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EXTENDED SUPERGRAVITY WITH A GAUGED CENTRAL CHARGE

Abstract:

We construct a Lagrangian for the massive scalar multiplet,
locally invariant under two types of spinorifal transformatlons (N=2 super-
symmetry). Our theory is based on the coupling of the global supermulti--
plet to N=2 supergravity and corrections generated iteratively in powers
of Newton's constant. Consistency of the theory requires the vector field
of saupergravity to gauge the central charge represented in the massive
sector of the multiplet. The same vector may alternatively gauge the
internal 0(2) symmetry of the two supersymmetry generators. Furthermore.
it may even gauge a linear combination of the generators of these two gruups;
we indicate the grounds for this compatibility.

We discuss the hierarchy of internal symmetries character-
izing each sector of the theory, ranging from U(1)xSU(2)xSU(2) down to
0(2)x0(2). This internal symmetry imposes tight constraints on the system.
For instance, the nonpolynomial structure of the spinless fields at hand
is considerably more restricted than that present in the general simple
supersymmetric (N=1) theory. Furthermore, the vector field is forced to
couple to the matter fields with gravitational strength, to the effect
that the resulting Coulomb potential exactly cancels agailnst the Newtonian
potential of gravity, in the statlic 1limit.

Our theory may be also viewed as a truncation of N=8 super-
gravity theory,compatibly with the SO(8) breakup scheme into SU(3)xU(1)xU:1).
The potential of the spinless fields present has a local minimum at the
origin, but further off it is not even bounded from below. However, we
point out some indicationsthat the tunneling out of the supersymmetric,

metastable vacuum is negligibly small.
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1) INTRODUCTION

1.1) Supersymmetry and Supergravity

In the last few years, a new class of local field theories
has been under intensive study. These are characterized by supersymmetry,
a fundamental extension of spacetime symmetry. Specifically, the algebra
of the Poincaré group is enlarged by the inclusion of spinorial, anticom-
muting generators which describe supersymmetry, As a result, the ensuing
Graded Lie Algebras contain anticommutation relations in addition to com-
mutation relations, thereby circumventing a previous no-go theorem[C°67]
that excluded non-trivial, fully relativistic unificagions of internal
symmetries with the Poincaré group.

Historically, the first instances of supersymmetric field
theories appeared in [Go71, Vo73]. Later on, the fermion-boson mixing

concepts of the Graded Supergauge Algebras involved in dual modela[Ne7l’Ra71]

were applied to fiel& theoretical realizationslGe?l’ Wel4a, We7ib] and
were studied on a systematic basis. Reviews and early references may be
found in [Zu 75, Fa77].

The novel feature of supersymmetry operations ia that they
connect fermions with boscns, differing in spin by half a unit., As a re~-
sult, they allow for (super)multiplet representations which involve particles
of several different spins. For example, there exist supersymmetric
models in which the Higgs scalars occurring in current phenomenologi-
cally realistic field theories belong to the same multiplets as the
vectors and the spinors, It is interesting that this is made possible
by symmetry principles tightly connected with the structure of space-

time.
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Thus emerges the enticing prospect of utilizing
supersymmetry as the framework for the unifiecation of all knowp
interactions, strong, weak, electromagnetism, and gravity. In this connec-
tion we may cite realistic extensions of Weinberg-Salam type models
(Fa77, Fa78a, Fa78b; references on the phenomenological aspects cited there-
in}, A central problem to be faced in such a program is that of providing

a satisfactory mechanism for supersymmetry breaking, since fermi-bose

degeneracy does not manifest itself in nature,

An attractive feature of supersymmetric theories is their
improved finiteness, due to the systematic cancellation of divergent dia-
grams interconnected by symmetry. Super-Ward identitles reduce
[1I174, Na75]

the number of renormalization constants necessary , and even

possibly unrenormalizable theories may yield finite on-~shell amplitudes
[Van78]

to at least two loops . Further similar formal surprises are the

vanishing of the Gell-Mann-Low function §(g) to two loops in an N=4

[Jo77, Po?7]

supersymmetric Yang~Mills theory , and the complete absence

of quantum corrections to the claseical spectrum of an N=2 supersymmetric

Yang-Mills theory[W178]

. An extensive investigation of abstract supere&mm
metric models has been undertéken, in order to clarify the structure of the
symmetry, and the cdnstraints, possibilities, and mechanisms inherent in
them,

The Poincaré algebra may be enlarged by the addition of up
to N=8 different supersymmetry generators, as well as bosonic charges
(called ceatral, since they commute with all elements of the algebra).

In extended supersymmetry (N > 1), the irreducible representations are

large, and therefore of particular physical interest.
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Simple supersymmetry (N=1) has representations that are not as large,
but models in which they interact exhibit most of the drastically new
features of supersymmetry and they have been studied more extensively.

Ip a massless realization, each of the N supersymmetry
generators lowers or raises the helicity of a state by 1/2[8a74, Ha75]'
Each generator anticommutes with itself, so that its square 1is zero.
Consequently, starting from the state of highest helicity A, we may go
down to A - %N by N steps of 1/2 helicity units. The multiplicity of
states at the helicity level A - %-of the supermultiplet is equal to
{2}, the number of antisymmetric combinations of n generators out of
N. The multiplicities {ﬁ}'l, {§}=N, {g}. Eig%il, ..., add up to the
total number of states (1+1)N=2N. We see that the number N of differ-
ent supersymmetry generators in a theory is bounded from above by 4A:
for |A|s2 we have Ns8; for As%, N<6; for A<l, Ns4; and for As%, Ns2.

In the massive case there are in general more states, but theif number
may be reduced in special cases where there 1s a central charge in the
algebra[S°78] down to the same number and spin range as in the mass-
less case. When the symmetry is realized linearly, the number of fer-
mion degrees of freedom of the system always equals the number of the
boson degrees of freedom.

The supersymmetric invariance of the theory may be ei-
ther spacetime independenﬁ ("global", 1i.e., "gauge'invariance of the
first kind"); or else it may be spacetime dependent ('local", i.e.,
"gauge invariance of the second kind"), by virtue of suitable gauge
fields for supersymmetry. The gauge fields transform as the gradient

of the infinitesimal (super) transformation parameter 8o as to allow

the construction of (super) covariant derivatives.
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The gauge theories of supersymmetry are called supergravity
theories. They consist of Einstein's gravity (describing a spin 2 gravi-
ton), coupled to the gauge fields of supersymmetry (spin 3/2 gravitinos),
as well as other fields of lower spins (for N>1), subject to the state
counting restrictions already mentioned. For reviews, see [Fr77b, Van78,
Fe78a].

Supergravity theories are particularly interesting on several
grounds. They rectify previous consistency problems of spin 3/2 theories
[Da76]’ namely ghosts and.acausal signai propagationlve69]. They have

prompted progress in ordinary Einstein gravity, such as the proof of the

positivity of energy[DES77' Gr78a]’ They furthermore unify other fields

with gravity more consistently and naturally than in the past, improving
the prospects for a consistent quantum theory of gravity. In partic-
ular, as a result of their enhanced symmetry, supergravity amplitudes
have finite one and two loop quantum corrections, unlike any other
matter theory coupled to gravity[van78],

It should be pointed out that no theory including grav-
ity 1s known to be atrictly renormalizable, due to the pfesence of the

dimensional coupling constant x of Newton and the corresponding p2

momentum dependence of gravitonvertices. The degree of divergence

obtained by naive power counting is 2+(n-2)I, where n is the dimensiona-
lity of spacetime and I is the number of loops. For n>2 the degree of
divergence increases indefinitely with the number of loops. It should
be noted though that there is no clear guarantee of the appropriateness
of local field theoretical methods at distances of the order of the

Planck length.
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We indicated above that a major virtue of supergravity
theories is the richness of their irreducible repreasentations. The
largest of these containing just one graviton is N=8 supergravity. It
is possible to embed SU(B)CxU(l)xU(l) in i1ts internal symmetry group
50(8) and'thus break up every spin level §f the supermultiplet into
representations of this SU(3) color group and the 'weak-electromagnet-
ic" U(1)xU(1) group accordingly. The representations are thus iden-
tifiable with most of the known elementary fields, and an interesting
consequence is that the 2/3, -1/3 charges of the quarks appear natu-

[Ge77]

rally in this scheme (The charge of the spinor identified with

the electron comes out three times the fundamental charge in the the-

ory, in accordance with the 3 step deacent in helicity levels from 2

to 1/2) .

On the face of it, the above example is inadequate, since
the electromagnetic-weak group involved is not U(1)xSU(2), so that there
is no room for charged W bosons (worse yet, it turns out that there can
be no more than four quark flavors at the very best, nor another charged

lepton to represent the muon). However, it should be borne in mind that

' Ge74
some current speculations on simple, non-supersymmetric gauge models[ 1

estimate the unification of the strong interactions with the weak ones

19

to take effect at energies of the order of the Planck mass ( =10""GeV).

Again, as before, there is no reason to trust our intuition as to which

fields are elementary or composite at similar energiles.

Large supermultiplets (representations of U(N) as op-

posed to SO(N) groups) could be gotten from Weyl aupergravities[Ka77’

Van78]’ which are the gauge theories of superaymmetric extensions of
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the conformal group. These theories are troubled by instability and
non-unitarity problems characteristic of higher derivative field
theories. Furthermore, in addition to superaymmetry breaking, mecha-

nisms for the breaking of conformal invariance are also required.

Weyl supergravity underlies Poilncaré supergravity, and it is mostly
useful in clarifying the structure of the latter,

A globally supersymmetric matter theory becomes a
locally supersymmetric one by being suitably coupled to supergravity.
The quantum amplitudes are then no longer two-loop finite as in the
pure supergravity theories mentioned, since the matter and supergravity
fields do not belong to a single irreducible multiplet any longer. In
some cases; such a system is8 a consistent truncation of a pure super-
gravity theory of higher N, and might therefore be a useful step in
the construction of the larger theory. For example, the N=1 super-
multiplet (3/2, 1) coupled to N=1 supergravity (2, 3/2) may be extended
to N=2 supergravity (2, 3/2, 3/2, 1){FE7631. Likewise, the N=1 scalar
multiplet (1/2, 0, 0) coupled to N=1 supergravity (2, 3/2) was a
useful preliminary to the construction of N=4 supergravity (2, 4x3/2,
6x1, 4x1/2, 0, 0)[Cr77b, Cr77c].

Typically, locally supersymmetric matter theories
furnish information on the structure of the local supersymmetry alge-
bra, on the internal symmetries, and on their connection to supersym-
metry. The constraints on the iﬁteractiun terms allowed in these

theories determine the (super) symmetry hreaking possibilities of the

system.
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Some examples of locally supersymmetric matter theories

are the following: The N=1 Yang-Mills supermultiplet n(l, 1/2) coupled

[Fr77c]; the N=1 scalar supermultiplet (1/2,

[Fel7a,

to N=1 supergravity (2, 3/2)

0, 0) with mass and interaction terms made locally supersymmetric

Da77a, Da77b, Cr77bl. .\ Ne2 Yang-Mills supermultiplets n(l, 1/2, 1/2,

)[Lu78]

0, 0) coupled to N=2 supergravity (2, 3/2, 3/2, 1 ; the Nm=2

scalar multiplet (1/2, 1/2, 0, 0, O, 0) coupled to N=2 supergravity,

formulated here in detail[za78].

Recently, the gauging of N=1 supermultiplets has been

considerably simplified, generalized, and extended through use of a

minimal set of auxiliary fields for N=Il supergravity[Fe78b’ St78],

and the related elegant rules for the composition of several multiplets

into new ones, comprising a ''tensor calculus"[Fe7gc]. These advances

have permitted a more complete study of supersymmetry breakinglcr?ac].

Extension to N>1 supersymmetry hasn't been achieved yet. The N=2 scalar
multiplet made locally supersymmetric, which we shall consider pres-

ently, might facilitate this program{8078b]

, since the form of a matter
theory's coupling to supergravity is characteristic of the underlying
auxiliary field structure. It might also provide helpful clues con-
cerning the structure of more ambitious theories like N=8 supergravi-
ty[De77’ Cr78d], as well as insight into the internal symmetries present

in systems with extended supersymmetry.



1.2) Formulation of the Model

Central chargealHa?s]

are gcalar generators admissible

in extended supersymmetry (N>1) algebraas that have the dimensions of
mass. They play an important structural role in supersymmetric model
building, since they relate supersymmetfy to internal symmetries,
thereby constraining the spectrum of the supermultiplets, as well as
their local symmetry properties. They have not been plausibly identl-
fied with familiar symmetries; instead, they may be thought to represent
an intermediate stage in the symmetry breaking hilerarchy of larger uni-
fied theories,

In a given theory, the central charge may or may not
have a trivial action; but if there are any states with nonzero charge,
the theory must contain mass, or at least it must allow for some mass
scale, set for instance by the expectation value of a scalar fileld <A>

(corresponding to the breaking of an internal symmetryIWi78’ Fa78b])’

or by a dimehsional coupling constant like l/K[Fe77b].

Conversely, 1if a theory contains mass, the central
charge serves to reduce the range of helicities spanned. For a massive,
N—supersymmétric theory, an analogous counting argument to that of the
previous section for the massless representations gives ZZN states,
in contrast to the ZN states specified when there is no mass. The
presence of the central charge however may reduce this higher multipli-
city 22N back to 2" [Fa78b, S°78a]. Hence, a massless representation
may only acquire a mass in the presence of a central charge in the alge-

bra, so that the resulting theory will have the same multiplicity of

states as the original massless one.



-9-

In Section 2.1 we review the simplest matter theory
containing a central charge, namely the N=2 massive scalar supermulti-~
plet[Fa76’ Fe77c] /2, 1/2, 0, 0, 0, 0). It consists of two Majorana
spinors xi (i=1, 2), two scalars Ai, and two pseudoscalars Bi. We
briefly demonstrate the necessity of this doubling of fields in the
N=2 representation. The Lagrangian 1s invariant under the two types
of global supersymmetry transformations, characterized by constant
infinitesimal parameters € and §, which are spinorial (anticommuting).
These transformatioﬁs turn a fermion into a boson and vice versa. The
theory 1s also invariant under the transformation generated by the
central charge, which rotates the flelds into each other without
altering their spin. The transformation parameter is proportional
to the mass,

In Section 2.2 we review N=1 supergravity theory which
contains a spin 2 graviton Vua and a spin 3/2 gravitino wu. This
theory is invariant under Ehe general coordinate and local Lerentz
transformaﬁions of general relativity, but also under a local super-
symmetry transformation, characterized by a spacetime dependent spin-
orial parameter e(x). This is to say that the strength of the trans-
formation varies over the various polnts of the manifold; the symmetry
is gauged, wu belng the relevant gauge field.

In Section 2.3 we complete the review of background
material by extending the above theory to N=2 supergravity. A second
gravitino is required to gauge the second supersymmetry (g(x)). A
vector field Au is also present, which may gauge any one of several

internal symmetry groups consistently., In this section we arrange
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for it to gauge the internal symmetry connecting the two supersymmetry
generators, thereby introducing an arbitrary coupling constant e[Fr77a].
| In Section 2.4 we construct the 1oca11y/invarianc version
of the massless scalar multiplet, by coupling the global theory of
Section 2.1 to the N=2 supergravity of Section 2.3. Initially we
implement iterative techniques, by adding appropriate terms in the
Lagrangian and the transformation laws, order by order in k. At later

stages we resort to functional techniques[Da77a’ Da77b)

and calculate
the theory to all orders in k at once.

In Section 2.5 we repeat the above procedure to construct
the massive version of the theory. We establish by direct calculation
that for the coupling to be consistent Au must gauge the central charge
symmetry with a coupling constant km. Alternatively, Ap may be used
to gauge the internal symmetry of the two supersymmetry generators
with another coupling constant e, thereby extending the results of
Freedman and Das[Fr77a} (Section 2.3) to matter coupled theories. We
then show how these two alternatives interlock consistently into a
combined theory. Au now gauges the diagonal product of the two groups
(whose elements commute with one another), that is, an arbitrary linear

combination of their generators.

In Section 3.1 we survey the internal symmetry properties
of the theory. The massless asector of Section 2.4 is invariant under
U(1)xSU(2)xSU(2). The relevant groups correspond to a duality invar-

iance, the central charge and the two chiral partners of it, and the

rotation of the two supersymmetry generators with its chiral partners.
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When gauge couplings are introduced the symmetry breaks down to
0(2)xsu(2), SU(2)x0(2), or 0(2)x0(2), respectively. In each case,
whenever an 0(2) 1s gauged by Au, its two chiral partners are broken.
A discussion of the local supersymmetry algebra and the relevance of

the background metric leads to a clarification of the peculiar

alternative gauging mentioned abové. We conclude this section by
commenting on the first order form of the theory, and by introducing

a concise S0(4) notation to express the SU(2)xSU(2) part of our theory.
more elegantly.

In Section 3.2 we discuss some systematic regularities
stemming from the symmetry, and comment on related speculations about
the origin of the central charge. We 1llustrate our points by con-
sidering an alternative example drawn from the N=2 Yang-Mills super-~
multiplet coupled to supergravity. In particular, we analyze a char-
acteristic signal for the Au gauging of a central charge associated
with internal symmetry breaking. We discuss a peculiar feature of
the constrained couplings of our model. The vector A‘J couples to the
central charge current with strength km, which leads to a sort of
"Antigravity." 1In the static limit, the classical Coulomb potential
of the vector Au exactly cancels the Newtonian potential of the grav-
itational interaction. At higher energies, this balance is distorted
and the two interactions exhibit thelr different spin characteristics,

Appendix B contains a more detailed discussion of this phenomenon.

In Section 3.3 we consider in detail how the tight  group

structure present conatrains the nonpolynomial behaviour of the spin-
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zero fields of the theory into a form far more restricted than
for the N=1 case. In this connection, we also outline N=8 super-~

gravity, and indicate the general framework for truncating it

to the theory under study. We point out that this truncation ig com-

patible with Gell-Mann's proposed embedding of SU(3)xU(1)xU(1l) in

SO(B)[Ge77], and consequently the various resulting multiplets can

be assigned to definite SU(3) representations. We relegate some con-

Jectural particulars to Appendix C.

Finally, we examine the family of Higgs potentials arising
out of the above restrictions in Section 3.4. They exhibit a local
minimum at the origin, but further down, past a barrier, there is a

negative singularity. Every state will eventually gecay

into this singularity. A cursory analysis indicates that this

pathological theory might have a property we call 'virtual
stability", in which supersymmetry remains effectively unbroken.

In Appendix D‘we give a sketchy argument indicating that the "false",
metastable vacuum at the origin of the potential has a tunneling rate
into the singularity that can be vanishingly small. We conclude with

a brief summary of the theory and its distinguishing features in Sec~

tien 3.5.
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2) CONSTRUCTION AND INVARIANCE PROOF

2.1) The Global Scalar Multiplet

The Graded Lie Algebra of N = 2 supersymmetrylsa74’ﬂa75]

consists of the Poincaré group augmented by the additional relations:

IJu

{Qi,ag} = § YGBPu + €

1J
GQ Z (2.1-1)

8

[Z,(anything)] = O
I
[PM’QG] =0

I 1 8. I
[MMV’QG] 7 (ouv)a QB

where a,B are 4-spinor indices, and u,v are Lorentz indices.

The Qz‘s are the Majorana spinor generators of the

two supersymmetries of e-type (I = 1) and g-type (I = 2), respec-
tively. The anticommutation of two € or [ type generators yields a

linear combination of momentum components weighted by Dirac gamma matri-

ces, which serve as structure constants. On the other hand, an e-

and a ;-type generator anticommute to yleld a central charge
[Ha?75] _ %

Z 77, which is a generator in the center of the algebra .

(The center of an algebra is the subalgebra whose elements commute
with the entire algebra.) Z must have the dimension of Pu, that is

mass.

*A‘Secondperm}ssible central charge term in t?e Algebra(2.1-1),
namely ¥y ez can always be rotated into € Jz by a chiral trans-

formation, and therefore does not represent a more general structure.
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A global realization of thisg algebra is the N » 2 mas-

[Fa76, Fel7c]

aive scalar aupermultiplet , which describes two spinors

xi,(i’= 1, 2), two scalars Ai and two pseudoscalars Bi. The Lagrang-

ian of the system ia:

2= ; o algial 4 1 2 > B Lkt o 23t (2.1-2)
me 42 42, m -1 1
2 et - 2NN

Supersymmetry constrains all masses of the theory to be equal, since
it commutes with the momentum operator. The Lagranglan is invariant
(up to a divergence) under the two supersymmetry transformations with
infinitesimal constant spinorial parameters & and f, and the central

charge transformation of infinitesimal parameter A' (A' is dimension-

legs):
13
sal = L xi + —-—-ch + Atmeldad _ (2.1-3)
V2 V2
i3
i 1 - € PP T & I, |
68" = — iy x - Tiy.x" + A'me B
a2 vz
i

i i i i 1) k| 3
§y* m = —= (§-im) (AT+iy . BT)e + — e~ (#-1im) (A7 -1y B )L
X (#-im) (A" +1yg e 5

3

+ A'meijxj.

i
The commutator of two supersymmetry transformations on any field ¢

of the multiplet is
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[6',6]¢1 = i(E'Yu€+E'Yu§)3u¢i + m(Ec'--Es')eijqaj
(2.1-4)

This is consistent with (2.1-1) since
~[E'Q 45", , [8Q+TQ_ 14111 + [EQ_+EQ,,[E'Q+T"0 14" 11
= [[8Q+7Q,,&'q, 42", 1,41 = (2.1-5)
= [y, e"+Tr, 0 )P +(Ee'-Te )z 071

If the theory is massive, we see that the commutator of two different
supersymmetry operations gives a central charge transformation of
parameter A' = €' - [e'., Thus the central charge is a necessary op-
erator in the algebra, as discussed in the previous section.

It might appear from the counting of states given in
Section 1.1 that an adequate realization for N = 2 supersymmetry could
consist of only one spinor ), one scalar A, and one pseudoscalar B
(just as for the N = 1 case) and thus the doubling of fields in the
theory so far described would be unnecessary. However, it turns
out that without this doubling, there is not enough room to accommo-
date the higher symmetry of the N = 2 algebra. This can be proved
by considering the most general linear supersymmetry transformations
on A and X (taken for simplicity to be massless), with real coeffi-

cients a, a', b, ¢, ...
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1, - - - -
SA = — (aexta'ely . x+bZx+tcily .x), 6B = ... (2.1-6)
73 5 5

6y = - -1-3A(de+eiyse+ f g+gly.z) + terms linear in B.
/3 5

In a chirally invariant theory, we can rétate away the a' term. An
inescapable constraint on any representation is closure of the trans-
formations on any field (e.g., A) into the N = 2 algebra [¢§',6]A =
1(e"y e+E'yu;)auA. Closure of the transformations (2.1-6) fixes their

coefficients to:

1=da, 1 =cg+bf, O = af + bd + ce, 0 = ag - eb + cd.
(2.1-7)
The last three of these relations yield d(az+b2+c2) = 0 which cannot
be satisfied for a # 0, d # 0, as required by the first relation.
Consequently, (X, A, B) do not constitute an adequate set, and they
must be doubled to represent the N = 2 algebra by a field theory.

The Noether currents of the theory in (2.1 - 2) are:

€ 1 v, 1 i i i i, i
- — .1-8
Ju . [3°¢A +yB )yvyux + im(A"+Hy B )Yux 1 (2.1-8)

1j
3% = &= ¥ al-ry shy v 3+ 1m(Ai-iYSBi)Y x11
H /7 5 v'u U

R § PP Y% 13 4 1 1w g
Ju € 1auA AY + auB B 7 XY X ]
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and they are conserved on the mass shell. The cur-

rent for translations Pv is the energy-momentum tensor:

- 1, 4 g gis 4 11 1
T,y= 29,473 A% 10 B3 BT + 2 X7 (v 3 4y 2 )x - g, 2
(2.1-9)

These currents can be seen to transform as:

Al

€
GA.Ju =0, GeJu

€ v, _
B L.y deJu m -1y Tuvb b (2.1-10)

- ¥
Jfl = ‘N€CJA + T e

- ;-—_
cGeJu X "

4
where ... indicate terms l(.u which are conserved (BNK‘ln 0) and charge-
less (Id3xK° = 0) bilinears of the fields in the theory. Conse-
quently, the space integrals of the zeroth component of the above

transformations (2.1-10) reconstitute the Graded Lie Algebra (2.1-1),

as they should*.

* All currents could be "improved" by the addition of chargeless, con-
served terms K . It hag been noted in the massless N = 1 theoryrFe
that the supergurrent J-, the energy(ggmentum tensor E v? and one out
of several allowed chiral currenta Jp (= AauB—BauA+%x$57ux) may be
suitably improved so as to give 2 supermultiplet. This amounts to
their transforming into each other under supgig%gTetry, Shigg§¥ use of
the e?g?iignf of motion. For ins&ance, GaJu = ~-1y Tave 4 +
%-BvJ P (SVKTAYTSAp + 1ygyVs€)e. When mass 1s introduced, new
1mpro§éments are necessary, and more currents enter into the super-
multiplet. To close the N = % sugermultiplet, an even larger number
of extra bilinears is needed 078b]
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In converting the theory of this section into a locally
supersymmetric one, we shall condense the notation, to express the

formulas more compactly:

2t = als 17531, gl = 2l - uSB" (2.1-11) .

u = nziizi, azl-

where the identity matrix in spinor space implicit in the definition

of u is dropped when u is written outside a spinor product,.
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2,2) N=1 Supergravity

The algebra (2.1-1) may be restricted to the 'algebra of

N = 1 supersymmetry:

—— = u
{Qa’ QB} YaBPu (2.2-1)

[P, Q] =0

B

[Muv’ Qu] - %'quaQB
which contains only one spinorial generator.

The gauge theory for this algebra is N = 1 supergrav-
1ty[Fr76a’ Des76, Fr76b]. It describes a spin 2 graviton Vz with
interactions specified by Einstein's theory of gravity, coupled to
a spin 3/2 gravitino wu through the gravitational coupling constant

-33

Kk (5.7 - 10 cm) .

The graviton is represented by the vierbein ('the square

a b

root of the metric": g = vuvvnab)’ which connects the flat tangent

uv
space indices (Latin) to the Greek indlces of the curved spacetime
(base space). The vierbein is essential for accommodating the

fermion present in the system, because the group of general
coordinate transformations GL(4,R) does not have a representation
which transforms like a spinor under its lorentz subgroup S0(3,1). By
use of the vierbein, we can write every world tensor as a Lorentz

tensor in the tangent space, where spinors are easily defined. Thus

a set of Latin indices denotes a tangent space tensor, a set
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of Greek indices a world tensor, and a spinor is a tangent space
spinor (and also a world scalar).

N=1 supergravity theory may be thought of as a
gauge theory with the vierbein Vﬁ, the vierbein connection wﬁb, and
the gravitino wu regarded as the gauge potentials for translations,

Lorentz rotations and supersymmetry transformations, respectively.

Thus, these iInvariances of the theory are local, and we call the cor-
responding infinitesimal spacetime-dependent parameters Eu(x), Aiz),
e(x). In analogy to pure general relativity, MacDowell and Man-
souri[Ma77] have emphasized the quasi-geometrical nature of this the-
ory by gauglng the orthosymplectic group 0Sp (4,1). The bosonic part
of this graded group is Sp (4), and it covers the de Sitter group

S0 (3,2), which in turn can be Wigner-Inonii contracted to the Poilncaré

group I0 (3,1).

s76
In the Cartan-Palatini first order formalismwe !

,both

Vua’ wu and the tangent space connection w:b are treated as indepen-

dent fields. The scalar density Lagrangian 1is:
\'i 1 Apuv=

i-—_zR-'ze WRYSYDW

It is generally covariant, Lorentz 1nvariant, and supersymmetric with

the infinitesimal transformations:



= -ike 2.2-3
Svua 1Keyawu ( )
1

§ = =D ¢

lpp K p

Sw . m -5 (B .-V B %) - (avb)]

pab 2Vt YPuab  ub ca a
ot _ _OTVpz
Bc € eysycnva
here V = det V and the curvature is R = vauvbvk V,w) The
v - ua’ - TAVEY A
c

Riemanmntensor is Ruvab - auwvaﬁ+ mua Woop T (nery),

The derivative of the spinor Dva is Lorentz covariant,

but not world covariant[Fr76b]:
1 ab
= = 2.2-4
Dv l"p - (av + 2 “vab? ) wp' ( )
H D . _r°
ence va is not a watld»covariant tensor, in contrast to Dva rvao'

However, the curl structure in the Lagrangian (Dva—Dpwv) 1s a tensor,
since it differs from the curl of the fully covariant derivatives by
ng - Sp = 2ng’ the torsion, which is a tensor.

The first term of the Lagrangian (2.2-2) is Einstein's
Lagrangian. The second term is the Rarita Schwinger Lagrangilan for
wu which describes a massless spin 3/2 field. The fermionic gauge
invariance present in this piece of the Lagrangian and the absence
of aowo in it enable us to eliminate 12 out of the 16 degrees of free-
dom contained in the spinor vector field wp by wo = (), $-$ = (), and

?-$ = 0[0876]. The remaining 4 degrees of freedom reduce to 2 by

virtue of the Majorana condition, and they describe the 2 polarization



-22 -

states of the massless spin 3/2 field. The propagators obtained by

conventional gauge field quantization techniques have been shown[Da76}'

to be ghost free and causal.

[covariant]va

From the metric postuléte Du v a

=p v 2 Pyd
v v p

= 0, we note that:

a
v

DV

" (2.2-5)

-D Vv® =25
v
and hence:

Oyab = Bup(S = 0 + Ko (2.2-6)

uab

0,y (S = 0) = %— {v:(auv b) + VL0V, IVE- (ab) ]

vb'avvu g'cp

(the torsionless connection) and

- + - 1. .
K wop ™ SUVD Svpp Spuv (the contorsion)

ab

The mu 's are thus auxiliary, nonpropagating fields.

Using the fundamental formula for the curvature:

[Du,Dv](spinor) = %-Ruvabdab(spinor)- (2.2-7)

we may read off the mpab content of R, and thus obtain the equation of

81

o = 0 in the form

motion
pab
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1 ovus o 1 TRV _
3 € NaYs5Y95pY% "o D, IV(V vV, vbva)] (2.2-8)
which specifies
inz -
B o= . 2-2-
su\’p 2 \bqu‘Pv ( 9)

Consequently, 1f we separate the contortion out of the
connection wﬁb, and 1f we then interpret wuab in the tangent space co-
variant derivative as the torsionless function muab(s=0)~w“ab(v) of
(2.2-6), we can reexpress the above theory in the second order form

[Fr76a
_ ], (which was the first one to appear historically):

2= - L RW,0W) - i “’“"q;xysy DY, (2.2-10)

4k

2V —A W, P,T - - 2
=3 VYV 2 v ) - A0 )T

Gvau = -imeyalbu

n—D --'" 0

S, o€ [2¢u7va wuvav]

The action is locally Lorentz invariant as is manifest in view of the
approprlate saturation of all latin indices and the covariance of all

derivatives under tangent space transformations. The latter 1s
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achieved by the presence of the gauge field wﬁb for the Lorentz trans-
ab

formation: 6 = -p p2b
tion: Ow D“A. (x).
It is also invariant under general coordinate trans-

formations (of parameter £u) because covariant tensors transform as

u...- )\ u"' AuOoo u;\«..
T m T AT - gy T L (2.2-1)

and all indices are saturated properly . We remind the
reader that, since the vierbein determinant V is a scalar density,

6V = BA(EAV) . For any scélar ¢ we obtain §(¢V) = ak(§AV)¢ + VEABA¢ =
BA(EAV¢), a total divergence which amounts to no increment in the
action (assuming there are no problems with surface terms). All sca-

lar pieces in the Lagrangian should, therefore, be multiplied by a V,

except the ones containing evak

euvnk
v

, which is a tensor density itself,

S0 is a tensor.

The proof of local supersymmetry invariance of the the-

ory can be considerably simplified by the introduction of the so-

[To77]

called "1.,5 order" formalism This is a shortcut which combinea

the simplicity of the Lagrangian and transformation laws of the lst
order formalism, with the 2nd order formalism's advanfage of not re-

quiring the complicated w variations of the lst order language.

pab
Analytically, the 1lst order action 1s variled:

51 = 551 = 80+ -%—— sve + o L (2.2-12)
hab §v H L qu
Subsequently, the equation of motion 651 = () allows for wuab to be

uab
solved in terms of Vpa and @u, as given in (2.2-9) and (2.2-6). As
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a result, if we substitute for w“ab in terms of the remaining fields

in the variation (2,2-12), the first term vanishea automatically,
while the remaining two terms become simpler than the corresponding
second order expressions. To prove invariance, we must show that the
second term cancels against the third. The second term is:

= -t yVe (L5 viR - Yo g2

(2.2-13)
sy 2 4K2 H 2K2 "

The 1last term on the right hand side becomes, upon a Filerz rearrange-

ment (Appendix A), and use of (2.2-9):

_ ik ApOv—-_u, - - 1l _Aovp.a -
7€ EY VY YDV, e € SxgfYsYaly¥,e
(2.2-14)

Finally, the third term in 81 is:
5 St .1 uvpA 1. .a )

Integration by parts, judicious splittingg of the world covariant
derivatives and use of (2.3-5), (2.2-6), (2.2-7), along with the

metric postulate, allow us to recast (2.2-15) in the form:

- 81 HVPA

iv - w, ca = . 21 az
8%, EE~ = e (Y ¥, R €Y ?R) + 5 € SuvEY5Y Dp¥a -
u

(2.2-16)
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This exactly cancels (2.2-13) as reexpressed using ( 2.2-14) and hence
the supergravity action is invariant under local supersymmetry trans-

formations.
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2.3) N = 2 Supergravity

The gauge theory for the algebra (2.1-1) 18 N = 2

supefgravicy (2, 3/2, 3/2, 1)(Fe76al

. It contalns N = 1 supergravity,
plus a second gravitino field ¢u and a vector field Au. The geomet-
rical formulation of the theory[T°77] focuses on the gauging of

0Sp (4,2), which has a bosonic part Sp(4) x S0(2). The two gravitinos
wu and ¢u may be interpreted as the gauge fields for e and { type
supersymmetries, respectively. Au can be arranged to gauge the cen-
tral charge, as we shall demonstrate in the next section, but here we

shall have it gauge the ''gravity 0(2)", which rotates the two super-

symmetry generators into each other.

The first order form of the theory 1s[Fr77d]:
-V 1 JAppv,- - 1 wv - (2.3-1)
W emm—— R oo — - — .
£ % 7 € (¢AYSY“Dv¢p+¢AYSYUDv¢p) 7 VFqu

2
K

i ~ - - - -
"0, - 5 B, VAN - 1 WGy

oD upMV_ 1
xp, (VF"7— o v F

This Lagréngian is invariant under
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Gvua - —ix(eya¢u+cya¢u) (2.3-2)

A = -€¢p + 1L
Au €¢u Cwu

[« ]
©
T
\/
[ ]
A |
o
T
D B 0
N’
1
N]H-

MULE 2P 0, Ty (‘)

K
quab - iv{(nuab ub ca ) = (a=b)]
ot _ _0TVp = -
B, € (€Y5Ych¢p+CY5YCDv¢p)

The torsion now has contributions from both gravitino fields:

2
5 -—%—(ww .y 6 ). (2.3-3)

uvp v Tpipty
We prefer to use the second order form of this theory,
which exhibits all powers of k explicitly and 1s thereby better
suited to the gauging procedure of the next section, carried out
order-by-order in x. The second order Lagrangian and transformation

laws are:
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SV oL ew g w
% 4 R-35e¢ (byvsy D¥, +¢ AYsYDye,) - qu
2
- . 1 -
S A UGS A VI S U101 M LA B Pl R

2 N .
- xV -A B p -A H.p - - -
16 LU0 v v 428,04,y 0,428 1,0)

- 4@ v )Y

Govap =- - ix(evaw“+c13¢u)

(2.3 - 4)
GOAu - - e¢u + ;¢u
§ o) . Lp(¢) - -—-tzw ¥ P Y U +25 v ¢ +b 10““ €
o\e,/ = % “e\e WYt Yo ¥ Te Y e e Y0,
I Wr 42 4) ¢
2 Yy ITAAY) Yp -€

A convenient quantity 1s the supercovariant field

atrength[Fe76b]

F

o =y T @0 8. (2.3-5)
The defining feature of the supercovariant derivative of a fileld 1s
that its variation is free of derivatives of the supersymmetry trans-
formation parameters. This is achieved by introducing

minimal cohplings of the gauge fields wu, ¢u to the transform
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of the field acted upon by the derivative - recall that wu and ¢u
transform as the gradient of the infinitesimal parameters € and 7.
To give an example, the transformation of the supercovariant field
bstrength is:

a = ik -
GFuv - [—eDu¢v + 2 qu oy e (2.3-6)

= ik = 2
+ID Y, + 5= § Froy el - (uev)

and its use results in simplifications in the invariance proof

of the theory. Upon the introduction of this notation, the last three

terms of (2.3-1) reduce to

2
Vo auv ki Suv- K- = UVKA= _
R sl A €1 N sl LN Y lvsey (2.3-7)
wp a
and the § ¢ term of (2.3-2) in the brackets 1is just Fuv'

P
At this point, i1t is worth mentioning that the theory

presented in this section possesses an SU(2) symmetry, an 0(2) sub-
group of which is particularly useful. We call it 'gravity" 0(2), and

it rotates the two supersymmetry generators into each other:

'] ¢
s, [5] = A ‘),,6(“)-1\(”). (2.3-8)
Az(c) 2(‘ A\oy 2\

All of the above expressions in this section could be shortened

significantly by use of a 'gravity" 0(2) tensor notation, but we
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defer this until Section 3.1, in order to avoid confusion of the

several groups involved.

[Fr77a]

Gravity SO0(2) may be gauged by Au , with an

arbitrary, dimensionless, coupling constant e. The extra pleces of

the theory are:

2, = - & @M M) +

] .
L))
VE% 22 P\

In addition, all derivatives of (2.3-4) must be regarded as 0(2)

1Y
ESd I V]

(2.3-9)

N

v

e

¥
covariant ones, by completing them as follows: D ( ?] now contains a

u¢p

¢
term -eA °] and D (€ picks up a term —eA %) . It should be
u—tbp u\g u\-€

remembered that an 0(2) covariant derivative does not commute with

supersymmetry:

¥o)- eceo -z (P 2.3-10)
(6.0, 1{y” )= e, 00 (") - (2.3-10)

The resulting theory (2.3-4) augmented by (2.3-9) is
invariant under (2.3-8), interpreted as a local transformation, and
extended by §, A = 15 A,. The gravitino mass-like terms (M-EO and

AZ n e u2 K
the cosmological term in eq. (2.3-9) will be interpreted in Sec. 3.3.

The gravity 0(2) symmetry discussed is very useful in
checking the correctness of the expreséiona. More significantly, it
reduces the number of relevant terms in the local supersymmetry in-

variance proof by half. This is so because any transformation term
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contalning ¢ may be transformed into a term containing ¢, through a
finite 0(2) rotation by /2. Consequently, only the overall can-
Cellation of the € variations needs to be checked. The proof of super-
symmetry invariance, which we omit, follows the same lines as

that for N = 1 supergravity., There are now extra variations such as

bilinears in F  generated from —él—-SV and &¢ Ql_, canceling each
uv Gvau ay u 6$ﬁ
other; also, terms linear in Fuv and others trilinear in the spinors,

2)[Fr77a]

and others yet of 0(e) and O(e , each sector canceling sepa-

rately.
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2.4) The Local Massless Scalar Multiplet

We shall couple the massless sector of the global super-

multiplet (2.1-2) and (2.1-3) to N = 2 supergravity (2.3-4), to obtain

a locally supersymmetric theory g% +f L L, § = Go + 61 + 63.

The new aystem contains i% of (2.3~4) augmented by the additional part

R AR VIVPN WA SR QS SR TR | (2.4-1)
g& 7 3 8 auz avz + 3 Vx“y Dux
a
A fvuil xV = _ =1 4J v u j K 13-4 uv_j
= - LYY X -—=9¢ 3 Z¢€e"yyx +7F e xo X
i& a/f TRV a/f TRV 2 uv
2 Apuv .1 - Figr, i, 2 s1ig>,1 - 1i=1. =}
£ =-57¢ (Z (lPAYSYuZ pZ w\)-¢)\Y5YpZ pZ $,) + lPuYSYAS Z sz ¢\,]
ixz uivp=-1 i, - - KZV -1 i, - M, T H
-_0--—-16 € X Y5YoX (wuvlw\,wuym) + =g X YgYX (wa5pr +¢’“Y5Yp¢ )
2y 1j-1 i, - -1 MVKA, .= KA J.,=h K K2y 1j-1 3,2
- T € X 95X (¢u1¥5¢\,v 3 +2¢u0 ¢ +2¢ ¢ ) - 5 (e™x L. )

2 2 2
_KV - 1,2 k74V =4 45> 4§ kT4V =1 3,3 1
37 (x stpx) X 2°¥ 2 X* *+ Tga xZT'Z X

i
A a -/1 i,a -13/1 b
§. ® — ¢ X + — Le X
1(31) /3 (“ 5) ) (’” 5)

-1 i
s xt = = gz

e-eH37dr)
ar2

i

ik -1 S5.u -1 u, -1 5 u -1
8 - —— .
X T g (XY HTYTEX Y FYIEXTe MY TEX Y 0,)

N LR . IPT Rt DRSO 1 Tt PO TN IO |
T2 e T OEXT SYTY e Y g, YL Y TYTEXT YY)
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2 .
- 1 - 144 -
+ 5 oty (@erezkn) - vod GErgzdxieev g x4y Mz gy e
27 5 5 5 5 Ys€

- xj(EZj et xj+Ce jka Ceki A j)]

=1 =3
v _ , 73 Z7¢

&, ° --f;zi‘é"zi_e +—§;e“ P
¢ Pt 2ty e

_ ik e\~1_ 1.1 ik T j =1 j

2 v 2 ¢
SRV (M) PN S SR L I 13513 1
277 *5(-%)(”57‘ X HLyge "27x7) ~ /_Ys(w )('r:'v5 Z7x +CYSZ X7

2v2
2 ¢
__ 1351 j
- (ee™'Z )
2/2 ( )

The construction of this theory follows the conventional
lines of order-by-order coupling{Fe77a]. The theory of (2.1-2) as it

stands has a local supersymmetry variation (in addition to the usual

total divergence):
8L = auEJ“e + auEJ“C. (2.4-2)

To cancel these terms, we start by adding the minimal

Noether coupling -K(ﬁpJuE+$pJ“c) to the Lagranglan, This achieves
Q(Ko) invariance, since all fields transform through pieces of O(Ko)
or higher, except for the gradient in the transformation law of the
gravitino, Since we are coupling a theory to gravity, all expressions

we deal with must be written in world covariant language.

AN
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The extra piece added to the Lagrangian generates, in
turn, O(x) terms in §#. To cancel these, we add 0(k) corrections to
the vhriationa of the fields and 0(x), O(Kz) pleces to the Lagrangian.

This procedure can be made more systematic by use of the consis-
2 0[Dee76, Fr77c)

&% )
of motion. The reaso% this condition holds is that no other field

tency éondition D , which holds modulo: equations

variation besides qu contalns gradients of e, This method was used
to obtain terms in the Lagrangian such as the Paull moment term in
ia*. Such a coupling has previously been found only in N = 8 guper-
gravitytDe??l. It could be reexpressed, through integration by parts,
as a linear coupling of KAu to a "current": eijiicuvavxj, conserved
and chargeless. Thus it bears some strgctural similarity to a pos-
sible "improvement" term for the central charge current, in the sense
of Section 2.1. It is an independent "current" necessary to close the

[So78b]

supermultiplet of N = 2 currents Unlike the central charge

current coupling of the next Section 2.5, this coupling lacks a cru-
cial coefficient proportional to the mass in the theory, so that it

(evidently) doean't decouple in the massless limit.
We proceed to the next level of invariance O(Kz).

To achieve this, we add O(KZ) pleces to the variations, and O(Kz), 0(K3)

pleces to the Lagrangilan, and so on.

* I thank Dr. Fayet for reminding me that matter fields may couple to
va in extended supersymmetry theories [Lu78].
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Our task is facilitated by the internal symmetries pres-
ent in the theory. Invariances reaspected by the first step of our
iterative construction will propagate on to the rest of the theory.
They serve to constrain the form of the corrections to be added, and
they also'reduce the number of cancellations to be checked explicitly
among the approprlate pileces in the variations,

For instance, we can see that the central charge (2.1-3)
invariance of the Noether couplings (2.4-2) constrains all new pileces
of the theory to be central charge scalars, which amounts to satura-
tion of internal symmetry indices.

Similarly, the "gravity" 0(2) (2.3-8) of the previous
section may have its domain extended to include the spinless fields of
the matter theory (2.1-2, 2.1-3), in such a way that both the original
matter theory and the Noether couplings are gravity 0(2) invariant.

Specifically, a transformation meeting this requirement is GAZi-
2

QAzeiij, for real Az, so that the scalar Ai is rotated in the oppo-
gite sense to the pseudoscalar Bi. This results in the simplifica-
tions already encountered in the previous section, namely extra con-
straints on the candidate correction terms and thepOSSibilitY of ignoring
all g-type variations.
We may further extend the above 0(2) x 0(2) symmetry by
the addition of chifal invariances to SU(2) x SU(2) ~ SO(4). This
will be considered in detaill in Section 3.1.

The expansion in ever higher powers of x continues indefi-

nitely, but at the 0((2) invariance level we observe that all new
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terms are combinations of scalars multiplying terms that have appeared
previously. We thus resort to the functional techniques of Das

et al.[Da77a' Da77b]’ which determine the theory to every order in k

all at once.

Specifically, O(Kz) invariance selecta out only bilin-
ears of the scalar fields that mesh together in the S0(4) singlet

combination u = Kzzizi. For example, SO(4) invariance allows more

2
complicated structures, like terms of the form %- 3 (Ziii)au(zjij) in
i

i .
the Lagrangian, and G(A%)~ KZ(A%)Ekak, 6xi ~'n23(2kzk)zie in the
B B

transformation laws. However, their coefficients are fixed to zero by
the cancellation of variations of the type [KzexaaZZZ] and
[KzewBBZZZ]*. We are led to assume that, a fortiori, highef powers
of the scalars will appear in the same combination u. We‘proceed,to
probe the nonpolynomial behavior of the theory by postulating six
arbitrary functions of u: (al)—z, (az)—l, (aa)-l, (a,), (as)"1 and
(aa)-l. They are assigned as coefficients to the kinetic term of the
scalars, the Noether couplings, the biscalar-bispinor couplings, the
scalar transformation laws, the spinor transformations and the grav-
itino transformations, respectively, It can be seen thaf the coef-
ficients of all other terms in the theory must be constants.

We now check invariance to arbitrary order in u, and

hence to all orders in k. Cancellation of terms in the variation

* Here, we have gssumed that there are no 1 i
functions of scalars multiplying the spinor kinetic term vx*, after
suitable rescalings. This is based on intuition drawn from the N = 1
theory.
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containing one spinor [exddZ, €¥d39Z, kexdZF, K2€¢QZZF] already fixes
all an's to the forma = 1 - %~u. This form is subsequently verified
in the vanishing of selected variations containing three spinors
[Kzex¢¢za, Kzexxxzal. Due to their considerable complexity, not all
such variations have been checked, but there is no indication of un-
welcome mismatches at any point. At this level, the calculations
make ample use of the 0(2) index transposition identities, derived
in Appendix A, which enable us to rearrange the internal symmetry
groupings in a form suitable for cancellation.

To ensure the absence of transformations quartic in the
fermion fields, we finally carry out checks for the vanishing of nu-

merous varlations containing five spinors. By virtue of Flerz trans-

position symmetry, several groupings of terms vanish automatically
2
K -1 1= A

§ (g~ X YgY,X v YsY ¥ )

(e.g., 5¢p 63wp = 0 for 63wp proportional to yswp).

This completes the construction of the massless sector

of the locally superaymmetric theory.
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2.5) The Mass and Interaction Sectors

The massive gector of the global supermultiplet (2.1-2,
2.1-3) may be also included in the gauging procedure of the previous

section, We obtain the sector iZ’ GA given here, which may be ap=

pended to (2.3-4) and (2.4-1), to yield a massive, locally supersym-

metric theory:

: .
mV_ 3 2 mV -i 1  ikmV i34, 3§
= - (u=Zu) -57XX (\PZYX+¢€ 27y x)
4, 222 4 2a T
2
«k'mV = uv, 1.1 3 M7 3 ¢ Av ij b} 4 ikmV 1KmV eij -1 u i
- 5. (wuo ZZ¢v+¢0 Z¢+2w)‘ € Z¢) u XY X
iy, it>s 202y =11 iy 13,4 v u 3
-ﬁ'ﬁA“ejz?zj+"—-"1:,_—AA"zz+ A(vps 2 v y¥x ¢zva)
2&2 Ly 2a u av2
3
_ ik mV mV ( 1ziY ej j+ 1 1 k jkY iji) (2.5-1)
2a 2
T PR L T R S O T NP WU
4a € w,‘vsvpz ¥, YsY,E ¢\, W’uYSYA ¢,

¥ 2
s P)aicm i dfe) | ikm 1311 xm, Ai453( €
4<¢p) 4a sz Z T + 4a Yp 277 + 7%a Apﬂ Z7Z -
_<’m, (Zizic )
2a Zizi8

i m i 13-4 ikm 1j,§ .1
§, X = = —— (Z e~ 72°C) ~ ~— k(e -"Z'e+Z7T)
b a’? - arZ

The crucial feature of this secfor is that local supersymumetry in-
variance is forcing the central charge to be gauged by the vector of
supergravity Au' This has been anticipated by the authors of [Fe77b,

Fe77c}, from a study of the local supersymmetry algebra in pure N = 2
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supergrévity (2.3-4). They observed that the commutator of two super-
symmetry transformations acting on the vector field gives a gauge
transformation [§', 6] Au - %—au(éc'-ie') + ..., which suggests that
Au is ;he.gauge field for the central charge. More accurately, Au
must gauge any bosonic charge (central or not) occurring in the com-
mutator of two supersymmetry transformations as we shall explain in

Section 3.1.
]
The vector Au couples to the central charge current Jﬁ

(2.1-8). The parameter A' of the central charge tranaformation

(2.1-3) is now spacetime dependent and

- -l -
SA'Au ” auA ). (2.5-2)
All derivatives of the matter fields may be extended to covariant

derivatives, in the standard gauge theory form:

Du(zi) - 13,6 4cma e ](Zj) (2.5-3)
X X

where ap is implied to incorporate the tangent space corrections
(2.2-4). All Au's in (2.5-1) may thus be absorbed into the dériva-
tives in(2.1-2) and (2.1-3),that is Au couples minimally to matter with
a fixed, dimensionless coupling conatant km. Covariant derivatives
allow for shortcuts in the invariance proof, since entire sectors of v
the variation containing Au cancel among themselves automatically,
following the cancellations of the Bp’s. In particular, 5(Dp¢i) -

Dp(6¢i) + KmSApeij¢j, and hence only the last terms on the right hand
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side need be considered, while the ones hidden in the covariant deriv-
atives may be considered as O(mo) and, therefore, ignored.  We shall

next épply this technique in the construction of i%,,g%, 8 é

5 76"

To construct the above sector, we append the mass terms
of (2.1-2) and (2.1-3) to the construction of Section 2.4 and then we
extend our requirement of local invariance to the O(m) and D(mz) sec-
tors. The gauging of the central charge is signaled by the necessity
of é term nmAuJuA' in 3%, at the 0(x) invariance check. As in the
previous section, we assign six arbitrary functions of u to multiply
the standard terms of the theory, and we subsequently fix these func-
tions through the general invariance check to all orders in u, We
have worked out the cancellation of all terms containing one spinor,
and selected types of terms containing 3 spinors. Clearly, there are
no variations containing 5 spinors in the O(m) and 0(m2) sectors.

It 1is not obvious that the nonpolynomial behavior should
be described only by a function of the SO(4) singlet u, because the
introductién of mass breaks S0(4) down to 0(2) x SU(2). This form was
postulated due to its simplicity, and in view 6f its meshing naturally
with the massless sectors via the covariant derivatives. Neverthe-
less, we cannot guarantee that ours is the unique solution - this
question might be easier to answer through a systematic study of in-
teraction terms analogously to [Cr78c], after the development of the

N = 2 tensor calculus. The same remark applies to the sectors we

construct next,
In Section 2.3), A gauges the gravity 0(2)

group (which commutes with the central charge) with an arbitrary
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coupling constant e. It is possible to extend this gauging to the
matter-coupled theory consistently, even in the presence of mass.

The full, locally supersymmetric, massive, interacting extension of

(2.4-1) is:

2
mV 3 2 mV -1 1
N 1 AR RSN\ AN (2.5-4)
oA 2 2a? % 7a
\')
- LV (wz\rxwe“z”j)
/2‘a
nsz

-52 q, o*Vzizly S, MVzizly 20, o*Velizt zj¢ )

3k - -
£ =3 e,, 5 Q-9 - @M M)

eV -
- = (wuv"Z 4§ e etkzi,ky

2a

Lo gt elizizl kL ko ot,1,3 3

i% - :mvz (z Zi+2121)

L]
p)_ ikm i,ife), ixm 1is1.3/¢%
o) () (]

i

Gax

m i _ 135)
m - —— (Ze-e"VZ2'7)
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v
5 p)_ ie y €
S(¢p sza PAE

i e 51
05X~ = - (Zle-c1dyd )
/Zca :

All derivatives of (2.4-1) are now generalized to covariant ones

¥ ] (]
Pla Py p
D“(;;) a“(;p) eAu(L¢;)

1, .1 13 -
Dux 8ux + KmAue xj (2.5-3)

D“zi - auz1 + Au(nmeijzj+eeijij).

In this theory, the vector Au gauges a linear combination

of the generators for the central charge and the gravity 0(2) group.

The charges carried by the fields are: e for the gravitinos, km for

the spinors, xm + e for the scalars and km - e for the pseudoscalars.
We have derived (2.5-4) by the usual methods.

We first add (2.3-9) o (2.4 - 1) for m= 0,

and then extend the supersymmetry invariance to the new sectors 0(e)

and O(ez), This 1s a relatively simple task using gauge

covariant derivatives, as mentioned above. Having established the

basic structure of 4%, we assign arbitrary functions of u as coef-

ficients of the terms at hand, and then determine these functions by

checking invariance to all orders in u. We have checked all varia-

tions containing one spinor, and several containing three



- 44 -
spinors. The latter step provides a check for the absence of terms in
thebnew pieces of the Lagrangian containing four spinors and terms in
the transformation law containing two spinors. Consequentlyfhere are no

new varilations containing five spinors.

Finally, in order to introduce the mass, we add i%
to ga and observe that Zg is then sufficient to cancel O(me)
variations containing one spinor. There are no O(me) variations with
three or more spinors.

In summary, the most general Lagrangian density we have
obtained is £ = %, f & + ;& Tyt Ly o+, locally supersym-
metric under § = 6°‘+ 61 + 63‘+ 64 + 65. We shall discuss its prop~-
erties in the next.chapter. For convenience, we list the entire the-
ory below. All  dependence on A}1 is now absorbed in - covariant

derivatives (2.5 - 5) and field strengths:

6
£ = F &4 (2.5-6)

i=0
-V _1 2puv - - 1 uv
ib 4K2 R 2 € (wAYSYuDuwp+¢AY5YpDv¢p) T4 VFqu

2
-3 wv_ 1 zuv _K_ = V(PP V_THy ¥y o 4 HVKA=
Kl’t"(VF 2 YSF )¢V 2 \'r‘u%[‘/(d‘ ¢ ¢ W ) iE 'P‘QY5¢)\]

2 .
KV o=Aup A up, - - -
16 AR SR )(wlyu¢p+2wuyl¢p+¢Ayu¢ﬁ+2¢uvl¢p)

- 4@ ve )

VW =1 1,1 ,-1u
;el -—-2823 DpZsz +2nyl)ux
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3) __PROPERTIES OF THE THEORY

3.1) The Internal Symmetry Structure

The massless theory (2.3-4) and (2.4-1) possesses
a "gravity" SU(2) invarifance. In particular,

the 0(2) already discussed (12) together with two chiral in-

variances of the theory (Tl and T3) form an SU(2) group. The

infinitesimal transformation laws are:

(] $
Q) nl
m u
. i 5
(Rl )
<15;J 2 -wu Z zj
" v 21 7!
Ol () o) ()
3 Y i 1 AR REICH 7i 3775\ 51

The infinitesimal parameters & and 7 are numbers, so

(3.1-1)

1, 53
Z 13/ 2

8§ = p_{y. € (
(Z‘ i) I WS

p

that they do not transform under this SU(2) group. However, if we
formally rotate them according to the above formula, the parameter
saturated supersymmetry transformation EQE + EQC transforms as an

SU(2) singlet. Thus the asupersymmetry transformation formulas in
(2.4-1) commute with the formulas of (3.1-1).

Similarly, we may find two different chiral ipvariances
present (Ti and Té) which close together with the central charge (Té)
into what we shall call an "internal symmetry" SU(2). This group
commutes not only with supersymmetry, but also with the SU(Z) in

(3.1-1). 7Its field transformations are:
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1 2 1 2
et 2 m AV 1 52 = A 51 -
[y 8y Aliyﬁx &z Aliysz (3.1-2)
', i = AV 131 51 - A 1353
Tyt §x Aze X 82 Aze Z
1 1 1 1
2 2 -2 =2
1. = ! = 14,
Ty 8% iABiysx og iﬂBiysz .

In addition to the above symmetries, the theory is also
invariant under a 'duality" transformation (an extension to the

matter-coupled theory of an invarlance present in pure supergrav-

ity)[Fe7YC]. It commutes with both of the above SU(2)'s, but not with
supersymmetry:
8~ -
P = - 5 P - e Mgty oMV (3.1-3)

- A B0, + 1T - 18"

¥ ]
W L] H i = A i
6(¢“) = A 175<¢u> &x A iysx .

We see that it consists of a chiral transformation on the half in-
tegral spin fields, and a rotation of the vector filelds which connects

F
the dual (Fuv + —%20 and the antidual (Fuv - —%20 gectors to each

other. ' Properly speaking, this is not an invariance of the
Lagrangian, but only of the equations of motion (the manifold of so-

lutions). Specifically, if one 18 interested in the transformation
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law for the canonical field Au, the solvability condition for obtain-
ing GAu from GFuv turns out to be precisely Maxwell's equations. This
symmetry has been used in finiteness proofs for N = 2 supergravity

[Gr76]

amplitudes , and there are indications that its validity extends

beyond the clagsical path and into the quantum domain, to at least one
loop[Gr78b]. Thua, it is possible that its marginal status is only an
artifact of the canonical fields not having been defined in an optimal
way.

The resulting overall symmetry 1s SU(2) x SU(2) x U(1),
isomorphic to SO(4) x U(l); The fields transform under SU(2) x SU(2)
as follows: 21(1/2, 1/2), xi(O, 1/2), wu and ¢u (1/2, 0), and the
generators Qe and QC parallel the behavior of their gauge fields.

This symmetry is broken in stages upon each successive enlargement of
the theory. ia introduces spinor mass terms, and thus 1t breaks the
U(l) along with the chiral generators (ri, Ti) of the internal SU(2).
At the same time, the central charge (Té) is gauged by Au. Alterna~
tively, g% introduces masslike terms for the gravitino, and it breaks
duality as well as the chiral parts (Tl, 13) of the gravity SU(2),
while Au gauges T,. In the widest extension i% + g% + g%, all chiral
groups are broken, while Au gauges g linear combination of

the surviving 0(2) s [(Km)ré + 312], and the orthogonal combination
[mmtz - eré]bremains as a global symmetry. Table 3.1 summarizes this

stepwise reduction of symmetry.
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Table 3.1: The Hierarchical Breaking of Internal Symmetries.

(V denotes that a symmetry is valid, X that it 1s broken, and G that

it is gauged by Au. G/Y denotes gauging of a particular linear com-

bination with another generator),

Gravity SU(2) x Internal SU(2) x Duality U(1l)

Sector of the Theory |T; T, T3 T) T ! T
£ ) ety tily o/ v Y / v/ 4
n 8, A ¢ G X X
n +e, X G X 7 Y/ Y/ X
" bttt X G/ X X G/V X X

Note that the bresking of the chiral pieces of an SU(2) goes together
with the gauging of the remaining 0(2).

We have seen that the vector Au can gauge the gravity
0(2), the central charge, or even a linear combination of the two,
congistently with local supersymmetry. It is demonstrated below that
this 18 possible because of the symmetry present in the system[Fe77d},

and that, as a result, the gravity 0(2) is (in some sense) a central

charge as well,

In order to maintailn supersymmetry in d%, we needed to

introduce a cosmological term with a positive sign e (= ~A§9, grav~
K

4
2k 2
itino masslike terms, and a constant term in the variation of the
’ | [Fr77al
gravitino fields (eyue). All of these might be misconstrued

as signals of spontaneous supersymmetry breaking. In fact, super-
symmetry is not broken as we show in Section 3.4. Closer examination

of the theory reveals that the cosmological term implies a spacetime
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symmetry different from the Poincaré group I0(3,1), namely the

De Sitter group 50(3’2)[Fr77a]

» Which can be contracted to the
Poiﬁéaré group by letting the De Sitter radius (E) go to infinity.
The background metric we should expand around is not the Minkowskian
one, but the De Sitter solution. As a result, the "mass" of the grav-
itinos turns out to be only a symptom of the peculiar field propa-
gation in De Sitter space[De77a]. In fact, it is necessary in order
that the gravitino has two degrees of freedom, as a massless spin 3/2
particle should.

The De Sitter radiﬁs (Eﬁ described by £ + £ would
be of the order of the Planck length for e of the order of unity.
Comparison to astronomical lower bounds on a possible De Sitter radius

for the universe yields e2 < ].0"1'20 [Fr77a]’

2
magnetism: %; = 1/137. In any case, there is hardly any incentive

as compared to electro-

to make an identification of e with familiar coupling constants, since
the spinors x do not couple to the vector Au with this charge anyway.
The property of the gravity 0(2) crucial to its gauging
is that it appears in the anticommutation of the two supersymmetries
which belong to the graded extension of the De Sitter group. The
symplectic group in Sp(4) x S0(2) covers the De Sitter group in
S0(3,2) x S0(2). Sp(4) x SO0(2) is the Bose subalgebra of 0Sp(4,2),
which contains 10 + 1 bosonic and 2 fermionic generators. This graded
algebra, suitably rescaled but not yet contracted, is a modification

of (2.1-1) through the extra pieces[T°77]:
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1J '
2e 1Jo VMpv (3.1-4)

I
{Qa,Qg} - GIJYQB-P +ello n -2

e

[Pu’PV] = -1 Kz Muv

Moljale wyl
[P7,0,1 = 5 % Yep

[A,r] = £ Mo,

Upon contraction (e + 0), the algebra reduces to
(2.1-1), and A becomes a central charge Z. However, before con-
traction, we see that A represents the gravity 0(2), and yet it also
appears in the commutator of two supersymmetry transformations. The
algebra (3.1-4) may be extended consistently, by the addition of an-
other boson generator Z which commutes with all elements of the al-

gebra. Then defining A = A, + Z, we have

2
[Z,(anything)] = O (3.1-5)

I=J 1J 1
{Q,,Qg} = 67y g P + €778 (A)H2).

The gravity 0(2) 1s then identified with A, and the central charge

2
with Z. Their sum is the generator of the algebra gauged by the field
A .
u
The commutator of two infinitesimal local supersymmetry

transformations on a field yields the sum of a general coordinate

transformation, a Lorentz transformation, a supersymmetry transformation,
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and a gauge transformation (whose parameters are field dependent).
Thisvis the local version of (2.1-4).

A systematic list of the composition rules for the param-
eters of these transformations may be found in [Br78]. We may easlly
see thaﬁ the gauge transformation component of the commutator of two
supersymmetry transformations acting on the vector field is:

(3.1-6)

% =_}_ ertorety - py PR IRy QO |
[é ,5]Au " au[(et ge') - ik(efe'+zhg')] + ...

Consequently, A“ gauges A2 + Z by virtue of the position this operator
occupies in the algebra (3.1-5). The other fields transform propor-
tionately to theilr respective charges:
(3.1-7)
(6r,61a" = LB¥) pGrogeny - (ke +ike ) 1e Al 4 L

[60,618" = SBE=8) ¢ (Zrogen) - s (Ehe+TAc) 1M 4+ L

and so on. As an aside, we note that the field dependent portion of
the gauge parameter in the brackets may be absorbed into the trans-
lation component of the commutator, ~i(Ey“e'+ZYu§')3“, to convert the
plain derivative into a gauge covariant one, as specified in (2.5-5).
The 80(4) symmetric part of the theory (i%+¢a+ga+g%)
may be written more compactly using -ﬁ? SU(2) x SU(2)
covariant notation. Recall that(iz)is an internal SU(¢) dou-

51
blet, while( Z%)is-a gravity SU(2) doublet. Thus we may define the
-Z
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S0(4) matrix which transforms an internal SU(2) doublet into a gravity

SU(2) doublet:

1 .2
Z Z
z= (% 2. (3.1-8)
(-z2 zl)

- 1
(;)’, X = (‘%) , and the antiher~
mitean Pauli matri - (91 T, = o 1
‘ i1 matrices 7, 1 o) 1 Y L ol

1 0\
Tq = iYS (0 -l) . Contractions within the relevant SU(2)'s are im-

"

' v
We further denote ¢u = ( u) s €

plied to accompany the contractions in spinor space. For any two

spinors v and w, the cross product Gtzw is an SU(2) invariant, some-
-> ¥T a >
times referred to as a 'Majorana mass' type term (ea T,e v Tz).

The SO0(4) part of our theory may now be presented as follows:

VR 1 Jpuv- 3
2 = - s g'PH hYsY, Db, -~ 7 F F“" (3.1-9)
K
- 7 ¥,y VP -1y Ty

2
_k = - Vo1 _uvkAs
PRI ARV A A R FLIA 0N

27
- S VNP Gy e 428 7w ) - @)

( Vs LB Z )+——-xy

hﬂ?

4 ==

2a

* They incorporate the 1i's of the transformatlion laws.
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za - ¢uav2y Y'x + 7 vaxc sz

2
A
4= - SR B,

162 AV 2

Pz kK V = 7 PyH
+ 76 XY5Y, X¥ uVa¥y tTE XYY xé YsY ¥

2 uukl WA K
- S XUy X ¥ AN 2lp YT

- 57 Gora0® - (XYSY x)° K X2 Tz
§,2 = = [(EX)1 + (etx) - 7]

i T
6. = -~ — JZ2°¢
1 av?

- - ik H. V. - T
3X ;- vy XP Y ERYSYTY xquSsz
+ 21!0° w T,0 y € - )Yy x¥ T Yvyue
2 X 2 kA 27X u 2

1
+ TZYSYvX¢ TyYs v ye]

2

—.———- - Ve -\u
+ T2 [3v5XXY5Ze~xxZe- 2o, Jxxa" 6+75Yu4€XY5( X1

Svau = - imeya¢u

GOAu = - erzwu
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vl ik = - uv
= =D -
S¥o = Dot — 4 v vt v b )o e

1 v = ,
: 5 O (va+nwu12¢v)yprze
K T _ ik - T,
63¢p = - 2522 € 3 YBquEXYSY X

2
ix T - K > -
- T Yo TLEXY O _TIX +—— 1% <(eT1ZX).
2 5 2 57ptT 2 27 P

Our theory in the above form could be further reduced
into a more elegant form using the first order formalism. We can retrace
the steps of Section 2.2 leading from (2.2-2) to (2.2-10), now in the
reverse direction., That 13, we convert second order covariant deriva-

tives DM into first order ones by completing them through a term

%—ovpKuvp. At the same time, we subtract what we have just added from

the fermion contact terms, thereby annihilating several of them, but

not all.
The contorgion resulting out of the 621 = 0 equations
uab
of motion now has an extra contribution from the spinor kinetic terms:

(3.1-10)
2 2

- = K - .0
K vp 5 (¢uvav vauwp+¢pvva) 4 €uvpoXTsY X-

Consequently, the form of<5.1-9) changes by the addition to the

Lagrangian of a term[Fr77d]:
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2y

oo NP @y o, 420 vy0,) - @) B’y -1

3 - - g Aupo
=5 (XrgY x) (XvgY ' X) + ie

XYSYwaAY“¢p]-
This addition cancels the gravitino contact terms in the last

bracket of;£ , and it also modifies the coefficients of
2 2

HAVP ~ _~
(- 32)V(XY5Y x) , and (16 )E XY5Y, XV uavy in £y to ( ), and
(———0, respectively, The presence of residual terms of this type
indicates that the fermion contact terms of the theory are not 'pure
torsion" (in contrast to the truncation of SO0(4) supergravity to an
[Cr77b]
N = 1 scalar multiplet coupled to supergravity , for which the

above procedure eliminated all contact terms). Finally, the terms

= " (29 WYy w + ¢ y v )o"Ve and - iK

2oy g SotpaiysyTx are removed from

60¢p and 63wp, respectively, leaving the theory in first order form.
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3.2) The Implications of the Internal Symmetries,

In this section we discuss several mechanisms present in
the theory (2.5-6) which are connected to the internal symmétries ana~
lyzed in the previous section, and we compare them Qith formal analogs
occuring in Similar theories. In our discussion, we follow two current
(and mutually complementary) viewpoints concerning the origins of the
central charge, outlined below.

P. Fayet has studied a general class of theories with

extended supersymmetryiFa?Bb]

posessing internal gauge symmetries which
may break without affecting supersymmetry. The breaking of some symme-
tries in a given theory is achieved by assigning non-vanishing vacuum
expectation values to several scalar fields. As the scalar fields are
shifted appropriately, certain field-dependent gauge transformations

in the supersymmetry algebra get promoted to central charge transforma-
tions, provided they are preserved through the breaking and all symmetries
that did not commute with them have been broken. The mass scale of the
central charges is set by the vacuum expectation values of the scalar
fields.

In the previous section we showed that, in the model con-
structed here (2.5-6), the introduction of a sector where the central
charge is represented as a gauge symmetry is accompanied by the explicit
breaking of‘internal symmetries. The above mechanism is illustrated by
a similar phenomenon we have observed in the other existing N = 2 gauged

[Lu78]

matter model , namely the N = 2 Yang-Mills supermultiplet

n (1, 1/2, 1/2, 0, 0) coupled to N = 2 supergravity ( 2, 3/2, 3/2, 1).
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In this multiplet, the matter vectors* Bpa (field strength Gui) gauge
the internal symmetry group G with a coupling constant g', ‘The matter
fields are massless, and they belong to the n-dimensional adjoint repre-
sentation of G, with indices o, B, vy, etc. The vector A“of supergravity
gauges the gravity 0(2) which rotates the two spinors as well as the two
gravitinos into each other, in this particular theory. As in (2.5-6),
gravitino "mass" terms and a cosmological constant are necessary for
supersymmetry invariance.

The Lagrangian of this Yang-Mills supermultiplet coupled
to supergravity contains a term: —K(AaGuzF“v - BaGuzﬁnv), where A% and
B* are the scalar and pseudoscalar fields present. Ihtegrating by parts,
we obtain —2KAuav (A%GHV® - Baéuva), which is a coupling of the vector

of gravity to a current. The charge of the current is a surface term

z' = ;a3x 5 (A%C°Y - B%OVKAg @) (3.2-1)
v o KA
which is not necessarily vanishingIWi78]. In particular, if we break

the gauge group G (taken for instance to be 0(3)) by giving a vacuum
expectation value to a scalar field A , the integral has a non-zero
value, Z' has the dimensions of mass, whose scale is set by.(Aa), and,

according to Witten and Olive Wi78]

, it appears in the commutator of
two supersymmetry transformations, so that it may be identified with
the central charge**, Thus we see that the breaking of the internal

symmetry G promotes a generator of an unbroken symmetry to a central

*Our notation differs slightly from that of the original reference[Lu78]
for purposes of uniformity.

**For cautionary remarks, see [Fa78b].
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charge Z' which is gauged by the vector of gravity.

In the second approach to understanding the origins of
the cgntral charge; theorles with a central charge are obtained from
theories in a space with n extra compact dimensions which have been

shrunk awayISC?s’ SC78]. The central charge results from a displacement

generator in a compactified dimension (0179]

and the vector field ﬁJ that
gauges it arises out of the vielbein field associated with this dimension.
Dimensional reduction has been used to derive 4-dimensional
theories from theories in 4+n dimensionsX* The n compact dimensions are
suppressed by reducing the scale of their space (e.g. if they close into
circleé, the radii of the circles are set equal to zerec). In the process,
the fields of the original theory split up into representations of the
4-dimensional Lorentz group, and lose their spacetime indices that cor-

respond to the n compact dimensions., Studies in several modelslSC78’

G177, Bx77, C
’ » Cr78d] reveal that the vectors of supergravity A}j arise out

of components of the vielbeins with indices in the n extra dimensions.

The momentum operators Pi corresponding to the n compact dimensions trans-

[Sc78, Fa78b, 0179]

mutate into charges with the dimension of mass and

they may appear at the site occupied by the central charge in the 4~
dimensional supersymmetry algebra (2.1-1). For example, the fifth component

. Br79
of the "fdnfbein" Vm4 occuming in N=2 supergravity in five dimensxons[ ]

o
* or, in general, D-dimensional theories from D+n dimensional ones{aC781

This method featured in efforts to account for the extra dimensions
occurring in string models, and was later applied to 6, 10, and ll~dimen-~

sional supersymmetric field theoriesih]77’ Br77, ur?Sd]’
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may be identified with A“ in four dimensions, and it is seen to transform
as the gradient of E'Y4e under the anticommutation of two shpersymmetry

4

transformations. The parameter €'y e of the translation in the fifth
dimension may be reexpressed in four dimensional form (e'c - z'e), which
is immediately recognizable as the transformation parameter of the central
charge.

This interpretation of the central charges is in agreement
with the formula connecting the mass to the central charge in several
[Wi78, Fa78b, So78a, 0179]:

theories
W= Iz (3.2-2)
In our particular theory (2.1-3), the central charge Z (defined to be
hermitean: imeij) has eigenvalues + m . Formula (3.2-2) originates in
the vanishing of the scalar product of the 4+4n dimensional momenta P:
o=p p=ppr - ppland- gl 23 (3.2-3).
The connections discussed above are not free of ambiguity,
but they might serve to illuminate the underlying equivalence between
the vielbeins of compact dimensions to the vector of gravity Au on one
hand, and the momentum operators in these dimensions to the central
charge (gauged by Au), on the other. This correspondence manifests
itself in our theory (2.5-1) through "antigravity'". The coupling of Au
to all matter fields in i% has strength km. In the static limit this
gives a Coulomb potential which has exactly the same strength as the
Newtonian 1/r potential, gotten from the coupling of gravity to the
matter fields. A derivation of these static forces from the one particle

exchange amplitudes is given in Appendix B. In the static limit, the

vector force is attractive or repulsive for oppositely or similarly charged
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fields respectively. As a result, any stationary particles with
charges of the same sign will not interact with each other, since their

gravitational attraction is exactly cancelled by their vector repulsion.

~ Needless to say, any two opposaitely charged particles attract
each other with twice the gravitational force. At higher energies, and
in the quantum domain, this balance no longer holds, as the spin difference
of the two interactions manifests itself. In the ultrarelativistic limit,

the vector exchange amplitudes go as m2(1+ %50 (P wave), whereas the

graviton exchange amplitudes go as E—%§£~ (D wave).

high energies, gravity will dominate the picture, Leing a "harder" force.

Hence, at sufficiently

An analogous cancellation is observed in a different modelEOl?gg
in which the classical Coulomb potential cancels against the static limit
of the amplitude due to the exchange of a Higgs field. It is shown in
this model that the scalar field involved in this effect may be inter-
preted as an extra component of the vector potential in a higher dimen-

sional theory; the corresponding momentum in the extra dimension is

identified with the "electric" charge of the model.
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3.3) Non-polynomial Behaviour and Constraints

The additional symmetry of our theory constrains its form
considerably, in comparison to N = 1 analogs. The gauge coupling of A
to the centrél charge is determined by the mass, and the coupling to the
gravity 0(2) by the cosmological term. In the previous section, we saw
a manifestation of these constraints in the form of "antigravity". Another
manifestation is the restriction of the nonpolynomial behaviour of the
spinless fields in the system.

In order to study its nonpolynomial behaviour, we truncate
the N = 2 theory (2, 3/2, 3/2, 1) x (1/2, 1/2, 0, 0, 0, 0) to an N = 1
scalar multiplet coupled to supergravity (2, 3/2) x (1/2, 0, 0). In
this trhncation of g%+ 411+ e + i% + i% + i% + i% the QC supersymmetry
is eliminated since its gauge field ¢” -+ 0, also the vector Au+ 0, and
one of the two matter multiplets Az, Bz, X2+ 0. This is consistent in
the sense that the variations of all the fields set equal to zero also
vanish*.

The N = 1 theory obtained by truncation is then a particular
represehtative of the family of N = 1 scalar multiplets coupled to super~

gravity surveyed by Das et al.[Da77b]. Their analysis characterizes

* Our particular theory (2.5-6) cannot be restricted to N = 1 supergravity
coupled to two scalar multiplets. We must set half the scalar fields
equal to zero, otherwise §.,¢ # 0. Such a doubled local multiplet is
obtainable from other theorigs, like N = 1 local super-Q.E.D. [Da77b],
which may be truncated into it upon suppressionof e, £, A, and A .
Alternatively, two (n=2) N = 2 vector multiplets cougled to supergravity
[Lu78] can be truncated into it upon supression of e , A, A, B
upon truncation to n=1 (further halving the matter tields), the ﬁonpbly-
nomial behaviour is identical to (3.3-3) [Cr78b].
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the nonpolynomial behaviour of the massless, non-interacting sector by

a fundamental function Q(u). The coefficients of all terms in the Lagran-
glan and the transformation laws depend on thils function in a definite way.
For instance, the coefficient of the kinetic term for the scalar field is
0(u) = (uQ' )' . These functions turn out to have unique forms in the

truncation of i%+ i&+ g% +&%=

0(w) = 1/(1 - 522) %= 1/a®  where a = 1 - u/2 (3.3-1)
hence Q' = 1/a, so that § = -21ln a
2
Thus e /2, 1/a, so that there are no exponential fields in the theory.

In the analysis of Das et a1, [Pa77b]

, the mass and interaction
sectors depend on two functions A(Z) and M(Z) which may be expressed in

terms of Q(u) and ancther fundamental function @(Z):

30(2) 2

Mz) = BB 4 Prgre(zy) (3.3-2)
1 0AMZ) , 25 . 1o
M(2) 'ﬂﬁ—[ oz + k7 ZM2Z) (@' -5 5 )]
¥(2) = Ef g 2% is a power series in Z with real constant coefficients
s=0

s=-3
K

csof dimension . These three functions alsc have unique forms in the

truncation of i%+g%+ i%:

22 =2+ 22 A@=mz+2F M@ =m+S£FE (3.3-3)
K 2 K 2

Other theories with higher symmetry exhibit a unique non-

polynomial behaviour when truncated into an N=l1 theory. For example,

[Cr77b]*

50(4) supergravity yields a dependence on scalar fields different

from (3.3-4), namely:
o= —~—»l-§- , 8 = =-1In(1-u), (3.3-4)
(1~u)

-8 -e 3
0(2) =23, AM2) =% E

*(2,4x 3/2, 6x1, 4x 1/2, 0, 0). This theory has only two spinless fields
and thus cannot contain (2.5-6) which has four spinless fields.



- 65 -
This nonpolynomial dependence specifies the terms of the theory quartic
in X to be "pure torsion', as mentioned at the end of Section 3.1. It

has been noted [Cr77b]

that this is natural for a theory which originates
in a supergravity multiplet, and hence the uniqueness of the form (3.3-4)
is justified., The uniqueness of this form has also been linked to an

[Cr78a]

additional invariance of the SO(4) supergravity theory , namely an

SU(1,1) of dual type, analogous to (3.1-3). SU(1,1) is also present in

the supersymmetric non-linear O-model coupled to supergravity[0r78b},

where it is utilized to rotate away a scalar degree of freedom. This leads

to a redefinition of the fields in the system, through which the analog

of (1~ u)2 appears in the denominator of the kinetic terms, and other

appropriate sites. In a similar way, the SU(1,1) realized non-linearly

in SO(4) supergravity reflects a redefinition of scalar fields[cr783’ Cr78b].
We have not been able to find a satisfactory non-compact

invariance in our theory that would explain its nonpolynomial character

(3.3-1), (3.3-2). Nevertheless, we may regard the form of ¢ in (3.3-2)

as more plausible, if we consider its compatibility with internal symmetry,

like tﬁe central charge 0(2). Due to its origin in an 0(2) symmetric

theory, ? cannot contain odd powers of Z. The reason is that, before

truncation from N=2 to N=1, it is not possible to saturate the 0(2) indi-

ces of an odd power of Z to form an 0(2) singlet as needed in the N=2

Lagrangian. Thus ¢ may only contain even powers of Z., It is conceiv-

ablethat the theory (2.5-6) could be generalized to contain interactions

¢ féaturing a quartic term in Z *, or even highcr powers of Z, but it

*For Instance, the N=l truncarlon would contain @(Z)=§Zé, where g has-
dimensions of length, so A(Z)=g£ (4-u) and hence M=gZ 12 -2u). The

extra pieces to the truncated theory would be:s x = g 23 (4 -u) . L4
g /3 €, Ggwﬁ i ZYué €
=-g 6-u 72 _!" u’ (4~u) ~3u i Hv
ié ' a X 2 7§£{Q“U)¢ vz3x - k2g % o Zéwv

2a” a P

<
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is not clear how Au would couple to the extra pieces.

If the theory (2.5-6) could be obtained as a restriction of N=8
SUpergravity[De77]; it would illuminate the structure and truncation
mechanisms of the N=8 theory into smaller ones.S0O(8)supergravity (2, 8x 3/2,

28 x 1, 56 x 1/2, 70 x 0) splits . up into the following collection of
massless N=2 supersymmetric theories: supergravity (2, 3/2, 3/2, 1) coupled
together with up to six spin 3/2 multiplets (3/2, 1, 1, 1/2), up to fifteen

vector multiplets (1, 1/2, 1/2, Q, 0)[L073}

, and up to ten scalar multi-
plets (1/2, 1/2, 0, 0, 0, 0). The rules for counting the states were giv-
en in the introduction. The number of fields in the fragments must match
the number in the original SO(8) aupergravity, at any given spin level.
The above truncation preserves Gell-Mann's

assignment of "color" and '"charge" to the states of N=8 supergravity[ce77],

According to this scheme, SU(3) x U(l) x U(l) is embedded in S0(8),
and at every apin level the fields falling into SO(8) representations
break up into SU(3) multiplets (their charge is given in parentheses):
Gravitinos: 8 = 3(-1/3) + 3(1/3) + }1(0) + 1(0) (3.3-4)
Vectors: 2R = (§x), = 3(-2/3) + 3(2/3) + §(0) + 1(0) +
+ 3(-1/3) + 3(-1/3) + 3(1/3) + 3(1/3) + }(®)

and so on for the spinors and the scalars.

Since two of the eight gravitinos do not carry charge and
are SU(3) singlets, two supersymmetry generators commute with SU(3) and

are neutral; therefore the fields they connect fall into the same SU(3)
multiplet and have a common charge. Since we may choose to break the six

Charged supersymmetry generators, truncation of the theory to N=2 super-
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symmetry 1is compatible with the above color scheme, in contrast to any
truncation to N>2 supersymmetry.

As a necessary consequence, N=2 supergravity is an SU(3)
singlet; the spin 3/2 multiplets are charged triplets; the vector multi-~
plets exemplify several representatioqs, charged or not; and all scalar
multiplets are charged, consistently to the necessity of doubling the
fields in a'representation, demonstrated in(2.1-7). The situation is
summarized in Table 3.3, on the next page.

In Appendix C, we give the general methodology of truncating
S0(8) supergravity down to the N=2 scalar multiplet coupled to supergravity.
We show how 0(2)x0(2), that is the central charge and the ''gravity rotation',
may be identified with two generators of the SO0(8) group. Unfortunately,
only the first few orders of the S0(8) theory are available at present in
explicit form[De77], so that we cannot draw any meaningful inferences on
the nonpolynomial structure of our theory. For instance, we do not know
if this structure is related to the consistency requirements of the trun-
cation‘process’- after all, the N=2 vector multiplet coupled to supergra-
vity has a different nonpolynomial behaviour, as mentioned above, although
it should result out of a restriction of the S0(8) theory as well.

These problems could be resolved using recent
progress in the construction of the entire SO(8) theory. Specifically,
simple supergravity in 11 dimensions may be dimensionally reduced to a
four dimensional theory with the spectrum of SO(8) Supergravity{cr78d]:
The "elfbein" splits into a Vierbein, 7 vectors, and 28 scalars. The gra-

vitino of 11 dimensions splits into 8 four dimensional gravitinos and 56

spinors. TFinally, the ll-dimensional completely antisymmetric gauge po-
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TABLE 3.3: Breakup of SO(8) Supergravity into N=2 supermultiplets,

consistent with SU(3) symmetry.

Supermultiplet  SU(3) representation

‘Multiplicity of fields

character (charge) Spin: 2 3/2 1 1/2

Supergravity 1 (0) 1 2 1

Spin 3/2 multiplets 3 (-1/3) 1 2 1
3 (1/3) 1 2 1
4v}

Vector multiplets % (0) 1 2 2
3 (2/3) 1 2 2
™
3 (~2/: ‘ 2 2
% (-2/3) 1

1 2 2
8 0)
Scalar multiplets % 1) i 2
- 1 2
1 (1)
- 1 2
3 (-1/3)
3 (1/3) 1 2
4
1 2
6 /%)
6 (- 1 2
§ -1/3)
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tential Auvp (necessary to match the fermionic degrees of freedom within
the framework of supersymmetry) splits up intc 21 vectors and 35 + 7 scalars.
The manifest internal symmetry of the compactified theory is SO(7), but
the fields may be redefined to exhibit SO(8). The presence of non-~compact
invariances observed in this theory could be connected to the nonpoly~

nomial structure of the scalar fields.
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3.4) Study of the Potential

The full derivative independent part of the interaction

read off from (2.5-4), is:

- (3.4-1)
= le 2. i1 zizi e _ 2, 3 2
U —-;;izi—[ - 5 mk (Z°27+ 2727 —3K2 (1 -u/3) + o (u 3 U ]
Defining c¢= E‘%3 it may be reexpressed as:
om 32 2 u 2. 1.1
U= 72 32 [(u - zu) - 3¢°(1 - "3) - cu + 2¢ck"B"B7) (3.4-2)

U has a,singuiarity at u = 2 with a negative residue, so that the theory
is unsﬁéble for all values of c. _(This singularity prevents any
functional integral approach). We now scan the potential U across the
plane Bi=0 (for ¢ 2_0; otherwise we should go to the plane A1=O) in Fig.
3.4 - 1. We obsefve that the,pnly local minimum is at the origin u = O,
for all 0 ( ¢ ( 1/2. Beyond the singularity, located at u = 2, there is

no local minimum. For small ehough masses, namely c 2> 1/2, there is no

(maximum) bump to contain even a metastable ground state at the origin.
We see in the figure that as ¢ increases from zero, the maximum to the
' 17 -
left of the singularity gradually vanishes, while past ¢ = ——F%——
‘a maximum reappears to the right of the singularity (see c = 5.5 in Fig.
3.4 - 1).
It turns out therefore that there is no supersymmetry

breaking in the theory. The cosmological term and the gravitino mass

terms present for e # 0 are required inDe Sitter space, and are not due to

a super-Higgs effect, as pointed out in Section 3.l. In particular, the
ie L,
term 2eZ Y€ in the transformation law for the gravitino can be re-

garded as part of a "De Sitter
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2

Pig. 3.4-1 : v = (-3 o - 3c2 + cu - cu) /(1 ~ g)
. a *

plotted versua u, for various values of c.



- 72 -
covariant derivative" and camnot be used by itself to argue that QE
doesn't annihilate the vacuum, which would be a signal for spontaneous
breaking of supersymmetry. Thus in fact supersymmetry remains unbroken.
The theory under investigation is unstable, i.e, only long
lived at best. To explore its lifetime, we shall consider the "best"
potential , namely ¢ = 0, which is the one with the highest potential
barrier for containing the ground state at the origin (Ai=0, BiZO). 1f
the lifetime is sufficiently long, we might consider it as a physical
theory, despite the instability,
At first glance, the kinetic terms of the scalar fields
would suggest the presence of derivative dependent parts to the interaction.
However, as we pointed out before, the singularities of the spinless fields
reflect, in a way, the non-optimal way they have been defined. 1In fact,
P. Fayet* has suggested a redefinition ofane scalar field Al which eliminates
the derivative dependent part of the potential and pushes the singularity
out from u = 2 to infinity in terms of the redefined field. Unfortunately
we have not been able to extend this to include the pseudoscalar fields

Bt or even to include both scalar fields instead of just ome.

We shall thus have to proceed along the line B'= 0, A2 = 0,

ignoring the extra spinless degrees of freedom. We hope this parallels

the actual situation in a schematic way. The field redefinitions are

K A _ K ¢ _K$ 1 1 - k A/V2
7= tanh 75 AT 5 1n (‘f"_;_“;‘W) (3.4 - 3)

As a result, the part of the Lagrangian containing only this scalar field

sgmplifies to :

* Private communication,
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u
1 2 A a‘i RN - b
a-£492 2. a - Fata? '
u m2 A :
=3 P L T (2 e/ E 1 2R 20l 2 gy

In terms of dimensionless variables

= -m—z ﬁ(w) , where w = %ﬁi , and
32 ¢ 2
(3.4-5)

Yw) = =™ + &2 - 12¢¥ - 127V 4 22)

We plot this potential in Fig. 3.4 - 2. It has a maximumat w=arcosh3 and

v3/2 + 1

a Zeroeumr-n(7gff’ —31)» while the singularity ismoved to w = «.%

The minimum at the origin of the potential (Fig. 3.4 -~ 2)
is only a local ome. Consequently, a quantum state whose wavefunction
is concentrated in this region at t=0 will eventually tunnel through the
barrier~quantum mechanically, and fall down the singularity classically.
Physically, this would mean that all masses and couplings will be rapidly
shifted to preposterous magnitudes, which would be the end of the super-~
symmetric "universe' under consideration - in fact the theory is not
well defined. Nevertheless, a rough semiclassical estimate yields a
rate for such a false vacuum decay of the order of exp(~ 1/K2m2).
This is negligible for mass scales of the order of 1 GeV. We give the

details of this WKB calculation in Appendix D.

- * The above is an analysis of the part of our theory below the singula-
rity u = 2. The (less interegtin part above the singularity can
be displayed in the same way by rela%ions complementary to (3,4-3),
needed for a full covering of the domain [0, =] of A. They are « A/VZ =
= coth(x¢/v/2) and «¢//2 = %thgg~——gg4§é) and they yield a

potential U which ranges from-3p°/ 2, to - » without extrema:

£ = -._3 ¢8 6 +""“Z ( e4x¢//F + e ~biy/ V2 + 12e2K¢//§+ug~2K¢//§ + 22)
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3.4-2

U= -+ e

plotted versus w.

- 12 e¥_q12e™ + 22)




- 75 =

3.5) Conclusions

In summary, we have constructed a theory that is invariant
under local N = 2 supersymmetry transformations. The matter fields of
the theory have mass and interactions, but we cannot claim we have exhau-
sted all possibilities concerning the form of interaction consistent with
supersymmetry invariance. The extended supersymmetry of the system
restricts the spin zero fields to a particular behaviour. As a result,
the permissible potentials of the spinless fields are not bounded from
below, and therefore the theory is unstable, However, the significance
of the theory presented does not lie in its physical applications, but
rather in its exploration of the algebraic possibilities in supersymmetric
systems,

In particular, we have shown that the vector of supergravity
couples to the current of the central charge with the same strength as
the gravitinos couple to the supercurrents and the graviton couples to
the energy momentum tensor. Thus, every generator of the N = 2 supersym-
metry algebra is gaugéd by a supergravity field.

We have observed an intricate hierarchy of symmetries,
which may be explicitly broken piecewise by introducing further sectors
to the theory. We have also shown that the vector of gravity is sufficient
to gauge an internal symmetry different from (and commuting with) the
central charge. As a result of this gauging, cosmological and gravi-
tino'"mass" terms appear, which do not signal supersywmetry breaking,

but are Instead symptoms of a De Sitter spacetime background.
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We hope this study will contribute to a better understanding
of extended supersymmetry and off-shell supergravity, as well as of the
intefplay between sﬁpersymﬁetry and internal symmetries. These are
central aspects of the construction of field theories which attempt to

unify all interactions including gravity.
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APPENDIX A: LIST OF NOTATIONS, CONVENTIONS, AND IDENTITIES

We follow the conventions of [Fr77, Da77a, Da77L, Cr77b],

and many others, namely:

ab ’ 0123 .
n = (_+, =y T "), € = l. = "50123, (t\"l)

a b ab _,0123 ab 1. a b
ooy =207, yo =iy y ¥y, o =gly .y 1
All spinors used throughout the text are Majorana spinors: y= Cy 1
13 11 12

For internal symmetry indices we are using and § -, where ¢ =1,
and iij = 1,2, For indices of the "gravity group" we use SIJ,and EIJ,
where 1,J = 1,2,

K denotes the gravitational coupling constant (= v47G =

25,7 - 10-33cm; the Planck mass 1s 1/k = 3.4 - 1018 GeV).

QaI denotes a (spinorial) supersymmetry generator.

€, denote the two infinitesimal transformatjon parameters
of N = 2 supersymmetry. They are spacetime depen-
dent Majorana spinors.

Z denotes the central charge.

m denotes the mass, common to all matter fields.

Vau denotes the vierbein, whose square gives the metric

a b

tensor g : V  V a‘Vb ab‘
v H

vab guv’ while g 'V Wy n

It 18 employed to interchange Greek indices (which

describeithe base space [/ curved spacetime) with

Latin indices(which describe the flat tangent space).
V=detV, = /=g, @o that &V =V va“évpa. (A-2)
A  denotes the vector field of N=2 supergravity. Its

field strength is Fuv = auAv - avAu, and 1ts dual is
n .

- _BVPa
Fu\j [ ch.
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¥ , ¢ denote the two gravitino fields of N=2 supergrav-

ity, namely spin 3/2 fields with a curved space-

time index and an implicit spinor index.

X denotes the two spinor fields of the N=2 malter wmultiplet.
Al denotes the two scalar fields of the same multiplet.
Bi denotes the two pgeudoscalar fields of the same multi-

plet.
A denote infinitesimal parameters for internal symmetry

transformations.

We define

zt = At oy, vt (A-3)

a matrix in spinor space, and

u= Kziizi - k2 (AiAi + BiBi), (A-4)

a unit matrix in spinor space; written outside a spinor product, u

denotes just its magnitude (without the unit matrix). Finally

a 1 - %—u (A-5)

Some useful Dirac algebra identities are:

VPO _ P 0 H PO Hep O
€ “okdt T —sxékat + dxdnst - Gtémsk
TIN-JN TP I TP (A-6)
+6K616A - Gkarén + 6T6A6K
HVKA KA KA
and therefore € euvpc = =2( Gpéo- 6069); as a consequence
Y
4F,
HVUKA u KA
Yo¥, = Y 0 ) (a-7)
euVKX "
T A
- Mt T -
TuAYp = v Vst T EeYy e, gupZA

- - - _BKAV
YuUKAYv - YVUKAYp nggvA gulgvn iYS v

HA vV Vi_u HV_A
g -8 Y

[y l=gY
WA Au_ 3 .u
O, = MO =T Y
c“vupmo = Upk.

ny
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For any two Majorana spinors y and y, the veétor and tensor bilinear
products are transposition odd (iypw = ~@ypx, ic Vw = ~@0?vx), while
the scalar, pseudoscalar, and axial vector bilinears are even (x§ =
’$x,‘§y5w =‘@Y5x, inYNw = @YSYHx). To Interchange spinors among the
trilinear products:

co T - ) = pv - U
Sx ¥ + Vy x ¥y b+ To, X WoT b+ Avgy X Y5V
+ Py X Yygt =

= Q'4 & ' T H ' T HY ' T U
S'¢ Yx + V‘Yu¢ gy x + T Ouv¢ voo 'y + A YSYH¢ ¢Y5Y X

+ Plyod Pyox. (A-8)
The Fierz matrix
1 1 ~2 -1 1
4 -2 0 ~2 ~4
=23 0 2 0 -3 (A-9)
-4 -2 0 -2 4
1 -1 ~2 1 1
S s!
T v A
relates the above coefficients through A T = T' .
A A’
P p!

Clearly A% = 1.

Some consequences are: xiysx = ~75xix, Xiysyux = wysyuxix,
Whence : XY5XXX = XYg¥ XXX = 0. (A~10)

The following identities for 0(2) group indices are
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used:

emnﬁkl - mkdnl B Gmlsnk'

é (A-11)

Contracting this with emj, we obtain:

sl kL ik 1y il gk o

Multiplying or contracting these two identities with e's, we obtain
numerous other identities permuting several group indices, e.g.,
éijémkénl _ 61j6m16nk + 61k5m16nj _ GikSmJGHl +

+ 5116mj6nk . Gilﬁmkdnj -0 (A-13)

and so forth.
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APPENDIX B: CANCELLATION OF STATIC FORCES

In Section 3.2 we point out that the vector~induced Coulomb

potential equals in magnitude the graviton-induced Newtonlan static poten-

tial. Here, we give a derivation of the classical potentials from the

lowest order (Kz), one particle exchange amplitudeslve76]. For simpliicity,

we study the scattering of a scalar A off a pseudoscalar B, so as to avoid

the exchange diagram, but it can be checked that the same result holds

in general.

We define the complex fields

A=al - 442 and B =Bt - 18? . (B~1)

The coupling of these charged fields to the vector is read off from (2.5~ 1):

—gm ¥ 1 zi*égij = -ikm A“(A*‘ﬁ‘jA + B*‘§;B) (B-2)
2 2

and consequently the "electric charge" is «m.

The vector exchange amplitude on the mass shell is then:

4 2 1 ,E;BEX_, 1
(2%) " (dem)” (kK + k') - (P +p')
H q2 + ie v v

(8-3)

We study the classical behaviour in the static, non-relativistic limit,
where all momenta are negligible in comparison to the common mass m in

2. . [&lz, since

the system. Thus (k.u + kL)(p“ + p“’): Am? and ¢
-2
q, = 0(a).
The Breit potential of the interaction is obtained from

the three dimensional Fourier transform of the static limit of the ampli-
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tude, suitably normalized:

2 4 2
4 V = ; 1 5 fd3q eiq'r ( 4im (gn) (km) 9
(2w) " 4im la)
(B-4)
. ey
T

The potential has é positive sign, since A and B carry the same charge.
It would become attractive (minus sign), if we substituted A* for A (or
B* for B), as we may see from the coupling (B-2) which is antisymmetric
under charge conjugation.

In contrast to the above, all particles couple identicalily
to gravity through their energy-momentum tensor. We see this from the
lowest order coupling (k) of the gravitons to the spinless
fields, obtained from the relevant part of our Lagrangian
1 —ygiiizi+ (B-5)

We linearize the metric around a Minkowskian background:

£ = ~VR/4x2 4 % g“"a

51
“Z 3,2
g’ = oV oo (B-6)
We substitute this into (B-5), to read off the kinetic term of the gra-
viton excitation huv and and its coupling to the spinless fields. Indi-
ces are implicitly raised by the Minkowski metric - not the full guv:
1 Lod upv 4 1 v 1 Ay 4+ 4 A
= -7 [->3 1 3'hY +5 1 5 WM -3 Y + 293 h Hyhn
' s
=L w0 Py Do V_u 4
15l h , o' 7 o ) =%, (- hP V-2 )]

. ) n
£ = -SHV[3a% A+ By B - HLG ArA + 5 BAAB
' 2 v TRRSY) 2 ) A

—mzA*A —mZB*B )1.

(8-7)
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In the harmonic gauge

v 1 Y
h Z e e —
3 v 3 auhv (B—-8)
_1 Aouv 1 u A,V .
only [ A Bkhuva h™" + SBAhp 3 hV } survives in iikin , from

which we may read the graviton propagator. We note that, due to general
coordinate invariance, all particles couple to gravity through the en-

ergy-momentum tensor,

We write down the on-mass shell amplitude for AB scat-

tering via graviton exchange:

(B~9)
4 2 LT v m2
oA | kuk\,‘ - -%« kek' + -Lz-w- 1 (=4i) -
A Y . ‘
5 o< lpyp 5 PP 5 |
q + ie Ao
which has a static limic:
s emt 2wt (5-10)
5 )
'E‘ - ig

This is the negative of the amplitude in (B-4), hence the corresponding

Newtonian potential has a minus sign.

Beyond the static limit, the two different forces manifest
their separate character in their velocity-dependent (Breit) potentials,

In the relativistic limit (m » 0), for example, the graviton exchange



2
s + st .
{*g—, whereas the vector exchange amplitude

amplitude (B-9) goes as
(B-3) goes as m2(1 + g%), corresponding to D wave and P wave exchanges,

respectively. s and t stand for the Mandelstam variables (k+p)2 and (k'-k)zf
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APPENDIX C: TRUNCATION OF SO(8) SUPERGRAVITY

As promised in Section 3.3, we give below the systematics

of an allowable truncation of the part of SO(8) Supergravity available

so far[De77]. This theory, written in the 1lst order formalism, contains

a graviton Vau; eight gravitinos ¢: (i =1 to 8); 28 vectors Aij (ij anti-
i .

ijkl

symmetric); 56 spinors xijk (ijk antisymmetric); 35 scalars A J

and 35 pseudoscalars Bijkl, antisymmetric, self-dual and anti-self-dual

. 1jklmnpq
respectively in their internal indices: AiJkl = - £~EE~——-- AW“PQ,
ijkl _ 1 ~ijkl
B =% B .
To lowest order in the spin zero fields, we may restrict
the above fields as follows:
12 1 2
AN + A“’ Wu + lpu’ lb“ > ¢U’
345 378 1 678_ 645 2
X =X T X s X =X > X
(¢ - 1).
) -
Z1345= Z..678__= Z1378= Z2645 N —Zl N
'21678= - 22345= Z1645= _ 22378» _22

1 2
We also restrict the transformation laws ¢ —» ¢ , € > ¢

All other fields are set equal to zero - it can be checked that their
variations vanish after the restriction given, so that this truncation
is a consistent one, and the resulting th=ory is N = 2 supersymmetric
and capable of identification with (2.3-4), (2.4-1).

Note that directions 4,5 gre now indistinguishable from 7,8,
Directions 1,2 and 3,6 are used to tag the gravity 0(2) and the central
charge 0(2), respectively, in such a way that the self-duality relations
in SO(8) bring out the opéosite relative senses of rotation between our
scalars Al’2 and our pseudoscalars Bl’2 under the gravity 0(2).

Upon the restriction proposed above, the only terms sur-

viving in the SO(8) Lagrangian and transformation laws are of the type
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to be found in (2.3-4), (2.4-1), modulo conventions and field normaliza-
tions. Conversely, all terms of (2.3-4), (2.4-1) are found among the
lot of these sﬁrvivors - note that some of them are hidden in the

torsion of the first order formalism of the S0(8) truncation. Remarkably,

ijklmnpq ;ijkouvxlmanq

for instance, the Pauli moment term emerges out of ke v

in the SO(8) theory.

This version of the S0(8) theory has not been worked
out to higher orders sufficient for specifying the nonpolynomial behavior
of the spinless fields. As a consequence, the fields of the proposed
truncation can always be scaled by functions of the group singlet u so
as to coincide with the corresponding first few orders of (2.2-9), (2.3-1).

For example, a simple rescaling Zi . Zi(l - ub+ ...) transforms the

2222238] terms of the truncated theory to those of (2.3-1)., Similarly,

[Zz3d + «
if a few terms of higher order were worked out, they could be absorbed into
redefinitions of the spinors xi¢xif(u), without really providing essential

information on the nonpolynomial structure.
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APPENDIX D: VACUUM TUNNELING

We outline a rough estimate of the decay rate for the
metastablebground state introduced in Section 3.4, which represents a
temporary, false vacuum. After this state penetrates through the barrier
of Fig. 3.4-2, it is no longer the ground state of the theory (and in
fact tﬁe theory is meaningless). The WKB approximation for barrier
penetration may be generalized to a system with an infinite number of
dégrees of freedom, thus yielding a decay rate which is the imaginary

part of the energy of the configuration under study[C°77’ Ca77].

For a
field theory with a scalar field ¢ and no derivative iiteractions
(S = f64x (%3u¢au¢ - U(y) ), the tunneling rate per unit (three) volume

r/V of the "false" ground state in a potential U has been shown to be:

—=Ae M -1)

B is the minimized action of the associated Euclidean wartational problem,
with the sign of the potential of the original problem reversed, and
suitable boundary conditions. This expression arises from the dominant
(stationary) contributions to the functional integrél Jlde] eus[¢]
governing the transition amplitude sought. If the problem Possesses
(hyper)spherical symmetry in the Euclidean variables (p2 = ;2 - (ixa)z),

it may be written in a simple form:
» . 2 = 3}_2&2 D~ 2
B =21/ do o l3@GEH" + Ul (b~ 2)
%ﬁ = 0 and ¢(p=e) = (its value at the false vacuum)
pl o

The solution of the associated problem(D-2) called "the bounce" (due to

an analogy from particle mechanics), and the trivial solution ¢ = 0 1is
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not acceptable, because it turns out to contribute no imaginary part to
the energy at all. V has its origin in the integration over all locations
of thé contributing solutions. A results from the functional determinants
of the semiclassical correction (Gaussians) to the action and the normali-
zations in configuration space. It is generally a complicated expression

with the dimensions of (energy)a, but it is related to 82 times the

characteristic energy scale of the particular problem.

Inserting our expressions (3.4 - 4), (3.4 - 5) into

(D - 2), we obtain.

2
_ 2 = 3,1 dw,2 m" W, =20 5 W 1, "W
B 27 fodp p [TK‘.Z (dp) 32'22(8 te 12e"-12e "422)

wip == ) =0 “and dw

dpjo =0 D - 3)
W 64 .
e may define t —5 5» Lo get:
2 me
_ 64q o dw,2 2 2w ~-2w_ w_ -W
B = ;5;5 fo dt [QEE) -3 (e + e 12e "~ 12e "+ 22)]

[31]

w(t =0) and %% (t=w) = 0 (D - 4)

The minimization of (D-4) is a highly non-linear, irregular singular, second
order boundary value problem. We have not been able to find a solution.
Nevertheless, we may observe that if the minimum value for the integral is
nonzero, then T is controlled by the exponential e—B and it is negligible for
all conventional values of m<< 1/k. For instance,

40

m v 1 GeV yields B a4 10 6.4 - (minimum value of integral). The proba-

bility of decay of our metastable vacuum since the beginning of the uni~
' 41
verse (1010 years ago ~ 10 f), and for a factor A n Bz/f4 is roughly:
2 -
p 10784 32 B a0 (D - 5)

and thus the false vacuum is effectively stable.
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This might be guggestive of the actual situation prevailing
in the full-fledged theory with all four spinless fields and gravity.
Superficially, we would expect the extra splnless degrees of freedom to
introduce numerical factor modifications to the above, without altering
its basic form. Furthermore, gravity enters through R/Kz, so that it can

absorb the same rescalings as the spinless fields and conform to the above

conclusions, if it can be carelessly introduced into the associated Euclidean

problem. In principle, we should include loop corrections to the effactive

[Ca77]for the next order in h, as well as renormalized quantities

potential
and the appropriate counterterms to the action - refinements beyond the

reach of our non~renormalizable theory.
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