available data and current  theoretical techniques 

make i t  possible. 

An extensive review s f  the panel flutter problem and 

analyses dealing with the flutter of cylindrical shells i s  given by Fung 

in Ref. 20. The subject i s  brought up to date again by Fung in Ref. 2, 

and an even more  current  review i s  that of Johns in Ref. 21, 

In the following discussions, only flutter analyses 

pertaining to a finite cylindrical shell will be considered. Infinite 

length shell analyses a r e  excluded on the grounds that their applicability 

to finite shells has not been proven. Furthermore, in the light of the 

experimental experiences, the exceedingly large critical shell thick- 

nesses  that result from such analyses make them rather suspect. 

Of the available analyses pertaining to a finite shell, 

Voss's (Ref, 4 )  i s  probably the most extensive and will be used a s  a 

guide for the following studies. Following Voss, the problem i s  

conveniently separated into two main categories. These a r e  the low n 

case o r  membrane-type flutter and the high n case o r  plate-type flutter. 



Early work indicated that the low n case would be the most critical 

for  design purposes (see for example, Ref. 20). However, Voss 

gave an example in which just the opposite could be true and concluded 

that both cases  should always be considered. In the following, the 

high n case i s  treated in greater  detail than the low n one, since i t  was 

the only type of flutter observed in the experiments, 

3. 3 . 1  Flutter with many circumferential waves 

A s  pointed out by Voss, the shallow shell type theory 

i s  sufficiently accurate fo r  analyzing shell flutter with many circum- 

ferential waves. Hence,DonnellPs cylinder equations a r e  used in the 

form 

where F i s  the usual s t ress  function, o r  in the form 



See Fig. 29 for shell geometry and coordinate system. The aero-  

dynamic pressure  which comes in through the p term in  these equations 

is assumed ta depend linearly on w. Structural damping i s  neglected, 

since it i s  not expected to be important for  this type of flutter. 

form 

A modal solution to Eqs. (3.10) i s  assumed in the 

w(x, 8, t )  = sin n8 e x c m s i n  e x 
m 

where dm = m a  IL. In general, r3 will be complexin such a 

solution indicating that the amplitude i s  either growing o r  decaying 

exponentially $with time. The condition for which the imaginary part  

of vanishes corresponds to a sustained oscillation in time and i s  

defined a s  the flutter boundary. 

The form of the solution (3.12) implies the satisfaction 

of the "freely supportedIs boundary conditions 

2 
V = W =  =,  = 0 a t  x = O  and L . (3.13) 

;;;Z X 

* 
The common complex notation i s  used, so that the physicd 

deflection i s  the real  part  of this expression, 



The aerodynamic pressure term i s  conveniently put in the form 

p(x, 0, t )  = sin nQ e sin oe x + pcmcos m 
m = l  

where psm and p a r e  complex constants determined from the cm 
aerodynamic theory to be used in the analysis. 

The solution (3.12) i s  substituted into the compatibility 

equation (3.10b) and the particular solution for F i s  obtained. Finally, 

w, F and p a r e  substituted into the equilibrium equation 1(3.10a), which 

i s  then satisfied in the Gderkin  sense by multiplying by sin x, 

integrating over x from 0 to % and setting the result equal to zero. This 

procedure yields N homogeneous algebraic equations for the N modal 

amplitudes c in the form m 

where 

2 - 2 - n 2 -  
e 3 m ~  - Q +% Nx+ Ne + 

Ell - B f o r m  = Q  
0 form PB (3.16) 

R~ 



and 

41 for  m + 1 odd 
*(12 - m2) 

otherwise 

For  the particular shell configuration used in the experiments, the 

membrane s t r e s s  resultants R and R, a r e  
X 

where P i s  the total axial compressive load applied to the shell and 
X 

Pm 
i s  the pressure  differential across  the shell skin. 

The necessary and sufficient condition for the 

existence sf a nontrivial solution to Eqs. (3.15) is that the determinant 

of the coefficients of the cmgs  must vanish. This determinant i s  

complex in general, and hence both the r e d  and imaginary parts must 

vanish simultaneously. This yields two conditions for the determin- 

ation of two eigenvalues. The constants obtained from the experiment- 

al conditions and used in the calculations to follow a r e  



16 million psi 

0.004 inches 

15.4 inches 

3 

8 inches 

120° F 

0.35 

2 4 0.000833 Pb sec / in  

The remaining unspecified variables in the determinant a r e  p 
m' 

%>x' 
n, ~;s and pclo (p, will be seen to come in through p 

sm and pcm)* 
Hence p and I? may be specified and ilr3 and poo determined such m X 

that p _  i s  a minimum with respect to n. These calculations a r e  

carried out for two forms of aerodynamic theory -" piston theory and 

the potential theory of Leonard and Hedgepeth (Ref. 7). 

3.3. l a  Piston theorv 

Using the piston theory apprsxlnnation 

with the form of the solution (3.12) yields 



As shown by Voss and others, Eqs. (3.15) can be solved in closed 

form when only two modes a r e  considered (N = 2), and the results a r e  

especially revealing. Proceeding thusly yields the following con- 

ditions for flutter 

In this case, the flutter frequency i s  the root mean square of the two 

modal frequencies Wh and WZn. and the static pressure  a t  flutter 

i s  proportional to the difference between the squares of these two 

frequencies. The second term in the square root in Eq. (3,2 Ob) i s  

due solely to aerodynamic damping, F o r  low enough flutter frequencies, 

this term may be neglected, and the minimum in p then corresponds 
do 

to the minimum in ( aZn2 - W . Vosa and others have shown that 
In 

when n / ~  >> n j ~ ,  this minimum occurs a t  

Using the constants shownon page 41 yields nmin = 28 and p_ min - - 
0. 30 psia. This value sf p is very close to the range of pcs Is over - 
which flutter was actually observed in the experiments. 



The two mode solution also affords an especially 

interesting interpretation of the effect of the internal pressure  

differential pm. It may be seen from the modal frequency expression 
2 2 (3.16) that the difference of squares ( w~~ - 9, ) i s  independent of 

pmo 
Hence,yithin the framework of the two mode solution with aero- 

dynamic damping neglected, the pressure  differential pm has no 

effect on the flutter boundary. On the other hand, the modal frequen- 

c ies  increase rapidly with pm when n i s  large  and consequently so 

does the flutter frequency w . As a result the neglecting of aero- 

dynamic damping will no longer be a good approximation when p i s  
m 

large. The importance of these considerations i s  revealed clearly 

in the sketch below where the minimum pa from Eq. (3.2 @b) is 

plotted versus pm along with the result obtained by-neglecting aero- 

dynamic damping. 

Dam ping 

Sketch 2: Two Mode-Piston Theory Flutter Boundaries 



Hence,within the approximation of the two mode 

solution, internal pres surization of the shell provides no direct 

stabilizing influence on flutter. This i s  due solely to the fact that 

for the particular shell configuration considered in this work, the 

internal pressurization produces no axial s t r e s s  in the shell. Clearly 

i f  a hydrostatic type of internal pressure  were considered, it would 
2 

be directly stabilizing through the wm RX t e rms  in the modal f re -  

quency expressions. 

It i s  seen then that the stabilizing influence of internal 

p ressure  shown in Sketch Z; i s  directly attributable to the aerodynamic 

damping. Consequently, the flutter boundary predicted by this theory 

for  high values of p i s  strongly influenced by the estimation of rn 
aerodynamic dqnping. This fact has already been pointed out by 

Kobayashi (Ref. 9), and will  be discussed again in connection with 

possible explanations for discrepancy between theory and experiment. , 

The results from a four mode calculation using piston 

theory a r e  shown in Fig. 30 along with the experimental flutter 

boundary. The values of n shown corresponded to a minimum in p*. 

These values of n correspond very closely to those actually observed 

in the experiments, and the trend of n decreasing with increasing p 
m 

was also verified. However,this apparent agreement may be some- 

what fortuitous and requires further interpretation. This will be 

given in Section 3.4. 

Six mode calculations were carr ied out to verify the 

convergence and resulted in changes of s d y  a few per cent in 

either p- o r  a . Some of these results  a r e  tabulated in Tables V 

and VI for  pm = 0. The results  for  non-zero p were very similar.  m 



Fig. 31 shows an example of the flutter mode 

amplitude and phase angle variations in the axial direction, This 

example i s  typicdl of a l l  the piston theory results  even for non-zero 

Pm* 

3 ,3 .  lb Potential theory 

The potential theory solution due to, Leonard and 

Hedgepeth was also used to predict flutter. This solution i s  for  

supersonic axial flow over an infinitely long cylindrical shell whose 

surface i s  oscillating in a standing wave pattern. The results a r e  

summarized in  Appendix F. The pressure coefficients p and p sm cm 
a r e  extremely complicated, and a s  a result, the flutter calculations 

become much more  difficult than for piston theory. 

The following method of calculation was used with 

the most success. The frequency term w in Eqs, (3.15) was re-  

placed by R = ed - i,& and the complex roots fi of the complex 

determinant were followed as p, was increased by small increments, 

The procedure was begun a t  p, = 8 for which the roots were known to 

be - m - %n The condition for flutter i s  that the damping factor 

p in one of the roots vanish (as f changes sign), 

The results of such a calculation using six modes for 

Pm = 0 and n = 20 a r e  exhibited in Figs. 32 and 33. The real  part  um 
of each root i s  seen to decrease a s  p- increases, and the imaginary 

part  -Fm is seen to f i r s t  go positive and then come back and pass 

through zero, Fo r  this example, the f i r s t  crossing occurs for the 

root which corresponds to the m = 3 mode at pdlp = 1.61. 



Although not shown, the m = 1 and 4 roots crossed a t  much higher 

values of p- . The f i r s t  crossings for n = 21 and 22 also occurred 

for the m = 3 mode, whereas for n = 17, 18 and 19, i t  was the m = 2 

mode. 

The approximate values of (A, and p- for  f i r s t  

flutter obtained by the forgoing method for each value of n were used 

a s  the f i r s t  guesses in a final iteration procedure to evaluate them 

accurately. The more accurate values were then uged for  the 

determination pf the modal amplitudes cm. Another iteration pro- 

cedure was used to follow these eigenvalues a s  pm was increased 

in small steps. Finally, eight mode calcdations were carr ied out 

to check the convergence for a few examples. The resulting changes 

in a and pa were l e s s  than one per cent. Some sf the results from 

the s ix  mode calculations a t  pm = 0 a r e  tabulated in ' l ab le  VII, and 

the lowest values of p- for non-zero p a r e  plotted in Fig. 30. m 

Fig. 34 shows a typical example of the flutter mode 

amplitude and phase angle variations in the a d d  direction, A small 

amount of internal pressurization pm seems to smoothen out the 

flutter mode and reduce the amount s f  phase shift along the shell. 

Further increases in pm seem to have little effect. The peculiar 

waviness exhibited by the flutter mode for p = 0 was verified by 
m 

a a  eight mode calculation. 

The potential solution flutter boundaries a r e  seen 

to be quite a bit higher than the piston theory ones. This i s  probably 

due to the fact mentioned in Section 3.2. l that the potential solution 

pressure  te rms  for the lowest modes a r e  appreciably smaller  than 



the corresponding piston theory terms. On the other hand, both 

theories seem to predict the same stabilizing influence of the 

internal pressure  p . This stabilizing influence must be due mainly m 
to the increasing effect of aerodynamic damping associated with the 

increase in flutter frequency. See, for example, the discussion in 

Section 3 . 3 .  la. 

The values of n predicted by the potential theory a r e  

somewhat smaller  than those for piston theory, As noted in Section 

3. 2.1, t he  potential theory pressure terms become strongly 

attenuated a s  n increases, whereas the piston theory is independent 

of n. Hence,lower values of n result from the potential theory. 

It must  be concluded from Fig. 30 that cylindrical 

shell flutter with many circumferential waves was actually observed 

in the experiment a t  a somewhat lower level of p- than predicted 

by either of the theories considered here, In that narrow sense, 

the theory appears to be slightly unconservative. However, , i t  i s  

worth noting that the discrepancy betweentheory and experiment i s  

not one of o rders  of magnitude a s  indicated by some of the literature. 

Furthermore, the point of view for comparing the two assumed in 

this work - that of comparing p, levels for a particular shell 

geometry - i s  by fa r  the most discriminating one. 

A number of possible explanations for some of the 

apparent discrepancy between theory and experiment may be 

suggested. As mentioned in Section 3 . 2 ,  1, the potential theory 

solution may actually overpredict the effect of three dimensionality 

of the flutter motions, so that piston theory may be the better 

approximation. On the other hand, both theories may overpredict 



the influence of aerodynamic damping, and in turn, the stabilizing 

influence of the internal pressure p Fig. 30 shows that pm m *  
actually was stabilizing in the experiment but only above P,S 1 psig. 

The fact that the flutter phenomenon observed in 

the experiment was strongly influenced by nonlineaq effects has 

already been emphasized in Section 2. Hence,it seems natural to 

ask whether o r  not the phenomenon may exist below the boundary 

predicted by l inear theory because of nonlinear effects. An attempt 

will be made to answer this question in  Section 3.4. 

3. 3. 2 Axisymmetric flutter 

For  the low n o r  membrane type flantter of a finite 

shell, Voss (Ref, 6 )  has shown that n = O i s  most  critical. Con- 

sequently,only this case  need be considered here. 

Krumhaar (Ref. 22) gives an exact solution for this 

case for a "freely supportedss shell using piston theory, Flutter 

boundaries for  ~ t r u c t u r a l  damping ratios yl of 0 and 0,0005 were 

calculated from these exact results and a r e  shown in  Fig. 30. 

Unfortunately, Krumhaar9s results do not go high enough in his 

generalized eigenvalue A to provide results for higher values of 

structural damping. However, i t  i s  clear  from Fig. 30 that the 

structural damping i s  extremely stabilizing to this kind of flutter. 

The amount sf damping present in the experimental models for 

axisymmetric shell motions was probably a t  leas t  0.005. Voss has 

shovvln further that inclusion of the mid-plane inertia, which is 

neglected in Krumhaarf s work, is also strongly stabilizing. 



Hence,the combined effects of realistic amounts of structural 

damping and mid-plane inert ia would push the axisyrnmetric flutter 

boundary in Fig. 30 far  above the experiment. This would then 

explain why this kind of flutter was not observed in the experiments. 

It i s  perhaps worth mentioning here  that there seems 

to be an e r r o r  in Krumhaarts  application of his  results to the initial 

GALCIT experiment. In Section 4.1 of Ref. 22, he calculates 

stability boundaries (thickness ratios required to prevent flutter versus 

Mach number) for an unpressurized copper cylinder with L$R = 2 

a t  50, 000 feet altitude using shell properties from the experiment. 

These results a r e  perfectly all right, of course. However, in 

Section 4.5, he states that the "tunnel was adjusted to the 50, 000 

feet altitude atmospheric conditionss' . This i s  complete1 y misleading 

because i t  was impossible to make such an  adjustmqnt in the wind 

tunnel referred to there. That is,  the 50, 000 feet altitude values of 

a, , p_ , and p r  could not be achieved simultaneously in the tunnel. 
'P 

Therefore,Krumhaarts concfusion that his results 

a r e  in conflict with the experiment seems to be incorrect. In fact, 

just the opposite is true. That i s ,  if KrumhaarPs results  a r e  applied 

to a 0.0060 inch thick shell (the shell used in the f i r s t  GALCIT 

experiment, see  Ref. 1) in the way outlined herein, the critical 

value of p- that results i s  fa r  beyond the capability s f  the wind tunnel. 

In that sense, his theory actually agrees with the experiment, since 

no adsymmetr ic  flutter was observed in  the test. 



3.4 Limiting Amplitudes of Flutter 

In order  to answer the question posed in Section 

3.3.1 b a s  to whether o r  not finite amplitude flutter may exist below 

the critical boundary for infinitesimal disturbances, a nonlinear 

analysis had to be developed. The equations that result  from the 

well-known approximations of Donneltt s shallow-shell theory a r e  

used for this purpose. These equations,corranonly called Marguerret s 

equations, a r e  (see Ref, 23)  

and 

where w i s  the radial. deflection and F i s  the usual s t ress  function, 

See Fig, 29 for coordinate system aund shell geometry, The 

aerodynamic pressure  term p i s  approximated by the piston theory 

expression 



A two mode solution for these equations is a~lsumed 

in  the form 

w(x, O, t )  = sin n0 al(t) sin ~x + a2(t) sin 2 d x  

where = T/L,' The square bracketed te rms  were not present in the 

linear solution, but must be included here  in  order  to satisfy the 

periodic continuity condition on the circumferential displacem ent v . 
See for example Ref. 24. 

Substitution of Eq, (3.23) into the compatibility 

equation (3.22b) allows the la t ter  to be solved for  F. The resulting 
, 

expressions for w and F, imply the satisfaction of the following 

boundary conditions : 

(a) The displacements u, v and w, and their derivatives 

satisfy periodicity conditions of the form 

(b) The radial displacement w goes to zero identically a t  

the ends sf the shell, i. e., at x = 0 mid L. 



(c) The boundary conditions for a shell having "freely- 

supported" ends a r e  satisfied to a f i r s t  approximation. In other words, 

the l inear terms in the expression for Nx, Mx and v go to zero a t  the 
2 

ends of the shell, but the nonlinear terms involving al , ala2 and a 
2 

2 ' 
etc. do not vanish there, 

Finally, the expressions for w, F aqd p a r e  substituted 

into Eq. (3.22a) and a Galerkin procedure i s  used to obtain two non- 

l inear ordinarv differential equations for the modal amplitudes al and 

a2. The expressions aw/aal and aw/aa2 a r e  used a s  the weighing 

functions in thq Galerkin procedure. In semi-nondimensional form*, 
2 >k* 

the resulting coupled equations (within order  d ) a r e  

* 
It was not convenient to nondimensiondize the time t, since 

each of the equations has a different natural time scale. ** 
Terms with coefficients of order  !E2 a r i s e  naturally from the 

forgoing derivation but a r e  neglected here. These te rms  a r e  of the 
form gq 4, t2q3, e so that the approximation i s  justified for 5 and 
q up to and including order  1, 



where the nondimensional modal amplitudes a r e  

and the (small) nonlinearity parameter is 

The linear undamped natural frequencies of the two modes a r e  given 

b y  



The parameters 

where B= d R / n ,  depend only on the shell properties and mode 

shapes. The aerodynamic influence comes in through the two para- 

me te r s  



Eqs. (3.24) a r e  too complicated to be solved com- 

pletely, but may be solved approximately by use of the method of 

Krylov and Bogoliubov, often called "The Method of Averaging". The 

experimental experiences indicate that the flutter motion i s  nearly 

sinusoidal in time, so that if Eqs. (3. 24) a r e  a reasonable approxima- 

tion to the physical phenomenon, they should admit l imit  cycle oscill- 

ations. Hence solutions to these equations a r e  sought in the form 

6 = A(t) sin (3. 26a) 

q = B(t) sin a t  9 [ ~ 2 ( t , ]  

where A(t), B(t). y l ( t )  and %(t) a r e  slowly varying functions of 

time. The second order  differential Eqs, (3.24) are transformed 

into four f i rs t  order equations b y  differentiating Eqg. (3.26) M c e  

and imposing %e subsidiary conditions 

dA - sin €)I + - A  d R  cos o1 = o 
dt d t 

P2 d8 s i n g 2  +-B cos Q = 0 
2 P 

at at 

where Q 1 =  W t + %  and O2 =u)t + (P2. Then 



and these expressions a r e  then substituted into Eqs, (3 .  24). 

The resulting equations exhibit a basic period of 2-rr 

in both Q1 and Q The quantities A, B, yl and Y2 were assumed to 2' 
be slowly varying functions of time and so should change very little 

over one cycle of this basic motion. Hence,they a r e  replaced by 

their averages over one cycle and the equations are integrated from 

O to 2n in either Ql o r  0 This procedure yields the following 
2' 

equations for the quantities dA/dt , d 81 dt , d E/ dt and d F2/ dt 

(where the bars  denote averages over one cycle), 



where K1 to K a r e  given below. For  steady state oscillations, 4 
dKjdt, dwdt  , d p l /d t  and d q2/dt  must all vanish. Hence, this 

procedure yields the following set  of four algebraic equations for the 

four unknowns K , B. and W . 

1 2  ~ ~ + ~ ~ ( l + ~ c o s  2 ~ )  - ( b f  Z~ )I -4 

B 1 - 2  Ti2 sin 2 901 - f Tisin? + g E % A  + fZT2 = o (3. 30a) 



- 
where ? =  F2 - yl 

Again i t  i s  desired to simulate the wind tunnel 

experimental results. This means that values of A, 8, P and UJ 

that satisfy the forgoing equations a r e  sought a s  functions of the 

aerodynamic pressure  pa for a given shell geometry, speed of 

sound and Mach number of the air-stream for  various flutter modes, 

i. e., values of n. A procedure for doing this i s  outlined below, 

3.4.1 Solving the algebraic equations 

The aerodynamic pressure  p, comes into Eqs. ( 3 . 3 0 )  

through the two parameters f and A, and for the case of no structural 

damping A = K f where kr( = 3%/8M.a, . Hence,the parameter f 

may be used to characterize the aerodynamic pressure. It i s  

convenient for the calculations required herein to t reat  as known 

and B , &, f and P a s  unknowns. Letting the four component vector 

xi(i = 1 to 4) denote the unknowns such that = 8 ,  x2 = 0 3 ,  x = f - 5 3 
and x4 = fJ then Eqs. (3.30) a r e  of the form 



The solutions to these equations may be obtained 

numerically by a suitable generalization of Newton's method to four 

variables a s  follows. If xi is a good initial approximation to the 

sought for solution xi such8hat xi = xi - sxi, then by expanding in 
0 Taylor se r ies  from x to x. 

io 1 '  

Now theki  may be found f rorn Eqs. (3.32), since by definition 

K(x ) + 5 
j io 

K (x ) f 0. When this i s  done, the new approximation for x i s  
j io i 

=x i  
+ j $xi) , and the forgoing procedure i s  repeated over again. 

il 0 

. Sxfi 0 , j = l t o 4  (3.32) 

- - - . . -  P summed 1 to 4 

The initial solution used to s ta r t  this process i s  that 

obtained from the l inear flutter problem which is nothing but the 

linearization of Eqs. (3.30). This is easily seen to be 

2 2 
2 w = uo2 = + * ~ n  

2 

(3.33) 

= q0 = n - Are sin ( K  do) 

rap 2 2 

f = f  = ln  - %n 
o 2 cos F0 



where -rr/ 2 < Arcsin (KW,) 6 n/ 2. Initially A i s  taken to be a small 

number (of order ,05), and the linear solution given above i s  used to 

s ta r t  the iteration process. Thereafter, i s  increased by a small 

amount and the solution for the previous value of i s  used to s ta r t  

the iterations. 

3 .4 .  2 Stability of two mode steady state solution 

The simplest approach to the study of the stability 
L 

of the two mod& steady state solution appears to be through the method 

of averaging an$ the relevant Eqs. (3,291. These equations may be 

put in  the form 

where the vector. f has the three components and p, and 

A ( ) has the three components GI, GZ and G3 where (within order 

e 2,  



1 2  1 fT2 + (b t Z~ ) ( E ' - K ~ )  cos 2 F t  T ~ o ( ~ 2  t g 2 )  sin 

The steady state solution go (i.e. , A ( %  ) = 0) i s  perturbed slightly 

by  Petting 

-0 

where has three components which represent perturbations to K ,  - 
B and respectively. Substituting this expression into Eq. ( 3 . 3 4 )  

and noting that dZo/d t = A( To 1 = 0 yields the variational equations 

a 

where al l  nonlinear terms in the perturbation quantities 6 have been - & 
neglected. The substitution 5 = 5,  e reduces Eqs. (3 .37)  to 

the following eigenvalue problem for A 



Det I I3 - l h )  = 0 p (3.38) 

where I i s  the 3 x 3 identity matrix and B = = 
aA I i s a 3 x 3  

real  nonsyrnmetric matrix. Hence,the stability of the two mode steady 

state solution i s  completely determined by the nature of the eigenvalues 

of the matr ix  - az 2==% aA l provided i t  i s  non-singular. That is, if 

any of the eigenvalues of this matr ix  have positive r e h  parts, the 

perturbations will increase with time and consequently the solution 

will be unstable. 

The matr ix  involved in the forgoing formulation 

turned out to be extremely cumbersome. Consequently, i t  was practi- 

cally impossible to derive an analytic criterion for stability, and a 

numerical approach was employed in the following way. At each step 

in  K used in the calculations described in  the las t  section, the com- 

ponents of the matr ix  were evaluated. The eigenvalues 

for  this matr ix  were then calculated and their r e d  parts  were 

exam ine d . 

3.4. 3 Results 

The preceding calculations were carr ied out for  the 

following two cases: 

(b) p, = 0.5 psig , n = n = 23 
min 



Note that nmin i s  the value of n which results in minimum static 

pressure  for flutter for each value of p according to the two mode m 
piston theory result. (See Eq. (3 .  20) and related discussion). The 

results  for case (b) a r e  shown in Figs. 35 and 36 and a r e  very similar 

to those from case (a) a s  well. 

It i s  especially interesting to note from Fig. 35 that 

the modal amplitude versus static pressure curves do not continue 

with positive slope indefinitely but rather bend back and continue 

indefinitely wit& negative slope. As one might well have expected 

from simple physical arguments, the stability calculations showed 

that only those hortions of these curves with positive slope represent 

stable l imit  cycle oscillations. Hence,only the portions of the curves 

in Fig. 35 between points a(av) and b(bP) represent physically realizable 

flutter motion, 

Fig. 36 shows how the flutter frequency and phase 

angle between the two modes varies with amplitude. The flutter 

frequency i s  seen to decrease slowly with increasing amplitude. This 

i s  typicd of the so-called fPsoftenfng9s type of nonlinearity and was to 

be  expected here  from previous work. (See for example Ref. 11). 

The phase angle between the two modes also decreases with in- 

creasing amplitude. 

The fact that the modal amplitude versus static 

pressure curves do not continue indefinitely with positive slope leads 

to a rather interesting explanation of how the shell must flutter a s  the 

static pressure  increases momotonicdBy. To facilitate this explanation, 

results for various values of n near nmin a r e  plotted versus the 

unnormalized aerodynamic parameter f in Fig. 37. This figure may be 



interpretted a s  follows. As f (or static pressure p, ) i s  increased 

for  pm held constant, nothing happens until f reaches the f cor res -  
5 0 

ponding to n = 23 o r  1.406 x 10 . At this point, given an initial 

disturbance (turbulence in the a i r -  s tream for example) the shell 

will begin to flutter with n = 23 and a frequency aO corresponding 

to n = 23. For  f slightly la rger  than fo, the amplitude of this oscilla- 

tion will grow exponentially with time until the limiting amplitudes 

for K and g' shown in Fig. 37 for n = 23 a r e  reached. As f i s  

further increased, these amplitudes will increase until f reaches 
5 

1.52 x 10 where the modal amplitude curves for n = 23 have vertical 

tangents. At this point, the flutter mode (i. e., value of n)  must 

change o r  jump - probably to n = 22, since the curves for i t  a r e  

closest. This change in flutter mode would be accompanied by a 

change in flutter frequency and amplitude. It i s  clear from Fig. 37 

that this type of change o r  jump would occur over and over again a s  f 

i s  increased continuously. It i s  also c lear  that some of the jumps in 

amplitude could be rather dramatic a s  for example when the flutter 
5 mode changes from n = 21 to 25 a t  f = 1.58 x 10 . 

The experimental results shown in Fig, 14 seem to 

indicate that something like the forgoing process actually took place 

in the experiment. The actual stable limit cycle amplitudes shown 

in Fig. 37 (8.5 to 1.5) agree remarkably well with the experimental 

values. See for example, Fig. 19. However, the circumferentially 

travelling wave type of flutter, which was observed in the experiments, 

i s  not predictable with the forgoing analysis. An additional degree of 

freedom in the analysis would be required to obtain this phenomenon. 

This andys i s  i s  left for  a la te r  study, 



The results, a s  for example shown in Fig. 35, 

revealed no appreciable region of stable l imit  cycles below the 

stability boundary for infinitesimal disturbances. Hence,within the 

framework of the two-mode piston theory limit cycle analysis, i t  

may be concluded that for all practical purposes, flutter does not 

exist below the l inear stability boundary. 



3.5 Conclusions 

The most serious limitation in the theoretical 

foundation for cylindrical shell flutter still seems to l ie  with the 

aerodynamic theory. The question a s  to what i s  the best theory to 

use for any particular configuration i s  still  largely unanswered. 

Within the framework of the present study, i t  appears 

that, contrary to what had previously been thought, the boundary layer 

does not play an important role in shell flutter with many circumfer- 

ential waves. Furthermore, the detailed comparison between exper- 

iment and linearized theory presented herein indicates that: 

(1) The pressurized cylindrical shells fluttered a t  a 

lower level of f ree  stream energy than predicted by 

either piston theory o r  potential theory, 

(2) Of these two theoretical results, that using piston 

theory appears to correspond closest to the exper- 

iment both in stability boundary and in  critical 

values of circumferential wave number n, 

(3) Both theories predict a la rger  stabilizing influence 

of the internal pressure  differential pm than observed 

in the experiment. 

The results from the two mode l imit  cycle analysis 
Q 

indicate that for  practical purposes cylindrical shell flutter does not 

occur below the stability boundary for  infinitesimal disturbances. 



The limit cycle amplitudes predicted b y  this analysis seem to agree 

very well with the experimentally observed ones. These results 

further indicate that the flutter amplitude, frequency and mode shape 

should change discontinuously (or jump) as the aerodynamic pressure  

is increased beyond the value for f i r s t  flutter. 



APPENDIX A 

FLUTTER MODEL 

A. 1 General Description 

The circular  cylinder panel flutter model i s  shown 

installed in the wind tunnel in Figs. l and 2. The model is a sting 

mounted ducted body of revolution with the outer surface of the 

center section forming the thin test  shell. The supporting structure 

consists of a nose, a center section which supports the flutter model 

and instrumentation, and the tail section which comects  the center 

section to the yrind tunnel sting. A ducted body allows a la rger  model 

size for a given c ros s  sectional a r e a  without choking the wind tunnel. 

The shape of the nose was chosen to best  provide a 

rapid pressure  recovery and uniform flow conditions over the center 

test  section. Cowl number s ix  of Ref. 8 was employed for this 

purpose. The complete nose section is composed of this cowl plus a 

four inch long straight cylindricd section forming the base of the 

cowl, Four symmetr icdly  arranged etatic pressure  orifices a r e  

located near the downstream end of this base. These were used to 

align the model cylinder axis with the f ree  stream direction during 

the wind tunnel tests. 

The tail section commences at the downetreacm end of 

the thin shell section and attaches the model to the wind tunnel sting. 

It i s  also used to support the instrumentatforn and pressure  line 

connections between the m s d d  asrd sting. 



Details of the center section a r e  shown in Figs. 4 and 6,  

The nose section, which has been removed for the picture, i s  attached 

to the bolts a t  the right hand end of this section. Installation o r  

removal of a thin shell (with end rings soldered to the shell) i s  

accomplished by removing this nose section and the thrust plate and 

sliding the shell over the center section and instrumentation. The 

shellDs end rings a r e  then slipped onto the g'O's ring seals at each 

end. The "0" rings a r e  made of neoprene rubber and have a. 0.039 

inch diametea c r o ~ s  section. The shell end rings and the "0" ring 

seals a re  lubricated with Dow Chemical Vacuum Grease. The dia- 

metrical interference between the $'Os' rings and the inside surface 

of the shell end rings i s  about 8.010 inches and provides the required 

sealing of the annular cavity under the shell. Am axial force of about 

20 pounds i s  required to slide the shell over the lsBsl rings, PO pounds 

for each one. Consequently, the net axid load in the shall a t  any 

time may be of the order sf PO pounds. 

Figure 3 gives the over-dl dimelpeione of the Butter 

model. 

A. 2 Thin Shells 

The making of the thin shell flutter models was the most 

tedious and crucial task associated with the flutter tests. These shells 

were thin walled monocoque circular cylinders made by am electro- 

plating proces s following Babcock (Ref, 25 ). 

Pn this process, a Payer of was (two parts refined 

parafin to one part MobiP Cerese 2305 wax by volume) over 114 inch 

thick was eas t  onto a hoPlow aluminum mandrel 22: inches long by 

15 1/2 inches outside eliarneter, The waxed mandrel was then machined 



to the desired diameter on a large lathe. This finished surface was 

then sprayed with two coats of conductive si lver paint. 

The plating was carr ied out in a Cupric Fluoborate 

solution of specific gravity 1.15. The 23 inch diameter cylindrical 

anode used a s  the material  source was made from a 0.10 inch thick 

copper sheet. This anode was covered by a bag made from dyne1 

cloth to collect the impurities discharged from the anode during the 

plating. Although the bag collected most  of these impurities, in  

the four hours required to plate a shell, enough would get into the 

solution to noticeably increase the surface roughness of the shell. 

In order  to minimize this roughnees, the solution was continuously 

filtered during the plating process, To further promote srnoothnees, 

each shell was removed from the bath half way through the plating 

process and carefully sanded. Uniformity in thickness around the 

circumference was ensured by continuously rotating the mandrel 

during the plating. 

After the plating was completed, the mandrel was 

again placed on the Bathe. The shell was cut to length with a very 

narrow chisel-like cutting tool, and the excess copper (about three 

inches a t  each end) was discarded. These end pieces were  not 

uniform in thickness because s f  the rlonnuniformity sf  the electric 

field in the plating bath caused by the mandrel and anode end effects, 

By throwing them awayo the maximum variation in shell thickness 

i n  the longitudinal direction was kept below f 3 percent. 

The wax at the Power end of the mandrel was scraped 

off and a narrow jig was strapped around the mandrel to support the 

shell during melting of the wax, 'klhe mandrel was then clamped into 

the empty wax-casting -tank and melted wax aPowfy poured over it, 



The entire assembly was heated until all the wax was melted. The 

melted wax was then drained from the tank, the mandrel recovered, 

and the shell slipped off. The excess wax on the shell was removed 

with Benzene, and the clean shell was then weighed. This weight and 

the known length and diameter of the shell were used to evaluate the 

average t h i c b e s s  using a value of 8.9 gm/cc a s  the density of the 

electroplated copper. 

Each shell was soldered to two copper end rings a s  

shown in Fig. 5 using Johneon's Flux -IN -Solder (a powdered solder - 
50 percent tin and 50 percent lead - in a Liquid flux). The outside 

diameter of the end rings were made 8.003 inches smaller thaa the 

inside diameter s f  the shell to Leave room for this sgfder. The actual 

soldering process involved the foPlswfng steps: The outside diametri- 

cal surface of the front end ring was given a thin coat of the Piquid 

solder. This riqg was then placed front side down on a flat, rigid, 

aluminum plate. The inside surface near one and of the shell was 

then given a thin coat s f  the solder and the shell slipped over the 

end ring. The inside surface a t  the other end of the shell and the 

outside surface-of the other end ring were then painted with the 

solder and slipped together. The step on the outside surface of the 

back end ring kept i t  from falling into the shell, This whole assembly 

still on the flat plate was then placed in an oven and slowly heated 

to the melting point of the solder (about 360 degrees F). After 

allowing enough time for equilibrium to be reached a t  the high temper- 

ature, the oven was gradually turned down and the temperature very 

slowly returned to the room Bevel, En this way, stresses induced in 

the shell by differentid cooling were minimized. 

Many people a t  the GALCIT have contributed to the 

evaluating of the ma te r id  properties of the electroplated copper, 

The Young9s ModuPus E was determined by 1pulPlirng: and s i m d ~ e o u s l y  

measuring the deflection of 1/2 inch wide by 288 inch long specimens 



obtained by spirally cut t ing the cylindrical shell while st i l l  on the 
6 wax. The value was found to be 16 x 10 psi. The load-defiection 

curves were l inear up to a s t r e s s  level of 10, 000 psi. Values of 

Poisson's Ratio Y in the range 0.35 to 0.38 were found from the 

ratios of longitudinal and transverse strains in these tensile 

specimens as measured with strain gauges, A value of the density 

of 8.9' gmjcc was found by weighing samples of the electroplated 

copper in air and immersed in distilled water, Fur ther  details may 

be found in Ref. 26, 

A, 3 hstrumgntation aad Experimental Measurements 

Radial motion sf the shell was measured by three 

inductance type pickups numbered l to 3 in Fig, 6. The change in 

inductance as q. function of the distance between the shell and pickup 

p e r n i t s  static and dy-namic measurements of the skin position to be 

made without mechanical contact. Pickups l and 2 a r e  mounted on a 

drum which i s  rotated by a small electric motor a full 360 degrees 

a t  an  angular rate of 24 degrees per second o r  a surface speed of 

3.3 inches per  second. Pickup l is moved longitudinally between 

x / L  = 0.15 and 0.67 by another motor and lead-screw mecKanism 

at 0.5 fiches per second. Pickup 2 i s  located a t  x%L = 0.72. Pickup 

3 is fixed to the center body a t  x/L = 0,84, A potentiometer connect 

by gears to each trqversing mechanism supplies a D, C. voltage 

proportional to the distance o r  angle traversed, The pickups were 

mmufactured by Electroproducts Incorporated of Chicago, and the 

ca r r i e r  system was especially developed for pmeP flutter testing 

by the electronics laboratory at the GAECIT, This system uses a 

100 kilocycles per second ca r r i e r  sP@, 

The static cdibratiom curare for  each pickup is shown 

in Figure A,B. The nomind spacing between each pickup and the shell 



skin was 0,130 inches and the corresponding sensitivities were as 

followe: 

Pickup No. 1: 15.2 mv/O. 001 inch 

Pickup No, 2: 16.7 mv/O. 001 inch 

Pfckup No. 3: 18.2 mv/O. 001 inch. 

The maximum change in the spacing between the 

pickups and the shell skin that occurred when the pickups were  tra- 

versed was approximately 0.010 inches. This resulted in  a maximum 

change in pickup sensitivity of approximately 5 percant. Since this 

change was only of the order  sf the accuracy of the experimental 

measurements, i t  was ignored in the data reductios. 

The root-mean-square d u e s  of the signals from the 

three pickups were measured om a Ballantine Model 320 "True-root- 

mean-square'k voltmeter, and two of these signals were continuously 

monitored on a: Durnont Model 411 dual beam cathode ray oscilloscope. 

ALI signals were recorded by an FM system on an  qfnpex FR-100 

tape recorder, .Figure A. 2 shows a partial view of the instrument 

arrangement in the tunnel control room. 

A twelve-tube boundary layer rake was mounted on the 

model near  the downstream end of the shell a s  shown Ln Fig, 2. The 

tubes were 0.032 inch outside diameter by 0.006 inch wafa stainless 

steel. The ends of the four innermost tubes; were flattened to reduce 

their interference with the flow, ars shown fn Fig, A. 3. The leading 

edge of the tube8 was located 314 inchea uprsltseann from the downstream 

end of the shell. 



All tunnel testing parameters such a s  M_ , p_ , pt_ 

and Tt a s  well a s  the pressures from the four static ports on the 
R, 

nose section and from the twelve boundary layer rake tubes were 

measured on NASA equipment, All pressures were measured by 

calibrated pressure cells. In addition, the four pressures from the 

static ports on: the nose section were monitored on a manometer 

board using ~ i h u t ~ l  alcohol (specific gravity = 1.03) a s  the manometer 

fluid and pa a s  reference. 

'$!he pressure in the rubber tubes of the axial loading 

mechanism pr a d  the pressure in the model cavity were controlled 

and measured by GAECIT equipment Pn the tunnel control room. 

The pr was measured on a standard absolute pressure gauge, and 

when the shell'was to be unloaded, the rubber tubes were vented 

to p- The pressure from one of the static ports on the nose 

section was usad as  the reference for pm, the pressure differential 

across the shell skin. The large values of pm were measured on a 

standard pressure differential gauge a~nd the small values were 

measured with an alcohol (specific gravity = 8.81) U-tube manometer. 

A, 4 Axial Loading Mechanism 

The peculiar axial loading mechanism used in these 

experiments resulted from the following design consideratisns: 

31. The cylindrical shells were to be loaded in adall compression 

quickly and remotely during the wind tunnel tests, 

2. The circumferential distribution of Pongftudhal s t ress  in the 

shell had to be a s  miform as pseibfe,  and the maximum Bsad 

had to be about 1888 ps\asde. 

3. The loading mechaaiarn could not interfere with the e x t e n d  

a i r  flow, 



Experience has shown that one of the most difficult 

aspects of buckling experiments is that of attahing uniform circum- 

ferentidf distributions of longitudinal s t res  s. See for example, 

Ref. 25. This difficulty i s  a direct consequence of the thin-walled 

nature of cylindrical shells and the need to apply the axial load a s  

uniformly around the circumference a s  possible i s  evident. This 

consideration led to the idea of applying the axlal load through a 

uniform circumferential distribution of pressure. This in turn 

finally led to the idea of a pressurized, confined rubber tube a t  each 
3 

end sf the shell. The tubes used in the f i n d  design were made of 

amber rubber aqd had a 3/16 inch inside diameter and a 1/16 inch 

thick wall. 

A specially instrumented shell was made to check 

the uniformity of the s t ress  eifstribution that resulted Prom this 

loading technique. The shell used was 0.012 inches thick and was 

made in the same way a s  were the shells for flutter testing. SR-4 

Wire Strain Gauges (type A-3, resistance 120 ohms, gauge factor 2) 

were attached with Eastman 9-10 cement to the inner and outer 

surfaces a t  30 degree i n t e r d s  around the circumference of the shell 

2.5 inches from the downstream end, Preliminary l ~ a d i n g s  s f  this 

shell showed that the difference in the strains and hence the s t resses  

in the inside a d  outside surfaces of the shell were a t  most of the 

order of 5 percent of the mean stress  Bevel, This indicated that the 

amount of bending induced by the loading mechanism was very small 

and could therefore be neglected, Thereafter, the signals from the 

gauges on the inside and outside surfaces at a particular circumferen- 

tial position were averaged by eomectfng the gauges fim series, auzd 

thia average was used as the strain and hence s t ress  level at that 

circumferential position, 



Sn order to provide a calibration of the axial loading 

mechanism, this instrumented shell had to be calibrated itself. This 

was done on a testing machins in the laboratory. The shell was loaded 

in steps up t b  1200 pounds and the strain gauge readihgs were recorded 

a t  each step. A plot of the average of all the strain gauge readings 

versus axial load was prepared and used a s  the calibration of this 

shell. 

The shell was then placed on the flutter model and 

loaded in axial &ompression by pressurizing the rubber tubes, The 

resulting distributions sf strain and hence s t ress  a r e  plotted in 

Fig. A. 4. The value of the a d d  load for each setting of the pressure 

pr was obtainqd from the calibration described in the above paragraph 

and i s  plotted versus pr in Fig. Ao 5. This curve was used as the 

calibration for the axid load in the shells of the flutter teeta. 



APPENDIX B 

TAPE DATA HANDLING 

The data recorded on tape consisted sf the output of 

three car r ie r  amplifier channels which provided a measure of the 

shell motion aqd the output of either one of the potentiometers connect- 

ed to the traversing mechanisms on the flutter model which provided 

a measure of the positions of the inductance pickups. 

A seven channel Ampex FR-100 tape recorder was 

used to record data on one inch magnetic tape a t  a tape speed of 7.5 

inches per second. Ta,pe recorder channels 1, 2 and 3 were used to 

record the three shell motion data measurements, while the potentio- 

meter data was recorded on channel 4. The data recording: amplifiers 

were F M  (frequency modulated) and were capable of recording data 

in the frequency range from D, C. to 1250 cps, Voice identifications 

were recorded a t  the start  and end of each record using a a r e c t  

reproduce amplifier on channel 7. The two remaining channels were 

unused. 

A calibration panel provided a convenient method for 

recording calibration voltages onto magnetic tape. Consequantly, 

zeros and known voltage levels in the range of f 1.4 volts (D. C . )  



were recorded frequently during actual data taking in order  to assure 

that the tape recorder amplifier circuits were in proper adjustment 

and to provide reference levels for subsequent tape data playback. 

When the record and reproduce amplifiers of the tape 

recorder are in average condition, and when care i s  used in per- 

forming caliq~ations and data monitoring, the recording of data om 

magnetic tape will result in accuracies of signal voltages to approxi- 

mately 1 percent of full range, i. a., f 0.015 volts, on the assumption 

that the recorder i s  operating in a linear manner. 

Credit for the development s f  the foregoing tape 

recording technique with i ts  corresponding accuracy mast be given 

to Schmidt (Ref, 23). 

A schematic view of fie! data recording circuitry fa  

shown in Fig, Q .  l. 

The power spectral density distribution for each tape 

record was obtained with a Technical Products (Models TIP 627 plus 

TP 626') harmonic analyzer, Typical plots a r e  shown. in Fig, 13, 

Traverse plots were made on a MosePey Model 2D-2A 

XY plotter. The rn ezm squaring circuit of a BzPPPanthe True RMS 

Voltmeter was used to obtain the me= square amplitude of the 

signal that was to be plotted, This mean square of the s f g d  was 

applied to the Y input of the plotter and the output of channel 4 

(traverse potentiometer signal) of the tape recorder was applied to 

the X input, 



The plots of the mean square amplitude of flutter were 

obtained by feeding the outputs of the tape recorder channels 1 and 2 

(signals from pickups 1 o r  2 respectively) directly into the Ballantine. 

On the other hand, the plots of the mean square of the difference 

between the signals from a moving and a fixed pickup were  obtained 

by subtracting the output of tape reaorder channel 3 (signal from 

pickup 3) from that of channel 1 o r  2 with an Epsco D. C. amplifier 

and feeding this difference into the Ballantine. 

Phase angle measurements were made on an AD-YU 

Model 405 phase meter  that works on the zero crossllng principle. 

Thiar phase meter  a lso  provides a E). C. output (from a 0.1 second 

time constant integrating circuit) proportional to the phase angle 

being measured and this output was used to make phase angle plots. 



APPENDIX C 

. ANALYTIC EXPRESSION O F  THE FLUTTER MODES 

C ,  1 Standing Wave Approximation 

'Consider the standing wave type sf deflection shape 

w(x, 8, t )  = f(x) sin no erin w t . (c 4 

The function f(x) may be csmpltex, but this wi l l  have no bearing on the 

following arguments, Squaring i$ we obta.in 

2 2 2 2 w (x, 8, t) = f (x) sin n0 sin w t  

(C-2) 

Taking the meanO w e  obtain 

7 "[x) (1 - eos k b )  w (x. 0 )  =,-q- 



Hence,we see  that the mean square amplitude of the deflection would 

vary between zero and a maximum 2n times around the circumference 

if the flutter mode were  of the standing wave type represented by 

Eq. C-1 . 

C. 2 Circumferentially Travelling Wave Approximation 

Consider a deflection shape of the form 

Squaring it, we obtain 

+ 2AB sin nQ cos nQ s inot  c o s u t  I 
(C-5) 

2 (1 - cos 2wt) sin n0 

2 2 
$ B (1 + cos 2wt)cos nQ + AB sin 2wt sin 2nQ * J 

Taking the mean, we obtain 

2 f2ix) [(A2 + g 2 )  - (A2 - B ) ros  Lo0 =--r 



7 Now if A and B a r e  approximately equal, we see that w (x, 8) is 
2 2 

approximately equal to (A f (x) )/ 2 which is independent of 0. 

Hence,the mean square amplitude of motion is constant around the 

circumference for  the type of flutter mode expressed by Eq. C-4. 

Now if we take 

and 

and then subtract w3 from wl, we obtain 

- C sin w t (C-9) 

Now 

(*Xl2 = W12 - Zw w + w3 
2 

1 3  

and taking the mean, we have 



Multiplying wl and w together, we obtain 3 

2 w1 w3 = AC sin nQ sin at + cos n0 ainrt cos utt  ] 

I 
(C -1 2 )  

[sinno (1 - cos 2at) + c o s n ~ s h  $at . = Z 

Therefore taking the mean, we ~btain 

wa Ws sin nB = z  

W e  also have that 

Therefore, com9Sfning Eqs. C-PI, 13 and 14, we obtain 

Therefore, if A a d  @ are approximately equal, the mean square of 
the difference between wl and wj is approximately given by 



2 
(awl2 = (wl - w312 = A (I - sin no) O 

Hence,the mean square of the difference between wl and w3 varies 

approximately between zero and a maximum n times as  Q goes from 

0 to 360 degrees, Therefore,it may be concluded that the type of 

flutter mode expressed by Eq. C-4 will  fit the experimental results, 

but the one expressed by Eq. G-1 will not. 



APPENDIX D 

BENCH TESTS 

Some still  a i r  vibration tests  were performed on shelle 

similar  to the ones used in the flutter tests,  A model D-40 Jensen 

acoustic driver unit was used to drive the shells into resonance. The 

acoustic output of the driver was focused onto a 114 inch diameter 

circular  a r ea  on the shell surface through a conical nozzle positioned 

about 0,010 inches from the shell skin, The driver was excited by a 

sinusoidal signal generator and amplifier, The resonance modes were 

easily determined in the same way as were the flutter modes. The 

frequency of the excitation signal was measured with a Berkeley 

E P U T  electronic counter. 

The results  of such a vibration test  on a shell of 

thickness 0,0040 inches a r e  plotted in Fig, 27, The modes with one 

half a wave along the length of the shell (m = 1) and those with one 

full wave (m = 2 )  were relatively easy to obtain, but the modes with 

three half waves (m = 3) and two full waves (m = 4) were much 

harder. As a consequence, the measured frequencies for these 

lat ter  modes were not a s  accurate as for the former  ones. The ratio 

of the damping to critical damping was estimated from some resonance 

plots to be about 0.001 for  modes w i t h  many circumferentid waves, 



Three shells were buckled under axial compression on 

the flutter model with zero internal pressure, The thickness of these 

shells were 0.0041, 0.0040 and 0.0044 inches and the loads a t  which 

they buckled,were 390, 350 and 400 pounds respectively. These loads 

a re  about 40 percent of the classical buckling loads for these shells 

and a r e  a little higher than most of those shown in Fig. 12 of Ref. 28 

for the same radius to thickness ratio (2000). The buckling modes 

were of the well-known diamond pattern type with the diamonds 

distributed around the circumference of the shells but concentrated 

near the downstream end. This concentration of the buckles near 

the rear  end wag probably a consequence of the difference in the 

geometry of the end rings of the shells. This difference in geometry 

results in a difference in the boundary conditions on the two ends of 

the shell. These boundary conditions can have a strong influence on 

the character ~f the axial buckling. See for example, Ref, 29. 

A 0.0040 inch thick shell was buckled by evacuating 

the annular cavity under the shell, This buckling occurred when 

the pressure difference across the shell was 0.050 psig a s  measured 

with an alcohol manometer, The buckling mode was made up of 

fifteen waves around the circumference and one half a wave along the 

length of the shell. The buckles were very shallow and the buckling 

pressure was repeatable within about 1 percent. The theoretical 

buckling pressure for this shell was 0.047 psig a s  calculated from 

Ref. 30 for the case of radial external pressure loading rather than 

for hydrostatic loading, since the particular geometry of the flutter 

model is more closely described by that case, 



APPENDIX E 

STATIC PRESSURE TEST 

E, 1 Static P re s su re  Model and instrumentation 

The 0.020 inch thick shell used for  the static pressure  

model was conatructed in the same way as were the thin shell models 

used in  the flutter tests,  See for example, Section A.2 of AppendixA. 

Fifty-three static pressure  ports, 0.0135 h c h e s  in 

diameter, were drilled in the shell with the distribution shown in 

Fig. E.1. Eleven of the holes Pie along the cylindrical generator 

labeled number 8 and s ix  along each of the other seven generators 

a s  shown in the figure, 

Figure E. 2 shows the arrangement fo r  delivering 

the pressure to the manometers, A number 70 (0.028 inch diameter) 

hole was drilled through the wall of a piece of 0.861 0. D. (outside 

diameter) b ra s s  tube, One end was then pinched off and the tube bent 

a s  shown was held over one of the holes in the shell with a j ig  . A 

short length of 0.009 inch diameter steel wire was inserted through 

the hole into the brass  tube, A small amount of "aluminum Devcon 

type F2" was then poured over the tube into the shape shown and 

allowed to set. After the Devcon had hardened, the wire was removed 

leaving a sealed conduit open only to the pressure  port. A 0,050 I. D, 



(inside diameter) vinyl spaghetti tube was then forced over the f ree  

end of the brass  tube and sealed with Glyptol. This process was 

repeated for all fifty-three ports. The vinyl tubes were  carefully 

fixed to the inside of the shell and were brought together a t  the 

back end. 

The shell was placed on the flutter rqpdel by slipping 

i t  over the "0" ring seals  from the upstream end of the model (left 

hand side of Fig. 4) after removing the thrust  plate, The vinyl tubes 

were then placed inside one of the conduits in the tail section, They 

were attached ta the inside of a sealed manifold a t  the sting end of 

the conduit. The manifold had fifty-three short pieces of the 0.061 

0.D. brass  tubipg soldered into a piece of 3/16 inch thick brass  plate, 

When the model was installed in the wind tunnel, the pressure  leads 

from a multiple tube manometer bank containing dibutyl alcohol 

(specific gravity = 1.03) were attached to the f r ee  ends of the manifold 

tubes. The f r ee  stream static pressure  p- was used as the 

reference for this manometer bank and was obtained from a static 

pressure port in the ceiling of the wind tunnel tes t  section a short  

distance upstream of the model. 

A ten-tube boundary layer  rake similar  to the one 

shown in Fig, A. 3 was mounted on the model nea r  the downstream 

end of the shell. The tubes were 0.032 inch 0. Do by 0.006 inch wall 

stainless steel. P ressure  lines from a second manometer bank 

containing liquid mercury were attached to the rake tubes, 

The pressure  difference across  the shell pm was 

controlled by varying the pressure  in the sealed annular region under 

the shell. 



The pressures a t  the four symmetrically distributed 

static ports on the downstream end of the nose section were monitored 

and were made equd by lining up the model axis with the free stream 

flow. 

Maximum deviations of the shell surface from a truly 

perfect cylinder were estimated to be !: 0.001 inches. 

E. 2 Experimental Procedure 

The procedure for start-up of the tunnel was the same 

a s  for the flutter tests, See Section 2,2 ,  The test conditions a re  

given in Table IV, The test point with correlation number P was 

used solely for aligning the model. After pto. was established, about 

ten minutes were allowed for the marnometer readings to come to 

equilibrium before the data was recorded, Photographs of each 

manometer board were taken for each data point, 

E. 3 Results and Discussions 

The pressure distribution data a r e  plotted in Figs, 

E. 3, E. 4 and E. 5, 7he q, shown in Table I V  and used in calculating 

C was obtained from inviscid theory, 
P 

The boundary layer data i s  plotted in Figs. E . b(a), (b) 

and ( c ) .  The static pressure was assumed to be constant through 

the boundary layer in the radial direction aad again inviscid theory 

was used to calculate the local Mach number from the measured total 

pressure. 



Overlooking local irregularities, the static pressure 

distribution in the axial direction deteriorates a s  the Mach number 

i s  decreased. At Mo = 3,4,  the static pressure i s  very uniform 

over the entire length of the shell, at M, = 3.0, i t  begins to increase 

slightly near the downstream end of the shell and a t  M, = 2 . 6  i t  is 

increasing over the entire length of the shell. Some of this trend 

i s  probably due to the nose shape a s  outlined in the introduction, but 

some i s  probably due to the wind tunnel. Strength considerations 

dictated that the model be located in the downstream part of the 

test section and wind tunnel calibrations indicate that flow uniformity 

there deteriorates somewhat a t  lower Mach numbers. 

The surprising dependence of C on qoe at  M, = 3.4 
P 

shown in Fig. E. 3 i s  probably due to the so-called "shock wave-bound- 

a ry  layer interaction", See, for example, Ref. 31, pages 340 to 342. 

Boundary layer theory shows that the displacement thickness of a 

laminar boundary layer on an insulated flat plate a t  high Mach numbers 

i s  proportional to the Mach number equared and inversely proportional 

to the square root of the Reynolds number, Qualitatively similar 

results can be expected here even though the model i s  not a flat 

plate and the flow i s  not laminar. The data of Fig, E. 6 substantiate 

this expectation. Hence a s  the Mach number increases, the displace- 

ment thickness increases rapidly untFZ some critical Mach number 

range i s  reached when it  i s  no longer small compared to the model 

thickness, Then i t  will begin to have an appreciable effect on the 

inviscid flow outside the boundary layer. For  constant Mach number 

in this critical range, decreasing q, decreases the Reynolds number 

which further increases the displacement thickness, Therefore, the 

effective thickness ratio of the model increases, thus producing an 

increase in C . 
P 



In conclusion, i t  seems that the best flow conditions 

for the flutter tests  would be in  the vicinity of M, = 3.0. The lower 

Mach numbers should be avoided because of the poor distributions 

of static pressure accompanying them. On the other hand, a t  the 

higher Mach numbers, the static pressure  distribution is very 

favorable, but the boundary layer  thickness changes markedly with 

f ree  s t ream dynamic pressure. Consequently, the higher Mach 

numbers should also be avoided. 



APPENDIX F 

PO TENTIAE SOLUTION O F  LEONARD AND HEDGEPETH 

Leonard and Hedgepeth (Ref. 7) have developed an  

exact expression for the linearized aerodynamic pressure  acting on 

a cylindrical shell of infinite length, which i s  exposed externally to 

an asally-directed air stream and where the shell i s  deformed b y  a 

travelling wave with sinussidal spatial dependence. It i s  fair ly easy 

to superimpose solutions for waves travelling in both the upstream 

and downstream directions to obtain the solution for a standing wave, 

The results obtained b y  doing this a r e  given below for the conditions 

of interest  herein. 

For  a shell deformation given by  

the resulting aerodynamic pressure  may be put in the form 

p =  c e 
iu t 

sin e< x i- pcm cos o(,x m m I (F. 2 )  



where p,, and pcm are as follows: 

(i) For MI = M, (1 - k) 7 1, k = 
a 

G q q y 0  

(ii) For I h 4  1 C 1 

(F. 3b) 

where 



Kn (4 
K (z; n)  = 

dKn - (2) 
dz 

and Hn("(z) and ~ ~ ( ~ ' ( 2 )  a r e  the Hankel functions (Bessel functions 

of the third kind) and Kn(z) is the modified Hankel function (modified 

Bessel function of the third kind ). 



APPENDIX G 

THE BOUNDARY LAYER PERTURBATION PROBLEM ASSOCIATED 

WITH THE SUPERSONIC FLUTTER O F  CYLINDRICAL SHELLS 

G. 1 Nomenclature 

speed of sound in gas 
I 

arbi t rary  constant in power se r ies  solution of P 
f 

near cri t ical  point of Eq. (C. 22) 

C specific heat of gas  at constant pressure 
P 

F, G, H z dependent amplitudes of x, z, y components of 

perturbation velocities respectively; cf. Eqs. (G. 8) 

reduced frequency of wall oscillation, d*/o< u,* 

Mach number 

z dependent amplitude of pressure perturbations; 

cf. Eq, (G.12). 



amplitude of sin ocx and cos oc x components of 

perturbation pressure  on wall respectively; cf. 

Eq. (G. 46). 

pressure  perturbation 

mean component of pressure  in unperturbed gas flow 

P'/P 

universal gas constant 

Reynold's number 

z dependent amplitude of density perturbations; cf. 

Eq. (G. 11) 

temperature perturbation 

mean component of temperature in unperturbed gas flow 

time 

mean component of velocity in unperturbed gas flow 

x, y, z components of velocity perturbations respectively 

wall deflection 

coordinate in plane of wall and parallel to f ree  stream 

direction 

coordinate in  plane of wall and normal to f ree  stream 

direction 

coordinate normal to wall 



Subscripts 

wave number of perturbations in x direction 

wave number of perturbations in y direction 

ratio of specific heats of gas 

boundary layer thickness 

z /  s 
vplue of q for which U = k 

dependent amplitude of temperature perturbations; 

cf. Eq. (G.13). 

e % , boundary layer thickness parameter 

3.14159265 

density perturbation 

mean component sf density in unperturbed gas flow 

p /e , three dimensionality parameter 

phase angles of coefficients of sin d x and cos oc x 

components of perturbation pressure  on wall respectively; 

cf, Eq. (G-46)-  

frequency of wall oscillation 

imaginary part 

real  part  

f ree  stream value 

parts of perturbations which have form of travelling 

waves in + and - x directions, respectively. 



denotes dimensional quantities (Note: the variables 

ot , p , x, y, z, S , w, Cp, R a r e  also dimensional) 

Miscellaneous Functionals 

R'l 0 real  part  of ( 

d t m (  imaginary part  of ( 1 

I (  )I modulus of ( ) 

Arg ( 1 argument of ( 1 

[ ] evaluated at critical point (q = qc) 

l n ~  1 natural logarithm of ( ) 



G. 2 Introduction - 

The importance of including the effect of the viscous 

boundary layer in analyzing certain types of panel flutter has been 

fairly well established. The preliminary work of Miles (Ref. 32), 

McClure (Ref. 33) and Anderson and Fung (Ref, 4)  which pertains to 

this  problem i s  summarized by Fung in Ref. 2. Miles showed that 

a parallel shear flow may reduce the degree of instability of an 

axisyrnmetrid travelling wave on an infinitely long cylindrical shell 

in an external supersonic flow by an order of magnitude. McClure 

showed that the boundary layer on a flat panel in the low supersonic 

Mach number range i s  very stabilizing to two-dimensional flutter. 

This seems to be a transonic phenomenon in that the effect of the 

boundary layer vanished a s  the Mach number approached p. 
Anderson and Fung's work with an idealized step-boundary Payer 

model on a cylindrical shell showed a significant three-dimensional 

effect. An increase in the number of circumferential waves in the 

flutter mode was accompanied by significant changes in the amplitude 

and phase of the aerodynamic pressure  on the shell wall. 

In more  recent work, McClure (Ref, 34) has developed 

a "pseudo-laminar" theory for travelling-wave disturbances in the 

fully turbulent boundary layer on the basis of an analogy with laminar 

viscous flow. The assumed point of view which has been basic to the 

development of the classical aerodynamic pressure  operators for 

use in flutter calculations i s  that regular perturbations a r e  induced 

in the flow by a prescribed wall motion, He considers three postulated 

interactions between 1) these regular disturbances and 2) the mean 

steady flow (mean plus turbulent components). The alternative 

postulates a r e  designated: the Itlinear interactionrs in which 1) and 2) 

a r e  completely independent; the "'quasi-linear interactionu in which 

1) depend only slightly on 2)j and the "non-linear interaction" in which 

1) and 2) a r e  highly dependent on each other. He shows that the 



"linear interaction" model i s  an adequate representation of the 

phenomenon under the restrictions that i )  the wall motion has a 

negligible random component, and ii) the disturbance has small  

enough amplitude and phase velocity (compared to the f r ee  stream 

velocity). 

The experimental results (Section 2 .  3) seem to indicate 

that these restrictions a r e  indeed satisfied for the cylindrical shell 

flutter. Power spectral analysis of the shell wall motions during 

flutter showed no measurable power a t  any frequencies except the 

flutter frequency (or frequencies in the cases  when more  than one 

flutter mode was present). In addition, there was no measurable 

change in the boundary layer profile after the onset of flutter. 

On the basis of these justifications, the "linear 

interaction, pseudo-laminar" model i s  assumed from the outset in 

the present work. Furthermore, only the inviscid solution to the 

resulting perturbation equations i s  considered. In analogy to the 

laminar case, this inviscid solution corresponds to the so-called 

zeroth order solution of an asymptotic solution of the complete 

linearized perturbation equations based on an expansion in powers 

of l/o( Re. Hence,this solution can be expected to be a reasonable 

approximation a s  long as ocR i s  very large. For  the intended e 
applications, this will indeed be the case, 

For  most  applications, the boundary layer will be thin 

compared to the radius of the shell. Hence,the cylindrical surface 

may be considered esentially flat and the boundary layer perturbation 

problem may be solved for a flat wall. This will simplify the 

computations considerably. 



G. 3 Formulation of Boundary Layer Perturbation Problem 

G. 3.1 Differential Equations for  Infinitesimal Disturbances 

The geometry to be considered i s  that of a supersonic 

stream flowing approximately parallel to the flexible surface wall 

defined by the plane z = 0. Some kind of a turbulent boundary layer 

exists near the wall. The flow that exists when the wall i s  perfectly 

flat and stationary is called the undisturbed flow, and the quantities 

which define this Row such a s  velocity and temperature a r e  composed 

of two parts, the mean o r  time-independent components and the 

turbulent o r  randomly-fluctuating components, The mean components 

depend on the space coordinates x (the stream wise direction) and z 

but not on y. 

The mathematical problem i s  formulated by assuming 

that the undisturbed flow is exactly parallel to the plane z = 0 and 

extends in  the x direction from - ao to t 0 0 .  As a result, the mean 

components of the undisturbed flow quantities depend only on z .  The 

effective Prandtl number for  the flow i s  assumed to be unity and the 

wall i s  taken a s  insulated so that the mean component of temperature 
3 
T (z)  is related to the mean component of velocity U*(z) by 

L c V + ' U* = constant . 
P Z 

With the usual assumption that the mean component of pressure i s  

constant across  the boundary layer, the mean component of density - 
p'F(z) i s  proportional to the inverse of the mean component of 

temperature from the perfect gas law. 



The wall z = 0 i s  assumed to be oscillating in the z 

direction with infinitesimal amplitude in a standing wave pattern so 
-ia*t 

that i t s  deflection i s  given by w(x, y, t )  = e sin oc x sin p y. 

The common complex notation i s  employed for the time dependence, 

and the deflection amplitude i s  taken to be unity for convenience. 

The oscillating wall induces regular perturbations in velocity (u *, 
X 

u *, uZ'#), pressure p*, density psg and temperature T* in the gas 
Y 

flow adjacent to it. It i s  assumed that these perturbations do not 

affect the undisturbed flow quantities so that the total flow quantities 

such a s  velocity and temperature a r e  just the sum of corresponding 

undisturbed flow quantities and these perturbation quantities. 

Substitution of the total flow quantitiei into the 

conservation laws of mass, momentum and energy, subtracting off 

the boundary layer equations which the undisturbed flow quantities 

were assumed to satisfy, dropping all nonlinear t e rms  in turbulent 

and pe r tu rba t io~  quantities and neglecting viscous and heat conduction 

te rms  yields the following set  of perturbation equations: 

Continuity: 

Momentum: 

a u  
X 

Bu - t u -  l 

udk at ax dz 



Energy: 

State: 

where the following nondim ensionalization has been included: 

U'iC (z) U(z) = - * 
9 u (x, y, z,  t )  = u (x, y, Zy, t )  

U'k -X  -x 
6D Y z X u* CD 



Mow a s  a result of the simplifying assumptions, these 

equations have cqoefficients which depend onby on 2;. Hence the 

dependence of the perturbation quantities on x, y and t may be assumed 

to be exponential, and in particular periodic. It may be seen that 

the following assumed form of the solutions will satisfy the equations 

and the boundary conditions. 

i ( ~ x - 3 * t )  -i (oox+w*t) 
-I. F-b)  

i i(*x-wet)+ H (.Ie -i (4 x+Lu*~) uy(x, Y, 2, t )  = i cosp y H+(z)e " I (G. 9 )  

[ i(rcx-w*t) 
u ~ ( x ,  YI 2 9  t )  = i s h p y  G+(z)e t G - (z)e 

-i(ocx+ w*t) I (G. 10) 

p(x, y, 2, t)  = sinpy 
i (MX- w*t )  

+§ (z)e -i(ax+@*t) - 1 (G. 11) 

L i(Rx- @*t) 
P(X, Y. 2, t) = sin p y P+(z)e + P - (z)e ] (G-12) -i(otx+ u*t) 

T(x, y, z, t )  = s inp  y 
i (dx-  QU* 

+@-+(.)e 
-i (&x+ u*t) 



The plus and minus sign subscripts  denote the portions of the solution 

which have the form of traveling-waves in the plus and minus x 

directions respectively. Substituting these quantities into Eqs. (G. 2) 

to (G. 7) yields- 

Continuity: 

4. dG - 
[ S - ( U + k ) t p ( F  - * H H - - q  r ) - p  dr (G. 14) 

Momentum: 

(G. 15) 

(G. 16) 

(G. 17) 



Energy: 

- 1 

P 

(G. 18) 

dT G + ~ A ( F  - - t $H----&= 
P - = 

State: 

itXX and e - i&x Since the e a r e  independent, the coefficients of these 

terms must all vanish individually. Hence there i s  one se t  of s ix  

total differential equations for the s ix  dependent variables F+, G+, H+ 

St, P+ and @ + and another se t  of the other s ix  F - . G - , H-, S-, P- 

and 0 - Each set  of six may be combined to form one second 

order equation in only one variableBand it will be convenient here  to 

le t  that variable be the pressure  P o r  P . When this is done, the 3- - 
resulting equation is 

(G. 20) 

The corresponding equation for P - may be obtained from Eq. (C. 20) 

by simply replacing P+ by P - , -L by - oc and k by -k. Introducing 

the nondimensional independent variable q = z / $  where s i s  the 

boundary layer thickness and the function 



Eq. (G. 20) becomes 

(G. 21)' 

where K =a$, a = f / d  a d  pr imes  denote differentiation with 

respect  to q. Similar ly the equation for P - is 

where 

(G. 24) 

The form of T(-q) m a y  be obtained f rom Eq, (G. 1) and is 

(G. 25) 



G, 3 . 2  Boundary Conditions 

Since the viscosity and heat conduction have been 

ne gIec ted in the perturbation equations, the only boundary condition 

that may be satisfied at the wall i s  that the normal perturbation 

velocity be equal to the velocity of the wall. F o r  the given wall 

deflection, this condition takes the form 

- 1 a w  - - iw* - - -iup*t 
ue(& y, 0, t) - - -at sin ocx sin p y , (G. 26) 

Ui4, * %m * 

Now from Eq. (G, lo), 

= i sin! y e -iu*t i (G+(O)+ G_(O) ) cosax  + i(G+(O)- G (0)) s inax  (G. 27) - I* 
Hence combining Eqs. (G. 26) and (G, 27) yields 

This m a y  be easily converted into boundary conditions on P+ and P - 
by using Eqs. (G. 17). In nondimensiond form, these a r e  



and 

The outer boundary conditions may b e  obtained by 

considering Eqs. ( 6 . 2 2 )  and (G. 23) a s  q becomes large. As q -,-, 
U(q) - 1, 'f(q) - 1 so that V+' - 0 and V M 1 - k )  Hence 

9 
Eq. (G. 22) becomes 

(G.  30) 

Hence the behavior of P+ for large  q is 

P+ - exp 2 
K Jl + p2 - Me (I - k) 

(G. 31a) 

(G. 31b) 



2 If M, 2(1 - k) i s  greater  than o r  l e s s  than (1 +p2)  respectively. 

h the f i r s t  case, the Sommerfeld radiation condition i s  used to 

determine which sign i s  appropriate. This condition requires  that 

the perturbations be functions of (x - cq) a s  7 -r - for  supersonic 

outer flow. Since the P+ i s  multiplied by e i-x in the pressure  

perturbation expression, the minus sign in expression (G. 31a) must 

therefore be chosen. In the second case, the minus sign in expression 

(G. 31b) i s  chosen in order  that the perturbation not grow unbounded a s  

q Heqce,the outer boundary conditions for  P+ become 

(G. 32a) 

a s  q -- for  these two cases. 

A similar  analysis for  I? - leads to the outer boundary 

conditions 

(G. 33a) 



(G. 33b) 

2 2 
if M_ (1 t k12 is greater  than o r  l e s s  than (1 + u- ) respectively. 



G. 4 Solution of P re s su re  Perturbation Equations 

It has been customary in the past to solve the inviscid 

equation for the stability of the laminar boundary layer  in the form 
2 2 

of a convergent se r ies  in powers of oC (or K ) However, this 

approach proves unsatisfactory for  high Mach numbers because of 

the resulting slow convergence. It would also be unsatisfactory for  
2 the case in which 8" i s  large. Hence, in the present problem a 

numerical  solution to Eqs. (G. 22) and (G,  23) i s  required. The 

approach outlined by Reshotko (Ref. 35) for  solving the laminar 

boundary layer stability problem will be followed here. 

The mean velocity profile for  the turbulent boundary 

layer i s  taken to be the well-known one seventh p o w e ~  law between 

q = 0. l and 0.9. Fo r  q 7 0. 9, the profile i s  taken tq be exponential 

such that U and Uf a r e  continuous a t  7 = 0.9 and U 9 1 a s  q- - . 
7 9 

For  q 4 0.1. a power series of the form U = a? + bq + cq8 + dq is 

assumed and the parameters a, b, c and d a r e  chosen so a s  to make 

U, U', U" and UI1' continuous a t  -q = 0. l, As shown in Figure G.1 

this assumed profile provides a good fit for  the experimental data 

of Coles (Ref. 36) . 

G. 4.1 Numerical Solution of Equation for  P+ 

By the standard transformation 

(G. 34) 



p a x  o q u ~  dn uayozq aq uv:, puv uo~q-enba xalduro:, v ST: ( 5 ~  '9) * b 3  

adAq p ~ 3 3 . ~ 8  ayq JO uolq~nba 

xvaulpou xapxo q s x ~ j  $ r r ~ ~ o ~ ~ o j  ayq o q u ~  paqzanuo:, aq 1123 (ZZ '9) ' b 3  



For  a given wall oscillation and boundary layer 

geometry, K , tr , M, and k a r e  knok t -  Hence Q+ for large  q 

i s  known and E y !  :. (G. 3 6 )  can be integrated rlumerically in through 

the boundary layer (i. e. q -r. 0). However, for most applications 

k 4 1 ,and hence V goes to zero somewhere in the boundary Payer. 
t 

The point where this occurs i s  defined by qc and i s  the so-called 

critical layer from hydrodynamic stability problems. Eq. (G. 2 2 )  

has a regular singularity a t  q = r\ a s  a result  of the neglecting of 
C 

viscosity and heat conduction for  the perturbation quantities. It i s  

c lear  that the inviscid solution cannot fully describe the physical 

phenomenon in the vicinity of q . However, in the laminar problem 
C 

(Ref. 35), a s  long as  & Re(l - k) 1 the effects of viscosity and 

heat conductivity die out rapidly with distaace on either side of the 

critical layer  and have very little effect on the solution a finite 

distance away from this layer. The same results should hold true 

in the present problem. 

The solution in the neighborhood of the singular point 

q, is obtained by se r ies  expansion (method of Frobenius), the details 

of which a r e  giiren in Appendix H. The resulting behavior of Qt about 

the critical point is a s  follows: 



where 

A = [$] (G. 40a) 

C 

2 (G. 40b) 

C 

C = Cr t iCi = arb i t r a ry  constant which may 

be complex, 

The actual numerical  integration i s  slightly different 

fo r  the two different se t s  of boundary conditions (G, 37a) and (G, 37b), 

and may be conveniently broken into two cases  as follows: 



2 2 
Case l :  I t 6  Z M , ( l - k )  2 

- In this case, Q+ = 0 for q z qc so that Ci 0 . 
The nature of the solution for d i s  depicted ib the following sketch. t 

L 
I 

from Eq. (G, 37a) 

2 2 From Eq. (G, 38), i t  can be seen that Q has a slope of - fi  (P t w  ) 
+ r 

a t  the critical point,but the curvature is logarithmically singular, 

Each value of Cr defines a Q+ curve fo r  q z q,. but only one value 
r 

will result in a curve that becomes asymptotic to Q ( e ~  ), the 
+r required outer boundary condition. Once this constant is determined, 

the integration can proceed inward from the critical layer  to the wall. 



The actual integration for this case then i s  a s  follows: 

Integration from Infinity in  to Critical Layer 

(1 Given I( , CY , k and M, , calculate q from mean profile, C 

calculate A and B from Eqs. (G. 40a and G. 40b) and evaluate 

the outer boundary condition from Eq. (G. 37a). 

( 2 )  Integrate Eq. (G. 36a) from infinity (q PS Z2, 5) into the vicinity 

of qc. Obtain a f i r s t  estimate of Cr b y  inverting Eq. (G. 38). 

(3)  Using this value of Cr in Eq. (C. 38), evaluate Q+ for a small 
r 

positive value of (q - qc). 

(4) Continue calculating Q+ by integrating Eq. (G. 36a) out to 

infinity. Compare the rresult with the value from step (1). 

(5) Repeat pteps (3 )  and (4) adjusting Cr until the outer boundary 

condition is satisfied. 

Integration from Critical Laver into Wal l  

(6) Using the value of Cr from step (5), evaluate Q and Q for 

some small  negative value of (q - qc). + r +i 

(7) Continue calcuPatisn of R and Q by simultaneous 
+r +i 

integration of Eqs, (G, 36) in  to q = 8 . 



2 
Case 2: M_ '(1 - k) > 1 + s 2 

In this case, Q+ $ 0 for 1 , qc, so that Ci $ 0. 

The nature of the solution for d+ is depicted in the following sketch. 

The explanation for this case i s  the same a s  for Case I except that 

now there a r e  two constants Cr and Ci to be determined so that 

the outer boundary condition (G. 3%) is satisfied. Once these 

constants a r e  determined, the integration can again proceed inward 

from the critical Payer to the wall. 



The actual integration follows the same lines a s  in 

Case 1 except that in steps (2) and ( 3 )  simultaneous integration of 

Eqs. (G. 36) i s  required for q > qc a s  well. Steps (5) and (6) now 

read Cr and Ci instead of just Cr . 

G. 4,2 Numerical Solution of Equation for P - 

Following the same procedure as for P+, the differential 

equations for 

a r e  

(G. 41) 

(G. 42a) 

(G. 42b) 

where V - (T) i s  defined by Eq. (C. 24) . Eqs. (C. 34 ) lead to the outer 

boundary conditions 

2 2 
I + -  - M a  ( 1 9 k )  

2 ' 
O Q - = o  (G. 43a) 

i 

(G. 43b) 
r - i 



a s  '1 - D O  depending on whether 1 + r2 i s  greater  than o r  l e s s  than 

Me2(1 + k12 respectively. 

Since V - (77) does not vanish anywhere in the region of 

interest, the numerical integration of Eqs. (G. 42) from infinity 

into the wall c a n  be carr ied out straightaway. The nature of the 

solution for Q - is depicted in the following two sketches: 

I from Eq. (43a) 

A 

from Eq. (43b) 



G. 4 . 3  Pres su re  Perturbation on W a l l  

Once the solutions for  Q and Q a r e  known on the 
4- - 

wall, the pressure perturbation on the wall may be calculated from 

Eqs. (G. 12). .Solving Eqs. (G, 34) and (G. 41) for  real and imaginary 

parts  yields 

and 

where from Eq. (C. 29) 

(G. 44a) 

(G. 44b) 

(G* 45) 

Evaluating Eq, (C.12) at the wall and substituting from Eqs, (G. 44) 

and (G. 45) yields the pressure  on the oscillating wall 



where 

n 
4's = Arg [Pt(0) - P-(O)] t + 3 

(G. 4 7 )  

G, 5 Results and Discussions 

The calculations described in  Section G. 4 were pelf& 

on the IBM 7090/7094 of the California Institute of Technology 

Computing Center. The method of Runge-Kutta-Gill was used for 

the numerical integration of the differential equations. 

The results  for k = 0.5 and 0-75 a r e  shown in Figs. 

G. 2 to G. 5 along with the corresponding results from potential theory 

and piston theory. It  i s  seen that the boundary Layer results  rapidly 

approach the potential solution results as the boundary layer  thickness 

parameter K decreases.  It i s  also interesting to note that both of 

these results approach the piaton theory result  as the three 

dimensionality parameter  ee goes to zero. 



As noted in Section 2.3, the boundary layer thickness 

for the experimental configurations reported herein was about 0. 2 * 
inches. Hence, K would be about 0.02, 0.04 and 0.06 for the 

observed flutter modes. The results in Figs. G. 2 to G. 5 indicate 

that for these values of K , the boundary layer  results a r e  reasonably 

close to the potential solution results. Hence, in that sense, the 

influence of the boundary layer may be ignored. However, it must  

be emphasized that the present analysis i s  not valid for disturbances 

with very short' wave lengths in the streamwise direction, so that 

the foregoing stptements may not be valid then. 

The peculiar singularities shown in Figs. C. 2 to G. 5 

a t  particular values of b a r e  a result  of singularities in the outer 

boundary conditions which the pressure perturbation quantities P 
4- 

and P - a r e  forced t o satisfy. Fo r  example, a s  shown in Eqs. (G. 321, 

the outer boundary condition which Q+ = P+'/P+ satisfies, has a 

branch point at 6 = rCr where 

2 
&cr = M _  (1 - - 1. 

The same thing i s  t rue  for Q = P !/I? with - - - 

* The measurement of 0.4 inches was obtained a t  the downstream 
end of the shell, so that 0. 2 inches represents some sor t  of average 
over the whole shell. 



At these critical values of cr , the outer boundary condition changes 

from one of radiation to one of exponential decay, and the resulting 

singularity simply reflects the breakdown of the inviscid theory. 

It i s  interesting to note that these singularities do not occur for the 

cylindrical potential theory results (Appendix F), apparently 

because of the attenuating effect of the cylindrical geometry. How- 

ever, the results do show "resonance1' peaks. See for example, 

Ref. 19, 



APPENDIX H 

SERIES SOLUTION O F  PC EQUATION IN APPENDIX G ABOUT 

CRITICAL POINT 

In treating the equation for P+ (the z dependent 

amplitude of that part  of the pressure  perturbation which has the form 

of a traveling wave in the C x direction) a regular singularity appears 

a t  the critical point (where U = k). The solution of this equation in 

the neighborhood of the cri t ical  point is obtained b y  a se r ies  expansion 

that i s  sometimes called the Methodof Frobenius. Althoughthe 

numerical solution is performed on the equivdent f i r s t  order  nonlinear 

equation, the se r ies  expansion will be performed on the second order  

l inear equation (Eq. G ,  22). 

where 

The plus sign subscripts have been dropped for clarity. 



Let 6 = q - q, and assume a solution of the form 

Since V = 0 at 6 = 0, in the neighborhood of the critical point 

and 

where 

and 

Relations (H, 3)  to (H. 5 )  are substituted into Eq. (H. 1), 

and the coefficients s f  each power s f  5 are made to vanish. The 
s - 2 leading power of i s  5 and its coefficient vanishes when 



Since a. # 0, s = 0 o r  3. The coefficient a. i s  se t  equal to 1 

without loss  of generality. The values of al, a2 . . . for the solution 

corresponding to s = 3 (designated P1) a r e  found from the condition 

that the coefficients of the 5 - l, gs, . . . t e rms  vanish. The 

resulting solution i s  

$ 
d 

Since the characteristic exponents differ by an  integer, the second 

linearly independent solution of Eq. (W.1) has the form 

(H. lOa) 

2 3 4 P, = K P ~ (  A n  1 5 ] - in) + 1 + blE + b25 + bgS + b4F, + .. lob? 

J. 
SF The negative sign for the pr term in  the second equation is chosen 
to provide the proper analytic continuation of the solution about the 
critical point. A treatment of the full viscous equations shows that the 
proper path of integration l i es  below the critical point in the complex 
q plane for the case when Uct > 0; cf. Appendix G of Ref. 37. 



Substitution of Eqs. (H.10) into Eq. (H.l) yields 
for P2: 

The coefficient b3 i s  not determined in the procedure and so remains 

arbitrary. Hence Eqs. (H. 11) represent the general solution to 
i 

Eq. (H.1). 

For use in the numerical solution for Py Eqs. (H. 11) 

a r e  expressed in terms of Q = PZt/P2 . This becomes 

(H. 12) 



where C ia an arbi t rary constant which may be complex (i. e. 

C = Cr + iCt) and -&I 5 i s  replaced by ,&I I 5 I - i r r  for 6 L 0 . 
Hence the real  and imaginary parts of Q a r e  a s  follows: 

For  E V 0 

(H. 13) 

(H. 14a) 

For $ 4  0 

(H. P4b) 
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TABLE I 

FLUTTER DATA FOR SHELL NO. 1 (h = 0.0040 INCHES AND P = 0) 
X 

* 
The frequencies f were obtained f rom power spectral  analysis of the pickup signals. The 

l e t t e r s  in  the brackets indicate which one of the motions depicted in figure 12 was present.  ** 
The circumferentia.1 wave number n and the circumferential nodal line number j we re  

obtained f rom t raverse  plots. 





TABLE I (cont. ) 

FLUTTER DATA FOR SHELL NO. 1 (h = 0.0040 INCHES AND P = 0) X 

Carr. Run pt Pm W 1 W w 3 
rm s x rms 19 rms 

f 
- No. No. a3 00 Moo h 

(deg) 
h j n 

(psfa) (0,) (psig) bps )  





I I t I I I I N N  I I I I 

O O d d O  z 2 2 g g Z g z ' m d d d d  
d d d d d d d d d d d d d  



d d d d d d d d d d d d d  

f i m m m m m m m m m m m m  
d d d d d d d d d d d d d  



I I I I O I O I O I  

o o m  
m m m o O m m a b r 9 0  
B \ u ' c 5 ' 6 ' m N ~ o O o  
m m m 0 0 0 0 0 0 0  







T p m d O Q m 9 9 9 9 9  
0 0 d d 0 0 0 0 0 0 0  

d d d d d d d d d d d  

m b w N a 3 6 ' m a c P m a '  
0 0 A - t 0 0 0 0 0 0 0  

d d d d d d d d d d d  







TABLE I11 (cont. ) 

F L U T T E R  DATA F O R  SHELL NO. 3 (h = 0.0040 INCHES AND Mm = 2.993)  

C o r r .  Run t  = t  Pm 
P W 1 W 

x r r n s  x rms 6 w8rEns 
3 f 

No. No. 00 a, h T  h - 7 . 1 1 - j  
n 

(psfa)  ( 0 ~ 1  (psig) (Ib) (deg) (CPS 

0. 15 0 . 3  0 . 1 2  -58 0.10 - - 
0. 77 0. 3 0. 51 -58 0 .26 - - 
0 .91  0 . 3  0. 57 -58 0 .30  0 l o c a l  

0 . 1 3  0 . 3  0 .11  -58 0, 11 - - 
0.09 0 . 3  0. 13  -58 0 .13 - - 
0. 59 0. 3 0 .46 -58 0.44 1 20 

0. 1 3  0. 3 0. 08 -58 0 .10  - - 

0.10 0 . 3  0. 07 -58 0 .08  - - 

( a )  

1 04 (d)  

94(d) 

I (a) g 
4 

606(c) 1 

652(c) 

( a )  

( a )  

24 1 17  2123 108.6  0 .12  90 -58 "0.10 - - (a) 0 .15 0 . 3  ' 0 . 1 1  

242 17 2123 108 .9  0.003 90 0. 56 0. 3 0 .40 -58 0 .24 0 l o c a l  100(d) 

243 17 2122 1 0 8 . 2  -0 .006 90 0. 82  0 .3  0 .47 -58 0 .24  O l o c a l  93(d) 

244 17  2123 108.6  -0 .012 90 0. 90 0. 3 0. 52 -58 0. 30 0 l o c a l  85(d) 

24 5 18 2121 108 .5  - 0 , 0 1 1  0 1. 04 0. 3 0. 64 -58 0 .36 O l o c a l  90(d) 



b I n S a 3 N  O O O N r n  
m r , o o m X - * ~ ~ d d ~  

d d d d d d d d d d d d  

m n n m m w l ~ ~ ~ m n w l  

d d d d d d d d d d d d  



d + F m m a c o m b a * m l n  
4 0 0 0 0 0 d m m d ~ m d  
d d d d d d d d d d d d d  

O O ~ ~ N M N N N N N N ~  
N N N N N N N N N N N M N  



TABLE 111 (cont.  ) 

F L U T T E R  DATA FOR SHELL NO. 3 (h = 0.0040 INCHES AND M = 2.993)  
00 

C o r r .  Run 
Pt P m  

P W 1 W 
X r m s  X 

3 f 
7 

r m s  e W  r m s  No. No. 00 00 ih L - h j n 
(psfa) ( o ~ )  (psig) ob) - (CPS) 



h h h  h h h  



TABLE 111 (cont. ) 

FLUTTER DATA FOR SHELL NO. 3 (h = 0.0040 INCHES AND Ma = 2.993) 

Corr .  Run p T P w 1 w pm x rrns x rms Q w--m 
3 

No. No. ta, too 1 7  - 

0. 18 0. 3 0. 15 -58 0. 17 - - 
0.56 0.3 0.37 -58 0.34 0 local  

310 28 2828 127.4 -0.019 0 0. 76 0. 3 0. 54 -58 0.41 0 local  71(d) 



Q F 9  
N N N  
m m o o  
N N N  





TABLE I11 (cont. ) 

FLUTTER DATA FOR S H E L L  NO. 3 (h = 0.0040 INCHES AND Ma = 2.993) 

Corr.  Run 
t ='t Pm 

P W 
x rms  x rms  a wr-, 

1 3 
No. No. 00 00 - L h --(deg) h J -- 

( C P ~  ) 

Shallow diamond pa.ttern buckles appeared he re. 

336A 32 2473 121.4 0.015 200 0. 82 0. 3 0. 15 -58 0.18 - - (d) 

I 
338 33 2474 121.7 0.49 240 0. 13 0. 3 0. 08 -58 0.10 - - (a) e 

Cn 
01 

339 34 2475 119.8 0.2'7 240 0. 13 0. 3 0. 09 -58 0. 12 - - (a) 
t 

Complete buckling occurred here at p = 0. 098 psig. Buckling pattern i s  shown in figures 8 and 9. m 



TABLE IV 

TEST CONDITIONS FOR STATIC PRESSURE TEST 

Correlation M 
Number 60 



TABLE V 

FOUR MODE-PISTON THEORY RESULTS, P = pm = 0 X 

(psia) ( rad l sec )  (de g ) (deg) v e l d  

* 
The modal amplitudes c 1 and phases + are normalized by 

taking cl = l i .  i 



TABLE VI 

SIX MODE - PISTON THEORY RESULTS, P = pm = 0 X 

9 
See note under Table V 



TABLE VII 

SIX MODE - POTENTIAL THEORY RESULTS, P = pm = 0 
X 

* 
See note under Table V 



Figure  1: F r o n t  View of Cylindrical  Pane l  F lu t t e r  Model In Tunnel 

F igu re  2: Back View of Cylindrical  Pane l  F lu t t e r  Model in  Tunnel 









She I I 

Figure  6 :  View of Model Instrumentation - 

Rear End R i n g 1  

FIG. 7 CROSS SECTION OF BELLOWS  BUCKLE(^-0.0039") 



Figure  8: Right Hand Side of Buckled Shell; Run No. 34 

Figure  9: Lef t  Ha.nd Side of Buckled Shell; Run No. 34 





Fi6, 1% BOUNDARY LAYER PROFILES 



C o r r .  No. 310 

10 m s e c l d i v .  

F igu re  12: Sample T ime  T r a c e s  of Shell Motion 





Run 3; %= 0.98 psi- 
Run 3 j h z 0 . 3 7  psi-- 
Run 6 ; pm = 3.93 psi &---- 

FIG. 14 FLUTTER AMPLITUDE VS. TOTAL PRESSURE 



F w  = 2111 psf- 
wrms - Pickup # 1 Fm = 2466 psf O-- 
h '?a = 2818 psf 6--- 

,A- ----,* 
\ 
\ 

\ -. 
Yb- ----------- ------- &------ 

&I '\ / 4-- 

&A4-- \+cC) 

wrmss Pickup W 3 

FIG. 1% FLUTTER AMPLITUDE VS. INTERNAL PRESSURE 
FOR BUCKLED (BELLOWS MODE) SHELL 



Run  11;P,=O 0-- 

I Run 12;P,=90 ib*- Pms R u n  13; P, = 200 lb6--- 
R u n 14 ; P, = 300 I b P---*--- 

4 Pickup # 2 

3 p, (psi) 4 

FIG, 16 FLUTTER AMPLITUDE VS. INTERNAL PRESSURE 
WITH VARIOUS AXIAL L0ADS;CORR. #'s 187 TO 217 



Run16,18;P,= 0 + 

Run 17j P, = 90 lb--- 
Run 19;P, = 200 1bb--- 
Run ZOiP, = 300 lbo--- 

I I P P P a I I 

-.04 -.02 0 1 2 3 p, (psi) 4 

FIG. 17 FLUTTER AMPLITUDE VS. INTERNAL PRESSURE 
WITH VARIOUS AXIAL LOADSi cORR.#'~ 228 TO 250 



Runs 22.24; P, = 0 - 
Runs 23.31 i P, = 90 Ibb- 

Run 25; fk = 200 Ibb--- 
RUR 26;P,= 300lbV---.. 

&-u- 
D 

-,04 -.02 0 1 2 3 p, (psi) 4 

FIG, "1 FLUTTER AMPLITUDE VS. INTERNAL PRESSURE 
WITH VARlOUS AXIAL LOADSi CORR. #'s 263-296 8326-332 



Run 28;q(= 0 + 

Run 29;P,= 90lb*-- 
Run 30;P,= 200 1b P--- 

FIG 19 FLUTTER AMPLITUDE VS. INTERNAL PRESSURE 
WITH VARIOUS AXIAL LOADSi CORR #k 299 TO 325 
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CIRCUMFERENTIAL WAVE NUMBER, n 

FlG.28 FREQUENCY SQUARED DIFFERENCES FOR 
UNSTRESSED CY LlNDRlCAL SHELL  



FIG.29 SHELL GEOMETRY AND COORDINATE SYSTEM 
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FIG.30 CYLINDRICAL SHELL FLUTTER BOUNDARIES 



6 MODES - PISTON THEORY 
P x z p m = O ,  n =  24  

100 

0 

100 

A X I A L  POSITION, x/L 

FIG.31 A X l A L  VARIATION OF F L U T T E R  MODE 





6 MODES, POTENTiAL THEORY 
n.20, p m = t  = O  

FIG.33 LOCUS OF FREQUENCY ROOTS AS p, INCREASES 



6 MODES- POTENTIAL THEORY 
P, =O, n.20, pm (psig) 

P, = O  

- 

- 0 
A X I A L  POSITION, x / L  

4 X I A L  VARIATION OF F L U T T E R  MODE 



2 MODES - PISTON THEORY 
= 0.5 p s i g ,  n = 23 

2 

la 

16 
a 

cn 
Lel 
C3 
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a 
z I 
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a 
0 STABLE LIMIT CYCLE 
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z 
a 
eLJ 
3 

UNSTABLE ---t+ 

0 

NONDlMENSlONAL STATIC PRESSURE, f/f, 

FIG.35 LIMIT CYCLE AMPLITUDES 



2 MODES-PISTON THEORY 

P, = 0.5 psig, n =  23 

90 120 
MEAN PHASE ANGLE BETWEEN MODES, iTj(deg) 

F1G.36 FLUTTER FREQUENCY AND PHASE ANGLE 
DEPENDENCE ON AMPLITUDE 
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Change 

1 
(volts) 

Voltage 
Change 

(volts) 

Pickup # 3 
Voltage 
Change 

(volts) 

Distance f rom Pickup to Surface (in) 

FIG. A.1 PICKUP CALIBRATION CURVES 



Figure A. 2: Instrument Arrangement in Tunnel Control Room 

Figure A. 3: Close-up View of Boundary Layer Rake 
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0 
0 98 180 270 360 

Angular Position (degrees) 

FIG. A.4 AXIAL STRESS DISTRIBUTION IN 
INSTRUMENTED SHELL 



20 40 60 80 
Pressure in Rubber Tubes, & (psig) 

FIG, A.5 CALIBRATION OF AXIAL LOADING MECHANISM 



-198  three 110' ~ i c r o d o t  lnstrumen?at ion Cables 

meter Leads 

psco Model DA-I02 

Ballantine Model 320 

True RMS Voltmeter 

FIG. 5.1 SCHEME OF DATA RECOWQING CIRCUITRY 





SECTION A - A  

0.020 THICK CYLINDRICAL SHELL 

FIG. E.2 DETAILS  OF A STAT1 C PRESSURE PORT 



c~ -201- 
Corr .  # 2; q_= 299.1 psf 0 

O 
o-o-O-o-o<,o~ 

3 ; %= 249.7 psf 0 

-.024=; q 0 O o -  
0-0-0- 04 ; Q= 199.6 psf A 
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-.01 iL~-~-~A-A-A-A-A 3- = o0 . I a a 

13 0 
B 

A -------- 

0 4 8 12 16 
Longitudinal Position, x (in) 

FIG. E.3 STATIC PRESSURE DISTRIBUTION, h& = 3.400 



C~ -202- 
Cor r .  # 5 ; qm = 348.9 psf 0 

6;q, = 2 9 8 . 9 p s f ~  
-@-~--~-4-~-g,g-~-4 7; cl, = 249.6 psfA 

-4%- 

L I I , e =  0" 

Longitudinal Posit ion, x (in) 

FIG. E4 STATIC PRESSURE DISTRIBUTION, lvb, =3.003 



C~ -203- 
Corr. # I1 ; q, = 448.7psf 0 

9 ;a, = 374.2psf 0 

a-&- 10:q- = 296.7psf A 
--~-b---&- 

eJ- g =  0" 
h 1 1 

Longitudinal Position , x (in) 

FIG. E.5 STATIC PRESSURE DISTRIBUTION, Ma= 2.605 
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FIG. E5 BOUNDARY LAYER PROFILES 












