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ABSTRACT 

Paradoxes are useful in science because they hint at errors or inconsistencies in our models 

of the world.  In this thesis, I study two well-known and long-standing paradoxes in 

decision theory from the point of view of neuroeconomics.  This approach combines tools 

and ideas from economics and neuroscience, and tries to understand the neural mechanisms 

and the causal structures behind these paradoxes.  

Since its introduction in Ellsberg (1961), the Ellsberg Paradox has been one of the most 

studied violations of subjective expected utility theory (SEU). In one version of the 

paradox, a decision-maker is confronted containing two urns with 100 balls that are either 

red or blue. In the first (risky) urn, she is told there are 50 red and 50 blue; whereas no 

further information is given about the second (ambiguous) urn. A commonly observed 

choice pattern is for decision makers to choose to bet on both red and blue in the first urn. 

Clearly, if probabilities are additive, such rankings are inconsistent with SEU. 

First, I present brain imaging that shows that the brain treats risky and ambiguous choices 

differently. This is done through the use of functional magnetic resonance imaging (fMRI), 

a method that measures brain activity indirectly through blood flow. I find evidence that the 

brain regions respond differently to ambiguity and risk. Furthermore, the region that is 

correlated with expected money value of choices are activated more under risk than 

ambiguity, confirming that expected utility of ambiguous gambles are lower than those of 

equivalent risk gambles. Finally, the temporal relationship between the regions suggests a 

network where one brain region signals the level of uncertainty (amygdala), sent through 

another region (orbitofrontal cortex), and increases (decreases) expected utility of the 

choices, represented in the activity of a third region (striatum). 

Brain imaging results, however, is limited by its correlational nature. To assess necessity, if 

a particular brain region causes a certain behavior, taking it out should remove that 
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behavior. Conversely, to assess sufficiency, stimulating the brain region should create 

that behavior. 

In the former, I study patients who have damage to the orbitofrontal cortex (same region 

found in the brain scans). I find that these patients were both ambiguity- and risk-neutral. 

This compares to ambiguity- and risk-averse behavior of patients with damage to other 

parts of the brain not found in the brain scans, similar to normal individuals. This confirms 

the idea that specific brain regions are necessary for distinguishing between risk and 

ambiguity. In the latter, I activate amygdala of (normal) subjects through mild electrical 

stimulation (a method known to elicit activation of the region). This allows us to test 

whether this method increases the ambiguity/risk aversion of subjects. 

The third chapter studies the Allais Paradox and the probability weighting function.  The 

fact that people do not appear to weight probabilities linearly as dictated by subjective 

expected utility theory has been known since the 1950s.  More specifically, people have 

been found to overweight small probabilities, and underweight large probabilities.  This 

chapter has two goals.  First, I attempt to find the neural correlate of the probability 

weighting function: that is, is the probability weighting function as discussed in the 

decision theory literature found in the brain?  Second, I posit a hypothesis for the 

generation of the probability weighting function with data from psychophysics and 

neuroscience.  Together they shed light on how the brain encodes probabilities as a 

physical quantity as well as how it might combine decision weights and rewards to 

calculate expected utility.   
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1 
C h a p t e r  1  

INTRODUCTION 

This thesis is about the emerging field of neuroeconomics.  Neuroeconomics seeks to 

ground theories and models of economic behavior in terms of its underlying neural 

mechanisms.  Recent advances in technology have allowed us to study economic 

phenomenon, such as decision theory and game theory, much as neuroscientists in the past 

century did with vision, audition, or olfaction.  

These advancements have impacted a number of fields, spanning a diverse range of 

questions and methodologies—ranging from neurophysiology, psychophysics, to cognitive 

neuroscience.  Some of the most successful applications of neuroscientific data have 

occurred in the field of psychophysics, in the realm of some fundamental perceptual 

apparatus of organisms.  

Psychophysics is the study of the relationship between physical stimuli such as light, 

sound, odor, and their perception.  The assumptions underlying the neuroscientific studies 

of psychophysics read very much like those one would imagine a neuroscientific study of 

economics would read.  For example, Boynton et al. (1999) stated the following set of 

assumptions using functional magnetic resonance imaging (fMRI) to test psychophysics: 

1. fMRI responses proportional to local average neuronal activity. 

2. Subjects’ perception result of neuronal responses. 

3. Variability in psychophysical measurements due to additive (IID) noise.  

Although Boynton et al. stated “perception”, to operationalize (2), it is necessary to make 

the assumption that perception translates accurately to behavior.  Whereas, in 



 

 

2 
psychophysics, the neuronal responses are to stimuli such as luminosity, contrast, or 

decibel levels, in neuroeconomics, they include variables such as probabilities, expected 

value, or constructs such as risk and ambiguity.  

1. Both behavior and perception are the result of neuronal responses. 

2. Our method of measurement adequately captures the neuronal responses.  

The first assumption is the central one in any study involving neuroscience.  It states that 

the phenomenon of interest is the result of the collective activity of the neurons of the 

nervous system.  For psychophysicists, the phenomenon is the perception of physical 

stimuli, whereas for economists, it can range from perception of abstract constructs such as 

probabilities, or choice behavior.   

In the case of psychophysics, this assumption is well rooted in the neurophysiological 

literature.  For example, one of the classic papers on the visual system by Hubel and Wiesel  

(1959) showed that neurons in the visual cortex of the cat selectively respond to lines 

oriented at specific angles in the visual field (see Figure 1).  Still other neurons selectively 

respond to lines at certain angles moving in one direction.  They called these “simple” and 

“complex” cells, respectively.   

 

Figure 1: Average firing rate and fitted (normal) 
distribution of a cat V1 neuron plotted as a function 
of orientation angle of a bar of light.  Adapted from 
Dayan and Abbott (2001). 
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There are a number of other ways that a neuron can encode information.  The simplest, 

and most widespread, is the intensity code, or rate code.  It has been known since the 1950s 

that the firing rate of neurons encode quantities such as luminosity and contrast. First 

discovered by Lord Edgar Adrian, this is the phenomenon whereby the rate of the neuronal 

firings is proportional to the intensity of the stimuli (Rieke 1997).  Much of this seminal 

work was done on the Limulus (horseshoe crab), by recording from its compound eye 

(Figure 2).  

 

Figure 2: Responses to light and to 
electrical current.  (A) Response to 
light: numbers on left indicates 
relative intensity; duration of 
illumination is indicated by solid 
line below each graph. (B) Response 
to current: numbers on right 
indicates intensity of depolarization 
in nA.  Time line at bottom right, 
1sec. (adapted from Fuortes et al. 
(1959)).   
 

Statistical Process of Neuronal Firing 

The stochastic process by which neuronal firings are generated is typically modeled by a 

Poisson process.   
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power function 
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B  have determined that both A and B to be between 1.0 and 

1.5.  Figure 3 shows a plot of this relationship from (Gur et al. 1997).   

 

Figure 3: Relationship between 
response variance and response 
strength in the monkey visual cortex 
(adapted from Gur et al. (1997).  
 

 

Neuroeconomics in Historical Context 
Clearly, the approach taken in this thesis, and neuroeconomics in general, is a sharp turn in 

economic thought.  Around the turn of the century, economists made a clear 

methodological choice to treat the mind as a black box and ignore its details for the purpose 

of economic theory.  In an 1897 letter Pareto wrote:  

“It is an empirical fact that the natural sciences have progressed only when 

they have taken secondary principles as their point of departure, instead of 

trying to discover the essence of things. ...Pure political economy has 

therefore a great interest in relying as little as possible on the domain of 

psychology” (quoted in Brusino 1964 p. xxiv).  
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Pareto’s view that psychology should be ignored was reflective of a pessimism of his time 

about the ability to ever understand the brain.1 As William Jevons (1970) wrote. prior to 

Pareto, in 1871: 

“I hesitate to say that men will ever have the means of measuring directly 

the feelings of the human heart. It is from the quantitative effects of the 

feelings that we must estimate their comparative amounts.”  

This pessimism about understanding the brain, in part, led to the popularity of “as if” 

rational choice models. Models of this sort posit individual behavior that is consistent with 

logical principles, but do not put any evidentiary weight on direct tests of whether those 

principles are followed.  For example, a consumer might act as if she attaches numerical 

utilities to bundles of goods and choose the bundle with the highest utility, but if asked to 

assign numbers directly, her expressed utilities may not obey axioms like transitivity. The 

strong form of the as-if approach simply dismisses such direct evidence as irrelevant 

because predictions can be right even when they are based on incorrect assumptions (e.g., 

Friedman 1964).2 

As-if models work well in many respects, but tests of the predictions that follow from as-if 

rational choice (as well as direct tests of axioms), have also established many empirical 

anomalies.  Behavioral economics describes these regularities and suggests formal models 

to explain them (e.g., Camerer 2003). Debates between rational-choice and behavioral 

models usually revolve around psychological constructs, such as loss-aversion (Kahneman 

and Tversky 1979) and a preference for immediate rewards, which have not been observed 

directly. But technology now allows us to open the black box of the mind and observe brain 

activity directly. The use of data like these to constrain and inspire economic theories, and 

make sense of empirical anomalies, is called “neuroeconomics” (Zak 2004; Camerer et al. 

2005; Chorvat and Mccabe 2005).   
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Criticisms of Neuroeconomics 

The leap from neurons to behavior is a large one.  Perhaps inevitably, it has attracted 

criticism.  Gul and Pensendorder (2005), in particular, makes the vociferous argument that 

economists should not, on principle, pay attention to the details of the brain.   

One of their central arguments is that the idea of utility underlying revealed preference 

theory is strictly as-if—“Standard economics does not address mental processes and, as a 

result, economic abstractions are typically not appropriate for describing them” (Gul and 

Pesendorfer 2005). Therefore, according to the authors, any attempts by neuroeconomists 

to try to find the neural basis of utility is neither here nor there, since it doesn’t exist in the 

first place.  The spirit of this argument can be traced back to Milton Friedman’s famous 

dictum that economic theories should be judged by the accuracy of their predictions rather 

than the plausibility of their axioms (Friedman 1964).  Friedman’s view was that (1) 

theories should be judged by accuracy of predictions; and (2) false assumptions could lead 

to accurate predictions. 

The central assumption of neuroeconomics, and of this thesis, is that creating more realistic 

assumptions will lead to better predictions.  Furthermore, a critical examination of 

assumptions is healthy and critical to the advancement of any science.  In this regard, 

neuroeconomics shares the emphasis on accuracy in principle (1), but also bets on the 

possibility that improving the accuracy of assumptions will lead to more accurate 

predictions.  

An analogy to organizational economics illustrates the potential of neuroeconomics. Until 

the 1970’s, the “theory of the firm” was basically a reduced-form model of how capital and 

labor are combined to create a production function, as the basis for an industry supply 

curve. Contract theory opened up the blackbox of the firm and modeled the details of the 

nexus of contracts between shareholders, workers and managers (is the three elements of 

the firm). The new theory of the firm replaces the (still useful) fictional profit-maximizing 

firm which has a single goal, with a more detailed account of how components of the firm 

interact and communicate to determine firm behavior. Neuroeconomics proposes to do the 
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same by treating an agent like a firm: Replace the (useful) fiction of a utility-maximizing 

agent who has a single goal, with a more detailed account of how components of the 

agent’s brain interact and communicate to determine agent behavior.  

The success of the rational actor model in “as if” applications shows that this level of detail 

is not necessary for certain sorts of analysis, especially those that deal with populations of 

decision makers instead of individuals.  For example, neuroeconomics will never displace 

the powerful concepts of supply and demand, and market equilibrium. However, a deeper 

understanding of the mechanics of decision-making will help us understand deviations 

from the rational model better. Knowing the process of decision making should allow us to 

understand not only the limits of our abilities to calculate optimal decisions, but also the 

heuristics that we use to overcome these limits.  

Furthermore, in most areas of behavioral economics there is more than one alternative 

theory. Often there are many theories that are conceptually different but difficult to separate 

with current data. To the extent that some of these theories commit to neural 

interpretations, the brain evidence can help sort out which theories are on the right track 

and also suggest new theories.  

Similar Criticisms of Cognitive Neuroscience 

Much of the criticisms raised by Gul and Pesendorfer are similar in spirit to those raised by 

psychologists and philosophers decades ago (Churchland 1986).  As Dehaene (2003) 

recounts of the progress of cognitive neuroscience 
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“Today, however, we know that this view was unnecessarily narrow. The 

new cognitive neuroscience routinely mixes psychological and neural 

observations in the same experiments. Psychological concepts are not 

ruthless eliminated, as was initially foreseen by the most opinionated anti-

functionalist philosophers... Rather, they are enriched, constrained and 

transformed by the accruing neural data.”  

The context of Dehaene’s quote surrounds the discovery of neurons that represent numbers 

via logarithmic encoding, thus shedding light on an age-old debate of whether the neural 

basis of the Weber-Fechner law (the finding that the threshold of discrimination between 

two stimuli increases linearly with stimulus intensity), and the postulation that internal 

representation of the stimuli follows the logarithm of the external stimuli.   

Whereas, the interplay between the neural and the psychological is now relatively 

uncontroversial, skepticism over use of functional imaging techniques can be more vocal, 

perhaps owing in large part to the still youthful state of the field (fMRI was developed in 

the early 1990s, whereas Weber and Fechner lived in the 19th Century).  Concern over the 

use and abuse of fMRI was especially prominent in social psychology in the late 1990s and 

early part of the new millennium (see e.g. Shulman 1996; Hardcastle and Stewart 2002; 

Willingham and Dunn 2003).  

Shulman, in particular, outlined four assumptions that are used by cognitive psychologists 

in the interpretation of fMRI data, two of which he finds objectionable. 

1. Differences between cognitive tasks map to unique regions of the brain or activate 

the same region differentially; 

2. Tasks can be designed to have unique (non-shared) cognitive processes; 
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3. The difference images of two tasks (either by fMRI or PET) will reveal the 

location of the unique (non-shared) cognitive components; 

4. The statistical validity of the difference image can be established quantitatively.  

Shulman proposes that although (1) and (4) have firm basis in the neuroscience literature, 

(2) and (3) are problematic.  Much of the criticism centered on the lack of specific and 

parsimonious hypotheses.  This can be seen by the phrasing of (3), as most of the early 

studies used a technique called “cognitive subtraction”, which are essentially t-tests 

between designated “experimental” condition and “control” condition. 

Although a naïve implementation of this technique clearly has methodological limitations, 

there are at least two strong arguments against this critique.  First, perhaps more so than 

social and cognitive psychology, economics possesses well-established models that make 

precise, quantitative predictions.  More importantly, many of these models, such as the 

expected utility model, are very specific about the choice variables, as well as having a 

corpus of econometric techniques to test these models.   

Second, and more importantly, modern neuroscience possesses a wide variety of tools that, 

together, create complementarities and allow each to compensate the weaknesses of the 

other.  We review some of these tools in the next section.  

Tools of Measuring the Brain 
Much of the potential of neuroeconomics comes from recent improvements in technology 

for measuring the brain.  There are now over 10 established techniques in neuroscience, 

each with its own strengths and weaknesses.  Some common tradeoffs include spatial and 

temporal resolution, invasiveness, and ability to assess direction of causality.  Figure 4 

depicts the characteristics of these methods in terms of their spatial and temporal 

resolution, as well as their invasiveness. 
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Figure 4: Temporal versus spatial resolution of various methods 
of studying the brain.  Heat map is the invasiveness of the method. 
Abbreviations: MEG=magneto-encephalography; ERP=evoked 
response potentials; ƒMRI=functional magnetic resonance 
imaging; PET=positron emission tomography.  (Adapted from 
Churchland and Sejnowski 1988).  

Of these tools, functional magnetic resonance imaging (fMRI) is perhaps the most popular 

today, especially when working with human subjects.  Its popularity is derived from two 

main sources.  First, it is non-invasive.  Second, fMRI provides relatively good temporal 

and spatial resolution.  Images are taken every few seconds and data are recorded from 

voxels which are 3-4 cubic millimeters in size.  

Better spatial and temporal resolution is available in single unit or multiple unit recordings, 

which uses electrodes to record brain activity at the neuron level.  Because of the need to 

implant electrodes directly into the brain, however, these studies are limited mostly to 

animals, including nonhuman primates, and to some neurosurgical patients.   

Older tools like electroencephalogram (EEG), recording very rapid electrical activity from 

outer brain areas, and psychophysiological recording (skin conductance and pupil dilation, 

for example), continue to be useful, often as complements that corroborate interpretations 
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from other methods. For example, optical dyes can be used to measure the membrane 

potential of the neuron—but due to its invasiveness, is not used in human research.   

Functional neuroimaging is especially powerful when combined with existing techniques.  

One venerable method is the study of animals and patients with localized lesions to specific 

areas of the brain.  Lesion studies provided some of the earliest evidence toward the link 

between brain and behavior, and are still invaluable in assessing the often complex causal 

neural networks involved in a given behavior.   

Lesion patients can show startling dissociations between tasks that seem remarkably 

similar. For example, there are lesion patients who can write well, but can’t read, a 

condition referred to as alexia without agraphia (Caffarra 1987); patients with anterograde 

amnesia—the inability to form new memories—who do not form conscious declarative 

explicit memories for emotions or physical procedures (Scoville and Milner 1957).  

However, these patients can form memories implicitly; that is, they know information but 

don’t know that they know it. This dissociation indicates that declarative memories, and 

meta-knowledge are stored separately. 

Finally, with the use of psychopharmacological drugs, transcranial-magnetic stimulation 

(TMS), and deep brain stimulation, it is also possible to directly alter brain activity.  This 

helps to establish whether certain brain processes are sufficient for some type of behavior.  

For some examples, see Kosfeld et al. (2005), who found that the administration of the 

hormone oxytocin increases the level of repayment in the Trust game.  For TMS, see 

Zangaladze et al. (1999), who were able  to disrupt tactile discrimination of grating patterns 

by applying TMS either on the visual cortex or the somatosensory cortex.  The practical 

limitation of using TMS is that only surface cortical areas can be reached.  In the case of 

psychopharmacological agents, their effects on the brain tend to be diffuse, which makes it 

difficult to pinpoint the specific mechanism at work.    
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Fundamentals of fMRI 
Because of its extended use in this thesis, its complexity, and its relative unfamiliarity to 

most economists, I will spend this section describing the basic aspects of fMRI and fMRI 

data.  

Physics of fMRI 

Comprehensive guides to the physics of both MRI and fMRI can be found in Hornak 

(1997) and Huettel, Song, and McCarthy (2004)|.  

MRI (and fMRI as a consequence) takes advantage of the net spin of atomic nuclei.  This, 

combined with the fact that different atoms exhibit different spin properties, means that 

distinct tissues throughout the body also have distinct spin properties.  Moreover, these 

properties may change over time; in the case of fMRI, this is brought about by local 

changes in oxygenation in the blood flow.  

 

Figure 5: Example of (static) MRI 
anatomical image. Clockwise from top 
left: coronal slice (viewed from back of 
brain), sagital slice (viewed from left 
side), and axial slice (viewed from top).   
 

Specifically, the magnetic properties of hemoglobin change depending on its oxygenation.  

Oxygenated hemoglobin is diamagnetic and has similar magnetic properties as the rest of 

the brain.  However, deoxygenated hemoglobin is paramagnetic.  This causes a change in 

the magnetic susceptibility of the local blood supply when the metabolic demands of the 
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tissue deoxygenates nearby hemoglobin.  Hence fMRI measures what is called blood 

oxygenation-level dependent (BOLD) signal.  Ogawa et al. (1990) first showed that when 

mice breathed from different concentrations of oxygen, the low concentration oxygen 

resulted in significant signal loss in blood vessels within the brain.  In the decade ensuing, 

tremendous progress was made in enabling the measurement of BOLD activity that is 

available today. 

Correlation between fMRI and Neuronal Activity 

This is the fundamental question in the use of fMRI to study neural correlates of behavior.  

Although the correlation between fMRI and neural activity has been known for over 100 

years (Roy and Sherrington 1890), the precise relationship is surprisingly complex and is 

still under active research.  Here, we review some of the current evidence on the nature and 

strength of this relationship.  

 

Figure 6: fMRI response in 
human V1 and average firing 
rate of monkey V1 (adapted 
from Heeger et al. (2000)). 
 
 

Rees et al. (2000) and Heeger et al. (2000) used measurements of BOLD via fMRI with 

humans to find functional homologues to electrophysiological recordings in monkeys.  

Heeger et al. estimated the average neuronal response to the visual perception of contrast in 
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the monkey visual cortex V1 were proportional to that of the BOLD response in the 

human V1 (Figure 6).   

Although suggestive, both Rees et al. and Heeger et al. were limited to correlating the 

measurements between two species. Logothetis et al. (2001), in a heroic effort, 

simultaneously recorded multi-unit activity (MUA), local field potential (LFP), and BOLD 

response from the monkey visual cortex.  Figure 7 shows the distribution of r2 values 

between LFP and BOLD as well as MUA and BOLD.  The distributions possess heavy 

negative skewness.  The mean r2 value of MUA and BOLD is 0.521, whereas the mode is 

0.672.  Similarly, the mean r2 value of LFP and BOLD is 0.445, whereas the mode is 

0.457. 

 

Figure 7: Correlation of neural activity 
and BOLD response (adapted from 
Logothesis et al. (2001)). 
 

Ress, Backus, and Heeger (2000) was able to link fMRI response of the visual cortex and 

perception of contrast. Subjects viewed a uniform gray background, and were asked to 

indicate whether a plaid pattern was present briefly.  Figure 8 shows the correlation 

between fMRI response and performance in the threshold detection task. 
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Figure 8: Scatterplot of behavioral 
performance in threshold detection task (y-
axis) versus fMRI activity in V1 (x-axis) and 
linear regression line (r=0.92, p<0.001). 
(adapted from Rees, Backus, and Heeger 
(2000)). 
 

fMRI Data 

Here we discuss briefly the nature of fMRI data.  As in previous sections, no attempt at 

comprehensiveness is made.  Focus is placed on the aspects of fMRI data that are likely to 

be novel to economists and econometricians.   

 

Figure 9: Sample cross-section of fMRI 
data.  Each panel represents one 2-D 
slice of the brain.  fMRI scanners 
acquire these in-plane slices 
sequentially.  Colors indicate 
significantly activated voxels. 

MR scanners encode the data in frequency domain, which are then processed into the 

spatial domain.  Usually, two sets of images are obtained—a set of high-resolution 

anatomical images (Figure 5), and a set of lower-resolution functional images during the 

course of the experiment (Figure 9).  As the anatomical images are used only for localizing 
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the brain regions and aid in normalizing the data between subjects, the term “fMRI data” 

generally refers to the latter, functional images.   

 

Figure 10: Sample time series of fMRI data taken from a voxel 
within the brain.    

Functional MR data constitute a 3D panel dataset. The MR scanner takes in-plane 

snapshots of the brain (2D) and proceeds to cover the brain iteratively on the order of 

seconds to obtain the time series (Figure 10).  The time that it takes for the scanner to 

acquire one full cycle of data through the brain is called the TR, and in our case it is 2 

seconds.    

Main Sources of Noise in fMRI Data 

One limitation of fMRI is that its signal-to-noise ratio is generally low, on the order of 

0.25-0.5% (Huettel et al.). A wide variety of different sources contribute to the overall 

noise, from the scanner to the subject.  Much of the effort in the design, running, and 

statistical analysis of fMRI data consists of minimizing and taking account of these noise 

sources in a principled manner.  Here, we discuss some of the main sources of noise.   

Thermal Noise. These are (white) noise created by the electronic circuits of the scanner.  

This is perhaps the biggest contribution of noise to fMRI data. 

Scanner Drift.  This is caused by small instability in the scanner gradients.  Typically, this 

introduces linear trend or low frequency noise to the data.   

Subject Motion.  Perhaps the most serious source of noise, subject motion creates partial 

voluming effects.  This can be significant as signal intensity of nearby voxels may differ 
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substantially, especially in voxels near the boundary of tissues (such as around the 

ventricles, which contain cerebral spinal fluid, or the edges of the brain).  Much effort is 

taken, therefore, to stabilize the subject during the course of the experiment.  The 

remaining motion is corrected using motion correction algorithm described in the section 

below.   

Physiological Artifacts.  This includes blood flow changes induced by the cardiac and 

respiratory cycles.  These typically occur at a higher temporal frequency than signals of 

interest.  They can either be filtered out with a lowpass filter or estimated as part of the 

autocorrelation function.  The latter is currently preferred.    

fMRI Data Preprocessing 

The statistical package SPM (Statistical Parametric Mapping, version SPM2), was used for 

the fMRI data in all the studies of this thesis (Friston et al. 1995b; Friston et al. 1995c).  A 

detailed introduction to computational neuroanatomy and statistical parametric mapping 

can be found in the online book Human Brain Function by Ashburner, Friston, and Penny 

(2001).  Preprocessing is done in the order described in the following section.  

Slice timing correction. MR images are acquired through iterative snapshots through the 

brain.  Because of the sequential nature of the process, the time series are not matched 

throughout the brain.  Following Friston et al. (1995a), we align the time series within the 

brain using a sinc weighting interpolation function.  

Realignment.  As mentioned before, head motion is one of the major sources of artifacts of 

fMRI data.  This arises from the assumption that the head is stationary throughout the data 

acquisition process.  Two complementary methods are used to minimize this problem, one 

during data collection, and one during data analysis.  At the data collection stage, head 

restraints are used to minimize possible movement during the experiment.  This ensures 

that the movements are small (maximal drift is typically less than ½ the dimension of a 

voxel, or ~1.5mm, e.g., Figure 11).  The residual movements are corrected for via a 

realignment process using rigid body transformations (Friston et al. 1995a).  Note that 
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because all motion correction is done within subject, and that the shape of the brain does 

not differ appreciably over the course of the experiment, the transformations essentially 

reduce to those of translation and rotation in space.   

Finally, because of the computational requirements to estimate the movement correction 

coefficients over many thousands of images potentially, SPM2 employs a “local” approach 

in which the images are realigned using an initialization point of the previous image, and 

then minimizing the mismatch between the images by adjusting the images in an iterative 

manner.  This procedure can potentially have local maxima problems, but given the 

computational savings, and the fact that the physical restraint limits the amount of 

movement, this is a reasonable approach and is widely used.  

 

Figure 11: Typical estimated motion parameters from SPM2.  The 
x-axis of the panels denote time, also known as images.   
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Coregistration. This step refers to mapping the low-resolution function MRI images to 

the high-resolution T1 image.  This step may be considered optional, as all functional 

images will be standardized to a common space in the next step anyway.  However, 

because coregistration affords some benefits to this standardization process, we employ it 

here.  The algorithm uses an information-theoretic approach—namely maximizing the 

mutual information of the joint histogram of the functional images and the T1 (Friston et al. 

1995a).  Mutual information maximization is has the advantage that it can take into account 

nonlinear dependencies of the data, as opposed to only linear ones as in the case of 

Pearson’s correlation.  This is helpful as images from different modalities differ greatly in 

the intensity scales, and often with nonlinear relationships.  For this reason, mutual 

information enjoys widespread use in medical imaging.   

Normalization. In order to generalize findings and make inferences across individuals, one 

must take into account the variation in the brain structure between people, which can be 

significant.  This is achieved through a process called normalization.  SPM2 uses both 

linear and non-linear warping techniques to normalize the data to a standard canonical 

brain (Ashburner and Friston 1999).  This allows one to calculate both group statistics as 

well as standardizing the reporting of results between different research groups and 

paradigms.    

(A) 

 

(B) 

 

(C) 

 
Figure 12: (A) Original un-normalized brain, (B) Standard 
canonical, or template, brain. (C) Normalized brain from (A).  
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Smoothing.  Because of the relatively poor signal-to-noise ratio (SNR) of fMRI time 

series data, it is typical to spatially smooth the data.  This is done by convolving the data 

with a Gaussian kernel parameterized by the full-width-at-half-maxima (FWHM).  The 

choice of FWHM depends upon the underlying (unknown) SNR of the fMRI data.  This is 

the matched filter principle. Although it is unknown, in practice, most research groups use 

FWHM ranges from 4mm to 10mm.  A smoothing kernel of 6mm FWHM was used 

throughout our data.   

fMRI Data Analysis 

This is an area of active research.  The field is moving ahead as more is learned about the 

physiological basis of fMRI, in particular the error structure of the stochastic process.  

Panel Data.  As fMRI data are typically panels, standard panel techniques can be used to 

draw inferences from the data.   Each subject’s data consists of a 3-dimensional time series.  

This space, which contains the brain, is divided into approximately 64×64×32 or  

~130,000 voxels (volumetric pixels).  The computational burden of data analysis is not 

trivial, therefore, and necessitates a number of simplifying assumptions in the data analysis. 

Random effects analyses are usually preferred over fixed effects analysis in the case of 

fMRI data.  This is because we are usually interested in drawing inference about the 

population, and it is therefore more appropriate to view the parameters as randomly 

distributed across the population.   

Suppose there are N subjects, with each subject having Ti scans.  The random effects 

models can be written as  

  

! 

yi = Xi" + Zibi + #i,   i =1,K,N

bi ~ N(0,$),  #i ~ N(0,% 2&)
 

where yi is the dependent variable, Xi (size 

! 

Ti " p) and Zi (size 

! 

Ti " q ) are the fixed- and 

random-effects regressor matrices, and 

! 

"
i
 is the Ti-dimensional within subject error vector 

(this will be discussed later).  The columns of Zi will be a subset of the columns of Xi, as 
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there will in general be subject specific confounds or nuisance parameters (e.g., signal 

drift, motion parameters).  

The random effects bi can be thought of as individual deviations around the population 

! 

" .  

Define bi to have a mean of 0.  Together with the assumption that the bi’s are drawn from a 

normal distribution, the random effects vector bi is completely characterized by its 

variance-covariance matrix 

! 

".   

In a full mixed-effects analysis, the only restriction on 

! 

" is that it is symmetric and 

positive semi-definite.  This, however, requires estimating more than 130,000 voxel-wise 

models, each with regressor matrices on the order of size 

! 

10,000 "10  (assuming 20 

subjects of 600 scans each with 10 regressors).  To make this computation feasible, SPM 

makes the strong assumption that 

! 

" is an identity matrix.  This has the effect of allowing 

the random effects model to be separated into a two-step procedure.   

Step 1.  Estimate each individual beta in

! 

yi = Xi"i + #i. 

Step 2.  Estimate second level analysis with 

! 

y = X" + # , where the vector y consists of 

the betas estimated from Step 1.   

This two-step procedure in SPM is called a “summary statistic” procedure, and is 

essentially the result of two different assumptions.  First, and fairly non-controversially, is 

that 

! 

" is a diagonal matrix.  This results from the assumption that subjects’ estimates are 

independent.  Because each subject is in the scanner separately and can plausibly be 

assumed to have no influence on the other subjects in the study, this assumption seems 

fairly safe.  The second assumption is that the variances of the subjects’ estimates are 

identical.  The effects of this assumption is not obvious and has been the topic of a number 

of papers (Friston et al. 1995c; Ashburner et al. 2001; Friston et al. 2005).   Their findings 

suggest that the summary-statistic approach is generally adequate to justify the 

computational savings.   
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Despite the apparent simplicity of the random effects model, several issues must be dealt 

with.  First, the shape of the hemodynamic response must be taken into account in the 

model.  Second, the various sources of noise that enter into the error term (reviewed 

above), and especially autocorrelation of the error term, need to be adequately modeled to 

calculate meaningful p-values.  Finally, because of the number of voxels in the brain 

(~130,000), a massive multiple comparisons problem is inherent in the analysis of fMRI 

data.  Below we review some of the current approaches to these issues.   

Hemodynamic Modeling.  Because of the lagged nature of the BOLD response to neural 

activity, it is necessary to take into account the fact that the hemodynamic response is a 

lagged proxy of the underlying neuronal activity.  One approach is to use a nonparametric 

approach and make no assumption about the underlying shape of the response.  This can be 

done in what is called “event-related” fMRI studies in which a dummy variable is included 

at each TR of some event of interest (Glover 1999).  One drawback of this approach is the 

proliferation of explanatory variables.  More importantly from the point of view of 

statistical inference, by imposing minimal assumptions on the response, it is difficult to 

model parameterize this type of analysis in the cases when there is a strong a prior 

hypothesis.    

The alternative, and the dominant method, is to assume some functional form for the 

response (HRF).  SPM2 uses the sum of two gamma functions to capture the peak and the 

undershoot of the hemodynamic response (Friston et al. 1995c),  
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where 

! 

A
1
 and 

! 

A
1
 are the magnitude of the peak and the undershoot, respectively; 

! 

A
1
 and 

! 

A
1
 model the width, peak height, and time to peak; 

! 

A
1
 and 

! 

A
1
 model the time to onset 

(Figure 13A).   These parameters can, in addition, be modulated to vary the duration and/or 

intensity of the underlying neuronal response (Figure 13B).   
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Figure 13: (A) Parameters for the sum of two gamma functions 
used to parameterize the hemodynamic response in SPM2.  
Adapted from Handwerker et al. (2004).  (B) BOLD signal 
predicted from linear convolution by canonical impulse response 
of squarewave neural activity of increasing durations 200ms to 
16s.  Adapted from Henson (2001). 

Autocorrelation.  Autocorrelation in (with-in subject) fMRI data is captured in SPM2 by a 

combination of an AR(1) process and a highpass filter (Ashburner et al. 2001, Chapter 7).   

The AR(1) model captures short range correlations, with the longer-range correlations 

being captured by the high-pass filter.  This requires the variance-covariance matrix for the 

AR(1) process to be estimated, which is potentially very computationally expensive if it is 

done voxel-wise.  SPM2 makes the convenient assumption that the correlation structure is 

identical for all the voxels, but that the amplitude is different (Ashburner et al. 2001, 

Chapter 7).  That is,  
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where 

! 

"  is the autocorrelation coefficient and 

! 

"
v

2 the variance of the voxel v.  Making 

this assumption allows the autocorrelation estimate to be pooled over the voxels.  

SPM2 estimates this AR(1) + white noise model using Restricted Maximum Likelihood 

(ReML), i.e., 

 

 

where 

! 

u
t
~ N(0,"

u

2
),v

t
~ N(0,"

v

2
) , and 

! 

"  is the autocorrelation coefficient.   

In sum, Figure 14 shows the steps that are used in the (within-subject) modeling of fMRI 

data.  Panel A shows data (blue) and low-frequency drift (black) fitted by highpass filter 

(cutoff 168s); (B) Boxcar epoch model with (red) and without (black) convolution by a 

canonical HRF, after application of highpass filter; and (C) Residuals after fits of models 

with and without convolution.  Note the systematic error for model without HRF 

convolution (black) at onset of each trial. 

 

Figure 14: Highpass filtering, and HRF convolution. Adapted 
from Henson (2001). 

 

! 

yt = Xt" +# t + ut

# t = $# t%1+ vt
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C H A P T E R  2  

NEURAL SYSTEMS RESPONDING TO DEGREES OF 

UNCERTAINTY 

In theories of choice under uncertainty used in social sciences and behavioral ecology, the 

only variables that should influence an uncertain choice are the judged probabilities of 

possible outcomes and the evaluation of those outcomes. Confidence in judged probability, 

however, can vary widely. In some choices, such as gambling on a roulette wheel, 

probability can be confidently judged from relative frequencies, event histories, or from an 

accepted theory. At the other extreme, such as the chance of a terrorist attack, probabilities 

are based on meager or conflicting evidence, where important information is clearly 

missing. The two types of uncertain events are often called risky and ambiguous, 

respectively. In subjective expected utility theory (SEU), the probabilities of outcomes 

should influence choices, but confidence about those probabilities should not.  Many 

experiments show that many people are more willing to bet on risky outcomes than on 

ambiguous ones, holding judged probability of outcomes constant (Ellsberg 1961; Camerer 

and Weber 1992). This empirical aversion to ambiguity motivates a search for neural 

distinctions between risk and ambiguity, as in other studies on neuroeconomics, which 

explored the neural foundations of economic decision (Glimcher and Rustichini 2004; 

McClure et al. 2004; Camerer et al. 2005). 

Ellsberg Paradox 
The difference between risky and ambiguous uncertainty is illustrated by the Ellsberg 

paradox (32). Imagine one deck of 20 cards composed of 10 red and 10 blue cards (the 

risky deck). Another deck has 20 red or blue cards, but the composition of red and blue 

cards is completely unknown (the ambiguous deck). A bet on a color pays a fixed sum 

(e.g., $10) if a card with the chosen color is drawn, and zero otherwise (Fig. 1a).  
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In experiments with these choices, many people would rather bet on a red draw from the 

risky deck than a red draw from the ambiguous deck, and similarly for blue (Becker and 

Brownson 1964; MacCrimmon 1968). If betting preferences are determined only by 

probabilities, this pattern is a paradox. In theory, disliking the bet on a red draw from the 

ambiguous deck implies that its subjective probability is lower (pamb(red) < prisk(red)). The 

same aversion for the blue bets implies pamb(blue) < prisk(blue).  But these inequalities, and 

the fact that the probabilities of red and blue must add to one for each deck, implying that 

1= pamb(red) + pamb(blue) < prisk(red) + prisk(blue) =1, a contradiction. The paradox can be 

resolved by allowing choices to depend on subjective probabilities of events and on the 

ambiguity of those events.  For example, if ambiguous probabilities are subadditive, then 1 

- pamb(red) - pamb(blue) represents reserved belief and indexes the degree of aversion to 

ambiguity (Schmeidler 1989).  Other models assume additive, but set-valued, probabilities, 

i.e., people believe that there is a range of possible probabilities, and ambiguity aversion is 

the result of people pessimistically assuming the worst probability (Gilboa and Schmeidler 

1989). This model, and others, is silent about possible neural circuitry. Ambiguity aversion 

suggests that choices can depend on how much relevant information is missing, or how 

ignorant some people feel compared to others (Frisch and Baron 1988; Fox and Tversky 

1995).  

Ambiguity Aversion in Economics and Social Science.  
Aversion to taking action in ambiguous situations has been studied in economics and 

politics (Mukherji and Tallon 2004), including macroeconomic policy-making (Sargent and 

Hansen), wage-setting and contracting (Mukerji 1998; Bewley 2002), strategic thinking 

(Camerer and Karjalainen 1994; Lo 1999), voting (40) (Ghirardato and Katz 2005), and 

financial investment (Dow and Werlang 1992; Epstein and Wang 1994). We illustrate with 

two examples from law and finance.  

Law provides an interesting example that illustrates the psychology of ambiguity-aversion. 

In Scottish law there are three verdicts – guilty, not guilty, and not proven. The third is an 

unusual verdict in legal systems.3 According to Peter Duff (1999), the difference between 
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“not guilty” and “not proven” is that the verdict of “not guilty” means that the accused 

definitely did not commit the crime.  That is, “not guilty” is a positive declaration of 

innocence, whereas the verdict of “not proven” is thought to imply solely that the accused’s 

guilt has not been conclusively demonstrated (p. 193). The “not proven” and “not guilty” 

verdicts have the same legal implication, because both prohibit retrial, even in the face of 

new evidence. “Not proven” verdicts are returned in about a third of jury trials, typically 

when the jury thinks the defendant is actually guilty but cannot legally convict because of a 

lack of corroborating evidence, which is required by Scottish law. For example, these 

verdicts are common in sexual assault trials where the only witness to the crime is the 

accusing victim and the jury believes the defendant is guilty, but cannot convict based on 

the weight of available evidence.  

Turning to finance, “home bias” in investment is an important economic pattern which 

might be due to ambiguity-aversion. Home bias is the tendency for investors to invest in 

stocks that are, literally, closer to home. For example, investors in most countries tend to 

invest heavily in stocks from their home country and very little in stocks from foreign 

countries. In 1989 American, Japanese, and British investors held 94%, 98%, and 82% of 

their investments in home-country stocks (French and Poterba 1991), even though the latter 

two markets account for only a modest fraction of the world portfolio ( 

Figure 15). International home bias is shrinking however (Amadi 2004), as more investors 

buy global index funds and overseas stocks.  

Unless investors have private information about their home stocks, home bias is a mistake 

because it leads to portfolios that are highly undiversified (especially for investors who do 

not live in the U.S. or Japan).  Using 1989 data, French and Poterba estimate that given the 

apparent tradeoff between risk (stock return variation) and return (average percentage 

returns), the extra risk due to the reluctance to hold foreign stocks amounts to a sacrifice in 

annual percentage return of 1-2% per year (French and Poterba 1991). Assuming an 

average unbiased return of 7% (Siegel 1998), a typical historical estimate, a person with 
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home bias who invests a lump sum at age 25 will end up with only half as much money 

at age 65 as an investor who is unbiased and holds a worldwide index fund.  

 

Figure 15: Portfolio weights for U.S., Japan, and U.K. in 1989.  
Data from French and Poterba (1991). 

Interestingly, home bias exists at many levels besides the international one: Portfolio 

managers prefer to invest in companies with headquarters nearby, U.S. investors preferred 

their own regional “Baby Bell” companies after the breakup of AT&T, workers invest too 

heavily in the stock of companies they work for, and investors in many countries prefer to 

invest in nearby companies, or in those whose managers speak the same language that they 

do (Graham et al. 2006).  

There are four commonly-evoked explanations of home bias: (i) higher transaction costs of 

buying foreign stocks; (ii) inside information about local stocks; (iii) optimism about 

relative returns of local stocks (Strong and Xu 2003); and (iv) aversion to ambiguity (which 

is usually called a taste for familiarity in finance research).  A fifth explanation springs 

from the observation that patriotism across countries, measured by the World Values 

Survey, is correlated across countries with the extent of countrywide home bias (Morse and 
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Shive 2006). This is the national equivalent of preferring to bet on your home team in 

sports, but it does not seem to explain all the other levels of home bias. 

The transaction cost and inside information explanations (i and ii) do not explain patterns 

like investment in the Baby Bell spin-off stocks. If investors are optimistic about local 

stocks and pessimistic about non-local stocks (explanation (iii)), they should short-sell the 

latter, but rarely do. (An investor who is ambiguity-averse toward non-local stocks will not 

want to buy them, and won’t want to sell them short, either.)  The familiarity explanation 

(iv), therefore, holds up rather well across all the levels of home bias that have been 

documented. This explanation is consistent with the idea that investors have a pure distaste 

for betting on either side of a proposition that they lack knowledge or familiarity about, 

which is very much like the knowledge treatment in our experiments.  

Theory 

Individuals, including economists, have a hard time understanding their own inconsistency 

with regard to ambiguity. Ellsberg wrote:  

There are those who do not violate the axioms, or say they won’t, even in 

these situations; such subjects tend to apply the axioms rather their 

intuition, and when in doubt, to apply some form of the Principle of 

Insufficient Reason. Some violate the axioms cheerfully, even with gusto; 

others sadly but persistently, having looked into their hearts, found conflicts 

with the axioms and decided, in Samuelson’s phrase, to satisfy their 

preferences and let the axioms satisfy themselves. Still others tend, 

intuitively, to violate the axioms but feel guilty about it and go back into 

further analysis. (Ellsberg 1961) 
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The standard way to think about choice under ambiguity is to assume that a person’s 

value for a gamble is simply the average of the possible outcomes weighted by the 

probabilities that the outcome will occur. Specifically assume that there is a set of possible 

states of the world e ∈ E, each occurring with some probability (or with some probability 

distribution function if E is continuous), p(e) and a set of actions f ∈ L, which yield some 

out come with utility f (e) if e occurs. Expected utility theory states that the utility of some 

action f ∈ L is equal to ∑e∈E p(e)f (e) (or the corresponding integral for continuous E). The 

existence of this sort of representation depends on the Independence Axiom stated below.  

Axiom 3.1. Independence Axiom ∀f, g, h ∈  L, where L is the set of possible actions, f f 

g  αf + (1 – α)h f αg + (1 -α)h∀α∈ (0, 1).  

Most alternatives to SEU focus on modifying this axiom to varying degrees. Several of 

these fall under the general rubric of Maxmin Expected Utility (MEU) (Gilboa and 

Schmeidler 1989).  In these models, decision makers have a convex set of priors (a set of 

possible probability distributions over possible “states of nature”) and act as if the worst 

case is realized.4 The model uses a weakened version of the independence axiom, called 

“certainty-independence”:  

Axiom 3.2. Certainty-independence ∀f, g ∈  L and h ∈  Lc, where Lc is the set of 

constant acts, and ∀α∈ (0, 1), ff g iff αf + (1 - α)hf αg + (1 -α)h.  

The standard independence axiom is stronger than certainty independence in that it allows 

h to be any act in L rather than restricting it to constant acts Lc, but both of these axioms 

explicitly deal with the reduction of compound lotteries, since this is at the center of how 

we represent ambiguity mathematically. Namely, there is some set of possible probability 

distributions over the states of nature, in the first stage of the compound lottery one of these 

distributions is chosen and in the second stage the actual state of nature is chosen. Under 

SEU this is equivalent to a one-stage lottery where the possible distributions are linearly 
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combined (in the discrete case the probability that some state e ∈  E occurs is simply ∑P 

Ł (P )P (s) where P is a possible distribution and Ł(P) is the likelihood with which it 

occurs).  

In addition, Gilboa and Schmeidler included an uncertainty aversion axiom, which states 

that decision makers prefer a mixture of acts with objective probabilities over the acts 

themselves.  

∀f, g ∈ L and α ∈. (0, 1), f ~ g implies αf + (1 - α)g f  f . 

Under standard conditions with the aforementioned changes, the preference relation is 

represented by a function J(f ) up to a unique affine transformation, 

  

! 

J( f ) =min u o fdP |P " C#{ }  

where f is an act, u is a von-Neuman-Morgenstern utility function over outcomes, and C is 

a closed and convex set of finitely additive probability measures on the states of nature.  

In these models, pessimism can be measured by the size of the set of priors. Larger sets of 

priors5 will generally include worse possibilities and imply more pessimism. These models 

explain the Ellsberg paradox by allowing the probabilities assigned to each outcome (red or 

black), depend on the bet that is made, i.e., there is a set of possible values from p(R) 

ranging from p* to p*. When betting on red, the “worst” prior out of the decision maker’s 

set is the one with the lowest odds on red, p(R)= p*, so the expected utility of the red bet is 

low. When betting on black, the worst prior out of the set is the one with the lowest odds on 

black, p(R)= p* so p(B)=1 – p*, so the expected utility of the black bet is low. In this 

account, the sub-additivity of the revealed subjective probabilities in the paradox is due to 

the fact that different priors are used to evaluate the expected utility of each bet. This effect 

is like “Murphy’s Law”: if something can go wrong, it will.  
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Other models treat ambiguity as a two stage lottery where the actual probabilities are 

chosen in a first stage (Segal 1987).  Here the explanation for ambiguity aversion comes 

from a violation of the reduction of compound lotteries. Non-expected utility is used to 

explain the Ellsberg paradox.  

Finally, some models take the stance that ambiguity aversion is an overgeneralization of a 

rational aversion to asymmetry in information (Frisch and Baron 1988). These models 

argue that since many people confront incomplete information when they are facing a 

better-informed opponent, they treat the Ellsberg paradox as if there is asymmetric 

information (i.e., they act like they are playing a game against a malevolent experimenter 

who is trying to trick them). We examine this “informed opponent” hypothesis with the 

third treatment in our study, where they actually play against a better-informed opponent.  

At some point in the future, economic theories might specify not only the link between 

unobservable factors and observed choices (such as beliefs and bet choices), but also a 

claim about neural circuitry that implements observed choices.  Reviewing the many 

theoretical papers on ambiguity, we found one suggestion by Raiffa (1963) that echoes and 

anticipates the dual-systems models popular in behavioral economics today.  

“But if certain uncertainties in the problem were in cloudy or fuzzy form, 

then very often there was a shifting of gears and no effort at all was made to 

think deliberately and reflectively about the problem. Systematic 

decomposition of the problem was shunned and an over-all ‘seat of the 

pants’ judgment was made which graphically reflected the temperament of 

the decision maker.” 

Raiffa’s suggestion seems to be that under ambiguity, deliberation and reflection (thought 

to be activities in prefrontal cortex) are limited, and a temperamental “seat of the pants” 

judgment takes over. Unfortunately, the seat of the pants is not a brain area, but we could 
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interpret him more broadly as suggesting a rapid emotional reaction to ambiguity. Thus, 

we translate Raiffa’s observation, in neural terms, as implying a more rapid emotional 

reaction to ambiguous choices than to risky ones.  

Experimental Design and Methods 
Subjects 

Sixteen Caltech undergraduate and graduate students were recruited from the Caltech 

SSEL database to participate in the study (13 males, 3 females). The mean (std. dev.) age 

was 23.5 years (6.2). Informed consent was obtained using a consent form approved by the 

Internal Review Board at Caltech. Subjects read written instructions before entering the 

scanner.  After reading the instructions they completed a quiz to ensure comprehension of 

how their decisions affected their performance and earnings.  They knew that at the end of 

the experiment, one trial from each of the three treatments would be chosen at random, and 

their choice on that trial would determine their pay. Their earnings were the total from the 

three randomly chosen choices, plus $5 fee for participating.  

Behavioral Task 

Stimuli were presented through MRI-compatible goggles (Resonance Technology). 

Choices were made using an MRI-compatible button box. For each choice, three options 

were given. Two of the options were bets on either side of a binary choice gamble that 

carried some uncertainty of paying either a positive sum or zero. The third option was the 

sure payoff that paid a certain positive amount of money. Subjects were allowed as much 

time as they desired in making their choice. Responses were made by pressing the button 

corresponding to the location of the options (left-middle-right) on the screen. The gambles 

were not played after each trial.  This helps to eliminate any income effects as well as 

learning that might occur to reduce the degree of ambiguity over time.  

Experimental Treatments 

The fMRI study used three experimental treatments: Bets on card decks (based on the 

Ellsberg example above), bets on high-and low-knowledge world events, and bets against 

an informed or uninformed opponent (Figure 16). 
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The card deck treatment is a baseline pitting pure risk, where probabilities are known 

with certainty, against pure ambiguity. The knowledge treatment uses choices about events 

and facts which fall along a spectrum of uncertainty from risk to ambiguity. From the 

perspective of the MEU model, the high-knowledge questions correspond to smaller sets of 

priors than the low-knowledge question.  

The informed opponent’s treatment offers bets against another person, who is either better-

informed or equally-informed about the contents of an ambiguous deck than the subject. In 

this condition the “opponent” draws a sample of cards from an ambiguous deck before 

making his bet. The subject has the option of making a simultaneous bet, but this will only 

count if the subject bets on the opposite color of the color the informed opponent chose. 

Since the opponent should always bet on the majority color from his sample, the subject’s 

bet will only count when it is on the minority color from a random sample in the deck, i.e., 

when the subject is more likely to lose than win. This implies that the subject’s expected 

value from winning is lower when the opponent is informed. 

For example, assume that the subject has a prior that the deck will either contain 5 red cards 

and 15 blue cards or 15 red cards and 5 blue cards. Assume that the opponent draws one 

card before choosing how to bet, and the opponent always bets on the color that he drew. 

The subject, having no information about the deck, will bet randomly on red or blue. 

Suppose the subject chooses to bet on red (without loss of generality). When the deck has 5 

red cards and 15 blue cards, the opponent will draw a blue with probability ¾.  As a result, 

the subject will end up betting against the opponent’s blue draw 75% of the time, and 

winning that bet only ¼ of the time. One-quarter of the time, the opponent draws a red card 

and bets red, in which case the subject’s red bet does not count (and the subject earns the 

sure amount c). Therefore, the subject’s expected value, conditional on the deck having 15 

blue cards, is ¾ ¼x+ ¼c. The expected value conditional on the deck having 15 red cards is 

¾c + ¼ ¾x. Since each of these conditional expected values is equally likely, the overall 

expected value is c/2  + 3/16 x. When the informed opponent does not have better 

information, then both subjects bet randomly and the subject’s expected value is c/2 + x/4 
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(since half the time their colors match and they earn c, and half the time they bet and the 

subject wins that bet half the time). Comparing the two expected values, there is a small 

drop in expected value (x/4 - 3/16x = x/16) when betting against the informed opponent. 

This drop leads to a stricter constraint on when it is rational to take the gamble (x> 8/3c 

instead of x> 2c). 

  

Figure 16: Sample screens from the experiment. (A) Bets on card 
decks (based on the Ellsberg example above); (B) bets on high-
and low-knowledge world events; and (C) bets against an 
informed or uninformed opponent.  

Notice that all three treatments have one condition where the subjects are missing some 

relevant information relative to the other. We call all these treatments the ambiguous 

conditions and the other treatments the risky conditions. Subjects made 24 choices in each 

treatment between certain amounts of money and bets on events. The amount of the certain 

payoff and the bet varied across trials.  

In these experiments we allow 6-8 seconds between trials. This break was necessary to 

allow the activations caused by the previous trial to dissipate. We also randomize the length 
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of these inter-trial intervals, because using a fixed interval can create anticipation effects 

in the seconds just before the new trial is presented; having a random inter-trial interval 

length diminishes these effects.  

fMRI Data Collection 

Imaging was performed using a 3 Tesla Siemens Trio scanner at the Broad Imaging Center 

at Caltech. A set of high-resolution (0.5mm x 0.5mm x 1.0mm) T1-weighted anatomical 

images was first acquired to enable localization of functional images. Whole-brain 

functional images were acquired in 32-34 axial slices (64 x 64 voxels; in plane resolution 3 

mm x 3 mm x 3.5 mm slices, number of slices varies according to variation in the subjects’ 

brain sizes) at a TR of 2000 msec, TE of 30 msec.  

The scan sequences were axial slices approximately parallel to the AC-PC axis. Scan 

sequences were not optimized for the OFC, therefore susceptibility artifacts affected 

adversely the image quality of the medial OFC. The lateral OFC activation found in the 

experiment, however, showed no such signal dropout upon inspection. 

Prior to analysis, the images were corrected for slice time artifacts, realigned, coregistered 

to the subject’s T1 image, normalized to Montreal Neurological Institute coordinates 

(resampled 4mm x 4mm x 4mm), and smoothed with an 8mm full-width-at-half-maximum 

Gaussian kernel using SPM2 (for details see Chapter 1). At the start of each functional 

scanning run, the screen remained black for 4s to allow time for magnetization to reach 

steady state. The associated first two images were discarded from the analysis. Thirteen out 

of 16 subjects completed all tasks within three 15-minute scanning runs. However, the 

duration of the experiment was variable because choices were self-paced. Three subjects 

did not have time to complete the Informed Opponent treatment. 

fMRI Data Analysis 

For each treatment, we estimated a general linear model (GLM) using standard regression 

techniques (for details, see Chapter 1).  Two primary regressors were used in the GLM, one 

for the ambiguity trials and one for the risky trials. The regressors were constructed in the 
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following way: first we created a boxcar regressor (dummy variable) that was 1 during 

the risky (ambiguous) trial and 0 elsewhere. These regressors were then convolved with the 

hemodynamic response function.  Maximum likelihood estimation was used to fit:  

Bt = ßambAt +ßriskRt + ß0 

where Bt is the time series for some voxel in the brain6. Voxels with regression coefficients 

significantly different from 0 can be said to covary with either risk or ambiguity. We are 

mostly interested in which voxels are differentially activated by ambiguity with respect to 

risk, i.e. voxels where ßamb is significantly different from ßrisk.  

As the experiment was self-paced, the length of the trials varied (see behavioral data in 

results section for details).  To find areas differentially activated by ambiguity and risk 

across all three treatments, a one-way ANOVA of the three conditions was performed, 

correcting for non-sphericity, and excluding areas that are significantly different between 

the three treatments.  

The regressors were anchored to stimulus presentation, i.e., the original dummy variable 

turns “on” when the stimulus is presented, as opposed to when a decision is made, based on 

the hypothesis that the reaction to uncertainty would occur before the decision.  To check 

the robustness of our results to this assumption, we also analyzed the time courses of 

activation anchored at both the stimulus onset and the decision time.  

Some models in the analysis used the expected value of subjects’ choices.  For the 

ambiguous gambles and for gambles where no objective probabilities were given (e.g., 

ambiguous gambles in all three treatments, and risky gambles in Knowledge treatment), we 

calculated the expected value by assuming that the probabilities were equiprobable.  

Furthermore, for the Informed Opponents hypothesis, we invoked the additional 

assumption that subjects have a prior distribution over the cards (we used both a uniform 

and binomial prior; details available in endnote 7). 
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Behavioral Results 
Summary of Behavioral Results 

Table 1 shows mean response times across conditions and treatments. Because response 

times are skewed and bounded away from zero, standard deviations are large and 

misleading about distributional variance.  Figure 17, therefore, displays boxplots of the log 

response times of choices by type of choice, condition, and treatment. These boxplots show 

that there are no significant differences in the central tendency of response times between 

any of these variables.   

  

Figure 17: Boxplots of log response times (secs) of choice by 
condition and treatment. Response times are logged due to 
skewness of the distribution.  Boxplots show that there are no 
significant differences between choices and between conditions 
across the treatments. 

  
Ambiguity 

 
Ambiguity 
Total 

Risk 
 

Risk 
Total 

Grand 
Total 

Treatment Certain Gamble   Certain Gamble     
Card-Deck 4.88 5.67 5.30 8.45 6.30 7.13 6.22 
Knowledge 7.53 8.29 8.03 6.03 7.32 6.98 7.51 
Informed Opp. 5.39 5.93 5.69 5.40 3.54 3.96 4.83 
Grand Total 5.83 6.80 6.39 7.00 5.80 6.16 6.27 

Table 1: Summary of mean response times (secs) of choices 
across treatments. 
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Summary of the proportion of choices made by subjects are presented in Figure 18 and 

Table 2.  Roughly speaking, a greater number of certain choice indicates greater 

ambiguity/risk aversion. A more rigorous demonstration of ambiguity/risk aversion is 

presented later.   

 

Figure 18: Choices of subjects across treatment and condition. 
Average of number and standard error bars of certain payoff 
choice by subjects across condition and treatment (out of 24 total 
choices per condition per treatment). A higher frequency of 
choosing the certain payoff in the ambiguity treatment (compared 
to the frequency in the risk treatment) is an indicator of ambiguity 
aversion. 

Condition/Treatment Card-Deck Knowledge Informed Opp. Grand Total 

Ambiguity 11.56 8.37 10.61 10.15 
Risk 9.56 6.25 5.46 7.20 

Ambiguity – Risk 2.00 2.12 5.15 2.95 
Table 2: Summary of subject choices across treatment and 
condition.  Average number of certain payoff choices by subjects 
across conditions and treatments (out of 24 total choices per 
condition per treatment).  

Risk and Ambiguity Attitudes 

We estimate subjects’ risk and ambiguity attitudes via a stochastic choice model.  The 

subjects’ utility functions for money are assumed to follow a power function u(x, ρ) = xρ.  
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The power function is conveniently characterized by one parameter and widely 

employed in empirical estimation of choice under uncertainty.  Subjects are assumed to 

weight probabilities according to the function π(p, γ) = pγ.  The ρ parameter is interpreted 

as the risk aversion coefficient, i.e., the curvature of the utility function. The γ parameter is 

interpreted as the ambiguity aversion coefficient, i.e., how much do people over(under)-

weight probabilities because they are not confident in their judgments.  If subjects over-

weight ambiguous probabilities (γ < 1), we characterize them as ambiguity-preferring. If 

they under-weight ambiguous probabilities (γ > 1, as in the non-additive prior view), we 

characterize them as ambiguity-averse. If subjects weight probabilities linearly (γ =1), we 

characterize them as ambiguity-neutral. We assume subjects combine these weighted-

probabilities and utilities linearly, so that their weighted subjective expected utility is U(p, 

x; γ, ρ)= π (p, γ)u(x, ρ).  

The tasks are all binary choices in which subjects either choose a gamble to win x (with 

probability p) or 0, or a certain payoff c. For the risky deck, the ratios of the cards are the 

probabilities. For the ambiguous decks and all knowledge questions, we assumed p =1/2. If 

subjective p is different than 1/2 (e.g., because a subject happens to know a lot about fall 

temperatures in New York), then subjective probabilities are not held constant across the 

knowledge trials. This possibility biases our analysis against finding common regions of 

activation across treatments, so would imply that the results described in the text are 

conservative about the true extent and commonality of ambiguity and risk-specific regions. 

We constrain γ = 1 in all risk conditions and estimate γ from behavioral data in the 

ambiguity conditions.  

The probability that the subject chooses the gamble rather than the sure amount c is given 

by the logit or softmax formula,  

! 

P(p,x;",#) =
1

1+ exp{$%(U(p,x;",#) $ u(c,#)( )
. 
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The parameter λ is the sensitivity of choice probability to the utility difference (the 

degree of inflection), or the amount of “randomness” in the subject’s choices (λ =0 means 

choices are random; as λ increases the function is more steeply inflected at zero).  

Denote the choice of the subject in trial i by yi, where yi =1 if subject chooses the gamble, 

and 0 if the subject chooses the certain payoff.  We fit the data using maximum likelihood, 

with the log likelihood function  

! 

yi log P(p,x,c;",#,$)( ) + (1% yi)log 1% P(p,x,c;",#,$)( ).
i=1

N

&  

Because this is a nonlinear optimization problem, numerical methods must be used. We 

used the Nelder-Mead simplex algorithm (Nelder and Mead 1965) implemented in 

Mathematica v5.1, with 10 random starting positions. The iteration with the highest 

likelihood value was chosen.  This procedure is quite robust as the estimates are in general 

insensitive to the starting values.  Table 3 shows the estimates from the fMRI subjects.  

Card-Deck Knowledge Subject 

γ ρ λ γ ρ λ 

AJB 0.98 1.00 1.39 1.11 1.13 0.71 
  (0.10) (0.09) (0.63) (0.15) (0.12) (0.41) 

APS 0.80 0.90 4.32 1.66 1.44 0.10 
  (0.04) (0.04) (1.92) (0.57) (0.48) (0.18) 

BIC 0.81 0.73 1.81 1.05 0.63 1.37 
  (0.11) (0.08) (0.73) (0.22) (0.11) (0.60) 

BSU 1.20 0.73 9.98 1.09 1.07 0.51 
  (0.10) (0.04) (4.82) (0.19) (0.15) (0.34) 

CSJ 0.93 0.87 3.85 1.30 1.50 0.10 
  (0.07) (0.04) (1.50) (0.46) (0.71) (0.26) 

DAS 0.84 0.85 0.85 1.70 1.29 0.10 
  (0.19) (0.18) (0.81) (1.13) (0.84) (0.33) 

EJH 0.82 0.83 1.39 1.09 1.05 0.64 
  (0.12) (0.10) (0.67) (0.17) (0.13) (0.39) 

HCH 0.55 0.52 6.65 1.52 1.25 1.43 
  (0.08) (0.06) (2.64) (0.12) (0.10) (0.89) 

KED 1.03 1.05 3.98 1.19 1.27 0.48 
  (0.05) (0.04) (1.67) (0.18) (0.17) (0.33) 

LTL 0.98 1.02 0.80 1.07 0.89 2.13 
  (0.15) (0.14) (0.55) (0.09) (0.05) (0.78) 
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MK 1.12 1.01 0.85 1.30 1.37 0.10 
  (0.16) (0.13) (0.52) (0.45) (0.55) (0.21) 

PRV 1.22 1.13 1.22 1.33 1.47 0.33 
  (0.14) (0.12) (0.69) (0.23) (0.22) (0.26) 

SWT 0.81 0.58 5.01 1.10 0.70 10.16 
  (0.09) (0.05) (1.56) (0.06) (0.03) (3.77) 

TEJ 0.84 0.79 5.35 1.49 1.36 0.26 
  (0.06) (0.03) (1.83) (0.26) (0.22) (0.21) 

VS 1.19 1.22 0.63 1.42 1.50 0.15 
  (0.19) (0.18) (0.51) (0.27) (0.26) (0.14) 

WL 0.85 0.83 1.11 1.88 1.38 0.18 
  (0.13) (0.10) (0.59) (0.41) (0.27) (0.18) 

Mean est. 0.94 0.88 3.07 1.33 1.21 1.17 
Mean s.e. (0.11) (0.09) (1.35) (0.31) (0.28) (0.58) 

Table 3: Ambiguity aversion estimates. Separate estimates 
(standard errors) of the ambiguity aversion coefficient γ, risk 
aversion coefficient ρ, and inflection parameter λ for subjects in 
the Card-Deck and Knowledge Conditions. 

fMRI Results 
Ambiguity and Risk Regions 

Areas that were more active during the ambiguous condition relative to the risk condition 

are listed in Table 4. These included OFC and amygdala (Figure 19a, b). Critchley et al. 

(2001) found OFC activation as subjects anticipated information about a financial gain or 

loss.  Our study shows activity in this area even though there is no feedback during the 

experiment. More subtly the OFC appears to be involved in integrating emotional and 

cognitive information. OFC lesion patients often behave inappropriately in social situation 

despite knowledge of what proper behavior entails (Berthoz 2002), so the OFC may be 

active generally in emotional integration over a wide spectrum of situations.  

The amygdala has been specifically implicated in processing information related to fear, 

e.g., recognizing frightened faces (Bechara, 2003, Adolphs, 2002, Critchley, 2000}. We 

hypothesized that this area would be important for processing uncertain events since risk 

and ambiguity aversion could be interpreted as fear of the unknown.  The amygdala is also 

involved in emotional learning and conditioning, both of which should be relevant in 

dealing with ambiguous situations (Phelps et al. 2004).  In addition, the role of the 

amygdala in reacting to missing information is consistent with evidence of its involvement 
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in interpersonal evaluations with missing social information, where familiarity 

modulates amygdala response (Phelps et al. 2000).  Showing unfamiliar black faces to 

white subjects elicits amygdala activation which correlates with the strength of implicit 

associations between black names and negatively-valenced words (Phelps et al. 2000).  

This correlation disappears when the black faces are familiar (e.g., Bill Cosby), which 

suggests the amygdala may be partly reacting to ambiguity of the social evaluation of 

faces; activity dissipates when faces are familiar and more like risky gambles which have 

less missing social information. Similarity of activity in all three fMRI treatments also 

suggests that aversion to betting on ambiguous events may be an overgeneralization of a 

rational aversion to betting against other agents who are better informed.  

 
Figure 19: Regions showing greater activation to ambiguity than 
risk: Random effects analysis of all three treatments revealed 
regions that are differentially activated in decision making under 
ambiguity relative to risk (at p . 0.001, uncorrected). These 
regions include (A) left amygdala, and right 
amygdala/parahippocampal gyrus, (B) bilateral OFC, and bilateral 
inferior parietal lobule (Table S2). (C) Mean time courses of 
amgydala and OFC (time synched to trial onset, dashed vertical 
lines are mean decision times; error bars are SEM; n=16). Time 
courses are plotted using the most signi.cant voxel in each cluster. 
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Areas activated during the risk condition relative to ambiguity are listed in Table 5. 

These include the dorsal striatum (caudate nucleus) (Figure 20a), an area that has been 

implicated in reward prediction (Schultz 2000; Knutson et al. 2001; O'Doherty et al. 2004).  

One earlier study also found differential activation in the caudate during risk relative to 

ambiguity using PET (Rustichini et al. 2005).8  

 
Figure 20: Regions showing greater activation under risk than 
ambiguity: Random effects analysis of all three treatments 
revealed brain regions that are differentially activated in decision 
making under risk. These regions include (A) dorsal striatum, and 
also precuneus and premotor cortex (Table S3). (B) Mean time 
courses for risk areas (time synched to trial onset, dashed vertical 
lines are mean decision times; error bars are SEM; n=16).  

Time courses also showed different patterns of activation in the ambiguity > risk and risk > 

ambiguity regions indicating two distinct systems at work. Whereas the amygdala and OFC 

reacted rapidly at the onset of the trial (Figure 19b), the dorsal striatum activity built more 

slowly and peaks after the decision time (Figure 20b). Furthermore, these activations are 

present in all three experimental treatments (see Figure 21).  
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Figure 21: Time courses of percentage signal change in brain 
regions that are differentially activated in decision making under 
ambiguity in Card-Deck, Knowledge and Informed Opponent 
conditions. Note that the qualitative aspects of the activation 
differences between ambiguity and risk are preserved between the 
pooled time courses in Figure 2.  

cluster voxel Regions 
pcor

1
 kE

2 punc
3 pFWE

4 pFDR
5 T6 Z7 X8 Y Z L/R9 Region 

0.01 82 0.001 0.011 0.007 5.96 5.04 51 33 -6 R Lateral Orbitofrontal Cortex 

                                                
1 Corrected (family-wise) cluster-level p-value. 
2 Cluster size (voxels). 
3 Uncorrected cluster-level p-value. 
4 Corrected (family-wise) voxel-level p-value. 
5 Corrected (false-discovery rate) voxel-level p-value. 
6 T-statistic of voxel. 
7 Z-score of voxel. 
8 (X, Y, Z) are the MNI coordinate of voxel location (mm). 
9 Laterality (L = left, R = right). 



 

 

46 
   0.897 0.017 3.92 3.6 54 18 -21   

0 109 0 0.052 0.007 5.38 4.67 -54 -60 42 L Inferior Parietal Lobule 
   0.1 0.007 5.13 4.5 -45 -54 33   

0 112 0 0.06 0.007 5.33 4.63 -9 48 39 L Dorsomedial Prefrontal Cortex 
   0.306 0.008 4.66 4.16 -12 63 21   

0 119 0 0.072 0.007 5.26 4.59 54 -54 36 R Supramarginal Gyrus 
   0.599 0.01 4.3 3.89 54 -63 30   

0 226 0 0.162 0.007 4.94 4.36 18 54 18 R Dorsomedial Prefrontal Cortex 
   0.229 0.008 4.79 4.26 12 54 30   
   0.379 0.009 4.56 4.09 12 27 57   

0.06 52 0.007 0.201 0.008 4.85 4.3 36 18 42 R Middle Frontal Gyrus 
   0.884 0.016 3.94 3.62 42 9 45   

0 154 0 0.22 0.008 4.81 4.27 60 -36 -3 R Middle Temporal Gyrus 
   0.485 0.009 4.43 3.99 63 -27 -6   
   0.626 0.01 4.27 3.87 51 -24 -9   

0.44 21 0.066 0.302 0.008 4.67 4.17 -39 -9 -15 L Sub-Gyral 
0.13 40 0.015 0.331 0.009 4.63 4.14 39 6 -27 R Frontoinsular Cortex 
   0.951 0.019 3.8 3.5 42 15 -24   
0.41 22 0.061 0.547 0.01 4.36 3.94 54 27 6  Lateral Orbitofrontal Cortex 
0.26 29 0.034 0.584 0.01 4.32 3.91 -54 36 -6 L Lateral Orbitofrontal Cortex 
0.74 12 0.154 0.75 0.013 4.13 3.76 -15 -15 -15 L Amygdala/Parahippocampal Gyrus 
   0.993 0.026 3.57 3.32 -21 -6 -18 L Amygdala 
0.41 22 0.061 0.825 0.014 4.03 3.69 33 -6 -27 R Amygdala/Parahippocampal Gyrus 

Table 4: Ambiguity > Risk regions. Local maxima of clusters, p < 
0.001 uncorrected, clusters with k < 10 voxels not shown (All 
local maxima uncorrected p-values are significant to three 
significant figures, and are omitted from the table.) 

 

cluster voxel Regions 
pcor kE punc pFWE pFDR T Z X Y Z L/R Region 
0.06 52 0.007 0.063 0.012 5.31 4.62 0 -6 6 M Caudate 

   0.993 0.033 3.57 3.32 9 6 6 R  
   0.952 0.023 3.79 3.5 -12 6 0 L  

0 641 0 0.07 0.012 5.27 4.59 12 -60 -3 R Culmen 
   0.119 0.012 5.07 4.45 9 -78 3 R Lingual Gyrus 
   0.162 0.012 4.94 4.36 -12 -75 15 L Cuneus 

0.01 81 0.001 0.295 0.012 4.68 4.18 -15 -72 51 L Precuneus 
0.26 29 0.034 0.338 0.012 4.62 4.13 -3 9 45 L Precentral Gyrus 
0.12 41 0.014 0.569 0.012 4.33 3.92 12 -75 51 R Precuneus 

   0.906 0.02 3.9 3.58 21 -84 39   
0.74 12 0.154 0.923 0.021 3.87 3.56 -42 -75 30 L Angular Gyrus 

Table 5: Risk>Ambiguity regions. Local maxima of clusters, p < 
0.001 uncorrected, clusters with k < 10 voxels not shown (All 
local maxima uncorrected p-values are significant to three 
significant figures, and are omitted from the table.) 
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Note that it is rational in the informed opponent’s treatment to discount some of the 

payoff in the gamble, as the gamble only wins if the better-informed opponent chosses the 

wrong color. The informed opponent hypothesis is that bets on ambiguous card decks and 

low-knowledge events, while normatively different than bets against the informed 

opponent, are generated by similar neural circuitry. The time courses in the amygdala, 

OFC, and striatum are similar across all three treatments, consistent with this hypothesis. 

One simplified way of interpreting this data is to hypothesize that there are two interacting 

systems: (1) a vigilance system in the amygdala and OFC that responds more rapidly to the 

stimuli, and (2) a reward-anticipation system in the striatum that is further downstream. 

The overall activity differences in the contrasts indicate that system (2) is more active 

during risky decisions, which makes sense since, in these situations, subjects have the 

information necessary for accurate reward prediction. Conversely, during ambiguous 

conditions, the first rapid system (1) appears to be more active, indicating that it may be 

reacting to the level of information available (less information during the ambiguous 

situations leads to greater vigilance in the form of higher activation levels in the amygdala 

and OFC). Both systems are active to varying degrees during risky and ambiguous trials, 

the difference is one of degree—as the level of information available to the decision maker 

rises, activity in system (1) declines relative to more ambiguous situations; the converse is 

true of system (2). 

Expected Reward Regions 

To identify regions that were sensitive to expected dollar value of rewards, conditional on 

the subject’s choice, we used a model where the event of interest was synched to the 

decision epoch.  

Two different main regressors were used for the ambiguity and risk conditions, 

respectively. Each regressor was associated with an interaction term defined by the 

expected dollar value of the actual choice (either the gamble or the certain payoff). Notice 

that sometimes the choice was the certain payoff and sometimes it was the gamble, so this 
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interaction should detect regions that are sensitive to expected value of the actual choice, 

regardless of whether it was a certain or uncertain amount.  

 

Figure 22: Regions of the dorsal striatum significantly correlated 
with expected values of subjects’ choices in risk condition of 
Card-Deck treatment (red) and both risk and ambiguity conditions 
of Knowledge treatment (blue) (p < 0.005, uncorrected; cluster 
size k ≥ 10 voxels). 

Results from this analysis are presented in Table 6 and Table 7. In the Card-Deck 

treatment, activity in the right dorsal striatum was correlated with the expected reward in 

the risk condition  

Figure 22. Activity in left dorsal striatum was correlated with the expected reward in both 

conditions of the Knowledge treatment. No consistent activations were found in the 

Informed Opponents treatment (which is likely due to the sensitivity of the calculation of 

expected value in this treatment, see Endnote 7). 

Importantly, the dorsal striatum regions found in this analysis also overlapped with the risk 

> ambiguity regions found in the main analysis.  In fact, it is the unique cluster that exhibits 
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this property.  In addition, once we take the expected value of the choices into the model, 

the dorsal striatum is no longer significantly activated by risk.  These results strongly 

suggest that the difference in the time course is due to expected reward differences. 

Finally, it is interesting to note that the lateralization corresponds to the 

semantic/mathematical lateralization. It is less clear, however, how much of this 

dissociation is due to the ambiguity/risk distinction, or the lack of information about the 

expected reward in the ambiguity condition. Further research is needed to establish this 

relationship.  

cluster voxel Regions 
pcor kE punc pFWE pFDR T Z punc X Y Z L/R Region 
0.002 120 0 0.089 0.089 7.11 4.64 0 9 24 54 R Superior Frontal Gyrus 
                      0.994 0.397 4.85 3.71 0 12 39 51   
                      1 0.397 4.47 3.51 0 9 12 54   
0.429 36 0.01 0.32 0.16 6.36 4.36 0 60 -33 3 R Middle Temporal Gyrus 
                      1 0.397 3.31 2.82 0.002 57 -42 3   
0.844 23 0.032 0.781 0.314 5.76 4.12 0 -51 -72 30 L Angular Gyrus 
                      1 0.397 3.99 3.24 0.001 -42 -78 33   

1 10 0.139 0.991 0.397 4.92 3.74 0 -66 -30 -9 L Middle Temporal Gyrus 
0.487 34 0.012 0.996 0.397 4.81 3.68 0 -9 -18 18   
   1 0.397 4.16 3.34 0 -9 -3 18   
0.403 37 0.009 1 0.397 4.55 3.55 0 15 6 3 R Caudate 
0.041 70 0.001 1 0.397 4.37 3.46 0 48 24 -15 R Inferior Frontal Gyrus 
                      1 0.397 3.67 3.05 0.001 54 39 -3 R Brodman Area 47 
                      1 0.397 3.54 2.97 0.001 39 24 -15   
0.783 25 0.026 1 0.397 4.21 3.37 0 -9 45 9 L Anterior Cingular Gyrus 
0.549 32 0.014 1 0.397 3.99 3.24 0.001 -3 57 33 L Brodman Area 9 
                      1 0.397 3.87 3.17 0.001 -9 39 30   
                      1 0.397 3.46 2.92 0.002 -6 48 27   
0.999 11 0.122 1 0.397 3.95 3.22 0.001 3 -42 -6 M Culmen 
0.897 21 0.039 1 0.397 3.85 3.16 0.001 60 -57 30 R Supramarginal Gyrus 
                    1 0.397 3.73 3.09 0.001 60 -51 39   
0.999 11 0.122 1 0.397 3.84 3.16 0.001 -6 27 42 L Brodman Area 6 

1 10 0.139 1 0.397 3.74 3.1 0.001 -45 42 6 L Inferior Frontal Gyrus 
1 10 0.139 1 0.397 3.43 2.9 0.002 21 48 27 R Superior Frontal Gyrus 

                    1 0.397 3.38 2.87 0.002 18 57 33   
Table 6: Regions positively correlated with expected value of 
decisions in risk condition of Card-Deck treatment.   Local 
maxima of clusters, p < 0.005 uncorrected, clusters with k < 10 
voxels not shown (All local maxima uncorrected).    

cluster Voxel region 
pcor kE punc pFWE pFDR T Z punc X Y Z L/R Region 
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0.782 41 0.06 0.417 0.741 5.88 4.17 0 33 -87 15 R Middle Occipital Gyrus 

                     1 0.93 3.53 2.96 0.002 39 -84 9   
0.995 17 0.21 0.998 0.93 4.08 3.3 0 -9 12 3 L Caudate 

                     1 0.93 3.24 2.78 0.003 -6 3 6   
1 10 0.334 1 0.93 3.69 3.06 0.001 -24 -63 51 L Superior Parietal Lobule 

Table 7: Regions positively correlated with expected value of 
decisions in Knowledge treatment.  Local maxima of clusters, p < 
0.005 uncorrected, clusters with k<10 voxels not shown (All local 
maxima uncorrected).    

Decision-Synched Models 

A model with regressors anchored to the decision epoch was also estimated for all subjects.  

This provides a robustness check on our assumption that the hemodynamic responses in 

our regions were synched to the onset of the stimulus, rather than that of the decision. 

Results from this model showed similar activation in the dorsal striatum for the risk > 

ambiguity contrast, but did not show differences in the amygdala or lateral OFC.  The 

hemodynamic responses in Figure 19 and Figure 20 clearly show why: the activations in 

the OFC and amygdala occur at the beginning of the trial, and peaks before the decision 

epoch (Figure 19); the striatal activity occurs somewhere between the onset and the 

decision, which allows it to be captured by the decision-synched model (Figure 20).  

Choice-Dependent Regions 

Table 8 and Table 9 present all regions differentially activated under gamble and certain 

payoff choices (p < 0.001 uncorrected, k ≥ 10 voxels). In addition to contralateral visual 

and motor activations corresponding to the visual inputs and motor responses required to 

make the choices, there were significant bilateral insula and left ventral striatum activation 

in the gamble>certain contrast.  

This is consistent with previous findings of insular activity in decision making under risk 

(Paulus et al. 2003). These regions, however, did not exhibit significant interaction with the 

ambiguity/risk distinction. Together with the fact that the risk/ambiguity regions did not 

exhibit significant differences across choices, this suggests that the risk/ambiguity regions 

are indeed responding to the ambiguity/risk trial dimension rather than to gamble/certain 

choices. 
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Notably, there do not appear to be any interactions between these decision-conditions 

and the ambiguity vs. risk conditions. This implies that the differences we see in the 

Ambiguity/Risk comparisons are purely the reaction to the level of uncertainty the subject 

is exposed to. While these reactions are almost certainly, then, an input into the actual 

decision, the areas we see appear to be involved in evaluation of the situation rather than 

determining choice. 

cluster Voxel Regions 
pcor kE punc pFWE pFDR T Z punc X Y Z L/R Region 

0 129 0 0.01 0.005 5.47 5.04 0 18 -78 -12 R Occipital Cortex 
   0.998 0.121 3.37 3.26 0.001 0 -81 -3   
0.037 54 0.004 0.398 0.041 4.31 4.09 0 -9 -21 48 L Medial Frontal Gyrus 
   0.609 0.057 4.1 3.91 0 -18 -12 51 L Brodman Area 6 
0.122 37 0.013 0.781 0.072 3.93 3.76 0 -30 -27 54 L  Precentral Gyrus 
0.639 14 0.104 0.88 0.088 3.81 3.65 0 -33 15 21 L  Insula 

0.76 11 0.146 0.891 0.089 3.8 3.64 0 -6 15 -3 L  Caudate head 
0.72 12 0.13 0.947 0.095 3.69 3.54 0 15 -90 12 R BrodmanArea18 
0.72 12 0.13 0.982 0.104 3.57 3.43 0 33 6 21 R  Insula 

   0.999 0.124 3.33 3.21 0.001 27 12 21   
0.562 16 0.084 0.997 0.12 3.41 3.29 0 -51 -66 6 L  Middle Temporal Gyrus 
   0.999 0.124 3.33 3.21 0.001 -51 -57 3     

Table 8: Gamble>Certain regions: Local maxima of clusters, p < 
0.001 uncorrected, clusters with k < 10 voxels not shown (All 
local maxima uncorrected). 

cluster voxel Regions 
pcor kE punc pFWE pFDR T Z punc X Y Z L/R Region 
0.001 122 0 0.008 0.003 5.56 5.11 0 42 -24 60  R   Precentral Gyrus  
0.012 72 0.001 0.008 0.003 5.56 5.11 0 -15 -75 9  L   Occipital Cortex  

Table 9: Certain>Gamble regions: Local maxima of clusters, p < 
0.001 uncorrected, clusters with k < 10 voxels not shown (All 
local maxima uncorrected). 

Cross-Correlation 

Table 10 presents the cross-correlation of contrast values in our regions of interest. The 

OFC and amygdala contrast values are from Ambiguity>Risk contrast and striatum the 

opposite so a positive table entry between those areas is a negative correlation. These 

correlations show a modest link between amygdala and OFC, and a substantial (negative) 

correlation between striatum and OFC (again, the correlations shown are negative, but 

since contrasts are opposite, should be interpreted as positive). This is consistent with the 
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hypothesis that OFC is judging gradations of uncertainty and triggering differential 

striatal responses.  

 R Amyg L Amyg R OFC L OFC R DMPFC R DMPFC R DStr L DStr 
R Amyg        
 

- 
       

L Amyg 0.33       
 (0.21) 

- 
      

R OFC 0.22 0.00      
 (0.42) (0.99) 

- 
     

L OFC 0.03 0.15 0.38     
 (0.91) (0.58) (0.14) 

- 
    

R DMPFC 0.35 -0.10 0.76 0.58    
 (0.18) (0.73) (0.00) (0.02) 

- 
   

R DMPFC 0.23 0.12 0.46 0.09 0.56   
 (0.38) (0.65) (0.07) (0.73) (0.03) 

- 
  

R DStr -0.11 0.00 0.13 0.31 0.24 -0.31  
 (0.69) (1.00) (0.63) (0.24) (0.37) (0.24) 

- 
 

L DStr -0.22 -0.16 0.14 0.61 0.08 -0.31 0.33 
 (0.40) (0.55) (0.59) (0.01) (0.76) (0.24) (0.22) 

- 

Table 10: Cross correlation (p-values) of pooled contrast values 
(each subject contributes one data point) between regions 
(ambiguity-risk contrast for amygdala and OFC; risk-ambiguity 
contrast for dorsal striatum). Note that since the contrasts are 
opposite for amygdala-OFC and striatum, positive correlations 
actually represents negative correlation in activity. 

Correlation of fMRI and Behavioral Results 

Stochastic choice analysis gives us a value of γj for each subject in the fMRI experiment. 

The γj estimated from the knowledge rounds positively correlates with brain activity 

across subjects as measured by the contrast values, β 
j
amb -  β 

j
risk, between ambiguity and 

risk (averaged over the three treatments) in the right OFC (r = .55, p<.02, one-tailed), and 

left OFC (r =0.37, p< 0.1, one-tailed).  This means that the subjects who exhibited more 

ambiguity-aversion revealed by choice, also show greater neural differences between risk 

and ambiguity in the OFC.  
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Figure 27: Correlation of behavioral measure of ambiguity 
aversion and contrast values.  Contrast value is calculated as the 
difference between ambiguity and risk betas in the right 
orbitofrontal cortex. 

Discussion 
We present evidence that the human brain responds to varying levels of uncertainty, 

contrary to many decision theories which regard choices under risk and ambiguity as 

equivalent. FMRI data suggests that uncertainty is represented in a system that includes the 

amygdala and OFC.  

The two hypothesized systems, amygdala/OFC, and striatum are active in both ambiguity 

and risk; the differences in activation are driven by the level of uncertainty in the different 

conditions. The fact that we see similar activation patterns for the real-world treatment as 

the card-deck treatment supports the hypothesis that risk and ambiguity are, in fact, points 

on a spectrum of uncertainty rather than two completely different entities. The reaction of 

the amygdala and OFC seems to be tied to the level of perceived uncertainty. The idea that 

ambiguity aversion in card deck and knowledge choices is related to rational aversion to 

betting against a better informed opponent (the informed opponent hypothesis) is supported 
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by similarities in time courses in the amygdala, OFC, and striatum between all three 

treatments.  

An interesting implication of this study is that models of risk and ambiguity treating the 

two quantitatively, instead of qualitatively, different may be more neurally and, therefore, 

behaviorally accurate. The current models of risk aversion relying solely on the curvature 

of the utility function do not allow for this. The implication that both types of aversion are 

the result of a direct dampening of activity in the dorsal striatum, which may well be the 

internal representation of utility in the brain, could help resolve some of the paradoxes of 

risk aversion as well as ambiguity aversion: for example, the vastly different expressions of 

risk over small verses large bets.  

A unified approach toward risk and ambiguity is also more appealing than a dual-systems 

model (separating risk and ambiguity) on evolutionary grounds and the available 

physiological evidence.  Evolutionarily, it is difficult to imagine the adaptive advantages of 

possessing two (or more) systems for different types of uncertainty.  This is especially so 

considering that in nature, as was mentioned at the outset of this chapter, known 

probabilities are exceedingly rare and most are limited to certain classes of games of 

chance.  Physiologically, there is simply little evidence for such dual systems (see Sugrue 

et al. 2005 for a discussion of this topic).    

Understanding the neural basis of choice under uncertainty, in the broader sense including 

both risk and ambiguity, is important because it is a fundamental activity at every societal 

level from retirement savings, to insurance pricing, to determining international military 

policy. These choices vary not only because of the presence of uncertainty, but the 

perceived level of uncertainty. Our results suggest that we pursue a unified model of 

uncertainty that would treat risk and ambiguity as points on a larger continuous scale. The 

knowledge treatment of the experiment further implies that the relevant level of uncertainty 

might be a function of mathematically unrelated factors, such as familiarity with related, 

but irrelevant, information.  



 

 

55 
C h a p t e r  3  

CAUSAL RELATIONSHIP BETWEEN BRAIN AND BEHAVIOR 

Introduction 
Although fMRI can teach us much about the neural correlates of perception and behavior, it 

is ultimately limited by its correlational nature. As reviewed on page 9, this can be 

overcome by utilizing other techniques that, unlike fMRI, are able to assess direction of 

causality.  This chapter describes two studies assessing the direction of causality (both 

necessity and sufficiency) of the brain regions implicated in decision-making under risk 

and ambiguity in the previous chapter.  

The first study uses behavioral data from lesion patients to examine the circuitry of choice 

under uncertainty.  Lesions in the same areas activated in a scanning study can help us 

understand the interactions of the regions and establish whether a lesioned area is a 

necessary part of a hypothesized circuit.  As described in Chapter 1, the lesion method is 

one of the oldest methods of studying the brain and still invaluable.  The lesion method 

answers the question: is area X necessary for the expression of behavior Y.  s 

The second study uses fear conditioning with electrical stimulation in combination with 

choice under uncertainty. We use fear conditioning as an indirect method of stimulating the 

amygdala.  Fear conditioning, using a wide variety of aversive stimuli (e.g., electrical 

stimulation, noise, taste), has been well established since the time of Pavlov and Skinner.  

More recently, it has been shown that certain brain areas, most importantly the amygdala, 

are critical to the acquisition and expression of fear conditioning (e.g., Selden et al. 1991; 

Labar et al. 1995; Quirk et al. 1995; Quirk et al. 1997).  

The choice of fear conditioning is made because of its known robust and rapid activation of 

the amygdala (reviewed on page 64), and also because of technical limitations of current 
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techniques.  The location of the amygdala, deep in the medial temporal lobe, precludes it 

from being affected by techniques such as TMS.  Focal lesions of the amygdala are also 

extremely rare, and are commonly damaged along with other structures in the medial 

temporal lobe, such as the hippocampus.  We therefore resort to using the indirect method 

of aversive conditioning with electrical stimulation to exogenously stimulate the amygdala. 

Study 1: Orbitofrontal Lesion Patients 
Background 

The OFC is a stretch of cortex situated in the ventral (bottom) surface of the brain, lying on 

top of the orbit bone. This is one of the areas suffering damage in Phineas Gage, a railroad 

worker who famously had an iron rod blasted through his head but miraculously survived 

with little impairment to his intelligence or memory.  What did seem to be affected, 

however, were his social skills and decision-making abilities (Harlow 1869; Ongur and 

Price 2000). This finding has been confirmed in other OFC patients over the past 80 years 

or so.  

One task that proved useful in diagnosing such patients is the “Iowa Gambling Task (IGT)” 

(Bechara et al. 1996). The task consists of asking the subject having to choose between two 

decks of cards for say, 100 trials.  Deck I is composed of high returns and high losses, Deck 

II low returns and low losses.  Overall Deck II dominates I in both mean and variance. The 

general finding of the task is that whereas most control subjects learn to choose only from 

Deck II, OFC patients persist in choosing from Deck I. It is important to note here that 

subjects are not told the composition of the decks, and the sampling is done without 

replacement, so the deck’s distribution is ambiguous. Clearly, the repeated nature (with 

feedback) of the experiment is a departure from the type of ambiguity present in the 

Ellsberg paradox. Subjects may hold different beliefs concerning the stationarity of the 

process. 

In addition to behavioral changes, Bechara et al. also found that OFC patients do not 

exhibit normal GSR (Bechara et al. 1996). Normal subjects display heightened GSR during 

later trials when choosing the high-risk deck, upon which they cease to choose the high-risk 
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deck. OFC patients, on the other hand, keep choosing from the high-risk deck, and do 

not exhibit heightened GSR. This appears to be a global level effect, as these patients also 

have abnormally low responses to disturbing or exciting images. 

Because of the extent of damage in a number of the patients, it is difficult to ascertain 

which substructure in the OFC is responsible for the behavioral changes. Neuroimaging 

and psychophysiological studies have given some clues to this.  In a study using a 

gambling task, Patterson et al. also found that galvanic skin response (GSR) correlated with 

activity near OFC/Insula (Patterson et al. 2002).  

Rogers et al. (1999) tested OFC patients, other prefrontal lesion patients, amphetamine 

abusers (a drug known to affect the dopaminergic system), normal subjects who were 

administered a drug that lowers plasma tryptophan levels (thereby simulating the effects of 

amphetamine), and normal controls. They used a variation of the gambling task with a 

known probability distribution. There was also a bet during each trial that the subject could 

take, allowing the experimenter to assess the risk attitudes of the subjects. They found that 

card choices of OFC patients, amphetamine patients, and normal subjects with lowered 

plasma tryptophan were similar. Even though the probability distribution is known, these 

subjects chose the color with the lower probability (a dominated choice) significantly more 

frequently than normal controls. OFC lesion patients, however, do not appear to be more 

risk averse; when allowed to wager on the outcome, lesion patients wagered significantly 

higher amounts than did normal controls.  

Methods 

Patient Background. Twelve neurological patients with single, focal, stable, chronic lesions 

of the brain were chosen from the Iowa Cognitive Neuroscience Patient Registry such that 

they were similar in terms of the etiology of their lesions (surgical resection), and similar 

on background neuropsychological measures.  

We partitioned the patients on the basis of whether or not their lesion overlapped with the 

largest and most significant frontal activation focus we found in the fMRI study (right 
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lateral OFC, cf. Figure 19 and Table 4 in Chapter 2), or whether their lesion did not 

overlap with any significantly activated region.  

These two groups, designated “frontal” and “control”, consisted, respectively, of 5 (3 

males, 2 females) and 7 patients (4 females, 3 males). The frontal group had lesions in 

bilateral OFC and frontal pole (1 patient), right OFC and right insula (1 patient), right OFC 

and frontal pole (1 patient) or only right OFC (2 patients) resulting from neurosurgical 

resection of brain tumors (frontal meningeoma resection). The control group had lesions in 

left (3 patients) or right (3 patients) anterolateral temporal cortex, or in left posterior 

temporal cortex (1 patient) resulting from neurosurgical resection for the treatment of 

epilepsy.  

    OFC       Comparison    t-statistic 
Age      54 52 0.31 
         (12) (9)  
VIQ      110 100 1.00 
         (21) (9)  
PIQ      117 100 2.35 
         (11) (14)  
FSIQ  114 100 1.65 
         (17) (10)  
MATH     102 98 0.71 
         (10) (9)  
WCST     6 4.9 1.45 
         (0) (2)  
MEMORY   106 100 1.09 
         (7) (12)  

Table 11: Lesion patient performance measures: Means (standard 
deviations) of VIQ, PIQ, FSIQ:  verbal performance and full scale 
IQ from the Wechsler Adult Intelligence Test III or Revised. 
MATH: from the WRAT-R arithmetic subtest. WCST:  
Wisconsin card sorting test (number of categories successfully 
sorted).  MEMORY: from the Wechsler Memory Scale III, 
general memory index.  

There were no significant differences between these groups in the overall size of the lesion. 

All subjects had IQs in the normal range, had normal memory performance and arithmetic 

abilities, and were not aphasic, depressed, or perseverative (Table 11). Frontal-damage 

patients were not significantly different than temporal-damage controls except on the PIQ 

test, where frontal patients scored higher than temporal controls (p < .05).  
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Behavioral Task.  In the ambiguity condition, patients were shown an actual card deck 

with 20 cards, in some mixture of red and black they could not see. They were given a 

series of choices between certain amounts of points (15, 60, 30, 40, 25 in that order) and 

bet on the color of their choice from the card deck for 100 points.  

To illustrate, an ambiguity- and risk-neutral person would choose from the deck rather than 

take the certain amounts 15, 30, 40, or 25, but would take the certain 60 rather than choose 

from the deck. In the risky condition they were shown a deck with exactly 10 red and 10 

black cards whose colors they could see.  They made choices between a bet on the color of 

their choice from the deck for 100 points, or certain amounts of 30, 60, 15, 40, and 25 (in 

that order).  

There are three small differences in this task and the Card-Deck treatment in the fMRI 

experiment reported in the previous chapter: (1) There were fewer choices in the lesion 

experiment, due to time constraints in conducting experiments with lesion patients and the 

need for multiple trials to extract fMRI signal; (2) there was wider range of certain point 

amounts in the lesion task (in case patients were extremely risk- and ambiguity-averse or 

preferring); and (3) due to human subjects restriction, the lesion task choices were not 

conducted for actual monetary payments.  

Feature (1) means we could estimate ρ and γ for each individual in the fMRI study but were 

forced to pool data within each patient group for the OFC-control analysis. Note that the 

methodological differences (1-3) between the fMRI and lesion tasks do not matter for the 

most important finding from the lesion task, which is the significant difference between 

OFCs and controls.   

Results 

Aggregate Data.  A summary of aggregate data is presented in Table 12.  It is clear, 

through introspection, that the OFC patients choose the certain deck significantly less often 

than the control patients in both risky and ambiguous decisions.  Moreover, whereas the 

control patients show a clear difference between ambiguous and risky decks, the OFC 
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patients appear to be indifferent between the two.  This suggests that control patients are 

more ambiguity and risk averse than the OFC patients.   

Lesion   Certain Amt   Ambiguity   Risk  
Control 15 0.2857 0 
 25 0.2857 0.1429 
 30 0.5714 0.2857 
 40 0.7143 0.5714 
 60 0.7143 0.8571 
OFC 15 0 0 
 25 0 0 
 30 0 0 
 40 0.2 0.2 
 60 0.4 0.6 

Table 12: Summary of lesion patient choices. Proportion of 
patients choosing certain amount x when choosing between a 
gamble for 0 or 100 points versus x.   

Stochastic Choice Model.  To formalize this, we estimated a stochastic choice model 

similar to the one we estimated earlier in the fMRI study.  Data from all subjects were 

pooled within each group. This yielded 25 choices (from 5 subjects) for the frontal group, 

and 35 choices (from 7 subjects) for the control group. The maximum likelihood estimation 

procedures are identical to those discussed on page 39.  

To derive confidence intervals, a bootstrap procedure was used.  We chose to use bootstrap 

instead of using the inverse of the Hessian matrix to derive standard errors.  This is because 

the bootstrap estimate allows us to assess the bias of the ML estimate, which is an 

indication of shortcomings in the pooling assumptions that we made.  In the fMRI 

experiment, all estimates were made within subjects, so that no pooling assumption is 

made.   

The bootstrap consisted of 100 runs: For k-subject groups, a pseudo-sample consisted of k 

draws of different subjects with replacement from the sample. The estimation procedure 

was then applied to that pseudo-sample.  One hundred pseudo-samples were drawn for 

each group.   
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The estimates for lesion patients using the data were (γ = 0.82, ρ = 1.09, λ = 0.10) for 

frontal patients, and (γ = 1.23, ρ = 0.74, λ = 0.27) for lesion controls. Across the 100 

pseudo-samples, the bootstrap estimates yielded estimated means (standard deviations) of γ 

= 0.88 (0.28), ρ = 1.15(0.20), λ = 0.48(1.29) for the frontal patients, and γ = 1.25 (0.22), ρ = 

0.77 (0.11), λ = 0.28 (0.16) for the lesion patients.  

The only noticeable difference in the pooled estimates and the central tendencies of the 

bootstrapped estimates, is the lower λ for frontals (.10) in the group procedure, versus, the 

bootstrap mean (0.48). This reflects the fact that one subject behaved differently than the 

others and more randomly across certain-amount x values. Fitting group data including this 

subject requires estimation of a relatively low λ. However, in bootstrap runs this outlying 

subject was often not selected into the pseudosample, and in those pseudosamples more 

inflected responses to x deliver higher λ. The crucial parameter, the ambiguous probability 

discount γ, is quite close in the two types of estimation however, and is close to the 

ambiguity-neutral value of 1.  

The two-dimensional 90% confidence interval was calculated from the bootstrap by 

calculating the minimum ellipsoid that contains 90% of the pseudosample estimates (Fox 

1997). The angle of the ellipse reflects correlation between the parameters.  Figure 23 

shows 90% confidence ellipsoids for the frontal and control patients for the (γ, ρ) parameter 

pairs.  Frontal patients are risk-and ambiguity-neutral, i.e., the hypothesis that γ =ρ =1 

cannot be rejected.  This behavior of frontal patients was significantly different than the 

damage control group, who were averse to both risk and ambiguity. The OFC-lesioned 

group was therefore abnormally neutral toward ambiguity (which is, ironically, a hallmark 

of rationality under SEU). 
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Figure 23: Measures of risk (ρ) and ambiguity (γ) preferences of 
OFC (n =5) and control group (n =7). The risk neutral line (γ = 1) 
and the ambiguity neutral line (p = 1) demarcate four quadrants as 
labeled. Open symbols plot ML estimates of a group-level 
stochastic choice model (frontals: (γ =0.82, ρ =1.09); lesion 
controls: (γ =1.23, ρ = 0.74)). Solid symbols represents 100 
bootstrapped (γ,ρ) estimates. Correlation between ρ and γ (tilt of 
ellipse) is 0.42 for frontal and 0.31 for control. 

Linking Behavior, Neuroimaging, and Lesion Data.  The addition of the lesion data allows 

us to do one more interesting calibration exercise.  In particular, the parameter γ  enables us 

to link the fMRI and lesion studies.  Assume that the frontal patients would have a right 

OFC (ROFC) contrast value of zero if they were imaged during these tasks (since all have 

ROFC damage).  Then we can guess what value of γ  the OFC patients might exhibit 

behaviorally, by extrapolating correlation between ROFC activity and γ  in the case where 

there is zero activity in ROFC. This extrapolation gives a predicted γ = 0.85. The actual 

value estimated from the OFC patients’ behavioral choices is γ = 0.82, which is reasonably 

close to the extrapolated prediction.  
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Figure 24: Imputed ambiguity preference parameter (γ) for OFC 
lesion patients.  Imputed value was calculated from regression 
model using neuroimaging and behavioral data from  normal 

subjects (see Figure 23). 

Discussion 

The regions implicated in our fMRI experiments and confirmed by behavioral experiments 

with lesion patients have been observed in previous studies using different tasks. The 

striatum-amygdala-OFC network is well-established in animal and human studies as a 

system for reward learning, including probabilistic learning (Critchley et al. 2001). The 

OFC is highly interconnected with the basolateral amygdala. These interconnections appear 

to play vital roles in learning and reversal learning in rats (Schoenbaum et al. 2000).  

Lateral OFC, in particular, appears to be necessary to change existing associations 

(O'Doherty et al. 2003). Our finding that the OFC is activated as a function of ambiguity, 

and that its damage reduces sensitivity to ambiguity, suggest that this structure is a 

necessary component for reacting to gradations of uncertainty.  

This hypothesis fits well with current knowledge of amygdala and OFC function.  Both the 

amygdala and OFC are known to receive rapid, multi-modal sensory input; both are 
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bidirectionally connected and known to function together in evaluating the value of 

stimuli (Gaffan et al. 1993), and both are likely involved in the detection of salient, 

relevant, and ambiguous stimuli. The latter function has been hypothesized especially for 

the amygdala (Whalen 1998; Adams et al. 2003). Critically, such a function also provides a 

reward-related signal that can motivate behavior, in virtue of the known connections 

between the amygdala/OFC and the striatum (Amaral et al. 1992). Under ambiguity, the 

brain is alerted to the fact that information is missing, that choices based on the information 

available, therefore, carry more unknown (and potentially dangerous) consequences, and 

that cognitive and behavioral resources must be mobilized in order to seek out additional 

information from the environment.  

Study 2: Choice Behavior under Fear Conditioning 
Background 

The amygdala is a complex of nuclei situated at the end of the hippocampus in the medial-

temporal lobe (MTL).  Amygdala neurons respond to primary rewards and reward 

predicting stimuli (Schultz et al. 2000).  Its role in emotions and conditioning is well 

established, especially in the domain of fear. It is well documented that amygdala activity is 

not mediated by consciousness. In particular, the subliminal priming literature has shown 

convincingly that the amygdala will respond to emotional faces even though they are not 

consciously seen. The amygdala is crucially involved in learning (O'Doherty 2003).  

Lesioning of the amygdala in rats impairs associative learning. It is hypothesized on the 

basis of the strong reciprocal connections between the amygdala and the OFC, and a 

massive input from dopamine neurons, that the amygdala-OFC circuit is crucial in learning.  

In the past two decades, it has been established that the amygdala is critical in the 

acquisition and expression of fear conditioning.  Labar et al. (1995) showed that human 

subjects with damage to the amygdala showed typical autonomic responses (as measured 

by galvanic skin response) to mild electrical shocks but did not respond to the conditioned 

stimulus.  Quirk et al. (1995) recorded from the lateral nucleus of the amygdala in free 
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behaving rats, and showed that neurons in the lateral nucleus responded to tones that 

signaled the onset of electrical shocks during acquisition.   

The fear-conditioning response serves a vital function in survival of organisms.  The 

amygdala has long been known to be involved in the acquisition of fear conditioning, 

including evidence, among other species, rats (Garcia et al. 1999) and humans (Whalen et 

al. 1998; Phelps et al. 2001) 

Method 

Subjects.   Twenty-two Caltech undergraduate and summer research students (16 male, 6 

female) completed the experiment.  Informed consent was reviewed and approved by the 

Caltech committee for the protection of human subjects.  

Electrical Stimulation. Conditioning stimuli were presented using equipment and software 

from Contact Precision Instruments (www.psylab.com).  Silver/Silver Chloride electrodes 

filled with Med Associates paste TD-246 were used for shock presentation.   

Shocking electrodes were attached to the palmar surface of the index and middle fingers of 

the left hand. The electrical stimulation used in these experiments was a 100ms long, 

constant 60 Hz AC shock.  Each individual’s shock level was determined using a subjective 

rating protocol that sought a level that was “uncomfortable, but not painful”. This shock 

level was used throughout the experiment.  

Behavioral Task.  Subjects were presented with a series of 100 binary gambles in the form 

of true/false trivia questions.  The form of the presentation was similar to the Knowledge 

Treatment described in Chapter 2.  We used trivia instead of card decks because the effects 

from ambiguity aversion are larger in the Knowledge treatment than the Card-Deck 

treatment.  The subject can choose to bet on the trivia question (with associated payoff x or 

0 indicated below the question), or choose a certain outcome (with associated payoff 

indicated on the right hand side of the screen).   
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On top of the screen on each trial was a colored bar indicating whether the subject will 

be shocked following the choice—red indicates shock, green no shock.  The shock is 

delivered following the decision of the subject, regardless of the alternative chosen by the 

subject.   Finally, the trials that were chosen to be the shock trials were switched between 

subjects to counterbalance and ensure that there were no question effects (12 completed 

one version, and 10 counterbalanced version).  The two forms of the Figure 25 shows an 

example of the two types of trials. 

  
(A) Shock (B) No Shock 

Figure 25: Example screens of the experiment. (A) Red bar on top 
of screen indicates shock; (B) Green bar on top of screen indicates 
no shock.   

Results 

Shock Calibration. Because levels of shock were determined by the subjective perceptions 

of the subjects, substantial variations exist in the calibration.  Figure 26 shows a sorted 

barplot of the level of shocks calibrated for each subject.   

There are two primary sources of variation: one perceptual and one cognitive.  The 

perceptual difference arises from variance in pain tolerance.  The cognitive aspect depends 

on how subjects interpret “uncomfortable, but not painful.”  We believe that most of the 

variation is due to the cognitive aspect.   
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Figure 26: Sorted barplot of 
levels of administered shocks.  
Maximum level allowable by 
IRB is 255.   
 

 

Accuracy.  Of the trials where the gamble was chosen, mean (s.e.) accuracy were 0.510 

(0.0307) in the no shock trials and 0.505 (0.0339) in the shock trials.  Subject accuracy did 

not differ significantly between the shock and no shock conditions.  A t-test of the 

difference between the two treatments returned a non-significant p-value of 0.796, and a p-

value of 0.86 in a weighted regression using the number of choices as the weights (there 

was substantial variability in subjects’ risk aversion coefficients, and thus the number of 

times that they chose the certain outcome).    

 

Figure 27: Scatterplot of 
proportion of correct 
guesses per subject in shock 
condition versus no shock 
condition. 
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Figure 27 shows a scatterplot of the proportion of correct guesses in the shock and no 

shock conditions.  It is clear from the plot that although the mean accuracy is similar 

between the treatments, the variance is much larger in the un-shocked condition.  This is 

significant in a Bartlett test for homogeneity of variance at p < 0.002353 (Bartlett's K-

squared = 9.2513, df = 1).  In addition, the difference in variance did not vary significantly 

with the level of shock.  The reason behind this difference, however, is unclear.   

Choice Data. Table 13 shows the summary of the subjects’ behavioral data.  Included are 

the levels of shock that were calibrated for each subject, as well as the number of times the 

subject made each choice.  Differences between the proportion of choosing the certain 

choice in the shock and no shock conditions suggest differences in risk/ambiguity attitudes 

of subjects.   

  Proportion Certain 
Subject Shock Level No Shock Shock 

10 35 0.44 0.52 
11 27 0.44 0.3 
12 45 0.52 0.54 
13 60 0.36 0.4 
14 63 0.28 0.3 
15 58 0.22 0.28 
16 202 0.48 0.62 
17 212 0.34 0.48 
30 90 0.52 0.52 
31 56 0.64 0.62 
32 60 0.74 0.48 
33 164 0.82 0.8 
34 118 0.52 0.44 
35 88 0.22 0.22 
36 255 0.16 0.2 
38 173 0.52 0.52 
40 63 0.38 0.36 
41 124 0.76 0.7 
42 150 0.7 0.66 
43 128 0.4 0.5 
44 74 0.2 0.14 
45 88 0.5 0.54 
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Table 13: Summary of subject results, including shock level 
calibrated and the proportion of certain choices that the subject 
chose (out of 50) in No Shock and Shock conditions.  

 

Figure 28: Scatterplot of 
percent difference 
between Shock and No 
Shock conditions versus 
the shock level that 
subjects received.   

 

Figure 28 shows the percent difference in choosing the certain choice ((# Certain | Shock – 

# Certain | No Shock) / # Certain) versus the level of shock that was delivered to subjects.  

Regression analysis revealed that both the intercept and shock interaction coefficients were 

significant.  

  Coefficients Standard Error t Stat P-value 
Intercept -0.07358845 0.039872403 -1.845598582 0.079808221 

Shock Level 0.000728285 0.000325329 2.238612483 0.036712743 
R2 = 0.200, F-Statistic = 5.011, Significant F = 0.0367 

Tests for nonlinearity in the form of quadratic relationship was negative.   

  Estimate   Std. Error   t value  Pr(>|t|) 
(Intercept)  -0.00149   0.0263       -0.054   0.958 
shock  0.172      0.0984       1.746    0.109 
shock^2   0.010      0.0984       1.014    0.332 
 
Residual standard error: 0.09839 on 19 degrees of freedom 
Multiple R-Squared: 0.2704, Adjusted R-squared: 0.1378  
F-statistic: 2.039 on 2 and 11 DF,  p-value: 0.1765  
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Similarly, robust regression showed nearly identical results as OLS.  

          Value  Std. Error  t value 
(Intercept)  -0.0559  0.0449    -1.2460 

       shock         0.0007  0.0004     1.6947 

 
This is likely due to the fact that there is no significant heteroskedasticity in the data.  A 

Breusch-Pagan test against heteroskedasticity is not significant (BP = 0.719, df = 1, p-value 

= 0.396).  Figure 29 shows the Q-Q plot of the residuals for the OLS regression. 

 
Figure 29: Q-Q plot of empirical and theoretical residuals. 

The significant effect of the shock level is consistent with our initial hypothesis that fear 

conditioning increases risk/ambiguity aversion.   The significant (albeit weaker) intercept, 

however, was not part of our initial hypothesis.  This suggests that weak electrical 

stimulation, in fact, lowers the degree of risk/ambiguity aversion.  This may be explained 

partially by the fact that some of the shock levels are extremely low, and that it may be 

moving subjects along the Yerkes-Dodson curve up until it crosses some subjective 

threshold level.   

Stochastic Choice Model.  To formalize this, two stochastic choice models were estimated.  

The first is identical to those described on page 39.  This model focused on the parameter γ 

that operates on the subjective probability function.  The difference with the second model 
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is that differences between the conditions are captured in the utility function rather than 

the probabilities.  That is, 

! 

u
noshock

= x
"  in the no shock condition and 

! 

u
shock

= x
" +"

shock  in the 

shock condition.  This is to capture the possibility that the fear conditioning is operating on 

the curvature of the utility function rather than the decision weights.   

 
Table 14: Stochastic choice estimates of subjects and associated 

 Model 1 Model 2  

Subject γ ρ λ ρshock ρ λ Shock 

10 
1.261 

(0.323) 
1.089 

(0.188) 
0.119 

(0.125) 
-0.139 
(0.208) 

1.034 
(0.131) 

0.185 
(0.131) 

35 

11 
0.873 

(0.073) 
0.955 

(0.055) 
0.613 
(0.19) 

0.109 
(0.068) 

0.964 
(0.061) 

0.483 
(0.15) 

27 

12 
* * * 

0.109 
(0.068) 

0.964 
(0.061) 

0.483 
(0.15) 

45 

13 
1.025 

(0.062) 
1.009 

(0.045) 
0.682 

(0.193) 
-0.029 
(0.052) 

1.011 
(0.04) 

0.714 
(0.183) 

60 

14 
1.033 

(0.062) 
1.096 
(0.05) 

0.519 
(0.16) 

-0.008 
(0.048) 

1.083 
(0.044) 

0.549 
(0.153) 

63 

15 
1.027 

(0.069) 
1.145 

(0.059) 
0.377 
(0.13) 

-0.036 
(0.052) 

1.147 
(0.05) 

0.4 
(0.126) 

58 

16 
1.118 

(0.092) 
0.917 

(0.052) 
0.725 

(0.221) 
-0.127 
(0.084) 

0.923 
(0.043) 

0.89 
(0.217) 

202 

17 
1.336 

(0.206) 
1.234 

(0.141) 
0.13 

(0.099) 
-0.127 
(0.114) 

1.136 
(0.102) 

0.21 
(0.121) 

212 

30 
0.984 

(0.047) 
0.881 

(0.031) 
1.674 

(0.358) 
-0.032 
(0.043) 

0.903 
(0.028) 

1.644 
(0.33) 

90 

31 
0.84 

(0.709) 
0.129 

(0.405) 
0.928 

(0.803) 
-0.135 
(0.419) 

0.224 
(0.496) 

0.822 
(0.659) 

56 

32 
0.635 

(0.178) 
0.582 

(0.152) 
1.034 

(0.354) 
0.371 

(0.188) 
0.547 

(0.184) 
0.639 

(0.196) 
60 

33 
0.883 
(0.42) 

0.012 
(0.224) 

2.97 
(1.336) 

-0.091 
(0.189) 

0.064 
(0.255) 

2.811 
(1.206) 

164 

34 
0.917 

(0.113) 
0.935 

(0.085) 
0.407 

(0.175) 
0.106 

(0.112) 
0.92 

(0.098) 
0.352 

(0.142) 
118 

35 
1.008 
(0.09) 

1.231 
(0.087) 

0.208 
(0.097) 

0.014 
(0.06) 

1.218 
(0.076) 

0.213 
(0.091) 

88 

36 
1.054 

(0.054) 
1.164 

(0.047) 
0.576 

(0.167) 
0.008 

(0.042) 
1.129 

(0.041) 
0.634 

(0.168) 
255 

38 
0.973 

(0.088) 
0.877 

(0.061) 
0.698 

(0.219) 
0.023 

(0.086) 
0.878 

(0.064) 
0.666 

(0.187) 
173 

40 
1.005 

(0.067) 
1.022 
(0.05) 

0.588 
(0.179) 

0.04 
(0.055) 

0.997 
(0.048) 

0.603 
(0.166) 

63 

41 
0.855 

(0.207) 
0.447 

(0.173) 
1.273 

(0.465) 
-0.011 
(0.301) 

0.478 
(0.185) 

1.081 
(0.33) 

124 

42 
0.756 
(0.4) 

0.182 
(0.308) 

1.285 
(0.774) 

-0.342 
(0.328) 

0.388 
(0.321) 

1.067 
(0.519) 

150 

43 
1.123 

(0.209) 
1.093 

(0.154) 
0.138 

(0.118) 
-0.182 
(0.214) 

1.091 
(0.108) 

0.185 
(0.121) 

128 

44 
0.921 

(0.051) 
1.107 

(0.042) 
0.657 

(0.183) 
0.021 

(0.044) 
1.142 

(0.041) 
0.544 
(0.15) 

74 

45 
1.248 

(1.042) 
0.812 

(0.443) 
0.097 

(0.186) 
-0.072 
(0.681) 

0.791 
(0.519) 

0.137 
(0.151) 

88 
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shock levels for the two models.  (*: parameters for subject 12 
were poorly identified in model 1). 

Table 14 summarizes the stochastic choice models of the subjects.  Figure 30 shows 

scatterplot of the stochastic choice model estimate of the parameter ρshock and shock level.  

The first model did not yield significant results and is not displayed.  This stochastic choice 

model was estimated by assuming that subjective probability level for all questions is 0.5.  

Another model was estimated using the mean of the subject’s accuracy.  The results are 

similar to the first model.  Finally, a third model was estimated using the mean accuracy of 

each question. In this case, however, some questions were rarely answered and therefore 

had extreme probabilities nearly 0 and 1, leading to identification issues.    

A weighted regression using the precision parameter λ (which measures the noisiness of 

the subject’s utility function) as the weight revealed a significant effect on the shock 

parameter at p < 0.1.    

Estimate  Std. Error  t value  Pr(>|t|) 
(Intercept)  0.0631845  0.0624678   1.011   0.3239 
shock       -0.0008718  0.0004748  -1.836   0.0813 
-- 
Multiple R-Squared: 0.1442, Adjusted R-squared: 0.1014 
F-statistic: 3.371 on 1 and 20 DF,  p-value: 0.08128 

 

 

Figure 30: Scatterplot of stochastic 
choice model parameter ρshock and 
shock level.    
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Residuals are not fat-tailed but are correlated with the precision parameter (lambda). 

There is no evidence of heteroskedasticity in the data.  A studentized Breusch-Pagan test 

failed to reject the homoskedastic null hypothesis (BF = 0.0725, df = 1, p < 0.788).  Figure 

31 shows a Q-Q Plot of Base model (OLS with no quadratic). 

 

Figure 31: Q-Q Plot of the base model (OLS with no quadratic 
term). 

Moreover, adding a quadratic term does not significantly improve the fit versus the OLS or 

the WLS.   

           Estimate  Std. Error   t value   Pr(>|t|) 
(Intercept)    -0.0241    0.0284      -0.847     0.408 
shock          -0.2058    0.1335      -1.541     0.140 
shock^2         0.1365    0.1335       1.023     0.319 
--- 
Residual standard error: 0.1335 on 19 degrees of freedom 
Multiple R-Squared: 0.152, Adjusted R-squared: 0.0634  
F-statistic: 1.71 on 2 and 19 DF,  p-value: 0.207  

 
WLS with the quadratic fits the data nearly as well as that of WLS without the quadratic.   

                Estimate  Std. Error  t value   Pr(>|t|)   
(Intercept)     -0.0204    0.0281     -0.727     0.4761   
shock           -0.2416    0.1331     -1.815     0.0854  
shock^2          0.1972    0.1335      1.478     0.1558   
--- 
Residual standard error: 0.1055 on 19 degrees of freedom 
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Multiple R-Squared: 0.232, Adjusted R-squared: 0.152 
F-statistic: 2.877 on 2 and 19 DF,  p-value: 0.0810  

 
An F-test confirms that we cannot reject the WLS model without the quadratic term for the 

full model.   

Analysis of Variance Table 
Model 1: ρshock ~ shock 
Model 2: ρshock ~ shock + shock^2 
  Res.Df      RSS     Df    Sum of Sq   F       Pr(>F) 
1     20      0.235                            
2     19      0.211   1     0.024       2.1845  0.1558 

 

Discussion 

This study yielded mixed results about the effects of fear conditioning on choice under 

uncertainty.  Mild electrical stimulation appears to have a positive relationship with the 

degree of risk aversion.  Low levels of stimulation, however, appear to actually make 

subjects more risk loving.   The most puzzling finding, however, is that electrical 

stimulation appears to reduce the variance in the accuracy of the subjects’ responses, 

without affecting the mean accuracy.  

It is unclear why a number of subjects were guessing at less than chance.  This does not 

appear to be due to questions since questions were counterbalanced.  Table 15 shows that 

there is no correlation between accuracy and shock level.   

Treatment Pearson’s r p-value 
Accuracy|Shock 0.37 0.19 
Accuracy|No Shock 0.05 0.86 
Accuracy|Shock / Accuracy|No Shock 0.02 0.94 
(Accuracy|Shock – Accuracy|Shock)/ 
Accuracy|Shock 

0.15 0.60 

Table 15: Correlation of subject’s various measures of accuracy 
and shock level.  (Accuracy|Shock: Accuracy in Shock condition, 
Accuracy|No Shock: Accuracy in the No Shock condition) 

This study suffers from limitations that would serve to strengthen the robustness of the 

result.  As mentioned before, the most difficult problem encountered was the substantial 

variation in levels of shock that are administered to subjects.  There is good reason to 

believe that much of this variation is not due to differences in the perception of pain, but 
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rather differences in interpretation of the statement “uncomfortable, but not painful”.  

Obtaining measures such as galvanic skin response can, to some degree, alleviate this 

problem, but there, too, exists much individual difference.   

The fact that the regression is significant in the second model but not the first suggests that 

the shocks are operating directly on the curvature of the utility function rather than the 

decision weights.  This is entirely possible due to the known connections between the 

amygdala and striatum (as well as the OFC and the striatum).  A possible way to test this 

hypothesis would be to image subjects making decisions while being paired with shocks.  

Other possibilities include giving objective probabilities as opposed to having to infer or 

impose subjective probabilities in the lotteries, thereby separating the effects on 

probabilities and utility function. 

Conclusion 
This chapter attempts to understand the neural causes of decision-making under 

uncertainty.   Two techniques—the lesion method and fear conditioning—were used to 

assess necessity and sufficiency, respectively in separates studies.  Taken as a whole, these 

results appear to validate the hypothesis that the brain regions implicated in the previous 

chapter (OFC and amygdala) are part of a circuit central to decision-making under 

uncertainty.   

This leaves the striatum as the only key area of our circuit unexplored.  The striatum, 

however, is perhaps the least controversial region in this circuit.  All our prior knowledge 

in reward anticipation and reward learning suggests the striatum reflects the reward value.  

It is not surprising, therefore, that the striatum is less activated under ambiguity than risk, 

since behaviorally, decisions under risk are preferred to the formally identical decisions 

under ambiguity.   Possible studies of the role of the striatum include using patients who 

have degenerative diseases affecting the striatum.   

Recent work on decision-making in Parkinson’s disease, which is marked by a 

degeneration of the dopaminergic system, including the caudate, shows that Parkinson’s 
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patients are impaired in the Iowa Gambling Task (Mimura et al. 2006).  Furthermore, 

work by Pessiglione et al. (2005) suggests that stimulation of the basal ganglia (of which 

the striatum is a subset) is not sufficient to promote proper functioning in Parkinson’s 

patients; dopaminergic medication, rather than deep brain stimulation, was able to correct 

behavioral interference in a decision task.   

Taken as a whole, these results confirm the role of the dopaminergic system in expected 

reward valuation and learning.  In addition, it suggests that this system takes into account 

information that would be disregarded by standard decision theory.   
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C h a p t e r  4  

PROBABILITY WEIGHTING FUNCTION IN THE BRAIN 

Introduction 
One of the central tenets in classical decision theory is that expected utility is linear in 

probabilities (Savage 1954). Therefore, although the utility function is allowed to be 

nonlinear (and in particular, concave), the decision-weight is not.   

This is a consequence of the independence axiom (and its variants, such as the sure-thing 

principle) that underlies expected utility theory (EUT).  The independence axiom states that 

a decision-maker’s preference ordering should not be changed with the addition of a 

common consequence.  That is, 
  

! 

x f y" ax + (1# a)z f ay + (1# a)z,$a% (0,1).   

That people might not weight probabilities linearly, as dictated by SEU was first brought to 

attention by Maurice Allais.  Allais proposed the Common-Ratio Effect, or Allais’s 

Paradox (Allais 1953).  For example, a decision-maker may prefer a sure gain of $100,000 

over a coin toss for $300,000 or nothing, but at the same time prefer a 1% chance for 

$300,000 over a 2% chance for $100,000.   

As noted previously by Prelec (1998), this example brings many of the same intuitions 

invoked when discussing the concept of diminishing marginal utility.  However, whereas it 

is uncontroversial to state that the utility difference between $0 and $50 is  greater than that 

between $100,000 and $100,050, no such nonlinearities are admitted in the decision 

weights that people use to arrive at expected utilities.   

The existence of nonlinear weighting of probabilities has obvious impact for the financial 

(Barberis and Huang 2004) and gambling (Alistair C Bruce 2000) markets, but it also has 

profound implications for health care (Bleichrodt et al. 1999) and criminal justice 
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(Lattimore et al. 1992).  The nonlinear hypothesis also needs to be separated from a 

skewness-preference hypothesis, which has been invoked previously to account for 

apparent risk seeking behavior (Kraus 1976; Golec 1998; Garrett and Sobel 1999).  A 

skewness-preference explanation does not imply a violation of SEU, whereas a nonlinear 

weighting explanation does.  To the extent that these models predict different behavioral 

implications, they also suggest different policy recommendations.  

Literature Review 
Despite the well-documented nature of this phenomenon, a psychological interpretation 

was lacking until it was introduced by Tversky and Kahneman in 1992.  This interpretation 

would be familiar to any psychophysicist.  Tversky and Kahneman (1992) proposes that the 

properties of the weighting function for their Cumulative Prospect Theory (CPT): 

“…reflect the principle of diminishing sensitivity: the impact of a change 

diminishes with the distance from the reference point…  In the evaluation of 

uncertainty, there are two natural boundaries—certainty and 

impossibility—that correspond to the endpoints of the certainty scale.  

Diminishing sensitivity entails that the impact of a given change in 

probability diminishes with its distances from the boundary…  Diminishing 

sensitivity, therefore, gives rise to a weighting function that is concave near 

0 and convex near 1.” (p. 303) 

Note, however, that in CPT and rank-dependent utility (RDU) models in general, the 

decision weight is not equivalent to the probability weighting function.  That is because the 

decision weight is further transformed depending on the rank of the outcomes.  In CPT, the 

value of the highest outcome is attached weight of w(p), and all other outcomes by  
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One interpretation is that the weighting function captures the psychophysics of the 

perception of probabilities, whereas the decision weight captures how decision-makers 

combine probabilities (or rather, the perceived probabilities) and outcomes (Wu and 

Gonzalez 1996).  As the descriptive validity of CPT and RDU in general is an open 

question, we will sidestep this issue in this paper by considering only binary gambles with 

one outcome fixed to 0 and another strictly greater. 

A psychological interpretation is important because Allais’s paradox is, as noted above, a 

violation of Savage’s SEU.  Therefore, a decision maker who exhibits Allais’s Paradox is 

also subject to arbitrage opportunities.  A psychological interpretation can be seen as the 

link between the neural mechanism of the decision-making process and the behavior of the 

decision-maker.  

Functional Forms 

At least three functional forms have been suggested in this literature.   

Lattimore Function 

Gonzalez and Wu (1999) and Lattimore et al., (1992) assumed that the log odds ratio of the 

perceived probabilities are an affine transformation of the actual probabilities, such that  

! 

log
"

1#"
= $ log

p

1# p
+ % . 
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Solving for 

! 

"  yields 

! 

" =
#p$

#p$ + (1% p)$
, 

where 

! 

" = e
# .  

Gonzalez and Wu (1999) motivated this transformation by proposing two different 

properties of the weighting function.  The curvature of the function is controlled by γ, 

which is the discriminability of stimulus.  The second parameter δ accounts for the 

attractiveness of the gamble, which corresponds to the relative over/underweighting of 

probabilities in general by the decision-maker.  Figure 32 shows the effects of the 

parameters on the shape of the probability weighting function.  

 

Figure 32: Effects of γ on the curvature and δ on the elevation of 
the probability weighting function.  Left panel fixes δ = 0.6 and 
varies 0.2 < γ < 1.8.  Right panel controls γ = 0.6 and varies 0.2 < 
δ < 1.8.  Adapted from Gonzalez and Wu (1999).  

Tversky and Kahneman  

A similar one-parameter functional form was proposed by Tversky and Kahneman (1992).   

However, instead of allowing different weights of the probabilities, it takes an exponent of 
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the denominator.  The function is 

! 

w(p) =
p
"

(p
"

+ (1# p)" )1/"
.  This function exhibits an 

inverse S-shape for parameters between 0.27 and 1.  The intuition for this function is 

similar to that of the Lattimore function.   

Prelec 

Prelec (1998) axiomatized a widely-used specification due to its axiomatic foundation and 

its parsimony.  In a restricted version, it has only one parameter and is therefore widely 

used in empirical studies. 

The Prelec function itself is  

! 

w(p) = exp "#("ln p)${ }  

where the one-parameter specification is  

! 

w(p) = exp "("ln p)#{ }. 

The one-parameter version has the additional property that it intersects the diagonal at 1/e 

or ~0.36—a value that is near those found in past empirical studies.   

 

 

Figure 33: Plot of the Prelec function (thick 
line) and findings from previous empirical 
work. 
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The key property of the Prelec function is that of compound invariance.  

Compound Invariance: Let N be any natural number.  Then N-compound invariance holds 

iff, for consequences x, y, x’, y’, probabilities p, q, r, s in (0,1), with q < p, r < s,  

! 

(x, p) ~ (y,q) and (x,r) ~ (y,s) implies 

! 

 (x', p
N

) ~ (y ',q
N

)" (x',r
N

) ~ (y ',s
N

) . 

For example, a decision-maker may exhibit the Allais’s paradox with the following pair of 

choices: 

($10,000 for sure) ~ (1/2 chance of $30,000) 

(1/2 chance of $10,000) ~ (1/6 chance of $30,000). 

Then we can find an amount x such that  

($x for sure) ~ (1/4 chance of $30,000) 

(1/4 chance for $x) ~ (1/36 chance of $30,000). 

The intuition for this axiom is that people should be consistent to changes in probability, or 

“compounding”. 

Empirical Literature on Probability Weighting 

It is a testament to the robustness of this phenomenon that a wide variety of studies are in 

agreement concerning the general properties of the weighting function, using a variety of 

estimation techniques, elicitation methods, types of outcome, and functional forms.   

Table 16 presents these studies and their results.  I present only the studies using parametric 

forms, as it is difficult to compare and visualize nonparametric results (although they are in 

general agreement. in terms of qualitative results (e.g., Wu and Gonzalez 1996).  Table 17 

presents a more detailed table of these studies, including the elicitation and estimation 
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procedures, the stimuli used, as well as the findings10.  Figure 34 plots some of the 

functional forms studied in the literature.   

 

 
Figure 34: Probability-Weighted Probability plot of estimates 
from various studies using the functional forms used in those 
studies. 

                                                
10 Table 16, Table 17, and Figure 34 were provided by Chen Zhao, who provided excellent research assistant during her 

time as summer undergraduate research fellow at Caltech.  
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Functional Form Study Domain Estimate 

( ) !!!

!

"
"+

=
1

)1(
)(

pp

p
pw  

Tversky and Kahneman 
(1992) 
 
Camerer and Ho (1994) 
Wu and Gonzales (1996) 
Abdellaoui (2000) 
 
Bleichrodt, van Rijn, and 
Johannesson (1999) 
Bleichrodt and Pinto (2000) 
 
Stott (2006) 

Gains 
Losses 
Gains 
Gains 
Gains 
Losses 
Health 
 
Health 
 
Gains 

γ = 0.61 
γ = 0.69 
γ = 0.56 
γ = 0.71 
γ = 0.60 
γ = 0.70 
γ = 0.69 
 
γ = 0.71 
 
γ = 0.96 

!!

!

"

"

)1(
)(

pp

p
pw

#+
=  

Wu and Gonzalez (1996) 
Gonzalez and Wu (1999) 
Tversky and Fox (1995) 
Abdellaoui (2000) 
Abdellaoui (2000) 
Stott (2006) 
 
Kilka and Weber (2001) 

Gains 
Gains 
Gains 
Gains 
Gains 
Gains 
 
Stocks 

δ = 0.84, γ = 0.68 
δ = 0.77, γ = 0.44 
δ = 0.77, γ = 0.69 
δ = 0.65, γ = 0.60 
δ = 0.84, γ = 0.64 
δ = 1.40, γ = 0.96 
 
δ = 1.036, γ = 0.443  
δ = 0.928, γ = 0.312 

))ln(exp()( !
ppw ""=  Wu and Gonzalez (1996) 

Stott (2006) 
Tanaka, Camerer, Nguyen 
(forthcoming) 

Gains 
Gains 
Gains 

α = 0.74 
α = 0.94 
α = 0.72 (students) 
α = 0.74 (non-students) 

))ln(exp()( !" ppw ##=  Stott (2006) 
Bleichrodt and Pinto (2000) 

Gains 
Health 

β = 1.00, α = 1.00 
β = 1.084, α = 0.534 

ä
pp

p
pw

))1((
)(

!!

!

"+
=  

Wu and Gonzalez (1996) 
Stott (2006) 

Gains 
Gains 

δ = 1.565, γ = 0.721 
δ = 0.89, γ = 0.93 

Table 16: Summary of findings of past studies on probability 
weighting. 
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Study Name Methodology Parameters Findings 
Advances in Prospect Theory: 
Cumulative Representation of 
Uncertainty (Tversky and 
Kahneman, 1992) 

Subjects indicated preference between one risky 
prospect and each of one set of seven sure outcomes 
that were shown logarithmically spaced between 
extremes of the risky prospect and each of a second set 
of seven sure outcomes shown linearly spaced between 
a value 25% higher than lowest amount accepted and 
value 25% lower than highest amount rejected.  The 
certainty equivalent of the risky prospect was 
estimated as the average of the lowest accepted value 
and highest rejected value from the second set. 

Outcomes: 
(0, 50), (0, -50), (0, 100), (0, -100), (0, 
200), (0, -200), (0, 400), (0, -400), (50, 
100), (-50, -100), (50, 150), (-50, -150), 
(100, 200), (-100, -200) 
Probabilities: 
0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 
0.95, 0.99 

The value and weighting functions imply 
risk-aversion for gain and risk-seeking 
behavior for losses, both for prospects with 
moderate to high probability.  The 
weighting function shows, for non-extreme 
outcomes, risk-seeking behavior for gains 
and risk aversion for losses.  Estimated γ = 
0.61 (gains) and γ = 0.69 (losses) for 
functional form of w(p) in current paper. 

Violations of the Betweenness 
Axiom and Nonlinearity in 
Probability (Camerer and Ho, 
1994) 

Subjects chose from gambles represented both in 
compound form and reduced form.  Gambles were 
grouped in gamble triples and each had a PL, PM, PH, 
the probabilities associated with the worst, middle and 
best outcomes. 

(PL, PM, PH): 
(0.3, 0.4, 0.3), (0.4, 0.2, 0.4), (0.5, 0.0, 0.5), 
(0.4, 0.6, 0.0), (0.5, 0.4, 0.1), (0.6, 0.2, 0.2), 
(0.7, 0.0, 0.3), (0.66, 0.34, 0.00), (0.67, 
0.32, 0.01), (0.83, 0.00, 0.17) 

Estimated γ = 0.52 and γ = 0.56 for CPT 
form of w(p) introduced in Tversky and 
Kahneman (1992).  Low probabilities are 
overweighted and high probabilities are 
underweighted.  The crossover point where 
w(p)=p is around p=0.3. 

Weighing Risk and Uncertainty 
(Tversky and Fox, 1995) 

Certainty equivalents were inferred through series of 
subjects’ choices between  risky prospects and sure 
payments.  Chance prospects concerned NBA playoffs, 
the Super Bowl, the future value of the Dow Jones 
index, and future temperatures in San Francisco and 
Beijing. 

Probabilities varied between 0.05 and 0.95 
in multiples of 0.05. 

Estimated parameters for functional form 
from Lattimore, Baker and Witte (1992) 
are δ = 0.77, γ = 0.69 (chance), δ = 0.76, γ 
= 0.69 (Super Bowl), and δ = 0.72, γ = 0.76 
(Dow Jones). 

Probability Weighting and 
Utility Curvature in QALY-
Based Decision Making 
(Bleichrodt and  van Rijn, 
1999) 

Subjects faced gamble with certain option of living for 
30 years with severe lower back pain and treatment 
option of (30 years in full health, p; immediate death , 
1-p).   Subjects indicated p for which they were 
indifferent between two options.  Subjects also ranked 
seven health profiles describing years in full health, 
followed by years with severe lower back pain, 
followed by death. 

Health Profiles: 
(Years in full health, Years with severe 
lower back pain) 
(0, 20), (18, 0), (16, 0), (14, 0), (12, 0), (8, 
8), (6, 11) 

Estimated γ = 0.69 for Tversky and 
Kahneman (1992) functional form.  
Quality-Adjusted Life-Years (QALYs) 
with probability weighting significantly 
more consistent with directly elicited 
rankings than QALYs without. 

Curvature of the Probability 
Weighting Function (Wu and 
Gonzalez, 1996) 

Eight pairs of gambles were arranged in “ladders” in 
which each step adds a common consequence to both 
gambles.  Subject made choices for four rungs on each 
ladder. 

Ladder 1: 
R1: (0.05, 240), (0.07, 200) R2: (0.05, 
240), (0.10, 200), (0.17, 200) R3: (0.05, 
240), (0.20, 200), (0.27, 200) R4: (0.05, 
240), (0.30, 200), (0.37, 200) R5: (0.05, 
240), (0.45, 200), (0.52, 200) R6: (0.05, 
240), (0.60, 200), (0.67, 200) R7: (0.05, 
240), (0.75, 200), (0.82, 200) R8: (0.05, 

Estimated parameter for Tversky and 
Kahneman (1992) functional form is γ 
=0.71, for Prelec (1998) form is γ =0.74, 
for Goldstein and Einhorn (1987) form is δ 
= 0.84 and γ = 0.68, and form from current 
paper is δ = 1.565 and γ = 0.721.   
Weighting function is concave up to 
p≈0.40 and convex afterwards.  A 
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240), (0.90, 200), (0.97, 200) 
Ladder 2: 
R1: (0.05, 100), (0.10, 50) R2: (0.05, 100), 
(0.10, 50), (0.20, 50) R3: (0.05, 100), (0.20, 
50), (0.30, 50) R4: (0.05, 100), (0.30, 50), 
(0.40, 50) R5: (0.05, 100), (0.45, 50), (0.55, 
50) R6: (0.05, 100), (0.60, 50), (0.70, 50) 
R7: (0.05, 100), (0.75, 50), (0.85, 50) R8: 
(0.05, 100), (0.90, 50), (1.0, 50) 
Ladder 3: 
R1: (0.01, 300), (0.02, 150) R2: (0.01, 
300), (0.10, 150), (0.12, 150) R3: (0.01, 
300), (0.20, 150), (0.22, 150) R4: (0.01, 
300), (0.30, 150), (0.32, 150) R5: (0.01, 
300), (0.45, 150), (0.47, 150) R6: (0.01, 
300), (0.60, 150), (0.62, 150) R7: (0.01, 
300), (0.80, 150), (0.82, 150) R8: (0.01, 
300), (0.98, 150), (1.0, 150) 
Ladder 4: 
R1: (0.03, 320), (0.05, 200) R2: (0.03, 
320), (0.10, 200), (0.15, 200) R3: (0.03, 
320), (0.20, 200), (0.25, 200) R4: (0.03, 
320), (0.30, 200), (0.35, 200) R5: (0.03, 
320), (0.45, 200), (0.50, 200) R6: (0.03, 
320), (0.60, 200), (0.70, 200) R7: (0.03, 
320), (0.85, 200), (0.90, 200) R8: (0.03, 
320), (0.95, 200), (1.0, 200) 
Ladder 5: 
R1: (0.01, 500), (0.05, 100) R2: (0.01, 
500), (0.10, 100), (0.15, 100) R3: (0.01, 
500), (0.20, 100), (0.25, 100) R4: (0.01, 
500), (0.30, 10), (0.35, 100) R5: (0.01, 
500), (0.45, 100), (0.50, 100) R6: (0.01, 
500), (0.65, 100), (0.70, 100) R7: (0.01, 
500), (0.80, 100), (0.85, 100) R8: (0.01, 
500), (0.95, 100), (1.0, 100) 

weighting function that is strictly nonlinear 
with the boundaries outperforms a linear 
weighting function with discontinuities at 0 
and 1. 

A Parameter-Free Elicitation of 
the Probability Weighting 
Function in Medical Decision 
Analysis (Bleichrodt and Pinto, 

Subjects were asked to choose a outcomes for which 
they were indifferent between two treatments that 
offered varying chances of surviving some x number 
of years. 

Probabilities: 
0.10, 0.25, 0.50, 0.75, 0.90 

Estimated parameters for Tversky and Fox 
(1992) functional form is γ = 0.674, for 
Gonzalez and Wu (1999) form is γ = 0.550 
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2000) and δ = 0.816, for Prelec (1998) one 

parameter form is α = 0.533, for Prelec 
(1998) two parameter form is α = 0.534 
and β = 1.083.  There is significant 
evidence at aggregate and individual level 
for a nonlinear probability weighting 
function with crossover point between 0.25 
and 0.50.  Also, there is more evidence for 
elevation of w(p) than in previous studies. 

On the Shape of the Probability 
Weighting Function (Gonzalez 
and Wu, 1999) 

Subjects were presented with one gamble and a list of 
sure bets with differing outcomes.  Subjects indicated 
preference for either gamble or sure thing for each sure 
bet in list. 

Two outcome gambles: 
25-0, 50-0, 75-0, 100-0, 150-0, 200-0, 400-
0, 800-0, 50-25, 75-50, 100-50, 150-50, 
150-100, 200-100, 200-150 
Probabilities: 
0.01, 0.05, 0.10, 0.25, 0.40, 0.50, 0.60, 
0.75, 0.90, 0.95, 0.99 

Estimates of parameters are δ = 0.77 and γ 
= 0.44 for functional form in Goldstein and 
Einhorn (1987).  At the individual level, the 
inverse S-shape of w(p) is regular, but there 
is much heterogeneity in terms of degree of 
curvature and elevation. 

 
What Determines the Shape of 
the Probability Weighting 
Function Under Uncertainty? 
(Kilka and Weber, 2001) 

Subjects were asked to choose between one risky asset 
(Deutsche Bank and Dai-Ichi Kangyo stocks) and a 
series of sure amounts and then to indicate the exact 
certainty equivalent.  Lastly, subjects were asked to 
asses the probability of an event occuring. 

Sure payments: 
from 10 DM to 110 DM in steps of 10 DM 

Parameter estimates for the Gonzalez and 
Wu (1999) functional form is δ = 1.036 and 
γ = 0.443 (Deutsche Bank) and δ = 0.928 
and γ = 0.312 (Dai-Ichi Kangyo). 

Preferences, Poverty, and 
Politics: Experimental and 
Survey Data From Vietnam 
(Tanaka, Camerer, and Nguyen, 
forthcoming) 

Subjects (Vietnamese villagers) were presented with a 
series of two options, the first of which stayed the 
same and the second of which increased in expected 
value. 

Series 1: 
Option A: (0.3, 40000; 0.7, 10000) 
Option B: (0.1, x; 0.9, 5000) with x = 
68000, 75000, 83000, 93000, 106000, 
125000, 150000, 185000, 220000, 300000, 
400000, 600000, 1000000, 1700000 
Series 2: 
Option A: (0.9, 40000; 0.1, 30000) 
Option B: (0.7, x; 0.3, 50000) with x = 
54000, 56000, 58000, 60000, 62000, 
65000, 68000, 72000, 77000, 83000, 
90000, 100000, 110000, 130000 
Series 3: 
Option A: (0.5, x; 0.5, y) with x = 25000, 
4000, 1000 and y = -4000, -8000 
Option B: (0.5, 30000; 0.5, y) with y = -

Estimated parameter for one parameter 
Prelec (1998) functional form is α = 0.72 
for students 

and α = 0.74 for non-students.  Males have 
a more inflected weighting function with 
lower α.   The parameter α also decreases 
with as the mean village income increases. 
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21000, -16000, -14000, -11000 

Cumulative Prospect Theory’s 
Functional Menagerie (Stott, 
2006) 

Subjects were given a series of choices between two 
risky prospects. 

Outcomes: 
0, 2500, 5000, 10000, 20000, 40000 
Probabilities: 
0.1 to 0.9 in increments of 0.1 

Parameters estimates for the Goldstein-
Einhorn (1987) functional form is δ = 1.40 
and γ = 0.96, Tversky and Kahneman 
(1992) functional form is γ = 0.96, Wu and 
Gonzalez (1999) is δ = 0.89 and γ = 0.93, 
one parameter Prelec (1998) functional 
form is α = 0.94, and two parameter Prelec 
(1998) functional form is β = 1.00, α = 
1.00.  One parameter functions are 
preferable to two parameter versions (i.e. 
one parameter Prelec is better than two 
parameter Prelec). 

Table 17: Summary of stimuli used and experimental and estimation procedure in past studies on probability weighting. 

 



 

 

89 
Proportion Judgments in Other Domain 

Probabilities are often presented in experiments and thought of in life as proportions.  It is 

therefore natural to ask to what extent results in probability weighting can be extended to 

proportion judgments.  This pattern of bias in proportion and, more generally, ratio 

judgments has been found in a surprisingly wide variety of tasks and modality.  Varey, 

Mellers, and Birnbaum (1990) used a task where subjects estimated the proportion of black 

and white dots in a field of black and white dots.  Erlick (1964) showed participants a series 

of letters (As and Cs) at a rate of four letters per second and varied the proportion of As.  

Nakajima (1987), in the auditory domain, asked participants to estimate the ratio of the 

duration of two silent time intervals demarcated by clicks. Figure 35 shows the judged 

proportion and bias as a function of true proportion in the three studies.  All found that 

people consistently overestimated the small proportions and underestimated large ones (for 

review, see Hollands and Dyre 2000).   

 

Figure 35: Judged proportion and bias as a function of true 
proportion for (A) letters over time (Erlick 1964), (B) mixed black 
and white dots (Varey et al. 1990), and (C) brief silent intervals 
(Nakajima 1987).  Adapted from Hollands and Dyre, (2000). 
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Somewhat amazingly, there have been robust documentations of multiple inflection 

points—a phenomenon Hollands and Dyre calls “multiple-cycles”.   These patterns, which 

look like the probability weighting function repeated twice, appears in cases where 

participants are asked to judge proportion of pie charts or bars.   

Derivation from the Power Law 

Many of the works on the models of the psychophysics of proportions take as their starting 

point the well-known power law of psychophysics (often referred to as “Steven’s law”): 

! 

" =# $ x %  where φ is the perception of the stimulus quantity x, and α is a scale factor and β 

the exponent of the power function.   

There is much evidence that the perception of numbers follows the power law at the 

behavioral level, and more recently, at the neural level as well, for both human and 

primates (Dehaene 2003; for review see Nieder and Miller 2003; Nieder 2005).  These 

studies show that both cells in the prefrontal cortex and the intraparietal sulcus are 

differentially tuned to specific numbers, and that the distributions of the errors are 

lognormal.  Their findings are also concordant with lesion studies showing that damage to 

the intraparietal sulcus results in deficits in numerical processing, a syndrome called 

acalculia (Dehaene and Cohen 1997).   

Taking the power law as a starting point, and supposing that each quantity was perceived in 

such a way, the perception of the proportion π may be modeled as  

! 

" =
#p$

#p$ +#(1% p)$
=

1

1+ (1% p) / p[ ]
$
,  

A different derivation of this functional form is obtained by using the ratio of the quantities 

π and 1 – π (Spence 1990).  That is,  
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! 

(1"# )

#
=
$(1" p)%
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%

= (1" p) / p( )
%

1

#
"1= (1" p) / p( )

%

# =
1

1+ 1" p) / p( )
%
.

 

A number of studies have used this parametric form (which is a constrained version of the 

Lattimore et al. 1992).  Table 18 summarizes some of the estimates from this family of 

literature (which is quite diverse, from human-computer interaction, to engineering, to 

psychology).  The results are surprisingly congruous with that of the probability weighting 

literature (see Table 16).   

Study Task Estimate 

Varey (1990) Proportion of white and black dots 0.62 

Erlich (1964) Proportion of letters over time 0.75 

Nakajima (1987) Ratio of duration of time demarcated by sound  0.56 

Spence (1990) Proportion of three-dimensional bar graph 

Proportion of vertical line graphs 

Proportion of horizontal line graphs 

Proportion of pie chart 

Proportion of bar graph 

0.86 

0.76 

0.87 

0.75 

0.76 
Table 18: Estimates from studies of proportion judgment using the 

function 

! 

" =
p
#

p
#

+ (1$ p)#
. 

As a further test of whether a common Power Law can be use to explain both the 

perception of proportion and magnitude, Hollands and Dyre (2000) correlated the estimates 

from various magnitude estimation and proportion judgment tasks.  It was found that the 

parameters are correlated at ρ = 0.91 (Figure 36).   
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Figure 36: Correlation of estimate of exponent from 
power function in magnitude estimation (x-axis) and 
in proportion judgments (y-axis).  Key: V = volume; 
A = area; L = length; F = finger span. Adapted from 
Hollands and Dyre, (2000). 

Interestingly, the variants of the above functional form were proposed as early as 1978 in 

the probability weighting literature (Karmarkar 1978; Lattimore et al. 1992; Gonzalez and 

Wu 1999), albeit not explicitly derived from the Power Law.    

It is surprising that given that the literature on the psychophysics of proportion predates that 

of probability weighting, the latter does not appear to be aware of the former (the reverse, 

however, appears not to be true, as Hollands and Dyre cites Tversky and Kahneman, 1992).  

Indeed, it was uncited in the prominent studies of probability weighting (e.g. Lattimore et 

al. 1992; Tversky and Kahneman 1992; Wu and Gonzalez 1996).  The parallels, as 

discussed earlier, are striking. 

Animal Literature 

The study of nonlinear weighting of probabilities has been, to my knowledge, exclusively 

limited to humans.  The animal decision literature has, in general, ignored such second-

order effects such as nonlinearity of the probabilities.  However, some clues may be found 

in their data.  Sugrue et al. (2005) provides one such example.  They used a matching-

pennies game and found that monkeys were able to behave much as the game theoretic 

solution would have predicted.  Notably, however, and not mentioned by the authors, the 

monkey’s matching behavior looks remarkably similar to the human data.   
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Figure 37: Average monkey behavior in 
a probability-matching task. Standard 
error bars are smaller than data points 
and therefore not visible. Adapted from 
Sugrue et al. (2005).   
 

This data is notable on two accounts.  First, it suggests that probability weighting 

generalizes across species.  Second, and more importantly, this data suggests that the 

nonlinearity generalizes to both experienced and described probabilities.  This is because 

experimental work with monkeys cannot use abstract, cognitive depictions of probabilities.  

Instead, monkeys learn probabilities through many hundreds, or thousands, of trials.  This 

is as opposed to some of the findings in the human literature that experienced probabilities 

are weighted differently than those of described probabilities (Hertwig et al. 2004), and 

suggests that, given adequate sampling across the probabilities, experienced and described 

probabilities are weighted similarly (i.e., the inverse S-shape). 

Neural Hypotheses 
From the above, it appears that there are two biases that take place with the weighting of 

probabilities in decisions under risk.  The first is that the brain is the perception of 

probabilities.  This appears to produce the inverse S-shape that has been found so 

consistently in the literature on probability weighting and proportion judgment.  The 

second is the elevation of the inverse S-shape curve, which is not consistent with the 

literature on proportion judgment.   

In the probability weighting literature, the location of the point at which the weighting 

function crosses the diagonal is between 0.3 and 0.4.  In the proportion perception literature 
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this is around 0.5.  Therefore, whereas the curve observed in the latter is symmetric (i.e., 

the deviation from the diagonal is approximately 0), it is asymmetric in the former. A 

psychological interpretation of these parameters, given by Gonzalez and Wu (1999), states 

that the curvature of the weighting function is a product of the perception probabilities, 

whereas the elevation is one of the evaluation of the attractiveness of the outcome.   

This interpretation is neurally plausible, as the perception of proportions and the integration 

of probabilities and rewards are known to involve different, but overlapping, sets of regions 

in the brain.  Many studies focusing on numerical processing finds that the intraparietal 

lobule is involved consistently (Dehaene 2003; Hubbard et al. 2005).  The processing of 

expected reward and reward learning, in contrast, is generally thought to be critically 

subserved by areas that are projected to by the midbrain dopaminergic neurons—in areas 

such as the dorsal and ventral striatum.   

One possibility is that in the course of combining probabilities and rewards, the 

probabilities undergoes another transformation, i.e., 

! 

w(p) =
p
"

p
"

+ (1# p)"
$ 

% 
& 

' 

( 
) 

*

.  This function 

can produce much of the same behavior as the three functions that were reviewed earlier 

(see Figure 38).   

 

Figure 38: Plot of 

! 

w(p) =
p
"

p
"

+ (1# p)"
$ 

% 
& 

' 

( 
) 

*

 with γ 

constrained to 0.6 and δ varying between 1 and 1.3. 
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Another possibility is to derive the Lattimore function from the Power Law by assuming 

that either the scaling factor 

! 

" , or the exponent β, is variable in 

! 

" =# $ x % .  With a variable 

scaling factor, the weight 

! 

" =#
1
#
2
; this quantity represents the ratio of the scaling factors 

between the alternatives.  With a variable β, the parameter 

! 

" =1/(1# p)$ 2#$1 .  Because of 

this equivalence, it is not possible to discriminate between these processes unless one can 

estimate the underlying power function.   

This view puts the neural correlate of the empirical probability weighting function at the 

expected reward regions, rather than the perception regions.   The prime candidates for 

such a function are the dopaminergic areas that are known to be involved in reward 

anticipation and learning.    

 

Figure 39: Dopamine and its projections in the brain.  (Adapted 
from Kandel et al., 1991.) 

This was hypothesized and demonstrated in a series of beautiful and ground-breaking 

papers by Wolfram Schultz and colleagues (Schultz et al. 1997; Schultz et al. 2000; Fiorillo 

et al. 2003; Tobler et al. 2005).  They were able to show that midbrain dopaminergic 
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neurons encoded both expected reward (reward prediction) as well as the reward 

prediction error  (see Figure 40 and caption for details).   

 

Figure 40: Response of midbrain dopaminergic neurons to juice 
delivered in trials with varying probabilities of delivery. (A) 
Raster and histogram of activity of a single cell over various 
levels of probabilities.  Only data from rewarded trials were 
included.  (B) Population histogram of activity responding to 
rewarded (left) and unrewarded (right) trials at p=0.5 of juice 

delivery.  (C) Median response to juice delivery as a function of 
probability of delivery.  Error bars are standard error of the mean 

(SEM).  Circles and squares are from data from different 
experiments.  (D) Same as (C), except only activity from 

unrewarded trials are plotted. (E) Same as (C) and (D), except 
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data plotted are those from the conditioned stimulus indicating 

the probability of juice delivery.  Adapted from Fiorillo et al. 
(2003). 

This result has been replicated in humans with fMRI, which showed additional activation 

in the putamen and the caudate, both part of the dorsal striatum (Preuschoff et al. 2006).   

Other candidate regions include the lateral intraparietal cortex, which has been shown to 

respond to expected reward (Platt and Glimcher 1999) as well as encoding and comparison 

of numerosity (Nieder and Miller 2003).    

Experiment Design 
Subjects 

Subjects were recruited from the online bulletin board, the Los Angeles portion of Craig’s 

List (http://losangeles.craigslist.org/) under the categories “community: volunteers”, 

“community: general”, “gigs: event”, and “gigs: labor”. 

The experiment consisted of 22 subjects (11 female).  Mean (standard deviation) age is 

29.6 (7.5).  Informed consent was given through a consent form approved by the Internal 

Review Board at Caltech.  Subjects were given a $5 show-up fee.    

Behavioral Task 

Subjects were given written instructions, which were also read out loud to them by the 

experimenter.  They were then given a quiz to assess comprehension.  Immediately 

afterwards, each subject completed six practice rounds with gambles and probabilities that 

were not used for the actual experiment.  

The experiment consisted of 120 short, self-paced rounds.  In each round, subjects had the 

task of choosing between two simple gambles (receive x dollars with probability p and zero 

dollars with probability 1 - p).  
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The first screen is a fixation screen that randomly lasts 6, 8, or 10 seconds.  The second 

screen is always shown for 4 seconds.  This shows the probability (p1) and outcome value 

(x1) for the first gamble.   

On one-tenth of the rounds, the subjects were asked an attention check question on the next 

screen: whether p1 was greater than or less than 0.4.  This is to ensure that the subjects paid 

attention to the first screen. The fixation screens between the second and third screens are 

randomly either 4 or 6 seconds. 

Then, on all the trials, the last screen asks them to choose between the first gamble and a 

second gamble.  The second and third screens, that require responses, are self-paced. The 

fixation screens between the first and second screens and between the second and third 

screens are randomly either 4 or 6 seconds.  After subjects enter their response, the box 

around the option that they choose turns red to confirm their choice.  

The next screen displayed both gambles with the probabilities (p1 and p2) and outcome 

values (x1 and x2) and prompted the subjects to choose a gamble.  The relative position (left 

and right) of the two gambles was randomized to counterbalance for order effects.  Subjects 

entered responses via a button box with two buttons (left button for left option on screen; 

right button for right option).  Subjects saw either two or three screens on each round.  

Figure 41 shows the three screens that are presented to the subjects.  

 (A) 

  

(B) 

  

(C) Figure 41: The three screens from the 
experiment. (A) The first screen that the 
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subjects saw with information about the first 
gamble; (B) the attention-check question 
screen that was displayed on one tenth of the 
trials; (C) the choice screen that displayed 
information about both gambles. 
 

The entire experiment has 120 trials divided into 3 blocks.  At the end, one round was 

randomly chosen using a deck of cards numbered 1 through 120 to play out according to 

the subject’s decision during that round.  Gambles were played out using a deck of 100 

cards numbered 1 through 100.  Winning cards were designated by the probability for the 

gamble being played out such that probability = p/100 means that cards 1 through p were 

winning cards and cards p+1 through 100 were losing cards.  Subjects were paid $20 for 

participating, $5 if they answer all the questions concerning whether the probability was 

greater or less than 40/100 correctly, and whatever they win from the gamble that is played.  

Choice of (p, x) 

To separate probability from outcome value and expected value, we fixed x1 at four 

different levels, 

! 

x1 " {10,25,50,100} , and sampled at six different probability levels, 

! 

p1 " {0.01,0.1,0.3,0.5,0.8,0.95}, fives times each.  The values for gamble 2, (p2, x2), were 

chosen such that the expected values for the two gambles were close and the expected 

weighted utility calculated using the Prelec function with α = 0.7 and a power utility 

function with ρ = 0.5 for the two gambles were such that for a particular gamble 1, subjects 

were expected to divide their choices between the two gambles roughly evenly.   

At the end of the experiment, subjects were paid a base rate plus earnings from playing out 

the gamble that they chose on one randomly selected round and a reward contingent on 

their answering all the questions correctly. Average earning from the gambles were $19.70 

plus the show-up fee of $5, not including the $5 bonus for remembering whether the 

probability of the gambles were greater or less than 40/100.  
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fMRI Data Collection 

Scans were acquired using the 3 Tesla Siemens Trio scanner at Caltech’s Broad Imaging 

Center.  Anatomical images (high resolution, T1-weighted) were acquired first.  Functional 

(T2-weighted) images were then acquired using the following parameters: TR= 2000ms, 

TE = 40ms, slice thickness = 4mm, 32 slices.  Horizontal slices were acquired 

approximately 30° clockwise of the anterior-posterior commissure (AC-PC) axis to 

minimize signal dropout of the orbitofrontal cortex (John O’Doherty, personal 

communication).  The total duration of the experiment varied, as each round was self-

paced.  

Behavioral Results 
Estimation Procedure.  A stochastic choice model was used to estimate the probability 

weighting function.  For more details about the implementation of the procedure, see page 

38.   

Similar to a majority of the studies on this topic, we start by assuming the functional forms 

for the utility and probability weighting functions.  We assume that the utility function is a 

power function 

! 

u(x;") = x
"  and the probability weighting function the Prelec’s one 

parameter weighting function 

! 

" (p;#) = exp $ln($ln p)#{ }.  Expected utilities are assumed 

to combine decision weights and utilities linearly, 

! 

U(x,x ', p;",#) = $ (p,#)u(x,") + (1%$ (p,#))u(x ',") .  

Behavioral Estimates.  Table 19 presents the parameter estimates for the stochastic choice 

model.  These parameters are generally similar to those found in the literature reviewed in 

the earlier sections, with one notable difference.  Five of the subjects follow a clear 

probability maximizing strategy.  That is, they select the gamble that had the higher 

probability, regardless of the expected value of the gambles.  Because of this pattern of 

behavior, it was impossible to characterize their behavior in our stochastic choice model 

with the given range of probability and stakes used in our experiment.   
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Subject α ρ λ 
23 0.833 0.421 5.025 
24* - - - 
26 0.727 0.598 2.404 
27 0.603 0.445 5.979 
28 0.627 0.441 1.667 
29* - - - 
30 0.613 0.486 2.708 
31 0.759 0.469 6.491 
32 0.693 0.73 1.016 
33 1.62 0.722 0.875 
34* - - - 
35* - - - 
35* - - - 
37 0.772 0.905 0.716 
38 0.557 0.727 0.553 
39 0.444 0.397 5.368 
41 0.413 0.728 0.547 
42 0.888 0.616 1.424 
43 0.686 0.49 4.979 
44 1.345 0.384 1.743 
45 0.751 0.66 1.319 
Mean 0.771 0.576 2.676 

 Table 19: Stochastic choice model estimates of probability 
weighting function (Prelec’s one parameter model) and utility 
function (power function).  The five probability-maximizers  are 
denoted by *. 

No gender differences were observed behaviorally in either probability weighting 

parameter (male 

! 

"  = 0.750, female 

! 

"  = 0.695, t = 0.47, p < 0.64 two-tailed) or risk 

aversion (male 

! 

"  = 0.539, female 

! 

"  = 0.513, t = 0.24, p < 0.81 two-tailed). 

fMRI Results 
The fMRI data analysis techniques used are similar to those discussed in Chapter 2; that is, 

standard random effects models are used.  
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Log Encoding Model 

This model explored the possibility that the brain does a log expansion of the expected 

value.  That is, 

! 

U(",x) = log(" ) + log(x).  This has the virtue of being computationally 

more tractable for the brain (Dayan and Abbott 2001).   

Furthermore, if the decision weight π is the perception of proportions such as those 

reviewed on page 89, this would be equivalent to a power transformation of the proportion 

judgment function discussed in that section.    

We estimated a model, therefore, by including both the log(p) and log(x) parameters.  The 

event was defined as the entire epoch of the first presentation of gamble 1, which is 4 

seconds.  Other nuisance parameters included regressors for the other phases of the trial, 

including the choice screen and, when present, the question screens of whether probabilities 

are greater than 0.4.   

Log(p) 

Regions significantly activated by the logarithm of the probabilities include some well-

known areas involved in reward anticipation, including the putamen (Figure 42) and the 

midbrain.  The caudate was also activated, but at less stringent p-values.  See Table 20 for a 

comprehensive list of the regions. 

 

Figure 42: Putamen (y = 9) activity 
significantly correlated with log(p), 
p < 0.001, k > 10. 
 

 
cluster level voxel level       

pcor k punc pFWE pFDR T Z punc X Y Z Side Region 
0.002 139 0 0.012 0.009 6.96 4.96 0 -15 54 6 L medial frontal gyrus 
    0.758 0.056 4.3 3.6 0 -9 54 21 L  
    0.849 0.056 4.13 3.49 0 9 48 18 R  



 

 

103 
0.078 55 0.016 0.023 0.009 6.6 4.81 0 -30 9 15 L putamen 
0.44 21 0.113 0.24 0.033 5.22 4.13 0 -24 -93 -6 L occipital 

0.039 70 0.008 0.38 0.038 4.91 3.96 0 -48 -24 -15 L 
middle temporal 
gyrus 

    0.654 0.056 4.46 3.7 0 -57 -21 -6 L  
    0.89 0.056 4.04 3.44 0 -63 -24 -15 L  

0.418 22 0.105 0.549 0.056 4.63 3.8 0 -48 -39 0 L 
middle temporal 
gyrus 

    0.964 0.056 3.8 3.27 0.001 -63 -36 0 L  
0.165 40 0.035 0.614 0.056 4.52 3.74 0 -3 -15 -15 L midbrain 
    0.79 0.056 4.24 3.56 0 -3 -24 -15 L  
    0.954 0.056 3.84 3.31 0 -3 -24 -27 L  
0.007 111 0.001 0.649 0.056 4.47 3.71 0 -12 -63 -24 L cerebellum 
    0.838 0.056 4.15 3.51 0 0 -66 -15 R  
    0.942 0.056 3.89 3.34 0 3 -57 -9 R  
0.134 44 0.028 0.741 0.056 4.33 3.62 0 -15 9 45 L cingulate 
    0.913 0.056 3.98 3.4 0 -9 9 60 L  
    0.938 0.056 3.9 3.35 0 -18 18 42 L  
0.712 11 0.242 0.805 0.056 4.22 3.55 0 0 36 -9 R orbitofrontal cortex 
0.463 20 0.121 0.854 0.056 4.12 3.49 0 -36 -84 -9 L occipital 
0.712 11 0.242 0.921 0.056 3.96 3.38 0 6 24 -6 R anterior cingulate 
0.712 11 0.242 0.931 0.056 3.93 3.36 0 39 -63 -15 R subgyral 

Table 20: Regions significantly correlated with log(p), p < 0.001, 
k > 10. 

Log(x) 

A much smaller set of regions was significantly activated by the logarithm of the gamble 

amounts.  This is, perhaps, due to the fewer elements in the stakes set that we used (4 

compared to 6, for probabilities.  Nevertheless, it is clear that expected reward regions were 

significantly activated by the logarithm of the gamble stakes.  This includes the caudate  

(Figure 43) and the putamen.  See Table 21 for a comprehensive list of the regions. 

 

Figure 43: Caudate (y = -3) activity 
significantly correlated with log(x), 
p < 0.001, k > 10. 
 

 
cluster level voxel level       

pcor k punc pFWE pFDR T Z punc X Y Z Side Region 
0.288 36 0.101 0.264 0.1 4.92 3.97 0 33 3 33 R putamen/subgyral 
0.568 17 0.248 0.67 0.1 4.19 3.53 0 -54 -45 0 L middle temporal gyrus 
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0.149 55 0.048 0.736 0.1 4.09 3.47 0 -15 21 60 L superior frontal gyrus 
    0.835 0.1 3.91 3.35 0 -21 12 63 L premotor cortex 
0.413 26 0.157 0.831 0.1 3.92 3.36 0 3 -3 0 R caudate nucleus 

Table 21: Regions significantly correlated with log(x), p < 0.001, 
k > 10. 

Log(p)+Log(x) 

A log-encoding model has the advantage that the expected value is the sum of the 

logarithms of the parts.  Therefore, we look for the areas that are significantly activated by 

log(p) + log(x).  This set of regions includes the caudate nucleus and the midbrain, as well 

as the putamen (Figure 44).  Table 22 presents the table of all activations at p < 0.001 and 

cluster size k > 10.   

 
Figure 44: Regions significant correlated with log(p) + log(x), 
(Left) Caudate and (Right) midbrain.  Both significant at p < 
0.001, cluster size k > 10. 

cluster level voxel level       
pcor k punc pFWE pFDR T Z punc X Y Z Side Region 

0.149 55 0.048 0.317 0.053 4.8 3.9 0 -60 -21 -21 L inferior temporal gyrus 
    0.499 0.053 4.46 3.7 0 -57 -24 -12   
0.002 208 0.001 0.342 0.053 4.74 3.87 0 -18 18 60 L middle frontal gyrus 
    0.507 0.053 4.45 3.69 0 -42 21 45   
    0.81 0.053 3.96 3.38 0 -33 15 51   

0.3 35 0.106 0.427 0.053 4.58 3.77 0 -51 -45 0 L middle temporal gyrus 
0.048 90 0.015 0.544 0.053 4.39 3.66 0 3 0 0 M caudate nucleus 
    0.764 0.053 4.04 3.43 0 -6 -9 -6 R  
    0.868 0.053 3.84 3.3 0 -9 0 -6   
0.346 31 0.126 0.549 0.053 4.38 3.65 0 30 9 30 R putamen/subgyral 
0.203 46 0.067 0.551 0.053 4.38 3.65 0 -9 -18 -18 M midbrain 
    0.607 0.053 4.29 3.6 0 15 -30 -18   
    0.615 0.053 4.28 3.59 0 0 -24 -24   
0.512 20 0.213 0.741 0.053 4.08 3.46 0 -27 18 24 L putamen/subgyral 
    0.845 0.053 3.89 3.34 0 -27 3 21   
0.652 13 0.313 0.75 0.053 4.06 3.45 0 15 15 21   
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0.674 12 0.333 0.808 0.053 3.96 3.38 0 -42 -78 3 L  middle occipital lobe 
0.63 14 0.295 0.811 0.053 3.96 3.38 0 -30 -27 36 L  subgyral 

Table 22: Regions significantly correlated with log(p) + log(x), p 
< 0.001, k > 10.   

Power Utility Model 

It is difficult to reject the log-encoding model and the power-utility model because the two 

make similar predictions about the neural activity.  There is, therefore, little power to 

distinguish between these two models.  Yet because they make such different predictions 

about the underlying neural mechanism, I include the results here.  

As opposed to the previous log-encoding model, this model uses the utility functions 

estimated from the stochastic choice models.  Because 5 of the subjects were probability 

maximizers, their utility function could not be estimated.  They were, therefore, excluded 

from the analysis.  

 
Figure 45: Regions significant correlated with 

! 

U(p,x;") = p• x
" , (Left) Caudate and (Right) putamen.  (n = 17, 

p < 0.0005, cluster size k > 10). 

cluster level voxel level       
pcor k punc pFWE pFDR T Z punc X Y Z Side Region 

0 911 0 0.029 0.01 6.45 4.64 0 -18 18 60 L middle frontal gyrus 
    0.082 0.01 5.79 4.34 0 -12 39 51 L  
    0.17 0.01 5.33 4.12 0 -18 42 42 L  

0 210 0 0.037 0.01 6.29 4.57 0 -60 -21 
-

21 L inferior temporal gyrus 

    0.212 0.01 5.18 4.04 0 -51 -24 
-

15 L  
    0.454 0.01 4.62 3.74 0 -51 -30 -6 L  

0.025 78 0.013 0.167 0.01 5.34 4.12 0 -51 33 -3 L 
lateral orbitofrontal 
cortex 

    0.208 0.01 5.19 4.05 0 -42 45 -3 L  
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    0.784 0.01 4.06 3.4 0 -39 54 6 L  

0.008 112 0.004 0.226 0.01 5.14 4.02 0 -9 -15 
-

12 L 
midbrain/ventral 
striatum 

    0.288 0.01 4.97 3.93 0 3 -21 
-

15 R  
    0.541 0.01 4.47 3.65 0 -6 3 -3 L caudate 

0.064 54 0.032 0.289 0.01 4.97 3.93 0 -24 12 
-

12 L Putamen 
0.041 65 0.021 0.303 0.01 4.93 3.91 0 18 39 51 R middle frontal gyrus 
    0.434 0.01 4.66 3.76 0 15 21 51 R  
    0.634 0.01 4.32 3.56 0 18 9 57 R  
0.101 43 0.053 0.314 0.01 4.91 3.9 0 -27 54 3 L superior frontal gyrus 
    0.376 0.01 4.77 3.82 0 -15 57 6 L  
    0.528 0.01 4.49 3.66 0 -18 57 27 L  
0.144 35 0.077 0.369 0.01 4.79 3.83 0 -21 -93 -3 L occipital cortex 
    0.565 0.01 4.43 3.63 0 -33 -84 -9 L  
    0.615 0.01 4.35 3.58 0 -39 -78 -9 L  
0.292 20 0.171 0.381 0.01 4.76 3.82 0 6 24 -6 R anterior cingulate 

    0.7 0.01 4.21 3.49 0 6 21 
-

18 R  
0.031 72 0.016 0.387 0.01 4.75 3.81 0 51 24 21 R brodman area 45 
    0.431 0.01 4.67 3.76 0 51 18 33 R  
0.323 18 0.193 0.585 0.01 4.4 3.61 0 12 -51 21 R posterior cingulate 
0.151 34 0.081 0.588 0.01 4.39 3.61 0 9 0 -3 R caudate 
0.138 36 0.073 0.608 0.01 4.36 3.59 0 33 15 -3 R putamen 
0.461 11 0.305 0.671 0.01 4.26 3.52 0 -51 6 21 L inferior frontal gyrus 

Table 23: Regions significantly correlated with expected utility.  
Utility functions are calculated using power function and 
parameters estimated from individual subjects (n = 17, p < 0.0005, 
cluster size k > 10). 

Probability Weighting Function 

To search for the probability weighting function, a two-step procedure was used.  First, the 

candidate regions were selected based on the results from the previous analyses and prior 

hypothesis.  The caudate and the midbrain are distinguished as regions that clearly respond 

to both probabilities and rewards.  This is clearly consistent with the idea that these regions 

encode probabilities and rewards. 

Regions of interests were selected at p < 0.001 uncorrected and cluster size k > 10.  I 

selected the voxel with the highest activation in those clusters.  I then specified a model 

where each individual gamble 1 was its own regressor. Beta values are defined for each 

probability level, using a stratified approach.  That is, beta values are estimated for each 

stake that is involved in the experiment (x = {10, 25, 50, 100}).  We therefore make the 

assumption that decision weighted and utilities are combined linearly.  This is a common 
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assumption in non-expected utility theory, and in expected utility theory, decision 

weights are assumed to be the probabilities themselves.   

This is because SPM uses a summary-statistics approach and does not allow the variance 

between the subjects to vary.  In this case, the deviations from the SPM assumptions can be 

large because we’re after quite a subtle nonlinearity.  The approach used here allows me to 

estimate a true, mixed-effects model that takes into account the multiple layers of nested 

groupings—both sessions and subjects.   

The beta for the brain area at each trial was then extracted and exported to R, an external 

statistical package, and estimated using the mixed effects package nlme (Pinheiro and Bates 

2000).  A nonparametric model was used to estimate the probability weighting function, 

where each probability level was given its own dummy variable.  Figure 46 shows the beta-

probability plot from these estimates in the caudate nucleus.  
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Figure 46: Beta-probability plot in the caudate 
nucleus.   
 

 

 

Figure 47: Beta-probability plot in the 
midbrain.   
 

 

Laterality differences are not often noted in this literature.  One possible reason for this is 

that much of the evidence on functions of the caudate and striatum come from animal 

work, especiaslly rats, but monkeys as well.  The type of stimuli they are able to use, as a 

result, are restricted compared to those used in work in the decision-making literature, 

which almost exclusively use humans.    

One example of laterality differences in the striatum (and caudate) specifically, is from the 

ambiguity study in Chapter 2.  There we find that the activity in the left caudate is more 

highly correlated with expected value of the choices in the knowledge treatment, whereas 

the right caudate is more highly correlated with expected value in the card-deck treatment.  
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This suggests that the laterality difference that we see in Figure 44 may be due to 

numerical processing of the right hemisphere.  

Using Difference Method 

Because the subtly of the nonlinearity involved, another method was used to explore the 

nonlinear relationship. This method involved looking for areas that are significantly 

correlated with the residual—that is, the difference between the decision weights and the 

probabilities.   

Denote the true weighting function for subject i to be 

! 

" (p,# i) , and this difference measure 

! 

"(p,# i) = $ (p,# i) % p .  A brain region that represents 

! 

" (p,# i)  will be significantly 

correlated ith both 

! 

"(p,# i)  and p.  The regression equation therefore i 

! 

" (p,# i) = a + b
1
$ p + b

2
$ %(p,# i) + e. 

Method I: Maximum Likelihood 

! 

ˆ " 
i
 

Because we do not observe the true αi, we do not know the true 

! 

"
i
.  One solution is to 

straightforwardly replace the true αi with the maximum likelihood 

! 

ˆ " 
i
 derived from the 

behavioral data.   

This method uses 

! 

"(p, ˆ # i) = $ (p, ˆ # i) % p, where we calculate the difference using the best 

fit Prelec function for each subject i.  This has the advantage of being intuitive and 

straightforward.   
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Figure 48: Regions significantly 
correlated with 

! 

"(p, ˆ # i) =  

! 

" (p, ˆ # i) $ p  include putamen (y 
= 18) at p < 0.005, k > 5. 

 

k pFWE pFDR T punc X Y Z L/R Region 

39 0 0.018 15.35 0 -18 12 48 L Superior Frontal Gyrus 

   12.73 0 -12 15 60 L  

   12.28 0 -30 15 51 L  

4 0 0.018 13.64 0 -57 -21 -21 L Inferior Temporal Gyrus 

6 0 0.018 12.22 0 -21 18 -6 L Putamen 

6 0 0.018 11.77 0 -33 3 51 L Brodman Area 6 

12 0 0.018 11.42 0 3 45 27 R Brodman Area 9 
Table 24: Regions significantly correlated with 

! 

"(p, ˆ # i) = $ (p, ˆ # i) % p (p < 0.005, k > 5). 

Method II: Fixed 

! 

"*  

An alternative method is to use 

! 

"(p,# i) = $ (p,#*
) % p .  Here, instead of using the best fit α 

for each subject, we use a single α value (I will choose the mean α, but this does not 

change the results qualitatively).   

This method has the advantage of making very precise predictions on the how the 

coefficients 

! 

b
1
 and 

! 

b
2
 will change as the true 

! 

"
i
 changes.  For the 

! 

b
1
 term, this predicts that 

there will be a quadratic relationship between 

! 

b
1
 and 

! 

"
i
.  Figure 49 shows this relationship 

for the individual 

! 

"  parameters observed in our sample (blue points), as well as all 

intermediate points (black line).  In particular, note that the intercept is greater than 0 (as 

decision weight is strictly increasing in probability), and the quadratic relationship is 

exhibited by the inverse U-shape.  
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Figure 49: Relationship between regression coefficient b1 and true 
αi. 

For the 

! 

b
2
 term, this predicts that there should be a negative relationship between 

! 

b
2
 and 

! 

"
i
.  Figure 50 shows this relationship for the individual 

! 

"  parameters observed in our 

sample (blue points), as well as all intermediate points (black line). Furthermore, there is no 

appreciable nonlinearity in the values of 

! 

"
i
 that we observed.  

Another property of note is that the coefficient switches sign (from positive to negative) as 

it becomes greater than 1.  This reflects the fact that people moves from underweighting of 

small probabilities to overweighting of small probabilities as 

! 

"
i
 crosses unity (the pattern 

reverses for large probabilities, as expected).  Overweighting of small probabilities is rare 

in the literature, and in our sample only two subjects are found to do this.  Despite this, a 

combination of the fact that there exists a significantly negative relationship between b2 and 

! 

"
i
, the regression model crosses 0 at approximately 

! 

"
i
 = 1, and significantly negative 

values for the two subjects with 

! 

"
i
 > 1, should be considered persuasive evidence. 
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Figure 50: Relationship between regression term b2 and true αi. 

We first look for regions that obey the predictions on the 

! 

b
1
 term.  These are areas in which 

we regress the estimated b1 coefficient for each subject on a quadratic 

! 

b
1

= "
1
+ "

2
#(p,$*

) + "
3
#(p,$*

)
2.  A region is said to be active if it reflects all three of the 

predicted properties. That is, 

! 

"
1

> 0, "
2

< 0, and "
3

< 0.  This is a highly stringent criteria, 

and a very limited set of regions exhibit this combination of activity Table 25.  In 

particular, Figure 51 shows a region near the caudate/insula that satisfies this conjunction 

analysis at p < 0.05 for each of the terms individually.  Figure 58 shows the relationship 

between the estimated 

! 

b
1
’s and 

! 

"
i
. 

 
Figure 51: Activation of L caudate/insula (y = 18) in conjunction 
of constant, linear term, and quadratic term (p < 0.05 for each). 
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Figure 52: Fitted response of L caudate/insula (-27, 18, 18) as a 
function of estimated alpha. 

 
k pFWE pFDR T punc X Y Z L/R Region 

14 0 0.152 30.91 0 -27 18 18 L Caudate/Insula 

6 0 0.152 12.49 0 63 -15 -18   

9 0 0.152 12.22 0 -9 -63 -15 R Middle Temporal Gyrus 
Table 25: Regions in conjunction analysis of areas that are 
significantly greater than 0, show negative linear and quadratic 
relationship alpha (p < 0.05 for each, k > 5). 

Next we search for regions that obey the predictions on the b2 term.  These are areas in 

which we regress the estimated b2 coefficient for each subject on 

! 

b
1

= "
1

+ "
2
#(p,$*

) + % .  A 

region is said to be active if it reflects both of the predicted properties. That is, 

! 

"
1

> 0 , 

! 

"
2

< 0.  This is a less stringent criterion than the previous, and a greater set of regions 

exhibit this combination of activity (Table 26).  In particular, Figure 53 shows both the area 

activated in Figure 51, as well as a contralateral caudate region, that satisfies this 

conjunction analysis at p < 0.04 for each of the terms individually.  Figure 52 shows the 

relationship between the estimated 

! 

b
1
’s and 

! 

"
i
. 
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Figure 53: Conjunction of the L and R caudate (y = 18) in 
regression b2 (p < 0.04).   

The fitted responses shown in Figure 54 is notable in the fact that it fulfills all of the 

predictions mentioned in page 112 in reference to the regression model that produced 

Figure 50.  Specifically, that there is a negative relationship between b2 (this is true with or 

without the two subjects with 

! 

" >1), that the regression line crosses 0 at approximately 

! 

" =1, and the two subjects with 

! 

" >1 do in fact have b2 < 1 (although significance is 

difficult to verify).   

 
Figure 54: Fitted response of L caudate/insula (-21, 21, 18) as a 
function of estimated alpha. 

k pFWE pFDR T punc X Y Z L/R Region 

65 0 0.308 11.85 0 33 -48 6 R Parahippocampal gyrus/caudate tail 
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30 0.005 0.308 7.98 0 -36 -78 3 L Middle Occipital Gyrus 

10 0.012 0.308 7.46 0 -48 -18 -21 L Middle Temporal Gyrus 

12 0.223 0.308 5.57 0 24 12 54 R Superior Frontal Gyrus 

7 0.242 0.308 5.52 0 51 -51 -6 R Middle Temporal Gyrus 

19 0.246 0.308 5.5 0 -21 21 18 L Insula/Caudate 

7 0.289 0.308 5.38 0 3 3 3 R Caudate head 

12 0.31 0.308 5.33 0 -18 -27 15 L Pulvinar/caudate tail 

5 0.386 0.308 5.16 0 -30 -18 27 L Postcentral gyrus 

11 0.466 0.308 5 0 21 21 9 R Caudate 

9 0.534 0.308 4.88 0 -18 -90 0 L Middle Occipital Gyrus 

5 0.855 0.308 4.3 0 -9 -78 -27 L Declive 
Table 26: Regions in conjunction analysis of areas that are 
significantly greater than 0 and show decreasing linear 
relationship with alpha (p < 0.04, k > 5). 

Five-Fold Pattern 

Finally we search for regions that obey the predictions on the b1 and b2 terms.  These are 

regions where 

! 

"
1

> 0, "
2

< 0, "
3

< 0, #
1

> 0, #
2

< 0 each at p < 0.1.  This is a very stringent 

criterion, and a small set of regions exhibit this combination of activity (Table 27).  In 

particular, Figure 55 shows the caudate/insula region activated in Figure 51.  

 
Figure 55: Activation with 5-fold pattern in caudate/insula (-27, 
18, 18). 
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k pFWE pFDR T punc X Y Z L/R Region 

11 0 0.152 74.02 0 -27 18 18 L Caudate/Insula 

5 0 0.152 64.02 0 -21 -6 42 L Middle Frontal Gyrus 

13 0 0.152 36.76 0 -6 -63 -15 M Culmen 

5 0 0.152 13.23 0 -33 -81 -3 L Middle Occipital Gyrus 
Table 27: Regions in conjunction analysis of areas that show all 
five relationships (p < 0.1 for each, k > 5). 

Encoding of Higher Moments 

The encoding of the statistical moments other than the mean has only recently been studied 

in neuroscience.  Even there, most studies have focused on the first two moments—mean 

and variance (Fiorillo et al. 2003; Preuschoff et al. 2006).  Here, I present some evidence 

that the brain encodes for skewness and kurtosis as well (Figure 56).   

First I note the correlations within the independent variables—that is, the moments.  

Because this study used binary gambles, such correlations are inevitable.  This therefore 

limits our power in distinguishing between regions that possibly encode these moments. 

Table 15 shows the correlation between these measures as used in the experiment.  The 

correlation between probability and gamble stake is zero by construction.  

 prob stake EV Variance Skew Kurtosis 

Probability 1      

Gamble 0 1     

EV 0.64 0.61 1    

Variance 0.07 0.74 0.53 1   

Skewness -0.43 0.06 -0.51 0.11 1  

Kurtosis 0.08 0.82 0.60 0.88 0.06 1 
Table 28: Correlation between independent variables used in the 
experiment. 

As is clear in the table, there is a substantial degree of correlation between some of the 

variables, notably between the variance and kurtosis, as well as (negative correlation) 

between the expected value and the skewness.  It is therefore difficult to clearly distinguish 

between the expected value regions and the skewness regions, as well as variance regions 

between kurtosis regions.  
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Because of encoding of the first two moments, mean and variance, is relatively well-

established, I will therefore construct the analysis to bias against finding the higher 

moments—that is, skewness and kurtosis.  That is, we orthogonalized the independent 

variables in the following order via Gram-Schmidt in the following order: expected value, 

variance, skewness, and kurtosis.   Therefore, skewness and kurtosis are effectively the 

residuals of the projection on expected value and variance (note that the correlation 

between skewness and kurtosis is close to 0).  The brain regions found to be correlated with 

skewness and kurtosis, therefore, are areas that the skewness and kurtosis measures are 

explaining above and beyond those explained by variance and skewness. 

Notably, these brain regions are correlated with the raw moments, and not the normalized 

moments.  Interestingly, this is the Taylor expansion method that is used in finance to 

calculate the utility function.    

 

Figure 56: Regions significantly 
correlated with variance (caudate 
body and head, red), skewness 
(midbrain and caudate head, 
yellow), and kurtosis (caudate 
head, green).    

 

Choice Regions 

Thus far all data analyses on the neuroimaging data have been concentrated on the 

presentation of the first gamble.  This is mainly due to the fact that the presentation of the 

first gamble allows us the cleanest look at how the brain encodes probabilities.  In this 
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section we shall look at what happens in the brain during choice.   We use the 

econometric model  

! 

yi =" i + #i,1EU(p1,x1;" i,$i) + #
2
%(" i,$i) + &Mi + 'i  

where 

! 

EU(p
1
,x
1
;" i,#i)  is the expected utility of the first gamble given probability 

weighting parameter 

! 

"
i

 and power utility parameter 

! 

"
i

for subject i, 

! 

"(#
i
,$

i
) =  

! 

EU(p
1
,x
1
;" i,#i) $ EU(p2,x2;" i,#i)  is the absolute difference between the utility of the 

two alternatives, and 

! 

"  is the vector of nuisance parameters with associated matrix M.   

The regions presented below in Table 29 are those that are significantly correlated with the 

(Prelec) expected utility of subjects’ choices.  That is, regions where the group 

! 

"
1

> 0 in the 

above equation.  Expected utilities are calculated using parameters derived from the 

stochastic choice model described on page 100 (both decision weights and utility (power) 

functions).  Notable regions include caudate as well as the anterior cingulated (Figure 57). 

 

k pFWE pFDR T punc X Y Z L/R Region 

973 0.11 0.017 5.81 0 27 -84 -12 R Inferior Occipital Gyrus 

 0.155 0.017 5.59 0 -9 -81 3 L  

 0.165 0.017 5.55 0 -9 -93 -3 L  
14 0.478 0.017 4.78 0 -39 -60 24 L Brodman 39 

16 0.56 0.017 4.64 0 -12 60 9 L Superior Frontal Gyrus 

35 0.652 0.019 4.49 0 -6 -3 -6 L Caudate 

 0.739 0.02 4.34 0 -9 9 0 L  
36 0.674 0.019 4.45 0 -54 -45 -12 L Middle Temporal Gyrus 

 0.945 0.027 3.86 0.001 -60 -48 -18 L  
30 0.711 0.019 4.39 0 9 12 3 R Caudate 

11 0.725 0.02 4.36 0 -3 30 -6 L Anterior Cingulate 

12 0.878 0.024 4.06 0 57 -36 -15 R Middle Temporal Gyrus 
Table 29: Regions significantly correlated with expected utility of 
choices (p < 0.001, k > 10). 
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Figure 57: Regions including caudate (y = -3) and ACC (x = -3) 
are correlated with expected utility of choices (p < 0.001, k > 10). 

Conflict Regions 

A number of previous studies have found that areas such as the ACC are correlated with 

the “difficulty” of the choice (Kennerley et al. 2006).  This is supported by the idea that the 

ACC is involved in action selection or executive conflict control (Etkin et al. 2006).  We 

therefore look for regions that are negatively correlated with the absolute difference 

between the two choices.  That is, regions where the hypothesis that group 

! 

"
2

= 0  can be 

rejected.  We base this on the hypothesis that the difficulty of the choices is greater when 

expected utility of the alternatives are close together.  

The alternatives we used, however, were not optimized for fMRI analysis, but rather to be 

able to estimate behavioral parameters.  Therefore, the expected values of the alternatives 

are highly correlated, and hence expected utility as well. Figure 59 shows the correlation 

between activation of the expected value of Gamble 1 and the absolute value of the 

difference between Gamble 1 and Gamble 2.  As in previous analyses, we orthogonalize 

the absolute difference on the expected values, so that we bias our results against finding 

regions that encode conflict.  Only 3 regions were found to be significantly negatively 

correlated with the difference in expected utility at a very liberal p-value of 0.01 and cluster 

size k  > 4 (Table 30).   
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Figure 58: Ventral striatum/ACC (-
3, 6, -12) is correlated with conflict 
at the very liberal p-value of 0.01 (k 
> 4 voxels). 

 
As we noted above, because of the high degree of correlation between the absolute 

difference and the expected value of the alternatives, this negative result should be taken 

with some care.  Indeed, the ACC activation we find in Figure 57 could well be due to the 

conflict measure.   

k pFWE pFDR T punc X Y Z L/R Region 

21 0.997 0.96 3.08 0.003 63 -3 3 R Superior Frontal Gyrus 

5 0.998 0.96 3.07 0.003 -3 6 -12 L Nucleus accumbens/ACC 

5 1 0.96 2.66 0.008 -36 -84 6 L Middle Occipital Gyrus 
Table 30: Regions negatively correlated with absolute difference 
between the alternatives (p < 0.01, k > 4 voxels). 
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Figure 59: Correlation between expected value and absolute 
difference in expected value.  

Fano Factor of Magnitude and Variance  

As discussed in the statistical process of neuronal firing rates on page 3, the firing rate of 

neurons can be approximated by a Poisson distribution.  The relation between the 

magnitude and variance of the firing should, therefore, be a linear one.  The slope of this 

relationship is called the Fano Factor.  It is clear by inspection of Figure 46 that there is a 

relationship between the magnitude of the beta and the standard error of the estimate.  I 

estimated the relationship between the two in a log-log plot.  Figure 60 shows this 

relationship for our data in our mixed effects model.   

 

Figure 60: Scatter plot of 
log(beta) vs. log(variance).  
Because some of the betas were 
negative, a constant scaling 
factor were added to ensure 
positive betas.   
 

 

Discussion 

One brain region notably absent in our analysis is the LIP.  As discussed in the 

introduction, the LIP is known to be involved in numerical processing, especially 

numerosity comparisons.  The lack of finding may be due to the relatively high rate of false 

negatives in fMRI data.   A more likely, and interesting, hypothesis, however, is that the 

LIP does encode the numerical quantities and comparisons in our task, but the 

simultaneous presentation of probabilities and outcomes meant that the different neural 

signals were confounded.  
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This chapter discusses a long-standing paradox in utility theory—Allais’s Paradox.  

The primary goal of this chapter was to find the neural correlate of the empirical nonlinear 

weighting of probability.   To this extent it is a partial success.  Something like the 

probability weighting function found in economics was found, in the region that we had 

hypothesized.  Yet it is clear, especially from the background discussion of the 

psychophysical data on proportion judgment, that much remains to be done.   

This, in many ways, underscores the “interplay” between neuroscience and economics (as 

discussed by Dehaene with neuroscience and psychology in Chapter 1).  This study started 

out as a fairly simple-minded search for the neural correlate of some behavioral regularity.  

Yet the data in neuroscience and psychophysics suggests that this phenomenon is the 

epiphenomenon of a much more intricate process of decision-making.  Furthermore, these 

data point to very specific hypotheses and methods of testing them.  All of this would not 

have been possible without taking the science behind decision sciences seriously.   



 

 

123 
C h a p t e r  5  

CONCLUSIONS 

The goal of neuroeconomics is to ground economic theory in the details of how the brain 

works in decision-making, strategic thinking, and exchange.  One method to achieve this is 

to observe processes and constructs that are typically considered unobservable, to decide 

between many theories of behavioral anomalies like risk aversion, altruistic punishment, 

and reciprocity, or to link processes (and data) from previously unconnected fields.  This 

thesis aimed to contribute in both of these goals.  Chapters 2 and 3 attempted to observe the 

neural substrates and the casual mechanisms, respectively, of ambiguity aversion.  Chapter 

4 attempted to observe the neural correlate of the probability weighting function, as well as 

to link a previously-unknown body of work by psychophysicists on the perception of 

proportion to probability weighting in decision-making under uncertainty.   

As noted on page 7, a likely outcome of this interdisciplinary work between economics and 

neuroscience is that thinking about brain details will provide a new way of understanding 

concepts that have been traditionally left out of economic analysis, like emotion, 

willpower, habit, and the biological basis of demand.  No one neuroeconomic study will be 

able to conclusively accomplish either of these things, but by combining experiments and 

types of data, we may gain insights into behavior that cannot be attained by introspection of 

behavioral observation.  

The studies discussed in this paper illustrate all of these goals to varying degrees.  First, 

with respect to decision-making under ambiguity, our data allows us to use neural evidence 

to discount models of ambiguity that treat is as merely a two-stage lottery, by showing that 

there may be two interacting systems determining the experienced utility of an option: one 

responding to the level of information in general, and one that uses input from this system 

to discount the reward of the possible results.  Second, it suggests a substantially different 
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way of looking at risk-aversion. Considering a more general uncertainty aversion that 

dampens the utility of a gamble allows us to consider careful models of risk where the 

context of the gamble is important, something that is very difficult if we only consider a 

single universal utility function.  

Separation of Perception and Choice 

A theme throughout this thesis is that decision-making, as implemented by the brain, is 

likely to be separated into a number of stages.  In particular, this predicts different neural 

mechanisms for the various stages of decision-making: perception, valuation, action 

selection, etc.  The hypothesized separation of perception and choice can potentially 

present a unified explanation of the paradoxes studied in this thesis.   

In addition to probability weighting and ambiguity aversion, research initiated by Heath 

and Tversky (1991) has shown that perceived competence can affect choice behavior—a 

phenomenon called “source preference.”  They found that perceived competence is 

inversely correlated with ambiguity aversion; that is, the weaker the perceived competence, 

the stronger the ambiguity aversion (Heath and Tversky 1991; Fox and Tversky 1995).   

Some evidence for this was provided by Kilka and Weber (2001).   They tested German 

subjects with gambles over German and Japanese bank stock returns, and then estimated 

separate (Lattimore) probability weighting functions for the stocks.  They found that the 

Lattimore function had significantly greater curvature (γ), as well as lower elevation (δ) in 

the gambles over the Japanese (low competence) bank stock.  Their findings are qualitative, 

as they only estimated the weighting function conditional on different utility function 

specifications (specifically, they used a power utility function with three different 

exponents at 0.76, 0.88, and 1).   

Results from our study on both probability weighting and ambiguity aversion suggest that 

the effects of both are reflected in the dorsal striatum.  To the extent that we can think of 

the dorsal striatum (and the caudate in particular) as the region that encodes reward value, 

this is as expected utility theory would suggest, however.  It is likely the case that the 
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caudate represents the final product of a complex sequence of processing.  Future steps 

should be to disentangle these sequences, which can potentially allow us to understand the 

mechanisms that generated the paradoxes that inspired the studies in this thesis. 
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ENDNOTES

 

                                                
1 However, Colander (2005)(23; 20) notes that Ramsey, Edgeworth and Fisher all speculated about measuring utility 

directly before the neoclassical revolution declared utility to be inherently unobservable and only revealed by 
observable choices. Ramsey and Edgeworth speculated about a ”psychogalvanometer” and a ”hedonimeter”, 
respectively, which sound remarkably like modern tools. Would these economists be neuroeconomists if they were 
reincarnated today? 

2 The most charitable way to interpret Friedman’s “F-twist” is that theories of market equilibrium based on utility-
maximization of consumers are equivalent, at the market level, to unspecified other theories which allow violations of 
utility-maximization but include some institutional repairs or corrections for those violations. That is, the theory states 
UM , but even if U is false, there is an alternative theory [(not - U)andR]  M, in which a “repair condition” R 
suffices in place of assumption U, to yield the same prediction M. If so, the focus of attention should be on specifying 
the repair condition R. 

3 “Not proven” is a vestige of an earlier time when juries just decided on whether facts were proven or not proven, and 
judges decided guilt based on those factual judgments. 

4 Returning to the Ellsberg example, a prior is simply the vector (p, 1 - p) where p is the probability that the state is red. As 
you can see the set of overall possible priors is the line segment in the real plane going between the points (0,1) -
definitely black, to (1,0) -definitely red. A decision makers set of priors in this example is taken to be an unbroken 
segment of this line. 

5 In the Ellsberg example larger intervals for possible p  
6 The time series Bt for each voxel went through a high-pass filter and an AR(1) correction.  
7 To calculate the expected value of the gamble in the Informed Opponents treatment, we solve first the 

optimal strategy of the opponent.  Denote 

! 

(N,R,n,r)  as respectively the number of cards total in the deck, 

the number of red cards total in the deck, the number of cards in the sample the opponent observes, and the 

number of red cards in the sample the opponent observes.  

The opponent knows 

! 

(N,n,r) .  His optimal strategy is therefore simply to choose the more likely color in the 

deck given the realizations of his sample.  That is, the opponent chooses according to 

! 

max
E(R | r,n,N)

N
,1"

E(R | r,n,N)

N

# 

$ 
% 

& 

' 
( .  The only unknown in the expression is the numerator.  To 

solve, apply Bayes’ rule, such that 

! 

P(R | r,n,N) =
P(R |N)P(r |R,n,N)

P(r | i,n,N)
i= 0

N

"
, where 

! 

P(R |N)  is the prior 
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distribution on R, 

! 

P(r |R,n,N)  is the hypergeometric distribution (as this is an example of sampling 

without replacement), and the denominator is the probability of observing r over the support of R.  With 

! 

P(R | r,n,N)  in hand, the opponent can calculate the expected number of red cards in the deck, which is  

! 

E(R | r,n,N) = P(R | r,n,N) " R
R= 0

N

# .   

Because this is a constant-sum game, the subject’s probability of winning is the expected proportion of color 

that the subject is betting on in the deck 

! 

P(win | r,n,N) =min
E(R | r,n,N)

N
,1"

E(R | r,n,N)

N

# 

$ 
% 

& 

' 
( .  

That is, the complement of the opponent’s.  As the subject does not observe r, we need to take the expecation 

over r.  That is, 

! 

P(win | n,N) = P(r | n,N) " P(win | r,n,N)
r= 0

n

# .   

Given the independence of the choices of the subject and the opponent, their choices will coincide with p = 

0.5 in expectation.  In this case, according to the rules of the game, the bet does not take place and both earn 

the certain payoff.  The payoff function for the subject is therefore 

! 

0.5 " P(win | n,N) " x + 0.5 " c , 

where x is the amount of the gamble, and c is the certain payoff.   

Finally, note that the choice of priors P(R|N) is left unspecified in the above.  For example, if the subject 

believes that the deck is composed of either all red cards or all blue cards (P(R=N|N)=0.5 and 

P(R=0|N)=0.5), a sample from the deck would determine completely the composition of the deck.  We 

present in Table S3 expected value calculations given a uniform prior—

! 

P(R |N) =1 N +1,"R , and a 

binomial prior with p = ½—

! 

P(R |N) =
N

R

" 

# 
$ 
% 

& 
' 
1

2

" 

# 
$ 
% 

& 
' 

R

1

2

" 

# 
$ 
% 

& 
' 

N(R

.   

8 (see the RC-AC image at http://www.econ.umn.edu/ arust/neuroecon.html). 

 


