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ABSTRACT

Theoretical methods for obtaining the complete stress
analysis of a pressurized, stiffened circular cylinder of special
geometry are presented. In certain limiting cases, the exact
solutions are tractable, but in general the solutions lead to ap-
proximate results, There are practical cases for which none
of the solutions is applicable., Accompanying the theoretical ana-
lysis is a short experimental program consisting of the strain
gage instrumentation and testing of a Lucite and cellulose ace-
tate model of typical aircraft structural geometry. The results

compare favorably with the theoretical analysis,
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I. INTRODUCTION AND SUMMARY

The proi)lem of estimating the weight penalty resulting from
the internal pressurization of a conventional type all metal fuselage
is frequently encountered by the structural engineer during the
stress analysis of modern high altitude aircraft, This structure
which consists primarily of frames, longerons, and external skin
is basically designed to resist, in an efficient manner, the shears
and bending moments resulting from air loads and inertial loads,
Upon internal pressurization, however, this type of structure be-
comes an inefficient pressure vessel due primarily to longeron and
frame bending, It is, then, the intention of the author to present
in this thesis methods for evaluating some of the harmful effects of
fuselage pressurization upon the load carrying capacity of that
structure.

The principal structural implications of fuselage pressuri-
zation can be classified in the following manner. The primary
structural effect of pressurization is the inducement of longitudinal
and circumferential stresses in the skin panels bounded by adjacent
longerons and frames. Since the longerons are adjacent to the
outer skin panels and are supported internally by the frames, a
portion of the pressure loading is carried by these members into

the frames. The second important effect is, therefore, the stresses

induced in the longerons by the outer skin panels. Because the
frames can be non-circular and with variable cross-sectional
structural properties, shears are transmitted to these members

resulting in frame warpage and outward deflections. The third
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impoftant effect is, therefore, the stresses induced in the frames.
Another important effect is the influence of cut outs, floors, and
splices, i, e, any of the smaller component effects, upon the stresses
induced in the primary load carrying components (frames, longerons
and outer skin). The final effect concerns the stresses induced by
a closing bulkhead, or the nose or tail section of the airplane, All
of these principal effects when combined with the stresses induced
by air loads result in the overall fuselage stress system.

Since, in. general, the pressure loading on a panel is held
in equilibrium by a non-linear interaction of the deflections and
the stresses, the combined structural effects of fuselage pressuri-
zation and the inertial and air loads are not a simple superposition
of the individual effects. It is unfortunate that no theory is avail-
able to the stress analyst to express this interaction in a satisfac-
tory manner. Some portions of the structure may be stabilized by
internal pressurization while others may be destabilized. At best,
the stress analyst is only in a position at present to check his de-
sign for some over-pressure condition and speculate that the stress
state due to the combined influence of pressurization, and air and
inertial loads will not exceed the computed results, Or, he may
choose to go ahead and superpose these individual effects and
speculate that the result has not strayed too far from the true
stress system,

The intention of the present analysis is to improve the
methods by which the stress state due only to pressurization is

obtained. When the frames are non-circular and/or the frame
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cross-sectional structural propelrties vary considerably around the
circumference, the bending 6f the frame is usually a critical con-
dition. A non-circular fuselage cross-section is therefore an in-
efficient type of pressure vessel. Methods for evaluating this
effect have been discussed in detail in reference 6. When the cross-
section_of the fuselage is circular and is, for most of its length,
cylindrical, the critical component is usually the longeron due to
excessive bending. The evaluation of the bending stresses induced
in a longeron due to internal pressurization of circular fuselages
is therefore important. A knowledge of the magnitude of load which
is transmitted from longeron to frame when the skin is attached to
the frames or when the frame is floating (skin attached only to the
longerons) is important when the fatigue life of this attachment is
to be investigated., New methods for obtaining answers to these
questions are discussed in this paper.

The mathematical model which is highly idealized, scarcely
resembles a fuselage in all of its detail. The complexity of ex-
tracting the solution in a more general sense forbids at present
a model which is more complicated. This model is, before load-
ing, a closed-ended circular cylinder of infinite length with uniform,
evenly spaced frames and longerons, and constant skin thickness,
Such a cylinder is illustrated in Fig. 1. The pressure difference,
P between the inside and the outside is constant. The longerons
may be either continuous or pinned to the frames and the skin may
be either attached to both frames and longerons or attached only to

the longerons.,
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-Physically, then, the following situation exists. The panel
bounded by two adjacent longerons and frames if the skin is attached
to the frames is, before loading, an initially curved rectangular
plate in which the skin thickness is small compared to the panel
width or length., The uniform pressure acting n‘ormally outward
from the surface of the panel is held in equilibrium by the mem-
brane stresses, curvatures, and the bending moments induced in
the panel by the loading. The membrane stresses and lateral shears
induced in the panel together with the deflection of the panél trans-
mit a component of radial loading to the longeron, resulting in
longeron bending. Similarly, load is transmitted to a frame by
the outer skin; and since the longerons are attached to the frames,
the longeron loading is ultimately taken out by the frames, These
frame loadings cause the frames to deflect radially outward. One
of the basic difficulties of solving this problem arises from the
fact that all of these deflections, the deflection of the outer skin
panel, the longerons and the frames must be compatible at the at-
tachments, A seconddifficulty arises from the non-linear behavior
with respect to pressure of the outer skin panel.

From the mathematical formulation of the idealized model,
it is evident that the exact solution cannot be obtained in practice.
However, due to the physical dimensions often encountered in typi-
cal fuselage designs, some important and useful solutions based
on limiting conditions can be extracted. Such solutions will hence-
forth be designated 'limiting solutions!'. Flugge(z) has suggested

two of these limiting solutions in his discussion of pressurized
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cabins., The first of these will be reviewed together with. a discussion
of the second and the derivation and application of several new limit-
ing solutions wi.ll be presented.

Each of these limiting solutions must necessarily be restricted
to a specific type of problem., In some cases, two limiting solutions
overlap and comparisons can be made in order to gain confidence in
the solutions. As must be expected, there are structural geometries
for which no limiting solutions are applicable. A table illustrating
the structural geometries for which there exist good solutions and
the regions where the solutions fail is- shown in Fig. 35.

Finally, an experimental program was carried out using a Lu-~
cite and cellulose acetate cylinder of geometry typical, though neces-
sarily simplified, of a conventional all metal fuselage structure
where in one phase of the test the frames were floating and in the
other, the skin was attached to both frames and longerons., The ex~
perimental results are compared to the theoretical in Figs. 32 to
"34, The complete program is discussed under the section entitled

"Experimental Investigation'',
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1. NOTATION

Internal Pressure Difference

Longeron Radial Loading

Panel Reduced Lateral Loading

Fourier Loading Coefficients

Panel l.oading Parameter

Longeron Loading Constants

Fourier Series Loading Parameters

Loan Transmitted Between Longeron and Frame
Panel Longitudinal Middle-Surface Stress
Panel Circumferential Middle-Surface Stress
Panel Reduced Circumferential Unit Load
Panel Middle-Surface Shear Stress
Longeron Axial Stress

Frame Axial Stress

Panel Longitudinal Bending Stress

Panel Circumferential Bending Stress
Longeron Bending Stress

Panel Longitudinél Unit Bending Moment
Panel Circumferential Unit Bending Moment
Panel Unit Warping Moment

Longeron Bending Moment

Panel Unit Lateral Shear

Panel Unit Lateral Shear

Stress Ratio

Fourier Series Stress Ratio Parameters
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Panel Longitudinal Middle-Surface Strain

Panel Circumferential Middle-Surface Strain

Panel Middle-Surface Shearing Strain
Longeron Axial Strain

Frame Axial Strain

Young's Modulus of Elasticity

Panel Bending Rigidity

Poisson's Ratio

" Cylindrical Coordinates

Cartesian Coordinates

Displacements in the Surface of the Panel
Deflection of the Panel

Longeron Radial Deflection

Frame Radial Displacement

Assumed Frame Radial Displacement
Midpanel Deflections, & (X) = W, (X,0)
Radius of the Fuselage (Cylinder)

Panel Semi-Length

Panel Semi-Width

Longeron Semi-Angular Spacing

Skin Thickness

Frame Cross-Sectional Area

Longeron Cross~Sectional Area

Frame Geometric Parameter, r e_/:.'{
Longeron Geometric Parameter, A& A

ebt

Panel Circumferential Radius of Curvature
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Kx, Ko, KxgPanel Curvatures

c Distance to Longeron Outer Fiber
IL Longeron Momenf of Inertia
.An,Bn. Fourier Coefficients

Cn Constants

fn; f,., Infinite Series Coefficients

ABBREVIATIONS.

F.C.M.S. Frames Close, Membrane Solution
F.C.P.S. Frames Close, Plate Solution
F.C.S.S. Frames Close, Shell Solution

F.N.C.-M.S. Frames Not Close ~ Membrane Solution
F.N.C.-S.S. Frames Not Close - Shell Solution

P.M.S. Perturbation Membrane Solution

~
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111, MATHEMATICAL FORMULATION

In view of the structural geometry common to most pressur-
ized cabins, certain simplifying assumptions can be stated without
significant loss in the accuracy of the mathematical representation,

The first assumption is that the frame, circular before
loading, remains circular after loading which means that the frame
deflection is uniform radially, This condition can prevail only if
the loading on the frame is radial and uniform, which is generally
not the cése. However, since a frame section between two adjacent
longerons is quite resistant to radial bending and the frame loading
is periodic circumferentially, the bending of the frame is negligible
compared to its extension,

The second assumption is that that portion of the longeron
radial loading which is supported by the longeron axial load is small
compared to the portion supported by longeron bending, Sample
calculations of longeron bending involving conservative estimates
of longeron radial and axial loads due to pressurization show that
the longeron deflectiorts with axial loading and without axial loading
are virtually identical,

The last assumption is that the deflection of the outer skin
panel bounded by two adjacent longerons and frames can be repre-
sented with sufficient accuracy by the theory of the large deflection
of plates formulated by Theodore von Karman(B). Large deflection
theory is required here since the membrane stresses which are in-
duced by the pressure loading and are affected by the panel radial

deflection are significant in supporting the pressure loading. It



-10-
will be shown later that, in many cases, the panel can be considered
as beiﬁg a membrane, i, e. the bending stiffness can be neglected.
| When these assumptions are considered in formulating the
problem, some important conclusions can be drawn which will lead
to useful limit solutions., This mathematical formulation of the
problem will now be presented.

.When dealing with the deflection of the panel bounded by two
adjacent longerons and frames, it is convenient to describe the
deflected surface by using the cylindrical coordinate system shown
in Fig. 2. The reason for this is that the undeflected panel is part
of a circular cylinder and the deflections of the longerons and
frames, due to symmetry, are radial, The radius vector is de-
noted by ¥ and its position is fixed by the angle € and the X
coordinate. The width of the panel is &6, its length, 2a . Thus,

the longeron spacing is €& and the frame spacing is 2Q .,

Panel Strain - Displacement Relations

If the displacement of a point on the middle surface of the
panel is denoted by « in the X direction, and by V' in the tan-
gential direction, certain relationships between these displacements
and the corresponding mid‘dle surface strains can be derived. Con-
sider an infinitesimal element of width £de and length dx in
the undeflected middle surface and of width, S , and length, 7 ,

in the deflected surface, From Fig. 3, it is evident that:

= =2
o = Rdo !

. 2 a
But 52= (a‘?—é’de) + (de + rds)
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e v
or neglecting (rae) compared to 2,:‘3—6 s

(Ef:—.;,)z= G2 [ 2
S0 /gr} [’ * Fé'é rae)]

Ede

-4
: e 2V aer
but since F = -+ (F_é) << /,

then RS S ,..C[ 2V Ly 2r )%
BRde ~ R L '* rae * a(re)].
Therefore,
. L 2V r-£ { e
€6 " 3 * = * zgr (%) (3. 1)
From Fig. 4, it is easy to see that:
= L
€ = gy ’
e e 2
T\, [2r 2«
but (a;)_ (ax 4+ [/+ 3)(]
2
or 2du
(%) + 1+ 2%
4 U

Z
when (%% is neglected compared to 3x -

. e
And since a2r 2 U
(—— + Sx <</,
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then
ox e

Therefore

2
~ 2« A [2F
€x = ax”'a(ax

& os 1+ B4+ £(2

ar)e

(3. 2)

»

Figs. 5 and 6 show how the shearing strain is related to & , V

and I . In Fig. 5, the contribution to the shearing strain, Zve ,

due to displacements & and V is illustrated. Let this contribu-

tion be Txe, ; then it is evident that:

! r de x
_ 124, 2v
= roe t x

Since the element deflects in the radial direction, in addition to the

displacements ( and V , there is a contribution to the shearing

strain, a‘xee » due to this deflection, This is illustrated in Fig. 6,

from which it follows that:

¥y o 2Ldx 9r de
X8z -~ X dx y36 de
= Laror
- F 9x g6

Therefore, the total shearing strain is:

(3. 3)
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Equatib_ns (3. 1), (3. 2). and (3,3) are the large deflection strain-
displacement relations for the cylindrical panel in cylindrical co~

ordinates,

Panel Stress - Strain Relations

The stress is related to the strain by Hooke's law and since
the panel membrane or middle surface stresses are a plane stress

system, the stress~strain relations are:

€x= Flox-vae] -9

€= F[0s-vox] (3.5)
4

Pxe = “"‘_——Z(éf )Z'xe (3. 6)

Panel Equations of Equilibrium

On an infinitesimal rectangular element in the middle surface
of the panel there act certain forces and moments which must satisfy
equilibrium in three mutually perpendicular directions « the longi-
tudinal direction, the tange'ntial direction and the radial direction,

In Fig. 7 is shown the stresses acting in the longitudinal and tangen~
tial directions, Summing first the forces in the X direction, it is

evident that:

(0% + 2% dx)rde - Ox r de + (Tye + aazjsde)dx‘rxedx =0

And neglecting the higher order terms, the result is:
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2dx 2Txe - (3.7)
ox ¥ Fee - ©°

In a similar manner, summation of forces in the tangential direction

implies:

208 , 2%xe . o (3.8)
roe =2 4

Té deal with equilibrium of forces in the radial diréction,
it is convenient to separate the summation of forces into two parts -
membrane forces and bending. First, the components of the mem-
brane forces acting in the radial direction will be summed individually.
These are shown in Figs., 9, 10 and 11. Then the lateral shear due
to bending will be summed. This is shown in Fig. 8. Beginning
with Fig. 9, the sum of the components of tangential membrane

forces acting in the radial direction is:

[051‘ de) 2L rae 5%{,——'535"):1’49 - de]tdx—aa;%i dx

Simplifying and neglecting higher order terms, this becomes:

_a(_?__‘e% _ ]tdedx (3. 9a)

The sum of the components of longitudinal { X direction) membrane

forces acting in the radial direction is, from Fig, 10:

(O'x + aa&c/ )(ax 3)(3 dx)trda—akartrde
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Simplifying and neglecting higher order terms, this becomes:

99x ar 27t ] {3.9b)
ax ax + 0’ X* trdedx

The contribution due to the shear stress can easily be seen from
Fig. 11. Summing components in the radial direction, the follow-
ing is obtained-

(Z}'e + B&ed )( 2xae de)dx * 2l

-3 ¢

2or 2 ar ) r‘
Fae * ix rag 9x Jrde - xaaxdx- x6 de

Simplifying and neglecting higher order terms, this becomes:

[5% (7xs rae) * F‘La'g (Txe g)]t rdedx (3. 9c)

The sum of equations (3. 9abc) is the total component of the mem-
brane forces acting on the element rde, dx , inthe radial di-

rection,

From Fig. 8, it is seen that the component of lateral shear

acting in the radial direction is:
2 2
(Qe + —a;.Qedg)dx—@edx+ (Qxi -—%"dx)rde—@xrde

Upon simplifying, this becomes:

[an + aaxj rdedx (3. 94d)
roe 2X
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When'moments are summed with respect to the X axis and the
tangential direction, two equations can be written by means of which
the lateral shears, Qx and Qe can be eliminated in the above

expression. These equations are, neglecting higher order terms:

aMecl dx + 2’V"‘“f’rafsm(x - g rdedx

EY) =0
M
2 Mx rdedx + 2Mxe dodx - Gx rdedx = ¢
X 26
“Simplifying:
2 Me oM
g M X@
roe X We = O
SMx 2 M xe -
ox ¥ r 26 ~ Qx ©

When these equations are solved for (Jp and Gix and substituted
into equation (3. 9d), the following expression for the component of

lateral shear in the radial direction results:
1 g/ 2Me )
[raa r o6 rax (r“ Je + -—-———Eaxz rdedx (3. 9¢)

Using the expressions relating the bending moments to the change

in curvature of the deflected plate:

Mn"" D(AKn‘* VAKt)
Mnt = D(’°V) 4 Knt
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where 4 K is the change‘ in curvature due to the deflection of the
plate aﬁd n deﬁotes the normal direction, % the tangential direc-~
tion, the bending moments can be related to ¥ .

In cylindrical coordinates, the curvature in the X direction

is, assuming that 33}!<<' / :

= - 2r
KX axl

ar

The curvature in the tangential direction is, assuming that FLJG << /J

R | { 4
Koz ..-..,____9___[

£ ri gt

And the cross curvature is, in view of the same assumptions:

- — 2%r
Kxe = FL 2X20

Then, for the pressurized cylindrical fuselage problem, the expres-

sions for the bending moments become:

- 2*r Y 2% ]
D[ gx= t re gg¢

-pf L 2% 2:r
D[ rize: * V oxe

Mxe = -D(r1-v) ;"'5?;;:'2

]

My

Me

When these are substituted into equation (3. 9e), the following ex-~

pression for the component of lateral shear in the radial direction

is obtained, assuming g—f<</ and 2L << [ :

roe
—nf L 2% . =2 2% 2% (3. 9f)
Df #5E + £52%, + 27 | rdeds
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Equilibfium of all forces in the radial direction implies from equa-

tions (3. 9abcf) that:

- a’e 21 20x 2r
[ 05"'9 r ao)JiJGJX + —a-;'x;; + Ox ax,_

] t rdedx

* [5%(%35%r + #2(Txe x’)]trdedx

| ) ,
—D[-' 2%r 2 %
reset * Feigg * ax* rdedx + Prdedx =

Using equations (3.7) and (3.8), and simplifying, this becomes:
..ﬂ[_a ]4 _3_"!_,_22".\’9[_2 -L-Q_[]-E—
so(F33)1 x: T YF 5 (77 aa) 1

L 2% , 2 2% 2*r
[ T4 5av * Feiiter * Sf ]

(3.9)

Equations (3.7), (3.8) and {(3.9) are the three required equations of

panel equilibrium.

Longeron Equation of Equilibrium

In view of the second basic assumption stated at the begin-
ning of this section, longeron bending can be determined by simple
beam th‘eory where the longeron axial load, Ug A‘_ » is neglected
compared to the lateral load, ?(X) (see Fig. 15b). If fCx) is
the deflection of the longeron with respect to its ends, then the equa-
tion of equilibrium is simply:

~r d74¢
EL 357 = aw

However, the longeron load, Q(X) , depends on the circumferential

stress, Og (X, 2 x), which can be seen by referring to Fig. 16, If a
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strip of width dx is considered, equilibrium of forces in the direc-

tion of (X 0) , assuming that & is a small angle, implies:

700 - 2xt[ 3o ot [{ o1 B

~-L2r _:._a 27 Lt 24
rax (fz:va)] E[;y: ";—23—572—’;‘}} rde

From which the longeron equation of equilibrium becomes:
«

d f(X)_ P 2% 2
Erdtx —sz‘[—tg-a'a(x,«)]+2tf[d;3,¢ +2 (T 2Y)
o

4
"r'!"ai';[#é%(’?;a)] £ 5’—;5 ,“}iaf,g'; ]}rde (3.10)

Longeron Stress - Strain Relation

Since the longeron is in a uniaxial state of stress, the rela-

tion between the longeron axial strain and stress is simply:

€, = E_QZ | (3.11)

Frame Equation of Equilibrium

In view of the first assumption stated at the beginning of this
section, namely, that the frame remains circular after loading, the
mean of the periodic radial frame loading determines the uniform
axial frame stress, 0; . Bending of the frame will be assumed
negligible, i.e. the inside radius of curvature of the frame is ap-

- proximately equal to the outside radius of curvature. Then from

Fig. 17, it is evident that the frame equilibrium equation is:

G [fzm du - fo@x(a, o) rds ]
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or

7
0—;: A [fﬂ(ﬂ dx + ZDf(ax.; ;Lia%gz)x @ rda} (3.12)

Frame Strain-Displacement Relation

If AR is the frame radial displacement, then:

ErF = %—g (3.13)

Frame Stress-Strain Relation

In view of the assumption that the frame is stressed uniaxially,

the stress-strain relation is:
JF
EF = Ef (3. 14)

Longitudinal Equilibrium

If the pressurized cylinder is open ended, then the integration
of the longitudinal forces around the circumference must vanish.
Since pressurized fuselages contain air under pressure statically,

a closed ended cylinder must be considered. In this case, in order
to satisfy equilibrium the integration of the longitudinal forces
around the circumference‘ must equal the force due to the pressure

acting on the cross-sectional area. Hence:

-—i-[a‘/]‘_ + gffo;; ra’6] (3. 15)

Summary

Equations (3. 1) through (3. 15), Wl:len satisfied simultaneously

together with certain boundary conditions which will be discussed
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later, 'yiéld the sqlutidn to the idealized pressurized fuselage problem,
One further simplifying assumption can be made without loss in gener~
ality; namely, that the ratio,.—’é s varies only slightly from unity.
This must be so since any étrain is much less than unity, Further-
more, since equation (3, 9), the equilibrium of panel forces in the
r.adial direction, was determined by assuming that the slopes -If' %
and %; are much less than unity, this simplifying assumption should
be extended to the other equations where applicable, This assumption,
by the way, is necessary for the formulation of the large deflection
plate theory in Cartesian coordinates(3). Therefore, by replacing [
by A in the first order terms and neglecting 7‘L 529[ and 53-5 in the
second order terms, equations (3. 1) through (3. 15) can be greatly
simplified,

It may be mentioned at this point that an alternate presenta«
tion of these results can be obtained by specializing the general
treatment given by Love in reference 7 to the case of a right circular
cylinder, Timoshenko(3) also discusses the general equations to
some extent, When the usual assumptions of large deflection analysis
are used, as implied in Karman's treatment of the initially flat plate
and relating to orders of magnitude of slopes and products of small
forces and deformations, the resulting equations are the same as
those obtained by the foregoing more direct physical derivation.

The following summary of these equations together with the

boundary conditions to be discussed next represent the mathematical

formulation of the problem,
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Panel '

Strain-Displacement Relations

- L2V, r-R L (LI
€p R aow = 2 (f? 36) (3. 16)
au ( [2r\%
e~ 2. £(3)
24 . oV . _Lroryoaer (3. 18)

Fa= #
Xe =~ R ae X R LaXA S

Stress-Strain Relations

’E‘I—[G;( -V 079] (3.19)

It

€x

€ = -é-[oa-?}d}] (3. 20)

. &1+ vV
Ty = T)‘Z’xe (3.21)

Equations of Equilibrium

205 { 2Txe _
208 ' 2Txe _
Jo [ 1 2% ] 2% | 27 3%
= A z a5 P =
R L% 20|+ G5z + % oxee ' E T
Dl % 2 34 *r
t [ B% 36+ " B2 35555 Ix* ] (3.24)
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Longeron

Equation of Equilibrium

EI 73 d ’[(X)— c"m‘[f— O'é(rx)]+zfej[o; 3;';

- D1 a%r 24r
L 5%+ * Rede%r }de

Frame

Equation of Equilibrium

3
[{g(x) dx + EDR](SXQ’ é%xae | aa’e]

Strain-Displacement Relation

4
-

Stress~Strain Relation

Er = ’E"

Longitudinal Equilibrium

o
gL Ae et O}(d&

P~ 53 2

o

The Boundary Conditions

(3. 25)

(3. 26)

(3.27)

(3.28)

(3.29)

(3, 30)

Due to the choice of the coordinate system, the deflected sur-

face, I"(X, 9) » becomes a doubly symmetric function of the indepen=

dent variables, X and 6 . That is:
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r(x,e)= r(-x,8)= r(x-6)= r(-x-8)
- Therefore, in order to discuss the boundary conditions of the prob-
lem, it is necessary to consider only that part of the deflected sur =
facé bounded by:

X =0, e =0,

Panel Boundary Conditions

There are two variations of boundary conditions for the panel.
Either the panel is attached to the frames together with the longerons
or the panel is attached only to the longerons and the frames are
floating. In the first case, the normal slopes must vanish along X=a
and @ =& and the deflection of the panel along these edges must
be compatible respectively with the deflections of the frame and the
longeron. Hence:

Skin Attached to Frame

r{a,e) = R + 4R
réx,x) = R+ AR + f(x)
or(a,e) :

X o
ar(x«) _

K oe

In the latter case, the normal slopes must vanish along X = & and
6 = & , and the deflection of the panel along the edge where & = X
must be compatible with the longeron deflection, Since the panel

is not attached to the frame, the shear, Qx s 1s continuous for all
values of X , Furthermore, the shear is an odd periodic function

of X with period 24 . Hence, the shear, Qx (a.,e) must vanish.,
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The boundary conditions are, therefore:

Floating Frame

2r , L 3°r -0
ax3 * Reox262 | yeq -

Fex,x)= R+ AR + £(x)

2ria, ) -0
2X

ar(x, «) _

R oe

Longeron Deflection Boundary Conditions

Either the longerons are simply supported by the frames or
clamped to the frames, In the first case, the longeron deflection,
with respect to the frame, f(x) , and bending moment must vanish
at the frames., The latter case implies that the slope and deflection
must vanish at the frames, Therefore, since £(x)= £(-x), the
longeron deflection boundary conditions become:

Simply Supported Longeron

fca)=o0

d___z-;_co“_).:O
dxe

Clamped Longeron

fra) = ©
d fca) _ 0

dx
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IV. LIMITING SOLUTIONS

Often the structural geometry of a pressurized fuselage is
such that certain simplifying assumptions peculiar to a specific de-
sigﬁ can be made with little loss in accuracy. Therefore, even
though the exact solution to the formulated problem presented in
the previous section can not be obtained, four tractable limiting
solutions, when applied properly to the physical situation, yield
some useful results. It is important to realize that these solutions
can never apply exactly to the physical situation, though checks
can be made in order to obtain some measure of the resulting ac-
curacy. Some of these checks will be discussed along with the

development of the four limiting solutions,

A, Frames Close Together -~ Skin Attached to Frames

The simplest limiting solution was first obtained by
Flﬁgge(z). This solution is applicable to the structure where
the number of longerons is large, the frames are close together,
and the skin is attached to the frames. In this case, the follow-
ing additional assumptions can be made: 1) the longerons remain
straight after loading, 2) the panel deflection in the radial direc~
tion is uniform, 3) the panel longitudinal and circumferential
stresses, Ux and g , are uniform, and 4) the longeron axial
stress Ji , is uniform. The longeron bending stress, 0;_,(4\’) s
can not be evaluated by the solution. The assumption that the
panel deflection is uniform radially implies that this solution is
only applicable to those geometries where the panels can be con-

sidered as thick, initially curved plates. The development is
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outlined below,

When these assumptions are introduced into the governing

equations, (3.16) through (3. 30), the following simplified set is

obtained:

Panel

Strain-Displacement Relations

AR
€o= &

€x = constant

Stress-Strain Relations

£l o-va]
€Ex E?ITQ;" I’O&]
o™ sZQE_’!’_l/) Txe

€o

Equations of Equilibrium

Equations (3. 22) and (3. 23) vanish.

. PR
%= F

Longeron

Equation of Equilibrium

en LY et [ -]

Ix+

Stress-Strain Relation

€ = &
¢ F

(4.1)
(4. 2)

(4. 3)

(4. 4)

(4. 5)

(4. 6)

(4.7)

(4. 8)

{4.9)
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Frame

Equation of Equilibrium

a

!
o = - j (x) dx (4.10)
F Af'x J g )

Strain-Displacement Relation:

AR
€~ = (4.11)
F R

Stress-Strain Relation:

€ = .g_? | (4.12)

Longitudinal Equilibrium

p= GeAe , 2tox (4.13)
Rb 4

Since the panel radial deflection, ¥r-#g& , has been prescribed
as being a constant, and the stresses, 0@ and Ox , have been pre-
scribed as being uniform, all of the equations, (4.1) through (4. 13),
can not be satisfied simultaneously. The solution which results in
compatible displacements between panel, longeron and frames {as-
suming the longerons remain straight), and satisfies equilibrium of
the section cut out by the planes X=0 and X=&a, is Flugge's limit-
ing solution for frames close together. The longitudinal equilibi'ium

equation (4, 13) implies that:
(4. 14)

Equilibrium is satisfied in the tangential direction by the relation:



. P
O = ¢

%
:
>

(4. 15)

Since the stresses are uniform, the compatibility conditions become
(neglecting the small influence of the eccentricities of the centroids

of the components):
€ = €, : (4. 16)
€o = € (4, 17)
Which from equations (4. 4), (4.5), (4.9) and (4.12), it féllows that:
OL= Ox- VU0Os o (4.18)

a-F = a'e - va-x (4.19)

Equations (4. 14), (4.15), (4.18) and (4. 19) completely define the

stress state. Solving for each stress independently yields:

o - PR 1+ A+ % ' (4. 20)
@ t - 2 ' ’
(7 +2X1+A)- AV

Ox = PR { + B+ AV ' (4.21)
St G+ A 1+)- ATV

OF = PR 1 + A(1-VE) - } (4. 22)
T (1+2X1+A)-2AV2E

- PR 1+ FC1-V)-2v (4.23)
€t G+ 1+A) -3AV2

N

where it is convenient to define the two area ratios:
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»r= Ar
cat

One interesting conclusion which can be drawn from this
solution and which is typical of all solutions is the strong dependence
on Poisson's ratio. This is due to the biaxial stress state in the
panels and the uniaxial stress state in the longerons and fr_ames.

A check to obtain a measure of the resulting accuracy of
the solution can easily be made by computing the longeron maximum
deflection, 7((0) » and comparing this to the panel radial deflection
for the fictitious case where the frame area is zero, AEAF-O .
Since it was assumed that the longerons remain straight after load-~

ing, for a valid solution it is essential that:
¥ (o)

<< {
AEA:HO

The longeron loading which is necessarily uniform by assumption

is given by:

qxl= G, = —-———-a‘?,?'i"l’ | (4. 24)

Whereupon simple beam theory gives for the central longeron de-

flection:

= —22_9_4 — O-FAF ba‘?

The deflection of the panel for AF =0 (3‘=0) is:

- _Eezl-bf\(l-vz)"g | (4.26)
APAF:O - Et (/4.,\)
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So that:
{co) Ae Rb ray /
= = 5 << /
4R, ., 4L (R) I+ - -;%2 (4. 27)

Note the strong dependence of the ratio of half the frame spacing to
the fuselage radius, % . The validity of the other assul.'n_ptio-ns
can not be checked easily,

FlUgge's second limiting solution is applicable to the case
where the longerons are spaced closely enough so that the skin panel

can be considered as behaving like a thick plate in the circumferen-

tial direction, but the frames are too far apart to satisfy this con-
dition in the longitudinal direction, In this case, the problem‘ can

be satisfactorily formulated by considering an anisotropic shell
stiffened by evenly spaced frames, The solution given in reference
3, page 404, has been extended by Flugge(z) to include an anisotropic
shell. The anisotropy in this case as opposed to the first solution

is due to stiffening of the shell by the closely spaced longerons only.
\The frames result in discontinuity shearing forces. :Few fuselage
structural geometries presently in existence satisfy the require-

ments of this limiting solution.

B.1 Frames Close Together - Floating Frames

When the skin is not attached to the frames and the frames
are close together, the only requirement for an exact solution of
the formulated problem is that the longerons remain straight after

loading. An exact solution is tractable in this case because the
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skin behaves like an initially curved infinite strip plate bounded by
the longerons under uniform lateral loading. As before, a check
can easily be performed to show the validity of this assumption,
Cross-sections of this strip are shown in Figs, 12a and 12b, In-
troducing the fact that I and V are functions of & only, -and
U is a function of X only, the equations representing the mathe-
matical formulation of the problem become:

Panel

Strain-~Displacement Relations

s L dv , r- '
€ox%ds * B+ 2(3L) (4.28)
€= (4. 29)
Ho= 0 (4. 30)
Stress-Strain Relations
Ex = ——-[0;,—1)05] (4.31)
!
€o = ?[05‘70’7] .- (4. 32)
(1t P
—2_-“1 Txe (4.33)
Equations of Equilibrium
Ox = F, (o) (4.34)
4,35
To = Fa(x) (439
gof 1 d% _ P . DL | . 36)
E[Pde? I]+t EQL (4.36)
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Longeron

Equation of Equilibrium

oy - LR.

Equation(4,37)is invalid by assumption that

Stress-Strain Relation

.
“= g

Frame

Equation of Equilibrium

e 5t [ 6]

Strain-Displacement Relation

€= 4AF

F R
Stress-Strain Relation

& = 9E

F E

Longitudinal Equilibrium

gi A x
p= B+ 2t o de
o

fx) =0

(4.37)

(4. 38)

(4.39)

(4. 40)

(4.41)

(4.42)

From equations (4. 28), (4.29), (4.31), (4.32), (4.34) and

(4.35), it follows that Ox and (g are constants., In that case.,

equation (4. 42) becomes:

Ox = sz [ PR~ FH]

(4. 43)

The strains €x and €. must be equal for compatible dis~

placements.
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Hence:
O. = Ox-VJe | (4. 44)

Putting this fact into equation (4.43), the following equation for

longitudinal equilibrium is obtained:
/
ox = 5 (J;t + Avaa) | (4. 45)

Where, as before:

. A
A= 4%

In this case, in order to describe the deflection of the panel it be -

comes more convenient to use the Cartesian coordinate system shown

in Fig. 12b. If &« is a small angle (large number of longerons),
then the frame displacement, A& , shown in Fig. 12a can be rep-
resented as a boundary displacement, & 4K , shown in Fig. 12b.
If &o (¥) is the initial deflection of the strip and &/ (Y)I'is the
change in deflection after loading, then the equation of equilibrium

(3),

of forces in the &/ direction can be written in the usual manner

d4(.¢.h F dz&/b dzw
dys ~ K dye dy=] Q

(4. 46)
Et?
120-v2)

2_ Oet
K - D

where D =

£

Q=3

The boundary conditions for the unknown deflection, &/, ,
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are:

d w, (b)
dy

W, (b) = = 0

and the initial deflection, W/e , can be approximated for sufficiently

small & by:
W (v) = g (8%7%)

The differential equation (4. 46) can easily be solved. The general

even solution is:

Z
W () = Aca.m/(r-z}a[%+3]- _S_K_)_;

where

§=@- £

and A, B, are arbitrary constants.

Applying the required boundary conditions,

| 7 - |
W, ()= = _Ké CUJH:I,(:H ’c(o:HKb + 3 (% vY (4.47)

K is still unknown since (g has not been determined. Equation
(4.47), therefore, satisfies equilibrium for any value of Oo .

That value of Ug which satisfies compatibility results in the proper
solution,

The strain~displacement relation in Cartesian coordinates(3)

is:
€o = % * 2‘—[(5%!)2_ (%‘92] (4. 48)

where W = Wy + W/, ¥ total deflection.

From the stress-strain relations, it is evident that €g is constant.
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Integrating equation (4.48) from Y=0 to Y=&é implies that:

b
€ob = wuce) v # [ [(d). degf]yy
o

but U(b) = KAR = %45 .

Therefore, it follows that compatibility requires:
€ 4L ,Lf?’d(wofw.g‘? d wa® _ (4, 49)
e 3 +¢"6° ( dv )-(dr)Jdr

Substituting equation (4. 47) into (4, 49) after differentiating and in~

tegrating, the compatibility condition becomes: ,
- AR LrQ 1) Q4?
= N X= - -4

2
(corsl Kb+ é)] + élf-? corr Kb[carH Kb - ;‘;]} (4.50)

Finally, substituting equations (4. 32), (4.40), (4.41), (4.39) and
(4. 45) into (4. 50), the compatibility condition which ‘satisfies equi-

librium in the radial direction becomes:

K2 [+ + ACi-v3) 4 ) _pRf VvV L],
t [+ A Py t | 2014)) Y

EraQ _1V]as? _

Y L
el 7 come(ca-rchb—Ké)] :

(4.51)
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where KE = _Qg__é_
Ac
A= 2
= A
AN Sat
)
0

K can be determined from eguation (4.51) by trial and
error or other means., Hence, Og is known. Then it is a simple

matter to determine the other stress components from:

T~ TiA (£E + ’\v%)

%= F (LR - %)

Gl: UX'va-b

The validity of the assumption that the longerons remain
' stréight can be checked as before by computing the ratio of the
maximum deflection of the longeron, #(g) , to the r-_adial skin
deflection without frames, AEAF =0 - Inthis case, the longeron
loading is given by:

= = 26
gx) = go = B°(PR-0et)
And for continuous longerons, the maximum deflection is:

. _$e2% _ a*s _ oet
F (o) 24 EI, zaer,_(p ?)

The radial deflection of the panel for Ar =0 isthe same as

before so that:
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Jet
F)  _ atbt 1+ M) (/- 'E%‘ (4.52)

APAF“’ /21222[/‘#/\(/-72)—212]
For the solution to be valid, it is required that:

f (o)

<< [/

F=0

. :
B2, Frames Close Together - Floating Frames - Membrane Solution

In the previous solution, the bending of the skin panel was in-
cluded in the equation of equilibrium, When the panel thickness is
very small compared to the width and the pressure is suffiéiently
high, the contribution of the membrane forces in supporting the pres-
sure loading is much greater than that of the plate bending. The
Bending rigidity, { , in the plate equation of equilibriﬁ'm may
therefore be neglected, resulting in the equation of equilibrium of

a membrane:

: CIZWQ Jaw
Uéf[ dve v “gye =P | (4.53)

The compatibility condition, assuming that the panel behaves like a

membrane,is, upon setting ) =0 in the previous solution:

Oo {112 (1-v2) 4 [ - EL? /
"[ 7+ A + serem) 7 [Q—,t) e 4

from which Og may be determined by trial and error or other

means, and:
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. i P
% - s (£E+Ava)
’ |
oF = 3 (5B - o) (4. 56)
GZ = 05(—170'9
| (4.57)

The check on the validity of the assumption that the longerons
remain straight after loading is identical with the previous plate

analysis:

f0)  _ atst (1- BE)(1+))
ARppeo 12 ToRZ[ 14 A(1-v)- 3]

<< / (4. 58)

These two previous solutions offer a good means for obtain-
ing, in more complicated cases, some insight concerning the validity

of the assumption that the skin panel behaves essentially like a mem-
brane. This matter, the validity of the membrane assumption, will
be discussed in detail in a later part.

" C. Frames Not Close Together - Floating Frames - Membrane
Solution

When the frames are not sufficiently close togethér, the de-

flection of the longerons must be taken into account, An approximate

solution can be obtained for the case of floating frames, if the follow-
ing assumptions are set forth: 1) The skin panel behaves essentially
like a membrane, 2) The skin panel curvature in the longitudinal_
direction and the cross curvature are much smaller than the curva-

ture in the circumferential direction, 3) The panel shear stress,



Txe
Jg » and 4) The longitudinal stress,
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, is small compared to the normal stresses,

, is constant.

The first

assumption is valid when the panel skin thickness is small compared

to its width, and the second and third assumptions imply that the

ratio of the radius, & , of the cylinder to the longeron radius of

{
curvature, fu(x) , must be much smaller than unity, In view of

these conditions then, the more exact equations reduce to the fol-

lowing set:

Panel

Strain-Displacement Relations

- 3

| -4
Ex = é%% * 2%(%%7

rxe = Q0

Stress-Strain Relations

€Ex = E%'[}E'-T)GE:Y

€= 7 [0e-v0x]

3‘16 - 1+ V)

E z}e

Equations of Equilibrium

Ox = CONSTANT

Je = UJg (x)

" (4.59)

(4. 60)

(4.61)

(4. 62)
(4. 63)

(4. 64)

(4. 65)
(4. 66)



Longeron

Equation of Equilibrium

4
EIL ;J_:(_Co_\,’): Zoct[_?f_aa(x)]

Frame

Equation of Equilibrium

p a
O = g;;!g(x)a’x

Strain-Displacement Relation

€r = 4K

F R
Stress-Strain Relation

gF

€ = €

Longitudinal Equilibrium

a. A
- e L Ped
p"" RE "b‘""‘afo;

(4. 67)

(4. 68)

" {4.69)

(4. 70)

(4.71)

(4.72)

(4. 73)

Substituting equations (4, 65) and (4. 66) into equations (4. 62) and

(4. 63), it is clear that €g and €, are functions of X alone.

These strains will in general result in the panel edge displacement,

V(X, K) , which should vanish. For this reason, it is essential

that the longeron deflection be small in order to insure a reasonably

accurate solution,
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From equation (4. 67), the circumferential curvature must
depend on X alone, since Og is a function of X alone. There-
fore, the cross-section of the skin panel for a given X must remain
circuiar after loading. This is illustrated in Fig, 13, from jwhich

it follows that equation (4. 67) can be written:

O (X} = ﬁf—@ _ (4. 74)

The remaining problem is essentially one of geometry., The radius,
P(x) , can be expressed in terms of Ug(x) and the sum of the lon~- _
geron and frame displacements in the following manner. Assuming
that & is a small angle, i.e. many longerons, the radius vector,

, can be written:

rexe)= R+ AR + f(x) + S(x)[/-(g)e] (4.75)
and the angle, ﬁ :
= - / or ,
p= X R+f(x}+ AR lgex (4.76)

Substituting equation (4. 75) after differentiation into (4. 76) and ne-

glecting f(x)+ AR compared to R , g maybe written:

B = o([/+ ._Egg(ix)] (4.77)

The circumferential strain, 63 , is by definition:.

(x)

€g = @ & - (4.78)
The slope, —”é-éie[ y is small compared to unity, so that:

o .
/arx)/a _-'-j r de . (4.79)
[2}
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Upon substituting equation (4, 75) into the above and integrating, it

follows that:

pp= x[ R+ AR + ) + £ 5] (4. 80)
The circumferential strain then becomes:

€p = 'é‘[}{x) + AR + fS(x)] (4.81)

If equations (4. 80) and (4.81) are substituted into equation (4. 74),
the equilibrium equation, and AR + fex)+ F8(x) is neglected

compared to /A , then:

/
T = ég[/«‘—u‘“] - e
2 e

The procedure for the approximate solution of these equations
will be discussed now., One means of solution is obtained if equations
(4.81) and (4. 82) are substituted into equation (4. 68) such that Jg
and J(x) are eliminated. Then, in principle, the only unknown
other than f(x) is AR, a constant. Hence, from this resulting
equation, the longeron deflection can be determined as a function
“of X and AR .

From equation (4. 73), it follows that:
Oy por) [p[, _P__'-] _ (4. 83)

since Ox is constant. If the longitudinal panel displacement at
the longeron is to be compatible with the longeron displacement,

then, since T'xe is assumed zero:
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From the stress-strain relations, this implies that:

gL = Ox- V0

and from equation (4.83), Ux is not constant but a function of 8 .
This paradox arises from the assumption that T xg is everywhere

zero. Since the role of Oy in the determination of Tg (X) is rela-
tively insignificant (due to Poisson's ratio) it will be determined as

an approximation from the previous case where the frames are close
together and the skin is attached to the frames. Hence, from equa-

tion (4. 21):
PR 1+ 2+2A7
et (+ A 1+2)-A2ve

By eliminating & (x) from equation (4. 81) by substituting

0-,(:

equation (4.82) into it, the circumferential stress, Og , can be
determined as a function of X and AKX . The longeron loading,

?(X) , is determined from the relation:

g(x) = 2xt[-’§£— a;(x)] :

which is also dependent upon AR . The frame stress, O ,
.is determined from equation (4. 70) and the re sulting AR from
equations (4. 71) and (4. 72). |
A second and more practical means of solution which will

be adopted here is to estimate a particular A A& which, of course,

is less than the panel deflection when there are no frames., Then

OF Ar  is computed from equation (4. 70). That frame area which
is obtained as a result of the assumed value of A& will be different,

in general, from the actual frame area. This process is repeated
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by estimating different frame deflections, AR , until the proper
frame area is obtained. Solving for 8¢x) in equation (4.81) after

substituting Og obtained from equation (4. 82), it follows that:

- 8¢x) = jb[ [K, 7((”)] VK2+K £(x) [7‘0‘)] } (4.84)

where

- 4r VOx R
Ki= 327 5 7 Eb

_ Afb VO}K 4 PR
k2= 9 (P) (Eb * FE¢

.é[AR vcr][, 3ARR

- 4R | vgxg

Note that for a given pressure, p , and assumed value of the frame

displacement, AR , the quantities, K, , Kz and Kj are de-

termined. When equation (4. 63) is substituted into equation (4. 81),

it follows that:
E £ §704)
~/?[{(x)+ AR + 3 é({)]+ X (4. 85)

When this equation, together with the previous expression for S(x) s
is substituted into the expression for the longeron loading, gl()() s

this becomes:
¢ ‘=xz‘[2[ﬁ3-§é_@ Efb)-v ]_E_é
gex) t R te (#) Fox[-Efo

+ Ky fcx) _/_f_@]é
ﬁ;//+Keb +Kz[b 256
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Note that if certain conditions are satisfied, the longeron loading,
?(x) , becomes approximately a linear function of the longeron

deflection, -f(x) . These conditions are:

f(x)
Kz << |/

f—b(ﬂ<< K_g

and

Under these circumstances, the longeron loading is given by

g (x)= .;::’i [C - 4K"7‘(x)]

where c 24t PR £ '
&, = B[R Y E(L - 4Rty

4K4= Ebl ;4 B2
EL = R? Iz

Kz , and K3 , for sufficiently small

From the definition of K, ,

pressures,

K, = O(#)
Ka = 0—(%:)
K3 = 0_[%)

In this case the linearization conditions become the single restriction

hat:
rhat fx) oo &
b K

This condition is usually satisfied in conventional structural design.

The validity of this linearization is depen.dent, therefore, upon the

magnitude of the pressure loading, 2 , and the above re striction,
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The pressure must be such that:

PR 5\°
£t «[F

This restriction limits the solution to small pressure for some
structural geometries., In order to alleviate this difficulty should
it arise, another means for linearization will be discussed,

The longeron loading is almost always positive (outward) for
positive internal pressurization. Hence, a linear approximation in

the positive range of (X) is sufficient. When the structural geome-
g g

try and pressure are such that the above restrictions ar_é not satis-
fied, then the exact variation can be plotted in the positive range of
g(X) and a suitable linearization made. This has the added advan-
tage of limi_ting the linearization by visual inspection to the cases
where good results can be obtained, An example of such a lineari-
zation is illustrated in Fig. 19, It is clear in this case that the
linear approximation is quite representative of the actual.behavior.

The longeron loading can therefore be expressed by: :
1 4
3()() = EI7 C- 4k %(x)]

" where £ is the @ (x) axis intercept and 4.__.K4 is thé negative
EI(_ g P E""_ g

slope of the linear variation. When this expression is substituted
into the longeron equilibrium equation (4. 68), an ordinary linear
differential equation expressing the longeron deflection, f(x) , is

obtained:

d4fx) | |
Tdx® C - 4-K4-[(x) (4.88)

The general solution to this differential equation is:
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fCx) = C, Sivu kx SINKx + (p €COSH KX COSKX

+Cs SINHKXCOSKX + (4 COSH KXSINKX
c - (4.89)

to2Kks
and since the even solution is required, C3= C;so . The coefficients

will be determined from the boundary conditions:

Case a - Continuous Longerons

fca)

df(a)
dx
Case b - Simply Supported Longerons

fea) = ©
d ®fca) _

dx®
In either case, <~(a)=¢0 , which implies:

o

C, = - { [ -€] 4,90
€ CosnKacosralCiSinHKkasiNKka + gy (490)

Case a - Continuous Longerons

@
dj(;——)= ©  implies:

COSHKaSINKa + SINHKa coska
Cz = -C,

(4.91)
SINHKkA COSko. — COSH KO.SIN KO

Solving for C, and Cz2 from equations (4.90) and (4.91), it fol-

lows that:

)((X) _C / - (COSH Ka.SIN Ka. +SIN H K. cosxa.)co.sHKxca.SKx
4K SINKACOS KA + SINHKACOSHKA

(COSH Ka SIN KO- SINH KOLOS KO )SINH KX SINKX
SIN KA. COSKO A+ SINH Ka. COTH Ko

(4.92)
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The longeron maximum bending moment is obtained from the rela-

tion:

d 4
Mupmax. = EIL '—-“‘;d,\{ga (4.93)

Differentiating equation (4. 92) twice, setting X" = a. and substituting

into equation (4, 93) results in:

7 _ CEL  ynt ka coSHKQ = TN KA COS K
NAX. EKe SinH Ko COSHEKA+ SINKa COS KO (4.94)

from which the longeron maximum bending stress can be obtained

by the expression:

" o Mmaxe

7 reax = (4.95)

When the expression for the longeron loading, equation (4.87), is

substituted into equation (4. 70), the frame stress is given by:

O = m ‘pf“[ C - 4!(47[()()] dx (4.96)

Performing the required integration by using equation (4. 92), the

expression for the frame stress becomes:

KC cost Sca siniica + Sinve ka cos tka
T EI Aptk  S/evKo coska+ Siviica COSH Ko (4.97)

oF

Case b - Simply Supported Longerons

When the longerons are simply supported, the bending moment

must vanish at the frames. Therefore,

d*fca) _
dxz o
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which implies that:

C. = cosH Ka cos Ko
z ¢, SINH Kow SN KO- (4. 98)

Solvihg for €, and C,; from equations (4,90) and (4, 98), it fol-

lows that:

7[(‘ ) = . /- SINH KG.SIN S SINH EX SIIVK X
¥ = 4K+ COSHBKOA COS 2 KOA SINH KA SIN KA

COsH Ka CoS KO. COSH KX COS KX
COSHZAK O COS KO A FIVHEZKA St KOu

(4.99)

In this case the maximum longeron bending moment is given by:

d2{¢co)
M,v”qx = EIL- dxz ‘ (4.100)
and by using equation (4. 99):
M _ - CEL SINH IO S 1INV IS
rAax, EK2 | cosHPka cos e+t SINHTKA SINUCA |

(4.101)

from which the longeron maximum bending stress can be obtained
by the expression:

! - Mmrmax

Performing the required integration by using equation (4. 99), the

expression for the frame stress, equation (4. 96), becomes:

Rc _TINH KA COTH KA +S/IN Ka COSKQ
CELLArbKk COSH kR oS ca+S1vH*Ka SV Tka

gfF = (4.103)
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Computational Procedure

A review of the computational procedure will now be presented,

The following steps are required to obtain the solution:
1) The longitudinal stress, Ox , is computed from equation
(4. 21), v
2) A value of the frame displacement, &4 E' s is. chosen (prime

indicates estimated frame deflection), Note that:

1_ PREZ (+A(1-v?)-¥
o= Ak = Et (¢t +A)

which is the skin radial deflection when the frame area is

zero,

3) The quantities € and K are computed.

4) The frame axial force, G;:AF s is computed from equation
(4. 97) for continuous longerons and (4. 103) for simply sup-
ported longerons by multiplying by AFr » the true frame
area.

5) The frame area which is compatible with thé chosen frame

/
displacement, AR , is obtained from equation (4.71) and
equation (4, 72), or:

[

arKE

6) If the above obtained frame area is less than the actual

‘
frame area, then the chosen AK was too large, and for
’
the next estimate a smaller AK is required. If the
frame area is too large then 4 R ' must be reduced.
Then steps 2) through 5) are repeated until the computed

/ '
frame area, AF , consistent with Ak » is equal to the
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actual frame area., The actual frame deflection is then
known.,

7) The longeron central deflection, 76(0) , is computed from
equation (4. 92) or equation (4. 99) depending on the 1onger0n
boundary conditions and ib—(—") is compared.with. —‘g' in
order to check the validity of the first method of lineariza-
tion if it is utilized, Otherwise, of course, Istep 7) may
be omitted.

8) é(o) is computed from equation (4. 84).

9) The maximum circumferential skin stress is computed

from equation (4. 82), namely:

PR [
Topay = o (o= [I + _25(_:;] (4. 73)
“ .

10) The longeron axial stress, Jz , is obtained from equa-

tion (4. 73):

a. = %[P-et%—‘]

since Ox ‘is constant,
11) The maximum longeron stress is obtained. by adding to
the maximum bending stress given by equation (4. 95)
or (4, 102) the axial stress obtained in the previous step,

or:
!

Lmax

Olppax = 9 +

MAX

12) The frame axial stress is easily obtained from:

O = Eg@

13) Often the load transmitted between the longeron and frame,

——

P, is required. This is simply given in this case by:

P= %UFAF
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This completes the procedure for the desired quantities for the
stress analysis of this configuration,

When the skin is attached to the frames and .the longeron de-
flection is significant, the solution is not obtainable by other than
numerical means. However, when the additional restrictionj is
made that the actual frame deflection is nearly equal to the fictitious
skin deflection when the frame area is zero, a useful solution is ob-
tainable by energy considerations, This solution, the perturbation

membrane solution, will be discussed next,

D. Perturbation Membrane Theory

For the fourth and last of the limiting solutions treated,
éonsider the pressurized cylinder without frames but with longer~
ons, In thié case, the skin middle surface stresses are uniform,
When the frames are added, radial forces are required at the
frame attachment points in order to have compatible deflections
of the frames and the cylinder, If these radial forces are small
so that the inward deflection of the cylinder is small compared to
the outward deflection of the frames, then the skin middle sur-
face stresses will be altered or perturbed only slightly, There~
fore, it is expected that the variation of the skin middle surface
stresses, Uy and (g is small over the entire panel surface,
This being the case, the assumption that these stresses are uni-
form can be made and, therefore, the shear stress, Txe , can be
taken as zero, With this in mind, the mathematical formulation
of the problem can be considerably simplified, Suppose it is fur-
ther assumed that the skin panel behaves like a membrane, .Then

these equations reduce to the following set:



-54-
Panel

Str ain-Displacement Relations

_ L3V 6 r-R Lt ar)®
€6 = Roe*wm . * a(eé") (4.104)
v 74 2
Ex = —g—x— + EL(%) (4. 105)

. A 2u 2v , L va
Ixo = Rae*ax*k(g‘f)(a‘g(

(4. 106)
Stress-Strain Relations

€x = E(Tx-7V03) (4. 107)

: L
Eo = E(Ua-'VUJe) (4.108)
e((+¥V

[P '—'-t:—l Txe (4. 109)
Equations of Equilibrium

Ox =  constant : » (4.110)

0; =  constant ' (4.111)

Oe _1_3_’:!'..] 2r _ _ p (4.112

Q[R J6° !+ 33z = ~F ( )

Longeron

Equation of Equilibrium:

Since the panel lateral shear must vanish for a membrane,

and since the circumferential stress, Jg , is uniform, it

follows that (see Fig. 15a):
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d¥feo ar
El;' dxt 2{05936/94(

Stress-~Strain Relation:

€L=—Eg—z

Frame

Equation of Equilibrium:

(2) Frames attached to the skin:

| « “ar .
Of = m[ij(x} a’x-c"a;z‘ﬁ"[ gi)xmd,e]

(b) Floating frames:

Of = Aﬁ_—;{[‘[;(x)c/x]

Strain-Displacement Relation:

Stress-Strain Relation:

Longitudinal Equilibrium

3
o

R &

(4.113)

(4.114)

(4. 115a)

(4. 115b)

(4. 116)

(4.117)

(4.118)

The equation of panel equilibrium in the normal direction,

equation (4.112), has been simplified to such an extent that it can

be integrated directly since Ox and Jg are now constants for a

given pressure,
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In order that the longeron displacement is compatible with

the panel displacement, it is required that:

€g = €,
since Jg , Ox and O are uniform, By using equations (4. 107),
(4.108) and (4. 114), this condition is satisfied if:

.= Ox- V0
When this is substituted into equation (4.118), Ux can be written
as a function of Ug , or:

= L [ PR 4.11
Ox A[ft*’waa] | (119

{+

The panel boundary conditions for the two panel conditions -
frames attached to skin and floating frames, are:
Dl. Frames Attached to Skin:
r(a,0) = R+ AR
riex, k) = R+4R + f(x)
D2. Floating Frames:

!2__[_4__2"2?(9 = ¢
rix, «) = R+ 0OR + £ (x)

An important conclusion results from defining a new depen-

dent variable and a new independent variable., Let
Yy = Re
and  w = r-(R+4R)

Then equation (4. 112), the skin panel equilibrium equation, becomes:

9 *w 2w
Jo 55z * Ix S5xz =~ :tE"%é]) (4.120)

together with the boundary conditions:
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D, 1l. Frames Attached to Skin:

‘w(a,r)=o

w(x 6)= Fx)
D. 2., Floating Frames:
dw(a,r)
X -
w((x 6)=fcx)
Note that this equation together with the boundary conditions is iden-

tical with that for the deflection of a rectangular membrane with uni-
form membrane forces, aéf' and U;(f , under a reduced uniform
pressure, p —%i . The boundary condition, &/ (X, &) = £(x), is
obtained from the integrated equation for the deflection of the lon-

geron, Or:

d 1o

— - du/
EL, Tgx4 ° -&0gt >y (4.121)

r=p !
where the boundary conditions are:

Case a, . - Continuous Longerons
fla) = o
df(a) _ o

dx
Case b. - Simply Supported Longerons
(e = 0
d*f(a) _
dxz ©

Hence, the simultaneous solution of equations (4. 120) and (4. 121) to-
gether with the appropriate boundary conditions, lor 2, and a or b,

will yield the deflection of the skin panel, W (X, Y), containing the un-

known quantity, Jg . Mathematically, this is equivalent to the de-
flection of a rectangular pure membrane under uniform lateral
pressure, supported on two opposite edges by elastic beams, and

either fixed on the other two edges or having zero slopes normal
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to those edges. This is illustrated in Fig. 14, The loading on the
elastic supports is shown in Fig., 15a and 15b, The.solution to this
problem will now be discussed, followed by the method for deter-
mining the unknown circumferential stress, Jg .

The Deflection of a Rectangular Membrane with Uniform Pressure

Loading - Two Opposite Edges Fixed - The Other Two Supported by

Uniform Beams

Rewriting equation (4, 120) in the form:

23w 2 3w
gzt T 5 = — £, ' (4.122)
where - ae /+/\
= dx T PR +/\V

the solution can be obtained by the use of Fourier series. Let

00
M=0

ca
Then the boundary condition, LUfa, Y) = o , is satisfied and the
condition of symmetry with respect to the X axis is satisfﬁied. The
\uniform loading can also be expanded in a similar Fourier cosine

series of the form:

o0
_ (zn+1) X
P £ gn o npim

a
n
where 3_ - _2__?[ cos gZH-HZN'X dx - 4f (“‘I)

“ A,

Substituting these expansions for & (X,¥) and F in equation (4.122)

by appropriate differentiation, and cancelling cos (z—;';iy-ﬁterm by
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term, results in the ordinary differential equation:

B (y) = AnZBn(y) = -Qn

where

An [ (ZI’I+I)7T'

. 4P _(C-1"
R TT (2n+t)

The solution of this equation which satisfies symmetry with respect

to the Y axis is:

Bu(y) = A, cosH A,y + _;\6_25_1’-

-The boundary condition, w (x86)= +cx) , implies that:
.-/(x)= [A,,,co.rH/\ 6+Q-—’1 ]cosm
MA=0

Therefore, the membrane deflection takes on the form:

AO

w(xvy)= [An cosH Au Y+ ] OSM (4.123)

prm Za

where the An 5 are determined from the beam deflection, $(x).

" The loading on the beam is, from equation {4.121):

q(x) = -zoet Z¢|

From equation (4. 123), it is evident that:

o
w - (znit) mx
Lay /ﬁb ”2;0 AndaSinHAn b cos o

Substituting this into the differential equation for the beam deflection,

F¢x) » it follows that:
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d4-/(x) _ 20et 2h+1
7R Elig ZOA ,\nJINH)\anOJ——L—

The even solution to this differentlal equation is:

Fod = = ZBE S A, dwsinrdab b/ 525 cos!ﬁ*‘_')_@i

=0

+ Co + Co X2

Case a, Continuous Longerons

Since {l(a.) must vanish for continuous longerons, it follows

that: o
F'ta) = ‘Z-?.f-.z Z f" %"*')EJ'/NH/MA (—I)‘;- 2Ca =©
L nN=0 n ) '

Therefore:

Cz"'"

_ Get An  (zasdT _
BT 2 .3 2a,l S /\ wb ( )"
=0

The second boundary condition, 7‘(4):0 , implies that:

Co=_Cza~

Solving for Lo and 3z and substituting into the expression for

7‘()() » the resulting longeron deflection is given by:

208t = (
—r o { An SINH Aub cos Zg-;L)ZTX

Fex)= -
EIL, T° = Al
- ELa(xz Z)Z ___QL (2m+)77’(l JMIHA b
m=0

Expanding (X."'—az) in a Fourier cosine series with period 4& ,

it follows that:

(Xiaz) = _%ZZ __C_)_ cg;M

2
bp (2n10)

Let
- Z‘ Am (zom-t)'n'( I)J'IN{{(\mé - ConsTANT

M=o
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Then, the longeron deflection becomes:

- 208t K (-1 (Znt) X
'f'(x) EZ‘?“Z['—Q STHAn b - re) ;]co: ”a/ (4. 1.24)

n=o
Equating this to the previous requirement that:
s0
= Ky za+1)TK
fex) = Z [An eostAnb + oz | COTEL
“=o

and solving forAn, one obtains:

QBn _ g;t K (-1)"

Ajp = —  An EI.TZ (zu+)”
200t SiNHAnE _ cosmHAnb
ET K? An

This can be written in the form:

Au = Ku K- 8n (4. 125)

n
where Koy = 6") s /
. (zn+1) SITNHAn b

3757 + 5L comhs

ﬁ’l - QH /
/\nz' Za—e___t J(NHI\@&_ A
ELT? Au? + COSH nb]

And K can be written;:
0o

K= 2 7wAua (4. 126)
=0

where

z\m__. 7.? (Z:\'f':)(“f)

Substituting equation (4 125) into (4. 126), the following results:

K = Za‘ [ K+ |

MEO

SINH dw b
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Now since J is a constant, independent of m , then it follows that:

K- 2. TP

/I - E “maﬁm

=9

Therefore, the coefficients, An , are:

An 0(‘1 Z fmﬂm

= nago

+ PBn
which, when simplified, can be written:

/

("Izn‘fn
| -—-'f-’ﬂ—-, SINHARD
2o (2m+1) L (4.127)

--16 p 2
An =g Fa 128 2%t Txtegelhe

[ - 75 EL

where

f /
" (ZVH'I)‘?CdTH/\nb + 16 a-’t_aw/‘aa'/z
Tr2E IL

Substituting this into equation (4. 123) and simplifying, the deflection

of the membrane becomes:

' o«
-l pe -0)" _
M=0
(2’14'[)3:;1 COJHI\"Y
(zneldmx
”-’-EIL Z (ZM-{-I}L
mM=0
| (4.128)

The beam maximum bending moment is obtained from the relation:

. EILi qw _ EIL 3% (a,s)
MMAA’. 2 f (a) = = *"”a*;——é—-—-
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Differentiating and simplifying, this results in:

.
MMAX = 77: Paif O'x/"a' 2 (4.129)
[ 128 aft gx %ege Ve
TT’-EI,_

n=0 (2”1’/)8
Case b, Simply Supported Longerons

Since -f "(q.) must vanish for continuous longerons, it follows

that;
Ce =0

The second boundary condition, £(a)=o , implies that:
Co = 0

Hence, the longeron deflection is simply:

.7C(X) = - EG’ei‘Z A du Troc A 6/2h )n-]co_,. (zn+)rXx
#

EIL A=o ea,

Equating this to the previous requirement that:

.f(x) = &= [An COSH’\“Ié + .:\a—f?-]co.: (z';.+c"£w

and solving for An » it follows that:

= - 16 2 ("/)nfn ' ’
Au = Lo T (4.130)

Substituting this into equation (4. 123) and simplifying, the deflection

of the membrane becomes:

o0
- le z S _(-0)"
WX, y)= 77._;,.Pa2'(zm’)3[/

n=9

Cen+1)? _CosH AnY cog (2a+)mx .
) f” JNHA RS 2o (4.131)
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The beam maximum bending moment is obtained from the relation:
‘ . EL 3 2
Mmax = 5= £'0) = ——-—CZI" ——“L-Légx,b )

Differentiating and simplifying, this becomes:

o0
= 22 7 Y2 ! _(=0"Fu 4,132
Mumax. = Zra Pa’t 0x Zd’e"nz-a Conell . ( )

The Deflection of a Rectangular Membrane with Uniform Pressure

Loading - Two Opposite Edges with Zero Normal Slope - The Other

Two Supported by Uniform Beams

In this case, the solution of equation (4. 122) must be repre-
sented by a Fourier cosine series satisfying the boundary condition

that:

dwla,y) _ ,

X

This slope boundary condition is satisfied if:
© :
) = & 2_ ATTX
wi(ix,v) = 78, (r)+ By,(Y)CasT
=y

When this is substituted into equation (4. 122), the following equation

obtained-

—ZE (”)("ZO Coé’mrx+ 7"[ B,'rv) +25,, () cos W}—-

If this equation is to be satisfied for all values of X , then it follows

that:

B = -<£

Bn"(y) - Z'naBn (V) =0
where

e
% (a1
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- The even solutions of these ordinary differential equations are, re-

spectively: 2
B‘,(Y) = ‘% + C,

Bu(r) = Aan cose Tuy

The boundary condition, «’ (X, 4) = F(x) implies that:

fox)= F8.06)+ 2 Bule) cos FTE

n=y

Hence, é B.(4) and B, (s) are just the Fourier cosine coeffi-

cients of the unknown beam deflection, 7((X) . Now:

F4
59(5):' ——"%—é"‘cz

which implies that:

B, (v) = "7"?(5‘- yz) + B, (s)
Also:
B (v)= A, cosnT,b
which ifnplies that:
COSH Z},V

5n(Y)

Bn (b) coss Thé

.Hence, the deflection of the membrane becomes:

“f Tn?
X y) = e‘r‘ (63y3)+ & 5’,(b)+g5’n(b)g‘;ﬂ;bcas"a’fx

(4.133)

The loading on the beam is, from equation (4. 121):
4 (x)= -2c; a ves
From equation (4. 133), it is evident that:

dw = -Lb
ay/ Y b2l + ZB,,(&J T TANH Taé cos £LTX ”"'x

n={
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Substituting this into the differential equation for the beam deflection,

fcx) , it follows that:

' o
dYx)_ 2ot | Pé _ -
dIxt EL. { T "Zs, Bn (6) T TANH Th b cos =5

The even solution to this differential equation is:
”0
_ 296t Phx*. 2! _ amx
fox)= 7, ; B (6) Tn TANH Tnb (=) cos A1

C4T i,
- Co + C, xe}

-Case a. Continuous Longerons (clamped beams)

Since )c'(a.) must vanish for continuous longerons, it follows

that:
’ 20st fba.'a
= = 0
Therefore: e
: Cr = - Lhba
2" 2T
The second boundary condition, that (@) must vanish, implies
that:

4 = 4
G- L2 3 g, 001, rant b (2 ()"
n=¢ .

Substituting these constants into the expression for -f(x} , the result-

. ing longeron deflection is:

fcx) = eEoé_t.[24r (x%a®) +2.3,,,(5)2'm7w/vﬂ?7né(m,,)( )™

+rz ~f

Z Bn (6) T TAN/-/Tné[m,.) cos ’"“’}

1=/
Expanding (Xz.a") in a Fourier cosine series with period &a. ,

it follows that:

(x2a?)%= 2ot 482_(-1) (,,,T) cos £LIX



-67-

Therefore,
o0
-} Lbat -~ a vt om
fon = S22 * D Bul6) Tn TANH T b ((22) (-1}
EI | 45T ,"Zzl ’ i)
“ [5}7 (b) Ty TANH Tre b (mr) +é,_é(,) (nrr)j cos ‘.nrrx

Equating this to the previous requirement that:

fex) = F8.08) + Z B, (6) cos 2L

=/
it follows that:

#8.06) - 205 {f_ﬁfﬂ' f'ZBm(é)z-m/"’N/'/ é(,,,,,)( -1) ]

e af

and .
6 6) =~ 22t [ 6uta) T rmni it (] + 28 (2

in order that the relation hold for all values of X , Solving for
Bn (b) from the second of the two relations, it follows that:

aPé 7+
5,1 (6) = ( /)

_".1.77”4E.Z'
(T EL

Substituting this into the first of the two relations results in:

Vi 2%t Pbat 90 §oo | (“)4
. é’-gp(é)" _— / - ._4. i
45£LT a / o+ (.@I}‘EI,, CorTH Trm b
=1 >/ Zgat Tm

Hence, the Fourier coefficients are known and upon substitution into

+ Ta TANH T, b

equation (4, 133):

( o0
4a* Pbtox 774 za'*fa"’?a'e”'
W(X,Y) C-!a-e(ée 2)+ 77-4 EI XSO 7732'1"
m={
oo

Fm _Z fn("/)hCOJ'H Thy

7 co;.i’fi_(
mYrAana Tmb ey SINHTh b A

(4. 134)
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where
/

FH " P S a’t Ox 1t Oy's
rnfcordt Tub + —————3—77__,51‘

The beam maximum bending moment is obtained from the relation:

— 2
& " w s

Mmarx, =

Differentiating and simplifying, this results in:

» 7 ‘/'- Y,
s pevctel - gl f] e

-

Case b. Simply Supported Longerons

Since £'Ca) must vanish for continuous longerons, it follows

that:

: o0
Cow - L8215 Buls) T rane Tm s (2) (-0"
m=r

The second boundary condition, that -/(a., must vanish, implies that:
_ SPba”* T : t on
¢, = TLtat, Z B () Tin TanH Tmb] 2 4(2) j CRY

-'Hence, the longeron displacement is:

Ffex) = _._2g_é_7.‘ £% (x*%- 60.‘;\"{-50.) ZEn(b)nrANHTné( )

247 n=
cosﬁ’—"-x +(atx )2_5 (5)/4,,,-* Zé-gm(b)/(/m (n%r)z}
1=/ =y
where . G & m
A = S Un TAnvH T é (i) (-)

Expanding (x*- ~Ea N+ 5A ) and (a. x") in a Fourier cosine ser-

ies of period €& , it results that:

(X"-éa‘x‘—».fa‘)'-/ég ey (*’{ g ]co.s.ﬂl’!
and o s, 0m) (hm)*

(a%x?)= Fa* 4a£-f__! cos 4T¥

a
Pcidd
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Therefore, 4(x} can be written

- 29t [ 2Péa’ ~ -
Foxl = SR 2268 s 2055 bt + 2 i (Bg)®

"= =y
- Z[zpew‘ (1)

2T (nrr)'-(”'h‘rr + B, (W), rAnvaTy 5(—%_)

M
+ 42 /m———-(-,) ]oo:—-—-””x]
m

X

But from the previous result,

Fex) = F8.C6) + 5 Bnls) cos L
=/

In order that these relations hold for all values of X , then it fol-

lows that:
o0
- 405 L4 z L, 1
25() [;# a"g(.?’-‘mz”-z)/f—‘le
and & = Z.Péo.“‘(—l)
o (6] EI’L{-f T (rzrr)" (ﬂTr?]
Gop(6) Tn 7TANH Tnb(n") t 4a Z/x “’)

= (nm)*©
Solving for B (6) from the second of the two relations

5(1(6)’ Vn+ QHN
P n+(

Where: V., = :?2'7"60'4 (Hﬂ')z [I + (n”)Z]
ELe o, TannTaé (55)°
e (=0
- “+a® (Frr)
Hn ga];:; + ThTANH Thb (521.1'—4
N =

Z Bre {5)/4”,, = CoNSTANT
=y
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Now since /¥ isa constant, it can be evaluated from the above re-

lation, or:

N - B Vm
' 7@,
So that: 0
Ve
Bn(e)= V, + q"?; - (4. 136)
| [ - Z r‘m/""" )
. ez

Solving for 'ZL B. (6) from the first of the two relations, it follows

th.at:
. p 20 . 1)
26,00 FRH L8 3 i e Mo Ve e ” (4. 137)
» "=z /—"Z-fz‘/‘,(
=

. <
whe?e. Ipm = ? Z‘mTANH rmb(%r z(-l)m[.}l' * (r—n-(*r_r)‘]

When equations (4. 136) and (4. 137) are substituted into equation (4.133)
it follows after simplification that:
) (o
. £ trp2y)r 2BL6aY, 10 attgtogh il
wix )= plele=y )tz gr—[1-5 [ 1+@me

3 mIEr,
7=y

2?' 1+ 2 2 £ . ®
- 77_:;;5 (“").'.7 K }(/-fr;z}? . —%Zf[u(fr-r),]
A ELe 2 EK g

a0 %04 £
= 7
| 42
_ é[ (mﬁ)ﬁm }(-I)nﬂf COJHT;‘YCOJ amrx
TEL_ -] § T SNHTae S e 4,138
4ot OO S, 0m - (138)
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The beam maximum bending stress is obtained from the relation:

z
Mmax = EL £%a) = EL. 2 w(?,b)
ax

Differentiation and simplifying, this results in:

Mcl 35

= of 16 aPtoapt
Mmax, = ZPa;t_éa‘// +3n_3._x__9_2_ {[/*(fﬁ-)z]

EL
_ 2 ] 5

~
(-1

rile-0 ¢ 5

Yt hBog Lo S (4.139)
where
F /
= eatoy/~0, 7=
" ﬂ'?COTH Thé + Jr3 Exrc. 2

Now that the solutions to these problems have been obtained, their
application to the perturbation solutions of the pressurized fuselage
will nowbe discussed,

Application to the Ferturbation Membrane Solution.

The only quantity remaining which must be evéluated in order
.to complete the perturbation membrane solution is the circumferen-
tial stress, 0g . This is readily accomplished by uéing energy
methods in the following manner. Castigliano's second theorem.(B),
or the theorem of least work, states that if an elastic system is de-
formed by given forces on the boundaries and nowhere on the bound-
ary are the displacements prescribed, then of all stress components
satisfying the equations of equilibrium and the stress boundary con-

ditions, the true stress components are those such that the total
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strain energy of the system is a minimum. This principle is a de-
generate case of the principle of minimum complementafy energy
since the work done by the forces over that part of fhe boundary
wheré the displacements are prescribed is zero,

The apl;roximate perturbation solution is obtained by choos-
ing a reasonable variation of stress in the membrane panel, in this
case uniform, and satisfying equilibrium for all values of the unknown
uniform circumferential stress, 0g . Then the total strain energy
of the elastic system - frames, longerons and skin - is determined
as a function of the unknown stress, g . That value of UOp
which makes the strain energy of the complete system a minimum
should, by Castigliano's second theorem, result in the best >a_ppr0xi-
mation, The determination of Og by the use of Castigliano's
second theorem is valid in this case since nowhere on the boundary
are the displacements prescribed and, therefore, all of the re-
quirements have been satisfied. With this plan in mind, the total
strain energy of the sufficient partial system will now be evaluated.

Skin Panel Strain Energy

The strain energy density of a membrane with uniform mem-

brane stresses is given by:

I =[G+ 03 - 2vos0 [ dudy
When this is integrated over the surface of one panel and when the
equilibrium equation (4.55) is used, the following expression for
the panel strain energy as a function of the circumferential stress

is obtained:

Sa bt
[ :’;c'z [07\'2*032-2720;0‘9] _ (4. 140)
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Longeron Strain Energy

The strain energy of one longeron of length €a consists of

two parts. The axial stress in the longeron imparts strain energy

to the longeron of amount:

- Aca
U = "€ %°

L

The bending of the longeron produces strain energy of amount:

Ui o EIf[i;‘:’ F e~ EILfa,C"(x)adx

b

Hence, the total longeron strain energy is:

p;:—/—‘Eh-?“a;% El“f[ ax, dx ' C (4.141)

Strain Energy of the Frame Section Between Two Adjacent Longerons

The strain energy per unit length of the frame is:

dUF= L A g_’EZ
R de ¢ FFE

Using the equilibrium equation (4. 56), this becomes:.

JdU.
X’_JZF =5Ea~= (2- "')

.The strain energy of the frame section between two adjaceht longerons

is, therefore:

2 -4
Ur = gLAFg/?fde = ‘?“6t(££-a;) (4. 142)

Total Strain Energy

The sum of equation (4. 140), (4. 141), and (4. 142) represents

the total strain energy of the section of the structure shown in Fig. 18,
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Since every such section behaves identically, it is only necessary to

minimize the strain energy of one of these sections. Hence, let:
UT- = UM + Ul + UF

The Determination of the Circumferential Stress

-

The stresses, Or , U, and O , can all be considered

as being a function of the unknown stress, g . In addition, -f-(x) s
the longeron displacement, can be considered as being a function of

Oe as well as X . These relations occur as a result of having

satisfied the equilibrium conditions previously obtained. Therefore,

the total strain energy, Uy , is a function of Og only. The re-
quirement that the strain energy is a minimum, therefore, results
in the additional condition:

dUr |

e GT‘E,’-;[UM+UL+UFJ =0 (4. 143)

This resulting equation, the determining equation for the circumfer-~
ential stress, is an implicit function of that variable, and, hence,
must be determined by trial or by graphical methods. Equation
- (4.143) can be represented, therefore, by:
¢ (gg)=o0

This equation is greatly complicated by the fact that the lon-
geron strain energy is represented by an infinite series with the cir-
cumferential stress contained within the coefficients and as a multi-
plier outside of the summation. Therefore, a far more rapid
(though not as accurate) method for determining the circumferential

stress from the minimum strain energy condition is by plotting the
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total strain energy, U‘r , as a function of Jg . In this manner
the circumferential stress which results in the minimum total strain
energy can easily be obtained., An example of such a plot is shown in
Fig. 20,

Determination of the Longeron Strain Energy for Each Boundary Con-

dition

I. Skin Attached to Frames

From equation (4. 123), it is evident that upon differentiation:

£ )= - 23,,/6)/ (Zml)ﬂ"] cos ____(z”*’)’?'x

2a
n=0

When this is substituted into equation (4. 141), one obtains:

a- a
U - /2.0.02 + ET, [2' Bn(b) (Zﬂ*’)”]COJ (Z;Z)W__} dx
=20

- This expression may be integrated term by term and from the fact

that:
* o n# m
f cog.gga;’)rr_xcﬁs (zm+127rx dx - o
4 Za. z 7= m

it follows that:

o0
4
7= fgratse ELe 5 0 0,00

=0

The longeron stress expressed as a function of the circumferential

stress, Ug , is:

. PR
%@ [ - va]

- When this is introduced into the equation for the longeron strain

energy, the result is:
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U—E?/:T\L)l 5% Vd'] E‘T‘“Z/\ 7" B (s)® (4.144)

Case a. Continuous Longerons

From the previous result for the case of the skin attached to

the frames,

Brn(s)= Ancostt Anb + ]Qﬂ'z

When equation (4. 127) is substituted into this relation, it follows that:

Y
B () = ’”“Z (z(,,’,’,;sf -

(Zﬂfl)? Sk }

(28a?t OxYe gz
/- 773
EI‘— 2— (me-liz

and, therefore, from equation (4. 144),

o0
Aca [P _ 2 [ oet]’ EL o
o = (/+A)‘[Zf V% £ ]o*x2£=£
n=o
}' { (2040 Sucoru dub &
(2r+1) / - (28a?t gx'205'% LY }
TTEL, (zme *

=0

(4. 145)
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Case b, Simply Supported Longerons

From equation (4, 131), it is seen that:

(zmu()’

Brn (6)— (0~ [l ~ (zret) Sn core /\nb]'

and therefore, from equation (4. 144):

A" - - 0" t EI‘ . i
Ue = Eaear V‘f] we[P-% ]o} L g,
-4
{ 2

II1. Floating Frames

From equation (4. 133), one finds that upon differentiation,
2 3
. (xiig nrmrx
%“(x): - 2 5"(5)(-6.—-] COoJ —
=y

When this is substituted into equation (4, 141), it follows that:

Aca

_ a e 2
UZ: = a‘(_z+ El'l_f {Z- Bn(b)(ga_ﬂ.).l-co.sﬁg——-’-‘}c(x
o r=

This expression may be integrated term by term and from the fact

" that: a.
[o] n "
COSQZ'T‘XCOJ X dx = ?,
————— X -
O A -y 1= m

9 2

it follows that:

A P 1:.2'
Q_:E((/-ﬁ\—)"[& "‘r] Tr ‘gn“B ()* (4. 147)

Case a, Continuous Longerons

From the previous result for the case of floating frames and
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continuous longerons:

: - -4, Pbtatos _Snc-n"
B”'(b)" ETL, nT:NHZ’nb

and therefore, from equation (4. 147):

= ALa Oz
G Ecart VO'] 2./ P- “‘] La Z
-4

[ | (4. 148)
TANH Z’n é

Case b. Simply Supported Longerons

From equation (4., 138), it is evident that:

_ % Pba*out
B (e)= 5 155700 [/ + %]

Z [ ’*(mrr)‘] fm

FJEI}.

4a’t oz ¥2des - §m
=y

} C-1)"h B corr Tn b

and therefore, from equation (4. 147):

A )2 s e
U= 5(11,6\32[35"’”3] slr- _ef]f_ff{’* s

[Hzgfa;’ﬁaa/z[ [’*m)]F T
3 T ET (ﬂ?T) J 77'351-:_ —-ff ] fn
47+ ox'/rgs'r Ly
=y
(4.149)

Evaluation of the Infinite Series

The longeron strain energy must be evaluated from equations

(4.145), (4.146), (4.148) or (4. 149), depending on the case, by the
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partial summation of an infinite series. The rate of convergence of
these series may be low in some cases or high in others, In each
case, however, the resulting series becomes asymptotic rapidly to
very elementary series where the sum is known, These asymptétic
terms, together with their sums, are listed below for the ff;'xur

variations.

I:
Case a.
2
| (2¢0)° 5n cori Anb
(en+1) /- 128 a3t o;llza-dzjr —_—
ch_z't (Zl?wq}z
/ / =
- k4 Y. . & S
S Ieea.”'ﬁ_g e S (zr+1)®
L. Crreen®
7120
5ot E
where: (2hn+1)? 3
. n=o
oo . )
TFm . ____l__5 ; Z L - /00449
(zmeet)? (zm+i) o (&mi+i)
~Case b,
2 o
{ 2'?1/ - S’n (é’l’l-ﬂ-,)ecorﬁ//\néj —_
I
Case a,
En n )
—_—— —
{TANH Th b j "4
L - 4
where: Z F)- = -—9-0.

n=1
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Case b oo
2 .
{+ z . 2
L[, .i’a?fc‘&‘/?-gé!’g )2 ] n;;[ () ]fmf o
A% 3 TEZ * o TIEL 4
4 ad 0y feOs'r Fé—,€m

> 4

-2 { 4 { e 1
where: Z F;' = ;0— K Fn —_—— -,-1—-5 , nZ: ER 1.20206
r=/ =

The procedure for the summation of the infinite series.in the

expressions for the longeron strain energies is, therefore:

1) evaluate the sum of the asymptotic series;

2) evaluate the partial sum of the exact series to as many
terms as are required for agreement with the asymptotic
terms; ‘

3) evaluate the same partial sum of the asymptotic series;

4) subtract the partial sum of the asymptotic series from
the exact sum of that series and add the result to the
partial sum of the exact series, thus obtaining an ap-
proximate sum of the required series.

Computational Procedure

The following steps are required for the analysis ‘by the per-
turbation membrane theory:
1} The total strain energy is evaluated for large increments
of the circumferential stress, 0g . The range of Jg is:

o= 0p = EX

2) The value of the circumferential stress, g , which re-

sults in the minimum total strain energy of the systerﬁ

is approximated by plotting Ty versus Jdo .
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4)

3)

6)

7)
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The total strain energy is evaluated for small increments
of the circumferential stress about the approximate value
obtained in step 2.
The more exact value of Jg is obtained by plotting again.
The longitudinal skin, frame, and longeron axial stresses
are obtained from equations (4.55), (4.56) and (4.57) re-
spectively.
The maximum longeron bending moment is obtained. from
equations (4.129), (4.132), (4.135) or (4. 139) depending
on the structural geometry, and the maximum longeron
stress evaluated. The longeron axial stress is added to
the maximum bending stress in order to obtain the maxi-
mum longeron stress,
The load transmitted between the longeron and the frame

attachment is evaluated from the following relations for

each case:

. Pe &f Lalt oo ' S ¢
' T 128 a?tax'egps + n
! - a x0T Z fm 1=
mTTET Feg (2men)?
[-d
~ v . |
Ib: P = & Patictd ) 3,
=g
HaandIb: P = £b5 4.

R



-82-
V. EVALUATION OF THE VALIDITY

OF THE MEMBRANE ASSUMPTION

Because the membrane assumption was required in several
of the previous limiting solutions, the error introduced by neglect-
ing the bending rigidify of the outer skin panel must be evaluated in
order to gain confidence in the theory. A comparison of the results
obtained for the simplified problem of rigid longerons and bfloating
frames when in one case the bending rigidity of the skin panel was
neglected and in the second case the exact solution was obtained,
affords a means for evaluating this error.

Referring back to these two solutions, in both cases.it was

shown that the middle surface stress, Ug , is given by:
Y AR AR, L dCw +Wl)
T = /+A(/—v=){5(’+’\)[ -2 é’éj[( ;

- €e) ]dr -v£ }

Hence, given the deflection of the skin &/ (¥} and the frame deflec-

(5.1)

tion, AR , the middle surface circumferential stress, Jg , can
~be evaluated. The circumiferential stress obtained :when the plate
equilibrium equations are used will always be less than that obtained
by neglecting the bending rigidity of the plate resulting in the mem-
brane analysis, If the results obtained by the membrane equation
compare favorably with those obtained by the plate equation, then
the membrane assumption is valid.

In order to describe the range of structural geometry and
internal pressure for which the membrane assumption is valid, it

is necessary to define a permissible error in the circumferential
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stress. The following arbitrary criterion will be adopted:

0.95 0 (membrane ) < Og (plate ) = UJp (membrane )

It is evident from equation (5.1) that the greatest differences in the

two theories are likely to occur when the frame is rigid, i.e. 4K=0,

and the geometric parameter Aisa maximum, i.e. A=/ .> When
this conservatism is introduced, the above criterion becomes depen-
dent only upon the internal pressure, the material propértiés, the
radius of the cylinder, the longeron spacing, and the panel width to
thickness ratio., A curve of the transition point for aluminum struc-
tures based on the above criterion is shown in Fig, 21. Points to
the right of the curve result in membrane stresses within th§ above
criterion and therefore the membrane assumption is valid, Plate
theorjr is required when the structure is such that the corresponding
~point lies to the left of the curve.

When the skin is attached to the frames or the long.eron de-
flection is significant, the question of validity of the membrane as-
sumption becomes more complicated, Unfortunately, | a more exact
theory which is not known is required in order to evaluate this error,
One can only speculate that since the skin panels of most fuéelage
structures are much longer than wide, the mid-panel elements be-
have like elements of an infinite strip plate and the previous criterion
is applicable, |

Fig, 21 represents the most undesirable conditions for the
applicability of the membrane theory., When the criterion represented
by this figure is not met for a specific case, the membrane theory

may still be applicable if the frame displacement and the parameter,
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A , are not zero and unity respectively. In this case, the middle
surface stresses must be computed by the membrane theory and the
plate .theory previously described, taking the frame deflection and
the value of A into account. This more exact criterion may prove

the validity of the membrane assumption for that case.
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Vi, SAMPLE ANALYSIS

As was stated previously, there exist structﬁral geometries
coupléd with certain ranges of internal pressure such that none of
the limiting solutions are applicable. These are illustrated in Fig.
35, Of course, the closer the structural geometries and pressures
(if required) are to the limiting cases for which the limiting solu-
tions are exact, the more accurate will be the resulting analysis,
The following typical example will serve as a guide in working out
other cases,

Example. Continuous Longerons - Floating Frames

A
Ar

0,129 sq. ins,
E = 107 psi
0, 300 sq., ins,

H

R =82 ins.
a = 17 ins,
t =0.032 ins,
b =6 ins,
pP =13.4 psi
4 VvV =1/3
I, =0,0166in ~ |
C = 0, 5 ins,

The analysis will be worked out for each of the limiting solutions and
‘the results justified and compared.

Frames Close Together - Floating Frames

1. Plate Solution
The solution of equation (4.51) by trial and error yields:
K =30,05

from which

O = 28,800 psi

u

which results in:
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Q

15,300 psi

OF = 20,400 psi

Q

= 5,600 psi

The condition for the validity of this limiting solution is that:

f o)

<< |
APAF.:o

From equation (4.52), it follows that:

_ﬂa._)_ = 2,27

AR, .,

Hence this solution is not valid in this case,

Z, Membrane Solution
Solving equation (4. 54) for Og by trial and error, it follows that:
Je¢ = 28,800 psi

which is identical with the previous result, illustrating the validity
of the membrane solution. This results in:

Ox

i

15,300 psi
O = 20,400 psi
O. = 5,600 psi
‘The criterion for the validity of this limiting solution is the same

as the previous solution:

F (o)

<< /
ARAF=O

Hence this solution is also invalid in this case, and the frames can

not be considered close together,

Frames Not Close Together - Floating Frames - Membrane Solution

Plotting g(x) versus #(x) and obtaining the best linear fit,
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/
the following results were obtained for three choices of AR :

AR’ Ac

0.080 0. 490
0. 100 0.338
0.110 0.284

from which it is evident by plotting that:
AR
-3

- = 2,42 x 10'4 in.
2

0, 107 ins,

i

K¢ =0,0208 in, "

From equation (4.92), it follows that:

L

(o) 0. 144 ins,

and from equation (4. 84),

S(o) -00144 ins.

i

The maximum circumferential stress is, from equation (4. 82),
and

Tx

1

15,300 psi

Of 13, 050 psi

L

o = 5,600 psi
The maximum longeron bending stress obtained from equations
(4. 94) and (4. 95) is:

L paax, = 30, 000 psi

Hence, the maximum longeron stress is:

OZMA)K = 35, 600 psi
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The load transmitted between the longeron and frame attachment is:

—

£ =573 1bs,

The membrane assumption has already been verified from a

comparison of the results of the first two limiting solutions. .

Perturbation Membrane Solution

Solving for the total strain energy in the system upbn assum-
ing various values for the circumferential stress, Ug , the graph in
Fig, 20 is obtained. From this plot it is evident that for minimum

strain energy in the system,

Og = 30,600 psi
Hence,

Ox = 15,400 psi

OF = 13,800 psi

g, = 5,200 psi

The maximum longeron bending stress is obtained from equa-

tion (4, 135), resulting in:
[4 .
Ot pyax. = 34,900 psi
.Hence, the maximum longeron stress is:

{
OZMAX =0+ OL pgax= 40, 100 psi

The load transmitted between the longeron and frame attachment is:
£ =606 1bs,

These results are in good agreement with those obtained from the
previous solution,

The condition for the validity of this analysis, in addition to
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the membrane condition which has already been verified, is:

0'(4/?)= &(ARApso)

Now, the frame deflection when the frame area vanishes, as given
by equation 4, 26 is:

ARy, .o =0.238
The actual frame deflection is:

AR =0,113
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VIiI. EXPERIMENTAL INVESTIGATION

Iﬁ order to have some physical basis for gaining confidence
in the theory, it was decided that an experimental program should
be undertaken. The test would consist of adequate instrumentation
for the measurement of critical stresses upon internal pressuriza-
tion of two fuselage sections, one with floating frames and the other
with the skinfatta.ched to the frames - both having continuous lon-
gerons,

For the test to be representative of the mathematiéal model,
and still be economically feasible, certain compromises in the ge-
ometry of the structure were required. First of all, the test speci-
men necessarily had to be a reduced scale model for reasons .quite
obvious; and, secondly, safety precautions and ease of manufacture
 suggested the choice of material as a plastic with a low modulus of
elasticity, bonded by suitable cements, This meant that the line
contact between the outer skin, and the longerons and frames, as
simulated by riveting, could not be met and, consequently, second-
ary stresses would be induced into the longerons andvframes. Fur-
thermore, for ease of assembly without resorting to complicated
jigs, adequate attachment of the longerons to the frame would re~
quire notching the frames since the skin would be attached to both
frames and longerons for the latter phase of the program, This
would result in a three-dimensional stress state in the longerons
and frames in the area of the notches,

Despite these difficulties in simulating the mathematical

model, it was felt that the influence upon the desired experimental
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results would be within the accuracy of the instrumentation and the
program. was initiated with the designing of a plastic model fuselage
section of this type.

Structural Model Design

The choice of the type of plastic for the various strucfural
components resulfed from a consideration of: 1} the elastic proper-
ties of the material, 2) machinability and formability, alnd 3) brittle-
ness,

The high handling stresses in the thin skin required a plastic
which was not brittle but had good elastic properties within the en-
tire stress range anticipated. For these reasons, cellulose‘a.cetate
sheet, manufactured by the Eastman Kodak Co.,, was chosen. The
tolerahces held on the homogeneity of the material and the thick- -
~ness of the sheet left little to be desired.

The material for the frame must necessarily have .outstand-
ing forming properties since it was realized that the circular frame
could be manufactured to closer tolerances by first machining
straight strips and then forming around a circular form. The ther-
mal plastic, Lucite, (methyl methacrylate) has excellent fofmability
at temperatures around 250°F, The elastic properties of the mater-
ial are sufficient within the stress levels anticipated. Though the
material is brittle, the handling loads were not -expe‘cted to cause
failure of the frames. Therefore, it was felt that the plastic, Lu-
cite, would be ideal for this structural component.

Lucite was also chosen for the longeron material in order to

restrict the variation in the elastic properties of the structural
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components to two, thus facilitating the computation of the theoretical
- results, The handling loads on the longerons were insufficient to dis-
card the material due to its brittleness,

The bonding agents, as it turned out, were arrived at by trial
and error., It was decided early that, where possible, agents> which
did not attack or seriously alter the material properties of the
mating components would be used. |

Various acetate nitrate agents were tried, In all cases, upon
drying without pressure, many bubbles were formed with a large loss
in strength at the joint, However, one cement, Radio Service Cement,
No. 30-2, manufactured by the General Cement Ma.nufacturing Co.,
Rockford, Illinois, was far superior to the others in minimizing the
formation of bubbles. The resulting strength was found adequate.

'This cement apparently does not attack Lucite at all and has very
little effect on cellulose acetate. For these reasons, this .bonding
agent was used to unite without pressure frames with longerons and
the skin to both longerons and frames where required.ﬂ

Since the frames were manufactured by forming two halves
around a circular form and then bonding these to complete tihe frame,
it §vas felt that these parts must be fused together to resist the load.
A mixture of Lucite chips dissolved in ethelene dichloride was used
for this purpose. Though the material properties al;e highly altered
in the region of the bond for as long as six months after bonding, it
was felt that since the region of this influence is extremely small
compared to the total volume of the frame, this effect could be ne-

glected in order to expedite the test,
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The overall dimensions of the plastic test model were chosen
from a cqnsideration of feasibility of manufacture and the stored en-
ergy for safety's sake should the model rupture during a test. A
diameter of 13 inches could be manufactured with the machinery
av.ailable. The energy associated with this diameter up to a I;ngth
of around four diameters was considered safe enough,

Since the finite length test model was to simulate an infinitely
long cylinder, the number of frames required was defined by the
frame spacing and the influence of the end bulkheads upon thé instru-~
mented center section., It was hoped and later verified by testing that
seven frames would be sufficient to eliminate end effect.

The longeron spacing was easily arrived at by taking the
minimum number of longerons required to sufficiently satisfy the
restriction on the theoretical analysis and to represent a realistic
sifuation. Twenty degree longeron spacing or eighteen longerons
was satisfactory; thus resulting in a panel width of around two
inches., .

To simulate reality, a panel aspect ratio of at least two is
required for the case where the frames are attached to the skin,

In view of this, the frame spacing was fixed as four inchevs.

The choice of skin thickness was made upon a compromise
of: 1) the desired maximum b/t ratio so that the membrane assump-
tion would be best satisfied, and 2) the maximum thickness to facili-
tate strain gage instrumentation and accuracy. The compromise
resulted, of course, in the minimum b/t ratio for which the mem-

brane assumption (see Fig. 21) was valid. This thickness turned
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out to be nominally 0.010 inches.

The frame cross~sectional area was made larger than re-
quired for two reasons, First, the frame axial stress was kept low
to prevent fracture of the bonded surfaces; and, secondly, it was
decided to violate the conditions of the perturbation solutions as much
as possible by having stiff frames so that this influence, if significant,

would show up. A frame cross-section of one-eighth by three-eighths

of an inch was therefore chosen,

The longeron cross-section was restricted by the minimum
size for which standard SR-4 A-7 electrical resistance straip gages
could be used without alteration., This turned out to be one-eighth
by one-eighth of an inch.

A very troublesome design detail was the geometry of the
_end bulkheads., These members had to be removable so that the in-
terior of the cylinder could be accessible for strain gage instrumen-
tation, Furthermore, the end effects could be minimized by allowing
the end frame to expand radially with little resistance and by pre-
venting any bending moments induced in the end bulkhéads from
carrying over to the longerons., The design indicated in Fig, 22,

detail A, resulted. The end frame, which is doubly thick to prevent

rolling due to the slight eccentricity of the end load through the seal,
is merely warped sufficiently to provide installation and removal of
the circular end bulkhead. One end bulkhead was provided with a

tap for pressurization and the other for the manometer for pressure

measurement.



-95-

A single test specimen served for both phases of the test.
Aftel: completion of the phase I test where the frames were floating,
a cement gun was utilized to cement the skin to the frame without
removing the skin from the internal structure. In this manner, the
gages in the phase I test could be re~used for the phase II test'.

In closing the discussion on the structural model design, a
review of the region where the test model fails to simulate the math-
ematical model is: 1) the skin is attached over one complete face
of the longeron, thus inducing cross strains or a three-dimensional
stress state in the longerons, 2) the 10ng.éronsare attached to the
frames by notching the frames and bonding, resulting in an influ-
ence on both frames and longerons, and 3) the electrical resistance
gages influence the stress states in the region of their attachments,
(This is discussed in detail next).

Instrumentation

The data required from the test model are the following
strains as a function of pressure: 1) the midpanel longitudinal strain,
€x  2) the midpanel circumferential strain, €g , 3) the longeron
axial strain, € , 4) the maximum longeron strain, éémnx" , and
5) the axial frame strain, € . In addition to these measurements
of strains, tensile stress-strain data and Poisson's ratio for Lucite
and cellulose acetate are required for the reduction of the strain
data to the desired stress data.

It was realized early that electrical resistance strain gages

would be the only practical and convenient means of measuring the

desired strains with the available equipment, even though, due to
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the smallness of the structural components and the low moduli of
elasticity of the model materials, the gages themselves would carry
a portion of the load and, therefore, would influence the results.
Re seai‘ch was undertaken to develop new gages which would be more
suitable for this test. Since the paper backing upon which most
SR-4‘ electrical resistance wire strain gages are supported is of the
order of 0,003 of an inch thick and the modulus of elastiéity of the
paper is approximately one million pounds per square inch, some
means had to be devised for laying the wire directly upon the plas-
tic,

This was most conveniently accomplished for the 0.010 inch
skin by winding the wire around the skin by drilling tiny holes., This
is illustrated in detail in Fig. 24, Only six lengths of one mil Ni-

chrome wire were used to prevent any appreciable load from being
carried by the wires. Consequently the gage length had to .be ex-
tended to three-quarters of an inch so that the resistance would be
high enough to prevent excessive heating of the wires ﬁsing a one
and one-half volt system. The wire spacing was kept at a nominal
one-thirty second of an inch in order to have as much skin éssoci-
ated with a single wire as possible without appreciable. cross strain
influence.

This integral wound strain gage cancels the Bending strain
in the skin, measuring directly the axial strain. In other words,
it replaces two back to back gages which are normally required.
The wire is bonded to the cellulose acetate skin by thinned Radio

Service Cement which has previously been used by the GALCIT
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structures group for SR-4 strain gage instrumentation with good
success, The thickness of the layer of dried cement is estimated
at five ten thousandths of an inch from micrometer measurements,
The ﬁoles through which the strain gage wireare passed is ad_equately
filled with cement so that the influence of the holes is negligible.
In oi'der to investigate the accuracy of this gage without correction
or calibration of the gage factor to take into account the load car-
ried by the gage, the following tests were conducted. One tensile
strip of 0.010" cellulose acetate one inch wide was instrumented
with é, Huggenberger extensometer and the modulus of elasticity
of the material obtained. A second tensile strip was instrumented
with an integral wound gage and the stress-strain curve obtéined.
The results of this latter test are shown in Fig., 26, where the
modulus of elasticityyis given as

5
E = 4,07 x 10 PsI

The difference in moduli of elasticity obtained by the:two methods
is less than two percent, thus supporting the idea that the integral
wound gage carries little load indeed, In view of these tests, no

" calibration of the skin gages was required, The gage factor of the

one mil Nichrome wire is:

G F = 200ty

A tangential integral wound gage was mounted on the strip in order

to determine Poisson's ratio for the cellulose acetate. The results

of that test are shown in Fig. 27. The value of Poisson's ratio ob-

tained for cellulose acetate was:
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v = 0.7/6

No convenient methods for mounting integral gages on the
longerons were devised due to the difficulty of mounting the i_nterior
gage. Therefore, it was decided that SR-4 A-7 stfain gages- would
be used and that the gage factors for bending and axial loads would
be obtained by separate ctalibration tests, The modulus‘; of -elaéticity
of the Lucite used for this test was obtained by a tensile test using
a Huggenberger extensometer. The results of this test are shown

in Fig. 28, from which it is evident that:
E = 372 %10%pPsi

When mounting the A-7 gages using Radio Service Cement as before,
the paper backing on one side of the gage was removed in order to
rﬁinimize as much as possible the load carried by the gage. A
beam to simulate the longeron with attached skin Was‘rnade as shown
in Fig. 25. The two gages were mounted on the calibration beam
exactly as they would be on the test model, The results of the two
-calibration tests for axial load and bending using the stated gage
factor of the gages (G.F. = 1,93) are shown in Fig. 29 and Fig. 30,

These tests show that the calibration factor for bending is:

Kg=168
and for axial stress

Ka= 1,39

Therefore, for the data reduction, the gage factor for maximum
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longeron bending strain is given by:

.92
(G. E)a = %5 = 5

and for longeron axial strain:

(G Fla= 739 = 199

It is assumed that superposition of strains is valid when separating
the axial strain and the bending strain from the combined strain
state,

The frame instrumentation for axial strain was for the first

phase of the test realized unsuccessfully by stretching a single strain

gage wire across the diameter of the frame. Due to slight irregulari-
ties in the roundness of the frame the indicated strain was highly in

error. As a matter of fact, up to pressures of one pound per square

inch, this gage was indicating compressive strains, Rather than
repeat the test, the skin was attached to the frame for the second
phase of the test, A single A-7 strain gage was used without cali-
bration to measure the frame strain for this test with reliable re-
sults even though the strain level was very smalli.

The location of the electrical resistance strain gages is
shown in Fig. 31,

The dummy gages during both phases of the test were exact
replicas of the conditions which existed on the test model. A por-
tion of skin upon which were mounted two integral wound gages

served as dummy gages for the skin longitudinal and circumferential
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gages. The calibration beam for the longeron gages previously men-
~ tioned served as the dummy gages for that member. ~An A-7 gage
mounted on a Lucite strip served as the dummy gage for the frame
gage during the phase two test.

The unit resistance change of the gages was measured by the
usual Wheatstone Bridge circuit and a balancing type Leeds and
Northrup potentiometer. The readings for each gage wére accom-
plished by switching the potentiometer circuit to each gage by use
of a selector panel illustrated in Fig., 23, The voltage source was
composed of two, one and one-half volt, type 4FH Burgeés dry cells
hooked up in parallel to result in the desired one and one-half volt
source, The gage readings are measured in millivolts, and the

conversion to strain is:

4 AMV x 1077
(G FXE V)

where 4 MV is the millivolt change, and 8.V, is the source bat-

€

tery voltage. Since no calibration of the skin gages was required,
the formulas for conversion to strain for these gages are:

2(AMV) x 1077

€ = B V.

2(AMV)gx 1077
8. V.

€g =

where G.F. -= 2,00,
Since the skin stress system is essentially one of plane stress, the

skin stress-strain relations are:
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_E_
(i-v2)

N
"

(Gx + 'VGQ)
£
O = —=- Eo +*VEx
6 = s (€e )
The longeron axial strain is related to the change in millivolt read-

ing by:

= “* (AMV)L x 10-3,_, e.88 (AMV);_ x10”°
(G.F), (B8.V) (8.V.) -

and the longeron maximum bending strain by:

40amv) . x/0° CAMV), -3
€' = boax Z 77 . 5 48 'Lpmax %[0
tmax’ (G.F)g (B.V.) @ v) =

where (A MV)L is the avefage millivolt change reading and«

(AMV)L;WAX is one half of the difference in millivolt change of the
two gages. Conversion to stress is independent of Poisson's ratio
- since the longeron stress state is aésumed uniaxial (though violated).
The internal pressure of the test model is controlled by the
regulato‘r indicated in Fig. 23. This is a throttling system where
the pressure line is tapped from a cylinder where the pressure is
regulated by two needle valves - one for intake and one for the ex-
ha_ust. The pressure is measured by an open end manometer., The
working fluid is Dow-Corning 200-Silicon Oil - the specific gravity
at room temperature, 0. 960,
Photographs of the model and the experimental set-up are
shown in Figs, 36 and 37.

Comparison of Theory and Experiment

A comparison of the theoretical and experimental results
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for both phases of the test are shown in Figs., 32 to 34. The large
discrepancy between the theory and experiments of the longeron
axial stress may possibly be attributed to the inducement of cross
strains into the longeron due to the complete attachment of the
outer skin, A tabulat‘ion of the maximum error in the theoretical

analysis based on the experimental results over the range of pres-

sure investigated is shown below,
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DISCREPANCY OF THEORETICAL AND EXPERIMENTAL RESULTS

Phase 1 Phase I1
Floating Frames Frames Attached
F. N. C- _Mn So Po Mo S- P. M- So

Or - - -15%0

g, -16% -470/0 -53%0

OL piax - 150/0 -8%o0 -90/o>

Ox -26% -14%o -10%o

T8 -11% -14%0 -10%

The Tabulated Results of the Experimental
Investigation are Shown Below
Phase 1
Floating Frames

P, Psl OF, Pst aL,Pst O% pax, P! Ox, st Og, Pst

0 - 0 0 0 0
0,266 - 37 121 81 ' 159
0.532 - 67 235 159 332
0,798 - 111 375 238 507
1.064 - 151 515 320 689
1.330 - 188 648 405 872
1.596 - 230 800 489 - 1057
1.862 - 274 949 568 1240

Phase II
Frames Attached

0 0 0 0 0 0
0. 266 18 53 104 79 157
0.532 38 101 211 154 321
0.798 56 152 338 232 487
1,064 80 192 455 305 653
1.330 106 237 583 ' 383 819
1,596 129 285 714 456 984

1.862 156 331 840 529 1145
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VIII. CONCLUSIONS

Not until certain tests are performed can the validity of the
solutions presented in this paper be established, These tests are
presented along with the derivations of the solutions and are easily
performed. Care must be taken by the stress analyst to prove
the validity of the solution he is utilizing before drawing any con-
clusions on the indicated stress distribution of the system. |

Probably the most limiting geometrical restriction on most
of the solutions is the requirement that the membrane assumption
be valid (see Fig. 21 and Fig. 35). Fortunately, a large class of
current fuselage designs fall within the region of the validity‘o.f
this restriction (see Fig., 21). Virtually no solutions are available
for structurai geometries within the curved plate regime (see Fig,

- 35), except for the highly limited case when the floating frames

can be considered sufficiently close together so that longeron bend-
ing can be neglected. Unfortunately, some skin thickness and panel
width combinations, typical of current aircraft, must be treated as
plates and, therefore, cannot be solved by known methods except
\for the limited case previously mentioned. Several shell solutions

(2)

have been obtained by Flugge'™’, but few designs satisfy the re-
quirements for the validity of the shell solutions.

There is a possibility that some of the restrictions on the
validity of the perturbation membrane solution and the membrane
solutions for floating frames when the frames are not close together

can be relaxed, This is indicated by both the experimental program

where the conditions for the validity of these solutions were not
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exactly satisfied (see Part ViI) and the sample analysis (Part VI)
where the two solutions agreed favorably even though these condi-
tions were not satisfied. Present experimental data are insufficient
to relax these restrictions at this time,

The idea of the feasibility of the plastic test model préved
itself and the author feels that the answers to the problem of the
stress distribution in vast structural combinations and ioadings
can be obtained economically, rapidly; and accurately by this im-

portant but little used method,
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PANEL CYLINDRICAL GOORDINATE SYSTEM
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PANEL ELEMENT
BEFORE AND AFTER LOADING

FIG.3
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PANEL ELEMENT WITH CIRCUMFERENTIAL MIDDLE
SURFAGE STRESSES ACTING

FIG. @
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PANEL INFINITESIMAL STRIP WITH AGTING FORGES

FIG. 16
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SEGTION TOTAL STRAIN ENERGY, Ut,IN-LBS.
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Fig. 36. An overall view of the experimental setup

Fig. 37. A detail view of the test model



