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Abstract

We have designed and synthesized photo elastomer systems that exhibit macroscopic

optical and mechanical changes when polymerized heterogeneously. These elastomers consist of

a well-defined polydimethylsiloxane matrix, a UV absorbing photoiniator, and a reactive

macromer with methacrylate endgroups and either a polydimethylsiloxane or

polyphenylmethylsiloxane miblock. No previous studies have been performed to elucidate the

overall effect that the combination of reaction kinetics, macromer diffusion rate, and

thermodynamics have on the ultimate state and properties of a photopolymerized system. In this

thesis, we synthesize model elastomer matrices, swell them with macromer, and examine

mechanical, transport, and thermodynamic behaviors of the resulting photoelastomers.

We synthesized model polydimethylsiloxane (PDMS) networks using well-defined and

low polydispersity (PDI) vinyl-functionalized PDMS precursors catalytically crosslinked with

tetrafunctional silanes. The ratio of crosslinker to midblock endgroup functionality was optimized

for each molecular weight system, was shown to be greater than a 1:1 ratio, and exhibited an

increase based on increasing precursor molecular weight. Networks polymerized in a theta

solvent followed theoeretical scaling predictions for modulus and preparation polymer volume

fraction. This behavior shows that melt polymerization incorporates significant numbers of

entrapped entanglements.

Sequential interpenetrating networks (IPNs) were formed by polymerizing different

molecular weights of reactive macromer in a cured PDMS matrix. The IPNs exhibited a 50 to

150% increase in modulus after cure which was independent of network structure but highly

dependent on macromer loading and macromer molecular weight. Although theories for both

bicontinuous and dispersed phase IPNs predict modulus increases for low macromer loading, they

underpredict modulus increases for high weight percent of macromer. Unexpectedly, mechanical
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properties were also independent of photopolymerization conditions; increased photoinitiator

content and irradiation intensity did not alter the material modulus. Contrary to previous work

with PDMS IPNs, we did not find a single size scale of heterogeneities in our systems with light

scattering measurements. However, greater scattering intensity is seen with higher macromer

content, increased extent of macromer conversion, and decreased network crosslink density.

Equilibrium and intermediate swelling behaviors for both model networks and model

networks with photopolymerized macromer were also measured. The extent of equilibrium

swelling was found to be independent of the network precursor molecular weight for equivalent

modulus networks and, in the range we examine, polymer volume fraction at network

preparation. Using four different molecular weights of methacrylate endcapped PDMS macromer,

we show that as molecular weight increases, experimental scaling behavior approaches the

theoretical value of G ≅ Q-8/3, where G is the shear modulus and Q is the swelling ratio. However,

absolute equilibrium swelling does not monotonically follow a molecular weight trend. Using a

form of the Flory-Rehner equation, we show that this trend is created by the interplay in

interaction parameter and entropic considerations due to macromer molecular weight.

Intermediate swelling scaling behavior was also examined for the first time in well-defined

networks and was shown to coincide rather poorly with Flory-Rehner theory. For

photopolymerized IPNs, equilibrium swelling behavior indicated that macromer was a poorer

solvent than in model networks. Poor solvent behavior is indicated both through decreases in

absolute swelling and power law exponents for modulus against equilibrium swelling ratio

behavior. Reactive macromers with phenyl incorporation also showed significant decreases in

solubility.

Diffusion rates of different molecular weights of macromer are measured in model

networks with different crosslink densities. Diffusivity values show dependence both on



vi

molecular weight of the penetrant species and the modulus of the host network. In particular, we

find that the scaling exponent α between diffusivity and macromer molecular weight (D ≅ Md
-α) is

significantly lower than expected for Rouse-like diffusion. The scaling exponent α is also

dependent on the host modulus; higher network moduli show greater deviation from predicted

behavior. Diffusivities were also measured for macromer containing up to 10% phenyl and did

not change as compared to PDMS based penetrants. Diffusivity of a series of different molecular

weight macromers was also measured in photopolymerized intercalated networks. As with adding

phenyl content to macromer, we found that penetrant molecular weight and host network modulus

are the only two important variables in diffusivities. Bimodal molecular weight distributions were

similarly swollen in a series of different modulus host networks and exhibit significant molecular

sieving when diffusing in tightly crosslinked networks.

We have also examined the kinetics of polymerization for methacrylate endcapped

monomers. Unlike polymerization in multifunctional methacrylate or acrylate monomers, we are

able to attain complete endgroup conversion even in neat macromer. We also find that, for a

specific macromer molecular weight, the reaction rate scales linearly with macromer

concentration. Surprisingly, we find that the scaling behavior for irradiation intensity and

photoinitiator concentration are strongly dependent on reaction conditions. As irradiation

intensity and photoinitiator concentration increase, reaction rate eventually reaches 0th order.

This result indicates that, no matter how high photoinitiator concentrations and irradiation

intensities are, there is some minimum reaction time required to attain a specific conversion. Even

though macromer polymerization follows a first order rate law in endgroup concentration within a

single molecular weight, scaling analysis is not adequate to describe reaction trajectories for

different macromer molecular weights. Not only are maximum reaction rates not well quantified,

but the extent of reaction at which they occur is also poorly predicted. It is also very surprising
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that, although 500 and 1000 g/mol macromers do not support a pseudo-steady state assumption,

3000 and 5000 g/mol are well-described. Finally, we have shown the effect of chain length

dependent termination in describing reaction rate trajectories.
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1.1. Introduction

1.1.1. History and background of photopolymers

Photoreactive polymers, or photopolymers, consist of three important elements: an inert

polymer “binder” to provide mechanical stability, a reactive monomer to effect optical changes,

and a photoiniator.1, 2 When irradiated, the materials exhibit significant changes in optical

properties; refractive indices and densities are permanently altered when polymerized. With

appropriate spatially-resolved irradiation, optical properties can also be modulated on a

submicron size scale. 

By the 1960s, these properties led to initial development of photoreactive polymer films

for use as holographic recording materials.3-6 Advances in photopolymer chemistries and

formulations have allowed faster polymerization and more efficient optical diffraction. These

improved attributes have been instrumental in applying photopolymers to uses such as heads-up

displays,7 optical waveguides,8 and holographic data storage.9, 10 However, all of these

applications have been limited to optical changes on the microscale because of relatively slow

read/write dynamics and large volume/density changes during sample photopolymerization.

The time scale on which optical information can be written in photopolymers is

intimately linked to polymerization and diffusion kinetics of reactive monomer in the polymeric
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binder. Polymerization is initiated by irradiating the photopolymer. Photonitiator molecules

cleave into reactive radicals, which begin to polymerize photoreactive monomer (figure 1.1). If

spatially resolved irradiation is incident on a photopolymer, such as in dark and bright stripes,

polymerization in bright regions will locally deplete monomer concentrations and create a

concentration gradient between dark and bright regions of the sample. Free, or unpolymerized,

monomer then diffuses down the chemical gradient to replenish the bright regions. As the

monomer reacts, it also contracts in volume up to 20% and the photopolymer density and

refractive index increase in the polymerized region. The refractive index contrast between

polymerized and unpolymerized regions is used to create optical phase gratings for holography or

data storage. Density increase often leads to vitrification, impedes some free monomer from

reacting, and leads to incomplete conversions.11

Depending on the relative rates of monomer photopolymerization and diffusion, several

distinct profiles of optical heterogeneity can be formed within a photopolymer using the same

irradiation profile. A simple irradiation profile, such as a sinusoidal pattern, is common for

holographic gratings. When monomer diffusion rates are much faster than photopolymerization

kinetics, the reacted monomer in the bright regions will be quickly replenished, leading to a

profile in monomer concentration that is similar to the irradiation profile (Figure 2A). If diffusion

rates are slow compared to photopolymerization kinetics, monomer species will react as soon as

they enter bright regions, resulting in a complex refractive index waveform within the sample

(Figure 2B).12, 13 Since monomer diffusion rates in most photopolymer systems are between 10-14

and 10-19 m2/sec,14-17 photopolymerization with a spatial frequency of 1 µm must take place over

the course of minutes to obtain sinusoidal write patterns and changes over 1 mm would take days.

1.1.2. Use of elastomers as photopolymers
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At Caltech, Grubbs and Kornfield have designed elastomer photopolymer systems to

overcome traditional problems in photopolymers such as volume shrinkage, incomplete monomer

conversion, and slow diffusion rates.18 In this new material, the polymer binder is replaced by an

elastomer that confers high mobility due to low crosslink density and a glass transition

temperature, Tg, that is well below ambient temperature. The reactive monomer is replaced by a

“macromer” with an elastomeric midblock and photoreactive endcaps. Because of the relatively

low volume of reactive endcaps, samples exhibit less than 1% shrinkage even at full cure. This

lack of density change also prevents sample vitrification,19-21 allows full conversion of reactive

macromer, and exhibits diffusivity values for reactive species that are one thousand to ten million

times greater than in previous photopolymers. These fast diffusivities indicate that changes on the

order of 1 µm can be performed on the order of seconds and changes on the order of 1 mm can be

performed in tens of minutes.

Refractive index modulation in prior systems was primarily due to volume contraction as

monomer polymerized. Since elastomeric photopolymers do not shrink significantly, observed

optical changes must originate from a combination of swelling and refractive index difference

between macromer and matrix. As their name implies, elastomers stretch when in the presence of

a solvent. When bulk photoelastomer is irradiated in a spatially heterogeneous manner, macromer

is polymerized in the bright regions (figure 1.1). Due to a concentration gradient, free macromer

diffuses from  dark to bright regions, swelling the photopolymer. The extent of swelling is

intimately linked to the thermodynamic interaction of macromer between non- and

photopolymerized regions. If the macromer and matrix have different refractive indices, the

swollen and polymerized region of the photopolymer will also have a different refractive index

from the surrounding material. A combination of shape and refractive index changes allows for

considerable spatially resolved adjustment of optical properties in photoelastomers.
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Photoreactive elastomer systems can also exhibit significant increases in mechanical

strength after polymerization. From the literature on interpenetrating networks (IPNs), it is known

that when a polymer B is sequentially polymerized in a previously crosslinked network, the

resulting polymer begins to microphase separate.22-24 Even at low levels of macromer doping,

these B-rich regions remain interconnected. Thus, the original elastomer matrix is strengthened

by an additional interconnected and bicontinuous network formed by the macromer.

Because of their ability to macroscopically change shape, refractive index, and modulus

on reasonable time scales, elastomer-based photopolymers show tremendous promise for use in a

variety of applications. These materials could potentially be used in place of traditional

photopolymer systems as high speed holographic storage materials, optical Bragg gratings, or

wave guides.25, 26 Appropriate choice of materials could also allow incorporation of elastomer

photopolymers into polydimethylsiloxane (PDMS) microfluidic devices. Presently, most optical

and mechanical features in microfluidic devices are formed through a complex and time-

consuming multi-step photolithographic process; use of photopolymer could provide a simple

single-step process for sculpting features into a device scaffold. For example, shape change could

be used to change a smooth channel into a chaotic mixer for microfluidics,27 a combination of

refractive index and shape change could be used to create microlens arrays for cell counters,28

changes in modulus would allow easier fabrication of PDMS microactuators,29-31 or Bragg

gratings could be written for use as pressure transducers32. With the appropriate choice of

biocompatible materials, elastomeric photopolymers can also be used in biological applications

such as intraocular lenses as has been demonstrated in collaboration with Dr. Daniel Schwartz,

Associate Professor of Opthalmology at UCSF.18

1.1.3. Motivation and objectives
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Light adjustment of photoelastomers is governed by diffusion rates, reaction kinetics,

polymerization induced modulus change and microphase separation, and equilibrium swelling

properties. The lack of literature on similar materials precludes a priori prediction of ultimate

properties or composition distribution of materials after spatially resolved polymerization, much

less the time course of these changes. Individual elements of the process such as diffusion,12, 15, 33-

46 structure of IPNs47-53, or equilibrium swelling43, 54-67 have been studied for a variety of different

materials. However, many of these studies are material-specific and the majority use materials

that are poorly characterized. Additionally, significant gaps remain both in theory and experiment

for explaining reaction kinetics, microphase separation, and modulus increases for reactive,

network-forming macromers embedded in an elastomer matrix.

Simplified theoretical considerations of a differential element in a three dimensional

system help determine appropriate experimental measurements for a priori analysis of the

dynamics of spatially resolved photopolymerization. In any specific element (x1, y1, z1), relative

concentrations of host matrix (part A), free macromer (part B) and polymerized macromer (part

Bpoly) are increasing or decreasing depending on relative rates of diffusion into the volume

element and the local rate of consumption due to polymerization. For free macromer, this equates

to:

(1.1)
d M

dt
q Rp

[ ] = ∇ • −v

where the flux q depends on the local concentration gradient (∇[M]) and diffusivity of macromer,

t is time, and Rp is the local reaction rate. Macromer diffusivity is dependent on molecular length,

degree of crosslinking in the host network, and changes in system properties due to macromer

polymerization as reaction time progresses. Local reaction rates are a function of instantaneous

light flux, macromer reactive group concentration, and reaction history. Radical concentration
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and radical size, both of which alter the reaction rate, change over the time-course of the reaction.

Material fluxes will also affected by the local degree of swelling and interactions between free

macromer and the combined system of host matrix and polymerized macromer. 

In contrast to dry holographic materials, elastomeric photopolymers have nearly constant

density during polymerization. As an element gains or loses macromer, its volume will change

proportionally and with no constraints, the volume element would expand isotropically. Since the

element is mechanically connected to surrounding material elements, local swelling will be

dictated by stresses coupled between large numbers of individual elements. Assuming a free

volume element, total swelling can be expressed by minimizing the free energy, ∆F, which is a

sum of elastic stretching and mixing terms:

[ ]∆F
n kT

V
n N n NB

x y z x y z
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B A
A

B

B B
B= + + − − + +
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where n is the number of chains, k is Boltzmann’s constant, T is absolute temperature, λ is

normalized change in length on stretching, V is system volume, ν is monomer volume, φ is

volume fraction, and χ is the binary interaction parameter. Local stresses can then be

approximated with appropriate use of constitutive equations incorporating these free energy

terms. Due to the complexity of this problem, appropriate theoretical work is still in progress in

our laboratory.68

The goal of this research is to create model photoreactive elastomer systems and use them
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to elucidate each of the fundamental processes that determine the rate and magnitude of changes

in material properties. Ultimately, this experimental knowledge provides the foundation to

predict, based on materials and irradiation parameters, the macroscopic and microscopic structure

of photopolymerized elastomers. To accomplish this goal, we have: (1) Synthesized and

characterized an array of model elastomer networks (Chapter II). (2) Synthesized an array of

reactive macromers with different molecular weight and refractive index, swollen them into

networks, measured the change in modulus on photopolymerization, and determined the

microstructure of phase separated IPNs (Chapter III). (3) Examined the thermodynamic

interactions and swelling effects of macromer in model and interpenetrated networks (Chapter

IV). (4) Measured diffusivity of different molecular weight macromer in an array of different

modulus PDMS networks (Chapter V). (5) Characterized the distinctive photopolymerization

kinetics of macromer-matrix systems as function of material parameters and irradiation conditions

(Chapter VI).
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Figure 1.1. Spatially resolved photopolymerization for traditional and elastomeric photopolymers.
For both systems, step 1 shows only the binder. In step 2, monomer or macromer is added to the
system. In step 3, the materials are irradiated. For the traditional photopolymer, monomer
polymerization in bright regions leads to density increase and shrinkage. Step 4 show diffusion
and redistribution of monomer and macromer into polymerized regions. The elastomeric
photopolymer swells to accommodate this redistribution.

1.2. Figures
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Figure 1.2. Spatial profile of the refractive index deviation from the average after
exposure to a sinusoidal modulation of  irradiation in a traditional photopolymer. Part A
shows a refractive index profile when monomer diffusion rates are much greater than
monomer reaction rates. Part B shows a complex refractive index waveform created
when reaction rates are faster than monomer diffusion.
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2.1. Introduction

A comprehensive set of model polymer networks is needed to examine the matrix effects

for photopolymerizable sol gel systems. In particular, we achieve high extents of reaction with

well-defined crosslink functionality and strand molecular weights. Extensive work exists on both

the experimental and theoretical level for both elastomeric systems in general and for

polydimethylsiloxane (PDMS) in particular. Much of the literature examined the effect of

network entanglements for systems cured both in the melt and in solution. Competing theories

suggested that either entanglements act equivalently to chemical cross-links1-4 or that they act

merely to limit chemical junction fluctuations.5-7 However, later work examining the relationship

between network modulus and preparation polymer volume fraction gives significant credence to

entanglements functioning as chemical crosslinks.3, 8, 9 In these studies, networks were formed

from precursors with molecular weights both significantly above and below the entanglement

molecular weight. Reported values of entanglement molecular weight, Me, are reported to be

between 8,100 and 16,600 g/mol.10-12 These experimental results have been compared with two
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mutually exlusive theories.

The c* theory, proposed by de Gennes, states that regardless of dilution state,

polymerization functionally occurs at the overlap concentration, or c*.13 Thus, at fully swollen

conditions, network chains would be completely disinterpenetrated. The scaling prediction

between elastic modulus and polymer volume fraction during network preparation was

corroborated by several groups.13-16 However, as Urayama, et al., note, this correspondence is a

cancellation of several theoretical assumptions and not necessarily confirmation of the c*

theorem.8 Contrary to the c* theory, Panyukov et al. and Obukhov et al. have proposed scaling

behaviors for good and theta solvents based on a preparation state free energy approach that uses

affine deformation on swelling.17, 18 Derivation of these scaling behaviors begins with the Flory-

Rehner approach of free energy equivalencies; free energy due to osmotic pressure of swelling is

balanced by the free energy of elasticity of network strands. Although a relatively thorough

examination of the approach is given in the introduction of Chapter IV that is pertinent to

equilibrium swelling, we will here address portions of the derivation for theta solvents that are

significant to our network preparation and characterization. Assuming an affine network where

each network strand acts as a simple Hookean spring, we can derive the following result.

(2.1)G kT
N

≅ φ φ0
2 3 1 3/ /

In this equation, G is the shear modulus, k is Boltzmann’s constant, T is the absolute temperature,

N is average degree of polymerization, φ0 is polymer volume fraction at preparation, and φ is

polymer volume fraction at measurement. If entanglements do not play a significant role in

network modulus, Equation 2.1 should predict network scaling behavior. However, since we

study network strands significantly longer than the entanglement molecular weight, we need to

determine appropriate scaling behavior for entanglement dominated networks. If the
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entanglement strand is a standard excluded volume random walk of Kuhn length blobs,13, 19 we

get:

(2.2)N g a a
be ( ) /φ

ζ
φ0

2
1

2

0
4 3≅
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⎝
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⎞
⎠
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⎞
⎠⎟

−

where Ne is length of the entanglement strand, g is the number of monomers in a blob (g≅φ0
-2 in a

θ solvent), a is the tube diameter for reptation (a≅a1φ0
-2/3), and a1 is the tube diameter in the melt.

If we then combine Equations 2.1 and 2.2, we obtain the result:

(2.3)G kT b
a

≅
⎛

⎝
⎜

⎞

⎠
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1

2

0
2 1 3φ φ /

which is applicable scaling behavior if entanglements are the dominant crosslinking effect to

determine elastic modulus.

Although several recent papers establish scaling behavior that seems to corroborate this

theoretical proposition,3, 8, 9 there have been several problems in network formation that are

difficult to overcome. The chemistry of reaction is important when trying to establish model

networks. For all high molecular weight systems, similar vinyl-silane crosslinking chemistry is

used. Cross-linking molecules with four silane moieties are catalytically cross-linked with α−ω

vinyl end-capped PDMS. In this reaction system, a stiochiometric ratio of reactive groups will

lead to imperfect networks with relatively large soluble fractions.20-23 Urayama, et al., do not map

out optimal reactive group ratios.9 High polymer polydispersity (PDI) will also potentially lead to

scaling behavior not in accord with theory, and several literature results did not use highly

fractionated materials.3, 9

To effectively analyze photoreactive sol gel systems, we have formed model networks
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using very low PDI (Mw / Mn < 1.25) network precursors. These networks are shown to be fully

cured by several different methodologies and have low soluble fractions. We also examine the

effect of preparation state polymer volume fraction by polymerizing different molecular weight

network precursors in several levels of theta solvent diluents. We compare the results of these

networks to affine network theories and examine the effects of entanglements on network

modulus.

2.2. Experimental section

2.2.1. Materials

Networks were formed by catalytically reacting α−ω vinyl endcapped siloxane precursors

with a tetrafunctional silane. Multiple molecular weights of α−ω vinyl endcapped siloxanes were

purchased from Gelest Chemicals. Initial polydispersities as measured by GPC were relatively

high (1.6); cosolvent fractionation and purification were used to remove low molecular weight

siloxanes and other impurities with toluene as a good solvent and methanol as a poor solvent. 24, 25

A platinum catalyst, cis-dichlorobis(diethylsulfide) platinum(II) was purchased from Strem

Chemicals and diluted in anhydrous toluene. Tetrakis (dimethylsiloxy)silane  was purchased from

Gelest chemicals. Both the catalyst and crosslinker were used without further preparation.

2.2.2. Analysis of molecular weight for precursor molecules

Gel permeation chromatography / light scattering (GPC-LS) was used to determine

absolute macromer molecular weights and polydispersity. The light scattering detector used was a

Wyatt Dawn EOS 18 angle system with toluene as a solvent. The ratio of methyl to vinyl

hydrogen peaks from 1H NMR spectra were used to calculate number average molecular weight
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(Mn) for siloxane precursors. By comparing molecular weight results between these methods, we

can determine vinyl functionality. Network precursors had number average molecular weight

(Mn) of 15200, 22300, and 41200 with PDIs of and 1.11, 1.18, and 1.24 as seen in table 2.1.

2.2.3. Matrix preparation

Network crosslinking was examined at concentrations ranging from neat to 50% with

short chain PDMS as theta solvent. An optimum ratio, Ropt, of silane crosslinker to vinyl

endgroups was determined for each level of diluent during network cure by determining

maximum equilibrium swelling and maximum modulus. Ropt was also measured for different

network precursor molecular weights. The components are well mixed, degassed under vacuum,

and cured in 1 mm thick optical quality λ/5 quartz molds. Cure is performed at 35 °C to minimize

excess crosslinking behavior.26, 27  Although at higher temperatures there can be significant inter-

chain side reactions of siloxanes, at this relatively low temperature we eliminate all but a small

amount of  silane-silane linking reaction between crosslinker molecules.20, 22 IR measurements

were also performed to determine completeness of cure. The vinyl absorption band centered at

1596 cm-1 was examined before and after cure. 

Cured samples are extracted using a multistep toluene / methanol cosolvent extraction

process. Toluene is used in > 50x excess volume and is replaced at 24 hour intervals. Methanol at

different dilution ratios in toluene is subsequently used to extract toluene from the samples. This

multistep cosolvent extraction of toluene from the sample is necessary; direct immersion of a

toluene swollen network into pure methanol will cause the sample to fracture. After toluene is

extracted, the sample is dried in vacuum for at least 24 hours. Control samples that have been

extracted by this procedure are then left in toluene for several weeks. The solvent is then highly

concentrated and examined for PDMS residue with GPC. No elution peak is observed. Since
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these networks have chains that are less than 5 times the entanglement molecular weight,

complete removal of unreacted chains for short extraction times is quite reasonable.

2.2.4. Swelling and modulus measurements

After exhaustive extraction of PDMS diluent and unincorporated vinyl endcapped PDMS

precursors, samples were reswollen in short chain PDMS materials at 10%, 20%, 30%, and

equilibrium swelling. Equilibrium swelling was determined gravimetrically and established when

no further weight changes occurred over a 48 hour period. Samples swollen from 10-30%

macromer concentration were allowed to equilibrate for the same length of time.

The increased cure modulus was measured using a Rheometric Scientific ARES with   

25 mm parallel plate geometry. Dynamic moduli of fully cured samples were measured at a

controlled temperature of 25 °C. Time cure measurements were run at 1% strain and 1 Hz under

oscillatory shear. These parameters were shown, at full cure, to be in the linear viscoelastic

regime. Cure experiments were run for 24 hours; no subsequent modulus change was measured.

Due to plate slippage for samples prepared ex situ, precured samples could not be used.

Frequency sweeps from in situ cured samples were also performed to analyze network

imperfections.

Ex situ rheological measurements were performed on a Rheometric Scientific RSA III in

a simple tension geometry under oscillatory mode at 25 °C with <1% strain and at 1Hz. Strain

sweeps showed that even with high modulus samples, the linear viscoelastic regime extended to

>2% strain. Since the storage modulus of these model networks exhibits a relatively large plateau

with frequency, 1Hz oscillations were chosen for convenience. Samples were 1 cm x 3 cm x 1

mm in size; since relatively small strains (< 1%) were used, changes in cross-sectional area were

neglected. This approximation is validated by the close concurrence (< 3% deviation) between
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shear modulus and Young’s modulus. Young’s modulus data can been converted to shear

modulus using the relationship E'=3G' based on a Poisson ratio of 1/2.

2.3. Results and discussion

2.3.1. Polydispersity of precursor molecules

Three different molecular weights (Mn = 15200, 22300, 41200 g/mol) of α−ω vinyl

endcapped PDMS precursors were used in network formation. Before fractionation,

polydispersity (PDI=Mn/Mw) values were between 1.4 and 1.6 as measured with GPC; after

fractionation, these values were significantly decreased. Table 2.1 shows post-fractionation

molecular weight obtained with GPC-MALS, molecular weight measured with NMR, and

polydispersity values. Comparison of Mn (number average molecular weight) for NMR and GPC-

MALS (multi-angle light scattering) data shows a slightly lower value from light scattering. Since

light scattering gives absolute molecular weight numbers, this value should be relatively accurate.

Relative differences in values between these two measurement methods match well with

polydispersity numbers. This shows there is very close to a 2:1 stoichiometric ratio of vinyl

endgroups to chains. 

2.3.2. Completeness of cure

Although our precursor molecules are well-defined with few non-functional chains, we

also need to ensure that our networks have completely cured. We can do this using two different

methods. Before polymerization, a vinyl absorption band is present at 1596 cm-1. 24 hours after

the reaction has commenced, we remeasure the absorption peak. In all cases, this has depleted to

non-measurable values. All samples were cured at 35 °C; several in situ time sweep modulus
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measurements were also used to track fractional endgroup conversion. Figure 2.1 shows three

different molecular weight precursors (Mn = 15200, 22300, 41200) cured in the melt and one

molecular weight, Mn = 22300, cured with polymer volume fraction, φ0 = 0.5. In all cases, there is

less than 1% change in modulus after 11 hours. However, samples were still cured for 24 hours at

35 °C before being used. Samples are also extracted to determine the unreacted amount of

precursor chains. Table 2.2 shows that extractable mass, ωsol,  is less than 2% for all systems,

including ones cured in diluent. Kinetic models of reaction predict similar soluble fractions.22, 26, 28

For these networks, figure 2.2 shows G'' values are several orders of magnitude lower than G'

values. The low viscous loss component of the network modulus indicates that most chains are

elastically effective within the network. 

2.3.3. Curing moduli for different crosslinker : endgroup ratios

Altering the ratio of cross-linker silane functionalities to strand vinyl functionalities

should significantly affect network properties. In figure 2.4A, we see that for each network

precursor molecular weight, there is a maximum modulus exhibited when G' is plotted against R.

Also, this peak is reached at greater than stoichiometric ratios of crosslinker to strand chain ends,

suggesting that there are either kinetic entrapments or crosslinkers side reactions. For R values

below peak modulus, there will be a significant number of dangling, or pendant, chains that are

not elastically effective since only one end is attached to the network. At extremely low R values,

extraction studies show that significant portions of the precursor networks strands are never

incorporated into the network. For R values higher than peak, we expect strand end-capping, or

crosslinker that only has one reacted junction functionality. The peak values of R are 1.27 for

Mn=15200, 1.48 for Mn=22300, and 1.60 for Mn=41200, indicating a monotonic increase of R

with strand molecular weight. Previous work using Monte Carlo simulations suggests that, for a



II-9 

system of 50 repeat units (approximately 3700 molecular weight), kinetic and topological

constraints give a maximum number of effectively elastic networks strands at an R value of 1.2.22,

23 This formulation does not take into account effects of polydispersity or of potential crosslinker

side reactions. 

Several papers have shown that, even at low temperatures, up to 10% of silane

crosslinker functionality is consumed in side reactions.1, 26 Patel, et al., also observed similar

trends for R values for minimum equilibrium swelling.20 Using strand precursor molecular

weights of Mn=2500 to Mn=58000, they found peak R values were between 1.44 and 2.05 with no

trend between strand molecular weight and optimal R. Other work with PDMS and PDES

(polydiethylsiloxane) shows similar values for R.8, 25 These higher R values and data lacking a

trend with molecular weight lead to the conclusion that considerable vinyl endgroup defects may

be present in those networks. Additionally, this is supported in Patel’s work by preliminary

titration data showing higher vinyl functionality than 2 per network strand. Our values fall

between other experimental and simulation work, indicating that our networks have relatively few

defects but do have some measurable quantity of crosslinker-crosslinker side reaction occurring.

Since we also prepare networks in diluted conditions where polymer volume fraction is

as low as 0.5, it was necessary to determine whether R would change under these conditions as

compared to those in the melt. Figure 2.4B shows a plot of melt-prepared networks and two

diluted preparation systems; there is not a significant shift in maximum R. Due to changes in

kinetic entrapment effects and fewer entanglements at lower polymer volume fractions, we

expected R to decrease slightly under diluted preparation conditions. Surprisingly, there is not an

appropriate a priori theory available to determine this type of parameter. As such, all networks of

a specific molecular weight are prepared at the same value of R.

In figure 2.2, oscillatory frequency sweeps over four orders of magnitude are performed
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for networks polymerized at optimum R value and a lower R value (< 1). The network crosslinked

at optimum R (model network) shows a plateau modulus for G' across the full frequency range.

Conversely, the network formed with a dearth of crosslinker, or imperfect network, shows a

monotonic increase in elastic modulus with increasing frequency. This behavior indicates that

additional elastic modes of response are elicited in higher frequency regimes. Since these

networks have been fully extracted, the non-homogeneous frequency response must be due to

pendant, or dangling chains in the network that are not permanently elastically effective.

It is interesting to note that, although the example of an imperfect network in the figure 2.2 has a

storage modulus nearly an order of magnitude smaller than the model network, viscous moduli

are nearly equivalent. This indicates that the relative level of imperfections (as suggested by G' /

G'') in the model network is signficantly less than that for networks cured at sub-optimal R

values.

2.3.4. Curing moduli and scaling behavior for networks with initial diluent

When using an initial diluent during cure, we expect the network modulus to decrease

due to decreased numbers of entanglements. As dilution increases, fewer chains are present

within the radius of gyration of a single chain. Since, as was discussed earlier in this chapter, the

entanglement molecular weight of PDMS is relatively low (near 10,000 g/mol), all three

precursor molecular weights that we use should exhibit some increase in modulus when

polymerized in the melt as compared to what is expected for purely chemical crosslinks. As

percent dilution during cure is increased, the likelihood of entanglement decreases, and scaling

behavior should alter analogously. If we examine equation 2.1 and eqution 2.3, we can see that,

by replacing φ with φ0 in equations 1 and 2, the behavior of a single precursor molecular weight

will scale as :
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(2.4)Gb b a3 2
0
1≅ ( / ) φ

for non-entangled systems and

(2.5)Gb b a3 2
0
7 3≅ ( / ) /φ

for networks dominated by entanglements in theta solvent conditions. Figure 2.3B shows

experimental behavior of networks prepared with three different molecular weights from 0% to

50% dilution. Using a least squares regression, the power law exponents are:

for Mn = 15200 g/mol (2.6a)G' .96∝ φ0
1

for Mn = 22300 g/mol (2.6b)G' .21∝ φ0
2

for Mn = 41200 g/mol (2.6c)G' .34∝ φ0
2

These results confirm the notion that, at the molecular weights we use, entanglements are the

dominant junction points in the network; all scaling behaviors are much closer to the 7/3

exponent for entangled networks than the linear exponent established for permanently crosslinked

systems.

However, the results for the lowest molecular weight, Mn=15200 g/mol, are somewhat

different than is expected from theory17 where entanglements should still be a relatively minor

contribution at the lowest molecular weight we examine. Our results are partially corroborated by

experiments performed by Sivisailam and Cohen,3 however; 9900 MW precursors show a scaling

exponent of 1.52. This indicates that entanglements or chain entrapments (such as are present in

looped systems) occur even at relatively low molecular weights. Using simple radius of gyration

arguments, this explanation does not seem unlikely; at the entanglement molecular weight of

10000 g/mol, there are approximately 4 chains present in the volume subsumed by a single chain.
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When the precursor molecular weight is increased to 41200 g/mol, we obtain a scaling

exponent of 2.34. This value is very close to the theoretical expectations of 2.33 for highly

entangled networks. Since the precursor molecular weight is only four times the entanglement

molecular weight, it is somewhat unexpected to find such concurrence between experiment and

theory. If higher precursor molecular weights were also examined, it would be interesting to note

if experimental results would plateau at the theoretical exponent for this power law scaling

behavior.

Cured networks are then extracted by the procedures indicated in the experimental

methods sections. When extracted, network modulus increases significantly compared to diluted

systems because of network collapse. The theoretical increase can be obtained using Eq (3).

Qualitatively, a quick comparison of figure 2.3A and figure 2.3B shows an increase in modulus

for extracted networks. To determine scaling behavior for these extracted networks, equation 2.1

and equation 2.3 can be used where we let φ=0. This results in: 

(2.7)Gb b a3 2 2 3
0

≅ ( / ) /φ

for non-entangled systems and

(2.8)Gb b a3 2
0
2≅ ( / ) φ

for entangled systems. Figure 2.3A shows the experimental scaling behavior for the three

precursor molecular weight systems. The experimental power law exponents are:

for Mn = 15200 g/mol (2.9a)G' .33∝ φ0
1

for Mn = 22300 g/mol (2.9b)G' .44∝ φ0
1

for Mn = 41200 g/mol. (2.9c)G' .∝ φ0
1 87
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For the network formed from the lowest molecular weight precursor, we again see behavior that

is intermediate between fully entangled and non-entangled regimes. For higher molecular weight

precursors, behavior approaches theoretical values for power law exponents as is expected from

results on diluted systems.

2.3.5. Comparison of ideal network behavior with synthesized model networks

Ideal network behavior, as indicated in the introduction, will show that the number of

crosslinks per unit volume is directly proportional to the modulus of the network. We find

significant departure from ideal behavior for our networks. Figure 2.5 shows three precursor

molecular weight systems where modulus is plotted against precursor molecular weight at four

different values of φ0. The horizontal line at 2.1x105 Pa is the plateau modulus for high molecular

weight uncrosslinked PDMS.4 This equates to an entanglement molecular weight of

approximately 12000 g/mol using affine junction theory and compares well with previous

entanglement molecular weight determinations. The lower line in the plot shows affine

crosslinking behavior which follows the simple equation:

(2.10)G vRT=

where G is the shear modulus, ν is the number of moles of elastic chains per unit volume, T is

absolute temperature, and R is the gas constant. Interestingly, networks polymerized in the melt

have a modulus that is higher than expected if only entanglements are providing network

structure. For high dilution ratios during cure, we are also able to access shear moduli that are

below what is expected from affine modulus predictions. There are several potential mechanisms

that may place the modulus in this regime: pendant chains, loops, and large-scale heterogeneities

that lead to non-affine swelling and deformation. Patel, et al., have shown that for significant

numbers of pendant chains, the shear modulus does not exhibit a plateau modulus in the
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frequency region that we examine.20 For short chain PDMS (<5000 MW) simulations have shown

that the number of loops formed during highly diluted cure is < 10%.22, 29 Also, large scale

heterogeneities are known to exist in cured PDMS networks.7, 30-32 These network heterogeneities

have two potential means of formation: kinetically controlled crosslinking and very high

functionality crosslinker. Since a silane-silane crosslinker side reaction has been shown to occur

at less than 10 percent for reaction temperatures of 35 °C,26 little high functionality crosslinker

will be present in this system. Regardless, even if high functionality junctions were formed,

previous results have shown little total modulus change regardless of crosslinker functionality.33-35

Thus, the potential combination of more loops forming and increased kinetically produced

heterogeneities at dilute conditions seems to be a reasonable explanation of the low shear

modulus.

2.4. Conclusions

We have synthesized model PDMS networks using well-defined and low PDI precursors. 

These networks are shown to have little soluble weight fraction after cure and few pendant chains

are present; rheology data indicates that most chains are elastically effective. The ratio of

crosslinker to midblock endgroup functionality was optimized for each molecular weight system,

was shown to be greater than a stoichiometric ratio, and exhibited an increase based on increasing

precursor molecular weight. These effects can be explained with small amounts of silane-silane

crosslinking reactions and kinetic chain entrapment during cure. Networks polymerized in a theta

solvent were shown to follow theoeretical scaling predictions for modulus and preparation

polymer volume fraction. This behavior shows that melt polymerization incorporate significant

numbers of entrapped entanglements. Overall, the careful control of network modulus and extent

of entanglements allows us to lay the foundation for examination of other properties, such as
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equilibrium swelling and interaction parameters, modulus of intercalated model network systems

with photopolymerized materials, and reaction kinetics with necessary accuracy to glean

important experimental results. 
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2.5. Tables

Table 2.1. Molecular weight and polydispersity of linear vinyl endcapped PDMS.
α−ω vinyl precursor Mn (NMR) Mn(g/mol) GPC-MALS) PDIa (GPC-MALS)

PDMS-A 16300 15200 1.11 
PDMS-B 24900 23200 1.18 
PDMS-C N/A 41200 1.24 

aPDI = Poldispersity Index (Mw/Mn)
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Table 2.2.  Network properties including modulus and soluble network fraction for
networks prepared at multiple precursor concentrations

E'cured  (10 5Pa)10 2 ωsol  φ0MprecursorSample #

8.230.375115200M84-15
5.970.4360.8515200M69-15
4.200.5120.715200M52-15
2.091.0230.515200M33-15

7.580.644122300M77-22
5.580.7360.8522300M64-22
3.410.3630.722300M47-22
1.730.9440.522300M29-22
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Figure 2.1 Progressive modulus increase with cure time at 35°C for several precursor
molecular weights and φ0 (initial polymer concentration). In all systems, G' and G'' reach
asymptotic values within 10 hours. Filled points are G', unfilled points are G''. M is
15200 g/mol, O is 22300 g/mol,  is 22300 g/mol with φ0=0.5, and  is 41200 g/mol.

2.6. Figures
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Figure 2.2 G' and G'' for model and imperfect networks. Note the plateau modulus
extends four decades in frequency for the model network (15200 g/mol, R = Ropt),
whereas the imperfect network ( 15200 g/mol, R < Ropt) shows a monotonic increase in
G' with frequency.  and G are G' and G'', respectively, for a model network,  and F
are G' and G'', respectively, for an imperfect network.
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Figure 2.3  Plot A shows scaling behavior for three different molecular weight
precursors for networks cured and measured after diluent was extracted. Plot B
shows the same networks before extraction. G' is shear modulus and φ0 is
polymer volume fraction at preparation.
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Figure 2.5 Shear modulus of extracted networks is plotted against network strand
molecular weight (Mn = 15200, 22300, 41200). Each strand molecular weight is
polymerized at four polymer volume concentrations (1, 0.85, 0.7, and 0.5). As the
polymer volume concentration decreases, the dry modulus also decreases due to fewer
entanglements. The horizontal line is the modulus expected if all strands were of the
entanglement molecular weight. The line labeled “Affine” is the theoretical modulus
expected for affine ideal networks with no entanglements. For each network precursor
molecular weight, modulus regimes above the entanglement molecular weight and
below the affine modulus predictions are reached.
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3.1. Introduction

Polydimethylsiloxane (PDMS) has been studied extensively as a model system for

homogeneous and interpenetrating networks. By adding a second component to a well

characterized material, it is possible to change optical, mechanical, and other properties of a

network. We are particularly interested in examining the change in mechanical properties and

underlying structure during photopolymerization of macromers in different model networks. 

Interpenetrating networks (IPNs) are prepared by either sequential and simultaneous

synthesis. Sequential synthesis is performed by curing a host network (A), dissolving a second

network precursor (B), and then polymerizing the second network. Simultaneous materials are

formed by mixing and then simultaneously curing two different polymer precursors (A and B)

that have independent cross-linking chemistries. These two methods of IPN synthesis create very

different materials in terms of mechanical properties and phase separation behavior. Assuming

network precursors are initially miscible, phase separation in both sequential and simultaneous

IPNs begins only once the reaction progresses. Four distinct stages have been observed during
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formation of microscale morphologies in simultaneous IPNs.1-3 At short times, monomer and

polymer (part B) remain miscible with monomor and polymer (part A); the material remains

optically transparent. As time progresses, the system becomes cloudy as part B polymer begins to

phase separate. This phase separation may begin with nucleation of droplets or with the onset of

spinodal decomposition (SD). The third step is grain coarsening; spinodal decomposition

continues until interconnected cylinders of part B are present in the sample. The final step is due

to gellation of the sample. Heterogeneities become locked in as diffusion is minimized.

Depending on the relative rates of reaction and diffusion, these four phases may become blurred.

If part A and part B polymer phase separate before network gellation, phase domains will be

relatively large. The subsequent gellation effectively locks these inhomogeneities in place. If,

however, network gellation occurs before phase separation, network crosslinks will limit

localized swelling and phase separation. For sequential IPNs, part A polymer network is always

present so phase separation will be limited to small size scales by part A crosslinks.1 The induced

phase separation during cure of sequential IPNs will lead to changes in the mechanical properties

of the networks. Several theories have been proposed to examine the increased mechanical

properties of dispersed and bicontinuous IPNs.4-6 

IPNs can phase separate into two classes of morphologies. First, one phase can be non-

continuous and completely dispersed inside of a continuous phase. The dispersed phase can attain

different geometries depending on the thermodynamics of phase separation. The most common

dispersed geometries are spherical and cylindrical domains. Spherical domains, or nodules, are

created when phase separation is due to nucleation. Cylindrical domains are exhibited when a

system spinodally decomposes. The second phase class is bicontinuous networks. Here, the two

phases exhibit no chemical crosslinks, but are completely percolated within a single network.

Small scale structure of bicontinuous phases may also share significant morphological
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characteristics with dispersed systems. For example, spinodal decomposition to thermodynamic

equilibrium often leads to a continuous cylindrical dispersed phase.

Multiple groups have analyzed size scales and structure of interpenetrating networks. In

sequential polyisobutene-poly(methylmethacrylate) (PMMA) systems, tapping mode atomic force

microscopy (AFM) shows a size scale of 50nm nodules with no distinct morphology in a

bicontinuous network.7 Sequential polydimethylsiloxane (PDMS) polystyrene (PS) IPNs have

been shown with SEM to have approximately 1µm size scale; connectivity of PS morphology is

dependent on weight percent.8 PDMS-PMMA sequential IPNs show a trend in increased domain

size with decreased reaction rate of the second cured network, that of PMMA.9, 10 Using a UV

initiated polymerization of PMMA with high absorbency, domain sizes were imaged throughout

the depth of a sample using fluorescent confocal imaging techniques. Images at the sample

surface show smaller domains than those receiving less light; minimum domain sizes appear to be

on the order of microns. It is interesting to note that, in deep sections and slower cure rates,

domain geometry progresses towards a interconnected spherical to cylindrical structure expected

from spinodal decomposition.

If the phase separated domains have different material properties, the IPN will have a

significantly different network modulus than either of the individual materials. Several theories

been proposed for dispersed4, 11-13 and continuous5, 6 IPNs. Although considerable literature has

been published on polymer reinforcement by fillers14-17 and sequential IPNs18, 19, the mechanism

of reinforcement is still not well understood. In particular, we are not aware of any studies using

curing photoreactive macromers into an elastomer networks to form a sequential IPN.

Static light scattering provides an effective method for analyzing both structure and size

scales of density (or refractive index) fluctuations on the order of tens of nanometers to microns.

Based on results from previous work in PDMS, this range seems eminently feasible to examine.
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Since chemically crosslinked polymer, and in particular, PDMS, networks are known to have

large scale heterogeneities,20-25  it would also be interesting to correlate IPN structure size with

host network heterogeneity size. These large scale heterogeneities, measured to be on the size

scale of 10 nm to slightly less than 1 µm with light, X-ray, and neutron scattering, are

significantly larger than the expected blob size of 1 to 2 nm that is found either in the melt or in

crosslinked networks. These spatial density fluctuations are caused by inhomogeneous reactions

that get locked into the network as the polymer gels; there is a direct relationship between this

size scale and the modulus and equilibrium swelling properties of the network. For networks with

a lower elastic modulus, heterogeneities occur on a larger size scale.

Scattering behavior can be analyzed with several methods depending on the expected

structure and distribution of the scatterers. For randomly distributed spherical scatterers with

sharp density delineation, Debye and Bueche proposed a simplification of Porod’s Law such

that:26, 27

(3.1)
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where I is the scattering intensity at reduced scattering angle q; K = 4π2n2/λ0
4 where λ0 is the

wavelength of incident radiation in a vacuum and n is the refractive index of the medium; ac  is

the correlation length for scattering particles; <η2> is the mean squared refractive index

fluctuation in the medium; and q = (4π/λ)sin(θ/2) where λ is the wavelength of incident light in

the medium and θ is the angle between incident and scattered rays as measured in the medium.

This formulation will be appropriate for phase separated regions with distinct boundaries, such as

might be expected for equilibrated spinodal decomposition in IPNs. If we do not have sharp
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boundaries between dispersed spherical particles (such as in swollen polymers in a dilute

solution), the Ornstein-Zernicke function for scattering may be applied.21, 28
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Both of these equations apply only as limited behavior as q becomes large. As such, it would be

interesting to use a generalized analysis method to examine other size scales. Glatter uses a

generalized form of Porod’s Law, which gives the distance probability function for particles and

provides a technique to smooth, desmear, and Fourier transform scattering data to obtain a size

scale for scatterers.29, 30 This technique may be applied throughout the q range, allowing us to use

non-terminal high q scattering data.

In this chapter, we use model PDMS networks as discussed in Chapter II, swell them with

photopolymerizable endcapped PDMS macromer, and photocure the macromer. We then examine

the extent of modulus change with cure for a homologous molecular weight series of macromers

and for different network structures. Turbidity and static light scattering are used to elucidate the

size scale of phase separation and to potentially determine the thermodynamic decomposition of

an initially miscible network-macromer blend. 

3.2. Experimental Section

3.2.1. Synthesis of photopolymerizable macromer

Macromer is synthesized using a one pot acid catalyzed ring opening polymerization

(figure 3.1). Octamethylcyclotetrasiloxane (D4) and 1,3-bis(3-methacryloxypropyl)

tetramethyldisiloxane (MPS), and phenylmethylcyclotrisiloxane (D3
Ph) from Gelest Chemicals
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and trifluoromethanesulfonic acid (triflic acid) from Sigma-Aldrich were used as received. D4 and

MPS were mixed under argon for 1 hour before addition of triflic acid. The reaction was allowed

to continue for 24 hours and was quenched using a saturated sodium bicarbonate solution.

Solvent was evaporated under vacuum and the reaction product was filtered to 0.2 µm. Macromer

was further purified under 200 mtorr vacuum at 70 °C for 72 hours to remove short chain and

cyclic impurities. The D4 to MPS ratio was altered to obtain product molecular weights from

Mn=500 to Mn=5000 g/mol. 

Macromers with a combination of phenylmethylsiloxane and dimethylsiloxane backbone

units were also synthesized. The synthesis procedure remains identical to macromer with pure

methylsiloxane backbone; the appropriate fraction of D3
Ph is substituted for D4 as a reactant to

obtain desired phenyl substitution.

3.2.2. Characterization of macromer synthesis product

Synthesis product is characterized using 1H NMR, GPC, and refractive index

measurements. 1H NMR spectra were used to obtain the number average molecular weight, Mn,

from the ratio of diene hydrogens in the bismethacrylate endcaps to methyl hydrogens from the

backbone pendant groups. Phenyl incorporation into the macromer synthesis product was

determined by evaluating rations between diene endcap hydrogens, methyl backbone hydrogens,

and phenyl backbone hydrogens. Although a previous study found relatively poor incorporation

of phenyl from cyclic PMPS for slightly different reaction conditions,31 we find that over 95% of

total phenyl content is presented in the final synthesized and purified product. 

Gel permeation chromatography/light scattering (GPC-LS) was used to determine

absolute macromer molecular weights. A Wyatt Dawn EOS 18 angle system was used for light

scattering measurements where toluene was used for a solvent. Refractive indices of the
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macromer and network precursors are measured with an Abbe refractometer at a wavelength of

590nm and 25 °C.

3.2.3. Preparation of photopolymerizable macromer doped network

Model PDMS networks are synthesized per the procedure in Chapter II. Multiple

molecular weight precursors are used (15200, 22300, 41200). Precursor α−ω vinyl chains

are catalytically crosslinked at 35 °C with tetrakis(dimethylsiloxy)silane at the ratio of

crosslinker silane functionality to vinyl endgroup functionality, R, that was shown to give

the highest modulus. The catalyst used was cis-dichlorobis(diethylsulfide)platinum(II).

Networks were also prepared in the diluted state at polymer precursor volume fraction,

φ0, from 0 to 0.5 in a short chain linear PDMS theta solvent. Prepared networks were

fully extracted to obtain dry networks and modulus was measured with a Rheometrics

Scientific RSA III at 1% strain (linear viscoelastic regime) and 1 Hz in oscillatory

tension mode. 

Macromer as synthesized in section 3.2.1 was mixed with 2,2-dimethoxy-1,2,-

diphenylethan-1-one (DMPO), a radical photonitiator with a strong absorbance band in the UV

spectrum. The weight ratio of DMPO / macromer is held fixed at 2%. Fully cured, dry networks

are swollen with macromer and minimally exposed to radiation sources.

Dry networks readily sorbed 10-30% by total weight of macromer and DMPO at 35 °C

when placed on a single surface of a 1 mm thick slab. After short times (<48 hours), no

macromer is visible on the surface of the gel for all network matrices and all macromer molecular

weights. Samples are allowed to equilibrate for 7 days before being used for further experiments.

Sample dimensions are measured before and after swelling to ensure that the sol is evenly
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distributed throughout the sample on a macroscopic basis. 

3.2.4. Photopolymerization of macromer swollen in PDMS matrix

Macromer swollen in model networks is photocured using irradiation dosage at 365 nm.

A 500W Oriel Hg-Xe arc lamp is used as the collimated emission source. An interference filter

with maximum transmittance at 365 ± 0.5 nm and 5 nm HWHM is used to select the 365nm

emission line. Samples 1mm thick x 8mm diameter are placed on a quartz disc and loaded into a

quartz windowed chamber. The chamber is purged with argon for 15 minutes before irradiation to

minimize oxygen inhibition during reaction cure. Samples are irradiated for 40 minutes at 4

mW/cm2 intensity to ensure complete macromer conversion. Irradiation intensity is measured

before and after polymerization with a calibrated photodiode.

Complementary polymerization experiments were performed on macromer-swollen

PDMS melts. Three different molecular weight (approximately 1, 50, and 500 kg/mol) melts are

mixed with 10-30% macromer. For melts of 1 and 50 kg/mol, mixing could be accomplished with

mechanical stirring. Macromer was incorporated into the 500 kg/mol melt by iterative “kneading”

followed by time for diffusion. This mixed sol is then placed in a 1mm thick x 8mm diameter

aluminum mold with quartz windows on both sides of the sample. Macromer-melt samples are

polymerized within the mold in the same sample irradiation setup as macromer doped networks.

The quartz-windowed cell allows us to perform both light scattering and turbidity measurements

on polymerizing samples in situ.

3.2.5. Experimental methods to determine extent of cure

Since we were interested in fully cured macromer for the measurements in this chapter, it

was necessary to determine the extent of cure. Two ex situ methods were used: IR spectroscopy
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and extractable weight fraction. A significant acrylate vinyl stretching band is present at 1639 cm-

1. Spectra were measured before and after cure. Complete absence of the absorption peak was

used as one criterion for complete cure.

To determine extractable weight fraction, polymerized samples were placed in 50x excess

of toluene for 48 hours; three fresh cycles of toluene were used during this time period. Toluene

was removed by cosolvent extraction with methanol; samples were successively placed in

increasing methanol:toluene rations of 50:50, 75:25, and 1:0. After toluene extraction, samples

were dried under vacuum for 24 hours and weighed.

3.2.6. Rheological measurements

Ex situ rheological measurements were performed on a Rheometric Scientific RSA III in

a simple tension geometry under oscillatory mode. Samples were approximately 1 cm x 3 cm x 1

mm in size. Young’s modulus was measured at 25 °C. Since relatively small strains (< 1%) were

used for reporting modulus values, changes in cross-sectional area were neglected. Strain and

frequency sweeps were run on each sample. Strain sweeps were performed from 0.01-4% to

determine the linear viscoelastic regime. For all samples used, 1% strain rate was within this

regime. Frequency sweeps were run from 0.01-100 Hz. In all cases, samples exhibit a nearly flat

(< 1% deviation) plateau modulus across this frequency domain. In this chapter, data reported as

G' (shear modulus) has been converted from Young’s modulus data using the relationship E=3G,

which is appropriate for these networks (Poisson ratio of 1/2).

3.2.7. Turbidity measurements

Turbidity measurements, both during and after cure, give an indication as to the extent of

heterogeneities both inherent to network crosslinking and those that develop from macromer
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photopolymerization. A 15mW 500:1 vertically polarized HeNe laser with 1mm beam waist is

aimed perpendicular to the face of a sample as shown in figure 3.2. A calibrated 5 mm diameter

photodiode detector was placed at a distance of 250 mm from the sample. Turbidity was

measured in situ during cure for samples with macromer content from 10 to 30%, macromer

length from 500 to 5000 g/mol, phenyl content of 0 and 5%, and network Young’s modulus from

340kPa to 840kPa.

3.2.8. Static light scattering

Angular distribution of scattered light was measured for cured and uncured samples

between an angular scattering vector, q, of 2.8x10-2  to 5x10-5 nm-1 using two methods. Large size

scales (80nm-20 µm) are examined using a modification of the turbidity apparatus (figure 3.2). A

15 mW vertically polarized HeNe laser is directed through a 1 mm thick sample. A translucent

viewing screen is placed behind the sample, and a CCD camera is used to image the viewing

screen. The camera, a Photometrics Sensys 400 series, has extremely low dark current, negligible

pixel bleed, and 16 bit linear well depth. For 30 second dark exposures, azimuthal integration of

the radial region we examine reveals a net zero average intensity for each q. Measurements taken

at multiple points on a single sample show similar scattering patterns. This indicates that the large

size of the sampling beam provides an effective ensemble average of scattering particles and that

the sample is macroscopically homogeneous.

Preliminary static light scattering measurements have also been performed on a slightly

smaller size scale; a Wyatt Dawn EOS multi-angle light scattering (MALS) apparatus was used to

measure angular intensity from 11 different detectors at angles of 32 to 117 degrees.

Corresponding q vectors are 8x10-3 to 2.5x10-2 nm-1, where q=(4πn/λ)sin(θ/2), θ is the scattering

angle, λ is the wavelength of incident light, and n is the refractive index of the medium. The
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scattering light source is a 30 mW gallium arsenide laser emitting at 690 nm. Samples were

swollen in 0.02 µm filtered toluene and scattering measurements were performed in scintillation

vials. Because of heterogeneities in the vials, scattering measurements were taken 6 times from

each sample with small angular sample rotations between acquisition. Measurements were then

averaged to obtain a final result. 

3.3. Results and Discussion

3.3.1. Physical property characterization of macromers

The six macromers used in this study (table 3.1) span a decade in molar mass at fixed

composition (dimethylsiloxane) and up to 10% methyl substituents replaced by phenyl at a fixed

macromer length (1000 g/mol only). The refractive index measured at 25 °C (n25) of all

macromers is greater than that of PDMS. For pure dimethylsiloxane macromers, this increase is

due to the higher refractive index of methacrylate endgroups. Incorporation of phenyl groups

further increases n25.31 Based on the catalytic ring opening polymerization used for macromer

synthesis, we expect a Gaussian distribution of molecular weights. After purification, GPC-LS

analysis shows that polydispersity (PDI) values range from 1.42 for 1000 g/mol methacrylate

endcapped PDMS to 1.65 for 5000 g/mol materials. For radii of gyration (Rg) less than 5nm, we

expect isotropic scattering for a wavelength of 591nm. Because 500 g/mol and 1000 g/mol

macromers in toluene have Rg less than 10 nm, it is important to corroborate these molecular

weight values via another method. 1H NMR measurements are used in both this capacity and to

determine the amount of phenyl incorporation into random polymethyl phenylsiloxane (PMPS)

backboned macromer. Molecular weights measured both by GPC-LS and NMR are similar; this

indicates that light scattering should be an appropriate method for determination of PDI.
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3.3.2. Extent of cure for photopolymerized macromer

After forming model networks and synthesizing methacrylate endcapped macromer, we

dope the network with a small (10%-30% wt/wt) amount of macromer. The system is allowed to

equilibrate and is then irradiated with UV light to photopolymerize the macromer. Prior to

polymerization, macromer exhibits a strong absorbance peak at 1639 cm-1. After polymerization,

no peak is present. However, more quantitative measurements for both partial and complete

photopolymerization are performed by measuring mass of extractables as discussed in the

experimental section. For all macromers, the weight percent of extractables is less than 2%.

Although most reaction byproducts have been removed during the purification process, it is likely

that some cyclics or non-functionalized siloxanes remain in the final macromer product.

However, this relatively small amount of non-reacting material does not significantly change any

results. 

3.3.3. Modulus changes interpenetrating photopolymerized networks

As we noted, no macromer was extractable after this polymerization; however, it was

uncertain as to whether this was due to a percolated macromer network or to non-interconnected

nodules of cured macromer that were intercalated with host network. If the host network plays a

significant role in preventing macromer network dissolution, then photopolymerization of

macromer diluted in a host melt should elucidate whether macromer forms a percolated network

or isolated nodules. Macromer, at 30% by weight, was mixed with three different viscosities of

pure PDMS fluid: 50 cS, 50,000 cS, and a high molecular weight melt with G' G'' crossover at

approximately 20 kPa. The low viscosity fluid is significantly below the entanglement molecular

weight of PDMS whereas the other two samples are well entangled melts. For all three melts,
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extraction of the melt from the photopolymerized macromer leaves a percolated gel. As in

photopolymerized macromer doped host networks, less than 2% of the macromer is extracted.

Thus, photopolymerized macromer in a host network forms a bicontinuous network. Although a

continuous macromer network forms when photopolymerized, its structure could range from

nodules with minimal interconnection or a highly connected homogeneous network. We therefore

measure the modulus of a 50 cS melt with 30% 1000 g/mol photocured macromer; the modulus is

approximately 1 kPa. If all the macromer were elastically effective, the estimated modulus is

approximately 1 Mpa based on:

(3.3)G vRT=

where G is the shear modulus, ν is the number of moles of elastic chains per unit volume, T is

absolute temperature, and R is the gas constant. The factor of 1000 difference between G'observed

and that expected for 100% elastically effective chains suggests that small polymerized macromer

nodules form that are only minimally connected.

Since photocured macromer forms a gel even at 10% loading, if it is bicontinuous with a

host network we expect to see an enhancement of elastic modulus. First, we are interested in

elucidating the effect of the host PDMS network on the final modulus of the bicontinuous

materials. The initial network modulus of the dry matrix, E'dry, is dictated by the molecular weight

of network precursors, Mh, and polymer volume fraction at preparation, φ0. When the dry matrix

is swollen with unreacted macromer modulus decreases. After the macromer is polymerized, the

modulus increases to a value that exceeds E'dry. In figure 3.3, a normalized modulus of photocured

materials is plotted against weight percent macromer for different precursor networks. The

normalized modulus is the modulus of photopolymerized material divided by the modulus of an

unswollen model host, or dry, network. For all values of Mh, networks prepared with φ0 of 1, 0.85,

0.7, and 0.5 were swollen with 1000 g/mol macromer and photopolymerized. All three plots show
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that preparation dilution of the host network does not change the effective modulus increase of

intercalated networks; data from each value of φ0 are overlapping. Since modulus increase is

independent of φ0 we collapse these values for each Mh and plot normalized modulus against

weight percent of macromer. Figure 3.4 shows that data from all three Mh values used overlaps.

This combination of data overlap from different Mh and φ0 values indicates that, similar to

swelling behavior as will be seen in Chapter 4, the effects of entanglements and chemical

crosslinks are equivalent. 

Macromer molecular weight, Md, also had a significant effect on the extent of network

stiffening. Figure 3.5 shows normalized modulus plotted against macromer loading for four

different values of Md. For Md = 500 g/mol, at 10% macromer loading the photopolymerized

systems have a modulus increase of 1.15; at 30% loading, the modulus increase is approximately

2.2. For 5000 g/mol macromer, modulus increase at 30% loading was only a factor of 1.3.

Intermediate molecular weights show intermediate absolute change in modulus. For all Md, not

only is there a monotonic increase in modulus change with percent macromer doping, but the

slope of normalized modulus against weight percent macromer also increases. This increasing

slope can be explained by the increasing density of macromers in the polymerizing system. A

simple calculation using monomer size estimates for pure PDMS shows an overlap concentration

of approximately 3%.32, 33 At 10% macromer loading, we are then merely 3x the overlap

concentration; during photopolymerization, the number of polymer chains within the pervaded

volume of a single chain is relatively small. Since the macromers are end-capped at both sides of

the molecule and have relatively flexible siloxane midblocks, they have the potential to form

small intramolecular loops; ring strain in siloxane cyclics is relatively insignificant after 5

monomer repeat units. Assuming all methacrylate endgroups have identical reactivity and the

reaction is diffusion limited, the chances of forming an intramolecular loop vs. an intermolecular
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association is purely related to diffusivities. For intramolecular loops, Kuhn monomer diffusion is

the limiting rate; for intermolecular associations, the limiting rate depends on solution

concentration. For high concentrations (such as in the melt), Kuhn monomer diffusion is the

limiting step for intermolecular reactions. For lower concentrations, such as we see at 10%

macromer loading, macromer center of mass diffusion will be the rate limiting step. Making the

simple assumption that macromer is a linear PDMS chain and does not contain methacrylate

endgroups, we expect approximately 3 Kuhn monomers;33 this indicates that, for Rouse-like

diffusion, intramolecular reactions should occur at least three times higher than intermolecular

reactions in non-concentrated systems. As the solution becomes more and more dilute,

intramolecular loops are more likely; conversely, as the system becomes more concentrated,

intermolecular reactions become more likely. In the limit of the melt, intra- and inter-molecular

reactions will have a similar probability. Thus, as we increase macromer concentration, we should

see relatively more intermolecular reactions and an increasing change in modulus with weight

percent photopolymerized macromer.

Comparison of experimental data to two theories for modulus of interpenetrating

networks also promote this interpretation of concentration dependence. The two theories that we

will consider interpret interpenetrating networks either as a disperse phase or as bicontinuous

networks. If we consider spherical particles randomly distributed throughout a disperse phase,

one can obtain:4
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where E, E1, and E2 are the modulus of the interpenetrated network, host phase, and dispersed

phase; φ1 and φ2 are the volume fraction of host and dispersed phases; and σ1 is Poisson’s ratio for
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the host phase. If the dispersed phase has a considerably higher modulus than the host phase, this

equations simplifies to:

(3.5)
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Figure 3.6A shows a comparison of the simplified version of the dispersed phase equation for 500

g/mol macromer in the complete array of model networks. Although modulus was not measured

for pure photopolymerized macromer, polymerized 500 g/mol material forms an extremely brittle

polymer. Thus, qualitatively, we suggest that cured macromer may have a high enough modulus

for the assumption to be appropriate. Looking at data for low macromer weight percent, we see

that this theory overpredicts modulus increase, although not significantly. This would indicate

that the assumption of extremely high photopolymerized macromer modulus is not completely

appropriate. However, the trend for theory matches well for low macromer weight percent and

indicates that we very possibly have a macromer dispersed phase in this region. As we increase

macromer weight percent to 30%, experimental data begins to significantly deviate from theory.

There are two possibilities for this deviation: the networks are becoming bicontinuous as opposed

to one phase dispersed in another; or the intermolecular macromer polymerization is becoming

more prevalent as discussed previously. If intermolecular reactions increase, fewer loops and

more elastically effective chains and network junctions are created. This increase in elastically

effective chains will then increase material modulus.

If the IPNs are bicontinuous, increased modulus should be explained by theory for

bicontinuous networks as proposed by Davies.5, 6 

(3.6)E E E1 5
1 1

1 5
2 2

1 5/ / /= +φ φ

The basic premise for this expression is that the interpenetrated network is a composite of two



III-17 

materials with moduli of E + ∆E and E - ∆E. Figure 3.6B shows a comparison of this expression

for bicontinuous networks compared with the same experimental data presented in figure 3.6A.

Interestingly, due to the construction of the expression in Equation 3.6, the change in modulus is

highly dependent on the host network modulus. Theoretical predictions for four different host

moduli are also plotted in this figure. It is immediately obvious that experimental data do not

exhibit a trend in modulus change that is in any way dependent on host modulus. Also,

experimental results for high macromer weight percents are equally as underpredicted for

bicontinuous network theory as they were for dispersed network theory. This leads us to the

conclusion that intramolecular associations dominate in macromer photopolymerization at low

concentration and intermolecular associations become more prominent for higher concentration

systems. Although these plots only show behavior for 500 g/mol macromer molecular weight,

other molecular weights show similar trends as compared to theory. However, for larger

macromer molecular weights, the simplified version of disperse IPN theory greatly overpredicts

modulus changes. This overprediction occurs because higher molecular weight photopolymerized

macromer has a lower modulus than for short chain materials. However, equation 3.5 assumes

that the disperse phase is infinitely stiff. 

As will be discussed later in this chapter, some amount of microphase separation occurs

during the photopolymerization of macromer doped networks. Although different macromer

molecular weights have different interaction parameters with pure PDMS networks (due to the

relative effect of endgroup vs. midblock length), they also change other parameters important to

modulus determination such as midblock length. Adding phenyl content to the macromer allows

us to retain similar midblock length while significantly changing thermodynamic interaction

parameters. As is discussed in Chapter IV, PMPS macromer containing either 5% or 10% phenyl

is significantly less miscible in pure PDMS than the PDMS macromer analogue. If different
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amounts of phase separation occur for PMPS and PDMS macromer (i.e., PMPS remains in a

disperse phase at the same concentration where PDMS is in a bicontinuous phase), we would

expect different mechanical properties on cure. When systems containing from 10% to 30%

PMPS macromer (10%-25% for PMPS macromer containing 10% phenyl due to miscibility

concerns) are cured, modulus does not change as compared to using PDMS macromers. This

indicates that microstructure is similar even for macromer phases with significantly different

chemical properties.

3.3.4. Turbidity measurements

When polymerizing macromer doped networks, many systems exhibit significant

decreases in optical clarity. The obvious reason for systems becoming translucent is microphase

separation of macromer from the host network during photopolymerization. Since the two phases

have different refractive indices, we see significant scattering. We measure turbidity to help

elucidate the structure changes during photopolymerization. It is important to note that, in many

regards, turbidity only provides qualitative information; no information is garnered regarding size

scales of scatterers. Table 2 provides selected ex situ turbidity data; for reference, the last data

point is for host networks that do not contain photopolymerized macromer. Looking at networks

swollen in 10% to 30% 1000 g/mol macromer and then cured, we see that turbidity increases with

increasing weight percent. For phase separated systems, the number of scatterers will increase

with increasing macromer content. We also see that, for 1000 g/mol macromer at 0 and 5 weight

percent phenyl, that turbidity increases radically with phenyl content. Since scattering intensity is

proportional to the square of the refractive index difference between scattering centers and

surrounding medium and ∆n of PMPS macromer and pure PDMS is greater than ∆n of PDMS

macromer and pure PDMS, we expect increased turbidity. 
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If microstructure were consistent regardless of molecular weight, we would expect

turbidity to increase with increasing refractive index by the same argument as that given for

scattering in PMPS macromer. Although we see this trend from Md = 5000 g/mol to Md = 1000

g/mol, turbidity decreases between Md = 1000 g/mol to Md = 500 g/mol. This indicates that there

is another process that is important in determining microscale phase separation. In sequential

IPNs for both spinodal decomposition and nucleated growth, the relative rate of reaction kinetics

to diffusion is important to determine the final material topology. As will be seen in Chapter 5

(diffusion) and Chapter 6 (reaction kinetics), there are significant differences in these values for

differing macromer molecular weight.

Qualitative visual measurements of backscattering (relative opaqueness) also indicate that

turbidity does not tell a complete story for length scale of microphase separation. Turbidity is

equivalent when a specific macromer molecular weight is polymerized in different host network

moduli. However, visual inspection shows that increased back-scattering occurs for lower

modulus networks. Since the host and macromer refractive indices are the same for this series of

experiments, extent of density fluctuations should play a minimal role in this increased scattering.

As host network crosslink density decreases, larger microphase separated domains will form and

increase backscattering. 

3.3.5. Static light scattering measurements

Static light scattering is used to help provide insight into the structure and length scale of

microphase separated interpenetrating networks. Using two different light scattering setups, we

are able to probe length scales from 20 µm down to 40 nm. Figure 3.7 shows a log-linear plot of

arbitrary scattering intensity against q-1 for an unswollen model network and a network swollen,

but not cured with, 30% 1000 g/mol macromer. For the q values examined, there is a monotonic
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decrease in scattering intensity in both systems; minimal deviations are seen between data sets.

This concurrence of data, along with high sample transparency, also indicates that there is no

decomposition into phase separated systems before macromer photopolymerization. For spinodal

decomposition, a scattering maximum will occur at some non-zero q value.34 Figure 3.8 compares

the scattering intensities of a host network swollen but uncured with 30% macromer against the

same system after photopolymerization. Although there is a systematic increase in scattering

intensity at all scattering angles, an intensity maximum is not seen throughout the q range

examined. Looking at the propagation of phase separation in IPNs, we expect nucleated growth to

initially occur followed by spinodal decomposition. The PDMS networks that we use are

relatively tightly crosslinked; this combined with relatively slow macromer diffusivity and the

capability to quickly form gelled systems indicates that it is very unlikely that a true equilibrium

spinodal decomposition will occur. Contrarily, nucleated growth and SD will occur to some

degree, but initial heterogeneities in phase separation will be locked in with macromer gellation. 

In figure 3.9, we plot high q scattering data for a model network swollen in macromer

using the Ornstein-Zernicke formulation. The non-linear data indicates that, down to 100 nm size

scales, we do not see a single size scale for network heterogeneities. Additional data obtained

using a Wyatt Dawn EOS allows us to examine size scales down to 40 nm; no linear behavior is

seen even at these values of q. Soni and Stein used static light scattering measurements to

determine the size of large-scale heterogeneities as compared to network equilibrium swelling

values in toluene.20 They found an effect that was moderately invariant of Q (total mass of

toluene and polymer at equilibrium swelling divided by polymer mass); oddly, results show

increasing heterogeneity size scales with decreasing equilibrium swelling. Correlation lengths for

Q = 6.2 are around 320 nm, whereas for Q = 3 and Q = 2, they are 364 nm and 380 nm. Since we

examine materials that have Q values in toluene from 6.2 to 3.5, we would expect to see



III-21 

scattering data in the linear regime for our range of q values. More recent work with neutron

scattering indicates that these heterogeneities may be on a much smaller size scale.24, 25 Using Q

values between 22 and 3.1 in toluene, correlation lengths were shown to be between 175 nm and

6.4 nm with decreasing length scales for decreasing equilibrium swelling. In particular, the

correlation length at Q = 7.7 is only 21.8 nm. This data suggests that light scattering may not be

an effective method for probing network heterogeneities and explains why a linear scattering

regime was not observed when our data was plotted in the Ornstein-Zernicke formulation. Data

for swollen networks was also plotted using the Debye-Bueche formulation for completeness;

again, no linear regime was seen.

If there are distinct boundaries between phase separated regions of polymerized

macromer and host network, we would expect high q behavior plotted with the Debye-Bueche

formulation to be linear. Figure 3.9 shows I-1/2 plotted against q2 for a high modulus macromer;

surprisingly, we do not see linear behavior even at 100 nm size scales. Extended scattering data

(data not shown) increases this range down to 40 nm. In light of the relatively large (µm) size

scale of dispersed phase in other PDMS IPNs,7-10 this result is rather surprising. If the phases

showed gradient boundaries, a plot of I-1 against q2 should be linear (Ornstein-Zernicke).

However, q independent behavior was also seen in this case. Since only high q data are used for

analysis with the Debye-Bueche equation this technique can potentially miss larger size scale

inhomogeneities. We therefore use a combination smoothing and Fourier transform approach

pioneered by Glatter.29, 30 No distinct size scale appropriately fit scattering data for polymerized

IPNs. These combined scattering data suggest the following explanation for microscale phase

separation. Initially, the sol macromer phase is quite miscible in the host network. As the

macromer begins to photopolymerize, nucleated phase growth begins. However, due to network

constraints and fast gelling of the cured macromer (because of two reactive endgroups), the
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system is never allowed to thermodynamically equilibrate. This leads to very small  (nm scale)

and polydisperse inclusions or nodules of interconnected polymerized macromer within a host

network. Similar non-linear results are found for all network moduli, indicating that complete

spinodal decomposition is not present for any of our systems due to either network constraints or

photopolymerization kinetics.

Although we are unable to establish specific size scales with light scattering data, there

are some qualitative trends that are interesting to examine. Figure 3.11 shows a plot of scattering

intensity against q for different percent cure in photopolymerized IPNs. Cure was determined by

stopping the reaction and extracting the soluble fraction of non-polymerized macromer. At 0%

cure, we see that there is minimal scattering; as percent cure increases, so does absolute scattering

for all scattering vectors. Even at high percent conversion, we still see significant increases in

scattering intensity. This suggests that significant amounts of monomer are still free to diffuse

through the system to alter phase separated nodules even at high levels of methacrylate

conversion. This trend can be attributed to large amount of intramolecular chemical crosslinks as

discussed earlier. Figure 3.11 shows scattering intensity plotted against scattering vector for IPNs

with different weight percent of macromer. Similar to results obtained from turbidity

measurements, we see a monotonic increase in scattering intensity for all q values with increasing

percent cured macromer. 

3.4. Conclusions

We have formed interpenetrating networks (IPNs) from well-defined constituents and

measured mechanical properties and microphase structure of the materials. Increase in modulus

for IPNs as compared to a pure host network were relatively small and were independent of

network structure. However, theories for the modulus of bicontinuous and dispersed phases
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consistently underpredicted modulus increases for high weight percent of macromer. We also

found that mechanical properties were independent of photopolymerization conditions; increased

photoinitiator content and irradiation intensity did not alter the material modulus. There are two

future lines of work, both with in situ rheological measurements, that could provide additional

insight into the dynamics of phase separation. Measuring the modulus of macromer swollen

networks during photopolymerization in tensile geometry would offer insight into how phase

separated structures builds up with conversion. Also, in situ modulus measurements during

polymerization for macromer-swollen melts would provide information on macromer

interconnectivity and gelation.

Contrary to previous work with PDMS IPNs, we did not find µm size scale

heterogeneities in our systems with light scattering measurements. This has two potential causes:

relatively high miscibility for our PDMS analogue macromers in a PDMS host network; or slow

diffusion rates and fast gellation of relatively large macromer molecules with reactive groups on

either end of the molecule. However, we do see trends that indicate greater scattering for higher

macromer content, larger domain sizing for less highly crosslinked networks, and increased

scattering with the extent of photopolymerized conversion of macromer in a host network.

Additional work with transmission electron microscopy (TEM) and neutron or x-ray scattering

would be extraordinarily beneficial to help elucidate the exact nature of the nanometer scale

phase separated inclusions in these IPNs.
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3.5. Tables

Table 3.1. Molecular weights, polydispersity, and refractive indices of methacrylate endcapped
macromer

Nominal MW Mn (NMR) Mn(g/mol) 
(GPC-MALS)

PDIa 
(GPC-MALS)

n25 % phenylb

500 520 480 1.44 1.438 0 

1000 1010 990 1.42 1.423 0 
1000 1020 N/A N/A 1.440 4.8 
1000 1000 N/A N/A 1.454 9.7 

3000 2920 2940 1.53 1.410 0 

5000 4890 4880 1.65 1.407 0 

aPDI = Poldispersity Index (Mw/Mn)
bpercent of backbone sidegroups that contain phenyl instead of methyl moiety
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Table 3.2. Selected turbidity measurements for different macromer molecular weights, phenyl
content, and doped macromer content

Mmacromer wt % macromer % phenyl % transmittance
500 30 0 70

1000 10 0 65
1000 20 0 45
1000 30 0 4

1000 10 5 < 1
1000 20 5 < 1
1000 30 5 < 1

3000 30 0 60

5000 30 0 85

N/A 0 0 90
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3.6. Figures
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HeNe Laser

Sample chamber

Sample

Arc Lamp

Photodiode

Figure 3.2. Experimental apparatus for polymerization and turbidity measurement. The quartz
sample holder is not pictured. The chamber surrounding the samples is purged with argon and
the Hg-Xe arc lamp is equipped with a 365 nm interference filter. Irradiation is normal to the
large face of the sample. A similar setup (replacing the photodiode with an imaging screen and
low-dark current CCD camera) is used to measure 2-d static light scattering patterns.
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Figure 3.3. Fractional change in modulus on
photopolymerization of swollen sol gel systems plotted against
weight percent sol. 1000 g/mol macromer is swollen in model
networks with different precursor molecular weight and φ0, or
polymer volume fraction at preparation.
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Figure 3.4. Fractional change in modulus after photopolymerization of swollen networks plotted
against weight percent cured macromer. 1000 g/mol macromer is swollen in model networks with
precursor molecular weight of  15200 g/mol,  22300 g/mol, and  41200 g/mol.
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Figure 3.5. Fractional change in modulus on photopolymerization of swollen sol gel systems
plotted against weight percent sol. 500 g/mol, 1000 g/mol, 3000 g/mol, and 5000 g/mol macromers
are swollen and cured in different model networks.
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Figure 3.6. Fractional change in modulus on photopolymerization of swollen sol gel
systems plotted against weight percent sol for 500 g/mol. The experimental data
( ) is the same as is presented in Figure 5. The line in plot A is a simplified version
of the Kerner equation. The lines in Plot B are for the Davies equation. Each line
indicates a different E'dry. The lines, from top down, are for a modulus of E'=334
kPa, E'=490 kPa, E'=668 kPa, and E'=840 kPa.
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Figure 3.7. Intensity plotted against the inverse scattering vector for unswollen and swollen
model networks. The data sets parallel each other throughout the scattering range we use.  is for
17200 g/mol precursor network prepared at φ0=0,  is for the same model network swollen with
30% by weight 1000 g/mol methacrylate endcapped macromer.
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Figure 3.8. Intensity plotted against the inverse scattering vector for swollen model networks in
the photopolymerized and non-photopolymerized states.  is for 17200 g/mol precursor network
prepared at φ0=0 and swollen with 30% by weight 1000 g/mol methacrylate endcapped
macromer,  is for the same system that has been fully photopolymerized.
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Figure 3.9. Ornstein-Zernicke plot of high q for a model network with modulus of E'=840 kPa
that is swollen with 30% 1000 g/mol photpolymerized methacrylate endcapped PDMS
macromer.
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Figure 3.10. Debye-Bueche plot of high q for a model network with modulus of E'=840 kPa that
is swollen and cured with 30% 1000 g/mol photpolymerized methacrylate endcapped PDMS
macromer.
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Figure 3.11. Scattering intensity plotted against scattering vector for different levels of cured
macromer swollen in a model network. Extent of cure was determined by extracting
unpolymerized macromer. 1000 g/mol macromer swollen to 30% by weight in a E'=840kPa was
used for the experiments in this plot.
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Figure 3.12. Scattering intensity plotted against scattering vector for different weight percent
cured macromer swollen in a model network. 1000 g/mol macromer swollen to 10%, 20%, and
30% by total weight in a E'=840kPa network was used for the experiments in this plot. φn is
polymer weight fraction.
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4.1. Introduction

Model elastomer networks have long been studied to elucidate theoretical predictions for

rubber elasticity. Swelling behavior of these networks, and particularly equilibrium swelling

behavior, is a powerful method to determine network crosslink densities and network strand

molecular weights. In the process of synthesizing photopolymerizable sol gel systems, we have

run into several issues that previous work in network behavior has not addressed. Although

significant work is available on network swelling in good solvents1-5 and theta solvents6-11, little

work has been performed for poorer solvent qualitites.12 In addition, we use multiple molecular

weights of sol to swell networks, each of which will have different entropic and enthalpic effects

on the extent of swelling. We also prepare sols that have identical molecular weight but are of

different solvent quality. 

There are two methods, both resting on the same theoretical cornerstone, that we will use

to examine this thermodynamic behavior. Initially, we will use scaling arguments originating
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from the concept that swelling equilibrium can be discussed in terms of free energy

equivalencies: an osmotic pressure portion of free energy swells the network and an elastic

portion of the free energy restricts swelling.13 Prior work has established an effective method to

determine scaling with affine deformation on swelling.14, 15 We can write an equation for the free

energy due to osmotic pressure of the material using de Gennes blob sizes which store kT of

osmotic energy.16 

(4.1)F kT b
os ∝

⎛
⎝
⎜

⎞
⎠
⎟ ∝

ξ
φ

3
3

Here, k is Boltzmann’s constant, T is absolute temperature, b is the Kuhn length and ξ is blob size

(ξ=bφ-3/4). It is important to note that we perform this derivation only under the auspices of theta

solvent conditions; good solvents elicit significantly different scaling behavior. To determine the

elastic effects of free energy, we can use an analogue of Hooke’s law for the free energy of

elasticity.14

(4.2)F kTb R
Rel ∝ ⎛

⎝⎜
⎞
⎠⎟

3 0
2

ν λ

In equation 4.2, ν is network strand number density, λ is a linear expansion factor, R0 is the RMS

end to end distance of a network strand in the initial prepared state, and R is the end to end

distance of a chain with equivalent length in solution at a polymer fraction φ. ν is defined as 

(4.3)ν φ≅ − −b N3 1

where N is the average degree of polymerization. Using semidilute solution theory for a theta

solvent, we then determine the relative size for unattached network strands.16
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(4.4)ν φ∝ − −b N3 1

To extend this derivation, we make an assumption of affine deformation. Affine behavior

indicates fractal swelling behavior that has identical scaling properties throughout size scales. In

particular, it says network junctions are dispersed isotropically throughout the network and,

during swelling, the junctions move away from each other the same amount as we see

macroscopically. An opposing view, the c* theorem, suggests that networks strands

disinterpenetrate and junctions dissociate in a non-isotropic manner.16 There is considerable

amount of work involving neutron, X-ray, and visible light scattering that shows larger scale

homogeneities in PDMS networks17-22 and other gels23-25. In particular, the c* theory allows for

greater equilibrium swelling than affine network theory. Since several groups have found

moderately good scaling behavior agreement using the affine assumption with theta to good

solvents and we use solvents with poor to theta quality, the affine assumption is used in this

derivation. The coefficient of linear expansion for an affine system, λ, is given by Eq (5).

(4.5)λ φ
φ

∝
⎛

⎝
⎜

⎞

⎠
⎟

−

0

1 3/

In this formulation, φ is polymer volume fraction and φ0 is the polymer volume fraction at

preparation.

By combining the previous equations and equating free energy terms, we obtain the

following result.26 13

(4.6)F Gb kT
Nel ≅ ≅3

0
2 3 1 3φ φ/ /

If we then minimize the total free energy (osmotic + elastic), we can determine scaling behavior
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for equilibrium swelling. In particular, the swelling ratio Q is defined as the ratio of total volume

in the swollen state divided by the total volume in the unswollen state, or the inverse of the

polymer volume fraction in the swollen state.

(4.7)Q N≅ −3 8 1 4/ /φ

It is interesting to note that several other derivations present in literature obtain slightly different

scaling results for good and theta solvent behavior.13, 15, 16, 27

 Since this whole system is postulated on the free energy equivalency approach, we can

then take the previous two equations (equationss 4.6 and 4.7) and combine them.

(4.8)G kt
b

Qswollen ≅ −
3

3

Thus, the swollen modulus scales with the swelling ratio to the exponent α, where α =-3. This

prediction has been examined for several different polymer-solvent systems: polyvinylacetate in

isopropyl alcohol where α=-3.04,28 PDMS and short chain PDMS gives α=-2.93,7 and

polystyrene in cyclohexane  α= 3.7.29 This scaling result is independent of network precursor

strand length and polymer volume fraction at network preparation. Thus, it is equally effective at

predicting behavior for both predominantly chemically crosslinked and entanglement dominated

networks.

However, in this chapter, we are particularly interested in the scaling behavior between

dry network modulus and swelling behavior. Again combining equations 4.5 and equations 4.6,

but this time setting φ=1, we obtain the following scaling behavior in regards to dry networks.

(4.9)G b kTQφ =
− −∝1

3 8 3/

Although significant work has been performed to establish the validity of the good solvent
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relationship between dry modulus and equilibrium swelling ratio, little work has been performed

under theta conditions. Sivisailam and Cohen, using Mn = 3800 g/mol PDMS diffusants in several

different network strand molecular weight systems, obtained a scaling exponent of -2.29.7 Rennar

and Opperman, in an earlier study, found that Gφ=1≅Q-1.65 for similar, although more imperfect,

networks.30 It is interesting to note that both of these results suggest an intermediate behavior

between theta and good solvent conditions. This may be explained if networks have high degrees

of inhomogeneity.

Although equation 4.9, similar to equation 4.7, is ostensibly independent of network

precursor strand molecular weight and polymer volume fraction at network formation, this

assumption fails for values of φ0 that approach 0 when precursor molecular weight is large

enough (~MWentanglement). Under these preparation conditions, networks strands will have few

entanglements during the network formation process; after deswelling, network collapse is

significant enough to create temporary crosslinks. However, the point at which this becomes

important is around φ0=0.1 in good solvent.31 Thus, since in a theta solvent equilibrium swelling

will be less than that in a good solvent, even lower φ0 values would be required to invalidate this

scaling relationship.

The free-energy equivalency approach to determine meaningful equilibrium swelling

results can also be viewed through an approach pioneered by Flory.13, 27, 32 For a tetrafunctional

network with affine deformations, the result is:

(4.10)ln( ) /1
22 2 2 1
2

2
1 3− + + = −⎡

⎣⎢
⎤
⎦⎥

υ υ χυ ν υ υv

where ν2 is polymer volume fraction, χ is the interaction parameter, v1 is solvent molar volume,

and ν is number density of precursor chains. Using the phantom network model (network
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crosslinks are allowed to move non-affinely), the result is modified to

(4.11)( )ln( ) /1 2 2 2 1 2
1 3− + + = − −υ υ χυ ν µ υv

where υ is molar density of network junctions (Ge
phantom=(ν−µ)RT). Rearranging this equation and

letting the density of the solvent and network be equivalent, we obtain:

(4.12)Q Q Q Ms
Mc

Q Q
f

2 1 5 31 2 0ln( ) /− + + + −
⎛
⎝
⎜

⎞
⎠
⎟ =− χ

where Ms is the molecular weight of the solvent, Mc is the molecular weight of network strands,

and f is network junction functionality. In the case of network precursors that are below the

entanglement molecular weight, Mc=Mprecursor. However, if precursor molecular weight are long,

Mc=Mentanglement.

In this chapter, we are particularly interested in examining the swelling parameters for a

different molecular weights and compositions of bismethacrylate endcapped PDMS oligomers.

Both model PDMS networks and networks intercalated with photopolymerized macromer are

employed as the host for these measurements. 

4.2. Experimental section

4.2.1. Preparation of swollen sol-gel systems

Ideal gel networks are synthesized per the procedure in Chapter II. Multiple molecular

weight precursors are used (15200, 22300, 41200 g/mol) with 0%, 15%, 30%, and 50% dilution

in a theta solvent during cure. Precursor α−ω vinyl chains are catalytically crosslinked at 35 °C

with tetrakis(dimethylsiloxy)silane at an R value (ratio of crosslinker silane functionality to vinyl
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endgroup functionality) that results in the highest modulus. The catalyst used was cis-

dichlorobis(diethylsulfide)platinum(II). Prepared networks are then fully extracted and modulus

is measured with a Rheometrics Scientific RSA III at 1% strain (linear viscoelastic regime) and 1

Hz in oscillatory tension mode. 

Macromer as synthesized in Chapter III is mixed with 2,2-dimethoxy-1,2,-diphenylethan-

1-one (DMPO), a radical photonitiator with a strong absorbance band in the UV spectrum. For

fully cured systems, 2% wt/wt DMPO/macromer is fully dissolved in macromer with minimal

exposure to UV radiation sources.

Dry networks are swollen with 10-30% by total weight macromer and DMPO at 35 °C.

After short times (< 48 hours), no macromer is visible on the surface of the sol gel systems for all

networks and all macromer molecular weights. Samples are allowed to equilibrate for 7 days

before being used for further experiments. Macroscopic sample dimensions are measured at

multiple points before and after swelling to ensure that the sol is evenly distributed throughout the

sample. 

4.2.2. Photopolymerization of macromer swollen model networks

Macromer swollen in model networks is cured using controlled exposure times and

intensities at 365 nm. A 500W Oriel Hg-Xe arc lamp is used as the collimated emission source. A

5nm HWHM interference filter with maximum transmittence at 365 +-0.5 nm provides frequency

filtering. Sol-gel samples are placed on a quartz disc and loaded into a quartz windowed chamber.

The chamber is purged with argon for 15 minutes before irradiation to minimize oxygen

inhibition during reaction cure. For complete polymerization, samples are irradiated for 40

minutes at 4 mW/cm2 intensity. Complete polymerization is corroborated by experiments and

results presented in Chapter III.
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4.2.3. Swelling measurements and gravimetric analysis

Dry networks, both pure PDMS model networks and photopolymerized intercalated

networks, are swollen to equilibrium with different molecular weights of acrylate endcapped

macromer. Samples approximately 1 mm thick and 8 mm in diameter were immersed in different

molecular weight and phenyl content macromer at 35 °C. Dimensional measurements are

repeated after swelling to ensure macroscopic affine behavior. Weight measurements were taken

at defined intervals until samples reached equilibrium (< 0.1% change in weight over a 24 hour

period). To ensure no crosslinking or macromer reaction had taken place, selected samples were

fully extracted in toluene and reweighed. 

4.2.4. Rheological measurements on swollen and nonswollen gels

Ex situ rheological measurements were performed on a Rheometric Scientific RSA III in

a simple tension geometry under oscillatory mode. Samples were approximately 1 cm x 3cm x 1

mm in size. Young’s modulus was measured at 25 °C. Since relatively small strains (< 1%) were

used for reporting modulus values, changes in cross-sectional area were neglected. Strain and

frequency sweeps were run on each sample. Strain sweeps were performed from 0.01-4% to

determine the linear viscoelastic regime. For all samples used, 1% strain rate was within this

regime. Frequency sweeps were run from 0.01-100 hz. In all cases, samples exhibit a nearly flat

(< 1% deviation) plateau modulus across this frequency domain.. In this chapter, data reported as

G' (shear modulus) have been converted from Young’s modulus data using the relationship

E=3G. This relationship holds true for a poisson ratio of 1/2, which is exhibited for most

elastomeric systems.

4.3. Results and discussion
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4.3.1. Storage modulus dependence on degree of equilibrium swelling

Three different molecular weight series of precursor network chains are used to elucidate

equilibrium swelling behavior for different macromer formulations. As discussed in the

experimental section, each network precursor molecular weight was prepared at four different

dilution ratios. Examining equation 4.8, it is readily apparent that scaling behavior between

prepared network modulus and ultimate equilibrium swelling ratio should be independent of both

the molecular weight of the network precursor chains and the polymer volume fraction at

preparation. For four different molecular weights of endcapped macromer (Mn=500, 1000, 3000,

5000 g/mol) and two different phenyl contents (Mn=1000 g/mol, phenyl=5% and 10%), this

behavior was seen. In particular, figure 4.1, using 1000 g/mol macromer as the network diluent, 

shows the near perfect swelling behavior overlap between different model networks. However,

the scaling exponent of α=-3.01 is quite different than the theoretically predicted value of α=-8/3

for affine deformation in a theta solvent. This is expected due to the relatively large size of the

methacrylate endcaps compared to the total molecular weight of the oligomer. As such, the

macromer should have characteristics between a theta and poor solvent.

Having determined that network precursor molecular weights and preparation volume

fractions may be neglected for scaling behavior between equilibrium swelling and modulus, we

now examine the effect of macromer molecular weight on scaling relationships. Pure homologous

series of PDMS oligomers are expected to swell a network to the same amount above some extent

of polymerization threshold. It has been suggested that deviations in scaling behavior still occur

due to entropic concerns for molecular weights at least up to 4000 g/mol.7 Since we are using

relatively short chain materials (< 5000 g/mol), we have some expectation that an entropic effect

will be apparent in both scaling behavior and degree of equilibrium swelling. In this study we do
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not use homologous PDMS series; a molecular weight of 256 g/mol for each macromer is

dedicated to a photopolymerizable methacrylate endcap. Especially at low molecular weights, we

might expect this endcap to sufficiently change solvent quality such that entropic effects may not

be significant in comparison. 

Examining swelling behavior for different molecular weight macromer, we find the

following power laws:

for 500 g/mol (4.13)G Qφ =
−≅1

8 15.

 for 1000 g/mol (4.14)G Qφ =
−≅1

3 01.

for 3000 g/mol (4.15)G Qφ =
−≅1

2 97.

 for 5000 g/mol (4.16)G Qφ =
−≅1

2 91.

For 1000, 3000, and 5000 molecular weight macromer, we find scaling behavior that is

moderately close to the expected power law of -8/3. The larger exponent found in experimental

data can be directly attributed to the methacrylate endcaps. It is interesting to note the significant

jump in scaling exponent between 1000 g/mol and 500 g/mol as compared to the rather minimal

changes between other molecular weights. Overall, as the chains become longer and the

methacrylate endgroup has less of an effect on the interaction parameter between network and

diluent, the scaling law more closely approaches that expected of a theta solvent. If entropic

effects due to short chains had greater effect than enthalpic considerations, we would expect the

scaling exponent to be between theta and good solvent conditions. Even though scaling behavior

exponents decrease monotonically with molecular weight, absolute values of equilibrium

swelling do not, as can be seen in figure 4.2. The highest values of Q are exhibited for a
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macromer molecular weight of 1000 g/mol. Q decreases respectively for 3000, 5000, and 500

g/mol in the network modulus region which we examine. This will be discussed in more depth in

section 4.3.4.

Scaling behavior and extent of equilibrium swelling were also examined for several

different phenyl contents in 1000 g/mol macromer. The power law exponent is:

for 5% phenyl (4.17)G Qφ =
−≅1

7 74.

for 10% phenyl (4.18)G Qφ =
−≅1

30 01.

Comparing these exponents to that of PDMS endcapped 1000 g/mol macromer, we see a

significant change. This large negative value is indicative of significant deviation from theta and

towards poor solvent behavior. Equilibrium swelling values also decrease monotonically with

phenyl content. A more quantitative discussion follows in section 4.3.4.

4.3.2. Scaling behavior for partially swollen networks

Now that we have an array of model networks prepared and equilibrium swelling

parameters have been determined, we would also like to examine how closely intermediate

swelling relationships scale as compared to theory.15, 16, 33 A more complete derivation for this

analysis is provided in Chapter II and both parallels and extends similar scaling behavior

presented earlier in this chapter. 

(4.19)Gb b a3 2
0
2 1 3≅ ( / ) /φ φ

In this equation, G is the shear modulus, a and b are tube diameter and Kuhn length respectively,

φ0 is the preparation polymer volume fraction, and φ is the polymer volume fraction at the time of

measurement. Although several papers have examined scaling behavior for equilibrium swelling
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for hydrocarbon solvents2, 3, 34 and linear PDMS7, 8, little work has been done to analyze non-

equilibrium, or intermediate, scaling behavior. Also, scaling behavior is analyzed using several

new tools; we look at systems with different molecular weights and significantly different

thermodynamic interaction parameters. In particular, it will be interesting to note whether the 

number of entanglements due to dilution on initial cure will change the scaling behavior for the

modulus of a swollen material. Monte Carlo simulations for relatively short chains (< 50 repeat

units) show that loop formation may be present at up to 10% for high initial levels of dilution.35, 36

High levels of loop formation would lead to different scaling behavior for different φ0.

For our samples, it seems that loop formation is not significant; slopes of different φ0 in

figure 4.4A all show similar power law behavior. Using network precursor molecular weights

other than 15200, slopes remain constant regardless of φ0. Replotting normalized modulus

(E'swollen/E'extracted) values against φ, we can see in figure 4.4B that for all φ0 values, the plots

collapse onto a single power law exponent. Figure 4.4C shows a log-log plot of normalized

modulus against polymer volume fraction for three different molecular weight precursors. The

resultant power law behaviors are:

for MW=15200 (4.20)G ≅ φ0 53.

for MW=22300 (4.21)G ≅ φ0 57.

for MW=41200 (4.22)G ≅ φ0 64.

Equation 19 suggests that the scaling exponent should be approximately 1/3 if we neglect the

effect of φ0 on G. Considering the poor concurrence of experimental data, this does not seem

feasible. This reiterates the importance of entanglements when networks are polymerized in a

concentrated regime.
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4.3.3. Swelling behavior in photopolymerized macromer swollen networks

The systematic series of moduli for model networks was also swollen with 10% to 30%

of macromer. These systems were then cured and reswollen with the same macromer variety

(molecular weight, phenyl content). Overall values for absolute swelling parameters and scaling

behavior may be examined fully in Table 1. For all photopolymerized macromer systems, the

resulting scaling parameter α (where G≅Qα) decreases. Also, the absolute value for Q decreases at

equivalent modulus values. Figure 4.5 indicates the particular case of 30% cured 3000 g/mol

macromer. For longer macromer chains, the siloxane backbone provides the dominant interaction

between macromer and the network. As such, this triblock system will have a relatively low Flory

interaction parameter when mixed with a pure PDMS network. After we have photopolymerized

macromer in the network, we have added a significant number of methacrylate groups. Since the

macromer used to reswell this photopolymerized system still has siloxanes as the main interacting

group, we expect the interaction parameter to increase. Thus, the network shifts towards a poorer

solvent quality for the macromer diluent.

This effect can be more thoroughly posited if, as we increase the photopolymerized

macromer content, the Flory interaction parameter between the network and unpolymerized

diluent macromer becomes increasingly positive. For 1000 g/mol macromer, 10%, 20%, and 30%

macromer were polymerized in a model network and then reswollen. Figure 4.6 shows that we

find the expected trend in scaling behavior; scaling exponents monotonically change from -3.01

for network with 0% cured macromer to -4.66 for networks with 30% cured macromer. Absolute

equilibrium swelling values also decrease as cured macromer content increases. Similar trends for

500 g/mol macromer may also be identified using table 4.1. Although this behavior is expected

for larger molecular weights, it is somewhat surprising to see in shorter macromer chains. For a

molecular weight of 500 g/mol, fully half of the molecule by weight consists of non-siloxane
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endgroups. It is not obvious that the interaction between macromer siloxane groups and network

methacrylate groups will be more important than methacrylate-methacrylate interactions.

Certainly, this seems to indicate that the macromer does not form microphase separated micelles

where the methacrylate endgroups would be allowed to minimize contact area with network

siloxanes. If this were the case, the shielding would allow for a both a larger scaling parameter

and larger Q. However, this behavior does suggest that some type of heterogeneity may be

polymerized into the network that alters the equilibrium swelling properties. For standard

junction and network models for heterogeneity formation, this result is still counterindicated.

As with pure model networks swollen with phenyl containing macromer, we also want to

look at equilibrium swelling for networks with photopolymerized macromer. For cured macromer

containing both 5% and 10% phenyl content, equilibrium swelling and scaling behavior decrease

as can be seen in figure 4.7. This movement away from theta solvent conditions to poorer solvent

conditions can be explained using equivalent arguments as given for methacrylate endcapped

PDMS macromer. 

4.3.4. Change in interaction parameter based on molecular weight and phenyl containing

analogues

In the previous section, we noted that, although scaling trends could be explained well

without incorporating molecular weight knowledge, absolute swelling behavior could not. The

absolute swelling trends for macromer molecular weight show that 1000 g/mol swells the most,

followed by 3000, 5000, and 500 g/mol. Since we know Mn for each of these diluents, we can

extract the entropic portion of the free energy contributing to swelling and purely retain

molecular interactions by using an adapted Flory-Rehner equation. We then expect that the

interaction parameter will decrease with increasing molecular weight and increase with higher



IV-15

phenyl content. Figure 4.8 shows a comprehensive picture of the Flory interaction parameter for a

wide array of molecular weights, phenyl content, and degree of equilibrium swelling. In

particular, we see the two predicted trends: the interaction parameter decreases with increasing

molecular weight, signifying a lesser effect of the methacrylate endgroups; and the interaction

parameter increases significantly when phenyl groups are added. If a theta solvent were the

diluent, we would not expect the interaction parameter to change with the degree of equilibrium

swelling. However, there is an obvious concentration dependence; as a larger amount of

macromer is present in the swollen system, χ decreases. This same behavior is seen in other poor

solvent systems: in particular, both benzene and toluene as solvents in PDMS networks.3 It is also

important to establish whether absolute χ values are reasonable. Sivisailam et al. report a value of

χ=0.09 for 3800 g/mol siloxane oligomer in a variety of PDMS networks.7 For low Q (Q=1.63)

and methacrylate end-capped 5000 g/mol macromer, we obtain χ=0.36. Considering the large

methacrylate molecular weight contribution, this value seems reasonable.

In section 4.3.2., we found that when macromer was photopolymerized in a model

network, trends in scaling behavior and absolute swelling indicate that successive equilibrium

swelling leads to poorer solvent behavior. Figure 4.9 presents an array of interaction parameters

for this type of network; in all cases, χ increases significantly (0.05 to 0.1) for intercalated

networks. However, relative trends for molecular weight and phenyl content remain the same for

model and intercalated networks. Note that all networks in figure 4.9 were swollen and

polymerized with 30% macromer. To determine intermediate behavior between 0% and 30%

intercalated network, similar swelling experiments were performed for 10% and 20%

photopolymerized macromer. These results may be seen in figure 4.10; the monotonic increase in

χ with intercalation is exactly what is expected based on the scaling behavior arguments and plots

in section 4.3.2.
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4.4. Conclusions

In this chapter, we have examined equilibrium and intermediate swelling behaviors for

both model networks and model networks intercalated with photopolymerized macromer. The

extent of equilibrium swelling is independent of both the network precursor molecular weight

and, in the range we examine, the polymer volume fraction at preparation. Using four different

molecular weights of methacrylate endcapped PDMS macromer, we show that as molecular

weight increases, experimental scaling behavior approaches the theoretical value of G≅Q-8/3.

However, absolute equilibrium swelling does not monotonically follow a molecular weight trend.

Using a form of the Flory-Rehner equation, we show that this trend is created by the interplay in

interaction parameter and entropic considerations due to macromer molecular weight.

Intermediate swelling scaling behavior was also examined, and shown to coincide rather poorly

with a priori expectations. This can be, however, be purely attributed to neglecting the effect of

preparation polymer volume fraction on the elastic modulus.

Equilibrium swelling behavior was also examined for intercalated polymer networks. For

all photopolymerized systems, the resulting swelling behavior indicated that macromer was now a

poorer solvent than in model networks. Poor solvent behavior is indicated both through decreases

in absolute swelling and power law exponents for modulus against equilibrium swelling ratio

behavior. This trend followed for macromer with high phenyl content, also. This behavior is

surprising, since the Flory interaction parameter is concentration dependent and decreases with

decreasing polymer volume fraction. However, for intercalated networks, polymerized macromer

increases the interaction parameter. 
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4.5. Tables

Table 4.1. Scaling parameter for model and interpenetrating networks.

Penetrant MW % phenyl % cured diffusant α (G≅Qα)

500 0 0 -8.15
500 0 10 -9.19
500 0 20 -9.76
500 0 30 -10.59

1000 0 0 -3.01
1000 0 10 -4.11
1000 0 20 -4.36
1000 0 30 -4.66

3000 0 0 -3.10
3000 0 30 -3.58

5000 0 0 -3.32

1000 5 0 -7.74
1000 5 30 -8.31

1000 10 0 -30.01
1000 10 20 -31.25
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Figure 1 Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Three different matrix precursor molecular weights are swollen
with 1000 g/mol bismethacrylate endcapped macromer.  is 15200 MW matrix
precursor,  is 22300 MW, and  is 41200 MW. Each matrix precursor molecular
weight series incorporates several different φ0 values (0, 0.85, 0.7, 0.5). Values for all
matrix molecular weights and φ0s fall on a straight line with slope of -3.01. 

4.6. Figures
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Figure 2  Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Model networks are swollen with different bismethacrylate
endcapped macromer.  is 500 MW,  is 1000 MW,  is 3000 MW, and  is 5000
MW. Lines are least squares linear regression and have slopes of -8.15 for 500 MW,       
-3.01 for 1000 MW, -2.97 for 3000 MW, and -2.91 for 5000 MW. It is interesting to note
that, for a specific modulus, there is not a monotonic increase in Q with macromer
molecular weight.
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Figure 3 Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Model networks are swollen with 1000 molecular weight
bismethacrylate endcapped macromer with different percents of phenyl (φ) incorporation.

 is 0 % phenyl,  is 5% phenyl , and  is 10% phenyl. Lines are least squares linear
regression and have slopes of -3.01 for 0% phenyl, -7.74 for 5% phenyl, and -30.01 for
10% phenyl.
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Figure 4  Part A shows a log-log plot of modulus vs. fill fraction for
15200 MW precursor systems at different initial diluent levels. Lines
are least squares linear regression and have a slope of 0.53+-.004. Part
B plots the same data with normalized elastic modulus. Note that all
initial diluent levels collapse on top of each other. Part C compares the
normalized moduli for three different precursor molecular weights.
22300 and 41200 MW have been shifted down by 0.2 and 0.4 to
prevent data overlap. Lines are least squares linear regression and have
slopes of 0.53 for MW=15200, 0.57 for MW=22300, and 0.64 for
MW=41200. 
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Figure 5  Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Model networks and networks cured with 30% 3000 g/mol
macromer are swollen with 1000 molecular weight macromer.  is uncured model
network and  is results from the system with cured macromer. Lines are least squares
linear regression and have slopes of -2.97 for the model system and -3.67 for system with
30% cured macromer.
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Figure 6 Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Model networks are swollen and cured with 10%, 20%, and 30%
1000 g/mol macromer. These samples are then reswollen to equilibrium with 1000 g/mol
macromer.  is 10% cured macromer in model network,  is 20% cured macromer in
model network, and  is 30% cured macromer in model network. Lines are least squares
linear regression and have slopes of -4.11 for 10% cured macromer, -4.36 for 20% cured
macromer, and -4.66 for 30% cured macromer.  
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Figure 7  Log-log plot of Young’s modulus for extracted samples against the equilibrium
swelling parameter, Q. Model networks are swollen and cured with 30% macromer
incorporating 5% phenyl or 20% macromer incorporating 10% phenyl. These samples
are then reswollen to equilibrium with 1000 g/mol macromer with the same phenyl
percent.  is 1000 g/mol macromer with 10% phenyl and  is 1000 g/mol macromer
with 5% phenyl. Unfilled points refer to equilibrium swelling for model networks (no
cured macromer). Lines are least squares linear regression and have slopes of -7.74 for
the model system and 5% phenyl, -8.31 for the cured system with 5% phenyl, -30.01 for
model system and 10% phenyl, and -31.246 for cured system with 10% phenyl.  
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Figure 8 Plot of Flory interaction parameter for extracted samples against the
equilibrium swelling parameter, Q. Model networks are swollen with different
bismethacrylate endcapped macromer.  is 500 MW,  is 1000 MW,  is 3000 MW,
and  is 5000 MW. 1000 g/mol macromer with  5% phenyl content and  10% phenyl
content. There is a monotonic inverse relationship between the interaction parameter and
molecular weight. Also, as we increase phenyl content, the interaction parameter
increases.
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Figure 9 Plot of Flory interaction parameter for extracted samples that contain 30%
photopolymerized macromer against the equilibrium swelling parameter, Q. Networks
are then swollen with different bismethacrylate endcapped macromer.  is 500 MW,  
is 1000 MW,  is 3000 MW, and  is 5000 MW. 1000 g/mol macromer with  5%
phenyl content and  10% phenyl content. There is a monotonic inverse relationship
between the interaction parameter and molecular weight. Also, as we increase phenyl
content, the interaction parameter increases. Comparing this plot to Figure 8, we see that
the addition of cured macromer to the model network increases the interaction
parameter.
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Figure 10 Plot of Flory interaction parameter for extracted samples that contain 0% to
30% photopolymerized macromer against the equilibrium swelling parameter, Q.
Networks are swollen with 1000 g/mol bismethacrylate endcapped macromer to
equilibrium.  is 0% cured macromer,  is 10% cured macromer,  is 20% cured
macromer, and  is 30% cured macromer. There is direct relationship between the
interaction parameter and amount of cured macromer in the system. 
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5.1. Introduction

Effective application of time resolved spatially heterogeneous photopolymerization for

sol gel systems necessitates the knowledge of sol diffusion rates. Although for spatially

homogeneous polymerization system overall kinetics may be determined with knowledge only of

reaction rates, heterogeneous polymerization allows non-polymerized free sol to re-equilibrate.

Thus, there is competition between reaction kinetics and diffusion kinetics. In systems such as

intraocular lenses or Bragg-type diffraction gratings, this interaction is extraordinarily important

when determining optical characteristics, both in regards to refractive index and shape.

Several techniques, such as gravimetric swelling and extraction,1-8 pulsed field gradient

nuclear magnetic resonance (PFG-NMR),9-13 forced Rayleigh scattering,14-22 and forward recoil

spectrometry (FRES)23 have been used to examine diffusion theory in polymer melts and

networks. Center of mass diffusion in polymer networks can be described in terms of diffusant

molecular weight, Md:

(5.1)D Md≅ −α
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In this equation, D is the diffusivity coefficient and α is a variable scaling coefficients. For Md

values much less than the entanglement molecular weight, Me, Rouse-like diffusion should occur

where α = 1. As Md increases in size and approaches Me,  transverse chain movement is impeded

by a “tube” of surrounding network chains, resulting in what de Gennes calls reptation.24-26 For

reptation, Rouse-like diffusion occurs for a series of Kuhn-length blobs along the tube, resulting

in a scaling exponent of α = 2. Neither of these basic relationships examine whether the

molecular weight between crosslinks (Mc) in a network is important in diffusion rates. To our

knowledge, there are no a priori models that predict how network crosslink densities will affect

diffusivity. 

Diffusive behavior of both entangled and non-entangled diffusants in networks has been

extensively studied. Self-diffusivity, or diffusion rate of a penetrant in a network of the same

molecular weight, has been reported to scale with α = 1.5 to 2.0 in PDMS.5, 26, 27 Sorption kinetics

were used to determine diffusion rates and diffusants had a polydispersity index (PDI) of

approximately 2. For lower PDI diffusants (PDI < 1.2), a scaling exponent of α = -2 was found

for Md = 4200 g/mol to Md = 12000 g/mol with PFG-NMR.9 It is interesting to note that this α = 2

behavior continues until Md < 1/2 Me. This suggests that reptation may be occurring to some

extent even for diffusants significantly below the entanglement molecular weight. However,

Cosgrove, et al., report a scaling exponent of α = -1 for systems where Md < 5Me.7, 12 These

experiments were performed using PFG-NMR at PDI < 1.3. Considering the different results for

α obtained with similar materials and methodologies, it is difficult to determine from literature

what diffusant molecular weights lead to Rouse-like and reptative diffusion.

Although scaling theory does not predict an effect of Mc on diffusivity, experiments have

shown that network crosslink density does play an important role. Using mass uptake

measurements, polyisoprene diffusants both above and below Me with PDI < 1.08 showed
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behavior of D≅ Mc
-0.2.1 In PDMS, our analysis of reported data shows scaling behavior for Mc of α

= -0.16 to -0.37 using sorption experiments.5, 27  PFG-NMR measurements show a random

mixture of positive and negative α values between -0.4 and 0.3 for different PDMS diffusant

molecular weights.9 For all of these literature values for α, Mc is precursor molecular weight, not

effective molecular weight between junctions. Depending on initial reaction conditions, trapped

entanglements or elastically ineffective chains may alter network modulus; the molecular weight

between junctions has the potential to be significantly different than the precursor materials.

Since prior work used networks prepared in the melt, it is likely that trapped entanglements will

be important and molecular weight between crosslinks will be overpredicted. Well characterized

model networks are therefore necessary for appropriate determination of scaling behavior

between D and Mc.

Because there is a lack of consensus in literature for the effects of penetrant molecular

weight and molecular weight between network junctions, we examine diffusion behavior

particular to our system. Four penetrant molecular weights are swollen into a series of networks

with different moduli, and diffusion rates are calculated from the time it takes to reach

equilibrium values. Diffusion rates into interpenetrating networks (IPNs) are also examined to see

if microstructure changes diffusion rates. Effects of diffusant polydispersity are also examined .

For all systems, the relationship between diffusivity, molecular weight, and network properties is

determined.

5.2. Experimental section

5.2.1. Preparation of swollen sol-gel systems

Ideal gel networks are synthesized per the procedure in chapter II. Multiple molecular
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weight precursors are used (15200, 22300, 41200 g/mol) with 0%, 15%, 30%, and 50% dilution

in a theta solvent during cure. Precursor α−ω vinyl chains are catalytically crosslinked at 35 °C

with tetrakis(dimethylsiloxy)silane at an R value (ratio of crosslinker silane functionality to vinyl

endgroup functionality) that results in the highest modulus. The catalyst used was cis-

dichlorobis(diethylsulfide)platinum(II). Prepared networks are then fully extracted and modulus

is measured with a Rheometrics Scientific RSA III at 1% strain (linear viscoelastic regime) and 1

Hz in oscillatory tension mode. 

Macromer as synthesized in chapter III is mixed with 2,2-dimethoxy-1,2,-diphenylethan-

1-one (DMPO), a radical photoinitiator with a strong absorbance band in the UV spectrum. For

fully cured systems, 2% w/w DMPO / macromer is fully dissolved in macromer with minimal

exposure to UV radiation sources.

Dry networks are swollen with 10-30% by total weight macromer and DMPO at 35 °C.

After short times (< 48 hours), no macromer is visible on the surface of the sol gel systems for all

networks and all macromer molecular weights. Samples are allowed to equilibrate for 7 days

before being used for further experiments. Macroscopic sample dimensions are measured before

and after swelling to ensure that the sol is evenly distributed throughout the sample. 

5.2.2. Photopolymerization of macromer swollen model networks

Macromer swollen in model networks is cured using controlled exposure times and

intensities at an irradiation wavelength of 365 nm. A 500W Oriel Hg-Xe arc lamp is used as the

emission source. A 5 nm HWHM interference filter with maximum transmittance at 365 +-0.5 nm

provides frequency filtering. Sol-gel samples are placed on a quartz disc and loaded into a quartz

windowed chamber. The chamber is purged with argon for 15 minutes before irradiation to

minimize oxygen inhibition during reaction cure. For complete polymerization, samples are
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irradiated for 40 minutes at 4 mW/cm2 intensity. Complete polymerization is corroborated by

experiments and results presented in chapter III.

5.2.3. Diffusion measurements using gravimetric analysis

Dry networks, both pure PDMS model networks and photopolymerized intercalated

networks, were swollen to equilibrium with different molecular weights of acrylate endcapped

macromer. Samples approximately 1 mm thick and 8 mm in diameter were immersed in different

molecular weight and phenyl content macromer at 35 °C. Dimensional measurements were

repeated after swelling to ensure macroscopic affine behavior. Weight measurements were taken

at defined intervals until samples reached equilibrium (< 0.1% change in weight over a 24 hour

period). To ensure no crosslinking or macromer reaction had taken place, selected samples were

fully extracted in toluene and reweighed. 

To analyze the effect of selective adsorption, or molecular weight sieving behavior,

bidisperse solutions of two different molecular weight macromers were allowed to diffuse into a

network. Weights measurements were taken in the same manner as for single component

diffusion experiments.

5.2.4. Rheological measurements of cured and uncured sol-gel systems

Ex situ rheological measurements were performed on a Rheometric Scientific RSA III in

a simple tension geometry under oscillatory mode. Samples were approximately 1 cm x 3cm x

1mm in size. Young’s modulus was measured at 25 °C. Since relatively small strains (< 1%) were

used for reporting modulus values, changes in cross-sectional area were neglected. Strain and

frequency sweeps were run on each sample. Strain sweeps were performed from 0.01 - 4% to

determine the linear viscoelastic regime. For all samples used, 1% strain rate was within this
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regime. Frequency sweeps were run from 0.01-100 Hz. In all cases, samples exhibit a nearly flat

(< 1% deviation) plateau modulus across this frequency domain. In this chapter, data reported as

G' (shear modulus) has been converted from Young’s modulus data using the relationship E=3G.

This relationship holds true for a Poisson ratio of 1/2, which is exhibited for most elastomer

systems.

5.3. Results and discussion

5.3.1 . Measurement of diffusion coefficient

Diffusion coefficient values are analyzed by comparing mass uptake experiments with a

numerical solution of the Fickian diffusion equation. The Fickian diffusion equation is

(5.2)
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∂

∂
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where C is concentration, t is time, D is the diffusivity coefficient, and x is a spatial parameter.

This equation is then solved as a function of mass uptake.28
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In this equation, Mt is mass at time t, M∞ is mass at equilibrium swelling, and l is the length scale

over which diffusion occurs. From equation 5.2, the slope of  l plotted against t1/2 will be D. Since

mass uptake experiments directly measure Mt/M∞ , it is more convenient to plot normalized mass

uptake against t1/2 to obtain D. In figure 5.1, the data thus plotted exhibit a linear behavior at short

times; from the slope of the short time regime we obtain values for concentration independent
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diffusivity. At longer times (where Mt/M∞, > 0.5), there is significant negative deviation of

experimental data from theoretical predictions. This can be partially attributed to an increase in

the linear dimension, l, in which diffusion is occurring. If the penetrant molecules are required to

diffuse over greater distances as Mt / M∞ increases, apparent diffusivities will decrease. Molecular

sieving of polydisperse samples would also contribute to negative deviation of diffusivity values.

At short times, a disproportionate number of small molecules diffuse into the network and

contribute to a relatively high diffusivity. As time progresses and longer chains diffuse into the

network, apparent diffusivities decrease. The effect of polydisperse samples is discussed in

further depth as we progress through this chapter. If diffusivity were treated as concentration

dependent, experimental data would exhibit positive deviation from theory because of faster

constraint release from the short diffusant molecules as compared to longer molecular weights

between network crosslinks. Thus, even if diffusivity is concentration dependent, the effect is

completely overcome by that of molecular sieving.

5.3.2. Changes in diffusivity with penetrant molecular weight and network modulus

Four molecular weights of diffusants (500, 1000, 3000, and 5000 g/mol) are swollen into

model networks with different elastic moduli. Measured diffusion rates for this array of samples

are graphed against the diffusant molecular weight in a log-log plot (figure 5.2); each data set is

for a specific network modulus. For each network modulus, least squares linear regression fits of

data give the following scaling behavior.

for E' = 8.40 x 105 Pa (5.4)D Md≅ −0 59.

for E' = 6.68 x 105 Pa (5.5)D Md≅ −0 60.

for E' = 4.90 x 105 Pa (5.6)D Md≅ −0 62.
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for E' = 3.44 x 105 Pa (5.7)D Md≅ −0 73.

In these equations, E' is Young’s modulus. Since we are swelling a network with diffusant where

Md < Me, we expect that equation 5.1 for Rouse-like diffusion should apply (α = 1). The lower

values of α that we obtain may be explained by differential diffusion rates for different molecular

weight species of a polydisperse penetrant. Due to our cationic chemistry for synthesizing

methacrylate endcapped PDMS, we have a diffusant with Gaussian length distribution and

polydispersity greater than 1.5. Although the diffusant is purified and polydispersity is reduced

slightly below initial values, we do not perform further fractionation because of limited batch size

and proportionally large mass requirements for experimental work. Since diffusion rates are

calculated at Mt/M∞ < 0.5 for mass uptake experiments and the lower molecular weight species of

the polydisperse penetrant preferentially diffuse into the network at early times, α < 1. Not only

are our experimental values for α significantly lower than theory predicts, but we also observe

that as network modulus increases, exponents show greater deviation from Rouse-like scaling

behavior. 

This network contribution to diffusion is examined by plotting penetrant diffusivity

against calculated molecular weight between crosslinks, Mc, for four different molecular weights

of penetrant (figure 5.3). Contrary to previous work where scaling relationships were determined

using network precursor molecular weights, Mc is based on actual tensile modulus measurements

and therefore incorporates effects of chemical junctions and entrapped entanglements. Assuming

affine deformation and that all chains are elastically effective, the following expression can be

derived:

(5.8)E RT
Mc

'= 3ρ
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For D≅Mc
−β, 

β = 0.66 for Md = 500 g/mol (5.9)

β = 0.68 for Md = 1000 g/mol (5.10)

β = 0.90 for Md = 3000 g/mol (5.11)

β = 1.01 for Md = 5000 g/mol (5.12)

Although crosslink density should have little effect on actual diffusion rates for Rouse-like

diffusion, even at very low molecular weights we see diffusivity has a large dependence on Mc.

As diffusant chains get longer, β increases to a value of 1.01. This increase can be attributed to

increased polydispersity for higher diffusant molecular weights (table 3.1). It is interesting to

compare the value of our scaling exponents with those calculated from other work and discussed

in the introduction.1, 5, 27 Even with significantly higher PDI diffusants, other reported scaling

exponents are significantly lower that what we see. This is likely caused by prior use of network

precursor molecular weight instead of measured crosslink density for determination of scaling

behavior. Table 5.1 summarizes all diffusivity values based on diffusant molecular weight,

network precursor strand length, and network modulus.

5.3.3. Effects of intercalated networks and phenyl sidegroup incorporation 

Several model networks were also swollen with 1000 g/mol macromer with either 5 or

10% phenyl content. Because materials with phenyl content have different backbone chain

lengths than pure PDMS endcapped macromer, there was a possibility that diffusion rates might

be different. However, even though equilibrium swelling was considerably different (chapter IV),

both absolute diffusivities and scaling behavior remained constant regardless of phenyl content.

Diffusion rates into photopolymerized intercalated systems were also measured for the
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full spectrum of macromer molecular weights. Because of potential differences in network

structure between initial model networks and IPNs formed by polymerizing macromer in model

networks, it was deemed important to determine whether the sole network factor determining

diffusion rates is modulus (and, therefore, effective molecular weight between network

crosslinks). For all host networks and penetrant molecular weights, diffusivity was a function

only of network modulus; network intercalation created through use of 10% to 30% polymerized

macromer made no significant difference in either scaling behavior or absolute values of

diffusivity.

5.3.4. Bimodal macromer molecular weight distributions

Although it seems apparent from single molecular weight diffusion studies that our

scaling behavior is dominated by diffusant polydispersity and the asymmetric time analysis of

mass uptake data, we have also performed mass uptake experiments with a bimodal molecular

weight distribution of penetrant. Several host networks with varying crosslink density were

swollen in a mixture of 500 or 1000 g/mol macromer and 3000 g/mol macromer. Figures 5.4A

and 5.4B plot diffusivity against host network modulus; Figure 5.4A shows diffusion rates

macromer 500 g/mol, 3000 g/mol, and a 50:50 wt/wt mixture of the two molecular weights.

Diffusivities for all three systems are at their maximum at high network modulus and

monotonically decrease with decrease network modulus. By visual inspection, one can see that at

high network modulus, diffusivity of the bimodal penetrant has a value intermediate to 500 and

3000 g/mol but slightly closer to 3000 g/mol. This value is not equidistant because the

equilibrium swelling value for 3000 g/mol is greater than that for 500 g/mol. Thus, because

diffusivities are based on equilibrium swelling, there will be a systematic shift of bimodal

penetrant diffusivity to lower values. As network modulus is decreased, bimodal penetrant
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diffusivity approaches the diffusivity of 3000 g/mol macromer. If no molecular sieving is present,

the diffusion rate of the bimodal system should have retained the same relative distance between

500 g/mol and 3000 g/mol regardless of network modulus. A similar trend regarding molecular

sieving behavior is seen in Figure 5.4B, where a bimodal mixture of 1000 g/mol and 3000 g/mol

macromer is used as penetrant and relative diffusivity decreases with decreasing network

modulus. However, the systematic shift in diffusivities is positive rather than negative because

1000 g/mol macromer has greater equilibrium swelling than 3000 g/mol.

5.4. Conclusions

In this chapter, we have examined the diffusion rates of several different molecular

weights of bismethacrylate endcapped PDMS macromer in model networks with different cross-

link densities. Diffusivity values show dependence both on molecular weight of the penetrant

species and the modulus of the host network. In particular, we find that the scaling exponent α for

D≅Md
-α is significantly lower than expected for Rouse-like diffusion. α is also dependent on the

host modulus; for higher network moduli, there is greater deviation from predicted behavior. We

also find that β (for D≅Mc
-β) increase for more polydisperse diffusants. Additional measurements

of diffusivity were performed on macromer containing up to 10% phenyl content. Diffusivities

and scaling trends did not change for these materials as compared to PDMS based penetrants.

Diffusivity of a series of different molecular weight macromers was also measured in

photopolymerized intercalated networks. As with adding phenyl content to macromer, we found

that penetrant molecular weight and host network modulus are the only two important variables in

diffusivities. Bimodal molecular weight distributions were similarly swollen in a series of

different modulus host networks. Absolute diffusion rates show the detrimental effect of using

penetrants with different equilibrium swelling ratios; diffusion rates show systematic deviation
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from actual values when using a mass uptake analysis method. Trends in diffusion rates also

corroborate the previous analysis that significant molecular sieving is present for our macromers

when diffusing in tightly crosslinked networks.
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Table 5.1. Summary of diffusivity in different model networks with several macromer molecular
weights.

Mmacromer Mprecursor φ0 E' (Pa) D (x10-12 m2/s) % phenyl

500 17200 0 840000 23.5 0 
17200 15 668000 16.9 0 
17200 15 668000 18.1 0 
17200 30 490000 15.6 0 
17200 50 334000 11.9 0 

1000 17200 0 840000 12.8 0 
17200 15 668000 9.7 0 
17200 15 668000 9.8 0 
17200 30 490000 8.2 0 
17200 50 334000 5.5 0 
28000 0 775000 11.5 0 
28000 15 638000 10.0 0 
28000 30 496000 8.1 0 
28000 50 287000 5.9 0 
43000 0 635000 10.4 0 
43000 15 487000 9.0 0 
43000 30 355000 6.9 0 
43000 50 162000 4.1 0 

3000 17200 0 840000 6.8 0 
17200 15 668000 5.6 0 
17200 15 668000 5.0 0 
17200 30 490000 4.2 0 
17200 50 334000 2.9 0 
28000 0 775000 6.7 0 
28000 15 638000 5.9 0 
28000 30 496000 4.2 0 
28000 50 287000 2.8 0 
43000 0 635000 5.7 0 
43000 15 487000 4.8 0 
43000 30 355000 3.4 0 
43000 50 162000 2.0 0 

5000 17200 0 840000 5.8 0 
17200 15 668000 4.9 0 
17200 30 490000 4.0 0 
17200 50 334000 2.2 0 

1000 17200 0 840000 14.0 5 
17200 15 668000 11.8 5 
17200 30 490000 9.7 5 
17200 50 334000 8.0 5 

1000 17200 0 840000 18.8 10 
17200 15 668000 18.0 10 
17200 30 490000 15.9 10 
17200 50 334000 14.3 10 
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Figure 5.1. Sorption data plotted with normalized mass uptake against time.  is experimental
data for 1000 g/mol macromer diffusing in a network with E'=840000,  is 3000 g/mol
macromer diffusing in the same network. Lines are data fits assuming Fickian diffusion. During
data correspondence at early times, the slope of the line can be used to calculate the diffusion
coefficient.
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Figure 5.2. Log-log plot of macromer diffusivity against penetrant molecular weight.  is
E’=8.40x105 Pa,  is 6.68x105 Pa,  is 4.90x105 Pa, and  is 3.44x105 Pa. Lines are linear least
squares regressions to the data. Line slopes are -0.59 for 8.40x105 Pa, -0.60 for 6.68x105 Pa, -0.62
for 4.90x105 Pa, and -0.73 for 3.44x105 Pa. Decreasing slopes with decreasing network modulus
indicate that molecular sieving is less important for more loosely crosslinked networks.  
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Figure 5.3. Log-log plot of macromer diffusivity with network modulus.  is Mn=500 g/mol, 
is Mn = 1000 g/mol,  is Mn = 3000 g/mol, and  is Mn = 5000 g/mol. Lines are linear least
squares regressions to the data. Line slopes are 0.66 for Mn=500, 0.67 for Mn = 1000, 0.79 for Mn
= 3000, and 1.01 for Mn = 5000. Increasing slopes with increasing molecular weight (and
increasing PDI) suggest that molecular sieving is taking place.
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Figure 5.4. Diffusivity changes due to different network moduli. Plot A
shows  Mn=500,  Mn=3000 and a  50/50 mixture. Plot B shows 
Mn=1000,  Mn=3000 and a  50/50 mixture. As network crosslink
density increases, mixture diffusivities diverge further from the diffusivity
of Mn = 3000 g/mol and more closely approach that of the lower
molecular weight.
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6.1. Introduction

Polymerization kinetics of photoreactive macromer species in crosslinked host networks

are tremendously important for understanding system dynamics in interpenetrating networks

(IPNs). The addition of a second percolated network can change mechanical, thermodynamic, and

optical properties of a host network. To fine tune the structure that forms during

photopolymerization, reactions can be carried out under a wide variety of conditions; irradiation

intensity and duration, concentration of initiator species, molecular weight and concentration of

macromer, and matrix composition and crosslink density may all be altered. For all of these

parameters, their effect on kinetic behavior must be understood as part of the foundation for

rational control of IPN characteristics.

Reactions of multifunctional methacrylate monomer species have been extensively

studied due to their broad use in coatings, lenses, dental materials, and stereolithography.1-4 These

polymerizations reveal several striking features over the course of the reaction. At early times, an

increase in reaction rate, termed autoacceleration, occurs as radical chain sizes increase. Since

reaction termination is controlled by radical diffusion rates, increased radical size also increases
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radical lifetimes and allows more propagating radicals to accumulate in the system.5-7 This results

in an increased reaction rate. As conversion continues to increase, reaction rate typically

decreases because of sample vitrification. Since reaction propagation is controlled by monomer

and radical species diffusing together, increased viscosity drastically reduces reaction rates. In

many systems, sample vitrification quenches the reaction between 40 and 60% reactive group

conversion.3, 8-11 This is undesirable for most applications since unreacted species have the

potential to leach out or cause material property changes at long times. Another important

phenomenon in monomer reaction systems is the decreased likelihood of bimolecular termination

as radicals grow in size and their diffusivity decreases. Ultimately, propagating radicals in

vitrified samples are unable to translate and therefore terminate by growing together through

monomer addition. This process, termed reaction diffusion, is manifested by a region where

termination and propagation rates are proportional.

Contrary to methacrylate monomer systems, kinetics of multifunctional methacrylates

with a midblock spacer, or “macromers,” have not been well studied. If the midblock is of a

material, such as siloxane, that is well above the glass transition temperature, material effects

such as vitrification will not play an important role in polymerization kinetics and the

polymerized network will remain rubbery. Unlike monomer systems, mobility is retained and the

reaction may reach complete conversion. Using similar logic, it is also expected that termination

kinetics should occur only through radical diffusion and not by reaction diffusion. However,

several studies with 600 g/mol methacrylate endcapped polyethyleneglycol (PEG) indicate that

reaction diffusion does play an important role in termination above 20% reactive group

conversion.5, 11, 12 

In this chapter, we examine the reaction kinetics of four different molecular weights of

bifunctional macromer with flexible siloxane midblocks. The polymerization of each macromer is
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examined as a function of initiator concentration, irradiation intensity, macromer concentration,

and host network structure using a photo differential scanning calorimeter to measure the reaction

rate as a function of time and reactive endgroup conversion. To elucidate termination kinetics,

irradiation is stopped at partial conversion and the decay of the reaction rate is observed. Analysis

of the propagation and termination rates allows us to compare overall polymerization kinetics of

methacrylate endcapped macromers to those of methacrylate monomers used in the literature.

Several striking features, such as full macromer conversion and chain length dependent

termination processes, are found for these materials.

6.2. Experimental section

6.2.1. Preparation of photopolymerizable PDMS systems

Model PDMS networks are synthesized using the procedure in Chapter II. A single

molecular weight precursor is used (15200 g/mol) with 0% and 50% dilution in a theta solvent

during cure. Precursor α−ω vinyl chains are catalytically crosslinked at 35 °C with

tetrakis(dimethylsiloxy)silane at a ratio of crosslinker silane functionality to vinyl endgroup

functionality, R, that results in the highest modulus. The catalyst used was cis-

dichlorobis(diethylsulfide)platinum(II).

Macromer as synthesized in chapter III is mixed with 2,2-dimethoxy-1,2,-diphenylethan-

1-one (DMPO), a radical photonitiator with a strong absorbance band in the UV spectrum.

DMPO is dissolved from 0.1% to 2% w/w DMPO / macromer in macromer with minimal

exposure to UV radiation sources.

Dry networks are polymerized either in 40 µl stainless steel differential scanning

calorimetry pans or 1 mm x 8 mm quartz molds and are swollen with 10-30% by total weight
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macromer and DMPO at 35 °C by exposing one surface of a PDMS network to macromer. After

short times (< 6 hours for DSC pans, < 24 hours for 1 mm x 8 mm samples), no macromer is

visible on the polymer surface for any macromer molecular weights. Samples are allowed to

equilibrate for 2 days before use in experiments.

Reaction rate experiments were also performed using macromer-swollen PDMS melts. 

Three different molecular weight (approximately 1, 50, and 500 kg/mol) melts are mixed with 10-

30% macromer. For melts of 1 and 50 kg/mol, mixing could be accomplished with mechanical

stirring. Macromer was incorporated into the 500 kg/mol melt by iterative “kneading” followed

by time for diffusion. This mixed sol is then placed in 40 µl stainless steel calorimetry pans and

allowed to sit for 1 hour before photocalorimatric polymerization.

6.2.2. Photopolymerization of macromer swollen networks and melts

Macromer swollen in model networks is cured using controlled exposure times and

intensities at 365 nm. A 500W Oriel Hg-Xe arc lamp is equipped with an interference filter (5 nm

HWHM with maximum transmittence at 365 ± 0.5 nm) and is used as a collimated emission

source. Samples 1 mm thick x 8 mm in diameter are placed on a quartz disc and loaded into a

quartz-windowed chamber. The chamber can either be open to normal atmospheric conditions or

can be purged with argon. 

6.2.3. Photo differential scanning calorimetry (DSC)

Reaction rates were measured using a Perkin Elmer DSC-7 with photocalorimeter

attachment. The light source was a mercury arc lamp and a narrow band of wavelengths centered

at 365 nm was obtained with a monochrometer. Light intensity was adjusted using appropriate

neutral density filters. Experiments were performed isothermally at 35 °C. Samples were placed
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in an uncovered large volume stainless steel pan and cured using intensities ranging from 0.19

mW/cm2 to 6.2 mW/cm2. Several series of samples were run: pure macromer, macromer swollen

in a cured PDMS network, and macromer well-mixed with PDMS melts of different molecular.

Total reactive macromer mass was between 10 and 20 mg; larger volumes were used for higher

macromer molecular weight. All experiments were performed under an inert nitrogen atmosphere. 

6.3. Results and discussion

6.3.1. Effects of oxygen inhibition in radical macromer polymerization

Since oxygen is a potent radical reaction inhibitor,13 even low concentrations strongly

affect methacrylate photopolymerization. Host networks with 30% dissolved macromer were

photopolymerized under normal atmospheric concentrations of oxygen and in either argon or

nitrogen. 1 mm thick samples were placed with one side contacting a quartz plate (side A) and

one open to either air or inert gas (side B). After irradiation at 4 mW/cm2 for 1 hour, samples in

an inert atmosphere had 0% extractables. Samples polymerized in the presence of oxygen,

however, still had over 40% extractables. In addition, macroscopic shape change was exhibited

by samples cured under oxygen; the specimen edges curve toward side B, corresponding to a

relative expansion of area on the A face. Although oxygen is initially at equilibrium within the

sample, as photopolymerization progresses it is depleted by reaction with active radicals to form

peroxy radicals. It is simultaneously replenished by diffusion into the sample from only one

surface, creating a gradient in oxygen concentration. Thus, polymerization of macromer proceeds

more rapidly near side A. The resulting concentration gradient drives macromer from side B

towards side A. Macromer then macroscopically redistributes and induces shape change. Thus,

the presence of oxygen leads to incomplete reactive group conversion and contributes to shape
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changes during and after photopolymerization.

All further experiments in this chapter will be performed under an inert atmosphere. For

photocalorimetry experiments, the DSC chamber is purged with nitrogen for a series of times (5,

10, 15, and 30 minutes). Increasing purge time from 5 to 10 minutes increases maximum reaction

rates and decreases initial delays in reaction due to oxygen inhibition. For 15 and 30 minute

purges, no initial lag time was observed, maximum reaction rates were equivalent, and overall

reaction rate profiles were equivalent.

6.3.2. Salient characteristics of macromer photopolymerization

Effective application of photopolymerizable macromer-matrix systems requires control of

reaction kinetics. However, macromers endcapped with photoreactive groups have considerably

different reaction kinetics than reactive monomers. It is therefore necessary to map out the

reaction space for irradiation dose and material parameters. One of the most distinct features

exhibited by silicone macromer systems is the ability to attain complete reactive endgroup

conversion. Even bulk macromer, which has the greatest potential to exhibit vitrification with

polymerization, reaches complete conversion at ambient temperature in minutes using low

irradiation intensities. For 1000 g/mol macromer with 0.75% by weight DMPO, conversion

reaches > 99% in less than 7 minutes for an irradiation intensity of 6 mw/cm2. In comparison,

maximum conversion in mono- or multi-functional methacrylate monomers is limited to less than

60% at ambient temperatures.3, 8-11 

When macromer is diluted into either a covalent network or polymer melt, the reaction

rate trajectory slows because of reactive endgroup dilution. Although peak polymerization rates

decrease, full endgroup conversion is attained in comparable time to that of bulk macromer

(figure 6.2). When macromer is diluted to 30% wt in an unentangled PDMS melt with 0.25%
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DMPO per total weight and 6.2 mW/cm2 irradiation dosage, 99% conversion is attained at 8

minutes for 500 g/mol, 10 minutes for 1000 g/mol, 13 minutes for 3000 g/mol, and 24 minutes

for 5000 g/mol macromer. For 1000 g/mol macromer, this is roughly 1.4x the time required for

macromer to reach 99% conversion in bulk.

The time and irradiation dosage required to reach a desired conversion are of central

importance to photopolymer applications. Prior literature on photopolymerization shows that light

intensity can be used to adjust reaction rate, all other parameters held constant.3, 12, 14, 15 However,

0th order dependence on irradiation intensity is seen over three orders of magnitude for

polymerization of 30% wt 1000 g/mol macromer with 1% DMPO by total wt in a covalently

crosslinked network figure 6.3). Although 0th order dependence on intensity is uncommon, it is

known to occur for radical polymerizations in which photoinitiator radicals play a dominant role

in terminating growing polymer chains.13 Contrarily, when photoiniator concentration is

decreased by one order of magnitude to 0.08% total wt, polymerization kinetics become

moderately dependent on incident intensity (figure 6.4). A thirty-fold increase in irradiation

intensity from 0.19 mW/cm2 to 6.2 mW/cm2 reduces the time taken to reach 50% conversion by

approximately half. Similarly, if irradiation intensity is kept low (0.28 mW/cm2), polymerization

kinetics vary with photoinitiator concentration when all other parameters are held fixed; endgroup

conversion progresses more quickly with higher photoiniator concentrations (figure 6.5). Thus,

judicious choice of photoinitiator concentration and irradiation intensity allows alteration in the

time to attain a specific endgroup conversion. For the purpose of determining rate constant for

polymerization and termination, photo-calorimetry studies are performed in the low-intensity, low

photoinitiator regime.

6.3.3. Reaction rate schemata
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The previous plots have all been calculated using photo DSC where heat flow is

measured during polymerization for a known amount of reactive macromer. From heat flow and

macromer sample weight, we calculate that the heat evolved per double bond conversion is

approximately 13.2 kcal/mol. This value is quite close to the theoretical value of ∆H = 13.1

kcal/mol,16, 17 so we use the theoretical value for all further calculations. The reaction rate can

therefore be directly obtained by normalizing total heat flow with the amount of sample reacted.

As we noted above, photoinitiator concentration, irradiation intensity, and macromer

concentration all have an effect on reaction rates. In order to quantify the extent of these changes,

it is necessary to determine a theoretical rate equation. The rate of reaction, or rate at which

monomer is consumed, is given by:

(6.1)− = +d M
dt

R Ri p
[ ]

where [M] is monomer concentration, t is time, Ri is the initiation rate, and Rp is the propagation

rate. For most polymerizing systems, the rate of initiation is much lower than the rate of

propagation. Also, initiator radical concentrations are generally several orders of magnitude lower

than propagating species radical concentrations.13 As such, neglecting Ri, the rate of reaction is:

(6.2)− =d M
dt

Rp
[ ]

The propagation rate is a superposition of all lengths of reactive radical chains

( ); assuming equivalent reactivity for all [Mn•], we obtain:[ ] [ ]M Mn
n

⋅ = ⋅
=

∞

∑
1

(6.3)R k M Mp p= ⋅[ ][ ]
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where kp is the propagation rate constant and [M•] is the propagating radical concentration. It is

important to note that, although kp is referred to as a constant, it is inherently dependent on

macromer and reactive radical diffusivity. For highly reactive systems, such as methacrylate

radical polymerization, a radical and an unreacted macromer in close proximity will react

quickly. If macromer concentrations are not extraordinarily high, a macromer molecule and

radical will have to diffuse towards each other before reacting. If the diffusion rate of either

species changes throughout the reaction, kp will also change. 

For photopolymerization, the initiation rate can be expressed by

(6.4)R Ii abs= 2φ

where Iabs is the molar intensity of light absorbed and φ is the fractional number of radicals that

initiate propagating chains as compared to the number of absorbed photons. The number 2 in this

equation involves the assumption that two equally reactive radicals are produced when a photon

is absorbed. Assuming only a small fraction of incident light is absorbed by the sample,

(6.5)I I A babs = ε 0[ ]

where ε is molar absorptivity, I0 is incident light intensity, [A] is photoinitiator concentration, and

b is the thickness of the irradiated sample. UV spectrometry measurements show that less than

5% of photoinitiator is consumed for complete macromer conversion for photoinitiator

concentrations ranging from 0.03 to 0.25%. Combining equations 6.4 and 6.5, we obtain:

(6.6)R I A bi = 2 0φε [ ]

There are, however, several problems with the assumptions made for the reaction rate in equation

6.6. First, the photonitiator, DMPO, does not dissociate into two equally reactive primary

radicals.18, 19 Instead, a highly reactive benzoyl and less reactive benzoyl ketal radical are

produced. The second issue is that we are not only unable to measure φ, but it changes with
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sample viscosity due to a solvent cage effect. If the primary radicals are unable to diffuse away

from each other, they may recombine to produce ineffective molecules.20 Fortunately, as

discussed in chapter III, sample viscosity should not change excessively even at complete

conversion of macromer. Kurdikar and Peppas have derived a viscosity based value of φ for

DMPO; this value is expected to be between 0.3 and 0.5 for our systems.18 Because of the

combined uncertainty of the theoretical prediction for φ and reactivity of the two primary radicals,

we use a combined value of 1 for these two parameters.

In the absence of direct measurements of radical concentrations, it is commonly assumed

that radical concentration initially increases rapidly and then attains a steady state concentration

at small conversions. The rate of radical initiation would then equal the rate of radical

termination. By directly measuring radical concentrations with electron paramagnetic resonance

(EPR), it has been shown that this assumption does not precisely hold true.5 Radical

concentrations increase with time as radical size increases and termination rates decrease.

However, comparing photopolymerization results between Fourier transform infrared (FTIR)

experiments and EPR experiments, Berchtold et al., showed that absolute reaction rates and

kinetic constants were not severely under or over predicted when using a pseudo steady state

assumption. 

There are two possible species that propagating radicals can terminate with: other

propagating radicals or initiator radicals. For high monomer concentrations or low initiation rates, 

termination occurs mainly between two propagating radicals (Rt:m,n=kt:m,n[Mm•][Mn•]); for low

monomer concentrations or very high initiation rates, propagating radicals may terminate with

initiator, or primary, radicals (Rt:A,n=kt:A,n[A•][Mn•]). We will first discuss the rate law obtained by

assuming that termination is only between two propagating radicals. In this case,

(6.7)R R k Mi t t= = ⋅2 2[ ]
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where Rt is the termination rate and kt is the termination constant. The factor of 2 in this equation

is because two radicals recombine during termination. It is important to note that this kt is the

average value for all propagating radicals. Since kt depends on diffusion rate, radicals with degree

of polymerization, N, >1 should have much smaller values for the termination constant. The

validity of this assumption will be addressed in further detail later in the chapter. Rearranging

equation 6.7 to obtain [M•] and substituting into equation 6.3, we obtain

(6.8)R k M R
kp p
i

t
=

⎛

⎝
⎜

⎞

⎠
⎟[ ]

/

2

1 2

for the polymerization rate. Thus, although the reaction rate is linear in macromer concentration,

it is only increases with the 1/2 power for initiation rate. Replacing Ri in equation 6.5 with this

formulation results in:

(6.9)R k M I A b
kp p

t
=

⎛

⎝
⎜

⎞

⎠
⎟[ ]

[ ]
/

2
2

0
1 2

φε

As such, if termination proceeds solely through a bimolecular reaction of propagating radicals,

the reaction rate will be linear in macromer concentration but only to the ½ power in both

irradiation intensity and photoinitiator concentration. 

For systems with either very low macromer concentration or very high initiation rates, we

no longer expect the radical termination rate to be as described in Equation 6.4. Instead of two

propagating radicals reacting, a primary initiator radical would terminate a propagating radical.

Using the steady state assumption,

(6.10)R R k A Mi t tp= = ⋅ ⋅[ ][ ]
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where ktp is the rate constant for primary radical termination and [A•] is primary radical

concentration. Since many of the primary initiator radicals are no longer initiating polymer

propagation, we rewrite Ri as

(6.11)R k A Mi i= ⋅[ ][ ]

where ki is the initiation rate constant. Combining Equations 6.3, 6.9, and 6.10, the reaction rate is 

(6.12)R
k k
k

Mp
p i

t
= [ ]2

Thus, if primary radical termination occurs in our system, we expect the reaction rate to scale

with [M]2 instead of [M].

As mentioned previously, apparent kt values used in the pseudo steady state assumption

are dependent on diffusion and are averaged over all lengths of radical chains ( ,k kt t N
n

=
=

∞

∑ ,
1

N= degree of polymerization). Since macromers have two reactive reactive endgroups, they will

begin to form networks or clusters even at low degree of polymerization. We postulate two

distinct species of propagating radicals: single macromers that can diffuse quickly and immobile

clusters ( ), where kt' is for single macromers and kt" is for clusters. At early times,k k kt t t= ′ + ′′

the majority of propagating radicals will be single macromers with high diffusivity. As time

progresses, an increased population of radicals will be immobile clusters. Thus, as reaction time

and conversion progress, apparent kt will decrease significantly.

6.3.4. Comparison of photopolymerization rates in gel and melt

In Chapter III, we learned that the structure of microphase separation depends on host
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network modulus. In contrast, here we find minimal differences between macromer reaction rates

when swollen in a highly crosslinked network, a well-entangled melt, and a non-entangled melt.

Using identical photoinitiator concentration and irradiation intensity, polymerization of 1000

g/mol macromer at 30 wt % concentration has very similar reaction trajectory and very similar

maximum Rp. However, there is a small successive shift of maximum reaction rate towards higher

conversion as one proceeds from a covalent host network to an entangled melt to an unentangled

melt. Higher viscosity materials generally decrease macromer diffusion rates. Intuitively, Rp

would be therefore be expected to be slower at any given conversion. However, the opposite

occurs. The concentration of methacrylate groups is sufficiently high so that the propagation

reaction is not limited by diffusion of macromer to a propagating radical. Propagating radicals,

however, are moderately dilute and must diffuse together for bimolecular termination to occur.

As matrix mobility is reduced, the rate of reaction increases due to reduced termination relative to

propagation. Additional comparison of networks and entangled melts at other reaction conditions

and molecular weights reveals similar trends. Since the deviation between different hosts is

minimal, we use non-entangled melts as the host for studies of reaction kinetics using DSC.

6.3.5. Macromer concentration and reaction rate

Although the quasi steady state approximation does not hold for our system if we assume

kt to be constant throughout reaction conversion, dependence of reaction rate on the initial

concentration of reactive endgroups for a specific macromer molecular weight is relatively robust.

For 500 to 5000 g/mol macromer molecular weight, we find that the effect of macromer

concentration from 15 to 60 wt % is approximately linear while holding photoiniator

concentration and irradiation intensity constant (figure 6.7). Several series of experiments were

run using different photoinitiator content and irradiation intensity. The approximately linear [M]
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dependence is seen even under reaction conditions that create the highest number of primary

radicals (highest intensity permitted by DSC light source and highest photoinitiator concentration

permitted by solubility). The high concentration primary radical regime is where there is the

greatest chance that primary radical termination becomes dominant, which would result in Rp

having [M]2 dependence. Instead of [M]2 dependence, the data show a strong linear relationship

between Rp and [M]; maximum reaction rates and overall shapes of reaction curves match well

with [M] scaling. There are two important deviations, however. When using linear scaling from a

lower macromer weight fraction, we do not capture a “shoulder” that is seen during

autoacceleration for higher concentration. The autoacceleration shoulder observed for φ=0.6

resembles that seen during photopolymerization in bulk macromer (figure 6.1) and is commonly

seen in photopolymerization.5, 9, 10, 16, 21 Long-time and high conversion deviations from linear

scaling indicate that, as macomer concentration decreases to very low levels, some primary

radical termination may occur. Thus, even though the majority of the reaction proceeds in the

domain of propagating-propagating radical termination, at times near complete conversion

propagating radicals may have negligible diffusivity.

6.3.6. Effects of irradiation intensity and photoinitiator content

Radical initiation rates are a function of total light absorbance and, therefore,

photoinitiator content and irradiation intensity. Increasing intensity or photoinitiator

concentration will also increase the rate of generation of [A•]. An increase in primary radical

concentration may not, however, translate into increased production of [M•] since the

concentration of both [A•] and [M•] are governed by competition between generation and

consumption rates. For the pseudo-state assumption given in section 6.3.2, the effect of

Χ=(εφΙ0[Α]) is X 1/2. Experimentally, we  find behavior ranging from X 0 to X 0.5. This is rather
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surprising considering that the system reaction rate remains linear with [M] for all values of X. 

To characterize intermediate X behavior, we estimate the value of the exponent, α, that

best describes the experimentally observed changes in Rp with I0 and [A] where

(6.13)R M I Ap o∝ [ ]( [ ])α

Evaluation is empirical and the best fit is determined by varying α in increments of 0.05 and

choosing the value that produces the best match for both maximum reaction rates and reaction

profiles. For example, as DMPO concentration is increased from 0.08 wt % to 0.25 wt %,

rescaling Rp values from 0.08 wt % DMPO ([A]=(0.25 / 0.08)α where a=0.3) gives good accord

with experimental Rp values for 0.25 wt % DMPO (figure 6.8). It is important to note that, even

when α is not equal to 1/2 as suggested in equation 6.8, the reaction rate is still linear in [M]. 

A similar analysis is performed by altering irradiation intensities while holding macromer

weight percent, photoinitiator concentration, and macromer molecular weight constant. Higher

irradiation intensity leads to an increase in maximum reaction rates (figure 6.9). Using 2.1 mW

/cm2 irradiation intensity as a basis, we calculate α = 0.2 for 6.2 mW/cm2 and α = 0.5 for both

0.56 mW/cm2 and 0.19 mW/cm2. In Table 1, α is shown for a wide array of different irradiation

intensities and photoinitiator concentrations. For high values of irradiation intensity and

photoinitiator content, α is 0.1; as we decrease both of these variables, α increases to a steady

value of 0.5 as predicted by equation 6.8. It is unexpected that, even though we increase initiation

rates enough to change scaling behavior, we never enter a region where the reaction rate has

quadratic dependence on monomer concentration, which would indicate primary radical

termination.

6.3.7. Reaction rate comparison for different molecular weight macromer
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In section 6.3.4., we established that for a given macromer molecular weight the reaction

rate is linearly related to macromer concentration, i.e., it is proportional to the concentration of

reactive methacrylate endgroups. This section examines the qualitatively different reaction

trajectories that result from changing PDMS midblock chain length. These differences cannot be

captured by linear rescaling to account for differences in end-group concentration (figures 6.10

and 6.11). The analysis methods used in section 6.3.5 for variable power law dependence are also

ineffective because the reaction trajectories have altogether different shapes. For example,

differences in maximum Rp with conversion and time for 500, 1000, and 3000 or 5000 g/mol

occur at very different values and cannot be superimposed. 

However, linear scaling behavior for reactive endgroup concentrations between 3000 and

5000 g/mol macromers does show excellent correlation (figures 6.9 and 6.10). Therefore, Rp

decreases proportionally to [M] indicating that, for these macromer molecular weights, the

pseudo-steady state approximation is valid for the majority of the reaction. The initial increase in

reaction rate during the first 30 seconds is a combination of an initial increase in primary radical

concentration and decrease in apparent kt. It is quite surprising that the less mobile macromer

species exhibit agreement with pseudo-steady state assumptions and the more mobile 500 g/mol

and 1000 g/mol macromer do not.

Since termination only occurs between two propagating radicals, they will have one of

three ways of recombining: segmental diffusion, center of mass diffusion, or reaction diffusion.

Segmental diffusion is merely diffusion on the length scale of a Kuhn monomer; this is only

important if reactive groups functionally overlap. Since we use only 30% macromer and the

macromer has long unreactive midblocks, segmental diffusion is unlikely to be an important

process. Center of mass diffusion occurs in dilute to semi-dilute systems, and is the expected

process for termination at small conversions in these macromer systems. Reaction diffusion
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occurs when propagating radicals are completely trapped; monomer species react with two

propagating radicals until the two radicals grow together. In most monomers, reaction diffusion is

the primary termination process at large conversions. If reaction termination is mainly due to

center of mass diffusion, termination rates will decrease if the propagating radical species

becomes relatively immobile. Since these macromer have two endcaps, they have the potential to

quickly form large non-linear networks with slow diffusion rates. However, if reaction

termination occurs by means of reaction diffusion, the termination rate should be proportional to

the propagation rate, where

(6.14)k k Mt p= β [ ]

and β is a reaction diffusion proportionality constant. Replacing kt in Equation 6.5 and

simplifying, 

(6.15)R M
k R

p
p i=

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

[ ] /
/ /

1 2
1 2 1 2

2β

Thus, if termination is diffusion controlled, Rp
2/[M] should remain constant if plotted against

reaction conversion. Figure 6.12 shows a plot of Rp
2/[M] against fractional conversion for all four

molecular weights of macromer. A plateau region indicates that kp and kt are proportional and,

therefore, that termination is diffusion controlled. All molecular weights show no sign of a

plateau region. This complete lack of reaction diffusion controlled termination makes sense in

light of the relatively low reactive endgroup concentrations.

 6.3.8. Determination of propagation and termination constants

Additional insight into propagation and termination mechanisms may be obtained if we

are able to calculate time dependent kinetic constants. Since both kt and kp are dependent on
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diffusivities of reactants, they will change over the course of the reaction. In particular, if the

reactive medium increases in viscosity or vitrifies, all species’ diffusion rates will be retarded.

This would decrease both the propagation and diffusion kinetic constants. If the solution viscosity

remains nearly the same throughout the reaction, we would expect macromer diffusion rates to

stay the same and propagating radical diffusion to decrease with conversion as the radicals

increase in size. Thus, kp would remain somewhat constant throughout the reaction; only kt would

constantly decline since termination is center of mass diffusion, not reaction diffusion, controlled.

For these measurements, kt is apparent kt as described in Section 6.3.2 and is a superposition of all

propagating radical chain length termination constants. Reexamining Equation 8,

(6.8)R k M I A b
kp p

t
=

⎛

⎝
⎜

⎞

⎠
⎟[ ]

[ ]
/

2
2

0
1 2

φε

Rp can be directly measured using photo DSC, [M] is known, ε is measured with UV

spectrometry, b is known, and [A] is known. As mentioned in section 6.3.1, we will set the

quantity 2φ = 1. The only unknown is the value kp/kt
1/2, which can be evaluated from Rp and

conversion at each point in the reaction trajectory. In order to separate these two reaction

constants, we need an independent measure of termination kinetics. If we irradiate a sample for

some specific time or conversion and then shut off the irradiation source, we can record the decay

in Rp due to termination of propagating radicals (figure 6.13). Assuming all radical terminations

are between two propagating radicals, 

 (6.16)
d M

dt
k Mt

[ ] [ ]⋅ = − ⋅2 2

Rearranging this equation and integrating, we obtain
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Combining Equations 6.16 and 6.3 and evaluating the result gives
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In particular, t = 0 is when irradiation is terminated and time t is some short time (5 seconds)

afterwards. This method of analysis assumes that kt and kp are constant over the time period t-t0.

For long times, kt will decrease as smaller propagating radicals are consumed and non-mobile

cluster radicals become the dominant radical concentration. For macromer molecular weights of

500 g/mol, 1000 g/mol, and 3000 g/mol, kt is significantly larger at early times than it is as

reaction conversion increases (figure 6.14) as is expected for chain length dependent termination.

At short times, since propagating radicals will still be either monomeric or dimeric, diffusion

rates should still be very high. As conversion progresses and radicals increase in size, the

termination rate is drastically reduced. 

The propagation rate shows two regimes. At short times, we see an increase which can

potentially be attributed to initial unsteady state kinetics as primary radicals are being formed.

After this initial increase, we see a slow but steady decline due to decreasing macromer diffusion

rates. Diffusion rates decrease as material modulus increases from formation of IPNs. In figure

6.15, we plot the relative value kp/kt against fractional conversion for all three macromer

molecular weights. The concurrence of data indicates that the methacrylate endgroups have

equivalent reactivity for all three molecular weights of macromer. Unlike multifunctional

methacrylate monomers or species with a one or two atom spacer between two reactive

endgroups, the state of one endgroup (unpolymerized, radical, or polymerized) does not affect the
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reactivity of the other endgroup.

6.4. Conclusions

In this chapter, we have examined the kinetics of polymerization for methacrylate

endcapped monomers. Unlike polymerization in multifunctional methacrylate or acrylate

monomers, we are able to attain complete endgroup conversion even in neat macromer. We also

find that, for a specific macromer molecular weight, the reaction rate scales linearly with

macromer concentration. Surprisingly, we find that the scaling behavior for irradiation intensity

and photoinitiator concentration are strongly dependent on reaction conditions. As irradiation

intensity and photoinitiator concentration increase, reaction rate eventually reaches 0th order.

This result indicates that, no matter how high photoinitiator concentrations and irradiation

intensities are, there is some minimum reaction time required to attain a specific conversion.

Even though macromer polymerization follows a first order rate law in endgroup

concentration within a single molecular weight, scaling analysis is not adequate to describe

reaction trajectories for different macromer molecular weights. Not only are maximum reaction

rates not well quantified, but the extent of reaction at which they occur is also poorly predicted. It

is also very surprising that, although 500 g/mol and 1000 g/mol macromers do not support a

pseudo-steady state assumption, 3000 and 5000 g/mol are well described. Finally, we have shown

effect of chain length dependent termination in describing reaction rate trajectories. It is highly

suggested that EPR experiments be performed to attain actual radical concentrations for these

systems. These values would allow direct calculation of kinetic constants using a simple first

order rate equation that we have shown to hold for these systems. Dark reaction radical

concentration measurements would also allow us to more fully explore the effects of chain length

termination dependence.
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6.5. Tables

Table 6.1. Values for the scaling exponent α, where Rp=[M](2φΙε[Α])α. Systems are
polymerized with 30% 1000 g/mol macromer, contain a variable amount of photoinitiator and
are irradiated with different light intensities. 

0.03% DMPO 0.08% DMPO 0.25% DMPO

6.2 mW/cm2 0.2 0.2 0.1

2.1 mW/cm2 0.5 0.3 0.3

0.56 mW/cm2 0.5 0.3 0.3

0.19 mW/cm2 0.5 0.3 0.3
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Figure 6.1. Reaction rate plotted against time (Plot A) and fractional
conversion (Plot B) for pure 1000 g/mol macromer. Similar reaction
profiles sith complete conversion are seen from 500 to 5000 g/mol
macromer. Samples are polymerized at 6 mW/cm2 with 0.75% by weight
photoinitiator. Conversion for most monomer systems is quenched between
40 and 60% due to vitrification.
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Figure 6.2. Fractional conversion plotted against reaction time for different macromer
molecular weights. All samples are 30% macromer in a short chain PDMS melt, are irradiated at
an intensity of 6.2 mW/cm2, and have 0.25 % photoinitiator by total sample weight.
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Figure 6.3. Fractional conversion plotted against reaction time for multiple irradiation
intensities as determined by extraction experiments. Irradiation intensities are altered by
three orders of magnitude while macromer (30% by weight, 1000 g/mol) and photoinitiator
content (1% by total weight) are held constant.
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Figure 6.4. Fractional conversion plotted against reaction time for different irradiation
intensities. All samples are 30% 1000 g/mol macromer in a short chain PDMS melt with
0.08% by weight photoinitiator. Lines are drawn to indicate the difference in reaction time to
obtain a specific conversion.
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Figure 6.5. Fractional conversion plotted against reaction time for different photoinitiator
(DMPO) content. All samples are 30% 1000 g/mol macromer in a short chain PDMS melt and are
irradiated at an intensity of 0.28 mW/cm2.
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Figure 6.6. Reaction rate plotted against fractional conversion for 30 wt
% 1000 g/mol macromer in one of three PDMS hosts: a cross-linked
network, highly entangled melt, or non-entangled melt. An irradiation
intensity of 6.2 mW/cm2 and photoinitiator concentration of 0.25% by
total sample weight is used for all three hosts.
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Figure 6.7. Reaction rate plotted against time (Plot A) and fractional
conversion (Plot B) for different macromer weight fraction (φ2). Macromer
of 1000 g/mol molecular weight is polymerized at 6 mW/cm2 with 0.25%
by total weight photoinitiator. Lines show the reaction trajectory for φ2 =
0.3 re-scaled linearly with concentration.
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Figure 6.8. Reaction rate plotted against fractional conversion for different concentrations of
photoinitiator. Systems are polymerized at 2.1 mW/cm2 for 30% 1000 g/mol macromer. Lines are
reaction rate profiles calculated using a variable α, where Rp=[M](2φIε[A])α. The upper line has α
= 0.3 and the lower has α = 0.5.
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Figure 6.9. Reaction rate plotted against fractional conversion for different irradiation intensities.
Systems are polymerized with 30% macromer and contain 0.03% by weight photoinitiator. Lines
are reaction trajectories calculated by rescaling the observed reaction rate profile for 2.1mW/cm2.
α, where Rp=[M](2φIε[A])α is 0.2 for the 6.2 mW/cm2 and 0.5 for the 0.56 and 0.19 mW/cm2.
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Figure 6.10. Reaction rate plotted against reaction time and
fractional endgroup conversion for different macromer molecular
weights.All samples are 30% macromer in a short chain PDMS
melt, are irradiated at an intensity of 6.2 mW/cm2, and have 0.25 %
photoinitiator. Endgroup concentrations are 1.2 mol/l for 500
g/mol, 0.6 mol/l for 1k g/mol, 0.2 mol/l, and 0.12 mol/l for 5000
g/mol.
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Figure 6.11. Reaction rate plotted against reaction time and
fractional endgroup conversion for different macromer molecular
weights.All samples are 30% macromer in a short chain PDMS
melt, are irradiated at an intensity of 6.2 mW/cm2, and have
0.25% photoinitiator. Endgroup concentrations are 0.2 mol/l, and
0.12 mol/l for 5000 g/mol.
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Figure 6.12. Rp
2/[M] plotted against fractional conversion for different macromer molecular

weights. All samples are 30% macromer in a short chain PDMS melt, are irradiated at an intensity
of 6.2 mW/cm2, and have 0.25% photoinitiator.
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Figure 6.13. Reaction rate plotted against fractional conversion for 30% 1000 g/mol macromer
in a short chain PDMS melt. Samples contained 0.03% photoinitiator and were irradiated at 2.1
mW/cm2. The full curve in this plot is for a reaction taken to completion; partial curves are from
reaction where irradiation is terminated at a specific time. Analysis of dark time reaction rates
gives information on termination kinetics. Sparse data points are applied for visual purposes; a
faster data acquisition rate of 1 Hz is used for experimental calculations. 
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reaction constants plotted against time for different
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macromer in a short-chain PDMS host, irradiation
was at 2.1 mW/cm2, and photoinitiator content was
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Figure 6.15. Propagation constant (kp) divided by termination constant (kt) plotted against
fractional conversion. Reaction conditions are the same as those used in Figure 13.
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