MULTI-PULSE HOMOCLINIC PHENOMENA IN
RESONANT HAMILTONIAN SYSTEMS

Thesis by

Gyorgy Haller

In Partial Fulfillment of the Requirements
for the degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1994

(Submitted July 7, 1993)



ii

To my family:
Anyu, Apu, Laci and Andi



iii

Acknowledgements

First, I would like to thank my advisor, Professor Stephen Wiggins, for continuous
guidance, encouragement and support over the past three years. His close attention and
criticism helped a great deal in developing the ideas of this thesis. Next, special thanks
go to Professor Gabor Stépan of TUB, Hungary, for the many things he taught me and
for his continued friendship. I would also like to thank Professors Péter Moson and
Miklés Farkas of TUB, Hungary, for introducing me to the subject of dynamical systems
and helping in many ways. I am grateful to Professor Jerry Marsden for his attention to

this work and for his useful comments.

Besides academic help, I greatly benefited from the friendship of many people during
my stay at Caltech. Most importantly, I would like to thank Igor Mezi¢ for the good
time we spent together sharing the same office, and for his willingness to help. The love,
support, and kindness of my parents and my brother always made it easier for me to
overcome difficulties and remain enthusiastic. Finally, I would like to thank my wife for

her patience and love which made all this possible.



v

Abstract

In this thesis we develop a global perturbation method to detect homoclinic orbits which
arise in perturbations of manifolds of equilibria with a homoclinic structure in two-
degree-of-freedom Hamiltonian systems. Our energy-phase method gives conditions for
the existence of multiple-pulse and “jumping” orbits asymptotic to different invariant
sets within a slow manifold of the perturbed system. The perturbations we consider are
either Hamiltonian or weakly dissipative, and the orbits created by these perturbations
are generic in both cases. The geometric criterion we derive requires simple algebraic ma-
nipulations and detects orbits which are not amenable to Melnikov-type methods, even if
those methods are combined with geometric singular perturbation theory. We apply the
energy-phase method to the analysis of three-degree-of-freedom resonant Hamiltonian
normal forms and prove the existence of non-ezponentially small splittings of separatri-
ces connecting invariant tori. These structures, together with double-pulse homoclinic
tori, exist arbitrarily close to resonant elliptic equilibria in a class of Hamiltonian sys-
tems. As another application, we consider a two-mode truncation of the driven nonlinear
Schrodinger equation and establish the existence of chaotic multiple-pulse “jumping or-
bits” which can be arranged in a fractal structure. We confirm the predictions of the
energy-phase method by numerical simulation and visualization of intersecting multi-

pulse orbit cylinders.
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Chapter 1

Introduction

One of the most vigorously developing fields in the theory of dynamical systems is Hamil-
tonian dynamics. The reason is that many physical processes with a conserved energy-
type quantity can be put in the Hamiltonian framework, i.e., can be described by a set of
ordinary differential equations which directly derive from the conserved quantity. Natu-
rally, most macroscopic systems are subject to various forms of dissipative effects which
counteract with the conservation of energy. Still, if the magnitude of the dissipation
is small, one can view the dissipative model as a small perturbation of a Hamiltonian
limit. The motivation for such an approach is the fact that Hamiltonian systems usually

admit much more structure in their phase space and are amenable to efficient geometric

methods.

This dissertation is concerned with one aspect of Hamiltonian systems, namely, the
analysis of hyperbolic manifolds of equilibria. One’s immediate feeling about this subject
is probably some doubt whether such a nongeneric situation (i.e., the presence of a whole
manifold of fixed points) deserves any study at all. Yet, manifolds of equilibria frequently
appear in the study of physical models. One encounters them in laser optics, the theory

of water waves, molecular dynamics, nonlinear vibrations of plates, shells, and archs,



Jjust to name a few. The underlying physical situation is quite different in each case
but there is one common element in these problems which lies behind the appearence
of manifolds of (relative) equilibria: the presence of a resonance. Since resonances are
ubiquitous in dynamical systems, it seems useful to study this structure, a manifold of

equilibria, which is so closely tied up with them.

Resonances have long been known to cause irregular or chaotic behavior. Their pe-
culiarity is demonstratated by plenty of experimental and numerical evidence, as well as
by the fact that their mathematical analysis usually requires special methods. Many of
these methods are yet to be developed, especially for higher-degree-of-freedom Hamil-
tonian systems. We hope to contribute to this program by a careful study of a special

class of chaotic phenomena arising from perturbations of manifolds of equilibria.

First, let us discuss through two examples why manifolds of equilibria, or briefly
resonant manifolds, are so common in the study of resonant Hamiltonians. As a first
example, one may think of Hamiltonian systems with a rotational or S! symmetry.
Under certain conditions the presence of such a symmetry makes it possible to reduce the
number of degrees of freedom in the problem by one and analyze this lower dimensional
Hamiltonian system. One can immediately recover motions in the full system based
on the knowledge of trajectories in the reduced system. In particular, a fixed point or
relative equilibrium of the reduced problem indicates the presence of a periodic orbit
for the full system. As an important example, we mention that the truncated normal
forms of resonant Hamiltonians (see chapter 3) always have an internal S' symmetry
(i.e., a symmetry resulting from the construction of the normal form) hence relative
equilibria appear in their analysis. In addition, these normal forms frequently have

additional ezternal symmetries, i.e., symmetries originating from the properties of the



underlying physical problem. A sufficient number of these symmetries is enough to make
the reduced system integrable, which of course implies integrability for the full truncated
normal form. A general feature of integrable Hamiltonians is that their periodic solutions
appear in families. In a large class of resonances (see, e.g., those discussed in chapter
3) a subset of this family consists of orbits of the same period. For these systems the
presence of one relative equilibrium implies the presence of a family of relative equilibria
in the reduced system. This family of fixed points typically has a manifold structure,

hence we obtain a manifold of relative equilibria for the reduced system.

Another example for resonant manifolds is provided by Hamiltonians with an explicit
periodic time-dependence. Such Hamiltonians arise in the description of many conserva-
tive systems subject to parametric forcing. The most efficient way of approaching these
problems is to apply some form of averaging with respect to time and study the aver-
aged equations. Similarly to the above example, a fixed point of the averaged equation
indicates that the full system has a periodic orbit with a period which is some multiple
of the period of the forcing, at least up to the precision characteristic of the averaging
method. In other words, the system has a periodic orbit in resonance with the para-
metric forcing. Again, if the averaged problem is integrable, its periodic orbits occur in
families. If, in addition, the unforced problem itself contains some internal resonance
(say of the type considered in the first example), a subset of these families may contain
orbits of the same period. This, in analogy with our first example, leads to the existence
of a whole manifold of equilibria in the averaged equations, which represent a family of

resonant periodic orbits for the full system.

In both of these examples the full Hamiltonian system contains a family of periodic

orbits, which are in resonance either with the action of a symmetry group or with some



external forcing. Both examples can be generalized: the Hamiltonian system may pos-
sess higher dimensional invariant structures (e.g., n-tori) which are in resonance with the
action of a multi-parameter symmetry group and appear as a manifold of relative equilib-
ria after a reduction with respect to that symmetry group. Similarly, one can imagine a
quasiperiodic forcing in resonance with a family of quasiperiodic motions in the unforced

system, which yields a manifold of equilibria in the multi-frequency-averaged equations.

The weak point of these examples is that they assume the integrability of the reduced
and averaged equations, respectively. One can, however, replace this requirement with
the physically more realistic assumption of near-integrability. In this case the averaged
or reduced equations will generically not contain resonant manifolds but will be small
perturbations of systems which do admit such structures. Surprisingly many problems
can be cast in this form (see section 1.1 for a brief review), a fact which gives strong

enough motivation for a perturbation theory for resonant manifolds.

When one starts thinking about perturbation issues, the very first thing to clarify is
the stability type of the object to be perturbed. In the Hamiltonian framework, apart
from singular cases, one may have elliptic manifolds, hyperbolic manifolds, or manifolds
with both elliptic and hyperbolic directions. Elliptic stability is usually harder to deal
with, but there is a more practical reason why we will be interested in hyperbolic man-
ifolds in this thesis. Our goal is to investigate geometric structures in the phase space
carrying the source of irregularity which resonances are noted for. Elliptic manifolds of
equilibria are surrounded by regular invariant structures, the majority of which are robust
under perturbation. Thus elliptic resonant manifolds will not have a characteristic effect
on the global dynamics of the phase space of a resonant system, whatever happens to

them under perturbation. Resonant manifolds of elliptic-hyperbolic-type are more inter-



esting because in an integrable problem they admit homoclinic or heteroclinic manifolds.
These latter manifolds extend over a larger domain of the phase space and therefore have
some global influence on the dynamics. Yet, by the presence of elliptic directions, these
homoclinic or heteroclinic structures do not have the largest dimension possible, hence
their effect will be tangible only for certain families of trajectories. Hence, although they
may be considered important for future research, their significance is definitely less in
applications than that of normally hyperbolic resonant manifolds. These manifolds may
participate in codimension-one homoclinic or heteroclinic structures of the reduced or
averaged phase space, which have a decisive influence on the overall nature of motions.
This is especially true after perturbation which typically causes global homoclinic chaos
with its attendant chaotic transport near these structures. Therefore, if one is inter-
ested in finding the possible sources of irregularity in resonances, hyperbolic resonant
manifolds appear to be promising candidates. It also turns out that they perturb into
objects with much more complex chaotic behavior than what may exist in perturbations

of hyperbolic non-resonant manifolds.

In view of the above discussion, the main theme of this thesis is a perturbation the-
ory for Hamiltonian resonant manifolds. Since all forthcoming chapters contain detailed
introductions, here we only sketch the topic of each chapter. First,in chapter 2, we estab-
lish a general theory for two-degree-of-freedom Hamiltopnians, the energy-phase method,
which gives predictions of the fate of normally hyperbolic resonant manifolds, as well as
their homoclinic/heteroclinic structures. To apply the method to a given problem, one
needs to calculate an energy-difference function. This function can be obtained just by
restricting the perturbed Hamiltonian to the original resonant manifold. In particular,
the derivation of the energy-difference function does not involve evaluation of improper

integrals, which is an inconvenient feature of the most widely used global perturbation



technique, the Melnikov-method. The energy-difference function can be used to detect
multi-pulse transverse homoclinic and heteroclinic orbits which are asymptotic to invari-
ant sets in a slow manifold perturbing from the resonant manifold. In most cases the
multi-pulse orbits are doubly asymptotic to periodic orbits of the slow manifold which
immediately implies the existence of chaotic dynamics related to Smale-horseshoes near
the slow manifold. One can also identify certain resonant internal orbits on the slow
manifold which serve as boundaries between regions with different pulse-numbers. More
precisely, the resonant internal orbits separate regions such that in each region the orbits
have multi-pulse homoclinic orbits with the same number of pulses for all the orbits in the
region. We also analyze the case when there are two separate homoclinic manifolds con-
necting a resonant hyperbolic manifold to itself. For this situation the energy-difference
function can be used to predict the existence of multiple-pulse jumping homoclinic orbits.
These jumping orbits make several excursions before they settle onto their limit sets and
these excursions involve passages near both of the broken homoclinic manifolds. At the
end of chapter 2 we extend the results to the case of additional weak dissipation and

construct some special orbits (e.g., multi-pulse Silnikov-type orbits).

In chapter 3 we analyze a class of three-degree-of-freedom resonant Hamiltonians in
the same spirit as we described earlier in this introduction. We study the corresponding
cubic Birkhoff normal form and find an invariant 3-sphere (filled with periodic solutions)
on each energy surface. Appropriate subsets of these spheres are normally hyperbolic
and admit homoclinic structures. After a symplectic reduction the periodic solutions of
a sphere (all of them of the same frequency) appear as relative equilibria interconnected
through heteroclinic orbits. We use a heteroclinic version of the energy-phase method
to show the existence of transverse homoclinic tori and double-pulse homoclinic tori in

the truncated normal form. We also visualize these structures iterating the invariant



manifolds of a 4D symplectic map.

In chapter 4 we study a two-mode truncation of the driven nonlinear Schrédinger
equation derived by Bishop et al. [7]. This truncation can be written in the form of
a two-degree-of-freedom Hamiltonian system which, for zero forcing, has a normally
hyperbolic invariant manifold with two homoclinic manifolds. This hyperbolic manifold
contains a circle of fized points which can be blown up to an annulus of fized points.
Following the techniques of section 2.4, one can analyze this hyperbolic manifold of
equilibria and use the energy-phase method to show the existence of transverse jumping
multi-pulse homoclinic orbits. We also show that these orbits can be organized into

layers which together form a fractal structure.

We believe that the theory presented here is fairly self-contained and ready for fur-
ther applications. However, the analysis of the two examples we consider here will
only be complete if the sophisticated phase-space structures found through the energy-
phase method are properly related to the underlying physical problems. In the case of
three-degree-of-freedom resonances (chapter 3), one can use the results presented here
to explain the phenomenon of chaotic irreversible energy-transfer in systems of three
resonant coupled oscillators. As far as the two-mode truncation of the NLS is considered
(chapter 4), one can use the results to argue about the nature of Jumping chaos (i.e.,
chaotic time-evolution of a spatially localized solitary wave) found in numerical studies
of the full partial differential equation. All this is subject to current research and will

appear elsewhere.



Chapter 2

The energy-phase method

2.1 Motivation and notation

In most of this chapter we will be concerned with two-degree-of-freedom Hamiltonian
systems of the form
T = J2DwH0(z’ Ivﬂ') + €J2D1‘H1('777]7 ¢;ﬂ7 5)7

I = —eDyHy(z,1,¢;p,¢), (2.1.1)

Il

¢ DiHo(z, I;p) + eDrHy (2, 1, ¢ py €),

defined on the phase space P = IR? x R x S! equipped with the symplectic form w =
dzy Adzy + dp A dl. We will refer to the individual equations in (2.1.1) as (2.1.1)%,
(2.1.1)7 and (2.1.1)%, respectively. In (2.1.1) p is a p-dimensional vector of parameters
taken from some open set W C R?, and

h = ( ’ 1) |
-1 0

The corresponding Hamiltonian H = Hg + ¢H; is assumed to be C™t! smooth in its
arguments (r > 3). Setting ¢ = 0 in (2.1.1) (denoted as (2.1.1).—) we obtain an
integrable unperturbed system with Hamiltonian Ho(z,I;p). We make the following

assumption on this integrable system:



(H1) There exist Iy, I, € R, Iy < I such that for any (I,p) € [I, L] x W (2.1.1)%_,

has a hyperbolic fixed point Zo(I; ) connected to itself by a homoclinic trajectory

eh(t, I; p).

For every fixed p € W assumption (H1) implies the existence of a normally hyperbolic

invariant 2-manifold (with boundary) A for system (2.1.1)c—g in the form
Ao ={(z,1,¢) € P|lz=z°I;p), I € [I1,13), € §'}, (2.1.2)
which can be considered as the image of the annulus A = [I;, I3]x S' under the embedding

go: A — P,

(I, ¢) = (@°(I;p),1,6). (2.1.3)

Note that both Ag and go depend on g but this will be suppressed for notational sim-

plicity.

It is easy to see that Ag has a three dimensional stable manifold W*(A4y) and a three
dimensional unstable manifold W*(.4p) which coincide in the homoclinic manifold Wy

(see Fig. 2.1). The solutions of (2.1.1),—0 on Wy can be written in the form
zh(t, I; i)
Yo(t, 1, dos ) = I ) (2.1.4)
$o + [y DrHo(z"(r, I; p), I; p) dr
Since Ao is a compact normally hyperbolic invariant manifold, for small ¢ > 0 system

(2.1.1) has a two dimensional invariant manifold A, which is C" ¢-close to Ag, and hence

still a C" embedding of the annulus A through a map

gt A — P,

(L, ¢) = (F°L, ), 1, 0) = (2°(T; p) + ea (1, ¢ p, €), 1, ). (2.1.5)
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LR T))

Wo € W2 nwix,)

Figure 2.1: The manifolds Ay and Wy

Let c: A. — P be the inclusion map of A, with ¢ > 0. Then it can be shown (see Haller

and Wiggins [28]) that for small ¢ > 0 (A.,4}w) is a symplectic 2-manifold with
isw = (14 O(e))do A dl, (2.1.6)
on which the vector field of (2.1.1) derives from the restricted Hamiltonian
He = H|A. =il H. (2.1.7)

For small nonzero ¢ we also have two persisting locally invariant 3-manifolds W} (A.)

and Wi (A:) C" e-close to Wi (A.) and WE (A.), respectively.

Systems of the form (2.1.1) with assumption (H1) have been studied by Holmes

and Marsden [31] and Wiggins [74]. These authors also assumed that the manifold
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Ao is foliated by a one parameter family of periodic solutions given by I = const.,
¢ = DrHy(z,I; i) # 0. The periodic solutions have two dimensional stable and unsta-
ble manifolds coinciding in two dimensional homoclinic submanifolds of Wy. An easy
check shows that these submanifolds are isotropic, i.e., the symplectic form w vanishes
restricted to them. Since they also have a dimension half of that of the phase space,

they are Lagrangian submanifolds of P.

Since periodic orbits on (A, 7;w) are structurally stable under small changes in ¢, A,
is also foliated by a one parameter family of periodic orbits which are close to their un-
perturbed counterparts in 4g, and have two dimensional stable and unstable manifolds
within W?(A,) and W*(A,), respectively. The perturbation theory for Lagrangian sub-
manifolds developed in Weinstein [72] implies that for small ¢ # 0 the stable and unstable
manifolds of the persisting periodic orbits must still intersect. Using a Melnikov-type
analysis Holmes and Marsden [31] gave conditions under which these intersections are

transverse within the corresponding level sets
E(h)={(z,1,¢) € P|H(z,I,¢;¢)=h} (2.1.8)

of the Hamiltonian H. This implies the presence of Smale-horseshoes near the perturbed
periodic orbits which means chaotic dynamics and nonintegrability for system (2.1.1)

(see, e.g., Moser [59]).

Recently Haller and Wiggins reconsidered system (2.1.1) (see [28]) and assumed that
either some isolated periodic orbits or all the periodic orbits on .4y degenerate into circles
of equilibria. More precisely, they assumed that ezactly one of the following holds for

system (2.1.1):
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(H2a) There exists I, € (I1,I3) such that
DrHo(Zo(Ly; p), 1y5 p) = 0,
m(I; p) = Di[Ho(Zo(I; p), s =1, # 0.

(H2b) For every I € [I1, 3]
DiHo(zo(I; 1), I; ) = 0.

In the case of (H2a) we have a circle of equilibria which is surrounded by periodic or-
bits within Ag and has coinciding two dimensional stable and unstable manifolds within
Wo. In the case of hypothesis (H2b) Ag itself is a two dimensional normally hyper-
bolic manifold of equilibria. Since in both cases the presence of equilibria is due to the
vanishing frequency DyHy, one may refer to these manifolds of equilibria as resonant
manifolds. An important fact is that these resonant manifolds are isoenergetic, i.e., the
unperturbed Hamiltonian Hy restricted to them is constant (see the definition of Ag in
(2.1.2) together with the first part of (H2a) and (H2b)). Since, by assumption (H1), the
resonant manifold Ag is hyperbolic, it survives small perturbations and gives rise to a
nearby slow manifold A. (see below). Another immediate consequence of the resonance

is that the phase shift, i.e., the net change of ¢ along orbits on Wy given by
+oo A
8T = [ Diola 0, 1 ), T ) (2.1.9)

is finite either for I = I, (assumption (H2a)) or for every I € [I}, I;] (assumption (H2b)),
see Figs. 2.2a-b. Systems satisfying hypothesis (H2a) arise in the Hamiltonian limit of
a number of problems. For example, one encounters circles of equilibria of this kind in
the study of parametrically excited plates and shells, surface waves, and shallow archs

(see Feng and Sethna [19]-[21], Feng and Wiggins [22], Yang and Sethna [75], and Tien
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and Namachchivaya [67]). The driven nonlinear Schrédinger equation of Bishop et al.
[7]-[8] also satisfies hypothesis (H2a) and served as our main example in [28]. Hyperbolic
2-manifolds of equilibria (hypothesis (H2b)) appear in resonant surface wave problems
(Holmes [32]) and in the analysis of a wide class of three-degree-of-freedom Hamiltonian

resonances discussed in chapter 3 of this thesis.

X=Xl

Figure 2.2: The geometric meaning of the phase shift A¢ in the case of hypotheses (H2a)
and (H2b), respectively

It is shown in [28] that using methods from regular and singular perturbation theory
one can make predictions of what happens in the vicinity of the resonant manifolds
above for small nonzero ¢. In particular, we established a simple criterion to prove the
existence of orbits homoclinic or heteroclinic to various objects on A,. Some of the

results for hypothesis (H2a) were also obtained independently by Kovagi¢ [45] with an
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application in Kovagi¢ [47].

It turns out, however, that these results give only a partial picture of the complex dy-
namics which is present near perturbed resonant manifolds. This is the consequence of
the fact that the Melnikov-type method, which is used in [28] to tackle the regular per-
turbation part of the problem, is not particularly well suited to the singular perturbation

part of the analysis for three main reasons:

1. The Melnikov-method only gives information about orbits homoclinic to a set S. of
orbits in A.. The set S is open and may not cover all of A.; in fact, S. can be
quite small for certain ranges of the parameter p (see, e.g., the example in [28] or
[45] ). Moreover, in the case of hypothesis (H2a), one would be more interested
to see what happens to the stable and unstable manifolds of periodic orbits which
lie near the “core” of the resonance (by core we mean elliptic equilibria generically
created in the break-up of the circle of equilibria). However, for typical parameter

values this core and its neighborhood does not lie in the set S, (see again [28] or
[45]).

2. Multiple-pulse homoclinic or heteroclinic orbits are not accessible to Melnikov-type
methods, but numerical evidence suggests that they exist and the orbits making
the same number of pulses form one-parameter families (see, e.g., the numerical

results presented in chapters 3 and 4 of this thesis).

3. The Melnikov-type method which can be used to study system (2.1.1) concentrates on
individual homoclinic or heteroclinic orbits and does not give information about the
geometry of the intersecting submanifolds of W*(A.) and W*(.A.), which contain
these orbits. In applications, however, this latter kind of information may even

be more important if one wants to understand the effect of horseshoes on typical
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nearby trajectories.

In this chapter we establish a new global perturbation technique, the energy-phase
method. This method is different from Melnikov-type methods and is generally applica-
ble to detect orbits homoclinic to perturbed resonant manifolds in two-degree-of-freedom
Hamiltonian systems. In contrast to the Melnikov method, it relies on manipulations
with simple algebraic or trigonometric equations and does not require evaluation of im-
proper integrals. It is capable of detecting simple transverse or non-transverse homoclinic
orbits, as well as transverse or non-transverse N-pulse homoclinic orbits to the manifold
A.. By N-pulse homoclinic orbit to .A,, we mean an orbit negatively asymptotic to some
invariant set in .4, which enters and leaves a small neighborhood of A, N-times to finally
return and approach an invariant set of A, asymptotically. We also show in section 2.5
how the energy-phase method extends to the case of non-Hamiltonian perturbations of

system (2.1.1).

We give details on the geometry of the multiple-pulse connections and also present a
set of unperturbed orbits which can be used to “shadow” a given N-pulse orbit. More-
over, we extend our basic construction to a case when we know more about the geometry
of system (2.1.1).=¢. In particular, we will assume the presence of two manifolds of or-
bits, W5 and W0+ , homoclinic to the resonant manifold Ag. Under certain conditions we
will be able to show the existence of jumping N -pulse homoclinic orbits to the slow man-
ifold A.. These are special N-pulse orbits which keep “jumping” between W and Wy
they may follow W during some of their pulses then switch to Wy for a while, etc. To
describe this complicated motion, one can determine a sequence of two symbols, again,
based on the simple analysis of a one-degree-of-freedom problem. Finally, we identify

a set of resonant internal orbits in A.. These orbits separate regions filled with orbits
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which have the same pulse number (i.e., the orbits asymptotic to them make the same
number of pulses). All our results can be easily extended to perturbations of manifolds
of equilibria which are connected through heteroclinic manifolds. This is discussed in

chapter 3 in connection with three-degree-of-freedom Hamiltonian resonances.

The exposition of this chapter is as follows. First, in section 2.2 we recollect some
general results on invariant manifolds in a form suited to our set-up and perform some
estimates to describe the local dynamics around these manifolds. The estimates are
stronger than what is actually needed for the purposes of the energy-phase method and
may be of independent interest in both the analytical and numerical study of the passage
of trajectories near Hamiltonian slow manifolds. In sections 2.3 and 2.4 we establish
our main results about nonsimple, i.e., multiple-pulse homoclinic orbits arising in the
perturbation of Ao, W?(Ao), and W*(Ag). We also discuss the detection of jumping N-
pulse orbits and the resonant internal orbits mentioned above. In section 2.5 we present
an extension of the energy-phase method to weakly dissipative perturbations of system
(2.1.1). Finally, in section 2.6 we compare our method to other existing techniques for

the detection of multiple-pulse homoclinic orbits.

2.2 Dynamics within and near the invariant manifolds A,

W*(A.), and W"(A,)

From this point we assume that hypothsesis (H2b) holds. The results we derive will be
shown to be valid for the case of hypothesis (H2a) in section 2.4. First, we list some
features of the invariant manifolds A., W?*(A.), and W*(A,) introduced in the previous
section. We do not deal with their very existence, only refer the reader to the well-known

persistence and smoothness results of Fenichel [23] as spelled out for system (2.1.1) in
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Haller and Wiggins [28]. We will, however, discuss certain facts about the dynamics on
Ag, the internal structure of W*(A,) and W*(.A,), as well as the nature of the flow FF(.)

of (2.1.1) in a neighborhood of A..

As we noted in the previous section, for small ¢ A. is a symplectic manifold on which

the restricted Hamiltonian H. = H|A. generates a vectorfield satisfying
qB st 2
i = lw (D(¢,I)He) =eJ2Dy,nH + O(e*), (2.2.1)

with Jwh: TA: — TA., (Giwh) ' [p)(u),v) = i*w[p](u,v) for all p € A., u,v € T, A..

The reduced Hamiltonian H in (2.2.1) can be written as
H(L, ¢s p) = Hy(Z°(T; 1), 1, ¢5 1, 0), (2:2.2)
as shown in [28]. It is related to the restricted Hamiltonian H. through
He = ho + eH + O(e?), (2.2.3)

with ho = HglAo = const. (see hypothesis (H2b)). By a slight abuse of notation we
will consider H(/, ¢; 1) defined on the annulus A = [I1, 3] x S1. Eq. (2.2.3) shows that
a structurally stable orbit v C A of H gives rise to an orbit 7. C A. of H. such that
9 (7e) and 7o are C” e-close in A. One of our goals will be to find out about the orbits

of H, based on our knowledge of H.

We will say that an orbit ¥ C A of some Hamiltonian defined on A is an internal
orbit if it is either a periodic orbit or an orbit homoclinic to a hyperbolic fixed point, and
it is bounded away from @A. Similarly, an orbit v, € A, of the resctricted Hamiltonian
‘H. is called an internal orbit if ge"l('ye) is an internal orbit of the Hamiltonian g.*H.
on (A,g.*w). By definition, internal orbits are structurally stable, hence for small ¢ the

internal orbits of the reduced Hamiltonian H give rise to C” e-close internal orbits of

g:"H..
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In what follows we will be interested in orbits of (2.1.1) in P which are asymptotic to
internal orbits in A.. The sets of orbits positively (negatively) asymptotic to an internal
orbit 7. C A, will be denoted by W*(v.) (W*(7.)). In the case when 7. is periodic, this
yields the usual definition of stable and unstable manifolds for periodic orbits. If v, is a
homoclinic orbit to a fixed point p., we obtain W*(v.) = W*(p.) and W*(y.) = W*(pe),
where W?(p.) and W*(p.) are the two dimensional “full” stable and unstable manifolds

of p. lying in the phase space P.

Our next proposition is a reformulation of the results of Fenichel [24] on the foliation
of stable and unstable manifolds (see also [28]). Fenichel was able to relate incoming
orbitsin W*(A.) to their w—limit sets in A, in the following way. He showed the existence
and persistence of a smooth family of curves, called fibers, which foliate Wi .(Ae). The
fibers of the family are usually not invariant individually under the flow but the family
itself is invariant, i.e., fibers are mapped into fibers by the underlying flow. Each fiber
intersects Ac in a unique point, which we call the basepoint of the fiber, and fibers of
the unperturbed problem deform smoothly into fibers of the perturbed problem. Most
importantly, a solution starting on a fiber of W _(.A.) will be asymptotic to the trajectory
in A. which runs through the basepoint of the fiber, as long as the latter one stays in
Ae. Similar statements hold for W2 (A.) but, for brevity, we will not list them. To
formulate the results precisely, we fix some § with ¢ << § << 1 and define a closed

tubular set Us around Aqg by
Us = {(z,1,6) € P||e = 2°(I;n)] < 6,(I,8) € A}. (2.2.4)

We then have the following result which is a direct application of the general results of

Fenichel [24] to system (2.1.1) (see [28] for details.)

Proposition 2.2.1 There exist 0 < g9 << 8y << 1 such that for every ¢ € [0,&0]
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there exists a two parameter family F2 = Upea, [E(p) of C™ smooth curves f3(p) (with
boundary), such that the following hold:

(2) FE = (WE (A)UA)NUs, and f2(p)N A, = p.

() F2is C™" 1 inp and in ¢.

€

(u2) FZ is a positively invariant family, i.e., F£(f5(p)) C f2(F£(p)) for anyt > 0 and

p € Ac with Ff(p) € A..
() There exist Cs, A5 > 0 such that if y € f5(p) then
|F7 (y) = 5 (p)| < Coe™
for any t > 0 with FF(p) € A..
(v) Forany p # p' f2(p)N f2(0') = 0.

(ve)For any p # p' and y € [3(p), ¥’ € f2(p’) we have

lim @) = FE@I
t—oo [ FF(y") — F¥ (p)

We now turn our attention to the description of the flow near the hyperbolic mani-
fold A. to obtain some characterization of the trajectories not lying in the local stable
and unstable manifolds of A.. The following proposition provides a normal form in a
neighborhood of the perturbed manifold, following the basic idea of local normalization
sketched in Fenichel [24]. In contrast to his formulation, we do not require analyticity
of the vectorfield and give more details on the terms in the normal form. Also, for
our specific system (2.1.1) we are able to perform the normalization globally, i.e., in

a neighborhood of the whole manifold .4.. We do not perform Fenichel’s last step in
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the construction since it would impose more stringent smoothness hypotheses on system
(2.1.1) without a substantial improvment on the normal form. Similar but less specific
normalized equations also appeared in the general singular perturbation context of Jones

and Kopell [38].

Lemma 2.2.2 There exist 0 < g9 << 8o << 1 such that for ¢ < ¢q there is a C" ™2
change of coordinates T°: Us, — R? x A, (z,1,$) — (z,1,¢) such that T¢ is C""% in ¢,

and in the (z,1,¢$) coordinates the flow of (2.1.1) satisfies the equations

2 = ANz, 1,¢;5¢)z,

I = ekr(z, 1, ¢;¢), (2.2.5)
gz‘} = zTB(z,I, pie)z+ eky(z, 1, p¢),
with
/\+<QIaZ)+€k1 0
A= 2.
( 0 A+ {q,2) +¢ky )’ (2.2.6)

where \:IR — R is C™71, ky, ko, by, kg:IR? x A x [0,60] = R are C™"2, B:R? x A x
[0,e0] — IR?*? 4s symmetric and C"2, and q1,q2:IR? x A x [0,60] — R? are C7—3
Junctions of their arguments. On (P,TEw) system (2.2.5) derives from the Hamiltonian

T=H.

Proof: We know from the persistence theorem of Fenichel [23] that for ¢ < &) A. is a
C" graph over the (I, ¢) variables with ¢f > 0 sufficiently small. We first pass from the

variable z to y € IR? letting

z=2°(1, ;1) + v, (2.2.7)

where the C” function Z° is defined in (2.1.5) for ¢ < ¢). In the new variables (2.1.1)
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reads

g = fy(y1[’¢’8)’
j = Efl(y717 ¢;5)7 (228)
Q'S = f¢(yal’¢;5)7

where the functions f,, fr, and f; are C'" smooth, and their y-dependence is suppressed
y ¢ Y

for notational simplicity. Furthermore, they satisfy the equations

fy(0,1,¢;€) = 03 (229)
f6(0,1,¢;0) = 0, (2.2.10)
Dy fs(0,1,4;0) = 0. (2.2.11)

Here (2.2.9) follows from the invariance of A,, (2.2.10) reflects the fact that Ag consists
of equilibria, and (2.2.11) describes that in (2.1.1).=¢ the trajectories in W3 _(Ag) and
W (Ao) are asymptotic to ¢ = const. planes in positive and negative time, respectively
(hence the infinitesimal change of ¢ is zero for ¢ = 0 in directions vertical to the manifold

Ap). Using (2.2.9) we can write
1 1
L Lbie) = [ aeflaw Lge)da= [ [ Dyfy(av, 1, g5e)doly
= Ly, L, ¢se)y = [Lo(I,¢5¢) + Li(y, 1, #; €)yly, (2.2.12)

where Lg: A X [0,f] — R?*? is C™~!, and L is a C"~? 3-tensor. Similarly, (2.2.10) and

(2.2.11) imply

19 1
Fou i) = [ S-flan, L dias)da=[ [ D,fu(ay,1,6;08)dale

1
+€/ D.fs(ay, I,¢; ae)da
0

1 1
_—y /0 /0 aD?fy(apy, I, 6; afe)dadply
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1 1
+€[/0 aD.D, fs(apy, I, ¢; afe)dadBly + e/o D.fs(ay, I, ¢;ac)da

= 9" M(y, 1, ¢;¢)y + €94y, I, 6;€), (2.2.13)

where the functions M:R* x A x [0,¢}] — R?**2 and g, are C™2.

By the normal hyperbolicity of Ag, Lo(0,1,$;0) = Lo(0,;0) has one dimensional stable
and unstable eigenspaces which, in fact, only depend on I in a C™~! fashion. Also, by
hypothesis (H1) and the Hamiltonian nature of (2.1.1), the corresponding eigenvalues
are real and add up to zero. Therefore, a C"~! transformation of the form v = §(I)y

with S: [, Io) — R?*? puts system (2.2.8) in the form

v o= [NQ(I)+Nl(U,I,¢,€)'D+€N2('U,I,¢)]’U,
I = ehi(v,1,¢;¢), 7 (2.2.14)

¢ = vTP(v,I,$;6)v+ chy(v, I, d;¢),

where No(I) = diag (A(I),—A(L)) is C™~! with A(I) > 0, Ny = STI1,S, P = STMS,

Na:IR? x A x [0,e] — IR**? and hy are C™=2 and the function hy is C"~1.

We now make use of the fact that, according to Fenichel [23], the local stable and unstable
manifolds of A, in system (2.2.14) are given by two C™~2 graphs vy = ua(v1, I, ¢;¢) and
vy = uy(v2, I, $;¢), respectively. For ¢ < eff < ¢ and in a closed tubular set (7(86’) around
v = 0 (which can be taken the image of Us, of Lemma 2.2.1 under the transformation
(2.2.7)) we now apply a C™~% change of variables given by z = v — u(v, I, ¢;€). In the

(2,1, ¢) variables we can cast system (2.2.14) in the form

/\I(I)Zl + ZTQI(Z7 I1 ¢7 E)Z + 8]‘71(2’ I’ ¢;£)21,

4 =
2}2 = —/\1(_[)22+ZTQ2(Z,I,¢,E)Z+6162(2,I,¢;8)22,
I = eky(z,1,¢:¢), (2.2.15)
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¢ = ZTB(z,1,¢;¢)z + eky(z, 1, ¢;¢),

where Q1, Q% R? x A x [0,&4] — R?*? are symmetric and C"~2 in their arguments, and
B, ki ka,kr, and kg are those appearing in the statement of the lemma. This justifies

equations (2.2.5)7-(2.2.5)%.

By the the local invariance of the local stable and unstable manifolds, (2.2.15) must also
satisfy

21 z1=0 = 0, 22lz2=0 = 0,

which implies

0320, 22, I, ;)23 = 0, ¢%,(21,0,1,¢;¢)22 = 0. (2.2.16)

Then (2.2.15), (2.2.16) and the same calculation as in (2.2.12) yields equations (2.2.5)7

and (2.2.6) with

ql(z71’¢;€)

1
(Q%l(z711¢;5) ’ QQ%2(27]1¢;€)+22/0 Dzlq%2(azlaz2717¢;6)da)a

q2(za I’ ¢;€)

1
(2Q]?2(Z,I,¢;8)+21‘/0 D22Q%1(zlaa22317¢;5)da 9 q222(z,1,¢;5)),

and with the smoothness properties stated in the lemma. The coordinate transforma-
tion T°: (z,1,$) — (z,1,¢) is constructed as a sequence of diffeomorphisms hence the

Hamiltonian nature of (2.2.5), as stated in the lemma, follows immediately. O

The significance of the linearization presented above is that it flattens out the local
dynamics around A.. In particular, A, is described by the equation z = 0, and its local
stable and unstable manifolds satisfy 2; = 0 and z; = 0, respectively. This enables us to
estimate the time certain trajectories spend in a neighborhood of A.. In the following

(2p, Iy, ¢p) will refer to the coordinates of a point p € P and T5(p) will denote the
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(dummy) p coordinate of the image of p under 7. We will also use the notation

NhUs = {p € 0Us I Ip € (11,12)}.

Lemma 2.2.3 Let us fix a number 0 < a < § and let w(t) = (z(t), I(t), #(1)), 1 € R, be
a trajectory of (2.1.1). Assume that for ¢ < &, fized 9 > 0, and §(c) = V2, w,(t) enters
Us(e) (as defined in (2.2.4)) at a point p, € 01Us(c) and leaves it at gc € O1Us(.y. Let
us also assume that the distance of the point p. from the local stable manifold Wi (Ae)
obeys the estimate

d(pe, Wo(A:)) > Ke' ™ (2.2.17)
Jor some K > 0. Then there exists 0 < &y < & such that for 0 < ¢ < & we have the

estimates

. = I| < Kpe'™e,

g — Pp.| < Kge®, (2.2.18)

where K1 and K4 are positive constants (see Fig. 2.3 for geometry).

Proof: We first let
1
5 1

o = min(eo, &, (%’) i ),
where £g, 89 > 0 are the same as in the statement of Lemma 2.2.2. Then for £ < &, we
know that w.(¢) enters Us(e) within which, according to Lemma 2.2.2, system (2.1.1) is
C"=? conjugate to system (2.2.5). The subspace z; = const., z; = 0 in the phase space

of (2.2.5) is a graph over the (I, ¢) variables, hence there exists s, € W _(A.) such that

L, =1, ¢p. =és., Tjg(pe) =17, (se), |T.:1 (pe)l > |Tz€1(36)l =0, (2.2.19)

where T is the transformation contructed in Lemma 2.2.2 (recall that 7 is the identity

map for the (I, ) coordinates). Further, since 7% is a C72 diffeomorphism, we can
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8(g)

we(®)

Figure 2.3: Geometry for Lemma 2.2.3

select L > 0 such that
IDT7Y < L (2.2.20)
in U(40) C R?x A (defined in the proof of Lemma 2.2.2). Then (2.2.17),(2.2.19)-(2.2.20),

and the Mean Value Inequality imply
- 5 5 & £ K —a
Ke'™ < |pe—se| < LIT*(pe) = T°(s:)| = LITE (p)] = |T% (pe)| > fel . (2.2.21)

We now let re = g.(1;,, ¢q,) € A. (see (2.1.5)) and, under the assumptions of the lemma,

obtain

1T5(q=)] = 1T°(ge) = T°(re)| £ Llge — re| = Lé(e). (2.2.22)

Let ?. denote the time the trajectory w.(t) spends between the points p. and ¢.. For

simplicity, we will assume that 77 (p.) > 0, which implies T% (¢.) > 0 by the invariance

1
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of the z; = 0 hyperplane under the dynamics of system (2.2.5). Then, using our normal

form (2.2.5) and eq. (2.2.6), for any ¢ < t. we can write

T5 o) = T+ [ Ot 01,2+ k) zabregun o
2 T3 (p) + [ (01 = eafT2(we(r)] — ese)TE ()

> T5 (pe) + / (1 — cz——2 —ee3)T;, (we(T))dr, (2.2.23)

where, within ﬁ(éo), c1 > 0is a lower bound for A, and c3,¢3 > 0 are upper bounds for
lg1| and |ky|, respectively. Fixing some 0 < v < 1 (to be determined in Lemma 2.2.5

based on later considerations) and setting

£ = min (o, [cl(;c ﬂ”)’:]' [”21’] ), (2.2.24)

we obtain that, for ¢ < &, ¢;v > 0 is a lower bound for the first factor in the integrand
of (2.2.23). Then, using an inverse Gronwall-inequality and substituting ¢ = ¢., we arrive
at the expression

T2€1 (qE) 2 T;I (ps)eClUtE’

from which we obtain the estimate

(qg) 1 L%y
—_— < —_— 2.
FE G BT () S o B T (2229)

where we have also used (2.2.21) and (2.2.22).

We will now estimate the change of the I coordinate while the trajectory w.(¢) passes
from p. to g.. Using egs. (2.2.5)! and (2.2.25) we have

i L%
(g — Ip.| < 8/0 k1] T (w, (r)) AT < €C4te < 8T10g T (2.2.26)

where ¢4 > 0 is an upper bound for |k;| in ﬁ(e‘o). Since
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based on (2.2.26) we can choose K; > 0 to satisfy the first inequality in (2.2.18) for
sufficiently small ¢ > 0. As for the second inequality of (2.2.18), eq. (2.2.5)% gives rise

to the estimate

te
b= 0ol < [ 1T B2 + ekl
92 1 92 L%y
20 20
< (e T3¢ Tece)le <€ cl_u(ficS + ¢c¢)log Teiza (2.2.27)

where ¢5, g > 0 are upper bounds for ||B|| and |kg| in U(&), respectively. Again, since

200 L2y
£ log 7o .
— KT — lime® =0,
e—0 ga e—0

(2.2.27) shows that for 0 < € < & we can choose K4 > 0 to satisfy the second inequality

in (2.2.18). O

In the following we will study certain Poincaré maps related to the local dynamics
around A, and the global perturbed dynamics near Wy. We will construct approxi-
mations for these maps which will turn out to be accurate enough to detect families
of N-pulse homoclinic orbits. From now on Wj (A.) and W} (A.) will denote the
connected components of W} (A.) and W} (A.), respectively, which are C” e-close to
appropriate subsets of Wo. By the normal hyperbolicity of A., each of W} (A.) and
Wi (A:) has precisely one more connected component, but hypothesis (H1) tells nothing
about the geometry of the corresponding global invariant manifolds. In section 2.3 we

will include these other components in our analysis under supplementary assumptions.

Let us first define a family of Poincaré sections for system (2.1.1) in the vicinity of
A.. We fix some (yet undetermined) @ > 0 and on every energy surface E.(h) (see
(2.1.8)) introduce the set

Ye(h) =0y U,g(s) N E.(h),
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where 6(¢) is defined as in Lemma 2.2.3. Note that for ¢ = 0 X.(h) becomes singular.
We now give conditions under which it is a (nonempty) tractable geometric object for

e > 0.

Lemma 2.2.4 Let us fiz the constants k > 0 and 0 < a < % Then there exist &y such

that for 0 < & < &y, and |h — ho| < ke (see (2.2.3)):

2) Ec(h) and Eqo(hg) are C' e'=%-close within U(9,¢) = Us, — Us(e) /2, where 6g 1s that
0 (e)/

of Lemma 2.2.2.

(22) Suppose that condition (2.2.35) below is salisfied. Then two of the connected
components of Yc(h), denoted by X3(h) and T¥(h), are C' e'~%-close to 12 =
0 Use NWe (Ag) and I = Usie)N W (Ao), respectively (see Fig. 2.4). More-
over, (X2(h),@) and (X¥(h),®) with © = dé A dI are symplectic two-manifolds
(with boundary) and embeddings of the annulus A through two C™ maps e3: A — P

and e?: A — P, respectively.

Proof: First note that Fo(ho) N Us, D Wo N Us, # 0 and the intersection is transversal,
hence for ¢ > 0 small enough E.(h) N Us, # 0 holds. We decrease & of Lemma 2.2.3 to
achieve this and select pg € Fg(ho) N U(¥,¢) and p. € E.(h)N [7(19,6), both from a fixed
submanifold I = Iy, ¢ = ¢g. Such a choice is possible since | D, Ho| (as well as | D H|) is
at least of O(e”) (i.e., strictly nonzero for ¢ > 0) in U(9,¢) (hypothesis (H1)) hence any
energy surface can locally be written in the form z; = f(z;,I,¢;¢). From hypothesis
(H1) we also have
D H(7°(Io; 1), I, $0;0) = 0,

from which an argument similar to (2.2.12) or (2.2.13) gives

D H(z,I,¢56) = My(z,I,¢;¢)(x— z°Io; p)) + mao(z, I, ;)T — Iy)
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Eg(h)
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Figure 2.4: Statement (u2) of Lemma 2.2.4
+ms(z, 1, ;) (b — ¢o) + ema(z, I, d;¢), (2.2.28)

where the matrix M; and the functions ms, ms, and my4 are C*~! in their arguments.

Now note that on the line I, ,, C U(¥,¢) connecting p. and pg (2.2.28) simplifies to
Dl-H(l',Io, ¢0; 5) = Ml(:c, Io, (]50; £)($ - :EO(I(); /.t)) + €m4(:1:, Io, ¢0; 8). (2229)

Since (for small ¢ > 0 and appropriate p.) l,, . does not intersect Us(e) /2, (2.2.29) gives

rise to the estimate

Pe? Je®
|DH||lp0,ps > lDrHHlpo,pe > C7—2-— — C]E > C7T, (2230)

where c7 > 0 is a lower bound within Uy, for the positive eigenvalue of

1
My (z, Iy, po;€) = /0 D2H (2%(Io; ) + s(z — 2°(Io; 1)), To, bo; o, €)ds,
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and cg > 0 is an upper bound for |my| in Us,. By assumption, we also have

KE > ,HOIPO - Hlpsl > |H0'P0 - Holpel - |H0|Ps - Hlpsl = ,HOIPO - HOIP:I - ‘5|H1|P=I

!Po - p€l7 (2.2.31)

pee ge

&
> C7T|p0 — psl — C9€ > C7 3

where we have used the Mean Value Theorem together with (2.2.30) and further dimin-
ished £p is necessary (co > 0 is an upper bound for [H;| in Us,). Thus, based on (2.2.31),

we have

85 1_q4
|po — pe| < 07—1981 . (2.2.32)

Similarly, we obtain that

16“1061—01
C7’l9 ’
(2.2.33)

|DH0|po _DHlpsl < IDHO,po - DHOlpsl +5|DH1|ps| < clOlPO_P-sl +c11e <

where ¢y, c11 > 0 are upper bounds within Us, for | D?H || and | D Hy|, respectively. But

(2.2.32) and (2.2.33) together prove the first statement of the lemma.

Let us now make the specific choice pg € OUs(c)j2- Then
19 o
[po = pel < 3¢ (2.2.34)

would ensure that E.(h) intersects 0Us.). Using (2.2.32), (2.2.34) is satisfied if we

choose

16k
9 > =4,/ if a=
c7

Further, the intersection of E.(h) and 31U5(€) is transversal for ¢ > 0 small enough,

(2.2.35)

since Fo(hg) and 0y Us(c) intersect transversally and E.(h) and Eo(hg) are C1 ¢!=-close.

Hence ¥.(h) = E.(h) N 0,Us.) has two connected components which are manifolds and
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are C' /e-close to II¢ and II%, respectively. In that case they are graphs over the
annulus A as claimed in statement (2:) of the lemma. Since on 0y Us(c) locally either z; is
a function of z, or vica versa, the symplectic form w of P restricts to the closed two form
@ on &1 Us(). Let us introduce the inclusions : £5(h) — P and i¥: ¥(h) — P (both the
embeddings and the inclusions of ¥3(h) and X¥%(h) do depend on the energy h). Since
both e} and e} are diffeomorphisms, i**w = @ and i$*w = @ are nondegenerate, hence

(¥2(h),@) and (2%(h),®) are symplectic manifolds (with boundary). This concludes the

proof of the lemma. O

We will be interested in following trajectories that intersect both X2(h) and L¥(h). To
this end, on appropriate open sets RZ(h) C X2(h) and R%(h) C X¥%(h) we define the local

map L and the global map G, respectively, by

L2:Ri(h) — Z(h),  GE:RY(h) — X2(h),

with
iz(p) = inf{t > 0|F7 (p) € BZ(h)}, 1&(p) = inf{t > 0| F7(p) € Ti(h)}.

We also define the auxiliary maps G” and £ through the commutative diagrams

R(n)  EL oz Rih) L myn)
“| [er | & (2.2.36)
(e2)~'(R2(R)) — A (€)1 (RY(h)) — A

Lemma 2.2.5 Let us fix the constants k > 0 and % >a>0. Then for 0 < ¢ < & and

lh—hol < K¢

1) the two dimensional maps L, G*, £, and G" are symplectic.
er YUey fog e ymp

(1) Under condition (2.2.35) the global map G* can be defined on RY(h) = L*(h) and

its conjugate map G is C* ¢'=%-close to the rotation map

R: A — A,
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(I,¢) = (1,64 Ad(I; ), (2.2.37)
where the phase shift Ad(1; p) is defined in (2.1.9).

w1) Suppose that ¢ < o < L holds. Then for any compact set S3(h) C R3(h) C 25(h
5 2 € £ £
satisfying
A(S2R), Wi (A)) > K1, (2.2.38)

with some K > 0, the map L is C' €5 -close on (e*)~1(S2(h)) to the identity map
of A. For the case a = L this statement can be strengthened to C \/e-closeness

provided 0 < K < 9.

Proof: Throughout the proof we will use the notation of the earlier lemmas without
explicit reference. We will prove (z) only for the maps G* and G” since the same argument
works for L and £!. Let us select a smooth closed curve v C R¥(h). We note that the
interior of 7 in RZ(h) (denoted as Int(y) C R%(h)) is simply connected since R%(h) is a
graph over an open subset of A. Since the flow map F(.); of (2.1.1) is a C" diffeomorhism
and XZ(h) is a local transversal to the flow, ' = G"(y) C ¥3(h) is a smooth closed
curve. Let us consider the cylinder C., € P whose generators are trajectories of (2.1.1)
connecting points of ¥ and 7’. Clearly C,, is a smooth orientable manifold with boundary

0C, =7 — 7. By the Poincaré-Cartan theorem (see, e.g., Arnold [2]) we can write

/wgdml +Idé— Hdt = /
i

v

, zodzy + Ide — Hdt. (2.2.39)

Now 7v,7" C E.(h), thus (2.2.39) and Stokes’ theorem imply

/w = /’w. (2.2.40)
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Note that we also have

[o= [ o= [o [um [ e [on [ s

Int(~v) Int(~) Int(~) Int(v') Int(~') Int(~') I'mt(~y)
Since 7y was arbitrary, (2.2.39)-(2.2.41) yield
Gho =0, (2.2.42)

i.e., G is symplectic. The fact that Gl is symplectic now follows easily since, based on

(2.2.36) and (2.2.42), we have

Gro = ()Gl et @ = (e)I'Gho = ()0 = .

Ex €%

We now proceed with the proof of (u2) of the lemma. As we noted in Lemma 2.2.4 the
energy surface F.(h) intersects d; Us(c) transversally in two components. By the nature
of the perturbed flow Fy near Wy and the continuity of E.(h), every trajectory starting
from the first component XZ(h) is guided to the second component X2(h), which proves
the first statement on the global map in (22). We now turn to the proof of the statement

on the map Q’\f.
From statement (22) of Lemma 2.2.4 we know that X2(h) and Z¥(h) are C' '~ close
to II7 and II¢, respectively. By the smooth dependence of Poincaré maps on parameters
(here ¢ and the energy k) the map
G Iy — 112,
p o= I (D),

with

T(p) = inf{t > 0| FY (p) € 1%},
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is C! e'=%-close to G for ¢ sufficiently small. Let us introduce the map G.: A — A which
is C" conjugate to G and is defined analogously to G (see (2.2.36)). As a consequence
of this, G, is C! £17%close to G. Now observe that Gg = ggo R 0gy ! (see (2.1.3)) maps
a-limit points of unperturbed homoclinic trajectories to their w-limit points, hence it
is a smooth “geometric” extension of the map G, at ¢ = 0. It follows from () of
Proposition 2.2.1 that Go = R is a C"~! smooth extension of Ge at €* = 0. Therefore, G,
and R are C"~! 2% close. Since G. and gg are C'! e'=2_close, this completes the proof

of (22).

Statement (222) does not allow a similar geometric argument because one cannot define
a C' e1=%-close conjugate map L. in the way above which would extend smoothly to
€* = 0. Instead, we will make use of the normal form of Lemma 2.2.2 and the estimates
of Lemma 2.2.3. First note that the initial conditions of trajectories starting from §2(h)
satisfy the distance condition (2.2.17), hence the C° ¢®-closeness of L'g to the identity
follows immediately from Lemma 2.2.2. Therefore, using the notation of that lemma, we

only have to show that for some constant X > 0

I _
”a( e ¢Qa:) _ Id2|| < I(\/E—, for o = %, (2.2-43)

a(IPs 9 QSP: )

and

04y, $q.) 2 2 1
———-1Id K =< = 2.
|]a(lps’¢pe) of| < Ke3, for FSa<g, (2.2.44)

where Id; € IR?*? is the identity matrix. Let C. > 0 be a Lipshitz constant in 7°(Us))
for the right hand side of system (2.2.5). We now make a little digression on the choice
of C, because later we will need to choose it as small as possible. Let V.:IR? x 4 — RR*
denote the right hand side of (2.2.5), and consider two points wo, w}, € T¢(Us(e))- Using

(2.2.5) we can write

[Ve(wo) = Ve(wp)| <
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|A|w020 - Alw(’)z({.)l + €|kllwo - kflwé' + lZgBleZO - (Zé)TBIw{)Zé’ + €Ik¢|w0 - k¢|w6|
< (Alwo = Alwg)zol + [Alws (20 = 20)] + €C1lwo — wh| + (24 Bluwo — (2)7 Blug )20l

+1(20)" Bluo (20 = 20)] + 1(20)T (Bluo = Blug )2] + £Calwo — wy, (2.2.45)

where C1,Cy > 0 are Lipshitz-constant for kr and kg, respectively, within 0(50). In the
same domain, let C* > 0 an upper bound on |[Ay|, Ng > 0 an upper bound on || B||,
and Cp,Cp > 0 e-independent Lipschitz-constants for the maps A:R? x A — R?*2? and

B:R? x A — R**2. Then (2.2.45) implies the inequality
[Ve(wo) = Ve(wg)| < (CaLde® + C* + eCy + 2092 N + 9%e%°Cp)|wo — wh|.  (2.2.46)

If wo and wg are taken from a neighborhood of a trajectory we(¢) of Lemma 2.2.3
within Us(,), then by (2.2.18) there exists Iy € (Iy,I3) such that in this neighorhood, for

appropriate ¢;2 > 0, A(]) obeys the upper estimate
/\(I) < /\(Io) + 61281—a,
with c12 > 0 being a bound on |dA/dI|. But this, together with (2.2.6), shows that

J
C* < AIo) + c126' ™ + c2pe” +ecs, (2.2.47)

where c2,¢3 > 0 were defined in relation with (2.2.23). Then (2.2.6), (2.2.46), and
(2.2.47) imply
[Ve(wo) — Ve(wp)| < Ce|wo — wy, (2.2.48)

with
)
Ce = (CALIE® + ML) + 126 ™ + sz&a +éecz3+eCp +209¢“Ng + 19282“03). (2.2.49)
Decreasing &y, if necessary, (2.2.49) yields the choice

C. < /\(IO) + ¢13¢%. (2250)
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A similar argument reveals that the constant ¢; of Lemma 2.2.3 can be chosen such that
c1 > /\(Io) — c14€°, (2251)

with an appropriate constant ¢14 > 0.

We now continue the proof of (12) of the lemma. For the deviation of two trajectories
we(t) and wi(t) of (2.2.6) (satisfying the conditions of Lemma 2.2.3) we have the usual

Gronwall-estimate
[1(t) = IZ(1)] < |we(t) = wl(t)] < |wo — wple®, (2.2.52)

where we(0) = wo # wi(0) = wy, and I(¢) and I’() denote the I coordinate of the
corresponding solutions. Dividing both sides of (2.2.52) by |wg — w)| and taking the

limit as w}§j — wo we obtain that
| Doy I (1)] < 2552, (2.2.53)

Since estimates similar to (2.2.53) hold for the time evolution of the other three coordi-

nates of w.(¢) and w’(t), we can also write
| Dawg 216 (8)], | Duy 226 ()], | Duny be ()] < 2€°1. (2.2.54)
Then (2.52) and (2.53) give rise to the inequality
| Dupwe(2)]| < 4€, (2.54)

where, as before, ||.|| denotes the Euclidian matrix norm.

Consider now the I coordinate of the solution w.() of (2.2.5) given by

i
I(t) = I, + €/k[|we(7)dT, (2.2.55)
0
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the differentiation of which with respect to I,,, yields

dL(1)
di,,

t
—14¢ / (Dktlu(ry, Di,, we(r))dr. (2.2.56)
0

Since wg = T°(p.), (2.2.54) and (2.2.56) lead to the estimate

i
dI, 4
f;Tm -1 <e / 4ei5ePeTdr = g—éﬁecst, (2.2.57)
Pe 0 &€

where ¢15 > 0 is an upper bound for |Dk;| on U(&). Substituting ¢ = ¢. and using

(2.2.25) gives

qu dIs(te) 4eqs L?9 <= (1_C_€(ﬂl)
—— —=|—F=-1<ec—= av < K e1v 2.
G, 1=, T s ()™ < e (2.2.58)
with appropriate K; > 0. Starting from (2.2.55) one obtains the same way that
dl —Cell-2a)
|5 < K75, (2.2.59)
¢Ps
Also, applying the same argument to
¢
¢€(t) = ¢pe + /[ZTB(Z7 I, ¢;£)Z + 8k¢(2’,], ¢; 5)]'w;(7)d7-7
0
one arrives at the expressions
d d o= Cell=2a) _Ce(1=2a)
|00 1), Lone| ¢ prpelo=SEGFH | g, (-S4 (2.2.60)
dép, dr,,

with K3, K5 > 0. If a = 1/2 then (2.2.58), (2.2.59), and (2.2.60) imply (2.2.43) for

K = \/2K} + K2 + K3. To show (2.2.44) we let

e < min((A(IO)) . (2ody=) (2.2.61)

9613 9614

in which case, using the assumption a > Z and (2.2.50)-(2.2.51), we can write

Ce(1 - 2a) (Alo) + c136®)(1 — 2a) 51-2al 511 1
=5 " = (1= 222y > _ZZy= =
“ v “ (A1o) — c146%)v >a(l 4 « 1/) 2 a(l 42v 3%

(2.2.62)
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provided we select
15

V—1—6'.

Thus for ¢ smaller than the minimum of &, the bound of (2.2.24) with v = 15/16 and
the bound of (2.2.61), (2.2.58)-(2.2.62) prove the estimate (2.2.44) with the same choice

of K as for a = 1/2. a

2.3 The existence of N-pulse homoclinic orbits: the
energy-phase method

With the estimates and construction of the previous section at hand we now formulate
our main result. First, for any n € Zt we define the n-th order energy-difference function

A"H: A — R as

A"H(I, ¢3p) = H, ¢ p) — H(I, ¢ — nAG(I; p); 1) (2.3.1)

Hy(Z%(1; p), I, 511, 0) — Hy(2%(I; 1), I, — nAG(I; p); 1, 0),

and its zero set
Vi={(,¢)eA| AH(I,¢u)=0}. (23:2)
Note that A™H contains energy-type information from the perturbed problem and phase-

type information from the unperturbed problem.

We will be particularly interested in the transverse zeros of A"H which are contained in
the set

2y ={(1,¢) € VI | DA™H(I, §; ) # (0,0) }, (23.3)

where D denotes the gradient operator w.r.t. the (I, ¢) variables. We will also need the

—nA¢(I; p) translate of these sets in the ¢ coordinate direction, so we define

VE=RTVVE),  Z°=RTMZD), (2.3.4)
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where the map R is defined in Lemma 2.2.5. Note that all the sets defined in (2.3.2)-

(2.3.4) depend on the parameter px.

In the following we will establish a “graphical” criterion to predict N-pulse homoclinic
orbits to the manifold .4.. The criterion will require the knowledge of the orbit structure
of the (one-degree-of-freedom) reduced Hamiltonian H (defined in (2.2.2)) on (A4, ). In
particular, we will need to look for internal orbits of H (see section 2.1 for definition)
which intersect Z% or Z” transversally. Under certain conditions such orbits will perturb
to nearby internal orbits of .A. which will be the w- or a-limit sets of n-pulse homoclinic
orbits to A.. These orbits are homoclinic to the manifold A, but they are not necessarily
asymptotic to the same invariant set within .4, in positive and negative time. To describe

them accurately, for any internal orbit ¥ C A of H we introduce the pulse number
NAip)=min{ n>21|Vfny=0,k=1,..,n-1, Z"my }, (2.3.5)

where the symbol M refers to nonempty transversal intersection. We then have the

following main result.

Theorem 2.3.1 Assume that hypotheses (H1) and (H2b) hold. Suppose that for an

internal orbit v5 C A of the reduced Hamiltonian H

(A1) N = N(yq;5p) < o0,

(A2) Letb_ € Z¥Nvy and by = RN (b_). Assume that the orbit & C A of the reduced

Hamiltonian H which contains by is an internal orbit with ZY M yd (see Fig. 2.5).

(A3) If D.Hy points outwards on Wy, we assume that

hy =Hlvg < HIRF(75), k=1,.,N—1.
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Figure 2.5: Assumption (A2) of Theorem 2.3.1

If D, Hy points inwards on Wy, we assume that
he =Hlyg > HIR v5), k=1,.,N-1.
Then there ezists eg > 0 such that for 0 < € < ¢q

() Ae has an N -pulse homoclinic orbit yY which is positively asymptotic to an internal
orbit v} C A. and negatively asymptotic to an internal orbit Yo C A.. Moreover,
97 () and v§ are C™ e-close, g7'(vF) and 4§ are C° e-close. If v& is periodic,

this latter statement can be strengthened to “C™ ¢-close.”

w) y lies in the intersection of W*(y7) and W*(v¥) which is transversal within the
& 7€ 75

energy surface E.(h) with h = H|y; = H|y7.
(u2) Qutside a neighborhood of Ac yN is C \/z-close to the set
YN = U1]v=l yi7

where y* C Wy is an unperturbed orbit of (2.1.1)c=0 asympiotic to the poinis gg o
Ri=L(b-) and go o R¥(b_) in negative and positive time, respectively, with R = Id

(see F'ig. 2.6 for a sketch of the geometry for N = 3).
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Proof: First, we fix a = %- Throughout the proof, when we refer to the results of section

2.2, this value of a will be used. We also select some 9 > 90 = #* (see (2.2.35)) to
S €ﬁ

ensure the applicability of (x2) of Lemma 2.2.4. Finally, we introduce the symbol "~

for C* eP-closeness of sets and maps.
Let us start by letting hy = H|y5 . Note that by the compactness of A and the smooth-
ness of H (see (2.2.2)), there exists x > 0 such that
_ K
Ihll< 5. (2.3.6)

Our second observation is that, as it follows immediately from the definition of Z%,
75 @ ZY implies

R¥(e)nad =0, k=1,.,N-1, R¥(g)Mvd, Hhd=hy. (23.7)
Since 74 is an internal orbit, for small ¢, A, will contain an internal orbit 4 of H. such

that
A G B (2.3.8)
Let

h=H3T = Hehl = ho+ chy + O(?), (2.3.9)

with ho defined in (2.2.3). Since y¢ is also an internal orbit, DH|yS # 0 (if ¢ is a
homoclinic orbit in A, this statement is not true on its closure). If g is a periodic orbit
(i.e., a member of a family of periodic orbits of ), by the implicit function theorem,

there exists a periodic internal orbit v} such that g7'(vF) ¥ 7 and
Hlvf = Heyt = b (2.3.10)

If ¢ is a homoclinic orbit, it perturbs to a nearby homoclinic orbit, but that does not

necessarily have energy h. However, since there are internal periodic orbits arbitrarily
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C L ] 7

Figure 2.6: An example of the statement (2:2) of Theorem 2.3.1 for N = 3
close to ¢, we can guarantee the following: there exists an internal orbit v+ such that
- l,e
9" (1) % (2.3.11)

inside a fized neighborhood of ZY and (2.3.10) still holds. Then, for ¢ small enough,

(2.3.7), (2.3.8), and (2.3.11) imply
RMo' ()N () =0, k=1, N =1, RV D7 (). (23.12)
Furthermore, we see from (2.3.6), (2.3.9), and (2.3.10) that for small ¢ > 0
1h = holl = [LH |7 = holl = [|[H |77 = hol| = ¢llhg + O(e)]| < e, (2.3.13)

which will make it possible to apply Lemmas 2. and 2.2.5.
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By Proposition 2.2.1 (see also Haller and Wiggins [28]) 7o has a C™~! local unstable
manifold W (v7) C W} (Ae), which consists of a subfamily of fibers f (i.e., a smooth
subset of the family F7) with their basepoints contained in 4. In the usual way W (v.)
can be extended to an injectively immersed global manifold W*(y.) C E.(h). Now by
(2.3.13) and (22) of Lemma 2.2.4, for small ¢ > 0, ¥%(h) is a two dimensional graph
over A. Since it is also a local transversal to the flow in E.(h), it will be intersected
transversally (within E.(h)) by W (y7) in a curve ¢ ¢ Y%(h) (the reader can use

Fig. 2.7 to follow this and later steps in our construction). By Proposition 2.2.1
— w\— 1/ _ —
P = (€)HCM) W g (D). (2.3.14)

By () of Lemma 2.2.5, the global map G? map is defined on cM. Let us define

¢ = GQ(C,(})) and note that from (2.2.36) and (2.3.14) we have (ej)_l(Cgl)) = Ghp7).

Similarly, W§ (vZ) intersects X3(h) in a curve Dy C X2(h). We define pF = (e2)~1(D;)

and conclude from Proposition 2.2.1 that
pr " T (). (2.3.15)
Then (2.3.7) and (2.3.14)-(2.3.15) imply
RE(pYNpY =0, k=1,..N-1, RN(p7)mp?. (2.3.16)
For future reference we now introduce the tracking map ’Z;’fN: A — Aby

T'v=Glo(LioGl)o...o(LloGP), (2:3.17)
N-1

which (if well-defined) will be used to track the graph-projections of subsequent inter-

sections of W*(-y; ) with the manifold X3(h).
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Let us suppose that N = 1. Then for small ¢ > 0 (2.3.16), (2.3.17), and (2) — (222) of
Lemma 2.2.5 imply
Toalp2)Mpt, (2:3.18)

which, by the commutative diagrams of (2.2.36) proves that ¢ @D, within Li(h) (elis

a diffeomorphism). But this in turn implies W*(y) @ W*(y7) within F.(k), as claimed
in (22) of the lemma. Also, (z22) follows from the size of Us(e) and the fact that gooRogy!

maps a-limit points of unperturbed homoclinic trajectories to their w-limit points.

NN

Figure 2.7: The main construction in the proof of Theorem 2.3.1

Let us now suppose that N = 2. From what we have discussed up till now it follows

that in this case, for small ¢, Cgl) ND; = 0, hence the trajectories of (2.1.1) enter Us(e)
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without intersecting W _(A.). Using (2.2.20) we know that for small ¢ Te(Us(e)) is
contained in a tubular neighborhood of the manifold z = 0 in the phase space of (2.2.5)
which is a subset of /(&). This means that the above trajectories missing D, enter
a neighborhood of A, in which their behavior is described by the normal form (2.2.5).
Consequently, in compliance with the normal hyperbolicity of A., they will make a near-
saddle type passage and leave a neighorhood of .A,. We want them to exit along W (A.)
(see the discussion after Lemma 2.2.3) which we know about from hypothesis (H1). In
particular, let us suppose that for ¢ = 0 the z;,22 > 0 “quadrant” of the phase space
of (2.2.5) contains trajectories which lie inside the homoclinic manifold Wy. Then, for
the local analysis of the perturbed system, we would like the incoming trajectories to
have positive z; and z; coordinates so that when they leave a neighborhood of A, they
would traverse in a neighborhood of Wy. At this point we only know that the trajectories
starting from Cgl) miss D, and enter with positive z; coordinate. It is this point where
we use assumption (A3). Note that, based on Proposition 2.2.1, W (A:) N 01Us(.) is
foliated by curves which are the intersections of the local stable manifolds of orbits in
Ae with 01 Us(y. As I3, W (A)N o Us(c) is given by a graph gw.: A — P over A, too,
and by Proposition 2.2.1 the graph-projections of its foliating curves are C! ,/¢-close in
A to the graph-projections of the corresponding curves of A.. This implies that near
Cgl) V’Vﬁm(Ae) N 01Us(.) is locally foliated by curves whose graph-projections on A are C!
Ve-close in A to level curves of g*H. which intersect pgl) . By assumption (A1), for small
g, pf;l) is intersected by level curves which have energies higher than A provided D, H
points outward on W} (A.). This means that ¢V (and the trajectories through it) lie in
the “inner side” of the hypersurface W2 (A.). More precisely, their image under T° lies

in the 21,23 > 0 region of the phase space of (2.2.5). One reaches a similar conclusion

under assumption (A3) in the case when D, Hj is assumed to point outside on Wj.
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Knowing the basic character of passage near A, of the trajectories starting from cﬁl),
we expect to be able to track them via the local map L*. By Lemma 2.2.5, we have a
good approximation for the conjugate map L provided the distance condition (2.2.38)
is satisfied for an appropriate 0 < K < 9. Since ¢l(7g ) is compact and, by assumption
(A1),it is separated from Z%, assumption (A3) implies the existence of a positive number
KM > 0 such that

ke = HIR(vg)Il > 2. (2.3.19)

Based on the above discussion on the foliation of W _(.A.) N &; Us(ey and on the C' /g
closeness of the objects involved, we conclude from (2.3.9) and (2.3.19) that if p, € ¢

and p,, € W;,_(A.) are two points with the same (I, ¢) coordinates, then

|k = [ho + eHIW (pw) + O(e/E)]]|

Il

1 H p. — Hlp,||

ko + ehg + O(ev/E) = [ho + eHlpo + O(ev/E)]|

ellhg = Hlpo + O(VE)|| > KW, (2.3.20)

where p% € R(75) is a point y/z-close to W."1(p,). For an appropriate cig > 0 let
c¢169y/€ be an upper bound for |DH]|| in Us(e) (see (2.2.29) and compare (2.2.30)). Then

the Mean Value Theorem and (2.3.20) imply
ek < | H p. = Hlp, || < c169vel|pe = pull;

which yields
K
IPe = Pull 2 — Ve (2.3.21)
€16

Then, setting SZ(h) = cl(Cgl)), the conditions of () of Lemma 2.2.5 for & = % are

satisfied provided we choose

(1 ((1)
K <9, = 9> 91 = max(9(©), K
c1e? C16

).

0<
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So, by (222) of Lemma 2.2.5, for ¢ > 0 sufficiently small, the trajectories starting from
¢t will intersect Y%(h) in a curve c? = Lg(Cgl)). Moreover, by (22) of Lemma 2.2.5

they will later reintersect ¥5(h) in a curve CS(Q) with

CP = ahc®)=GloLloglcM). (2.3.22)
Also, Lemma 2.2.5, the commutative diagrams of (2.2.36), (2.3.17), and (2.3.22) show
that

T(e7) 'R A7), (2:3.23)
Then, as in the case of N =1, (2.3.16), (2.3.15) and (2.3.23) imply
72’,12(/’; ympf.

From this, by the same argument as in the case N = 1, we conclude statements (z) — (222)

of the theorem for N = 2 and for some ¢¢ bound on «.

On can now repeat the above construction for any N > 2. Assumption (A3) ensures a
repeated “nice” passage of the orbits of W*(7.) near A.. At the j-th passage (j < N)
we find an appropriate constant K() > KU1 > 0 (see (2.3.20)) to describe the energy-
difference between orbits in W*(y;") and nearby orbits of W*(A,). This provides us with
an estimate of the form (2.3.21) for the local distance of the two manifolds. To follow
the passage via the local map Lg, we select the size of Uy(.) by setting

K@)

C15

9 = 99 = max(90~1), ).
We define CU) = £(c{), and apply the global map G* to CYtY). We define the curve
cith = alcy),
which is the j + I-st intersection (in forward time) of W*(y.) with £2(h). Note that by

Lemma 2.2.5
- S\ — o 1,\/e ; —
Tha(p) = ()7 (€YY 'WE R (D), (2.3.24)
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If j + 1= N then (2.3.16), (2.3.15), and (2.3.24) imply

which proves the theorem the same way as in the case N = 2. If j + 1 < N we repeat
the above construction recursively until we reach N. In every step we possibly need to
decrease the current bound sgj) > 0 on ¢ to be able to proceed further. Since N is finite,

we can finally select g9 = 88N) > 0 so that the statements of the theorem hold. o

An immediate consequence of Theorem 2.3.1 is the following;:

Theorem 2.3.2 Let us assume that hypotheses (H1) and (H2b) are satisfied and as-
sumptions (A1)-(A3) of Theorem 2.3.1 hold. Let us further assume that v& = v5 of

Theorem 2.3.1 is a periodic orbit in A. Then

(2) The statements of Theorem 2.3.1 hold with v. = v} = v7 and there exists one more
N -pulse transverse homoclinic orbit & with properties similar to those of gV (but

with corresponding “base-points” l~)+ # by and b #b_).

() System (2.1.1) has Smale-horseshoes near v, on energy surfaces sufficiently close

to Ec(h).

Proof: Statement (2) follows from the fact that the oriented self-intersection number
of a curve homeomorphic to the circle is 0, hence if Z?N(p;) and p = p intersect
transversally, then they intersect in at least two points. Since we now have a periodic
orbit v with transverse homoclinic orbits, statement (22) follows from the Smale-Birkhoff

homoclinic theorem (see Smale [66]) and the structural stability of horseshoes. a

The statement of Theorem 2.3.2 is sketched in Fig. 2.8 for the case N = 3. We now

supplement Theorems 2.3.1 and 2.3.2 with the following remarks.
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Figure 2.8: The statement of Theorem 2.3.2 for N = 3

Remark 2.3.1 Generically, 75 and ZV will intersect transversally in more than one
points and each intersection point will give rise to a transverse N-pulse orbit which is

negatively asymptotic to v, .

Remark 2.3.2 In the case N =1 Theorem 2.3.1 gives a result similar to that of Haller
and Wiggins [28]. In that reference, however, we obtained better smoothness results for
the distance of y! and the set Y!. The reason is that to detect simple (i.e., one-pulse)
homoclinic orbits to the manifold .A., one does not have to deal with the complications
related to the long-time passage near A. (see the definition of the tracking map in (2.3.17)

for N = 1). Consequently, one can select a fixed tubular neigborhood Us, around A,
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to work with. This results in a finite time of flight (i.e., bounded by a constant which
is independent of ¢) for the trajectories travelling from C,(Ll) to Cs(l). Then, by simple
Gronwall-estimates (compare Lemma 2.2.5), R is C” ¢-close to the conjugate global map

Gk, and the above analysis is essentially equivalent to the Melnikov-type analysis of [28].

Remark 2.3.3 Statement (22) of Theorem 2.3.1 has an asymmetry: it does not always
guarantee the C” ¢ closeness of g7 !(y+) and 74 This is the consequence of the fact that
we based our construction on 75 and chose h = H|y to be the “reference-energy.” As we
pointed out in the proof, if 73' is a homoclinic internal orbit, it will give rise to a perturbed
orbit 7} such that g7'(5F) and 7 are C” e-close, but in general & = H|j+ # h, hence
4t # 4t. However, by the same argument, one can guarantee that there exists an orbit
¥: with gZ71(57) C° e-close to 74, such that 7 and 4% are connected by an N-pulse
orbit §V (hence H |57 = h). Also, g is easily seen to obey statement (222) of Theorem

2.3.1. This resolves the asymmetry mentioned above.

Remark 2.3.4 Regarding statement (222) of Theorem 2.3.1, notice that the C1 /¢ close-
ness of trajectories may not be optimal for the purposes of numerical simulation. Re-
peating the proof of Theorem 2.3.1 with the choice a = -g—, one can obtain C° €5 closeness
in the I coordinates. This may be particularly important in relation with the upcoming
results of section 2.4 where one wants to keep the change of the I coordinate during one
pulse much less in order than O(y/¢). The lesser this change is the higher bound on ¢

we can choose, to still be able to predict and detect homoclinic orbits with a fixed pulse

number.

Remark 2.3.5 As in Haller and Wiggins [28], we point out that if 45 and 73’ are

distinct periodic orbits of the reduced Hamiltonian, then transverse N-pulse heteroclinic
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connections between their perturbed counterparts can be destroyed by arbitrarily small
further perturbation. However, since both of them are embedded in families of periodic
orbits, and subsets of these families intersect Z~ and Zﬁf , respectively, transversally, the
family of heteroclinic connections between the two sets of periodic orbits is stable. If v;
and 77 are identical periodic solutions (as in the set-up of Theorem 2.3.2), sufficiently

small perturbation will preserve the homoclinic connection between them.

Theorem 2.3.1 contains the basic construction of N-pulse homoclinic orbits to the
manifold A,. For brevity, conditions (A1)-(A3) assume the most simple situation pos-
sible, but we now give modifications of the basic results for two special cases arising in
applications. The first one weakens assumptions (A2) and (A3) in order to detect orbits
homoclinic to resonant internal orbits. These internal orbits are invariant under some
iterate of the rotation map R and play a crucial role in the identification of regions in
A, containing orbits with the same pulse number. The second modification of Theorem
2.3.1 assumes a more detailed knowledge of the global geometry of system (2.1.1) to-
gether with a symmetry. Again, for the sake of simple exposition, we will not deal with
the most general case. However, we are confident that using the ideas of Theorem 2.3.1
the reader can easily “customize” the theorems of the remainder of this section to the

specific needs of a given problem.

Let us suppose that for an internal orbit v of H R™(y) = 7 holds with some m > 1.
This implies that v has a nontransversal intersection with V™. If, in addition, V. = Z™
and

y=Viny =0, j=1,..,m-1

hold then by (2.3.5) we will clearly have N(y;u) = oo, hence Theorem 2.3.1 is not

applicable to 7. However, with a slight modification one can still predict the existence
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of N-pulse homoclinic orbits asymptotic to v without guaranteeing their transversality.
Internal orbits tangent to Z} and Z* arise frequently in the applications we know of,
and they separate regions in A with orbits having the same (finite) pulse numbers (see,

e.g., chapter 4).
We now introduce the resonant pulse number

Ne(vip)=min{ n>1|VFny=0, k=1,...,n -1, R"(y)=7}. (2.3.25)

To make our previous discussion more precise, we will call an internal orbit v resonant

if Nr(70, ) < 00 holds.

Theorem 2.3.3 Assume that hypotheses (H1) and (H2b) hold. Suppose further that for

an internal orbit v9 C A of the reduced Hamiltonian H

(A1) N = Ng(vo; ) < 00 (70 is resonant),

(A2) Assumption (A3) of Theorem 2.3.1 holds with vo = 74 .
Then there exists eg > 0 such that for 0 < ¢ < &g

(1) Ae has two N -pulse homoclinic orbits, y¥ and §, which are asymptotic in positive
and negative time to an internal orbit 4. C A.. The orbits vo and g-'(v.) are C”

e-close in A.

(1) There ezists two points b_,b_ € Yo such that outside a neighborhood of A. yY (#V)

is Ct \/e-close to the set

YN = U]'\-[_-lyi7 (?N = Ui]\ilgiv)

13

where y' C Wy (§° C Wo) is an unperturbed orbit of (2.1.1)e=0 asymptotic to the
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points goo R*™1(b-) (goo R*"1(b-)) and go o R'(b_) (go 0o Ri(b_)) in negative and

positive time, respectively. (R° = Id).

Proof: The only significant difference compared to the proof of Theorem 2.3.1 that

instead of (2.3.7) we now have the relations
RE(y) N0 =0, k=1,..,N-1, R"(70) = 70. (2.3.26)
As in the proof of Theorem 2.3.3, (2.3.26) leads to (cf. (2.3.16) and (2.3.17))

—\ L/e
The(p) W o, (2.3.27)

€

with
pz = ()T (Wie(v) NEE(R)),  pF = (€))7 (Wie(7:) N Z2(h)).

Now recall that according to (z) of Lemma 2.2.5, G* and L} preserve the symplectic
form d¢ A dI, thus the tracking map 7;”‘1\, of (2.3.17) is area preserving for any N > 1.
Consequently, if p is a closed curve, then, by (2.3.27), 7;”‘N(p;) must intersect pt in
at least two points. For the same reason, if pJ is not a closed curve (it originates from
an internal orbit 79 homoclinic to pg € A), ¢l (7;hN(p€')) and cl(pt) must intersect in at
least two points. In this case, one point in the intersection may give rise to an N-pulse
orbit #¥ which is homoclinic to a fixed point p, € A, with g1 (p:) e-close to pg in A.
Then the statement of the theorem follows the same way as in the proof of Theorem

2.3.1. O

Our second modification of Theorem 2.3.1 deals with the case when there is one more
homoclinic manifold to 4g to start with. We will concentrate on the case when both ho-
moclinic manifolds admit the same phase shift. This is satisfied in all the applications we

know of involving two homoclinic manifolds, and it can be explained by the presence of
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a discrete symmetry in these problems. In Theorem 2.3.4 we will give conditions for the
existence of jumping N -pulse homoclinic orbits to the manifold 4,.. These orbits make
N departures and returns, as the N-pulse homoclinic orbits of Theorem 2.3.1, but they
also keep changing the unperturbed homoclinic manifold which they temporarily follow.
This kind of behavior can be best described in terms of symbol sequences. To make
the exposition simpler, we will also assume that D, Hgy points inwards on both homo-
clinic manifolds. One can remove this restriction to obtain somewhat more complicated

statements with the same proof.
We first change our initial hypothesis (H1) to
(H1") There exist Iy, I € R, Iy < I such that for any (1, p) € [I1, ] x W (2.1.1)?_, has
a hyperbolic fixed point Zo(I; ) connected to itself by two homoclinic trajectories

ght(t,I; p) and 2"~ (t,I; ). Moreover, D, Hy points inwards on both homoclinic

trajectories.

As in section 2.1, (H1’) implies the existence of two homoclinic manifolds W and W
(see Fig. 2.9), which contain solutions yg(¢,1,do; ) and Yo (2,1, o3 ) of (2.1.1).=0
(compare (2.1.4) and substitute &+ (¢, I; ) and 2"~ (¢, I; u), respectively). As we indi-

cated above, our next major assumption is

(H3) For all I € [I1,I3]

+oo +00
AP(I;p) = / D[Ho(mh+(t,I;p),I;p) dt = / DrHo(z"~(t,1; w), I; i) dt.
We then have the following result on jumping N-pulse homoclinic orbits.

Theorem 2.3.4 Assume that hypotheses (H1’),(H2b), and (H3) hold. Suppose that for

an internal orbit v5 C A of the reduced Hamiltonian H
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Sl

Figure 2.9: Hypothesis (H1)
(A1) N = N(3q'5m) < o0,
(A2) Assumption (A2) of Theorem 2.3.1 holds,
(A3) Let xj31 = sign(hy — HIR (g )x;, 7 = 1,.s N, with x; € {—=1,41} to be
specified below.

Then there exists g > 0 such that for 0 < ¢ < gq:

() Ac has two N -pulse homoclinic orbit y™+ and yN¥— which are positively asymptotic to
an internal orbit v C A. and negatively asymptotic to an internal orbit v= C A..
Moreover, g7'(vF) and v5 are C™ e-close, g7'(vF) and v are C° e-close. If v

is periodic, this latter statement can be strengthened to “C" ¢-close.”
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w) yNt and yN~ lie in the intersection of W*(y7) and W*(y}) which is transversal
yE & 75 75

within the energy surface E.(h) with h = H|y} = H|v.

(222) Let us set x1 = +1. Then outside a neighborhood of A, yNt is C' \/e-close to the

set
Y¥* = Ul (), (2.3.28)
where
y'(xi) C { ggt Z,(;‘ - J_r} (2.3.29)

is an unperturbed orbit of (2.1.1).=¢ asymptotic to the points go(R*~1(b-)) and
go(Ri(b-)) in negative and positive time, respectively (R° = Id). Setting x1 = —1
we obtain a similar statement on the relation of the orbit yN= to the set YN~

(defined the same way as in (2.3.28)-(2.3.29)).

Proof: The proof is the application of the proof of Theorem 2.3.1 to the perturbation of
Wd" and Wy, individually. This time, however, we do not have to worry about keeping
the trajectories passing near 4. “on the same side” (see the discussion of the N = 2
case in the proof of Theorem 2.3.1). We only keep track continuously where the passing
trajectories end up: if after the j-th local passage they remain near the homoclinic
manifold they followed during the j-th pulse, we set the sign of x;41 to the sign of x;.
If not, we reverse the sign of x;4; compared to x;. In view of this the statements of the

theorem follow. O

An example of the possible cases covered by Theorem 2.3.4 is sketched in Fig. 2.10
for N = 3 and with the “jump sequence” x2 = —x1, and x3 = —x2 (the intersection
of the jumping homoclinic orbits with the slow manifold is of course an artifact of the

projection from P).



37

N

ZVEVEVEEE |

Figure 2.10: An example of the statement of Theorem 2.3.4 for N = 3 and “jump
sequence” x2 = —X1, X3 = —X2

2.4 An application: N-pulse orbits homoclinic to reso-
nance bands

In this section, as we indicated in the introduction, we will examine the existence of
N-pulse homoclinic orbits in the case covered by hypothesis (H2a). Namely, we will
assume the presence of an isolated circle of equilibria within the unperturbed normally
hyperbolic manifold Ag and focus on the consequences of the break-up of this circle
under perturbation. The key idea in studying this is blowing up the circle into a “thin”
manifold of equilibria or resonance band (see Kovaci¢c and Wiggins [44]). This resonance
band appears as a two dimensional manifold of equilibria for a system which we will

call the standard form (see eqs. (2.4.1)). Consequently, the analysis of N-pulse orbits
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homoclinic to resonance bands simplifies to the application of the more general results

of section 2.3.

Our program will be to apply the energy-phase method of section 2.2 to the standard
form and then transform the results back to system (2.1.1). For clarity, we will put a hat
on the quantities pertaining to the standard form to distinguish them from quantities
directly related to our original system (2.1.1). For a detailed derivation of the equations
used in this section and for more geometry the reader is referred to [28]. Throughout
this section the Hamiltonian function H of system (2.1.1) will be assumed C"*! smooth

with r» > 5.
First, we restrict the variable I to an ¢-dependent neighborhood of the resonant value
I = I, by letting

I=14+n/¢, n€[=n0,m0)

with 79 > 0 to be determined later. In this “slice” of the phase space P, we can Taylor-

expand the right-hand-side of eq. (2.1.1) to obtain the standard form

¢ = JoDgHo(z,I; ) + VeJa Do DrHo(z, I; ) + O(VZ2),
n o= —\/ng)Hl(wajragb;,u’O)-}'O(\/Ez)a (241)

¢ = DrHo(z,I;p)+eD Ho(z, I; p)n + O(VE).

For £ > 0 system (2.4.1) is Hamiltonian on the space (P,&) with

~

P = ]R'2 X [_7703 770] X Sla

@ = dryAdzy+ —lgd(b/\ dn,

7

and with the corresponding Hamiltonian

ﬁ(l'ﬂ?aﬁb?#, \/8_) = H($7IT + \/Ena ¢;,u78) = HO(:Z:7I7';#) + \/Ef{l(l" 7, ¢,,LL, \/E)' (2'42)
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Note that in (2.4.2) the function
- 1
Hy(z,m, 83 p,€) = DiHo(w, I p)n + Vel DiHo(z, I w)n® + H(z, I, ¢ 1, 0)] + O(VE")

is only C™~! smooth, and accordingly, the right-hand-side of (2.4.1) is only C™~2. For

€ > 0 we can define the energy surface with energy h for the standard form (2.4.1) as
E\/E(h) ={(z,n,¢) € 75' f{(wv 7, 5 1 ‘/g) = h}.
System (2.4.1) can be considered as an O(4/¢) perturbation of the system

& = JyDyHo(z,I;p),

7 = 0, (2.4.3)

Il

é DrHo(z, I; i),

which is not Hamiltonian but integrable with the two independent integrals Ho(z, I,; )

and 7. Therefore, for a given & it makes sense to define a (quasi) energy surface for

system (2.4.3) in the form
Eo(h) = {(2,7,8) € PHo(w, I p) = 1 (2,1, 31, 0) = h}.

This hypersurface relates the same way to /e(h) as Eg(h) to E(h) in the previous
sections. One also finds that Eo(ho) D Ag U Wo (see (2.4.4) below), in analogy with the

previous sections.

Based on hypothesis (H1), for system (2.4.3) (or (2.4.1).—g) we again have a normally

hyperbolic invariant two-manifold of equilibria given by
Ao = {(e,m,¢) € P | & = 2°(L;; ), 1 € [~70, m0), 6 € 5"}, (2.4.4)
which is a graph over the annulus

A = [_7]0, 770] X Sl.
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Furthermore, 4y has a three dimensional homoclinic manifold Wy, which contains tra-

jectories of the form
ah(t, I; p)
Go(t,m, dos p) = n : (2.4.5)
o+ Jo DrHo(z" (7, I; ), Ir; p) dr

Again, for ¢ > 0 system (2.4.1) has a C""2 ,/e-close hyperbolic manifold A, given by

the embedding
§e: A— 75,
(1, @) = (8°(1, &5 1), 1, 8) = (2°(Lr; ) + VER' (1, 85 1, VE), 1, ).

Also, (As, E:LZJ) is a C"~? symplectic manifold with

~ ~

i A = P,
N 1
6 = (2 + O(VE)dg A dn,
As in the case of hypothesis (H2b), we can define the restricted Hamiltonian
H.=H|A. =2 H,

which generates a restricted Hamiltonian flow on A, satisfying

AN . .
( , ) = 20 (D) = Vel DigmH + O(VE).
n

Here the reduced Hamiltonian H: A — IR takes the form
“ 1
H(n, & p) = mlLes p)n* + Hy(2°(I; ), I, 6,0), (2.4.6)

with m(I;u) defined in hypothesis (H2a).  is related to the restricted Hamiltonian
H. through
He = ho+ VEH + O(VE),
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with

ho = Ho(2°(1; 1), I; ).
Note that the reduced Hamiltonian of (2.4.6) is always the sum of kinetic and potential
energy-type terms. Any 4o C A internal orbit of H gives rise to an internal orbit 4. C A,

such that 4o and §-1(4.) are C™"1 /e-close in A.

Introducing the tubular set
Us = {(2:m,8) € P| |z = 2°(I; )] < 6, (1, ) € A},

one can redo the estimates of section 2.2 for system (2.4.1) substituting /¢ for ¢, 5 for
I, and r — 2 for r in all the statements and proofs (one also has to put a hat on all
the functions and quantities we introduced). Therefore, our main construction of a local
map j}f/g to track trajectories inside ﬁg(ﬁ) (with 6(1/€) = 94/€”) and a global map G’:’/E

to follow them outside U 5(/e) holds without modification.

As in section 2.3, we define the n-th order energy-difference function A"H: A — R, by

H(n, ¢ 1) — H(n, ¢ — nAG(I5 ); o) (2.4.7)

Hy(Z%(1; ), I, 3 ,0) — Hy(2°(1,; ), I, 6 — nAG(I,; p1); 1, 0).

A"H(¢; )

Il

Note that A"H does not depend on n; hence the corresponding zero sets
Vi={(me)eAd| A"H(4p)=0}, (24.8)

Z% ={ (n,6) € VI | DyA"H (s ) £ 0 }, (2.4.9)

and

Ve =RTVE), 20 =RTY(ZD), (2.4.10)
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generically consist of ¢ = const. lines of the annulus A. We note that the rotation map
R:A — A,
(m,¢) = (n,¢+ Ad(L;p))

has no explicit 7-dependence either. As in (2.3.5), for any internal orbit 4 C A of H we

define the pulse number
N#;p) = min{2>1|V*ny=0,k=1,..,n-1, 2" M4 }.
Finally, for ¢, 79 > 0 we introduce the blow-up map
B.:A — /L
(1.9) = (6= (0)
which will be used to relate internal orbits of  in A to internal orbits of H. on A.

under assumption (H2a). We can now prove the following basic result on N-pulse orbits

homoclinic to resonances bands:

Theorem 2.4.1 Assume that hypotheses (H1) and (H2a) hold. Suppose that for an

internal orbit 47 C A of the reduced Hamiltonian H

(A1) N = N(5; 1) < oo,

(A2) Letb_ € ZNNAg and by = RN (b_). Assume that the orbit 3¢ C A of the reduced

Hamiltonian H which contains by is an internal orbit with Zh_]i_v M4
(A3) If D.Hy points outwards on Wy, we assume that
hy = H)i5 < HIR*(35), k=1,..,N—1.
If D,.Hy points inwards on Wy, we assume that

hy = "35> HIRFGES), k=1,..,N-1.
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Then there exists g > 0 such that for 0 < ¢ < &g

() A: has an N -pulse homoclinic orbit yN which is positively asymptotic to an internal
orbit v+ C A, and negatively asymptotic to an internal orbit v7 C A.. Moreover,
g7 (v) and B (g ) are Cm=2 \fe-close, 7' (vF) and BZ'(4F) are C° \/e-close.

If 3¢ is periodic, this latter statement can be strengthened to “C™=2 Ve-close.”

(1) yN lies in the intersection of W*(v7) and W*(y7) which is transversal within the

energy surface E.(h) with h = H|y} = H|y7.
(12) Outside a neighborhood of A. yY is C' \/e-close to the set
YN = U;N=1 yiv

where y* C Wy is an unperturbed orbit of (2.1.1)e=o asymptotic to the points gg o
Ri=1 o B71(b-) and go o R o B-1(b_) in negative and positive time, respectively

(R° = Id).

Proof: We first apply Theorem 2.3.1 to the standard form (2.4.1) substituting 1/ for ¢
in the statement of that theorem. Then we relate back the results on system (2.4.1) to
system (2.1.1) using the map B.. Note that objects of the standard form which are C*
¢P-close in P are mapped by the map (z,m,¢) — (z,B-1(n,4)) into objects of system
(2.1.1) which are C* ¢®-close in P. Based on this fact the statements of theorem follow.

]

Remark 2.4.1 It isimportant to note that although we can locate the orbits v and v7
with O(+/€) precision, we can still guarantee that they fall in the O(y/€)-thick resonance

band in which system (2.1.1) is equivalent to the standard form (2.4.1). This comes
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about as follows. Let 4% be the orbit on A, which is obtained by the application of
Theorem 2.3.1 to system (2.4.1). Then §-'(4F) and 47 are C™~2 ,/e-close in A. As
we indicated above in the proof of Theorem 2.4.1, the map B! maps §-'(5F) and 4
to the orbits g7 1(vF) and v¢ = BI1(4F), respectively, which are C™"2 (/e-close in A.
However, their I-projections are only O(¢) apart, as it is easily seen from the definition
of B.. Since 7{," lies in the resonance band defined by I € [I, — v/emno, I, — 1/270), so does
v, as shown in Fig. 2.11. For the same reason, the deviation of the orbit yN in the T

coordinate from the shadowing orbits y' of statement (222) above is actually only (’)(s%).

O(e)

Figure 2.11: The relation between the internal orbits of the standard form (2.4.1) and
system (2.1.1) under hypothesis (H2a)

For the case of N-pulse orbits which are actually homoclinic to a periodic orbit of A,

we again have the following theorem.
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Theorem 2.4.2 Let us assume that hypotheses (H1) and (H2a) are satisfied and as-
sumptions (A1)-(A3) of Theorem 2.4.1 hold. Let us further assume that 4§ = 45 of

Theorem 2.4.1 is a periodic orbit in A. Then

(2) The statements of Theorem 2.4.1 hold with v, = v} = 77 and there ezxists one more
N -pulse transverse homoclinic orbit Y with properties similar to those of g (but

with corresponding “base-points” by # by and b_ # b_).
(v2) System (2.1.1) has Smale-horseshoes near v, on energy surfaces sufficiently close
to E.(h).

Proof: See the proof of Theorem 2.3.2. O

The remarks of section 2.3 are valid with the appropriate modifications. We can also deal
with resonant internal orbits. Again, we call an internal orbit % resonant if N r(F;p) <

00, where the resonant pulse number Np is defined by

NR(ﬁ;p):min{ n>1| V_kﬂ’y=®, k=1,..,n-1, 7@"(’“}/):’?}

Theorem 2.4.3 Assume that hypotheses (H1) and (H2a) hold and %9 C A is an internal

orbit of the reduced Hamiltonian H such that

(A1) N = Np(%0, 1) < 00 (%0 is resonant),

(A2) Assumption (A3) of Theorem 2.4.1 holds.
Then there exists g > 0 such that for 0 < € < &g

(2) Ac has two N -pulse homoclinic orbits, ygv and §¥, which are asymptotic in positive
and negative time to an internal orbit v. C A.. The orbits BZ1(40) and gZ*(7e)

are C™=2 \Je-close in A.
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(1) There ezists two points b_,b_ € %o such that outside a neighborhood of Ae, ¥y (7V)

is C1 \/e-close to the set
YN = Uf\-,_-lyiv (YN = UiNzlglv)

where y* C Wy (3 C Wo) is an unperturbed orbit of (2.1.1).=o asymptotic to the
points gooR~LoB;1(b_) (gooR~"1oB1(b-)) and gooR oB1(b_) (gooR 0B (b_))

in negative and positive time, respectively. (R = Id).
Proof: The same as the proof of Theorem 2.3.3 with the results related back to system

(2.1.1). o

We close this section by establishing a result analogous to Theorem 2.3.4: Theorem
2.4.4 below gives conditions for the existence of jumping N -pulse orbits homoclinic to
a resonance band. Such orbits arise, e.g., in the modal truncation of the nonlinear

Schrodinger equation, which we will study in chapter 4.

We adapt hypothesis (H1’) of section 2.3 and also assume that
(H3’)
+oo L +oo b
AG(L; ) =/ DrHo(2"*(t, I; p), I; p) dt E/ DiHo(z"~ (¢, 15 1), Ir; p) dt.
—00 —00

Note that hypoyhesis (H3’) is less restrictive than (H3) since it requires the two phase

shifts to be equal only for the resonant value I = I,.

Theorem 2.4.4 Assume that hypotheses (H1’),(H2a), and (H3’) hold. Suppose that for

an internal orbit 7, C A of the reduced Hamiltonian H

(A1) N = R(355p) < oo.
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A2) Letb_ € ZN N4y and by = RNV (b_). Assume that the orbit & € A of the reduced
Yo + 0

Hamiltonian H which contains by is an internal orbit with Zfl_v M A

(A3) Let ¥j41 = sign(hy — HIR* (35 )Xi, 7 = 1, N, with %y € {=1,+1} to be

specified below.
Then there exists g > 0 such that for 0 < ¢ < gq

(2) Ac has two N -pulse homoclinic orbit y¥+ and yN = which are positively asymptotic to
an internal orbit v C A, and negatively asymptotic to an internal orbit 7. C A..
Moreover, g7'(vF) and B7'(3g) are C™2 \fz-close, g-'(vF) and B-1(3F) are
CO Jfe-close. If 4 is periodic, this latter statement can be strengthened to “C™—2

\/E-close. ?

w) yNt and yN~ lie in the intersection of W¥(y) and W*(v¥) which is transversal
& & & 75

within the energy surface E.(h) with h = H|y} = H|y.

(222) Let us set X1 = +1. Then outside a neighborhood of A. yN+ is C1 \/e-close to the

set
YV = UM v (), (2.4.11)
where
y'(Ri) C { vag_r Z:;“ _ J_“} (2.4.12)

is an unperturbed orbit of (2.1.1).—o asymptotic to the points goo R*~' o BZ1(b_)
and goo Rt o BZ1(b-) in negative and positive time, respectively (R® = Id). Setting
X1 = —1 we obtain a similar statement on the relation of the orbit yN= to the set

YN~ (defined the same way as in (2.4.11)-(2.4.12)).
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Proof: Again, the theorem follows from the application of Theorem 2.3.4 to the standard

form (2.4.1) (see the discussion in the proof of Theorem 2.4.3 above). ]

We remark that for Theorems 2.4.2-2.4.4 Remark 2.4.1 again applies and explains

why C™=2 \/e-precision is enough to locate orbits in the resonance band of width O( /).

2.5 Extension of the results to weakly dissipative pertur-
bation

In this section we show how the energy-phase method extends to the case when one adds
additional non-Hamiltonian perturbation to system (2.1.1). This question is particularly
relevant in possible applications of our results to certain engineering problems (see, e.g.,
[19]-[22], [32], [67], [75], etc.) if the dissipation is small but not negligible. In such
systems the asymptotic behavior of solutions is characteristically dissipative, but the
short-term behavior of trajectories is amenable to Hamiltonian perturbation methods.
It is exactly this feature that makes it possible to adapt the main construction of the

previous sections to weakly dissipative systems.

The equations we study can be written in the form

&1 = Dy, Ho(z, I;p) + €[Doy Hi(, I, ¢ p1,€) + Vo, g, (2, I, 5 1, €)],

23 = =Dy Ho(z,I;p) = e[ Doy Hi(2, 1,95 1, €) + Viy g (2, I, $3 1, €)],

I = —e[DyHi(2,I,6; )+ vigr(z, I, ¢; p, )], (2.5.1)
¢ = DpHo(z,I;p)+e[DrHi(z, I, ¢ pe) + vagy(z, I, ¢y €)],

again defined in the phase space P. Here g, g1, and g, are C" functions, H = Ho+ ¢ H;
is again assumed to be C"*! with r > 3, and v = (vz,vr,v4) € R? is a vector of

parameters which will be chosen small in norm. We will assume that hypotheses (H1)
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and (H2b) hold for system (2.5.1). Based on section 2.4, the upcoming results of this
section can immediately be applied to resonance bands (assumption (H2a)). Since it
does not involve any new ideas, we will not pursue this question here. A study of a
different kind of multiple-pulse behavior near resonance bands appears in the recent

work of Kaper and Kovaci¢ [40] which we review briefly in section 2.6.

Under (H1)-(H2b) system (2.5.1).—¢ has a normally hyperbolic invariant manifold
Ao of the form (2.1.2) which perturbs to a C" ¢ close manifold A, for small ¢ > 0 (see

(2.1.5)). On this manifold the dynamics is now described by the restricted system

é 5[ DIH(Iv ¢a H) + V(JSg(f)(iO(I;H)’ Iv QS’ K, 0)] + 0(52)’

I = e[-DyH(I,¢; 1) — vigi(Zo(I; p), I, 65 11, 0)] + O(?), (2.5.2)

I

which is generally not Hamiltonian for v4,vr # 0, but contains a Hamiltonian part
generated by the reduced Hamiltonian H of (2.2.2). Rescaling the time by ¢ and setting

¢ = 0in (2.5.2) we obtain the reduced system

Il

é DrH(I, ¢; 1) + vgg4(Zo(L; 1), I, $3 11,0),

I

_D¢H(Ia ¢7/L) - I/Ig](:io(I;,U),I, QS;,U‘v O)a (253)

which we consider defined on the annulus A. The relation between the orbits of the
restricted and reduced systems is similar to what we had in section 2.2: if 79 C A is a
structurally stable orbit of the reduced system, then for small ¢ the restricted system
has an orbit 7. C A. such that 7o and g-!(7.) are C" e-close on appropriate compact

subsets of A.

It is important to note that in a general dissipative system of the form (2.5.3), there
may be no orbits other than fixed points, which are isolated from @A. This is related to

the fact that for non-Hamiltonian perturbations, Ag usually perturbs into an overflowing
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or inflowing invariant manifold 4. whose stable and unstable manifolds are only locally
invariant. For this reason, we will generally not speak about internal orbits for the
restricted and reduced systems (2.5.2)-(2.5.3). Correspondingly, we will establish the
existence of N-pulse orbits which are only asymptotic to A, in one time-direction and
approach an orbit o, partially lying in A, in the other time-direction. These orbits still
have a characteristic influence on the perturbed dynamics near A, through the N pulses

they make before leaving W*(A;) N W*(A,).

When we speak about N -pulse orbits in this section, we will mean orbits which leave
and then enter a neigborhood of A, N-times and before the first pulse and after the
last pulse they follow orbits in A, in positive and negative time, respectively, as long
as these latter orbits stay in A.. More precisely, we will say that an N-pulse orbit y
with W*(A.) Ny # O positively approaches another orbit o with of N A, # 0 if
yN intersects a stable fiber f3(p) C W} (Ac) with basepoint p € o (see (uz) of the
Proposition 2.2.1 and Fig. 2.12 for the implications of this). Similarly, one can speak
about an orbit ¥V negatively approaching another orbit o7 if it approaches o positively
in reverse time. If Ff(p) € A, holds for any ¢ > 0, then “positively approching” is
equivalent to “positively asymptotic.” Similarly, if F¥(p) € A. holds for any ¢ < 0,
then “negatively approching” is equivalent to “negatively asymptotic.” Using the same

quantities as defined in (2.3.1)-(2.3.5), we can now state the following theorem.

Theorem 2.5.1 Let us suppose that hypothesis (H1) and (H2b) are satisfied for sys-
tem (2.5.1) and assumptions (A1)-(A3) of Theorem 2.3.1 hold for the internal orbits
’y{,",’y()— C A of the reduced Hamiltonian H. Then there exist co,v9 > 0 such that for

0<e<eggand 0< ||v|| < wo

(1) system (2.5.1) has an N -pulse orbit yY which is positively approaching an orbit o
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4
Figure 2.12: An N-pulse orbit y¥ positively approaching ot

and negatively approaching an orbit o7 of system (2.5.1). Further, oX N A, # 0

and o7 N A, # 0.

w) Suppose that oy and of are structurally stable orbits of the reduced system (2.5.3
P 0 0
intersecting ZN and ZY transversally at the points b_ and b , respectively. Suppose
+ )4 + /4 PP
further that N' C A is a compact set not containing a- or w-limit points of og -
Then g7 (o7 )NN and o5 NN are C" e-close in A. If o5 is a periodic orbit, then
971 (07) and of are C™ e-close in A. Similar statements hold for the relation of

ot to of.

(12) For finite times y!N is contained in a two dimensional manifold WXN which lies in

the transversal intersection of W*(A.) with W*(A.).
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(w) If assumption (A3) of Theorem 2.3.1 is satisfied, then statement (111) of the same

theorem holds for yN.

(v) If hypotheses (H1’) and (H4), and assumption (A3) of Theorem 2.3.4 are satisfied,
then there exists another N -pulse orbit §¥ with the same properties as yN above.

Moreover, yN and §N are jumping N -pulse orbits satisfying (vir) of Theorem 2.3.4.

Proof: The proof is based on the following simple idea. One can first set » = 0 and,
using Theorem 2.3.1, show the existence of multiple pulse homoclinic orbits to .A., which
form a two dimensional manifold W2. If this manifold lies in the transversal intersection
of W?(A.) and W*(A,), then it persists for small ». Furthermore, the basepoints of the
stable and unstable fibers contained in WV perturb smoothly in » (see Proposition 2.2.1)
and hence form C"~! curves which are C"~! ¢-close to 9:(Z%) and g‘.:(ZiV ), respectively.

Then all statements of Theorem 2.5.1 follow from Theorem 2.3.1 and Proposition 2.2.1.

Therefore, to prove this theorem, we only have to show that for » = 0 and sufficiently
small ¢ > 0, the N-pulse homoclinic orbit y» obtained from Theorem 2.3.1 is contained
in a two dimensional manifold W2V, which lies in the transversal intersection of Ws(Ag)
and W*(A.). As it is shown in Haller and Wiggins [28], if 7 is an internal orbit of the
restricted Hamiltonian H, with H. |y} = he, then E.(h.) intersects W*(A.) transversally
along W*(y}). Similarly, if 77 is an internal orbit of the restricted Hamiltonian .
with M|yt = he, then E.(h.) intersects W¥(A,) transversally along W*(y7). Now
under the assumptions of the theorem, for v = 0, W*(yF) @ W¥(y7) holds within the

energy surface E.(h.) as it is guaranteed by (u2) of Theorem 2.3.1. In other words, if

pe € We(vF)N W¥(y7), then

T (W3 (A) N Ec(he)) + Tp (W (A:) N Ee(he)) = 1. (Ec(he));
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hence T, (W?(A.)) has a one dimensional subspace not contained in T}, (W*(A.)). Since
both W?*(A.) and W*(A,) are codimension one manifolds in P, this proves that they

intersect transversally at p. € W2 for v = 0. o

N

o 0 idﬁ{dﬁ{dﬁ{ Zr

V::O VTFO

Figure 2.13: Example I of the statement of Theorem 2.5.1 for N = 3.

Some cases of the application of Theorem 2.5.1 are sketched in Figs. 2.13-2.15. These
examples show that in the presence of equilibria or a limit cycle and an equilibrium (of
opposite stability types), one obtains N-pulse orbits which are in fact N-pulse homo-
clinic orbits to A.. Otherwise, the N pulse orbits are guaranteed to be asymptotic to
A. only in positive or negative time, as we discussed above. This suggests that in the

weakly dissipative context of this section, equilibria have a prominent role in creating
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recurrent motions near the slow manifold A.. For instance, if the zero set Zﬁ_\’ transver-
sally intersects the domain of attraction of a stable fixed point s, of (2.5.3), then there
exists a family of N-pulse orbits which are positively asymptic to a stable equilibrium

of A, (see Figs. 2.13-2.15). These orbits are in fact N-pulse homoclinic orbits to the

N
y8

i 7
4
5 AZ
X0~/
%y 7 A 7 / a7 7 7/ 7
v=0 v+0

Figure 2.14: Example II of the statement of Theorem 2.5.1 for N = 3 and jump sequence
X2 = —X1, X3 = X2

slow manifold A, if the zero set ZV transversally intersects the domain of “repulsion”
of an unstable limit cycle or unstable focus of (2.5.3), as shown in Figs. 2.13-2.15. In
many cases, however, the unstable equilibria of (2.5.3) are saddles which have no open
domain of attraction in negative time. If for some parameter value p* Z~ happens to
pass through these equilibria, we expect that for some nearby p value there will be an

N pulse homoclinic orbit to A. which is negatively asymptotic to the saddle.
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7 % 7/ g / A¢/ VG
v=0 T w00 7

Figure 2.15: Example III of the statement of Theorem 2.5.1 for N = 3

In general, one may ask what can be said about N-pulse homoclinic orbits in the
case when Z% or Z_IJY contains an equilibrium so(y, v) of the reduced system, and hence

+

the transversality condition in (22) of Theorem 2.5.1 is not satisfied for of = so(y, v).

The following theorem provides an answer to this question.

Theorem 2.5.2 Let us suppose that hypotheses (H1) and (H2b) are satisfied for system

(2.5.1) and the following hold:

(A1) Let M be an open subset of the parameter space W x R*. Suppose that for
(1, v) the reduced system (2.5.3) has a nondegenerate equilibrium so(p,v) (no zero
eigenvalues). Moreover, for some (u*,0) € M we have so(p*,0) = b_ € ZN (see,

e.g., the part of Fig. 2.15 with v =0).
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(A2) For (u,v) € M ZY intersects the domain of attraction of a closed set So(p,v)
of the reduced system (2.5.3) transversally in a neighborhood of the point b+ =
RN (so(p*,0)) € Z¥ . Moreover, the trajectory of containing b* intersects zy

transversally at bt for t = 0 and stays in A for t > 0 (see Fig. 2.15).

(A3) D(#,U)ANH(SO(,U" V);ﬂ)l(u‘,ﬁ) #0€ RP¥,

Then there exists g > 0 and for 0 < € < ¢q there exists a codimension one surface

C C M near (p*,0) such that for any (u,v) € C the following hold:

(22) A has an N-pulse homoclinic orbit yN which is positively asymptotic to a set
Se(p,v) C Ac and negatively asymptotic to an equilibrium s.(u,v) C A.. More-
over, g7 (Se(p,v)) and So(p,v) are CT e-close, as well as g7'(s.(u,v)) and

so(p,v).

(202) If assumption (A3) of Theorem 2.3.1 is satisfied with so(p1,v) = 75, then statement
(ew2) of Theorem 2.3.1 holds with b_ = so(p,v). Similarly, if assumption (A3) of
Theorem 2.3.4 is satisfied with so(p,v) = 74, then the part of statement (111) of

Theorem 2.3.4 regarding the orbits shadowing yY holds with b_ = so(u, v).

Proof: In view of Theorems 2.3.1 and 2.5.1, we only have to show that there exists a
codimension one surface C (see above) in the space of the parameters (y,v) such that
for parameter values taken from C, the basepoints of the unstable fibers lying in the two
dimensional intersection manifold W2 form a curve B, C A. containing s.(p, v) (here s,
is the equilibrium arising from the perturbation of so(z2*,0)). In this case, by Proposition
2.2.1, there is a unique N pulse orbit y negatively asymptotic to se(p, v) and positively

approaching an orbit oF. Since for small ¢ o} stays in A, by assumption (A2) above,
g € e
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yl is positively asymptotic to the perturbed attractor S.(u,v) and the statements of

the theorem follow.

Since the curve B, perturbs from go(ZY), by Proposition 2.2.1 in a neighborhood of the

point so(u,v) g7 (B.) satisfies the equation
H(L, 65 ) + €H(L, 6,y vi€) = 0,

with some C™! function H. Hence the requirement that B, contains s.(u,v) can be

expressed as

H(g (se(p,v)); 1) + eH (9T (se(pt, ), 5 €) = 0.

Note that by assumption (A1) this equation is solved by (y,v,¢) = (p*,0,0). But then,
using assumption (A3) and noting that g7 '(s.(p,v))|e=0 = so(, v), we conclude from
the implicit function theorem the local existence of the hypersurface C' in the set M of

the parameter space. O

We would like to make two remarks in connection with Theorem 2.5.2:

Remark 2.5.1 It is easy to see that the above treatment of N-pulse orbits homoclinic
to equilibria can be extended to the case of purely Hamiltonian perturbation considered
in section 2.3. The conditions of a corresponding theorem would be similar to those of
Theorem 2.5.2 above with the quantities involved depending on the parameter L only.

For brevity, we do not formulate the Hamiltonian analogue of Theorem 2.5.2 here.

Remark 2.5.2 If so(p,v) = So(p,v), Theorem 2.5.2 establishes the existence of an N-
pulse orbit homoclinic to the equilibrium s.(g,v) = Se(p,v). If so(p,v) is a stable focus
of the restricted system (2.2.1), then the homoclinic orbit is a Silnikov-type orbit (see

Fig. 2.16). The existence of such an orbit with one pulse for the case of assumption (H2a)
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was studied by Kovaci¢ and Wiggins [44]. As they point out, these orbits satisfy the
conditions of Silnikov [65] (see also Wiggins [74]) and hence one can construct horseshoes
in their neighborhoods. This is a situation which justifies why one would be sometimes
interested in detecting N-pulse orbits homoclinic to A, which occur on codimension one
surfaces in the parameter space: these orbits may create chaotic hyperbolic sets which
survive even when the N-pulse orbit breaks, hence they have an effect on the global

dynamics of system (2.5.1) on an open set of parameter values.

We close this section by noting that single-pulse versions of the codimension one
connections treated in Theorem 2.5.2 also appear in Kovaci¢ [47] where dissipative per-

turbations of Hamiltonian resonance bands (hypothesis (H2a)) are considered.

V= V=f(u'a€)

Figure 2.16: Double-pulse Silnikov-type orbit
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2.6 Discussion

In the preceeding sections we have proved global perturbation results on the existence
and geometry of multiple-pulse orbits in perturbations of certain two-degree-of-freedom
integrable Hamiltonian systems. In the following we would like to relate our results to

previous and recent work on multiple-pulse orbits.

N-pulse orbits near an unperturbed orbit homoclinic to a saddle-center of a reversible
Hamiltonian system were detected in Mielke et al. [56]. Similarly to their work, we
construct local and global tracking maps describing the excursion of perturbed orbits
near the unperturbed homoclinic manifolds. However, we do not base our construction
on the solution of variational equations: for a given application one only has to do some
simple algebraic manipulations to obtain quick results. Also, our analysis is global in the
sense that it deals with a whole manifold of fixed points instead of a single one. For this
reason, we cannot use an (integrable) local normal form around a fixed point to describe

the local passage of trajectories.

We would also like to mention the work of Jones and Kopell [38] on perturbations
of manifolds of equilibria. In the heart of their analysis lies the powerful exchange
lemma which they use to track solutions making a long-time passage near the perturbed
manifold. As an application they assume that the unperturbed system has a “singular
homoclinic orbit,” i.e., a cyclic sequence of N heteroclinic orbits such that the w-limit
point of the k-th member of the sequence coincides with the a-limit point of the k + 1-st
member and the first and last members of the sequence are identical. If this singular
homodclinic orbit lies in the transversal intersection of stable and unstable manifolds and
the corresponding singular homoclinic point pg perturbs to an equilibrium p, which is

asymptotically stable within the corresponding slow manifold, they are able to show the



80

existence of a locally unique N-pulse orbit homoclinic to p.

Recently, Jones et al. [39] obtained a version of the exchange lemma with exponen-
tially small error which enables one to assume only weak transversality along the singular
homoclinic orbit (i.e., the relevant angles of intersection are allowed to vanish with the
perturbation parameter ¢). Other extensions of the exchange lemma involving higher
dimensional manifolds are also available (see Tin [68]). Using these results, Kaper and
Kovati¢ [40] constructed multiple pulse orbits homoclinic to resonance bands (arising
from the case described by our hypothesis (H2a)). These multiple-pulse orbits lie in
the vicinity of a “skeleton” consisting of single-pulse orbits obtained from a modified
Melnikov-analysis and segments of orbits in the slow manifold. In the Hamiltonian case,
their multiple-pulse orbits are generically asymptotic to orbits in the set S. (described
in section 2.1), which is bounded away from the core of the resonance. In the dissi-
pative case the multiple-pulse orbits lie in the vicinity of one-pulse orbits constructed
by the appropriate Melnikov-type method. Accordingly, the basepoints of the detected
multiple-pulse orbits (i.e., the basepoints of the stable and unstable fibers they intersect)

are bounded away from the core of the resonance.

Both in Mielke et al. [56], Jones and Kopell [38], and the dissipative results of Kaper
and Kovagic [40], the existence of N-pulse orbits is a codimension one phenomenon in
the parameter space. In contrast, our orbits are generic in systems satisfying hypothesis
(H1) and (H2) without an underlying family of systems (except for the special orbits
constructed in Theorem 2.5.2). The reason for genericity in the dissipative context is
that our N-pulse orbits are not constructed in the vicinity of 1-pulse orbits homoclinic
to A.: for arbitrary high pulse number the energy-phase method tracks multiple-pulse

orbits independently of existing lower pulse orbits.
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Another new feature of our orbits is related to their observability. The distance of
our orbits from the stable and unstable manifolds of A, is bounded from below when
they make their intermediate returns to A.. In particular, when they approach .4, for
the k-th time (1 < k < N — 1), they lie in a subset of W*(A.) which does not intersect
W (Ac): this intersection only occurs at the final N-th return of the orbits. As a result
of this, the intermediate passage times near the slow manifold A. are bounded from
above by a constant (see (2.2.25) with the choice o = 1/2). This is to be compared with
the passage time O( ﬁ) which is necessary for the appropriate version of the exchange
lemma to apply (see Kaper and Kovaci¢ [40] for the case of a perturbed circle of equi-
libria). The longer the passage time is, the more error one has to be concerned with in
numerical experiments. Moreover, the presence of the slow manifold itself already makes
any simulation somewhat more involved because of the presence of two different time
scales in the problem. This suggests that multiple pulse orbits constructed through the
exchange lemma may easily get out of numerical control in the resonance band of width
O(+/€). Orbits constructed through the energy-phase method, however, do not share this
feature. The main idea used in detecting these orbits is precisely that the solution tubes
emanating from internal orbits deform only slightly when they repeatedly pass near the
slow manifold A, (see Lemma 2.2.3). As a result, our N-pulse orbits are easily detectable
numerically; in fact, most of the research presented in this dissertation was stimulated
by numerical experiments on multiple-pulse solution tubes and their intersections (see

chapters 3 and 4).

Finally, we would like to note that the energy-phase method provides a classification
for multiple-pulse homoclinic orbits near slow manifolds. It turns out that even in
relatively simple examples, such as the one we study in chapter 4 of this thesis, the orbits

can be ordered in a self-affine fractal structure which would be very hard to recognize
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based on numerical data alone. This again highlights the complexity in the behavior of
systems near resonances even in two degrees of freedom. Generalizations of the energy-

phase method to higher dimensions is also possible and will appear elsewhere.
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Chapter 3

Whiskered tori in resonant
normal forms

In this chapter we apply the energy-phase method to a class of three-degree-of-freedom
resonant Hamiltonian normal forms which, when truncated at cubic order, possess hy-
perbolic manifolds of relative equilibria. Our goal will be to find out more about the
geometry of the phase space near resonant elliptic fixed points of three-degree-of-freedom
Hamiltonians. It turns out that these systems exhibit quite rich local dynamics even if
the resonant equilibrium is known to be stable (i.e., the Hamiltonian is definite at the
equilibrium). Hence, while the upcoming results illustrate the usage of the energy-phase
method for systems with more than two degrees of freedom, they are also interesting in

their own right.
3.1 Survey of previous work and outline of the results

Suppose the quadratic part H;, of a three-degree-of-freedom smooth Hamiltonian H =

Hy + H to be of the form

1 3
=5 > wrl(af +ph), (3.1.1)
k=1
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which is characterized by the frequency vector w = (wy,ws,ws). This frequency is said

to be resonant if we can find a nonzero integer vector n = (ny, ny, n3) such that
(w,n) =0 (3.1.2)

is satisfied. We usually speak about a strong resonance if there exists an integer vector
n verifying (3.1.2) with |n| = |n1| + |n2| + |n3] < 4. One can also introduce the term
full resonance (or multiplicity-two resonance) which means that there are two linearly

independent integer vectors n and 7 satisfying the relation (3.1.2).

It is well known that the six dimensional phase space of (3.1.1) is foliated by a three
parameter family of 3-tori, which best manifest themselves in action-angle variables
(see, e.g., Arnold [2]). System (3.1.1) also has three families of distinguished motions,
usually called normal modes, which are periodic orbits with only one nonvanishing action.
As we know from the appropriate version of the KAM theory (see, e.g., [2]-[5]), in a
neighborhood of the origin ¢ = p = 0 most of the 3-tori typically persist under the effect
of the higher order terms in H provided w is not strongly resonant. In these cases, close
to the origin, the observed perturbed dynamics is reminiscent of the unperturbed one,

at least for finite times.

As it was soon revealed by computer experiments following the appearance of KAM-
type results, the dynamics around a strongly resonant equilibrium may differ significantly
from the picture described above (see, e.g., Ford and Waters [25] and Ford and Lunsford
[26]). In particular, one can observe significant short-time deviation from the solutions
of (3.1.1). Trajectories of H starting close to the linear normal modes of the quadratic
part Hy may leave and return on time scales much shorter than those mentioned above.
Moreover, plotting the action values of these trajectories, one experiences irregular pat-

terns in the change of action, which is usually referred to as energy transfer between
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different modes ([25],[26],[69],[70], etc.) Though this terminology is descriptive, it is not
quite accurate since the linear normal modes of H; do not necessarily persist as nonlinear
normal modes under the effect of H. Hence, the first natural question one might ask
about the nature of full resonances should be about the fate of the linear normal modes

and the possible creation of new periodic orbits.

A general answer to this question is given by the work of Weinstein [73] (see also
Moser [60] and Ito [37]). If H; is definite, his results guarantee the existence of at least
three distinct periodic orbits on every energy surface H = const. For more specific results
one has to appeal to the method of normal forms (see, e.g., Arnold et al. [5], Sanders and
Verhulst [63]) and simplify the general Hamiltonian H = H, 4+ Hj for the purposes of
the analysis. This is achieved through a smooth near-identity change of variables which

puts H to the Birkhoff normal form
H=Hy+Hs+ Hs+ ...+ H- + O(r + 1), (3.1.3)

where H; is a homogeneous polynomial of order j in the new coordinates (¢’,p’) with
{H3, H;} = 0,{, } denoting the Poisson-bracket. If we truncate (3.1.3) at some order less
than 7 to obtain a Hamiltonian H, the corresponding system has two independent first
integrals: H and H,. If w is not fully resonant, we can always find one more independent
integral (see Arnold et al. [5]); hence the normal form is integrable if truncated at any
finite order. This effectively means that system (3.1.3) exhibits a resonance only between
two of the frequencies and can be analyzed by the methods developed for two-degree-of
freedom resonant Hamiltonians (see Arnold et al. [5], Churchill et al. [10]-[11], Sanders
and Verhulst [63], and the references cited therein). To obtain inherently three-degree-
of-freedom effects, one therefore needs to assume that the frequency w is fully resonant,

in which case the truncated normal form is not automatically integrable.
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To describe how complex a given fully resonant normal form is, we may speak about
a genuine k-th order resonanceif (3.1.3) truncated at order k42 (and not below) exhibits
full coupling between all the three degrees of freedom (for a precise definition see Sanders
and Verhulst [63]). A systematic study of periodic solutions and their stability for genuine
first order resonances was carried out in Van der Aa [70] (see also Sanders and Verhulst
[63]). Related results for symmetric systems appeared in, e.g., Montaldi et al. [57])-[58]
and the references therein, which also address the question of persistence of periodic
solutions for the full system (3.1.3). Parallel to this, one can also see an increasing
interest in the integrability of fully resonant normal forms. The picture arising from the
works of Martinet et al. [54], Van der Aa and Sanders [69], Van der Aa [70], Van der
Aa and Verhulst [71], et al. is that genuine first order resonances (truncated at cubic
order) do not seem to have a third independent integral in general. Nice exceptions
are the 1:2:2 resonance and resonances with discrete symmetries. For these integrable
cases the methods of symplectic and Poisson reductions (Abraham and Marsden [1])
gave an insight to the foliation of the phase space (see Cushman [13], Holm [30], and
Kummer [48]), making use of related results for two degrees of freedom (Churchill et
al. [11], Cushman and Rod [14], Kummer [49], Kummer [50], Kirk et al. [42]). The
work of Kummer [51] extends this point of view to n-degrees of freedom and also gives
a persistence theorem for a class of n — 1 tori arising from the truncated normal form.
Recently Hoveijn [35] gave a nice classification of the possible reduced phase spaces of
integrable three-degree-of-freedom resonances using the theory of singular reduction. He

also proved the existence of invariant spheres in these systems.

As a rule, most of the above results seem to focus on regular behavior (periodic or-
bits, 2-tori) in three-degree-of-freedom resonances. The first reference pointing towards

irregularity appears to be Duistermaat [18] with a proof that the 1:1:2 resonance is typ-
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ically nonintegrable. Duistermaat shows an infinite branching of complex continuation
of manifolds of periodic orbits with constant frequency, which is known to be an ob-
struction to integrability (see Arnold et al. [5]). He also considers the special case when
the two terms of the cubic normal form of this resonance have equal coefficients. In this
integrable case he finds a manifold of homoclinic orbits for a relative equilibrium and
shows that one Silnikov-type orbit survives the effect of a specific quartic normal form
term. He then appeals to the results of Devaney [17] to argue that horseshoes are present
in that specific system; hence it cannot possess a third analytic integral (see Moser [59]).
A more geometric discussion of another resonance, the 1:2:3 can be found in Hoveijn
and Verhulst [34]. Using the methods of Duistermaat, they construct a two dimensional
invariant manifold of the cubic normal form which contains a one-parameter family of
spiralling homoclinic orbits (the dynamics restricted to this manifold is not Hamilto-
nian). As in Duistermaat [18], they proceed by considering a given fourth order normal
form term and present numerical results showing the survival of one orbit homoclinic to a
relative equilibrium. The homoclinic orbit apparently lies in the transversal intersection
of the stable and unstable manifolds of the relative equilibrium; hence Devaney’s results
apply again to suggest the peresence of horseshoes in the normal form truncated at fourth
order. Using Melnikov’s method Hoveijn [35] completed this study by proving that the
stable and unstable manifolds of the relative equilibrium do intersect transversally for a
special choice of the quartic normal form terms. His analysis essentially follows that of
Duistermaat [18] who established nonintegrability the same way for a special parameter

configuration in the 1:1:2 resonance.

In this chapter we would like to go one step further in exploring the mechanism
and onset of chaos near three-degree-of-freedom resonant equilibria. We consider fully

resonant systems for which the resonance relationship (3.1.2) is satisfied with |n;| = 2,
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|ng| = 1. In the usual terminology, we assume that the resonance has a generator of the
form 7 = (2,1,0) or (2,—1,0). Rescaling the frequencies by w;, we then obtain the new
frequency vector & = (1,+2,&3), where @3 is a a nonzero rational number. We want to
ensure that the corresponding normal form is integrable when truncated at cubic order
and intend to treat higher order normal form terms as perturbations on this integrable
structure. To obtain an integrable cubic normal form we may make various assumptions.
Either we require |&3| > 5 or |@3] = 2 to hold (see hypothesis (H3)(2) of section 3.2 and
Remark 3.3.1) or we assume that the full Hamiltonian H is close to being discrete
symmetric at cubic order (see (H3)(22) of section 3.2). A large number of multiplicity
two resonances satisfy one of these assumptions and can be cast in the same type of
normal form. In particular, we can treat the genuine first order resonances 1:2:1, 1: 2: 3,
and 1:2:4 with appropriate discrete symmetries, and the 1:2:2 without any symmetry
assumed. All the genuine second order resonances with cubic generator # also qualify
(i.e.,the 1:2:6, 2:4:3, 3:6: 1, and the 3:6:2), and, we repeat, all resonances of the form
1:2:w3, w3 > 5 are covered without symmetry assumptions. Further, in all the cases
listed here and above, the signs of individual frequencies may be negative. Although it
will not be discussed here, our constructions and results go through for resonances with a
generator 7 = (1,1,—-1) (e.g., for the 2:3:5) with similar alternative assumptions which
make the cubic normal form integrable. Using somewhat different (simpler) methods
but doing more calculations, one can also build up a similar analysis for resonances
with a generator n = (1,43,0), with assumptions making the corresponding normal
forms integrable at quartic order. All this is not persued here and planned for future
publication. Qur study is based on the global knowledge of the integrable geometry of
the cubic normal form. We pay special attention on a family of invariant 3-spheres which

(restricted to the energy surface) have normally hyperbolic subsets with corresponding
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four dimensional stable and unstable manifolds. Each 3-sphere is filled with a two-
parameter family of periodic solutions. In the framework of reduction, this set appears
as a conical singularity of the reduced phase space. Fixing only the value of one of the
integrals, the degenerate set shows up as a manifold of equilibria in the corresponding
two-degree-of-freedom system. This manifold is connected to itself by a two-parameter
family of homoclinic orbits. Using an appropriate heteroclinic version of the energy-
phase method of chapter 2, we determine what happens to this degenerate structure
under the effect of higher order normalization. The predictions we are able to make
involve the existence and geometry of various hyperbolic sets, including families of 2-
tori with transversally intersecting stable and unstable manifolds (whiskers) or tori with
double-pulse homoclinic 2-manifolds. The splitting of the asymptotic surfaces mentioned
here is of the order of the square of the distance from the origin; in particular, it is not
ezponentially small. We hope that our results can be used to identify the micro-structure
of the "stochastic layer” present in the normal form through simple calculations, and

also give a global picture of the related geometry.
3.2 Set-up and assumptions

We will be concerned with Hamiltonians of the form

H(q,p) = Hy(q,p) + H(q,p), (3:2.1)

where (g, p) are canonical coordinates on the phase space (R% w) with w = dg A dp.
In (3.2.1) H, is a quadratic polynomial and I is a C* function with DH(0) = 0 and

D*H(0) = 0. With the notation z = (¢,p) the Hamiltonian equations associated with
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(3.2.1) take the form

i = JoDH(z), J ( 0 IdS) (3.2.2)
T = z), = , 2.
¢ *“\-rd, o0

where I'ds € R3*® is the identity matrix. We assume that z = 0 is an elliptic fixed
point of system (3.2.2) and JsD?H,|o is semisimple, in which case a linear canonical

transformation puts Hy to the form

1 3
Hi(q,p) = 52%((1}: +pb), (3.2.3)
k=1

where Q = (wy,ws,w3) € R? — {0} is the frequency vector of the linear flow generated

by H;. We now introduce the canonical change of variables
z=q—1ip, Z=gq+ip, z3€C> (3.2.4)

with its inverse defined as Tj:(z,2) — (g,p), and consider the transformed system on
the phase space (€3,&) with w = 1Im(dz A dz). Letting 2 — €2, 5 — €% with ¢ > 0

small, and dividing (3.2.1) by ¢2, we arrive at the Hamiltonian

H(z,%¢) = Hy(2,2) + cH (2,3 ¢), (3.2.5)
with
13 .
Hy(z,%) = 3 Sowrlal?, H(zzme)= S ellHmi=3p, Llzm (3.2.6)
k=1 l1]+m|>3

where fypm = by € € with (I,m) € N3 x N3and || = Iy + [ + [5. In (3.2.6) we used the
usual notation 27: = 2}" 25 22°. To describe the resonances we will study, let us introduce
the resonant module

M={ne P |{w,n)=0}. (3.2.7)

We then assume that, after a possible reindexing of the variables z, z,
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(H1) Either (2,1,0) € M or (2,—1,0) € M holds and dim M = 2.
(H2) If s € M and s ¢ span {(2,1,0),(2,—1,0)} then one of the following is satisfied:

(2) Is| > 4,

(1) For any {,m € N® with |I| 4+ |m|= 3,1 — m = s, we have hy,,, = 0.

Here (H1) means that the first two frequencies satisfy the strong resonance relationship
w1 Jwe| = 1:2 and there is one more independent resonance relationship among the
three frequencies. If (H2)(z) holds then (2,41,0) is the unique third order generator of
the resonant module M. This is satisfied by all resonances of the form 1:42:ws with
|ws| > 5, and by a number of other resonances, like the 1:2:6,2:4:3,3:6:1, 3:6: 2, 3: 6: 10,
etc. If; alternatively, (H2)(sz) holds then (2,41,0) is not the only third order generator
of M. We then require certain coefficients of H to vanish, which usually translates to
the assumption that system (3.2.6) is close to having a discrete symmetry at cubic order
(one can also assume h;,, = ve which requires the symmetry breaking terms to be less in
order than the symmetric cubic terms). We note that all genuine first order resonances in
three-degree-of-freedom Hamiltonians (i.e., 1: +2: w3, |w3| = 1,2,3,4) with appropriate
weakly broken discrete symmetries satisfy hypotheses (H1) and (H2)(22) (see Sanders
and Verhulst [63] for the definition of genuine resonances and discussion on the effect of

discrete symmetries).
Based on hypothesis (H1) we can rescale the frequencies by letting
w1 =1, wy=2, wsg— —, (3.2.8)

where we have set the sign of wy positive for convenience. Although the basic results
are the same, some of the geometry will be different in the case w, = —2. We believe

that, based on the material presented below, it is straightforward to make the necessary
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modifications for this case. We finally note that assumption (H1) implies the rescaled
frequency w3 to be rational. In order to simplify the Hamiltonian (3.2.6) further, we
apply a near-identity canonical change of variables which puts our system in Birkhoff
normal form up to some order 7 > 4 (see Arnold [2] or Sanders and Verhulst [63], etc.).
Using (H1)-(H2), the rescaling (3.2.8), and allowing some slight detuning from the exact

resonance, we can write the normalized part of the Hamiltonian in the form

H=Hy+eHs+ 0+ 3Hs + -+ ¢"72H,,

1

1
Hy = §|lez+|22l2+2

ws)z3|?, Hjs = gRe (22%3), a € IR, Hy= Hy+Hy, (3.2.9)

with

{H2’HJ} = 07 3 .<_ .7 S T, {H2’ﬁ4} = O’ (3.210)

where { , } is the canonical Poisson bracket. In (3.2.9) H; contains resonant terms of
the form 2'2™ with || + |m| = j, { — m € M. In general, the normalization procedure
leads to the cubic term H3 = Re(Az?%), A € € and we have to apply an additional
symplectic change of coordinates z; — exp(—iarg(A)/2)z1, 1 — exp(—iarg(A4)/2)%, to
put H3 in the form of (3.2.9) with @ = 2|A| (see Kummer [51]). From this point we
will assume that the nondegeneracy condition a # 0 holds. The expression H4 contains
some possible unnormalized perturbation of system (3.2.1) Poisson commuting with Hs,
as well as cubic terms hy, 2'Z™ of the normal form with h;,, = O(¢), which may arise in
the case of hypothesis (H2). We finally remark that for @ = (1: +2: £2) system (3.2.6)
can be put in the form (3.2.9) even if (H2) is not satisfied (see Van der Aa and Verhulst

[71], Kummer [50], and Cushman [13]).
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3.3 Integrability and geometry of the cubic normal form

In this section we briefly discuss the geometry of the normal form (3.2.9) for r = 3, i.e.,

we will study the Hamiltonian

1 1 a
Ho = §f2’1l2 + 2 + §ule,|2’3|2 + €§Re (2122)- (3.3.1)

Related results can be found in Kummer [49], Churchill et al. [11], and Kirk et al. [42]
for two-degree-of-freedom resonances, Kummer [48], Cushman [13], and Holm [30] for
certain three-degree-of-freedom resonances, and Kummer [51], Hoveijn [35] for n-degree-
of-freedom systems. The standard terminology of symplectic reduction can be found in

Abraham and Marsden [1].

Let us introduce the notation P = €2 and consider the action of the Lie group

G= T?=8"x 5" on (P,Q) given by
:Gx P — P,
(gla g2, 21,522, 23) g (e—igl 215 6—2’591 Z2, e—ig223)- (3-3.2)
We define the mapping
J:P — g*~TR%
L2 2 1 12
(z1,22,23) = (Glal” + |zl Sz, (3.3.3)

where g* denotes the dual of the Lie algebra g of G. For any fixed £ € g we also
introduce the map J(£): P — IR2, J(€)(2) = (J(2),€), where { , ) denotes the natural

pairing between elements of g* and g. Using the definition of J we have

HEXR) = (gl + 2 + gz 6 (3:3.4)
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Let us also define for any £ € g the vectorfield ép: P — TP by
d
Ep(2) = Zlio®(expit,2), (€9, z€ D,

which is just the infinitesimal generator of the action of the subgroup generated by £ € g.

A straightforward calculation shows that
€p(z) = (—i&r21, —2i€ 22, —ib23),
which together with (3.3.4) yields
zgp(z)ﬂ(z) =dJ(€)(z), z€P,

with ngQ denoting the interior product of the vectorfield & with the form 2. Conse-
quently, J is a momentum mapping for the action ®. Since G is Abelian, J is Ad*

equivariant, i.e., the following diagram commutes:
Qg

P
JT TJ (3.3.5)
g A—dE: g”

with the map Ad;_lzg* — g%, (Ad;_l,u,f) = (p, Ady€), for all ¢ € G, p € g*, and £ € g.
For any p € g* we would like to obtain a representation of the reduced phase space
P, = J7Y(n)/G,, which is well defined based on the Ad* equivariance of J. Since G is
compact, the action of the isotropy subgroup G, = {g € G|Ad;_1,u = p} = G is proper
on J~!(p), but it is not free (G has nonidentity elements leaving (0, 22, 23) € J~'(u)
fixed). Hence the Marsden-Weinstein reduction theorem does not guarantee that P, is
a smooth manifold, and it is indeed not, as we will see. Introducing the Euler-variables

(see the references above)

: 1
W1 - Re(Z%fg), VVQ = Iln(21222), W3 = '2"|21’2, (336)
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we observe that

WE+ Wi = aW2(Jy(z) — Wa). (3.3.7)

Let Z, C IR? denote the zero set of the function fu R? — IR defined as
1
,MWM%Mgzﬁwﬁw@—w&m—wm. (3.3.8)

Introducing the Hopf-map mw:P — IR3, z — W(z) (see (3.3.6)) one can verify
from (3.3.4)-(3.3.8) that 7w (J~'()) C Z, and away from the z, plane mw|J (1)
is a surjective submersion. From (3.3.6) and the definition of ® we readily see that
mw o ® = my. On the other hand, a simple calculation reveals that for any fixed p € g*
and z,2* € J7'(p), w(z) = mw(z*) implies the existence of § € G with z* = &(g, 2).
Putting these facts together we conclude that Z, can be identified with the orbit-space

of the action of ® on P,ie., P, ~ 7.

We now turn to the study of the cubic truncation of the normal form (3.2.9) given
by (3.3.1). It is easy to verify that ¢, 0 Hy = Hy holds; hence, based on the construction
above, Hy defines an integrable Hamiltonian system with Hy, Ji, and J, being three
independent integrals. As we have found, the reduce phase space for Hy can be realized
as P, o~ Z,, embedded in IR?. It is not hard to see from (3.3.7) that P, is homeomorphic
to §2. In fact, Z, is a pinched sphere with its pinch at the origin of the W-space, and
its axis of rotation is just the W3 axis. As noted in the references cited at the beginning

of the section, the reduced flow of (3.3.1) on P, is given by the Euler-like equations
W = VHy x Vf,, (3.3.9)

with

1
Ju= 5(Wl2 + W3 — 8W3(uy — W3)).
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Using the fact for any p € g* J~1(u) is a 2-torus bundle over P,, we can reconstruct
certain invariant structures in the phase space of (3.3.1) based on our knowledge of the
orbits of the reduced system (3.3.9). To identify the reduced orbits on P,, one can use
the fact that the Euler-variable W; is constant on these orbits (being a first integral
for the cubic normal form (3.3.1)). Hence, following the idea of Kummer [49], we can
visualize the orbit structure of (3.3.9) by intersecting the pinched sphere Z, with planes
Wi = const. As we show in Fig. 3.1, each such intersection is either a point, or a smooth

closed curve, or a continuous closed curve through the pinch of Z, at W = 0. The closed

W

Figure 3.1: The reduced phase space P,

curve through the pinch contains a relative equilibrium p, at W = 0 which is connected

to itself by a homoclinic orbit in the reduced phase space satisfying

Wy =0, W,=2V2Ws\/p1 — W5, Ws>0. (3.3.10)
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As we pointed out, a relative equilibrium or a periodic solution of (3.3.9) indicates the
presence of an invariant 2-torus or an invariant 3-torus, respectively, in J=!(u). One can
ask what happens to these invariant sets under perturbation and, using an appropriate
version of the KAM theory, one can show that most of the invariant 3-tori persist in
the phase space of (3.2.9). However, this is a phenomenon which one also finds in
nonresonant normal forms. In particular, this result does not bring us any closer to an
understanding of the source of irregularity in strongly resonant systems. To this end, we

will study what happens to the homoclinic structure described by (3.3.10) above.

We start by defining the invariant set M” C P with A > 0 as

h -
M* = Uy 4y =y (D)

Clearly, M" is the set of orbits in a given energy-surface Hy = h which are mapped into
relative equilibria at W = 0 in P, under the quotient projection P — P,. Using (3.3.6)

and (3.2.4), one can immediately see that the image of M" under the diffeomorhism 7}

(defined after (3.2.4)) satisfies
1
Ti(M") = {(g:p) € R | g1 = p1 = 0, 45 + p} + 5wa(3 + p3) = h}. (3.3.11)

This shows that for ws > 0 M" is diffeomorphic to $3, while for w3 < 0 it is a three
dimensional hyperbolic surface of revolution. In either case, M" is connected to itself by
a four dimensional homoclinic manifold W" which lies in the preimage of the set defined
in (3.3.10) under wy.

One can check that for any 2 > 0 M”" is entirely filled with periodic orbits. Two of
these closed orbits are distinguished: they are the (nonlinear) normal modes of Hy given

by

Nél = {z€@3|21:23:o,|z2l:\/ﬁ}’
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2h
N} = {ze@®z=2=0, |za] = 4/— }-
w3

These two normal modes survive from the quadratic Hamiltonian Hy under the effect of
the cubic terms in (3.3.1). With the exception of N[, all the periodic orbits in M" have
two-dimensional stable and unstable manifolds which foliate W into a two-parameter

family of cylindrical surfaces.

Since M" is a manifold of periodic orbits, the flow of the Hamiltonian (3.3.1) re-
stricted to M" can be considered as the action of the group S! on M". We can define
Fh = M /S, the quotient space corresponding to this action, with the usual quotient
projection mg: M* — F*_ In other words, F" is the orbit space of the periodic solutions
contained in M"*. From (3.3.11) we see that the set T)(M") ~ M" can be considered as
the three dimensional energy surface for a Hamiltonian system of two linear oscillators
which, by assumption (H1), are in 2: w3 resonance. Accordingly, F* can be viewed as the
reduced phase space for these oscillators with respect to the resonant 2: w5 action of S*.
As it is shown in, e.g., Churchill et al. [11], this reduced phase space is homeomorphic

to §2. Furthermore, if k; and k; are relative prime positive integers with
—_—= — (3.3.12)

then F* will be a pinched sphere with a xq-order singularity at its north pole, and with
a kg-order singularity at its south pole (e.g., k1 = 1,2,3 would mean no singularity,
conical singularity, and cusp singularity, respectively). We summarize the observations

of this section in the following proposition.

Proposition 3.3.1 Suppose that ws > 0 holds. Then on any energy surface Ho = h
(with b > 0) of the integrable Hamiltonian system defined by Hg there exists an invariant

set M" defined by z; = 0, which is diffeomorphic to S3. The set M" is entirely filled
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with periodic orbits. Furthermore,

(z) Anyinvariant subset M C M" not containing the third normal mode N2 is normally

hyperbolic and connected to itself by a four dimensional homoclinic manifold W".

(22) The orbit space F* = M" /S of periodic solutions in M" is homeomorphic to a 2-
sphere with a ky-order singularity at its north pole, and with a ko order singularity

at its south pole (see (3.3.12)).

We note that invariant spheres similar to M" have been found recently in a large class of
Hamiltonian resonances by Hoveijn [35]. The methods we use in the following sections
can be used to study perturbations of those spheres as well if they admit a homoclinic

structure similar to W".

3.4 The “blown-up” normal form and the formulation of
the perturbation problem

The goal of this section is to introduce coordinates which are suited to the study of what
happens to the manifolds M" and W" in the normal form (3.2.9) under the perturbative

effects of the terms 821‘:’4 +-.-e"2H,.

Let us first introduce action-angle variables for the quadratic part H, of (3.2.9) letting

2 = V20 z = \/2De T, k=1,2.3, (3.4.1)

with the inverse change of variables T5: (I, $) +— (2,%). We apply a further canonical

change of variables

Y1 = ¢, K =1 4+ 213 + wsls,
Yy = ¢3 — w3y, K,y =13, (3.4.2)
z1 = 2Iysin ($2 — 2¢1), z2 = /21 cos(d2 — 2¢1),
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with the inverse coordinate transformation being T5: (K, %, z) — (I, ). In this final set

of variables our Hamiltonian (3.3.1) takes the form
Ho(z, K ) = K| + ca(K; —w3Ky — |2]|)z,. (3.4.3)
The corresponding Hamiltonian vectorfield is smooth and defined on the set
P = {(z,K1,%1, Ka,12)| ¢ € R, K € R, 9 € T2}, (3.4.4)

through the symplectic form w = dz; A dzy + dyp AdK, but it is related to system (3.3.1)

only in the domain

P = {(z, K1, 91, K2,2) € P| Ky — w3k >0, Ky > 0}. (3.4.5)

Our main goal with the sequence of transformations (3.4.1)-(3.4.2) is to “blow up”
the singularity of the reduced phase space. This is achieved, as we will see next, by
extending the transformations (3.4.1)-(3.4.2) to the domain [y = 0, in which case (3.4.1)
is not a diffeomorhism any longer and the angle variable ¢; is not well defined. Since M"
is characterized by I; = 0, we have to study the effect of this singular transformation
if we want to relate our later results on the perturbation of the blown-up normal form

(3.4.3) back to the original normal form (3.2.9).
Proposition 3.4.1 Suppose that ws > 0 is satisfied. Then the following hold:
(1) T5' o Ty Y (M) = D U M" where the set D" satisfies
D" = { (2, K1, 1, Ko, 42) € P2l +wska = h, laz] > 0, K1 = h, ¥ € T2}

hence it is diffeomorphic to the disjoint union of two five dimensional open discs.

The set M" satisfies

M = {(2,K1,¢1, K3, 1p2) € Plag =0, 2] +wsky = h, Ky =h,p€ T2}
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hence it is diffeomorphic to 5% x S1. Furthermore, M" is filled with periodic orbits
of (3.4.3), while D" consists of orbits of (3.4.3) positively and negatively asymptotic

to periodic orbits in M".
(1) The manifold W" = Ty o Ty Y (W) satisfies
W = { (2, K11, K2,92) € Pl2a =0, 27 + w3k < h, Ky = h, p € T?};

thus it is diffeomorphic to B3 x §' where B2 is the open unit ball in R3. Fur-
ther, W" is filled with a three parameter family of orbits positively and negatively

asymptotic to periodic orbits in M".

(22) Let mr: M — F' = M" /S be the quotient projection from M" to its orbit space

Fh, and let Q" be defined through the diagram

Mh 2L arh

| |7

Fho Q8
In other words, let Q" be the map between the quotient spaces induced by Ty o Ts.
Then F" is diffeomorphic to 5%. Moreover, if M} is a compact subset of M" which
does not contain the periodic orbits N} and N, then F" has a compact subset Fh
not containing N} = (Q")™! o 7p(NF) and N} = (Q")™' o 7p(NE), such that
Q" restricts to a kq-fold smooth covering map onto WF(M(;‘) on any of the two

connected components of F§ = mr(ME).

Proof: The proof of statements () — (22) is a direct computation based on the definition
of Ty and T3, which we omit. To prove (122) we first note that the change of variables

(3.4.1) puts the vectorfield corresponding to (3.3.1) to the form

I = e2al}/2Isin (261 — ¢),
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I, = —eal{\/2L;sin (2¢1 — ¢2),
Is = 0,

$1 = 1+ cav/2I;cos (261 — ¢s),
1L cos (261 — ),

o,
o -i-é:a\/m
$3 = ws. (3.4.6)

Straightforward calculations show that the periodic orbits in T *(M") (described by

I; = 0) can be labelled by the two parameters
1, 5. 5 h 2m
a=1I,= 5((]2 + pg) € [0, 5], ﬂ = w3¢2 — 2¢3 modwg,;;, (347)

which, combined with the definition of 73, gives a parametrization of F". The
parametrization is singular on 7g(N£) and 7p(NJ): all points of F* with o = 0 should
be identified with 7(N{) and all points with a = ~/2 should be identified with 7p( NJ)
(see Fig. 3.2). Using (3.4.2) and (3.4.7) we can see that on the set M”" the coordinates
(z, K,) and the parameters («a, 3) satisfy the following relationships:

v =1, Ky = h,

Yo = B/2twst /4, Kz = (h—-2a)/ws, (3.4.8)

z1 = +v/2a, zq = 0.
Factoring out the uniform rotation in the %; coordinate in the above equations is equiv-

alent to passing to the quotient space F"*. Performing this, we find from (3.4.8) that F"

can be identified with the set defined by the equation
.71? + w3Ky = h. (349)

But (3.4.9) represents a 2-sphere in the (z1, K3, 1) space which proves the first statement
of (222). Choosing a compact set M{ as in statement (222) of the proposition, (3.4.7) and

(3.4.8) show that F = mr(MP) has two components: one on the northern hemisphere
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(z1 > 0) and one on the southern hemisphere (z; < 0) of F*. We denote these two
components by A} and A3, respectively, and note that both can be globally parametrized

by the variables (K3, 12). From (3.4.2) we in fact obtain a coordinate representation of

Q" A§ U A2 in the form

Qo:Fg = AgUA; — mr(Mg)C F*,

. 1 T
(I&'Q, ’lﬁg) — ('2-(h - I(gwg), 2tpy — w3551gn .1'1), (3410)

which, together with (3.3.12) and (3.4.7) implies the second part of statement (222) of

the proposition. O

In Fig. 3.2 we show the parametrization of the orbit space F”* which we constructed
in the proof of the above proposition. We now rewrite the full normalized Hamiltonian

(3.2.9) in terms of the (z, K, ) coordinates to obtain
H(z, K, ye) = Ho(z, K) + 2 Hy(z, K, p2) + - - - + " 2 Ho(z, K, by). (3.4.11)

Note that the quantities listed in (3.4.11) do not depend on %, which follows from the
fact that the symplectic transformations defined in (3.4.1)-(3.4.2) preserve the bracket
relations in (3.2.10). The underlying idea of our study will be the following: the Hamil-
tonian (3.4.11) has an unbroken S! symmetry corresponding to rotations in the ¥
coordinate which allows a reduction to a two-degree-of-freedom system. For ¢ = 0 this
subsystem can be reduced further using the S symmetry of the Hamiltonian H in the
1p coordinate. Due to the poper choice of our coordinates both reductions can be carried
out by fixing the values of the actions K and K3, respectively. One then obtains that
the reduced phase space of the blown-up cubic normal form is just a two-dimensional
disk which is obtained by blowing up the pinched sphere of Fig. 3.1 (see Fig. 3.3). We

indicate in the figure the important fact that the flow on this new reduced phase space
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Identify with
M(N,)

(N;)

Figure 3.2: Parametrization of the orbit space F"

extends smoothly to the whole two-dimensional plane. Since for ¢ # 0 the symmetry in
the 1, coordinate disappears, for the analysis of the truncated normal form (3.4.11) we
only carry out a partial reduction with respect to the S symmetry in the ; coordinate.
This practically means considering the Hamiltonian system which derives from (3.4.11)

through the symplectic form
wr = dzy ANdzoy + dipy A dK 5, (3.4.12)
on the phase space
Ph = {(z,Ka,92) |z € R?, K € RY, ¢y € §1 1. (3.4.13)

For the invariant manifolds M”* and W" this reduction means a passage to the quotient

spaces F* and W"/S§', respectively. Since M" is entirely filled with periodic orbits,
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Figure 3.3: The effect of the blow-up transformation on the reduced phase space P,

the two-degree-of-freedom reduced system will have a 2-manifold of equilibria which
we identify with F*. This invariant 2-sphere will be connected to itself by a three
dimensional homoclinic manifold which we identify with W"/S. Any subset of F” not
containing the poles and the equator will therefore appear as a normally hyperbolic
2-manifold of equilibria which is connected to some other subset of F” through the
appropriate subset of the homoclinic 3-manifold W"/S. Based on (3.4.10), two relative
equilibria p; # py in F™\(rp(NF)Unp(NJ)) represent the same periodic solution in M™"

if and only if Q"(p;) = Q"(py), i-e., one of the following holds:

1. p; and p, lie on the same hemisphere of F", their K, coordinates are the same, and
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their 1, coordinates differ by some integer multiple of

~ T 2T
= —. 4.14
Pl (3.4.14)

2. p; and p; lie on different hemispheres of F", their K5 coordinates are the same, and

their 1, coordinates differ by some integer multiple of

)
Yo = Wiy = ﬂ'ml- (3.4.15)

We would like to find out what happens to F* and W" /S under the effect of higher
order normal form terms in (3.4.11). As the partially reduced problem is a two-degree-
of-freedom Hamiltonian system wich has a 2-manifold of relative equilibria with a ho-
moclinic structure, we expect that the energy-phase method of chapter 2 can be applied
in this context. However, as it follows from (z) of Proposition 2.2.1, F* is not normally
hyperbolic. In order to apply the energy-phase method, we will consider two disjoint
normally hyperbolic subsets of F* which appear as two 2-manifolds of equilibria with
heteroclinic connections in the system defined by (3.4.11) on P*. We will analyze this
system, but first discuss an appropriate heteroclinic version of the energy-phase method
in the next section. This will involve no new ideas compared to chapter 2 but the

formulation of some of the results will be slightly different.
3.5 The energy-phase method for heteroclinic manifolds

As in chapter 2, we consider two-degree-of-freedom Hamiltonian systems of the form
T = -]2D1-H0(z, I) + €J2D1.1q1(£11, I, 05;5),

I = —eDgH(z,1,¢;¢), (3.5.1)

¢ = DiHo(z,I)+eDHy(z,1,p;¢),
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on the phase space P = R? x R x S! equipped with the symplectic form w = dz; Adzo+
d¢ A dI. The basic smoothness assumptions on this system are the same as for system

(2.1.1) in chapter 2. This time, however, we make the assumptions

(A1) There exist I1,I; € R, Iy < I; such that for any I € [I1, 3] (3.5.1)%_, has
two hyperbolic fixed points, Z!(I) and z2(I), connected by a cycle of heteroclinic

trajectories, 2" (¢, ) and 2"2(¢, I), with

. hl _ . h2 _ =1
t-—l-i}’-nooa/ (t,I) - tl}inoo T (t7I) - (1)7
tli-rq-n whl(t’[) = tlil_n zh2(t,I) = ‘2(I).

(A2) For every I € [I1, 1]
DrHo(#(I),I)=0, j=1,2. (3.5.2)

It follows from assumption (Al) that system (3.5.1) possesses two, two dimensional

invariant manifolds (with boundary) defined as
A ={(z,I,p)e L| 2 = FI), T €[, L],p€ S}, j=1,2. (3.5.3)
These sets are the images of the annulus A = [[1, 3] x §* under the embeddings
g:A — P,
(I,¢) = (F(1),1,¢). (3.5.4)

Note that A} has a three dimensional unstable manifold W*(.A}) which coincides with
the three dimensional stable manifold W#(A2) to form a heteroclinic manifold W§. As-
sumption (A1) also shows that there exists another similar heteroclinic manifold in the

phase space, defined as W3 = W*(AL)NW*(A2). As a consequence of assumption (A2),
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the manifolds Aé are entirely filled with equilibria. Solutions of (3.5.1).=¢ falling in Wg

are heteroclinic connections between these equilibria. Again, we define the phase shifts
. +oo hi .
A(T) = ] DiHo(z(t, 1), ) di, j=1,2. (3.5.5)

Since, for j = 1,2, Ag is a compact normally hyperbolic invariant manifold, for small
¢ > 0 system (3.5.1) has a two dimensional invariant manifold A, which is C" e-close

to Aé, and is still a C" embedding of the annulus A through the map
gl:A— P,

(I, ¢) = (3L, 9). 1, 9) = (1) + 631, §3), 1, §). (35.6)
As we did in section 2.1, we let i2: . 47 — P be the inclusion map of AZ with ¢ > 0 and

note that for small ¢ > 0 and j = 1,2 (AL, (i)*w) is a symplectic 2-manifold with
(i)'w = (14 O(e))dp AdI,
on which the vector field (3.5.1) derives from the restricted Hamiltonian
HI = H|A! = ()" H = ho + eH + O(e?), (3.5.7)
with
ho = }IO|A6 = const.,
H(I,¢) = Hi(F(I),1,6;0). (3.5.8)

We again call ’Hj(I, ¢) the reduced Hamiltonian corresponding to the manifold Aé, and
consider it defined on the annulus A. We also adapt the definition of internal orbits from

chapter 2.

In the following we will give conditions for the existence of N-pulse heteroclinic orbits

connecting the two manifolds Al and Al to one another. An N-pulse heteroclinic orbit
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is negatively asymptotic to, e.g., AL, and it leaves a neighborhood of Al to enter a
neighborhood of the slow manifold .42, then passes back to a neighborhood of Al, etc.
Finally, after making N —1 Al — A2~ Al-type excursions, the orbit tends asymptotically
to some invariant set in 42. We will discuss the existence of such orbits under the

simplifying assumption

(A3) For any ¢ > 0 W*(AL) = W¥(A2), i.e., W2 possibly deforms but does not break

under the perturbation considered.

This symmetry assumption is not necessary for the general theory, but greatly simplifies
the statement of the results. Moreover, it will be shown to hold for the perturbation

problem outlined in the previous section.

The program of the heteroclinic energy-phase method described below is to predict
the existence of multiple-pulse connections between the slow manifolds AL and .A? using

the n-th order energy-difference function A"H: A — IR defined as
A"H(I, ) = H*(1,¢) = H' (I, ¢ = nA$ (1) ~ (n — 1)A¢*(I))

= Hy(2*(1),1,¢;0) = Hy(z'(I), 1,6 — nA (1) - (n — 1)A¢*(1); 0). (3.5.9)

As in the homoclinic case, we will need to study the relation of the zero set of (3.5.9) to
the orbits of the reduced Hamiltonian (3.5.8). To this end, we introduce the zero set V}*
of A™H:

Vi={U,p)e A|A"H(I,¢) =0}, (3.5.10)

and the transversal zero set

Zn = {(I,¢) € V' | DA™H(I, ) # (0,0) }. (3.5.11)
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We will also need the —(nA@ (I) + (n — 1)A¢?(I)) translate of these sets defined as
Vh=RTVE), 2" =TRYZL). (3.5.12)

Here R¥: A — A denotes the k-th power of the “heteroclinic” rotation map which we

define as the composition of “homoclinic” rotation maps (see (2.2.37)) as follows:

RFE=REoRE-L k>1, (3.5.13)
with
Ri:A — A,
(I,¢) — (I, ¢+ A UT)). j=1,2 (3.5.14)

It is again understood that R® = Ida:(I,#) — (I, ¢). For any internal orbit ! C A of

H! the definition of the pulse number is again
NAYHY =min{n>1|VEAy' =0, k=1,..,n—1, Z" 7' }, (3.5.15)

with M referring to nonempty transversal intersection. The definition of the resonant

pulse number
Nr(yH =min{n > 1|V*ny' =0, k=1,..,0-1,7y' C V"} (3.5.16)

also follows the definition given in (2.3.25). One can easily verify that if N = N(y!) < o0
then RY (') intersects an orbit y2 of H? transversally in the annulus A, such that the
two orbits are “isoenergetic,” i.e., H!|y! = H?|y;. Moreover, j = N is the minimal index
for R such that such a transverse isoenergetic intersection occurs. Also note that Ng =
Nr(v') < oo implies N(y') = co. In that case j = Ng(vy') is the minimum index for
which R7 maps 7! onto an orbit 42 of H? with the same energy. The heteroclinic version

of the energy-phase method predicts intersections of stable and unstable manifolds of
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internal orbits of the restricted Hamiltonians H! and !, based on the intersection of

RN (41) or RVR(y1) with 2 or 7', respectively.

Theorem 3.5.1 Let us assume that (A1)-(A3) hold. Suppose that for an internal orbit
74 C A of the reduced Hamiltonian H*
(Ad) N=N() <o,

AB) Letby € ZN N~} and by = RN (by). Assume that the orbit v2 C A of the reduced
0 0

Hamiltonian H? which contains by is an internal orbit with ZY M ~2.
+ W7o

(A8) If D, Hy points outwards on the heteroclinic cycle W' U W? of manifolds, we

assume that

hg =H'lvo < HIR*(74), k=1,...,N -1
If D, Hg points inwards on W' U W? we assume that

hy = H'|lvg > H*R*(75), k=1,..,N—1.
Then there exists ¢g > 0 such that fdr 0 < € < g9 the following are satisfied:

(x) There ezists an N -pulse heteroclinic orbit yN which is negatively asymptotic to an
internal orbit v € ALl and positively asymptotic to an internal orbit v2 € AZ2.
Moreover, (g1)~1(v1) and ~§ are CP~! e-close, and (¢%)~1(72) and 72 are C° ¢-

close. Ifv¢ is periodic, this latter statement can be strengthened to “CP~1 ¢-close.”

(1) yXN lies in the intersection of W*(y}) and W*(v2) which is transversal within the

energy surface {H = h} with h = H|y! = H|y2.
(12) Outside small neigborhoods of the manifolds AL and A% y is C' \/z-close to a set

YN = UH -y (3.5.17)

=1
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where y* are heteroclinic orbits of (3.5.1)c=q¢ such that

i W1 ifiis odd,
vc { W? if i is even. (3.5.18)

Furthermore, if a(y') and w(y') denote the a- and w-limit points of the orbit y',
then we have the following:

o(y**) = g2(Rf o RE(b1)), w(y™') = g2(R{™! 0 RE(b1)),

o(y) = g2(RE o R (b)), w(u™) = gk(RE o RE(h), (3:5:19)

with RY = 1d.
If, alternatively, we assume that
(A4’) N = Np(vd) < o,
and (A1) — (A3) and (A6) still hold, then for small ¢ > 0 we have the following:

(/) There ezist two N -pulse heteroclinic orbits, y~ and §Y, which are asymptotic in
negative time to an internal orbit v} € Al and is positive time to an internal orbit
72 € A2. The orbits v} and (gl)~'(v}) are C*~' e-close in A, while the orbits
18 = Rn(1d) and (92)71(v2) are CO e-close in A. If v} is periodic, this latter

statement can be strengthened to “C*~! ¢-close.”

(v') yN and GV lie in the intersection of W*(v}) and W*(~v2) within the energy surface

H = h with h = H|y} = H|y2.

(122) Statement (112) above holds for yY and a similar statement holds for N with an

appropriate basepoint b € 7.

Proof: The proof is based on the same ideas as the proofs of Theorems 2.3.1-2.3.2, hence

we will only sketch the main steps.
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The results in Lemma 2.2.4 hold for both .4} and A2 individually. Hence, for fixed energy

h one can define two sets of Poincaré sections, $27(h) and %4 (h), with the global maps

Gel o RPNh) — 2%(h),

G R (k) — T2 (R),
and local maps

Lt o RYN(h) — Zpt(h),

Ly? i RY*(h) — S2(h),

which are defined analogously to the corresponding maps in section 2.2. Similarly, one

can introduce the conjugate global and local maps,
Ghi Lhi:A— A, j=1,2

to follow the graph-projections of the intersections of W¥(y!) with the Poincaré sections

mentioned above. Again, these maps are symplectic (Lemma 2.2.4) and for the choice

o= % we have

ghi "WE R ohi W1, j=1,2
This time, we use the tracking map

Ty =GP o (L8 oGl o L7 oGl o o (LE 0GP o L2 0 1Y), (3.5.20)

N-1

to track the graph-projections of subsequent intersections of W¥(y}!) with the manifold
¥52(h). Given all these ingredients, the proof proceeds the same way as the proofs of
Theorems 2.3.1-2.3.2. Assumption (A3) ensures that if condition (A6) holds, then after
the trajectories in W*(y!) make their local passage near A2, they will be guided back

to X1 () along the unbroken heteroclinic manifold W2. a
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Figure 3.4: Double-pulse heteroclinic orbit between the manifolds A} and .42.

In Fig. 3.4 we show statements (z) — (22¢) of Theorem 3.5.1 with N = 2. As far as
the stability of individual heteroclinic connections is concerned, only the family of such

connections is structurally stable (see Remark 2.3.5) under general perturbations.

In the next section we return to the normal form Hamiltonian (3.4.11) and show how the

heteroclinic energy-phase method described above can be used to study its dynamics.
3.6 Whiskered tori and chaos in the normal form

In accordance with our discussion in section 3.4, we will first analyze the two-degree-of-

freedom subsystem
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z = J2D.’L‘HO($’I(2)+EJ2D.’L‘H1($1I(2’ '(;b?;'s)a
I'(2 = —5D¢2H1($7 -[(2’ ¢2;€), (361)

Yy = Dr,Ho(z,Ky) +eDrHy(z,1,;¢),
with

Ho(w, I(g) = (l(](l — w3k — |1}|2).’l}2, (362)

T
Hy(z, Ko, thase) = Ha(z,h, Koytha) + > 72 Hy(z, b K, 1), (3.6.3)
7=5

which derives from (3.4.11) on (P*,wg) (see (3.4.12)-(3.4.13) and note that in (3.6.1) we
rescaled the time by ¢). As we noted in the proof of Proposition 3.4.1, the reduction with
respect to the S symmetry in the v; coordinate reduces M" (which is diffeomorphic
to $% x S1) to its orbit space F* which is diffeomorphic to $2. Thus system (3.6.1)
possesses a two dimensional manifold of equilibria which is a 2-sphere and has a three
dimensional homoclinic manifold W" attached to it. We will consider two subsets of the
southern and northern hemispheres of F"* which will play the same role as the manifolds
of equilibria A} and A2, respectively, of the previous section. This will enable us to
apply the energy phase method and obtain information for ¢ > 0 small on the dynamics

of the system defined by the normal form Hamiltonian (3.4.11).

Fixing some small but arbitrary A > 0, one can easily verify that for K3 € [A, h/ws—A]

(3.6.1)%_, has two hyperbolic equilibria
Y (K2) = (=Vh — Kows,0), #%(K3) = (+vVh — Kaws, 0). (3.6.4)

Moreover, these equilibria are connected by three heteroclinic trajectories, z"1(t; K3),
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2"t (t; Ky), and zh?~(¢; K3) with

Jim ahl(t, Ky) = dim zh?H (1, Ky) = Jim 2" (1, Ky) = 7Y(KS),
dim a"(t, Ka) = lim 2" (t, K) = Jim 2 (8, 1) = #2(1),
{zhl(t’ 1(2)}?—3-—00 = {Cl?l I‘Tll <V h — Ii'2w37 Ty = 0 }7

{a"F (4, K2 = {z|2z2> 0,22 + 2% = h — Kows },

{2"(t, Ko)}2 oo = { 2|22 < 0, 22 + 22 = h — Kows }.

e )

Hence (3.6.1)Z_,, with its phase plane structure shown in the disk of Fig. 3.3, sat-

isfies assumptions (A1)-(A2) (see also (3.6.1)¥ above) with two possible choices for

the heteroclinic trajectory z”(I,$). Consequently, all the sets and quantities of sec-

tion 3.4 can be defined for system (3.6.1) with the substitution (I, ¢) — (K32, v2), and

(P,w) — (P",wgr). In particular, introducing
A=[\hjws—A]x 5,
we have two normally hyperbolic 2-manifolds

Ap {(z, K2,%2) € P |21 = —/h —w3Ky, 23 =0, (K3,¢2) € A},
{($7I(27¢2) € Py | Ty =+ h — WSI(Z’ I = 0’ (1(2’7/J2) € A}7

Il

p
Sw
1l

connected through the heteroclinic manifolds

Wo {(z,Ka,1h2) € P"||21] < Vh — w3k, &2 = 0, (Ko,9h2) € A},

Wit = {(z,Ko,the) € PP 22 + 22 = h —w3Ka, 23 > 0(Kyp,2) € A},

Wi = {(2,K9,1) € PP 22 + 22 = h —wsKy, 24 < 0(K3, ;) € A}

We show these invariant manifolds in Fig. 3.5. The phase shifts defined in (3.5.5) can
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Figure 3.5: The invariant manifolds of system (3.6.1) for ¢ = 0.
be computed to equal

2n

APLEL) =0, AYRE(K,) = £, = :J:w3:—2 =+ (3.6.6)

K1
where the + sign is valid for the phase shift on W2T, and the — sign is valid on WZ™.

Then the rotation maps in (3.5.13)-(3.5.14) take the form
Ry =1Idy,  RE(Ky 1) = (Kot £ %’l—r), RE=REY k>1. (3.6.7)
The restricted Hamiltonians H. defined in (3.5.7) take the form
HI(Ka, 1) = (Ho(z, Ka) + eHy(z, K3, b5 €))| AL = ho + eH (K2, 12) + O(c?), (3.6.8)
with the reduced Hamiltonians being specifically

HI(Kq,1p2) = Hy((=1YV/h — Kows, 0, h, Ky, 1b3), §=1,2. (3.6.9)



118

Note that by our discussion after Proposition 3.4.1 (see (3.4.14)-(3.4.15)), for any k € Z

we have

HI(Kpthy + ki) = HI(Kayh), j=1,2 (3.6.10)

HY (K2, 102) = HA(K2, 2 + ki), (3.6.11)

To satisfy assumption (A3) of section 3.4 we require the following.
(A3’) The resonant module M has no element of the form (1, ng, n3) with |ng|+|n3| = 3.

An easy calculation shows that assumption (A3’) implies the quartic truncation H* =
Ho + €2H4 of (3.2.9) to have an invariant 3-sphere M which lies in the transversal
intersection of the energy surface H* = h and the subspace z; = 0. Applying the
transformation T o 75! to this set, one obtains two sets, M" and D, with the same
properties as M” and D" in Proposition 3.4.1. But W2t U W2~ = D"/S! implying
that both W%t and W2~ persist unbroken under the effect of terms deriving from i, =
Hi|e=0, hence (A3) holds for system (3.6.1).=0. Note that (A3’) is always satisfied if

is odd.

To apply the energy-phase method we need to compute the heteroclinic energy-
difference function as defined in (3.5.9). In the case of system (3.6.1), using (3.4.14)-

(3.4.15), (3.6.10)-(3.6.11), and (3.6.6), we can write

N — i . i K
AlH(I(Z’ ’('bz) = H4( h — I(2w3’ O’ h” ‘KZ’ 1/)2) - H4( \% h — I(2w3a 07 ha 1‘25 ’¢’2 + K 2)7
1
(3.6.12)

AYH(K4,4,) = 0. (3.6.13)
These equations and (3.5.10)-(3.5.12) immediately imply

Vi=V: Zzi=2zL, Vi=Vi=A4, Z1=72=4. (3.6.14)
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Then (3.5.15), (3.5.16), and (3.6.14) show that for the pulse numbers N and Ng of any

internal orbit y! C A of H!, the following hold:

Fact 1 N(v1)=1and Ng(y1) = o if y1 0 Z2,

Fact 2 N(v1) = o0 and Ng(y1) =2ify'n ZL = .

Based on the results of section 3.4, this shows that if ZL = Z_ll_ # 0, then almost all
internal orbits in Al and .A? will participate either in transverse single-pulse heteroclinic

connections or (not necessarily transverse) double-pulse connections.

We are now ready to apply Theorem 3.5.1 to (3.6.1). We will, however, state the
results immediately in terms of the full normal form Hamiltonian (3.4.11) defined on
(P,w). This can be done using the fact that for ¢ > 0 any invariant set S in the phase
space (P",wg) indicates the existence of an invariant set S* in the Ky = h hypersurface
of the phase space (P,w), such that §* is diffeomorphic to $* x S!. Note that for small
fixed ¢ > 0, the normally hyperbolic manifolds AZ C P" of (3.6.1) give rise to normally
hyperbolic invariant 4-manifolds B2 C P of the full normal form (3.4.11), which are given

by the two C”~1 smooth embeddings

GIRYx §'xA — P,

(I§’1,¢1,I(2,¢2) = (I(bwlagg(I(%wQ))’ j=172' (3'6-15)

Although it is not hyperbolic, Bg still exists as a smooth limit of manifolds, with the
corresponding embedding G’é Rt x S1x A — P, j =1,2. To facilitate the statement

of the results, we introduce the set

Eeo(hy, ha) = { (2, K1, %1, Ko, t0) € P|Ky = hy, H(z, K, ;€)= hy }. (3.6.16)
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We then have the following theorem as an immediate application of Theorem 3.5.1 to

system (3.6.1) with the results interpreted for the full normal form (3.4.11).

Theorem 3.6.1 Suppose that assumption (A3’) is satisfied and for some h € Rt

(a) Z} = ZL # 0, where Z} = Z! is the transverse zero set of AVH defined in (3.6.12).

(8) 7! and 4% are internal orbits of the reduced Hamiltonians H' and H? (see (3.6.9)),

respectively, and both intersect Z_}_ transversally at p = (1?2,152) € A.

Then there exists ¢g > 0 and an open set U C RY with h € U such that for 0 < ¢ < &g

and K1 = h € U the following are satisfied:

(x) Let I: Bl — P be the inclusion map of BL. Then (BI,(I)*w) is a symplectic
4-manifold for j = 1,2, on which the (integrable) dynamics is generated by the

restricted Hamiltonian H defined in (3.6.8).

(12) The Hamiltonian (3.4.11) has two two dimensional invariant manifolds, T} and
T2. If v9 is periodic then T7 is C*~! diffeomorphic to T2, and is C*~! e-close
to the set Gi({h} x §' x 49). If v9 is not periodic, one has to replace “C°~!
diffeomorphic” with “homeomorphic” and “C*~! ¢-close” with “C° e-close” in the

above statement.

(12) T has a three dimensional unstable manifold W*(7T}), and T2 has a three dimen-
sional stable manifold W*(T2). W¥(T1) and W*(T2) are injective immersions
of RT x S! x 4! and R* x S x 72, respectively. Furthermore, they intersect

transversally within E(h, H|T}) in a two dimensional heteroclinic manifold Yy.

Suppose that assumption (o) above holds together with
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(B") 7' and v? are internal orbits of the reduced Hamiltonians H' and H? respectively,

with R%(y1) = 42 for some choice of the sign in (3.6.6).

Then statements (2) — (v2) still hold. In contrast to (w1), however, there exist two double-
pulse heteroclinic manifolds, Y} and Y2 lying in the (not necessarily transversal) inter-

section of W(T}) and W*(T}).

Proof: The theorem is an immediate application of Theorem 3.5.1. We only note that
assumption (A6) of Theorem 3.5.1 is always satisfied for one of the two possible choices
for the sign in (3.6.6), i.e., for one of the two possible definitions of the rotation map R

in (3.6.7). O

In most cases the internal orbits y! and 42 in assumption («) of Theorem 3.6.1 are
members of families of periodic orbits in A. It may also happen that they map to the
same set of points in the orbit space F” under the map Tho07T3 (see, e.g., the next section
for the case of the 1:2:2 resonance). Thus transverse heteroclinic connections between
their perturbed counterparts actually yield transverse homoclinic connections in system
(3.2.9). For this case, using Theorem 3.6.1, the Smale-Birkhoff homoclinic theorem

(Smale [66]), and a theorem of Moser [59], we obtain a result similar to Theorem 2.3.2.

Corollary 3.6.2 Let us suppose that the assumptions (a) — (8) of Theorem 3.5.1 hold

and v and v? are periodic orbits with R*(y1) = v2. Then for ¢ > 0 small enough

(z) T} and T2 are members of two-parameter families of whiskered 2-tori. The whiskers

W*(T}) and W*(712) intersect transversally within E.(h, H|T}).

(e2) System (3.2.9) does not possess any nontrivial analytic integral other than H and

K.
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(12) On energy surfaces O(e) close to the surface H = h € U, an appropriately defined
Poincaré-map of system (3.2.9) has invariant Cantor-sets on which it is homeo-

morphic to a full shift on N symbols.
3.7 An example: the 1:2:2 resonance with detuning

In this final section we show an example to illustrate the results of chapter 3. Qur goal
is to convince the reader that using our methods one can quickly and easily uncover the
geometry of a given problem and gain insight into the diverse structure of chaotic sets in
the corresponding Hamiltonian normal form. We will also visualize the objects we find

through the numerical simulation of a related four dimensional symplectic map.

3.7.1 The geometry of the normal form

We consider a Hamiltonian system of the form (3.2.1) and assume that the frequency
vector in (3.2.3) is @ = (1,2,2). As we noted earlier this system satisfies assumption
(H1) of section 3.2, but it does not satisfy (H2) unless we assume a weak Zg symmetry
at cubic order in the original coordinates (g3, ps). By weak symmetry we mean that
the terms breaking this symmetry are less in order of magnitude than those obeying
the symmetry (see (H2)(12) of section 3.2). As we pointed out, however, in the case of
the 1:2:2 resonance, one can apply an additional linear canonical change of coordinates
to put the Hamiltonian to the form (3.2.9) without assuming the weak Zg symmetry
mentioned above. For simplicity, we suppose that the fourth order normalized terms

contained in A4 of (3.2.9) vanish, and we employ a weak detuning of the form

f[(z,z; 5): 61122|2+(52l2’3|2, 41,62 € R, (371)
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as O(e?) perturbation (see Van der Aa and Verhulst [70]). Physically, we are interested
in what happens to a system of three weakly nonlinear coupled oscillators in 1:2:2

resonance if we slightly change this frequency ratio.

Under the above assumptions, performing the change to complex coordinates as in

section 3.2, we arrive at the normalized Hamiltonian
H=Hy+eHs+e*Hy+2Hs+ ...+ "7 2H,,
H, = %|zl|2 + | 22?4 | 23], Hs = Re(ay23%; + ay22%3), ay,a; € RT,
Hy=H,; = 61122]2 + 52|23|2, 61,062 € R. (3.7.2)

As in (3.2.9), one usually has to change the phase of the complex variables to make the
constants a; and a; positive real. Following Kummer [50] (see also Cushman [13]) we

now introduce a symplectic change of variables 2/ = T4z with

\/a% + a% 0 0
1
T/ = —— 0 a; —ay |. (3.7.3)

\/a% + a%
0 ar ay

Dropping the primes and using (3.7.3), we can rewrite the Hamiltonan (3.7.2) as
H=Hy+ecHs+e*Hy+2Hs+ ...+ ¢ *H,,

1 —
Hy = S|af +12f + 2, Ha = /ol + adRe (:322),

~ 1

H4 = Hd = —5—(12-(61|a122 - a2z3|2 -I- 62](1222 + a1z3]2), (374)

aj + a3

which, as we announced, is of the form (3.2.9) for a = 2y/a? + a2. We now apply
the transformations listed in (3.4.1)-(3.4.2) to obtain the form (3.6.2)-(3.6.3) for our
Hamiltonian with the concrete perturbation term

1

T2
aj + a3

+ 2a4q (12(52 - 61)\/ 2_[(2(1171 sin ¢2 + x5 cos ’¢72)]. (3.75)

Hy(z, K, 99 6) = [(a}8; + a262)|z|® + 2(6102 + 62a2) K
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Everything we have discussed regarding the geometry of system (3.3.1) immediately

holds for the Hamiltonian
1
Hy = -2'|21|2 + |22l2 + IZ3'2 + 6\/&% + a%Re (2’1222). (376)

In particular, the Hamiltonian system generated by (3.7.6) has invariant 3-spheres on
every level set Hy = h (see Proposition 3.3.1) with corresponding four dimensional
homoclinic manifolds. The only thing to point out is that, as a consequence of the
transformation (3.7.3), the normal modes N and N of (3.7.6) typically do not agree
with the normal modes N} and N2 of the original Hamiltonian (3.7.4) truncated at cubic
order. Using (3.4.1)-(3.4.2),(3.7.3), and the notation of Proposition 3.4.1, we find that

for j = 1,2 N} = (Q")~! o 7 (N}) has a copy in A} given by

21 = (=1 a;vVh/, [a} 4+ a%, K;=alh/(a?+ d}), (3.7.7)
" o = (signzq)7/2,

and N} = (Q") ™' o mx(N2) has a copy in A? given by

Ty = (—1)ja2\/ﬁ/\/a% + “%’ Ky = aih/(a} + a), (3.7.8)
2 = 0, 2 = —(signzy)m/2.

Using (3.4.7), (3.4.8), and (3.7.7)-(3.7.8) above, we see that for a; = 0 we have
N = N, N§ = NP, and for ay = 0 we have NV = N, N = N}, For general values
of a; and a3, however, the normal modes of Hy 4+ ¢H3 in (3.7.2) are different from the
normal modes of (3.7.4). In particular, we can choose A > 0 small enough in (3.6.5) such

that each of AV} and N} has one copy in each of the manifolds A} and A2, respectively.

Since (3.3.12) yields k1 = kg = 1 for the 1:2:2 resonance, (12) of Proposition 3.4.1
tells us that each of /(/'2’1 and /\7:;Z has ezactly one copy in each manifold ,42, (Q" is a
diffeomorphism). We also see from (22) of Proposition 3.4.1 that the orbit space F" is

diffeomorphic to S2. Finally, one can infer from (3.4.14)-(3.4.15) and (3.7.7)-(3.7.8) that
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for a3 # ag, N and N} form heteroclinic cycles with two other periodic solutions in Mp
through their stable and unstable manifolds. In the exceptional case of a; = ay, they

form heteroclinic cycles with each other.

3.7.2 Chaos in the 1:2:2 resonance

We now turn to the application of our results in section 3.6. For this, we first compute

the reduced Hamiltonians defined in (3.6.9). Based on (3.7.5), an easy calculation gives

. 26, — 6 : ,

HI(Ky, a3 b, 8) = izl—ﬂg—)[(ag—a§)1(2+(—1)1a1a2,/21(2(h - 2K,)sinty), j=1,2,
1 2

(3.7.9)

where we have dropped the constant terms. One can now directly verify the relations

(3.6.10)-(3.6.11) for our example with 1y = 27 and ¥, = 7 (see also (3.4.14)-(3.4.15)).

We feel that one of the advantages of the methods we used so far is the simplicity
of the calculations and the arising quantities. For instance, it is quite simple to analyze
the reduced Hamiltonians given in (3.7.9) and sketch their phase portrait, as we have
done this in Fig. 3.6 for fixed parameters aq # az, h # 0, and §; # é2. As it follows
from (3.6.11), we can obtain the phase portrait of 2 simply by rotating this figure by
¥y = m. The reduced Hamiltonians are not smooth at the center and on the perimeter of
the circle K = h. The smoothness problem at the center of the circle, which corresponds
to the periodic orbit AJ', comes from the usage of the polar coordinates (K2,v2) and
of purely technical nature. The lack of smoothness on the boundary is a consequence
of the degeneracy of the periodic solution N, which caused the unperturbed 3-sphere
M" to be nonhyperbolic. We also remark that, as one can verify from (3.7.7)-(3.7.9),
the two elliptic equilibria of Fig. 3.6 are just the relative equilibria ./\72h and A~/'3h which

correspond to the “real”normal modes NQ’Z and N h. respectively.
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Figure 3.6: The phase portrait of the reduced Hamiltonian H' for a; = 3, a3 =4, 6; = 1
and 6, = 2.

To be consistent with section 3.6, we fix a small A > 0 and consider the reduced
Hamiltonians of (3.7.9) defined on the annulus A defined in (3.6.5). According to our
definition given in section 2.2, all orbits in Fig. 3.6 not intersecting the boundaries of A

are internal orbits for H’.

Since elliptic equilibria of one-degree-of-freedom Hamiltonian systems are structurally
stable, and the reduced dynamics is a first order approximation of the Hamiltonian
dynamics within AZ, we conclude that the two “real” normal modes of (3.7.4) survive
the perturbation caused by the detuning and become elliptic within B for h,e > 0 (see
(3.6.15)). Also, applying (22) of Theorem 3.6.1, we obtain that they are surrounded by

one-parameter families of 2-tori 77 € E(h, H|T?), which appear as periodic solutions
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surrounding the equilibria in Fig. 3.6. This family of tori within B! are bounded by
a two dimensional cylindrical homoclinic manifold connecting the relevant copy of the
surviving periodic solution N} to itself. Qutside this surface, we have another one
parameter family of 2-tori in Bé which shrink to the degenerate periodic orbit N:f (see

Fig. 3.6).

We now explore the geometry associated with the stable and unstable manifolds
(guaranteed by Theorem 3.6.1) of internal orbits. Using (3.6.12)-(3.6.13) and (3.7.9),

the first and second order energy-difference functions take the form

— 6
AYH(Ko, a3 b, §) = ﬂﬁ—%——”fﬂ\ [2K3(h — 2K) sin s,
aj + a3
A’H(Kq, 93k, 86) = 0, (3.7.10)

with the corresponding zero set (see (3.6.14))

Z' = Zy =7 =V =V = {(Kant2) € Al = 0,7}, 6 # b,
72 = 7% =4,

Vi = VZ=4, (3.7.11)

which are sketched in Fig. 3.6. We see that internal orbits from the outer family
of periodic orbits intersect transversally. Any such periodic orbit ! has an identical

counterpart 42 in the phase portrait of H? with
R(7Y) = Ra(7h) = 72 (3.7.12)

Furthermore, both v¢ and 72 intersect Z! transversally at the same points in A. Hence,
according to Theorem 3.6.1, for fixed Ky = h we have a one parameter family of whiskered
2-tori in BL and another such family in B2. The stable and unstable manifolds of the

members of these families intersect transversally in two dimensional sets Y, and Y!
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described in (12) of Theorem 3.6.1. Using (3.7.12) together with Corollary 3.6.2 we
obtain that in the normal form (3.7.2) there exists a one parameter family of homoclinic

whiskered 2-tori with associated Smale-horseshoes, making system (3.7.2) nonintegrable.

We now fix some & > 0 and denote the Poincaré-map of system (3.7.4) for the cross
section Ky = h,9; = 0 by P*. The invariant manifolds of this map coincide with those
of system (3.6.1) with Hy given in (3.7.5). In Fig. 3.7 we indicate how the intersection
of whiskered tori of the full normal form appears in terms of the invariant manifolds of

the Poincare-map Ps". From the figure one can readily understand why the zero set Z!

Ko

v
Za S

Figure 3.7: Transverse homoclinic orbits for the map P’

defined in (3.7.11) consists of two disjoint ¢ = const. lines. To confirm this, we also
present a typical result of the simulation of the map P! in Fig. 3.8 (based on the iteration

of the continuous system (3.6.1)). In Fig. 3.9 we let the manifolds evolve further in time.
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Figure 3.8: Projection of invariant manifolds of the map P! to the space (z1, K2, v2)
(a7 = 3, a3 = 4,86 = 1, 6 = 2, ¢ = 0.1. Energy of 7! = 0.082, energy
conservation=10"12, number of iterations=6500, stepsize=.001)

Here, of course, the apparent self-intersection of the manifolds is a consequence of the
fact that the trajectories intersect the domain on which the projection to the (K3, 12, z1)

subspace of P fails to be injective.

Studying further, we notice that the family of internal periodic orbits surrounding the
centers do not intersect Z! (§; # 68;). By (3.7.12) above, assumption (3') of Theorem
3.6.1 is satisfied for these orbits; hence we obtain that outside some neighborhood of
the "real” normal modes, N} and N, system (3.7.2) has a one-parameter family (h
is fized) of 2-tori which have two dimensional double-pulse homoclinic manifolds, Y.}

and Y2, described in Theorem 3.6.1. We did not attempt to draw the full geometry
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Figure 3.9: Same as Fig. 3.8 with energy conservation=10"° and number of itera-
tions=7500 4

corresponding to this family, but picked one such torus of the iterated Poincare-map in
Fig. 3.10. As one can see, the double-pulse manifolds are apparently results of transversal
intersections, which suggests the presence of Smale-horseshoes in their neighborhoods.
This illustrates how the missing claim of transversality in Theorem 3.6.1 can be made

based on the results of simulation of controlled precision.

To summarize, we have seen that in the case of asymmetric detuning (61 # 82),
system (3.7.2) exhibits a rather rich dynamical behavior in the neighborhood of the 3-
sphere M" for any h > 0. If we start solutions close to the “real” normal modes Nﬁ’“ and
Né‘, we will experience the effect of the 2-tori with double-pulse homoclinic manifolds.

Moving further energetically from the normal modes, we become under the influence of
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Figure 3.10: The creation of double-pulse homoclinic orbits for the map P (a; = 3,
ay = 4, & =1, 6 = 2, ¢ = 0.1. Energy of y!=0.139, energy conservation=10"9,
stepsize=0.001, number of iterations=7900)

the whiskered 2-tori with simple homoclinic orbits. This gives us information about how
the domain of irregular motions of the resonant normal form is structured into regimes
with different types of chaos. Passing the homoclinic manifold of NJ, which separates

these two regimes, we experience a change in the topology of horseshoes, and related to

this, an intensification of chaos.

3.8 On the persistence of invariant manifolds under the
effect of the “tail” of the normal form

In this chapter we used the energy-phase method to study the dynamics in a wide class

of three-degree-of-freedom resonant normal forms. We now make some comments on the
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relation of these results to the dynamics of the full unnormalized Hamiltonian system

(3.2.1).

Based on the results showing hyperbolic manifolds of 2-tori for the normalized system,
one might be tempted to say that since “hyperbolic sets persist under perturbation,” all
the complex geometry described above is present in the full system (3.2.1). Though we
are convinced that the second part of this statement is close to being true, we point out
the weakness of the argument given in the first part. The problem is that the “tail” of
the normal form (i.e., terms of order bigger than five) embodies a perturbation of fized
order on the hyperbolic structures, which themselves are weakly hyperbolic only. This
means that if the tail is of order O(£3) for small ¢, then the contraction and expansion
rates near the hyperbolic manifolds of tori we found are of order O(g?). If we want to
consider “small” perturbations, we obviously have to decrease ¢, but this also decreases
the strength of hyperbolicity of the manifolds we would like to see to persist. Therefore,
the usual persistence results for normally hyperbolic invariant manifolds of Hirsch et al.
[29] or Fenichel [23] do not apply immediately. Related problems arise in local bifurcation
theory or in the method of averaging when one is interested in the preservation of weakly
hyperbolic periodic solutions or tori. The case of periodic solutions can be solved by the
application of the implicit function theorem to the fixed point of an appropriate Poincaré-
map (see, e.g., Iooss [36], Guckenheimer and Holmes [27], etc.) and one can also gain
control over the persisting (weak) stable and unstable manifolds. There are also results
available for weakly hyperbolic tori (see Iooss [36], Sacker [62] with an application in
Scheurle and Marsden [64], and Kirchgraber [41]). Unfortunately, the tori we construct
are not normally hyperbolic, because they lie in families of whiskered tori, thus only
the family itself, i.e., the manifold of tori, is hyperbolic. There seems to be little known

about general weakly hyperbolic invariant manifolds, although the methods of de la Llave
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and Wayne [52] applied to a small “patch” on the manifold of tori should go through
to prove the persistence of some of our double-pulse homoclinic tori. We also have to
mention the approach of Delshams [15] pointing in this direction, which appeals to a
global linearization result of Hirsch et al. [29] and, if applied to our family of tori, gives
a continuous persistence result with no extra effort. However, we prefer to avoid using
this argument because we would loose even differentiability for the surviving objects,
and would have no control over transversality of the whiskers anymore. Although it will
not be detailed in this thesis, one can solve the problem of persistence using an idea of
Kopell [43] giving uniform upper estimates for the Liapunov type numbers of Fenichel
[23] which are used in persistence theorems of (strongly) hyperbolic invariant manifolds.
Therefore, the whiskered tori we constructed for the normal form are indeed present in

the original system.

One more question we would like to address briefly is that of the Arnold-diffusion
(Arnold [4], Arnold et al. [5]) in the class of resonant Hamiltonians we considered.
Since the whiskered tori we construct on the level surfaces Hy = const. are energetically
isolated from each other, we cannot conclude the existence of transition chains created by
the transversal intersection of whiskers of different tori. In the full system this energetical
isolation of the surviving whiskered tori does not exist anymore ( H, is not a first integral
anymore), and the whiskers of tori originally lying on different level surfaces of Hy do
intersect generically. However, these secondary intersections (not captured by the normal
form) are results of ezponentially small splittings of asymptotic surfaces. This is not
surprising since the drift created through the tangles of these secondary intersections have
to obey Nekhorosev’s general estimates (Nekhorosev [61], Arnold et al. [5]) as worked
out in Lochak [53] for perturbations of resonant linear oscillators (see also Benettin

and Gallavotti [6] for the case of nonresonant oscillators). But this also means that
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establishing the existence of Arnold-diffusion in the full system (3.2.1) requires special
methods. Related results exist for rapidly forced one-degree-of freedom systems (Holmes
et al. [33], Delshams et al. [16]) which can be applied to normal forms of two-degree-
of-freedom Hamiltonians (Holmes et al. [33]). We also mention the paper of Churchill
and Rod [11] which proves the existence of homoclinic and heteroclinic orbits in rapidly
forced symmetric systems without control over the transversality of these orbits. Besides |
the fact that these techniques are really worked out only for the case of the rapidly forced
pendulum (except for Churchill and Rod [11]), in their present form they do not apply
to three degrees of freedom. Hence, the other issue which needs to be worked on, if one
wishes to use the results of this paper towards Arnold-diffusion, is that of the treatment
of small splittings for multi-degree-of-freedom systems. Some results pointing in this
direction were announced recently in Chiercia and Gallavotti [9] for a class of Hamiltonian
systems with symmetry consisting of rotators and pendula. See also Lochak [53] for a

generalization of the classic example of Arnold [4].
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Chapter 4

Multiple-pulse homoclinic orbits
in the truncated driven nonlinear

Schrodinger equation

In this final chapter we demonstrate another application of the energy-phase method
to a two-degree-of-freedom Hamiltonian system arising from a two-mode truncation of
the driven nonlinear Schrodinger equation. This problem yields a circle of equilibria
which enables us to apply the results of section 2.4 for multiple-pulse phenomena near
resonance bands. Using the full power of our method, we will establish the existence of
jumping multiple-pulse orbits with arbitrarily high pulse numbers. We will construct a
layer-sequence, each layer containing internal orbits of the perturbed system with the
same pulse number. As it will turn out, these layers form a fractal structure. This high-
pulse homoclinic fractal structure manifests itself as stochastic “jumping” in the phase

space in the truncated system, a feature numerically observed in the full PDE.
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4.1 Derivation and basic properties of the two-mode
truncation

The example we will study originates from the perturbed sine-Gordon equation
Uy — Ugy +sinu = e(—& + Atygy + T sinwt), (4.1.1)
with boundary conditions
1 1
u(z = —§L,t) =u(z = §L,t), u(z,t) = u(—z,t). (4.1.2)

In eq. (4.1.1) welet 0 < ed << 1,0 < ¢|A] << 1,w =1 — ed. The constants L and @,
and the perturbation parameter ¢ are all positive. System (4.1.1) has been the subject
of a series of papers started by the study of Bishop et al. [7]-[8]. For small amplitudes

and frequencies close to 1, one can seek a solution of (4.1.1) in the form
ue(z,t) = 2Ved[B(X, T)e™t + B(X,T)e™ ™" + O(¢), (4.1.3)

with X = 2e@2 and T = e®t. Substituting (4.1.3) in (4.1.1) one arrives at the

perturbed nonlinear Schrédinger equation
—iBT-]-BXX+(|B|2—1)B=€(i0ﬁB-—iABX)(+iI_‘), (4.1.4)

with & = 2¢5a, A = A, and ' = 8¢305T, X € [-1Lx,1Lx], and Ly = v2¢&5L. Based
on numerical experiments, Bishop et al. found that much of the apparent chaotic be-
havior of system (4.1.1) is already captured by a two-Fourier-mode truncation of (4.1.4).

Inspired by this, they assumed a solution of (4.1.4) of the form
1
V2

which, after one substitutes it into eq. (4.1.4) and neglects the higher order Fourier-

_271'

B(X,T) = =1

c(T)+b(T)coskX, k

modes, yields the equations

_ié+ (%W + %w]? ~1)e+ %(CBJF be)b = icac + ieT,
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¥ 1 3 1, - )
—tb+ (510]2 + Zlb|2 —(1+k*))c+ E(Cb + b¢)c = iefb, (4.1.5)

with T’ = \/§f and 8 = a + Ak?. This two-mode model carries an essential feature of
the underlying PDE: it is integrable for ¢ = 0. The integrability of (4.1.5) for ¢ = 0 is

best revealed by the coordinate transformation
c=Te™ ™, b= (z;+ ifl‘g)e_iqs,

(used in Kovacic and Wiggins [44]) which puts eqs. (4.1.5) in the form

1
& = —kizy — éwfaxz +-aj—¢|T 22 sing + Bz | ,
4 4 2l — 22 — 22
iy = (k* — 2Dz + Zz? + ?’-xlmg +e|T L sin ¢ — fza| ,
4 4 2[ — 22 — 22

I=—¢ [I\/?I——aff — 22 cos¢+(ﬂ—a)(z%+a:%)+2a]] ,

p=T—-1+2%- gr—l-—- sin ¢. (4.1.6)
2f — 2% — 232

Kovaci¢ and Wiggins [44] studied system (4.1.6) under the assumption a # B which

means unequal damping for different modes (A # 0 in (4.1.4)). Using singular perturba-

tion theory and a special Melnikov-type method, they showed that for ¢ > 0 sufficiently

a )5} a2 @
- .13, =~ =-7.924/1-2= —1.14—, 1.
T < 0.13 T 7.9 2[‘ T (4.1.7)

system (4.1.6) has a Silnikov-type orbit homoclinic to a fixed point (with corresponding

small and

horseshoes) in a resonance band (see below). However, their methods indicated no such
behavior for the case a = 3 studied by Bishop et al. In [28] we took a different viewpoint
and considered the Hamiltonian limit & = § = 0 (no damping). The reason for that
was the expectation that the dynamics of the limiting problem is more accessible to

geometric methods. Although some of the delicate Hamiltonian structures are destroyed
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by dissipative perturbation, for small ¢ one will still recover motions following their
Hamiltonian limits for long times. Also, this way one can give up the restriction a # 3
and replace it by the assumption that o and § are sufficiently small, i.e., the damping

is small compared to the forcing in eq. (4.1.4).

Following this program, we found various orbits homoclinic to periodic solutions which
are created by the perturbation near the resonance band mentioned above. These orbits
exist generically and, in contrast to (4.1.7), their existence is not confined to a mea-
sure zero set of the parameter space. (In other words, one does not need to embed the
system in a one parameter family to obtain such orbits.) Moreover, one obtains a two
dimensional manifold of transverse homoclinic orbits which has more influence on the
near-resonance dynamics of system (4.1.6) than a single homoclinic orbit. The short-
coming of our analyis was that we could not describe the dynamics on all energy levels
close to the resonance: our methods did not show homoclinic behavior for a certain set of
periodic orbits. This set becomes large for certain ranges of the parameters (see below);
hence its effect can not be neglected. In the following we describe what happens near

this set to obtain a full picture of the chaotic dynamics of (4.1.6).

4.2 The analysis of the Hamiltonian limit of the truncated
problem

First note that for @ = # = 0 system (4.1.6) is of the form (2.1.1) with the parameter

p=(k,T) € (0,v/2) x R and with the Hamiltonians

1
L lz‘f — ngw% + -1—w§ + (I - %kz)a:% - 51\721‘%, (4.2.1)

1
Hy = —
0= 9 16 8 16

and

Hy = T4/2I — 2% — 23 sin ¢. : (4.2.2)
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Ome can also check that (4.1.6)Z_, has a hyperbolic fixed point at (z1,z2) = (0,0) for all
I> '“2—2, which is connected to itself by a pair of homoclinic orbits with D, Hy pointing
inwards on them. Consequently, system (4.1.6).=o satisfies our hypothesis (H1’) in
chapter 2 (as well as (/1)) and possesses two symmetric three dimensional homoclinic
manifolds, Wi and W3’ of the type as those of Fig. 2.9 (see [44]). As one can verify

from (4.1.6)c=o, the normally hyperbolic two-manifold
Ao={(z,1,9) e Plz=z°(I;u) =0, T € [I1, )], € S§'}, (4.2.3)

with
k‘2
‘2—<11< 1<,

contains an isolated circle of equilibria satisfying I = 1; hence our hypothesis (H2a) in
chapter 2 holds for system (4.1.6) with I, = 1. Note that as a result of the discrete

symmetry (z,I,$) — (—z,I,¢), Ac and Ag are, in fact, identical. This implies that

ge=gotA — P,
(I,¢) ~ (0,1,9). (4.2.4)

Furthermore, both homoclinic manifolds Wd" and W, admit the same constant phase

shift
-1 k 2 -1 Tk ) _ i L
IV B (75p) + Frtanh™ () -7, if0<h<t, (4.2.5)
2tan~! (@) + -\72-—7-ta,nh‘1 ( 2;,5) , if % < k<2, o

which is plotted in Fig. 4.1 as a function of the parameter k. Consequently, system
(4.1.6) also satisfies our hypothesis (H3’) is section 2.4, and we expect Theorems 2.4.1-

2.4.4 to be applicable.

Using eq. (2.4.6), we obtain from (4.2.1)-(4.2.3) the reduced Hamiltonian

- 1
H(n, ¢ 1) = 50* + V2l sin g, (4.2.6)
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Ad

Figure 4.1: The phase shift A¢ for system (4.1.6).=¢ as a function of the parameter k&

which is defined on (A,&) with some

0 > 2/ V2r. (4.2.7)

Fig. 4.2 shows the level curves of 7 and explains our choice of 7g in (4.2.7) to include all
the internal orbits associated with the presence of the resonance at 7 = 0 (I = 1). Note

that the phase portrait of the reduced Hamiltonian is just that of the ordinary pendulum

shifted by —7/2 in ¢.

From its definition (2.4.7) coupled with (4.2.6), one immediately obtains the n-th order

energy-difference function

A"H(¢; p) = V2T sin ¢ — sin (¢ — nAG(k)) ], (4.2.8)
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Figure 4.2: The phase portrait of the reduced Hamiltonian H

which has the following zero set (see (2.3.2))

Ve = A if nA¢ =2ir, (l€ Z),
* {(n,0) € Alp € {¢n,1,0n2}} otherwise
with
_r, A _3r B¢
¢n71_2+n2’ ¢n,2—2+n2-

(4.2.9)

(4.2.10)

This shows that Vf typically has two connected components, V_{‘,l and Vf’z, which are

lines with ¢ = ¢, 1 and ¢ = ¢, 2, respectively. One also finds that these lines represent

transverse zero sets, thus we have (see (2.4.9))

. ] if nA¢ =2ir, (Il € Z),
AR . .
V@  otherwise.

(4.2.11)
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From (2.4.10) we also obtain the other two zero sets

| A if nAg = 2Ir, (1€ Z),
T V—n,l u V—n,2 = { (777 ¢) € Al¢ € {¢n,1 - ’ILA(ZS, ¢n,2 - HA¢}} otherwise,
(4.2.12)
.. [0 if nA¢ =2ir, (Il € Z),
7= { V2 otherwise. (4.2.13)

For nA¢ # 2l we introduce the components Z% ; = Vi, Z% . =V}, (i = 1,2). For

later reference, let us define the set

So=A{(n,¢) € AI—\/Q—FSﬂ(I,gb;p)S\/iF, '7215¢$ 577[-}’

which is just one copy of the closed region bounded by the separatrices connecting the
hyperbolic fixed points of H (see Fig 4.2). We now make some observations based on

what we have found so far.

Fact 1. It is easy to see that Z—?,i and Zﬁ’i can be obtained from each other by a reflec-
tion with respect to the line ¢ = 37/2. Since the orbits of H are also symmetric
to ¢ = 37w /2, we find that any internal orbit 4q intersecting Zﬁ’i transversally in a
point b_ will also intersect Z_’;_ﬂ- transversally in by = R™(b_). Hence, if we detect
an N -pulse orbit homoclinic to the manifold A, by Theorem 2.4.2, it will also be

homoclinic to some set within A. (75 = 4d implies v7 =~7).

Fact 2. For an internal periodic orbit 9 C So with 7:l|’yo = hg, let us suppose that for
some fixed j > 1

R (%) N vo = 0. (4.2.14)

Since 7‘21'(,5,0) and 4o have the same area, this is only possible if 99 C So — Int (70)-

Now the energy H of the internal orbits increases monotonically from the center

to the separatrices, hence (4.2.14) implies

H|R (%0) > ho-
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But this implies that if 49 = 75 satisfies assumptions (A1)-(A2) of Theorem 2.4.4,

then the sequence defined in assumption (A3) will take the form
Xi1 = (-1)%;. (4.2.15)

Consequently, if we detect an N -pulse orbit homoclinic to the manifold A., it will
be a jumping orbit which makes one pulse near one of the unperturbed homoclinic

manifolds and then switches to the other one.

3. For A¢ # 2lr define the set

An(p) = {(n,9) € So| min (H(0, ¢n15 1), H(O, b2 1)) < H(n, p; 1)

< max (H(0, r15 1), H(0, b 25 1))} (4.2.16)

Despite its formidable definition A, has a very simple meaning: it is a layer of
internal orbits intersecting only that component of Zi (and Z7) which is closer to

= 32 (see Fig. 4.3). Similarly,

Br() = {(n, ) € Sol max (H(0, ¢n,15 1), (0, bn25 1)) < H(m, d5p) },  (4.2.17)

contains the internal orbits which intersect both components of Zi Note that A, is
bounded from inside by a periodic resonant internal orbit 4% with N r(AE, 1) = n.
From outside, it is bounded by a periodic internal orbit 4, which is tangent to,
but does not coincide with R™(4,). 4, is also the boundary of B, from inside.

Suppose now that
A;NA,=B;nA, =0, j=1,..,n—-1 (4.2.18)

holds. Since any internal orbit in A, intersects Z? (and Z}) transversally in two

points, by Theorems 2.4.2 and 2.4.4, any such orbit gives rise to a periodic internal
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0 -1 Zrl 2 +,2 Z +1

Figure 4.3: The layers A, and B,

orbit in A. with four jumping n-pulse homoclinic orbits (two from the perturbation

of Wt and two from Wy ). Similarly,
A;NB,=B;NnB, =10, 7=1.,n-1 (4.2.19)

would mean that any internal orbit in B,, gives rise to an internal orbit in .4, which
has eight (jumping) n-pulse homoclinic orbits. Note, however, that B; N B, # 0;

hence condition (4.2.19) is satisfied only for n = 1.

Fact 4. For n = 1, A¢ # 27 conditions (4.2.18) and (4.2.19) are satisfied. Conse-
quently, with the exception of 4%, all internal orbits in Ay perturb to orbits with
four single-pulse transverse homoclinic orbits, and all in By perturb to ones with

eight single-pulse transverse homoclinic orbits. This is discussed in Haller and Wig-
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gins [28]. By Theorem 2.4.2 4§ also gives rise to single pulse homoclinic orbits,
but we can not claim that they are transversal. In fact, they really are not: the
transversal intersections become nontransversal in the critical energy surface which

is responsible for the disappearence of single-pulse orbits within the region
§1 = Int (1),

where the methods of [28] do not apply. The set g.oB-1(5y) is C! e-close to the set
Se C A, (mentioned in section 2.1) whose internal orbits do not admit homoclinic
behavior accessible to previous methods. It is exactly this type of a situation which

inspired the analysis in chapter 2.

It is now clear what we have to do to study the structure of the set S; in terms of
the pulse number of the internal orbits it contains. We increase n from Ny = 1 until we
find that for some N, > N; a component of Z™2 intersects S transversally, i.e., it lies
between the line ¢ = 37” and the component of Z! falling closer to ¢ = 3’7” This means
that for the internal orbit 4o lying in An,\An, C 51 condition (4.2.18) holds; hence 9o
gives rise to an internal orbit v, C A (with g7'(7.) and BZ1(%) C™! e-close) such
that 7. has four Nj-pulse jumping transverse homoclinic orbits (see Theorem 2.4.4). We
then repeat this procedure to find the minimal N3 > N, such that a component of ZNe

intersects

SN2 = SNI \AN2

transversally and conclude the existence of tranverse N3-pulse homoclinic orbits for in-
ternal orbits perturbing from those inside Ay,\An, C Sn,. Clearly, we can repeat this

construction inductively.
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The sequence Ny, Ny, ... terminates at some N; = p if
pAP = 2r, (4.2.20)

with p and [ relative prime integers, because then the closest component of Z? to the line

= 37'”- is just that line itself and S, = (. This means that all the orbits within $,—; and
outside an (’)(e%) neigborhood of the elliptic fixed point at (7, $) = (0,3F) give rise to
periodic orbits in A, with four p-pulse transverse homoclinic orbits. We have to exclude
an O(e%) neighorhood of the elliptic fixed point because our construction is based on
following trajectories of the standard form with (’)(5%) precision which translates to an

(’)(e%) error for system (2.1.1) (see the proof of Theorem 2.4.1).

On the other hand, if (4.2.20) does not hold for any p € Z then we can construct
an infinite sequence {N;}$2; of pulse numbers with a corresponding sequence of layers
{AN;;1\ AN, }$2, such that internal orbits in A, ,\An, give rise to periodic orbits of
system (4.1.6) with four N;y-pulse transverse jumping homoclinic orbits. Again, for
fixed £ > 0, all this is valid outside an O(s%) neighborhood of the elliptic fixed point of

the reduced Hamiltonian H.

4.3 Chaos in the two-mode model

To summarize the informal discussion of the previous section, we introduce the sequence

of distances

T
do = 57
. 3T 3r
d, = m111(|? — ¢p1mod 27| , |—§- — ¢pn,2mod 27|) (4.3.1)

A
= min(|r — anS]monﬂ" , né;mod 2r), (4.3.2)



147
the sequence of pulse numbers
Ny =1, Ni=min{ n |[Ny_y < n < oo, d, < dpn,_, }, (4.3.3)
and finally, the sequence of layers
Ly, = S0\S51, Ly, = AN \AN,_,. (4.3.4)

As we noted earlier, from inside and outside, the layer Ly, is bounded by two level
curves of the reduced Hamiltonian, which are just the resonant internal orbits ’yﬁk and
ﬁﬁk_l, respectively. Using (4.2.6) we have a general formula for the resonant internal

orbit ﬁ/ﬁj of the form

3 = (o) e dlnl = \2Varin( dw) —sing] ), (43.5)

where dy; is defined in (4.3.1). One can now use (4.3.5) to identify the layers by their

boundaries. Based on Theorems 2.4.1-2.4.4 and Facts 1-3 of the previous section, we

proved the following result:

Theorem 4.3.1 Suppose that 9 C A is periodic orbit of the reduced Hamiltonian H
defined in (4.2.6). Suppose further that for some j > 0 4o € Ln; holds. Let N = N;
and define b_ ; € 7N n Jo, 1 = 1,2, and by ; = 7§,N(b_,z-). (b—1 and b_ 3 have the same
¢ coordinate and their 1 coordinates add up to zero). Then there exists ¢g > 0 such that

for 0 <e<gq

(2) Ac = Ao (defined in (4.2.3)) has four N-pulse homoclinic orbits yé\,/;."' and yg{',
¢ = 1,2, which are positively and negatively asymptotic to an internal orbit 7. € A..
Moreover, g='(7.) and B='(%0) are C"' e-close in A. If N = 1 the number of

homoclinic orbits is actually eight with the same properties.
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() yM* and yY~ lie in the intersection of W*(v7) and W*(v). This intersection is

transversal within the energy surface E.(h) (h = H|y} = H|vy7 ) provided 4o # 4.

(ve2) Statement (w1) of Theorem 2.4.4 holds with the embedding g. = go defined in

(4.2.4), and with the jump-sequence Xy defined in ({.2.15).

(ev) System (4.1.6) has Smale-horseshoes near v, on energy surfaces sufficiently close

to E.(h).

From (4.3.1) one can see that the sequence Ny, N3, ... of pulse numbers is defined recur-

sively through the repeated iteration of the circle map

Ad

In particular, we simultaneously start two iterations from ¢9 = & and ¢f = 377', respec-

tively, and let dy = dy, be the minimal distance of the first iterates from ¢9. We then
keep iterating simultaneously until for some Ny > Ny one of the two Na-iterates falls in
the dy, neighborhood of ¢g. We then make a record of N, and iterate further until, for
some N3 > Ny, one of the two Nz-iterates falls in the dy, < dn, neighborhood of ¢¢ = 7,
and make a record of N3, etc. If (4.2.20) is satisfied we terminate the iteration at the p-th
step because dy, = 0. If, however, (4.2.20) does not hold, we can continue our recursive
construction infinitely through the iteration of the map M. Note that in this latter case
M is an irrational rotation of the circle which has two important effects on the structure
of the set of layers defined in (4.3.4). First, although the iteration will result in two dense
orbits and hence does not terminate, it will take more and more “time” for one of the
two simultaneously iterated discrete orbits to hit the current gradually shrinking target,
i.e., the dn, neighborhood of ¢g. This will result in a rapid increase in subsequent pulse

numbers in the sequence N;. Hence, approaching the elliptic fixed point of H we must
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experience a dramatic increase in the pulse numbers of the related homoclinic orbits on
passing the boundary between the layers Ly, and Ly;,,. Second, M has a sensitive
dependence on parameters, i.e., for a slight change in the parameter £ (and hence in
the phase shift A¢(k)) high iterates of the map M will change significantly. So will the
sequence of pulse numbers, hence we conclude that the partition of S into layers is not
structurally stable unless we limit the maximum pulse number considered and choose our

bound ¢y on the perturbation parameter ¢ accordingly.

To demonstrate the dependence of the pulse number sequence (4.3.3) on the parame-
ters, we chose to vary A¢ instead of k (one can relate these two parameters using (4.2.5)
and Fig. 4.1). In Figs. 4.4-4.6 we plotted the pulse number sequence as a function of the
phase shift A¢. We chose 650, 100, and 10, respectively, as upper bounds on the pulse
numbers. As we predicted above, the figures show a stable pulse-distributaion for low
pulses but show an increasing sensitivity of higher and higher pulses for small changes
in the phase shift. Note that around A¢ = 4?” there is a region which seems quite stable
for high pulses, too. This region of the parameter space shows an abundance of trans-
verse homoclinic orbits with a wide spectrum of pulse numbers. At the same time, there
are “tounges” in the diagrams where there are very few homoclinic orbits, the strongest
tounges being at A¢ = 0, 7,27. Fig. 4.1 shows that these regions will repeat themselves
with an increasing speed as k tends to 0.5 and A¢ sweeps the interval [0, 27] more and
more frequently. In Figs. 4.7-4.8 we also show the distance sequence dy; as a function
of the phase shift. The sequence {dn;}%2, gives the angular radii of subsequent reso-
nant internal orbits, or alternatively, describes the half-width of subsequent layers in the
layer sequence (4.3.4). To generate the figures we plotted the elements of the distance
sequence for which the corresponding pulse number is less than or equal to 10 and 50,

respectively. These plots show the striking self-affinity of a fractal structure which grows
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Figure 4.4: The pulse number sequence as a function of the phase shift

as we increase the maximum pulse-number considered. Hence, even if we had better
methods and did not have to exclude a neighborhood of the center from the analysis, it
would be impossible to describe the exact nature of the homoclinic phenomena associ-
ated with the “core” of the resonance, i.e., the elliptic fixed point of H.. Instead, one
finds a high degree of stochasticity revealing itself in a fractal-type structure of layers
containing periodic orbits with the same pulse number. Finally in Figs. 4.10 and 4.11
we present some simulation results. The parameters for Fig. 4.10 are: I' = 1., k£ = 0.65,
energy= —9.3 x 1078, \/¢ = .003, energy conservation= 7.9 x 107, stepsize= 10~*. The
parameters for Fig. 4.11 are: I' = 1. k = 1., \/¢ = .003, energy= —1.1 x 107°, energy
conservation= 5.0 x 1072, stepsize= 107*. We chose to iterate the leading order vec-

torfield of the standard form (2.4.1) which we computed for system (4.1.6). We picked
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Figure 4.5: The pulse number sequence as a function of the phase shift

internal orbits (shown in the upper-right hand corner of the figures) with pulse numbers
N =2 and N = 3 in the resonance band, respectively, and iterated their unstable man-
ifolds until they reintersected the corresponding (local) stable manifolds. In the figures
we show the “shadowing orbits” which are preticted to be C! /¢ approximations for the
actual intersection of the orbit-cylinders outside a neighborhood of the slow manifold A,.
One can find a good agreement between the theoretical predictions and the numerical

results.

We close this final chapter by noting that using the results of section 2.5, one can
also investigate the effect of weakly dissipative perturbations on the Hamiltonian limit
we analyzed above. The analysis reveals the existence of multiple pulse jumping orbits
which are asymptotic to fixed points in the resonance band in one time direction and

leave the resonance band in the other time-direction. This establishes a new mechanism
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Figure 4.6: The pulse number sequence as a function of the phase shift

for capture in resonance: jumping into a resonance through multiple pulses. Since, as pre-
dicted by the dissipative version of the energy-phase method, this jumping phenomenon
holds not only for individual orbits but families of orbits, it must have a characteristic
effect on the near-resonance dynamics of the two-mode model (4.1.6). In particular, one
must be able to observe high-pulse “jumping” for the dissipative system. This behavior
was already pointed out by Bishop et al. [7]-[8] and partially explained for some un-
physical parameter configurations in Kovaci¢ and Wiggins [44]. Related results can also
be found in McLaughlin et al. [55] where a (single-pulse) orbit homoclinic to a saddle
in the resonance band is proved to exist for a physically realistic codimension-one set
of the parameter space. The authors construct Smale-horseshoes in the vicinity of the

homoclinic orbit and also study the truncated system numerically.
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Figure 4.7: The distance sequence dy; as a function of A¢ for N; < 10

We hope that our results contribute to the understanding of the chaotic jumping
(between two spatially dependent states) observed in the two-mode model, and highlight
some aspects for the future study of the chaotic attractor of the driven-damped nonlinear

Schrédinger equation.
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Figure 4.9: Double-pulse orbit homoclinic to a periodic solution in the resonance band
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Figure 4.10: Triple-pulse orbit homoclinic to a periodic solution in the resonance band
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