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Abstract

In many disciplines of engineering it is often convenient, for analysis and design
purposes, to approximate the real behavior of physical systems by mathematical
models. For some applications however, and in particular when one wishes to design a
high performance controller, the differences between the behavior of the mathematical
model and the physical system can be crucial to the performance of the final design.
The theory of robust control attempts to take into account these inherent inaccuracies
in the model, and provide systematic analysis and design techniques in the face of
this “uncertainty.”

These goals can be restated as formal mathematical problems. In order to handle
more realistic descriptions of physical systems, one has to allow more sophisticated
models, and this leads to more difficult mathematical problems. In this thesis we
will consider both the theoretical and computational aspects of such problems. In
particular we will consider robustness in the presence of both real (e. g., parametric)
and complex (e. g., dynamic) structured uncertainty.

This leads to a consideration of the general mixed p analysis and synthesis prob-
lems. Some special cases of the analysis problem can be solved exactly, but the general
problem is in fact NP hard, so that in order to develop solutions for large problems
with reasonable computational requirements, we will adopt a scheme of computing
and refining upper and lower bounds. By exploiting the theoretical properties of the
problem, we are able to develop practical algorithms, capable of handling mixed u
analysis problems with tens of parameters, in computation times that are typically
of the order of minutes. This is despite the fact that the mixed u problem appears
to have inherently combinatoric worst-case behavior.

For the synthesis problem a new “D,G-K iteration” procedure is developed to
design a stabilizing controller which attempts to minimize the peak value across fre-
quency of mixed g. The scheme utilizes a combination of some new results from the
mixed g upper bound problem with the Hs, optimal control solution. The theoretical
results developed here have already been successfully applied to a number of real en-
gineering problems, and some of these applications are briefly reviewed, to illustrate
the advantages offered by the new analysis and synthesis techniques.
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Chapter 1

Introduction

Real physical systems cannot be exactly described by mathematical models. Nev-
ertheless it is often convenient for analysis and design purposes to approximate the
real behavior of physical systems by mathematical models, and this technique is em-
ployed in many disciplines of engineering. For many purposes these nominal models
are adequate, and the engineer may design an appropriate controller on that basis.

However in some circumstances, and in particular for high performance systems, it
is possible that a control design may perform well in simulation on the nominal model,
and not even be stable when implemented on the real physical system. The problem
arises from the fact that the model is not sufficiently accurate in some aspect, and the
high performance controller is attempting to exploit knowledge of the system that is
incorrect! The theory of robust control attempts to take into account these inherent
inaccuracies in the model, and provide systematic analysis and design techniques in
the face of this “uncertainty.” Moreover, since the primary motivation is for high
performance controllers, we wish to quantify in which aspects, and to what extent,
the model may not be relied upon. In this way the control design may still exploit
the knowledge of the system that is reliable.

In order to restate these goals as mathematical problems, one considers a nominal

model subject to a perturbation. Given a property of the nominal model, we say that



it is “robust” if it holds not only for the nominal model, but also for the model subject
to all allowed values of the perturbation. Two properties that we will be especially
concerned with are stability and performance, where we will measure performance
via the maximum gain from disturbance to error of the closed loop system. These
definitions will all be made rigorously in chapter 2, but for now we can see that these
concepts lead us naturally to two basic types of robustness questions. Firstly we have
the analysis question: Given a closed loop model and perturbation set, is the stated
property robust? Then there is the more difficult synthesis question: Given an open
loop model and perturbation set, can we design a controller so that the closed loop
system meets the required robustness condition? This thesis will be largely concerned
with answering these two questions.

The above definitions are fairly standard in the robust control community. Note
however that one may consider a variety of possible assumptions to place on the prior
knowledge we have about the perturbation, and this leads to a number of different
robustness paradigms. In order to handle more realistic descriptions of physical sys-
tems, one has to allow for more sophisticated models and perturbation sets, and this
leads to more difficult mathematical problems.

In order to pose a meaningful problem, we assume that the perturbation is (norm)
bounded. Our robustness measure will then be in terms of the smallest perturbation
for which the stated property fails to hold. We will consider a perturbation set, or
uncertainty description, which allows for structured perturbations. In particular we
will consider perturbations which may be block diagonal, with any number of blocks.
In fact this description is very general, and we will see in chapter 2 that a great many
robustness problems can be rearranged to fit into this framework. Problems involving
many different perturbations, entering different components of the model, can be
rearranged into one large block diagonal perturbation to the whole system. This
set-up leads us to consider the structured singular value, y, which is a mathematical

function measuring robustness with respect to such (structured) uncertainty.



We will consider briefly the history of the structured singular value, and some
related concepts, in section 1.1. For now we simply note that the initial research in
this field has concentrated on the complex u problem, where it is assumed that all the
blocks of the perturbation may assume complex values. This paradigm works well
for many problems, and in particular it is appropriate when the perturbation is being
used to represent unmodeled dynamics, which are assumed stable and bounded, but
otherwise unknown.

In recent years a great deal of interest has arisen with regard to problems involving
parametric uncertainty. These parameters may be coefficients in a differential equa-
tion, or may represent physically meaningful quantities, such as masses, aerodynamic
coefficients, etc. In any case the uncertainty is naturally modeled with perturbations
which are not only norm bounded, but also constrained to be real. Allowing these real
perturbations in the uncertainty description leads us to consider mixed p problems,
where the perturbation may contain both real and complex blocks.

The presence of these real blocks substantially complicates the u problem, so that
the techniques developed to deal with complex u problems are no longer adequate. In
this thesis we will develop methods to address both the analysis and synthesis ques-
tions for the mixed p problem. This will enable us to consider robustness problems
for systems subject to both parametric and dynamic uncertainty.

In order to tackle the mixed u problem we need to develop a substantial amount of
mathematical and computational machinery, drawing on results from linear algebra,
complex analysis, functional analysis and computational complexity theory among
others. We briefly outline how this development will proceed in section 1.2, but it is
important to bear in mind that, despite the level of mathematical abstraction, this
theoretical research has a solid engineering motivation. In fact the techniques we will
present in this thesis are currently being utilized at various industrial and academic
sites, and a number of successful applications of these tools to practical engineering

problems have already appeared in the literature.



1.1 Historical Review

This section is not intended to give a comprehensive review of the development of
the structured singular value, and associated robustness concepts. The intention is
merely to review some of the key ideas most relevant to this research, so as to place
the present work in context. It is always possible to trace back a given piece of work
to earlier influences, but an appropriate starting point for this review is the small gain
theorem introduced by Zames [84] in 1965. This provided an exact robust stability
test with respect to unstructured dynamic uncertainty.

A number of robust stability results were obtained for this type of problem, al-
lowing for a single norm bounded perturbation (see, e. g., Willems [77] (1971), and
Safonov [67] (1980)). This work heralded the use of singular values as an impor-
tant tool in robust control. These exact results for unstructured uncertainty provide
sufficient conditions for robust stability with respect to structured uncertainty. It be-
came apparent however that for many problems these results are too crude, and it is
necessary to exploit the structure of the problem to get a less conservative condition.

Several researchers looked at this problem, and the notion of rearranging the
problem into block diagonal form and then using scaling matrices to reduce the con-
servatism gained acceptance (see [66] (1978) for an early example). The (complex)
structured singular value, u, was introduced by Doyle [23] in 1982 as a systematic
means of dealing with such problems. This paper introduced the use of both upper
and lower bounds for such problems, and stressed the need for viable methods of
computation. In addition it was shown that robust performance problems could also
be handled within the same framework.

The complex u theory was subsequently extended considerably by a number of
researchers. An important element of this research was the emphasis on efficient com-
putation schemes for upper and lower bounds, rather than exact computation. Fan
and Tits looked in some detail at these problems [28] (1986), and Packard developed
a lower bound for the complex y problem [59] (1988). In addition the complex y syn-



thesis problem was also studied, and Doyle proposed the “D-K iteration” procedure
[24] (1985) as a means to tackle the problem (see also Stein and Doyle [74] (1991)).
This theoretical research lead to the release of the p-Tools toolbox [3,7] by Balas et al.
in 1991. This commercially available software package contains the algorithms neces-
sary to implement (a large part of) the complex y analysis and synthesis techniques,
and these methods are now routinely applied to large engineering problems.

At the same time analysis problems involving only parametric uncertainty were
also being considered, but from a somewhat different viewpoint. The idea was to con-
sider polynomials with perturbed coefficients, where the perturbations are restricted
to be real. The starting point for this research was Kharitonov’s celebrated result
on interval polynomials [37] (1979). Kharitonov developed an exact robust stability
check for a problem with real parametric uncertainty. This result sparked enormous
interest in this approach, and a number of results for this type of problem were ob-
tained, such as the edge theorem by Bartlett et al. [11] in 1988. These results provided
a variety of exact robust stability tests (see [71] (1989) and [10] (1993) for reviews).
Unfortunately the problem class studied was very restrictive, so that the results were
of limited value for engineering applications. Furthermore the solutions typically in-
volved checking the vertices or edges of some polytope in the parameter space, so
that they become computationally intractable for large problems.

Several researchers adopted an algorithmic approach to these analysis problems,
seeking to tackle them by computing and refining upper and lower bounds. The use
of Branch and Bound was suggested by de Gaston and Safonov [19] (1988) and Sideris
and Sanchez Pefia [70] (1989). This enabled less restrictive uncertainty descriptions
to be considered, but the problem of exponential growth in computation remained.

The possibility of considering both parametric and dynamic uncertainty in the p
framework was suggested by Doyle [24] (1985). The starting point for the research
in this thesis is given in [29] (1991), where Fan et al. consider the mixed u analysis

problem, and develop an upper bound.



1.2 Organization of the Thesis

Following the introductory material in chapter 1, the thesis begins with a formal
definition of the mixed p problem in chapter 2. In addition the concept of Linear
Fractional Transformations is introduced, and this is used to show how many types
of robustness problems can be re-cast in terms of computing mixed p.

The properties of the mixed u problem itself are considered in chapter 3. It
is shown that many of the basic properties of complex p generalize easily to the
mixed case. However there are important fundamental differences between mixed
and complex g, and in this regard the properties of continuity and computational
complexity are considered in some detail (see [58,16]). In particular we find that
the mixed p problem is NP hard. This has profound implications for the viability
of certain approaches to tackling the mixed p problem, and motivates the approach
taken for the remainder of the thesis.

Since we wish to come up with tractable solutions for large problems, these results
motivate us to look for approximate solutions, and in chapter 4 we present upper and
lower bounds for the mixed p problem. The mixed p problem is first re-cast as a real
eigenvalue maximization problem, and the lower bound is derived by a consideration
of the conditions required for a local maximum. This leads to a power iteration for
a lower bound. The upper bound is from [29], and takes the form of a linear matrix
inequality minimization problem.

The properties of these bounds are examined in some detail in chapter 5, and in
particular we consider under what circumstances one can guarantee that p equals its
upper bound. This material is rather technical, and probably only of interest to those
already familiar with the corresponding results for the complex u case, although in
fact the machinery used here for the more general mixed case is simpler than the
earlier approaches for the complex case (see [56]). This chapter also considers some
particular special cases of mixed p, where one can get stronger results than for the

general problem.



Chapter 6 is concerned with the practical computation of the theoretical bounds
from chapter 4. The bounds are reformulated so as to be amenable to efficient com-
putation, and algorithms are developed to do the job. This computational software
is now commercially available, and we present some results from our extensive nu-
merical experience with the algorithms. In the course of this development we note
that the upper bound has an alternative formulation as a singular value minimization
problem. This gives an interesting interpretation of the upper bound in terms of
a small gain type condition, and turns out to be very useful later for the synthesis
problem.

Further advances in the computational aspects of the analysis problem are con-
sidered in chapter 7. Some work on adaptive power iteration schemes [75] is briefly
presented. The use of Branch and Bound schemes, to iteratively refine the bounds,
is also considered [51]. These techniques give us the means to compute upper and
lower bounds with as small a gap as desired. Of course the computational require-
ments become prohibitive if we ask for very small gaps on large problems (as the NP
hardness results predict).

In chapter 8 we consider an important special case in detail: the rank one mixed
p problem. In fact one can convert a number of “Kharitonov-type” robustness prob-
lems into special cases of the rank one mixed u problem. It is then shown that for
this special case exact calculation is possible, since y is identically equal to its upper
bound (which is convex). This provides an interesting link between the p and polyno-
mial approaches, although we note that the results are of limited use for engineering
purposes, because of the restrictive assumptions inherent to the problem.

Chapters 9 and 10 are concerned with the mixed p synthesis problem. Some
technical machinery, on State Space factorization theory, is developed in chapter 9.
This is then used in chapter 10 to develop a “D,G-K iteration” procedure for the
mixed p synthesis problem. The development proceeds by combining the mixed u

upper bound results from chapter 6 with the solution to the Hs optimal control



problem (see [21]). The resulting procedure is an extension of the “D-K iteration”
procedure for complex p synthesis, and finds a stabilizing controller attempting to
minimize the peak value across frequency of mixed p.

Throughout this work an important emphasis is placed on developing solutions
which can be efficiently computed. All the results presented have been implemented in
software, and in chapter 11 we consider some applications of these results. In addition
to some example problems, results are presented from a number of applications to
real engineering problems. Examples of both simulation and experimental data are
presented, along with the analysis and synthesis results. Finally, in chapter 12, we

conclude the thesis with a look at some directions for future research in this area.



Chapter 2

The ;¢ Analysis Framework

In this chapter we give a brief introduction to the structured singular value, x, and its
role in the robustness analysis of linear systems. The machinery of Linear Fractional
Transformations, LFT’s, is also briefly presented. These two topics are intimately
related, and both have received a great deal of attention over the years. We will only
present a few highlights from the panoply of research results obtained in these areas,
and we refer the reader to [57] and the references therein for a more comprehensive
review of these ideas. Note that until recently most of the research effort has focused
on the complex p problem (see [57] for example), rather than the more general mixed
case we are concerned with here. However all of the general LFT machinery for u
problems carries through easily to the mixed case, and the results in this chapter will

be presented for the mixed case.

2.1 Notation and Definitions

First of all we need to establish some notation, and some basic definitions, that will
be used for the remainder of this thesis. The notation we will use is fairly standard
and is essentially taken from [29] and [81]. In the following suppose that M is a

complex matrix, and z a complex column vector:
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R Field of real numbers

Rrxm Real matrix with n rows and m columns

R" Real column vector with n elements

C Field of complex numbers

cnxm Complex matrix with n rows and m columns

c Complex column vector with n elements

MT Transpose of matrix or vector M

M* Complex conjugate transpose of matrix or vector M
G Largest singular value of a matrix

,u Structured singular value of a matrix

p Spectral radius of a matrix

PR Real spectral radius of a matrix

A Largest (real) eigenvalue of a Hermitian matrix
Amin Smallest (real) eigenvalue of a Hermitian matrix
Ak k** largest (real) eigenvalue of a Hermitian matrix
Tr Trace of a square matrix

det Determinant of a square matrix

Re Real part of a matrix

Im Imaginary part of a matrix

Ker Kernel of a matrix

Arg Argument of a complex scalar

Sgn Sign of a real scalar

Co Convex hull of a set
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|M|F Frobenius norm of matrix or vector M: |M|r = \/TI‘W
|| Euclidian norm of vector : |z| = Va*x

|00 Infinity norm of a vector z € C*:  |z|eo = maxi<i<n ||

Iz k x k identity matrix

0 k x k zero matrix

Ok xcr k X r zero matrix

RM Space of real-rational proper transfer matrices

RLoo Subset of RM with no jw axis poles

RHo Subset of RM with no poles in Re(s) > 0

[ Plloo Infinity norm of a (stable) transfer matrix P(s)

Is defined to be

— Implies

— Is implied by

—s Implies and is implied by
O Q.E.D.

Occasionally we will drop the subscripts from I and 0, whence they denote identity
and zero matrices respectively, of the appropriate size. For a transfer matrix P(s),

then we denote its State Space representation by

AlB
C\D

For some of the above terms a little more explanation is appropriate: the real spectral

P = = C(sI—A)7'B+D. (2.1)

radius pg(M) = max{|A|: X is a real eigenvalue of M}, with pr(M) = 0 if M has no

real eigenvalues. For a transfer matrix P € R'Hoo, then

IPlloc = supo(P(iw)). (22)
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The structured singular value, u, is a measure of the robustness of a system, and is

defined formally below.

The definition of x is dependent upon the underlying block structure of the un-
certainties, which is defined as follows. Suppose we have a matrix M € C"*" and
three non-negative integers m,, m., and m¢ (with m = m, + m; + m¢g < n) which
specify the number of uncertainty blocks of each type. Then the block structure
K(me, me, me) is an m-tuple of positive integers

K= (ki, .. s kmp kmpt1, - - o kmptmes Emp+metls -« - km)- (2.3)
This m-tuple specifies the dimensions of the perturbation blocks, and we require

Yoity ki = n in order that these dimensions are compatible with M. This determines

the set of allowable perturbations, namely define

Xic = {A = block diag (6] Tk, - - -, 65 Thnr » 85Tk s1s -+ s 8% T, 1o
AL, AG) 8T €R, 6 € C,AY € Chmrtme+ixXbmrime+iy  (2.4)

Note that Xy C C™*™ and that this block structure is sufficiently general to allow
for (any combination of) repeated real scalars, repeated complex scalars, and full
complex blocks. The purely complex case corresponds to m, = 0, and the purely real
case to m, = mg = 0.

Note also that all the results which follow are easily generalized to the case where
the full complex blocks need not be square, and the blocks may come in any order.
In fact the analysis and synthesis software we will describe in subsequent chapters
has been written for the more general case. Although this generalization adds little
difficulty to the problem, it does makes the notation somewhat cumbersome, and so,

for ease of presentation, we will restrict our attention to the set-up in (2.4).

Definition 2.1 (Structured Singular Value [23]) The structured singular value,
pxc (M), of a matric M € C*™™ with respect to a block structure K(my,me,mc) is
defined as

-1
prc(M) = (AIQ%K{E(A) cdet (I — AM) = 0}) (2.5)
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with px(M) =0 if no A € X solves det (I — AM) = 0.

In order to develop some of the subsequent theoretical results about x and it’s bounds,
we need to define some sets of block diagonal scaling matrices (which, like x itself,

are dependent on the underlying block structure).

Qc={AeXk:6 €[-11],686 = 1,APAS =1, 3 (2.6)
U ={U € Qi : U*U = I,} (2.7)
D = { block diag (2 D1, ..., e Dy Do 11, .., Doy 20
e I1y,) < 0 € [—g —g-],o < Di = D} € Ch*ki 0 < d; € R)(2.8)
Dy = {block diag (D1, .., Dm,+m., Tty i vns ooy dmg i) -
D; = D} € CF*ki g, ¢ R} (2.9)

Dk={De€Dx:D>0}={DeDx:6;=0,i=1,...,m,} (2.10)

ﬁ/g = {block diag (Dl, ‘o 7Dmr+mc7d1Ikmr+mc+17 .. -;dmcIkm) :
det (D) # 0,D; € CF>¥i g, £0,d; € C} (2.11)
Gx = {block diag (G1, ..., Gm,, Ok 15+ - -5 Ok) : Gi = GF € CRXR}  (2.19)

Gx = {block diag (g1, . - -, gn,, On,) : gi € R} (2.13)

where n, = "% k; and n, = n — n,.

2.2 Mixed p and Linear Fractional
Transformations

Two of the main reasons why y has proved to be such a useful tool for robustness
analysis are that it answers the question of well posedness of a Linear Fractional

Transformation, and it satisfies a certain property called the “Main Loop Theorem”
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Figure 2.1: Robust stability u analysis framework

(see [56]). These statements will be made more explicit later, but for now consider
the constant matrix feedback interconnection in figure 2.1, where A € Xx represents
a structured perturbation to the nominal matrix M € C**®,

This feedback loop represents the loop equations

u= Mv

v = Au.

Note that these equations give (I, — MA)u = 0 and (I, — AM)v = 0, so that we
have a unique solution if and only if I, — MA is non-singular, whence the solution
isu=wv=0. If [, - MA is singular then there are infinitely many solutions, with
|u| and |v| arbitrarily large. In this case the feedback loop is not well posed, or is in
some sense “unstable.” Note that I, — MA is guaranteed to be non-singular for all
A € X with 7(A) < 1if and only if yxc(M) < 1. Thus we see that u is defined to be
the answer to the robustness question of well posedness or “stability” of the constant
matrix feedback loop shown in figure 2.1.

Now we will state the feedback interpretation of x more rigorously. Consider a



15

matrix M € C™"*" partitioned as

My M
M=| TP (2.14)

with My, € C™M*™ Mye € C"2%"2 and ni+ng = n. Suppose we have block structures
Xy, and X, compatible with My; and My respectively, then the block structure
X defined as

Xg = {A = block diag (A1,A2) : A1 € Xk, Ag € XICQ} (2.15)

is compatible with M. Now given any Ay € X, the LFT Fy(M,A,) is said to be
well posed if and only if there exists a unique solution to the loop equations shown

in figure 2.2, namely

u = Mijiv+ Miad
e = Mo1v + Maod

v = Aju.

It is easy to see that Fy (M, A1) is well posed if and only if (I, — M31A1) is invertible.
When the LFT is well posed it is defined to be the unique mapping from d — e,
i. e., the vectors e and d satisfy e = Fyy(M, A1)d, where

Fu(M, A1) = Mag + Moy Ay (In, — M1y A1)~ Mys. (2.16)

Note that in the above derivation we always assume that the feedback loop is closed
around the top inputs and outputs, and hence we obtain an upper LFT (denoted F,).
This is without loss of generality, simply by reordering the inputs and outputs, but in
any case one can analogously define lower LFT’s and prove similar results for them.
In fact one can generalize this definition of LFT to incorporate Redheffer’s “star
product” [63], and we refer the reader to [57,22] for a more in-depth treatment of the

general properties of LFT’s.
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Figure 2.2: Robust performance p analysis framework

Transfer functions represent an important example of LFT’s. Consider the State

Space realization of a discrete time system

) ) e
Yk C D Up UL

then its transfer matrix is

G(z) =D+ C(zI — A)™'B = F,(M, —i—]) = Fy(M,8I).
Note that this is an LF'T on a constant real matrix M, with a repeated complex scalar
parameter §, which is associated with the (inverse of the) frequency variable z.
Systems with uncertainty can also be easily represented using LFT’s. One natural
type of uncertainty is unknown coefficients in a State Space model. The following
simple example is taken from [57]. Begin with a familiar idealized mass-spring-damper
system, as shown in figure 2.3.

Suppose m, ¢, and k are fixed but uncertain, with

m = m(l 4+ wpném)
c=¢(1+ wb)
k=k(1+ w0k ).
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Figure 2.3: Mass-spring-damper system

where 6y, ¢, 01, are all uncertain real scalars that are known to lie in the interval
[-1 1], but are otherwise unknown. The known parameters m, ¢, k represent the
nominal values of m,c, k respectively, and the known weights wy,,w., wg serve to
normalize the uncertainty range to the unit ball.

Then defining 1 = y and z2 = y we can write the differential equation in State

Space form:
T T
( ) = Fy(M,A) ( f) A = diag(6m, b¢, 61,)
Y

—we —wp =k —=¢ 1 7

—Wm 5 m  m mm

0 0 0 0 ¢ 0

M= 0 0 0 E 0 0
0 0 0 0 1 0

R S

0 0 0 I 0 0 |

Thus we obtain an LFT on a known matrix M, with the uncertainties collected
together in a diagonal matrix A. Note that this is exactly the problem formulation
assumed for the u analysis framework. More generally, the perturbed State Space

system

Tyl = A(5)$L+B(5)uk
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yr = C(6)zp+ D()ug

where ¢ is a vector of parameters that enter rationally can be written as an LFT on
a diagonal matrix A made up of the (possibly repeated) elements of §.

A fundamental property of LFT’s that contributes to their importance in linear
systems theory is that interconnections of LFT’s are again LFT’s. For example,
consider a situation with three components, each with an LFT uncertainty model.
The interconnection is shown in figure 2.4. By simply reorganizing the diagram,
collecting all of the known systems together, and collecting all of the perturbations
(the A;’s) together, we end up with the diagram in figure 2.5, where P depends
only on G, G2, G and the diagram layout. Note how unstructured (or structured)

uncertainty at the component level becomes structured uncertainty at the system level.

Y1 : dl
=~ =
Ul
Ay dy As
- 7 Gy Y2

el

Figure 2.4: Example interconnection of LFT’s

Note that problems involving additive and/or multiplicative uncertainty are spe-

cial cases of linear fractional uncertainty descriptions. Furthermore by using the
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A1 0 0
0 Ay O
0 0 Ags
Y1 P d17 d2
Y2 Ui

Figure 2.5: Macroscopic representation of figure 2.4

above rearrangements we can convert problems with additive and/or multiplicative
uncertainty, or indeed any interconnection of systems with uncertainty entering in a
linear fractional manner, into the standard y analysis set-up of figure 2.1. Thus by
allowing structured uncertainty entering the problem in a linear fractional way, we
have a very general set-up that captures a great many robustness problems. Fur-
thermore by allowing mixed real and complex uncertainties, we can capture both
parametric and dynamic uncertainty in one unified framework, and we will see that
we can consider both robust stability and performance problems in the same setting.
Additional information on LFT’s and how they arise in engineering problems is found
in [22].

The following two theorems, which address robust stability and performance ques-
tions for LF'T feedback interconnections of constant matrices, were proven for complex

uncertainty descriptions in [56].



20

Theorem 2.1 (Well Posedness) Let M € C"™" and 0 < g € R. The LFT
Fu(M,Ay) is well posed for all Ay € Xi,,5(A1) < -é— if and only if px, (M11) < B.

Theorem 2.2 (Main Loop Theorem) Let M € C™" and 0 < § € R. Then
pg(M) < B if and only if pux,(M11) < B and for all Ay € X, 5(A1) < % we have

These results extend trivially to the mixed case, the proofs being identical to those
given in [56] for the complex case (there are a number of minor variations to these
theorems which similarly extend to the mixed case). For a more complete feedback
interpretation of these results see [56] and the references therein.

These two theorems are at the heart of the complex u analysis methodology. The
fact that they are still true in the mixed case means that mixed p still provides an
ezact test for robust stability and robust performance problems, but now with real
uncertainties allowed. The LFT machinery for rearranging various robustness prob-
lems into p problems (such as converting robust performance problems into robust
stability problems as above) is also applicable to the mixed case, so that mixed p
retains its versatility and applicability to a large class of problems. Note in particular
that problems of robust stability of a polynomial with perturbed real coefficients (or
a ratio of such polynomials for that matter) are yet another example of linear frac-
tional uncertainty, and hence can be recast as mixed u problems (see section 8.1 for
example).

The structured singular value can be used to quantify robustness margins for
a linear system with linear fractional uncertainty. Specifically, suppose that M in
figure 2.2 is a real-rational, proper transfer matrix, denoted by P(s), of size (n; +
ng) X (ny + ng), and block structures Xx, C C™"*™ and Xy, C C"?*™2 are given.

Partition P(s) in the obvious way.

Pii1(s) Pia(s)

P(s) =
() le(s) Pzz(s)
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For A; € Xk, , consider the interconnection shown in figure 2.2, with M = P(s). For
any A1 € Xi,, Fu (P(s),A1) is the transfer function from d — e.

It is easy to show that the structured singular value is not necessarily a norm
(or even a semi-norm), since it doesn’t necessarily satisfy the triangle inequality.
Nevertheless it does satisfy a scaling property (see section 3.1, property (a)), and so
in some sense is related to the size of the matrix, and so we introduce the following
notation: for a transfer matrix P € RHoo, and a block structure K of appropriate

dimensions, define the “u-norm” of P as
1Pl = sup pxc(P(jw)).
weR

Now consider A € Xy to be a block structure partitioned compatibly with P. We
allow A; to be arbitrary, but assume that Aj is a single complex full block. This is
a “performance block” and will give us a robust performance test for the Hso norm.
Since the uncertainties are typically used to cover unmodeled dynamics, then we wish
to be able to consider perturbations to P which are themselves dynamical systems,
with the block diagonal structure of the set Xj. Associated with any block structure
Xic, let M (X)) denote the set of all real-rational, proper, stable, block diagonal

transfer matrices, with block structure like Xjc:
M (Xg) :={A € RHw : A(jw) € Xi for all w € R}

The following two theorems address robust stability and performance questions for
LFT’s of linear systems, and give rise to the most common usage of u: as a frequency

domain robustness test.

Theorem 2.3 (Robust Stability) Suppose that P € RHoo and we have a real
scalar B > 0. Then for all Ay € M (Xx,) with ||A1]l,, < B, the perturbed closed-loop
system is well-posed and stable if and only if

| =

| Prallxc, = SUp fuky (P11(jw)) <
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Theorem 2.4 (Robust Performance) Suppose that P € RHso and we have a real
scalar B > 0. Then for all Ay € M (Xy,) with ||Aq]|,, < B, the perturbed closed-loop

system is well-posed, stable and

12 (P, A1) o = sup 7B (P(jw), Aa(ju)] <

™|~

if and only if

1Pl = sup prc(P(iw)) < 5.

weR B

These results mean that we can evaluate the robustness properties of a closed loop
system, by using a frequency evaluation of . Note that at any given frequency
point we have a constant matrix p problem, for which we can use the upper and
lower bounds to be discussed in chapter 4. Note also that the block structure X,
is inherited from the problem description, whereas we consider the augmented block
structure X)c because of the result in theorem 2.4. In summary then, the peak value
on the u plot of the frequency response determines the size of perturbations that the
loop is robustly stable (and/or performing) against.

Note from earlier that we can write transfer functions as LFT’s. This allows us to
remove the frequency search from the above tests by including the frequency variable
as one of the uncertain parameters (a repeated complex scalar block). The u test
then looks for the worst case parameter values, and hence the worst case frequency,
at the same time. In this way we obtain a one-shot test, involving a constant matrix
p problem, for the worst case p value across frequency. Note that since we wish to
treat the frequency variable as a disk uncertainty, this State Space y test is naturally
applied to discrete time systems. However by employing a bilinear transformation
from the half plane to the disk, we can obtain similar results for continuous time
problems as well, and we refer the reader to [56] for the appropriate results, which
generalize easily to the mixed case. This State Space u test has several interesting
connections to Lyapunov theory, and stability with respect to nonlinear uncertainties,
and for a more detailed exposition of these topics we refer the interested reader to

[22,56,34,57,44,69] and the references therein.
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Chapter 3

The Mixed ; Problem

In this chapter we examine some of the underlying properties of the mixed y problem,
and compare them with the appropriate complex p properties. It is seen that whilst
mixed g inherits many of the properties of complex g, in some aspects the mixed p
problem can be fundamentally different from the complex p problem. In particular
recent results on the issues of continuity and NP completeness are reviewed [64,20,58].

These results have profound implications, particularly for the computational aspects

of the mixed y problem.

3.1 Basic Properties of Mixed u

In this section we will present some basic properties of the mixed x problem and
contrast them with the corresponding results for the complex u problem (see [23]).
Note that these are fundamental properties of the p problem itself, and have nothing
to do with the choice of bounds or method of computation one may use for the
problem.

It is not at all obvious how to compute y from the definition in (2.5), since
this definition implicitly involves an optimization problem which is not convex. In
fact we will see that the computation of u is, in general, a difficult problem, for a

number of reasons, and a large part of our effort will be geared towards obtaining
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good approximations to p. Let us first start by examining some of the properties
of the mixed u problem. From the definition of mixed x in equation (2.5), one may

readily derive the following properties (the complex u versions of these were originally

presented in [23]):

(a) prc(YM) = |y|pc(M) for all M € C**™ and v € R.
(b) px(In) =1 for any block structure.
(c) pr(A) =7(A) for all A € Xi.
(d) me=0,mc=0,mc=1 — ux(M)=35(M).
() mp=0,mc=1mc=0 — px(M)=p(M).
() mr=1,me=0,mc=0 — px(M)=pp(M).
(g) For any M € C"*" the following sequence of inequalities holds
pR(M) < pic(M) < 7(M).
(h) For all A € Xy, Q € Qk then QA € Xx,AQ € Xk with 7(QA) < F(A),
7(AQ) < 7(A).

(i) For all A € Xx,U € Uk then UA € Xx,AU € Xx with 7(UA) = 7(A),
T(AU) =75(A).

(3) DAD™! = Afor all A € X and D € D (including D € Dy).
(k) prc(QM) = p(MQ) < ux(M) for all M € C™™ and Q € Q.
(1) pc(UM) = px(MU) = pic(M) for all M € C™" and U € Uy.

(m) p(DMD™Y) = pyc(M) for all M € C™*™ and D € Dx (including D € D).
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(n) For any M € C™" the following sequence of inequalities holds
< < inf 7 -1
fax pr(UM) < Jnax pr(QM) < pc(M) < D1€n£,C g(DMD™)
where we could equivalently use
pax pr(MU) = max pp(UM), Gaz< pr(MQ) = max pr(QM)

(o) Forall A € X there exist U,V € U and ¥ = diag(oy . ..o,) with o; € R, 03 >
0 such that A = UXV*.

Note that there are important differences between some of these properties and their
complex p versions (see [23]). In particular the function pg may be replaced by p in
any of the above for complex y problems.

The scaling property (a) follows immediately from the definition of y in (2.5).
This property is fundamental to the use of y as a measure of the robust stability (and
performance) margin of a given system, since it implies that p is related to the size
of the worst case destabilizing perturbation. Note that this property holds for v € C
for complex u problems.

Properties (b) - (f) are special cases for which u is easily computed. Note from
property (d) that  for a single full complex block reduces to the maximum singular
value, and in property (e) we see that u for a single repeated complex scalar block
reduces to the spectral radius. Thus y can be thought of as a generalization of both
of these quantities, and the fact that for unstructured uncertainty we have i =79,
leads to the term structured singular value.

In order to obtain property (g) we first need the following lemma, which may be

easily proven from the definition of u.

Lemma 3.1 Suppose we have two block structures X, and Xx,, both of which are
compatible with matrices in C"*". If we have Xy, C Xx, then for any M € C"™ ™ g
follows that

fuc, (M) < puc, (M). (3.1)
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Note that for any uncertainty structure Xy C C™*™ we always have that
{A:A =6, e R} C{A:Ae X} C{A:AeC™} (3.2)

so that applying lemma 3.1 to the above, together with properties (d) and (f), we
find that for any M € C™"*™ and any compatible block structure K

pr(M) < (M) < 7(M) (3.3)
which is property (g). Note that for complex p problems we have
p(M) < (M) < 5(M). (3.4

These inequalities form the starting point fqr schemes to compute upper and lower
bounds for x. We will see that, roughly speaking, we will use a scaled (real) spectral
radius condition as our lower bound for u, and a scaled maximum singular value
condition as our upper bound for .

The next idea exploited in the list of properties is to examine those scalings which
affect either of the quantities pp or @, but do not affect u. Note that eigenvalues
are invariant to similarity transformations, but are not invariant to unitary matrices.
However for singular values the opposite is true: singular values are invariant to
unitary matrices, but are not invariant to similarity transformations. It turns out
that yu is invariant to an appropriate subset of unitary matrices, and to an appropriate
subset of similarity transformations. This is discussed in more detail below.

Properties (h) and (i) follow from the definitions of the sets U and Qx. Note
that we have Uy C Qx C Xk, so that all these sets represent allowable perturbations.
Applying properties (h) and (i) to the definition of x (2.5) we obtain properties (k)
and (I). Property (1) states that x is invariant to matrices in U (which are block
unitary). Note however that from property (k) we see that u is not necessarily
invariant to matrices in Qy (which may not be unitary, since the real parameters are

not restricted to be on the boundary of the allowable set).
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Applying properties (k) and (1) to the lower bound inequality in (g) we obtain the

improved (scaled) lower bound inequalities in (n).
< <
pax PrR(UM) < max pRIQM) < pxc(M)
For complex p problems this becomes
M) < pr(M).
Jaax p(QM) < pc(M)

We said earlier that matrices in Qy are not necessarily p invariant, since they are
not necessarily block unitary. The reason that we introduce the set Qi (instead of
just working with Uyc) is that it will be seen in section 4.1 that the second inequality
in (n) is in fact an equality, whereas the first inequality is not. This contrasts with
the complex p case where Qx = Uy so that one may always assume the worst case
perturbation is unitary and p-invariant (note also that one may still assume the
complex blocks of the worst case perturbation are unitary for mixed problems). This
is an important distinction between real and complex perturbations. The worst case
value for a real parameter may occur at an internal point, whereas for a complex
parameter the worst case value is always on the boundary. This is treated in detail
in section 4.1.

Note that the set Dy is constructed with a block structure complementary to that
of Xj, so that it commutes with all matrices in Xx (and hence Qx and Uy as well),
which is property (j). This immediately leads to property (m) which is sufficiently

important that we state it separately as a lemma.

Lemma 3.2 For any matriz M € C™*", and any compatible block structure K then

for all D € Dy
p(M) = p(DMD™). (3.5)

Since Dk C Dx we have that @ is invariant to similarity transformations with matrices

in Dy, and applying this to the upper bound inequality in (g) we obtain the improved
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(scaled) upper bound inequality in (n)
< inf 7 -,
pc(M) < it Z(DMD™)
We state these improved upper and lower bound results as a lemma.

Lemma 3.3 For any matriz M € C™*" | and any compatible block structure K

< < inf 7 -1, .
Jaax prRIQM) < prc(M) < DlEI%)C g(DMD™) (3.6)

For complex u problems then we have

Jax p(QM) < pxc(M) < inf F(DMD™?). (3.7)
These bounds form the basis for computation techniques for complex y problems
(for additional material on upper and lower bounds for complex yu see [28] and [59])
This upper bound is exact for complex block structures with 2m. + m¢ < 3 (see
[55]) but is not exact for any block structures with m, # 0. In fact it is (usually)
possible to improve on this bound for mixed y problems with m, # 0. The mixed p
upper bound presented in [29], and examined in section 4.6, is never worse than this
standard complex p upper bound, and is frequently much better.

A great deal of research has been carried out with regard to complex p prob-
lems, and the bounds in (3.7). They are not guaranteed to be “tight” for a general u
problem, but in fact they usually are for problems of engineering interest. Practical
implementations of these bounds have been developed, and efficient software is avail-
able for their computation (see [3] for details of the pu-Tools toolbox). In addition an
array of interesting theoretical results have been derived, and we refer the reader to
[57] for a detailed review of the complex p problem. A good deal of the work in this
thesis will be geared towards extending these results and methodologies to the more

general mixed g problem.
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3.2 Continuity of Mixed u

In order to examine the continuity of the p problem we first reformulate the definition

in (2.5) as a (real) eigenvalue maximization problem. Define the unit ball in the
perturbation set as
BXk = {A € Xx:7(A) <1}. (3.8)

Then the following lemma follows almost immediately from the definition of u.

Lemma 3.4 For any matrix M € C™ ™, and any compatible block structure K
M) = AM). .
pxc (M) e pR(AM) (3.9)
Now for complex g problems this becomes

pi(M) = max p(AM).

Since BXx C C™*™ is a compact set, and p is a continuous function, it follows that
complex y is also a continuous function of the problem data [23].

In general for mixed p problems however we only have the expression (3.9). Al-
though BXjc C C™ ™ is still a compact set, the function pg is not necessarily a
continuous function, but rather only upper semicontinuous. As a result we can only
conclude in general that mixed p is upper semicontinuous, as stated in the following

lemma.

Lemma 3.5 (Upper Semicontinuity of Mixed yu [58]) Mized p is an upper semi-
continuous function of the problem data. Equivalently, suppose we have M € C"*",

and a compatible block structure KC. Then for any f > 0 such that pic(M) < 3, there

exists € > 0 such that pc(M) < B for all M € C™™ with 5(M — M) < e.

See [58] for more details on the continuity properties of mixed x, and [65] for more
details on the notion of upper semicontinuous functions. Note that one can construct
examples of real y problems where p is discontinuous in the problem data (see [9] for

example).
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The fact that real u can be discontinuous clearly adds computational difficulties
to the problem, since any method involving some type of search (e. g., frequency re-
sponse) must address the possibility of missing a point of discontinuity. Note that for
an upper semicontinuous function one may have an isolated point which is larger than
its neighbors (see figure 3.1), so that by missing this point one would underestimate
the peak value of y, or in other words overestimate the robust stability margin for
your problem (roughly speaking the size of the smallest destabilizing perturbation is
—};) In fact the example from [9] has a sequence of polynomials which converge to a
limiting polynomial, but the robust stability margin of the limit polynomial is less

than the limit of the stability margins of the convergent polynomials.

oM

\ 4

Figure 3.1: Upper semicontinuous function

More importantly however the fact that real x4 can be discontinuous in the problem
data sheds serious doubt on the usefulness of real y as a robustness measure in such
cases. This is because the system model is always a mathematical abstraction from the
real world, and is only computed to finite precision, so that it would seem reasonable

to require that any type of robustness measure we use be continuous in the problem

data.
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It is shown in [58] how to regularize these problems by essentially adding a small
amount of corﬁplex uncertainty to each real uncertainty. By doing this a small amount
of phase uncertainty is added to the gain uncertainty. It is then shown that the new
mixed g problem is continuous. This regularization seems reasonably well motivated
from an engineering point of view, where unmodeled dynamics would always produce
some phase uncertainty.

Furthermore it is shown in [58] that mixed p problems containing some complex
uncertainty are, under some mild assumptions, continuous even without the regular-
ization procedure outlined above (whereas purely real s problems are not). To be
more explicit suppose we have a matrix M partitioned as in (2.14) and block struc-
tures X, Xk,, X as in section 2.2. Further assume we have arranged the problem
so that Xy, consists of purely real uncertainties and X, consists of purely complex

uncertainties. Then the following theorem was proven in [58].

Theorem 3.1 (Continuity of Mixed u [58]) Suppose we have a matriz M € C**"
and block structures Xic,, Xic,, Xp as above. Then if px,(M11) < pg(M), p is con-

tinuous in the problem data at M.

Note that it is always true that px, (M11) < pug (M), so that the condition px, (Mi1) <
g (M) can be interpreted as meaning that the complex uncertainties enter nontriv-
ially into the problem. Some condition of this type is clearly required since we can
always trivially construct discontinuous mixed g problems from discontinuous real u
problems by simply padding them out with zeroes. These issues are treated in greater
depth in [58] where they also develop alternative conditions under which mixed p is
continuous. The continuity issue is also considered in [40], where the authors examine
the continuity properties of the mixed y upper bound.

These results, and in particular theorem 3.1, are reassuring from an engineer-
ing viewpoint since one is usually interested in robust performance problems (which
therefore contain at least one complex block), or robust stability problems with some

unmodeled dynamics, which are naturally covered with complex uncertainty. Thus
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in problems of engineering interest, the potential discontinuity of u should not arise,

although conditioning of 4 computation could be a problem and needs more study.

3.3 NP Completeness of Mixed u

The theory of computational complexity is concerned with the tractability of com-
putational problems. There are many important concepts in this area that can have
a dramatic impact on the development of practical computation schemes for a given
problem. In particular we will be concerned here with the notion of NP complete
(and NP hard) problems. We refer the reader unfamiliar with these concepts to [31]
for more than the very brief exposition we will present here.

The theory of NP completeness deals with decision problems, i. e., problems with
a “YES/NO” answer. In particular we will be interested in the decision problem: “Is
p 2 k77 for a given real positive scalar k. We will refer to this decision problem as
the “u recognition problem.” Note that any lower bounds we have on the compu-
tational difficulty of a given decision problem immediately become lower bounds on
the computational difficulty of the associated evaluation problem. This follows since
if we can evaluate p, then that immediately gives us an answer to the x recognition
problem. Thus when we loosely refer to a (evaluation) problem as being NP com-
plete, we mean that the associated decision problem is NP complete, and hence the
evaluation problem is NP hard (i. e., at least as hard as an NP complete problem).

The following theorem follows almost immediately from recent results in [64].

Theorem 3.2 (NP Completeness of Real y) The real u recognition problem, for
M € R"™"™ and Xk = {A = diag(6],...,8%) : 6T € R}, is NP complete.

The main ideas behind this result are as follows. Rohn and Poljak showed in [64]
that the interval matrix problem, for a real matrix and unit intervals, is equivalent to
the “max-cut” problem, which is known to be NP complete. A simple rearrangement

converts that interval matrix problem into the above real x problem, as shown below.
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Suppose we have an interval matrix problem, i. e., we have a matrix M € R"*", and

we have an element by element uncertainty structure:
Xrat ={A€eR™": |Ay| <1lfori=1,...,nand j =1,...,n}.

Then the interval matrix problem asks: “Does there exist A € X runt such that M+ A
is singular?” This problem can be transformed into the standard u framework by

simply choosing L € annz, R e anx”, and Ay € R™*7” such that
A =LAR

where the new uncertainty structure, Ay, is diagonal and the elements of A are strung
out along the diagonal of A;. This is a standard transformation (see [39] for more
details), and L, R are known constant matrices, independent of A. Thus we have

A4 € Xx where my = n?,m, = 0,m¢ =0 and
K=(1,...,1).

Now if M is singular then the decision problem is trivially answered as a “YES,” and

if not then we have:

det (M +A) = det (M + LAgR)
= det (M(I+ M™1LA4R))
= det (M)det (I +(RM™1L)Ay)

so that

det (M +A)=0 «— det(I+(RM™IL)Ay) =0
The question “Does there exist Ay such that I + (RM~1L)A, is singular?” is a
real y recognition problem. Thus we have that the given interval matrix problem
polynomially reduces to a real x problem, and so it follows that this real u problem

is NP complete as well.

While these results do not apply to the complex only case, we have the following

new result from [16].
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Theorem 3.3 (NP Hardness of Mixed p [168]) The general mized p recognition
problem, for M € C™*™ and any compatible block structure K, is NP hard.

Note that since the special case in theorem 3.2 and the general case in theorem 3.3
are both NP hard, it follows that any problem “between” these two problems is also
NP hard (e. g., the general real y problem for M € C"*").

The results in [16] are based on the fact that the indefinite (constrained) quadratic

programming problem given by maximizing over x the expression

* * ‘
e |z* Az + p*z + | (3.10)

for A € R™", 2,p,b;,b, € R", and ¢ € R can be recast as a mixed u problem.
This rearrangement uses simple block diagram LFT manipulations, and the main
loop theorem (see section 2.2). It can be shown easily from known results that the
indefinite quadratic programming problem in (3.10) is NP hard, and it follows that
the mixed g problem is NP hard as well.

One might wonder if these computational complexity results are due to the fact
that we allow pure real u problems as a special case of mixed p problems. Recall that
the discontinuity of mixed p was no longer a possibility if we restricted our attention
to a certain class of non-trivial mixed y problems (which are motivated by engineering
considerations). Unfortunately this is not the case for the computational complexity

results.

Theorem 3.4 (NP Hardness of Non Trivial Mixed u [16]) The mized y recog-

nition problem, for M € C"*"™ and a compatible block structure K as in theorem 3.1,

ts NP hard.

This result means that we must deal with the issue of NP hard computation, even
for non-trivial mixed p problems. Note also that combining this result with theorem
3.1, it follows that the mixed p recognition problem is still NP hard when we restrict

our attention to the class of continuous mixed x problems [16].
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It is still a fundamental open question in the theory of computational complexity to
determine the exact consequences of a problem being NP hard, and we refer the reader
to [31] for an in depth treatment of the subject. However, it is generally accepted
that a problem being NP hard means that it cannot be computed in polynomial time
in the worst case. It is important to note that being NP hard is a property of the
problem itself, not any particular algorithm. The fact that the mixed p problem
is NP hard strongly suggests that given any algorithm to compute y, there will be
problems for which the algorithfn cannot find the answer in polynomial time. This
means that for all practical purposes even moderately large examples of such problems
are computationally intractable.

For the reader not familiar with these concepts, we offer the following illustration.
Consider the example in table 3.1. There we have tabulated two different growth
rates versus problem size. For each growth rate we have assumed that it represents
two different algorithms, one which can solve a size 10 problem in 10 seconds, and
one which can solve a size 10 problem in 0.01 seconds. The first growth rate is n3
(where n is the problem size). This is a polynomial time growth rate, and is typical of
algorithms for eigenvalues, singular values etc. The second growth rate is 2*. This is
an exponential (non-polynomial) time growth rate, and is typical of algorithms which
require one to check all the edges or vertices of some polytope.

It is readily seen that given an algorithm with a polynomial time growth rate we
can apply the algorithm to larger and larger problems with a reasonable increase in
the computational requirements. In contrast, for the exponential time growth rate
the increase in computational requirements is quite dramatic, and for even moderate
sizes the problem rapidly becomes intractable. It is important to note that even if the
exponential time algorithm is much faster on small problems it still rapidly becomes
impractical as the problem size increases. The overriding implication of all this is
that if we wish to be able to handle fairly large problems, we must have polynomial

time algorithms, regardless of the speed on small problems. The fact that the mixed
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Growth Problem Size (n)
Rate 10 20 30 40 30
0.01 0.08 0.27 0.64 1.25

seconds | seconds | seconds | seconds seconds

n3 10 1.33 4.50 10.67 20.83

seconds | minutes | minutes | minutes | minutes

0.01 10.24 291 124.3 348.7

seconds | seconds | hours days years
2" 10 2.84 1214 340.5 | 3.49 x 105
seconds | hours days years years

Table 3.1: Comparison of polynomial and exponential time growth rates

¢ problem is NP hard means that we cannot expect to find such algorithms if we
attempt to solve the general problem exactly for all cases.

These results strongly suggest that it is futile to pursue exact methods for com-
puting u in the purely real or mixed case for even moderate (less than 100) numbers
of real perturbations. One approach to overcoming this difficulty is to consider special
cases of the general problem, which may be easier to solve. The difficulty with this
approach is that one would like the resulting algorithm to be widely applicable to
a large number of engineering problems, and it may be that the special cases that
are easily solvable are too restrictive. For this reason we have concentrated on the
general problem, rather than adopt this approach. Nevertheless, since special cases
have been the focus of so much research, we will devote some time to considering
those special cases for which computation of u is relatively easy. In the remainder of

this section, we briefly discuss some of the general issues associated with computation
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of p and special cases. Some of these special cases will be treated in more detail in

chapters 5 and 8.

3.3.1 Problems with Special Structure

In light of the NP completeness results given earlier, it is natural to ask if there are
special cases of the mixed yu problem that are relatively easy to compute. Essentially
all such cases can be shown to involve problems where it can be verified a priori that u
is equal to its upper bound, and can therefore be computed as a convex optimization
problem (see section 4.6 where the upper bound is presented in detail). Unfortunately,
as we will see, these special cases are relevant to very few problems of engineering
interest.

Although it is somewhat artificial, it is useful to separately consider the nominal
system and the uncertainty structure (respectively P and A in figure 3.2), as one can
get easily computable special cases from restrictions on each one. In the case of the
nominal system, P, computation is easier when it is highly structured, whereas less
structure on the uncertainty, A, makes computation easier. Of course, problems mo-
tivated by real engineering applications typically have general, unstructured nominal
systems combined with highly structured uncertainty, exactly the opposite of what is
ideal for computation.

For simplicity, consider the standard problem of robust stability for the system in
figure 3.2 where A is assumed to be norm bounded by 1. The least structured A would
be a single block which would be allowed to be an arbitrary nonlinear, time-varying
operator. In that case the small gain condition [84] is necessary and sufficient, and
the test is simply || P||o, < 1. This is still true when A is restricted to be causal, and
further restricted to either linear time-varying (LTV) or linear time-invariant (LTT).

Additional structure on A leads to u tests of varying complexity, but some special
cases exist when p is equal to its upper bound. If A is block diagonal with any number

of LTV perturbations then recent results, obtained independently by Shamma [69]
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>

Figure 3.2: Standard robust stability problem

and Megretskii [46], show that the exact test for this case is equivalent to an upper
bound for a complex u problem. Also, if A consists of 3 or fewer LTI full blocks, then
p is equal to its upper bound. In general, pu is not equal to its upper bound for more
complicated uncertainty structures, unless additional structure is imposed on the P.

The role of structure on P will be considered briefly in the next subsection.

3.3.2 Restrictions on P and “Kharitonov-Type” Results

A popular research program over the last few years has focused on extending
Kharitonov’s celebrated result [37] on interval polynomials, one whose coefficients
lie in intervals, to more general uncertainty structures. Kharitonov showed that one
need only check 4 polynomials to determine stability of the entire family of interval
polynomials. Several additional results have since been proven for other special cases,
such as polynomials whose coefficients are affine in some real parameters (see [11] for
example), and the solutions typically involve checking the edges or vertices of some
polytope in the parameter space. It can be shown that restricting the allowed pertur-
bation dependence to be affine (or further restricting to interval polynomials) leads

to a real y problem on a transfer matrix which is rank one.
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The rank one problem is studied in detail in in chapter 8, and it will be seen that
for the rank one case we can guarantee a-priori that u equals its upper bound, so
that the u problem is computationally tractable. In fact we will see that for this case
one can even develop exact analytic expressions for u. Note however that this “rank
one” assumption is very restrictive. Typically robustness problems motivated by real

physical systems do not satisfy this assumption.

3.3.3 Implications for Computation Schemes

Recall that the NP completeness results strongly suggest that exact methods for
computing x in the purely real or mixed case will be computationally intractable (in
the worst case) for even moderate (less than 100) numbers of real perturbations. We
have seen that we can indeed find special cases of the u problem that beat the NP
hardness of the general problem, and are computationally tractable. Unfortunately
the restrictions we have to put on the problem to achieve this are quite severe, and
so the engineering applicability of these special cases is rather limited.

Since the general mixed y problem is NP hard, we will not attempt to solve it ex-
actly, but rather obtain good bounds (with reasonable computational requirements).
Furthermore, recent results [20] suggest that even approximate methods are also NP
hard, so we will not expect good worst case behavior from our algorithms, but rather
aim for good typical behavior.

In short we will aim to develop practical algorithms for medium size problems.
Here medium size means less than 100 real parameters, and “practical” means avoid-
ing exponential (nonpolynomial) growth in computation with the number of param-
eters for the problems which arise in engineering applications. Practical algorithms
for other NP complete problems exist and typically involve approximation, heuristics,
Branch and Bound, or local search. The results we will present in chapters 4-7 are
aimed at developing an intelligent combination of all these techniques, and hence a

practical algorithm for the mixed p problem.
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Chapter 4

Upper and Lower Bounds

In the previous chapter we found that, in general, it is difficult to compute x exactly,
so we will focus our effort on the development and computation of upper and lower
bounds. Such bounds are useful in their own right however, since an upper bound
gives a (possibly conservative) limit on the size of allowable perturbations, and a
lower bound yields a “problem perturbation,” together with an indication of the
conservatism that may be present in the upper bound. Important issues now become
the efficient computation of the bounds, the degree to which they approximate y, and
techniques for refining the bounds for a better approximation. In this chapter we will
concentrate on the first two of these issues, and the third one will be considered in
chapter 7.

For the purely complex case a tractable upper bound was suggested in [23] involv-
ing a singular value minimization (3.7). Computation schemes for lower bounds have
been developed involving a smooth optimization problem, due to Fan and Tits [28],
and a power algorithm, due to Packard et al. [59]. Whilst the purely complex case
is by no means completely solved, these methods are now routinely applied to large
engineering problems.

The mixed case however is a fundamentally more difficult problem. An upper

bound was presented by Fan et al. [29] which involves minimizing the eigenvalues of a
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Hermitian matrix. This is the upper bound we will use here, and it will be presented
in section 4.6. The development of a practical scheme to compute this bound will be
deferred to chapter 6.

For the most part this chapter is concerned with the problem of computing a
lower bound for y in the mixed case. It is shown in section 4.1 that mixed p can
be obtained as the result of a (nonconvex) real eigenvalue maximization. Sections
4.2 through 4.5 present several important theoretical characterizations of the mixed
1 problem, including the generalization of the y decomposition to the mixed case in
section 4.4. This leads to the development of a power algorithm to compute a lower
bound for the mixed u problem, which is presented in section 4.5. The algorithm not
only provides a lower bound for p, but has the property that y is (almost) always
an equilibrium point of the algorithm. This power algorithm is an extension to the
mixed case of Packard’s algorithm [59], which in turn is an extension of standard

power iterations for eigenvalues and singular values.

4.1 Lower Bound as a Maximization

The lower bound (3.6) for the mixed case is a real eigenvalue maximization problem,
namely

max M) < M).

g p(@M) < (M)
In the purely complex case (m, = 0) we can replace pg by p and it was shown by
Doyle [23] that in fact this lower bound is equal to p. This reduces the complexity of

the problem in (3.9), namely
Jnax pR(AM) = (M)

since, for complex perturbations, maximization over Qx amounts to maximization
over the boundary of the set BXx (i. e., unitary perturbations). This leads to efficient
computation schemes for the complex u lower bound. In this section we show that

the lower bound for the mixed case (3.6) also holds with equality, and hence it is
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still sufficient to consider the complex uncertainties on their boundary. We note,
however, that the definition of Qy requires us to search over the full range of the real

perturbations. The following lemma is taken from [23].

Lemma 4.1 ([23]) Let p: C* — C be a (multivariable) polynomial and define 8 =
min{|z|eo : p(2) = 0}. Then there exists a z € CF such that p(z) = 0 and for every i,
|2i| = B

This is now used to prove the main result of this section.

Theorem 4.1 For any matrizc M € C™ ™, and any compatible block structure K

Juax pr(QM) = pc(M). (4.1)
Proof: Trivial from (3.6) if px(M) = 0. So assume ux (M) = 8 > 0, and this value is
achieved for some perturbation A, i.e., det (/—AM) = 0 and 7(A) < % Now fiz the
real perturbations at these “optimal” values (67 = 3[,@ =1,...,m,; with |(§{| < 713-)
Then allow the complex part of A to vary and consider minimizing o(A) subject to
det (I — AM) = 0. Performing an SVD on A we obtain det (I — UXV M) = 0 where

U and V are (block diagonal) unitary matrices and
DM CH T PP N S 1 NN A | S (SN ¢

with k = 3 .41 ki This is a polynomial in 6%,...,65, ,7{,...,7f and so ap-
plying lemma 4.1 we have a solution with |[§§| = ... = lgfncl =¥ =...= 4| = %
and B > B. Now suppose B > [, say B = [+ € for some € > 0, then since the roots of
a polynomial are continuous functions of the coefficients we can find a § > 0 so that
2 . 2 € .
|6f =67 < é6,i=1,...,m, — |6 =65 < 51 =1,...,me

N € .
e =351 < Si=1, k.

Then move each |67| down by g and we can find a A solving det (I — AM) = 0 with
7(A) < % contradicting the definition of g. Thus B = f and it is now easy to check
that for this solution A = Q € Q) with pR(Q]W) = [ = pux(M). O
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4.2 Facts from Matrix Theory and Linear
Algebra

This section presents some basic facts from matrix (perturbation) theory and linear
algebra we will need in section 4.3. The material on eigenvalue perturbation theory

in section 4.2.1 is fairly standard and is presented without proof (see [36] for further

details).

4.2.1 Eigenvalue Perturbation Theory

Suppose we have a complex matrix M(t) € C"*" depending analytically on the real
parameter . Then denote My := M(0) and suppose that this matrix has a distinct
(i.e., algebraic multiplicity one) eigenvalue Ao, with right and left eigenvectors zg

and yo respectively, i. e., we have (after normalizing the eigenvectors appropriately)

yoro = 1
Mozog = Xozo
yoMo = Xoyg.

Then for ¢ in a sufficiently small neighborhood of the origin M (%) has an eigenvalue
A(t), with right and left eigenvectors z(t) and y(t) respectively, all of which depend

analytically on ¢, i.e., we have
y()'=() = 1
M®@)z(t) = At)z(t)

yr (M) = AB)y*()

with A(0) = Ao, z(0) = @0, and y(0) = yo. Thus we can differentiate this eigenvalue

with respect to ¢ and this yields

A(0) = y(0)* M(0)2(0) = y§ M (0)eo. (4.2)
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4.2.2 Linear Algebra Lemmas

The following two linear algebra lemmas are due to Packard [59].

Lemma 4.2 ([59]) Lety € C" and € C" be non-zero vectors. Then there exists
ad e R,d >0 such that y = dz if and only if Re (y*Gz) < 0 for every G € C"*"
satisfying G + G* < 0.

Lemma 4.3 ([59]) Lety € C" and z € C™ be non-zero vectors. Then there exists a
Hermitian, positive definite D € C™*™ such that y = Dz if and only if y*=z € R and

y*z > 0.

Now define the closed half-space in the complex plane as, for some scalar 1 € R (see

figure 4.1 for illustration)
HY = {z: Re(e/¥2) < 0}. (4.3)
Then we have the following elementary linear algebra lemmas.

Lemma 4.4 Given any set of complezx scalars Z = {z; : 1 =1,...,m} and any real

scalar v, then Z C HY if and only if "™ 1 cijz; € HY for all real non-negative scalars

ai,t=1,...,m.

Proof: («—) For each z; choose a, =1 and o; = 0 for ¢ # k.

(—) For any set of real non-negative scalars ¢;,¢ =1,...,m, we have
. m
Re (e'”/’ E aizi>
=1
m .
= ZaiRe (ej¢zi) <0. O

1=1
Lemma 4.5 Given any set of complex scalars Z = {z; : 1 = 1,...,m} define \ :=
S oz where a0 =1,...,m are real non-negative scalars. Then X is not real and

T

positive for any choice of the above ofs if and only if Z C HY for some i € (=5 Z).
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Im

HY

Figure 4.1: Closed half-plane H?

Proof: («—) By lemma 4.4 Z C HY implies A € H¥ and hence Re(eJ¥)) < 0.
Suppose X is real and positive. Then this implies Re (eJ’/’) < 0 which means ¢ ¢
(—% %) which is a contradiction.

(—) Assume ) is never real and positive. Now suppose Z ¢ HY for any 1 €

(=% %). First choose 1 = 0. Then we must have at least one z € Z with Re(z) > 0.
Now we choose 2; as the element with Re(z) > 0 having minimum |Arg (z)| (which
must be non-zero). Now choose 1 = Arg (%), and define i) = % — . Then since

Z1 € H'/;, we must have a (non-zero) 22 € Z with 29 & . Suppose
Z1 = ri(cos® + jsin ), 2y = ro(cos ¢ + jsin ¢).

Then by our choice of 2; and 2 straightforward trigonometry yields the following
facts: |sin ¢| > |sine)|, Sgn (sin ¢) = —Sgn (sin ), | cos ¢| < |cos |, and if | cos ¢| =

| cost| then cos@d = cost. Now choose &1 = Then we

S TN N T
mTemy] 20d &2 = g
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have
S A aa Cos Ccos
A=0d4u21 + boie = .¢ .¢.
|sing| * |sin¢)|
Thus \ is real and positive which is a contradiction. O

4.3 Characterization of a Maximum Point

We are interested in computing px(M), which by (3.9) and (4.1) is given by
(M) = max pr(AM) = max pr(QM).

For reasons of tractability we choose to consider the problem maxgeg, pr(QM).
However since this is a nonconvex problem we will in general only be able to find
local maxima, and there exist examples with strictly local maxima. Thus we will
obtain a lower bound for pxc(M) (which is the global maximum). We would like this
lower bound to be “tight” (i.e., close to u) and so we wish to rule out maxima of
pr(QM) which we know are only local. Thus we only consider @) € Qx which are
local maxima of pr(QM) with respect not only to ) € Q but also to @ € BXy. In
this section we will develop a characterization of such local maxima.

Note that for any Q € Q) and any A € BXy, then QA € BXx and AQ € BXk.
Now suppose some matrix Q € Qx achieves a local maximum of pr(QM) over @) €
BXx. Then it is easy to show that the matrix M = @M has a local maximum
of p R(Q]\%) over Q) € BXx at Q = I. However since the real elements of @ are not
restricted to be on their boundary we can say more than this. For any matrix ) € Qx

(see (2.6)) define the index sets
J(@Q)={t<m,: 6| =1} (4.4)
J(@Q)={i <m,:|6]| <1} (4.5)
and define the allowable perturbation set

BA(T,J)={A€Xx:|8]|<1,ie,|6l|<1+eicd,

169) < 1,i=1,...,ma(AY) <1,i=1,...,m¢c}. (4.6)
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We see that, for sufficiently small € > 0, for any @ € Qx and any A € BAL(T(Q), 7(Q))
then QA € BXx and AQ € BXx. The point of all this is that if some matrix Q € Qy
achieves a local maximum of pr(QM) over @ € BX¢ then the matrix M := QM has
a local maximum of pr(QM) over Q € BA(T(Q), J(Q)) (for some € > 0) at Q = T
(and in fact the converse is true provided we assume that for every i, 67 # 0).

The notation here is unfortunately rather cumbersome and tends to obscure what
is really a rather simple concept. All that the above says is that if we are at a
maximum point with some of the real perturbations at interior points (we do not
need to consider this possibility for the complex perturbations) then we stay inside
the allowable set, and cannot increase the function, if we move these up or down (in
magnitude).

We introduce one further piece of notation. Suppose M € C"*™ has an eigenvalue
A with right and left eigenvectors # and y respectively. Then partition = and y

compatibly with the block structure as

_ - - -
Ty Yry
:‘CTmr mir
Ty Yeq
T = , Yy = (4.7)
mcmc ycmc
TCy Yo,
i :Cc’mc i L yCmc i

where @,;,yp; € CF, zp, ye, € Chmrti zc;, Yo, € CFmr+me+i These will be referred to
as the “block components” of x and y, and we define the “non-degeneracy” assumption

to be that for every i (in the appropriate set), |y, zr| # 0, |y%ze;| # 0, lyc;||zc;| # 0.

Theorem 4.2 Suppose the matric M € C™*™ has a distinct real eigenvalue g > 0

with right and left eigenvectors x and y respectively, satisfying the non-degeneracy
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assumption. Further suppose that pr(M) = Xo. Then if the function pp(QM) attains
a local mazimum over the set Q € BA(JT,J) (for some e > 0) at Q = I then there
exists a matriz D € f?}c, with 0; = £7 for every ¢ € J, and a real scalar Ve (=% %),
such that y = €% Dz.

Proof: First we parametrize the perturbation set. Consider G € X with
G = block diag (97 Tk, - - > Gy Tk » 95 kmp 11+ - > Ine Ty bme > G- - Go)  (4.8)
and the added restrictions
9 <0 , ieJ
Re(g) <0 , i=1,...,m, (4.9)
G +GS* <0 , i=1,...,me.
Now it can be shown that for some § > 0 then the set of all matrices E(t) := (I +
Gt)(I — Gt)~! for G as above and t such that t7(G) € [0 §) is an open neighborhood
of BA(J,J) about E(0) = I. So now define the matrix R(t) := E(t)M. Then it
is clear that pp(QM) has attained a local maximum over the set Q € BAf(J,j) at
@ = I if and only if pr(R(t)) has attained a local maximum over t > 0 at t = 0 for

arbitrary G as above.
Since R(0) = M has a distinct real eigenvalue Ag we have (for some non-empty
interval about the origin) an analytic function A(Z), with A(0) = Ao, and A(¢) an

eigenvalue of R(t). Thus we can differentiate to obtain
AM0) = y*R(0)z = 2y*GMz = 2)0y*Ga. (4.10)
In block notation this becomes

Me mc
A(0) = 2X (Z B Yriry + D gy T + Y&, Gfﬂfc,-) . (4.11)

=1

Define the set of points
Z={z:i=1,...,m}={gjyrar :i=1,...,m} U

{giveee; ii=1,...,m} U {ya.GZ-C:zzci e=1,...,mc} (4.12)
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with the obvious identification for the elements z;. Now since we are at a maximum
point we have that A(0) is never real and positive. Thus, noting that we may in-
dependently scale g, g, Gic by arbitrary non-negative scalars and still satisfy (4.9),
then applying lemma 4.5 to (4.11) and (4.12) gives that this is true if and only if
Z C HY for some 3 € (—Z Z) for each G € X satisfying (4.9). Furthermore since
any summation of G’s satisfying (4.9) also satisfies (4.9), lemma 4.5 gives that this
is true if and only if there is one H¥ which works for every G, i.e., there exists
€ (—Z Z) such that Z C HY for all G € Xx satisfying (4.9). From the definition
of HY in (4.3), and G in (4.8),(4.9) this is equivalent to

Re (ej¢gry:ixri) <0 , forall g e Rwithg; <0, i=1,...,m,

Re (ej¢g{y:iwri) <0 , forall gy €R, ieJ (4.13)

?

Re (engfy:iwci) < for all ¢f € C with Re(g{) <0, i=1,...,m,

0
Re (ej¢yginmci) <0 , forall Gic with Gic + G,'C* <0,:=1,...,m¢

for some ¢ € (=5 %). It is now easy to check that the above conditions may be

equivalently expressed as:

Re(eVyrz,) >0 , i=1,...,m,
Re(Vyra,)=0 , ied (4.14)
ejd’y;.:vci €0o0) , t=1,...,m

Re (e0Vy&,G%c,) <0, forall GY with GY + GF* <0, i=1,...,mc.

Note that in the pure complex case the normalization condition y*z = 1 implies
¥ = 0. Since the scalar e/ terms may simply be absorbed into one of the vectors
we can apply lemmas 4.2 and 4.3 to each block component of 2 and y to obtain the

equivalent conditions

I3

Yry = ejwejeiDiwn , 0< D= D:: 0; € [_

l, i=1,...,m,

,ied

ol

Yry = 6j¢6j0iDi$ri , 0<D; = D:» 0; =

Do | A0
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ycz:6j¢sz0z s 0<D1=D:(, 1=1,...,m

yo, = &¥dizc, , 0<d;i €R, i=1,...,mc. (4.15)

Stacking these relations in matrix form yields y = e¥ Dz with D of the required form.

O

Remarks: We note from the proof that we immediately have a partial converse
to theorem 4.2, namely that if y = /¥ Dz under the above assumptions, then no
directional derivative (in the above sense) of the eigenvalue achieving pr(GQM) over
the set @ € BAe(j, j) is real and positive at Q = I.

This alignment condition is particularly clear when interpreted from a geometric
viewpoint. Consider the example illustrated in figure 4.2, which shows the block
components, y,. zr; and y; zc;, for an example with three real blocks and any number
of complex blocks. The block component y; zr; is associated with an internal real
parameter. If we think of these components as vectors in the complex plane, then
it is clear from (4.11) that with this alignment condition we can only generate A in
the half-space HY for any allowable G. Thus we cannot make X real and positive.
Furthermore if we do not satisfy the alignment condition then one can easily choose
@ so that the summation (4.11) makes A real and positive.

Note that we have made two technical assumptions in the above theorem, namely
that the maximum eigenvalue was distinct, and that the block components of the
eigenvectors satisfy the non-degeneracy assumption. Both of these assumptions will
hold generically, and furthermore we believe that theorem 4.2 and all the results
which follow can be extended to the case where both of these assumptions are re-
moved. However this extension appears to require substantial additional technical
complication. The primary motivation for the theory developed here is to lead to-
wards a power algorithm to compute a lower bound for the mixed p problem, and
so we will not pursue these technicalities here (note that the power iteration from

section 4.5 is applicable even for the cases where these assumptions do not hold).
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Figure 4.2: Alignment condition on eigenvector block components

4.4 A Decomposition at u

Theorem 4.2 gives us a characterization of a maximum point of pr(QM) in terms
of an alignment of the right and left eigenvectors of QM. This leads directly to the

following decomposition.

Theorem 4.3 Suppose Q € Qi achieves a local mazimum of pr(QM) over @ €
BXx, and that the eigenvalue achieving pr(QM), denoted 8, is distinct and positive.
Then f the right and left eigenvectors of QM, denoted x and y respectively, satisfy
the non-degeneracy assumption, there exists a matriz D € Dy with D? € Dy and

0; = +% fori € J(Q) such that
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QDMD™'(Dz) = pBDz
(z*D*)QD*M(D*)™! = pz*D* (4.16)

with B < pc(M). Furthermore if the above mazimum is global then = px(M).

Proof: Since Q € Qk is a local maximum of pr(QM) over ) € BX), the matrix
M := QM achieves a local maximum of pr(QM) over Q € BA(T(Q),J(Q)) (for
some € > 0) at Q = I. Now apply theorem 4.2 to conclude y = YDz with D € Dy
and 0; = +3 fori € J(Q). Now define D as the unique matrix such that D € Dy
and D? = D. Substitution of this into the right and left eigenvalue equations of QM
and simple manipulations (note that for any @) € Qx and any D € f)}c, Q and D
commute) yields the results in (4.16). Finally note that from theorem 4.1 we have

that 8 < ux(M), and if the above maximum is global then 8 = px(M). O

Remarks: Employing simple manipulations of (4.16) yields a partial converse of this
theorem. If we have a decomposition as in (4.16) with 8 real and positive and z non-
zero, then we have that f is an eigenvalue of QM with right and left eigenvectors z
and y respectively (thus £ is a lower bound for uxc(M)) where y = rel¥ D2z with D as
above, r a positive real scalar (which we could thus absorb into D), and % € [-Z T].
Thus defining D = rD? we have y = &3 Dz with D as in theorem 4.2 and ¥ € -3 3.
If we add the further technical assumption that we are not in the special case of
0; = £ foralli=1,...,m; and m, = 0,m¢ = 0 then we have ¢ € (=% J).

It is well known that for the purely complex case we have a decomposition at p
(see Packard et al. [59] and related work by Daniel et al. [18]) and (4.16) extends this

result to the mixed case (m, # 0).

Thus we (almost) always have a decomposition at u of the form (4.16), and any
such decomposition gives us a lower bound for y. Now we reformulate this condition

into a set of vector equations.
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Lemma 4.6 Suppose we have matrices QQ € Qi with 67 # 0 fori =1,...,m; and
D € Dx with D* € Di and §; = +7 fori € J(Q). Then we have a non-zero vector

%, and a real positive scalar [ such that
QDMD™Y(Dz) = BDz
(*DHQD*M(D*)™' = B&*D* (4.17)
if and only if there exists a matriz D € Dic with 0; = +3 fori € j(Q) and non-zero
vectors b, a, z,w such that
Mb=pfa M*'z=pw
b=Qa b=D"lw
z2=Q*QDa z=Q%w. (4.18)

Proof: (—) Define z = Dz and b,a,z,w as

Finally define D = D? and the result follows.

(«—) Defining D as the unique matrix D € Dy such that D? = D, and 2 = b the
result follows directly. O |

Remarks: We note that the assumption 67 # 0 for ¢ = 1,...,m, was included to
ensure that ) was non-singular. This assumption was used in showing the necessity

of (4.18) but was not required to show sufficiency of (4.18).

4.5 A Power Algorithm for the Lower Bound

In light of lemma 4.6 the problem of computing a lower bound for px (M) is reduced
to one of finding a solution to the set of equations in (4.18) which gives us a decom-

position as in (4.16). We would like to develop an algorithm for computing such a
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solution, and in order to do this we first note that if we partition b, a, z, w compatibly

with the block structure as in (4.7) then the set of constraint equations

b= Qa b=D"1lw
z=Q*QDa z=Q%w

can be broken down into a series of m similar independent constraint equations on
the block components (since ) and D are block diagonal). These equations are of ‘
three types corresponding to a repeated réal scalar block, a repeated complex scalar
block, or a full complex block. We now consider a generic constraint of each type.

The following two lemmas are due to Packard [59].

Lemma 4.7 (Repeated Complex Scalar Block [59]) Let b, a,z,w € C* be non-
zero vectors with a*w # 0. Then there exists a complex scalar ¢ with |¢| =1, and a

complex matriz D € C*** with 0 < D = D* such that

b=qa b= D"lw
z = q*qDa z=q*w
if and only if
* *
-2 b= " (4.19)

Z=—w = ——oua.
|w*al |a*w]

Lemma 4.8 (Full Complex Block [59]) Let b,a,z,w € C* be non-zero vectors.

Then there exists a complex matriz Q € C**F with Q*Q = I, and a real positive

scalar d such that
b= Qa b=d 1w

z = Q*Qda z = Q™w
if and only if
z=-—a b= -—uw. (4.20)

Now we consider a repeated real scalar block, bearing in mind that we have additional

constraints if the real perturbation is not on the boundary (i.e., for i € J(Q)).
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Lemma 4.9 (Repeated Real Scalar Block) Let b,a,z,w € CF be non-zero vec-
tors with a*w # 0. Then we have a real scalar q with |q| < 1, a real scalar § € [-F 7],

and a complex matriz D € C*** with 0 < D = D* such that

b=qa b=e D1y

*

z = ¢*qe’?’ Da z=q*w

with § = £ for |q| < 1 if and only if

z = qu b=qa (4.21)
with
Re(a*w) >0 for ¢g=1
Re(a*w) <0 for g= -1 (4.22)
Re(a*w) =0 for |q| < 1.
Proof: (—) Immediately we have 2 = qw and b = qa. Thus a*w = %b*w =

%ejgw* (D*)7lw. Now ¢ = 1 implies Arg (a*w) = 6 and hence Re (a*w) > 0. Similarly
g = —1 implies Arg(a*w) = 0 + 7 and hence Re (a*w) < 0. Finally |¢| < 1 implies
Arg (a*w) = 0 or 0 + 7 with = 7. Thus Arg(a*w) = £7 and so Re (a*w) = 0.

(+—) Immediately we have b = ¢ga and 2z = ¢*w, and so b*w = ga*w. Denoting
0 = Arg (b*w) we see that for ¢ = 1 Re(a*w) > 0 which implies Re (b*w) > 0 and
so § € [-% Z]. Similarly for ¢ = —1 Re(a*w) < 0 which implies Re (6*w) > 0 and
so § € [T Z]. Finally for |¢] < 1 Re(a*w) = 0 which implies Re (b*w) = 0 and so
0 = £Z. Now b*(e™%w) is real and positive and so applying lemma 4.3 we have a

matrix D with 0 < D = D* such that b = e Dw. Define D = D~! and we have
b=e 3D 1w and z = ¢*w = ¢*e? Db = ¢*qei? Da. O

These lemmas now allow us (with a few technical assumptions) to eliminate the

matrices @ and D from (4.18). In order to avoid the notation becoming excessive we
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consider a simple block structure with m, = m; = m¢ =1 for the remainder of this
section. We stress that this is purely for notational convenience, and that the general
formulae for an arbitrary block structure, as defined in section 2.1, are simply obtained
by duplicating the appropriate formulae for each block. So given K = (k1,ka, k3) the

appropriate scaling sets become

Qqup = { block diag (¢"Ix,, ¢°Ir,, QF) : ¢" € [-11],¢*¢° = 1,Q9*Q° = I;} (4.23)
v
3)
0 < D; = Df e Ck*ki 0 < deR). (4.24)

Doy = {block diag(engl,Dz,dIk3):0€[—%

We partition b, a, z, w compatibly with this block structure as

b1 ai 21 wi
b= b |, a=1ay |, 2=z | w=| wy (4.25)
b3 as 23 w3

where b;, ai, z;, w; € CFi. Then we obtain our final form of (4.18) as in the following
theorem (which will form the basis of a power iteration to compute a lower bound for
px(M)).
Theorem 4.4 Suppose we have vectors b,a,z,w € C" partitioned as in (4.25) with
bi,ai, zi, w; # 0 and ajwi,a3ws # 0. Then there exist matrices Q € Qgyup and D €
Dsup, and a positive real scalar 8 such that
Mb = fa M*z = pw
b= Qa b=D"1w
z=0Q*QDa z=Q%w
with 0 € [-5 5] and 0 = £7% for |¢"| < 1 if and only if

Mb = Ba
whas w3

z1 = qui Zy = i wa z3 = l—-—!-ag (4.26)
|whas| |as]

M*z = Bw
aswg as

b1 = qay by = ——ay by = —Llws

|agw2] |03
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for some real scalar q € [—1 1] with

Re(ajwi) >0 for ¢=1
Re(ajw1) <0 for ¢g=-1 (4.27)

Re(ajwi) =0 for |q¢| <1

Proof: Apply lemmas 4.7, 4.8 and 4.9 to the appropriate block components. O

Remarks: Since the relationships (4.26) and (4.27) are unaffected if we multiply b
and a by an arbitrary positive real scalar «, and z and w by an arbitrary positive
real scalar =y, then in searching for solutions to these equations we may impose the

additional restriction |a| = |w| = 1.

Any solution to (4.26) and (4.27) immediately gives us a decomposition as in
(4.16) and hence f is a lower bound for ux(M). We also note that, under certain
technical assumptions (as given), there always exists a solution to these equations
with 8 = px(M). Since we would like to find the largest 8 we can that solves (4.26)
and (4.27), we now propose finding a solution to this system of equations via the

following power iteration:

ﬂk+1ak+1 = Mb;
*
Py = Gh1w1 toppy = kL SR
k41 T + k E4+1 T * k k41 T k41
Wo, A2k 41 |a’3k+1 |
A *
Brr1wrtr = M zpp (4.28)
*
ab w
I 92 Y2 . !a3k+1|
b1k+1 = qk+101344 b2k+1 S — ] b3k+1 = ’ | 3k+1
A2 41 W2k 41 W3 41
where G471 and {r+1 evolve as
|01,
~ A k *
a1 = Sgn (gx) +Re(a1k+1w1k)
|a1k+1!
. . af . .
If |Ggq1] =1 Then Grp1 = oot Else Gr41 = Gr41 (4.29)

|Gkl
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. . |61,
Qp41 = Sgn (Qk-l-l) Ial £ l + Re (aik+1w1k+l)
k+1
. . Q41 R .
If |&gya| =1 Then 41 = 3 + Else 41 = Gpy1
|6kt

and Bri1, Brt1 are chosen positive real so that |agy1| = |wpe1| = 1.

It is now straightforward to verify that if the algorithm converges to some equilib-
rium point then we satisfly the appropriate constraints on each block component and
hence by lemmas 4.7, 4.8, and 4.9 we have non-zero vectors b, a, z,w € C", matrices

Q € Quup, D € Dgyp, and positive real scalars B, B such that

Mb = Ba M*z = Bw
b=Qa  b=D"'w (4.30)

z2=Q"QDa z = Q*w.
Thus if 3 = /3 then we satisfy (4.18) and so have a decomposition as in (4.16), and
hence 3 is a lower bound for ux(M) (associated with a local maximum of pr(QM)).
We note that if # # 3 then we have not found a decomposition as in (4.16). However
from (4.30) we find that QMb = Bb and w*QM = Bw*. Thus we have that both 3
and f3 are real positive eigenvalues of QM, and so by lemma 3.3, max(83, B) still gives

us a lower bound for ux(M).

Note that the equilibrium points of the algorithm are unaffected if we multiply
the terms Re (a}‘k+lw1k), Re (a’{k+1w1k+1) by arbitrary real positive scalars, and hence
we may employ this degree of freedom to select scaling parameters so as to aid con-
vergence. The various issues associated with developing a practical implementation

of the power iteration, and the performance of the resulting algorithm, are discussed

in chapter 6.

4.6 The Upper Bound

Now let us consider an upper bound for p. As we noted earlier, one could, for

the purposes of the upper bound, cover the real perturbations with complex ones
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(and then use the complex p upper bound) since this would cover the admissible

perturbation set Xjx. Thus we obtain the familiar upper bound from complex u

theory
< inf @ -1, .
pc(M) < inf F(DMD™) (431)
In order to facilitate comparison with the mixed y upper bound from [29], note that
we can reformulate this bound via the following equivalences (for M € C™ ™ and

D e ch):

F(DMD™ )< B «— XN(DMD Y (DMD™')) < 52
— D'M*D*MD™' — 5%, <0
— M*D?’M — 5%2D? <.
Since D? € D if and only if D € Dy this leads to the equivalent upper bound
< i i : M* — 32D <0}, .
pre(M) < inf  min {8:M*DM - B°D < 0} (4.32)
Note however that the above approach does not exploit the phase information that
is present in the real perturbations, and hence this bound is frequently poor for mixed
problems. The upper bound presented in [29] does exploit this phase information and
gives a bound which is never worse than the standard upper bound from complex p

theory and is frequently much better. In order to present their result we first define

the function @4 (M, D, G) for matrices M € C*"*™ D € Dy, and G € G as

®o(M,D,G) = N(M*DM + j(GM — M*G) — aD). (4.33)
The following theorem, which gives an upper bound for the mixed p problem is taken
from [29].

Theorem 4.5 (Mixed p Upper Bound [29]) For any matric M € C™™", and

any compatible block structure K suppose ay is the result of the minimization problem

max{a: ®,(M,D,G) > 0} (4.34)

DeDy,Gedy | aeR
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then if ax < 0 we have px(M) =0, otherwise
prc(M) < /o (4.35)

We can reformulate this upper bound via the following lemma.

Lemma 4.10 For any matrices M € C™*" and D € D, G € Gi then
I;lgﬂ%({a : ®o(M,D,G) >0} = raneinr_\%{a : 9o (M, D,G) < 0}. (4.36)

Proof: Follows straight from the definition of ®4(M, D, &) and continuity of eigen-

values. O

Applying this lemma to theorem 4.5 we find that the mixed g upper bound can be

prc(M) < 4/max(0, o) (4.37)

alternately expressed as

where ay is now given by

inf  min{a: M*DM + j(GM — M*G) — oD <0}. (4.38)

Oy =
DeDy,GeGx a€ER

This expression for the upper bound can in turn be rewritten as

(M) < f  min {#: M*DM +j(GM —M*G) — F*D <0}. (4.39)

DeD%cI}Geg;c 0<BER

Comparing (4.39) and (4.32) it is clear that the mixed p upper bound in (4.39) is
always at least as good as the standard upper bound from complex p theory in (4.32),
since we recover the complex yu upper bound by enforcing the choice G = 0,,. The G
scaling matrix, which is allowed to be non-zero only for the blocks corresponding to
real parameters (see the definition of Gx in section 2.1), exploits the phase information
that we have about the real parameters to obtain a better upper bound.

The derivation of this mixed p upper bound is as follows. Suppose we have a
feasible @ € Q, i. e., @M has a real positive eigenvalue, or pr(QM) > 0. Then we

have a real positive scalar 0 < v € R, and a vector z € C"*™ with = # 0 such that

QMz = ~z.
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Since 7(Q) < 1 it follows that for any feasible z

Vel = QM|
< F(Q)|Mz|?
< |Mz|?

so that for any feasible  and v we have
e*(M*M — 42I1,)z > 0.
Now note that for this z, and any G € Gx we have

2*GMz = %IIZ*M*Q*GMCL'

= l:1:"‘M"‘GQZ\JQ:
= ;/*J\I*Ga:
so that for any G € Gx and any feasible  we have
2 (GM — M*Q)z =0 (4.40)
and so it follows that for such z

e (M*M +j(GM — M*G) —~*I,)z > 0. (4.41)

It is now easy to check, using proof by contradiction, that if we have G € Gx and

0 < B € R such that
(M*M +j(GM — M*G) — #*I,) <0 (4.42)

then v < S for all feasible v, and hence py (M) < f. Now since p is invariant to
similarity transformations with D € Dy (see lemma 3.2), we may apply this argument

to Mp = DM D™ instead of M, to reach the conclusion that if we have

(MHMp +3(GMp — MpG) — f*1,) <0 (4.43)
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then px(M) < . Multiplying on the left and right by D does not affect the definite-

ness of this expression and we obtain
(M*DM +3(GM — M*G) — 82D) <0 (4.44)

where D = D? € Dx and G = DGD € Gx. Since these transformations may
be inverted as D = ﬁ%,G = b_%éb_% then the existence of D € D}C,é € Gk
satisfying (4.44) also implies px(M) < f. Minimizing this expression over § and the
D, G scaling matrices gives us the upper bound in (4.39), which is equivalent to the
expression in theorem 4.5.

The basic principle behind the complex p upper bound (see (4.31) or (4.32)), which
we derived in section 3.1, was to improve the crude @ bound via transformations that
are p-invariant (and exploit the structure of the problem). Note that here we also
employ that technique to introduce the D scaling matrices to the problem. However
a quite different technique is employed to introduce the G scaling matrices. There we

exploit the fact that the G scaling matrices do not alter the expression
a*(M*DM +j(GM — M*G) — §°D)z

for any feasible z, though they can affect the expression for general z € C**™  and

hence they can affect the definiteness of the expression
(M*DM +j(GM — M*G) — D).

In fact one can also derive an expression for this mixed p upper bound in terms of
scaled maximum singular values, and we will do so in chapter 6. With this expres-
sion for the upper bound there is another interesting interpretation of the GG scaling
matrices: we can still think of the mixed y upper bound in terms of covering the
real parameter uncertainty with complex or disk uncertainty, but now the G scales
allow us to use off-axis disks (see figure 4.3). One can also think of this as a scaled
small gain condition (see [84]), and for additional interpretation of the mixed p upper

bound we refer the interested reader to [34].
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Im

Centered Disk Off Axis Disk

Figure 4.3: Covering real parameters with disks

The above minimization (4.39) involves a Linear Matrix Inequality, LMI, where
the matrices D and G enter the problem in a linear fashion. This is very important

since it implies that for fixed oo € R the function
AX(M*DM +j(GM — M*G) — aD) (4.45)

is convex in both D and G (this is easily shown using the Rayleigh Quotient expression
for Hermitian matrices). It is also easy to check (via the Rayleigh Quotient) that
for fixed D € Dg,G € Gi the above expression (4.45) is a strictly monotonically
decreasing function of a. In fact we will see in chapter 5 that the minimization over
a may be simply computed as an eigenvalue problem. Thus at any point (D, G)
we can easily compute the « level attained, and for any «a level we have that the
LMI minimization over D and G is convex. In other words we have a quasi-convex

optimization problem so that all local minima are global, and hence this bound is
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computationally tractable. The practical computation of the mixed px upper (and
lower) bounds will be treated in chapter 6 (see also [83]), and in the next chapter we

consider some of the properties of these bounds.
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Chapter 5

Properties of the Bounds

This chapter studies the relationship between u and its bounds for the mixed case.
Sections 5.1-5.3 are devoted to developing a theoretical framework for examining the
equivalence between u and its upper bound. It is hoped that this framework can then
be used to identify for which block structures and/or classes of matrices the upper
bound is identically equal to x, and hence can be computed exactly (the upper bound
being a convex problem). Some results in this direction are presented, and in section
5.4 we examine several special cases of the general mixed u problem. In particular we
consider the rank one case and its relation to “Kharitonov-type” analysis methods,
using the above framework. This will be treated in more detail in chapter 8. The
extension of the concept of ‘i values’ to the mixed case is presented in section 5.5.
It is shown that yu is the largest of a number of u values, which are associated with
local maxima of the lower bound function and stationary points of eigenvalues of the
upper bound function (the largest such eigenvalue being associated with the upper
bound). This provides a theoretical link between the upper and lower bounds, and

can be used to generate guesses for the optimal value of one from the other.
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5.1 Characterizing the Minimum of the Upper
Bound Function

We will first consider the computation of a descent direction for the upper bound
function in (4.34). This can in principle be used in a steepest descent algorithm to
compute the upper bound. Our main purpose in computing it here, however, is to
examine the conditions for being at a stationary point, and from these to develop some
properties of the upper bound. In particular we will be concerned with characterizing
the conditions under which a given pair of scaling matrices, Dy € Dx,Go € Gk,
represent the optimal scaling matrices for the mixed g upper bound from theorem
4.5. It is convenient here to work with the LMI form of the mixed p upper bound
given in (4.37, 4.38). Note that this can be easily reformulated via the following

lemma.

Lemma 5.1 For any matriz M € C™*" and any D € Dx,G € Gk
Eneiﬂ%{a : (M*DM +j(GM — M*G) — aD) < 0}
is the unique value @ satisfying
MM*DM +j(GM — M*G) —aD) = 0.

Proof: Follows straight from the Rayleigh Quotient and a simple continuity argu-

ment, since D > 0. O

We begin our investigation of this upper bound function with a simple lemma regard-

ing the perturbation of negative semidefinite matrices.

Lemma 5.2 Suppose we have matrices A € C"™" and B € C™™*", with A < 0.
Define S = {z € C" : z*Ax = 0,|z| # 0}. Then we have that A+ tB < 0 for
sufficiently small 0 <t € R if and only if either S =0, or 2*Bzx <0 for allz € S.

Proof: (—) Since we have that for all = # 0

t*(A+tB)x = 2*Az + tz* Bz < 0
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with ¢t > 0, then if for any = # 0 we have 2* Az = 0, for that £ we must also have

z*Bx < 0.

() If S =0 then A <0, and so A+ tB < 0 for sufficiently small £ > 0 by a simple
continuity argument. Suppose instead that S # 0, but z* Bz < 0 for all z € S. Define
S =8N B where B = {z: |z| = 1}. Then & C S is compact and so by continuity
there exists a set V O &, which is open in B, with z*Bz < 0 for all z € V. Thus we

have

z*(A+tB)z = z*Az + tz*Bz < 0

forallz € V, for any t > 0. If B\V = () we are done immediately, so assume B\V # 0.

Now B\V is compact and so both z*Az and z* Bx achieve maxima on B\)V. Suppose

we have
max z¥Axr = —«a
z€B\V
max z*Bz =
z€B\V

with a > 0 since B\V NS = 0. If 8 < 0 then z*(A + tB)z < 0 for all z € B\V for
any t > 0 and we are done, so assume 3 > 0. Then we have

o

7

Thus we have z*(A 4 tB)x < 0 on B\V for sufficiently small ¢ > 0. Combining this

t*(A+tB)z=2"Az+tz"*Bz < —a+13 <0 for i<

with our earlier result we have that for sufficiently small ¢ > 0, 2*(A + ¢tB)z < 0 for
all z € B, and hence A+tB <0 . ]

Note that the proof of this lemma uses simple linear algebra arguments, and
does not require any results about analyticity (or even continuity for that matter)
of eigenvalues. Note also that clearly one can prove an analogous result for positive
semidefinite matrices. This lemma immediately provides us with a characterization of
when we are at the minimum of the upper bound function, or alternately a means of

checking if a given D, G pair represents a descent direction, as stated in the following

theorem.
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Theorem 5.1 Suppose we have matrices M € C™*", Doy € Dx and Gy € Gk and a

real scalar o € R such that
AM*DoM + j(GoM — M*Gy) — aDy) = 0.
Then Dy, Gy are the minimizing arguments of the problem
pep g [grleiﬂ%;{a . (M*DM +j(GM - M*G) — aD) < 0}] (5.1)
if and only if there does not exist a pair D € Dy, G € G such that
z*(M*DM + j(GM — M*G) — aD)z <0 (5.2)

for all x # 0 with z*(M*DoM + j(GoM — M*Gy) — aDy)z = 0.

Proof: Since the minimization is convex we always have a descent direction unless
we are at a (global) minimum. Note that in order to have a descent direction for the
upper bound function we need to be able to find a pair D € Dy, G € G such that
for sufficiently small ¢ > 0 (so that Do + ¢D > 0) we have € > 0 such that

(M*(Do + tD)M + j((Go + tG)M — M*(Go +1G)) — (a — €)(Dy + tD)) < 0.

Clearly this is equivalent to the existence of D € Dy, G € G such that for sufficiently

small ¢ > 0 we have
(M*(Do +tD)M + j((Go + tG)M — M*(Go +tG)) — a(Do +tD)) < 0
(since Do +tD > 0). But now define

A = (M*D()]W + j(GoM —M*Go) — aDy)
B = (M*DM +3j(GM — M*G) —aD)

and apply lemma 5.2. O

Now we consider the problem of choosing a D, G pair which is the steepest descent

direction, or alternately verifying that no such D, G pair (i.e., no descent direction)
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exists. Note from theorem 4.5 that we are only concerned with reducing the value of
the upper bound function if & > 0 (otherwise we already have that the upper bound
equals i) and so we make the substitution § = y/a. Now suppose we have matrices
Dy € Dy and Gy € Gx and a real scalar 8 > 0 such that
X(M*DoM +j(GoM — M*Go) — 2°Dp) = 0
with r eigenvalues coalesced at zero. Further suppose that the corresponding eigen-
vectors are given by Uy € C™*" where
(M*DoM +3(GoM — M*Gyo) — f2Do)Up = 0
and UiUp = I,. Then we know from theorem 5.1 that —D,—G (for D € Di,G € gx)
is a descent direction if and only if
e (M*DM +j(GM — M*G) — D)z > 0 (5.3)
for all z # 0 with 2*(M*DoM + j(GoM — M*Gy) — aDp)z = 0. Defining
Amin = _min _ y* (U7 (M*DM +j(GM — M*G) — B°D) Up)n  (5.4)

n€CT,|n|=1

we see that this is equivalent to requiring that Apin > 0, which states that the matrix
Us (M*DM +3(GM — M*G) — 6°D) Uy (5.5)

is positive definite. Now define Vy = MUy and partition Up, Vp compatibly with the

block structure as
_ - - -

Aq J1
Am, I,
By K
Uy = , Vo = (5.6)
B, K,
Ch Ly
i Chne | | L |
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where A, J; € Ckx" By K; € Chmrtixr (O L; € Chmr4me+iX™ Then with this
notation the matrix Uj (M*DM +ij(GM — M*G) — ﬁzD) Up may be rewritten as

sy (JpDidi — BPAIDiA) + LI § (AFGidi — JFGi A +

e (K;Dmmm — B2B! Dy, +iB ) + Y7C d; (L;‘Li - ﬂ2cgfc,-) . (5.1)

Now substituting this expression into (5.4), then taking traces (since all the quantities

are scalar) and exchanging the order of multiplication yields upon rearrangement

S T (Di(Jign* Jf — B2 Ai* AY)) +
. S Tr (§Gi (Jmn*A}‘ — Aiqn*J})) +
/\min = min
e la=1 | sme Tr( meti(Kirp* K7 — 8 Bay* BY)) +
e g ( *(LLi — B2C;Ci)n)

(5.8)

We would like to rewrite this expression as an inner product, so first of all we define

the following set of block diagonal Hermitian matrices

Zx = {block diag (Z1, - -, Zmytmes 2115, srmosns- - s ZmeThms Z1s- -+ Zmy )
Z; = 7¥ € CF¥ki 4 e R, Z;i = 2} e Chi*kiy (5.9)

which together with the inner product
P,T € Zx (P, T) =Tr (PT) (5.10)

forms a real inner product space. With these definitions (5.8) takes the form

Amin = _min (D, P" 5.11
min neél;ljgl:l( , P") (5.11)
where P"7 € Z is defined by
P! = Jam*JF - BFPAmn*Ar, i=1,...,m,
Povi = Km’?*f(f —B*Bim*Bf, i=1,...,m,

pi = n*(LiLi— B*CiCi)y, i=1,...,m¢

A

Pl = j(Jimm" A} — A Jf) , i=1,...,my (5.12)

)
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and D € Zx is defined as D = block diag (D, G) with G = block diag (G1,. . ., Gm,).
Now we define the generalized gradient set Vy as the set of all such P",i.e.,

Vy={P"€ Zg: PZ,",p;],Pi’I asin (5.12),n € C",n| = 1} (5.13)

where Y = (M, Dy, Gy, 3). Thus we obtain the (generalized gradient) expression (5.8)
for a fixed D, G pair as a minimization of an inner product over a compact subset of

the inner product space

Anin = Prrelgly(D,P). (5.14)

What we’ve shown with this development is that the question of whether or not
there exists a D, G pair for which —D, —G is a descent direction for the upper bound
function is equivalent to the existence of a De Zy for which Apin given by (5.14) is
strictly positive. This question can now be answered using some results from convex

analysis. Denoting the convex hull of a set X by Co (X) we have the following.

Theorem 5.2 ([56]) Suppose X is a finite dimensional real inner product space, and
' is a compact subset of X. Then there exists an & € X such that minger(Z,y) >0
if and only if 0 & Co (I).

This result immediately provides us with an answer to the question of the existence

of a descent direction.

Theorem 5.3 Suppose we have matrices M € C™*™ Uy € C™*" (r < n) and a real
scalar B > 0. Then there exists a D € Dx,G € Gx such that the matriz

U (M*DM + j(GM — M*G) — ?D)Up

is strictly positive definite if and only if 0 & Co (Vy).

Proof: Following the development in this section it suffices to simply apply theorem

5.2 to (5.14). O

Furthermore supposing in theorem 5.2 that 0 ¢ Co (I') then a method to compute

such an 2 is given in [56]. This allows us to compute a D € Zx for which Apin > 0
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and hence a D, G pair which is a descent direction. In fact the point D turns out to be
the minimum point in Co (Vy) and hence corresponds to a D, G pair representing the
steepest descent direction. Putting all this together gives our final characterization

for the minimum of the upper bound function.

Theorem 5.4 Suppose we have mairices M € C™"*", Dy € Di and Gy € Gx and a

real scalar B > 0 such that
X(M*DoM + j(GoM — M*Gy) — °Do) =0

with r eigenvalues coalesced at zero. Further suppose that the corresponding eigenvec-

tors are given by Uy € C™*" where
(M*DoM + j(GoM — M*Go) — 2Do)Us = 0

and UjUy = I,. Then Dy, Gy are minimizing arguments of the problem (with mini-

mum value o = (%)

: . (M . agten < .
DeDicrffGeg;c [Enelﬁ{a (M*DM + j(GM — M*G) — aD) < 0}] (5.15)

if and only if 0 € Co (Vy).

Proof: Apply theorem 5.1 and theorem 5.3. O

This theorem provides us with a means to check whether or not we have achieved
the minimum of the upper bound function, in terms of the properties of the set Vy.
We will use this expression in section 5.3 to examine the equivalence between mixed

p and its upper bound.

5.2 Connections with the Generalized Gradient

Note that the approach taken in the previous section to computing a descent direction
for the upper bound function did not involve any differentiation. It is interesting

then to consider how this approach relates to computing the generalized gradient,
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and this is the subject of this section. In fact we will see that one obtains exactly the
same characterization from either approach, although substantially more machinery
is required for the generalized gradient approach followed in this section. The reader
uninterested in this comparison could skip to section 5.3 without loss of continuity.
We note from (4.34) that we are interested in computing derivatives of eigenvalues
of a Hermitian matrix, and so we are guaranteed the analyticity of properly chosen
branches (for both eigenvalues and eigenvectors). However since we are minimizing
the maximum eigenvalue, the eigenvalues may well be coalesced, and so we must
compute a generalized gradient for the (possibly) repeated eigenvalues [23]. For the

sake of computation we rewrite the upper bound function in (4.34) via the following

lemma.

Lemma 5.3 For any matrices M € C"*", D € Dx and G € Gx the unique value «

satisfying
A M*DM +j(GM — M*G) —aD) =0

is given as the largest generalized eigenvalue of the generalized eigenvalue problem
(M*DM + j(GM — M*G))u = aDu (5.16)

(with generalized eigenvalue and eigenvector as o and u respectively).
Proof: Follows straight from the Rayleigh Quotient and a simple continuity argu-.
ment, since D > 0. O

Now note that the generalized eigenvalue problem (5.16) can be rewritten as a stan-

dard eigenvalue problem
(MHMp +j(GMp — MHG))ii = ol (5.17)

where we have made the substitutions

A

D = D3
Mp = DMD™!



i = Du. (5.18)

This is now used to compute the generalized gradient of the upper bound function in
(4.34). Once again we are only concerned with reducing the value of this function if
a > 0 (otherwise we already have p) and so we make the substitution f = 1/a. Now
since the left-hand side of the eigenvalue equation (5.17) is for a Hermitian matrix

we can perform an eigenvalue decomposition on this matrix
MEMp +j(GMp — M5G)) = US3U* + WAW* 5.19
D D B
where U,W,Eﬂ,A satisfy

Y = diag(B,...,0)
A = diag(M\i,..., dar) A < B2 foralli

( o ) (W) = I, (5.20)

W*
(with Xg € R™7, U e Cr*r A € R~ 1/ € C"*"~" where r is the number of

generalized eigenvalues coalesced at 3%). Thus making use of the equivalence between

(5.16) and (5.17) we obtain the generalized eigenvalue decomposition
(M*DM + j(GM — M*G)) = DUSZU*D + DWAW*D (5.21)
where U = D10 and W = D='W satisfy
( UDU  U*DW ) _ ( Iy Opsner ) | 5.2)
wW*DU W*DW On—rxr In—r
So that post multiplying (5.21) by U we finally obtain
(M*DM +j(GM — M*G))U = DUS}. (5.23)

These expressions (5.21,5.22,5.23) are valid for arbitrary D € Dg and G € Gk, so

now suppose we are at a point Dy € Dy,Gy € Gx, with r generalized eigenvalues



5

of the upper bound function coalesced at A2 > 0, and wish to move in a direction
D € Dx,G € G, i.e., consider D(t) = Dy + Dt and G(t) = Gy + Gt for some real
scalar ¢ (note that D(t) € Dy, G(t) € G for sufficiently small ¢). Then from the
earlier discussion we can choose analytic matrices U(t) and X3(t) = diag (5;(t)) with
24(0) = B(0)Ir = BI, such that U(t), Xg(t), D(t), G(t) satisfy (5.21,5.22,5.23). Thus
we can substitute for U(t), Xg(t), D(t),G(t) in (5.23) and differentiate with respect
to t to obtain

. : . DOU()Zs()Sp(t)+
(M*DM +j(GM — M*G))U(t) + .
(M* DM +j(GOM — MG (@) DITE)4(8)Z(%)
+ D(H)U(t)%5(t) + DU(1)Z3(2).
(5.24)
Now substitute for U(t),X4(t), D(t), G(t) in (5.21,5.22) to derive
U*(8)(M*D($)M + §(GE)M — M*G(t))) = S2()U*(t)D(). (5.25)

Finally premultiplying (5.24) by U*(t), then substituting for (5.25) and evaluating
the expression at ¢ = 0 eliminates U (t) and yields upon simplification

. 1 . N

35(0) = %U* (M*DM +(GM — M*G) — 8°D) U (5.26)
where U = U(0). In practice we would not necessarily be able to compute U (which
corresponds to the correct choice of branch for the analytic matrix of generalized

eigenvectors), but it is easy to show that for any matrix Uy € C™*" satisfying
(M*DoM + j(GoM — M*Gy) — 52Do)Up = 0 (5.27)

and normalized such that UjDoyUy = I, then U = UpK for some unitary matrix
K € C™" and hence on substituting this into (5.26) we obtain

: 1
K¥5(0)K* = %U({ (M*DM +j(GM — M*G) — B°D) Us. (5.28)

Since K is unitary and 25(0) is diagonal this represents an eigenvalue decomposition

and so the derivatives of the r generalized eigenvalues coalesced at 5% are given as the
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etgenvalues of the matrix
Us (M*DM +j(GM — M*G) — 8°D) Us. (5.29)

We state this as a theorem.

Theorem 5.5 Suppose we have matrices M € C"*", Dy € Dx and Gy € Gy and a

real scalar B > 0 such that
XM*DoM +j(GoM — M*Go) — Do) =0

with r generalized eigenvalues coalesced at the mazimum B2. Further suppose that the

generalized eigenvectors are given by Up € C"*" where
(M*DoM + j(GoM — M*Gy) — 8>Do)Us = 0

and U DoUy = I,. Then the derivatives of the r generalized eigenvalues coalesced at

B% are given as the eigenvalues of the matriz
U (M*DM +j(GM — M*G) — B2D) Us. (5.30)
Collecting all this together immediately gives us the following theorem.

Theorem 5.6 Suppose we have matrices M € C"*", Dy € Dx and Gy € Gk and a

real scalar B > 0 such that
XM*DoM + j(GoM — M*Go) — 82Dg) = 0

with r generalized eigenvalues coalesced at the mazimum B%. Further suppose that the

generalized eigenvectors are given by Uy € C™*" where
(M*DoM + j(GoM — M*Go) — B2Do)Us = 0

and UUy = I,. Then Dy,Go are minimizing arguments of the problem (with mini-

mum value o = B?)

. . (M . e < .
DEDl;cl}fGeg;c [gleln%{a (M*DM + j(GM — M*G) — aD) < O}] (5.31)
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if and only if for all D € Dx, G € Gx the matriz
Us (M*DM +3(GM — M*G) — B°D) Uy
is not positive definite.
Proof: First we note that we can find Uo € C™*" such that
Us (M*DM +j(GM — M*G) — 8°D) Uq
is positive definite, with
(M*DoM + j(GoM — M*Go) — 2Do)lp = 0
and US‘DOU’O = I, if and only if we can find Uy € C™*" such that
Us (M*DM +3(GM — M*G) — 8°D) U
is positive definite, with
(M*DoM + j(GoM — M*Go) — 8%Do)Us = 0
and U§Uy = I,. Given one simply choose the other via

A

Up = UO(UJDOUO)_% and Uy = Up(U300)~

and it is easy to verify that the stated properties hold.
Now from theorem 5.5 we can find a descent direction D, G for the upper bound
function ®4(M, Do, Go) at Do, Gy if and only if we can find D € ﬁ;c, G € gk such

that all the eigenvalues of the Hermitian matrix
U3 (M*DM +3(GM — M*G) — D) Uy
are strictly negative, or alternately strictly positive (just choose £D,+G), where

(M*DoM + j(GoM — M*Go) — B2Do)Up = 0
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and (75‘ Dy Ij’o = I,. Thus we have a descent direction if and only if we can make the
matrix
Us (M*DM +§(GM — M*G) — 8°D) Us

positive definite. Since the minimization is convex we always have a descent direction
unless we are at a (global) minimum. O

The characterization in theorem 5.6 is exactly the one we arrived at in (5.5), and
the rest of the analysis proceeds from that point exactly as in section 5.1. Thus we
find that the simple perturbation analysis we performed in section 5.1 did in fact give
us the generalized gradient descent directions, although the machinery of analytic

functions was not required.

5.3 When u Equals the Upper Bound

We are interested in examining the conditions under which the upper bound described
in the preceding sections has actually achieved p, and when this can be guaranteed.
It is apparent from theorem 5.4 that it is the set Vy which determines when we
are at the minimum of the upper bound function, and in fact this set is also closely
related to the question of equality with p. First of all we note that it is possible that
the “inf” in (4.34) may not be achieved, and so we cannot directly apply theorem
5.4 since Dy, Gy are not defined. In order to address these difficulties we will now
introduce some new definitions.

Suppose that we have 8 > 0 as a candidate solution of the minimization problem
(4.34) (note that we need only concern ourselves with the case that 8 > 0 since
otherwise we have p = upper bound = 0 immediately). Then we must be able to find

sequences D*, G* 8 with D* € Di,G* € G such that
XM*D*M + j(G*M — M*G*) — BiD") =0

and B | B. Then noting that we can always normalize each element of the sequence

such that 7(block diag (D*, G*)) = 1 we can always choose D*, G* bounded so that
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by passing to a subsequence we have D* — Dy and G* — Gy with Dy € ﬁ;c, G € Gk

and Dy > 0. Furthermore we have
ANM*DoM + j(GoM — M*Gy) — 2Dg) =0

with (say) r eigenvalues coalesced at zero. So now define Uy € C™*" as any matrix
satisfying
(M*DoM + j(GoM — M*Go) — 52Do)Up = 0

and normalized such that UjUy = I, and as before define Vj = MUy. Then we
define the block components of Up, V5 by (5.6) as before. Note that if the minimization
problem (4.34) is achieved then these definitions coincide with those previously given.

Now suppose we have n € C",|n| = 1 and ¢ = (q1,-.-,9m,) with ¢ € [-1 1].
Then we define the block diagonal matrix P7? € Zy as

PP = @i Y = B Amn A, i=1,..m,

(3

PM. = Kum*Kf—B*Bim*Bf, i=1,...,m.

P = (L - OO, =1, mo
PP = qi(Jmm*Af — Aam*JE), i=1,...,m, (5.32)

and we define <7y as the set of all such P™9, i.e.,

{7)) = {PM € Zj : Pin,q,pzy,q,pin,q asin (5.32),n € C", || = 1,

q=(q1,---,qm,), ¢ € [-11]}. (5.33)

Note that the set <7y is closely related to Vy, and in particular Vy C @y for any
Y. The reason we have introduced <7y is that this set determines whether or not p

equals its upper bound.
Theorem 5.7 Suppose we have M € C™*" together with Dy, Gy and > 0 as defined
in the preceding discussion. Then B = px(M) if and only if 0 € VA73;.

Proof: The style of proof follows that for the purely complex case (see [56]), by

proving the equivalence of the following four statements:
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1. 0 € Vy.

2. There exists n € C", |p| = 1 and @ € Qx such that QVon = pUo.
3. There exists z € C",|z] = 1 and @ € Qk such that QMz = Bz.
4. B = px(M).

1—2 By definition 0 € ﬁy implies that for some n € C",|p| = 1 and some ¢ =
(q17 .. 'anr)7Qi € [—1 1] we have

GImn*JF — BPAqn*AY = 0, i=1,...,m,

Kigm*K! — ﬂzan*Bztk = 0, :=1,...,m¢
n*(LfLi — B°CiCiyn = 0, i=1,...,mg
jgi(Jiqm*AY — Aiqn*JY) = 0, ¢=1,...,m,. (5.34)

The first equation implies that we have phases el such that g;el% Jin = BAm,
and substituting these into the fourth equation then yields £¢;Jin = BAin.
The second equation gives us phases ei% such that ei% K;n = BB;n. The third
equation gives |L;n| = [|Cin| which implies that there exist unitary matrices
Q; such that Q;L;n = BC;n. Stacking these relationships up in block diagonal

form gives statement 2.

2—1 The block components of the relationship QVyn = SUpn immediately give that
the equations in (5.34) hold and hence 0 € Vy.

2—3 Substituting for V5 = MUy in statement 2, and then defining z = Upn gives

statement 3.
3—2 Since 7(Q) < 1, QMz = Bz implies

1 1 L 1
|D¢Mz| > |QDEMz| = |DiQMz| = |D¢ z|. (5.35)
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Also it can be shown (see section 4.6 or [29]) that since z satisfies QMz = (z,
then
x*(GoM — M*Go)m =0

for any Go € Gx. Thus we have ‘
¥ (M*DoM + j(GoM — M*Go) — B*Do)z = |D§'M:c|2 - ﬁ2|D§m|2. (5.36)
So that applying (5.35) we obtain
z*(M*DoM + j(GoM — M*Gy) — B?Dyo)z > 0.

Since the matrix (M*DoM + j(GoM — M*Gy) — $%Dy) is negative semidefinite
this implies

z*(M*DoM + j(GoM — M*Go) — 52 Do)z = 0
and hence by Rayleigh Quotient theory z = Uyn for some n € C",|p| = 1.
Substituting for z = Upn and MUy = Vj gives statement 2.

3—4 Statement 3 implies 8 < pxc (M) but we already have f > px(M) and hence
B = px(M).

4—3 This follows immediately from theorem 4.1. O

Note that when then upper bound minimization problem (4.34) is achieved then by
theorem 5.4 we have 0 € Co (Vy) and hence, since Vy C Vy, we have 0 € Co (Vy).
We conjecture that in the general case the following holds, whether or not the “inf”

is achieved in (4.34).

Conjecture 5.1 Suppose we have M € C™*™ together with Dy, Gy and > 0 as de-
fined in the preceding discussion. Then oy = (% solves the upper bound minimization

problem

. . (M . gy < .
Depggegx [gnel%{a (M*DM + j(GM — M*G) — aD) < 0} (5.37)

A

if and only if 0 € Co (Vy).



82

Note that whenever we can show (for some class of block structure K and/or some
class of matrices M) that 0 € Co (@y) implies 0 € VA73; then, if true, this conjecture
(with theorem 5.7) implies that p (for these classes) is identically equal to its upper
bound from theorem 4.5. It is hoped that this framework can be used to establish
when this equality can be guaranteed for the mixed case. This will be a subject of
further research.

The equivalence between p and its upper bound is of particular interest since the
upper bound is a convex optimization problem (see section 4.6), and hence can be
computed exactly. Note that although the lower bound from (4.1) is always equal to
p if one finds the global maximum, it is a nonconvex problem (and hence one cannot
guarantee to find the global maximum).

As an illustration of the use of this machinery, consider the following theorem,

which was originally presented in [29], and is proven here using the methods developed

above.
Theorem 5.8 ([29]) Suppose we have M € C"*"™  then provided the infimum in
(4.84) is achieved and the corresponding largest eigenvalue of

(M*D()M -l—j(GoM - M*Gg) - aDo)

is distinct, then pic(M) equals its upper bound from theorem 4.5.

Proof: Suppose 8 > 0 is the upper bound from theorem 4.5. If 3 = 0 we are done
immediately, so assume 8 > 0. Then since the upper bound is achieved theorem 5.4

implies 0 € Co (Vy). Since the corresponding largest eigenvalue of
(]W*DQJW -I-j(GoM — ]W*GU) — aDo)

is distinct the set Vy is a single point (see (5.12) and (5.13)) and so 0 € Vy. But
now Vy C Vy, so 0 € Vy and hence by theorem 5.7, 8 = px(M). a
Note that for this case we have that 0 € Vy. It can be shown, using methods

similar to the proof of theorem 5.7 (see theorem 6.3 later), that this means we can
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choose the worst case perturbation @ € Qi so that in fact @) € Ui. In other words
the worst case perturbation is on a vertex. This limits the applicability of the above
result, since we know that this is often not the case. The reason for this restriction
is the assumption that the infimum is achieved, and in fact we can extend this result

to remove this limitation.

Theorem 5.9 Suppose we have M € C"*" together with Do,Go and f > 0 as in

theorem 5.7. Then if the mazimum eigenvalue of
M*DoM —I—j(GoM — M*Go) — ﬂzDo

is distinct, B = px(M).

Proof: If 3 = 0 the result is trivial (since 3 is an upper bound for px(M)), so assume
B > 0. Choose z as the unit norm eigenvector, corresponding to the maximum

eigenvalue. Then it is easy to check, via proof by contradiction and lemma 5.2, that

we must have

*(M*DM — f*D)x > 0 forall D€ Dy
X (GM — M*G)z > 0 forall G € Gg.

But now by continuity, and the definition of Dy, Gx, this implies that in fact we have

*(M*DM — 3?D)z > 0 forall D€ Dx,D >0
¥ (GM — M*G)z = 0 forall G e Gk. (5.38)

Now suppose that (Mz); and z; represent one of the block components of (Mz) and
z. Further suppose that D; and G; represent the corresponding block for D and G.
We will consider separately the three types of block components. In each case we will
choose every other block of D and G to be identically zero.

Consider first a full complex block. Choose D; = I and (5.38) implies that
|(Mz)i] > B|z;]. Thus there exists a matrix A;, with 5(A;) < 1, such that A;(Mz); =

Bzx;.
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For a repeated complex scalar block we immediately have the above. Then choose
D; as a positive semidefinite matrix with a kernel spanned by (Mz);. Thus we have
Di(Mz); = 0, so that applying (5.38) we find that D;z; = 0. By construction of
D; this implies there exists a complex scalar &;, such that §;(Mz); = Bz;, and from
earlier we may take |&;| < 1.

For a repeated real scalar block we immediately have the above. Now choose
G; = I and (5.38) implies that z}(Mz); = (Mz)fz;. Substituting for the above this
implies 6|(Mz);|? = &;|(Mz);|? and so we may take 6; € R.

Applying the above relationships to each block component, and stacking them up,
we obtain A € BX such that

AMz = Bz.

Thus 8 < (M) and hence 8 = pi(M). O

Note that here we do not assume the infimum in the upper bound is achieved,
and we find that the worst case perturbation is not necessarily on a vertex. Of course
for the complex blocks we can always restrict our attention to the boundary of the
uncertainty set, but for the real uncertainties this is not the case. In fact there is a
strong association between the presence of internal reals, and the infimum not being

achieved in the upper bound, and this will surface again in chapters 6 and 8.

5.4 Special Cases

In this section we consider the application of the results developed above to several
special cases of interest. The rank one matrix case will receive a preliminary treatment

here, and will be treated in detail in chapter 8.

5.4.1 Some Simple Special Cases

Here we consider some elementary special cases for which computation of yx is easy.

These results are simple extensions of results for the complex p case and we include
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them here for completeness. First note that for Hermitian matrices we can trivially

obtain the following result.

Lemma 5.4 For any Hermitian matric M € C™*™ and any compatible block struc-
ture IC, then uxc(M) =o(M).

Proof: Noting that for a Hermitian matrix, pp(M) = p(M) = 7(M), the result
follows from (3.3) . O

Next we consider positive matrices, i. e., matrices whose elements are positive real
numbers. For these matrices there is a wealth of results from Perron-Frobenius theory
(see [33] for example), regarding eigenvalues and singular values, and these lead to

the following result for p.

Lemma 5.5 For any positive matriz M € R™™ and any compatible block structure

K with mg =0 (i. e., only scalar uncertainties), then pic(M) = p(M).

Proof: Since M is positive then from standard properties of positive matrices we have
that there is a real positive eigenvalue equal to p(M) (so that pr(M) = p(M)), and
furthermore the corresponding right eigenvector may be taken to have all its elements
real and positive (see theorem 8.2.11 in [33]). By duality it follows that we may take
the left eigenvector to be positive as well. Thus denoting A = p(M), we have positive
(hence non-zero) vectors z,y such that
Mz = Az

yI'M = /\yT.
Since the vectors z,y are positive we may simply define

Yi

di=,/[—= for i1=1,...,n
Z;

and D = diag(dy,...,d,) satisfies D € Dx and y = D?z. It is easy to check that the
vector w = Dz is positive (and hence non-zero) and satisfies
DMD'w = Jw
wIDMD™' = o7,
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Thus we obtain

(DMD YT (DM D™ )w = Nw.
Since the matrix (DM D~Y)T(DM D) is positive, the fact that w is positive implies
that it corresponds to the maximum eigenvalue (see corollary 8.1.30 in [33]), so that
p(DMDY)T(DMD1)) = A? and hence (DM D™) = X\ = p(M) = pr(M). By
lemma 3.3 this implies that p(M) = ux(M). O
These two cases are not of too much interest in themselves since they are rarely
encountered in practice. However they may be of some interest in providing crude
bounds for more general problems. One example of such an application for the com-
plex u problem is provided in [68] where the optimal scalings for the positive matrix
case are used to approximate the optimal scalings for a more general y problem.

Now consider the class of matrices that have the structure

0 M2
M= (5.39)
My 0O

with Myo € C™*"2 My € C"2*™ and ny+ngo = n. Suppose we have block structures

Xy, C C™M>™ and X, C C"2*"2, then the block structure X defined as
X = {A = block diag (A1, Az) : A1 € Xy, Az € X, } (5.40)

is compatible with M.

Lemma 5.6 For p problems as above and any 0 < k € R,
o | 0 Mg - 1
2 hd
MMy o0 F
if and only if

pR(Azj\fmAlMlz) < forall A; € BXK;I,Az € BX/Cz.

ol
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Proof: The proof of this lemma is almost identical to the proof for the complex case

given in table 11.4-1 of [47], namely
o | 0 M
Py <
My O
0 M
— Ki k <1
Moy 0

o AMip
— det k #0  forall Ay€BXx,As € BXy,

o

—AoMsy 1
e det (I — 22MudMa) £ 0 forall Ay € BXx,,As € By,
—  pr(AaManA1Mis) < % for all A; € BX),, A2 € BA),. O

Combining this lemma with the special cases listed in properties (d)-(f) in section
3.1, we obtain the results listed in table 5.1. For comparison the complex p version

of these results is given in table 11.4-1 of [47].

Case Block Structure Constraints ”126 ( 0 M )
My 0
1 Xy, = CMX™ Xy, = C"2X™2 T(Mi2)Ta(Maq)
2 Xic, = {5cjn1 10°€ C},mrz =0 NICQ(M21M12)
3 my, =0, X, = {6y, : 6° € C} pic, (M2 May)
4 | X, = {6°In; 1 6° € C}, Xy, = {6°Iny : 6 € C} | p(M1sMa1) = p(Ma21 My2)
5 X, = {6"I,, : 6" € R} tic, (Ma1 M)
6 Xy, = {671, : 6" € R} txcy (M2 May)
T | Xy, ={6"1y, : 6" € R}, Xy, = {671, : 6" € R} | pr(M12M21) = pp(Ma1M12)

Table 5.1: Simple special cases of mixed p
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5.4.2 The Rank One Case and “Kharitonov-Type” Results

Here we present a preliminary examination of the the rank one mixed p problem. This
will be studied in detail in chapter 8, where it will be seen that this rank one case
corresponds to the so called “affine parameter variation” problem for a polynomial
with perturbed coefficients which has also been examined in detail in the literature,
and for which several celebrated “Kharitonov-type” results have been proven (see [11]
for example).

The mixed p problem when M is rank one is studied in [17]. The authors develop
an analytic expression for the solution to this problem, which is easily computable,
having sublinear growth in required computation with the problem size. The authors
then examine several “Kharitonov-type” results from the literature, and they note
that all these problems can be treated as special cases of “rank one u problems” and
are thus “relatively easy to solve.” Even the need to check (a combinatoric number
of) edges is shown to be unnecessary.

This rank one case can also be addressed within the framework developed here
for examining the equivalence between u and its upper bound. First we need a

preliminary lemma.

Lemma 5.7 Suppose we have vectors u,b € C™. Let M € C™ ™ be given by
M = w* + vu*. (5.41)

Then M cannot have a non-zero repeated eigenvalue.

Proof: In fact we will prove something stronger than the stated result. Note that
M is a Hermitian matrix of rank at most two. Thus M has at most two non-zero
eigenvalues, and all eigenvalues are real. If M has less than two non-zero eigenvalues
then we are done immediately so assume that M has two non-zero eigenvalues A;
and Ay. We will show that these eigenvalues are of opposite sign. First note that

by projecting into the eigenspace of A;, A2 we may without loss of generality assume
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u,v € C2. Then we have

vl - e[

= det ([uv])(det ([vu]))* = —det ([uv])(det ([uv]))* = —|det ([uv]) 12 < o.
Thus det (uv* + vu*) = AtAg < 0. O

The following theorem gives a partial answer to the rank one mixed p problem.

Theorem 5.10 Suppose we have a rank one matrix M € C™ ™, then provided the

infimum in (4.84) is achieved, pic(M) equals its upper bound from theorem 4.5.

Proof: Suppose # > 0 is the upper bound from theorem 4.5. If § = 0 we are done
immediately, so assume 8 > 0. Suppose D, G are the minimizing arguments of the
upper bound problem (4.34). Then we claim that the maximum eigenvalue (which is
zero) of the matrix

M*DM +j(GM — M*G) — 8D (5.42)
is distinct. To see this first note that there is a one-to-one correspondence between

the zero eigenvalues of (5.42) and the zero eigenvalues of
MpMp +3(GMp — MHG) — %I, (5.43)

where Mp = DMD~% and G = D"3GD"2 (see the substitutions in (5.16) and
(5.17)). Since f > 0 we are done by the eigenvalue shift property if the matrix

MpMp +j(G'MD — MBG’)

cannot have a non-zero repeated eigenvalue. But now M rank one implies that Mp
is rank one and so we have vectors z,y € C"*" such that Mp = zy*. Substituting

for this we obtain

MHMp +j(GMp — MHG) = ya*zy* + j(Gzy* — yz*G).
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Let v = z*z and v = Gz and we obtain

yatzy* + j(Gey® —ya*G) = ~yyy* +juy* —jyv* =

y (%y* —jv*) + (—gy +J’v) yto= y2t oyt

where z = 2y + ju. Hence by lemma 5.7 the claim is proven. The result now follows

from theorem 5.8. O

In fact theorem 5.10 extends to the general case (where the infimum may not
be achieved). However the proof is fairly involved and is deferred to chapter 8 (see
also [78]). This theorem (with its extension) says that for such problems y equals its
upper bound and is hence equivalent to a convex problem. This reinforces the results
of [17] and offers some insight into why the problem becomes so much more difficult
when we move away from the “affine parameter variation” case to the “multilinear”
or “polynomial” cases (see [70]). These correspond to p problems where M is not
necessarily rank one, and hence may no longer be equal to the upper bound and so
may no longer be equivalent to a convex problem (note that there exist rank two
matrices for which p does not equal its upper bound).

These results also underline why there are no practical algorithms based on “edge-
type” theorems, as the results appear to be relevant only to a very special problem.
Furthermore, even in the very special “afline parameter case” there are a combinatoric

number of edges to check.

5.4.3 Real Matrices

As we noted earlier it is always possible to obtain an upper bound for a mixed pu
problem simply by treating the real parameters as complex, and using the standard
complex p upper bound (see [55] for example). However the upper bound from
theorem 4.5 is frequently much better than the complex u upper bound because of
the extra degrees of freedom we have in choosing the G scaling matrix (note that if we

restrict ourselves to G = 0, we recover the complex y upper bound). The G scaling
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matrix exploits the phase information we have about the real parameters in order to
reduce the bound. However it is not always possible to improve upon the complex u

upper bound via the G scaling matrix as is illustrated by the following results.

Theorem 5.11 Given a matric M € R™ ™ and any block structure K define the

following subsets of Dy and G
Drx ={D € D : D € R*™*"} (5.44)
Gri = {G € Gk : jJG € R"™*"}. (5.45)

Then we have that

i i : < = 1 i : < .
peritheq, [2g(e 2 0EDO SO =, inf o [migler: (4,,6) <o)
(5.46)
Proof: First define the quantities
= i i : < .
o DEDicn,gegx I:glelﬂl%{a’ ®,(M,D,G) < 0}] (5.47)
Y= i i : < . .
pepheane (7115 9, D,6) <0} (545)

Then clearly we have that a, < &. Now suppose we have D € Dy.,G € G and o € R
such that
M*DM +;(GM — M*G) — aD < 0.
Split D and G into their real and imaginary parts as D = Dr + jD;, G = Gr + Gy
with Dg, D7, Gr,G1 € R™ ™. Then it is easy to show that Dg, G g are real symmetric,
and Dy, G are real skew symmetric. Now we have that
M*DM + j(GM — M*G) —aD <0

— *(M*DM + j(GM — M*G) —aD)z <0 VzeC"

— 2T (MTDM +j(GM — MTG) —aD)z <0 Vz € R
Now we note that (MTDM +j(GM — MTG) — aD) = S + jW where

S =MTDpM +j((GG1)M — MT(3G1)) — aDg
W=MTD;M+ GrM — MTGg — aDj.
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It is easy to check that S is real symmetric, and W is real skew symmetric, so that

2T (S +jW)z = 2T Sz Vz € R*. Thus we have

T (MTDM +3(GM — MTG) — aD)z <0 Vz € R
—s 2T(MTDgrM +j((GG1)M — MT(§G1)) — aDR)x <0 Vz € R"
—  (M*DrM +j((43Gr)M — M*(jG1)) — aDr) < 0.

Similarly we can show that D > 0 — Dpgr > 0 and so Dp € Dry,(jG1) € Gric

which gives & < oy and hence o, = &. O

Basically theorem 5.11 says that when computing the upper bound for real ma-
trices we may restrict our attention to purely real D € Dx (i.e., D € D is real
symmetric) and purely imaginary G € Gx (i.e., G € Gx is of the form G = j@
where G is real skew symmetric). As a consequence of this we immediately obtain

the following theorem.
Theorem 5.12 Suppose we have a real matriz M € R™™ and a block structure K
with k; =1 fori=1,...,m; (i.e., none of the real scalars are repeated), then

inf [min{a:@a(M,D,G) go}] — inf [min{a:q)a(M,D,On) 30}]
DeDx,GeGk LaeR DeDpri LaER
(5.49)

where Dy is defined as in theorem 5.11.

Proof: Apply theorem 5.11 to conclude we may restrict our attention in the left-hand
side of (5.49) to D € Dy, G € Grx. Now note that for this block structure (none
of the real scalars are repeated) then G is diagonal (and Hermitian) and hence pure

real. Thus we have Grx = {0,}. O

Note that theorem 5.12 says that for u problems involving real matrices where none
of the real scalars are repeated then the choice G = 0, in the upper bound is optimal,
or in other words the mixed u upper bound equals the complex u upper bound. This
is an important class of problems. For instance one encounters u problems where

M 1is real when it is constructed from State Space ‘A, B, C, D’ matrices. Note that
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theorem 5.12 does not apply if any of the real parameters are repeated, and in fact it
is easy to construct examples involving real matrices with repeated real parameters
where G = 0, is not optimal.

It is interesting to note that by further restricting this class to purely real p

problems we can obtain a “vertex result.”

Lemma 5.8 ([25]) Suppose we have a real matriz M € R™*™ and a block structure
K with my = n and me = mg = 0. Further suppose that k; =1 for: =1,...,m,
(i. e., none of the real scalars are repeated), then it suffices to consider perturbations

at the vertices of the allowed perturbation set.

Proof: Follows immediately from the fact that det (I, — AM) for A € X is a real-

valued multilinear function of the ] ’s. a

The vertices of a problem set are those points where every parameter is at an extremal
value. For these problems then we can compute u exactly by checking a finite number
of points. Note however that the required computation grows exponentially with
problem size, so that this result is only applicable to small problems. This should not
surprise us of course, since we know from section 3.3 that even this restricted class of

the mixed u problem is NP hard.

5.5 A Characterization of u Values

We conclude this chapter by considering an interesting connection between the mixed
p upper and lower bounds, namely the p values of a matrix M (with respect to
some block structure K). Roughly speaking the y values are those values of 8 in
@Mz = Bz (for Q € Qx) which correspond to local maxima of the real eigenvalues
of QM. Hence they are lower bounds for ux (M), with the largest of them in fact
being equal to px(M). Note that these values are associated with the existence
of a decomposition as in (4.16). In this section we show that these values are also

associated with stationary points of eigenvalues of the upper bound function. In order
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to state this more precisely we need some additional definitions. Suppose we have

B > 0 and matrices Dy € Dx, Gy € G with Dy > 0 such that for some k&
M (M*DoM +3(GoM — M*Go) — B2Dg) = 0 (5.50)

with (say) r eigenvalues coalesced at zero. So now define Uy € C*"*" as any matrix
satisfying

(M*DoM + j(GoM — M*Gyo) — B2Do)Up = 0 (5.51)
and normalized such that UsUy = I, and as before define Vj = MUy. Then we define
the block components of Uy, V by (5.6) as before, and for any n € C",|n| = 1 and
q=1(q1,---,9m,) with ¢; € [-1 1] we define the block diagonal matrix P"? € Zx by

(5.32) as before. Now we define the set @y,k as the set of all such matrices, i.e.,

@y,k ={P™" € Zx: Pz-"’q,py’q,ﬁi"’q asin (5.32),n € C",|n| =1,

q=(q1,---,qm,), ¢ € [-11]}. (5.52)

The set ﬁy,k plays the same role as @y defined earlier except that now we are
requiring that the k** eigenvalue of (M* Do M +j(GoM — M*Go) — %2 Dy) is zero, and
not necessarily the largest eigenvalue. The precise characterization of the p values of

a matrix M is stated in the following two theorems:

Theorem 5.13 Suppose we have matrices M € C" ", Q € Qx, D € Dx with
D? € D and 0; = £ fori € J(Q) satisfying a (lower bound) decomposition as in
theorem 4.3, i. e., we have a non-zero vector x € C™ and a positive real scalar 3 such

that

QDMD™Y(Dz) = BDz
(z*D*)QD*M(D*)™' = Baz*D*.

Then there exist matrices D € YB}C, Ge Gx with D > 0 such that for some k

M(M*DM +§(GM — M*G) — g2D) =0
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and 0 € @y,k (with Y = (M, D, &, 8)). Furthermore if |6;] < Thorale=1,...,m,
then D > 0.

Proof: First we split the matrix D as D= D?=Dp + jD; where

Dp = block diag (cosfy D1, ..., c080m, Dy, Dimyi1, - -y Dy +mes

70 (PP M

~

Dy = block diag (sinfy D1, . .., $infm, Dy, 0k, 415 Okn)-

Note that Dy = Dj, and Dp = D%} with Dp > 0. Now define D = Dpg and
G = —BD;1Q, so that D € Dk with D >0 and G € Gx. Note also that if [6;] < 7 for

allt=1,...,m, then D > 0. From the lower bound decomposition we immediately

obtain

M*Q*D*z = fD%z.

Thus substituting for z = %QM.’I) and D? = Dy + jDr we obtain

(M*Q*QDrM +j(M*Q*QDiM — 3°Dy) — B°Dg)z = 0.
Note that Q*QDr = Dg = D and furthermore

(M*Q*QDiM — B*°Dp)z = (BM*Q*D; — fD1QM)x
= (GM — M*Q)z
so that we have
(M*DM +3(GM — M*G) — 82D)z =0 (5.53)

and hence \p(M*DM +j(GM — M*G) — f2D) = 0 for some k. Now equation (5.53),
together with Q Mz = Bz, implies that 0 € ﬁy,k (see proof of theorem 5.7). O

Theorem 5.14 Suppose we have matrices M € C"** D € Dy, G € Gx with D >0

and a positive real scalar B such that for some k

M(M*DM + j(GM — M*G) — D) =0
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and 0 € ﬁy,k (with Y = (M,D,é,ﬁ)) Then under some non-degeneracy assump-
tions (stated in the proof) we have matrices Q) € Qx, D € Dy with D? € Dy and
0; = £5 fori € j(Q) satisfying a (lower bound) decomposition as in theorem 4.8,
i.e., we have a non-zero vector x € C" such that
QDMD™Y(Dz) = BDz
(z*D*)QD*M(D*)~! = pz*D*.
Proof: Since 0 € ﬁy,k we have a matrix () € Qx and a non zero vector z € C" such
that
QMz = Pz

(M*DM +3(GM — M*G) — 82Dz = 0 (5.54)

(see proof of theorem 5.7). Now if we partition the vectors z and Mz compatibly

with the block structure as in (4.7) then it is easy to show from the above that for

1=1,...,m,

lgil <1 —  |Di(Ma)i| = |Dizi| =0 (5.55)
just note that 7(Q)) < 1 and use similar arguments to theorem 5.7). This implies
g p

that
Q*QDMz = DM=. (5.56)

Now we make the first non-degeneracy assumption that |¢;| # 0 for¢ =1,...,m, and

we define Dg = D and D; = —%—CA}'Q"I. Then from (5.54) and (5.56) we obtain
(M*Q*DQM + j(GM — M*G) — 2Dz = 0.
Substituting for Q Mz = Sz yields upon rearrangement
M*Q*(Dgr +jDr)z = B(Dr +jDr)z. (5.57)

Now we consider the block components (see (4.7)) of the vector (Dg + jDr)z. For

¢t =1,...,m,; define the vectors

v = (Dgi + Dr;)z;.
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Then we have that

Vi @i = o Dpwi + jai Dyz;.

Since by construction Dg = D%, Dr = D} and Dg > 0 this implies
oo — o dWi
Vi Ti = rie’ (5.58)

for real scalars r; > 0 and ¥; € [-5 ]. Now we make the second non-degeneracy
assumption that for s = 1,...,m, we have r; # 0. Then the relations (5.58) imply

the existence of matrices D; € C**ki with D; = D;‘ and D; > 0 such that (see lemma
4.3)

i = (D +iDr;)zi = e Dz (5.59)
and furthermore from (5.55) it can be shown that 1; = +% for i € J(Q). Now define

the matrix D as

D = block diag (e“j'/’lf)l, oo, eme D ﬁm,.ﬂ, ey f)mr+mc,

Now we make the final non-degeneracy assumption that D is non-singular (which
amounts to assuming that the appropriate block components of D are positive def-

inite rather than just positive semidefinite). Then we have that D € Dx and by

construction

(Dg +jD1)z = Da. (5.60)
So that substituting (5.60) into (5.57) we obtain
M*Q*Dz = 8Dx. (5.61)

Finally we define D as the unique matrix D € Dy such that D? = D ¢ Drc. (Note
that we have 0; = &7 for i € J(Q).) Then by construction this satisfies

QMz = pfz
M*Q*D*:z = BD%z.
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Simple manipulations of these equations yield the required (lower bound) decompo-

sition. O

These theorems provide us with a direct theoretical link between the upper and
lower bounds for . The proofs provide the formulae to construct D, @ for the upper
bound function from @, D for the lower bound decomposition, and vice versa. Thus
given a stationary point for one function we can find a stationary point for the other,
and hence we can generate guesses for the optimal scaling matrices for one bound
from the optimal scaling matrices for the other. This connection was established for
the complex case in [59], and is closely related to the “(Major) Principal Direction
Alignment” ideas (also for the complex czise) in [18,38]. It is important to note here
that whilst the matrix (M*DM + j(GM — M*G) — 42D) has a zero eigenvalue, it is
not necessarily the largest eigenvalue, and hence § is not necessarily an upper bound
for px(M). In fact each such 3 is a lower bound for u, with the largest of them equal

to u.
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Chapter 6

Practical Computation of the

Bounds

In this chapter we examine the computational aspects of the upper and lower bounds
for the mixed g problem from chapter 4 (see also [29,81]). Important issues to be
considered here are the efficient computation of the bounds and the degree to which
they approximate u. In chapter 7 we will also consider techniques for refining the
bounds for a better approximation (at an additional computational cost).

Here we develop a practical algorithm to compute the upper and lower bounds.
This has been implemented as a Matlab function (m-file) “rmu,” and is currently
available in a test version in conjunction with the p-Tools toolbox [7]. The theo-
retical bounds described in chapter 4 require some reformulation before they can be
implemented in an efficient manner, and this is described in sections 6.1 and 6.2, to-
gether with details of the algorithm construction. The bounds involve solving certain
optimization problems, and it is shown that the specific structure of these problems
can be exploited so as to speed up the computation considerably. Some results from
our extensive numerical experience with the algorithm, regarding both the quality
of the bounds and the computation time, are presented in section 6.4. These re-

sults are very encouraging, and in particular it appears that one can handle medium
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size problems (less than 100 perturbations) with reasonable computational require-
ments. Note that this could involve optimizing several thousand parameters, so that a

straightforward application of brute force optimization techniques would be unwieldy.

6.1 The Lower Bound Algorithm

First we note that the lower bound from section 4.5 takes the form of a power itera-
tion (4.28,4.29), and each iteration of the scheme is very cheap, requiring only such
operations as matrix-vector multiplications and vector inner products. This gives rise
to a lower bound algorithm which is much faster than would be obtained by directly
solving (4.1) via standard optimization techniques (although this maximization is
carried out implicitly by the power iteration). However there is another motivation,
besides speed, for this power iteration approach. As we noted earlier the maximiza-
tion defining p in lemma 3.4 is nonconvex. Of course this means that we will not
be able to guarantee to find the global maximum, but in order to find as good a
bound as possible we would like to avoid local methods, such as gradient search. The
power iteration approach developed in chapter 4 is not based on moving towards the
nearest local maximum, but rather attempting to find the largest point satisfying the
stationarity conditions of a local maximum. In this way we attempt to find a global
maximum, rather than just a local one.

In this section we will discuss some of the issues that are involved in developing
a practical implementation of the power algorithm. First we note that for the purely
complex case, m, = 0, this algorithm reduces to that of Packard [59], and hence many
of the comments made there also apply here. In particular we note that there is a

potential problem with the algorithm if any of the following occur:
e Mby =0 (or M*z;41 =0) —  apy1 (or wgyq) is not well defined.
° |a,,|=0 —  Gp41 and/or @pqq is not well defined.

o |a3 wy| =0 — 2y, and/or by, is not well defined.
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o |a3,| =0 or |ws,|=0 — 23, and/or b3, is not well defined.

If any of these occur then one possibility is to simply restart the algorithm from a
new point (i.e., a new by, wy and &z). Of course it is possible (though not generic)
that one of the above conditions will recur. For this reason the above strategy is not
adopted in our code. In fact if one examines the above conditions then it can be
seen that is still possible to define a sensible iteration even if some of the above occur
(some terms may be arbitrary and they can simply be assigned some nominal values
or left at their current values). In this way it is possible to protect the code from
“divide by zero” errors when any of the above occur, and this has been implemented
in the “rmu” code.

Consider the following two special cases of the complex u problem:
o my=0,m:=0,mg=1 — px(M)=35(M).
o my=0,m;=1mc=0 — pux(M)=p(M).

Then, as was pointed out in [59], the povvér iteration for these cases reduces to
iteration schemes to find G(M) and p(M) respectively (i.e., (M) in both cases).
For these cases then we have that the iteration is guaranteed to converge and find
pxc(M). Unfortunately this is not the case in general, and in fact we do not even
have guaranteed convergence. The convergence properties and performance of the
algorithm will be discussed in section 6.4, and in chapter 7 we will consider some
more sophisticated schemes which can in principle guarantee convergence, but for
now we consider what can be done if the algorithm does indeed fail to converge.

Suppose we have a matrix M € C™*" partitioned as

My M
M- 11 Mg (6.1)
Moy Moo
with M3 € C*1*"1 Moy € C"2%™2 and ny+ny = n. Suppose we have block structures

Ak, and Xy, compatible with Mj; and May respectively, then the block structure
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Xfc defined as
X = {A = block diag (A1, A2) : A1 € X, Az € X, } (6.2)

is compatible with M. Further assume we have arranged the problem so that X’ K, con-
sists of purely real uncertainties (X, C R™*"1) and X), consists of purely complex

uncertainties (Xj, C C"2*"2). Then we have the following lemma.

Lemma 6.1 Suppose we have a matric M € C"™ " as above, a perturbation A €
X, 7(A) < 1 as above, and a real scalar oo > 0. If det (I, — Mléél) = 0 define

B = «, else define B as

A MiA
5= p(Az (M22+M21?1(In1 _Mu 1)‘1M12>). (6.3)

o
Then min(e, 8) < pxc(M).

Proof: If we had det (I, — Mlé—él) = 0 then A = block diag (%1, On,) sets det (I, —
AM) = 0 so that min(a, ) = a < px(M). Otherwise define A as the maximum
eigenvalue from (6.3) so that A = Bel? for some € [0 2x]. Then if 8 = 0 clearly
min(a, B) < px(M), and otherwise A = block diag (%1, e“je%z) sets det (I,—AM) =
0 so that min(a, 8) < px(M). O

This lemma gives us a means to compute a lower bound for x given candidate
guesses for the perturbation and the lower bound, provided we are not in the pure
real case, m¢ = m¢ = 0 (whence our bound is « if det (I, — Mlgv—A—l) = 0 and zero
otherwise). This case is discussed in more detail in section 6.4. It turns out that one
can always obtain candidate guesses for the perturbation and the lower bound from
the current values of the b, a, z, w vectors even if the scheme has not converged. Thus
one can implement the power algorithm so that it always returns a lower bound for
t, regardless of convergence, and the “rmu” code is implemented in this fashion. Of
course it is still desirable that the power iteration converges since in that case one

has more faith that the lower bound obtained is a good one (i.e., close to ).
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Finally we consider the problem of computing initial guesses to start the iteration.
One possibility would be to use the results from chapter 5, where the concept of “u
values” is proven for the mixed case (see also [80]). One could compute the mixed p
upper bound and then use one of the maximizing eigenvectors to construct the initial
guess for the power iteration (since this procedure produces exactly the right initial
guess when the maximizing eigenvector is distinct). We will see however that the
mixed p upper bound is usually more expensive to compute than the lower bound,
and so it is certainly too expensive to use as a scheme for computing initial guesses
for the lower bound, unless one wishes to compute both bounds anyway. However it
turns out that if one wishes to compute both bounds it is advantageous to compute
the lower bound first (see [83] and section 6.2), and so we do not use this approach
to compute the initial guesses for the lower bound. Note however that for numerical
reasons it is desirable to “balance” the matrix before starting the lower bound power
iteration, and this is the first step in Packard’s scheme for computing the initial
guesses by and wy for the complex p power algorithm [59]. It would also seem to be a
cheap way to generate reasonable first guesses here. The basic outline of the scheme
is:

Algorithm 6.1 (Lower Bound Initial Guess)

1. Compute a D € Dy which approzimately solves inf pep, 5(DMD™1). This can
be done using a generalization of Osborne’s method (see [83]).

2. Compute M = DMD=. The matriz M is now “balanced.”

8. Compute by as a right singular vector of M associated with 'E(]Vl), and set

w1 = by.

Note that mixed u is invariant to the transformation in step 2, (i.e., ux(M) =
puic(M)) so that this step is valid. Furthermore the transformation in step 2 is highly
recommended since it not only aids in the initial guess computation, but numeri-

cally preconditions the matrix (see [53]), and can greatly improve the power iteration
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performance. Having obtained first guesses for these vectors the power iteration is
started on M using by and wq, with the first guess for &g simply chosen as |as| = ]%If
with sgn(éz) chosen so as to minimize |b;, — dga1,|. Finally we note that the trans-
formation to M is a precursor to the upper bound computation as well (see section
6.2, and also [83]), so that this initial guess computation is particularly cheap when

one wants to compute both upper and lower bounds (as is usually the case).

6.2 The Upper Bound Algorithm

Since the upper bound is a convex problem there are a whole array of numerical tech-
niques one could use to tackle this minimization. Note however that for even medium
size problems (n < 100) then depending on the block structure X, the optimiza;tion‘
over the D and G scaling matrices could involve optimizing several thousand parame-
ters. Therefore, in order to tackle such problems with reasonable computation times,
a straightforward application of brute force optimization techniques will not suffice.
Instead we will exploit the specific structure of this problem, so as to develop an
efficient algorithm, which can handle problems of this size.

The algorithm implementation relies heavily on the fact that the upper bound

may be reformulated several different ways, as stated in the following theorem.

Theorem 6.1 Suppose we have a matrir M € C™" and a real scalar B > 0. Then

the following statements are equivalent:

I. There exist matrices D; € Dy, Gy € Gx such that:
X (M*DiM +§(GiM — M*Gy) - §2D;) < 0. (6.4)
II. There exist matrices D;; € Dy, Gy € G (or Dir € D, Gyt € G) such that:
X (Mp,, Mpy, +3(GrMp,;, — Mp,,Gur)) < 7 (6.5)

where we denote Mp = DM D!,
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III. There exist matrices Dy € Dy, Grr € Gx (or Dirr € Di,Grr € G) such

that:
v ( (44—%& ~ ij> (In + G?H)‘%) <1 (6.6)
IV. There exist matrices Dyy € Dy, Grv € Gx (or Drv € Dy, Grv € Gx) such that:
[ ((In +G%)7i (% —jGIv) (In + G%)‘*) <. (6.7)

Proof: First note that for any of the forms in (6.5), (6.6), (6.7), we may convert
between D € Dy, G € Gic and D € Dy, G e Gy in the following way. Given D €
Dy, G € Gk perform an eigenvalue decomposition on G € G to give G = UAU* (with
U unitary, A diagonal and real). It is then easy to check that D = U*D € Dx and
G = A € G work. To go the other way, take D € Dy, G € Gx and perform a polar
decomposition on D € Dy to give D=vp (with V unitary, P Hermitian positive
definite). It is then easy to check that D = P € Dx and G = V*GV € Gx work. Thus
it suffices to prove the equivalence between I, II, 111, IV for D;, D;;, D;1r, Div € Dx
and Gy, Grr, G, Gry € Gx.

We will show that I — II — III — IV — 1. Suppose I is true, then we have
D € Dy, G € Gx satisfying

M*DiM +j(G/M — M*G;) — 8%D; < 0.

-1
Multiply by D; * on both sides (which will not affect the definiteness of the expression)

to get
-1 -1 1 -1 -1 -1
D; *M*DMD; 2 +j(D;2G:MD;? — D; 2M*G,D; ) — A1, <0.

1 _1 _1
Thus defining Dy; = Df € Dy, Giy = D; Gy D; ? € Gi and rearranging we obtain
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expression II. Now note that we have

M}, Mp,; +3(GiMp,, — M}, Grr) < B,
N 72 (Mb, My, +3(GrMp,, — Mp, Grr)) < I
- () (Be9)-% < u
: (44-i51) (5 -5%) < o
= (M) e ) (i) e B d) <
- () e ) <

so that defining Dy = Dy € Di and Gy = g’# € Gk we have expression III. Now
define D = (In + G%H)%DIH € Dy and we have

My _1
[ ((In + G?n)_% (—EQ —‘.]G1n> (In + G%u ‘11) <L

Perform an polar decomposition on D to give D=vVP (with V unitary and P Hermi-
tian positive definite). Then it is easy to see that defining D;y = P € Dx and Gy =
V*GrV € Gk we have expression IV. Finally we note that by essentially reversing the
above steps it is straightforward to verify that given D;v € D, Grv € Gi satisfying
expression IV, the matrices D; € Dy, G; € G given by Dy = Dyy (I, + G%V)_%DW
and G; = 8D Grv(In + G%V)‘%DIV satisfy expression I. O

Remarks: The equivalence between I, I1, I11 for D;, D;;, Di; € Dy and Gr,Grr, G €
Gx was shown in [29]. Note from the proof that we can easily obtain the formulae
to convert between the various forms (there are several more equivalent forms, slight

variations on the above, which can also easily be obtained).

These different formulations, whilst mathematically equivalent, have quite differ-
ent numerical properties. For the purposes of developing an upper bound algorithm,
we will be concerned mostly with the formulations in (6.4) and (6.7). It follows from

(6.7) that one may develop an alternative form of the mixed px upper bound.
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Theorem 6.2 Suppose we have a matriz M € C™*™ and a compatible block structure
K. Then we have that
A bMDt A
prc(M) < inf |inf {[5’ T ((I—}- Gz)_% (—-——— —jG) I+ Gz)_%> < 1}
DG—D_K; BER IB
Gegx 0
(6.8)

Furthermore this upper bound is equivalent to the one in (4.39).

Proof: Compute B4 as the solution to the minimization problem in (6.8). Then we
have sequences Dr e Dy, GF e G, Br > 0 such that
A (D)t :
v ((I + (G (—[EL —ij) (14 (Gk>2>-%) <1
k
and B | B« with B, > 0. Thus by theorem 6.1 we can find sequences D* € Dy, G* €

Gx such that
M*D*M + j(G*M — M*G*) — BiD* < 0.

Since B | B+ > 0 we have that the upper bound in (4.39) is at most 3., and hence
pc(M) < B

Now suppose we compute B as the solution to the mixed g upper bound in (4.39).

Then we can find sequences D7 € Dy, G € G, 5; > 0 such that

M*D'M +j(G'M — M*G?) — BiD’ <0
with 55 | B and 3 > 0. Defining the sequence [}j = B; + % then we have that

M*D'M +j(GM — M*G?) — B2Di < 0
with Bj l ﬂA > 0 and Bj > 0. Thus by theorem 6.1 we can find sequences Di €
Dy, G € Gx such that

v ((I +(G9)2) (fjjf‘fééj)_l _j(;f) (I+ (éj)z)—%> <1
J

Since Bj l B with [3]- > 0 we have that the bound from (6.8) is at most A. O
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Each of these two different formulations of the upper bound problem has its own
advantages. The problem statement from (4.39) has the advantages that it is linear
in the matrices D and G, and is convex (and hence one will not have problems
associated with local minima). The problem statement from (6.8) has the advantages
that one is trying to minimize the norm of a given matrix (which offers some numerical
advantages), that D enters the problem exactly as in the standard complex y upper
bound, that G enters the problem in a balanced symmetric fashion, and that G is
now a real diagonal matrix.

The upper bound algorithm implemented here uses a mixture of the formulations
in theorem 6.1. Initially we tackle the problem in the form of (6.8). Here we can use
some methods from the complex p bounds, together with various other techniques,
to obtain a fairly good estimates of D,G and B. These are then converted into an
initial guess for the problem in the form of (4.39) and the algorithm then proceeds to

improve on these. More specifically the algorithm proceeds as follows:

Algorithm 6.2 (Mixed p Upper and Lower Bounds)

1. First we balance the matriz. This proceeds by computing the scaling matriz D
to solve inff)eﬁ;c |DMDY|p using a generalization of Osborne’s method [53]
(as in the standard complex p upper bound). The matriz M = DMD™1 is then

balanced, and this procedure generates our initial guess for D € Dy.

2. The lower bound is now computed using the algorithm from section 4.5, applied

to the balanced matriz M.

3. Now we have a lower bound, and E(M) serves as a first guess for the upper
bound. This is then improved upon in the following way. For any fized level of
B compute each block ofé' as Gi = %%(MZ——M:‘) where M; is the corresponding
sub-matriz ofl\zf (i.e., JG’, cancels the Skew-Hermitian part of—]%‘fl) Then bisect
on B between the lower and current upper bound to find the smallest 3 such that

4 ((1 + 6?1 (% —jc‘:) (I + éz)—%) <1
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Finally perform an eigenvalue decomposition on G as G = UAU* (with U uni-
tary, A diagonal and real), and convert to G € Gk by redefining G as A and
absorbing the U matriz into D € Dy and M.

4. We now have initial guesses for D € Dx and G € Gx. The neat step is
to compute a descent direction for G e Gk together with an appropriate step
length. A new G then is computed by taking this descent step. This procedure

is then repeated once more.

5. The matriz D € Dy is updated by computing a diagonal matriz Dy € Dy (so

that it commutes with G € Grx) which minimizes

inf  |Dy(I+G?)~1 (% - jG) (I+G?)~iD;?
_Dde—ij;c ﬁ
Dy diagonal

F

again using a generalized Osborne’s method. We then absorb Dy into D € Dy.
6. Step 4 is repeated.

7. We now have guesses for D e Dy, G € Gx and B for the upper bound problem
in (6.8). These are converted into D € Dy, G € G which form guesses for the
upper bound problem in (4.39). We now improve these guesses using a descent
algorithm, which iteratively computes a descent direction, and an appropriate
step length, for both D € Dx and G € Gk simultaneously. At each step we
compute a new upper bound by solving the associated eigenvalue problem, and

quit when the bound stops decreasing (within tolerance).

This algorithm has been implemented as as Matlab function (m-file) “rmu,” and is
currently available in a test version in conjunction with the u-Tools toolbox [7]. The
algorithm returns upper and lower bounds for pux (M), together with appropriate
scaling matrices D € D, G € G for the upper bound problem in (6.8), and Q € Q
for the lower bound problem (4.1).

The balancing in step 1 of the algorithm serves several purposes. Firstly we

obtain a D € Dy which approximately solves inf 5 Dy E(b]\éf ZA)"I), or in other words
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the standard upper bound for the associated complex u problem. Since we have
reformulated the problem so that the D matrix enters exactly as in the complex pu
upper bound, and the G matrix enters in a balanced symmetric fashion, this D matrix
also serves as a good first guess for the mixed yu upper bound. A good deal of numerical
experience with the generalized Osborne’s method for computing complex p upper
bounds has shown that is very fast and usually works well, and so by reformulating
the problem in this fashion we can exploit these properties in the mixed problem
as well. Note that the conversion from D in problem (6.8) to D in problem (4.39)
involves @, so that we could not directly use the generalized Osborne’s method to
provide a good guess for D € Di in problem (4.39). This balancing also numerically
preconditions the problem, and can greatly improve the performance of the subsequent
steps, including the lower bound computation via a power iteration in step 2 (see the
discussion in section 6.1).

Step 3 of the algorithm generates our initial guess for G. The approach is some-
what intuitive, but although there are no firm guarantees, it appears in general to
work quite well. Thus our D, estimates, which require very little computation
time, are usually fairly good before we enter the descent portion of the algorithm, and
hence we can restrict ourselves to a small number of descent steps. This is crucial
in obtaining a fast implementation, since the descent steps are quite computationally
expensive.

Note that in step 7 we are required to compute a descent direction for D €
Dx, G € Gk, together with an appropriate step length. We compute matriz descent
directions for D, G in one shot by computing a generalized gradient of the upper
bound function (see section 5.2). In this way we avoid separate computation for the
individual elements of the D, G matrices. This is important not only for speed of
computation, but also because in the case of repeated eigenvalues the upper bound
function may not be differentiable. In that case there may not be a descent direction

with respect to any individual elements of D, G, when there is a descent direction if
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all the elements are allowed to move simultaneously. In the case that the maximum
eigenvalue is distinct, then this descent direction coincides with the usual gradient
direction. The step length computation is somewhat ad-hoc, but ensures that the
maximum eigenvalue of the upper bound function decreases, and that we satisfy the
constraint D > 0. Similar comments with regard to the computation of descent
directions and step lengths apply to steps 4 and 6.

This implementation of the upper bound results in an algorithm which is quite
efficient, and can handle medium size problems (n < 100) with reasonable compu-
tational requirements. Results regarding both the quality of the bounds and their

computational requirements (as a function of problem size) are presented in section

6.4.

6.3 Generating Test Matrices

It was stated in chapter 3 that the mixed p problem is NP hard, which implies that
the worst case performance of our (or any other) algorithm will be poor, either in
terms of the accuracy of the bounds, or the growth rate in computation. In fact we
can construct examples for which the bounds in theorems 4.1 and 4.5 are arbitrarily
far apart. For engineering purposes then the real issue becomes whether or not we can
develop a “practical” algorithm, whose typical performance is acceptable. In order to
examine the typical performance in section 6.4, we will run the algorithm repeatedly
on a large number of test matrices, randomly generated from within certain classes,
and collect statistical data. In this section we describe three specific types of random
matrices that will be used.

The most straightforward way to generate random complex matrices in Matlab
is with the p-Tools “crand” command. This generates matrices whose elements are
random variables, and by setting “rand(’normal’)” in Matlab we can choose these
elements to be normally distributed with zero mean. We will refer to this type of

random matrix as a crand matrix.
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Unfortunately it is doubtful that crand matrices are at all representative of those
of practical interest. Since the matrices that the p software will be run on are typically
obtained from control problems, a fairly natural class of random complex matrices is
to randomly generate State Space ‘A,B,C,D’ matrices (with A stable) using the u-
Tools “sysrand” command, and then evaluate the transfer matrix at some frequency
(usually placed roughly in the middle of the modes). We will refer to this type of
random matrix as a sysrand matrix.

For the purposes of testing algorithms it is desirable to be able to generate prob-
lems for which we know the answer a-priori. The following algorithm provides us with

the means to generate such problems:
Algorithm 6.3 (Generate Matrices with g = 1)

1. Randomly generate matrices D € Dy,G € Gy and Q € U. In addition ran-
domly generate a unitary matriz Y € C"*", and a real nonnegative diagonal

matriz ¥ = diag(oy . ..op) with

oi=1 for z=1,...,r

0;<1 for i=r+1,...,n (6.9)

where r is some integer satisfying 1 < r < n. Finally generate a random unit

norm vector n € C"® with the restriction that:
=0 for i=r+1,...,n. (6.10)
2. Compute X € C™*" as any unitary matriz which satisfies the equation
Xn=(Q ! —iG) I, + G227y (6.11)

It is easy to check that the matriz (Q~* — jG) (I, + Gz)_%Y is unitary, so that

this is always possible.

3. Compute M € C™" as

M=D! ((zn + GEXTY* (T, + %) +jG) D. (6.12)
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Before proving that this algorithm does indeed generate problems for which we know

the answer a-priori, we need a preliminary result.

Theorem 6.3 Suppose we have M € C"*" and a compatible block structure K. Then
if the infimization in the y upper bound (4.39) is achieved, and equals px (M), we have

pax prR(UM) = pc(M). (6.13)
Proof: Recall from earlier (4.1), which says that

Joax pr(QM) = pc(M)

l ] < .

Hence the result is trivial for ux(M) = 0 so assume px(M) > 0. Then by a simple
scaling argument we may without loss of generality assume px (M) = 1. Suppose we
have the perturbation ) € Qi achieving (4.1), or in other words ) € Qx and z € C"

such that
QMz = x

with z # 0. This implies that the block components of the vectors x and Mz satisfy

g (Mz)y, =z, for =1,...,m,y
ch(Mm)Cz = T¢; for 1=1,...,m

QY(Mz)c, =z, for i=1,....,mc. (6.14)
Now by assumption we have D € Dy, G € G such that
(M*DM + j(GM — M*G) —-D)<o
so that in particular

o*(M*DM + j(GM — M*G) — D)z < 0.
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Expanding this expression out, and substituting for (6.14), one can derive that

my 1 my 1
> IDF(Ma)y|* < 30 |af P|1DF (Ma)r | (6.15)
1=1 i=1

note that all the complex blocks ¢f, @ are unitary). Since we have |¢7| < 1 for all
) 2 ?

t=1,...,m; this implies that
1
lgfl <1 — [D{(Mz)y| =0.

But in this case, since D; > 0, this implies (Mz),; = 0, and hence by (6.14), z,, = 0.
Thus we may just as well take ¢/ = 1 for all such blocks and still satisfy QMz = =
but now with Q € Uy. O

This theorem says that for problems where p equals its upper bound, then if the
infimum in the upper bound (4.39) is achieved, the worst case perturbation may be
taken to be on a vertex. In general this is not the case. Note that by taking the
contrapositive of this statement we find that: for problems where p equals its upper
bound, then if the worst case perturbation must include internal reals, the infimum
in the upper bound is not achieved. Thus we see that the issue of whether or not
the upper bound is achieved, is strongly associated with the presence of internal real
parameters in the worst case perturbation. In the complex case this issue does not
arise, and the only thing that matters in this regard is whether or not the matrix is
reducible (see [28,1]). We will return to this issue in chapter 8, but for now we use

this result to prove that algorithm 6.3 does as we claimed.

Theorem 6.4 Suppose we have a matriz M € C™*"™ and a block structure K. Then
denoting the upper bound from theorem 6.2 by [, we have that the following two

conditions are equivalent:
1. The infimization in theorem 6.2 is achieved and jixc(M) = px(M) = 1.
2. M can be generated by algorithm 6.3.

Proof: (2—1) From (6.12) we immediately have that

(In + G)"3(DMD™! —jG)(I, + G?)"% = XXY*
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and hence
5 ((In + G (DMD™ —jG) (I + GZ)-%) —1
so that theorem 6.2 implies that fixc(M) < 1, and we have D € Dy, G € G achieving
this bound. Now by construction XY *Yn = n, so that substituting into (6.11) we
obtain
XTY*Yy = Q71 = jG)(I. + G*)% Y7,
Rearranging this equation we can obtain (note that any D € Dx and Q € Uk

commute)
QD! ((In + GHIXTY* (I, + G) +jG) DD (I,+G?) 1Yy = D~ (I.4+G?)~iv7.
Recognizing M from (6.12) and defining z = D=1(I,, + Gz)‘%Yn we have

QMz = x

with  # 0, and hence px(M) > 1. Together with our earlier result this implies

statement 1.

(1—2) Statement 1, together with theorems 4.1 and 6.2, implies that we have D €
Di,G € G and Q € Qx such that

1

5 ((In + G2 H(DMD™ —jG) (I, + G?) z) <1 (6.16)
QMz ==z (6.17)

with ¢ # 0. By theorems 6.1 and 6.3 we may assume @ € Ux without loss of
generality. Furthermore by continuity of singular values, and theorem 6.2, we must
in fact have equality in (6.16). Perform a singular value decomposition on (6.16) to
obtain

(In + G*)~3(DMD™! —jG)(I, + G2)~%1 = XZV*. (6.18)
Now note that our algorithm could (randomly) choose these D € Dy, G € G,
@ € Uk, Y, and ¥ in step 1. Then from (6.18) we see that M satisfies (6.12) and



116

it remains to show that our algorithm could choose this X. Substituting for M in

(6.17) we can obtain
XSY*(In + G2)iDz = (Q7! = jG)(In + G*) "% (I, + G2)iDa.

Now define y = (I, + GZ)%DQ:, so that y # 0 and we may define the unit norm vector
7= ]%[ satisfying

XSV = (Q7! — jG)(In + G2)~%4. (6.19)
Since (@71 — jG)(In + Gz)_% and X are unitary we have that |£ZY*y| = 1. But now
Y is unitary, and so the structure of ¥ implies that § = Y5, where |n| = 1, and 75 is
of the required form. Now suppose our algorithm (randomly) chose this 5 in step 1.

Then we have that XY *y = XY*Yn = n and so
Xn= (@' ~iG)(In +G*)7hYy
so that our algorithm could choose this X in step 2 and hence generate M. O

Remarks: The above algorithm was first developed for the purely complex case in [28,
59]. Note that we can control the number of singular values coalesced at the minimum
of the upper bound function in theorem 6.2, and a simple extension to the algorithm
allows us to also control the number of eigenvalues coalesced at the maximum of the
lower bound function in theorem 4.1. Furthermore by scaling the level of 7(G) in the
algorithm, it appears we can also control the typical level of complex p for M, and
hence generate problems with a large (or small) gap between mixed and complex u
(since we always have mixed p equal to 1). Roughly speaking we find that the larger
the level of 7(G), the larger the gap between mixed and complex p. There is some

theoretical justification for this phenomenon, but we will not go into the details here.

This algorithm allows us to randomly generate all problems with the upper bound
achieved, and equal to g, which is equal to one (together with optimal scaling matrices

achieving the upper and lower bounds). Note that for these problems there is no gap
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between the bounds from theorems 4.1 and 4.5, although the optimal lower bound
requires the solution of a nonconvex maximization problem. We will refer to a random

matrix generated by the above algorithm as a nogap matrix.

6.4 Algorithm Performance

In this section we consider the numerical performance of the algorithm outlined in
the preceding sections. There are many questions one could ask with regard to the
algorithm performance, both in terms of computation time and accuracy of the re-
sulting bounds. We decided to focus on the algorithm performance versus matrix size
for a fixed set of uncertainty descriptions.

Prior to examining the above quantities however, we first wished to examine the
convergence properties of the lower bound power iteration, and for this we carried
out a series of tests using crand matrices. Experimentally it appears that, whilst
the analysis in section 4.5 offered no convergence guarantees, the power iteration
converges most of the time. For a typical test run of 500 crand 5 x 5 matrices with 2
real scalar uncertainties and three complex scalar uncertainties the power algorithm
converged 96% of the time (in an average of 22 iterations). The power algorithm has
also been tested on a variety of other block structures, and on much larger matrices
(e.g., 100 x 100) and the convergence properties appear similar to those described
above. An exception to this is the pure real case (m; = m¢ = 0). This appears to
have significantly poorer properties than any other. There are important reasons for
this that seem inherent to the problem, not the computation scheme. Fortunately the
real-only case is of less engineering interest than the mixed case (see the discussion
in chapter 3, and also [82] and the references therein).

Additionally we note that one can always terminate the power iteration after a
fixed number of steps (even if it has not yet converged), and then use the procedure
from section 6.1 to give a lower bound. This is the procedure currently implemented

in the “rmu” code. Thus the algorithm is guaranteed to return a lower bound on any
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problem. In fact the performance data presented in the remainder of this section was
collected regardless of whether or not the power algorithm converged on the problem
(i.e., no data points were excluded). We will discuss some more advanced power
iterations, which further address this convergence problem, in chapter 7.

From the above tests we also found that the potential problems of certain terms
in the power iteration becoming undefined do not seem to occur in practice (although
it is possible to construct matrices for which this occurs). Also, as was outlined
in section 6.1, we note that the algorithm can be “protected” from these kinds of
problems. It does appears that we obtain 3 = B in practice, and hence the algorithm
gives us not only a lower bound for px (M) but also a decomposition as in (4.16). In
fact we have not seen an example where the algorithm converged with § # B and
this is a subject of current research. Note that in the purely complex case 8 = B is
guaranteed (see [59]).

We then wished to examine the average computational requirements of the (upper
and lower bound) algorithm. For this purpose we used crand matrices (although the
results are not too different for the different classes). The computational requirements
versus matrix size are shown in figure 6.1 for block structures consisting of all scalar
uncertainties, with 90% of them chosen as real and the rest complex. The same data
for the appropriate complex p problem is shown for comparison. The results were
obtained running Matlab on a Sparc 1 workstation, and it can be seen that we can
reasonably expect to handle problems of size 10 in about 10 seconds, up to problems
of size 50 in about 2-3 minutes.

It can also be seen that the (experimental) growth rate in computation time for
the existing implementation is approximately n%. This is probably an artifice of
the implementation in Matlab, which is an interi)retive language. A more realistic
measure of the computational growth rate is in terms of total floating point operations
(flops). If this measure is adopted then it is seen that the (experimental) growth rate

in flops is approximately n3. In any case the algorithm growth rate appears reasonable
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Figure 6.1: Typical computation requirements versus matrix size for mixed p problem

(solid) and complex p problem (dashed)

whether measured in terms of time or flops required. Note that although this is only
experimental data, the results are not too surprising, since it is easy to show that the
cost of one iteration of the lower bound power algorithm is of order n2, and the cost
of one gradient step in the upper bound computation is of order n3.

The next set of tests performed was aimed at evaluating the accuracy of the
bounds. Again we used crand matrices, and the same class of block structures, except
with 80% of the uncertainties chosen to be real. This time we compared the upper
and lower mixed g bounds, and also the mixed g and complex p upper bounds. The
complex p bounds were obtained by simply replacing all the real perturbations with
complex ones, but without changing the matrix. Thus the complex upper bound is
strictly larger than the mixed upper bound. The results are shown in figure 6.2, and
indicate that for these problems we are obtaining fairly tight bounds, even for large
problems.

It is also apparent that for these problems there is typically not much of a gap

between mixed p and complex u. This class of matrices is interesting from the point
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Figure 6.2: Ratios of mixed p lower/upper bounds, and mixed p/complex p (upper)
bounds, for a sample of crand matrices of sizes 10 (solid), 20 (dashed), 30 (dotted),
and 50 (dashdot)

of view of the lower bound performance, since one is obtaining a mixed perturbation
achieving a lower bound close to that one could obtain with a complex perturba-
tion. However it is not too interesting from the point of view of the upper bound
performance, since the GG scaling matrix cannot greatly reduce the upper bound.

It is also doubtful that crand matrices are representative of those of practical
interest. For these reasons we would like to find a class of matrices where we often
encounter problems with a reasonably large gap between mixed p and complex g,
as well as matrices which are of more practical relevance, and so the same set of
tests as outlined above was performed on sysrand matrices. The block structure this
time had 90% of the uncertainties chosen to be real. The results are shown in figure
6.3, and it can be seen that the bounds are once again reasonably tight, but now we
are obtaining a wider spread of values for the gap between complex p and mixed pu,

providing a better test of the upper bound performance.
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bounds, for a sample of sysrand matrices of sizes 10 (solid), 20 (dashed), 30 (dotted),
and 50 (dashdot)

As a further test the bounds for the mixed p problem were evaluated across a
frequency range for some random stable systems (generated with “sysrand”), and
compared to the bounds for the appropriate complex u problem. Again the bounds
seemed reasonably tight, and a typical example plot is shown in figure 6.4.

A number of tests were performed using the nogap matrices, and it was found
that the upper bound computation was typically with 1-2% of the optimum for these
matrices. The lower bound performance was not as good, and in fact the lower bound
power iteration can fail to converge on this type of matrix, and yield a poor bound.
Of course we cannot expect that our lower bound routine is guaranteed to find the
correct answer, since it is attempting to maximize a nonconvex problem.

In addition to the above tests a number of other block structures were tested, with
similar results (except for the pure real case). Note that all these tests were aimed at
evaluating the typical performance of the algorithm on an essentially random selection

of problems, and it appears that the algorithm is performing well for most problems.
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Figure 6.4: Complex p and mixed g upper & lower bounds versus frequency for a

random system

This does not mean however that one will never encounter mixed y problems where
the gap between the upper and lower bounds is large, and it can be seen from figure
6.3 that a few such cases were found. We will discuss what can be done for these
cases in the next chapter.

In addition to the numerical tests described here the “rmu” software has been
applied to a number of practical problems, arising from real physical systems. These
include analysis of natural frequency variations for flexible structures [42], and vari-
ation of missile autopilot dynamics with angle of attack and Mach number [6]. The
software worked well for these problems, providing tight bounds for the associated
mixed g problems. We will discuss some of these in more detail in chapter 11. The
software is currently being utilized at sites including Honeywell, Phillips, NASA Dry-
den and several universities. This will provide additional experience regarding the

algorithm’s performance on real engineering problems.
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Chapter 7

Improved Computational Schemes

Although the algorithm presented in chapter 6 will usually provide bounds that are
accurate enough for engineering purposes, in a significant number of cases of interest,
it will not. In this chapter we consider what can be done for such problems. One
possibility for these problems is to improve the algorithm for computing the bounds
in theorems 4.1 and 4.5. We will further consider the computation of the lower and
upper bounds in sections 7.1 and 7.2, and briefly present some of the latest approaches
that are under development. Note however that for some problems the bounds from
theorems 4.1 and 4.5 may be far apart (regardless of the computation method). For
these cases we must consider improving the bounds themselves (at an additional
computational cost), and in section 7.3 we consider the use of Branch and Bound

techniques to achieve this goal.

7.1 Lower Bound Improvements

We would like an algorithm to compute a lower bound for p that is fast, accurate,
and reliable. For all iterative algorithms, however, there is always a tradeoff between
speed, accuracy, and reliability. The power iteration algorithm for the lower bound
described in chapter 6 is no exception to this rule, and there the penalty for having

an algorithm that is in general fast and accurate, is that there exist cases where it
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fails to converge to a solution. Although one may still obtain a lower bound for these
cases, the bound may quite often be poor. In this section we will discuss how an
adaptive algorithm can be used to keep the performance and speed of the standard
power algorithm (4.28,4.29) for most cases, and enhance the performance for those
problems where (4.28,4.29) fails to converge. The material in this section is largely

taken from [75].

7.1.1 Connections with the Rank One Problem

Our first alteration to the power iteration is to note that it is attempting to force
the right and left eigenvectors of QM to satisfy the alignment condition of theorem
4.2, which is associated with a local maximum of pr(QM). We will see in theorem
8.4 that this alignment condition is also associated with the solution to a certain
rank one p problem formed from these vectors, which leads directly to the following

characterization.

Theorem 7.1 Suppose we have M € C"™" and Q € Qx such that QM has a real
positive eigenvalue (so that pr(QM) > 0). Further suppose that q¢ # 0 for i =
1,...,my, and that the corresponding right and left eigenvectors of QM, denoted z
and y respectively, satisfy the non-degeneracy assumption. Then we have D € Dy

with 0; = £ for |¢f| <1 and ¢ € (=% ) such that
Yy = Dz
if and only if the matriz Q € Qx solves the rank one u problem

max pr(QM)
QEQK

where My, = 2y* and & = Q 1z.

Proof: Note that by assumption we have y*z > 0 so that y*@Q% > 0 and hence
pr(QM;1) > 0. The result now follows from theorem 8.4. O

This rank one problem may be easily solved (see chapter 8), giving us the means to
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choose ) € Qi which forces the alignment condition. This can be rearranged so as

to fit into the power iteration framework via the following lemma.

Lemma 7.1 Suppose we have M € C™*", QQ € Qx with ¢f # 0 fori=1,...,m,,
and D € Dy with 0; = +7 for |¢f| < 1 and o € (=% %). Then we have non-zero
vectors x,y € C" satisfying the non-degeneracy assumption, and a positive real scalar

B > 0 such that

QMz = pzx
y'OQM = By’
y = Y Dz
v’z > 0

if and only if there exist non-zero vectors b,a,z,w € C", with b,w satisfying the

nondegeneracy assumptions, such that

Mb = Ba M*z = Bw
b= Qa z=Q%w

and Q) € Qi solves the rank one p problem

max pR(Qaw*)
Q€9

with pic(aw®) > 0.
Proof: (—) Apply theorem 7.1 and then define b = z,a = 2, w =y, z = Q*=z.
(«—) Define ¢ = b,y = w and apply theorem 7.1. O

On the basis of this lemma, one may define a new power iteration, which is given

conceptually below.
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Algorithm 7.1 (Lower Bound Using Rank One Solution [75])

1. Start with initial guesses for b,w € C™.

2. Update a with a power step of the form Ba = Mb.

3. Compute the Q) € Qx that mazimizes pr(Qaw*), and update z as z = Q*w.
4. Update w with a power step of the form Bw = M*z.

5. Compute the @ € Qx that mazimizes pr(Qaw™*), and update b as b = Qa.

6. If converged stop, else go to step 2.

Note that for the purely complex case the solution to the rank one u problem is partic-
ularly easy, and it is easy to check that this algorithm is identical to (4.28,4.29). For
the mixed case however this algorithm provides us with a different way of choosing the
real parameters, and for some problems it appears to perform better than (4.28,4.29).
There is a potential problem however in that the real parameters may not be uniquely
determined by the rank one solution whenever two block components, wy, ay;, have
the same phase modulo %. In that case one needs to determine which solution is the
required one. It seems that a combination of the routine in (4.28,4.29) and the above
method should provide a good approach, and this is a subject of current research.

We refer the reader to [75] for more details.

7.1.2 Adaptive Power Iteration

The problem with a standard power iteration approach is that it can only ever be
stable about the largest magnitude eigenvalue. Thus we can never converge to a local
maximum of pr(Q M) which has ppr(QM) < p(QM). For complex p problems this is
not an issue, since we are always interested in the largest magnitude eigenvalue. For
mixed problems however we are interested in the largest real eigenvalue, and so this

instability can be a serious drawback of the standard power iteration. Consider the
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following matrix:

5+10) 1—-25
20—-105 O

with the block structure defined by m, = m, = 1,m¢ =0 and £ = (1,1) (i.e., one
real scalar and one complex scalar). Then one can show that for this matrix pux(M) =
5, and furthermore the only matrices ) € Qx achieving the global maximum in (4.1)
are () = £Ip. For these matrices we have that pr(QM) = 5 whereas p(QM) =
10. This means that the standard power iteration scheme described in (4.28,4.29)
could not converge to the global maximum of this problem, since it is not a stable
equilibrium point.

Now note that the mixed p power algorithm represents a generalization of the
complex p power algorithm, which itself can be thought of as generalization of power
algorithms for eigenvalues and singular values (see the special case results in chapter
3). It is well known that the convergence properties of standard eigenvalue and singu-
lar value power algorithms can be improved by inverse iteration, and these techniques
can similarly be applied to (4.28,4.29). The idea behind inverse iteration is simply
that for a square matrix M € C"*", and a scalar A € C, then the largest eigenvalue
of (M — \I,)~! is given as ;/——1_—,\ where v is the eigenvalue of M which is closest to A.
Note that 7%\ grows in size as -y approaches A.

In this way an inverse power iteration can be made stable about any of the eigen-
values of a given matrix M, by choice of A\. Furthermore since the rate of convergence
of a power iteration depends on the (relative) size of the largest eigenvalue, this rate
can be greatly enhanced (see [32,76] for more details).

Recall that the lower bound power algorithm for y is derived by writing a set of
equations characterizing the local maxima of pp(QM) and deriving from them a set
of recursive formulae whose equilibrium points verify those equations. There is no
unique way of deriving such recursive formulae, and different formulations will lead
to algorithms with different convergence properties. In the remainder of this section

we present a new formulation, which was originally derived in [75], that uses mixed
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power and inverse-power iteration. In this way the algorithm is always powering to

find the largest eigenvalue of some matrix (even for mixed problems), so that the

instability problem described earlier is alleviated.

In order to do this we introduce the following notation. Separate the perturbation

@ € Q into its real, @1, and complex (both scalars and full blocks), @2, components.

_ @1 0
? (OQz)'

Analogously partition the vectors b,a, z,w € C":

-(n) =) =(2) -

and the matrices M € C"*" D € Dy:

My M D 0
M= ( 11 21) D= ( 1 )
Mz Mo 0 Dy

I
N
§ 5
N———

Theorem 7.2 ([75]) Suppose we have M € C"*", together with a compatible block

structure KC, and D € TA)/C,Q € Qx with qf # 0 fori=1,...,m,;. Further suppose

we have a real positive scalar B > 0 such that BI,, — M11Q1 is non-singular. Then

there exist non-zero vectors b, z,a,w € C" such that
Mb = Ba M*z = fw
b= Qa b=D"1w
z=Q*QDa z=Q%w
if and only if there exist non-zero vectors by, z2, az,ws € C"™ such that
Mcby = Bas M¢ze = Pws
by = Qaaz by = D5 1w,
z2 = Q3Q2Dzaz z3 = Q3w
Q1(BL, — M11Q1) ' Mioby = DTYBI., — MiyQ1) 1 M3z

where Mc = (Maz + Ma1Q1(B81n, — M11Q1)™1 Mi2).

(7.1)
(7.2)

(7.3)
(7.4)

(7.5)
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Proof: (—) Partition b, z, a,w as above and we may rewrite (7.1) as

pa1 = MuiQia1 + Mi2Q2a2 (7.6)
Baz = M21Q1a1 + M22Q2a2 (7.7)
Bz1 = Q1M 21 + Q1 M3, 22 (7.8)
Bz2 = Q5 Miyz1 + Q3 M3y 2. (7.9)

Note that it is easy to argue by contradiction that bg,z2,a2, w2 # 0. Solving for
a1 and z in (7.6) and (7.8), and substituting in (7.7) and (7.9), we obtain (7.3).
Equations (7.4) and (7.5) derive directly from (7.2).

(¢«—) Define the following vectors

a1 = (BLn, — M11Q1) " My2by

wi = (Bln, — M}1Q1) M3y 25

b = Qia

z1 = QLwi.
Then (7.3) implies (7.6-7.9). Making the obvious definitions for b, z, a, w these equa-
tions imply b,2,a,w # 0 and (7.1). Finally (7.4) and (7.5) imply (7.2). O
These conditions are easily rewritten in terms of the block components as before. As-

suming the usual non-degeneracy conditions we may once more apply lemmas 4.7,4.8

and 4.9 to obtain the equivalent conditions:

Baz = (Mo + ManQ1(BIn, — M11Q1) " Mi2)bs

Wi ae;
Ze; = G5, fori=1,...,m¢
Iwziacz'|
we; .
zg; = ﬁ ) fori=1,...,m¢
7
Bwy = (M3 + Miy(BIn, — QuM7) ™' Q1M31)z (7.10)
at we,
b, = c’—c“aci fore=1,...,m¢
|a:iw0i,
be, = ,—a—@lwc fore=1,...,m¢

|w0i| ‘
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where the real parameters, ¢, satisfy
Re(ay,wr) 20 if ¢ =1
Re(aywr;) <0 if ¢f =1 fori=1,...,m, (7.11)
Re (a:iwri) =0 if Jq|<1
and ay;,wy; are formed by partitioning the vectors aj,w;, where aj,w; are given by
a1 = (B, — M11Q1)"* Mi2b,
wi = (Bln, — M{1Q1) 7 M3y 22. (7.12)
These equations suggest the following iterative algorithm, which has (7.10,7.11,7.12)
as equilibrium conditions.
Algorithm 7.2 (Lower Bound: Mixed Power/Inverse Power Iteration [75])
1. Start with initial guesses for by, ws € C™, ()1 and B > 0.
2. Update Mg = (Mag + M1Q1(BIn, — M11Q1) "1 Mi2).
3. Update az with a power step of the form ﬁaz = Mcb,.
4. Compute the Q2 that mazimizes pr(Q2a2w3), and update zo as z2 = Qws.
5. Update wy with a power step of the form Bwy = Méz,.
6. Compute the Q2 that mazimizes pr(Q2a2w3), and update by as by = Qqas.
7. Compute ay,wy using (7.12).
8. Compute the Q) € Qi that mazimizes pr(Qaw*), and update Q.
9. Update B as %(B + ,é)
10. If converged stop, else go to step 2.

Although theorem 7.2 represents a simple algebraic rearrangement of the conditions
in (7.1,7.2), it has a great impact on the behavior of the power algorithm derived
from them. This is because the power steps on M¢ in the above algorithm are al-

ways attempting to find the largest eigenvalue. Essentially this may be thought of
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as implementing inverse power iteration on the real parts of the problem (where we
need the largest real eigenvalue), and power iteration on the complex parts of the
problem (where we simply need the largest eigenvalue). In this way the new algo-
rithm removes the aforementioned instability problem for equilibrium points where
pr(QM) < p(QM), and so we would expect the (convergence) properties to be sig-
nificantly enhanced.

Note that in the above algorithm the matrices M¢ and ()2 don’t actually have to
be formed as we are only interested in the products of these matrices with vectors.
By optimizing the way we actually implement these operations, we can substantially
reduce the computation time. Nevertheless it is still true that the above algorithm
involves more computation per iteration than (4.28,4.29). Recall that the motivation
for investigating more advanced power iteration schemes was to develop an algo-
rithm that would preserve the numerical properties (speed, accuracy, growth rate)
of the standard power iteration for those cases where it works well, and improve its
convergence properties (and hence accuracy) in the other cases, without excessively
degrading its speed. A reasonable way to achieve this purpose is to have an adap-
tive power algorithm, which has available a number of different power iterations of
increasing accuracy and complexity, together with a scheduling rule that starts with
the fastest one and progressively shifts té the others, if they fail to converge. The

results obtained using a simple scheduling rule are presented in the next section.

7.1.3 Algorithm Performance

Recall that the standard power iteration (4.28,4.29) appeared to perform well when
tested on crand matrices (see section 6.4). For instance, in a typical test run of
500 crand 5 x 5 matrices with 2 real scalar uncertainties and three complex scalar
uncertainties the standard power iteration converged 96% of the time (in an average
of 22 iterations). In fact the new iteration was found to further improve on this

performance, increasing the convergence rate to 99% for this test.
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However these results are not so interesting, since the performance of the original
power iteration is already satisfactory for these problems. What is required is a class of
problems where the standard power iteration often performs poorly. It turns out that
the nogap matrices can be generated so that they often satisfy pr(QM) < p(QM)
at the global maximum, and this causes problems for the standard power iteration.

The results obtained for a random sampling of 100 nogap matrices for two different
uncertainty structures are shown in figures 7.1 and 7.2 (these figures are taken from
[75]). Note from figure 7.1 that for this case over 50% of the answers given by the new
algorithm are larger than 0.9 as compared to less than 15% for the standard power

iteration (recall that by construction the nogap matrices satisfy px(M) =1).
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Figure 7.1: Comparison of (a) standard power iteration, and (b) adaptive power
iteration on nogap matrices, with the uncertainty structure consisting of 4 real scalars,

2 complex scalars, and a 2 x 2 full complex block

The performance degrades somewhat when the number of real parameters in-

creases, but it can be seen from figure 7.2 that the degradation is much more graceful
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Figure 7.2: Comparison of (a) standard power iteration, and (b) adaptive power
iteration on nogap matrices, with the uncertainty structure consisting of 8 real scalars,

2 complex scalars, and a 2 x 2 full complex block

for the new algorithm. Note also that in both cases the new algorithm converged to
an equilibrium point 95% of the time (so that the bound obtained is associated with
a local maximum of pr(QM)). This is for a class of problems where the standard
power iteration typically fails to converge. ;

Note that the new algorithm is still not guaranteed to converge. However there
are further possible modifications to the power iteration. First note from (7.1,7.2)

that we have

Mb = pfa

— QMb = pb

— (QM)*b = Bt
so that one could increase the number of power steps taken during each iteration,
and consequently improve the current estimates of the eigenvalue and associated

eigenvectors. Then note that if instead of updating @) as currently proposed, we
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instead take a relaxed step of the form

Qnew = (1 - t)Qold + thank 1

(where ¢ € (0 1] and Q,qnk1 maximizes pr(Qaw*) as before), one can show that
if we are sufficiently close to the equilibrium conditions, then for ¢ small enough,
@ is updated in the direction of the gradient (and for ¢t = 1 we have the current
scheme [75]). Since gradient search techniques are reliable (but slow), these two
facts can in principle be used to develop an adaptive power iteration with guaranteed
convergence, and a first attempt at such a scheme may be found in [75]. The challenge
is to develop an adaptive algorithm which has guaranteed convergence, without an

excessive degradation in speed, and this is a subject of current research.

7.2 Upper Bound Improvements

The mixed y upper bound, in the form of (4.39), can be viewed as a special case of
a class of LMI problems. The solution of LMI’s is a subject of much research inter-
est right now, since they appear in many control problems (see [22]). Of course one
could tackle these problems with standard optimization techniques, such as gradient
search and related descent methods, although these methods may not be very effi-
cient (see [45] for a review of some standard optimization techniques). In particular,
difficulties can occur because of the fact that the function to be minimized may not
be differentiable at a point where the eigenvalues are coalesced (which may well be
the case near the optimum). Since LMI optimization problems are convex in the free
variables, there are a variety of numerical techniques from convex programming one
can employ for these problems, such as ellipsoid and cutting plane methods (see [14]
for a review of these methods), although once again the difficulty is not so much with
developing an algorithm which is guaranteed to converge to the solution, but finding
one that does it efficiently.

A number of researchers are investigating these types of problems. Fan has pro-
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posed an algorithm which has quadratic convergence [27], under certain assumptions
about the minimizing solution. Overton has developed descent techniques which
specifically address the problem of repeated eigenvalues and non-differentiability [54].
The use of interior point methods has been investigated by Nesterov and Nemirovsky
[48], and appears to have great promise. Several methodologies for LMI solution have
been based on this approach (see [15,35] for example). Recent work by Beck and
Doyle [13] examines the use of hybrid algorithms for LMI problems. This research
area is quite active, and it is expected that improved algorithms for LMI solution will
soon appear.

The algorithm developed in chapter 6 represents a first attempt at solving one
particular LMI. As more refined algorithms for the solution of LMI’s appear, then
they can be used to improve the p upper bound computation. We refer the interested
reader to [12] for a review of LMI optimization techniques, and [13] for the application

of LMI techniques to the mixed g upper bound problem.

7.3 Branch and Bound

As we mentioned earlier there are problems for which the bounds from theorems 4.1
and 4.5 may be far apart (regardless of the computation method). For these cases
we must consider improving the bounds themselves. The use of Branch and Bound
schemes, to improve upon existing bounds, has been suggested by several authors (see
[70,19,2] and the references therein), and in this section we consider the application

of Branch and Bound techniques to the mixed u problem.

7.3.1 Mixed p & Branch and Bound

Branch and Bound is a general technique for computing improved bounds for a given
optimization problem. The fundamental idea is to note that the gaps between the
upper and lower bounds for the optimization problem depend on the domain of opti-

mization. Thus if we partition the original domain of optimization, we obtain easier
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problems (i. e., problems with smaller gaps) and so combining these results we get
better bounds on the original domain. The finer we partition the domain of optimiza-
tion, the smaller the gap between the upper and lower bounds.

In the context of the mixed u problem then, one may ‘chop’ the subspace of real
parameters into two subdomains and then evaluate the bounds on each subdomain
(branch). One thus obtains upper and lower bounds for each subdomain of the
partitioned space, and by choosing the largest of each of these we obtain new upper
and lower bounds for the original problem. This branching process is then repeated
as often as necessary, to refine the bounds as accurately as desired. This is stated
more formally below.

Define the (maximum positive real eigenvalue) function Ag : C**™ — R as
Agr(M) = max{\ : X is a positive real eigenvalue of M} (7.13)

with Ag(M) = 0 if M has no positive real eigenvalues. Then it is easy to show that

an equivalent definition of u is given by

pe(M) = max Ap(AM). (7.14)

Clearly if we have sets BX; C Xx with UBX; = BXx and we define

pi(M) = o Ar(AM) (7.15)
then it follows that
urc(M) = max i (M). (7.16)

Now denote upper and lower bounds for u; as ub; and [b; respectively, so that
Ibj < pij < ubj
and define the quantities

= maxlbj

U = maxub;. (7.17)
J
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Then immediately we have that

max [bj < max p; < maxub;
J J J

so that
L<pu<U. (7.18)

Thus L and U are upper and lower bounds for px (M) which depend on the “local”
bounds [b; and ubj;, and on the “partitioning” UBX; = BXk.
One simple procedure for partitioning BXx into the BX;’s is to chop one of the

‘longest sides’ [2]. This leads to the following Branch and Bound scheme for the mixed

i problem.
Algorithm 7.3 (Branch and Bound for Mixed p [51])
Initialize {BX;} =BXg
Let U = max; ub;
L = max; lb;
while U—-L>ce¢
Let BX, be any element of {BX;} with ub, = U.
Partition BX, into BX} and BX, by bisecting BX, along one
of its longest edges.
Add BX; and BX, to {BX;}.
Remove BX, from {BX;}.
endwhile
With mild assumptions on the bounds [b; and ubj, it is easy to prove that this
algorithm has guaranteed convergence [51]. There are a number of enhancements
one can make to this scheme, with more sophisticated partitioning procedures, and
they similarly can be shown to have guaranteed convergence (see [51] for details).
However it 1s immediately apparent that one has the potential to encounter problems
with exponential growth rates using this approach. In fact it can be shown that if

one can construct a matrix where the bounds are not within the required tolerance at
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the first step (which we can for even our best bounds), then one can build from this
examples which will require exponential time growth rate for the Branch and Bound
scheme. Essentially what this result says is that if one has to Branch and Bound at
all, then it will be exponential time in the worst case. This is not at all surprising since
this scheme provides us with an algorithm to compute guaranteed bounds for mixed
i, which we know to be an NP hard problem. The real issue then is whether or not
we can produce a “practical” scheme, whose typical computation time is polynomial
(despite the fact that the worst case computation time is exponential). There are
some important issues and tradeoffs to be considered in implementing such a scheme,
which can greatly impact the performance. These issues will be examined in the next
subsection, but prior to that we show how the mixed p problem can be put in a
Branch and Bound Framework. This material is largely taken from [51].

Now from the above it follows that in order to implement a Branch and Bound
algorithm for the mixed p problem we need to be able to compute upper and lower
bounds for the quantity u;(A), where the parameter space has been partitioned into

subdomains of the form:

BX; = {A € BXy : 6] € [a; b;] with a;,b; € [-11],a; < b;, fori=1,...,m,}.
(7.19)

Consider first the lower bound. It is a simple extension of theorem 4.1 to show that
Ay AR(AM) = by AR(QM) (7.20)

where the set Q; is defined as
Q; =1{Q € Qx : ¢} €[a; b;]] with a;,b; € [-11],a; < b;, fori=1,...,m,;}. (7.21)

From this point on we may essentially repeat the machinery of chapter 4 to reduce
our problem to one of finding vectors b, z,a,w € C", and a real scalar 8 > 0 satisfying

the equations
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Ba = Mb
Zr; = G wy fort=1,...,m,
*
Wi ac; :
Ze; = - %, fori=1,...,me
Iwciacz|
we, :
zg; = | C’!acz. fore=1,...,m¢
|aCi|
Bw = M*z (7.22)
by, = qjar, fore=1,...,m,
*
ay We; .
b,, = iz—c’aci fore=1,...,m,
Iaciwcil
ac; .
bo, = laci| ) fore=1,...,m¢
lwe; |
where the real parameters, g7, satisfy
Re(aywr) >0 if ¢f =b [
Re(aywr,) <0 if ¢/ =a; fori=1,...,m, (7.23)

Re(ay,wr) =0 if  qf € (a; by).

As before this set of equations immediately leads to a power iteration to compute a
lower bound for y;(M). This involves only a slight modification to (4.28,4.29), and
furthermore we may also apply the more advanced power iteration techniques from
section 7.1 to further enhance the performance.

The basic idea behind computing an upper bound for p;(M) is, as before, to
cover the real uncertainty with some sort of shifted disk (see figure 4.3) and then
apply standard results for disk uncertainty. Since we have greater restrictions on the
range of the real parameters we may use smaller shifted disks to get a better bound.
To this end define the center and radius matrices, C; and R; respectively, as diagonal

real matrices

C; = block diag(ei,...,cn,,0n,)
R; = block diag(ri,...,"n,, In.) (7.24)
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(with ¢;,r; € R and r; > 0 for ¢ = 1,...,n,) which define the perturbation set
BX; = {A:A=Cj+ R;jA for A € BXy}. (7.25)

Then we have the following upper bound for u;(M).

Theorem 7.3 ([51]) Suppose we have a matrix M € C**", a compatible block struc-
ture IC, and a partitioned perturbation set BX;. Further suppose that det (In—%Cj) #
0, and define

N M_, . M_1
M = R} (I, — —Cj)™' —R}. (7.26)

Then we have that

pi(M) < inf |min{&: (M*DM +j(GM — M*G) — D) < 0 for all a > &}l .
DeDx | 4€R
Gegx Laz0
(7.27)
Note that if det(l, — 2C;) = 0 then a is a lower bound for u;(M). In order
to compute this quantity then define the (maximum real eigenvalue) function A, :

C*™™"™ 5 R as

Ar(M) = max{\ : ) is a real eigenvalue of M} (7.28)

with A, (M) = —oo if M has no real eigenvalues, and we have the following result.

Theorem 7.4 ([51]) Suppose we have the set-up of theorem 7.3. Then for any fized
D € Dx,G € G we have that
min{é : (M*DM + j(GM — M*G) — D) < 0 for all & > &}
1 1 1 1 1 Y
_ 3 CiM* — jR? GD_IRJ2 M* R;DR;M + R? G’D“lG'Rj2 M

= Ar 1 1 1 1 (7.29)
RID-RI M C;M + iR} D\GRIM

These two theorems give us the means to compute an upper bound for p;(M). Note
that we can apply the machinery of chapter 6 to also develop a & formulation of this
upper bound, and a practical algorithm for its computation (see [51]). Furthermore

since this bound also has an LMI formulation we can expect that improved LMI
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algorithms can be used here as well. In fact it is easy to check that the standard
upper and lower bounds for the mixed y problem, presented in chapter 4, are special
cases of the bounds presented here for the partitioned p; problem. This is also
related to work in [41] on one-sided p problems, though here we allow an arbitrary
partition of the real parameter space, rather than merely a sign restriction on the
real parameters. These results now enable us to implement a Branch and Bound

algorithm for the mixed p problem.

7.3.2 A Practical Branch and Bound Scheme

Important issues one must consider in developing a practical Branch and Bound
scheme include the tradeoff between the computational cost versus accuracy of the
bounds themselves, for any given sub-problem, and also the amount of computational
cost one is prepared to pay in order to evaluate a good direction to chop the remain-
ing subspace. In order to carry out a preliminary examination of these issues we
first implemented two different Branch and Bound schemes, which we will refer to
as scheme A and scheme B. These Branch and Bound schemes computed a certain
robust stability margin for a problem closely related to the mixed g problem (see [82]
for details). Scheme A used the best bounds we had available for the problem, which
involved a significant computational cost. In Scheme B the upper and lower bounds
were computed using straightforward norm inequalities, with no optimization or scal-
ing matrices, and as such represent cheap but crude bounds. Additionally Scheme
A used a more intelligent (but more expensive) chopping criterion than Scheme B.
A series of tests were carried out running these two schemes on problems involving
sysrand matrices (see section 6.3). The block structures consisted of 2? real (unre-
peated) scalar uncertainties and one p x p full complex block, for various choices of
p (with the aforementioned quantities rounded to the nearest integer). The results
are shown in figure 7.3. For each choice of problem size the two schemes were run

on the same 100 test matrices, and the plots indicate the number of ‘steps’ required
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by each scheme as a function of problem size (where the initial bounds were counted
as the first step, and each chop was counted as an additional step). The labeling is
best explained by example. The label “B50” means that this is the worst problem
encountered by Scheme B, from among the easiest 50% of the problems (for Scheme
B). Note that each scheme was allowed a maximum of 1000 steps (hence the curves

for scheme B appear to terminate prematurely, because the next points were larger

than 1000).
Branches vs. Problem Size
103 - . : : . -
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_~"B90 B
N / Bso ]
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No. of Real Parameters

Figure 7.3: Growth rate of Branch and Bound computation steps, for schemes with

expensive versus crude bounds

It can be readily seen from Figure 7.3 that the (experimental) growth rate for
Scheme B is exponential on the problem data for any of the levels “B100”-“B10”
(note that the results are plotted on a log-linear scale). Scheme A however appears
to have a quite reasonable growth rate on these problems, even for the “A100” level.
Note also that Scheme B failed to converge (in 1000 steps) on many of the problems,

whereas Scheme A converged fairly rapidly on all the problems.
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These results clearly indicate that for a practical Branch and Bound scheme the
methods for computing the bounds and the chopping criterion are absolutely criti-
cal to the performance on even medium sized problems (see [82] for more details).
One is prepared to spend a high computational cost on both of these, provided it
is still polynomial time, since one is potentially avoiding exponential time growth in
the behavior of the Branch and Bound scheme (note that if any branch yields no
improvement in the bounds then the subsequent computation can be doubled, since
the same computation may have to be performed for each branch).

We would like to know what kind of performance level we can expect to achieve
from a Branch and Bound scheme for the mixed u problem. It is clear from the above
discussion that we need to use sophisticated bounds (despite their computational
expense) if we expect to get any kind of high performance scheme with reasonable
computational requirements for fairly large problems. In order to examine the prop-
erties of such a scheme we implemented a Branch and Bound scheme for the mixed u
problem using the best currently available bounds (including a preliminary version of
the lower bound from section 7.1 [75]). This was then used to collect statistical data
on the performance, by running the scheme repeatedly on random problems (again,
we are interested in typical, rather than worst case, performance for reasons discussed
earlier).

This Branch and Bound scheme was used to compute upper and lower bounds for
mixed p problems on sysrand matrices (see section 6.3). The uncertainties consisted
of m, real scalars, and (approximately) = complex scalars, where m, ranged from 2
to 64. The results from one such batch of tests are shown in figure 7.4. There we have
plotted the required number of branches versus number of real parameters for a series
of Branch and Bound tests. Thus the curves represent required computational effort
versus problem size. For each curve we have plotted the worst problem encountered
from a pre-set number of runs, where for each problem the requirement for convergence

was to reach a pre-specified tolerance between the upper and lower bounds, as labeled
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on the curve. Tolerances of 1%,5%,10% and 20% were considered, and for any
problem the run was terminated if it failed to converge to the required tolerance
within 100 branches (hence some of the curves terminate prematurely if the next
problem size did not converge in time). Note that the plots are on a log-linear scale,

so that any straight line with non-zero slope represents an exponential growth rate.

Branches vs. Problem Size for Various Tolerances

102
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Figure 7.4: Branch and Bound computational requirements for varying degrees of

required accuracy

It is clear from figure 7.4 that if the tolerance is set tight enough then the typical
growth rate is unacceptable (see the 1% curve for example). Thus as the problem size
increases the required computation quickly becomes impractical, and so we cannot
expect to be able to achieve these tolerances. Note however that for the 20% curve
the computational requirements remain modest even for the largest problems tested.
Thus we can reasonably expect to be able to achieve this level of accuracy. Fortunately
this degree of accuracy is quite sufficient for engineering purposes. It is important to

keep in mind that our mathematical models are only approximations to real physical
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systems, and the uncertainties are intended to cover the deficiencies in our knowledge
of that system. Thus it is somewhat naive to think that we can have precise knowledge
of the uncertainty levels in real engineering problems.

It is interesting to note that for the 20% level the bounds were usually within
tolerance at the first try, so that it was usually not necessary to branch at all. This
suggests that if one is interested in solving fairly large problems, then one can only
expect the Branch and Bound scheme to achieve a degree of accuracy that the bounds
usually get anyway! Thus the Branch and Bound scheme is not being used as a general
computation scheme per se, but only to fix the occasional problems for which the
bounds are poor, and for these problems to achieve the degree of accuracy which the
bounds typically get. This reinforces the results in [82] and emphasizes the necessity
for good bounds.

To further illustrate this point consider the plot in figure 7.5. This plot shows a
mixed pu computation for a problem with 4 real and 1 complex scalar uncertainties,
where the initial bounds were quite poor (85% relative gap as opposed to a typical
level of less than 20%). We have plotted the current upper and lower bounds for the
problem versus the number of branches, so that the progress of the Branch and Bound
scheme on the problem can be seen. It is readily apparent that initially quite rapid
progress is made so that in only 29 steps the new bounds are within 20%. However
it is also apparent that the progress of the scheme slows quite dramatically after
this point, so that achieving greater levels of accuracy requires substantially more
computational effort, and rapidly becomes impractical.

The preliminary study of the use of cheap versus sophisticated bounds, which
we discussed earlier, employed Branch and Bound schemes using methods from the
extreme ends of the spectrum (see [82]). In other words the best currently available
bounds (which are quite computationally intensive) were compared to some very
crude bounds (which are cheap to compute), when employed in a Branch and Bounds

scheme. The overwhelming conclusion was in favor of the more sophisticated bounds.
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Upper and Lower Bounds vs. Branches

Bounds
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Figure 7.5: Progress of Branch and Bound for a hard problem

In order to examine this question more deeply we compared the use of the best bounds
we had available to the next best we could use in a Branch and Bound scheme. The
results are plotted in figure 7.6. The left-hand plot was generated using a Branch
and Bound scheme employing the bounds previously discussed. We will refer to this
as scheme C. The results in the right-hand plot came from a scheme employing the
same lower bound, and an upper bound obtained by covering the real parameters
with complex ones, and then evaluating the complex p upper bound. Essentially this
amounts to enforcing the choice G = 0, in (4.34), and so this bound is a little cheaper
to compute, but not quite as good, as (4.34). We will refer to this scheme as scheme
D. The results are shown for a series of mixed p problems with 4 real and 1 complex
scalar uncertainties. We have plotted the relative gap between the bounds versus the
number of branches on a log-log scale. Thus we see the progress of the Branch and
Bound schemes with time, and for clarity a number of tolerance levels between the
bounds are labeled. Note that for scheme C all the problems reached tolerances of
10% within 6 branches whereas for scheme D several problems failed to reach 10%

within the allowed 100 branches. Furthermore the typical performance for scheme
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D can be clearly seen to be inferior to scheme C. It is clear that even this level of
reduction in the quality of the bounds markedly affects the performance of the overall
scheme. Thus we are lead to conclude once more that the performance of the bounds
is crucial to the performance of the overall scheme, and that for a high performance

Branch and Bound scheme it is important to use the best bounds available.
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Figure 7.6: Comparison of Branch and Bound schemes

Note that this represents a somewhat different philosophy of Branch and Bound
than the one suggested in [2], for example. Here we are performing a relatively small
number of quite expensive branches, as opposed to a large number of cheap ones.
It should be noted that the approach in [2] might actually work better on small
(< 10 parameters) problems. We believe that the scheme outlined here constitutes a
practical algorithm for the mixed y problem, with reasonable accuracy and modest
computational requirements for problems of medium size (< 100 parameters) that
are of engineering interest. This is despite the fact that the mixed i problem appears

to have inherently combinatoric worst-case behavior.
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Chapter 8

The Rank One Mixed i Problem

We have already discussed in some detail the computational complexity of the mixed
 problem. In particular we have seen that the general mixed u problem is NP hard,
and this strongly suggests that the exact solution of the general problem is compu-
tationally intractable, except for small problems. The subsequent work undertaken
in chapters 6 and 7 was aimed at developing practical computation schemes for this
problem, which give approximate answers with reasonable amounts of computation.

In this chapter we want to consider not the general problem, but a particular
special case of this problem: the rank one mixed g problem. The rank one mixed p
problem is that of computing px (M) for M = uv* with u,v € C®, and no additional
assumptions about the block structure, K. Recalling the discussion from section 3.3.1,
this is a case of imposing “structure on M” to simplify the problem, whilst retaining
the general uncertainty description K. Note that imposing the condition that M be a
dyad is a severé restriction, and this will greatly limit the applicability of this analysis
to real engineering applications.

The reason for our interest in this particular problem is that it turns out that a
special case of this problem is equivalent to the so called “affine parameter variation”
problem (for a polynomial with perturbed coefficients) which has been examined in

detail in the literature, and for which several celebrated “Kharitonov-type” results
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have been proven. These results provide ezact robust stability tests for such problems,
with respect to real parametric uncertainty (see [71] and the references therein). It
will be seen that this special problem does indeed avoid the NP hardness issues of
the general problem, and by examining the rank one u problem directly we are able
to obtain a complete (and exact) solution, in terms of quantities which are easily
computed.

Moreover we will show that the upper bound is guaranteed to achieve u for rank
one problems. This means that in fact the standard analysis techniques for the general
problem, from chapters 4 and 6, exploit all the information that we have about this

special problem, and also yield exact results.

8.1 “Kharitonov-Type” Analysis

Before embarking on a study of the rank one mixed p problem, we first place this
problem in context, by considering the “affine parameter variation” problem, for a
polynomial with perturbed coefficients. This formulation of the “affine parameter
variation” problem is fairly standard, and is taken from [61].

Consider a real monic polynomial in the complex variable s, whose coefficients are

affine functions of a real vector of uncertainties, £ € R™
p(s, k) =" +ay(k)s" 1 +az(k)s" 2+ ... + an(k) (8.1)

where a;(k) for ¢ = 1,...,n are affine functions of k, i. e., there exists F' € R®*™ and

g € R™ such that

a(k) = la1(k) ag(k) ... an(k)T = Fk+g. (8.2)
Thus we can rewrite this set of polynomials as

p(s k) =s"+[s"71 "2 .. 1)(Fk+g). (8.3)

Since this polynomial will typically be the closed loop characteristic polynomial of

some uncertain system, we will say that it is stable if it has all its roots in the open
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left half-plane. We assume nominal stability, i. e., p(s,0) is stable. Thus in order
to check robust stability we can show by simple continuity arguments that it suffices
to check that the polynomial has no roots on the imaginary axis for any k. Assume
in the following analysis that we are considering points on the imaginary axis, i. e.,

s = jw where w € R. Note that since we have nominal stability p(s,0) # 0 for all

s = jw. Thus we have
p(s,0)=s"+[s"1 "2 . 1]g # 0. (8.4)

Now note that we have a root of the uncertain polynomial on the imaginary axis if

and only if for some s = jw and some k£ € R™, p(s, k) = 0. This can be restated as

p(s,k) =0 — ["1 "2 | QJFk=—s"—[s""1 "t .. 1]y
— k=1

— 1—0v"%k=0 (8.5)

where v € C™ is given by

— 1 ) Ty.n—1 _n—2 *
° T ("3"—[3"“1 sn=2L l]g) s s e 1
-1 \*
= e N 8.6
(p(s,O)) [ ] (8.6)
But now define the quantities A € R™*™ and u € R™ by

A = diag (k... kn) 57)
R O .5

and we have that Au = k. Thus an equivalent condition for the existence of an

imaginary axis root of the uncertain polynomial is given by
1—v'k=0 «— 1—-v"Au=0
— det (I, — Auv*) =0
— det([;, —AM) =0 (8.9)
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where M € C™*™ is the dyad M = uv*. Checking this condition is exactly a rank
one p problem and thus we see that the “affine parameter variation” problem, for a
polynomial with perturbed coefficients, is a special case of the rank one u problem
(with only real perturbations).

It is possible to consider a number of different stability problems arising from this
set-up, by allowing for different stability regions, and different norms to measure the
size of k. We will only be interested in the case where stability is associated with all
the roots in the open left half-plane, and we use |k|oo = max;<m |ki| to measure the
size of k. In this case we find that we can use the standard definition of p, and we
are required to compute the peak value across frequency of p, for a transfer matrix
which is rank one. The treatment of other norms/regions is discussed in [17].

A number of different stability results have been presented for this type of prob-
lem. One of the strongest motivations for pursuing these problems was provided by
Kharitonov’s celebrated result for “interval polynomials” [37]. This is a special case
of the above setting where one further restricts the uncertainty description to be of

the form

ai(k) = a; + bjk; for i=1,....m (8.10)

where a; € R, b; € R and m = n. Thus the coefficients of the polynomial are
independent of each other, and known only to lie within certain intervals. For this
problem it was shown in [37] that one need only check four specific polynomials to
establish stability of the whole family. This is clearly a polynomial time computation,
and we have restricted the problem sufficiently to beat the NP-hardness of the general
problem. In doing so however we have placed quite severe restrictions on the allowable
problem class, and so the applicability of the result is rather limited.

If we consider the “affine parameter” case, then it was shown in [11] that it suffices
to check stability of the edges of the parameter space, i. e., we may take every element
of k except one to be at an extremal value of it’s allowed range. Note that this requires

checking a combinatoric number of edges, so that even this increase in the generality
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of the problem produces dramatic increases in computation. Exact results for this
type of problem typically involve checking the vertices or edges of some polytope in
the parameter space, and hence involve exponential growth in computation (see [71,
10]). If one is prepared to allow a frequency search then this exponential growth can
be avoided [61]. This can also be seen from the framework we will develop here, since
these problems can all be tackled as rank one p problems, which we will see can be
easily solved.

Thus we will find that it is possible to develop exact robust stability tests in the
p framework as well for this type of problem. Of course we must note once more
that the applicability of this rank one p analysis is rather limited, and the fact that
the general problem is NP hard strongly suggests that results for this case cannot be
usefully extended to the general case. This is the reason why the “Kharitonov-type”
analysis methods do not extend to the more general “multilinear” or “polynomial”
cases (which correspond to more general y problems), and one is forced to use ap-

proximate and/or iterative methods (see [70] for example).

8.2 Equivalence with the Upper Bound

This section is devoted to proving that for a rank one u problem, the upper bound
always achieves p, regardless of the block structure. A preliminary version of this
result was proved in section 5.4.2, where additional assumptions were imposed to
make the proof fairly simple. Here we will not make any such assumptions on the

problem, and it turns out that this makes the proof substantially more difficult.

Theorem 8.1 Suppose we have a rank one matric M € C" ", then for any block

structure, IC, px (M) equals its upper bound from theorem 4.5.
Before tackling the proof of this theorem, we need a few preliminary results.

Lemma 8.1 Suppose we have a rank one matriz M = uv*, with u,v € C*, and a

block structure K. Then there exists a sequence of matrices DI € Dy such that the
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following is true:

1. Define w! = Diu, v/ = (D)o and the following limits exist:

limu = w

J—o00

lim v = w. (8.11)
j—o0

2. Partition u,v,u,v compatibly with the block structure as in ({.7). Then we have
that the following is true:

—% — % .
Uy Ur; = Oy, for  o=1,...,m,

% — % .

Vo, Ue; = Vghe; for i=1,...,m (8.12)

ﬁ"éiATiCi = va.Auci for :=1,...,mg forany A € CFmrtme+iXkmp4me-ti

3. With this notation we also have that

—F — — — 12
Iv:iun'l = Ivrilz = Iunl

li’—:zﬂczl = I%IZ = Iﬂcz'lz

lve;|luc,| = [oe;|lac,| = [vg,|* = [ag,|?  for i=1,...,mec. (8.13)
4. Define M? = w/v'™* and the following limit exists
lim M’ = lim D'M(D)~! = 11. (8.14)
j—00 J—00

5. We have M =uv*, with puxc(M) = px(M).

Proof: Consider first the repeated real scalar blocks, i.e. , up, vy, for i =1,...,m,.

Suppose first that for some 7 in this range we have that |v} uy| # 0. Then we have
Uy Ur; = ~vel?
for some 7,80 € R with v > 0. Thus we have that

v:i(e_jauri) =7>0
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and so by lemma 4.3 we can conclude that there exists D; = D} > 0 such that
vr; = e 99(D;)%uy,.

Choose Df = D; for all j and so for this block we have for all j

Ivizl = |(Di)_lvn| = |e_jeDiuri| = |Diuy| = IU“
and furthermore
opun | = [},e ™ un| = [oF,(Di) %o, | = |[(Di) ™ o |* = Jof, I°.
Finally note that
vitul, = vy (Dy)” ' Diur; = v}ur;.
For this block then properties 1,2,3 all hold.
Now suppose that for some < m, we have |v;‘iu”| = 0, or in other words vy,

orthogonal to u,; (if we have |vy;| = 0 and/or |ur;| = 0 then see the treatment for the
full complex blocks later). Thus we can choose a Hermitian positive definite matrix
D! with u,; as an eigenvector corresponding to the smallest eigenvalue of D/, and vy,
as an eigenvector corresponding to the largest eigenvalue. Now simply choose such

Dg with

ADH)Too as jToo

Amin(D) 10 as  jToo (8.15)
and we have that
lim [vf| = lim |(D)) "o, = 0
J—00 J—0
hm lui| = lim |Diu,| = 0 (8.16)
J—o0

so that properties 1,2,3 hold once more. The treatment for the repeated complex

scalar blocks (i.e., uc,ve; for 2 =1,...,mc) is identical.
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Now consider the full complex blocks, i.e., ug;,vg, for i = 1,...,m¢c. First
consider a block where (for some ¢ in the appropriate range) |vg,||uc;| # 0. Choose

the scalar d; as

lvcil
di = IU_C'| (8.17)

and choose DZ: = d;I, for all y. Then for this block we have that

mr+4me+i

; lvg; |
luls, |* = |diug;|* = (di)?|ug;|* = ——IUC’IIUCAZ = |ug;l|vg |
)
. 1 1 A
P2 == , 2 _ . 2 = ki) . 2 _ . .
v, | ldivczl CAE lve; | o] lve;|” = ug;llve | (8.18)

and furthermore for any A € Ckmr+me+iXEmr+meti we have

va'AuC'i - (ZITUCJ Aldiug;) = U]CtAu]C'z

Note that this implies
v, lug, | = lvg|lug;|
so that properties 1,2, 3 all hold for this block.
Suppose now that for some 7 we have |vg,||uc;| = 0, and hence |ucg;| = 0 and/or
lvg,| = 0. If both are zero simply choose D! = I kmptmei fOT @ll 7, and it is easy to
check that properties 1,2,3 all (trivially) hold. If not then choose Df = ng K 4o ti

where di: is chosen to satisfy

#Too as jToo if |ug|=0

10 as jloo if |ug|=0. (8.19)

In either case we have that

. ; . 1

jlgglolvf:il = jl_l_)%lgvail = 0

lim |u’Cz| = lim |dug| = 0 (8.20)
j—00 j—o0

so that properties 1,2,3 hold once more. Thus stacking up the blocks we have con-

structed we obtain our D? € Dy satisfying properties 1,2, 3.
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Now note that
M7 = v = Diwo*(DP)™1 = DI M(D7) ™1

is a product of convergent sequences, u/ and v?, and hence converges, so we have

a3k

property 4. Furthermore by standard properties of limits we have that M = @ ©
Note finally that employing properties 1,2,3,4 we obtain that for any A € X

det (I, — AM) = det (I, — AuT*)
= 1-7*Au

mr Me mc c
_ Tk — C—* — —k —
= E 61Ty, Uy — ), 650, Uey — Ve, A g

myr Me mgc c

— T, % C, .k *

= 1- E 63' v'l‘i Up; — E 51 ’UCZ, Ue; — E vCiAi uc;
1=1 =1 1=1

= det (I, — AM) (8.21)
and hence ux (M) = ux (M), which is property 5. O

Remarks: Note the the sequence of matrices D/ € Dy satisfies the following:

o(M) = [u|[v] = [u]?
me Me mc
= Z Iﬁri|2 + Z Iﬂ0i|2 + Z Iﬂci |2
= Zl’v - unHZIUC, uqHZI'vc |[Tc; |

z=1 z—l

= Z IU:Z U, | + Z |U:z Uc;| + Z lve|lug |- (8.22)
1=1 1=1 =1

lim (D' M(D¥)™1)

J—00

This final expression is exactly p for the associated complex p problem. Therefore
this lemma proves that complex u equals its upper bound for rank one matrices
(which we already knew), and in the process we explicitly constructed the sequence
of scaling matrices that does the job. Thus the sequence D/ € Dy is exactly the
optimal scalings from the upper bound of the associated complex u problem.

Note that this lemma provides us with a g invariant transformation from M to

M. The point of carrying out this transformation is that property 3 implies that the
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vectors W, T of the dyad M are perfectly balanced in the sense that each sub block
of @ has the same norm as the corresponding sub block of 7. Consequently we have
that for each sub block of @ and T we either satisfy the non degeneracy assumptions

(see section 4.3), or the corresponding sub blocks of % and ¥ are both identically zero.

Theorem 8.2 Suppose we have M = uwv* with u,v € C", and a compatible block
structure K, with p(M) > 0. Partition u,v with respect to this block structure as
in (4.7), and assume that for each sub block of u and v we either satisfy the non-
degeneracy assumptions, or the corresponding sub blocks of u and v are both identically

zero. Then there exist matrices Q € Qy and Q € Oy with

R 1 if e=5<m, and Q;; =0
Qij = ’ (8.23)

Qi; otherwise

together with matrices Dp € Dic, D > 0 and Dy € Gy, and a real scalar pe(-57%)
such that
v=el? (DRQ + jDIQ) u (8.24)

with 0 < v*Qu = pux(M).

Proof: The proof of this theorem is essentially an application of the same machinery
used to prove theorem 4.2. First suppose that px(M) = 1. Then by theorem 4.1
there exists @ € Qi with pr(QM) = 1. Since we may absorb a factor of + into Q
we may assume that the eigenvalue achieving pr(QM) is positive. But note that this
implies
0 =det (I, - QM) = det (I, — Quv*) =1 —v*Qu (8.25)
and hence 0 < v*Qu =1 = ux(M).
Since M is rank one, so is @ M, and hence QM has at most one non-zero eigenvalue

(not repeated). Thus the eigenvalue at one is distinct and furthermore we have that

QM@Qu) = Qu'Qu = (Qu)
VQM = v*Quv* = v* (8.26)
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Since Qu and v are both non-zero this implies that they are the right and left eigen-
vectors of ()M corresponding to the unity eigenvalue, and furthermore they are nor-
malized with v*(Qu) = 1. Since this eigenvalue is distinct we can differentiate it, and
applying the machinery of theorem 4.2 to M = @M we can derive that the following

relations hold

Re(ej'/’qfv;fiu”) >0 , ¢e=1,...,m,
Re (ej'/’q{v:iu”) =0 , if :<m, and [¢]|< 1
ej'bqfv;uci €0c0) , i=1,...,m,

Re (ej‘bva, GYQuc) <0 , forall GY € ChmrtmetiXkmrtmesti

with GZ + GE* <0, i=1,...,mc (8.27)

for some ¥ € (=% Z). Now we may apply lemmas 4.2 and 4.3 to each sub block to

obtain

Vy; = ejweiaiqZDiuri , 0<D; =D}, 0;¢ [-—g g], i <m, and |¢|=1

v, = &Y% Diu,, , 0< Dy =DF, 0; = :i:g, i<my and 0<|gf| <1
vy = Dy, 0 < Di=D}, b =%, i<m, and |gf| =0

Ve; = ej’l’qum,,_,,,'uci y 0<Dmpyi=Dy, 14, 1=1,...,m¢

vo; = YdiQuc, , 0<dieR, i=1,...,mc. (8.28)

Note that in order to apply lemmas 4.2 and 4.3 we need to assume that the non-
degeneracy assumptions are satisfied for that sub block. However we have assumed
at the outset that u,v either satisfy the non-degeneracy assumption for a given sub
block, or have both sub blocks of u and v identically zero, in which case the above
relationships hold trivially. Applying this argument to v and Qu we get that the
above relationships hold for every block. The only case where this argument breaks
down is for the repeated real scalar blocks with ¢" = 0. For these blocks however we

can show that the above relationships hold by a simple geometric argument.
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All that remains now is to define the appropriate quantities. Define Q € Qx
directly from @) € Qx via (8.23). For ¢ < m, note that

&% = cos(6;) + j sin(6;)
so that we may split each scaling matrix as
% Dy = cos(8;)D; + jsin(0;)D; = Dg, +jDy, for i=1,...,m,. (8.29)
For the complex blocks we simply define

Dp Dppyi for i=1,...,m,

myr +i

dr, = d;i for i=1,...,mg. (8.30)

1

Now stack these definitions up to define Dy € Dy and D; € Gx. Since for each 6;
we have that 0; € [-5 7], it follows that cos(6;) > 0 and hence Dg > 0. It is now
easy to verify that with these definitions the relationships in (8.28) may be written
in matrix form as v = ei¥ (DRQ +jD1Q) u. This proves the result for px(M) = 1.
The result for pic(M) > 0 follows immediately from this by simply scaling u so that
pic(M) = 1, applying the result for px(M) = 1, and then reabsorbing the scaling
back into Dg and Dj. O

Remarks: Although it appears at first sight as a rather unmotivated mathematical
abstraction, we will see that in fact this alignment condition between v and wu is
the key to the equivalence between p and it’s upper bound. Note also that, as in
theorem 4.2, we have such an alignment for any @ € Qy achieving a local maximum
of pr(QM) over Q € BXx with pp(@QM) > 0. This follows since we derived the
alignment condition simply from stationarity conditions, and did not use the fact
that pxc (M) is the global maximum at all.

Note that the conditions on v and v assumed in theorem 8.2 are exactly those
guaranteed for the transformed vectors in lemma 8.1. Thus by first transforming the

dyad as in lemma 8.1 we can show that (for the transformed dyad) we always have an
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alignment condition as in theorem 8.2, without requiring any type of non-degeneracy

assumptions (except that px(M) > 0).

We are now in a position to combine these results to prove the main result of this

chapter.

Proof of Theorem 8.1: We will consider separately the cases px(M) > 0 and
pic(M) = 0. First suppose that pic(M) > 0 and for the moment further assume that
in fact px(M) = 1. Carry out the transformation of lemma 8.1 to define @, o, M with
pic(M) = 1. Now @,, M satisfy the assumptions of theorem 8.2, so we may apply
this theorem to conclude that we have matrices Q € Qx and Q € Qx with Q as in
(8.23), together with matrices Dgp € Dy, Dg > 0 and D; € Gk, and a real scalar
¥ € (=% %) such that

v=¢Y (DrQ +3iD1Q) (8.31)

with 7*Q@ = 1. Note that this implies
QU = e VT (Q*Dr — jQ*Dr)Qu =1
and hence
T*Q*DrQu — ju* Q*D;Qu = &Y = cos(¥) + j sin(zp). (8.32)
Now we have immediately that 0 < w*Q*DzQu € R and furthermore
7*Q*DrQu = w*Q*QDru = w*Q*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>