MUON CAPTURE IN THE SHELL MODEL

Thesis by

lan Morley Duck

In Partial Fulfillment of the Requirements
For the Degree of

Doctor oi Philosophy

California Institute of Technology

Pasadena, California

1961



ACKNOWLEDGEMENTS

I am grateful to i"rofessors .. 7. Chriscy and Jon hlathews
vho directed my research. I am also pieased 1o thank Protessor
J. . Elliott for a private comspuaication of his resulis, Barbara
Zimrmerman and Fichard {olman for their heip wiih calculadons,
and Mrs. Lwucilie Lozoya for typing the manuscript.

During the course of thue work I was supported by a Woodrow
Wilson Foundation Summer Fellowship and by a Rand Fellowship.
During earlier stages of my graduate atudies I held an Imperial Oi
of Canada (Lid. ) Graduzie Tesearch Fellowship., [ am very grateful

for the eszeniial support of these fellowships,
P k



ABSTRACT

An effective weak interaction Ilamiltonian due to Primakoff
has been used in conjunction with the shell model of the nucleus to

: e 19
predict . meson capture rates to the bound states of O, ¥~ and

3 ; . .
He”. All three of these nuclei have a slow iaverse ;5 decay which
should permit detection of . capiure by an expevirment which iz easier

: \ . = 16
than that necessary when the inverse 3 decay is fast. The O  and

3 . . ‘s .

He capture rates are predictable with sufficient confidence to con-
stitute a test for the presence of the induced pseudoscalar interaction
in {: capture, but are not sufficiently sensitive to the presence of the
conserved vector current in the weak interaction to decide on its
existence. The F ' predictions are interesting from the point of

view of nuclear structyre, in that they are an analogue of "allowed

but unfavored' transitions in ? decay theory, znd the capture rate

is reduced due to the different space syrametries of the states involved.
Central values of the predicted capture rates to bheund states are, in
(,\16 3 -1, .. 3 19

I'c = 20 x 107 gec ; in He Ic 1259 sec-lg and in ¥

Te 21350 sec-l.
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INTRDODUCTION

In the last itwo years experimental and theoretical advances
have stimulated an intense program of research into the problem of
the capture of .-mesons by nuclei. The production of strong .-meson
bearns has made possible increased accuracy and scope of experi-
ments, while the establishment of the V-4 weak interaction at low
momentum transfers has provided a firm foundation for the study of
the weak interaction at the high momentum transfers involved in .-
meson capture. As is well known, .-mesons stopped in maiter are
captured intoc Bohr orbits with n, £~ 15 [rom which they cascade down
by ¥ -ray and Auger processes to the 1S state in a time of the order
of xa"m seconds, which is short compared 1o the lifetimme of the .
meson agaiust capture or decay by the weak interaction. Therefore
essentially all i-mesons stopped in matter decay or are captured by
nuclear protons from a 1S Bohr orbit. 1deally one would study the
simplest system, . capture by a proton, to establish the structure
of the interaction. For a nurnber of reasons this experiment does not
possess the advantages it would appear to. In the first place the cap-
ture rate by a single proton ig very small and the observation of recoil
neutrons is subject to large statistical errors. Also, the system of .

plus a proton is just not simple. Many complicated aiomic and



molecular processes occur. For example, the (.-p) system being
neutral can penetrate neighboring hvdrogen atoms and form (p-u-p)
molecules, changing the capture rate for two reasons. First, the
amplitude of the .. wave function at the proton is different in the .-
molecule and the p-atom, and gecond, the (u-p) spin correlation,
which has a dramatic effect on the capture rate, is changed by the
formation of the molecule. (For a discussion of the interpretation
of p capture rates in liquid hydrogen, see a recentarticle by Wein-
berg (1.

For these and other reasons, it has been the practice to study
iw capture in complex nuclei, usually with Z greater than &. The
problem of statistics is alleviated, and the (u-nucleus) no longer
forms a neutral system free to wander about and undergo complicated
molecular proceszes. Basically two experiments have been per-
formed, the total capture rate and the partial capture rate to particular
final states.

The total capture rate to all final states has been analyzed by
Uberall (2) using a Fermi gae model for the nucleus and in a more
detailed fashion by Primakoff (3) using 2 closure approximation to
sum the rate over all final nuclear states. This last calculation cor-~
rectly reproduces the capture rate, the 24 dependence and the exclusion
principle inhibition of the capture rate due to the fact that the phase

space of the capturing nucleon is reduced compared to that for a free
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nucleon. However, Primakofl's calculation depends on a nucleon-
nucleon correlation length within the nucleus, the sverage neulrine
energy, and the proton charge disiribution withix the nucieus, so
that althcugh the overall agreement with experimencis good the un-
certainties in the calculation are such 83 to masx any detailed struc-
ture of the interaction.
The experiment of 2 mescn caplure to 2 particular {inal state

D P PR ¥ ) . -
was first done for C - 7, ground staie to ground siate fransition,
by Gudirey (4) and has since been repeated and analyzed by others (5).

. . , ~12 5 cvps
In this experiment the - decay of the B~ ground state (7. = 20 milli-

2
12

seconds) indicates the . meson capture (o 2 bound state of B™7.  There

are a number of experimental and theoretical uncertainties involved,

The efficiency of counting decay electrons i3 difficult t» establish;

T S P T S
LITorEd Ll UL ay 2L

o
[4¢

decay elecirous are easiiy confused with eleciron
bound . mesons and with mesonic X-rays. Thearetically it is not
clear that only the ground state to ground state transition occurs,

. 12 .
There ave five other bound states in B which have & rather obscure
structure. It iz estimated that approximately ten percent of the transi-
tions go to these higher bound states. The ground state to ground state
capture rate can be closely related to the inverse 5 decay rate, so
that a lot of the theoretical uncerizinty here can be eliminated., Lven
so, the experimental unceriainties are lurge enoagh o preven: any

detailed deterrnination of the interaction. /Another attempt to calculate



i
a partial capture rate hes been made by Uberall (€¢) {or the cane of

.6 6 . . .
Li~ to He . “Iniortunately this ayatem possesses difficulties pre-

venting & good determination of the capture rate. The nuaclear radius
6 o . .
cf Li is so ill-defined as to rmake the calculation of matrix elements

very uncertain, and the capture rate by a nucleus with 7 = 3 is small.

This system possesses the one advantage that Heb has only one bound
state, and the structure of the # = ¢ gystem is fairly well understood
on the shell model.

An examination of the energv levels of light nuclei (7) reveals

that there are twe other nuclei for which the relevent bound states

16 19

are well understood on the shell model, D and ¥ 7, Fxpevimentally
these systems should possess 2 distinct advantage for mensuring a

artial capture vrate., Firs:, they are 7 2 8,9 nuacle’ so that the capture
I 1Y

L. . T S [ . L - oY - £
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for O = 2% sec) sc thet a new type of experiment
becomes posasible. It is no longer necegsary to observe the inverse

£ decay in the presence of the  bearn with the attendant problems of
separating P dacey electrens, . decay electrons and mesonic ¥-rays,
or of determining electron counting efficiencies, Instead, the target
(liguid oxygen or fluorine) can be contiruously irradiated by the .. beam,
and the induced characteristic radioactivity of the gas boiled off

measured to determine the c30otdre rate.



On the theoretical side, we shall see that Gamow-Teller ty pe
transitions dominate these reactions. The Gamow-Teller coupling
constant in the effective interaction Hamiltonian is sensitive to the
nature of any induced pseudoscalar interaction, but not very sensitive
to the hypothesis we make concerning a conserved vector current so
we expect these rates to be able to distinguish various hypotheses
concerning the induced pseudoscalar interaction only.

A third example, . captare by He3, will also be discussed.
This case has been discussed previously and essentially correctly.
However, in addition to providing a unified discussion of the problem
we will point out an error in the previous discussion. In addition a
mechanism not previously discussed for a hyperfine structure effect

will be pointed out here.

The ;. Capture Hamiltonian

W e shall here discuss the interaction Hamiltonian which is con-
structed (8) to describe the capture of . mesons by nuclei. The usual
weak interaction is expected to be modified by the presence of strong
interactions and by the high momentum transfer involved in .. capture.

In the Fermi interaction responsible for y decay

p—>e+v+‘;



the V-A theory of Feynman and Gell-Mann () has become established.

The interaction Hamiltonian responsible for ;» decay is then

[

H =/raG {U}f“{iiqv}"’ {(] v a uv} +H.C. (1)

Here i1, L. is the Yermitian conjuga.e,

L+ Y
]

s

and G, the weak interaction coupling constant evaluated from the 1

s
Lo

;, » with M p the proton mass.

WUt

decay rate, is 1.0l x 13~ M
1 the hypothesis of a universal Fermi interaction, the same
Hamiltonian describes the weal interaction between any four ferrnions.
One basg just tc replace 4, e, v, v by the relevant particles. The
hypothesis of universality dictates that the coupling constant is atill
G and the interaction is still ¥-~. However, if we admit strong inter=
actions (which do wot affect the ¢ decay process), the virtual pion effects
must be expected to alter the effective interaction. In the particular
case of nuclear p decay the interaction is known to be modified to an
effective interaction (actuzlly an S matrix element in lowest order

in the weak interaction)

- — 4
% p=G(ue Yaauv) Up {gv ‘{"-gA Yc:. Ys}u" (2)

1%
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with g, evaluated {rom the 5 decay of &' = 1.0, or, on the hypothesis

of a conserved vector current in the Fermi interaction Lagrangian,
exacily equal to one; and IR evaluated from the » decay of the neutron
equal to -1,23.

This {! decay interaction is sufficient to describe the situation
in the limit of zero momentum transier. If we think of the virtual pion
effects as being expanded in & power series in k,/;MN, where k 1is the
momentum transfer in the process and MN the nucleon mass, then
this effective interaction contains rencrmalization effects of zero order
in the momentum transfer, and has an error of the order k/f\fiN = 1%
in a nuclear i decay with a maximum @ energy of 10 Mev., Ina Fermi
interaction involving high momentum transfer, in particular in p meson
capture, the momentum transfer is of the order of the u meson mass
and k/MN = 10% approxdmately, and we must seek to keep at least first
order corrections in k/MN to the interaction Mamiltonian. (In fact, we
will test the hypothesia that these rennrmalization terms enter with
anomalously large coefficients.)

To this end, consider the most general interaction Hamiltonian
which

a) is Lorentz covariant

b) is time reversal invariant

c) is G invariant (i.e. charge independent)



d) reduces to (Eq. 1) in the absence of strong interactions
and €e) reduces to (Eg. 2) in the presence of strong interactions

at zero momentum tranafer.

The particular form relevant to the i capture process is (10)

2

H o= atlvau )iy {c Y, +.A;(kz) Yo

+B (kz) ke v +D (kz) kp ap Up (3)
i -~ 5 o e
m 1 B
h P

here ka’ the momentum iransfer in the interaction, = Pymn, =V e

in an obvious notation. Requirements (d) and (e), above, on the effec-
tive interaction, specify C (0) = 1.0, A (0) = 1.23. The other two

- 1
terms do not contribute at low momentum transfer. Consider these

terms individually. First the term

S

— pA a
a —— Y
(U, Y, L,(M’) Bg(k ) — g becomes, when we use

the Dirac equation (£ -m)U(P) = ) to eliminate the lepton momenta,
- 20 .
-( U a u)B (k7)) ¥ (4)
5 H s

1‘Y i
s s Lo .
. This is explicity an induced nuclear-pseudoscalar

with a =
[

~

term. Next rewrite the term C (k7) ¥ , Inaform separating the
‘tJ

. L2 . C
spin operator o . (D (k”) wiil eventually be a renormalization to
b

this spin matrix elernent proportional to (;;p-‘.;.N) for the conserved



vector current hypothesis.) Use the identity

koos-l/2i(Y Y, =Y, ¥ -
UQFK/’ =121(a r P a)(pf’ “9)

ar =2i
[#%

] : Y P 4 ¢ - F vy o
1).fk/" o V(Xa a . 7

Now asing the free particle Dirac equation for the nucleons, with a
free particle proton spinor underastood on the right and a neutron spinor

on the left, this becomes

8

MY - -2 3 ¥ ¢
2M ¥ -2 p 21Q+QP +¢Ma

4M Y 42k -dp

(The use of a free particle spinor to describe nucleons in a nucleus
introduces no error in first order in k/MPas can be seen from a Foldy-
Wouthoyson transformation.) So we have the identity

o

. s ar <o
Y’ - P !MP - ku/(lfvi,, + m-;-z-“— . (5)

With these we can rewrite the general ineraciion Hamiltonian (Eg. 3)
as
H Gla (A (MY au ) @yr )
: GiA K & LT %Y
- ) v Q “ U [ uf‘[ G uP

- B,%(Kz) (U, 3 u _i) (JN-r' Yo Up )

5

Z — — -
o (x N o £
+i..r( )y (u, 1aau;;) (Uy T p, BpUp) (¢)

. .
-C DUk ay MU, T Ue)
) a  a - I

§

2 Mp

2 - e
+DfAH(Mu%auJUN7°kau'q
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In this form the induced couplings B (k7)) and D (k”) appear explicitly
i* i

as an induced pseudoscalar interaction and as a4 renormalization to the

vectior interaction respectively,

Now to evaluate D (kz). Notice (11) in (Eg. ¢) that

. .k
y ,2 n - L d T - Af ’p [
. i k4 RN (4
CLDUNT YUy -0 (U7 Mg N

is the (-1) component of an isovector whose (0) component is similar
in structure to the isovector part of the electromagnetic current

4 -
— 1+ T ) iﬁ — t’p il\x i’}—; :-N
el v U¥tm)y e g g U
Mg el A—s— TN ZM, N kpl—g—= = n)Y

where and Py BT the anomalous magnetic moments, in units of

Fp
one nuclear magneton, of the proton and neutron. Cn the conserved
vector current hypothesis, the weak interaction is the self-interaction
of an isovector current, the vector part of which is divergence free,
and therefore presumably has the same structure as the igsovector part
of the electromagnetic current which is known to have zero divergence.
Then the weak interaction vector current and the isovector part of the
electromagnetic current are two components of the same isovector and
shoutd suffer the same renormalization by the strong interactions. If
this is the case

2 2
Cg(k ) : Dg(k ) as

Fp TN

ef2 el 3
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P Tt
D (kz) z »%-}i C (kz). (8)
H e

In this derivaiion we have neglected the difference at kaz m2 between
IS

the various electromagnetic form factors. We will compare the pre-
dictions of the conserved vector current hypothesis (hereafter referred
to 28 CVC) with the alternative hypothesis that Dfﬁl(kz) = 0, which is
essentially the result obtained (10) with no pion current in the weak
vecior current.

To estimate the magnitude of the induced pseudoscalar coupling,
consider (12) the simplest diagram which could give rise to such an

interaction, the decay of a single virtual pion into a ;. meson and a

neutrino, We can evaluate the effective pion-lepton interaction from
P P

M v
Y the (# » .v) decay rate with an effective

|
X ™ interaction
P ; N
37 Py
z TR —
J‘F T.v gﬂ'i.d/ (uv q 2 u“) mi 1 (9)

|28

where gmw is an effective coupling constant

is the pion momentam = v 4 |
pﬂ. p a rLCL

I is the pion wave function .,

Using the Dirac equation, \/uv 20,and 4U =M U this reduces

[ 2 28
to

H * g, (Uv a U“) . (9a)

Ty i
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Ihen the pion decay rate is

. u v (em® s(ven) Mo
58 4 Tuv (2”)3 (zm3 2 My
2 2
< LI ()71
2T m )
i
n

T
Here v & =

, T W
X 2 m /'mﬂ. and MWM' z1i/2 so
ﬁn

2 2,2
]l
- - mﬂ' g‘ﬁ‘&,LV ( * )
A = -~ .
v

l& TC

The total diagram, representing capture of a u meson by a nucleon

through an effective pseudoscalar interaction is

g ) - - (G ¥ al ).
”mw' N 8 P 2 : ¥ .

K+ m V'3 : !

g?, g?
2,2 . 2 v i
B (k S m ) z ;" 1 53
a G- m_ (1+x7)
i
2
where we have set k=

. : we gel
1927°
2 T 5
< \ 2 - 2 jé_, i s X
Bi, (;{ m,: ) 4TC 3w r T

(10)

Z, . . . .
5 (L - x) is the neutrino momentum for a pion at rest,

(10a)

» terms of the pion lifetime (Eg. 10a)

(11)
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-

Jsing 7 T 87, x = 0.770 and replacing the unrenormalized pion-
-

nucleon coupling constant gz ‘4r by the renormalized one GZ/41r z 15,
we find B (}:2 z m%

= H

) =9.85. This simple argument can of course

tell us nothing about the sign of Ew(kz)' A dispersion theory argument

(13), in which only the nucleon-antinucleon intermediate state in plon

decay is retained, yields essentially the above magnitude and predicts

a negative sign for I‘Eli‘k(k2 = m‘Z ). Very general arguments (14) which
"

depend on the assumption that the contribution of the one pion pole at

2 2 \ ,
k 3 - mw dominates the matrix element of the axial vector current

2 2
<p! ?Pu In ) evenat k“ = m agree with the predicticn of a negative
1
2 2 :
gign for B (k~ = m”~ ). In order to determine the sensitivity of the .
M P

capture rates to the assumptions made concerning the induced pseudo-

scalar coupling constant, we will test the hypotheses that
B 'k?" 2 y=4+ 8 ¢
= H 0,
}A( mM 8¢, o

So far we have said nothing about the momentum dependence of
2 P 2 ) . .
A (k7), € (k") and D (k”). The same dispersion theory arguments
b A i
mentioned above indicate that these are very siowly varying functions

of momentum transfer, and in fact differ by only one or two percent
2 2 . , :
atk 2 m_ from their values at zero momentum iransfer. We will
b

ignore this slight momentam dependence and replace them by their

2
[~ -, .
values at k 2 0, and reduce the {inxl rates wccor i iely
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Belore we proceed to consider specific reactions, let us make
a none-relativistic approximation on the nucleons in the interaction
Hamiltonian., Also, since the .. meson taking part in the capture re-
action is essentially at rest in the lowest Bohr orbit, we can treat the
p non-relativistically. For convenience we will put the neutrino wave
function in two component form. Then make the substitutions (which

are correct to order p/M even for nucleons bound in the nucleus):

5.3
up - (1 - ———‘ZI*/'LP‘ WP
= .+ v
Un wy (- 2M, )
a U, = l-(r'vl G VX w .

\ iy
Here is a relativistic spinor
w is a iwo component Pauli spinor

Mo is the nucleon mass
p,n,v,u designate ihe particles or their three-momentum
whichever is rvelevant

is a unit vecior 1n the direction of the neutrino

<>

momentum v
¢(x) is the | meson wave function, reduced (5) from its

nominal value by the finite nuclear size effect
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—-~
-

- - —
v =k , the momentum transfer, p -n .
iIsing these substitutions and keeping only firs. order in the various

momenta, the nuclear matrix elements occurring in }M{ become

—

+ - v
a) U 7—‘(0“‘;‘ U =+ w7 o v w (=)

N 8 p N N P 2 Mp
+ T N U-N. F W
7T - + - $ _
b) uNT Yb‘ls uP - - WJT UI\I W'{;, ( b" ,1213)
gy U_r v ~- ~(--——'L)w+7'o v ow
N s 2M p N N p
a3 U 7 W - W, T W
) NTOPs Mg up N P
) a T [ y+-...i...p" ( = Il?)
€ N P i P P YNTOW v p H#
¥
N U 27U = w_ o1 w
. p * P
L:P
7 - ap v - ap A o
8 YT s Y ) T Ve Tng Wy
P P
Q-PGJ. 9y N .
here ¢ is the tewmally 1 (dsymmelric tensor, (x ppu = L2 3)
Iny is the nuclecn spin
T the lepion spis .

Now since (1 - o, - ¥) = (-0 O)1 -0, + ¥) we can nseri(-o, * )
L I 1. L

for later convenience in separaiing Fermi and Gamow-Teller terms

and bring the interaction Ham ltonian into the {»rn (§)



. (it -o v)
~ivex ¥ L + -
H = G¢ (x)e ‘xwv wN'r/\w w (12)
: 2 T2 -
where
2 o L2 ; P
= T Ak + Y - O (K . . —
/\ f‘\'( J{1+ v 2} » (H(h ) ¢ v o M,
é v 2 2
- A |l B STV 20 (k
oo (0 (9 A {ceHran () 9

2 A P
+ o4 (K9 o, . -
s (7)o vooe T

v A A . (L2 . ,_,Z.\ ~ 1"2 1‘02}
v T (ar(ﬁ )+ 5 (<5 {Ur(h )+ zD#(“ BN
i}

The various coupling constanis we will employ arce

C7) = C (o) =g =1
i.u

2 -
A(KT) = A (0) =-g. =1.23
- N

2 -
B‘(k)‘:ngA or 0

i

™

2
0 (B s - oru,
> ) Ip AN

Fe must aow Ley to find s2ac-lons gensitive o the derailed structure

of this interaction Hamiltonian. Nuotice in the last terin, that

8v /ZMPZ 1, so tha: for o« Gamnow-Teller type transition, the induced

pseudoscalar term can male 2 contribution of the same order of mag-

nitude as the original Gamow-Teller term. We will indeed find that
e - _ 2

such transitions are sensitive to the value of B (k*). We now proceed

I

to a discussion of some specific reactions.
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016 Preliminary Discussion

16

All four bound states of N' are undersiood on the shell model

z

(15) as (lpl,z 3 ,) holes inside the ote core coupled (o (ldj,z 5, 7 Z:izl ,2)
[y 3 e L lag B/ /

particles outside it to give the 1T =1, J =0, 17, 27, 3~ agsignments

characterizing these states.

392 -
e =
- ©
° N'® 1
888 2-
712 -
QIIO‘L} Mev 6.1t 3-
o] o‘r
Ou
Shell Model Levels for A=1]6 Nuclej

Consider the u capture process from the T = 0, J = 0+ 016 ground-
state to these bound states of Nm. For a capturing nucleus with gero
angular momentum there is of course no worry about the hyperfine
structure effect. Then for the

a) T=20,Js O+ to T =1, J*2° transition, which is the groundstate
to groundstate transition, the Gamow-Teller matrix element (o eiv' r)
withf =1, j = 2 is expected o dominate the raie. The Fermi transition
is strictly forbidden. The dominant Gamow-Teller matrix element

can be obtained from the inverse [ decay so this -ate can be determined

almost independent of the nuclear model.



1o

A + - - . , .
b) T=3,J*5 w 1=1, =0 transition, again the Fermi matrix

element (s zero and the Gamiow-Teller matrix element with £ s 1, j= 0
is expected o dominate. [his transition should be especially sensitive
to asgumptions conceraing the induced pseudoscular coupling in the
weak interaction,
) T=20,320 toT =1, Je1" transition, we expect a mixed Fermi
and Gamow=-Teller transition, eich withf » 1 and j s 1. A priori,
we would expect these mairix e¢lements to be comparable and of the
same order of magnitude as the Gamow-~Teller matrix elements in the
preceding two transitions.
d) Te0, 720" toT =1, 723" transition, which has matrix elements
with £ ® 3 only, we expect a smazll contribation to the rate. Even at
the large mornentum transefer involved in u capture,radial matrix elee
ments with £ = 3 are very small.

The total rate, then, should be dominated by three Gamow~
Teller matrix elements with £ =3, j 2 0,1,2. The predominantly
Camow-~Teller transitions she 1l be sensitive to the assumpticns rmade

aboui the induced pseudcescalur iteam, wnd we would hope thal the pre«

+ - .
gence of an © to ©  transition would make the captare rate pardca-

larly sensitive to the presence of & pseudoscalar interaction.
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Nuclear Physics

We require the shell model description of the Nlé bound states
in order to calculate the matrix elements entering the . capture rate.
These results are available in the work of Elliott and Flowers (15) but
it was decided to repeat the calculations in order to vary the parameters
of the nuclear force over a wide range to determine the model sensitive
ity of the resuits. The previous results indicate that these states are
very close (within ten percent) of the j-j state determined by the £-8
splitting, ®o the j-j coupling scheme seems to be the natural descrip-
tion of this system and is the one we will use. In addition to describ-
ing the bound states of N16 we will also test our model against the
T = 0, odd parity states of Om. (A difficulty arises here in the shell

model deacription of the T 2 0, J 31 atate due to center of mass
motion, which must be removed. This amounts to a restriction reduc-
ing the number of basis states by one and has been included in the
previous work. We will ignore this state in our work.)

In the shell model, the degenerate (1 P2, 3/2)-1(1 d3/2’ 5/2" ZQL/Z)
configurations of a hole and a particle in a central harmonic oscillator
potential are the basis states in which we expand our physical states.

The degeneracy is removed and the configuration mixing accomplished
by the spin-orbit interaction and the hole-particle interaction. The

lowest lying eigenstates of this total Hamiltonian are to be identified

with the physical states.
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a) The Nuclear Hamiltonian

The spin-orbit interaction in the d shell is determined from

7 7
the 1d splitting in Ol which is 5.08 Mev (in Fl it is

5127 193/2
4.7 Mev but less well established), so V = 7. 1 5 with

52 =-2.03 Mev. In the p shell the spin-orbit potential is determined
from the 1 pllz-l P/ splitting of 6.33 Mev in le (or 6.15 Mev in
015) to be §, = -4.22 Mev (or -4.10 Mev). In the harmonic oscil-

lator model we will use, the 2 s level would be degenerate with

1/2

the 1 @ level in the absence of a spin-orbit interaction, or 2.03

5/2

Mev above it with the above 2+ 8 term. Experimentally the splitting
17 \ 17 . 17

in O is 0.871 Mev (in F° itis 0.50 Mev), so to fit the O level

gtructure we require a ld-Is splitting L4g 1.16 Mev.

The simplest assumption to make concerning the two nucleon

interaction is that it is a Rosenfeld force with a Yukawa shape and no

tensor interaction,

-} v
T1°72 e 7
0.3 + 0.7 . — e 4
V s VC 3 (0.3 +0 o :rz) o (14)

A strength Vc ~ 40 Mev fits the experimental situation in the A = 16
to 19 region. We will in fact consider a more general exchange mixture

(15,16)
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-Myr
vzv 2 (W+MP -.HP_ +Br ) (14a)
C Mer 4 T g
2 )3 - 1 . ® - 2
where P ;(+ T, 'ra) P
Po* = (14 0’1-52)

My
e
VaV (vd+v7m o +V7-r 1'2+Vﬂ 7 021172> (14b)

€ Mepr i "2 1
with V= W+iB-fH-I M
3 1 _.5:_ i§
Va s B - ¢ B
v, @ -t H - M
V. _ = -3 M
oT

This leaves us four parameters to vary in the nuclear force, obviously
an unmanageable task. Elliott and Flowers, from a consideration of
the binding energies of the A = 18,19 nuclei (17), have evaluated the
triplet-singlet interaction

W+M-H-B=-0.70
and the triplet-triplet interaction

“ -M-~-H+B =+0.20
with the normalization W + M +H + B s 1, leaving the singlet-singlet
interaction W - M +H - B 2 x as one free parameter. The Rosenfeld
force corresponds to a value x = 2, the Visscher-Ferrell force (18)

to x 3 0. We will vary the exchange parameter throughx =0, 1, 2, 3
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encompassing these two proposed forces and also we will take the
strength of the central potential to be 30, 40 and 50 Mev, and the
radius parameter b 3 1. 56 and 1. 86 fermis, to determine the model

sensitivity of the predicted . capture rates.

b) The Energy Matrices

We require the matrix elements of the nuclear Hamiltonian

A = %;1 , Z_I‘.-a;+ Ad-s +V, (15)

1

-1 -
2350 ey, 14y,

in the basis (1 puz"1 2 3”2). (1 P32

1

1 1

(1 p3/z‘ 1 d3/2). (1 pL,z‘ 1 d5/2) and (1 p3/2' 1dg,,). The spin-
orbit and d-s splitting terms are, of course, diagonal. For the matrix
elements of V , we need the direct and the exchange matrix elements
(see Appendix I). Doing the isotopic spin part of the matrix element
directly, we are left with

for T sl (16)

SR +vc{( +2Ve){w(x)) 4 (- Y, 4V, )<v(x)>m
+( 42V )0 T 7,0
+(- Vo + Voo ) <ol 0} rrZ>D}
where E(D) denotes exchange (direct) matrix element and

vix) = e /mer .
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For T 290
v = +vc{zvd< v(x)) + (V- 3 Ve ) el

+2Vy <v(x) U_l. TZ>E+ ("Vcr -3 Voo ) <V(X)U—l U:'Z>D}

(17)

The four types of matrix elements occurring ere given below. Sub-

scripts m(r) refer to final (initial) particle states and subscripts n(s)

to final (initizl) hole states. The reduced matrix elements of the

Vukawa potential are evaluated i~ Appendix II. e need (we use the

notation and conventions of Edmnnds (19))

1/2
1+(J - +(J -1 ) PR A
(jm n‘)sjr m‘ r) BJ? KSJfKSMi Mf x
= ]

(=) )y = ()

n “m i T
(18)
1+! BRI TS S 1’253 JSMM
() = 6 332 1) x
K e m ® Jg I\ [In s ©



Jn+} s+3m+3r

A 4B <m }
Lo noom 15 £r ! lSZ ‘VK“ d
A / 503 01
(20)
and finally
‘is+‘ir'u+Ji Y :
. - . i T U N R P
(v(x)u'i 0~2>D 3( ) (Jm“‘&:‘}njr ¢ 2 zmk :x) 53{51 Sb“f" ' *
) 3 ]s :'n Jl Y Jm 31
1A n "m f X
S S i I3 R ’
3 (70 1 RIS g4k
Jr g 31

1 ) . 5 3
¢ 2 i/ \ 2 w1

L4
m.szll VK Hrlna> .

(21)

The lowest energy eigenvalues of these energy matrices, and
their eigenfunctlions, have been fouad. In Appendix VI, table 1,
these eigenvalues and eigenvectiors are listed for x 3 2, b =1.56 and
VC = 30, 40 and 530 Mev. One parcmeter remains at our disposal.
The strength of the harmonic ascillator petential has been chosen so
that the average excitation energy of these five states agrees with
experiment for V _ 2 40 Mev. This requires fhe=13.5 Mev. For
comparison, the results of Ellictt and Flowers and the j-j limit for

these staies are also presented.

>
2™
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lhe p Decay of N 6

/
|8

The ground state of N°  has a half life of 7. 37 seconds against
: . I . .
- decay to various states in O . The branching ratio for the ground-
state to groundstate transition is 26% and the O value is 10.4 Mev.
- - + P . . -
The 2 to 0 transition is a unigue first forbidden Gamow-Teller

decay. In terms of the . decay rate, the [ decay rate is

(l_m?.)‘/z

H 2,05, 0.2 P 2y
2 29052 (2 (5)% ve) [ a2 %s ) Ay . (22)
& f“L

i

K

O

-
t -,

Here 8y ® -1.23
m is the electron inass in units of
i is the  meson mass = 105 Mev
v  is the neutrino momentum in p capiure ® 35 Mev
@ is the nuclear Q value = 10.4 Mev
8(t) is the neutrino (electron) momentuin in the § decay
in units of U (s =1« (iz"‘ mZ)‘/l)

F{z,t) is the coulom?d factor for $ decay.

vl is defined for convenience in the u capture calculation as

. +

i T

I3ve = <« N LT, VR li> . (23)
) Z

Thus v© is just the part of G, (see Eq. 29b and 35) obtained by re-

placing jl(v r) by 3‘-3-\: r in the radial matrix element.



We obtain a value of v ® = 0. 382, taking the sign from the
shell model determination. This is to be compared with a value 0.546
in the j-j limit, 0.4l using the Eilictt-Flowers vesult, and 0.325 using
our wave functions. We will posipone a cormment on this result until

later.

Calculation of the Capture Rate

In the ,, capture Hamiltonian, introduace the abbreviations

(see Eq. 13)

Q
T

c A +vizm)
o 1%

A (:-{Z) -v/22 (C (:;2) +2D (1;2} )
A Y P b ‘r‘*

0
1]

o
m

{B (kz) + A _(kz) - (C ,(kz) + 2 D)v(kz) ) } v .
i.;. P. ~ v 2
P

Then the matrix element of the interaction becomes

H =G LP()) Wv+ (1-7-9) (A + 7 -B) W (24)

2 "
Here the spatial dependence »f the | wave funclion over the nuclear
volume has been ignored, and f (x) veplaced iy Y (7). The nuclear
b i
matrix elements A and B will be defined in a uomen.. 'The capture

rate 18

2

[ J(dé3;3 2T 0 (E-E)) A URY
T [

2 .2 2
v G 0 2
Y, am

2 TC

(25)
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v is the neuirin: momentum, ito be taken in the Z direction. ¢ (0)
(= ez)3 g

is nominally —-—T%—M {or a poini nucieus. Averaged over initial

. states and summed over {inal neutrino states, the matrix elementis
2 (L - o Q! . L - 0o v
2M = 5 (A 4+ o B) (A% + o-B%) (—--;—2-———2
= AAR 4 BRK (2¢)

2 sum over firal and average initial nuclear states is implicit here.
. . A .
Fseudoscalar terms containing v have been dropped from the rate.

Ihe terms A and B can be identified by comparison with H as

A =G -G ¥ (27)

A A oA -
B IGAg-Gpvv-g-szvxq-gAvt (28)

where the nuclear matrix elements are

. ~-iver 7T
£ z<£l‘}.Ne }-__2-’- !1\ (29a)
¢ s ilig e 2 e [ (230
_ 2
q ={fle e 2 B i (29¢)
i L
: ) 7 M Fi

The sum over N is a sum over all the nucleons in the nucleus.

r, T , ¢ etc. vefer tno the nucleon being summed on. Tn terms of
hese matrix elements

2 2
{

AA% = GO - 2GS Re (1 V- g¥) (30)



BE* 2 2 2,5 a 2
B* =G, g +(Gp~ AGp) v gl

- o T boeg th - ~ 5 .
-t~2((.‘rP GA) g5 e (v gt)'&—uGA(.zv Trm v gxg*

) 53

vgl et el (31

k'

Oi course, the Hamiltonian is only exact to order k/M so that {t i3
inconsistent to keep the square of the amall terms. However, we
prei{er to treat the approximate model exactly so we will carry these
terms along.

Now to evaluate these matrix elements for the transitions to
the bound states of NU3 using our shell model states. The matrix
element of T /J2 is common to all these and equal to one, so drop
the isotopic spin from further considerations. Then the matrix ele-

ment of an operator

H = T J"?.C ; J’P ’y‘:dy (32)

where
me
L £ is a spherical tensor of rank (£, ") operating on
space coordinates only and
. M Ig ig a spherical tensor of rank (K, ) operating on

spin variables only, is



<) Rk ]i>= C, ()"
JHLJF Jn jm f n jn
('cx a m)(é ula /d Me | a ) <
1 . 1 L
z ‘m Il \2 Kia \ln L ‘m

<1y H’KH§> <t _ | Hell 2 >,

Here C. ., 3 are the expansion coefficients of our shell model states,
Il f
subscripts m(n) refer to particle (hole) states, The matrix element

summed over magnetic quantum numbers is

. jm+jn+J£ ~oA A %
<Hmt>-cjnjm3£(-) G i 3¢ ) x (337
(p M Mf) i3
3 1
K £ |3, ot g | <EN N> < ) Hell 2 >
\i i K

This expression suffices for the large matrix elements {f and g.
For the momentum type matrix elements, as shown in Appendix V,

we need to replace the orbital reduced matrix element by

Mg
L

v O

lelﬂzll ln>*’ (1 L ) <1mll£.u.lltn>.

The required reduced matrix elements are presented in Appendix III.
To evaluate the individual terms in MZ. it is useful to use the

identities for vector products in terms of spherical components (19),
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14v b vi0
a*b* = (-) ’3 ( ) »
11 o) 2.(ev)
and (axb*) = ()Y 2 L
P T (i F) . (b-v)*,
i 111 j

Now to the individual terms in the rate. The Fermi matrix element
fhas K =20, <}l }PKH > a1, and

iy er
< _WHelle >e o<t eV e >

With ¥ in the Z direction, M¢ = 0 and we can write

A )‘. N
# F
f2 (J)° M0 &J.L T
2_ &~ 2
and f = Jf -6 Jf,L . (34)
We can identify F, from the general expression above.

The Gamow-Teller matrix element, with X = 1, can be written

g, =<P Ole) (£ G

1 I[J

f

and

2 _ 4 2

g = J, Z.C G, . (35)

; 2

; 2 » o olo £

Also |v - = J Z ( ) ) - G 36
gl £ £\, £ Jf 3¢ ”r (36)

The momentum type matrix element q can be written
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q = (V 0 !Mf) SJfI, Smilvif E QL[L . QL‘L is

1tL.7f

to be identified from (33') with K = 0 and <4 || H, 12 >3 <g & LE ¢ >,
b0 41 n m n

Then
2 » 2
q“ = I, Z Qr, XJf;. (37)

The crose terms involving ¢q are

o ofo) [
A IL »

f
and
— J
Imvgxq*=3 2L (¢)£ (0 010) x
v oL o1 .
( ) 5£'3; Re G, Qery - (39)
1 1 Jf,

The momentum type matrix element t , can be expressed
b

wr GG

H 1 L1y /L

(33') with K = 1. The contraction is

m
L

TAR~ .
) J’f 1.cu. , a8 we see from

A*
£+

e ) (3% (S0 Sru T, .
LU0

Then the terms required are



[¥3}
o

A L+l
4. I Z (-) Squ Ten (40)
£
and the cross term
N s Lrv s 2 o 0o
Retd-gk= J (=) L[5~
Lu L £ 1 £ I
(41)
»
Re G.C' T.CU_ .

Individual Transitions

O+ to O - the terms entering this rate are gz. veg 2, ﬁz

and Re t v-g*, for which two matrix elements

are required, namely Gl and TIO'

+ -
O tol - the terms entering here are fz. gz. qz.

Refv-q*andIm¥.gx g* . The individual

matrix elements required are F‘l, Gl' QIO and
Qla'
+ - . + -
C to3 - the same terms enter here as did in the O to l

transition. The matrix elements required are

Q
F ® G3.

3 and Q34.

32
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O+ to 2. - here we require the terms gz, qz. v g 2

tz, Retv:- g¥ and I mv.g x q¥. The individual
matrix elements entering are Gl' GB' sz and

the combination T = -le + Tzz - T3Z'

All these matrix elements have been svaluated using the shell
model wave functions for a range of parameters. Results are pre-
sented in Appendix IV, table 2.

The first forbidden Gamow-"[‘éller matrix element G1 in the
0¥ to 2° transition can be expressed as G1 z R(v©), where vo is
the £ decay matrix element obtained from the 2" to O+ p decay of
Nlb. The matrix element is determined in magnitude and its sign is
chosen to agree with the shell model prediction. R is the ratio of
the calculated values of C:',1 and v® whichis very nearly constant
and equal to 0.789 for b = 1. 5¢.

The total capture rate to the bound states of Nle calculated

with these matrix elements and with the hypotheses gp =48 gA.O

with and without CVC, is also presented in Appendix IV, table 3,4.
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Results and Discussion

The nominal capture rate (eqn. 25)

\ 2,, 2 3 P4

L=G v (Ze” ) (2Mm7)
2

2r

must be reduced for three reasons - to take account of the finite mass
of the nucleus (3), the fiuite size of the nucleus (5), and the momentum
dependence of the weak interaction coupling constants (13). The {inite

mass of the nucleus introduces a factor approximately equal to

so this causes a reduction in the rate of 3.5%. According to the numer-
ical calculations of Ford and Flamand, the finite size of the nucleus

" o 2 , ‘ ,
causes a 6% reduction in (,V (0). We reduce the rate 5% to account

for the momentum dependence of the coupling constants. Then

I -
¢ zazox107d(2MY. (25")

2

A central value of 2M“ = 1 gives a capture rate to the bound states of

. 3 -1
I‘C = 19.2 x 107 sec .

Now we must try to estimate the precision with which we can

: . 2 .
predict the matrix elernent 2M~ . From Appendix 1V, table 4, we see
2 .
that 2M. varies by less than one percent as we vary '\’C through 30, 40
-

and 50 Mev. Additional calculations show that 2n“ is equally independent
of x, the exchange parameter in the nuclear force. As x is varied

through 0, 1, 2 and 3, ZMz increases by less than one percent.
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Also, as the nuclear radius parameter is increased from b z 1.56
fermis to b = 1. 86 fermis, the rate decreases by about four percent.
The reason for the lack of dependence of the rate upon the nuclear force
parameters is the fortuitous circumstance that the capture transition
is predominantly (~80%) to the groundstate of NM. and the dominant
matrix element Gl can be determined experimentally from the inverse
pB decay rate. Itis clear then that the uncertainty in the choice of
nuclear parameters {8 not the significant source of error in the pre-
dicted rate.

Here it i3 necessary to discuss the discrepancy which persists
between our description of the A ® 16 shell model states and that of
Ellioti and Flowers. The difference is seen to be small but it has a
significant effect upon the ;. capture rate. On the basis of comparison
to experiment there appears to be little to choose between them. Our
T 3 0 levels are in the correct order. The T = 1 levels are grouped
within 3 Mev, compared to a grouping within 1 Mev for EF and 392 kev
experimentally. Our predicted value of v & agrees with experiment
atx & 2, Vc z 30 Mev. The EF resultis 5% highatx = 2, Vc z 40 Mev,
Both of these are satisfactory results, since v © is particularly sen-
sitive to a cancellation between the contributions from the (1 p;,lzl d5/2)
and (1 p:;l/z 1 d 5/2) components which dominate the J = 2~ T = | state.
Actually, the really significant difference between the two results as
far as predicting the .. capture rate is concerned is just one, namely

the structure of the J = ¢ T s 1 state. Both results are within ten



-1
percent of the jj limit but the admixture of (1 P2 1d 3/2)is of opposite
sign in the two cases., The matrix element of GI(TIO) to the (1 p;l/z 1d 3/2)

state so that

-1
state is roughly (wice as large as to the (1 Pi/2 1 dl’Z)
/ /

this difference in sign causes a considerable enhancement (above the
jj lirnit) in these two matrix elements for EF, whereas they are consider~
ably reduced in our case. This single feature is primarily responsible for
the different predictions of the two sets of wave functions. A careful
examination of the energy matrices supports our conclusions. We are
forced to accept our results over those of EF,

3ince roughly eighty percent of the rate is accounted for by the
experimentally determined matrix element Gl' we can safely make a
liberal assumption about the uacertainty in the ‘predicted part of the

rate. Ve will consider the possibility of a 30% uncertainty in this part,

[
(o
-5
«

or

Conclusions

The predicted rates for the various hypotheses including a six

percent uncertainty are

Case 1 2h4 = 1.00 - 0, 88
2 1.70 -« 1.50
3 1,29 - 4,13
4 .81 - L7
£ 1.55 « 1,38
) 1,09 - 710

It is seen that it will not be possible to tell, even within these predictions,
whether or not the conserved vector current is present. In fact, within
these uncertainties, there is a slight overlap between cases | and 6 which

have gp =+8 8y and zero.



F19 Preliminary Discussion

Flg and 019 provide another example of nuclei all of whose

known normal (positive) parity bound states are understocod on the
basis of the intermediate coupling shell model (17). In this model the
nucleus is treated as a closed O16 shell plus three extra core nucleons
in ld or 2s states. The conifiguration mixing is accomplished by extra
core nucleon-nucleon interactions, plus d-s splitting and is splitting
for each nucleon. The structure of the relevant nuclear states ob-
tained by diagonalizing this interaction is presented in appendix VI

(17 and 20). The notation used is that of Jahn (21) and we use his
scheme to classify states of three particles in the d-shell. dze states
are classified by their d2 parents, dsz states by their 82 parents,
and the 83 state is unique.

)

\/Z+
o]
Om V2t
1.56
Q= y.79 Mev 20
0.118 S'/L-f
o \/Z,+

Shell Model S tates for A =19 Nuclei



+
Let us examine the . capture process fromthe T =1/2, J 31/2

19 + L+ +
ground state of F ~ to the T 23/2, Js5/2°, 3/¢, 1/2 ground and
9 . s . .
excited states of O ~. First of all, we notice that the inverse p decay
”~ + 1 + : s g}
fromJ =2 5/2 t0J s 1/2 is second-forbidden; the  decay proceeds
.19 ey .
to excited states of ¥~ so it will not be possible tc replace any calcu=-
lated matrix element by an experimentally determined one. Consider
the capture reactions intuitively, on the basis of the large Fermi
i L] 3 . i3 :
(V" 7) and Gamow-Teller (e " F) terms in the interaction Hamil~
tonian,
+ + ‘L. N
a) 1/21/2 -3/21/2 transition: in } decay, we would say
that 2 Fermi transition beiween such states is forbidden by the change
in isotopic spin, since we can factor out a coordinate type matrix
element 1) leaving the matrix element < T-> which vanishes
between states of different isotopic spin. In p capture, a similar
situation exists. To the extent that the matrix element <jo(vr)>
is independent of the basis states, it can be factored too, leaving the
matrix element < T > which vanishes as in § decay. In fact,
(ja(vr)> is not exactly independent of the basis states, so we would
expect the Fermi matrix element to be a small difference between the
contributions from various basis states. No such factorization is
possible in the Gamow-Teller matrix element. Off-hand, one would
expect this term to dominate the whole transition rate. (In fact, we

shall see that this is not the case, due to the different dominant space

symmetries of these states.)
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b) 1/21/27 - 3/23/2% the Fermi matrix element has L = 2
only. With the large momentur transfer, this matrix element could
be large. However, experience shows that large changes in L are
not favored and we expect this transition, too, to be dominated by the
Gamow-~Teller matrix element with L 2 0.

c) /2 1/2+ -3/2 5/2*: a priori, it is not possible to say any-
thing very specific regarding this transition. We do expect this rate
to be small compared to the rates for the transitions with emaller
changes in angular momentum though.

It is worth remarking here about the effect of possible higher
excited bound states in 019. The work of Zimmerman (22) indicates that
there are no other bound states at excitation energies less than 2.4 Mev.
Above this energy there is no experimental information. The shell
model predicts the next positive parity states to be J = 7/2+. 9/Z+ and
11/2*. States of such high angular momentum would make a very small
contribution to the capture rate, and could be neglected or corrected
for using just their dominant shell model states for an approximate
calculation. Another possibility is that there might be negative parity
states of low angular momentum. A description of such states in the
shell model is not available, and they are usually interpreted in the
cluster model (23) as being, for example, states of an alpha particle

bound to a (.315 negative parity core. Intuitively, we expect the weak

interaction to be very inefficient in causing such a large rearrangement
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of nucleons. The expectation is borne out, for example, by the ab-
sence of a first forbidden Gamow-Teller transition from the 5/2+
groundstate of 0'7 to the 1/2” first excited state in £ in competition
with the slow allowed but unfavored transitions that do proceed. Fin-
ally, if positive parity bound states of low angular momentum are
found in 019. this work will have to be supplemented by their inclusion
using their shell model descriptions.

On the basis of these considerations, we expect the total capture
rate to the bound states of 019 to be dominated by the Gamow-Teller
terms in the Hamiltonian, As mentioned in the introduction, such
transitions are expected to be sensitive to the presence of an induced

peeudoscalar term in the interaction Hamiltonian.

The Hyperfine Structure Effect

p capture by Flg is complicated by the fact that the nucleus has
non-zero spin, in this case spin 1/2. The mesonic atom will exist in
hyperfine states with total angular momentum F %1 or zero and in these
states there will be a different correlation between the . meson spin
and the nuclear angular momentum J. Since the spin of the extra core
proton will be correlated with the angular momentum J, then there will
be a different correlation between the j» spin and the spin of the extra

core proton in the two hyperfine states. This correlation will not



. 16
affect the p capture by the protons within the O core but will for cap-
ture by the outside proten. An examination of the capture Hamiltonian
reveals two terms dependent on the  -proton spin correlation, namely

A

O-L' (7;2 and ULfJ‘ (77\41/ (24). & direct caleulation for o capture

from ¥ 2 0 and ¥ 21 hvperfine states by a single proton shows that

with the Primakoff Hamiltonian

(220
[e -1

This large dependence of the capture rate on the .=-proton spin cor-

= 50.

relation makes it necessary to treat the two hyperfine levels inde-
pendently, and to correct for any transfer between these levels. Even
in a complex nucleus we expect this hyperfine effect to neceesitate a
separate treatment of the individual hyperfine levels.

The hyperfine splitting in a :-mesic atom i6

&

AV-(;;)

e

ZB Al/;‘ = 6x1013 Z.3 se -t
/

) ; -1 P
(where A l/H : 1.4 x }.L‘; sec i@ the HFS splitting in hydrogen).

The finite width of thece states urises {rom (3)
a) . capture and decay for which

F = 10{} scifc"1

end conversion beiween these siates by
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b) collisional de-excitation (This is emall except for the

highly mobile neutral hydrogen u-mesic atom.),

<)

magnetic dipole radiation with a rate

3

13 m 13
r‘l= 10m (e?‘) ?9(-—&-) = 103 sec-l, for 'Fw. and
;,. ;

d) Auger eleccireon ejection with a rate

‘ m 3 _ -
I_"—:wm’ (ez)' Z (;}E—) = mssecl.

,L

Thus, in estimating the effect of the HFS effect, we may neglect the

overlap of these two states and assume thai they decay independently,

stariing with an initially statisiical populatica. The triplet hyperfine

. , . . A9 oo
level lies highest since the magnetic moment of 7 15 positive. Now

let

Y,
I+

by the total . disappearance rate from the hyperfine

level with F s J +1/2

be the . capture rate to bound states from the HF'S level
with & = J+1/2

be the conversion rate from F = J+1/2to F s J -1/2
be the probability that a i is in the HFS level F » J +1/2
at time t after its arrival in the 23 1/2 level of the

p atom, with the initial values N+o = 3/4 Ne.o s1/4
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N% be the probability that a .. has been captured to & bound
state from the HFS level F 2 J + 1/2, with the initial

+
values Nz' s J. From the solutions of the differential

equations governing this process we find, as t oo,

+ -
S S U Y
c X, F o § e AR I B WP

Let us treat these corrections - the HFS effect and the conversion

effect - to first order only. Introduce the average disappearance rate

+ -
)”_'A so that

As 3/4 )L+ +1/4 2" and define o=
+ = 8 - .7 3 . .

A= a(l+ Z) and A 3z Al - ZS)' To first order in & and

JLT/X we get from the above that the total probability of capture to

bound states is

A
+ - 1 {3 .+ 1 - [ 3 ¢ 3 TY L, . 40
Mo NN gla etz et (2 v 2 1) Go-rdp (49

3 -
Here A = 7 A.c is the capture rate for no correlation
between . and proton spins, or for a statistical population of these

levels.

For a crude order of mag itade estimate, take 9 = 0.10

A/ =20.10 and a” -2t
T C c

R

+ X . The correction due to HFS and
conversion effects is then of the order of ten percent,
We can make a more detailed estimate of the HFS effect using

a result presented by Primakoff (3). From this work,
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3.2 L () 2Xtd (44)
a 2Z P T+

where J is the nuclear angular momenturmn, Z the nuclear charge

(for an odd Z, o0dd A nucleus) and <(TP'J > is the ground state
expectation value of the scalar product of J with the spin of the odd
proton, b/a is a ratio of coupling constants equal to -0,95. This
result rests on the closure approximation and the approximation that
the exclusion principle inhibition factor is the same for the core protons
as for the extra core proton. It also includes the assumption that the

j» decay rate is the same as the p capture rate. For the case of Fw.
then, & = -.l14 <U;) 1) . With the assumption of a single
particle model for Flg. <U'p°.!> = 3/2 and 3 = -, 21,

The single particle model for Fw. in which the ground state is
taken to be a 2 51/2 proton, has the justifica
moment of this state is almost exactly equal to the single particle value
(2. 63 compared to 2.79). This is really no guarantee that other
properties coincide with their single particle model predictions. For
example, consider the orbital angular momentum of the extra core
proton. On the single particle model <l f} > % zero. Using the
complete shell model description of the ground state (see Appendix VI,

use the V = 40 eigenvector), we find a 48% probability that the proton

is in 2 d-state and 52% probability that it is in an 8-state, so
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{1 ; D =2.87. One might thus expect <<Tp-1> to be considerably
less than 3/2. The matrix element <2:1 -;: (1+ C; ) o J’> has been
evaluated using the methods to be discussed later, and the shell model
states in Appendix VI. In fact, these detailed results differ but little

from the single particle model. Waea obtain

V=30 V=40 V50
<U‘p-3> 1.34 1.39 1.43
which reduces our estimaie of 5 to -.20.

More detailed estimates of )LT. the transfer rate between
hyperfine states, and of g have recently been made by ’Sberall (25).
His prediction for )\.T is essentially the one above, but he finds,
using closure and the complete shell model wave function for ‘2‘19,
that Primakoff's approximations are not very good. In particular,
he finds that the exclusion principle inhibition factor is considerably
larger for core protons than for the extra core proton so that in

Primakoff's estimate 7 should be reduced and ) thus increased

to 9 = -0.60.

Calculation of the Capture Rate

From the preceding discussion for the case of 016’ the capture

rate is (see Eq. 25)
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2, 2,3 3 2
F . G (Z.e)z_p, V ZMZ (45)
27C

where M is the matrix element between pu and initial nuclear states
and neutrino and final nuclear states of the interaction Hamiltonian
(with (J i(o) removed), which we will write M = <f | H !17 In the
case of Flg, it is necessary to sum MZ over final states (neutrino and
nuclear states independently) and average over initial states, but in
this average the HFS states F » J +1/2 must be treated separately.
Denote these as 4\: s Mi (averaged over HFS states with F a 1)
and o] ¢ M’ (averaged over HFS states with F = 0). In order to
carry out a surn over u and initial nuclear states independently rather

than coupled, insert projection operators P+ and P~ with the properties

P+[F s 1) = [Fel) P- [Fa0) =|Fs0)

P+|F s 0)e 0 P- [Fel,)s 0.
By analogy with the two particle case, the required operators are
P-=-};(1-2J-O—L) P+=%(3+2J'U—L)

whare (J_ is the lepton spin and J the nuclear angular momentum.

Then
A e 51-<£U’1°P+| <Gl e and
A; z <fld’f’ P-) i> <’1‘H]f> where we sum over

uncoupled initial states. Two rates are required;



e

A s LI H] P (46a)

3 1
3.’4A.+-4-

since P+ 4+ P~ =1, and

Anaa;-xz=-§-{%<f1%0{-ﬂa)<i”ﬂz‘>} (46b)

'_q

+ .
with P« - % 2 - ‘g* -”TL .
Calculation of ILD will be postponed until after the discussion
of A. From the previous work & A = AA* + BB* where (see Eg. 30

and 31)
AA® = Gi £ 2 cf; Re (£ 5+ q*) (47)

zZ 2 2 a 2 L 4A
ok - Je - 1 . x*
BBR* = GAg +(Gp ZGAGp) | ¥ g +2(Gp GA)gARe(v g t*)

(48)
A 2 2 2 2
m (v %
+2G GVI (vgxq)+gt+qu .

As in the previous work, the approximate model is being treated
exactly. The notation is the same as that used previously. f{, g, q

and t are the nuclear matrix elements defined in equation(Z‘)a-d)_

Nuclear Physics

There follows a discussion of the evaluation of the various
nuclear matrix elements using the complete shell model specification
of the nuclear states. In a later section the single particle model

predictions will be compared with those of the shell model.
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The antisymmetrical shell model wave functions for three
particles in the (1d, 2s) shells are required. The phase conventions

used are those of Ellicott and Flowers (17) and Jahn (21). The notation

is
subscript 123: - label the three extra core nucleons
TLS o -~ completely specify the thrce particle state
e - completely specify the two particle state

(dzzt;lo,o( ” dS;TL53> - the fractional percentage coefficient
(FPC) for expanding a three particle
state in terms of its two particle parents

}da; tle<>12 - antisymmetric state of two particles
(with magnetic quantura numbers sup-

pressed) .

The wave functions, with summation over all magnetic quanturn numbers
except Tz and Jz understood, are, in LS coupling:

183

a3 tLs3 g = {a waxllad TLs8) 1a% u e >12 \a

3
<p ty Tz) (\' 1, | L, (B Y.}
x t IT/\2 2 1L/ \}{ o

Sz) (Si Y
S < L

Jz)
J

(49a)
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1) (2s)
sy et el (e

(S, iq ’“1‘1) (u 2, L§> (ﬁ Pz %) (S; Loy 3;)
yos /Ny g dn )\, e s/ \s L | T

(49b)
(where (_)p P is a sum over permutations of the three particles to

antisymmetrize the state)

(19) (26)°
[dsz‘ TLSJO‘> :J,i{)gz’ ﬁDAx>12 \d >3 + (_)P .[P}
3

3

29

|3 Tie0838) = (B u =oanll s TLeos 8V |64 u=04o<>12 ls>3

( g | Tq (@ 3 s,) <si 0
oy dr /Ny A ds/ s g

e

T4
) (494d)
J/.




50

The (25)3 state is unique. However, the phase of the FPC is not
given in either of the previous works., The phase used here was

chosen by analogy to the FPC of the similar configuration for (1d)3.

Thus, since <I3Dl} d3 [3]225> s -J—l‘ and<31D “ d3 [3] 225> ™ +J§- .

2
we have taken <13"l} 53 [3] 225> z . j-lé- and<31.‘.§ )} 53 [3] ZZS> s +J}; .

In the matrix elements, the particles within the closed shells

. — . . . . \ 3 )
can be ignored. The interaction Hamiltonian is then }‘f} z Zm o"{t
for the three extra core nucleons only. A matrix element of this

operator between a state in 019 and a state in E‘lg is
<{¢19]H 1;’;’19> = % 3<0191a> <p l }5‘19> <al 3’?3‘ ;A.s> . (5C)

The basis states lu>. l P> and the expansion coefficienis are given
in Appendix VI. The following types of matrix elements of the single

particle operator J’f)?’ occur:

a) <d3‘H3!d3>l = (FPC)FPC)' lz<dzld2>l'z 3<d) H3ld>;
v <Pl d 1a% s eeey Katla?) Gl lad)
o) & Hs‘dzs§- J3i (FPC) 12<dzld2> 1'2 3<dl H, [s>;

)  <a¥e|d,]a%p= —;—{12<d"‘ld2>1'2 Joldylo ) +
2 13<dzfﬂ3lda>;3 Z<sls>:2
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'32' <aa dlfﬁsldli Sz>'

32

-]

e) <d32{ H)S { dzs /
f) <dszl H3l33>, =J% (FPC)' 12 <52’32> 1'2 3<d5M3} s>; .

In order to evaluate sums on magnetic quantum numbers in these matrix

My M -
elements, expand J'{;- e sJ'PK T where

‘M . .
L J‘\DLL operates only on space coordinates and is a

spherical tensor of order (L, M),

s ﬂ: operates only on spin coordinates and is a spherical

tensor of order (X,u).

Also introduce reduced matrix elements (see Appendix V) of these

operators, for example the reduced matrix element <f€ ” H,{ “li>

is defined by
My M

<£f mflLN:l“a "’i> =(£
i £

)@f EATS I

M
L
Following are the various types of matrix elements occurring

in the p capture. Primed quantities refer to final states. Certain

summations are implicit., (In all these a common term
m) ( o My m.>
i kK L i

t will later go out in a sum over nuclear states.)

N -Jo
(3 3% (-) ( °E

J J!

has been omitted.

In the previous order
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d3\ oLf)3 | d3> e <d"‘;mx“d3;'rm 3)@2;u5«/}d3

i
2

: 'r'L's*Z{> X

t+T+A+4 414541

(60 T 8L 5'L9% (-) %
s L J
(T; o I I A Y A S (5 5') {L L L')
T 1T\ v i)\ & /2 1 2 s' L' J'
K £ iy
e s <ol e lla>
(52a)
<d25}01'{)3;d3>= f% <d2; tle(‘}d}; LS J> X
Anrn A L T gt
(.1_52__ £81 893 (_)t+L+A+'~3 HALH
T, -1 |\ [rv 1 7 SRS'\& 5 s L J
2 o1l
T 1 T! ;), t % :5 .y %/ LIS L & x
£
A 0 s e lla
(52b)
3 2> 1/,
<d‘}931d s>~J—§< PR I AR Ly
(}_5_2_ - g,){; (‘)t+’I'+A+S’+1 .
Ty -1 T\ [T 1 T\ [S 3! s L J
? * ( bLz Seu )
T v T \} ¢ i)\ & 3 ST I ox
K £

<3 1. 130G sbelay

(52¢)
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In this case, there are two types of terms, s-s and d-d:

Lt AG t+T+4 +5+K+5'4L+J' 41
<d25(}{)3[ d25>s-5 ,.% (1_‘-:;:___1") (-)

(.IJ'K)
' s L) *

Aells)

(Tl T (r 1T (s X s')
ol s e o3l 2

RS AN

8ot

{aBsi M%) |« 2 (oot d & 38 Lint

(it T AL ES LA (T!

T
t 1 " (T 1 1T\ [fa K &'\ (s
SRR S AT Y AT I AV
Q‘ L J | i
St dan \ Gl 3
3 Lt Jt :
K L 3

g

Ca?l Wl 2 (2 wed saaan

(o) THAHLS 4L L+ (T{ -1

X

(524"

) XEL SL'Z SIZ X

T
: % i % K
P 3 s G N3 Gl Hel &
t % Vi S

(52e)
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and finally

<d82] J'e3ls3> z J'I—<az;toAP<[} 53;T033> x

w

Tg -1
T 1

~ ~ 3 1
(_3__ + 5§ §'L)§ (_)t+T+A+S +1 (

T x
T L

(T 1 T') (s K 5')&2&0&1 s 0 J
L%

:oe 3\ ' L'I | x
K £ i
Gl 13> sl Helay.
(52f)

The Rate A

Before we evaluate MZ averaged over initial nuclear states
3
and summed over final ones remove a factor = from each matrix

Jz
element. Thus

ERGPRAEL A=Y

iver,
=2 gle i) - 2ok
2 Jz
Take this factor 9/2 right out of MZ. The y capture Hamiltonian is
now in the form of the operator H3. For the Ferml matrix element

K s 0 and
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-Ji Jl'

LaL JeT
fs= (J J')2 (') J J!

Me
Ie ¥, . Averaged over Jz

and summed over Jj (with M£=0 fixed)

2 _ 2 &

£ 5 ZI £S (53)
Fr is to be evaluated from the above general matrix elements using

3y =1 ana <Ll Helldy o et 2 4 )

The Gamow-~Teller matrix element has X = 1,

A A 1 - - ' 1
g z (J J')z (-)J Jz_ Jz’ JZ ml 58 cm: ml G )
“ S O AC TN A e
I 3
2 A § 2
and g~ = J' z —_— G~£ . (54)
e £

For v-g, take ¥ in the z direction so that . = My 2 m, £ 0., Then
o) (o 0
j L
j o\

2
jorgf =i Zf (f E),?J GJ.I:} : (55)

1
Sogz (§597 () 2 (-J I
J J!

The momentum type matrix element with ¥ 81 can be written

(see Appendix V)



oAl J-J -J J' |m v Melm w0 Mg _
t, = Give ° (Jz J 1)(1 £ 1)< .:)—ECLJ'
m i 5 1l L
and the contraction
J-J -J J' |0 ~
s a3 z ( z oz ) L+L]f 2

Tr le involves the reduced matrix element <0£ Ie ol £i> ,
but aside from this difference has the same matrix elements as Gj L
1

The terms in )\ involving tare

2. &, £z 2

and

Rev-g t* = J'ne Z.H (--)L 5

LIL
{Z.c(’)f; I'.'(le}°

For the momentum type matrix element with K 2 0 we can write
ml) (0 My ml) (H 0
j,/ \o L /Moo

involves the reduced matrix element <ﬁf ML) L i>

n

33 z)
L Q[le'

ca ko I, ( 2
'
qp.. (JJ) (‘) J J!

Q Lj,

but otherwise has the same matrix elements as i«‘z . The three terme

required are
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Z 2
q ~LLy) % 5_«;1; Q.Cle J (58)

»*

A ol 0
: g% 3 J!
Refv-q J Rez ) Q,CI jl}gjl'{' (59)

o 0
F
4y £ {(1 L

and finally
Im Segxa* s §' Rel .. JZ RS 2« (60)
LLL'y, 1 1
(L £ 1)(0 olo
"
11y L Ll G, . @

B L)

Numerical Results

a)l/2 1/Z+ to 3/2 1/Z+ transition: The matrix elements required

here are F (and Q which differs only in the reduced matrix ele-

~rn
Uiy

ment), Gio (and T G,, (and T T,,, and Q,,,. These have been

011) ! 211) Tl

evaluated using the states in Appendix VI. Numerical results are pre-
sented in Appendix VII.
b) 1/2 1/Z+ to 3/2 3/2+ transition: Here we need the matrix

elements F‘Z (and QZIZ’ Q232). Gm {and Ton). Glz (and TZII)' GZZ'

T,,, and in. Results are presented in Appendix VII.

1l

c)l/2 1/2+ to 3/2 5/2+ transition: The matrix elements that

enter are F, (and QZIZ 632 (and T__.), 634 (and T

433)'

T333 and 0333. These results too are presented in Appendix VII.

» Qp35)0 Gy 233
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In addition to the individual matrix elements, Appendix VII
contains also the separate terms in the rate )\ summed over the three
bound state transitions. The coupling constants for the various hypo-
theses are in Appendix VII, table 2, and the rate ) calculated with

these is listed in Appendix VII, table 3.

Comparison with the Single Particle Model

It is interesting to know just how closely the single particle
model corresponds to the shell model for the AS19 nuclei. In the single
particle mode), the A =19 nuclei are considered as a single particle
coupled toan(L = 0,330, T 21, Tz -1) A 218 core. The J = 1/Z+

L
states are supposed to be a 2 872 single particle and the J = 3/2+. 5/2
/

;> 8ingle particle states. We will calculate the

£

W

states are 1 d3/2.

p capture matrix elements on this simple model. The matrix element
" u  C”

of a single particle operator er 2 L dgle s H}l‘# J,—?- between these

single particle states (again omitting a factor

™ (*‘ Me ml) .
jl K [ jl ) 18

I I K+L+4j
| i) = /Eé—f 9 11/2 E.CLf (,E K ;) (-) b«
(61)

-J J

T ( z =
' 2 .3
(J J ) (‘) 3 I

ol el Lylaralld, frr2).
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The matrix elements for p capture in this model are listed in Appendix
VII. A factor (3/ ﬁ)x 10"% has been taken out 28 in the previous work.

There are a number of major differences in the predictions of
these two models.

a) In thel/2 1/2+-3/2 1/2+ transition, the single particle model
does not (in fact, cannot, as it is constructed) reflect the isotopic spin
inhibition of the Fermi matrix element E‘o. which the full shell model
does quite explicitly, Neither does the single particle model repro-
duce the cancellations which in the shell model results in a much
reduced Gamow-Teller matrix element GlO’ so even if we were to
arbitrarily drop the Fermi term, the single particle model results
would in no way correspond to those of the shell model for this transition.

b) In the l/2 1/2*-3/2 3/2+ transitions, the matrix elements
G._and G correspond fairly well (except for a common sign)

2' 12 22

in the two models. Glo' the deminant matrix element in the shell

F

model, does not occur in the single particle model.
¢c) For thel/2 1/2+-3/2 5/2+ transitions, the predictions of
the two models differ almost by an order of magnitude. We have to

conclude a posteriori that the single particle model is not adequate and

the shell model {s required. Itis true, of course, that the amount of
work required in the shell model calculation could be greatly reduced

by keeping only the dominant states.
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The Rate 7\ D

In order to correct for the HFS effect and for transfer between

the HFS states, we need to know
Ag= A - 7\z=-§{%<ff)fﬁ-ﬂs><i)}? !£>}~ (46b)

In the previous notation (Eq. 26), this rate is
"‘3‘(3 Ap) = ';" tr (1 -00v)A+0T_-B)T-J(a*+ UL -Be)
=2ReA J-B% + { BxJ B* (62)

where nuclear matrix elements are implicit and pseudoscalar terms
have been dropped. The terms that enter 2 Re AJ*B*, in terms of the

nuclear matrix elements previously defined, are:

THIHE
2ReG, G, fJ-g*=2Re GyG,(-) J'1 x
3 (f i 1)
2 £ 31 v e €, or, (63a)
S N
-2Re Gy, G, fJ-v(v-g)*=2ReG, Gf-) TS0 %
<ooo)<ooo)(i j! 1)
VL) Ny i\ 3 1) F oG 63b
3! Ll c Gt (639)
' A
2Re GEf i (Sxqr = 2Re GE ()T M 3 55§y x

et
J I Jy 1 1 £ 1Lt

O)
F, Q% (6
L/ 2 .r’L‘J’,( 3¢)
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J+I'+14L' o

-2Re G, g, fJ'vt*=2Re G, g, (-) J! x
|34 (.t L 1)5
.
2 73 op) dRr BT (639)

R
-2Re G, G, ¥+qJ-g¥=2Re G, G, (-) I-Z-J'j; x

<j1 j! 1)<o 0(0)
33 3\t oLy 2 juk 3j.t Qevy, GF 4

(63e)
. JHIHI4!
2Re G, G, v:q J-¥(¥-g)*=2ReG, G, () M3y o=
<5| il (o 0 o) (o 010)(0 c}o>x
33 3\ ot/ b L vy, Uy
1 t A A
2Re G2 $-q 31 (bxq@* = 2Re G2 (17T 550 5 x
(o 0 o)(o o lo (j, ! 1) i, 3
1 Lig/\r i\ o3 o3/ L) ¥
Dje bjiL Qevr) Q*ery (63g)
A . J+I'4L' s [3 5,
2ReG, g, v'qJ v t*=2ReG, g, (-) J! Eof x

(o 0 o)(o 0 0)(_,‘ T 1)
1oL/ \onlg, J

Dok bjiu Qe THy (63h)
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IniB x J- B* the following terms are required:

‘+J+L . i '
16y gxJge=G2 (o7 P 5 /i. i, 1)(). j! 1) y
—_—J \J T JN1 o £

~

£
S&L Gz Gy (64a)
2 2 J+I'14L45
i G (¥xq) x J: (vxq)* = G, (-) 185, JLI'K dj& djis =

bra
J J J'\L L'

1 K LIy 1 ¢

(64b)
R A
ZRe{-i G, G,(gx.!)-%(c-g)t} =2Re Gy Gp 3J3'5.(-) x
(0 c’e‘(c o's)(j. i 1)(5. iR 1)x
1,(Ij.‘)lof’j:JJJ11-C
G e GHjp (64c)
JeIH145
~2Re G, G(gxJ) (vxq)* = 2Re Gy Ga (-) 3j 5 x

35 (o 0 O)(j, j! 1)(3, ;! 1)(1 1 1)x
z IS UL PN S B DAV I A F 1 A

EJII vcl Gd'& Q*-C'L'J,’ (6“)
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t AN
2Re {'i Ga galgxd) v t*} = 2Re Gg ga ()" MRS TR

( )/j It 1)(0 o\o)S;.’u X
I3 1 £/ Ll

Gjg  Trepj (64e)

0)
X
b

L] t
2 Re {GP G (% g \'fo)-(cvxq)t} = 2Re G, G, ()Y

YT

J 7 i

o oflolfo o oY/t 1 1 3
by Lt X
1§, K/ \1 LYK/ (1§ j
1 L' K
Gie ey (641)
and finally
N A J+J'4 L
-2 Re {Gv g, (vxg)x J v t*l = 2Re G, g, (-) X
A A ' 1
33, Je & S;‘:u(j' ) ) x
J J J
(o oo (o 0 o) 11 1
1LK1ij15}j,x
1 K L
Qeij, Thugi - (64g)

In all these, primed quantifes refer to the final state, and unprimed

to the initial state and summation over repeated indices is implicit.
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Numerical results for these terms are given in Appendix VII, Table 1.
The rate }\ D according to the various hypotheses appears in
Appendix VII, Table 3.

An examination of these results indicates that A D is dominated
by two terms. The firstis the Gamow-Teller term GIO leading to
capture to the 3/2 3/ Z+ state from the triplet HFS state. This term

is compensated by a large cross term between C.’rl and Q The

0 11y

rate >\ D is never larger than one half )\ , 80 the HFS and transfer

correction to the rate, using the estimates for é and AT in the
preliminary discussion, is going to be in the neighborhood of ten per-

cent.

Results and Discussion

The capture rate in units of the decay rate of the y is

[

2%

x 96 rr(l}:'-)2 (ze3 (2 . (65)

2
According to the numerical results of Ford and Flamand (5), q“ (0)
should be reduced from its nominal value by 8% due to the effect of
finite nuclear size. We alaso reduce the rate another 5% to account

for the momentum dependence of the coupling constants. Then

e
r

= 0.306x10"1(2)).
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For example, for 2 A = 100 this gives a capture rate to the bound
states of 019 of /:, =l. 35x 103 sec-l.

Ve are now faced with the difficult task of estimating the un-
certainty in our result. One source, the HF5S effect and the transfer
effect, can be corrected for. The dependence on the nuclear radius is

slight since the dominant matrix element is G The troublesome

10°
source of uncertainty is the shell model calculation itself. There ia
the ground state magnetic moment of Flg to check against experiment,
and as well there are three ;9 decay rates in the A =19 system

which we can compare to determine the effectiveness of the shell model
description of these states.

The magnetic moment predicted is 2.80 - 2.87 nuclear mag-
.63, This is an ervor
of 7% in a matrix element, or 14% in a rate. A serious feature of this
result is that the calculated value equals the experimental value for
no values of the nuclear force parameter VC.

The Neaw-}l"19 }g decay, a superallowed transition, agrees well
with its shell model value. The shell model result is slowly varying
and never diffe rs by more than 20% from its experimental value for
VC » 0 to 50 Mev., At VC * 30 Mev the error is -12%.

The Om-}&"19 (3/2) p decay rate predicted varies from log ft =

3.4 at Vc 20 tolog ft 2 4.7 at Vc = 50 Mev. The predicted rate agrees
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with experiment ai ‘VC =z 25 Mev and i3 15% high at VC z 30 Mev,

The 019-5‘19 (5/2) ﬁ decay rate predicted varies from
log ft = 4.2 to log ft = 8 as VC varies from 0 to 50 Mev. The shell
model predictién agrees with experiment at Vc = 30 Mev.

There are some encouraging feaiures about these results.

In the first place the predicted resulis are within 15% of the experi-
mental results for all rates at VC = 30 Mev. This gives us a feeling
that an error estimate of 15-20% in our results at V’c ® 30 Mev is
reasonable. The pcapture rate A , however, is remarkably inde-
pendent of VC. and since we expact the theoretical value to intersect
the experimental one for some value of VC, we could be even more
conservative in our error estimates. However, we will consider a
possible error of 20% in the rate as a liberal estimate.

A 20% uncertainty in our results completely obscures the dif-
ference between the assumptions of 2 CVC or not. However, the dif-
ference between the various hypotheses concerning the induced pseudo-~
scalar still remain. If we include a 19% experimental error, or a towal
uncertainty of 30%, then the predictions are

for g, * +8g, 2N s 65-140

-8g, 200-350
0 120-230
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Concerning the individual matrix elements involved, there are
some points worth closer examination. First, the Fermi matrix ele-
ment FO in the 1/2 1/ 2t . 3/2 1/2+ transition is greatly reduced over
its single particle value due to the isotopic spin change inhibition as
we expect. A surprising result which can be understood in retrospect
is the drastic cancellation in the Gamow-Teller matrix element Gm
in this transition. An examination of the dominant space symmetries
in the shell model description of the A = 19 states (17) reveals the ex-
planation for this reduction of G, . The dominant (90%) space sym-
metry of the T = 1/2 states of A = 19 is the symmetry [3] (i.e., a
space wave function totally symmetric under interchange of any two
particles), whereas the dominant (again close to 90%) space symmetry
of the T = 3/2 states is the space symmetry [21] (i.e., a space
wave function symmetric under interchange of particles one and two,
but antisymmetric under interchange of one and thres or two and three).
States of different space symmetry are of course orthogonal, so that
the matrix element (1) between such states vanishes. This gives us
a more detailed understanding of the mechanism of the isotopic spin
change inhibition of the matrix element Fo. But now we can undersatand
also the reduction of GIO' which is essentially the ma.rix element

< T Jo (\/r)> , or, to the extent that < J,(Vr)> is factorable,

it is just the matrix element < U'> which vanishes between states of

different space symmetry.



68

The T » 3/2, J = 3/2+, 5/ 2+ states also belong predominantly
to the space symmeiry type [Zl] . This gives us an explanation of
the reduction from the single particle value of the matrix element 010
in the 1/2+- 3/Z+ transition. The small value of other matrix elements
can also be explained by this inability fo span different space symmetry
types. Even for matrix elements with { = 2, < j,_(vﬂ> is roughly
independent of basis states and can in a crude sense be factored
leaving a vanishing matrix element (1 > (rhis same "unfavored”
character of the matrix elements between T 2 3/2and T =1/2 states
is responsible for the slowness of the allowed ﬁ decays from O]’I9 to
qu.)

This reduction in the p capture matrix elements due to their
unfavored nature is fortunately not sensitive to the assumptions con-
cerning the nuclear force strength parameter VC. so does not cause
a wide variation in the predicted capture rate for Vc = 30, 40 and 50
Mev. Itis true that the aymmetry of these states, and hence the can-
cellationa in the matrix elements, might be sensitive to the exchange
mixture used in the nuclear force. The only reassurance we have on
this score is the succesa of the Elliott~-Flowers wave functions (which
use a Rosenfeld mixture) in predicting the unfavored A decay rates.

There are two features of 7\D that deserve comment, although
there is no clear explanation for them. The first feature is the sensitive

dependence of 7\D on the nuclear force parameier VC. Fortunately,
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the rate )\ does not have such a wide variation. The second feature
is the fact iimat 7\ D does not demonstrate the dominance of the cap-
ture by the F » 0 state which one would expect for capture by a single
proton {and which is demonstrated by the total capture rate to all

final states (25) ). The reason for this muat be in a secondary effect
overwhelming the primary HFS effect. The mechanism that must be

responsible is an exclusion principle effect inhibiting creation of a

neutron in a bound state from . capture in the F 2 0 state.

Conclusion

If we can believe the shell model within twenty percent, and
the ,5 decay rates indicate that we can, then the capture rate to the
bound states of O19 provides a distinction between the hypotheses
concerning the induced pseudoscalar interaction.

It is clear of course that a work such as this which is so
dependent upon a model cannot provide a definitive test of the coupling
involved. Instead, the interest in this work must be from the point
of view of nuclear physics rather than particle physics, so that
eventually with a well establighed . capture interaction, these results
will provide a test of the shell model and in fact supplement the study

begun by Elliott and Flowers,
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He3 Introduction

An example of . capture which has gained increased interest
recently is . capture in He3 to the groundstate of H3(26). The wave
functions of the A = 3 groundstates are known with some certainty (27),
8o that the capture rate can be predicted with considerable confidence.
This problem has in fact been treated before (28). Our results are in
close agreement with the previous treatment. The purpose of this
discussion will be to complete the previous treatment by including
momentum type matrix elements and L * 2 matrix elements previously
omitted. It turns out that these terms, which we might expect to make
approximately ten percent contributions, in fact only amount to about
two percent of the rate. In addition to these slight improvements we
discuss the HFS effect (3) in u capture by He>, an even Z nucleus.

Experimentally this case poses a difficult problem, that of
determining the counting efficiency with which the inverse ﬁ) decay
electrons are detected. The maximum electron energy in the H3-He3
transition is only 53 kev. The long half life (12. 4 years) makes it
possible to detect the inverse ﬁ decay away from the ;, beam back-
ground, but also serves to reduce the counting rate.

On the theoretical side there are a number of uncertainties

in the predicted capture rate, none of which appear to preclude about
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five percent accuracy of our results however. These are the mean
square radius (and to a lesser extent the shape) of the charge distri~
bution of the A = 3 bound states, the wave func:ions of the A = 3 ground=-
states (which may have D state admixtures due to the tensor force as
in the case of the deuteron), meson exchange effects and the HFS effect.

Information on the charge radius of the A = 3 system is avalil-
able from the coulomb energy difference between H3 and He3 which is
0.76 Mev and can be completely ascribed to the coulomb energy. This
gives R = 1.6/ = 2.24 fermis for a uniform spherical distribution.
Werntz (28) gives an extensive discuesion on the effect of various
shapes and sizes of charge distribution. Here we will content ourselves
with using the above as a central value for the root mean equare radius
to determine the length parameter in harmonic oscillator wave func-
tione with which we will evaluate radial matrix elements,

The Hes, H3 groundstates are T =1/2, J = 1/2+ mirror states

22 24

for which the only compatible asgignments are 22S P1 /2 P

and 24D

172’ 1/2

12" Verde (27) summarizes arguments which conclude that

2 . s
a groundstate wavefunction which is 36% 2 (symmetric in space

5172

coordinates, totally antisymmetric in spin and isotopic spin coordin-

ates) plus 4% 2'4D can explain the groundstate magnetic moments

1/2
and (by the exclusion of the P states) the anomalously small deuteron

neutron and proton capture cross sections to these states. We will

use this assignment. A difference between our treatment and that of
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Werntz will be the fact that cross terms between these S and D com-
ponents do occur in the capture rate, so that the unknown phase of the
D state admixture introduces an uncertainty in the capture rate (which
amounts to only one percent however).

Meson exchange effects are presumed to explain three features
of the A * 3 system; the discrepancy of 0.27 which still remains in the

. . 24 . )
magnetic moments even witha 4% D admixture (which corrects

1/2
the sum of the magnetic moments of H3 and He3 but not the individual
moments), the neutron capture cross section (which would vanish for
a pure 2‘ZSI/?‘ (space symmetric) state, and cannot be explained by
an electric quadrupole matrix element to the MDU2 component of
the groundstate), and also the ft value for the superallowed H3 to He3
g decay (29) which deviates by 2% from that for neutron decay.
Primakoff (8) argues that meson exchange currents will make contri-
butions of the order of 1% to the capture rate, but this remains to be
convincingly demonstrated. We will ignore these effects here.

The HFS effect exists for .. capture by He3 due to 2 mechaniam
indirectly related to that discusaed by Primakoff (3). Consider a
simple model. Let I ( f f ) be a2 neutron (proton, p meson)
with spin up. Then for capture in the F = 0 state the configuration

which is antisymmetric for like particles is ( § ¢ t + ) and

for capture in the F = 1 configurationitis (§ £ $4). Forav-a



inieraction neglect . capture by a proton with parailel spin. Then,
if A is the spin-flip amplitude for ¢ capture by a proton with opposite

gpin, and B is the non-spin-flip amplitude we have symbolically

(T2 3é)=a(i?d)+ v
(¢t 34)=B(3 L)+ v .

and there results a hyperfine effect if BZ #Az .

For a pure V-A interaction the spin-flip and non-spin-flip
rates are equal, and there would be no HFS effect. For a renormal-
ized V-A interaction we expect no more than, say, twenty percent
difference between the F = 0 and ¥ = ] rates. In addition, for He3
there does not exist a mechanism to disturb the statistical population
of the HFS levels in 3 timme comparable to the lifetime of the . meson
against decay. The mecha
exchange in close collisions between neutral (;;- p ) atoms and protons.
This mechanism is not important here because the coulomb barrier
prevents (,&-He3) atoms making close collisions with He’ nuclei, the
overlap of the nuclear wave functions is small and the exchange ampli-

tude reduced.

Wave Functions and Matrix Elements

Here we can borrow the notation and techniques used in the

shell model discussion of E‘lg. From equation(49d)we have the wave
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iunction for a state :‘EZSUz [3] (i.e., a state symmetric in space,

antisymmetric in spin and isotopic spin),

22
512

133;TL=OSJ.X>= <szgtA;o<” 33;TS;.3>::
(x ty T;) (3 s, sl> (s} 0 JE) 3
it/ 2 ls/ls ol

] 8% t2 o<>12 15)3 (66)

|-

where T =S 2 J=z1/2
. 3 3
T, = +1/2 for He™, -1/2 for H
1
and the FPC are—fé— fortz0, 4 =1
and+\[~é‘ fortwl, A =0,
As it is written this wave function im
. . o 24
function but in fact such a restriction is not necessary. For the DI/Z
state, since it enters only with a weight of 4%, it suffices to take a
simple wave function which is separable, From equation(49¢) we have
for the (dsz) configuration, which is the simplest one for this assign-

ment,

24
D2

fdsz; 'I‘LSJD(> =J—31'—{]sz;tvo( 12]d)3 +(-)P P}

(;x ty {1 0 (6 o st)<s} L,|
Pt 2 0 1 4ls/\s L

T
T

L,

J;)
J

L

(67)
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where T s1/2, 5323/2, Ls2,J=1/2
and 8 3] forSs=3/2
t = g for |sa: to ""‘%z to be antisymmetric.
Now we want matrix elements of an operator M = Z:. Mi

Me  pHa-
where ,,H).. = L J'FI SJ&J_C__’ in our former notation. These are
2

<225 [4f] 225 D

1/2 1/2

(sz; t.4°<” 33; 'S’ 3'> <52: t A x)}sz'; TS ,$>
54 T (T 1 T') (’I‘; -1
K R Y AY I

353957 510 (s ') ¢! “H’K 1) G e sy -

T;

( )t+T+A +5+41
T')

[V £

K
4

[N

(68)

(21
J K L ]3]

which will go out in the sum over final states and average over initial

Here we've omitted a term (-)J'Jf (J 3')% (-J, Je
J J

states. Primed quantities refer to the final state, unprimed to the
initial state. Again, the reduced matrix element <s | Jf; ” s> does
not require a separable space wave function although we will use one
to evaluate it.

24
and the D”‘2

figurations (where now we do need to use separable space wave func-

For matrix elements between the 22

51/2 cons-

tions)
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,H 12231/?)' <82; Atax}}ss; T 0S; J>

A A A .é- ¥
(}_g_ 554 L') 3 (_)t+T+a+s +1

1;)(1’ 1T (s K 8\ /s O 7
T\ ¢t 3/\} a4 §/(S'" LT3

K £ j

Gzl ey (s lldella) (69)

\ 22 " 24
(and a2 similar expression for < Sl/ll l D1/2>)'
also we need

24 24 AAS an G t4T+4+8 '414.L

To1 T\ [T -1 |T\/s k s[> ¥ 7
(% ¢ %)(T 1 T)( 2 %) st
\K [ §/

yallHellizy Call el gy (70)

The matrix elements for s~-s transitions between the 24])1/2 configura~

tions vanish because this would be a t = 0 to t » 0 transition,

The Rate

L 19
From our results for . capture in F ° we have the capture

rate (Eq. 45) for a statistical population of the HFS levels

I’“’ e G° (Ze?')3 ps “ N (71)
2 T2
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where (see Eq. 46a et seq.)

2 ) = AA% 4+ BB%
. 2 2 Z ~
with AA* =z G f - 2G_, Re(f v-q¥)

and BB* = G’ g’+(62-2G,G,) 14-g+2(G, -G, )g, Re(¢-g t¥)

2 2 2 2

+2G,G Im(v-gxg*) +g t" +G, q

In the 1/2+ to 1/ 2% transition for i capture in He? to the groundstate of

H3 the nonvanishing matrix elements are (Eq.53-¢40) FO. G G

10" 12’

I TI’T

o11” QOIO' 1 and Qlll' we will evaluate the large matrix

211
elements (f and g) between states including a D state admixture

2 22 24
1-¢€ 51/2 + € Dl/?.

where éz = 0.04 and (€] = 0.20. We will just include the contri-
bution to the momentum type matrix elements (t and q) from the domin-
ant configuration 22’51/2, 8o that to this approximation we only keep

TOH and QOIO' Using equations 58, 69 and 70 we obtain

Fo z J—-lé— (1 - (-2) <s "e-is'iza ” s) + (:2<d ”e-is-z:o l d> (72a)

G, *° JIE Q- GZ) (s Ne.ia.r‘,c:o | s) + f_z_ {a l\e‘“'h | d> (72p)
3
GIZ =E§ € ‘1-62 <s“e-is'r.(=1 ” d> - f;—& 62<d”e.is'j:=z ” d>
(72c)
szflz (ol L=0 Laifs) (724)

and
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. - 1 - -
1011—J—§—<s [ L=z0 Lz1llsy. (72e)
The terms entering the rate (2)) are (Eq. 53 et seq.)
£ = ZF:‘ (73a)
2 . 2 3 .2
g = 203G, + ¢ G, (73b)
veq® -
Re(f v-q*) = f;‘ Re (F_ ng) (73¢)
2 .2 .2
g Ton (734)
2 2 .2
T3 Q0 (73e)
A 2
. . ] - - -
Rev-g t*® = 2 Re (GIO E GIZ) ey, (731)
I3
Sgl = 2(0, - [£ 6,)° (73g)
10 4% M2 g

We include the square of small terms (Eq. 73d,e) in spite of the in-

consiatency of doing so merely for the sake of completeness. Terms
of first order in the nucleon momentum (Eq. 73c¢,f) which were omitted
previously are also included. The term [v-g| 2 (Eq. 73g) was

treated incorrectly by Wernte (28) who averaged over neutrino direc=
tions assuming only L 2 0 matrix elements and lost the cross term

between GlO and Gl This term is linear in the D state amplitude

2.
whose sign is unknown and this constitutes an exira source of uncer-
tainty in the calculation of the rate.

In Appendix VIII we evaluate the reduced matrix elements

required using the simplest space wave functions with a length
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parameter b= 0,80, 1.0 and 1.2 fermis (compared to the usual cri-
terion b = 0.468 R = 1.05 derived from the coulomb energy). In
addition we present the rates (22 ) and (2X D) (see Eq. 62) calculated

with the varicus hypotheses on the coupling constants,

Conclusions

The capture rate (Eq. 45), including effects of finite nuclear
mass (3), and a 5% reduction due to coupling constant form factors (10)
is

L = 250 (21) sec”! (74)

With a central value of 2A = 5, we get a capture rate 1250 sec-l.

An examination of the terms entering the rate indicates that
momentum type matrix elements reduce the rate by about 2%. Inclu-
sion of the D state reduces the rate (due to the reduced Gamow-Teller
matrix element between S = 3/2 states) by about 6% from that calculated
with a pure 2251/2 configuration., The term linear in the D state amp-
litude amounts to about 1% of the total rate, and must constitute a
source of error. We can assign a 5% uncertainty to the results due
to the uncertainty in the nuclear radius, If the nuclear radius can be
determined more precisely, and if the experiment can be done with
one or two percent accuracy, it might then be interesting to do the
radiative corrections to the capture rate and to make a more careful

study of meson exchange effects.
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APPENDIX 1. Matrix Elements for Hole-Particle States

In che shell model, the groundstate of 016 is a double closed
shell and the odd parity states of O16 and 'N16 are considered to be
states of one hole in the closed shell plus one particle outside the
closed shell. Here we derive the required matrix elements for trans-
itions between these hole-particle states and between a hole-particle
state and the groundatate. We also present the matrix elements of
two particle operators between hole-particle states.

Denote a state of n fermions by

+
Y = 7;[_ a, $, (1.1)
where ;ﬂ, {s the vacuum state, and the creation-destruction operators
+
satigfy the anticommutation reiations (a, .a 2 dun . e
£y t ti latd (\ s ) S Th
14

product runs over the states A occupied by the n fermions. Denote
a closed shell by the state

v, = T a% 3, (1.2)

M€K

where ) runs over all the states within the closed shell, which are

numbered up to K. Then 2 state with one hole in a closed shell is

¥ = a_ ¥, where m< K (1. 2a)

and & state with one particle outside a closed shell is



Y - a:‘ Y. where m > ¥ . {1. 2b)

fa
Now introduce creation-destruction operators 3;3,1; and b_ for holes
& X3

+ + -~ g
by the correspondence a_ > b and a_ —b__ for m< ¥. States
I ¥ psed Wik

with one particle cutside a closzed shell and one hole within are

+ ., + -
% = Z 7 H o, I
a, bm . with n V¥ > {X, 2¢)

Let us evaluate matrix elements for various phyeical operators
in the second quantized representation. A single particle operator,

with creation-destruction operatere antisyrametrized, is

O =2 {t=|0m| B 112 tata, - a el (1. 3)

8 r
where r, s run over all statss, I{ we mmake the artificizl separation
into holes and particles, the operater becomes

@ = (91 + GZ+ (93 where
4 +
G, = 2;@(( r(x)l@(x)lw,(x)> 1/2 (ala_-a_al) (1. 3a)

O 2 = %0000 [ h ) 172 6] - 8lb )

=2 <‘~Pr(x} l@(x) lc?,(x)> x (a:b: thoa)

T oK
s<x

N

which are, respectively, particle~particle, hole-holz and particle.
hole or hole-particle transitions. ""e will want the matrix element of
such a single particle operator betwaen states of one particle and one

hole. The matrix element of @ 3 vanishes between such states. The
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remaining two result in matrix elements for particle-particle and
hole~hole transitions, so that, if a,c denote particle states and b,d

hole states, the matrix element is

<‘f ab IOIch> * B!::ci <C?a(x)|®(x) V‘Pﬁ(x)> (1.4)
* dac CEOICICICACHE

Had we not antisymmetrized the creation-destruction operators in o
there would have been diagonal matrix elements of the form
gac d bd er <(,?r(x)l(3 (x) I(,Q,(x)> which would have contributed
to the energy of the state %ab and which we could have removed by
lumping into the central ''single particle-closed shell' interaction.

We will employ this shortcut to eliminate similar diagonal
matrix elements of two particle operators, without doing all the extra
work of antisymmetrizing the operator. Then, using this shortcut,

the two particle operator is

J/P z 1/2 Z ){ a: a; ae

ijikd (ALY} (1.5)

|

where

H o = G0 Yo H ol G u,w2
s H) since H H

jiitk 12

[ ]

2" Here ijkd run

over all states, and we have yet to transfer to hole-particle notation.



A matrizx element taken between states of cue hole and one particle is

<l Y=l R CALNE N S SN T Se Y,

(4

where {m, r) are particle statea, {n, s) hole states, and {jk { refer
to both. There are sixtesn possible combinations, 1jk L greater or
less than %, of which the only ones with non-vanishing matrix ele-

ments are

+ +
a2y bjakbt , & bjb al, j"‘kbl . ‘b &, bkaﬁ.’ and b, b nkb

All told, the matrix element of these operators is

<Ekmn‘é’ﬂ‘£rs>= %J’?ms; rn‘c}’ems;nr * an/\mr +Smr/\ns ‘

The single particle {single hole} parts of the matrizx element

S ns N iar (Spp/\ ge) cOuld bave been eliminated by using ordered
operators in H or can now be lumped into the central potential. Io
any case, we will drop these terms fromn the two particle matrix

glement and retain

<9{ mﬂu'“(:kr8> =+o\'{)ms;m°}eme;nr (L. 6)

which is just an exchange minus a direct matrix element.

Une other type of matrix element arises, that of a one particle
cperator batween the closed shell and a one hole,' one particle state.
IMow ounly the © 3 part of G has 2 non-vanishing matrix element,

and the groundstate transition matrix element is
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IO oy * (LD Gty b a st ot | L)
2 Y 0|0 Uatx)) (1.7)

There remains only the problem of coupling hole and particle
states -eigenstates of Jpz. J Z. JPZ' JHZ (a8 well as of isotopic
spin) - to form eigenstates of the total angular momentum 3t and J,
where J = Jp - JH. This problem can be treated by using the time
reversed state (19), for which J-> -J, for the hole state. The time
reversed, or now the hole state, is

alom) poo = (I, em) (1.8)

t+t
5

The isotopic spin of the hole state also introduces a factor (-) .
Finally, let us write down the complete matrix elements,
between hole-particle states which are eigenstates of J, Jz, T and Tz.
We use jj coupling and consistently denote particle states by the sub-
scripts (m, r) and hole states by the subscripts (n,s). Suhscripts

f and { refer to final and initial states.

a) For one particle operators
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(i =M}y =m )4 E0-ta)#(t, - t)

CE el e .
o i s ey ol
L3 a 0060 |t - 509|000 [t

(1.9)

b) For two particle operators

(jn -m..)+(j, ‘ms)*(t" "t‘.)“’(ts "t‘x)

Y RE_De (9 .
e U i) [

{ +U_m &, 0@ b

('mn £ T

Jn o m

T!;) (‘t}, t!.’ T;.)
Tf ts tr Ti x

vy /0 #
W) G

be ) ll -\ I3 l‘\\ 1
a);'h"lz CACEYAO DS

(1.10)
and

c) For matrix elements in groundstate transitions

(jn - MA)+(tn - tl.\)

Yl BIED = () x
M;) (-t},t,“

J,F tn t'n

Ty

v w6l

(1.11)

(-m,, m.,

In Jm
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APPENDIX II. Evaluation of the Talmi Integrals.

The reduced matrix elements of the two body interactions are
readily evaluated in the model where we use harmonic oscillator wave

functions and a Yukawa shaped potential. In harmonic oscillator units

-1/2

(where the unit of length is b 2 (2Mw) =1) with T =1, the nor-

malized radial functions Ry are

> -X 2/2
(x"-3/2) e

-X Z/Z
R, = (8/37F V2% () e (a1.1)

1
-x /2

R, ® (8/3/% )U‘2

R, = (% 8/3%)"% (x9)

and the Yukawa potential for the two body interaction is

“h Tl T, % %,
V) s e fer, 2L vben v B YL G,

with rlZ = X .y. (11. 2)

The reduced matrix elements of the two body interaction defined

by

LG, (m, 1) Bg(omyi2) [Wr ) D (msny B (m 2> e

me 4
t K
C

Ma

Ia

My q

K
lB

T;D )@\“) Uyl vl 4 (2)

(11.3)
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are
(@ el v | dde £ [,
A B K” c D > 4'n’df:_f
(o 0 o)(o 0 o)
x
lc K La !g K lp
2k [ (11.4)
where

A

2rk1s [xPaxy2ay R () R () v (in) Rg ) (%)

s [ @@y R, (0 R (0 RG0) Ry() VIm) P -

(11.5)

The change of variables

)
+
~
Iy

®l

-2
'
~
1

T s

with the substitutions

]
2
o)
[
»

d3x d3y

x 3SR + +Art with t=coséﬁ.?
R

(oY)
[

»
»
>
"
]
[
-
o

allows us to write (30)

Iz [RZ R rldr at (RA(x) Rc(x)} {RD(y) RB(y)} v(r) P, (x7)
(11.5")
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The use of harmonic oscillator radial functions makes it possible to

do the integrals over R and t direcily leaving integrale over r of

the type
00 2 2
(r"/2 + ur) 1/2 .
/ e dr e Len o 1, where
o
v ‘KZilZ 2n+l
the integrals 1 = / dx e (x~u) must be

I

done numerically., The required integrals for the two values of the

nuclear radiusg used are

_1_[\_ bs 1.56f Meba,=z1.10 b=21,86f muab= 1.30
I, 0.17274 0.11388
I, 0.17809 0.10583
I, 0.42989 0.23361
13 1. 6889 0.85055

and the reduced matrix elements required are
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b=z1.56 fermis b=1. Bt fermis

(e =08, =1 K=0ft, =02, =1 +0.1011 +0.06256
(llz?.lzz1”Kn0”11==212==1> +0.09751 +0. 06597
(1, =20, =1|k=2t =20,=1) +0.3301 +0. 2505
(e =0, =1|K=2 =22,=1) -0. 2899 -0. 2158
(ey=0a,=1|K=1t =12,=0) +0.3741 +0. 3307
(e =0t =1fk=1ft, =12,=2) +0.2124 +0. 1545
<¢la01231||x=1|p1auazz> -0.1003 -0.07014
(=20, =1|K=3) =12,=2) +0.3151 +0. 2450
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APPENDIX III. Reduced Matrix Elements for .. Capture in 016

There are two types of radial matrix elements arising in the

| capture calculation in 016,

o 2
a) I, "'f R, (x) ip (vr) Rl(r) r  dr
o
and
o0
b) §Llo s - / 3 (vr) R* (r) (_(_i__ + _2_) Rl(r) rzdr
bPM o dr r
1 ad 2
§LE‘L * - / jl(vr)Rl’_" (r)(_c_l_ _l) Rl(r)r dr.
o dr r
Here b 21.56 fermis and 1. 86 fermis

"

M 2 nucleon mass. bM = 7,24 and 8. 64
v ¢ neuirino momentum in units of b

0.700 for b = 1,56 fermis

0.835 for b =z 1,86 fermis

These integrals are ecasily evaluated using a series expansion for the
spherical Bessel functions. Even with the large values of v, adequate
results can be got with two or three terms in such an expansion.

Following is a table of these integrals.
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b =1.56 fermis b 21,86 fermis
1, . 181 . 194
1, . 310 . 347
I, . 0159 . 0254
F 00 116 . 0888
§o;o . 0306 L0278
2.0 . 00224 . 00202
§222 . 0210 . 0260
5242 .000872 . 00149
$,,, . 163 . 120
$ .0184 .0208

022
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APPENDIX III.

The reduced matirix elements required, <!m H}’r_c “ln> and

<Im“ L L “ln> are (all these are times a factor -i)

b 1,56 fermis b = 1.86 fermis

<ol . 544 .582

Ca|i]i) -.588 .. 658

Cals] -. 0565 -. 0900
Colla,ell) - 116 -. 0888
Coliy2lhy .. 0582 -. 0659
SN +.103 +.0758
elvsel +.0232 | +.0280
<zﬁz.zi 1 +.0243 +.0310
<2”3,2’ D +.0126 +.0145
CERI: +.00356 +.00610




APPENDIX 1V

TABLE 1 Structure of the Azl6 States on ‘the Shell Model.

The resulis presented are for x = 2, b = 1.56 fermis and
Vc ® 30, 40, 50 Mev., For comparison, the results of Elliott and
Tlowers (EF) as well as the (jj) limit are presented. The experi-
mental (Ex) and calculated (E;) energies are given fitted at

V_ =40 Mev with R w z13.5 Mev.
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The matrix elements for
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p capture in 016

below, for nuclear parameters b = 1.56 fermis, x = 2 and V¢

are presented

30,

40, 50 Mev. For comparison results obtained using the wave func-

tions of Elliott and Flowers (EF) are presented, as well as those

obtained in the (jj) limit.

Table 2.
Vc=30 40 50 EF jj
ot.o” G1 -. 192 -. 182 - 172 -. 286 - 256
T10 +. 130 +.125 +.120 +.196 +. 164
o1 F. -.0388  -.0302 -.0474  +.080  +.148
G, 4. 117 +.115 +. 105 +. 190 +.209
Q,, +.00392 +.00116  +.00705 -.0319 .. 0544
Q,, -.00740 -.00720 -.00674 -.00916 -.0122
ot.3” F, “ 011 - 00971 -.00865 -.011! -. 0147
G3 -. 00938 -.00737 -.00587 -.0172  -.0170
Q, $.00296 +.030259 +.00232 +.00294 +.00390
Qg +.30046 +.00040 +.00036 +.00046 +.00061
ot.2" Gl +.302 +.257 +. 197 +.324 +.430
G, +.00012 -.00100 -.00203 +.00629 +.00450
Q5 -. 00950 -.0:08 -.0121 -.00557 -.00531
I -. 00316 -.00398 -.00393 -.0012  +4.0029
v® +.383 +.325 +. 24¢ +.411 +.546
R .789 .790 800 +.788 +.788
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APPENDIX 4.

1
Table 3. The individual terms in the rate for . capturein O .

Vv =30 40 50 EF
¢t . 00537 . 00340 . 00727 . 9290
. .53 529 531 643
\s-g\z .218 .27 220 . 254
2 L0169 05k L0145 L0385
g° 00067 .00074  .00101 . 00565
vefvegq” -. 00109 -. 50047 -. 00144 ~ 50278
Lin veaxg® - Uik - G038 - 0136 - 0241
Re v-g t* -. 0280 ~. 0265 -. 0245 -. 0571

Table 4, The rate ZM"; on the various hypotheses.

VCH3Q 40 54
iTase ! 941 . 936 .936
2 (.60 1.53 1.60
3 I.2i joa)l 1.21
4 CTE . 7HE L757
5 i 47 1,46 1. 46

6 1.03 1.02 1.03

2,

i

.28
i2

63

RS

e

.74
. 40

3

. 0672
.651
o241
0270
. 00917
.DU973
. (1384
. 0392

3

‘.38

™o
ot -3 Y
#© O W

.

.94
.45

s
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19

ATPPENDIX V. Beduced Matrix Flements for u Capture in ¥

“

.

7e refer to the general formulse for matrix slements in the

wz

A = 13 system. The reduced matrix slements for the spin variables

are
a) X =0 s o= lufellw =0 |l viz) =1
by K = 1 M=o Qfzlm=alaze) = S

To calculate the reduced matrix elements in the space variables we

use the hormonie oscillator wave functions

2
-3
I3 - £
g, = tesm M P oarze B
2 (Vv-1)
. & 1/2 2 72 1
Yy = {2/5 TE ) ®x° e Yz
and also the expansion
: ya z m m,”
e Y S 4m 3 tv) ’&”I"‘{;:} YL‘ (%), (V- 2)

Here we vunderstand summation over repcated indices, and we have

w=rfb v = b
b= 1.7 fermis 5 = 100 Xav v o= 1, 85¢,

Then, for example,

<dle-is.r\ d>~ </,c W;}”X><d\‘\goi%-1)

2 L] d> -3
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defines reduced matrix elements of e = with oC = 0, 2 and 4.
There are five such reduced matrix elements required, which we

evaluate for 3 in the 2 direction. They are

a) <ale™ T £=0]a> =o0.642
b) <d e L=2]la> =o0.347
o) ale™®T raa]a> =o0.034

Q) o lle?™F Lo0ls> =o0.652
e) <a “e-ia-r L =2 nd>

it

-. 580 ,

We also need reduced matrix elements of momentum type

matrix elements
Celot® ™ iy

and to apply the general expressione derived for these matrix elements

we need to write this as a reduced matrix element depending on (lfmf)
m; Mg

L L

m¢
Ay

and (limi) through < ) . In order to apply the gradient

formula write

Ilfmf> = fn{ y::‘ then

-is- L /2
e “’szmf> = i (arn)Y ju (vx) f%x

AAI/’Z
(‘Fﬂ-) ooo(omfw o
4T R Loa k)L o2, ik Y«

(v-4)
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where we sum over L, K, «ww and take 5 in the 2z direction. The

~ matrix element then is

-ig- ) i L 172
<£le 1T P /M’1> = T (-i) (4mi) (
(0 0 IO) (O me uJ)
x
L 1fIK/ L 1f K

[dz’x {ju. (vx) ‘-‘Pi; YKW}‘ v/- { \/;:i ¥ ﬁi} (v-5)

and using the gradient formula (19) this becomes

1 L A 1f2 Ifﬁ ”Z(O 0
= WT (41) (4T"ﬂ_) L f

4T K £

O(Omf
K/ \L &#

£

2R +3, f 2 4. -1 f
i i .
(V-5
Here we have introduced the notation
(+) P2 . 1.
§ = x dx N (vx) } (d i £, and
!fu' ‘i o[ < dx = x '

(e o]
§,([-)(Ll = f xz.dxju_ (vx) -.frﬂ;[f.i_. . £i+l)£l.

f i o dx x !

To fit the pattern of our general formulae we need

K £, 1
i

| 41 (/2 (#) £ W2
i i (-)
(3,00 [ - ) Eoon - Srae( TR0,




2 2. +1 +1
(O my wJ (m. /-(u)) - R /?{’ (<) et (!‘ L IfJ <
iL 1fb< L, 1K £ L K j
(v-6)
(mi My 1'1"1f M O{‘M?
‘i L lf 1 L/,

Then we can define reduced momentum type matrix elements by

: m, M 0
<fie~1s-r P/‘/M{i> = (1: ££ :f) (; L

e il
(v-7)

There are ten such elements, not all of which are significantly large.

The integrals required are

: z?z =72 ¢ 212 =+ 374
oto" -. 307
a?z""(’“ $ o1p =012
232 = -+ 074 3,3, = 4012
2;2 = -. 0031

and the reduced matrix elements are



Caf
Cz
{z|
{2
<3
(2|
(2|

s
NN

o
Gl

L =0
=1
L =2
L =2
L=3
L =4
L =4
L =0
L =2
L =2

Lar o)

Lot ]2
L=1]z2)
L=s]e)
L=3fz)
L=3]2)
L=s |27
L=1fo)
L=1]2)
L=3l2>

in2

= -, 0620

. 143

.0074

. 0160

.0144

. 00025

.G0153

L0665

. 0G37

. 00E9
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SPRENDIX VI. Siructure of the Required States for A = 19

In the following table we give the structure of the states in F
19 . .
and O ~ which enter our work., The states are given for three values
of the central two particle (Yukawa with a Rosenfeld exchange mixture)
interaction (30, 40 and 50 Mev), and refer to a standard convention
(17) for relative phases. The notation requires a bit of explanation.

For example,

a) a3 [3](10)2D means 3(d) particles in a state totally sym-
metric in space, belonging to the representation (10) of the subgroup
(R 5) of the permutation group, with total spin 1/2 and orbital angular
momentum 2.
2 2 . .
b) d's 13 S means a parent state of two (d) particles in a
singlet i sotopic spin state, triplet spin state, with zero orbital angular

momentum plus an (8) particle L35 coupled to this parent state to give

the relevant final state.

The cls.2 and 53 states have a similar designation.
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APPENDIX VII. Numerical Results for E‘Ig.

In the following table are presented the matrix elements for
| capture by Flg. These are evaluated with the shell model wave
functions of Elliott and Flowers (17) given in Appendix VI, as a func-
tion of the two nucleon interaction V. Also, for comparison, matrix
elements evaluated on the single particle (SP) model are presented.

-2
Recall that a factor (3/J2) x10 " has been removed from all

these,
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TABLE 1

Term V=30 V=240 V=50 SP
12172532121

P, =133 -. 145 - idi 177

G,, --444 -.802  -1.086 $17.7

G,, + 198 +. 146 +.125

Qg *+-0599  +.0654  +.063¢  + 1.8l

Ty, +-00512  4.0378  +.0648 - .81

T, , +-00447  +.00338  +.00284

T, -178 - 198 .. 243

Qlll -. 716 - 741 -, 708
1/21/2%3/23/2%

F, 4609 +.601 +.602 - 3.20

G,y -2 687 -2.661 -2.577

G,, +1.505  +1.532  +1.57¢ - 5.05

G,, +.805 +. 877 +.940 - 3.9

QZIZ +.00536 +, 00516 +. 005214 + .0199

Q,,, -0i14  -.010] -.00941  + .0376

Ty, + 261 +. 260 +.253

Tle +.0329 +.0327 +.0331 +  .031¢

T, +618 +. 639 +. 660

Q,, =950 -.997 -1.038
1/21/2%.3/25/2"

F,o 4190 +.253 +. 289 + 317

G,, - 113 .. 256 .. 366 - 2.60

G, - 649 -.820 -.932 - 412

G34 N N -

Q, , +.00353  +.00379  +.00404 - .0199

Q,,, --00427  -.00492  -.00549 - .0374

T #0115 +.01295  +.01357

233
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Table I (continued)

Term V=390 V=40 V=50

+ .
1/21'2-3/25/2 (continued)

Taaz - iy
T35 .G0i29 -. 000972 -, 000757
Q2333 -. 3079027 +.000113  +.000208
Total £ 1. 735 1.870 1.992
g&  99.61 103. 6 104. 8
[C“g]z 54. 66 56. 05 55.98
¢ 793 .901 i.2290
q° 4. 643 5.077 5.317
Re f v' g¥ +. 0449 . 0468 .0474
Im ¥ gxg# 12.56 13.84 4,21
Re veg t& -5.97 -6. 14 -6.38
i(gxJ): g* 33.03 28.50 2:.81
i(¥xq)xJT - (vxq)* .330 .35 .45
~i{gxJ). v (v- g)* -7.65 -5.60 -2.95
-(gxJ)- (vxq)* 13.32 13.43 13. 64
-i(gxJ) v 1* .552 756 .04
(v- g vxJ)- (vxq)* -4.31 -4, 17 -4.05
~(Vxq) xJ- v ¥ -.76 -.86 -.98
£J g™ 3.48 3.97 4.46
£ J ¥ vegH -3.76 -3.92 -4.04
+i £ J-(vxq)* -.93 -.98 -. 100
-f JoV 1* +.58 +. 60 +. 62
~veq Jog* -.118 -. 9079 -. 066
veqJev (vog)e +.068 +.056 +, 046
-i v-q Jr(vxq)* +.04i +.046 +.043

Vogq Jev e - 017 -.019 -.02i
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TABLE 2

The coupling constants in the u capture Hamiltonian are listed. Cases
1, 2, 3 assume g =+ § By -8 g,,» 0 and a conserved vector current.
- Py
Cases 4, 5, 6 assume gp = + 8 Epr " 8 8,0 0 and no conserved vector
4 £y

current.,

1 2 3 4 5 6
Gv 1. 053 1.053 1.053 1.053 1.053 1.053
GA -i.480 -1.489 -1.487 -1.283 -1.283 -1.283

-~ 7065 + .340 - . 183 - .510 + .586 + .012
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T&ABLE 3

The rates A and XD for the various hypotheses | to 6 calculated

with the matrix elements of Table 1 are given below:

VC=30 V=40 V=50
2A Case | 111.6 115. 2 118.2
2 275.6 285.5 286.9
3 178, 6 184.0 187.2
4 91.4 24.1 96.5
5 266, 1 278.8 276. 1
6 158.2 162. 6 165.3
ZAD Case | -46. 14 -27.92 -10.64
é -62. 24 26,71 +32. 64
3 -45. 21 ~18.G8 +18.77
4 -27.98 - 6,74 +15.33
5 -30.58 + .58 +42.48
6 -2€. i1 - 3.20 +28. 30
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APPENDIX VIII.

: : . 3
The reduced matrix elements required in . capiure by He",

evaluated with the harmonic oscillator wave functions

- 22[2
LVS = 4 e / YOO
JT
- - %2
Yp = _g 8 2. / v/
3/x “

where ¥=r/b b=0.8, |.0and |.2 fermis

)

are, for 8 = 100 Mev,

Table 1

b=0. 8 1.0 i.2
(slle® T £=0 |6 . 960 .938 L9290
Lafle™ T £=0 [lap . 908 . 850 . 804
Csfle™ 57 L=2 |lap -. 102 -. 154 - 217
Lalle™ ' x=2 gy . 097 140 . 201
(ol L=0 L=1 s -. 043 -. 042 - 041

The matrix elements entering the rate, for a I state amplitude

&= _'0_-_0. 20 are

Table 2 b=0. 8 1.0 1.2
2 F, .958 . 934 .915
2 G, .934 .91 . 894
2 Qg -. 043 -. 042 -. 041
2 T, -.043 -. 042 -. 041
G, (e = +.20) -.012 -.0.8 -. 025
+.009 +.014 +.020

ze(éz -. 20)
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Here we present the individual terms entering the rates (2 A) and
(ZKD). For the terms in (2A) we also present the results for € =0,

b= 1.0 fermis. In calculating (ZJ\D) we have taken & to be positive,

Table 3
b=0.8 1.0 1.2 € =0 b=1.0
(22) 5
f .912 .872 . 837 . 880
gt 2,616 2.490 2.397 2. €39
. 0006 . 0006 . 0006 . 0006
qz . 0006 . 0006 . 0006 . 0006
Re f v-g* .024 .023 .022 .023
Ne veg th .023 .022 .02! . 022
|{~g\2 € =+.120 .892 . 859 . 839 . 880
€zw.20 . 857 . 807 L767
(2Ag)
i(gxJ) g* -2.616 -2.490 -2. 397 -2.639
-i(gxJ)-v{v-g)* +.872 +.830 +.799 +. 880
~i(gxJ) v t% .023 .022 L021 023
£Jg* -1.342 -1.276 -i.227 -1.320
-f Jov(ve g)* .775 . 737 .708 L762
£V t® -.021 -.020 -.019 -.020
-veq Jrg* +.034 +.033 +.032 +.034
veqJev (Seg)* -.012 -.011 -.0l1 -.011

veg Jo v te -. 0003 -.0003 -. 0003 -. 0003
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The rates (2A) and (22 D) calculated with the coupling constants

nf Appendix VII are presented in table 4.

We take € = +,20.

Fable 4
b=0. 8 1,0 o d 1.0, €=0

2 A Case | 5.23 4.90 4,45 5.26
2 7. 60 7.24 6.8 7.60
3 6. 17 5.86 5.¢3 €.19
4 4,27 4,05 3.33 4.29
5 6.78 6. 49 L.26 f..88
6 5.21 4.95 4.76 5.21

ZJXD Case 1| 2.23 2.12 2. 24 2.53
2 4.92 4. 62 4.53 5.29
3 3.56 . 49 3.27 4. 05
4 . 800 768 739 . 997
5 2.65% 2,54 2.44 2.9%
6 1.68 [.60 i.54 .93
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