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ABSTRACT

The d*ynamibs of weak shocks in ducts of complex geometry and
the sound radiation produced by the reflection of a weak shock from
the open end of a duct have been 'investigated.‘ Duct geometries include
expansion chambers with and without inlet or outlet tubes extended and
enclosed perforated tubes. Internal and external pressure histories of
the interaction of weak shocks with simple muffler elements have been
recorded ‘\ising a standard one-shot shock tube and a resonating shock-
tube., The excitation shock Mach number ranged from 1.05 to 1.55.
Analytical investigations, including a synthesis of existing works on
internal weak-shock interactions and an acoustic treatment of the
sound radiation produced by weak shock waves, are presented. Com-
bining the above analyses, models for the reduction in radiated sound
per unit of incident shock amplitude, as a result of inserting a muffler
between the source and the tailpipe e:-;:itg are developed.

For expansion chambers with énd without extensions, the de-
pendence of the transmitted and reﬂécted waves and of the radiated
sound on area ratio is compared with predictions. In particular,
measured transmission coefficients for expansion chambers agree
reasonably well with the predictions for all shock strengths;
however, for large area ratios, the predicted sound attenuation is not
cbserved, as waves diffracted at the upstream junction cause more
sound to be radiated. For expansion chambers with internal exten-
sions, sound attenuation is increased for low incident shock strengths;
while for increasing incident shock strength, the internal transmission

characteristics deteriorate, thus reducing the sound attenuation.
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For enclosed perforated tubes, the dependence of the trans-
mitted and reflected waves and of the radiated sound on perforate area
ratio and incident shock strength is compared with predictions. For
perforated tubes with infinite enclosure, the transmission and reflec-
tion coefficients depend on both incident shock strength and perforated
area ratio, as predicted. However, agreement with data is obtained
only after inserting a perforation discharge coefficient with the per-
forated area ratio in the theory. The reduction of sound radiation
with perforated area ratio is measured for one incident shock strength
and then'compared with predictions. For small area ratios, there is
agreement but for large area ratios the measurements show that
less sound is radiated than. predicted. For large area ratios, gradual
compressions with smooth fronts (not shock fronts) are transmitted,
resulting in less radiated sound. Enclosures have no effect on the
sound attenuation for émal]_ perforate area ratios; however, as the
perforate area ratio increases, the enclosure eventually inhibits

further increase in sound attenuation.
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INTRODUCTION

There exist many industrial products which create intense
periodic, aperiodic, or transient sound and cause some very chal-
lenging design problems for the engineer. It is well known that as a
consequence of fundamental nonlinear effects in fluids, shock dis-
continuities are formed in intense sound fields. Recently, disciplines
such as nonlinear acoustics, jet propulsion, transonic and supersonic
fluid mechanics, and more applied portions of the engineering industry,
have been confronted with problems involving shock wave propagation.
Some cases in which shock propagation is an important phenomenon are
sonic boom, blast wave, jet engine noise, rocket motor instability,
electric discharge lasers, valve noise, cavitation, and small internal-
combustion engines. This paper specifically addresses the problem of
propagé,tion and suppression of steep-front pulses observed in the |
exhaust systems of small high-performance internal-combustion en-
gines,

The exhaust systems used on small high-performance internal-
combustion engines can be designed to utilize the strong pressure
pulse generated by the ''fast'' opening time of the exhaust port or valve
to enhance scavenging of combustion products and, in the case of two-
cycle engines, to supercharge the combustion chamber. Consequently,
a well-designed exhaust system can cause remarkably large increases
of the power developed by the engine. Nomura and Naitoh (1971) report
that two-cycle engine performance is greatly affected by the exhaust
system and that the exhaust system accounts for a substantial portion

of the 350 bhp/liter (5.74 bhp/cubic inch) attained by their four cylinder,



1/8-liter, two-cycle racing engine, At peak rpm the exhaust port in
their engine opens completely in less than one millisecond. The large
rate of increase of mass flux associated with fast port opening time
creates the steep-front compressive disturbance driven from the
exhaust port. The pressure jump is of the order of one atmosphere.
Reflections of the pressure pulse are utilized to enhance engine per-
formance,

Noise pollution, caused by motorcycles, chain saws, etc., has
developed into a major public issue. The basic problem is that to
develop high specific power output, an engine must have high cylinder
pressure lev;els and fast opening exhaust valves, Consequently, the
exhaust pulses have a large amplitude and a steep front. In fact, when
nonlinear effects are important, the fronts will steepen sufficiently to
be treated as shock discontinuities. |

The sound radiation from the outlet of these exhaust systems is
characterized by a source strength. For acoustic point sources, it is
known that the radiated pressure field is directly proportional to the
time rate of change of volume flux from the source (Morse and Ingard,
1968). Therefore, the sour ce strength for the sound radiation by shock
waves has two important parameters, which are the amplitude and
thickness of the shock. Clearly, by weakening or thickening the shock,

the sound radiation is reduced,

Generally, the shock strength is only affected by the duct
geometry. It is »known from geometrical acoustics (Whitham, 1974)
that weak shocks will strengthen in duct contractions and weaken in

duct expansions. Two area change configurations are discussed in this
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paper, namely, discontinuous area changes and discontinuous area
changes with extensions (¥ig. 1). Also, perforations in the side wall
of a duct (Fig. 1) weaken the shock, as the fluid behind the shock will
leak through the perforations. In addition to weakening the shock,
perforations which extend for several duct diameters can thicken the
shock.,

Existing muffler technology, which was introduced by Stewart
(1930), models the engine as an independent sound source and the
exhaust system as an idealized acoustic transmission line. The
acoustic theory predicts muffler performance quite well when the
muffler is excited by sinusoidal waves of infinitesimal amplitude (Sachs
and Allen (1972), Alfredson and Davies (1971), and Davis (1954)).
Ceonversely, the acoustic theory does not predict the muffler perfor-
mance when the muffler is excited by actual exhaust pulses. This
discrepancy is caused by finite amplitude effects, particularly wheun
shock discontinuities are formed in high-performance exhaust systems.

A single pulse theory for muffler design which conironts the

problem of dealing with the steep-front disturbance was conceived by
Davies (1964). The basic concept of the single pulse theory is that the
interaction of the discontinuity in the exhaust pulse with individual
muffler elements can be taken as an isolated event, independent of the
existing fluid motions in the rest of the exhaust system. Then, simple
models of shock wave interactions with muffler elements can be com-
piled. A shock wave muffler theory can be developed, in place of
acoustic theory, to be used when the amplitudes of the exhaust pulses

are significant.
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By using the shock wave to model the actual exhaust pu]iseb
instead of a sinusoidal disturbance, one can readily account for non-
linear effects which are not in the acoustic theory.

Nonlinear phenomena which are important in exhaust systems
include (1) the steepening of progressive waves, causing discontinuities
to form, and (2) the local Mach number induced by the shock wave,
causing the effects of compressibility and Reynolds number to be
important. These phenomena are particularly important in muffler
systems in two ways: (1) a discontinuity can be formed in the initial
pulse after propagating only a short distance from the exhaust port,
and (2) resonances in cavities or enclosures develop, causing the
appearance of asymptotic wave forms which contain discontinuities.
The local Mach number affects the fluid motions in mufflers when the
dynamic pressure becomes a significant quantity, and Reynolds number
effects may occur because shock waves certainly interact with boundary
layers and may interact with separated and turbulent flow.

The basic geometries investigated in this work constitute funda-
mental components of existing, more complex systems. In general,
the mechanism of sound attenuation utilized by most muffler systems
can be categorized as reflection or dissipation of the energy in the
shock., There are, no doubt, a large number of duct geometries which
will produce sound attenvation; however, since the details of the mecha-
nism are many times quite similar, there is much to be learned in a
careful study of the basic geometries.

1.1 Interaction of Shocks with Discrete Muffler Elements

Of the many types of muffler elements available, three simple
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yet basic geometries are discussed in this paper (Fige 1): those
composed of tubes with a) orifices in the walls, b) discontinuous
changes in cross-sectional area, and c) tubes extending beyond dis-
continuous changes in cross-sectional area.

To develop models for the interaction of a shock wave with a
muffler element, let us examine two stages of the interaction: (1) the
short time or transient behavior, and (2) the asym‘ptotic conditions.

In general, for short times the interaction is between the shock
and the transient waves created by the arrival of the shock at the
muffler element. A long time after the arrival of the shock the tran-
sient waves have interacted with the shock, and the flow past the element
ig steady. Rudinger (1957) first proposed that the time for steady flow
conditions to be established after the arrival of a plane shock wave at
a junction in a tube would be non-zero and closely associated with the
local acoustic travel time across the width of the duct. In particular,
Rudinger determined the time for the steady conditions to develop fol-
lowing the arrival of a plane shock wave at the open end of a circular
pipe was equivalent to the time in which a sound wave travels three
exit diameters.

A similar approach to the understanding of the short-time be-
havior of the shock wave interaction with a muffler element can be
discussed in terms of ideas about wave diffraction. When a plane shock,
whose strength is constant along its front, propagates into a motionless
fluid, the pressure field behiud the shock is constant and is given by the
shock strength. Conversely, when variations in the shock strength

exist along its front, variations in pressure are left in the fluid behind
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the shock. In particular, when a shock passes over a step (Fig. 2),
waves are created behind the shock front, causing variations in shock
strength along its front. Since the shock propagates at a speed given
by the local Mach number, the shock is no longer plane. For an ex-
pansion corner, waves behind the shock front cause it to curve away
from itself. The waves in the nonsteady flow are termed diffraction
waves and act to smooth the pressure field behind the shock.

Thus, when a discontinuity in shock strength occurs on the
shock front, a wave front, which acts to smoéth the pressure field
behind the shock,is diffracted radially from the point of origin., Dif-
fracted wave fronts can of course be of either sign; the portion of the
wave diffracted into high-pressure region is an expansion, which acts
to lower the pressure while the portion of the wave diffracted into low-
pressure region is a compression, which acts to raise the pressure.
The expansion portion will not lead to a discontinuity in shock strength
along its front, but it may be thin enough to be treated as a discontinuity.
For an expansion corner, the diffracted wave front extends from the
back side of the corner, 3, to the front side, 1, and intersects with
the incident shock at 2. The expansion portion of the wave front pro-
pagates into the high-pressure region at the local speed of sound rela-
tive to the fluid in region two. The compression portion of the wave
front propagates into the undisturbed fluid in region one in a direction
normal to the local front at a speed given by the local Mach number.

If the shock and the diffracted wave front propagate at the
undisturbed speed of sound, ay, the diffracted wave front forms a circle

of radius ajt at time t. Further, the shock intersects the diffracted



FIGURE 2 SHOCK INTERACTION WITH A 80° STEP
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wave front at the poi;ﬁt of tangency. This of course is not the true

case for waves of finite amplitude; disturbances created behind a

shock always overtake the shock because of the increase in the speed

of sound and the effects of convection behind the shock. As a result

of these nonlinear effects, the expansion portion of the wave front
overtakes the shock front é,nd their intersection propagates along the
shock front with a nonzero velocity, c*, The velocity of intersection 2
along the shock front is given quite simply from a kinematics argument,
by noting that relative to fluid in region two, intersection 2 has a radial

velocity, as, and a horizontal velocity (Mse a, - uz). Thus, intersec-

1
2

1
tion 2 propagates along the shock front at speed c>-”~=(a22-(Msa1—u2)2)

These quantities are all functions of the shock Mach number, Ms’ SO
that 62 is given for an expansion corner by the shock Mach number.
For weak shocks 92 is equal to arctan (Z(MS - 1)/MSZ) %. Because
the shock strength decreases from point 2 to point 1, the curvature of
the wave front changes between points 2 and 1. The theory of shock
dynamics is discussed ‘at length by Whitham (1957); here it is important
only to see how the waves behind the shock interact with the shock and
modify its strength. The shock remains plane above intersection 2.

With this brief discussion of the shock interaction with an ex-
pansion corner and the nonlinear effects which act to modify the incident
shock, we may qualitatively examine how the diffracted wave fronts act
to establish steady conditions at the junction of muffler elements.

These steady conditions fix the asymptotic strength of the reflected

and transmitted waves.
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1.1.1 Discontinuous Area Changes

In particular, when the cross-sectional area increases, the
diffracted wave front must look quite similar locally to the wave front
in figure 2. However, an additional feature of this problem is that the
transver‘se dimension of the duct is limited, so the diffracted wave
fronts reflect from the side walls of the tube as they propagate in the
upstréam or downstream direction. FEventually flow conditions far up-
stream and downstream of the area change must be related by these
steady conditions. When the junction is a discontinuity in cross-
sectional area, the one-dimensional conditions relating the upstfeam
and downstream fluid properties are (1) the change in mass flux across
the junction is zero and (2) the change in momentum flux is balanced by
the force on the junction.

1.1.2 Extensions

Extensions of the inlet or outlet pipe into a discontinuous change
of area (Fig. 1) has been shown to improve acoustic muffler perfor-
mance (Davis, 1954). Shock wave interaction with area changes can
also be altered by extending the inlet or outlet pipe.

When a shock arrives at an area expansion with the inlet pipe
extended, the wave front is diffracted as shown in figure 3a. Since a
portion of the incident shock is diffracted into the annulus, the wave
transmitted downstream is weaker than the equivalent wave transmitted
from a discontinuous or standard area change. The diffracted wave
front in the annulus reflects from its end toward the end of the extension.
The result is that an infinite series of waves propagate in the upstream

and downstream directions from the end of the extension.
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FIG.3a SHOCK INTERACTION WITH AN EXTENDED INLET
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When a shock arrives at an area contraction with the outlet
pipe extended, a portion of the shock is passed through the junction
without amplification (¥Fig. 3b). The extension of the outlet pipe at an
area contraction is denoted a "'cookie cutter. " The rest of the shock
reflects from the closed end of the annulus toward the end of the ex-
tension., When the wave in the annulus arrives at the end of the
extension, a wave is propagated upstream and downstream and a wave
returns into the annulus. Hence, an infinite series of waves propagate
upstream and downstream from the end of the extension.

Therefore, extending the inlet pipe into an area expansion
increases the attenuation caused by the area change; and extending the
cutlet pipe into an area contraction eliminates the amplification. This
point is important because we will later find that even though a series
of waves is transmitted, they will produce less sound than the wave
transmitted when the area change has no extehsion,

1.1.3 Perforations

The last muffler element to be discussed is a tube with a
perforated section., There are basically three types of walls; (1)
porous wall, (2) thin wall, and (3) thick wall. In flows through porous
walls, friction effects dominate and dynamic effects are negligible.
Thin-wall and thick-wall perforations have large and small hole-
diameter-to~wall-thickness ratios, respectively. The fluid leaving
the tube through a thin-wall perforaticn is turned ohly slightly toward
the axis normal to the orifice, whereas the flow through a thick-wall
perforation is turned nearly parallel to the axis normal to the orifice.

Shock waves interact with perforated tubes because fluid is
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FIG. 3b SHOCK INTERACTION WITH AN EXTENDED
OUTLET
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pumped through the perforations when the shock wave increases the
pressure inside the tube. The key effect is the mass removal t?urough
the perforated wall. As before, steady conditions at the perforations
are established by a complicated series of diffracted wave fronts
passing across the perforation. Two excellent spark schlieren pictures
were published by Wu and Ostrowski (1971) depicting the interaction of
a shock wave with a wall with a single slit and a uniform perforation,
respectively.

The picture of the shock wave passing the slit shows the
transient behavior of the diffracted waves. These diffracted waves
establish the steady mass ﬂdw through the slit and Weakén the shock
by propagating across the backside of the front shock. When the
perforations are uniformly distributed‘along the wall, each orifice
interacts with the shock wave by increasing the amount of fluid which
is being removed behind the shock. |

The attenuation of plane shock waves, propagating in ducts
with unifo‘rmly distributed perforations, has been numerically approxi-
mated By Rosciszewski (1959), Szumowski (1972), Wu and Ostrowski
(1971), and Honda (1974).

The first three of these authors used a method based ‘on the
formulation of Whitham (1957) for shock propagation in nonuniform
ducts. The common use of the approach merits some comment on the
formulation.

One-dimensional nonsteady equations of motion are written in
characteristic form including the effects of some kind of nonuniformity,

which changes slowly along the duct. These authors have replaced the
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nonuniformity due to varying area with one due to mass flow through
the tube wall. Then the characteristic rule is used:
Write down the exact nonlinear differential

relation for the C, characteristics. Substitute the

expressions for the state variables and the velocity

in terms of the shock Mach number., The resulting

differential equation gives the variation of the shock

Mach number with distance. *

The formulation is not limited to small amounts of nonunifor-
mity, since large amounts may be accumulated over large distances.
However, the formulation does neglect some aspects of the flow behind
the shock. The reflected disturbances, which propagate on the C_
characteristics, are also re-reflected as they interact with the non-
uniform region that the shock has already passed. The re-reflected
waves propagate toward the shock along the C+ characteristics and
overtake the shock., The effect of the interaction of the re-reflected
waves and the shock is neglected by the Characteristic Rule. For the
case of varying area, the effect of neglecting the re-reflected waves
has been analyzed by Chisnell (1957), and found to be quite small.

The problem formulation for the propagation of a plane shock
along a perforated duct (Fig. 4) is straightforward, as shown by
Szumowski (1971). The mass flow through the perforations is written
as a function of the state variables and the velocity in the duct, both
written in terms of the shock Mach number. These relations are sub-

stituted in the differential relation for the C+ characteristics, which is

then evaluated at the shock front. Integrating the differential expression

*Whitham, G. B., Linear and Nonlinear Waves, New York: Wiley-
Interscience, 1974, pp. 270-271. ‘
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gives the shock strength as a function of the distance along the duct.
Rosciszewski (1959) did the first calculations of the shock
attenuation along a uniformly perforated wall. Linearizing the equa-
tions for the case of small mass removal, he obtaine’d the differential
expression described above. Rosciszewski obtained an expression for
the mass flow through the perforate by assuming: (1) that the velocity
was given by the static pressure drop across the perforate, (2) tﬁat
the jet issuing from the perforated duct was normal to the axis of the
tube, and (3) that the ‘jet velocity distribution was uniform over the
entire cross section of the orifice. Though Rosciszewski did not com-
pare his predictions with values obtained from experiments, Wu and
Ostrowski (1971) and Szumowski (1971) published comparisons of
Rosciszewski's predictions with experimental data. In both cases the
experimental rate of attenuation was much smaller than Rosciszewski
had predicted. The discrepancy was caused by the assumptions that
the je£ through the perforation was normal to the tube axis and occupied
the entire cross-sectional area of the perforation. A careful look at
the details of such a flow (Stokes et al, 1954) reveals that, in addition
to radial momentum, which is due to the pressure drop across the
perfbrations, the fluid in the jets still has the axial momentum that it
had inside the tube. Therefore, the jets tilt towards the tube, which
reduces their cross-sectional area or the mass flow through the
perforations. Wu and Ostrowski (1971) presented a method, based on
a compressible hodograph approach developed by Troshin (1959), for
calculating the actual mass flow in the jet. The ratio of the actual V

mass flow to the ideal mass flow is the discharge coefficient.
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Szumowski (1971) used a steady flow facility to find an empirical rela-
tion between the discharge coefficient and the flow conditions in the
duct. Honda (1974) derived a method to find the discharge coefficient
by comparing experimental data with a 1inearv theory. The important
effect of the discharge coefficient on the shock wave attenuation is also
discussed in Section 4. 1.

Using spark schlieren photography, Wu and Ostrowski (1971)
observed the transient wave interaction occurring at each orifice in a
perforated wall. Honda (1974) used a pulsed ruby laser as the light
source of a schlieren system to observe the propagation of strong
shocks élong perforated walls and the supersonic ﬂowvestablished be-
hind the shock. The local flow Mach number in the duct was success-
fully approximated from the angle of inclination of the Mach wavelets,
which propagate into the steady flow from the orifices.

1.1.4 The Open End

To link the internal flows producedvby a shock wave in a muffler
system to the resultant radiafed noise, we have found the reflection of
a weak shock from the open end of a tube to be an instructive example.
Chester (1949) considered the behavior of the reflected and transmitted
waves produced when a step-function sound pulse reaches and pro-
gresses beyond the end of a two-dimensional duct. Chester identified
the n-th order diffracted fronts (the order is the number of diffraction
processes a wave has experienced), which are cylindrical about the
ends of the duct,and computed their asymptotic behavior. In addition,
Levine and Schwinger (1948) considered the radiated sound from an

unflanged circular pipe. For sinusoidal air motions in the pipe, they
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calculated the end correction to the length of the pipeg the reflection
coefficient of the open end, and the axisymmetric sound radiation.

For an axisymmeﬁ:ric {or circular) duct, the first order dif-
fracted fronts form circular toroids about the circumference of the
end of the tube (a cross section is shown in figure 5). Only first order
fronts will be discussed here. The portion of the diffraction front in-
side of the tube reflects in such a way that at large distances from the
éxit it forms a significant portion of the reflected expansion. The v
portion of the diffracted front outside of the tube is no longer toroidal
for t> R/a and begins to look axisymmetric about the axis of the tube
for t>> R/a. The width of the pulse is maximum at 90° to the tube
axis and becomes very small on the axis. Quantitative features of this
interaction are discussed in Section 3.5.

1.2 The Experiment

This work has two basic objectives: (1) the measurement and
prediction of the internal and external disturbances producedwhen
muffler elements are subjected to step-function excitation, and (2) the
demonstration that ideal shock tube behavior may be modified or used
directly to predict real muffler performance. The muffler performance
is investigated in two different facilities., a standard one-shot shock
tube and a repetitive shock tube.

1.2.1 Experimental Facilities

The one-shot shock tube provides well-defined test conditions
in which muffler properties can be investigated quantitatively. In actual
engine excitation each successive exhaust pulse generates a nonsteady

fluid motion which propagates through the exhaust system. In many
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applications the nonsteady motions have decayed sufficiently that
uniform conditions exist ahead of the next exhaust pulse. In this case,
the modeling of the actual exhaust system excitation with a single pulse
from a shock tube is well justified.

The repetitive excitation facility is a resonance tube. Repetitive
excitation provides two additional features not provided by one-shot
excitation. The performance of muffler elements may be studied when
(1) the excitation is periodic, and (2) the fluid motions have not decayed
ahead of each successive exhaust pulse propagating through the exhaust
system. Single and repetitive step-function excitation, in some sense,
span the range of actual excitations observed in real exhaust systems.

The rescnance tube has been an effective tool for studying
finite amplitude wave motions (Sturtevant, 1974). The resoﬁance tube,
as discussed in Section 2. 1.1, is a tube with an oscillating pisto‘n at one
end. The gas motion excited near resonance in a closed tube has been
studied experimentally and theoretically. Lettau (1939) observed the
appearance of shock waves in the gas in closed tubes near resonance.
Chester (1964) correctly predicted the range of frequencies about the
closed end resonance, in which shock waves would occur, and the shock
behavior in that range. Jimenez (1973) theoretically and Sturtevant
(1974) experimentally investigated the response of partially and com-
pletely open tubes to large amplitude excitation near the closed and
open end resonance. Sturtevant found that shocks could occur near the
closed end resonance even when the passive end is partially open. This
cbservation is utilized in these experiments.

The mufflers are attached to the resonance tube at the passive
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end; and at the closed end resonance,a sawtooth disturbance is observed.
The mufflers are attached to the end of the shock tube in a similar way.
The geometries of both facilities are shown in figure 6.

1.2.2 Shock Pulse Excitation

Both of these facilities produce waves which are in some way
similar to those observed in high performance exhaust systems. The
essential feature of the wave form in these exhaust systems is a steep-
front compression followed by a slower expansion to the ambient pres-
sure. The compression is caused by the high velocity gas which dis-
charges from the cylinder through the opening exhaust port. The high
exhaust gas velocity quickly decreases as the cylinder pressure drops
and the open exhaust port area increases. The deceleration of the gas
in the exhaust port causes expansion waves to follow closely behind the
initial compression wave.

The wave form observed in the resonance tﬁbe possesses the
essential features of actual exhaust pulses. Figure 7 shows a com-
parison of the wave fqrm in the exhaust port of a single cylinder, 250 cg,
two-cycle engine and the wave form produced by the resonance tube. In
this case, a high performance exhaust system is used. The engine was
operating under full load at 6000 rpm. The wave form driven into the
exhaust system by the resonance tube so closely resembles the wave
form of the actual exhaust pulses, that the point of attachment of the
exhaust system to the resonance tube is denoted as the ''simulated
exhaust port". However, there is one guantitative difference between
the simulated and engine-driven exhaust pulses; the rate of decay of the

engine-driven pulse is faster than the decay in the simulated pulse.
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This difference may be attributed to the relatively large volume of

the resonance tube compared to the volume of the engine cylinder.

1.2.3 Acoustical Analvees of Test Mufflere

The muffler systems used in these experiments are sketched
in figure 8. They are composed of elements which were described
earlier and shown in figure 1. Probably the most common and
basic muffler is the expansion chamber, The muffler is formed
by terminating the ends of the main chamber with discontinuous
area changes to the inlet and outlet pipes. A simple modification
ié the partial extension of the inlet or outlet pipes into the chamber,
which often results in improved performance. Perforated tubes or
tubes with orifices in the wall are used by enclosing the perforated
section of the tube in a chamber.

These mufflers have been investigated for the case where
the excitation has infinitesimal amplitude and sinusoidal form using
acoustic theory. Probably the most comprehensive and complete
treatment of acoustical muffler design was produced by Davis (1954),
though many other examples exist,

Conventional acoustical analysis is usually developed in the
frequency domain, and results are also presented in that way.
Experimentally, the muffler is excited with a plane sinusoidal wave,
and many times an anechoic termination is used in the tailpipe.
Plane reflected and transmitted waves, whose amplitudes and phases
are computed using the conservation of mass and momentum equa-
tions in their linearized form, are assumed at the muffler elements.

The attenuation is the difference in the average sound power in the
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incident and transmitted waves. The plane wave assumption be-
comes invalid when the wave length of the disturbance is of the
same order as a cross-sectional dimension of the muffler. Thus,
the attenuation is known only over a range of frequencies. A portion
of this paper is simply a reinterpretation of well-known effects in
acoustics, which are usually expressed and observed in the fre-
quency domain.

In this work the theory is constructed in the X—T'pla.ne and
pressure measurements are made in the time domain. The unit
step-function replaces the sinusoidal excitation used in conventional
acoustical analysis. A reflected and transmitted wave is created
when the incident wave arrives at a muffler element. The assump-
tion is made that eventually the reflected and transmitted waves will
become plane at a large distance from the junction, even though the
waves are three-dimensional near the junction (Section 1.1). Thus
the interaction of a shock wave with a muffler element is computed
by using the one-dimensional nonsteady weak wave relations across
the incident, reflected, and transmitted waves and the steady con-
servation equation across the junction. The attenuation is simply

the ratio of the magnitudes of the incident and transmitted waves.
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II. EXPERIMENT

2.1 The Experimental Facilities

2.1.1 The Resonance Tube

'The resonance tube was designed to study finite amplitude wave
phenomena (Sturtevant, 1974). The resonance tube is shown in figure
9; important dimensions are internal diameter, 76 mm; wall thickness,
6.4 mm; and length, 3.9 m. The piston mechanism is taken from a
J. A. Prestwick, four cycle, single cylinder motorcycle engine
(80 mm bore and 100 mm stroke). The cylinder head of the motor-
cycle engine has been removed and the resonance tube is mounted in
its place. The original hemispherical piston has been replaced by a
flat-top piston. The craﬁkshaft of the motorcycle e.ngine has been
connected to a 15 HP variable speed (0-100 Hz) DC electric motor.
The entire mechanical system, electric motor, piston mechanism,
and resonance tube is frame mounted to a one-ton concrete bed, which
is dynamically isolated from the laboratory floor by air springs. |

Fcr‘ these experiments, the resonance tube is used as a scurce
of repetitive shock waves. Thebshock waves are driven through the
simulated exhaust port and into the muffler systems. In these experi-
ments, the diameter of the inlet pipe is 3.81 cm. The motion in the
resonance tube is affected by the reflective and dissipative properties
of the muffler system, which causes the incident shock strength to
vary from Mach number 1.11 to 1. 16. |

2.1.2 GALCIT Six-Inch Shock Tube

The GALCIT six-inch shock tube (Smith, 1967) was used for

the single pulse experiments discussed in this paper. Though designed
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for the production of strong shock waves, it was found that the shock
tube performed quite well in generating the much weaker shocks de-
sired for this smdy (Zl\/Is < 1.6). The basic shock tube dimensions are
driver section length, 1.83 m, and diameter, 16.5 cm; and test sec-
tion length, 11 m, and diameter, 15.2 cm, as shown in figure 10.

The entire tube is typé 321 stainless steel with wall thickness 1.27 cm
and honed inner ‘surfa,ce, The diaphragm, held by a hydraulic clamp
system, is cut by a set of crossed knife blades as the driver gas pres-
sure increases.

The shock tube is a facility for conducting experiments under
well-defined conditions. It should be noted that since the muffler test
section is open to the room, the initial conditions are the ambient
atmospheric conditions. The inlet pipe used in the single pulse experi-
ments is 3.81 cm, permitting the use of the same muffler system in
both single and repetitive pulse experiments.

The test shock enters the test section when the shock in the
main tube reaches the origin (Fig. 10). At this point, the test shock is
amplified and passed into the test section where the interaction with
muffler systems is studied. In the test section, the incident shock
Mach number can be varied from 1.11 to 1.55, which corresponds to a
pressure increase of 0.27 to 1. 74 Bar. The diaphragms, 1/4 mil
mylar, 3, 6, 10, and 20 mil 1100 aluminum alloy, provided five test
Mach numbers with nitrogen gas in the driver section and room air in
the test section. Also a cookie cutter (1. 64 meters long) was em-
ployed, reducing the test shock Mach number to 1. 07 with a test time

of 9 msec. It was found that to obtain reproducible test shocks at low
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Mach number, the knife blades had to be kept extremely sharp. Ne-
glecting to periodically sharpen the blades resulted in nonreproducible

diaphragm performance.

2.2 Muffler Description and Instrument Location

The mufﬂef systems used in both the single and repetitive
pulse experiments are attached to the inlet pipe as shown in figure 6.
With a constanf area pipe (1. 52 m length) attached to the test section
origin, the test shock strength is constant in the muffler test section
(Fig. 6). This is shown in figure 11 for the single pulse and repeti-
tive pulse experiments.

The perforated tube has been constructed from a section of
2024 seamless _alumir;um tubing (38. 1 mm diameter and 1.59 mm
wall thickness, Fig. 12). The orifices, which are 6.35 mm diameter
drilled holes, are located such that the porosity, the open area in the
wall per unit wall area, is approximately 1/6. The perforated tube
is "'thin walled'; that is, the wall thickness is small compared to the
orifice diameter. A total of 144 holes were drilled. The number of
open holes in a given experiment was selected by taping portions of
the tube with air conditioning duct tape.

The expansion chambers were constructed from 2024 alloy
aluminum. Three expansion chamber diameters were used with area
ratios 2.77, 4. 69‘, and 9.> 00. These three expansion éhambers will
be denoted as exf:ansion chamber A, B, and C, respectively (Fig. 13).

Internal pressure histories have been recorded at locations
shown in figures 12 and 13, and external pressure histories have been

recorded at locations shown in figures 9 and 10. Internal measurements
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were made with flush-mounted pressure transducers, and external
measurements were made with microphones oriented normal to the
direction of propagation.

2.3 Data Acquisition and Handling

2.3.1 Repetitive Pulse Excitation

The experiments involving the resonance tube used a data
acquisition system built around a Hewlett-Packard 2100 minicomputer,
known locally as the Solo System. The data are recorded and pro-
cessed in real time by the Solo System. Programs written in Fortran

IV language are used to control both acquisition and data processing.

Solo is comprised of a central processor unit, CPU, and the
peripheral devices shown in figure 9. The CPU has a 32K work stor-
age capacity and does computational operations using a 16-bit word in

cycle times of less than 1 psec.

Solo is a disc-operating system. Most user and system pro-
grams are disc-resident programs and are loaded into coré by system
or user commands. The teletype gives the user rapid access to disc-
resident programs. The disc also serves as a rapid-access storage
device which vastly increases the effective storage capacity of Solo.

The Preston GM Series analog to digital converter, ADC, per-
forms conversions at up to 500 kHz from up to 16 channels of analog
voltage data. The resolution is 14 bité or 0.61 mv over a range of
*£10 volts. In these experiments, the ADC is programmed to perform
one conversion for every CLOCK pulse on the condition that BETA is

high. This feature of the ADC, with the use of sufficient interfacing,
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provides a convenient means to synchronize the data acquisition rate to
the frequency of the resonance tube.

Two basicvoperations were required of the interfacing. Both
interface devices use input signals from magnetic pickups mounted on
the crank mechanism of the resonance tube. The input signals are
known as TDC and GEAR and have a frequency of 1 and 256 times the
crank frequency. |

The ADC controller uses the TDC signal and generates a digital
signal BETA. The TDC signal nominally occurs at top-dead center of
the piston motion (actually 10° before top-dead center). BETA is
normally low, but goe‘s high at the béginning of the run coincidentally
with the TDC pulse after the run button is pushed. BETA stays high
for four cycles, after which it returns to the low state. BETA, an
input to the ADC, enables or disables the possibility of data conver-
sion. |

The iphasé-locked loop, PLL, uses the GEAR signal as input
and generates a synchronous digital signal, CLOCK. During one cycle
of the TDC signal, 256 cycles of the GEAR signal occur. The fre-
quency of the GEAR signal is the fundamental CLOCK frequency. The
PLL is used as a frequency multiplier. The frequency of the syn-
chronous output from the PLL, CLOCK, is eight times that of the .
GEAR frequency. Thus, 2048 cycles of the CLOCK signal occur in
each cycle of the TDC signal. CLOCK, an input to the ADC, causes
data conversions when BETA has enabled the ADC. The timing of the
interfacing circuits is shown schematically in figure 14, and the

wiring diagrams are in figures 15 and 16,
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The ADC is programmed in the multiplex mode, where two
channels are recorded. In the multiplex mode, each clock pulse
digitizes one channel and advances the ADC to the next channel so that
the data are recorded alternately from the two channels. The data are
acquired at the CLOCK rate, ensuring 2048 points in each cycle. The
period of the data acquisition is four cycles; each record contains 8192
points. 'i‘wo records are recorded in each experiment. The first
record is transferred from core to disc during the delay; then the
second record is taken and transferred to the disc. After the data are
stored on the disc, each record is transferred to the core where its
data are sorted to form two new records. The four smaller records,
two for each channel, are étored on the disc. Thus, each final sorted
record represents data taken over a period of four cyc;les at a rate of
1024 points per cycle. The length of each record is typically 4 cycles/
40 Hz = 100 Ms and the data rate is typically 1024 x 40 Hz = 40 kHz.

The data acquisition é,nd processing programs are shown
schematically in figure 17. Permanent records from the data acquisi-
tion program are plots of average wave forms, raw data written on
magnetic tape, and a listing of run identification parameters from the
teletype. The first data processing program produces a raw wave
form plot of each cycle in the record, from which wave amplitude data
are obtained, as shown in figure 18. The second data processing pro-
gram uses a fast Fourier transform, FFT, routine to calculate the
spectrum of the raw data. Acoustic intensity spectra, (pz/p'a) in db re
1 pwatt, are plotted logarithmically against frequency for permanent

record. The plotted spectrum is the average of the two records taken
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in the experiment. A final program segment calculates the sound
pressure level of the spectrum in unweighted or A-weighted decibels.

2.3.1.1 Periodic Signals and the FFT

When the FFT alogrithm is applied to a data set obtained by
sampling a periodic signal at a frequency synchronous with the period-
ic signal, the components of FFT are the Fourier series coefficients
of the periodic signal. However, whereas the theoretical Fourier series
contains an infinite number of coefficients, the FFT generates a finite
number of components. The manner in which the Fourier series co-
efficients above the Nyquist frequency (1/2 the sampling frequency)
combine with the coefficients below tﬂe Nyquist frequency to form FFT
components, is called aliasing.

It is useful to express the data set, used in the FFT calculation,
as the product of three functions:

p(t) - the periodic signal, whose fundamental

frequency is uuf,,‘

Rect (—%, %) - Rectangle function of the sampling period,

which is an integer mulﬁple of the funda-

. _2m _
mental period, x = R and W, = Mwo,

@ o
%@@gf% "3%-) - Dirac comb function of the sampling rate,
fond ;%.Tl]}]; = Nw "
] x o

The Fourier transform of their product, divided by the sampling

period, is

[c<]

~ 2 - 1wt
Rur={ B9 pect( PO Se-F0 e o

=GB



45

The convolution theorem gives

%iw}xﬁﬁg E Oy Sv-kw) £ R(v-w-Tw)dy (@)

Fes-00

where the integrand is the preoduct of two Fourier transforms:

(1) F.T. (Rect (~-2 2) ° 6([: - .T——=-)) which by the con-
volution theorem equals, j g J (£ - st)ﬁéw“’ﬁ) df
) Tr =Tz -0
or ﬁ,ﬁ‘ Z, R (w- 7wys) , and
J=-e0
(2) F.T. (p(t)) = an & Ay, $LV- KWe) . (Papoulis, 1962),

ke-®
where the Q. are the coefficients of the Fourier series of
p(t).
Interchanging the orders of integration and summation and then in-

tegrating gives

-@fw Z § @mg& RQ, kW_g mwﬂst} (3)

X 5s-eks=

but since w, = Nw and we = Mw
2wy = L £ £ a. Riikm“ﬂ-l’“‘)‘*’f) (4)

RMR
F=-00 Ks -2

The discrete version of this continuous function is

F (Tw,)= &‘B?XE" E &;&QMKM ~L=-TN)W.) (5)

T= ~ople, =02

where the index, I, is the number of the Fourier component.

X X

The Fourier transform of the Rectangle function, Rect(-3, 5),
is denoted R(w), or
- 2 i (92F
Rew) = FT. (Raer (3,8)) = 230EF) (6)
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Since x equals %Tj-, equation 6 can be written
o

ﬁéw} = &SI %@W
W

(7)

The discrete version of equation 7 is

21T .
R{Lw,) = 2 SIN LT - “wo , b=o (8)
LWe © , L%oO

and, therefore, in equation 5 R({kM -~ T -J"N)w@) is only non-zero

when k equals L -;AJN . Equation 5 is reduced by observing that
R{gM-T-ITN)W, )is non-zero onlywhenk:I-Il\-AJN’
o
Bl(tw)=L S a _ 2 (%
f AT TEINY = om 2 Qpraoy
A Tz -00 Q“"“‘ﬁ’“’") AT Tz 0 (""'T/T"’>
or
en
-@{%—W,ﬁ)z &“ﬁ, (10)

o Xz IN
2T T=o KT§

The spectral components of the FFT occur at two distinct types of fre-
quencies: (1) harmonics of the periodic signal, and (2) between har-
monics (aharmonics); in fact, at harmonics they are equal to a sum of
the Fourier series coefficients, and at aharmonics they are zero.
Since harmonic components of the FFT are not merely Fourier series
coefficients, but an infinite sum of them, there is aliasing, which
causes high frequency spectrum to contribute to low frequency spec-
trum. As a result of sampling data for M cycles of the periodic signal,

there are (M - 1) aharmonic components of the FFT spectrum between
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each harmonic component. Further, the aharmbnic spectrum have
zero amplitude.
In particular, for our case, M was 4 and N was 4096, and sub-
stitution into equation 10 gives
@0
@(k@;):%yg@ Ole s ) (11)
where k is equal to I/M. For example, the case of k ‘equals one

gives

E%uwﬂ:%(am@ & Q =) (12)

I+ 102y I+ 2088 "~

The component of the FFT at the fundamental frequency of the periodic
/a

signal, Wes has an error of order a This is a "small' prob-

1025° 71°
lem if the signal has very little power above the sampling frequency,
and therefore can usually be "improved' by either increasing the sam-
pling frequency or filtering the data before it is recorded. It should be
emphasized that these are only improvements, and that exactness can-
not be obtained in physical systems.

For these experiments the sampling frequency was 40 kHz.
The spectral content of the pressure signals at the Nyquist frequency,
20 kHz, was generally about 50 db down from the overall RMS level.
Hence, it is felt that the sampling rate was sufficiently rapid to avoid
significant problems from aliasing.

Some checks have been made to estimate the accuracy of the
FFT. The most straightforward method is to compute the spectrum of

a known function (in our case, we used a cosine function). The compu-

ted amplitude of the spectrum at the fundamental frequency was only
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one part in 10, 000 different from the input amplitude. The amplitudes
of all the other harmonics were at least four orders of magnitude
lower than the amplitude of the fundamental. For these experiments,

a second check is made. The RMS pressure level can be computed not
only from the raw data, but also from the spectra. In practice this
comparison is probably more useful or realistic. Typically, the RMS
values from the raw data are within 0.5% of RMS values computed from
the spectra.

In summary, since the data are sampled "exactly" synchro-
nously with the periodic motions, and the data records are an integer
number of cycles in length, it is not necessary to apply window func-
tions to the FFT. Because of the synchronization, certain of the
Fourier coefficients are harmonics of the periodic motion; since
there are four cycles in each record, every fourth point in the spec-
trum is the amplitude of a harmonic of the periodic motion. The three
points between each harmonic are ahé,rmonics, and they are regarded
as components of the continuous or background spectrum unrelated to
the harmonic components of the periodic motion. The continuous
components could be caused by: imperfect synchronization (e.g., by
backlash in mechanical drive), electronic noise in the instrumentation,
round off error in the FFT, ambient acoustic disturbances, or aperi-
odic aerodynamic noise. The harmonic and continuous components of
the spectrum are plotted separately in figure 18. The plots are a
spectral indication of the signal to noise ratio.

2.3.2 Single-Pulse Excitation

Experiments were performed in the shock tube specifically to
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make accurate measurements of the transmission and reflection co-
efficients of various muffler eleménts, The pressure data were ob-
served on a Model 565 Tektronix 2-channel dual-beam oscilloscope
and recorded on polaroid film for the experiments in which the radiated
pressure history was not recorded. Data processing is done using a
computer program written in Fortran IV language and run on Solo
(Appendix B). The program calculates conditions in regions 1 through
4 and the exit. It uses input wave-amplitude data to calculate static
and stagnation conditions in regions 2 through 4, mass flow in regions
3 and 4, and the discharge coefficient.

Detailed time-series data is required to compute the radiated
SPL. Hence, the Solo system was used to acquire and digitize the
data for the experiments in which the radiated pressure histories were
required. The ADC was programmed to begin converting when a
sensor upstream of the test section indicated the arrival of the shock.
At this time a 4500 word record was taken from the three internal
pressure transducers at the maximum clock rate, 400 kHz, or 133 kHz
per channel. A second record, 3600 or 2400 words from the trans-
ducer measuring external radiated noise , is taken in the signal chan-
nel mode at 400 kHz. For the case of perforations, 6 msec was suf-
ficient; but for expansion chambers, 9 msec was required to wait for
the radiated noise to decay. The second record beginé almost
immediately (one msec) after completion of the first record.

The pressure histories are plotted and processed after the
shock tube is fired. The incident‘ shock strength and radiated SPL are

computed. The sound level is taken as the root mean square pressure
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level during the time in which the data was recorded

| - |
SP = 4 2 dé‘:;niw 2t
‘i. = g pree) N;.?"b{ )

Since atmospheric conditions existed in the test section before
each run, the values of the temperature and pressure in the laboratory
were measured and used in data-processing programs.

2.4 Transducer Calibration

Model 606A Kistler and Model 113A21 PCB pressure trans-
ducers were calibrated from 0.3 to 1.6 Bar. The calibration was
done in the GALCIT six-inch shock tube, using standard shock tube
methods. The transducers were flush mounted in the side wall of the
shock tube, 50 cm apart. The time interval between the shock arrival
at each transducer was measured on a 0.1 psec Hewlett-Packard
Timer-Counter-DVM. The shock Mach number is computed using the
shock speed and the initial conditions in the test gas. The measufed
pressure change across the shock is compared with the value compu-
ted from the shock Mach number. For Mach numbers near one, the
measured pressure change on the PCB transducer was used in place of
the value obtained from timing measurements. The pressure signals
are recorded on oscillograms. |

The calibration data are presented in figure 19. The calibra-
tion error is computed as the standard deviation of the data and is
listed in figure 19 with the sensitivity and background noise level. The
Kistler trénsducer's signals were filtered with a 20 kHz low pass filter,
giving a rise time of 25 psec. The PCB signals were not filtered,

giving a rise time of 2 psec.
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III. ANALYSIS

3.1 Introduction

The interaction of a weak shock wave with a muffler element is
analyzed by assuming that reflected and transmitted waves are plane at
a sufficient distance from the element. The one-dimensional nonsteady
equations for weak waves aré expanded in terms of the Mach number or
pressure perturbation. The one-dimensional steady equations are
expanded in terms of the Mach number. Solutions are obtained for the
acoustic parameters, the reflection and transmission coefficients for
the geometries discussed in section 1.1. The solutions represent the
asymptotic value of the wave strengths (i.e., at a large distance from
the element).

The solution for the discontinuous change in area geometry is
found from the equations written to second order. At first order the
solution is linear, dependent only on the area ratio. The second order
terms cause the solution to depend on the area ratio and the incident
shock amplitude.

The solution for the perforated tube is unique, as the smallest
perforation looks as if it were an open end (the reflection and trans-
mission coefficients are minus one and zero, respectively), when the
incident shock strength is infinitesimal. Thusyv perforations are ex-
tremely good at attenuating low-amplitude shocks. By including only
the lé.rgest second order term, it may be seen that accounting for the
jet Mach number at the perforations causes the solution to depend on
the area ratio and the incident shock amplitude in 2 nonlinear manner.

The solution of the equations complete to second order is obtained
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numerically.

At second-order the nonsteady wave relation is

A YRYZY X%
tam= B - (BEEY )

or

f%: am + [JH) am® 2
(P) is the pressure, (W) is the local Mach number, and the plus and
minus sign denotes right-going and left-going waves. The relation is
valid for compression and expansions, since both processes are isen-

tropic at second order.

3.2 Perforated Tubes

A weak shock traveling in a tube interacts with a section of
perforated tube. A wave is reflected and a modified incident shock is
transmitted. The reflection and modification results from the mass
flow through the perforate.

An X-T diagram of the wave interaction in the tube depicts the
trajectories of the incident, reflected, and transmitted waves which
form bouhdaries between the fluid at rest, region 1, and the disturbed
regions, 2, 3, and 4, as shown in figure 20. The ratio of the total
perforated area, Ae’ to the tube cross-sectional area, A, is the per-

foration area ratio, B.
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Figure 20

The nonsteady isentropic wave relation (Eq. 1) is used to
relate the conditions across the incident, reflected, and transmitted
waves. The relations governing the flow conditions between regions
3 and 4 and through the perforate are derived from the equations for

steady isentropic flow. Continuity of mass requires

fgmeﬁe= (f;u?mﬁéua}g (3)

where the velocity and density are (U) and (p) respectively, and the
subscript (e) denotes the conditions of the jet of fluid issuing from the
perforations. Assuming that the fluid in region 3 expands isentropically

through the perforations to the ambient pressure.

U L
b1+ %!M;’)M =P (14 Lim2)v (4)

where Me is the jet Mach number of the flow through the perforations.

Similarly, the relation between regions 3 and 4 is
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&L ¥
Py Ci4 %ME}W”“;?QQE*%MZ)F“ (5)

Expanding the steady equations in terms of the Mach number,

the pressure and the area ratio, equation 3 becomes,

B Me Myg=My + 0(M*) ; ﬁ“’ge/q )

and equation 4,

B e Enis o) (7)
P [+ YIm5a 0 (M)

or

'f?i.»@ :%(Méﬁmi‘)—yo(m*’) (8)

7

and similarly, equation 5,

Bo_ 1+ dwmh+omh (9)
Py L+ %MZ + o(m?)

or

10
oy 2 L (mg-my)+om? o

Keeping only up to second order terms, equations 6, 8, and 10

PMe= My~ My | (11)
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3 - 2 2
TP —-‘j%(i"ﬁe,”mg (12)
and
P~ Py _ 2 2
=55 = % (My-ry) )

The exit Mach number can be eliminated from equation 12,

- - 2 2
ngﬂ?& =4 ( (Mgﬁ M»{) - m}) (14)

Using the nonsteady wave relation, equation 1, which gives the
change in Mach number in terms of the change in pressure, to relate
conditions across the incident, transmitted, and reflected waves,

equations 13 and 14 reduce to

(c-a-b)-4 ((a-b)'-c*) + o) = 0 (15)

(&e»b}-a-%{,iagoéf”w (@———'—-—;13}&) + o(d) = 0 (1

where (2), (b) and (c) are the normalized wave amplitudes,
(P, - Pl)/yPI, (P; - Py)/ yPl', and (P, - Pl)/yPl, respectively.

The lowest order solution is obtained by assuming the incident
shock amplitude is small (i.e., a, b, and c are all small compared to
one). If the second-order terms are dropped in equations 15 and 16,
we obtain

| c-a-b=20 (17)
and

a+b=0 (18)
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The solution of equations 17 and 18 is
T=cla=0, » (192a)
R =b/a = -1, (19b)
where (R) and (T) are the reflection and transmission coefficients, re-
spectively.

It can be argued that the largest local Mach number always
occurs through the perforations. Retaining only the term MZ' in equa-
tion 12, equations 15 and 16 reduce to

c-a-b=0 (20)

and
, ' 2
(@’*'b)"g;jz(a.»ﬁa-c):o (21)

The solution of these equations is

2

R=T~-t = a3

e = 2
2 k I+ K’ (22)

4

= [B~ ' _ R [3Pi k3
K x%&: - ; 2L - P &

This result shows the basic nonlinearity of the shock-wave

where

interaction in a perforated tube. The parameter, K, is not only a
function of area ratio but varies inversely with the square root of the
amplitude.

There are two simple limiting cases corresponding to large and
small values of the parameter, K, : -

For large K,
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&imié‘kwm ({’gm&\ i+?) = - |
or
R=-1
T=0 |, . (24)

which was obtained earlier for small amplitude incident shocks.

For small K,

Limi® (i s & Y=~k
k—+ y

or

T =1-K.  (25)
For small values of the parameter the result is linear in the para-
meter.

The result for large values of the parameter emphasizes the
significance of equations 19a and 19b, which show that even a small
perforation looks like an open end when the incident shock has in-
finitesimal amplitude. Now equation 23 shows what combination of
area ratio and amplitude is required for the small perforation to act
like an open end.

This amazing result exhibits how remarkably well perforations
attenuate small-amplitude shocks, and further, how they lose this
ability when the amplitude is increased.

In order to truly account for second order effects, the solu-

tions to equations 15 and 16 were obtained numerically. The specific
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equations used in the numerical computation were;
2 2 &
P(%me-@»)—»(@«-é-&)“—'ﬁ (26)

which is the sum of equations 15 and 16, and equation 16. The
procedure for obtaining the numerical solution of these eq_ué,tions is
presented in Appendix A. The results are complementary to the ana-
lytic solution obtained for low amplitudes. The numerical approxima-
tion to the solution is practically equal to the analytic value at low
amplitudes, while at increased amplitude, substantial differences are
noticed. These two predictions of the performance of perforations are
compared with data in section 4. 1.

- The complete one-dimensional inviscid steady and nonsteady
equations for a perfect gas are utilized to process Ehe data. These
equations are presented in Appendix B. The data handling procedure
serves as an independent assessment of the validity of the assumptions
used in the analysis.

3.3 Discontinuous Area Changes

3.3.1 Individual Elements

The arrival of a shock wave at a change in cross-sectional area
produces a system of diffraction waves which eventually coalesce to
form the reflected wave and interact with the incident wave to form the
transmitted wave. In the analysis, the diffracted waves are not dis-
cussed, except indirectly, as they establish the steady flow conditions
through the junction which fixes the strength of the reflected and trans-
mitted waves. The analysis assumes that the reflected and transmitted

waves have reached their asymptotic strengths and that the fluid
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motions behind them are uniform.

An X-T diagram, figure 21, shows the waves of interest.

At

qn ) ’qz.

WAVE DIAGRAM FOR AREA EXPANSION
Figure 21

Equation 1 relates the conditions in the four regions indicated on the
X-T diagram.

The relations governing the flow conditions between regions 3
and 4 are derived frbm steady isentropic equations. Continuity of

mass requires:
Bush = S WA, 2

or in terms of the Mach numbers and area ratio (B = AZ/Al)’
M3 = BM, ¢ 0(™M) (28)

The pressures and Mach numbers in regions 3 and 4 obey the relation
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derived in section 3.2, equation 13. Rewriting equation 28,
(M3- M) ¢ My = By (29)
and using equation 1, one can derive the followingirelation,
a-ph-pe ¥al 1 % % ) = o (30)
( P )+ = (-a b +pc) |

where (a), (b), and (c) were defined in section 3. 2.
Substitution of equation 28 into equation 13 gives
B-F
¥ P,

which by using equation 1 can be written

=4 My ( B-1) | (31)

2
ca-pY+ L (1-8")(c- Xl 2Y) = o 32
lema-bd+ L -pt) ( }*.C) (32)
Retention of second order terms in equation 32 gives
Q.—-Q,..k)nf«lnigw ’*")ca':o (33)
C x P

In terms of the acoustic parameters, equations 30 and 33 become

(1-R-pT)= Wla (1-R*-pT?) =0 (34)
and
2,
(T-1-R) + 5% (1-p9)T =0 (35)

The small amplitude solution is obtained by setting (a) equal to zero,
|- B

R= 77 (36a)
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(36b)

The small-amplitude solution is denoted, (To) and (Ro), and sub-

stituted into the second order terms in equations 34 and 35 to obtain

the next order solution.

R =

i

-

The sensitivity to

o

R

vP 3

Figure 22 is a table

e
e

Ro (14 05T,)

To (1 - a

BR.To
""Qon

Ro)

amplitude is readily shown by observing,

(37a)

(37b)

(382)

(38b)

showing the direction of the change in magnitude of

the acoustic parameters when the incident shock amplitude increases.

The small-amplitude solution is compared with experiments in section

4.2,

B:Q 045&& !<p<¢b P—-voo
CONTRALTION | EXPANSION
|T| CONSTANT | DECREASE| |NGRERASE | comSTANT
T=2 T= o
IR CONSTANT| INCRERASE | INCREASE | COnMSTANT
R=| R= -1

Figure 22

AMPLITUDE DEPENDENCE
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3.3.2 The Expansion Chamber

The standard expansion chamber muffler consists of an area
expansion followed by an area contraction, as shown in figure 23. The
incident shock is weakened at the upstream junction (T = 2/1+B, [Eqn.
36b), and amplified at the downstream junction (T = 2/(1+1/8)). Thus,

the transmission coefficient of the first transmitted wave is

T, = —Afﬁ—-& (39)
(1+B)

The second transmitted wave experiences an additional reflection at

each end of the chamber (R = (1 - 1/B) /(1 + 1/B), Eqn. 36a),

N - i

It follows that,

2.(1:-:)

A B-1
T )" (5)

After the initial reflection, when the shock enters the chamber

(R = (1-B)/(1+B)), the expression for the subsequent reflected waves is,

_ﬁ(H_ ) (’ i (42)
B ﬁw

Interestingly, the series for the transmitted waves sums to
one, as the total amplitude of the transmitted waves is equal to that of
the incident shock. Except for the first reflected wave, which is an
expansion, all of the rest are compressions. The total amplitude of
the compressions is the negative of the amplitude of the expansion.

After sufficient time, the reflected series of waves will

coalesce because of nonlinear effects. Thus, the reflected disturbance
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FIGURE 23 EXPANSION CHAMBER SYSTEM
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tends to cancel itself. Similarly, the transmitted series of shocks
will coalesce. Asymptotically, the strehgth of the shock front will be
equal to the strength of the incident shock.

An energy balance is useful when discussing muffler perfor-
mance. The transmitted energy is obtained by summing the squares of
the transmission coefficients,

2(¢ =1)
- iqi-_ <P (gf-p "E:._I—> )

ﬁ-H
(=1

E;

or

- 2B | e
E; = 7 5 | (43)

which is equal to unity for constant area (B = 1), and less than one for
all other area ratios. The reflected energy is obtained by summing

the squares of the reflection coefficients,

¢~ A
E p.;.p> z (Pl"f'P) B“)?" 3)

or

2 .
g, = B-1 (44)
R H'!B&

It is clear that the energy in the reflected and transmitted
waves should equal the input energy, since we have not accounted for

any dissipation.

Empu.'é' =

EM_.,./,“T = Ep+E. = ii“/? T.;.% =/ (45)

The function of an expansion chamber is to reflect a portion of
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the energy in the incident shock back upstream, while permitting the
remainder to be transmitted.
3.4 Extensions

3.4.1 Outlet or Inlet Extensions

When the inlet to an area expansion is extended beyond the
junction, the incident wave produces a series of waves propagating in
the upstream and downstream tubes (figure 24). Each transmitted
wave is weaker than the transmitted wave produced when the inlet is
not extended. The first transmitted wave is weaker because some

energy is diffracted around the extension into the annulus.

At
S KL\ ’,'1 / .
QB ] TI -
I I
—_ X
ﬂa ﬂl.

WAVE DIAGRAM FOR AREA EXPANSION WITH INLET EXTENSION
Figure 24
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If we interpret equations 36a and b as stating that the reflection
and transmission coefficients depend on the ratio of the area occupied
by the transmitted wave to the area occupied by the reflected wave,
this formula can be modified to account for the additional wave in the
annulus. The area ratio of the junction is modified to the ratio of the
sum of the annulus and the downstream tube areas to the inlet pipe

area,

#* - ”z,* (n;"’”i) - - 46
B = A, - ZIB ! | (40)

* . :
where B 1 is the effective area ratio. Note that the effective area ratio
is always larger than the area ratio of the junction. This approach is
reasonable at lowest order, so equation 7 should only be used in

equations 36a and 36b.

T = P% (472)
R, = "B (47p)
’ ]

When the wave in the annulus arrives at the end of the inlet after re-
flecting from the end of the annulus, a second wave in transmitted.
Using the effective area ratio approach,

ﬁa'@' 94 - ?'ée

48
A-H ~ p-! e

LI
pl""

is the effective area ratio for this interaction. The second transmitted

wave is given by,

2 -1
Ta= T, T o "’“"‘""‘““P (49)
%) E
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ToERi= (p-)(F) Ly (50)

The transmitted energy for the case of an extended inlet area
expansion can be compared to the case without the extension. For the
area expansion, there is only one transmitted wave (T = 2/1 + B or
E )

=4/(1 + B)”). For the extension, the transmitted energy is

T

_ oy d\r 2 ~ 1AL\ 2
ET* = (lB ) "';5_:2. ([,B")Lﬁ) ) = BB (51)
Further, note that the ratio of the transmitted energy for these two

cases is

148 Less than one B=1
2B Equal to one B=1
Therefore, the extended inlet area expansion is a better reflector and
a worse transmitter of energy than the standard area expansion.

Now consider figure 25, in which the outlet to an area contrac-
tion is extended into the upstream tube. Again, the incident wave pro-
duces a series of waves in the upstream and downstream tubes. KEach
transmitted wave is weaker than the single transmitted wave produced
when the outlet is not extended. Using the same approach as was used
for the extended inlet, we can formulate equations for the transmission

and reflection coefficients.
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Figure 25

The first wave transmitted is not affected by the junction, as it
is cut from the incident wave by the extended outlet and passed into the
downstream tube unamplified. Thus, the transmission coefficient of
the first wave in the downstream tube is unity.

The remainder of the incident wave in the annulus generates
the series of pairs of waves which propagate away from the junction in
the upstream and downstream tubes. The first pair of waves is
generated when the wave in the annulus arrives at the end of the exten-
sion after reflecting from the closed end. The effective area ratio

formulation of this interaction gives,

¥ Pas B+l ,
S e P e (52
P ﬂx"ﬂ'a B“”i )

so that the strength of the waves which propagate away from the
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junction in the upstream and downstream tubes is,

Ta = R, = #*:_%ii (53)

or

Tiet = R; = -—(P«l) ;—L)L (54)

The transmitted energy for the case of an extended outlet area
area contraction can be compared to the case without the extension.
For the area contraction, there is only one transmitted wave
(T =2/(1+1/8) or ET = (ZB/I-I-B)Z). For the extension, the trans-
mitted energy is

- —I\iN2 2
Ere = 14 I (-0 F)) 2?57% (55)

Further, note that the ratio of the transmitted energy for these two

cases is

Eorx B+ 1 Less than one B>1

T Equal to one B =1

Therefore, the extended outlet area contraction is a better reflector
and a worse transmitter of energy than the standard area contraction.

3.4.2 Expansion Chamber with Inlet Extension

The extension of the inlet pipe into the expansion chamber re-
sults in an improvement of performance. The geometry and X-T
diagram is shown in figure 26.

Some introduction is in order here. For this

geometry, there is an infinite series of an infinite series, etc., of



FIGURE 26 EXTENDED INLET SYSTEM
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transmitted waves, and the selection of the numbering scheme is
rather crucial. The numbering scheme can be important in two ways,
by (1) minimizing the amount of computation and (2) insuring that
account has been taken of all the waves. Further, we will only com-
pute the transmitted waves.

The transmitted waves with one subscript, Ti’ are obtgined by
using the equations fo'r an extended inlet junction followed by an area

contraction

g2

F (up) | |
T = (,B-l)(,i"”)l <7§%) e3¢ (56)

The transmitted waves with two subscripts, Tij" are obtained by noting

!
I

that they have been eeflected from the area contraction once (and only
once). Each wave which reflects from the downstream contractioh to
the left acts as the input wave to an extended outlet area contraction

(Eqn. 54 ‘gives the reflected waves to the right).
J=21

ENENF) G oo

-l L _
= () i, dzl

n
<.
{
|~

The last term is the standard area contraction.
At this point, note that the number of subscripts,

minus one, is equal to the number of reflections from the downstream
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contraction that a given transmitted wave has encountered. Also, the

form of equation 57 can be reduced to
Ty = T [3+l) Ti+i (p,,, (58)

It follows that the transmitted wave with three subscripts can be

written as

Tije= To p*,) TJ+/¢+1 (1+,e> (59)

For the case of the transmitted waves with o subscripts

Tt'jk_ ..... =T ) T N N (ﬁ-H) (60)

Now to compute the total transmitted energy the sum of the
squares of the amplitudes of all the transmitted waves is computed.
One point here is that we will assume that none of the transmitted
waves ever overtakes another. The sum of the squares of the series
with one subscript is |

Y
= ()

m
it

for two subscripts E -
P Ta Er - (ﬂw )
for three subscripts E = E; - -E:—{')
T3 d Bt

leaving the entire transmitted energy as the sum of the above,

_ B
T~ 1+3p"

(61)

3.4.3 Expansion Chamber with Outlet Extension

The extension of the outlet pipe into the expansion chamber
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results in the same improvement of performance as does the inlet
extension. The geometry is shown in figure 27, where the X-T dia-
gram identifies the numbering scheme.

The transmitted waves with one subscript, Ti’ are obtainced by
using the equations for an area expansion followed by an extended out-

let junction.

2
I+[3

Y S ORTAY |
Ti= 575 (1 _ﬁ)(ﬁ) (21 (62)

The transmitted waves with two subscripts, Tij’ are obtained by

To -

noting that they have reflected from the upstream junction once (and
only once). For each wave with one subscript, which is transmitted,
a wave with the same strength is transmitted back into the chamber.
This wave reflects from the upstrearh junction and then acts as a new

input wave to the extended outlet junction.

=} o .
T = T,'(,f*T CB;') T; tz2l,Jz0 (63)

Again, the number of subscripts, minus one, is equal to the number
of reflections from the upstream junction that a given transmitted

wave has encountered. For the case of (&) reflections, the result is
o _ B ,
T‘;J......f o /T) 7:'7}.-:9"_7:,; (64)

(where all indices except (p) range from one to infinity and p ranges
from zero to infinity).
Now to compute the total transmitted energy, the sum of the

squares of the transmission coefficients is computed. The result is
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FIGURE 27 EXTENDED OQOUTLET SYSTEM
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identical to the result for the extended inlet,
5 - 2{3 )
T, - ﬁ-f-/@
- 3(N-1)
Tw = (,Bw

or the total transmitted energy is
E, = B (65)
I+3p*

3.5 Sound Radiation from Open Pipes

To connect the waves in the tailpipe to the radiated noise, we
consicier the arrival of a plane weak shock at the open end of a circular
tailpipe. We will show that each shock which reaches the end of the
tailpipe radiates a narrow pulse to the free field. The pulse width is
a function of tailpipe diameter and viewing angle (At = 0(D/a)), where
(D) is the diameter and (a) is the speed of sound. The pulse amplitude
varies inversely with distance from the source. With this relation
between the wave in the‘ tailpipe and the pulse in the free field, the
radiated_noise or the sound pressure level, SPL, produced by an
acoustic shock can be calculated.

In general, a series of waves are transmitted into the tailpipe
from the muffler. If the spacing between the waves in the tailpipe is
such that each produces a radiated pulse independent of the others, the
total SPL can be estimated.

3.5.1 Radiated Waveforms

The sound radiation produced by the reflection of a weak shock

from the open end of a pipe can be modeled as if it were created by a
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distribution of sources in the exit plane. The distribution of source
strengths is obtained by calculating the volume flux induced during: the
reflection process. Since the pressure ficld is related to the time
rate of change of the volume flux, the essential quantity is the velocity
in the exit plane. The tailpipe exit is flush with a flat baffle of infinite
dimension.

The velocity potential for a point source at the origin in free

space, emitting a volume flux, f(t), is

‘¢P=.‘I;’Tr~ flat-r)y (66)

When there is a ground plane or baffle, the velocity potential
for a point source is constructed by the method of images. When the
source‘ is located in the ground plane, so is its image. The volume
flux of the source and its image aré equal and add to give twice the
volume flux due to the source in free space. The combination gives

f},: ;'-;’-;—-’-‘ 2 £ (at-r) (67)

The contribution from each source in the exit plane of the tube

is summed by integration,

=) ,C[a:é-i:)
¢( r, 9)*) = m / ~ JS (68)
S

r

where the geometry is shown in figure 28. The pressure is related to

the velocity potential (p = -pét), or

pimoty = L3 [ 2R g,
‘ S

r (69)
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The calculation will be done in two parts. Initially, we will

fix the source strength by using the velocity behind the incident shock,
: \ | |
?p(f) = Fﬁb—: H(t) = (70)

where H(t) is the Heaviside function. Later, in an approximate man-
ner, we will account for the additional details of the velocity history
during the reflection process.

Substitution of equation 70 into 69 gives

~
; 4 - =) /
plr,e,t)= P ‘M RJ) a3 - (71)
X f R*
5 R :
The use of the geometry shown in figure 28 gives

a.'(:
plried)= "IJ _-—J &) Hai welato) o %‘)ﬁ'} (72)

o ( ),if,(& R) + ') Z.? R 5'“9

where the variable of 1ntegrat1on, n =E&/R. When an integral contains

a delta function, the argument of the delta function must be at most a
linear function of the variable of integration to use the standard rules
for integration of delta functions. Therefore, the following trans-

formation is useful,

4= 1) dt =9
R T d

Pl 4
n R i

where ?m) _/(__') +n*—2nLsme
73 - d| Tr

i a’F(v\‘) n—k{-"swe
R dq = p

Substitution of the change of variables gives,

L]

and
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'l’h)
/;(,- ,0,4) = ‘___ﬁ_ j {' - ) ‘H’)M’))cj’f (74)

'("("l) or ¥ (

which can be integrated using the standard rules for integration of

delta functions,
| at |
plrie,t) = ap W')("”)) (75)

where

n (f;-;f) = % (swe-[siwte — (1- (%-’%)7’)")

and
() + (So-0)" !
29 ( Sr-1)

This result is quite interesting in that it shows that the pressure at any

cos 'P(’)) =

l;ime is proportional to the angular range of integration, ¥, at that
instant in timé (Fig. 28). Further, there are special cases where the
the time dependence of ¥ is quite simple.

For example, on the axis where the angular range of integra-

tion is 2m, we find that the pressure is
, %
p= &p , r< at < ryi+(@®R,)

The information that the wall of the tube has stopped has not reached
this part of the sound field. This lack of decay only exists in the area
directly above the exit plane, p € R. Also the duration of the pulse

becomes increasingly small as the pulse propagates away from the
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source.

Another simple case is on the ground plane (p = r and

8 =m/2), where

n= 5 (- %)
and
v = T Jieg 4 (%)

Substitution into equation 75 gives

+) = R ; ©— ot ‘
F(” ty=sp R [ LAty (76)
) =R & 0.'6 4 r+ R
It is interesting to note that there is a striking degree of direc-

tionality in the peak pressure, as shown by

A/D LA R
Fffmx: -71:4]5 =R

R ap £ <R
In the region near the axis the information about the end of the tube is
not communicated to the wave front. As the point of observation ex-
ceeds the tube radius, the maximum pressure decays quickly to a
value depending on the distance of travel, R/r.

For the approximate analysis, we calculate the pressure pulse
only on the ground plane but go on to account for the additional source
strength due to the reflection. The fluid in the exit plane accelerates
to the velocity behind the shock, upon its arrival, in a very short time.

Diffracted waves created by the shock at the exit act to double the



82

velocity. This process is at best axisymmetric, though we will as-
sume that the velocity doubles and the pressure decays to zero in a
uniform manner. The time scale of this event is the order of the tubes
characteristic time, D/a, and has been calculated by Rudinger (1957)
for acoustic shocks.

Rudinger uses the acoustics approximation and takes a step
function input wave. The spectrum of the reflected wave, PR(w), is
related to the spectrum of the incident wave, Pi(w)’ by the impedance

of the open end,
-
Btw)= Biwe (77)
where w is the frequency and y is related to the impedance, z, by
Z = po tanh (¥ | (78)

The impedance of the open end of a tube is a function of the
ratio of the wave length of the sound to the tube diameter. To calcu-
late the impedance, the slug of fluid in the open end is modeled as a
rigid circular piston in an infinite baffle. The pressure field is calcu-
lated for sinusoidal vibrations of the piston. The mean pressure acting
on the surface of the piston is evaluated. The impedance is the ratio of

the R.M.S. pressure to the excitation velocity (Morse and Ingard, 1968).
Z = foatanh(¥) = fa(-i%) (79)

where
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: 2
ok = =
(w) - & Tw)
gl
| y (% 2
Liw) = = j siv (weosx) sivx dx
)
and W =£— w, the nondimensional frequency.

Then the exit pressure is calculated by integrating over all

frequencies,

| | ] e |
P~P,= R-P t f P;(w)e.zuw)e,lw dw (80)

where pi(w) is the spectrum of the incident wave. For this work, the
- velocity is the desired quantity and can be obtained in a similar man-

ner.

l;"Po - - 4
W= Wo = Pj’« N ff (w)e S " AW(SI

- 00

Rudinger has computed the Fourier integral for the case where
the inp‘b.t Wakve isva step-function. His results show that the pressure
changes instantaneously to plv at t = 0, and decays practically expo-
nentially to Po in a time, t = 3-2 . For this analysis, the velocity is
taken as Ap/pa at t = 0, and increases in the same manner as the

~

pressure decreases, to twice Ap/pa in a time, t R

3

®|g

ult) = %E (‘L-ési’)ul%—) (82)

where the effective velocity, u(t), is uniform in the exit plane. The
decay constant, B, is the inverse of the reflection time and is taken as

1.15a/D, which is obtained by exponential fit to the numerical results
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of Rudinger.

The volume flux per unit area is

Fiey = -%g_ \’L—gBt) H({-)_ - (83)

The velocity potential is obtained in the same manner as equation 68,
and the pressure in the same manner as equa‘tion 71. Then the

pressure is

Mr\ s {_ ”*
o~ (84)
_BL{---‘-‘- R
+EBJ = HE-D ds
o ¢ & *
R

where the first and second integrals will be denoted by 12 and P, The
contribution from the first integral is produced by the shock, while the
second integral accounts for the reflection process. Using the far-
field approximation for the surface element of integration (Fig. 28),
which is valid only near the ground plane, the first integral can be

~integrated. The result is essentially the same as equation 76.

= A?ww \/l - P'M)L‘ (82)

The second integral is not so simple. For short times ( or

near the wave front), the integrand is nonzero only on a portion of the
exit plane, because the Heaviside function is zero for r > at. The area

of integration is the overlap of a circle of radius at, centered at a
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point, r, with the exit of the tailpipe. Here we approximate the
boundary of the region of integration ciue to the circle of radius, at,
by a straight line. This approximation is exact to first order, but
does have a second order correction (0 (R/r)z).

Therefore, using the approximate geometry, as éhown in

figure 28, the second integral can be written

R :
-8+ - I__"‘_‘i) )
Fk - Ai) 2&@ € a Q‘\’ r ) ,R& d{ (86)

!: .

- R

and further, the Heaviside function can be eliminated by adjusting the

range of integration,

j' e:EfnL’l “)\) / -9 J?

, 1> 06> -1
= ']o . (87)
Pa “‘).—1‘;;%‘?

| v Beyn. |
; e"f(q no» f‘..’l'k. | dﬂ , -l)”?o

h -
TN e ) ez 52, and 8.2 B2R =15
| | R =x

The second integral, Pys has been numerically computed as a function

of time beginning when the wavefront arrives (t = r;R ormn_ =1)

and ending when the pressure has decayed to 1/20th of the peak
pressure. Values of the integrand times BO/Z, and the contribution
from p, are plotted as a function of time in figure 28b, where the com-

mon (:erm%_—B -I;{- is factored out (note, Prox © 1};“ Ap -1;”—).

3.5.2 Radiated Sound Pressure Level

The soﬁnd'pressure level can be calculated for the case of

repetitive arrival of shocks at the open end of a pipe if the period of
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longer than the characteristic time of the pipe, D/a. The SPL is

defined as
[T o) de = [P RYR
SePeL :‘ = £ F («!-) , :(: __F_)&___K (88)

where k is a constant of order one obtained from the integration
k = 2.91. The SPL is decibels (Pref =, 0002 pBar) is
sSpL= 10 LOGO ( (._t— __.) K) (89)
Preg. T Q'T
and the attenuation is defined as the difference between the local SPL

and the SPL of the incident shock, or

2 i ,
= o e (90)
ATT = 20 Lo6 (4= /K_g_')
aT
If the shock is first attenuated in the tube before it reaches the
open end, then the incident shock amplitude, Ap, is replaced by the
transmitted shock amplitude, T Ap. For the case of perforations, the

transmission coefficient was given in equation 22 as T(-‘l—e, Ap). The

attenuation is

- 2 - (Be
AT = 20 Lo6, (g [k R T (5, 5p)) OV

When each incident shock produces a series of waves, the

transmitted energy function is used. For the case of an expansion

chamber, the attenuation is
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AT = 0 Ltog,, ((%}xk&% E) (92)

where the transmitted energy, ET, is given by equation 43, For the

case of extensions, the transmitted energy is given by either equation

61 or 65.
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IVv. RESULTS - INTERNAL WAVES

4,1 ©Perforations

The interaction of a plane weak shock wave with a tube with
perforations im the wall is discussed ih this section. The shock
wave is weakened as it passes perforatibns because fluid behind the
shock is pumped through the perforations to the surroundings. As
a direct result of the shock wave passing each perforation, waves
are diffracted off the shock. The interaction with the diffracted
expansion waves traveling across the shock front weakens the shock.
The diffracted waves propagating upstream become one-dimensional.
and form the reflected wave.

The basic wave interaction, including the effects of incident
shock strength and length of perforated tube, is discussed in the
first section. The wave amplitudes and empiricalv data are pre-
sented, and their dependence on incident shock strength is discussed.
An empirical relation for the discharge coefficient of the perfora-
tions is computed from the data and is used to fit the theory té the
data. A comparison of the corrected theory with the data shows
that use of the linear and quadratic expansions in the theory is
valid,

Results from the resonance tube exp_eriment‘s‘ are presented
to illustrate the effect of a flow ahead of the shock. In the repeti-
tive excitation case, the shock enters the test section during a
portion of the cycle in which there is a strong flow into the tube.
The discharge coefficient of the perforations is strongly controlled

by the axial flow in the tube, causing results from experiments
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using repetitive excitation to differ from those using single pulses.

In application, perforations are usually enclosed from the
surroundings.  The effects of such an enclosure are presented, and
a simple model describing these effects is given.

4.1.1 Wave Forms

The single pulse excitation e:«ifileriments were .performed as
described in Section 2.3.2. The incident shock Mach numbers were
1.13, 1. 16, 1.29, 1.47, and 1.55; and the perforate area ratios
were 0.44, 0.89, 1.33, and 1.78. The incident and reflected waves
were observed at location U, and the tra.nsrxﬁtted‘waves were ob-
served at locations D1 and D2 (Fig. 12). |

The pressure traces are shown in figures 29, 30 and 31.
Three experiments are presented in each figure. The pictures
across the top of each figure show the pressures observed atvlgca-
tions U and D2. The Iﬁictures across the bqtt‘om of each figure
show the pressui:es Qbserved at location DI and D2. Table 2 identi-
fies the ﬁpper and lower beams and their scéles.

Figure 29 preéents pressure traces of cases where the shock
Mach number was 1.13 and area ratids were 0.44, 0.89, and 1., 78.
The amplitude of the reflected wave increases with the area ratio.
The transmitted wave form, observed at locétions D1 and D2, is a
simple shock at the low‘area ratio. At area ratio 0.89, an expé,n-
sion is seen behind the transmitted front at location DI1; f@rther
down‘s'tr‘ea?m., v‘th‘e éxpa‘ﬁsion has overtaken the shéck; A small grad-
ual éompression'is bbserved behind the expansion at location DI

and behind the wave front at location D2, At the largest area ratio,
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the expansion behind the shock front is stronger as it lowers the pres-
sure to P, The gradual compression is much strohger and raises
the pressure to Pys the final pressure. |

At low iﬁcident shock Mach numbers, the reflected wave is an
expansion. For small area ratios, the transmitted wave is a shock.
For large area ratios, two important points should be emphasized:

(1) the perforate area ratio is set by adjusting the length of the uni-
formly pérforated section (a larger perforate area ratio is equivalent
to a longer section of perforations), and (2) locations D1 and D2 are at
fixed positions in the tube (Fig. 12); and, therefore, their position
relative to the perforated section is decreased for increased perforate
area ratio. For large area ratios, the transmitted wave form is more
complex, including a shock, a sharp expansion, and a slower‘coxﬁpresu
sion, and must propagate a large distance before attaining its final
form. Thus, the transmitted shock continues to weaken after it has
passed the perforated section and until the expansion has completely
overtaken the shock front. At this point, the wave form is a shock
followed by a gradual compression. Finally, after the compression
has overtaken the shock, there is only a shock, changing the pressure
- from p; to p4;

This complex transmitted wave form has also been observed by
Szumowski (1972), although his comments do not include a careful
discussion of the wave forms. For example, the distance that the
transmitted wave must propagate to attain its asymptotic strength
must scale not only with its local amplitude, but with the length of the

perforated section (locations D1 and D2); the shocks observed are
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further from their asymptotic strength for larger area ratios.

A one-dimensional model gives a simple but adequate explana-
tion of the gradual compression observed in the transmitted wave.
When the incident shock enters the section of the tube with perforated
walls, disturbances are created which propagate along the negative
characteristics (Fig. >32.). As the disturbances pass back throughkthe
perforations, they are in turn reflected along positive characteristics.
Since the first order reflections, which propagate along C_,are expan-
sion waves, the second order reflections are compressive. For weak
incident shocks, the second order reflections advance toward the
transmitted shock very slowly. Further, the rise times for the second
order’ waves would be O(2L/a) at least in the region immediately down-
stream of the perforations. For an area ratio of 1.78 with perforations
of length 10.2 cm, the rise time, 2L/a, should be 560 psec, which is
in qualitétive agreement with the observed rise time of 600 psec (Fig.
29).

The occurrence of a sharp expansion immediately behind the
leading shock does not follow from a similar one-dimensional argu-
ment as gi've‘n above. The time scale of the expansion, O(100 pusec),
is the order of the transverse travel time, D/a = 110 psec, rather
than the longitudinal travel time. Therefore, the expansion is possibly
made up of transverse diffracted waves originating at the interaction of
thevshock with the individual perforations; however, a quantitative
explanation is not complete.

Figure 30 presents pressure traces of experiments at incident

shock Mach number 1.55 and area ratios 0.44, 0.89, and 1.78. The
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transmitted wave is a simple shock except for the largest area ratio
case>where, at location D1, a slight compression is observed behind
the shock front. When the shock reaches location D2, the compres-
sion has already overtaken the shock front, so that the wave is a sim-
ple shock.

Figure 31 presents pressure traces of experiments at incident
shock Mach numbers 1.16, 1.27, and 1.47. The transmitted wave
form D1 progresses from shock, expansion, and compression at low
incident shock strengths, to a simple shock at high incident shock
strength.

4.1.2 Wave Amplitudes

The strengths of the reflected and transmitted waves are nor-
malized using the incident shock strength. In that way, reflection
and transmission coefficients may be compared. For the more com-
plex transmitted wave forms, the amplitude is taken to be the final
pressure after the gradual compression. The transmission and
reflection coefficients are plotted in figures 33a and 33b. ‘The data
are plotted against area ratio for each incident shock strength. The
attenuation is increased with increasing area ratio. On the other hand,
the attenuation is decreased with increasing incident shock strength.
At low incident shock strengths, the reflection coefficient increases
(negatively) with increasing area ratio but tends to remain constant at
higher incident shock strengths.

The above data were processed using the program discussed
in Appendix B. The flow conditions in regions two through four, and

in the perforation (Fig. 20), are calculated. The discharge coefficient
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of the perforations, which is the ratio of actual to ideal mass flow
through the perforate, is computed as follows:*

1) The actual mass flow is rha = A (p3U3 -p,0 which is the

")
defect in the mass flow between regions three and four.
2) The ideal mass flow is r‘hi = AepeUe, where Ae is the total
area of the perforate and the density and velocity are computed assum-
ing the fluid expands isentropically from region three through the exit.
3) The‘discharge coefficient, 0, is the ratio, fna/r'ni.
The stagnation pressure is calculated in regions three and
four. The stagnation pressure drop from region three to four is
normalized by the stagnation pressure in region three and is presented
in figure 34. At low incident shock strength, the stagnation pressure
drop is almost zero; oddly enough it is a very small negative number.
The stagné,tion pressure drop increases with incident shock strength
to approximately 20% at the highest shock strength and largest area
ratio (longest length of perforated tube).

"The discharge coefficient is plotted in figure 35. Since they are
significantly less than unity, the raw data failed to compare favorably
with the theory that assumes the discharge coefficient is one. Assum-
ing that the fluid passing through the perforation attains the calculated
density and velocity, a second interpretation of the discharge coefficient
can be made. The discharge coefficient represents the ratio of the
cross-sectional area of each jet through the perforation to the physical

area of the perforation.

*A simplified calculation reveals that the total mass flux into the
boundary layer is neg11g1b1e compared to the mass flux through the
perforations.
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Therefore, we make the rather strong assumption that the net effect
~of the axial flow in the tube is only to change the evffective cross-sec-
tional area of the jets.

The advantage of interpreting the discharge coefficient as an
area ratio is that the theory ié simple to correct. The area ratio is
replacéd by the product of the discharge coefficient with the area
ratio. The functional dependence of the discharge coefficient is ob-
tained by a numerical fit of the data presented in figure 35. The
empirical relation, @ (Ae/A’ MS) = ,687 - .109 Ae/A - .609 (MS - 1),
agrées with a large portion of the data.

The area ratio used in the theories of Section 3.1 is corrected
with the empirical relation discussed above. The corrected theory is
checked by comparison with data in figures 36 through 40.

The first order theory, eqn. 22, agrees with the transmission
cqeffi;ient data, except for Ms = 1. 16, where observations are slightly
underpredicted. However, the reflection coefficient is not predicted.
Since only the transmission coefficient is confirmed by the data, the
solution must be taken somewhat lightly. In particular, since, for
low incident shock strength, the solution of the complete set of.second
order equations predicts both the transmission and reflection coef-
ficient quite well, we mustassume that all the second order terms are
important. (Even though the reflection coefficient is not predicted by
eqn. 22, it does provide a good estimate of the transmission coefficient,
which is useful in computing the radiated noise (Section 5.2).)

The numerical solutions could.not be obtained for shock Mach

numbers 1.47 and 1.55, and the data processing programs revealed
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that the flows in region three and through the perforations were near

3 37

and Me = 1.24). These equations are valid expansion for flows with

sonic (MS = 1.47, M, = 0. 88 and .'[\/Ie = 1.13; MS =.1.56, M 0. 92
small compressibility effects, as the equations are second order in
the flow Mach number. Clearly these expansions are not sufficient if
the flow is choked, which may cause the numerical solution to diverge

for these two cases,

4.1.3 The Effect of an Initial Velocity in the Test Section

The effect of an initial velocity in front of the shock was
studied in the resonance tube facility, as described in Section 2. 1. 1.
The procebdure used in the repetitive pulse experiments was described
in Section 2.3.1. At a resonant frequency of 38.4 Hz, the test shock
Mach number varied from 1.11 to 1. 16, depending on the muffler
system. Perforated tubes were used with and without expansion
chamber enclosures. The perforate area ratio was varied from 0,22
to 4. 0, and expansion chambers A, B, and C were used as enclosures,
The incident and reflected waves were observed at location U, the
transmitted waves were observed at location D1, and for finite en-
closures, the radiated waves were observed at location F. The
results from the infinite enclosure experiments are used to discuss
the effects of an initial velocity. The additional effect of a finite
enclosure is discussed in the next section.

Since the discharge coefficient of the perforations is controlled
by the axial velocity in the tube, the predominant effect of an initial
velocity in the tube is to change the discharge coefficient. If, after

the waves have interacted with the perforations, the resultant axial
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velocity is small compared to the velocity through the perforations,
the jets point in the radial direction. When the axial velocity is in-
creased, the jets tilt from the radial direction toward the axis of the
tube, thus decreasing the discharge coefficient.

The pressure wave forms for one fifth of a cycle of the
periodic motion, in the case of infinite enclosures, are presented in
figure 41. The traces in the top row are observed from location U;
the traces in the bottom row are observed from location D1 (Fig. 12).
Three experiments are presented, one in each coiumn, corresponding
to perforate area ratios of 0.44, 0.89, and 1.78.

The reflected wave from the perforated section of tube is an
e'xpansio'n wave whose amplitude increases with increasing area ratio.
The transmitted wave is a shock f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>