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ABSTRACT

The present report conbtains results of an experimental and theo-
retical investigation of the detached shock wave phenomenon. The ex-
perimental phase of this study was actually carried out at the Jet
Propulsion Laboratory at California Institute of Technology, in a two-
dimensional wind tumnel which is briefly described in Section I.

Section II contains a description of the experiments on circular
cylinders. The circular cylinder was used in this series of tests prie
marily because of its simplicitye. The investigation discussed in II=1
required a large variation of model shapes and would have required much
more time had it been based on a more complicated body shape. In addi-
tion to date on the shock wave position and shape, the pressure distri-
bution was also obtained at M= 1,546 for a two-dimensional circular
cylinder, From this pressure distribution, the drag was calculated.

Although the theoretical knowledge of flow involving debtached
shock waves is in a rather primitive state, a review of the existing
theoretical work and comparison with experimental date is made in sec-
tion III.

In section IV a method is presented for finding the stream function
or velocity potential for the subsonic region behind the detached shock
wave. This method depends upon the hypothesis that the flow can be
considered to be irrotational in this region without introducing a
serious errore The results appear to be in good agreement with the
experiments although the example carried out does not apply strictly
to the circular cylinder body shape used in the experiments.

A general discussion of the existing theories and their comparison

with experimental data is presented in section V.
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INTRODUCTICHN

During the past few years, there has been comsiderable interest
in the theoretical treatment of the detached shock wave phenomenone
Papers have been presented by several authors (refereﬁces 3,4,5,6) and
a variely of results appeared which did not agree with each other as
closely as could be desired. Thus the need for experimental data Lo
serve as a basis for comparison was obvious and the Jet Propulsion Labe
oratory of California Institute of Technology umdertook this works.

A two-dimensional tunnel 5" x 28" in cross section was designed
especially for this purpose. Some details of this tumnel are described
briefly in section I of this paper.

The experimental progrem was initiated with the purpose of obtain-
ing experimental data on two-dimensional flow and therefore the first
phase was concerned with the problem of estimation of the end effects.
It was found that even independent of boundary layer-shock wave inter-
action effects, a circular cylinder of spag/aiameﬁer ratio of 30 was re-
quired to obtain essentially uniform conditions across a major portion
of the spane The interaction of the tunnel wall boundary layer with the
shock wave made it necessary to increase the spag/&iameter ratio to 50
to obtain a uniform field in the spanwise direction, More details con-
cerning this phenomenon are contained in section II of the present pa-
pere

In addition to the information regarding shock wave position and
shape for a two~diimensional circular dylinder, the pressure distribution
aroumd the surface of such a cylinder in two-dimensional flow was also
obtained and is discussed in section II-2,

All this work was done at M=1,546 since the two-dimensional tune-
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nel had only one fixed nozzle at the time of these experiments. Simi-
lar data, however,were obtained in the 12" supersonic tunnel at J.P.L.
and are presented in this paper for a range of Mach Numbers between 1.35
and 2.0

As far as could be done these experimental data are compared with var-
ious theories in section III. The comparison shows most of the theoreti-
cal work to be in disagreement with the experimental data. Some of the
reasons for this discrepancy are pointed out in the discussion of sec-
tion VI.

In conjunction with the experimental program e theoretical investi-
gation of the phenomenon was also carried out. A method originally suge
gested by Dr. Th. von Kdrmén was applied to the flow about a circular
cylindere The general method is presented in section IV and the special
case of the flow about a circular cylinder is carried out in debtail in
section V,

The method consists of an application of the so-called Karmfn-Tsien
procedure which implicitly involves the assumption of irrotational flow
behind the shock wave, and the existence of the velocity potential as
well as the stream functione. The case of the circular cylinder was then
carried out by assuming that the complex potential in the corresponding
incompressible flow hodograph plane is of the same form as that for a
circular cylinderg however a special technique had to be devised to sate-
isfy the boundary condition behind the shock wave rather than at infini-
ty as is usually done in subsonic problemse.

This procedure gave a body shape in the compressible fluid physi-
cal plane which deviated from the circular cylinder by a factor propor-
tional to the derivative of the incompressible velocity with respect to

the compressible velocity (g—j;). Comparison of this flow field with
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that of & circular cylinder in the two~dimensional wind tumnel is shown

on figures 13 and 14 and is discussed in more detail in section VI=5.
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I, DESCRIPTION OF WIND TUNNEL

The wind tunnel used in the present investigation is a nonreturn
tunnel haviag a 5" x 28" test section (Fig. 1)e It had previously been
designed for subsonic testing of inlet diffuser models and was redesigned
to suit the needs of the detached shock wave investigatione

The tumnel is located in a ramjet test pit and consists of a steel
inlet nozzle (subsonic), laval nozzle and a plywood diffuser. The air
is supplied by the regular test pit blower facilities consisting of four
blowers and a valving arrangement for series or parallel operation. The
air is also dried before entering the tunnel.
lo Power Plent

The air supply for operation of the wind tunnel comes from e central
power plant consisting of four electrically driven centrifugﬁl compres -
sorse Iwo of these are rated at 8000 cfm and 2,06 compression ratio,
the other two at 14,000 cfm and 2.1 compression ratiocs The piping and
valves are arranged so that these compressors can be rum in parallel or
series~parallel; the performance of each combination is shown on Fige 2

-2+ Test Section

A portion of the subsonic nozzle, the supersonic nozzle, and test
section are contained in the heavy steel plates adapted from the subson-
ic tumnel (Fig. 1). The supersonic nozzle is of the fixed type; the
curved surfaces are wood spacer blocks 5 inches wide and 28 inches apart
at the test section.

Only 9 inches of this 28 inches are available for schliersen pic-
tures since this was the window size already incorporated in the side
walls of the subsonic tumnele The 28 inch height is essential to avoid
choking or interference of reflected shock waves, phenomens which gener-

ally determine the limibs of usefulness of a supersonic wind tunnels
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More detail relative to the actuel design procedure used in obtaining
the shape of the supersonic nozzle blocks will be given later.

One steel side wall is ripgidly fized to the plenum chamber and in-
let contraction duct, the other is mounted on rollers for esse in handling
during changes of the fixed wooden nozzles. These nozzles are positioned
by means of steel inserts which are doweled into the side plates,
3¢ Diffuser

The diffuser simply consists of a plywood box tapered both hori-
zontally and verticallye The external surfaces of the diffuser have been
encased in soundproofing materials to reduce the noise level in the vi-

cinity of the tunnel.

4, Schlieren Systen

The schlieren system is a conventional 2emirror type having a G.E.
BHe€ light sources. The power supply to the light source is arranged so
that the bulb can be operated continuously or in extremely short dure~
tion (5 micro seconds) flashese Both types of operation have proved
extremely useful in clarifying various phenomena which will be discussed
later in this reporte.

S¢ Survey lechanism

The tumnel is equipped with an electrically operated survey mechan-
isme This consists of a hollow rectangular bar which moves axially
along the tunnel center line completely through the test section. The
position of the bar is registered on a dial on the outside of the tune-
nel, There is also a smaller survey mechanism attached to the large shut=
tle which can be positicned accurately to any desired position in the test
sectione The smaller vernier combrol is also actuated from outside the
tunnel end is used for extremely accurate setlings of total head or state

ic tubes,



6e Supersonic Nozzle Design

Since most of the initial work plamned for the tunnel did not re-
quire changes in the Mach number, the tunnel was designed with fixed noz-
zle blocks which, however, were made easily inlerchangeable.

The nozzle blocks consisted simply of an upper and lower wooden
spacer separating the steel side walls and having the proper shape on
the inner surface in conbact with the air flow.

The cslculation of this inner shape to obtain wmiform supersonic
flow at a given Mach number was the major problem in the entire design;
therefore & brief discussion of this calculation will be presented here.

The streamline shape required to obtain & wiform flow at a given
Yach number greater than 1.0, in a nonviscous fluid, can be determined
either graphically, by the method of characteristics, or analytical;y by
a method presented in Ref, 1.‘ The analytical method was used in the
present design.

Since in a real fluid the boundary layer changes both the stream-
line shape and the effective cross-sectional area of the duct, a correc-
tion must be applied to the results of the perfect fluid theory to ac-
count for this effect, if wniform flow is to be expectede

The actual streamline shape in the vicinity of The wall cannot be
determined, but corrections to the shape based on a boundary layer dise
placement thickness calculated as discussed in Ref. 2 can be madee. This
method, although theoretically crude, produced very uniform flow in the
test section. The method was applied in the following manner. The
boundary layer thickness, § , was determined as a function of the dis-
tance from the throate The value of ng in the test section was known
from experimental data taken in the twelwve-inch tumnel at the Jet Pro-

pulsion Laboratorye The boundary layer thickness as calculated by the
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method of Refe. 2 wms then modifisd to produce the proper wall slopes at
the test sectione It then remained to correct the basic shape obtained
by the analytical method of Ref. 1 by an amount AY determined as followse

Using the notation of Fige 3

I

(Y+aY)ed +bS = aY (b-24)

- §(2Yh + l)
ay f*4«Y/b\

where

§ = displacement thickness (corrected by experimental data
in twelve-inch tumnel)

Y = ordinate calculated from nonviscous theory as a fumc-
tion of x for a given Mach number.

The final shape is given as
x=x(Y +2Y)
The flow in the test section was surveyed with a total head tube
and with a wedge of semi-angle § = 4.13°, The results of these surveys
were in very close agreement and therefore only the wedge dabta are shown
in Fige 4o The deviations of the flow are extremely small and any exist-

ing wave pattern is so weak that it cannot be seen with the schlisren e-
& ¥

quipmente.
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II. DESCRIPTION OF EXPERIMENTS

The primary objective of this investigation was to obtain data on
two=dimensional flow with detached shock waves. The data would be use-
ful as & criterion of the accuracy of the assumpbions of any given theory.

1., Tunnel Wall Effect

The first phese of the experimental program consisted of a deter=
mination of the model dimensions needed to obtain two=-dimensional flowe
Because of the fact that the region behind the shock wave is partially
subsonic, and the remainder is supersonic, it is impossible to predict
to what extent the boundary conditions (ie.s. tip conditions) affect the
entire flow fielde The presence of a boundary layer on the side walls
of the tunnel adds still more uncertainty to the validity of the experi-
mental results, since this boundary layer interacts with the shock wave
and causes difficulty in inberpretation of schlieren pictures, as well
as actually causing a departure from two-dimensional flow over the entire
subsonic field.

If, for example, a rod of uniform cross-section completely spans the
tunmel as shown in Fige 5, the schlieren picture taken from the side as
in Fige 5b does not show the true two-dimensional shock wave shape and
position with respect to the body. Actually the schlieren picture in
this case shows an extremely thick compression region due to the end ef-
fect and the location of the shock wave cannot be determined from such a
picture.

The tunnel used in this investigation was not equipped with a schlie-
ren system capable of taking pictures corresponding to Fige 5a, and
Therefore it was not certain whether or not the shock wave-boundary layer
interaction at points A and B affected thé entire shock wave between A

and Bs Thus before any conclusions could be made this difficulty had to
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be overcome. The most obvious method of minimizing this difficulty was
to reduce the span of the model. This was done and the resulting confige
uration is shown in Fige. 6.

Reduction of the model span, so that the ends did not protrude into
the boundary layer, resulted in clearer schlieren pictures (Fige. 6b)e
The schlieren photograph of the shock is much more distinct than that for
a full span model (Fige 5b), but evidently the difficulty is not entire-
ly overcome since on Fige 6b there still appears to be some peculiar
three=dimensional effect.s The shock wave still extended beyond the model
tip in the spanwise direction and intersected the boundary layer as shown
in Fig. 6a, thus causing peculiarities in the resulting photographe The
question as to what model dimensions would produce & uniform two-dimen-
sional shock wave which could be photographed clearly enough for the ne-
cessary data to be measured still had no satisfactory answer.

By rotating the model 90° about the tunnel axis and taking pictures
of cylinders with various span/ﬁiameter ratios it was found that uniform
two-dimensional flow could be obtained only with span/aiameter ratios
exceeding 30. Testing models in this pesition (Fige. 7) did not give the
shock wave shape but did show its wniformity in the spanwise directions
The results of these tests are shown as X's on Fige 8. In this vertical
position the shock wave-boundary layer interaction was minimized since
the wave curved backward sufficiently to obtain a supersonic flow bar-
rier (Fig. 9) between the model and the boundary layer.

Since the principal interest lies in investigating the flow field
behind the shock wave it is essential to test models in the horizontal
position as in Figs. 5 and 6, where this field is not obscured by the
shock waves Therefore it was necessary ﬁo determine if models of span/

dismeter ratics as low as 30 would still produce two-dimensional flow
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vwhen tested in this position. The results of testing approximately 50
models and taking over 200 schlieren plctures are summed up in Fige. 8,
The models had variocus spans varying from 2 inches to 5 inches and diame-
ters varying from 1/16" to 3/4".

It is clear from Fig. 8 that span/diameter ratios (b/a) of approxi-
mately 50 should be used to avoid the effect of the boundary layer-shock
wave interaction. The effect of varying model span (b) in relation to
tumnel width (w) is also shown on Fig. 8. For large enough values of
b/ﬁ the value of b/W does not matter except for clarity of vhobographs.
From this point of view values of b/ﬁ'< 0e8 were required in this parti-
cular wind tunnel.

Fige 10 is a schlieren photograph of a 1/16" diameter model having
a span of 3 inches. This is included as a picbure which represents true
two-dimensional flow past a circular cylinder at M = 1l.546. Unfortunate=
ly it was necessary to use extremely small models (1/16" diameter) to at-
tain two-~dimensicnal flow but the dats were very carefully measured by
enlargement of photographs taken on glass plates. The analysis of this

picture gives the following data

LR = 2.72

L/Re= 0,1875
where

L - detachment distance

R = cylinder radius

Ry= radius of curvature of shock wave
for

M = 1,546

R, =2 R oo 105

/L(

Since the two-dimensiocnal tunnel in which these experiments were
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performed had fixed nozzles,data were obtained at a range of Mach num-
bers between le3 and 2.0 in the 12" wind tumnel at the Jet Propulsion
Laboratorye The model used for this purpose was 1/4" in diameter and
10" in spane These data are presented in Figse 13 and 14 snd are in ex-
cellent agreement with the data obtained in the 5" x 28" two-dimensional
tunnel.

2e Pressure Distribution Around Circular Cylinder

In order to measure the pressure distribution around the surface
of a circular cylinder, a hollow rod 3/16" in diameter, having a pres-
sure orifice midway between its ends was mounted vertically in the tune
nel, protruding at the top and botbtome The span was therefore equal
to the effective tunnel height (approximately 28"), The tube wes sup=-
ported at both ends by thrust bearings and put under tension to avoid
excess bendinge Provision was made to rotate the tube about its longie
tudinel axis so that the pressure on the hole drilled in its surface
could be read at different angular positions. Fige 11 is a plot of this
pressure, in terms of the stagnation pressure, versus angular position
around the cylinder. Fige 12 is a schlieren picture of the tube showing
the two-dimensional character of the flow past the cylinder,

The drag coefficient per wnit length of cylinder was calculated
from the pressure distribution shown on Fige 1lle It was defined as fol-
lows

CD=?-}'—)——M—3‘/\P‘C05 6 d6

p' = pressure on cylinder surface

p = free stream static pressure
The integral was evaluated graphically and gave a valus of

Cp = 1.447 for‘ M =1.546

Further experiments are planned to obtain similar data over a range
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of Hach numbers but have not been completed as yete It is of inberest,

however, to compare these data with some existing theories.



I7I. DISCUSSION OF SEVERAL THEORIES AND
COMPARISON WITH EXPERIVENT

Since several theories describing the detached shock flow regime
have recently been published and since there are apparently very few
two-dimensional data available for comparison, a brief review of each
of these tTheories and comparison with the previously discussed experi-
nental data will be given heree.

le Nagamatsu's Theory

One of the first and simplest theories on the subject of detached
shock waves was presented by Henry T. Nagamstsu in his doctorate thesis,
Refe 3o In this theory Nagamstsu has attempted to calculate the shock
wave detachment distance for several differently shaped bodies, both
two-dimensional and axially symmetric. The method used was as follows.

The flow downstream of the detached wave was assumed to have & velow
city distribution equivalent to that of the same body in an infinitely
extended incompressible flow, corrected for the effects of compressibili-
ty by the Prandtl«Glauert rules. Then, by matching the velocity on the
axis with that behind a normal shock wave at a given free stream lach
number, the position of the wave was fixzed for the given value of I,

To be more specific, the case of a two-dimensional circular cylinder will
be worked out in detail,

It is well known that the flow of an incompressible fluid past such
e cylinder is given by the potential fumction for the perturbation velo-

cities

where
8 = radius of the cylinder
T

U = velocity of flow at infinity

The velocity field is then given by



and if we apply the Prandtl-Glavert factor to this we get

F- "vq—:—-z <;—~) (1)

where Mé is the Mach number behind e normal shock wave.
If a normal shock wave exists in a supersonic flow of liach number

&1 then it is known from shock wave theory that
2
_ _2 M, -1 )U

where u is the change in velocity produced by the shock wave. Equating

this to the real part of Eqe (1) on the x-sxis gives

\/T—é)—"ﬁz 7%':) = (xi | )(Mi’)—fl>u

or, solving for x/é gives

2= -+ ) ) ®

In This equation x is the distance from the origin to the shock wave.

X -4 = __l:__)
a a

vs free stream lMach number as determined by this theory. The experimente

Fige 13 is a plot of the detachment distance (

al data obtained in the JPL tumnel are also plotted in this figure.

The detachment distance can be computed in this manner for many
bodies whose incompressible solutions are known, but the theory has seve
eral obviocus weaknesses, which account for the large discrepancy between
experiment and theory. For example, by choosing a velocity distribution
along the axis, the distance L is fixed. The body corresponding to this
velocity distribution in a compressible fluid would probably be very dif-

ferent from that for an incompressible fluid, whereas this theory ne-
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glects the change in body shape. A more exact calculation wes carried
out by Lin and Shen (Ref. 5) and although the method used is very ele-
gant, the use of power series has proved to be very cumbersome.

2. Method of Lin, Shen and Rubinov

This method consists essentially of a power series solution of the
equations for the adisbatic flow of a nonviscous, compressible fluidg;
valid in a region close to the shock nose point, and a matching of this
solution with another series solution valid near the body nose. The
method was first suggested in Ref. 4 by Lin and Rubinov in a slightly
different form and will be discussed in some detail here,

The fundamental equations governing the flow are, in standard form

Continuity equation v-(£4) = (4)
Equation of motion (4 -V V) q =~ YJ’B:P (5)
Adisbatic equation fﬁ F(y) = e"s— (6)
Equation of state 7? =RT (7)

a_ 7P
Conservation of energy JE.L"}?‘ + Z,CL = ;{—,— +—é— q_2= const.(g)

Since
(3 v)g =5 + (vxg =)

Eg. (5) may ve written as
-\ = vp _ V49
) - -5 - o

Now to obtain an equation involving only velocities the term Y_'P.
must be eliminated from Eq. (9). This quantity can be expressed in terms
of the velocity (q) and Vs the maximum velocity obtainable by adiabate-
ic expansion, as follows.

From equations (6) and (8)

¥ ¥-1 Vm 4
A >

I
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and therefore
D'

¥ -1 Vi i N
PGy R\ T e (10)
2y F(y) V.2,
and using this in Eq. (8)
e
X& ¥-1 2, - AR RA
p=F()’ [‘éix’ Vin (' _\7:)] (11)

Taking the gradient of p and dividing by S gives

"‘v}f='£‘}’(vl: )dﬂmF(\b) v+ ‘l (12)
This is the expression for 15—,—:? in terms of velocities. Substituting it
into Eqe (9) gives
(g g = 2 (V- ) L F dban(ll!) 7
or
(g hg = 25 Vo =€) v In F (W) -

The conventional stream function for axially symmetric flow is de-
fined as follows. If we write BEq. (4) for the case under consideration

it takes the form

o2 (P4) . 1 2 (rpn) _
EX] T ar(f =0 (14)

Now we define a function ¢ which satisfies Eq. (14) as
rpu = q’y

(15)
rpa=—yYz }

This defines the stream function in the conventional menner.
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Rewriting Bqe (13) in cylindrical coordinates and assuming axial

symmetry gives
i.“—"——a—t—‘—>u | P 2 [F(Q/)] _%___)>

22 ar Y-1 fp 2ar Fly
e o [Fw)]/t
~@Y -2 =77 F 5z <F(d1))

or in terms of ¢ s both equations become

¥ ]
35 %) + 37 (W) <5 F ) =

Equation (16) is known as the vorticity distribution equation and
is a basic equatién for the type of flow under consideration. Another
equation is needed since there are two dependent wvariables, 4) and P
in BEq. (16). The second equation is easily obtained by substitution of

Y and Eq. (6) into Eq. (8)

) WS e

Thus the problem consists of finding solutions of equations (16) and
(17) .which satisfy the particular boundary conditions. In this case we
are interested in obtaining information in the region between the shock
wave and the body, and a solution waes obtained by Lin and Shen as follows,
Formally assume ¢ and P +to be of the form

$o= 0, (2)r® + g (2) "+

P = £ (2) +f;(z)r'°'+ £ (E)rY s (18)
the odd powers being omitted since the solution is desired for the sym-
metric flow only and therefore the coefficients of odd powers of r must
be zeroce

Inserting (18) into (16) and (17) and comparing powers of r gives
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two series of differential equations for the coefficients of \p and f
respectivelys. Upon manipulation of these sets of equations the coef-
ficients of the series can all be expressed in terms of £, and its
derivatives,

Thus for any given choice of g (2) the functions ¢ and p can be
approximately determined,

From the form of the assumed series (18) it is evident that the
entire procedure is valid only in the neighborhood of the z-axis.

The extent of this neighborhood cannot be discussed from the series
themselves since the general or nth term is uwnlmown. However, from the
theory of power series in general it is lmown that these series cone
verge within a circle whose radius is equal to the ciistance from the ori-
gin to the nearest singularity of the functione Thus for a proper choice
of £(2) the series should converge in a small region near the z=-axis
limited only by singularities within the bodye.

Further restrictions are placed on the region of convergence of the
series by the method used to determine ﬁ,(Z). This is done as followse.

The shock wave shape is assumed to be of the form
2 2 3

then the pressure, density and the fumction F(¢ ) immediately behind the
shock are known in terms of the shock wave inclination & and can be ex-
pressed in terms of r? or z by the use of Bqge (19). F(¢) can then be
e . e s _lpl 2 . n
expressed in terms of § from the relationship Y =3faVer for uniforn
axially symmetric flow. These expressions for Y and f£ as functions
of z with coefficients in terms of @ 's are then compared with power
series obtained by inserting (19) into (18)« Thus the coefficients are

now determined in terms of the shock wave shape parameters ( ﬁ,, Ve
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The region of convergence has, howsver, been further restricted to
the neighborhood of the shock wave nose by this procedure, since the co-
efficients have been evaluated at the shock wave itself.

The entire procedure is then repeated with the following difference.
The expression for the shock wave shape is replaced by one for the body
shape

e ez + .27+ 27+ .

(20)
and the conditions that furnish the relations for the determination of
the coefficients are now those at the body nose instead of those imme-
diately behind the shocke Thus another series solution in terms of the

€ 's can be found.

By matching the two solubions at the stagnation point, relatione
ships involving /3 's, e's and J , the debachment distances are found
and the 3 's and 4 are expressed in terms of the body shape parameters.

The only examples carried out in detail by this method appear in
Refe 6. In this paper Dugundji carries out the calculation for the quan-
tity L/RS (detachment distance/}adius of curvature of shock wave), for
an axially symmetric bodye. The method used is that suggested by Lin and
Rubinov (Refs 4)s For purposes of calculating L/R_ it is not necessary
to use the expansion about the body nose and the Lin-Rubinov method is
simpler; therefore, this method was used at the Jet Propulsion Labora-
tory to calculate the flow about a two-dimensional circular cylinder.
Fige 14 shows the results of this calculation and a comparison with ex=
periments The calculation included only two terms of the series, since
in the axially symmetric case this seemed to give closer agreement with
experiment than the calculation including the third term. The discrep-

ancy in two-dimensional flow is much greater than that in the axially
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symetric flow discussed in Ref. 6 In fact, the same approximation as
used in calculating the data for Fig. 14 gave excellent agreemsnt in the
axially symmetric case with experiments performed by Ladenburg (Ref. 7).

o definite conclusions can be drawn yet since there is a scarcity
of experimental data, but it appears that the Lin method should be car-
ried out to include more terms of the series il any useful information is
to be expected.

3e Moeckel's Calculation

A very simplified procedure for calculation of the shock wave detache
ment distance and estimating the drag of the subsonic surfaces of the bo-
dy is presented in Ref., (8)e

The method consists essentially of assuming the shock wave to have

a hyperbolic shape given by the equation

where
/3 = the cotangent of the Mach angle

Xy= the distance from the vertex of the wave to
the intersection of its asymptotes,

The sonic point on the body is assumed to be located at the point
where the inclination of the surface is equal to the wedge or cone angle
corresponding to shock detachment. The sonic point behind the shock is
given by the shock wave shape.

The sonic line comnecting these two points is assumed to be straighte
The length of this straight sonic line is then determined by an approx-
imate form of the continuiby equatione. The derivation of this equation
and its use will be repeated here in order to show what approximations
were made by Moeckele For notation see Fige. 15,

The stagnation pressure immediately behind the shock wave is known
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in terms of the free stream Mach nurber and the shock inclination. The
approximate continuity equation is based on the use of an average val-
ue of this stagnation pressure. The average value is chosen as that
value exlsting at the mass centroid of the fluid passing the sonic line.

With this assumption the continuity equation can be written as follows.

A, (Bs), __(_Pi) T,
[«

Pole Tq ™

A, £

where the subscripts are defined as follows

0 = free stream
8 = sonic line
¢ = centroid of mass

cr - critical (=1) section

Since the stagnation temperature is constant across a shock wave

i

’— -
_éﬂ _(_gL) I + 1%%' Mer _ [ Y +1 ] r’(lé) [Cﬁmi”}
A, Pl +TEMP| W, T2+ Ge-0M” ole LA

S

In Moeckel's paper this relationship is written as

A (B) [424]

or, in other words the quantity

oyl ]"
zZ +(r-nNM*

is put equal to le This is exact for M=1.0 but for Mach numbers slight-
ly greater than 1.0 a considerable error is introduced. For example,
at M=1.2 the error is approximately 207,

From Fige 14 it can easily be seen that

AS - ’Zs - ﬂsa

cos q



and therefore
Ys ~tss [P\ | £ % z+(r—1)Mer _
cos n - (Ps )c[(f’“-")“][ Y+ ‘ts Bﬂ‘S

2 +(x-IM*
T+

(In Moeckel's paper the factor is put equal to 1.0 in
this equation alsos)
Combining terms and simplifying the above equation gives

:;:s ) l—chos'l where o ( ) [(f”)u}

Now since the sonic line is assumed normal to the average flow di-
rection in its vicinity the inclination of the sonic line is given ap-
proximately by the average of its inclination at the shock and at the
body R = Ay * Ag).

Knowing %3’/Qh5’ the value of x, can be determined, thus fixing
the shock waves. From geometrical considerations the quantity ‘~/4w55
can also be calculated, where L is the horiszontal distance between the
sonic point on the body and the shock nose (Fige 15). The details of
this calculation will not be discussed here since they do not involve
any further approximations of interest in this discussion.

It is interesting to note, however, that as shown on Fig. 16 Moeck-
el's method apparently agrees with experimental data. It should be re-
membered, howsver, that the location of the sonic point was not given
experimentally but was assuwed to be located at a point on the body de=
termined by the method suggested by Moeckel and described above.

According to this method the sonic point is located at 78° from
the cylinder nose for M=1,546, and using the data of Fig. 8 (?i_‘. = 1.36)
the quantity l~/4%550an be calculated as follows

L=136d+1r (1=cos ¥)



%B=r sin ¥

L __2(188) + (1=-cos ¥)
Yse sin ¥

where ¥ is the angle between the flow direction at oo and the radius
through the sonic pointe If ¥ = 78° is used this method gives

L = 3,59

4{55

Moeckel's method of calculation using the continuity equation gives a
value of
L _ 3450

s
If the measured value of ¥ dis used ( ¥= 57°) the value of

%;-5= 3¢807 is obtained. This also agrees very closely with Moeckel's
predicted values as shown on Fig. 16, For this range of angles (¥ ),
the distance (L) does not change rapidly with ¥ .
Noeckel also calculated the drag coefficient of two-dimensicnal
bodies with detached shock wavess The drag coefficient calculated by
Moeckel included only the drag of the subsonic surfaces and the refer=
ence length was again njsa.
If the sonic point is assumed to be at 78° from the stagnation
point (Moeckel's theoretical value) the integration of Fige 11 gives
(Cp)ggo = 1e120

If, howsver, the actual sonic point is used the integration gives
(Cplgro= 1252

Both of these values are appreciably different from Moeckel's value
(Cply = 0.85

for two-dimensional bodiese

This simply means that the method of averaging used by Moeckel

does not produce the correct average pressure in the subsonic regions
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IV, A THEORETICAL AWALYSIS OF THE FLOW
BEHIND A DETACHED SHCCK WAVE

The flow behind a detached shock wave in two dimensions has been
discussed by several authors (References 3,4,5,6), some of whose work
has been reviewed in section III of this report. Recently, during dis-
cussions with The von Karmén, he suggested to the author a solution of
the problem in the hodograph plane which has so far been carried out on-
ly in a simplified form, but which is essentially different in concept
from those methods of approach already lmowne. The method suggested by
von KérmAn will be presented in general and then the approximate treat-
ment will be used to carry out the case of a circular cylinder in a uni-
form supersonic flow.

le Pundamental Equations

The basic assumption made in this treatment is the fact that the
flow behind such a wave can be considered to be irrotational, thereby
making available the mathematical simpliciby of linearized equations in
the hodograph plane for the two=dimensional cases

With this assumpbion the equations goveraning the flow field are

(Refs 11, pe. 251)

20 __I=M* £ 24
aw Y S oe
(1)
2d _ S, 2
28 S ow

where wwvelocity magnitude, 6 “» velocity direction with respect to une
disturbed flowe.
Differentiating the first with respect to 6 and the second with

respect to w gives

I-M? A
(bwe =7 w —7 ‘Pee

Pow = %’Wq)ww +'j‘§g(‘+Mz)¢w
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Kow, since d)we= ‘bew where CP is a differentisble function of both var-

iables, by subtraction

W by + W(H'M Yw + (’“ d)ea = (2)

2
2 w
or since M = ——F——, this equation becomes
a? - XL,
g
2 +1
W(" 22 ot (1= T W + (1~ BNy <0 (o)

It has been shown by Tschapligin that if a solution of this equa-
tion is assumed to be of the form

Y =§P FV (wa) wy[ay cos v6 + by sin vG] "

the quantity F. v (Wz) is a hypergeometric function satisfying the equation

w2 -Aw?) F'(w?) + [8 ~(2A +B) WZJ F (w?) +[vaC —u,B—u(v—l),c}];::o('s)

where A,B, and C are constantse

Thus as long as the series in Bq. (4) is uniformly convergent and
the functions F satisfy BEqe (5), then ¢ represents the stream function
of a plane compressible flow, in a region where the assumptions of ir-
rotaticnal, isentropic flow ex 1st everywhere.

The problem is then reduced to that of evaluating the constants
a, and b, té satisfy a particular set of bowndary conditions. It must
be remembered that if the assumption of isentropic flow breaks dom
along a surface within the fluid, the solution cennot be comtinued across
this surface, but the problem must be solved separately for each region

in which the assumptions are valide This is actually the case in the

Y
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detached shock wave probleme In this report the flow ahead of the shock
wave is assumed to be a wniform two-dimensional flow of known velocity
and stagnation conditionse The problem then reduces to a determination
of a flow behind the shock wave which can be matched to this umiform
flow with a physically possible shock wavee.

2. Boundary Conditions at the Body

The boundary conditions for the problems considered by Tschapligin,
and those of the present problem, take the same form on the body surface.
They consist of & knowledge of the body shape which can be written in in-

trinsic form as 6= 6(3) and

J - _2€ =
=5 for ¢ = 0. (6)

where R is the local radius of curvature of the body at a point where
the body inclination with respect to the direction of undisturbed flow
is ©, and S is a coordinate along the surface.
Under the assumption of isentropic irrotationel flow this can be ex-

pressed in a more useful form by the use of the potential d)

J - _2b 26 __ 20
R a5 2¢ 20 (7)

vhere § is defined by the relations

ad _ 20 _ o
=) 3“3
and (8)
2 2 2
u +np¢ =w
The quantity % can now be expressed in berms of the stream func-

tion | by use of BEg.'s (1)

2

NN

=M 2% 4w

oW S ow w F 286

dp=28do + 20 4y o B 20 45 I-M
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do = awdb-+ w L 86d¢
(_:fq. Wiﬂaa) L =MEA (g_di)?‘
ow w f \a6
or
£ ad
28 = _g,_é 2 z (9)
o ¢ 2 I-M*< /23 ¢ 2
Combining Eqe's (7) and (9)
20\ (-M® (a0 £
W(aw) = (g’é‘) = “EW‘Z ‘aa"% on (10)

p =0

Equations (10) provide a means of determining relationships among
the a,'s and b,'s, which, for Tschapligin's problem, together with the
boundary conditions at infinity should determine all the arbitrary con-
stants in the solutione The difficulty in using this procedure lies in
the fact that it is necessary to know the relationship between w and ©
on the body, iecs the curve in the hodograph representing the body sur-
face, and in general this camnot be determined until the solution to the
problem is lmowne The use of this boundary condition will be discussed
in more detail in section V.

3¢ Boundary Conditions at the Shock Wave

Since there is a discontinuity at the shock wave, the flow
behind the wave must be determined by boundary conditions at the shock
wave rather than at infinity. In the present report, since we are as-
suming irrotational flow in this region, this boundary condition can be

groatly simplified.
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In order to match the flow behimd the shock to the wniform two=
dimensional Tlow in front, it nust be prescribed that the mass flow ace
cross any element of the wave shall be preservede Thus ahead of the

wave we have by definition

AT

snd behind the wave
an
da* d¢ + Y dgp

but since the shock wave can be considered to be a curve in the 0,9

coordinate system

dﬁ%[ (q)) ]d“’

and the continuity condition can now be prescribed by equating the change
in q) ahead of the wave to that behind the wave., Thus
% 24 (do ) ny
- o
B U - N +
L Yo 2¢ \dy /g 2¢
where subscript s refers to conditions immediately behind the shock wave.

From the definition of ¢ and Lp this can be written as

£ sinf:(16) | £ mse
J:,Uoc Ws d(,)s

Eqe (11) must be satisfied at all points of the shock wave and,
since Wy " is a Imown function of ©s for any given free stream lMach num-
ber, this equation provides additional relaticnships emong the arbitrary
constats of the general solubion (Eq. 4).

4e Approximations

Although these boundary conditions are not complete, they can be
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used To arrive at approximate particular solutions which represent the
flow near the nose of a body under the detached shock wave flow regime.
There are several special body shapes such as the wedge or circular cyl=-
indsr to which the above method could be appliede In the present paper,
however, the method will be somewhat modified before attempting to arrive
at a particular solutione

The modification consists of the Tschapligin approximstion to the

exact hodograph equations (1). By inbroducing a new variable T such

that
-/ = \F dw
dT = \/J M " (12)
equations (1) are transformed to
- r I
d)‘t - | -M Jpo ‘Pe \
| (13)
=/ S
d)e | =M 7 L""L’
and by putting % Vi-M%=] equations (13) become
(‘b’l_’ 4’9 (14)

d)g = LP’L'

These are the Cauchy Riemann equaticns for the fumction F = ¢ +{ 4)
and the independent variable T — (6

For convenience of calculation the varisble T - (8 is transformed
to ‘T, where q=er—ie=ie—Le. Thus the Cauchy Riemann equations still
hold in terms of q and ©® as polar coordinates.

The method by which this Tschapligin trausformation simplifies
the solution of a given problem is twofolde In the first place the field
equation instead of being of the form of Eqe (3) is reduced to

2

20 2% _
e 30° 0 (15)



laplace's equatione

The solution of this equation is known to be any analytic function
of the complex variable T - 16 or cLe_ig

Further simplification in the solution of a problem is also afford-
ed by the well-known analogy to the theory of incompressible fluids,
since solutions of incompressible fluid flow problems also satisfy la-

rlace's equation in terms of T; and 6 where

dr, = % (16)

where 9 is the wvelccity of an incompressible fluid in a flow field
which is irrotational and isentropice.

By comparing equations (12) and (16) it can easily be seen that the
velocity of a compressible fluid (w) can be written in terms of the ve-

locity of an incompressible fluid by the relationship

A% = Vi )

This method was first used by Tschapligin and later improved by
von Karmén and Tsien (Refe 11)e. The details are well lmown and will
not be discussed here except to show their application to the special
problem of flow about a ciréular cylinder {(section V),

Integration of Eqe (17) under the Tschapligin assumption yields

w
1 £ &,

Lo |+ () (18)

where a, is the velocity of sound at the stagnation point. Fige. 17 is

a plot of —gz vs %%;.
If this equation is solved for —L it zives
]
W 4 q-./a-o

—é'—o 4"(9./a.oja
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The method of solution of a compressible flow problem then consists
of taking the lnmown incompressible fluid solution and determining the
velocities of the compressible fluid from these formulase This proced-
we is somewhat more involved in the present case since the conditions
et infinity for the incompressible problem have no exact analogy in the
detached shock problems However it will be shown that by leaving the
incompressible solution undetermined at infinity, a fictitious condition
is supplied by the shock wave boundary condition. This fixes the income
pressible problem at infinity in a manmer which produces a good approx-
imation to the actual flow in the region between the shock wave and the
body, at least in the neighborhood of the stagnation streamline.

The method will be carried out in detail for the case of a blunt
body in section Ve Before this is done, however, formulas for the detach-
ment distance and shock wave nose curvature will be derived in terms of
e solution assumed to be known as a function of g and © o These quan-
tities are most useful for comparison with experimental data in the form
of schlieren pictures, although, from the solution obtained, any other
quantity such as velocity or pressure on the body can also be determined.

Bbe Derivation of Formula for Shock Wave Detachment Distance

Assuming (y has been determined as a function of W and 6 , it is
interesting to calculate the shock wave detachment distance (L) aé well
as the shock wave radius of curvature (Rs) to provide a simple means of
comparison of the calculated flow with experiment. The quantity L can

be expressed as

L=/de =/¢aii =/“i§_¢_g_\n_/ (19)
b o w oW W
! Wz_
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where the peth of integration is along the so=called stagnstion streame
line from the body stagnation point to the dowmstream face of the shock
nose, Since the flow along this streamline is undeflected, d© = 0 and
therefore the last step in Eq. (19) is valide

Using the relations of Egqe (1), Eq. (19) can be written as
a2 p
- 2¢
L / v z /: 26 dw

or using Eg. (17) and the fact that ;;E—’-\/I—Mz-_-l this equation becomes

12 o 4 - (=
e LN ET
° a, .

This equation will be used to calculate L for a circular cylinder
once ¢ is determined as a function of © and q e

6e Derivation of Formula for Radius of Curvature of Shock Hose
Y

{ R

Physical Plane Hodograph Plane

In order to express the shock wave nose curvature in terms of the
stream function and its derivatives it is only necessary to use the fol=
lowing relationships which are valid in the region close to the shock

II0S€e
a(u - Wan) = 8 w,
(21)
4 _ 1
dy* B (22)
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gl‘.u( = ..g; = o from symmetry (23)
_ Ve _ [am—a + arv-d ] o
o X[ = — 328~
U, t W an_#,"d' (24)

where

Rs - radius of curvature of shock nose

u = free stream wvelocity

subscript 2 refers to conditions behind shock at an arbitrary
point

subscript 2n refers to conditions behind shock at the nose

Combining Eqe's (21), (23) and (24)

~ (u-w = W, =21
( an) _E: ‘—‘-2,? ”{
or
(u - wzn)
Rg = —= since w, = w, (25}

i
The quentity ( u = Wo ) can be evaluated in terms of the free

stream Mach number from normal shock wave theory since

v = o= ) < (- o)

U2 —"—’J—)

U= Wan 1\ M?

I

(26)

The quantity 24 san be expressed in terms of ll) and its deriva-

°t

tives by comnsidering n+ as a function of d) and Qb Since

- 20 20 20 24

20 +
T R YA (21
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and
_24d 20
db = -~ du + ——avd(u‘

4y = 3L du + 25w

Then solving for dn- gives

2b 4y - 28 4y
d{U"" =X 3w
3¢ ab _ 20 3¢
2 ] au
or
20
a0 W
° 29 2¢ _ 26 29
2u 3 o au
and ' (28)
9
20 _ o W
ay 26 3¢y _ 24 2
3au. I 3 aw

Inserting (28) into (27)

a2b 24 _ 20 2¢ > L 20
a(v*:é%a«-r au 24y “”%“?J“au (29)
dny 26 ad _ 26 ab 26 2d _ 2d a¢

U I S oW 2L 20 =1 Juw

The derivatives with respect to u and v in this expression can now be

written in terms of w by the relationship

2
LL+IU'2=WZ
w _

m,—-fa.n e

After this change of variable Eq, (29) becomes
2(Sz
L w (.f.’:)

> (3%)

for 6 =0
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and therefore from Eqe (25)

Rs = ?% \LAJ/j Mr\:_a' (gg>z (_Jéo_)a

(30)
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Ve SOLUTICN FOR CIRCULAR CYLINDER

Since experimental data on circular cylinders was available for
comparison with the theory, the method described was applied to a body
with a radius of curvabure R, where R is a consbant independent of 6

It is well known that for an incompressible fluid the complex po-
tential F=¢§ +i{ for a circular cylinder can be written as

9
- 2 - &
F db{"—' _-_-CLH (31)
v a
where a and b are arbitrary constants to be determined by the boundary

conditionse

1. Boundafy Condition at Stagnation Point

In order to satisfy the boundary condition R = constant on the bow=
dy it is necessary to insert (31) into (10)e This means the quantities
g—&'f and %g— must be determinede To do this simply, the function F
is put in a more convenient form by expanding it in a series, valid for
small values of q or wand © close to /2. Then the boundary cone
dition (10) is satisfied at the stagnation point.

. o s . . ~L0
BExpanding F in a series in cL qe

EEb_ =2 +vi4<—%—')zcos 26 - J—(—i )c0536+ + L[-—( )Sl.“ ce
1

lo \ &
Jg(-—)sm 36 + . ]
end thus

b = - %(—})asin 20 — Ef(%)asin 36 + .

To simplify this expression further put €= g -6 and expand in

* . o
terms of © ¢ This gives
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Since on the body ¢ =0 and it can be showm that g is of the same or-
der as O s i1l The hodograph representation of the body is considered,

then for small valuss of q and e

* 19 . . .
6 =% 3 as a first approximation. (33)

From BEq. (32) differentiating with respect to ©

3 x

2L - —%—(—) —db( )2 * ab%(—%—) 6 +.

and dii’ferentia‘ﬁing with respect to Qq

[

24 _ab(a)_ _@L(:L_)‘*_ ab 3 (&

56 2 \(a 4| a o4 (34)
4
o HE) (2 e =

Now since ii:l near w = 0O, QQ = EX/I
dw =11 ow

From the form of Eq.'s (34) and (35) it can be seen that inserting
them into Ege (10) end eq_ﬁa‘bing coefficients of like powers of 9 will
give relationships of the form

2

I IS
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and, since near w = 0 g =", this gives
b=R (36)
in the limit as q —»w 0,
Thus one of the two arbitrary constants has been evaluated and it
now remains to evaluate "a", the remaining constant in the assumed solu-
tione

2e Boundary Condition at the Shock Wave

In order to assure the continuity of mass flow across the shock
wave, 2q. (11) must be satisfied at all points along the wavee

In a manner similar to that used near the body stagnation point,
the complex function F(g) is expanded in a series. This series, how=
ever, is convergent in a region near the shock nose where the velocities
have the value ggnor Wpne Thus the Taylor series in (g - gq,n) can be
separated into its real and imaginary parts and the result is of the

form

h h ~ "l2h zn 2 n
d):z“—;%f +‘Zj(1a1 )—(‘;)(Z+ ia)ez_
Ji=Ze T g(1- 2P g(i - 1n% U (8

a a

2
_ ‘lan

“’7“(?) @

The quantity <‘L ~ q_zn) which occurs in the expression for b must
now be expressed in the same approximete form as the rest of the eicpan-
sione To do this it is necessary to use the approximation to the oblique
shock relations for small flow deflections (@) and shock inclinations (o).
To arrive at this relationship the following exact equations for

obligue shocks are used
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wp Sin ©
Tan o = W —w,ycos €
(39)
( ) = *% y-1 2 . 2
u,,WZCOS oL cos (a+6)=a —‘___Y ' u, sin a
* (40)
where ol is defined on the sketch
ol
shock wave

Since o -0 and w -0 in the neighborhood of the shock nose thesse

relationships can be expanded in terms of 6 giving

Wen 2
W= Wap _ 9 Wen) )~ p XL _‘1’_2.:']92= 2
a, z(1 __“{_Lz_n)[( u ) Y+ u Kw © (41)

Using this and Eq. (17) the quantity (q_— q_z,,) can then be found in

the form

~9z2n 2
3—;:— = Kq© (42)

Then, symbolically, Eqe.'s (37) and (38) are of the form
6= A+Be6"
(43)

p=Ce
where A, B, and C are, by Eq.'s (37), (38) and (42), as follows

A= 2 — 9.2n (44)



B= 2 g _a';/ - a 7
_ 2n\7e _ 9eanY%
-3 80 %)
CLz.n)a
C=- 2
a(n - L)%
In terms of these conshtants
d _ 2B
(50). - & (9

Ege 11 can now be written in an approximate form for small values

of ® and ol (iese near the shock nose).

£ L ! 2 1 2B,
0 = — 2 +— Q6 4+ — E£290 + |
els W, £ Wy w, C (46)
where - %2 + 1 (G6% comes from the term -2 938 yon expanded in series.
A Wp 5 Wg )
In this expression
Wan
= 2ol =¥ Ly B .
Vi +( L Ve (®) (47)

Eqe (48) must hold for all values of © within the domain of con-
vergence and therefore the coefficients of ©" must be zero for all val-
ues of n>1l. This gives us the equation which determines the remasining

arbitrary constant a.

2B _
61—-6‘ = 0O
or
9.an
2K (?-*“‘a'f):
I Ay Len) 0
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or
Q.2n
9o _ 4Kq-20°5 ~2 s \
a AKg -2GE + 2 (48)

Fig. 18 is & plot of & vs M (free stream lach number).

This is the desired equation for "a". Both arbitrary constants
in the assumed general solution have now been evaluated and a possible
flow field has been found which satisfies those boundary conditions
which have been discusseds. It remains to determine how c¢losely this
flow resembles the actual flow behind a detached shock wave created by
& circular cylinders

To do this the function F is simply substituted into equations (20)
and (30) for the detachment distance and the shock wave redius of curva-
ture.

These quantities were calculated for a range of Mach numbers and
compared with the same guantity as given by other theories and with ex-
perimental dete obtained at the Jet Propulsion Laboratory as discussed
previously in this report. The comparison is made on Figs. 13 and 14.
From this comparison it appears that the method presented here gives a
good approximastion to the flow lield around a circular cylinder, espec=
ially at higher free stream Mach numbers. The discrepancy which exists
is attributable to the fact that in the compressible fluid fisld, the
body streamline deviates considerably from the circular cylinder shapee.
The actual body produced by this stream function is comsiderably thine-

ner then a circular cylinder of radius "b".
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VI. DISCUSSICN
l. Experiments

Until recently, experimentel data on the detached shock wave phenoe=
menon consisted of a few pictures, showing the wave ahead of spherical
shells fired from gunse Very little was known about the flow inthe re-
gion between the wave and the body or about the pressures on the body.
Recently, however, some experiments have been performed by ladenburg
with the use of an interferometer (Ref. 7) and by Liepmann with a schlier-
en system (Refe 9)e This work was done not as an investigation of the
detached shock wave phenomenon itself but, in each instance, the data
were produced as a result of the investigation of some allied or related
probleme It served, however, to give an impetus to theoretical investi-
gators, and as a result several theories were produced which attempbed
to predict such quantities as shock wave shape and positione

As is usually the case in a new field of investigation the first
investigators attempted to simplify the problem by various assumptions
which made the mathematics more tractable. The scarcity of experimental
date made it difficult, if not impossible, to determine which of these
simplifying assumptions wore justified and which caused large errors in
the results,

The present report, which is the result of an investigation primar-
ily concerned with the detached shock wave flow regime, has succeeded,
by comparison of theory and experiment, in showing the physical importe
ance of various parameters involved in the problems

2¢ Nagamatsu Theory

The fact that the flow in the vicinity of the body nose is subson-
ic has led some investigators to make approximations which under less

critical conditions would produce excellent results. For example Nagaw-
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matsu has used the so-called PrandtleGlauert rule which has been derived
from consideration of the linearized subsonic equations. Since the flow
in the subsonic field behind a debached wave has velocities varying from
sonic to zero and since for blunt bodies the flow actually changes direc-
tion by 90°, this assumption does not produce results in agreement with
experiment as shown on Fige 13s The theory was nevertheless useful in
that it served to stimulate thought and perhaps was responsible for many
of the later ideas on the subjecte

3s lNoeckel Theory

The theory devised by Moeckel is an attempt to solve the practic
al problem of determination of the drag of the body without considera=
tion of the detailed flow phenomenon in the subsonic region.

The fact that the relationship between the sonic line and the shock
wave is given correctly by this theory and that it does seem to be inde-
pendent of the body shape ahead of the sonic point is very interesting
and serves to show the importance of the body shape throughout the en-
tire subsonic field. In other words two slightly different body shapes
could conceivably produce greatly different sonic point locations with
respect to their leading edges. Thus the detachment distance would aléo
be very different for each of these bodies although the bodies them=
selves are almost identicale. This explains the lack of correlation of
shock detachment for the theory presented in section V with experiment.
The shape of the body cor563ponding to the stream function used in the
example worked out in V is not a circular cylinder but departs from this
shape, by a factor proportional to {% e This will be discussed in mors
detail later.

4o Lin, Shen, Rubinov Theory

The method of Lin, Shen and Rubinov is an attempt to find a solu=
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tion to the detached shock wave problem for blunt bodies without the
simplification of the assumption of irrotationality for the flow be=
hind the wave. The method makes use of power series expansions for the
body and shock wave shape, thus restricting it to bodies whose shape
can be expressed locally by analytic functionse Since the basic equa-
tions are non-linear, the exact solution can be represented only by the
entire series, and the use of a finite number of terms gives a good ap=
proximation to the exact solution only in a region where the series is
absolutely and uniformly convergent, and where this convergence is ex=
tremely rapide

This question of convergence cannot be answered in mathematically
precise terms but only by a physical argument based upon the existence
of singularities within the bodye The body shape cannot be determined
et distances wvery far from the nose and therefore it is not known to
what body the resulting flow corresponds. The method is very inbtereste
ing and will perhaps lead to further work with the exact differential
equations, which would be extremely valuable, especially for high Mach
numbers, where the vorticity plays an important role.

5 Hodograph Method

The method presented in section V makes use of the simplification
afforded by the assumption of irrotationality and is also restricted to
two=dimensional flow. Unfortunately time did not permit the carrying
out of the necessary experiments to properly compare with the speéial
example worked out under this theory. The comparison of Fig. 13 is
based on the radius of curvature of the nose of the body which has been
shown to be a poor choice. The flow is mors sensitive to the body shape
near the sonic point than to the shape near the stagnation point, and

therefore the theory should be made to conform to the experimental set-
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up in this region, rather than at the stagnation point.

It can easily be shown that the quantity b is equal to R only at
the stagnation point and that R.==133€% for other points along the body.
Thus R is decreasing as the flow accelerates, producing a body shape
considerably thinner than a circular cylinder. The theory can be made
to give a body more closely resembling a circular cylinder by introduc-
ing more arbitrary constants into the function F and evaluating them by fur
further expansion of the boundary conditions on the body.

The more exact treatment discussed in section IV involving the
use of hypergeometric functions also appears feasible and should give
excellent results at Mach numbers where the vorticity can be neglected.,

In conclusion it should be pointed out that this method is not

restricted to blunt bodies and can be applied to wedge-shaped airfoils.
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