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Abstract 

The idea of using streamlines of a certain known flow field 

to construct generally three-dimensional lifting surfaces together 

with the method of evaluating the aerodynamic forces on the sur- 

faces, developed by Nonwefler, Jones and Woods, has been extended 

and applied to axisymmetric hypersonic flow fields associated with 

n a class of slender power-law shock waves of the f o m  r - TX in 

the limit of infinite free stream Mach number. For this purpose, 

the basic %Pow fields assoctated with concave shocks (n > 1) have 

first been calculated mumerfcafly at a fixed value sf the ratio 

of specific heats y = 1.40, and the results are presented in tabu- 

lated fom, covering a wide range! sf values sf m e  The method of 

constructing a lifting surface either by prescribing its leading 

edge shape on the basic shock or by specifying its trailing edge 

shape in the plane x = P is then discussed. Expressions for lift 

and drag on the surface are derived. A class of sptiwwrn shapes 

giving m i n i m  pressure drag at a fixed value sf lift has been 

deteminaed for every basfe f l m  field with ri ranging from P/2 to 

10 at Y = 1.40. 
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I. Introduction 

Recent advances in technology have made flight at hypersonic speeds 

realizable. As a consequence, the practical problem of the optimum de- 

sign of the aerodynamic shapes in this speed range is beginning to at- 

tract considerable attention from many aerodynamicists, and significant 

progress has been achieved. Perhaps the most up-to-date survey of the 

current status of this subject is given by Miele. -ever, most of 

the available analyses seem to be restricted to two dimensional or axi- 

symmetric shapes; also the Newtonian approximation sf pressure distri- 

bution is widely adopted in the analyses. The treatment of general 

three dimensional shapes without the simplifying assumption of Newtonian 

pressure distribution appears to be fomidable because of the inherent 

difficulties of solving the strongly non-linear set of equations of 

gasdynamics in any generality. This is true even for slender shapes 

where the simplified equations of the hypersonic small disturbance 

theory (henceforth referred to as HSDT) can be successfully applied. 

Nevertheless, a relatively new method of constructing lifting 

surfaces within the framework of inviscid gasdynamic theory has re- 

cently been developed. This method furnishes a fairly wide class of 

three dimensional surfaces whose aerodynamic characteristics can be 

determined exactly. This method, first developed by Nonweiler, (2) 

consists of using the streamlines in some basic known flow field as 

the elements sf the surface. If an arbitrary eume prescribed on the 

shock surface sf the basic flow field is taken as the leading edge of 

the lifting surface, then the BiftPng surface is f o m d  by those 

& 



s t reamlines  t h a t  penet ra te  t h e  bas ic  shock surface  through t h e  po in t s  

on the  leading edge curve. Obviously t h i s  l i f t i n g  surface  w i l l  have 

a shock wave of known shape a t tached a l l  along i t s  leading edge. That 

part of t h e  o r i g i n a l  flow f i e l d  between the  l i f t i n g  surface  and t h e  

shock wave a t tached along i t s  leading edge w i l l  remain unal tered  regard- 

l e s s  of the  replacement of t h e  o r i g i n a l  body by the  l i f t i n g  surface .  

Therefore,  t h e  fo rces  a c t i n g  on t h e  surface  a r e  access ib le  t o  exact  

ca lcu la t ions .  Nonweiler i l l u s t r a t e d  the  idea by taking the  flow f i e l d  

behind a plane oblique shock wave generated by a two dimensional wedge 

f l y i n g  a t  supersonic speeds a s  the  bas ic  flow f i e l d .  Eater  Jones (3)  

and Woods '495'  c a r r i e d  the  idea  wet t o  t h e  case where an a x i s m e t r i c  

supersonic cone f i e l d  i s  taken a s  the  bas ic  f i e l d .  They indicated  a 

procedure of const ruct ing t h e  surface  gebfnetrically a s  wel l  a s  a method 

of numericaPly eva lua t ing  t h e  aerodynamic fo rces  om it. 

It now seems f e a s i b l e  t o  generate a f a i r l y  wide c l a s s  of th ree  d i -  

mensional l i f t i n g  su r faces  from some known two dimensional o r  axisym- 

metr ic  flow f i e l d s .  The same idea  can equa l ly  wel l  be appl ied  t o  hyper- 

sonic  flow f i e l d s  and hence t o  t h e  design of a c l a s s  of th ree  dimen- 

s i o n a l  hypersonic l i f t i n g  surfaces .  I n  both the  supersonic and the  hy- 

personic cases ,  the  so lu t ion  t o  the  bas ic  flow f i e l d  i s  e s s e n t i a l ,  

Among the  l imi ted  number of e x i s t i n g  exact  so lu t ions  t o  the  equa- 

t i o n s  of hypersonic small disturbance theory ,  t h e  s e l f - s i m i l a r  flow be- 

*n hind an anxisymmetric power-law shock wave sf t h e  f o m  r* - TX , seems 

t o  be the  most i n t e r e s t i n g  one f o r  t h i s  purpose, h d e t a i l e d  account 

of t h i s  flow f i e l d  can be found i n  an survey a r t i c l e  by Mirels, ( 6 )  i n  



which the discussion is limited to the non-concave shapes of the body 

and shock only, i.e., n S 1. Extensive numerical results for the cor- 

responding flow field have also been tabulated in ~hern~i(~) and Gersten 

and Nicolai. (8) For concave shapes, the flow field also exhibits simi- 

larity, but the only investigation considers a two dimensional case 

(~ullivan")). The numerical calculations for the corresponding axi- 

symmetric case do not seem to exist in the literature. 

In the present thesis, the previously mentioned method of construct- 

ing the lifting surface is extended and applied to the limiting hyper- 

sonic small disturbance flow field (i.e., H s 0) associated with an 
* *n 

axisymmetric slender power Paw shocks of the form r .-ax for all n 

greater than 112. The surfaces under consideration have the following 

general properties: (1) the trailing edge when projected onto the plan 

is straight a ~ d  perpendicular to the axis of symmetry of the basic 

field, (2) the leading edge is on the original shock surface and is 

symmetric with respect to a meridian plane of the basic axismetric 

field. To do this, the numerical solutions of the concave shock case 

are first obtained in Chapter 2 by reformulating the problem in terms 

of similarity variables and then solving it numerically on the IBM 7094 

digital computer for y = 1.40 and a wide range of an. Certain singular 

behavior sf the solution is noted and discussed. Then in Chapter 3, 

the geometrical construction of the surface is discussed in detail for 

both the case sf prescribed leading edge shape and for the case sf pre- 

scribed trailing edge shape. The method of calculating the lift and 

drag forces on tRe surface is also presented and the expressions for 



the forces are given in terms of single integrals. The integrals are 

in the trailing edge plane and involve a function which characterizes 

the shape of the trailing edge. A variational problem is then fomu- 

lated and solved in Chapter 4 to find an optkmm family of shapes which, 

for a given set of values of n and y, gives minimum drqg for a fixed 

lift. Certain geometrical constraints derived from some practical con- 

siderations arise naturally. Typical. results on the optimum shapes 

and the associated formulae for the minimum drag are also presented, 

covering a wide range sf n for y = l,4. 

It is to be noted here that the treatment sf the problem in gen- 

eral supersoni~ case is possible for the exceptional value sf n equal 

to unityo i.e.,'the axisymmetric cone field, simply because of the fact 

that exact solution of the flow field is available for that exceptional 

case without using the approximations of HSDT. However, calculations 

would then have to be made for every set of values of M and Bs (or 
w 

Bb). the half shock cone angle (or half body cone angle). By study- 

ing the limiting case of hypersonic flow corresponding to M = w ,  the 
w 

great simplification is achieved that only one optimum shape exists. 



11. Solution of the Hypersonic Small Disturbance Equations for the 
Axisyrmnetric Flow Associated With A Bower-Law Shock 

2.1. Formulation of the Problem. 

In this section, the limiting HSDT equations and boundary condi- 

tions are derived from the exact, inviscid gasdynamic equations and 

shock wave relations as well as the conditions of tangential flow on 

the body surface. Next, specialization to the class of the flow asso- 

ciated with power-law shape of shock wave is made and the similarity 

formulation of the problem is given. 

(2.1.1) Derivation of the Limiting HSDT Equations. 

The derivation of the HSDT equations is well-known (see, for ex- 

ample, Van ~~ke"~)) ; however, it is included here for completeness. 

Consider the steady, uniform flow of a stream of calorically per- 

fect gas at Mach number Moo wer a slender body of revs%ution of the 

form 

* * 
where x and r are the streamwise and transverse coordinates respec- 

tively, and T is a small parameter characterizing the body surface in- 

elination to the free stream. 

As LO workPng hypothesisg the associated shock wave shape is pos- 

tulated ts have the following form of expansion in terns sf T: 
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Let the quantity 6 be defined as a characteristic angle which the 

shock wave makes with the free stream, i.e., 

d * d * 2 
tan 6 = '-3; g(x ,T) = T 7 S(x) + O(T ). (2 3) 

dx dx 

Since T -r 0, (2.3) implies that the angle also tends to zero uni- 
* 

formly if ~'(x ) is uniformly of O(1) throughout the flow field. 

We now consider the following limit: 

The equations of motion derived from the exact, inviscid gasdy- 

namie equations under the limit (2.4) are the limiting WDT equations. 

It is to be noted here that in the class of problem considered later, 

the assumpti ons (2.4) underlying the approximati on may break down 

locally and thus results in certain singular behavior of the solutions. 

More explicitly, for the class sf flow where' 

* 
the assumption of small flow deflection 6 -r 0 breaks down at x = o 

* 
for w < 1 because S '(x ) = Q) there On the other hand, the assumption 

* 
of strong shock 1 1 2 6 ~  = 0 is violated at x = o for n > 1 because 

0) 

~'(x*) = O at the tip. These singularities will be discussed later. 

* 
We d l 1  assume here that s '(x ) f s generally of O ( B )  except for 

some focal points, so that 6 and T will be sf the same order of magnitude. 



The physical interpretations of the limit (2.4) are as follows. 

The limit Mw 4 m corresponds to the case that the free stream sound 

speed am 4 o while the free stream density pw and speed Um are kept 

fixed, or equivalently, the ambient pressure pm and temperature Tm 

tend to zero. The limit 6 -, 0 (or T -, 0) corresponds to the case of 

small flow deflection. The strong shock limit 1 / 4 6 ~  = 0 (or 

1 / G 2  = 0) indicates the fact that the free stream Mach angle vanishes 

faster than the local shock wave angle does, because the product Mm6 

can be interpreted as the ratio of the characteristic shock angle to 

the free stream Mach angle. 

In carrying out this limiting process, the strained coordinates 
* i 

P = P / T ~  x = x are used and kept fixed in order to keep the relative 

position of a field point and the body surface invariant. 

The exact conditions across the shock wave in uniform stream can 

be expressed as (1 1) 



* 
u - U  s W 

e:- 

U 01 Y + l  sin2 1 [1 - (  Ma sin 6 )2] (2.5d) 

where the subscripts w and s represent conditions on the upstream and 

downstream sides of the shock surface respectively. 

A study of Eqs. (2.5) under the limit (2.4) suggests the following 

representations of the exact flow fields: 

where the fact that lim 617 = 0(l) is used and the velocity field G *  
+* * * * * *  

isrepresentedbyq ( x , r , ~ ) = U ~ ~ ~ u ( ~ ~ r , ~ ) + ~ ~ v * ( ~ * , r * ~ ~ ] .  . 

The exact kquations of steady motion of an inviscid, nmconduct- 

Png gas in an ax%symmetrfc field are: 

a * * *  a * * *  continuity: 7 (p u r ) + 7 (p v r ) = O (2.4a) 
ax a r  
* 2 axial momentum: u 7 * auk + = o  1 a,* 

7 * 2  * (2.7b) ax ar p u ax 
03 

* av* * m;" * 
transverse momentllm: u 2 1 + v  T + ~ ~ = O  (2.7~) 

a+ urn ax 



* 
entropy: = 0. (2.7d) 

ax 

The exact boundary condition of tangential flow at body surface is 

expressed as 

Application of the expressions (2.6) and the limit (2.4) to the 

equations (2.51, (2.7) and (2.8) results in the following system of 

equations for the leading terms of the expansion: 

a a continuity: - (ro) + ; i~ .  ( r ~ )  = 0 ax 

transverse momentum: a 1 ap O (&+v-)v+--== ar (2 - 9 )  

entropy: ( + v ) = o 

2 
v[x,s(x)] = - 

Y + l  
s (4 

shock conditions P~x,~(x)] = - se2(x) 
Y-bl 

and body surface condition 



The system of Eqs. (2.9), (2.10) and (2.11) constitutes a complete 

problem for the quantities v(x,r) , e(x,r) and p(x,r) and are referred 

to as the limiting HSDT equations. The direct problem is the one with 

f(x) given and S(x) found together with the solutions, whereas the in- 

verse problem deals with a prescribed shock shape and an unknown body 

shape. 

As is well k n m ,  these equations of motion are exactly analogous 

to those describing the exact unsteady motion in a transverse plane. 

One significant feature of the HSDT equations is that the axial per- 

turbation velocity u(x,r) is uncoupled from other quantities, and thus 

the number of the differential equations in the system is reduced by 

me. The solution sf u(x,r) can be most conveniently obtained from 

the foflowing energy integral in the limiting WDT form: 

after the solutisns sf v(x,r), p(x,r) and e(x,r) are obtained. 

(2.1.2) Special Cfass of Similarity Solutions--Power-law Shocks. 

The limiting HSDT equations obtained in the previous section ex- 

hibits significant simplification compared to the original set of equa- 

tions, however, the nonlinearity is still associated with the system 

and the task of finding general solutions is still intractable. A 

efass sf similarity solutions associated with power-law shocks (and 

bodies) is well hm to be admissible to the PISDT system. The set 

sf partial differential equations is therefore reducible to an 



equivalent set of ordinary differential equations for this special 

class of flow fields. The details of the formal deduction of similar- 

ity solutions is omitted here and the reader is referred to Mirels (6) 

or Sedw; 'I2) We only note here that for a class of bodies of the 

n form r - xn, associated shocks must also have the shapes r - x so 

that both the shock surface and the body surface can be represented 

in terms of constant values of similarity variable r/xn, Now, the 

body surface bavndary condition (Eq. 2.11) shows that on the body sur- 

f ace, 

The shock wave cemditi ons (Eqs. 2 .PO) further demand that 

on the shock surface. Therefore, we see immediately that the represen- 

tations sf g(x,r), v(x,r) and a(x,r) for this class of similarity solu- 

tions must be 

where 7 is the basic similarity variable defined by 



I n  the following, one convenient form of the s imi l a r i t y  formula- 

t i o n  f o r  the problem w i l l  be given with a prescribed shock wave 

n r = S(x) = x . 
The body shape is  represented by 

r = f(x) = bxn (2.16) 

where b, the body shape f ac to r ,  is  t o  be found. 

With the shock wave shape given i n  Eqs. (2.15), the following 

boundary value, problem i s f onrmlated using Eqs , (2,9), (2 .lo) and 

(2.11) e 

a a - (ro) + (rm) = 0 ax 

and the body shape fac tor  b is  determined from 



It is convenient to express the equations of motion in terms of 

a stream function defined by 

so that the continuity equation is satisfied identically. 

The transformation from the coordinate system (x,r) to the coordi- 

nate system (x,~) is carried out by observing that 

so that the derivative along a streamline is 

Also, in the following, Physicist's notation will be used, f.e., 

In terms of the new independent variables, Eqs, (2.17) are re- 

written as 



$(y) is the entropy function which should be evaluated at the 

shock wave. The mapping of the shock wave from the (x ,r) plane to 

the (x,~) plane can be effected by using the following relation in 

the (x,r) plane: 

n- 1 nx . 
S.W. s .We 

Therefore, we get: 

on using the shock conditions (2.18) . 
Equation (2.23) is readily integrated to give 

because Y(o,o) = Oe This result ckld be derived directly from physi- 

cal reasoning, The value of Y measures the mass flow between a stream 

surface and the axis. 

The mapping of body surface is done similarly by noting that 

from which it foPlows that 



on using the boundary condition (2.19). This merely ve r i f i e s  that  the 

body surface is  a stream surface. 

Equation (2.25) i s  a lso  readily integrated t o  give y(x,bxn) = 0 

a s  expected. Theref ore, i n  (x ,Y) plane, the shock and the body are 

represented by 

x2n shock ' ' 2  

and 

Y = O  body 

respectively . 
The fmcefqn g(Y) can then be determined a s  follows: 

i n  which the re la t ion  Ys = 2- xZn has been used. 
- 

Let H = G(x,Y)* Then we have 

and 



Thus 

Equation (2.28) states that the transverse component of the veloc- 

ity is equal to the slope of the streamline which is also obvious physi- 

cally. Substituting Eqs. (2.26), (2.27) and (2.28) into Eq. (2.22), 

we obtain the following system of equations for the unknowns p(x,Y) and 
- 
c~(x,Y) : 

The corresponding set of boundary conditions (2.18) is transformed 

accordingly as follows: 



and 

The shock condition on p remains the same, i,e., 

Mow, the results of the similarity discussion will be applied. 

First note that the basic similarity variable is constant along the 

m lines r - X  In (x,Y) plane, a corresponding similarity variable 

can thus be defined as 

because a typical similarity line in the (x,r) plane, e,g., the shock 

wave, r = x* is mapped to a line Y = T xZn in the (x,~) plane. 

!#!herefore, we mite 

where P ('Q is equal to p(x,y) Ips. 

The derivatives g/ax, S / b f o  Bp/ay etc, are evaluated according 

to 



where 

Equations (2.29) are thus transformed into 

9s 

with the boundary conditions specified along the line 7 = P as 

and the body shape factor determined by 

Further elimination in the system (2.34) is possible by writing 

Eq. (2.34a) as 



and substituting into (2.34b). The result is a second order nonlinear 

ordinary differential equation for G(@: 

n-l 
G('-Y)(~~)-Y 

n n y +  1 y-e 1 

with the initial cmditisns 

Equations (2.38) and (2.39) constitute a complete problem for G(7) 

and the flow quantities v9 p9 a are all determined in terns of ~(7) as 
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If v(x,@, p(xI@, a(x,@ are expressed as 

so that 

then V(@ , ~(7) and R(1) are determined by G(TJ) 9 s  

n-l - 
~(7) = (i s)~ 7 CG(IJ)B~(T)I-~ 

and the body shape factor b determined by Eq. (2.36). 

One advantage of this formulation is that ehe Bscation sf the body 

surface (7 = 0 )  which will be shown to be a singularity sf the flow 

field for w # 1 involves explicitly the independent variable only. 



This fact facilitates somewhat the procedure of the numerical integra- 

It is noted here that the above formulation is essentially the 

same as that adopted by Gersten and Nicolai. (8) 

2.2. Behavior of the Solutions Near the Body Surface, 

For the case n S 1, an extensive literature on the solutions of 

the problem exists (Refs, 6,7,8). Only the main results will be re- 

capitulated here for the sake of comparison with the results for n > 1 

to be obtained in this section. From forebody drag considerations it 

is concluded that physically realistic flow exists for n 2 2/ (3  -t j) 

where j = o for two dimensional case and j = 1 for axisynormetric flow. 

The limiting case n = 2/(3 + j) corresponds t o  constant forebody drag, 

i.e., the drag on the body is independent sf the length of the body. 

Therefore it corresponds to a sudden release of a certain constant 

mount of energy at the body nose. Also b = o evereere except at 

the nose where it is undetermined. Physically, this flow pattern cor- 

responds to that due to flow wer a blunt nose followed by a circular 

cylindrical afterbody (in two dimensional flow, to the flow over a 

blunt-nosed flat plate). The density R is zero on the body surface 

for all realistic values of y and 2/(3 3- j) s na < I, while pressure P 

and velocity PT are finite everywhere in the flow field. 

In the following, a detailed analysis sf the solutions near the 

surface (7 = 0 )  is presented for axisymmetric flow, with special a- 

phasis m n > %. 



The starting point is the equations (2.34). It is noticed that 
@ 

the system of equations is invariant under the following affine trans- 

formation: 'Q -' ay\, G -, a ('I2) (l-llny) G ,  P + aP. Therefore the fol- 

lowing set of invariant coordinates a,% is introduced. 

together with the auxiliary coordinates 5 , c  defined by 

Due to the invariant properties of the differential equations, 

the system is reducible to a single first order differential equation 

in (asp) plane. The reduction is accomplished as follows: First, two 

mapping equations from Eqs.  (2.41) 

are obtained by directly differentiating the equations (2.41) with re- 

spect to T and using Eqs, (2.42) , 

With the aid of the above mapping formulas, the original differ- 

ential aqwtims (2.34) are mitten in terms sf these new variables as 

foPBsws: 



The next step is to eliminate 5 and in favor of cr and 8. Equa- 

tion (2.45b) gives 

Also combination of Eqs. (2.43) and (2.44) gives 

which m using (2.45b) yields 

Finally, the aingfe differential equation in (ap@) plane is ob- 

tained as 



after substituting Eqs. (2.46) and (2.47) into Eq. (2.45a) and rearrang- 

ing terms. The boundary condition associated with Eq. (2.48) is easily 

obtained from the defining Eq. (2,41) and the boundary condition on P 

and G at shock r) = 1. Pt is simply 

Actually, Eqs. (2.48) and (2.49) represent the complete solutions 

of the problem and qualitative discussions on the behavior of the so- 

lutPons are possible through the study of integral euwes in (a,$) 

plane, known as'the phase plane, Since numerical results are essential 

to the work in this thesis, it seems preferable to integrate the orig- 

tnal equations directly, However, the behavior of the solutions near 

the body surface can be deduced from these phase plane equations. 

Let us first investigate the behavior of the equation (2,481 as 

CY - + w e  I,t can be shown from Eq. (2.48) that the mlly self-consistent 

assumption m $ is that 

where 

Therefore, f3 4 for m > 1 because y > 1. 

Then the behavior of 7) as a! + a  is simPlarly deduced from the fol- 

lowing equation 



which is obtained by eliminating 5 from Eq. (2.43) in favor of a, using 

Eq. (2.45b). It can also be shown from Eq. (2.51) that as a +  w, the 

only self-consistent assumption on TJ is 

where 

It is then true that 1 + 0 as a! -P for n > lp and consequently 

that a = w corresponds to the body surface. Also shiws from Eq, (2.52) 

is the fact that 

Thus, the body shape factor b is always finite for concave power-law 

shock flows. 

m e  behavior sf 5 as 1'1 4 0 can also be deduced from Eq. (2.4513) as 

from which the behavior of ~ ' ( 7 )  as 7 4 0 is found from Eqs . (2.42) to be 



where C1 is a constant. 

Finally, the behavior of B(Q I), V(Q and R('@ as 7 -. 0 is obtained, 

using Eqs . (2.53) and (2.55) together with Eqs . (2.40) . The results 
show that both P and V are finite as 1'1 0 whereas 

= C2 q- (n- 1) lny 

where C2 = constant and thus R(Q tends to infinite at the surface for 

n >: 1, in contrast to the result for n < 1. Note also that 

lim [G'R ] = = finite . 
'Po 

Pt is important to remark here that the pressure field is regular 

in the whole flow field so that the lift and drag forces on any stream 

sukfaces should be finite, regardless of the singular density field. 

2.3 Numerical Integration of the Differential Equations. 

Equation (2.38) with the inftial conditions Eqs. (2.39) was pro- 

grarmned and integrated numerically on IBM 7094 digital computer, using 

a fourth order Runge-Kutta method. The sblutims of P(Q, V ( v  and 

R('@ are obtained in terms of cG(@ through the use sf Eqs, (2.40). 

The integration Bs.sta~ted at r) = 1 and continued taward r\ = 0 ,  The 



value of y is fixed at 1.40 while the values of n ranges from 1 to 10. 

As the results presented in Fig. 2 shows, the flow field at n = 10 al- 

ready approaches that of the exponential flow field (see Ref. 7) which 

is a limiting case of the power-law flow field; it does not seem nec- 

essary to go beyond n = 10. 

Except for the case n = 1, the point 7 = 0 is a singularity of the 

differential equation and therefore integration can only be continued 

to a point close to 7/ - 0 .  The step size ~TJused in the integration 

is usually 1 8  at the beginning and reduced to 2?10-~ for 71 r 5~10-~. 

Values of G(Q, Gr(n), P(V, V ( v  and R(Q are obtained for each value 

of 7. Since we know from the local behavior analysis made in previous 
I 

section that 

as 7) 0, the numerical integration is stopped at some small positive 

$ where G*(Q is satisfactorily described by Eq. (2.55). More ex- 

plicitly, the computation stops at 'll = % when the neighboring points 
of $, called % 

1 ' , R3, etc. have the property that the ratios 
(m-1) lny 

G'($~) 9 G'~%~)I%~ 'n-l)'ny and G'(%,)/&~ b-1) Iny ate 

approximately equal to four significant digits. Values sf n, 
-4 

found in the present investigation are usually sf the order of PO . 
Since @(o) is finite, we can integrate Eq. (2.55) to give 



Therefore, the  body shape f ac to r  b is  found t o  be 

Also the surface value of P(@ can be obtained froan E q e  (2,40b) a s  

l y - l  
p(0) = (-i + l)Y (clblY 

where C1 i s  the constant obtained from the r a t i o s  G'(& ) f &  (m- uf ny 
1 B 

etc.. , and Eqs , (2.55) and (2.58) Rave been used. The surface value 

of V(@ %a simply 

Final ly ,  Eg. (2.56) should be used t o  describe the density f i e l d  near 

the  surface with Cp determined i n  a way s imilar  t o  CIS and of course, 

R(o) = ( for  n > 1) (2.61) 

Pt i s  noted here  t h a t  fo r  a f ixed set of values (n3y),  the values 

of P, V and @ a r e  p rac t i ca l ly  constant t o  no l e s s  than four decimal 

- 3 
places h e n  7 f a l l s  below 10 . Therefore, f o r  our purpose, the accu- 

racy of the equations f o r  surface values derived above i s  more than 

su f f i c i en t .  

The n t m x i c a l  r e s u l t s  a r e  plot ted i n  Figs,  2 ,  $3, 4 and a l s o  tab- 

ula ted i n  a famil iar  f o m  with P,  V and R a s  functions sf  @. Certain 

l i n e a r  i n t e r p o f a t f m  of the  computer r e s u l t s  i s  involved i n  the 



conversion, but the accuracy of the results is believed to be unaffected 

due to the small step size used in the calculation. In the following 

chapters, the ~hysicist's notation will be used, i.e., we shall write 

p ( r D  = P(G) etc. 

unless otherwipe stated. 



111.' Geometrical and Aerodynamic Propert ies  of the  L i f t i ng  Surface. 

3.1 General Considerations. 

A l i f t i n g  surface i s  defined here  a s  a stream surface,  one s ide  

of which i s  uqed a s  the compression s ide  of an ac tua l  ying. The l i f t -  

ing surface copsidered i n  t h i s  t hes i s  i s  the stream surface generated 

by a sheet of streamlines which or ig ina te  from a cum; drawn on the 

* *n 
slender axisyrmnetric shock surface of the  form r = TX considered 

i n  Chapter 2. This curve i s  ca l led  the leading edge of the l i f t i n g  

, surface. The segment of the basic shock wave downstream of the lead- 

ing edge w i l l  therefore be attached t o  the  l i f t i n g  surface a l l  along 

i t s  leading edge. I n  the region bounded by t h i s  segment of the basic 

shock wave and the l i f t i n g  surface, the or ig ina l  flow f i e l d  w i l l  re- 

g~ *n 
main unchanged when the or ig ina l  axisymmetric power-Paw body r = ~ b x  

i s  replaced by such a l i f t t n g  surface,  generally three dimensional, 

Therefore, the  flow f i e l d  i s  known i n  t h i s  region and the  forces ac t -  

ing  on t h a t  s ide  of the  l i f t i n g  surface which faces the attached shock 

wave can be calculated using the  solut ions  of the  basic flow f i e ld .  

It is t h i s  shock-facing s ide of the surface t h a t  w i l l  be used a s  the  

lower surface of an ac tua l  wing. The calculat ion i s  exact with re-  

gard t o  the HSDT equations, although it i s  s t i l l  asymptotic a s  f a r  

a s  the complete gasdynamic equations a r e  concerned. 

I n  the following, the geometry and aerodynamics of the l i f t i n g  

surface w i l l  be discussed i n  terms of a set of cy l indr ica l  coordinate 

system (x,r8@) i n  which x and r denote the streamwise and transverse 

coordinates respect ively a s  defined i n  Chapter 2 ,  and @ denotes the 



azimuthal angle. A related rectangular cartesian coordinate system 

(x,y,z) with its origin fixed at the nose of the basic shock wave will 

also be used for auxiliary purpose, The relation of the two system is 

given as follows (see Fig. 1): 

and 

3 

xr = c sin (j 9 3 cos qi 

;f$ 
= C cos (j - j) sin qi 

4 4 4 
where (zx9?r,l ) and (i,j,k) denote two sets of unit vectors associated 

f$ 

with the cylindrical system and the eartesian system respectively. It 

should be recalled here that both systems refer to the so-called hyper- 

sonic coordinates in the sense that the lateral coordinates y,z in the 

eartesian system and r in the cylindrical system have been stretched by 

T in accordance with the HSDT analysis. 

The lifting surfaces investigated in the present thesis have these 

geometrical properties in comnon: (I) A plane of symetry exists and 

is taken to be gl = s, hence the leading edge and trailing edge are also 

symmetric with respect to = o; (2) the trailing edge lies in the plane 



x = 1 (henceforth re fe r red  t o  a s  the t r a i l i n g  edge plane) and joins 

the leading edge which l i e s  on the basic  shock wave a t  two points on 

the shock surface. Thus tlie closed curve formed by these edges i s  

the boundary l i n e  s f  the surface; (3) the  azimuthal dimension of the 

surface i s  such t h a t  ($11 s 4; and (4) no expansion region e x i s t s  on 

the shock facing s ide  of the l i f t i n g  surface. Property (2) abwe  i s  

su f f i c i en t  t o  assure a supersonic t r a i l i n g  edge so t h a t  the flow f i e l d  

upstream of the t r a i l i n g  edge w i l l  not be influenced by any downstream 

conditions; i t  a f s s  s impli f ies  the  calculat ions  s ign i f ican t ly .  Prop- 

e r t y  (4) is introduced t o  make sure  t h a t  the  caPculation of the aero- 

dynamic forces is indeed made on the high pressure s ide  of the  surface. 

3,2 The ~ x ~ r e s s i o n  of the Stream Function. 

I n  t h i s  sect ion,  an ana ly t ic  expression of the stream function 'fr 

i s  derived f o r  the axisgnrmnetric flow f i e l d  considered in Chapter 2. 

This f o m s  the basis  sf the  geometrical aspect of the problem and i s  

consequently e s sen t t a l  t o  the  calculat ion of the aerodynamic forces 

m the  P i f t fng  surface. 

Recall from Eq. (2.33) t h a t  a stream function y(x,r) was defined 

a s  sa t i s fy ing  the continuity equa t im  ident ica l ly ,  i.e., 

Next we introduce the s imi l a r i t y  properties of the flow. 

I f  we follow the Phys ic i s t ' s  convention and wri te  y(x,r) = y(x,G) 

e tc . ,  then m transforming the independent var iables  f r m  (x,r) i n t o  

(x ,@) , we have 



Also, using the similarity properties of the functions a9v, we have 

Therefore, Eqs, (2,33) become 

-- a Y(X,G) = X~GR(G) I 
n i3G 

(3.44 
X 

To solve the system (3.4) for Y(x,G), Eq. (3.4a) is first smbsti- 

tuted into (3.4b) to yield 

which Pa immediately integrated along a similarity Pine @ = constant to 

give 

where F(G) is an arbitrary function. 



Differentiating Eq. (3.5) with respect to G and using Eq. (3.4a), 

we have an equation for F(G) as 

x2" [62 g t  - 2- (RV + GR'V + GRV')] . F?(D) = - 2 
Y + X  

The original continuity equation (2.17a.f in (x,@) coordinates takes 

the form 

after using the similarity representation (3.3) for o and v, 

Thus F'(G) = 8 and F(G) = const = 0 so that y(o,G) = 8. Finally, 

the analytic representation of y is obtained as 

and a streamlPne in this flow field is represented by 

3,3. Geometry of the Lifting Surface. 

Pt seems convenient for the purpose of discussion to divide the 

lifting surfaces into two types; (A) the surface contains a portion of 

the basic body surface r = bxn; (B) the surface dws not have any por- 

tion in c ~ m  with the basic body surface, 



The l i f t i n g  surface can be determined e i t h e r  by prescribing i ts  

leading edge shape on the basic shock wave o r  by prescribing i ts  t r a i l -  

ing  edge shape i n  the plane x = 1. These two methods w i l l  be discussed 

i n  the  following. 

3.3.1. L i f t i ng  Surface With Prescribed Leading Edge. 

Suppose t h a t  the  leading edge i s  prescribed on the shock surface a s  

so t h a t  i t  i s  symmetric with respect t o  qj = 0. The condition L(xO) = 0 

f o r  xo > O i s  imposed on the  function i(x) t o  assure the continuity of 

the leading edge curve a t  x = x Rowever L(o) = O i s  not necessary be- o e 

cause x = o represents only a point on the shock surface,  P e e . ,  the  nose, 

hence continuity i s  tmplied i f  the leading edge goes through the nose. 

The significance of the nom-negative constan$ x i s  t h a t  it serves t o  
8 

dis t inguish type A surface (xo = o) from type B surface (xo > 0). This 

w i l l  be discussed l a t e r  i n  t h i s  sectlon. 

The streamline t h a t  penetrates the  shock wave a t  the point (x,r,@) = 

[+. g9 I (%)]  on the leading edge has the  following parametric repre- 

sentat ion i n  terms of the' parameter %, according t o  Eq. (3.8): 



Equation (3.10a) can be solved explicitly for s, using Rs = Vs = 1, 

to give 

Combining Eq. (3.11) with Eq. (3,10b), we get an analytic expres- 

sion for the lifting surface: 

Is ]  = L < s >  

(3.12) 

with xo r s(x,r) = 

The trailing edge of this surface is the intersection of this sur- 

face and the plane x = 1 and is hence easily found to have the follow- 

ing representation: 

I + 1 1 %2n 
with xo r r*(r) = Y-- rR(r) 

the rePation between the function % in Eq. (3.12) amd the function r* 

in Eq. (3.13) being that 



The boundary line of the lifting surface has thus been determined 

and some of its normal projections will be deduced below: 

Projection onto the Trailing Edge Plane: 

Elimination of x from Eq. (3.10) gives the leading edge projection: 

Obviously, the trailing edge has its true shape in this plane. 

Projection onto the Plane y = o: (Planform) 

Elimination of y from Eq. (3 .lo) and conversion into the cartesian 
? 

coordinates (using Eq, (3.1)) give the leading edge projection in terms 

of cartesizm coordinates, 

1 /2 
121 = (x2" - z2) tan [ ~ ( x )  1 

or equivalently' 

n 
121 = x sin [L(x)] . (3.15) 

The trailing edge is projected as a segment of x = 1 in the x-z 

plane. 

Projection onto the Plane z = o: (Elevation) 

Elimination of z from Eq. (3.10) and conversion into the cartesian 

coordinates give the leading edge projection: 

y tan C L ( X ) ~  = (x2n - y 2 y 2  



or equivalently 

n 
y = x cos [L(x)] . (3.16) 

Again, the trailing edge projection: is simply a segment of the 

straight line x = 1. 

The equation of the center line of the lifting surface can also be 
* 

obtained. Due to the assumed symmetry of the surface, this line is simply 

the streamline lying in the plane @ = s and originating from the point 

(x,r,@) = (s,$;n!~(x,J) on the leading edge with I..(+) = o. Its equa- 

tion hn the plane $ = o ( z  = o) is implicitly given as [see Eq. (3.12)] 

because y = a: in the plane (b = 8 .  A more convenient expression will be 

der5ved later in am example where an explicit form of L(x) is given. 

It is noted here that the shapes of trailing edge and the center 

Pine serve to give some feeling of the transverse and fangitudinal cur- 

vature respectively of the lifting surface, 

Finally, it will be shown that the case xo = O corresponds to type 

A. surface whereas the case xo > 0 corresponds to type B surface. This 

is done with a study of the equation bf the trailing edge (3.13). 

First, it is observed that the parameter r*(r) defined in Eq. (3.13) 

has the property that r*(l) = f and r*(b) = 8 and is monotone in O I; r 5 1 
/ 

for all values sf n considered in the thesis, The fact that r*(l) = P 



can e a s i l y  be shown by using the  shock wave condi t ions  on V and R. 

That r*(b) = 0 is  obvious f o r  the  case n S 1 where i t  has been shown 

2 
t h a t  R(b) = 0 o r  f i n i t e  and a l s o  [r - ~ ( r ) ]  = 0 a t  r = b due t o  

the  body surface  condi t ion  of the  o r i g i n a l  bas ic  flow. For n 7 1, it 

has  been es tab l i shed  (see s e c t i o n  2.2) t h a t  R - C2T - (n-1) lny [Eq. (2.5 6) 1, 
2 V - r - 2 v 1 q  (n-1) lny 

Y + l  
[Eqs. (2.40) and (2.55)l a s  7\ -, 0 ,  hence 

** - - 0 a s  1 - 0. Now consider 

Case (i): xo > 0: I n  t h i s  case r*(r) w i l l  not go t o  zero. There- 
- - - -- 

f o r e  i n  the  plane x = 1, the  t r a i l i n g  edge defined by Eq. (3.13) w i l l  

be such t h a t  P > b throughout. Consequently no point  on t h e  body sur-  

f ace  ( r  = b) e x i s t s  i n  t h e  t r a i l i n g  edge. Since n e i t h e r  t h e  leading 

edge nor  t h e  t r a i l i n g  edge conta ins  any point  on t h e  surface  of the  

bas ic  body, t h e  l i f t i n g  surface  must have no por t ion i n  common with 

the  bas ic  body surface.  This  conclusion is a c t u a l l y  obvious from physi- 

c a l  considera t ions .  Note t l iat  Eq. (3.13) r epresen t s  t h e  complete t r a i l -  

ing  edge i n  t h i s , c a s e ,  t h e  two branches j o i n  continuornsly a t  a point  

(r ,@ = (ro.O) where r0 i s  defined a s  r*(ro) = xo. 

Case ( i f )  : x = 0: I n  t h i s  case r*(r) w i l l  range from zero  t o  
0 

one, hence t h e  t r a i l i n g  edge does i n t e r s e c t  with the  c i r c l e  r = b ( the  

bas ic  body surface) ,  A t  t he  point  of i n t e r s e c t i o n  I @ $  t akes  ow the  

value  L(o) which i s  not  necessa r i ly  zero. Let L(o) = Bb. Thus t h e  

two branches of t h e  curve given by Eq. (3.13) end on t h e  c i r c l e  r = b 

at: t h e  po in t s  (b,@ ) and ( b , - ~ ~ )  respec t ive ly ,  and they mark t h e  t r a c e  b 
I 

in t h e  plane x = P sf t h e  s t reamlines  o r i g i n a t i n g  from t h e  points  on 



the  two branches of the leading edge. The complete t r a i l i n g  edge must 

consis t  of a c i r cu l a r  arc:  r = b, -@b s @ S gb i n  addi t ion t o  the curves 

given by Eq. (3.13). This segment of the  c i r c l e  represents a segment of 

n 
the basic power-law body surface r = bx , "wet" by the streamlines or ig i -  

nating from the nose (x = 0) .  It can fur ther  be shown tha t  the area  of 

t h i s  segment of the basic body surface (measured by increases with 

increasing value of L(o) which i s  the angle extended by the two branches 

of leading edge a t  x = o. I f  L(o) = o, we have gb = o and t h i s  par t  of 

the  surface degenerates t o  a l i n e ,  i .e.,  @ = 0, r = bxn. 

An example: L e t  the leading edge be prescribed a s  

The leading edge has constant e levat ion y = C > 18. 

The egua t im  of the l i f t i n g  surface is  then [see Eq. (3.12)] 

or  simply 



The t r a i l i n g  edge i s  described by [see Eq. (3.13) 1 

-1 C ( $ 1  = COS - n 
=* 

1 /2n 
with C.'ln S r = rR(r) [r - V ( r j  5 1  9 

o r  simply 

0 
h e r e  ro i s  defined by r R(r,) 

me glanfonn is [Eq. (3.15) 1 

112 
l z /  = xn s i n  C O S - ~ ~ =  n (x2" - 2') (3 .28) 

X 

bounded by x = 1, 

The projection i n  the plane z = 0 takes the f o m  [E¶. (3.16) 1 

a s  expected, 

The boundary l i n e  of the  surface when projected onto the t r a i l i n g  

edge plane becomes the closed cuwe bounded by the t r a i l i n g  edge curve 

[EQ. (3.99a)l and r eos $ = @, 



The center line of the lifting surface is [~q. (3.17) 1 

- 1 cos 
C 

= 0 

In view of the fact that functions R,V are tabulated as functions 

the practical computation of the above equation can be facil- 

itated by using the following parametric representatPon 

Finally, it is obvious that in this example, xO = c"" > 0 and 

hence the lifting surface belongs to type B. 

3.3.2. Lifting Surface With Prescribed Trailing Edge, 

k t  the trailing edge of the lifting surface be prescribed in the 

plane x = B as 



where the function @(r) is defined as follows: 

Type A: P(r) defined for re11 ,b] with P(b) = Gb > 0 (3,22a) 

Type B: P(r) defined for rc[l ,ro] with ro > b and @(ro) = 0 . 
(3.22b) 

Of course, for type A surface, the trailing edge is completed by a cir- 

cular arc r = b between @ = - Gb and @ = @b 

In this sectiono the geometry of the lifting surface will be dis- 

cussed in terms of the trailing edge function @(r) in general. How- 

ever, it is understood that the surface referred to in the following is 

the whole lifting surface excluding that portion which is in common with 

the basic power-law body r =.  bxn, in the case of Type A surface, i.e., 

in the case @(b) > 8 ,  

Consider a streamline that leaves the trailing edge plane at a 

point on the trailing edge, (x,r,@) = [l,F,&P(F) 1. Its equation is, ac- 

cording to Eq. (3.8) 

Considering F as a parameter and letting it vary from one to r (or b), o 

we have E ¶ e  (3,213) as a parametric representation sf the lifting surface, 

The leading edge is the trace sf the lifting surface on the basic 

shock surface r = xn, Its equation is thus obtained as 



n 
Realizing t h a t  %, R($) and V ( d  on r = x a l l  take on the value 

X 
of unity,  we rewrite the  above equation i n  a form wh;Cch represents a 

parametrized cqyve on the shock surface r = xn: 

Now t h a t  the geometry of the surface and i t s  boundary l i n e  i s  com- 

pleted,  a few projections w i l l  be given below: 

Projection i n  the t r a i l i n g  edge plane (x = 1):  

Elimination of x from Eq. (3,241 gives the leading edge projection a s  

The t r a i l i n g  edge has i ts  t rue  shape i n  t h i s  plane. 

Projection i n  the plane y = o (planfonn) 

Elimination of y from Eq. (3.24) and co~aversion i n t o  car tes ian co- 

ordinates  givh the leading edge projection: 



( l z (  = xn sin m(3 , 

The trailing edge projects as x = 1 in this plane. 

Projection in the plane z = o (Elevation) 

Elimination of z from Eq. (3.24) gives the leading edge projection as 

m ( y = x cos ~(2) , 

Again the trailing edge projection is x = P in this plane, 

The equation sf the center Pine of the lifting surface is obviously 

given by 

for the type A surface, and according to Eq. (3.231, 

with ro defined by l(ro) = 0 

for the type B surfaceo The equation abwe can further be parametrized 

as follows: 



An Example: Let the trailing edge be prescribed as 
t 

x = l  

r c s s @ = % c b  f o r b s r r l  

r = b  

where kprk2 are constants so that the trailing edge is at constant ele- 

vatgon y = kl (or k2)' Evidently case (i) corresponds to type B surface 

and case (ii) to type A surface. For the purpose of illustration, only 

case (i) will be considered below. 

We have 

The equation of the lifting surface takes the following parametric 

form [see Eq, (3.23) 1 



2 2 2 (>)[$ - , $41 = i .(a [i - - .(a] 
y + l  

(3.29) 
k -1 1 

@ = cos - . 
P 

The leading edge representation is also parametrized as rsee 

Eq. (3.24)] 

The projection of the boundary Pine me0 the trailing edge plane 

is a closed cuwe represented by 

k -1 1 = eos - 
r" 

and the real trailing edge. 

The plaaf o m  is [see Eq. (3 2 6 )  ] 

closed by the trailing edge projection x = 1, 
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The projection of the boundary line in the plane z = o is 

also joined by the segment of the straight line x = 1. 

The equatip of the center line of the surface is [see Eq. (3.28)j 

The analytical discussion of the geometry of the lifting surface 

presented abwe should be sufficient to illustrate the geometrical as- 

pect of the surface, Further Snfomation can be obtained by properly 

using the equations derfved abwe. It is seen that in a given basic 

flaw field, Bee., for a given set of values of n and y, a lifting sur- 

face is determined by specifying either the leading edge shape on the 

basic shock surface r = xn or the trailing edge in the plane x = 1, 

Graphical construction of the actual three dimensional surface can be 

dome with the aid sf the tabulated results of the flow field, using 

Eqs. (3.12) or (3,231, This will not be included in the present thesis, 



3.4. Aerodynamic Forces on the Lifting Surface, 

In this section, methods of evaluating the lift and drag forces 

on the shock-facing side of the lifting surface will be given. First 

a direct method is discussed. An indirect method is presented next by 

constructing a control volume. The results of this indirect method 

will be s h m  to be accessible to actual calculation. Original physi- 

cal coordinates and flow variables are used in deriving the formulae 

and BDT expans+ons introduced in Chapter 2 are used afterwards to 

get the leading terms. The order of magnitude sf the error terms will 

thus become evident in the process. 

3.4.1. Direct Method. 
* 

Let the lifting surface be denoted by Q . Then the pressure force 
acting on the shock-facing side of it is the following integral wer 

the lifting surface. 

-D 
where n is the unit normal of the lifting surface directed away from the 

* * * 
side on which the pressure acts, If we denote by L , D and T the lift 

-0 9 force (acting in (- J) direction), the drag force (acting Pn L direction) 

-? 
and the side thrust (acting in k direction), then w e  have 

* * , * = J  J P  ds* 

'3: 
Y 



* * 
i n  which ds * i s  the normal projection of ds onto the plan, i .e . ,  

Y 

* 
and * i s  consequently the planform of the l i f t i n g  surface, ds *, 

* 3 X 

0 * and ds *, n a r e  s imilar ly defined, 
X z z 

Wow, i n  the WSDT l imi t ,  

ak 
ds * = ~ d x d z  etc .  

3 

z\ Y 

Therefore, the l i f t  force,  f o r  example, can be expressed a s  

Here g i s  a known function, i . e . ,  

but In order t o  calculate  the leading term of E, the function P - 
t n )  

must be expressed a s  a function of ( x , ~ ) ,  using the equation of the 

l i f t i n g  surface 
. II 



2 2lI2 
to eliminate r = (y + z ) in favor of (x,z) and then carry out the in- 

tegration over the planform. 

As shown in the previous section, the function B(x,r,@) is very 
t 

implicit, hence the process of eliminating r from P tn) - would be ex- 
tremely laborious. Therefore, the direct method is inconvenient for 

practical purpose, although it is applicable in principle. 
I 

3.4.2. Indirect Method, 
* 

Consider a fixed control volume bounded by a closed surface c in 

a flow field discussed in Chapter 2. Application of the laws sf con- 

servation sf mass and momentum to the fluid inside this volume gives 

the following equations: 

if the effect ~f body force is neglected, 

Generalizing Woods' (5' idea, we choose a control volume with its 

bounding surface formed by these elements: (see Fig. 5) 
* 

(1) n : the lifting surface 
* 

(2) sl: in plane x = 1, bounded by a segment of the trace of the 

basic shock wave and the kmplete trailing edge of the 

lifting surface. 



* * * 
( 3 )  s + s3: s is the normal pojection of the lifting surface 2 2 * 

onto the plane x = xo, which is perpendicular to the 

undisturbed streamlines and passing through the apex of 

* * 
the lifting surface; s3 is+the normal projection of s 1 * 
onto the plane x = xo and is thus its true shape. 

* 
(4)  S4:  A surface formed by the sheet of undisturbed streamlines 

* * 
which connect the boundary line of s2 9 s with the lead- 3 * 
Png edge and the upper boundary of sg,  which is a segment 

of the trace of the basic shock wave in the trailing edge 

plane, 
* 

W%th elements of C so chosen, we have the fo1Powing results: 

* +* -b 9 
On 0 : q a n = 0 ,  n = m i t  normal vector directed toward the 

pressure-acting side. 

* * * +* " -P 4 
(s2 + s3): P = P.3 P ' Pa. (1 = k i i  OD 9 n = - i  

Therefore Eqs. (3 ,341 and (3,35) become, respectively: 



The last term in Eq. (3.37) is the pressure force exerted on the 

lifting surface by the fluid. We write 

* 
as in section 3.4.1 and remark again that the lift force L is taken 

+ 
in the negative j direction. Also, we consider p, = 0, Then Eq. (3.37) 

becomes 

after Eg. (3.36) has been used. 

Notice from above that the aerodynamic forces are expressible in 

terms sf integrals in the trailing edge plane, 

Introducing the limiting HSDT expansions sf Chapter 2 [~q. (2.6) ] 

we get 



+ -b 
Using thd relation 4 = k sin $ + f cos q5, we obtain the following 

- 5 L* = T3 JJ gY cos g rdrd$ + ~ ( r  2 
f',Uco s 

I! 

7 

5 T* = T~ JJ sin $ r d r d g +  O ( T )  . 
I? 

(3.40) 

Pa0 eo s 
P 

The quantity u in Eqo (3.38) can be eliminated by using Eq. (2.12) 

to give 

Recall that we have 



Thus, i n  s1 where x = 1 the quant i t i es  v,p,o a r e  a l l  functions of 

r alone and i f  we write 

then we get 

2% = - n fl R(r) V(r) cos ) rdrd$ 
Y - 

"1 

2T = - n JJ R(r) Y ( r )  s i n  (b rdrd@ 
Y - 

1 

Note t h a t  (2D), (2E) and (2T) a r e  the leading terms of the dimen- 

sisnPess drag, l i f t  and s ide  th rus t  respect ively and t h a t  they a re  a11 

expressed a s  i n t eg ra l s  i n  the t r a i l i n g  edge plane. me area sI is 



bounded by the trailing edge curve and a segment of the basic shock 

wave and is hence symmetric with respect to @ = o. If we first inte- 

grate along r = const. from @ = - @(r) to @ = + @(r) then the follow- 

ing results are obtained: 

2 I = - n RV sin $(r) rdr 
Y - 1  

where ) @ $  = i ( r )  is the trailing edge equation hi&, in the case of 

type A surface, does not include the circular arc P = b, Also, 

r = r z b with @(ro) = o for a type B surface and r = b for a type 
a 0 a 

A surfacee 

In order to facilitate writing, the following notations are intro- 

duced 

(r;m,y) = drag function = n2(~$+p)r (3.44) 
y2 - 1 

& (r;m,y) = lift function = (3.45) 

so that 

D = f& (r) D (r) dr 
r a 



I, = r ~ ( r )  s i n  g(r)dr. 

It is seen tha t  the calculat ion of D and L involves only s ingle  

integrat ions .  Functions a ( r ; n  ,y) and x ( r ; n  ,y) a r e  fixed functions 

of r fo r  every given flow f i e l d  and thus can be calculated once f o r  

a l l  with given n and y, using t ab l e  1, Once @(r)  i s  specif ied,  the 

evaluation of D and E is  so simple t h a t  even hand calculat ion i s  pract i -  

caP. The advantage of t h i s  method over the  prev ims  one i s  thus evi-  

dent. 

It might appear t h a t  a d i f f i c u l t y  e x i s t s  f o r  a type A surface with 

n > 1 because we have then ra = b and ,8 (b )  = w. However it w i l l  be 

shown below t h a t  t h i s  s ingular i ty  i s  an integrable  me. Consider the 

contribution t o  the  l i f t  from the  elements between r = r and r = b a 
where r i s  s l i g h t l y  grea te r  than b, and denote t h i s  l oca l  contribu- a 
t i o n b y E  Then, a' 

r 
R 

= x(r) s%n $(r)dr = - dG 
5 Y O 1  2n P C ( @  R('@ V(@ q s i n  0 7  

where 7 is defined a s  @(q ) = r and again the ~ f i y s i c i s t ' s  convention 
R a a 

R(G) = HI(@ e t c ,  has been used, 

According t o  the analysis  of the focal  behavior of the functions 

R,V,@,@* in  sect ion 2.2, we have 

$ b(TI) = f i n i t e  constant 



and a l so  V(@, G(q) and s i n  9 are  constants a s  1) + 0. 

I n  the ac tua l  calculation, use must be made of the or ig ina l  com- 

puter r e su l t s ,  t ha t  i s ,  the table  i n  which P, V,  R and G' a re  given 

a s  functions of q, and q is so chosen tha t  the product s i n  g R(q  ) a R 
dG 

V(1),) G(vl) (11~) = xR = constant t o  four s ignif icant  d ig i t s .  Then 

L~ = (+ n,)zh = f i n i t e  constant. 

A s i m i l a r  procedure i s  used fo r  D where we have 
R 

D = 
2 2 n QI D4 = f i n i t e  constant. 

o Y ' - l  

I n  a l l  cases considered i n  t h i s  thes is ,  L and D turn out t o  be a a 
only about 5 percent of the t o t a l  E and D. 

Therefore; we csncPude tha t  the l i f t  and drag formulae (3.41), 

(3,421 give f i n i t e  values fo r  L and D even i n  the use of type A sur- 

face with n > 1. This fac t  is  consistent with the physical reasoning 

tha t  f i n i t e  surface pressure should r e su l t  i n  f i n i t e  t o t a l  forces. 

I n  closing t h i s  chapter, the following remark wl1P be made. The 

t r a i l i n g  edge function $(r) has been shown t o  play a decisive ro le  i n  

the d o l e  analysis,  It determines the geometry of the l i f t i n g  surface 

on the one hand and absorbs the dependence s f  the aerodynamics upon 

the geometry s f  the l i f t i n g  surface on the other,  The dis t inc t ion  be- 

tween the type A surface and the type B surface i s  a l s o  evident i n  the 

def in i t ion  of the function G(r), Hf i ( r )  i s  defined f s r  b < r s 1, the 



surface belongs t o  type A; i f  it is  defined for b < ro 5 r s 1 with 

q(rO) = 0, the surface belongs t o  type B .  

In the next chapter, further investigation of the l i f t i n g  sur- 

face w i l l  be based on the tra i l ing  edge function Q(r ) .  



TV. Optimum Shapes. 

4.1. General Discussions. 

It has been shown in the previous chapter that a rather wide 

class of three dimensional lifting surfaces can be constructed in 

a flow field associated with a slender axisymmetric power-law shock 

wave in limiting HSDT flows by specifying the trailing edge shape 

which in turn cppletely determines the aerodynamic properties of 

the surface, A practical question naturally arises as to the feasi- 

bility sf obtaining, in a specific flow field, a particular surface 

which has optimum aerodynamic properties. Among all optimum shapes, 

the m e  giving minimum drag with fixed lift seems to be the most in- 

teresting and useful from a practical point of view. As revealed in 

the last section of the previous chapter, the expressions of lift 

and drag are given as 

I* = T3 rx (r) sin $(r)dr 

They all involve the trailing edge shape function 9(r) and the thick- 

ness ratio a, thus the questions can obviously be answered by seeking 

a solutim to a certain variational problem t o  determine the function 

@(s) and the associated value of a which sewe the purpose. 



In this chapter, a variational problem will first be formulated 

under certain constraints. Then the solutions of Euler equations are 

discussed in details, the behavior of the solutions for different basic 

flow fields being noted and explored. 

42. Constraints . 
4.2.1. Isoperimetric Constraint. 

Since a set of solutions @(r) and 7 is sought which gives minimum 

* * 
D with a fixed L , the following isoperimetric constraint 

T3 fg (r) sin $(r) dr = constant 

r 
P 

is imposed. 

4.2.2, Differential Constraint. 

It hats been mentioned in Section (3.1) that the lifting surfaces 

considered in this thesis is of such a geometry that the side on which 

aerodynamic forces are calculated is completely the compression side, 

i.e., at positive angle of attack. It can be shown that this restric- 

tion of the surface geometry amounts to following constraint on the 

' trai ling edge shape (see Appendix I ) , 



This inequality constraint can be replaced by the following equal- 

ity constraint if we introduce an auxiliary real function Q(r) such 

that 

4.3. The Role pf the Function A(r) = (r) /x  (r) . 
The variational problem to be considered in this'chapter is es- 

* 
sentially that of determining the function @(r) which minimizes D 

* * * 
and gives a specified value of L where D and L are given by Eqsw 

(4 .I) and (4.2) . The constraint that ) '(r) 2 o, ra d r 5 1 brings 

out the significamce sf the function A(r) defined as 

To see this, Pet us first consider very crudely the variational 

problem just stated. FolPowLng the usual method of the ca8culros of 

variations, we form the functional 

If a solluticm exists at all, it must satisfy the Euler equation, 

= = l ~  9 



from which we obtain an equation for @(r) as 

cos m(r) = - 

* 
Note here that hl must be chosen to be positive in order to sat- 

isfy the condition 0 < @(r) h ;, since& (r), % (r) and r are all 

positive definite quantities. 

From Eq, (4.61, see that 

Equation (4.7) reveals the significance of the function A(r), If 

~'(r) s 0 for ra 5 r 5 1, the solution @(r) given by Eq. (4.6) (to be 

referred to as the regular arc later) is compatible with the constraint 

@ ' (r) r 8, although other conditions such as transversali ty conditions 

etc, still remain to be verified. However, if AP(r) 5 O is not true 

for r 5 r 5 l, the regular arc solution violates the differential con- a 

straint and hence the introduction of this constraint fnto the basic 

formulation of the variational problem becomes inevitable. 

It is obvious that A(r) is a characteristic property sf the basic 

flow field, therefore, we should expect that the optimum shapes will 

have basically different geometry for basically different flow fields. 

A detailed analytical study of the function A(r) is impossible simply 

due to the impossibility of obtaining analytical solutions for a gen- 

eral flow field. However, the function AP(r) (and sf course, A(r)) 

can be studied analytically at the boundary points r = B and r = b as 



a function of the parameters n and y, using the shock boundary values 

and the established behavior of the solutions near the basic body sur- 

face. The d e t a i l s  of the calculation a r e  presented i n  Appendix11 and 

the r e su l t s  a re  seen plotted i n  Fig. 6 i n  a (n,y) plane, It is noted 

tha t  d(b) tends t o  + o r  -= according a s  n i s  greater  or  l e s s  than 

unity,  and is f i n i t e  f o r  n = 1, the r e su l t  being t rue fo r  a l l  r e a l i s t i c  

values of ye Ne$ertheless, the behavior of ~ ' ( 1 )  shows a substant ial  

dependence on Y i n  addition t o  n, A boundary l ine  e x i s t s  i n  the region 

n z 1, across which ~ ' ( 1 )  changes signs. Therefore there i s  a f i n i t e  

domain i n  the (n,y) plane i n  which ~ ' ( 1 ) ~ q b )  < O 3  i , e , ,  the function 

A(r) i s  not monotone, For the res t '  of the donain i n  the (n3y) plane, 

the function Atr) m y  be monotone. To f i x  the idea, we sha l l  consider 

y = 1.40. For t h i s  specif ic  value of y, the folPowing obsemations 

can be made (see Fig. 6 )  : (1) , A(r) may be a monotone increasing 

function of a. fo r  n > 1.065, because both ~ ' ( b )  and ~ ' ( 1 )  a re  gosi- 

t i ve ;  (2) A(E) must a t  l e a s t  have one maximum f o r  1.000 < n < 1.065, 

because ~ ' ( b )  > 0 while ~ ' ( 1 )  < 0; (3) A(r) may be monotone decreasing, 

because both AP(l) and AP(b) a re  negative, Notice tha t  the abwe ob- 

servations a r e  inconclusive, w ing  t o  the fac t  tha t  they a r e  based 

merely on the behavior a t  the boundary points. Actual numerical caf- 

eula~ioms f o r  A(r) have been carried out fo r  n = 0.58, 8.65, 8,75, 

1,08, 1.05, 1.58, 2.00, 3.00, 4.00 a t  t h i s  fixed value s f  y = 1.40, 

The r e su l t s  a r e  a l s o  plotted i n  Fig, 7. They emfiran the above con- 

jectures,  Based m the ana ly t ica l  dependence s f  the flow f i e l d s  on 

the parameters n and y, it seems jus t i f i ed  t o  draw Ithe following 



( i )  n > 1.065: ~ ' ( r )  > 0 and A(r) bounded f o r  b 6 r S 1; 

( i i )  1.065 > n > 1: ~ ' ( r )  6 0 f o r  rm S r 6 1; 

~ ' ( r )  > 0 f o r  b S r < rm; and 

A(r) bounded f o r  b 6 r S 1. 

( i i i )  n = 1: ~ ' ( r )  < 0 f o r  A(r) bounded f o r  b 6 r 6 1. 

(iv) $ 6  n < 1: ~ ' ( r )  e O  f o r  b 6 r 5 lp  A(b) = =, 

1 
4.4. Optirmnn Shapes f o r  T 6 n < 1, y = 1.40. 

It has been revealed i n  the previous sect ion t h a t  ~ ' ( r )  < 0 f o r  

b 6 r < P i n  t h i s  case,  therefore  the regular  a r c  t o  be obtained can 

be used throughout and a s  a consequence, the introduction sf the  d i f -  

f e r e n t i a l  constra int  @'(r) 2 0 becomes unnecessary. 

We s h a l l  f i r s t  s t a t e  the  va r i a t i ona l  problem a s  follows: The 

function @(r) an@ the parameter T a r e  t o  be determined which minimize 

the  drag 

under the  isoperbmetric constra int  t h a t  the  l i f t  

1 

I* = T~ X (r) s i n  i ( r ) d r  

i s  fixed. 

The end condieions sn @(r) a r e  

@(l) = f r e e  

@ ( r o ) = o  



where ro is free and b S ro < 1. 

Note that the derivative of the unknown function @(r) does not 

appear in the above variational problem and hence the Euler equation 

will be an algebraic equation instead of a differential equation, 

Therefore, the fact that end conditions are free is a necessary con- 

dition for the solution to exist. 

Following the usual procedure of the indirect method of calculus 
* 

of variations, we introduce a constant Lagrange mufrfpfier 1 and re- 1 

duce the problem to that of minimizing the functional 

under the constraint 

* 
T~ h(r) sin m(r)dr = L = fixed 

Since 7 is a constant parameter, the usual method of differential 

calculus can be employed to yield the first equation: 

* 
an - = 0 : rn (r) dr = sin P (r) dr a~ (4,10) 

Then, we consider the first variation sf the functional H, taking 

into account the variation of,the end point roe We have from Eq. (4.8) 



Consider nQw a sub-class of the comparison arcs for which the var- 

iations of the end points vanish. If @(rj is the solution of the orig- 

inal more general problem, it certainly has to be the solution of this 

restrictive problem. Therefore the abwe equation asserts the validity 

of the Euler equation, i .e., 

P css ~(r) = - A(r) 
11 

m e n  the tranversality condition follows from Eq. (4*11)$ 

Mote that the Euler equation and the transversality condition 

actually can be obtained by applying the results of usual variational 

calculus directly (for example, see Ref. U ) ,  The transversality con- 

dition in general serves to determine the value of roe However it is 



important t o  note here tha t  i t  i s  automatically s a t i s f i e d  i n  t h i s  case 

since @ (ro) vanishes (by the end condition) and ( n ( r O )  , 2 (rO) ) a r e  a l l  

f i n i t e  fo r  t h i s  range of n. This r e su l t  is  by no means t r i v i a l ,  because 

it allows the end coordinate t o  be determined by the solution a f t e r  it 

is found. Were it not so,  a solution might not e x i s t  a t  a l l .  

Now the Eqs. (4.9), (4.10) and (4.12) form a complete system which 

* 
determines the unknowns ~ ( r )  , r and Ax. 

To proceed, f i r s t  rewrite Eq. (4.10) a s  

Then Eqs. (4.12) and (4.13) determine Al i n  the following way. For a 

given basic flow f i e l d ,  A(r) i s  a known function. Thus, varying 1 1 

gives a family of functions ~ ( r )  through Eq. (4.12) with ro determined 

by q(r,) = 0. Note here tha t  since A(1) s A(r) < @ for b < r 2 1 i n  

t h i s  range of n, there always ex i s t s  such an ros b e r, < B tha t  

A(rO) = i . ,  P(ro) = 0) f o r  any value of ll greater than A(l), 

however large,  Each member @(r)  gives a s e t  of corresponding values 

s f  D and k and hence the r a t i o  D/E, Therefore fo r  a given flow f i e l d  

( e  given n) D/L can be found as a function of hl, and we m i t e  

This function T(kl) must be found numerically using the solutions of 

the basic flow f i e l d  t o  evaluate (r) and ~@(r) .  The functions T(hl) 

f o r  n = 0.50, 0,65 and 0.75 have actual ly  been established and plotted 

i n  Fig, 8. Then Eqs. (4.13) serves t o  single me: the par t icular  value 



of hl , called I 
IP 

and hence the corresponding values of L and D de- 

noted by L and D by stating that (1 T(A ) is the location of the 
P P IP' IP 

intersection of the curve ~h = T(hl) with the straight line D/L = 3 / 4  Al, 

if the two do intersect, i.e., 

.Equation (4.14) has been solved graphically (see Fig. 8 )  for n = 0.50, 
6. 6 "  

0.65, 0.75 and St is found that intersections do occur, The results are 
I 

approximately as follows: 

Finally, Eq., ( 4 . 9 )  determines the value of T associated with every spe- 

* 
eified value of E as 

Now that the solution has been completed, it has to be checked if 

the necessary condition, known as Legendre condition, for the extremal 

to be a minimal is satisfied. This is done by studying the second var- 

iation of the functional H given by Eq, ( 4 . 8 ) .  

Following the line of reasoning used in deducing the Euler equa- 

tion from the first variation of H, we again consider a subclass sf the 

corngarism arcs for which the variation of the end point vanishes. The ref o r e  



Theref ore,  

l 4  2 a 2 ~  = 7 h lX( r )  s i n  @ ( r ) ( 6 0  d r  

I - -1 Along the extremal, T = T~~ XI - Alp and p(r)  = Qp(r) = COS 

l/ilp A(r), therefore,  along the extremal 

2 6 H = r41 f ~ ( d  s i n  flp(r) (6))2dr 
P l p  

Since the r i gh t  'hand s ide  s f  Eq. (4.17) i s  posi t ive  de f in i t e ,  w e  con- 

2 
clude t h a t  6 H > 0 along the extremal. This shows t h a t  the  extremal 

s a t i s f i e s  the  necessary condition fo r  being a minimal, 

S~mrmarizing, we sha l l  s t a t e  t ha t  the  o p t b  shapes f o r  y = 1.40 

and 112 5 n < 1 have been determined, The t r a i l i n g  edge function Q(r)  

i s  given by Eq. (4.18) and the optirmun thickness r a t i o  T is given by 

Eg. (4.17). me associated minimum drag is  



Values of X D and L f o r  n = 0.50, 0.65 and 0.75 have been 
IP' P P 

tabulated i n  Eq. (4 -15). 

Note t ha t  the  optinnun surfaces  can be constructed based on @ ( r )  
P 

using the r e s u l t s  es tabl ished i n  Chapter 3. They a l l  belong t o  type B 

surfaces f o r  t h i s  range of n. 

4.5. Optimum Shape f o r  n = 1, y = 1.40. 

This is  the cone f i e l d  i n  l imit ing hypersonic small 85sturbance 

flow. A s  was noted before, ~ ' ( r )  < 0 throughout and hence the d i f f e r -  

e n t i a l  constra int  i s  again unnecessary. Therefore, the  formulation 

together with the method of solut ion f o r  t h i s  case i s  exact ly  the same 

a s  t ha t  fo r  the case 1/2 s m < 1. However, one d i s t i nc t ion  has t o  be 

borne i n  mind while carrying out the  calculation.  I n  contras t  t o  the 

previous case, the function A(r) here is  bounded on both ends, more 

e x p l i c i t l y ,  A(1) = 0.8334 I; A(r) S A(b) = 0.8422. This f a c t  causes 

the following complication i n  the  analysis ,  namely, i f  the par t icu la r  

value of found i n  the same way a s  i n  previous sect ion is  greater  
IP 

than A(b), then the regular a r c  wflP continue u n t i l  it h i t s  the body 

surface r = b but with )(b) > 0. A s  a consequence, )(ro) = 0 i s  not 

s a t i s f i e d  by t h i s  regular a r c  and the t ransversa l i ty  condition, Eq. 

(4.1la) is  violated.  

Following the same procedure outl ined i n  the Bast sect ion,  a 

curve D/L = T(hl) i s  f i r s t  established f o r  t h i s  case (see a l s o  Fig. 8) 

and the par t icu la r  value defined by Eq. (4,141 i s  then determined 
1 P 

graphically. The r e s u l t s  ape approximately 



Notice t ha t  the regular a r c  given by 

-1 A(r) 
@ = gp(r) = cos - 1.26 

ends on r = b = 0,915 beyond which the function A(r) i s  no longer de- 

f ined,  but we have # (b) = cos-I 0.8422/1.26 = 0.815 > 0 .  Therefore 
P 

the  d i f f i c u l t y  noted above does a r i s e .  

This d i f f i c u l t y  suggests the imposition s f  another inequal i ty  
, , 

cons t ra in t  

i n t o  the formlagion of the  var ia t iona l  problem. I f  t h i s  i s  done form- 

a l l y ,  the Euler equations w i l l  l e a d ' t o  the r e s u l t  t ha t  the sgt imm 

t r a i l i n g  edge arc cons is t s  of two subcases, one being the regular a r c  

and the other  being the c i r cu l a r  a r c  r = b ( to  be referred t o  a s  the  

l imi t ing  a r c  l a t e r ) .  A corner point thus e x i s t s  and has to be taken 

care  s f  by f o m l  mathematics, 

However, the  following ra ther  i n t u i t i v e  approach seems t o  be more 

d i r ec t  i n  ge t t ing  the same answer. The end point of the regular a r c  

(r ,@)= (b, Pp(b)) can obviously be brought t o  the point (r,@) = (b,o) 

by the l imi t ing  a r c  so t h a t  the  complete t r a i l i n g  edge function sa t -  

i s f i e s  the  condition g(ro) = 0 and hence the t ransversa l i ty  condition. 

Since the addi t ion 0% t h i s  l imit ing a r c  t o  the t r a i l i n g  edge a r c  does 

* * 
not  a f fec t  e i t h e r  the  value of D o r  the value of E , the optirmun 



property or ig ina l ly  associated with the regular a r c  s t i l l  remains with 

t h i s  combined arc.  

Therefore, the optimum shape of the t r a i l i n g  edge fo r  t h i s  case 

i s  a regular a r c  given by Eq. (4.21) joined by a l imit ing a r c  r = b, 

0 s @ 5 0.815. Again, the optimum thickness r a t i o  T i s  (see Eqs. (4.16) 

and (4.20)) 

and the associated minimum drag is  

It is not& tha t  the optimum surface belongs t o  type A. 

4.6, Optimum Shapes fo r  n > 1, y = 1.4, 

It is known t ha t  the function A(r) i s  not monotone decreasing fo r  

t h i s  range of n,  consequently, the introduction of the d i f f e ren t i a l  

constraint B '(r) r 0 i s  necessary. To f a c i l i t a t e  the presentation, 

type A surfaces and type B surfaces w i l l  be discussed separately, t ha t  

is ,  optimum type A surface and optimum type B surface w i l l  be discussed 

separately for  t h i s  range of n, 

4.6.1, Case 1 < na < 1.065. 

The function A(r) f o r  t h i s  case i s  such tha t  ~ ' ( r )  < O fo r  rm < r s 1 

and ~ ' ( r )  > 0 f o r  b S r < rm with ~ ' ( r * )  = 0 .  Therefore, the regular 

a r c  i s  not allowed t o  be used for  r < rm and another a r c  has t o  be 

joined t o  the regular one a t  r = rc with re 2 rm. A cmner point i s  

thus expected. 



( i )  Type A surface: 

The problem here i s  t o  f ind  an a r c  gl = P(r) running from the shock 

c i r c l e  r = 1 t o  the body c i r c l e  r = b, and the thickness parameter 7 

such t h a t  

1 
D* = 74 D ( r )  P (r) dr  = minimum 

b 

with 

I* T~ (r) s i n  P ( r )  d r  = given constant. 

b 

The end conditions a r e  

cP(1) = f r ee  

i(b) = f r e e  (4.24) 

Notice t h a t  the l i m i t s  of in tegrat ion here,  unlike those of sec- 

t ions  (4.4) and (4.51, are fixed. 

To proceed formally, we follow the mul t ip l ie r  ru l e  of the ind i rec t  

method of calculus of va r i a t i on  by introducing a constant Lagrange muP- 

* * 
t i p l i e r  Al and a var iab le  Lagrange mul t ip l ie r  x2(r)  and form the fo l l a r -  

ing functional W 



the  in tegra l  being divided a t  r = rc t o  allow fo r  the  discont inui ty  of 

v 
I ( r )  a t  r = rC. 

The var ia t iona l  problem is then formulated a s  follows: "In the 

e l a s s  of functions B ( r )  and Q(s) and constant5 a which s a t i s f y  the d i f -  

f e r e n t i a l  equation 

and  the condition 

P * 
r3 [ 2 (r) s i n  g(r) d r  = 1 = cms tan t  

f ind  t h a t  special  s e t  which minimizes the functional N given by Eq. 

(4,251 , the  end conditions being given by Eq. (4 -24) . '' 
The procedure f o r  solut ion goes as follows. F i r s t ,  since T is  a 

constant parameter, the usual technique i n  d i f f e r e n t i a l  calculus f o r  

f inding an extremum may be applied,  i .e, , a ~ / a ~  = 8 which gives 

* 
f x ( r )  s i n  G(r)dr f ~ ( r )  m(r)dr = 7 ;- 

* 
*mere hl is ,  a s  before, defined a s  k1/7 and a l s o  the in tegra l  above need 

not be divided because only @(r) which i s  continuous appears. 



The variation of H due to @(r) and Q(r) is then calculated and set 

equal to zero. 

* 
Integrating the term associated with ~~(r)6@' by parts and rearrang- 

ing, we obtain 

where as usual, [f (x) 1:; stands for £(a) - f(b), 
blow, consider a sub-class of the comparison arcs for which the 

variations of the coordinates of the end points and those sf the corner 

point vanish and the variation of Q(r), i.e., the variation of $'(r), 

vanish for b s r < 1. Since if $(r) is to be the solutions to the orig- 

inal more general variational problem it certainly mst be the solution 

to this rather restrictive problem, we deduce the first Euler equation 



Using the same line of reasoning, we can deduce the second Euler 

equation as 

Equations (4.26), (4.271, (4.28), (4.30) and (4.31) constitute a 
* * 

complete system from which the five unknowns i(r) , Q (r) , 7 ,  Xl and A2 (r) 

can be determined. . 
Also deducible from the Eq, (4.29) are the usual transversality con- 

and the comer ~ m d i t i m s  

using the arbitrariness of @(r) at the ends and at the corner, 

Equations (4.30) and (4.31) state that the solution arc may be 

composed of two subarcs, namely, 

* 
Regular arc: 12(r) I 0, e(r) = hl%(r) P (r) 9 rc s r < ' E  

(4.344 

, and 

Singular arc: Q(r) - 0 ,  I = 9, = conatant, b s P s rc (4.34b) 



The task is first to determine the location of the corner point 

which marks the junction of the two arcs. This is done by integrating 

Eq. (4.30) along the singular arc 4 = IPc = constant, using the fact 

* * 
that A (r ) = A2(b) = 0, and the result is 2 c 

Since the continuity of @(r) must be satisfied at the corner, @c 

is determined from the regular arc, i.e., 

Combining Eqs , (4.35) and (4.36) , we obtain an equation which de- 
termines rc, 

mrc) 
;a. (r) dr = 63 

(rc) I 
Note that the corner point location depends on the basic flow 

field only and is independent of Al and therefore independent of the 

specified value of lift. 

The next step %s to determine the shape of the regular arc, i.e., 

to single out the special value of A1 in Eq. (4.34~1). This is done in 

much the same way as in Section 4.4, Rewrite Eqs, (4.28) and (4.34a) as 



r I r 
3 c 

4 '~(r) dr + f B (r) 4 (r) dr = $ n, sin I, Y(r) dr C 

+ f (r) sin @(r) a. 
r 

C 

Specifying a value of determines P(r) and hence Pc I Q(rc) 

through Eq. (4.39). This expression of G(r) is then substituted into 

Eq. (4.38) which in turn gives a value of xl. Therefore Eqs. (4.38) 

and (4.39) can, $n principle, be solved simltanesusly by iteration 

to yield the special value of called ), and hence theregular 
lp 

arc and 4 (rc) can be determined. 

The complete solution arc is thus: 

with rc determined by Eq. (4.37). 

Using the sslutiorn arc abave, L can be evaluated as 
P 



r 
C .  

I = sin PC x(r)dr + f a r )  sin @(r)dr 
P 

b r 
C 

The optimum value of T is then obtained from Eqs. (4.27) as 

It should be mentioned here that the abwe is a general outline 

sf the procedure for determining a possible solution. The value of rc 

determined by Eq. (4.37) must be greater than or equal to where 

A )  = 0 Also the combined solution arc Eq. (4.40) must be such 

that the Legendre condition is satisfied along each subarc. The last 

statement can be made more explicit by writing d m  the expression for 

the second variation sf H. Using the arguments given in Section 4.4, 

we have 

Since the htegrand sf the first integral is always positive along the 

combined arc, it will suffice to require that 

along the solution arc in order to fulfill the necessary requirement 

2 
for the solution arc to be a minimal,-namely, 6 H 2 0 .  Along regular 

* 
arc, 12(r) = 0 ,  therefore the Legendre condition will be satisfied if 



r 
J [ ~ ( r  ') - hldC(r ') cos ic)r' s 0 

o r  equivalently 

i n  view of Eq. (4 -35). 

Note tha t  cos lc = l / h  ~ ' ( r ~ ) .  so tha t  a simpler expression for  1 

the Legendre condition may be used, B.e., 

No numerical solutions fo r  t h i s  case a r e  included i n  t h i s  thesis .  

( i i )  Type B Surface, 

The only difference i n  the formulation of t h i s  var iat ional  prob- 

lem compared t o  tha t  s f  the type A surface ex i s t s  i n  the end point 

condition. The Euler equations a re  hence s t i l l .  the same. Therefore, 

we s t a t e  tha t  i f  the solution is  t o  ex i s t ,  i t  may s t i l l  only be com- 

posed sf  two types of subarcs, namely, the regular a r c  s t a r t ing  from 

the shock c i r c l e  and the singular a r c  which follows. However, the 

singular a rc  is  rad ia l  and hence must run in to  the body c i r c l e  because 

the poss ib i l i ty  s f  joining it with another regular a r c  i s  ruled out 

due t o  the f ac t  tha t  fo r  r < rc, regular a rcs  a re  a l l  incompatible 

with the constraint @ '(r) 2 0. Therefore, the surface w i l l  not be 

s f  type 18, We then a r r ive  a t  the conclusion tha t  optimum type B 

shape does not e x i s t  fo r  t h i s  range s f  n. 



4.6.2. Case n > 1.065. 

This case is characterized by the fact that the regular arc is not 

allowed to be used at all because ~'(r) > 0 for b 5 r 5 1. The singu- 

lar arc is therefore expected to prevail in b S r S 1, The formal anal- 

ysis will be given below. 

(i) Type A Surface. 

The problem here is again to find an arc 6 = @(r)-joining two 

circles r = 1 and r = b and the thickness parameter T such that 

n* = T4 f~@(r)  @ (r) dr = minirnrm 

with 

1 
I* = T3 r x(r) sin @(r)dr = given constant. 

The end conditions are also of the free type 

~(1) = free 

@(b) = free 

Fsllswing the procedure used in Section 4.6,1, a constant Lagrange 

* * 
multiplier A1 and a variable Lagrange multiplier l2(r) are introduced 

and the problem is reduced to that of finding a set sf functions @(r), 

Q(r) and the parameter T which minimizes the functional M, where 



subject  t o  the constra ints  

* 
T3 fX(r )  s i n  g(r)dr = I 

and 

The end conditions a r e  @(l )  = f r ee ,  @(b) = f r ee ,  

This problem is  the same a s  t h a t  discussed in Section 4.6,l except 

t h a t  the complication due t o  the  corner point is removed. Therefore, 

the  r e s u l t s  obtained previously a r e  d i r e c t l y  applicable t o  t h i s  case 

with the comer  conditions deleted. That is, w e  have the Euler equa- 

tims 

* 3  * l ~ ~ 8 0 9  - A ~ T  H ( r )  cos 4(r) ' -  A, fr) = 0 

and the equation of a H / a ~  = 8, i ,e . , 



The transversality conditions remain the same 

Again, the system of Eqs. (4.45) through (4.49) together with the 

transversality conditions completely determines the solutions for @(r), 

* * 
9 9 h2(r) and 7. 

Euler equations still assert that the solution are m y  consist of 

two types of subarcs, namely, regular arc and singular arc, However, 

as was stated before, ~'(r) > O for b < r < 1, thus the regular arc does 

not exist in thgs case. The Euler equations will be satisfied in this 

case by choosing 

! ?  

and 

Equation (4,511 when combined with Eq. (4.46) yields 

P(r) = @C = constant. 

Therefore, we have 



* 
Integrating (4.54) noting that h2(b) = 0, we obtain 

Equations (4.55) furnishes one equation for determining h1 and 

* 
gC if we use the fact that ~ ~ ( 1 )  = 0, i.e., 

Writing 

which are the gropertles of the basic flow field, we have 

Rewriting Eq, (4.49) as 

using the fact that ((r) 3 (IC = constant, we get another equation for 

determining Ge end hl, i.e.. 



5 
IcDA = i; hl s i n  Ic LA 

Equations (4.58) and (4.59) give the r e su l t s  thar  

3 
ic = =g tan gc 

It must be remarked tha t  the r e su l t  of gc a s  s h m  i n  Eq. (4.60) 

i s  surprisingly simple. Since DA and LA drop out i n  ebis  equation, . %, 

I, i s  independent of the property of the basic flaw f i e l d  and hence 

has the same value fo r  a l l  n i n  t h i s  range, i , e . ,  

Qc = 0.846 = 48.5 deg 

Corresponding t o  t h i s  value of me, E can be calculated to be 

i 

~p = J (s in  i,) x ( r )  d r  = 0.749 LA 

Equatfm (4.45) can then be used t o  determine the  opt immvalue 

Values of 5 together with those of DA f o r  n = 1.5, 3.0, 6.0, 10.0 

have been calculated numerically and the r e s u l t s  a re  plot,ted i n  Fig. 9,  



Now tha t  a solut ion a r c  ql = mc has been found, the  remaining task 

i s  t o  ve r i fy  t h a t  along t h i s  a r c ,  Legendre condition i s  sa t i s f i ed .  The 

2 
second var ia t ion  6 H is  given by Eq. (4.41). 

2 4 
6 H = T hl (X( r )  s i n  G(r) (6@I2dr - 2 f ~ ; ( r )  (6Q12dr 

Along the a r c  ql = I,. 7 = 7 9 )il = Alp 
P 

2 I 
s i n  Gc ~ ( r )  (61) 2dr - 2 f$( r )  (69) 2dr 6 = T ~ A ~ ~  

* 
where ~ ~ ( r )  i s  given by Eqs . (4.55) and (4.58). 

Since the f i r s t  t e r n  on the r i g h t  hand s ide  sf the abwe  equation 

2 i s  posi t ive  de,finite,  6 H > 0 i s  s a t i s f i e d  i f  

Bs1;rsJ. 

Naw since 

the guanti t y  

i s  required to be negative f o r  II s r 5 lo 



Using the resul ts  of the flow f ie ld ,  ~ ~ ( r )  as  defined by Eq. (4.66) 

can be calculated numerically for each flow f ie ld ,  i.e., for each value 

of n. This has actually been done for  n = 1.5, 3.0, 6.0, 10.0 and the 

resul ts  are plotted i n  Fig. 10. It i s  revealed i n  th i s  figure that 

h 2 ( r ) s 0  for b g r s l  

i s  actually satisfied. Since analytical dependence of 12(r) on the 

parameter an is  expected, it seems reasonable t o  draw the conclusion 

from the results  for  these typical values of Ha l i s ted  above that 

holds for a l l  n i n  th i s  range. Therefore, the Legendre condition i s  

sa t is f ied  by t h i s  arc @ = lc = 0.846. 

In concluding th i s  section, we shall  summarize the results  ob- 

tained as  follows: the optimum t ra i l ing  edge is 

for  a l l  values of n. However, the optimum value of T is  given by 

Eq, (4.63) which evidently varies with different basic flow fields. 

The associated m i n i m  drag i s  

( i f ) .  Type B Surface, 

The fomula t im s f  th i s  problem difgers f r m  that sf  the previous 

problem only i n  the end point conditions. Therefore the Euler equations 



remain the same, consequently the optimum a r c  can only be the singular 

a r c  alone. However the  singular a r c  is  r a d i a l  and must run i n t o  the 

body surface r = b. Therefore again the conclusion i s  reached t h a t  

the  optimum type B surface does not e x i s t  Bn t h i s  range of n, 

4.7. Concluding Remark. 

To conclude the discussion on optimum shapes, the geometrical 

aspects of the  optirmun surfaces a r e  worked out f o r  the range of n be- 

tween 112 and 1, using the r e s u l t s  obtained i n  t h i s  chapter and the 

methods given i n  the l a s t  chapter. These r e s u l t s  a r e  s h m  i n  Figs. 11 

through 15. 



Appendix I 

Let the t r a i l i n g  edge of the l i f t i n g  surface be represented by 

@ = Q( t )  

It i s  proposed t o  show i n  t h i s  appendix t h a t  the condition 

Q'(r) 2 0 .  

i s  both necessary and su f f i c i en t  t o  insure t h a t  

on' the l i f t i n g  surface a t  an a r b i t r a r y  s t a t i o n  x = x* where 

Q S X  spbcs1, 
0 

That the condition i s  necessary is  obvious because otherwise 

d@/dr is  negative a t  l e a s t  a t  the t r a i l i n g  edge plane x = 1. 

To show tha t  it is a l s o  su f f i c i en t ,  we need t o  invest igate  the 

geometry of the l i f t i n g  surface determined from the given t r a i l i n g  

edge function Q(r) .  

L e t  the curve 

represent the nonaal projection of the Beading edge corresponding t o  

the  given t r a i l i n g  edge onto the plane x = 1, 



Then from section 3.3.2 we have a parametric representation for 

the curve @ = gp(r) as 

qi - @(a = mp(r) 

Now, it is obvious that the occurrence of 

at a certain station x = X* means that I (r) < @(r) for sane r between 
P 

b and 1. Therefore, to rule lout this possfbility we must have 

where equality holds only at r = 1. 

Numerical evfdence shows that in Eq. (b) 

for all n.2 112, equality holding only at 5 = b and 3 = 1. 

Since Eq. (8) requires that 

@(3 2 @(r) 

we conclude that the function @(r) must be guch that 



in view of Eq. (e). That is, must be a monotone increasing Eunc- 

tia of r. 



where 

-92 - 

Appendix 11 

Recall t h a t  the  function A(r) was defined a s  

and 

Therefore, it follows t h a t  

and 

"1 and 21 To study the behavior of - it therefore suf- 
dr r=l ~ = b  "1 a n d g l  f i c e s  t o  study respectively.  

G = l  G=b 
It: is  convenient t o  go back t o  the or ig ina l  independent var iable  

'll used i n  the solut ion of the  basic  flow f i e l d s  f o r  t h i s  purpose. We 

w i l l  write 



where physicist's notation i s  being used again. Then 

Let us calculate dii/dr). From Eq. (e), we have 

Using Eqs. (2.531, we obtain P' (7) , v'(@ and R'(T() as  follows 

P *  d 
- 9 . -  

n - 1 1  I s g P  = - --  @' G" 
P d7 n y\ 

Y , - Y -  
G #  

v" d G~ 9 27 Gf' 
T - = - l o g V = -  d r) 6 - 27 G o  

d 

(i) Consider - 

l y - 1  The boundary conditions G(l) = P and G '(1) = - 2 y e 1  enable us 

t o  calculate ~"(1) through Eq. (2.51). The result i s  



Therefore, we have 

Finally, on using P(P) = V(1) = R(1) = 1, We have 

and henee 

in view of Eq. (f). 

Therefore, we conclude that 

and the boundary Pine, i.e,, - = Q 9  is thus 
r=l 

which is drawn in Fi g, 6 in a (n9y) plane, 



ax 
(ii) Consider - as T) + 0: 

d9 

We know that 

Thus 

Therefore, 

n-P - n-1 
P' n - P I  ---- m - l a  
P fY -y--- 

ycl b y > ~  T nY 7 

It8 v P  and hence IT( >> } 1 1  as 9 + 0 .  

Also, 



Thus, 

Therefore, 

and 

n-f 

Therefore, we conclude that 



Fig, l COORDINATE SYSTEM 





r /xn  

Fig. 3 VELOCITY FIELD ( Y  = 1.40) 



Fig. 4 DENSITY FIELD (7' = 1.40) 
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Fig. 7 THE FUNCTION A(I ;  n,y) FOR y = 1.40 



XI 
Fig. 8 GRAPHICAL SOLUTION FOR X I  



n 
Fig .9  DA AND L A  A T y z 1 . 4 0  



Fig. 10 X,(r) FOR Y = 1.40 





Fig. 12 OPTIMUM SHAPE (TRAILING EDGE PLANE) 



Fig. 13 OPTIMUM SHAPE (TRAILING EDGE PLANE) 







Table 1. Numerical Results of Flow Fields (y = 1.40) 



Table 1 (cont'd) 



Table 1 (cont'd) 
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