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ABSTRACT

Various experimental and theoretical studies on the

supersonic flutter of circular cylindrical shells are discussed.

Results of experiments in the Mach number range
2.5 - 3.5 are presented. Three shells with radius~to-thickness ratios
of 2, 000 were %subjected to radial external pressure loadings and to
combinations of axial compressive loading and internal pressurization

while in the presence of an external axially-directed supersonic flow,

Small amounts of internal pressurization were very
stabilizing w:lth respect to flutter, but moderate am‘;)unts reduced
stability to the:unpressurized level, However, high internal pressures
completely stabilized the shells. The axial compressive loading was

slightly destabilizing for moderate amounts of internal pressurization.

The flutter modes (which were standing waves in the
axial direction with zero, one or two circumferential nodal lines)
contained many waves around the circumference (of the order of 20)
that travelled in the circumferential direction. This circumferentially
travelling wave phenomenon possibly results from the nonlinear nature
of cylindrical shells,
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Model integrity was not threatened by even the most
violent flutter which occurred just prior to buckling under radial
external pressure loading and just é.fter buckling under axial com-
pressive loading. Buckled portions of a shell did not flutter. It
appears that the large local curvatures encountered in the buckling of
a cylindrical shell tend to stabilize the shell locally.,;f However, it
also appears that the localized buckling usually encq‘i‘tintered in

practice reduces the stability of any unbuckled regiéﬁs of the shell.

The experimental flutter boundaries are compared
with various theoretical predictions. Following Voss, a modal
analysis which satisfies the so-called freely supported shell boundary
conditions is used in conjunction with different aerodynam:.c approxi-
mations - namely piston theory and the potential theory of Leonard
and Hedgepeth.” It was found that the pressurized cylindrical shells
fluttered at a lower level of free stream energy than predicted by
the theory. Of the two results, that using piston theory appears to
correspond closest to the experiment both in stability boundary and
in critical values of circumferential wave number. Both predictions
yield a larger stabilizing influence of the shell internal pressure

than observed in the experiment.

An analysis is presented for calculating the final
limiting amplitudes of flutter based on a two-mode, piston theory
approximation. A Galerkin procedure is used to reduce the nonlinear
shallow shell equations of Marguerre to two coupled nonlinear ordinary
differential equations for the modal amplitudes. An approximate limit
cycle solution to these equations is obtained by the method of Krylov

and Bogoliubov. The results indicate that for practical purposes
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cylindrical shell flutter does not occur below the stability boundary

for infinitesimal disturbances., The limit cycle amplitudes predicted
by this analysis seem to agree very well with the experimental ones,
The results further indicate that the flutter amplitude, frequency and
mode shape should change discontinuously (or jump) as the aerodynamic

pressure is increased beyond the value for first flutter.
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I. INTRODUCTION

The self-excited oscillation of thin plates or
membranes exposed on one side to a parallel supel;sonic airstream
is called panel flutter, The outer skin on almost all high speed
flight vehicles is supported by variously spaced spars or ribs which
divide it into individual panels forming an array, and these panels are
susceptible to this flutter instability especially when subjected to
in-plane compressive loads. In some cases, the prevention of this

instability becomes the primary design criterion.

A thin-walled cylindrical shell of finite length may
be considered as a degenerate panel which is closed on itself in the
~ transverse direction. Such a panél or shell may also exhibit this
flutter instability. In fact, the first reported occurrence of the

phenomenon appears to have been on the V-2 rocket.

The first successful experimental observation of
cylindrical shell flutter was obtained by the GALCIT* at the NASA
Ames 8 x 7 foot supersonic tunnel in May 1962 (Refs. 1 and 2).
Further experiments carried out by the writer in June and August

1964 were designed to clarify the interaction of flutter and buckling,

* Graduate Aeronautical Laboratories, California Institute of

Technology.



The nonlinear interaction between buckling and
flutter of flat panels or curved shell segments is a complex but
important problem, mainly because the severest flutter seems to
occur in the vicinity of buckling. In the case of flat panels, both
theoretical and experimental results indicate that the flat panel is
much more susceptible to large amplitude flutter in tf;he buckled
conﬁguration; Theory for this interaction for the complete cylin-
drical shell is not yet available, but the limited restilts from the
GALCIT - Amgs experiments indicate that the maximum amplitude
of flutter is obfip.ined as buckling is approached, and that the flutter
disappears wh;n the shell is completely buckled. The shell with
large buckles: seems to act like a corrugated shell, whose critical
flutter speed is much higher than that of the circular shell, These
results were iimited to buckling under radial external pressure

loading only,

The buckling of a cylindrical shell under axial
compression results in a buckling mode entirely different from
that of radial external pressure loading. For low values of internal
pressure, the well-known diamond pattern buckles are obtained, and
at high values, the so-called bellows shaped ones are obtained. See
for example, the excellent photographs in Ref. 3. Consequently,it
was to be expected that the effect of axial compressive loading on
the flutter would be entirely different from that of the radial external
pressure loading. Hence,further experiments to investigate this

interaction seemed desirable,

These experiments were carried out during the
summer of 1964 at the NASA Ames 8 x 7 foot supersonic tunnel in two
different phases., The first phase consisted of measuring the static
pressure distribution over the thin shell section of the cylindrical



panel flutter model in the absence of flutter. The second phase
consisted of the actual flutter tests. The first part oi this thesis

describes these experiments and the results obtained: from them.

In the second part of this thesis, an attempt is made
to provide some quantitative comparison between th;e experimental
results and theory., Although by no means complete, this comparison
goes far in straightening out some of the controversy over this

problem already present in the literature,

Previously, it was thought that all published theories
for cylindrical shell flutter yielded pessimistic results as to thick-
nesses required to prevent the instability, The influence of the viscous
boundary layer, which was ignored in all these theories, was suggested
as a possible explanation for the apparent discrepancy between theory
and practice. Calculations based on a simple step boundary layer
model (a thin region of uniform subsonic flow between the shell and the
outer uniform supersonic flow} by Anderson and Fung (Ref. 4) revealed
the possibility of significant changes in the stability boundaries for

shell flutter with many circumierential waves.

This problem is re-examined herein by using a some-
what more realistic boundary layer model - that of a parallel shear
flow with a velocity profile given by the mean velocity distribution in a
classical turbulent boundary layer. The oscillating shell surface is
approximated by an oscillating plane wall whose deflection is sinusoidal
in both in-plane directions. Viscous effects are neglected with respect
to flow perturbation quantities, and the resulting equations are linear-
ized. The final equations admit solutions with exponential dependence

on tirme and the in-plane coordinate directions but must be integrated



numerically in the direction normal to the plane. Several examples
are worked out and are presented in Appendix G. The results from
this study are the results of more recent work by Anderson (Ref, 5)
indicate that the influence of the boundary layer may have been over

predicted by an order of magnitude in the earlier work.

The experiments revealed that the shell internal
pressure was‘an important parameter for the flutter phenomenon,
Consequently, calculations including the effect of internal pressure
were required for comparison purposes. Detailed calculations
including this effect are presented using an analysis similar to that
of Voss (Ref, 6), but using two main aerodynamic theories - piston
theory and the potential theory of Lieonard and Hedgepeth (Ref. 7).
Although the use of the latter theory impiies a neglect of the leading
edge effect, it seems to be the easiest way to includ;‘e three dimensional

effects while retaining the simplicity of a sine wave modal analysis.

Finally, a nonlinear flutter analysis based on a two-
mode, piston theory approximation is presented. A Galerkin procedure
is used to reduce the nonlinear shallow shell equations of Marguerre to
two coupled nonlinear ordinary differential equatiorfs for the modal
amplitudes. An approximate limit cycle solution to these equations is
obtained by the method of Krylov and Bogoliubov, and its stability is
studied by the method of averaging.
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II. EXPERIMENTS

2.1 Introduction

The same basic model used in the 1962 experiments
(Ref. 1) was used in the new tests. The cylindrical shells, having
a diameter of 1§ inches and wall thicknesses of 0,0040 inches (hence
.a radius-to-thickness ratio of 2000), were again fabricated by
electroplating. Over the years the electroplating technique has
improved so that shells of smoother surface, more uniform thickness
distribution, and higher yield point were obtained. A modification of
the shell suppo:&?t and fabrication procedure was introduced so that
the shells could be loaded in axial compression. With the new design,
a test shell could be mounted on the model in the tunnel in about

thirty minutes time.

The model consists of a nose, a center section which
supports the thin shell flutter model and instrumentation, and a tail
section which connects the center section to the wind tunnel sting.

An ideal nose for this model would provide a rapid pressure recovery
and uniform flow over the thin shell section. According to aerodynamic
theory, this ideal nose would have a different shape for each Mach
number to be tested. Since this was impractical, one shape was

chosen for the middle Mach number with the hope that Mach number
effects would be small. Cowl number six of Ref. 8 was chosen for

this purpose, and the data given in this reference would seem to

support this hope.



Previously, a check on the suitability of this cowl for
the flutter model was made {in 1962) on a reduced scale model of 2,0
inches diameter in a 9 x 9 inch supersonic wind tunnel., It was
ascertained (Ref. 1) that the variation of static pressure over the
length of the;ihodel was less than 2 per cent of the dynamic pressure
in the range of Mach numbers of interest, and this was regarded as
satisfactory fo\('; the previous flutter tests whose purbose was mainly
the determina.%?ion of flutter characteristics of preséﬁurized shells.
It is well knowf; that the exact variation of static pr’%ssure over a model
depends to a large extent on the tunnel, and on the ReYnolds number
(model size). ﬁence,for more accurate information, .the full scale
model should be tested in the 8 x 7 foot tunnel, Now,l( for the thin
shells of thicléxess 0. 0040 inches to be used in the ﬂ%gtter tests, the
radial external pressure loading which causes buck.],:ing is of the order
of 0. 05 psig. This pressure is so small that only v:'ery small variations
in static pressure over the shell could be tolerated: These consider-
ations resulted in the decision to investigate the static pressure

distribution over the thin shell section of the model.

A description of this investigation and of the results
obtained from it is given in Appendix E, It was found that the best
testing conditions for the flutter experiments would be in the vicinity
of Mg, = 3.0.



2.2 Flutter Tests

2.2.1 Model and instrumentation

The cylindrical panel flutter model used in these
experiments is the one described in Ref. 1 with some minor modifica-

tions. Its essential features are illustrated in Figs.1l to 6.

The thin shells were constructed by electroplating
copper onto a wax form. After being cut to length and removed from
the form by melting the wax, each shell was soldered to two copper
end rings as shown in Fig. 5. The mounting of a shell on the model
for testing was é,ccomplished by slipping the shell over the ""0" ring
seals from the upstream end of the model (left hand side of Fig. 4)

after removing the thrust plate.

: The pressure difference across the shell P, (internal
minus external pressure) was varied by varying the pressure in the
sealed annular cavity under the shell. The shell was loaded axially
in compression by pressurizing the rubber tubes adjacent to each of

the copper end rings, as shown in Fig. 4.

Radial motion of the shell was measured by three
inductance type pickups numberedl to 3 in Fig, 6. Pickups 1 and 2
are mounted on a drum which can be rotated 360 degrees, and pickup
1 can be moved longitudinally about two thirds the length of the shell,
Pickup number 3 is fixed near the downstream end of the shell. A full
360 degree circumferential traverse and a full longitudinal traverse
in one direction each takes about fifteen seconds. A potentiometer
connected by gears to each traversing mechanism supplies D, C.

voltage proportional to the distance or angle traversed. The signals



from the pickups and potentiometers were recorded on magnetic

tape for later analysis,

A more complete description of the model and

instrumentation is given in Appendix A.

2. 2,2 Experimental procedure

The flow in the wind tunnel was started at a stagnation
pressure pto.,Of 2 psia and a shell internal pressure P of 4 psig. The
low value of Py Was chosen to ensure that the manometer fluid did
not blow over when the flow became supersonic, and the high value of
p,, was chosen tg ensure that the shell did not buckle, After super-
sonic flow was established, p was held constant while Py Was

brought up to the value required for data.

Shell No. 1 (Table 1) was tested at M,,,, = 3,381, The
full range of avaijlable p, was covered with various values of positive
: so

Pme

Shell No, 2 {(Table II) was tested at Mg = 2. 993. At
first, P, Was held fixed while Py oo WaS varied over the available
range. Then P,, Was set at 3. 93 psig, Pt at 3170 psf and the axial
compressive load P was increased until the shell buckled. The
axial load was then removed and post-buckling flutter data was

obtained for various combinations of Pe, and P,



Shell No, 3 (Table III) was also tested at M, = 2,993,
A determined effort to systematically cover the near-buckling region
was made with this shell, Fig. 10 shows the estimated buckling
boundaries which were used as a guide for this test. In order to
avoid premature buckling of the shell, the test conditions were kept
below and to the right of the dashed curve, Each of ihe test paths
shown was followed for a particular setting of Py As the last
part of this test, the shell was buckled several times as indicated
in Table III.

“The actual recording of data on magnetic tape is

described in Appendix B.
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2.3 Results and Discussions

All the flutter data are tabulated in Tables I, II and III.
Each table represents a different shell, The frequencies shown were
obtained from"power spectrum analyses of the shell motions and
represent the predominant frequency present. The circumferential
wave number n and the circumferential nodal line number j for each
flutter mode wer e obtained from traverse plots like those of Figs. 20
to 25, The Correlation and Run numbers were used to correlate the

data recorded by different methods,

%

2.3.1 Boundary layer

The boundary layer profiles near the downstream end
of the shell are shown in Fig. 1l for M, = 2.993. The data points
near the shell surface (z = 0) should be viewed with some caution,

s ince the finite size of the probes which has been ignored here would
probably affect the profile shapes. However, the data does give an
adequate indication of the overall boundary layer thickness. The figure
indicates that the external flow was composed of a thin inner region
(about 0.4 inches thick) which looks like a classical turbulent boundary
layer and a rather extensive outer region containing a small Mach
number gradient. This is typical of high Mach number flows over a
test model. The '"quasi-isentropic' nature of the outer region is a

result of the so-called leading edge interaction.

No attempt was made to alter the boundary layer flow
during these experiments, and hence its gross effect cannot be

estimated. On the other hand, since most of the flutter data was
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obtained at a constant Mach number and over a very limited range
of dynamic pressures, the boundary layer flow was essentially
constant, Hence,the effect of boundary layer changes during the

experiments should be negligible.

2.3.2 ' Shell motion

Almost all the shell motion detected during the flutter
test can be classified into four distinct types. A sample time trace of
each of these types is exhibited in Fig. 12 and the power spectral
density associated with each sample is shown in Fig,. 13 Type (a) is
random in frequency and of relatively low amplitude and represents
the response of the shell to the turbulence in the airsfream.. Type (b)
is a relatively clean sinusoidal oscillation with almost all of the
shell motion conéentrated at one frequency., This corresponds to the
shell fluttering in one clean mode. Type {c) is a kind of beating
between two or more sinusoidal oscillations of slightly different
frequencies and corresponds to the shell fluttering in a combination of
two or more distinct modes. Types (b) and (c) were obtained only
when the shell internal pressure was positive and relatively large.
Type (d) is a highly distorted sinusoidal oscillation of large amplitude
with most of its power concentrated at one low frequency and was
obtained when the internal pressure approached zeroc and went

negative, Only the types (b) to {d) qualify for the term flutter,

The differences between the flutter phenomenon
obtained in an experiment and the "instability'' predicted by linear
theory (that is, an exponential increase of amplitude with increasing

time) are quite striking., These differences for the case of cylindrical
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shell flutter are clearly explained in Section 6(a) of Ref, 1 and need
only be summarized here, The main difference is that only the
nonlinear limit cycle oscillations are seen in the experiment, and
their association with the linear '"instability' of the theory is merely

intuitive,

2.3.3 General effects of the test parameters

Fig. 14 shows the variation of flutter amplitude with
stagnation pressure Py 2s the internal pressure P, ‘was held fixed.
o0
Although the flutter amplitude increases with stagnation pressure, it

does not increase monotonically.

According to Anderson and Fung (Ref. 4), small
values of internal pressure are very stabilizing, but larger values
tend to reduc’é stability to the unpressurized level, The results shown
in Figs. 16 to“’19 agree qualitatively with this prediégtion.. For example,
in Fig. 18, flutter was present when p,, Was near z;‘ero but disappeared
as p_ increased. It appeared again as P reached about 0.50 psig.,
Contrary to the theory however, large values of P, completely
. stabilized the shell.

These figures also show that the axial load P_ was
destabilizing when P, Was positive, in that it increased the range of
p,, over which the shell fluttered. This agrees qualitatively with
Kobayashi's theoretical prediction (Ref. 9) . On the other hand, as
can be seen from Figs. 17, 18 and 19, it had a slightly stabilizing

effect on the flutter when P,, Was near zero or negative,
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The actual amplitude of flutter is a very complicated
function of all the test parameters Py’ P and Px‘ The tabulated
data indicates that the flutter mode (that is, the numbers j andn) is
also a very complicated function of the test parameters, The non-
linear character of the cylindrical shell, which to a large extent
determines the final amplitude of the limit cycle oscillations, is a
function of the numbers j and n and hence indirectly‘é; function of the
test paramete}:s, Consequently, any attempt to explain the variations

in flutter a.mpli‘tude would have to include all these _é‘ffects.

When Shell No, 1 (0.0040 inch thic]g{) was tested at a
free stream Mach number of 3, 381 and maximum sfagnation pressure
of 3178 psf, no flutter was detected. For these conditions, the
parameter (q,, /E(M,,‘,,2 - 1)1/2)1/3
the value of 70 for which flutter was obtained when M g, was 2,993,

R/h was 8.4 and was well above
The data from the pressure test (Appendix Ej showed that the overall

A ,
boundary layer was very much thicker at the higher Mach number,

This thicker boundary layer seems to have stabilized the shell,

2.3.4 Flutter modes

Typical examples of the measured mode shapes are
shown in Figs. 20 to 25, and typical longitudinal distributions of the
phase angle of the shell motions are shown in Fig. 26. The variations
of the mean square amplitude of flutter in the axial direction showed
that the flutter modes had zero, one, or two circumferential nodal
lines between the ends of the shell; that is j = 0, 1 or 2 respectively,
It is interesting to note that these nodal lines were not evenly spaced

between the ends of the shell.

*
I.e., classical boundary layer plus '"quasi-isentropic'' outer

region., Cif, Section 2. 3.1,
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The j = 0 case occurred when the shell internal
pressure p _ Was near zero or negative for the unbuckled shell, but
it also occurred when P, was positive for the buckled shell (bellows
shaped buckle). Figs., 22, 23 and 25 are typical examples. For this
case, the motion of the shell at x/L = 0,15 led that at x/L = 0.72
by about 15 degrees, as shown in Fig, 26.

The j =1 and 2 cases occurred for E{ositive P, and
various axial }oa.ds Px‘ Figs 21 and 24 are typical examples. For
the j =1 cases, the phase angle of the shell motion changed very
little between the circumferential nodal line and the upstream end of
the shell, The motion of the shell upstream of the nodal line led
that of the downstream part by about 160 to 170 degrees, as shown in
Fig. 26. The j = 2 modes were not clean enocugh to.give a good
measurement pf the phase angle, and the example shown in Fig. 26

(Corr. No. 126) is not very accurate.

From these phase angle measurements and amplitude
plots, it may be concluded that the flutter modes were approximately

standing waves in the axial direction.

The example depicted in Fig. 20 shows that the
flutter mode was a standing wave made up of many waves around
the circumference {n = 20}, This example of a standing wave around
the circumference was the only one obtained., All the other traverse
plots were of the circumferentially travelling wave type., For example,
Fig. 24 shows that the mean square amplitude of motion was almost
constant around the circumference, but the mean square of the
difference of the signals from a circumferentially traversing pickup
and the fixed pickup varied between approximately zero and a
maximum many times around the circumference. In Appendix G, it

is shown that a shell deflection of the form
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w(x, 0, t) = £(x) [ A sinn0 sinwt + B cos n0 cos w t] (2.1)

where A is approximately equal to B will fit this plot, but one of the

standing wave form
w(x, 0,t) = f(x) sin n0 sinwt (2. 2)

will not. The former deflection shape may be put in the form
(for A = B)

w( %, 6,t) = A {(x) cos (n6 - wt) (2. 3)

which is a "pseudo' travelling wave moving around the shell at an
angular rate of 180 w/nw degrees per second. This deflection is
'""pseudo'' in the sense that there is nothing in the external flow to

initiate such a circumferentially travelling wave.

One might suggest that the origin of this '""pseudo”
travelling wave lies in the nonlinear nature of the cylindrical shell,
Evensen (Ref. 10) found this kind of phenomenon in his nonlinear
forced vibrations of a thin ring and since the nonlinear character
of cylindrical shell motions in mode shapes with large axial wave
lengths (that is, for j small) is very much like that of a thin ring, it
is not too surprising to find it here, See for example, Ref, 1I.
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When the cos n@ mode of a thin ring is driven into resonance and

its amplitude of motion slowly increased by increasing the magnitude
of the forcing function, at some critical amplitude the sin n® mode
will suddenly appear combining with the cos n® mode in such a way
as to form a '"pseudo' travelling wave. This critical amplitude
decreases with increasing wave number n and with decreasing
damping in the ring. Qualitatively similar results would be expected

to appear in cylindrical shell motions with large n and small j.

The physical explanation for the phenomenon is as
follows. When the shell oscillates with a frequency @ in a cos n®
standing wave mode at large amplitude (for the shell this means
motions of at least the order of the skin thickness), the mean position
of the shell oscillates with a frequency 2w at small amplitude. This
means that the shell's mean position is oscillating at’ twice the natural
frequency of the sin n@ mode (assuming the shell is perfect, the
sin n@ and cos nO modes have the same natural frequency since they
represent the same deflection shape even though they are independent
orthogonal modes) and hence parametrically excites the sin n@ mode.
As in most parametrically excited vibrations in real systems, there
is a minimum amplitude of the excitation required to produce the

phenomenon.

If imperfections exist in the ring or the shell, the
natural frequencies of the sin n® and cos n0 modes will be separated.
In this case, the second mode will only appear at small amplitude and
consequently may not be observable, or if the separation is large
enough, it may not occur at all. This possibly 1is the explanation for
why this phenomenon was not detected in the tests of Ref, 1,
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Most of the data from those tests were obtained from an especially
thin shell (0.0032 inches as compared to 0.0040 inches for the
tests described herein), and it is more difficult to minimize
imperfections in the thinner shell. Many improvements in shell
making were developed in the time between the two tests so that the
shells tested most recently were undoubtedly of bettg‘?:‘f quality,

2.3.5 Flutter in the vicinity of buckling

When Shell No., 2 (0.0039 inch thick) was taken towards
axial buckling by increasing the axial compressive loé.d PX while
maintaining a high internal pressure P, and a high stagnation pressure
pt“ , no flutter was detected. The shell buckled in a single bellows
shaped mode at the downstream end as shown in Fig. 7. The buckle
was about 1/16 inch high by 1/4 inch wide and was adjacent to the rear
end ring, being almost perfectly symmetric about the shell. The rest
of the shell remained unbuckled. After the axial load was removed,
the buckle did not pop out indicating that the shell material had
yielded., With P_= 0 and Py = 3.93 psig, the shell was still stable,
but when P, Was lowered to around 1 psig, it fluttered with a much
larger amplitude and in a different mode than it had before it was
buckled. See for example, Fig. 23. Fig. 15 shows the variation
in flutter amplitude with P and ptmfor this shell in the vicinity of
P, = 0, and Fig. 22 shows the flutter mode, The flutter amplitude
was very much higher on one side of the shell than on the other,
having a maximum rms amplitude of about four shell thicknesses near
x/L = 0.5 and © = -20°. Note that the data of Fig. 15 is only for a
particular point on the shell and does not show the maximum flutter

amplitude. This same type of response was obtained for the
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unbuckled shell and will be elaborated on in the next paragraphs.
As the last step, this shell was buckled ata p = -0.017 psig and
pP_= 0. At this pressure setting, the buckling mode was of the form
of four 5 inch waves around the top of the shell with no node between
the ends. The buckled region was very stable, but the unbuckled

region fluttered quite violently.

When Shell No., 3 (0,0040 inch thick) was taken toward
buckling by decreasing P different things happened for different
settings of Py and P_. See Figs, 16 to 19,

(i) At P, 1768 psf, no flutter was detected,

(ii) At pt’; 2120 psf, large amplitude flutter was obtained

as p_ went to zero and the amplitude increased to a maximum
near a p of one half the critical value for buckling under
radial external pressure loading only., The flutter mode was
of the localized type as shown in Fig. 25, with a maximum
rms amplitude of about three shell thicknesses near the
middle of one side of the shell, A small amount of axial load

decreased the amplitude but did not change the trend.

(ii1) At Pie = 2475 psf, localized flutter was again detected near
p,, = 0 for PX = 0, but disappeared as p,, Went negative.
When a small amount of axial load was applied, the flutter

near p = 0 did not occur.

(iv) At Pe,, = 2827 psf, localized flutter was again detected near
P, = 0. As P, Went negative, the flutter amplitude first
increased and then decreased as P,, Went past half the critical
value. A small amount of axial load effectively removed this
flutter.,



~19-

When p,  Was returned to 2475 psf, P_setat
90 pounds and P decreased in steps until the shell buckled at
p,, = -0.037 psig, no flutter was detected. Only very shallow long-
itudinal buckles occurred around the top of the shell and were quickly
removed by immed1ately raising P, When the above process was
repeated with P_ = 200 pounds, the shell buckled at p = 0,010 psig,
but again no flutter was detected, Again only shallow buckles of the
diamond pattern type occurred near the downstream end of the shell
and did not pop’tgjut as p_ was increased to 0. 015 psig. At this
setting, violent flutter was observed on the forward portion of the
shell which ha_vgd not buckled, but the buckled region of the shell was
very quiet. When P, wWas then increased to 0.49 psié, the buckles
popped out and the shell was quiet again. P_was then set at 240
pounds and P, lowered until severe buckling occurred at 0,098 psig,
Figs. 8 and 9 show this buckled state. The buckled region was very
stable, but the unbuckled forward portion of the shell fluttered

violently and was clearly observable on the side shown in Fig. 9,

Although the foregoing results form a rather obscure
picture, there are a few pertinent results of a general nature. For
the unbuckled shell, the largest amplitude of flutter occurred for P
near zero and slightly negative and was always much larger on one
side of the shell than on the other. The example of flutter-buckling
interaction obtained in the tests of Ref, 1 was also of localized
nature., In fact, it was also localized in the axial direction in that
the maximum amplitude occurred near the downstream end on one
side of the shell,

The data from the pressure test {(Appendix E) showed
that the maximum change in static pressure around the circumference

of the shell was about 0.3 per cent of the free stream dynamic pressure
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when M, was 3. (Itis perhaps significant to note here that this
change in static pressure could be accounted for by a change in free
stream Mach number of only 0.4 per cent, which is of the order of the
variations to‘be expected in a wind tunnel). The increase in static
pressure along the length of the shell was about the same. At the
highest dynamic pressure used in these flutter tests, this corresponds
to 0. 010 psi anéi at the lowest, to 0,006 psi. On the ’{)ther hand, at

M, = 2.5 and Y = 274 psf (the free stream Mach number and dynamic
pressure of the flutter -buckling example of Ref, 1), the static pressure
on the shell increased from the upstream to the downstrearn end by
about 1 per cent of q_ or 0.020 psi, These pressure variations, al-
though seemmgly very small, can become important; when the shell
internal pressu,re is near zero. The localized nature of the flutter in
this near- buckling region probably results from these non-uniformities

in the static prgssure distribution over the shell,

2,3.6 Experimental limitations

- As mentioned above, the cylindrical shell flutter seems
to be extremely sensitive to small non-uniformities in pressure dis-
tribution over the shell when the pressure differential P, is near zero,
These small non-uniformities in pressure distribution are caused by
small deviations in model shape and non-uniformities in wind tunnel
flow. Consequently,it must be realized that the flutter obtained near
zero pressure differential may not represent the flutter of a shell in

a uniform stress state.

These considerations alsc imply a limitation on the
accuracy of measuring the pressure differential P in this region.

The numbers quoted are the measured differences between the shell
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internal pressure and the static pressure as obtained from a static
pressure orifice just upstream of the shell, and this static pressure
represents only some sort of average of the pressure distribution

over the shell,
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2.4 Co;zclusions

Again as in most panel flutter experiments, it was
found that the instability predicted by linear theory (an exponential
increase of amplitude with increasing time) was unobservable. Only
the 1imit cycle oscillations were observed and were defined as flutter
when the power spectral density of the shell motion became sharp at
only a few frequencies and the amplitude of motion became large,
This flutter was a relatively mild oscillation except in the vicinity
of buckling where it was quite violent in some cases. However, even
for the worst of these cases, the wind tunnel experiences showed no

great danger of destruction of models.

Almost all the flutter modes observed in these
experiments were of the circumferentially travelling wave type. That
is, the modes contained many waves around the circumference (of the
order of 20), but they were not fixed in space. It was found that these
flutter modes could be described by approximately equal amounts of
sin nO and cos nO modes oscillating 90 degrees out of phase in time,
This phenomenon appears to be a result of the nonlinear character of
cylindrical shells., These fluiter modes were standing waves in the
longitudinal direction with zero, one, or two circumferential nodal

lines between the ends of the shell depending on the testing conditions.

It was found in qualitative agreement with available
theory that small amounts of internal pressurization were very
stabilizing, but moderate amounts reduced stability to the unpressur-
ized level. On the other hand, contrary to the theory, large amounts
of internal pressurization completely stabilized the shells independent

of axial load or previous permanent buckling deformations.
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It was also found in qualitative agreement with the

- theory that axial compressive loading was slightly destabilizing

for moderate amounts of internal pressurization, On the other hand,
this loading was slightly stabilizing when the internal pressure was

near zero or negative.,

The unbuckled shell exhibited large ké.mplitude flutter
when the internal pressure was near zero or slightly negative. The
largest amplitpde occurred for internal pressures from 1/3 to 1/2 of
the critical varly\ue required for buckling under radial external pressure
loading. This iarge amplitude flutter was of a localized nature in that
the amplitude of shell motion was much larger on one side of the shell
than on the other. The fact that this large amplitude, localized flutter
occurred near zero internal pressure leads one to suspect that its
localized na.tuk;i'e was mainly a consequence of the small non-uniformity
in static pressn;re distribution over the shell, The shell completely

buckled under padial external pressure loading was essentially stable,

Loading conditions that led to the diamond pattern
buckling (moderate axial loading and low internal pressure) had a
completely different effect on the flutter., The shell did not flutter
as buckling was approached. Only after the diamond pattern buckles
appeared did the shell flutter and then only on the unbuckled portions

of the shell, This flutter was very violent.

The shell did not flutter at all either during or after
the buckling process that resulted in the bellows shaped buckle (high
internal pressure and large axial loading). However,when the internal
pressure was returned to a low level, this buckled shell then fluttered

with a larger amplitude than it had before it was buckled.
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Hence,it appears that the large local curvatures
encountered in the buckling of a cylindrical shell have a marked
stabilizing effect on the shell locally, However, it must be empha-
sized that it also appears that the localized buckling usually encount-
ered in practice significantly reduces the stability of any unbuckled

regions of the shell,
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IiI. COMPARISON WITH THEORY

3.1 Cylindrical Shell Vibration Frequencies

The cylindrical shell vibration data obtained by the
methods described in Appendix D are compared with theoretical
predictions satisfying various boundary conditions, This provides
some insight into the quality of the experimental models, and in
particular indicates what effective boundary conditiofis the shells
really have for different kinds of vibrations. Some of the theory is
briefly developed in the following.

3.1.1 "Freely supported" ends

Following Arnold and Warburton (Ref. 12), the boundary

conditions
azw
v=w=—a——2=Nx=0 at x=0 and L, (3.1)
X

are called 'freely supported' ends. The vibration modes

u(x, 9, t) cos E%‘— cosnb cos wt Y

v(x,8,t) = sin T sin n@ cos wt > (3.2)

1

w(x, 0, t) sin —~=—— <cos n8 cos wt
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satisfy the boundary conditions (3.1) and provide an exact solution
to the complete linearized partial differential equations governing
defl ections of a cylindrical shell, See for example, Ref. 13. How-
ever, for preéent purposes, the simplified Donnell's equations seem

to be sufficiently accurate. These equations are given in Section 3. 3.

The frequency equation that results from substituting
the modal solutions (3. 2) into Egs. (3,10) with p = 0 is Eq. (3.16) and

is repeated below for convenience.

Z
wm? = {0 [ 3P 2]t mmew
S

{ )

Eh X

° RE | mml .n.2]° (3.16)
[(—E—-) + ('-R) ]

where m is the number of axial half waves and n is the number of

circumferential waves in the vibration mode.

3.1.2 "Fixed" ends

Following Arnold and Warburton (Ref, 14), the

boundary conditions

u=v=w=-g—:—:=0 at x=0and L (3. 3)
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are called '"fixed" ends. Arnold and Warburton have developed
approximate expressions for the natural frequencies of a cylindrical
shell having these end conditions based on an energy approach.
Forsberg (Ref. 15) has shown that these approximations are within
a few percentﬁ;‘iof his "exact" calculations, Consequently, the Arnold
Warburton exiz}ressions should be quite adequate for the comparison
needed herein,

3.1.3 Approximate "Fixed" ends

Even though the Arnold and Warburton expressions
mentioned above are only approximate, they are still rather cumber-
some. Hence, it would seem advantageous to have a simpler theory
for the "fixed'" ends case, especially for large n, since this is the
important region for shell flutter., To achieve this purpose, the
problem is approached in the following manner. The eighth order
Donnell's Eq. (3.11) with p = 0 is used to represent the shell, and the
axial dependence of the radial displacement is approximated by the

expression for the vibration of a clamped-clamped beam. That is,
w(x, 8,t) = sin n@ x'l/m(x) sin Wt (3.4)

where from Ref, 16,

Y/m(x) = coshfmx - cos u X - km(sinh/umx— sin/umx) (3.5)
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where/um satisfies the transcendental equation

cosh/m L cos M L =1 (3. 6)

and

sin L + sinh L
kK = /'m /'m . (3. 7)

cosh/am L - cos /m L

This approximation for w (x, 9, t) satisfies the zero deflection and

slope boundary conditions

at x =0 and L (3. 8)

g

"
312

I

S)

but does not seem to satisfy any other special end conditions, Hence
it can be expected that the approximation will be very poor for low
values of the wave numbers m and n. However, the approximation
may be quite reasonable for high values of m and n for which boundary
conditions on u and v become relatively unimportant compared to

those on w.

The assumed solution (3.4) does not satisfy Donnell's
equation identically, but may be forced to satisfy it approximately in
the Galerkin sense., That is, the solution (3,4) is substituted into
Eq. (3.11), and the result is multiplied by %(x), integrated from -
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x = 0 to L and the integrated result set equal to zero, (The various
integrals involved are given in Ref, 17), This procedure yields the

following frequency equation,

4
Eh
/’__-rmR ¥ D{/m% 6 (2 ()5 4(%)2D‘m4+ (PR)‘*] K fon [km /m—ﬂ}

2
km/m .

| psh[ Joo (R4 28 /m‘%’z

(3.9)

The theoretical predictions for the j:hree foregoing
cases are shown in Fig. 27 along with the experimental data for a
0.0040 inch thick shell. The constants used in the calculations were

v = 0.35

0.000833 1b sec?/in?

= 16 million psi

8. 0 inches

R - )
i

15. 4 inches
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For low values of the circumferential wave number
n, the experimental data lies between the predictions for ''freely
supported' and '"fixed' ends. This indicates that in this region the
effective end conditions lie somewhere between the two idealized ones
as might well be expected, For high values of n, these two theories
approach each other and the experimental points seem to lie above
both predictions. Some of this descrepancy between theory and
experiment may be due to error in measuring the shell thickness h.
As explained in Appendix A, this thickness measurement was an
average value based on independent measurements of total shell
weight, size and density of the electroplated copper and could con-
ceivably be in error by as much as ten per cent. In the region of
positive slope on the frequency versus n plots, the frequency is
essentially linear with thickness, so that any error in thickness is
reflected directly into error in frequency. The experimental points
for m = 3 and 4 and large n were very difficult to obtain and could

¢

easily be in error both in frequency and value of n. °

The prediction given by the expression for approximate
""fixed" ends seems to be remarkably close to the Arnold and War-
burton result. In particular, the two results merge together for high
values of n. This indicates that use of the clamped-clamped beam
functions for a flutter calculation should lead to a good approximation

to the '"fixed' ends type of boundary condition especially for large n.

This is further verified by considerations of the two-
mode flutter solution discussed in Section 3.3.la. There it is shown
that when aerodynamic damping is neglected, the level of static

pressure required for flutter is proportional to (“"an - wlnz).
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This parameter is plotted versus n in Fig. 28 for the three cases
discussed above, The approximate ''fixed'" ends result is seen to be
remarkably close to the Arnold and Warburton one. The figure also
indicates how the two different types of boundary c0ndi£ions would
affect the flutter condition. The minimum (wan - wlhz) occurs at

n = 29 for "freely supported" ends and at n = 32 for "fixed" ends. The
actual level of this minimum is higher for the ''fixed' ends case by

about 40 per cent.
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3.2 Aerodynamic Theory

One of the most serious limitations in the theoretical
foundation for the flutter of a cylindrical shell is still the aerodynamic
theory. Almost all available theoretical predictions of cylindrical
shell flutter involve some highly questionable assumptions about the
nature of the aérodynamic forces involved. In some cases, this has
led to rather cci;gintradictory results. For the case of supersonic flow,
most of the controversial approximations involved in current work
are associated either directly or indirectly with three dimensional

effects. These effects will be explained in some detail in the following.

3,2,1 Three dimensional effects in inviscid flow

The simplest and easiest aerodynamic theory to
employ in supersonic flutter calculations is of course the linear piston
theory (neglecting the aerodynamic damping leads to ‘one form of the
even simpler sp-called Ackeret theory, but for the purposes of this
discussion, no distinction need be made between the two)., Even if the
shell curvature is negligible, the use of piston theory is questionable,
since it is only rigorously valid for two dimensional deflections. Hence,
the question of how good the piston theory approximation is may be
interpreted as a question of how important the three dimensional effects

are,

One of the easiest ways to obtain a quantitative answer
to this question is to consider axially-directed supersonic flow over an
infinitely long cylinder whose surface is deformed sinusoidally in

space and is oscillating normal to itself. The linear potential solution
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for this problem may be easily obtained (see for example, Ref, 7)
and the predicted surface pressure may be compared to that from
piston theory. The resulting expressions from the potential solution
are summarized in Appendix F for convenience. Some aspects of
this comparison have already been given by Krumhaar (Ref. 18) and
Anderson (Ref. 19), Both show rather vividly that the surface
pressures predicted by the two theories are no longer even approxi-
mately the same when the ratio between the axial and circumferential
wave lengths of the surface deflection becomes large. Anderson shows
results for an example in which the wall is stationary that are typical
even when the wall is moving. When the aforementioned wave length
ratio is large, the potential theory pressure terms are strongly
attenuated and have a large phase shift away from the corresponding

piston theory terms.

‘However, even though the two theories are radically
different in this case, it is unwise to immediately conclude that piston
theory is of no use, Some physical interpretation of the theoretical
predictions will serve to illustrate why. Consider the following
sketch of a portion of the cross section of the cylinder where the air

flow is normal to the paper.

undeform ed;

surface «\

deflected surface at one instant of time

Sketch 1: Deflected surface of oscillating cylinder
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According to the piston theory prediction, the wall
pressure at point A will be larger than P, the static pressure
far from the cylinder, while at points B, it will be smaller than p_, .
Furthermore, since the theory is strictly two dimensional, it pre-
dicts no cross-flow between points A and B, On the g,ther hand, it is
apparent that the pressure difference between points;?\ and B will
produce some cross-flow and indeed the potential so}ﬁtion does yield
this cross-ﬂovs;‘, In effect, it is this cross-flow which relaxes the
pressure differépce between points A and B and hence results in a
wall pressure far different from that given by piston tbeory, However,
the potential theory probably predicts a larger cross-flow than that
occurring in a real fluid because of viscous effects. This is a result
of the fact that"i’,this cross-flow component must vanish on the surface
of the cylinder;%, Furthermore, the relevant Reynolq.é number for
these considerations may be proportional to the croés—ﬂow component
of velocity and to the circumferential wave length of the surface
deflection. This type of Reynolds number is probably very small and
hence the forgoing considerations may be very significant. Further
verification of this effect would be desirable and could conceivably be

obtained theoretically or experimentally.

3.2.2 Three dimensional effects in viscous flow

The forgoing discussion leads conveniently to consider-
ation of another somewhat different three dimensional effect that is
directly associated with the influence of viscosity. This one is most
easily developed along the lines of boundary layer theory. The first
work on this problem was carried out by Anderson and reported in
Refs. 4 and 19,
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His boundary layer was idealized as an annular region
of uniform parallel subsonic flow between the cylindrical shell and the
outer uniform supersonic flow, On the basis of this model, he was
able to predict an attenuation in amplitude and a shift in phase of the
pressure perturbations on either a stationary or oscillating wall with
sinusoidal spatial dependence. The amount of attenuation and phase
shift turned out to be strongly dependent on how three dimensional the
shape of the surface deflection was and increased rapidly with this
three dimensionality. However, inherent in this working model for the
boundary layer was an ambiguity in choice of the thickness of and the
Mach number in the subsonic layer, Subsequent work by Anderson
{(Ref. 5) indicates that his choice for this thickness in’?the earlier work
was probably too large and consequently led to an over prediction of

the boundary layer influence by an order of magnitude.

As mentioned in the introduction, the author's calcul-
ations seem to substantiate this last result. These calculations were
based on a somewhat different boundary layer model — that of a parallel
shear flow with a velocity distribution given by the mean velocity profile
in a turbulent boundary layer - from that of Andersob‘s. Complete
details of these calculations and discussions of the results are given in
Appendix G. The main parameter which governs the influence of the
boundary layer in the linearized problem is the ratio of boundary layer
thickness to streamwise {(axial) wave length of the wall deflection. The
boundary layer influence decreases as this parameter decreases. For
cylindrical shell flutter with a large number of circumferential waves,
the pertinent streamwise wave lengths of interest are very large with
respect to the boundary layer thickness (at least for the experimental
configurations reported herein), so that the influence of the boundary
layer is probably negligible. It must be emphasized however that for
the case of axisymmetric flutter for which the pertinent axial wave
lengths may be quite small, the influence of the boundary layer could
still be important.
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3.3 Flutter Boundaries

As mentioned in the introduction, no detailed
comparison between experiment and theory for the supersonic flutter
of a cylindrica;l shell has been available, Only a few qualitative
remarks on this subject have appeared in the literature and as a
result, some serious misconceptions have been perpetuated. In the
following two sections, an attempt will be made to correct this
gituation in so far as available data and current theoretical techniques

make it possible,

. An extensive review of the panel flutter problem and
analyses dealing with the flutter of cylindrical shells is given by Fung
in Ref, 20, I‘he subject is brought up to date again by Fung in Ref, 2,

and an even more current review is that of Johns infRef, 21,

In the following discussions, only flutter analyses
pertaining to a finite cylindrical shell will be considered, Infinite
length shell analyses are excluded on the grounds that their applicability
to finite shells has not been proven. Furthermore, in the light of the
experimental experiences, the exceedingly large critical shell thick-

nesses that result from such analyses make them rather suspect.

Of the available analyses pertaining to a finite shell,
Voss's (Ref, 6) is probably the most extensive and will be used as a
guide for the following studies. Following Voss, the problem is
conveniently separated into two main categories. These are the lown

case or membrane-type flutter and the high n case or plate-type flutter.
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Early work indicated that the low n case would be the most critical

for design purposes (see for example, Ref. 20). However, Voss

gave an exarn‘]:ale in which just the opposite could be true and concluded
that both cases should always be considered. In the following, the
high n case is éreated in greater detail than the low n one, since it was

the only type of flutter observed in the experiments,

3, 3.1 Flutter with many circumferential waves

As pointed out by Voss, the shallow shell type theory
is sufficiently accurate for analyzing shell flutter with many circum-

ferential waves. Hence,Donnell's cylinder equations are used in the

form
2 2 N 2 2
DV4w+psh§-1—-v23+p=1\_Txav2v+ g a‘g-ljﬁ—g (3.10a)
Bt 9% R 00 R 9x
4 Eh azw
V' F = —— (3.10b)
R Ox
where F is the usual stress function, or in the form.
p/ 2 N 2
pviw + v¥ psh——-z-aw+p = vt N'xa“zf+ Qé a";
ot Ox R 00
4
s BBoAw (3.11)
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See Fig. 29;£or shell geometry and coordinate system. The aero-
dynamic pressure which comes in through the p term in these equations
is assumed to depend linearly on w. Structural damping is neglected,

since it is notl“ expected to be important for this type of flutter,

A modal solution to Eqs. (3.10) is assumed in the

N :
w(x, 8,t) = sin n@ eiwt c_ sin e« x (3.12)*
E m m
% m=

‘where = = mm /L. In general, w will be complex in such a

form

solution indicating that the amplitude is either growing or decaying
exponentially with time. The condition for which the imaginary part
of @ vanishes 'corresponds to a sustained oscillation in time and is

defined as the flutter boundary.

The form of the solution (3.12) implies the satisfaction
of the '"freely supported" boundary conditions

v=w=——T=N=0 at x=0 and L . {3.13)

*
The common complex notation is used, so that the physical

deflection is the real part of this expression.
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The aerodynamic pressure term is conveniently put in the form

N

: iwt E
p(x,0,t) = sinnb e [ psmsin = X + Pem, COS &< ¥ :] S (3.14)
m=1

where p___ and Pern 2F€ complex constants determined from the

aerodynamic theory to be used in the analysis,

The solution (3.12) is substituted into the compatibility
equation (3.10b) and the particular solution for F is obtained. Finally,
w, F and p are substituted into the equilibrium equation (3.10a), which
is then satisfied in the Galerkin sense by multiplying by sin Xy %,
integrating over x from 0 to L and setting the result equal to zero. This
procedure yieltis N homogeneous algebraic equations for the N modal

amplitudes S in the form

#

N
2
{[psh(wm - w’)+ psm] Sm,¢+Pcm me ¢€m = 0 » (3.15)
m=
1: 1’ 2 o e N
where

2
wmnz = plsH D[ :1132+ (%)Zj +°‘m2 iq:x + (%)2 NG +
°(m4 £
Eh 1 form =
! St {0 form £ 4 (3.16)
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[ ;11 v for m + { odd
L -m7)

0 otherwise .

For the particular shell configuration used in the experiments, the

membrane stress resultants N—x and Ng are

N = -—-2% , RN, = Rp (3.17)

where Px is the total axial compressive load applied to the shell and

P is the pressure differential across the shell skin.

The necessary and sufficient condition for the
existence of a nontrivial solution to Eqs. (3.15) is that the determinant
of the coefficients of the cm's must vanish. This determinant is
complex in general, and hence both the real and imaginary parts must
vanish simultaneously. This yields two conditions for the determin-
ation of two eigenvalues. The constants obtained from the experiment-

al conditions and used in the calculations to follow é,re
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E = 16 million psi

h = 0.004 inches

L = 15.4 inches

M, = 3

R = 8 inches

T, = 120° F

s/ = 0. 35

o, - 0.000833 1b sec’/in?

The remaining unspecified variables in the determinant are P

Px, n, w and p_(p,, Will be seen to come in throu<;gh Pern and pcm).
Hence P, and Px may be specified and w and p,, determined such
that p__ is a minimum with respect to n. These c,éilcula’cions are
carried out for two forms of aerodynamic theory - piston theory and

the potential theory of Leonard and Hedgepeth (Ref. 7).

3.3.1la Piston theory

Using the piston theory approximation

1 0 o
P = yYp i:————— _a_\gr_ + M, -6-}:—} (3.18)

a6 a-”

with the form of the solution (3.12) yields

p s P.... = yM_

= § YW
o <m @ m

Psm p, . (3.19)

o
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As shown by Voss and others, Eaqs. (3.15) can be solved in closed
form when only two modes are considered (N = 2), and the results are
especially revealing. Proceeding thusly yields the following con-
ditions for flutter

2 2
(7% + w
w =/ o 2n (3. 20a)
2
2 2
phlw, - w ©) (3. 20b)
p = R 1
o 64 M~ 20(1 wz
2y z -T2
PA a_,

In this case, the flutter frequency is the root mean square of the two
modal frequencies w, and w, and the static pressure at flutter

is proportional to the difference between the squares of these two
frequencies. The second term in the square root in Eq. (3.2 0b) is

due solely to aerodynamic damping. For low enouéh flutter frequencies,
this term may be neglected, and the minimum in P then corresponds
to the minimum in ( wZnZ - wlnz). Voss and others have shown that

when n/R >> n/L, this minimum occurs at

min

no=on_. = 2.90 (- 20 [(%)(%)] U3 50

Using the constants shownon page 41 yields noin = 28 and p min

0. 30 psia. This value of p, is very close to the range of p__ 's over

which flutter was actually observed in the experiments.
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The two mode solution also affords an especially
interesting interpretation of the effect of the internal pressure
differential P,- It may be seen from the modal frequency expression
2. u)lnz) is independent of

P Hence,\étithin the framework of the two mode solution with aero-

(3.16) that tﬁé difference of squares ( w,

dynamic damping neglected, the pressure differential P has no
effect on the flutter boundary. On the other hand, the modal frequen-
cies increase rapidly with P, when n is large and consequently so
does the flutter frequency w . As a result the neglecting of aero-
dynamic damping will no longer be a good approximation when P, is
large. The importance of these considerations is revealed clearly
in the sketch below where the minimum p_ from Eq. (3.20b) is
plotted versus P, along with the result obtained by neglecting aero-

dynamic damping.

Fe

(psia)
1

Aerodynamic Damping
/ Neglected

N oin = 28
0 i i ] i -
0
1 P,
(psig)

Sketch 2: Two Mode~Piston Theory Flutter Boundaries
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Hence,within the approximation of the two mode
solution, internal pressurization of the shell provides no direct
stabilizing influence on flutter, This is due solely to the fact that
for the particular shell configuration considered in this work, the
internal pressurization produces no axial stress in the shell, Clearly
if a hydrostatic type of internal pressure were considered, it would
be directly stabilizing through the a(r: Nx terms in the modal fre-

quency expressions,

It is seen then that the stabilizing influence of internal
pressure shown in Sketch 2 is directly attributable bt‘o the aerodynamic
damping. Consequently,the flutter boundary predicted by this theory
for high values of P is strongly influenced by the estimation of
- aerodynamic damping. This fact has already been pointed out by
Kobayashi (Ref..i 9), and will be discussed again in connection with

possible explanations for discrepancy between theoz;fy and experiment.

The results from a four mode calculation using piston
theory are shown in Fig. 30 along with the experimental flutter
boundary. The values of n shown corresponded to a minimum in Py ©
These values of n correspond very closely to those actually observed
in the experiments, and the trend of n decreasing with increasing P
was also verified. However, this apparent agreement may be some-
 what fortuitous and requires further interpretation. This will be

given in Section 3. 4.

Six mode calculations were carried out to verify the
convergence and resulted in changes of only a few per cent in
either p_, or w . Some of these results are tabulated in Tables V

and VI for P, = 0. The results for non-zero p,,, Were very similar,
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Fig. 31 shows an example of the flutter mode
amplitude and phase angle variations in the axial direction. This
example is typical of all the piston theory results even for non-zero

Pm

3,3.1b Potential theory

The potential theory solution due to; Lieonard and
Hedgepeth was also used to predict flutter, This solution is for
supersonic axial flow over an infinitely long cylindrical shell whose
surface is oscillating in a standing wave pattern. The results are
summarized in Appendix F, The pressure coefficients Py, and Pem
are extremely complicated, and as a result, the flutter calculations

become much more difficult than for piston theory.

The following method of calculation was used with
the most success. The frequency term w in Eqs, (3.15) was re-~
placed by §? = w - ig and the complex roots S2 of the complex
determinant were followed as p,,was increased by small increments,
The procedure was begun at p_, = 0 for which the roots were known to
be $2 = W The condition for flutter is that the damping factor

m
in one of the roots vanish (as changes sign).
A g g

The results of such a calculation using six modes for
P,, = 0 and n = 20 are exhibited in Figs. 32 and 33. The real part W
of each root is seen to decrease as p_ increases, and the imaginary
part -—,ﬁm is seen to first go positive and then come back and pass
through zero. For this example, the first crossing occurs for the

root which corresponds to the m = 3 mode at p_ = 1,61,



-46-

Although not shown, the m =1 and 4 roots crossed at much higher
values of p_ . The first crossings for n = 21 and 22 also occurred
for the m = 3 mode, whereas forn =17, 18 and 19, it was them = 2

mode.

The approximate values of w and p_ for first
flutter obtained by the forgoing method for each value of n were used
as the first guesses in a final iteration procedure to evaluate them

accurately. The more accurate values were then u§ed for the
| determination of the modal amplitudes S Anothe';' iteration pro-
cedure was used to follow these eigenvalues as P, Was increased
in small steps, Finally, eight mode calculations were carried out.
to check the convergence for a few examples. The resulting changes
in w and p,, were less than one per cent. Some of the results from
the six mode calculations at p_ = 0 are tabulated in‘fTable VI, and
the lowest valqsf:s of p,, for non-zero p _ are plotte@» in Fig. 30.

Fig. 34 shows a typical example ozt' the flutter mode
amplitude and phase angle variations in the axial direction. A small
amount of internal pressurization p,, Seems to smoothen out the
flutter mode and reduce the amount of phase shift along the shell,
Further increases in P, Seem to have little effect. The peculiar
waviness exhibited by the flutter mode for P, = 0 was verified by

an eight mode calculation.

The potential solution flutter boundaries are seen
to be quite a bit higher than the piston theory ones. This is probably
due to the fact mentioned in Section 3. 2.1 that the potential solution

pressure terms for the lowest modes are appreciably smaller than
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the corresponding piston theory terms, On the other hand, both
theories seem to predict the same stabilizing influence of the
internal pressure P, This stabilizing influence must be due mainly
to the increasing effect of aerodynamic damping associated with the
increase in flutter frequency, See, for example, the discussion in
Section 3. 3.1a.

The values of n predicted by the potential theory are
somewhat smaller than those for piston theory. As noted in Section
3. 2.1, the potential theory pressure terms become strongly
attenuated as n increases, whereas the piston theory is independent

of n, Hence,lower values of n result from the potential theory.

It must be concluded from Fig. 30 that cylindrical
shell flutter with many circumferential waves was actually observed
in the experiment at a somewhat lower level of p_ than predicted
by either of the theories considered here. In that narrow sense,
the theory appéars to be slightly unconservative. Ijiowever, it is
worth noting that the discrepancy between theory and experiment is
not one of orders of magnitude as indicated by some of the literature.
Furthermore, the point of view for comparing the two assumed in
this work - that of comparing p_, levels for a particular shell

geometry - is by far the most discriminating one.

A number of possible explanations for some of the
apparent discrepancy between theory and experiment may be
suggested. As mentioned in Section 3. 2.1, the potential theory
solution may actually overpredict the effect of three dimensionality
of the flutter motions, so that piston theory may be the better

approximation. On the other hand, both theories may overpredict
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the influence of aerodynamic damping, and in turn, the stabilizing
influence of the internal pressure P Fig. 30 shows that P,

actually was stabilizing in the experiment but only above P, 1 psig.

The fact that the flutter phenomenon observed in
the experiment was strongly influenced by nonlinear effects has
already been emphasized in Section 2. Hence,it sé;ams natural to
ask whether or not the phenomenon may exist belo&gf the boundary
predicted by linear theory because of nonlinear effects. An attempt

will be made to answer this question in Section 3. 4.

3.3.2 Axisymmetric flutter

For the low n or membrane type flutter of a finite
shell, Voss (Ref. 6) has shown thatn = 0 is most critical. Con-

sequently, only this case need be considered here,

Krumhaar (Ref. 22) gives an exact solution for this
case for a "freely supported' shell using piston thebry, Flutter
boundaries for ':structural damping ratios Y of 0 and 0, 0005 were
calculated from these exact results and are shown in Fig. 30,
Unfortunately, Krumhaar's results do not go high enough in his
generalized eigenvalue A to provide results for higher values of
structural damping. However, it is clear from Fig. 30 that the
structural damping is extremely stabilizing to this kind of flutter.
The amount of damping present in the experimental models for
axisymmetric shell motions was probably at least 0.005. Voss has
shown further that inclusion of the mid~plane inertia, which is

neglected in Krumhaar's work, is also strongly stabilizing,
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Hence,the combined effects of realistic amounts of structural
damping and mid-plane inertia would push the axisymmetric flutter
boundary in Fig. 30 far above the experiment. This would then

explain why this kind of flutter was not observed in the experiments.

It is perhaps worth mentioning here that there seems
to be an error in Krumhaar's application of his results to the initial
GALCIT experiment, In Section 4,1 of Ref, 22, he calculates
stability boundaries (thickness ratios required to prevent flutter versus
Mach number) for an unpressurized copper cylinder with L/R = 2
at 50, 000 feet altitude using shell properties from the experiment,
These results are perfectly all right, of course, However, in
Section 4.5, he states that the '"tunnel was adjusted to the 50, 000
feet altitude atmospheric conditions' . This is completely misleading
because it was impossible to make such an adjustment in the wind
tunnel referredgito there., That is, the 50, 000 feet :;iltitude values of

8 » P, and p‘? could not be achieved simultaneously in the tunnel.

Therefore Krumhaar's conclusion that his results
are in conflict with the experiment seems to be incorrect. In fact,
just the opposite is true, That is, if Krumhaar's results are applied
to a 0.0060 inch thick shell {the shell used in the first GALCIT
experiment, see Ref, 1) in the way outlined herein, the critical
value of p_ that results is far beyond the capability of the wind tunnel.
In that sense, his theory actually agrees with the experiment, since

no axisymmetric flutter was observed in the test.
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3.4 Limiting Amplitudes of Flutter

In order to answer the question posed in Section
3.3.1 b as to whether or not finite amplitude flutter may exist below
the critical boundary for infinitesimal disturbances, a nonlinear
analysis had i:p be developed. The equations that result from the
well-known approximations of Donnell's shallow-shell theory are
used for this purpose. These equations,commonly called Marguerre's

equations, are (see Ref, 23)

2 2 N 2 2
pViwiph 2 4p=w 2x 8 2w L 3F
9t % ox 90 R 9x
1 |8%w 8%F | 92w 9%F 92w 8F
R°loax“ 80 90° ox 9x90 9x90
and
2 2 52 o
4 Eh 06°w 1 8 w 0%w
VF = =22 - = - )2 (3. 22b)
R 8x® R | 8x% 802 5"59

where w is the radial deflection and F is the usual stress function.
See Fig. 29 for coordinate system and shell geometry. The

aerodynamic pressure term p is approximated by the piston theory

expression
1 ow ow
P = 'Yp —_— — 4+ M —— ° (3'18)
*la, 0t “ ax
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A two mode solution for these equations is assumed

in the form

w(x, 8,t) = sin n@ (al(t) sin xx + a.z(t) sin Zxx)
2

2
+ %T{— [al(t) sin xx + az(t) sin 2 X x ] (3.23)

where o< = n/L, The square bracketed terms were not present in the
linear solution, but must be included here in ordegf to satisfy the
periodic continuity condition on the circumferential displacement v.

See for example Ref, 24.

 Substitution of Eq. (3. 23) into the épmpatibility
equation (3. 22b) allows the latter to be solved for F. The resulting
expressions for w and F, imply the satisfaction of the following

boundary conditions:

(a) The displacements u, v and w, and their derivatives
satisfy periodicity conditions of the form

vix, 0, t) = vix, 0 + 2m, t)

(b) The radial displacement w goes to zero identically at
the ends of the shell;, i.e., at x = 0 and L,
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(c) The boundary conditions for a shell having '"freely-
supported' ends are satisfied to a first approximation. In other words,
the linear terms in the expression for N_, M_ and v go to zero at the
ends of the shell but the nonlinear terms 1nvolving alz, aa, and a.zz,

etc. do not vanish there.

Finally, the expressions for w, F and p are substituted
into Eq. (3. 22&) and a Galerkin procedure is used toy obtain two non-
linear ordinary differential equations for the modal amplitudes 2y and

The expressmns awlaal and awlaaz are used as the weighing

a

2

functions in the ‘Galerkin procedure. In semi-nondimen.smnal form*,
:‘c*

the resulting coupled equations (within order €& ) re

2 | 2
at . A3 . w 2§+l E{g[3(§§_)z+zﬁ‘l.ﬁ)z P -
at® au 8 dt ( dt - dt?

2
4 3§2+2nZ] + 4n gii;-’%+dg—-’1+4Agn—— -
dt at at dt dt

£ £ [a{.‘,z +bnz] - fn l:l + gle(gz + -;E nz)] = 0 (3. 24a)

It was not convenient to nondimensionalize the time t, since
each of the equations has a different natural time scale.

sl
Terms with coefficients of ocrder EZ arise naturally from the
forgoing derivation but are neglected here. These terms are of the
form £n%, £2 n3, etc., so that the approximation is justified for £ and
1 up to and including order 1,
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2
dn 4 291 w2n2n+%£{n 308m)2 4 2362 |
dt dt dt dt
d 2 [ 4% . at 4
28] 3n? v 2e?| 4ag | nLE 4 48 A, ypey
dt at®  at at
eq[16cn2+b§2] + 1t 1+%e<gz+$q =

where the nondimensiona.l modal amplitudes are

a
h

a
¢ - SRR

and the (small) nonlinearity parameter is

0

?

(3. 24b)

The linear undamped natural frequencies of the two modes are given

by

n“p
w2 = B—I;H{D [(moc)2+ (%)2] 4 =

Eh (mm)4

3 ErsE]

m

+

(3.25)
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The parameters

a = Eo 1 o1 _ &

o e L FT
- | 5 .10 1
s;vaRZ 20 +09)° (1 +40%)° @
8 ] 1 4w
16(4 +07)° 164 + 965)° a1 - W)

. . Ed 1 1 £
p R LY L P

where &”= «R/n, depend only on the shell properties and mode
shapes. The aerodynamic influence comes in through the two para-

meters

; 8y M, Poo
3ps Lh
YP
A = = .
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Eqs. (3.24) are too complicated to be solved com-
pletely, but may be solved approximately by use of the method of
Krylov and Bogoliubov, often called '""The Method of Averaging'. The
experimental experiences indicate that the flutter motion is nearly
sinusoidal in time, so that if Eqs. (3. 24) are a reasonable approxima-
tion to the physical phenomenon, they should admit limit cycle oscill-

ations. Hence solutions to these equations are sought in the form

yre
i

Alt) sin[w t+ «701(t)] (3. 26a)

B(t) sin[ Wt + «,Dz(t)] (3. 26b)

3
I

where A(t), B(t), ‘fl(t) and ﬁaz(t) are slowly varying functions of
time. The second order differential Eqs. (3.24) are transformed
into four first order equations by differentiating qu0 (3. 26) twice

and imposing the subsidiary conditions

d
92 sin 0 + f A cos 0 = 0 (3. 27a)
dt at

d
4B gin 8, + £2 B cos 0, = 0 ; (3. 27b)
dt dt

where 01 = wt + 501 and 92 =wt + 4,02 . Then
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2 d
2_%_ = 34 s cos 0, - Aw(wW+ )sin® ,  (3.28a)
dat” dt dt '
2 d ;
_9;.%_ = dB W cos 0z - BW(w + ————Z)sin 02 5 (3. 28b)
dat” - dt dt

and these expressions are then substituted into Eqs. (3.24).

” The resulting equations exhibit a basic period of 2w
in both Ql and 02. The quantities A, B, <f1 and LPZ were assumed to
be slowly varying functions of time and so should change very little
over one cycle of this basic motion. Hence,they are replaced by
their averagesnover one cycle and the equations arg;T integrated from
0to 2win either Gl or 02 This procedure yields the following
equations for the quantities dA/dt , dB/at, dsolldt and dﬁozldt

(where the bars denote averages over one cycle),

2w 114l g2 K24 B + K(E, B, P, w) = 0 (3.29)
g £(3 1
a | ]
— 8 "1 o
ewdB |1 4 Ze(B%+ 384 | + KB BP, W) = 0 (3.29b)
a L 1
d . d @
2WA __ﬁ- [1+ée(%2¥2+ EZ)] +%£w2{’1§2 ___‘f_g
dt at

K,(X, B, t?,w) = 0 (3. 29¢)
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K, B,P,w) =0 (3. 294)

where K1 to K4 are given below. For steady state oscillations,
dA/dt, dB/dt, d?lldt and d Eledt must all vanish. Hence,this
procedure yields the following set of four algebraic equations for the
four unknowns A, B, ? and W .

} =, l_=11 3 22, =2 1 = 1 2
—2 - — v 1 1 —2 3 =2
B SMZ}D}— fBSiIl(f 1+§E(-4-A +'7B) = 0 (3.30&)
A
= 1 _=11 -2 1 vy 3 =2 1 2
= — - AW — il =
Kz AwB +4£B{2A [A (1+2c052?)+ 4B + (b+2w)x
-
—2 . - -~ .2 1 3 =2 1 =2
A stSO}-fA sln?o[l-i'-gE(ZA +-7B) = 0 (3. 30b)
-
_ 2 2, = 1 _ = 1,2, 2 2 =2
K3-(w -win)A +Z£Ai:3(a.+—4-w)A + (W™ +2b)B =
(1+-1—cosz—)+lAw']§2sin2” +f Bcos P|1 + Eii
2 ? 4 f ‘P 5

(;} x? +%r 52)] = 0 (3. 30¢)
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K, = (w?-w, %) B +%ei§' [(w2+2b)Kz(1+21-coszIf)

+ 3(16k+%w2)1'3"2- %szz sin 2?,5] —cho,s?p'[
3_,1 -2 , 1 = _
1 +cE(7 A +—7-B)] = 0 (3.304)

where ?z ZP2- -‘Pl .

Again it is desired to simulate the wind tunnel
experimental results. This means that values of &, B, ? and w
that satisfy the forgoing equations are sought as functions of the
aerodynamic pressure p_, for a given shell geometry, speed of
sound and Mac}l number of the air-stream for various flutter modes,

i.e., values ofjn. A procedure for doing this is outlined below,

3.4.1 Solving the algebraic equations

The aerodynamic pressure p_, comes into Egs. (3.30)
through the two parameters f and A, and for the case of no structural
damping A = K f where & = 3L/8M_a,, . Hence,the parameter {
may be used to characterize the aerodynamic pressure, It is
convenient for the calculations required herein to treat A as known
and B,w, fand ;5 as unknowns., Letting the four component vector
x;(1 =1 to 4) denote the unknowns such that x; = B, x, =, x, = f
and Xy = }0 , then Egs. (3.30) are of the form

K,(x) = 0 i, j = lto4 . (3. 31)
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The solutions to these equations may be obtained
numerically by a suitable generalization of Newton's method to four
variables as follows. If x; is a good initial approximation to the

sought for solution x such %hat X, =X - Sxi, then by expanding in

Taylor series from x tox , °
' o
9K
K lx ) + — . Sx,/ ~0 , j=ltod., (3.32)
o Ix,:
ﬂ x, = x 2 summedl to 4

i !

Now theSxi may be found from Eqs. (3.32), since by definition
Kj(xi ) # 0. When this is done, the new approximation for X is
x; =c:”ci + | Sxi) ,» and the forgoing procedure is repeated over again.
1 o
The initial solution used to start this process is that
obtained from the linear flutter problem which is nothing but the

linearization of Eqs. (3.30). This is easily seen to be

A =B
2 2
w +
wZ - wZ _ In Zn
° 2
S (3. 33)
¢ = $, = m - Arcsin (K@)
2 2
w —
f = f - In 2n

2 cos §50
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where -w/2 < Arcsin (ﬂ(wo) < /2. Initially A is taken to be a small
number (of order .05), and the linear solution given above is used to
start the iteration process. Thereafter, A is increased by a small
amount and the solution for the previous value of A is used to start

the iterations.

3.4.2 Stability of two mode steady state solution

The simplest approach to the study of the stability
of the two mod% steady state solution appears to be through the method
of averaging and the relevant Eqs. (3.29). These equations may be
put in the form

whe re the vector X has the three components A, B and 50 and
A ( X ) has the three components Gy, GZ and G3 where (within order
e

_ 1 — 1_—11 — 3 2 =2 1 ..,2
G]. = -m{AwA ZEA [Z AUJ‘B cos ? -—Z- - B (b+iw )X
— - —_ 11 1 -2 1 52
sin 2?] -fB Sin(f?i:l - mf(-z' AT+ = B )] (3. 35a)
o _ 1 -1 —2 — 3_2 . =2, .1 2

sinz“s'o‘] -£K sin|1+ _,4:50_“52_ %%_ 52)] (3. 35b)
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1 2 2 1 1.2 1,2 1 2
Gs*m{“’zn'“‘ln +z£{‘3a“2b+'z“ T%n - 7% )X

=2 1 2,1 2,1 . 2

A + (2b-48C - -z'w +-4-; wzn +-Zw1n )x

2 1 20,m2 2 = 1 2, =2 —

B + b+ 5w B%- K% cos 2P+ 7 Aw(E" + B )sinZ(P]

y fcos® | g2y m2, 1 32 2252 Lyt 24|} (5.350)
x5 0 VT 7

The steady state solution ;:o (i.e. , A ('5?0 ) = 0) is perturbed slightly
by letting

b

32:32; + E (3. 36)

where E has fbree components which represent perturbations to A,
B and (? respectively, Substituting this expressioh into Eq. (3. 34)

and noting that d?czldt = A(?c:) }) = 0 vyields the variational equations

- £ (3.37)

-
X=X

Lo}

where all nonlinear terms in the perturbation quantities £ have been
neglected, The substitution 2" = 'E: e Nt reduces Eqs., (3.37) to
the following eigenvalue problem for A



-b62~

Det

B - 11‘ =0 , (3. 38)

where I is the 3 x 3 identity matrixand B = -g% 2= isa3x3

real nonsymmetric matrix. Hence,the stability of the two mode steady
state solution is completely determined by the nature of the eigenvalues
of the matrix —E-)-f:: T= provided it is non-singular. That is, if

any of the eigenv}glues of this matrix have positive real parts, the
perturbations will increase with time and consequently the solution

will be unstable.

The matrix involved in the forgoing formulation
turned out to be extremely cumbersome. Consequently,it was practi-
cally impossible to derive an analytic criterion for stability, and a
numerical approach was employed in the following way. At each step
in A used in the calculations described in the last sg:ction, the com-
ponents of the matrix -g,—}_{A;. = _ 3 Were evaluated.’ The eigenvalues
for this matrix were then calculated and their real parts were

examined.

3.4,3 Results

The preceding calculations were carried out for the
following two cases:

(a) P, = 0 s n=n_. = 27
(b) P, = 0.5 psig, n=n . = 23 .
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Note that n_in is the value of n which results in minimum static
pressure for flutter for each value of Pr, according to the two mode
piston theory result. (See Eq. (3.20) and related discussion). The
results for case (b) are shown in Figs. 35 and 36 and are very similar

to those from case (a) as well.

It is especially interesting to note from Fig, 35 that
the modal amplitude versus static pressure curves do not continue
with positive slope indefinitely but rather bend backrrand continue
indefinitely wiﬁh negative slope. As one might well have expected
from simple physical arguments, the stability calculations showed
that only those éortions of these curves with positive slope represent
stable limit cycle oscillations. Hence,only the portions of the curves
in Fig. 35 between points a(a') and b(b*) represent physically realizable

flutter motion,:

Fig. 36 shows how the flutter frequency and phase
angle between the two modes varies with amplitude. The flutter
frequency is seen to decrease slowly with increasing amplitude. This
is typical of the so-called "softening'' type of nonlinearity and was to
be expected here from previous work. (See for example Ref, 11).

' The phase angle between the two modes ? also decreases with in-

creasing amplitude.

The fact that the modal amplitude versus static
pressure curves do not continue indefinitely with positive slope leads
to a rather interesting explanation of how the shell must flutter as the
static pressure increases monotonically. To facilitate this explanation,
results for various values of n near B 2T plotted versus the

unnormalized aerodynamic parameter f in Fig. 37. This figure may be
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interpretted as follows. As { (or static pressure p_, ) is increased
for P held constant, nothing happens until f reaches the fo corres-
ponding to n = 23 or 1.406 x 10°. At this point, given an initial
disturbance (turbulence in the air-stream for example) the shell
will begin to flutter with n = 23 and a frequency W, corresponding
ton = 23, For f slightly larger than fo’ the amplitude of this oscilla-
tion will grow exponentially with time until the limiting amplitudes
for A and Ed?i/(shown in Fig. 37 for n = 23 are reached, As fis
further increaéed, these amplitudes will increase until f reaches
1.52 x 105 where the modal amplitude curves for n = 23 have vertical
tangents. At this point, the flutter mode (i.e., value of n) must
change or jump - probably to n = 22, since the curves for it are
closest. This change in flutter mode would be accompanied by a

| change in flutter frequency and amplitude, It is clear from Fig. 37
that this type of change or jump would occur over and over again as f{
is increased continuously. It is also clear that some of the jumps in
amplitude could be rather dramatic as for example when the flutter

mode changes from n = 21 to 25 at f = 1. 58 x 10°.

The experimental results shown in Fig. 14 seem to
indicate that something like the forgoing process actually took place
in the experiment. The actual stable limit cycle amplitudes shown
in Fig. 37 (0.5 to 1.5) agree remarkably well with the experimental
values, See for example, Fig. 19. However, the circumferentially
travelling wave type of flutter, which was observed in the experiments,
is not predictable with the forgoing analysis. An additional degree of
freedom in the analysis would be required to obtain this phenomenon.

This analysis is left for a later study.
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The results, as for example shown in Fig. 35,
revealed no appreciable region of stable limit cycles below the
stability boundary for infinitesimal disturbances. Hence,within the
framework of the two-mode piston theory limit cycle analysis, it
may be concluded that for all practical purposes, flutter does not
exist below the linear stability boundary.
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3.5 Conclusions

The most serious limitation in the theoretical
foundation for cylindrical shell flutter still seems to lie with the
aerodynamic fheory. The question as to what is the best theory to

use for any particular configuration is still largely unanswered.

Within the framework of the present study, it appears
that, contrary to what had previously been thought, the boundary layer
does not play an important role in shell flutter with many circumfer-
ential waves. Furthermore, the detailed comparison between exper-

iment and linearized theory presented herein indicates that:

(1) The pressurized cylindrical shells fluttered at a
lower level of free stream energy than predicted by

either piston theory or potential theory.

(2) Of these two theoretical results, that using piston
theory appears to correspond closest to the exper-
iment both in stability boundary and in critical

values of circumferential wave number n,

(3) Both theories predict a larger stabilizing influence
of the internal pressure differential P, than observed

in the experiment.

The results from *the two mode limit cycle analysis
indicate that for practical purposes cylindrical shell flutter does not
occur below the gtability boundary for infinitesimal disturbances.,
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The limit cycle amplitudes predicted by this analysis seem to agree
very well with the experimentally observed ones, These results
further indicate that the flutter amplitude, frequency and mode shape
should change discontinuously (or jump) as the aerodynamic pressure

is increased beyond the value for first flutter,
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APPENDIX A

FLUTTER MODEL

Al General Description

The circular cylinder panel flutter model is shown
installed in the wind tunnel in Figs. 1 and 2. The model is a sting
mounted ducted body of revolution with the outer surface of the
center section f&rming the thin test shell, The supporting structure
consists of a nose, a center section which supports the flutter model
and instrumentation, and the tail section which connects the center
section to the wind tunnel sting. A ducted body a.llo'\é/s a larger model

size for a given cross sectional area without choking the wind tunnel.

The shape of the nose was chosen to best provide a
rapid pressure recovery and uniform flow conditions over the center
test section. Cowl number six of Ref. 8 was employed for this
purpose, The complete nose section is composed of this cowl plus a
four inch long straight cylindrical section forming the base of the
cowl, Four symmetrically arranged static pressure orifices are
located near the downstream end of this base. These were used to
align the model cylinder axis with the free stream direction during

the wind tunnel tests.

The tail section commences at the downstream end of
the thin shell section and attaches the model to the wind tunnel sting.
It is also used to support the instrumentation and pressure line

connections between the model and sting. .
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Details of the center section are shown in Figs. 4 and 6.
The nose section, which has been removed for the picture, is attached
to the bolts at the right hand end of this section. Installation or
removal of a thin shell (with end rings soldered to the shell) is
accomplished by removing this nose section and the thrust plate and
sliding the shell over the center section and instrumentation. The
‘shell's end rings are then slipped onto the "0'" ring seals at each
end. The '"Q" rings are made of neoprene rubber and have a 0.039
inch diameter cross section. The shell end rings and the '"0'" ring
seals are lubricated with Dow Chemical Vacuum Grease. The dia-
metrical inter%erence between the "0'" rings and the inside surface
of the shell end rings is about 0. 010 inches and provides the required
sealing of the annular cavity under the shell. An axial force of about
20 pounds is required to slide the shell over the "0" rings, 10 pounds
for each one. Consequently, the net axial load in the shell at any
time may be of the order of 10 pounds,

5E‘igure 3 gives the over~all dimensioﬁs of the flutter

model.

A.2 Thin Shells

The making of the thin shell flutter models was the most
tedious and crucial task associated with the flutter tests. These shells
were thin walled monocoque circular cylinders made by an electro-

plating process following Babcock (Ref. 25),

In this process, a layer of wax (two parts refined
parafin to one part Mobil Cerese 2305 wax by volume) over 1/4 inch
thick was cast onto a hollow aluminum mandrel 22 inches long by

15 1/2 inches outside diameter, The waxed mandrel was then machined
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to the desired diameter on a large lathe. This finished surface was
then sprayéd with two coats of conductive silver pé,int.

The plating was carried out in a Cupric Fluoborate
solution of specific gravity 1,15. The 23 inch diameter cylindrical
anode used as the material source was made from a 0.10 inch thick
copper sheet. This anode was covered by a bag made from dynel
cloth to collect the impurities discharged from the anode during the
plating., Although the bag collected most of these impurities, in
the four hours required to plate a shell, enough would get into the
solution to noticeably increase the surface roughness of the shell.
In order to minimize this roughness, the solution was continuously
filtered during the plating process. To further prog;ﬁote smoothness,
each shell was removed from the bath half way through the plating
process and carefully sanded. Uniformity in thickness around the
circumference was ensured by continuously rota.tir;g the mandrel
during the plating. |

After the plating was completed, the mandrel was
again placed on the lathe., The shell was cut to length with a very
narrow chisel-like cutting tool, and the excess copper (about three
inches at each end) was discarded, These end pieces were not
uniform in thickness because of the nonuniformity of the electric
field in the plating bath caused by the mandrel and anode end effects.
By throwing them away, the maximum variation in shell thickness
in the longitudinal direction was kept below Is percent.,

The wax at the lower end of the mandrel was scraped
off and a narrow jig was strapped around the mandrel to support the
shell during melting of the wax. The mandrel was then clamped into
the empty wax-casting tank and melted wax slovﬂy poured over it.
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The entire assembly was heated until all the wax was melted. The
melted wax was then drained from the tank, the mandrel recovered,
and the shell slipped off. The excess wax on the shell was removed
with Benzene, and the clean shell was then weighed, ,;This weight and
the known length and diameter of the shell were used to evaluate the
average thickﬁ;ess using a value of 8.9 gm/cc as the density of the

electroplated copper.

Each shell was soldered to two copper end rings as
shown in Fig. 5‘éfilsing Johnson's Flux -'N ~-Solder (a powdered solder -
50 percent tin and 50 percent lead - in a liquid flux). The outside |
diameter of the end rings were made 0,003 inches smaller than the
inside diameter of the shell to leave room for this seplder. The actual
soldering process involved the following steps: The;' outside diametri-
cal surface of tl’;e front end ring was given a thin coat of the liquid
solder. This rii;g was then placed front side down on a flat, rigid,
aluminum plate. The inside surface near one end of the shell was
then given a thin coat of the solder and the shell slipped over the
end ring. ’I‘he inside surface at the other end of the. shell and the
outside surfacepf the other end ring were then painted with the
solder and slipp_’igd together. The step on the outside surface of the
back end ring kezpt it from falling into the shell. This whole assembly
still on the flat plate was then placed in an oven and slowly heated
to the melting point of the solder (about 360 degrees F). After
allowing enough time for equilibrium to be reached at the high temper-
ature, the oven was gradually turned down and the temperature very
slowly returned to the room level. In this way, stresses induced in
the shell by differential cooling were minimized.

Many people at the GALCIT have contributed to the
evaluating of the material properties of the electroplated copper.
The Young's Modulus E was determined by pulling and simultaneously
measuring the deflection of 1/2 inch wide by 200 inch long specimens
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obtained by spirally cutting the cylindrical shell while still on the
6 psi. The load-deflection

curves were linear up to a stress level of 10, 000 psi. Values of

wax., The value was found to be 16 x 10

Poisson's Ratio ¥ in the range 0,35 to 0, 38 were found from the
ratios of longitudinal and transverse strains in these tensile
specimens as measured with strain gauges. A value of the density
of 8. 9+ gm/cc was found by weighing samples of the electroplated
copper in air and immersed in distilled water. Further details may
be found in Ref, 26.

A.3 Instrumentation and Experimental Measurements

Radial motion of the shell was measured by three
inductance ty;;g pickups numberedl to 3 in Fig. 6. The change in
inductance as a function of the distance between the shell and pickup
permits static %%nd dynamic measurements of the skin position to be
made without m'kchanical contact. Pickups 1l and Zjié;are mounted on a
drum which is rotated by a small electric motor a full 360 degrees
at an angular rate of 24 degrees per second or a surface speed of
3.3 inches per second. Pickupl is moved longitudinally between
x/L = 0.15 and 0, 67 by another motor and lead-screw mechanism
at 0.5 inches per second. Pickup 2 is located at x/L = 0,72, Pickup
3 is fixed to the center body at x/L = 0,84. A potentiometer connect
by gears to each traversing mechanism supplies a D, C. voltage
proportional to the distance or angle traversed. The pickups were
manufactured by Electroproducts Incorporated of Chicago, and the
carrier system was especially developed for panel flutter testing
by the electronics laboratory at the GALCIT. This system uses a
100 kilocycles per second carrier signal.

The static calibration curve for each pickup is shown
in Figure A.1, The nominal spacing between each pickup and the shell
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skin was 0,130 inches and the corresponding sensitivities were as
follows:

Pickup No. 1: 15.2 mv/0. 00l inch
Pickup No. 2: 16.7 mv/0.00L inch
Pickup No. 3: 18. 2 mv/0. 001 inch.

The maximum change in the spacing between the
pickups and the shell skin that occurred when the pickups were tra-
versed was approximately 0, 010 inches. This resulted in a maximum
change in pickup sensitivity of approximately 5 percent. Since this
change was only of the order of the accuracy of the éxperimental

measurements;‘ it was ignored in the data reduction.

The root-mean-square values of the signals from the
three pickups were measured on a Ballantine Model 320 "True-root-
mean-square'k voltmeter, and two of these signals were continuously
monitored on a Dumont Model 411 dual beam cathode ray oscilloscope.
All signals were recorded by an FM system on an Ampex FR-100
tape recorder, Figure A, 2 shows a partial view of the instrument

arrangement in the tunnel control room.

A twelve~tube boundary layer rake was mounted on the
model near the downstream end of the shell as shown in Fig., 2. The
tubes were 0,032 inch outside diameter by 0. 006 inch wall stainless
steel. The ends of the four innermost tubes were flattened to reduce
their interference with the flow, as shown in Fig. A.3. The leading
edge of the tubes was located 3/4 inches upstream from the downstream
end of the shell. )
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All tunnel testing parameters such as M, p_ » pt“
and Tt“ as well as the pressures from the four static ports on the
nose section and from the twelve boundary layer rake tubes were
measured on NA,SA equipment, All pressures were measured by
calibrated preéssure cells, In addition, the four pressgures from the
static ports on'the nose section were monitored on a manometer
board using Dibutyl alcohol (specific gravity = 1.03) as the manometer

fluid and p  as reference,

The pressure in the rubber tubes of the axial loading
mechanism p_ and the pressure in the model cavity were controlled
and measured by GALCIT equipment in the tunnel control room.

The p  was mgasured on a standard absolute pressure gauge, and
when the shell was to be unloaded, the rubber tubes were vented
top__ - The éressure from one of the static ports on the nose
section was used as the reference for Prys the pressure differential
across the shell skin. The large values of P, Were measured on a
standard pressure differential gauge and the small values were
measured with an alcohol {specific gravity = 0, 81) U-tube manometer.

A.4 Axial Loading Mechanism

The peculiar axial loading mechanism used in these
experiments resulted from the following design considerations:

1. The cylindrical shells were to be loaded in axial compression
quickly and remotely during the wind tunnel tests.

2. The circumferential distribution of longitudinal stress in the
shell had to be as uniform as possible, and the maximum load

_ had to be about 1000 pounds,

3. The loading mechanism could not interfere with the external

air flow,
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Experience has shown that one of the most difficult
aspects of buckling experiments is that of attaining uniform circum-~
ferential distributions of longitudinal stress. See for example,

Ref, 25, This difficulty is a direct consequence of the thin-walled
nature of cylindrical shells and the need to apply the axial load as
uniformly around the circumference as possible is evident. This
consideration led to the idea of applying the axial load through a
uniform circumferential distribution of pressure. This in turn
finally led to the idea of a pressurized, confined rubber tube at each
end of the shell,. The tubes used in the final design were made of
amber rubber ar;,d had a 3/16 inch inside diameter a,nd a 1/16 inch
thick wall,

‘A specially instrumented shell was made to check
the uniformity of the stress distribution that resulted]l’from this
loading techning. The shell used was 0,012 inches i&hick and was
made in the same way as were the shells for ﬂutterf‘i;esting. SR-4
Wire Strain Gauges (type A-3, resistance 120 ohms, gauge factor 2)
were attached with Eastman 9-10 cement to the inner and outer
surfaces at 30 degree intervals around the circumference of the shell
2.5 inches from the downstream end. Preliminary lpadings of this
shell showed that the difference in the strains and hence the stresses
in the inside and outside surfaces of the shell were at most of the
order of 5 percent of the mean stress level. This indicated that the
amount of bending induced by the loading mechanism was very small
and could therefore be neglected. Thereafter, the signals from the
gauges on the inside and outside surfaces at a particular circumferen~
tial position were averaged by connecting the gauges in series, and
this average was used as the strain and hence stress level at that
circumferential position,
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In order to provide a calibration of the axial loading
mechanism, this instrumented shell had to be calibrated itself, This
was done on a testing machine in the laboratory., The shell was loaded
in steps up t§ 1200 pounds and the strain gauge readizigs were recorded
at each step:i, A plot of the average of all the strain gauge readings
versus axial load was prepared and used as the calibration of this
shell,

The shell was then placed on the flutter model and
loaded in axial compression by pressurizing the rubber tubes, The
resulting distributions of strain and hence stress are plotted in
Fig. A.4. The value of the axial load for each setting of the pressure
p, was obtained from the calibration described in the above paragraph
and is plotted versus p_, in Fig. A.5. This curve was used as the
calibration for the axial load in the shells of the flutter tests,
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APPENDIX B

TAPE DATA HANDLING

B.1 , Recordi;ﬁg

" The data recorded on tape consisted of the output of
three carrier gmplifier channels which provided a rﬁeasure of the
shell motion and the output of either one of the potentiometers connect-
ed to the traversing mechanisms on the flutter model which prov:lded
a measure of the positions of the inductance pickups.

. A seven channel Ampex FR~100 tape recorder was
used to record data on one inch magnetic tape at a tape speed of 7,5
inches per secénd. Tape recorder channels 1, 2 a.ﬁd 3 were used to
record the three shell motion data measurements, while the potentio-
meter data was recorded on channel 4, The data recording amplifiers
were FM (frequency modulated) and were capable of recording data
in the frequency range from D, C. to 1250 cps., Voice identifications
were recorded at the start and end of each record using a direct
reproduce amplifier on channel 7. The two remaining channels were

unused,

A calibration panel provided a convenient method for
recording calibration voltages onto magnetic tape. Consequently,
zeros and known voltage levels in the range of : 1.4 volts (D, C,)
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were recorded frequently during actual data taking in order to assure
that the t:a.p;e,i recorder amplifier circuits were in proper adjustment
and to provide reference levels for subsequent tape data playback.

When the record and reproduce amplifiers of the tape
recorder arg’l}in average condition, and when care is used in per-
forming caliié’rations and data monitoring, the recording of data on
magnetic tape will result in accuracies of signal voltages to approxi-
mately 1 percent of full range, i.e.,, - 0 015 volts, on the assumption
that the recorder is operating in a linear manner.

Credit for the development of the foregoing tape
recording technique with its corresponding accuracy must be given
to Schmidt (Ref. 27),

A schematic view of the data recording circuitry is
shown in Fig. E 1.

B.2 Analzzing

The power spectral density distribution for each tape
record was obtained with a Technical Products (Models TP 627 plus
TP 626) harmonic analyzer., Typical plots are shown in Fig., 13,

Traverse plots were made on a Moseley Model 2D-~2A
XY plotter. The mean squaring circuit of a Ballantine True RMS
Voltmeter was used to obtain the mean square amplitude of the
signal that was to be plotted. This mean square of the signal was
applied to the Y input of the plotter and the output of channel 4
(traverse potentiometer signal) of the té.pe recorder was applied to
the X input.
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The plots of the mean square amplitude of flutter were
obtained by feeding the outputs of the tape recorder channels 1 and 2
(signals from pickups 1 or 2 respectively) directly into the Ballantine,
On the other ha.nd, the plots of the mean square of the difference
between the signals from a moving and a fixed pickup were obtained
by subiracting the output of tape recorder channel 3 (signal from
pickup 3) from that of channel 1 or 2 with an Epsco D, C, amplifier
and feeding this difference into the Ballantine.

Phase angle measurements were made on an AD-YU
Model 405 phase meter that works on the zero crossing principle,
This phase meter also provides a D, C, output (from a 0.1 second
time constant integrating circuit) proportional to the phase angle
being measured and this output was used to make phase angle plots.



-80-~

APPENDIX C

. ANALYTIC EXPRESSION OF THE FLUTTER MODES

C.l Standing Wave APproxima.tion

iConsider the standing wave type of deflection shape
wix, 8,t) = f(x) sinnd sinwt . {C-1)

The function f(x) may be complex, but this will have\»fno bearing on the
following arguments. Squaring it, we obtain

2 2

wl(x, 0, t) = £2(x) sin®n0 sin®wt

H

2 (C-2)
- .;f_;(_’i)_ (L - cos 2n0)(l - cos 2wt) .

Taking the mean, we obtain

2
5.45.’5_). (1 - cos 2n0) . (C-3)

_;z(& Q)
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Hence,we see that the mean square amplitude of the deflection would
vary between zero and a maximum 2n times around the circumference

if the flutter mode were of the standing wave type represented by
Eq' C"l °

C.2 Circumferentially Travelling Wave Approximation

Consider a deflection shape of the form
wix, 9, t) = f(x) [A sin n0 sinwt + B cos no coswt]. (C-4)

Squaring it, we obtain

wz'(x, 8, t) = fz(x) [f\‘z'si:n‘2 no sinzwt + BchsZnO coszwt

+ 2AB sin n@ cos no sinwt coswt]
2 (C-5)
-ZE;-) [Az(l - cos 2wt) sinznO

+ Bz(l + cos Zwt)cosan 4+ AB sin 2wt sin ZnO] .

Taking the mean, we obtain

wz(x, 0 = —= [AzsinZI;O-l—Bzcos?‘nO]

2

= 1 [(AZ + B%) - (A% - B?) cos an] . (C-6)
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Now if A and B are approximately equal, we see that wz (x, 0)is
approximately equal to (Azfz(x) )/ 2 which is independent of 8,
Hence,the mean square amplitude of motion is constant around the

circumference for the type of flutter mode expressed by Eq. C-4,
Now if we take

wl(Q, t) = A [sin n@ sinwt + cos n@ cog w t] (C=-T)

and

w3(t)i= C sin wt (C-8)
and then subtract W3 from Wy, wWe obtain

Aw(Q, t) = wl(O, t) - w3(t) = A [sin no sinwt + cos noé coswt}

-Csinwt (C-9)
Now
2 2 2
(ax)™ = Wy - 2wy Wa W, (C-10)
and taking the mean, we have
2 2 2 o (C-11)
(aw)™ = Wy - Zwl Wiyt Wa
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Multiplying w, and W, together, we obtain

AC [sin no sinzwt 4+ cosg n0 sinwt cos wt ]

Wy Wy = .
(C-12)
= iAL-z\‘c—;—‘:slin n8 (1 - cos 2wt) + cos no sin %wt] .
Therefore taking the mean, we obtain
W = 5% sin a0 . (C-13)
We also have that
— 2 : — 2
w? = &, and w,? = S . (C-14)
Therefore, combining Eqs, C-ll, 13 and 14, we obtain
—7Z _ a%+c?
(Aw)" = —~———— - AC sin n@ . {C-15)

2

Therefore, if A and C are approximately equal, the mean square of
the difference between wy and w3 is approximately given by
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(aw)® = (w - w5)? = A% - sin no) . (C-16)

Hence,the mean square of the difference between w; and Wy varies
approximately between zero and a maximum n times as 0 goes from
0 to 360 degrees. Therefore,it may be concluded that the type of
flutter mode expressed by Eq., C-4 will fit the experimental results,
but the one expressed by Eq, C~1 will not.
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APPENDIX D

BENCH TESTS

Some still air vibration tests were performed on shells
similar to the ones used in the flutter tests. A model D-40 Jensen
acoustic driver unit was used to drive the shells into resonance, The
acoustic output of the driver was focused onto a 1/4 inch diameter
circular area on the shell surface through a conical nozzle positioned
about 0,010 inches from the shell skin, The driver was excited by a
sinusoidal signal generator and amplifier, The resonance modes were
easily determined in the same way as were the flutter modes., The
frequency of the excitation signal was measured with a Berkeley

EPUT electronic counter,

The results of such a vibration test on a shell of
thickness 0,0040 inches are plotted in Fig, 27. The modes with one
half a wave along the length of the shell (m = 1) and those with one
full wave (m = 2) were relatively easy to obtain, but the modes with
three half waves (m = 3) and two full waves (m = 4) were much
harder. As a consequence, the measured frequencies for these
latter modes were not as accurate as for the former ones. The ratio
of the damping to critical damping was estimated from some resonance

plots to be about 0. 00l for modes with many circumferential waves.



-86-

Three shells were buckled under axial compression on
the flutter model with zero internal pressure, The thickness of these
shells were 0.0041, 0,0040 and 0. 0044 inches and the loads at which
they buckled were 390, 350 and 400 pounds respectively. These loads
are about 40 percent of the classical buckling loads for these shells
and are a little higher than most of those shown in Fig, 12 of Ref, 28
for the same radius to thickness ratio (2000). The buckling modes
were of the well-known diamond pattern type with the diamonds
distributed around the circumference of the shells but concentrated
near the downstream end. This concentration of thé buckles near
the rear end was probably a congsequence of the difference in the
geometry of the }gnd rings of the shells. This difference in geometry
results in a difference in the boundary conditions on the two ends of
the shell. These boundary conditions can have a strong influence on

the character of the axial buckling. See for examplé, Ref, 29,

A 0,0040 inch thick shell was buckled by evacuating
the annular cavity under the shell. This buckling occurred when
the pressure difference across the shell was 0,050 psig as measured
with an alcohol manometer, The buckling mode was made up of
fifteen waves around the circumference and one half a wave along the
length of the shell, The buckles were very shallow and the buckling
pressure was repeatable within about 1 percent, The theoretical
buckling pressure for this shell was 0,047 psig as calculated from
Ref. 30 for the case of radial external pressure loading rather than
for hydrostatic loading, since the particular geometry of the flutter
model is more closely described by that case.
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APPENDIX E

STATIC PRESSURE TEST

E.1l Static Pr'iessure Model and Instrumentation

The 0,020 inch thick shell used for the static pressure
model was consgtructed in the same way as were the thin shell models

used in the ﬂutter tests, See for example, Section A, 2 of Appendix A,

Fifty-three static pressure ports, 0.0135 inches in
diameter, were &rﬂled in the shell with the distribution shown in
Fig. E.1. Eleven of the holes lie along the cylindrical generator
labeled number 8 and six along each of the other seven generators

as shown in the figure.

Figure E. 2 shows the arrangement for delivering
the pressure to the manometers, A number 70 (0,028 inch diameter)
hole was drilled through the wall of a piece of 0. 061 O, D, (outside
diameter) brass tube. One end was then pinched off and the tube bent
as shown was held over one of the holes in the shell with a jig. A
short length of 0,009 inch diameter steel wire was inserted through
the hole into the brass tube. A small amount of "aluminum Devcon
type F2'" was then poured over the tube into the shape shown and
allowed to set, After the Devcon had hardened, the wire was removed
leaving a sealed conduit open only to the pressure port. A 0.050I.D,
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(inside diameter) vinyl spaghetti tube was then forced over the free
end of the brass tube and sealed with Glyptol., This process was |
repeated for all fifty-three ports. The vinyl tubes were carefully
fixed to the inside of the shell and were brought together at the

back end.

The shell was placed on the flutter model by slipping
it over the '"0'" ring seals from the upstream end of the model (left
hand side of Fig, 4) after removing the thrust pla’cef, The vinyl tubes
were then placed inside one of the conduits in the ta.il section. They
were attached to the inside of a sealed manifold at the sting end of
the conduit, The manifold had fifty-three short pieces of the 0, 061
O.D., brass tubipg soldered into a piece of 3/16 inch thick brass plate,
When the model was installed in the wind tunnel, the pressure leads
from a multiple tube manometer bank containing dibutyl alcohol
(specific gravity =1, 03) were attached to the free ends of the manifold
tubes. The free stream static pressure p_ was used as the
reference for this manometer bank and was obtained from a static
pressure port in the ceiling of the wind tunnel test section a short

distance upstream of the model,

A ten-tube boundary layer rake similar to the one
shown in Fig., A.3 was mounted on the model near the downstream
end of the shell, The tubes were 0,032 inch O.D, by 0,006 inch wall
stainless steel. Pressure lines from a second manometer bank

containing liquid mercury were attached to the rake tubes,

The pressure difference across the shell P, Was
controlled by varying the pressure in the sealed annular region under
the shell,
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The pressures at the four symmetrically distributed
static ports on the downstream end of the nose section were monitored
and were made equal by lining up the model axis with the free stream

flow,

Maximum deviations of the shell surface from a truly
perfect cylinder were estimated to be * 0,001 inches.

E.2 Experimental Procedure

The procedure for start-up of the tunnel was the same
asg for the flutter tests. See Section 2,2, The test conditions are
given in Table IV. The test point with correlation number 1 was
used solely for aligning the model, After Pto was established, about
ten minutes were allowed for the manometer readings to come to
equilibrium before the data was recorded, Phowg:é.phs of each

manometer board were taken for each data point.

E.3 Results and Discussions

The pressure distribution data are plotted in Figs.,
E.3, E.4 and E.5. The q_, shown in Table IV and used in calculating
Cp wa.s obtained from inviscid theory.

The boundary layer data is plotted in Figs.E.b6(a), (b)
and (c). The static pressure was assumed to be constant through
the boundary layer in the radial direction and again inviscid theory
was used to calculate the local Mach number from the measured total

pressure.



~90-

Overlooking local irregularities, the static pressure
distribution in the axial direction deteriorates as the Mach number
is decreased. At M__ = 3.4, the static pressure is very uniform
over the entire length of the shell, at M__, = 3,0, it begins to increase
slightly near the downstream end of the shell and at M, = 2.6 it is
increasing over the entire length of the shell, Some of this trend
is probably due to the nose shape as outlined in the introduction, but
some is probably due to the wind tunnel, Strength considerations
dictated that the model be located in the downstream part of the
test section and wind tunnel calibrations indicate tha.t flow uniformity

there deteriorates somewhat at lower Mach numbers.

The surprising dependence of Cp ong_ atM, = 3.4
shown in Fig, E. 3 is probably due to the so-called '"shock wave-bound-~
ary layer interaction', See, for example, Ref. 31, pages 340 to 342.
Boundary layer theory shows that the displacement thickness of a
laminar boundary layer on an insulated flat plate at high Mach numbers
is proportlonai to the Mach number equared and im(ersely proportional
to the square root of the Reynolds number. Qualitatively similar
results can be expected here even though the model is not a flat
plate and the flow is not laminar. The data of Fig, E. 6 substantiate
this expectation. Hence as the Mach number increases, the displace~-
ment thickness increases rapidly until some critical Mach number
range is reached when it is no longer small compared to the model
thickness. Then it will begin to have an appreciable effect on the
inviscid flow outside the boundary layer. For constant Mach number
in this critical range, decreasing q_, decreases the Reynolds number
which further increases the displacement thickness., Therefore, the
effective thickness ratio of the model increases, thus producing an

increase in Cp .
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In conclusion, it seems that the best flow conditions
for the flutter tests would be in the vicinity of M_, = 3.0. The lower
Mach numbers should be avoided because of the poor distributions
of static pressure accompanying them, On the other hand, at the
higher Mach numbers, the static pressure distribution is very
favorable, but the boundary layer thickness changes markedly with
free stream dynamic pressure. Consequently,the higher Mach

numbers should also be avoided,
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APPENDIX F
POTENTIAL SOLUTION OF LEONARD AND HEDGEPETH

Leonard and Hedgepeth (Ref, 7) have developed an
exact expression for the linearized aerodynamic pressure acting on
a cylindrical shell of infinite length, which is exposed externally to
an axially-directed air stream and where the shell is deformed by a
travelling wave with sinusoidal spatial dependence. Itis fairly easy
to superimpose solutions for waves travelling in both the upstream
and downstream directions to obtain the solution for a standing wave,

The results obtained by doing this are given below for the conditions

of interest herein,

For a shell deformation given by

W = C eiwt sin n@ sin x X (F.1)

m ?

the resulting aerodynamic pressure may be put in the form

_ iwt
p = c_e sin n@ [ Peorm sin x X + Pe, €O8 a(mx] , (F. 2)
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where Pem and Pep, 27 a8 follows:

w
(i) For M]. = ].\/I.°° (1 - k) e 1, k = —é‘—'—ﬁ-— >0
- 2 2 -
Y o, P M M
ng;%? l_ H (z;n)+ 2 H,(z,;n) (F. 3a)
5T > 1'%1 292 ,
L I\/I1 -1 M2 -1
A
g 2 2 -
¥ P, M
= " H,(z,} n) - 2 H, (z,in)| . (F.3b)
> > 1Y% > PAFAR
{_ M -1 M," -1 ]
(ii) For M1 I < 1 ,
i 2 2
Ye<. . P M M
2 [~ .- 2 [ 2 . ’
] 1-M M," -1
. i 2 2
iy P M M
. Sl 1 K(ngi n) - 2 Hy(z,m)| (F.4b)
2 J1- M2 /M,% -1 ’
v - 2 -

where

M2=

M_ (L +k) >1
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H (1)(2)
H,(z; n) = 2 ’
1 Y
n
(z)
dz
H (z;n) - ’
2 )
2 (2)
dz
K _(z)
K (z; n) = = ’
dK_
(z)
dz
7 = o M%-1 R M| >1
1 m 1 g 1 ’
= o /M.%-1 R M.| >1
Zp T ™ 2 ’ 2 ’
2. = eoc_ J1-M% R M| <1
3 m 1 ! 1 ’

and Hn(l)(z) and Hn(z)(z) are the Hankel functions (Bessel functions
of the third kind) and Kn(z) is the modified Hankel function (modified
Bessel function of the third kind).
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APPENDIX G

THE BOUNDARY LAYER PERTURBATION PROBLEM ASSOCIATED
WITH THE SUPERSONIC FLUTTER OF CYLINDRICAL SHELLS

G.1 Nomenclature
it 1
A (v'/v )C
a speed of sound in gas
B [2/3 (V“'/V')—l/z (VH/V!)Z] c
C arbitrary constant in power series solution of P+

ﬁear critical point of Eq. (G. 22)

C specific heat of gas at constant pressure

F, G H z dependent amplitudes of x, z, y components of
perturbation velocities respectively; cf. Eqgs. (G. 8)
to (G.10).

T

reduced frequency of wall oscillation, w*/xXU*

furey

Mach number

o2 F

z dependent amplitude of pressure perturbations;
cf. Eq. (G.12).
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amplitude of sin e¢tx and cos e x components of
perturbation pressure on wall respectively; cf.

Eq. (G.46).

pressure perturbation

mean component of pressure in unperturbed gas flow

P'/P

‘universal gas constant

Reynold's number
z dependent amplitude of density perturbations; cf.
Eq. (G.11)

temperature perturbation

‘mean component of temperature in unperturbed gas flow

f;im e

mean component of velocity in unperturbed gas flow

X, y, z components of velocity perturbations respectively

M, (U Ry /T

wall deflection

coordinate in plane of wall and parallel to free stream
direction

coordinate in plane of wall and normal to free stream

direction

coordinate normal to wall
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wave number of perturbations in x direction

wave number of perturbations in y direction

ratio of sﬁeciﬁc heats of gas

boundary layer thickness

z/ 8

value of n for which U =k

g’dependent amplitude of temperature perturbations;
cf. Eq. (G.13).

8 , boundary layer thickness parameter
3.14159265

density perturbation

Iéean component of density in unperturbed gas flow
B /o<, three dimensionality parameter

phase angles of coefficients of sin e¢x and cos o x
components of perturbation pressure on wall respectively;
cf. Eq. (G.46).

frequency of wall oscillation

jmaginary part

real part

free stream value

parts of perturbations which have form of travelling

waves in + and - x directions, respectively.
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Superscripts

* denotes dimensional quantities (Note: the variables

x, 8, % Y 2 S, w, CP, R are also dimensional)

Miscellaneous Functionals

RY ()  real part of { )

J'm( ) imaginary part of ( )

'( ), modulus of ( )

Arg ( ) argument of { )

[ Jc [ ] evaluated at critical point (n = 1 )

In () natural logarithm of ( )
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G. 2 Introduction

The importance of including the effect of the viscous
boundary layer in analyzing certain types of panel flutter has been
fairly well established. The preliminary work of Miles (Ref. 32),
McClure (Ref. 33) and Anderson and Fung (Ref, 4) which pertains to
this problem is summarized by Fung in Ref. 2, Miles showed that
a parallel shear flow may reduce the degree of instability of an
axisymm etricg travelling wave on an infinitely long cylindrical shell
in an externai supersonic flow by an order of magnitude. McClure
showed that the boundary layer on a flat panel in the low supersonic
Mach number range is very stabilizing to two-dimensional flutter.
This seems to be a transonic phenomenon in that the effect of the
boundary layer vanished as the Mach number approached ﬁ .
Anderson and Fung's work with an idealized step-boundary layer
model on a cylindrical shell showed a significant three-dimensional
effect. An increase in the number of circumferential waves in the
flutter mode was accompanied by significant changes in the amplitude

and phase of the aerodynamic pressure on the shell wall.

In more recent work, McClure (Ref. 34) has developed
a '"pseudo-laminar'" theory for travelling-wave disturbances in the
fully turbulent boundary layer on the basis of an analogy with laminar
viscous flow, The assumed point of view which has been basic to the
development of the classical aerodynamic pressure operators for
use in flutter calculations is that regular perturbations are induced
in the flow by a prescribed wall motion. He considers three postulated
interactions between 1) these regular disturbances and 2) the mean
steady flow (mean plus turbulent components). The alternative
postulates are designated: the ''linear interaction' in which 1) and 2)
are completely independent; the '"quasi-linear interaction' in which
1) depend only slightly on 2); and the '""non-linear interaction' in which
1) and 2) are highly dependent on each other. He shows that the
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"linear interaction' model is an adequate representation of the

phenomenon under the restrictions that i) the wall motion has a
negligible random component, and ii) the disturbance has small
enough amplitude and phase velocity (compared to the free stream

velocity).

The experimental results (Section 2. 3) seem to indicate
that these restrictions are indeed satisfied for the cylindrical shell
flutter. Power spectral analysis of the shell wall motions during
flutter showed no measurable power at any frequencies except the
flutter frequency (or frequencies in the cases when more than one
flutter mode was present). In addition, there was no measurable

change in the boundary layer profile after the onset of flutter.

On the basis of these justifications, the 'linear
interaction, pseudo-laminar' model is assumed from the outset in
the present work, Furthermore, only the inviscid solution to the
resulting perturbation equations is considered. In analogy to the
laminar case, this inviscid solution corresponds to the so-called
zeroth order solution of an asymptotic solution of the complete
linearized perturbation equations based on an expansion in powers
of 1/ex Re’ Hence,this solution can be expected to be a reasonable
approximation as long as ocRe is very large. For the intended

applications, this will indeed be the case,

For most applications, the boundary layer will be thin
compared to the radius of the shell, Hence,the cylindrical surface
may be considered esentially flat and the boundary layer perturbation
problem may be solved for a flat wall. This will simplify the

computations considerably.
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G.3 Formulation of Boundary Layer Perturbation Problem

G. 3.1 Differential Equations for Infinitesimal Disturbances

The geometry to be considered is that of a supersonic
stream flowing approximately parallel to the flexible surface wall
defined by the plane z = 0. Some kind of a turbulent boundary layer
exists near the wall, The flow that exists when the wall is perfectly
flat and stationary is called the undisturbed flow, and the quantities
which define this flow such as velocity and temperature are composed
of two parts, the mean or time-independent components and the
turbulent or rail_pdomly—ﬂuctuating components, The mean components
depend on the s:i:;ace coordinates x (the stream wise direction) and z

but not on v.

The mathematical problem is formulated by assuming
that the undisturbed flow is exactly parallel to the plane z = 0 and
extends in the x direction from - e to + 2, As a result, the mean
components of the undisturbed flow quantities depend only on z. The
effective Prandi:l number for the flow is assumed to be unity and the
wall is taken as insulated so that the mean component of temperature

T*(z) is related to the mean component of velocity U*(z) by
Jo 1 '2
CPT’» + 5 U*" = constant . (G.1)

With the usual assumption that the mean component of pressure is
constant across the boundary layer, the mean component of density
‘p*(z) is proportional to the inverse of the mean component of

temperature from the perfect gas law.
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The wall z = 0 is assumed to be oscillating in the z
direction with infinitesimal amplitude in a standing wave pattern so
that its deflection is given by w(x, y, t) = e—iw*t sin o¢x sin g y.
The common complex notation is employed for the time dependence,
and the deflection amplitude is taken to be unity for convenience.
The oscillating wall induces regular perturbations in velocity (ux*,
uy*, uz*), pressure p*, density p* and temperature T* in the gas
flow adjacent to it, It is assumed that these perturbations do not
affect the undisturbed flow quantities so that the total flow guantities
such as velocity and temperature are just the sum of corresponding

undisturbed flow quantities and these perturbation quantities.

Substitution of the total flow quantities into the
conservation laws of mass, momentum and energy, ji‘subtracting off
the boundary layer equations which the undisturbed,ﬂow quantities
were assumed to satisfy, dropping all nonlinear terms in turbulent
and perturbatiori; quantities and neglecting viscous and heat conduction

terms ylelds the following set of perturbation equations:

Continuity:

e 2Py o Ly E + L u + UL s (G.2)

U*x 0t Ox dy dz - dz x

o

Momentum:
i du du

sl s u =9 u_ =-—-1---2 2p (G. 3)
| U 9t Ix dz vM_  9x
3 ou du

— 1

> [ Yy yu ¥ = -t B (G. 4)
| Up? ot ox YMg, ay
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0
- s —0 (G.5)
YyM_, 9z

= -(y-1|—=%+

(G.7)

U::: Sk
U = b, s mymt = wimy oz
Sk
i 3 ¥ U*
o
U * U *
M = > = 22
L -]
a /yRT;k'
p(x, v, 2, t) (% o 2, P o= B -
P, p %
* 3 3 - X
p(x’ Y’ Z, t) _E (X Y’ Z t) , p(z) = p (Z)
p sk
(- -]

.)
8
*
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T(x, Y, z, t) = Et(x: Y, %, t) , T(Z) = T*(Z)
k = —wi..
< U %

1§Tow as a result of the simplifying assumptions, these
equations have éoefﬁcients which depend only on z. Hence the
dependence of tfxe perturbation quantities on x, y and t may be assumed
to be exponential, and in particular periodic. It may be seen that
the following assumed form of the solutions will sati;éfy the equations

and the boundary conditions.

4 (% v, 7 t) = sinpy [F Ja)et (Tt i (ocrant) (G.8)
3 " . T

uy(x, y,z, t) =1 cos’By H+(z)ei(°<x~w t)-l- H_(z)e—l(dx.'-w*t) (G.9)
] |

6,05y, 2, t) =1 singy (G, (2)e! X @F L () mileent W) (G.10)

pix,y, 2, t) = sin(ey S+(z) ei(“x—w*t)+s_(z)e-i(«x*'w*t) (G.11)
L o

B%, ¥, 2 t) = sin gy | P (z)el (X ¥y p_(5)e-ilent wit) (G.12)
L -

T(x, Y, Z, t) = sj_np y [@+(z)ei(«x~ Wit )+ @-(z)e-i(«)ﬁ w*t) (G. 13)
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The plus and minus sign subscripts denote the portions of the solution
which have the form of traveling-waves in the plus and minus x
directions respectively. Substituting these quantities into Eqs. (G. 2)
to (G.7) yields

Continuity:
] dG —
— 1 + 1 dp iexx
_S+(U'k)+P(F+'§H++5Z & )t = &'z'GJrJe *
i dG _
- -4 _ 1 -y_ 1 dp -lxx _
S_(U + k) + p(F_ + po H_ o< —a—z—- ) o dz G_ e 0 (G. 14)
Momentum:
[ , P
1 du + jeex
FU-K+5 37 G+t —2= | e +
- YMa P J
F@U+k -+ U ¢ 4 P ] tx 0 | (G.15)
- = dz - T 2— °
- YM, P
H+(U -k) ~ ﬂ Zt ei«x +
- <YM, "p
J AP ] y
H (U +k) + e HE = 0 (G.16)
L ayM,_, p
. T
GyU - k) - - dz+ T
L <XyM_ p J
1 dP_ -iecx
G (U+ k) + - | e =0 (G.17)
- o YM_"p |
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Energy: -
- dG
1 47T y-1 1 + | lex
- (G.18)
0 (U+k)- 1 4T 4 s+ Y2l g + £u - el L 0
- o I Gt T/ F_+HQH -S| =
P N
State
S e s e
b2 Zelaefe 2 Be ol oy
p T p T
Since the ei"(X and e ~eex are independent, the coefficients of these

terms must all vanish individually. Hence there is one set of six
total differential equations for the six dependent variables F+, G+, H+
S+, P+ and @ + and another set of the other six ¥ _; G_, H, 8, P_
and @ _ . Each set of six may be combined to form one second
order equation in only one variable,and it will be cor§venient here to

let that variable be the pressure P, or P_. Whe;;i this is done, the

+
resulting equation is

2

APy |1 aT _ _2 au | 9%y
dz T dz U-k dz z
2 MeoZ(U—k)Z 2

+lad | -1 - pél P, =0, (G. 20)

H

The corresponding equation for P_ may be obtained from Eq. (G, 20)
by simply replacing P+ by P_, o< by - e and k by -k. Introducing
the nondimensional independent variable n = z/8 where S is the

boundary layer thickness and the function
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| M, [um) - ] |
Vo) = , (G. 21)
T (n)

Eq. (G. 20) becomes

1
URAL: P +x%|vi-ng+eh|P, =0 (G. 22)
+ v, TH + + .

where XK =«d |, & = £ /o< and primes denote differentiation with
respect to n. Similarly the equation for P_ is

A

P"e—~ P' 4 Kk [V_Z - (1—a~2)]9_ = 0 (G. 23)

where

V_(n) = M“[Um) ! kl— . (G. 24)

J T )

The form of T(n) may be obtained from Eq., (G.l) and is

Tm) = 1 + Y50 M ° [1 - Uz(n)] . (G. 25)
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G.3.2 Boundary Conditions

Since the viscosity and heat conduction have been
neglected in the perturbation equations, the only boundary condition
that may be s.atisfied at the wall is that the normal perturbation
velocity be eqﬁal to the velocity of the wall, For the given wall
deflection, this condition takes the form

1 ow -1 wy* ~{wkt
uz(x, y, 0,t) = 55 = w e sin «<x sin gy , (G. 26)

U, * U, *

Now from Eq. (G.10),

uz(x’ y,0,t) = i sinﬁ}} [G+(0)ei(ax—w=:<t)+ G_(O)e—i(a&x-!— w*t)}

-{wrkt

=1 singy e { (G+(0)+ G_(0))cosxx + i(G+(0)- G_(0)) sinotx}(G. 27)

Hence combining Eqs. (G. 26) and (G, 27) yields

G,(0) = -G (0) = ZE. (G. 28)

This may be easily converted into boundary conditions on ;l'-’+ and P_

by using Eqs. (G.17). In nondimensional form, these are
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~fec K kEyM 2
P+;t§(0) - (Cr. 29a)

2 4 (y - M2

jec k K2yM,,

P '(0) = . (G. 29b)
2+ (y- l)M‘.Z

The outer boundary conditions may be obtained by
considering Eqs. (G. 22) and (G.23) as n becomes large. As 1 - oo,
U(m) -1, T(n) =1 so that V+‘ —- 0 and v, - M* (1 - k). Hence
Eq. (G. 22) becomes ‘

Pk

2 2 2
. [M” 1 - k) -(1+a~):' P, =0. (G 30)

Hence the behavior of P+ for large n is

P, ~exp| T K/M:(l R L R R, (G. 3la)

or

Z Rk

+ 2 2
P+~exp K IL+&" - M_"(1 -k) M (G. 31b)
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M, 2(1 - k)2 is greater than or less than (I +62) respectively.

In the first case, the Sommerfeld radiation condition is used to
determine which sign is appropriate. This condition requires that

the perturbations be functions of (x - cn) as 1 = =0 for supersonic
outer flow, Since the P+ is multiplied by ei@(x in the pressure
perturbation expression, the minus sign in expression (G. 3la) must
therefore bé chosen. In the second case, the minus sign in expression
(G. 31b) is chosen in order that the perturbation not grow unbounded as

N —woo . He‘i;ce,the outer boundary conditions for P+ become

I}
; = 4 K\/M”Z(l “K)% - 1+ P (G. 32a)
+
or
P! -
L -K\/1+d*2 - M, 2 - k)2 (G. 32b)
Py

as n —= o> for these two cases,

A similar analysis for P_ leads to the outer boundary

conditions

T = ik /M‘_,za F)2 - @+ (G. 33a)

or



~-111-

P! 1
= = - /—1+a-2 - M__% + k) (G. 33D)
P

-

if M_, 2(1 + k)z is greater than or less than (I + a-z) respectively,
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G. 4 Solution of Pressure Perturbation Equations

It has been customary in the past to solve the inviscid
equation for the stability of the laminar boundary layer in the form
of a convergent series in powers of o< 2(or ~ 2). However, this
approach proves unsatisfactory for high Mach numbers because of
the resulting slow convergence. It would also be unsatisfactory for
the case in which o2 is large. Hence, in the present problem a
numerical solution to Eqgqs. (G. 22) and (G. 23) is required, The
approach outlined by Reshotke (Ref. 35) for solving the laminar
boundary layer stability problem will be followed here.

The mean velocity profile for the turbulent boundary
layer is taken to be the well-known one seventh power law between
n=0,1and 0.9. For n > 0.9, the profile is taken ta be exponential
such that U and U' are continuous atn =0.9and U—+1as n-= oo .

8 +d119 is

For n < 0.1, a power series of the form U = an + b'q7 + cn
assumed and the parameters a, b, c and d are chosen so as to make
U, U', U" and U'"! continuous atn = 0.1. As shown in Figure G.1
this assumed profile provides a good fit for the experimental data

of Coles (Ref. 36).

G.4.1 Numerical Solution of Equation for P+

By the standard transformation

Q = — . (G. 34)
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For a given wall oscillation and boundary layer
geometry, X , & , M. and k are known. Hence Q+ for large n
is known and E«s, (G. 36) can be integrated numerically in through
the boundary layer (i.e. n -= 0)., However, for most applications
k < 1,and hence V+ goes to zero somewhere in the boundary layer,
The point where this occurs is defined by u and is the so~called
critical layer from hydrodynamic stability problems. Eq. (G.22)
has a regular singularity at n = n.asa result of the neglecting of
viscosity and heat conduction for the perturbation quantities, It is
clear that the inviscid solution cannot fully describe the physical
phenomenon in the vicinity of M However, in the laminar problem
(Ref. 35), as long as «Re(l - k) =>> 1 the effects of viscosity and
heat conductivity die out rapidly with distance on either side of the
critical layer and have very little effect on the solution a finite
distance away from this layer. The same results should hold true

in the present problem.

'The solution in the neighborhood of the singular point
Ne is obtained by series expansion (method of Frobwenius), the details
of which are given in Appendix H., The resulting behavior of Q+ about
the critical point is as follows:

Q = -KZ(I +6“2’)(n-—nc){1-Cr(n-nc)+ [B +K2(1+a'2)-

+
k1'
[V+72Jc 2
AA+C )+ *—="1 m-n) +(n-n)Aln ln~nc

1l+o

[1 +An - nc) +(K2(1 + a-;) + 1 (B + Az)) n - nc)z ,  (G.38)
2



for (q - nc) >

k21 +o)

for (n - ‘qc) <

where

it

+—§:— (B +Az)] (n-nc)z} ,
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;- nc)z {1 + Am-n.) + [Kz(l + o)

(G. 39a)

k21 + 0Py A+ C;)n - nc)z {1 tAM-m)

¥ [K 20 +0?) + 5 (B + 47 J (n - T,C)Z} ., (G.39b)

V' 1
"““+, , (G. 40a)
v
b + C
™ V [RR4 V it 2
R —— : ., (G.40b)
V¢ Vv t
L + + c
C.+ iCi = arbitrary constant which may

be complex.,

The actual numerical integration is slightly different
for the two different sets of boundary conditions (G. 37a) and (G, 37b),

and may be conveniently broken into two cases as follows:
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Casel: 1+o% = M_2( - k)2

In this case, Q+ 2 0 form> . 8o that Ci 20
The nature of the solution for 64_ is depicted in the following sketch.

Q, (eo)
Ty

from Eq. (G, 37a)

From Eq. (G. 38), it can be seen that Q has a slope of - K (1 +U“2)
at the critical point,but the curvature is logarithmically singular,
Each value of C defines a Q curve for n > Mo but only one value
will result in a curve that becomes asymptotic to Q (o0), the
required outer boundary condition. Once this consta,nt i1s determined,

the integration can proceed inward from the critical layer to the wall.



-117-

The actual integration for this case then is as follows:

Integration from Infinity in to Critical Layer

(1) Given £ , o~ , k and M_, , calculate u from mean profile,
calculate A and B from Eqs. (G.40a and G. 40b) and evaluate
the outer boundary condition from Eq, (G. 37a).

(2) Integrate Eq. (G, 36a) from infinity (n & 2.5) into the vicinity
of n_. Obtain a first estimate of Cr by inverting Eq. (G. 38).

(3) Using this value of Cr in Eq. (G.38), evaluate Q+ for a small

positive value of (n - nc). t

(4) Continue’calculating Q+ by integrating Eq. (G. 36a) out to
infinity. Compare the fesult with the value from step (1).

(5) Repeat steps (3) and (4) adjusting Cr until the outer boundary

condition is satisfied.

Integration from Critical Layer into Wall

(6) Using the value of Cr from step (5), evaluate Q+ and Q+ for

some small negative value of (y - nc). * i

(7) Continue calculation of Q, and Q+ by simultaneous

integration of Eqs. (G. 3-‘6)r in to m i 0.
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Case2: M_%1-K)2>1+0?

In this case, Q+ #F 0 forn > 1. 8O that Ci £ 0.
The nature of the solution for d_l_ is depicted in the following sketch.

| M_, %0 - k)% >1+e?

from Egq. (G. 37b)

The explanation for this case is the same as for Case 1 except that
now there are two constants Cr and C1 to be determined so that

the outer boundary condition {(G. 37b) is satisfied. Once these
constants are determined, the integration can again proceed inward

from the critical layer to the wall,
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The actual integration follows the same lines as in
Case 1 except that in steps (2) and (3) simultaneous integration of
Eqgs. (G.36) is required for n > N, 2as well., Steps (5) and (6) now
read Cr and C1 instead of just Cr .

G.4.2 Numerical Solution of Equation for P_

Following the same procedure as for P+, the differential

equations for

‘:P ! .
Q. = — (G.4l)
P_
are
PA R
Q '= ——q -@ %-q % +;<2[1 +re? v 2| (G.42a)
T \ r r i
2v
Q '= ——Q -2 Q , (G. 42b)
i A" i r i

where V_(n) is defined by Eq. (G.24) . Egs. (G. 34 ) lead to the outer

boundary conditions

0
I

—K/;+0'2—M“2(1+k)2 , Q =0 (G. 432)

or

Q =0 , Q@ = K/Mjﬂ +x)% - 1+ (G. 43b)
r i
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as m -= oo depending on whether 1 + o2 is greater than or less than
M‘”z(l + k)2 respectively.

Since V_(n) does not vanish anywhere in the region of
interest, the numerical integration of Eqs. (G.42) from infinity
into the wall ¢an be carried out straightaway, The nature of the

solution for Q_ is depicted in the following two sketches:

2 2 2
: 1 407 =2 M 1+k
r
Q_ (n) __
-y o T]
Q__(eo)
from Eq,. (43a)
2 2 2
1
Q_ (n) ‘ M "lL+k)" =>1+0o
r
Q (n) e ——
i o
Q —_ - Q-—.(”)
1
— from Eq. (43b
- q. (43Db)




-121-

G.4.3 Pressure Perturbation on Wall

Once the solutions for Q+ and Q_ are known on the
wall, the pressure perturbation on the wall may be calculated from
Eqgs. (G.IZ).‘T;Solving Eqs. (G.34) and (G.4l) for real and imaginary
parts yields

'm0 . ¢ PLO)

R P+(b) = s (G. 44a)
= 2
logml
and :
R'Y£ Qf(O).ijt'(O)
Am P40 = - (G. 44b)
where from Eq. (G. 29)
- Y kz K M_, 2
» PY0) = F . (G. 45)
A'm + 2

2+ (y-1)M_,

Evaluating Eq, {G.12) at the wall and substituting from Eqs. (G. 44)
and (G.45) yields the pressure on the oscillating wall
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i i
plx, vy, t) = sinla y re:"im’“t [Pse fs sinexx + P_e €os ocx] , (G.46)

where
AN
P = 'P+(O) - p_(0)| ’
@, = Arg [p+(0) - P_(O)] +§ ’
> (G. 47)
P, = |P(0) + P_(O)l )
P = Arg [P+(0) + P_(O)] .
p

G.5 Results and Discussions

The calculations described in Section G.4 were perfarmed
on the IBM 7090/7094 of the California Institute of Technology
Computing Center, The method of Runge-Kutta-Gill was used for

the numerical integration of the differential equations.

The results for k = 0.5 and 0,75 are shown in Figs,
G. 2 to G.5 along with the corresponding results from potential theory
and piston theory. It is seen that the boundary layer results rapidly
approach the potential solution results as the boundary layer thickness
parameter K decreases. It is also interesting to note that both of
these results approach the piston theory result as the three

dimensionality parameter &~ goes to zero.
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As noted in Section 2, 3, the boundary layer thickness
for the experimental configurations reported herein was about 0. 2
inches. * Hence, X would be about 0. 02, 0.04 and 0, 06 for the
observed flutter modes. The results in Figs, G. 2 to G.5 indicate
that for these values of K , the boundary layer results are reasonably
close to the potential solution results. Hence,in that sense, the
influence of the boundary layer may be ignored. Hq'é‘wever, it must
be emphasized that the present analysis is not valid for disturbances
with very short wave lengths in the streamwise direction, so that

the foregoing statements may not be valid then.

The peculiar singularities shown in Figs. G. 2 to G.5
at particular values of & are a result of singularities in the outer
boundary conditions which the pressure perturbation quantities P+
and P_ are forced to satisfy. For example, as shown in Eqs. (G. 32),
the outer boundary condition which Q+ = P+‘~/ P+ satisfies, has a
branch point at ¢ = . where

2 2 y/
Sy = M_"0-k)"-1L

The same thing is true for Q_ = P_'/P_ with

2 _ 2 2
T, = M_ 1+ k) -1 .
* The measurement of 0,4 inches was obtained at the downstream

end of the shell, so that 0.2 inches represents some sort of average
over the whole shell.
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At these critical values of ¢, the outer boundary condition changes
from one of radiation to one of exponential decay, and the resulting
singularity simply reflects the breakdown of the inviscid theory.

It is interesting to note that these singularities do not occur for the
cylindrical potential theory results (Appendix F), apparently
because of the attenuating effect of the cylindrical geometry. How-

ever, the results do show ''resonance'' peaks, See for example,
Ref, 19, |
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APPENDIX H

SERIES SOLUTION OF P+ EQUATION IN APPENDIX G ABOUT

CRITICAL POINT

In treating the equation for P+ (the z dependent
amplitude of that part of the pressure perturbation which has the form
of a traveling wave in the + x direction) a regular singularity appears
at the critical point (where U = k). The solution of this equation in
the neighborhood of the critical point is obtained by a series expansion
that is sometimes called the Method of Frobenius., Although the
numerical solution is performed on the equivalent first order nonlinear
equation, the series expansion will be performed on the second order

linear equation (Eq. G. 22).

}H
PH....Z..Y_P'+K2[V2—(1+0‘2):]P=O , (H.1)

v

where

M, (U(n) - k)
‘s . (H. 2)

T (n)

The plus sign subscripts have been dropped for clarity.
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Let §=m- e and assume a solution of the form
s 2
P = § (ao+a1n+azn + vee ) . (H. 3)

Since V=0 at § = 0, in the neighborhood of the critical point

i
.‘?‘.Y_=E+A+Bg+... 5 (H. 4)
v €
and
vé = lvm?| g2 4 v*v"] e3 4+ ... , (H. 5)
C C
where
VH
A = v (H. 6)
c
and
118 1t
s - |3 gy .7
A A c

Relations (H. 3) to (H.5) are substituted into Eq. (H.1),

and the coefficients of each power of £ are made to vanish. The

-2

leading power of £ is §S , and its coefficient vanishes when
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a [s(s-l)—ls]: 0 . (H. 8)

Since a_ # 0, s =0or 3. The coefficient a_  is set equal tol
without loss of generality. The values of ap 25 e for the solution
corresponding to s = 3 (designated Pl) are found from the condition
that the coefficients of the £° ~ 1

resulting solution is

8 .
, £€°y ... terms vanish. The

3 2 2 2
b 5
P :§3+35: €4+ K(1+a-)l+3(B+A) £+ ... . (H.9)

1

Since the characteristic exponents differ by an integer, the second

linearly independent solution of Eq. (H,1) has the form

£ >0

4y

2 3
P, = Kp; dng + 1 +b1§ +b2§ +b3§ +b4§ (H.10a)
§=0
P, = KP (Lo |&|-im)+ 1 +b& +b,e%+b,63 +b,6% 4 (H.10b)"
2 - 1 1 2 3 4 ot ‘
* The negative sign for the 7 term in the second equation is chosen

to provide the proper analytic continuation of the solution about the
critical point. A treatment of the full viscous equations shows that the
proper path of integration lies below the critical point in the complex
n plane for the case when Uc‘ > 0; cf. Appendix G of Ref, 37.
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Substitution of Eqs. (H.10) into Eq. (H.1) yields

for PZ:

£ >0

K20+ ch)a lurety
Pz = = Pl '&1 g + 1 Ed i g -
3 2
——-{(1+o") [B+K 1 +of) - 2L AZ]
12
+ [(v')z] } g4 + byP + ... (H.1la)
[
£ <o

Now, replace dn £ by In l gl - iw in Eq, (H.lla). (H.11b)

The coefficient b3 is not determined in the procedug:e and so remains
arbitrary. Hence Eqs. (H.1ll) represent the general solution to

}
Eq. (H.1).

For use in the numerical solution for P+, Eqs. (H.11)

are expressed in terms of Q = PZ‘/PZ . This becomes

Q= -k +a~2)g{1+Ag Int -C £+ [Az(ln§—1)+

140

S
B+#al+eod)-act —~———2¢~(V)] ] §2+A§3[

21 +e +% B+AY) | lng + ... } . (H.12)
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where C is an arbitrary constant which may be compléx (i.e.
C = C_ +iC,) and n £ is replaced by || -infore <o,

Hence the real and imaginary parts of Q are as follows:

1]

Q_ _k 2+ §{1+A§ I | 6] -crg+[A2;ﬁ1|g| - 1)

lz 2 [(V”Z] 2 3
+B+ K0 +0%) - AC_ + == 1£° + Ag
14a°

k2u+c® e s @A e + .. ¢ (H.13)
| 2
For §{ >0

Q =xiu+efyct?d 1ras+ | ki +of) + 5 (B +aD |62

+ @ e % (H‘ 14a)

For £ < 0

Q = k21 +0%) (€ +Am E%] 1+ AL + | &0 +a?) 45 (B + A% | £

+ ... o (H.14b)
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TABLE I

FLUTTER DATA FOR SHELL NO. 1 (h = 0. 0040 INCHES AND Px = 0)

A T L
(psfa) (op)  (psig) (deg) (cps)
18 1 694 68.7 2.45 2.993 0.04 0.35 0.04 108 0.02 - - (2)
19 1 1045 73.5 2.45 2.993 0.05 0.35 0.06 108 0.03 - - (a)
20 1 1400 81.0 2.21 3.381 0.06 0.35 0.07 108 0.03 - - (a)
21 1 1754 87.9 2.21 3,381 0.07 0.35 0.08 108 0.03 - - (a) 'i,"
22 2 1755 94.9 1.00 3,381 0.08 0.35 0.09 108 0.03 - - (a) v
23 2 1934 98.4 0.98 3.381 0.07 0.35 0.10 108 0.03 - - (a)
24 2 2115 102.1 0.98 3.381 0.09 0.35 0.12 108 0.03 - - (a)
25 2 2248 104. 4 0.98 3.381 0.09 0.35 0.11 108 0.03 - - (a)
26 2 2395 107.7 0.98 3.381 0.09 0.35 o 13 108 0.04 - - (a)

The frequencies f were obtained from power spectral analysis of the pickup signals. The

letters in the brackets indicate which one of the motions depicted in figure 12 was present.

3k . . . . . .
The circumferential wave number n and the circumferential nodal line number j were

obtained from traverse plots.
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TABLE I (cont.)
= 0)

FLUTTER DATA FOR SHELL NO. 1 (h = 0.0040 INCHES AND P_

Corr. Run p T P w 1 w w 3 f
No. No. ‘o o =M IRE X rms & 2L

(psfa)  (op)  (psig) (deg) (cps)
40 2 1405 94.3 0.49 3.381 0.06 0.35 0.07 108 0.03 - - (a)
41 2 1047 90.0 0.49 3.381 0.05 0.35 0.05 108 0.02 - - (a)

L

Pt

w

-q

!
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TABLE III (cont. )

FLUTTER DATA FOR SHELL NO. 3 (h = 0. 0040 INCHES AND M__ = 2. 993)
R Ner P g P Px lemel e Yems? 0 Mewed o,
(psfa) (op)  (psig)  (lb) (deg) (cps)
232 16 2120 106.9 0.10 0 0.15 0.3  0.12 -58 0.10 - - (a)
234 16 2120 108.6 0 0 0.77 0.3 0.51 -58 0.26 - - 104(d)
235 16 2120 108.4 -0.007 O 0.91 0.3 0.57 -58 0.30 0 local  94(d)
236 17 2119 109.5 0.37 90 0.13 0.3 0.11 -58 0.11 - - (a) *',,;
237 17 2119 107.6 0.74 90 0.09 0.3 0.13 -58 0.13 - - 606(c) D
238 17 2120 108.5 0.98 90 - 0.59 0.3 0.46 -58 0,44 1 20  652(c)
239 17 2121 108.6 1.24 90 0.13 0.3 0.08 -58 0.10 - - (a)
240 17 2120 108.5 1.96 90 0.10 0.3 0. 07 -58 0.08 - - (a)
241 17 2123 108.6 0.12 90 0.15 0.3 0.11 -58 70.10 - - (2)
242 17 2123 108.9 0.003 90 0.56 0.3 0.40 -58 0.24 0 local 100(d)
243 17 2122 108.2 -0.006 90 0.82 0.3 0.47 -58 0.24 0 local  93(d)
244 17 2123 108.6 -0.012 90 0.90 0.3 0.52 -58 0.30 0 local  85(d)
18 2121 108.5 -0.011 O 1,04 0.3  0.64 -58 0,36 0 local  90(d)
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TABLE III (cont.)

FLUTTER DATA FOR SHELL NO. 3 (h = 0.0040 INCHES AND M00 = 2.993)

I\:Igfr. gzn ptoo Ttoo Pm x Wr;:qs wrr;ls e Wrtrins n £
(psfa) (o) (psig) {b) -~ (deg) (cps)
272 23 2476 119.6 0.41 90 0.33 . 28 -58 0.28 23 522(c)
273 23 2476 117.4 0.59 90 0.49 .40  -58 0.40 - 577(b)
274 23 2476 117.5 0.83 90 0.74 .64  -58 0.62 20 606(c)
275 23 2478 117.2 1.07 90 0.38 .30 -58 0,32 - 676(c)
276 23 2477 116.2 1.30 90 0.21 .12 -58 0.19 - 907(c)
277 23 2477 117.4 1.95 90 0.14 . 08 -58 0.09 - (a)
278 23 2477 118.2 O 90 0.21 .15 -58 0.12 - (a)
279 23 2478 118.6 -0.006 90 0. 20 .15 -58 0.14 - (a)
280 23 2473 119.4 -0.013 90 0.18 .15 -58 0.14 - (a)
281 24 2475 118.2 -0.002 O 0.20 .17 -58 0.15 - (a)
282 24 2476 116.9 -0.005 O 0.20 17 -58 0.14 - (a)
283 24 2476 117.3 -0.012 O 0.21 .17 -58 0.15 - (a)
284 24 2477 117.6 -0.018 0O 0. 20 .15 -58 0.15 - (a)

-06GI~
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TABLE III (cont.)
FLUTTER DATA FOR SHELL NO, 3 (h = 0.0040 INCHES AND Moo = 2.993)
I(\i:):r. gtgn Ptoo Tt00 P, Px thmsl ’Ii wr;ns?. e wrms3 j . f
(psfa) (o)  (psig)  (Ib) (deg) (cps)
298 27 2473 117.4 3.93 400 0.12 0.3 0.06 -58 0.07 - - (a)
299 28 2827 129.1 3.93 0 0.12 0.3 0.07 -58 0.08 - - (a)

300 28 2830 130.8 1.96 0 0.15 0.3 0.08 -58 0.11 - - (a)

301 28 2828 129.2 0.98 0 0.25 0.3 0.21 -58 0.22 - - 652(c) L
302 28 2828 128.3 0.92 0 0.49 0.3 0. 37 -58 0.44 1 20 630(b) g}
303 28 2827 128.8 0.67 0o . 0.69 0.3 0.54 -58 0.55 - - 582(c)

304 28 2828 127.8 0.39 0 0.54 0.3 0.45 -58 0.44 - - 422(c)
305 28 2829 129.1 0.21 0 0.18 0.3 0. 15 -58 0.17 - - (a)
306 28 2828 128.5 0.008 0 0.56 0.3 0.37- . -58 0.34 0 local 100(d)
307 28 2827 128.2 -0.001 0 0.64 0.3 -58 0.32 - - 92(d)
308 28 2826 128.6 -0.006 0 0.77 0.3 -58 0.41 - - 86(d)
309 28 2827 127.2 -0.014 0 0.69 0.3 0.46 -58 0.37 - - 77(d)
. 127.4 -0.019 0 0.76 0.3 0.54 -58 0.4l 0 local 71(d)

310 28 2828
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TABLE III (cont. )

FLUTTER DATA FOR SHELL NO. 3 (h = 0.0040 INCHES AND Moo = 2.993)

Corr. Run p T P P w 1 w 2 w 3 f
No. No. to to m x rms X rms R rms i a
. <h L h e T h

(psfa)  (op) (psig)  (1b) (deg) (cps)
336 32 2473 121.4 -0.010 200 0.17 0.3 0.14 -58 0.28 - - (a)
Shallow diamond pattern buckles appeared here.
336A 32 2473 121.4 0.015 200 0.82 0.3 0.15 -58 0.18 - - (d)
337 32 2473 122.8 0.49 200 0.13 0.3 0.09 -58 0.10 - - (a)
338 33 2474 121.7 0.49 240 0.13 0.3 0.08 -58 0.10 - - (a) ';

o

339 34 2475 119.8 0.27 240 0.13 0.3 0.09 -58 0.12 - - (a) '

Complete buckling occurred here at P, = 0. 098 psig. Buckling pattern is shown in figures 8 and 9.



TEST CONDITIONS FOR STATIC PRESSURE TEST
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TABLE IV

M
[e2)

Cgsrlation , e T P
(psf) (psf) (o) (ps)

1 3.400 2449 125. 40,
2 " 2444 299. 1 126. 40.
3 " 2040 249.7 117. 34.
4 L 1631 199.6 108. 29.
5 3,003 2039 348.9 120. 58.
6 o 1747 298.9 114. 50.
7 " 1459 249.6 106. 43,
9 2.605 1583 374.2 109. 85.
10 L 1255 296.7 102. 68.
11 " 1898 448.7 117. 101.
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TABLE V
FOUR MODE-PISTON THEORY RESULTS, Px = m - 0
%

B Py ow el *2 | <5 o3 |e4l 2

(psia) (rad/sec) (deg) (deg) (deg)
23 0.5944 1468.67 1.0618 161.63 0.3690 -22.87 0.0935 162.47
24 0.5769 1588.85 1.0709 160.38 0.3982 -24.81 0.1081 160.43
25 0.5729 1716.07 11,0822 159.15 0.4328 -26.85 0.1273 158.17
26 0.,5804 1849.89 1.0952 157.98 0.4718 -28.93 0.1519 155.72
27 0.5972 1989.92 1.1089 156.86 0.5126 -31.03 0.1819 153,13

taking cy = 1.

The modal amplitudes

{

’cm‘ and phases cpm are normalized by
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TABLE VI
SIX MODE - PISTON THEORY RESULTS, P_=p_ =0
n Po w e, ] b || ?3
(psia) (rad/sec) (deg) (deg)
23 0.6131  1470.53 1. 0679 161.76  0.3846  -22.92
24 0.6006  1591.12 1. 0802 160.59  0.4209  -24.86
25 0.6052  1719.09 1.0972 159.53  0.4678  -26.84
26 0.6274 1854, 26 1.1207 158.69  0.5284  -28.80
n A Py |°s | 5 | <6 | 23
(deg) (deg) (deg)
23 0.0917  162.39 0. 0340 -18.87  0.0133  164.99
24 0.1074  160.26 0. 0384 -20.45 0.0158  163.14
25 0.1295 ° 157.85 0. 0464 -22.16 0.0195  161.09
26 0.1610  155.20 0. 0582 -24.02 0.0252  158.84

See note under Table V
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TABLE VII
SIX MODE - POTENTIAL THEORY RESULTS, Px = pn’1 =0
n P w ’CZT 4y |°3 \ ?3
(psia) (rad/sec) (deg) (deg)
17 1.8836 705.98 0.3145 91.94 .0424 -150.86
18 1.9951 802. 87 0. 2537 90. 22 .0456 -172.34
19 1.9314 914. 16 0. 2847 95. 65 .0762 -157.38
20 1.6109  .1058. 16 2.9031 102. 88 .1632 -160.42
21 1. 6444 1152.51 0.5290 92.49 .2997 -172.92
o <4 Py 5 s ! 6 %
(deg) (deg) (deg)
17 0.0015 90. 31 0.0011 -21.12 .0002 -179.00
18‘ 0.0011 24.03 0. 06007 -11.11 .0002 -119.54
19 0. 0050 77. 28 0.0016 -74.61 . 0004 151. 20
20 0. 3856 20.15 0. 0876 -160.74 .0310 64. 54
21 0. 0257 -21.75 0.0028 -160. 50 .0017 68. 48

See note under Table V
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Figure 1: Front View of Cylindrical Panel Flutter Model in Tunnel

Figure 2: Back View of Cylindrical Panel Flutter Model in Tunnel
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Figure 6: View of Model Instrumentation

Shell

7

o e

16

Rear End Ring

FIG, 7 CROSS SECTION OF BELLOWS BUCKLE(h=0.0039")



Figure 8: Right Hand Side of Buckled Shell; Run No. 34

Figure 9: Left Hand Side of Buckled Shell; Run No. 34
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Mo= 2.993

, Ro= 1767 psf ; Re = 4.8 x 10° o
(in) R.= 3171 pst ; Re=8.0 x 10° @

0 02 04 06 08 1
M/ Mg

FIG 11 BOUNDARY LAYER PROFILES



1 Corr. No. 299
5 msec/div.
Y2
Wl Corr. No. 113

5 msec/div.
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M A PR T AR
b mﬁv hwmh’.=-.I,an;‘.'m

il f

Corr. No. 209

| Corr. No. 310
“” 10 msec/div.
2

Figure 12: Sample Time Traces of Shell Motion
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M_=2.993; h=0.0039 in

Run 3; R,,= 0.98 psi o——
Wrms Run 3; p,=0.37 psio——
h Run 6; R = 3.93 psi&----

Pickup # 1

Wrms
h
05} o
Pickup # 2
— R A Do B
0 . ; ¥
Wrms
h
0.5} _
Pickup # 3
. . = :::‘ﬂ_/--—-—ﬁ--__A__
Ol by " —
O 1 2 3 p X107(psf) 4
[« o]

FIG. 14 FLUTTER AMPLITUDE VS, TOTAL PRESSURE



-171- R=0; Corr. #'s 157-179
M, =2.993; h = 00039 in

= psf o—
Ro 211 f
Pickup # 1 Ro = 2466 psf o——
Reo = 2818 psf a---
\\\} ————— ;6 e e
\-U—-"//
{ [
%ms PiCKUD # 2
h
S, U N
e
e oo
/A”% T~
AE }
—O~
O
[l D-ji/l \% i o
_\ﬁ/rms P‘Ckup # 3
h
1:“‘ Ol = B L
e VAR T oo
\'U—//
—G\GT——D—-
i el 2 i i
-02 O 0.1 P (psi)

FIG. 15 FLUTTER AMPLITUDE VS, INTERNAL PRESSURE
FOR BUCKLED (BELLOWS MODE) SHELL



h :0.06%5 in; M, =2.993; ptm = 1768 psf

Run 11;&:0 O
1Tw Run 12;&:90 Ibo— —
.F'_rms Run 13;Px:200 b &~
Run 14; R, =300 Ib®-~
/m\
[\ Pickup # 1
/}
7
v— —2
1T
Wrms
h
A\ Pickup # 2
/ s,
r —a,
: —a
3 P (psi) 4

FIG. 16 FLUTTER AMPLITUDE VS, INTERNAL PRESSURE
WITH VARIOUS AXIAL LOADS; CORR, #'s 187 TO 217
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h=0.0040 in ; M, = 2.993 ; B =2120 psf

Run 16,18, = O o—

Run 17;RK = 90 Ibo——
Y Run 19; K = 200 Ibar---
Run 20;Fk, = 300 Ibv--

Pickup # 1

4_9

17

Wrms
h
Pickup # 2

[ [ B 1 i “o
o ) ~
~-04 -02 O 1 2 3 Py (psi) 4

FIG 17 FLUTTER AMPLITUDE VS, INTERNAL PRESSURE
WITH VARIOUS AXIAL LOADS; CORR. #s 228 TO 260



h=0:8640 in s M, = 2.993 ; py = 2475 pst

Runs 22,24; R = O ©°—
T Runs 23,31;R = 90 lbo——
ik Run 25;F= 200 Iba---

" Run 26;R= 300 Ib g

Pickup # 1

&.DB

P -0

1.-

Wrms
h
Pickup # 2

] ——O'
-0
-04 -02 O 1 2 3 P (psi) 4

FIG 18 FLUTTER AMPLITUDE VS, INTERNAL PRESSURE
WITH VARIOUS AXIAL LOADS; CORR. #'s 263-296 & 326-332
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FIG 19 FLUTTER AMPLITUDE VS INTERNAL PRESSURE
WITH VARIOUS AXIAL LOADS; CORR. #5299 TO 325
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N h=.004 in.
(@]
(]
w
N
(V]
e}
o
T
o
o é—APPROXIMATE FIXED ENDS, EQ. 3.9

- W
ol
!

n

N

FIXED ENDS, REF. 14

4ELY SUPPORTED ENDS, EQ. 3.16

| 1 n
30 40

CIRCUMFERENTIAL WAVE NUMBER, n

e

FREQUENCY SQUARED DIFFERENCE, w22

N
o

FI1G.28 FREQUENCY SQUARED DIFFERENCES FOR
UNSTRESSED CYLINDRICAL SHELL
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FIG.29 SHELL GEOMETRY AND COORDINATE SYSTEM
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=2
n=c! 20 & MODE POTENTIAL THEORY
97 p=0
X

h=.004"
M = 3,

Tio= 120°F

4 MODE PISTON
THEORY P,=0

N

T

/EXPERIMENT

FREE STREAM STATIC PRESSURE, Py (psia)

Y,=.0005
25 f/ylg,//, //// _
// // ne=
///////////////// ° M RERz2
Y, =0
% | | : 2

SHELL INTERNAL PRESSURE DIFFERENTIAL, ;l)“(psig)

FI1G.30 CYLINDRICAL SHELL FLUTTER BOUNDARIES
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6 MODES — PISTON THEORY
P py=0, n=24

=
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-
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Z 0 0.5 |
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S 100F
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W, . ,
o 0.5 [
=

< e

7 100

< i |

a _ AXIAL POSITION, x/L

AXIAL VARIATION OF FLUTTER MODE



~188~

S3ISVIYONI Pd sy S100Y AINIAND3IYS4 40 SNJ0T  2€914

(09s/ppd)  Ym ‘SIIONINDIYA XITdWOD 40 LYvd v
0002 000Gl : 000l

o

(pi1sd) ®d *34NSSIY DILVLS WVYIHLS I3

: | V-

| =W

EQ_|E3 = Ws

O = xn_ = EQ nON = U
AHO3HL IVILNILOd ‘S3A0ON 9




~189-

6 MODES, POTENTIAL THEORY

= n=20, p_=P =0
8 4L Qm=0)m"IBm
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FIG.33 LOCUS OF FREQUENCY ROOTS AS p, INCREASES
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6 MOLCES—POTENTIAL THEORY
F’x =0, n=20, p, (psig)
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g 00
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-

- 0o
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w -100
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a AXIAL POSITION, x/L

FIG.34 AXIAL VARIATION OF FLUTTER MODE
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MEAN MODAL AMPLITUDES,
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2 MODES—PISTON THEORY
P, =0.5 psig, n=23

wl

UNSTABLE

A

STABLE LIMIT CYCLE

UNSTABLE —|

bl

S —

NONDIMENSIONAL STATIC PRESSURE, f/f,

FIG.35 LIMIT CYCLE AMPLITUDES
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2 MODES~-PISTON THEORY
Pm = 0.5 psig, n=23

o)
1

MEAN AMPLITUDE OF FIRST MODE, A
o
MEAN AMPLITUDE lOF SECOND MODE, B
=

4l
a

o
|

o
on
|

oL oL L ] 1 ]
0.97 1.0
NONDIMENSIONAL FLUTTER FREQUENCY, w/w,

L | | | |
90 120
MEAN PHASE ANGLE BETWEEN MODES, ¢ (deg)

FIG.36 FLUTTER FREQUENCY AND PHASE ANGLE
DEPENDENCE ON AMPLITUDE
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er Pickup # 1

2r Pickup # 3

O L l ! l ]
0.08 010 012 014 016 018

Distance from Pickup to Surface (in)

FIG. Al PICKUP CALIBRATION CURVES
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Figure A.2: Instrument Arrangement in Tunnel Control Room

Figure A.3: Close-up View of Boundary Layer Rake
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Wgﬁ)——o—o—m
0 ! i ]
O S0 180 270 360

Angular Position (degrees)

FIG. A4 AXIAL STRESS DISTRIBUTION IN
INSTRUMENTED SHELL
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FIG. A5 CALIBRATION OF .AXIAL LOADING MECHANISM
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SECTION A-A

0.061 0.D. 0.0l5 WALL

- =002~

ALUMINUM DEVCON

7 ,/myfmﬂﬁﬂﬂﬂ:ﬂn_ ‘
i///{lzé._/ -!','.‘rﬁ'r' \_

N 0.0501.D. 0.015 WALL
- VINYL SPAGHETTI -

t HH T
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0.020 THICK CYLINDRICAL SHELL

FIG.E2 DETAILS OF A STATIC PRESSURE PORT
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