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Abstract

The idea of using streamlines of a certain known fiow field
to construct generally three-dimensional 1ifting surfaces together
with the method of evaluating the aerodynamic forces on the sur-
faces, deve10ped by Nonweiler, Jones and Woods, has been extended
and applied to axisymmetric hypersonic flow fields assoc1ated with
a class of slender power-law shock waves of the form r ~ %" in
the limit of infinite free stream Mach number. For this purpose,
the basic flow fields associated with concave shocks (n > 1) have
first been calculated numerically at a fixed value of the ratio
of specific hea#s Y = 1.40, and the results are presented in tabu-
lated form, covéring a wide range of values of n. The method of
constructing a lifting surface either by prescribing its leading
edge shape'on the basic shock or by specifying its trailing edge
shape in the pfgne x = 1 is then discussed. Expressions for lift
and drag on thelsurface are derived. A class of optimum shapes
giving minimum pressure drag at a fixed value of 1lift has been
determined for every basic flow field with n ranging from 1/2 to

10 at vy = 1.40,
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it
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» = conditions upstream of the shock wave
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]

conditions downstream of the shock wave
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]

conditions on the body surface
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* = physical quantities



I. Introduction

Recent advances in technology have made flight at hypersonic speeds
realizable. As a consequence, the practical problem of the optimum de-
sign of the aerodynamic shapes in this speed range is begiﬁning to at-
tract coﬁsiderable attention from many aerodynamicists, and significant
progress has béen achieved. Perhaps the most uﬁ-to-date survey of the

current status of this subject is given by Mielea(l)

However, most of
the available analyses seem to be restricted to two dimensional or axi-
symmetric shapes; also the Newtonian approximation of pressure distri-
bution is widely adopted in the analyses. The treatment of general
three dimensional shapes without the simplifying assumption of Newtonian
pressure distribution appears to be formidable because of the inherent
difficulties of solving the strongly non-linear set of equatioms of
gasdynamics in any generality. This is true even for slender shapes
where the simplified equations of the hypersonic small disturbance
theory (henceforth referred to as HSDT) can be successfully applied.
Nevertheless; a relatively new method of constructing lifting
surfaces within the framework of inviscid gasdynamic theory has re-
cently been developed. This method furnishes a fairly wide class of
three dimensional surfaces whose aerodynamic characteristics canm be
determined exactly. This method, first developed by Nonweiler,(z)
consists of using the streamlines in some basic known flow field as
the elements of the surface. If an arbitrary curve prescribed on the
shock surface of the basic floﬁ field is taken as the leading edge of

the lifting surface, then the lifting surface is formed by those

[}
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streamlines that penetrate the basic shock surface through the points
on the leading edge curve, Obviously this lifting surface will have
a shock wave of known shape attached all along its leading edge. That
part of the original flow field between the lifting surface and the
shock wave attached along its leading edge will remain unaltered regard-
less of the replacement of the original body by the lifting surface.
Therefore, the forces acting on the surface are accessible to exact
calculations. Nonweiler illustrated the idea by taking the flow field
behind a plane oblique shock wave generated by a two dimensional wedge

flying at supersonic speeds as the basic flow field. Later Jones(3)

and Woods(4’5)

carried the idea over to the case where an axisymmetric
supersonic cone field is taken as the basic field. They indicated a
procedure of constructing the surface geometrically as well as a method
of numerically evaluating the aerodynamic forces om it.

It now seems feasible to generate a fairly wide class of three di-
mensional lifting surfaces from some known two dimensiomal or axisym-‘
metric flow fields. The same idea can equally well be applied to hyper-
sonic flow fields and hence to the design of a class of three dimen-
sional hypersonic lifting surfaces. In both the supersonic and the hy-
personic cases, the solution to the basic flow field is essential.

Among the limited number of existing exact solutions to the equa-
tions of hypersonic small disturbance theory, the self-similar flow be-
hind an axisymmetric power-law shock wave of the form r* mlfxfn, seems

to be the most interesting one for this purpose. A detailed account

of this flow field can be found in a sufvey article by Mirels,(G) in
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which the discussion is limited to the non-concave shapes of the body
and shock only, i.e., n £ 1, Extensive numerical results for the cor-
responding flow field have also been tabulated in Chernyi(7) and Gersten
and Nicolai.(a) For concave shapes, the flow field also exhibits simi-
larity, but the only investigation considers a two dimensional case
(Sullivan(g)). The numerical calculations for the corresponding axi-
symmetric case do not seem fo exist in the literature.

In the present thesis, the previously mentioned method of construct-
ing the lifting surface is extended and applied to the limiting hyper-
sonic small disturbance flow field (i.e., H = 0) associated with an
axisymmetric slender power law shocks of the form r* A»Ti*n for all m
greater than 1/2, The surfaces under consideration have the following
general properties: (1) the trailing edge when projected onto the plan
is straight and perpendicular to the axis of symmetry of the basic
field, (2) the leading edge is on the original shock surface and is
symmetric with respect to a meridian plane of the basic axisymmetric
field. To do this, the numerical solutions of the concave shock case
are first obtaimed in Chapter 2 by reformulating the problem in terms
of similarity variables and then solving it numerically on the IBM 7094
digital computer for y = 1.40 and a wide range of n. Certain singﬁlar
behavior of the solution is noted and discussed. Then in Chapter 3,
the geometrical construction of the surface is discussed in detail for
both the case of prescribed leading edge shape and for the case of pre-
scribed trailing edge shape. The method of calculating the 1lift and

drag forces on the surface is also presented and the expressions for



by

the forces are given in terms of single integrals. The integrals are
in the trailing edge plane and involve a function which characterizes
the‘shape of the trailing edge. A variational problem is then formu-
lated and solved in Chapter 4 to find an optimum family of shapes which,
for a given set of values of n and v, gives minimum drag for a fixed
1lift., Certain geometrical constraints derived from soﬁe practical con-
siderations arése naturally, Typical results on the optimum shapes
and the associated formulae for the minimum drag are also presented,
covering a wide range of n for v = 1.4,

It is to be noted here that the treatment of the problem in gen-
eral supersonié case is possible for fhe exceptional value of n equal
to unity, i.e.,’the axisymmetric cone field, simply because of the fact
that exact solution of the flow field is available for that exceptional
case without using the approximations of HSDT. However, calculations
would then have to be made for every set of values of M; and es (or
eb), the half ghock cone angle (or half body cone angie)ﬂ - By study-
ing the 1imitiﬁg case of hypersonic flow corresponding to M& = o, the

great simplification is achieved that only one optimum shape exists,
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II. Solution of the Hypersonic Small Disturbance Equations for the
Axisymmetric Flow Associated With A Power-Law Shock

2.1. Formulation of the Problem.

In this section, the limiting HSDT equations and boﬁndary condi-
tions are derived from the exact, inviscid gasdynamic equations and
shock wave relations as well as the conditions of tangential flow on
the body surface. Next, specialization to the class of the flow asso-
ciated with power-law shape of shock wave is made and the similarity

formulation of the problem is given.

(2.1.1) Derivation of the Limiting HSDT Equations.
The derivation of the HSDT equations is well-known (see, for ex-
ample, Van Dyke(lo)); however, it is included here for completeness.
Consider tﬁe steady, uniform flow of a stream of calorically per-
fect gas at Mach number M; over a slender body of revolution of the

v form
£ = TE(x) £(0) = o (2.1)

where x* and r* are the streamwise and transverse coordinates respec-
tively, and T is a small parameter characterizing the body surface in-
clination to the free stream.

As a working hypothesis, the associated shock wave shape is pos-

tulated to have the following form of expansion in terms of T:

r = g(x*,'r) = 'rS(x*) + O('rz) (2.2)
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Let the quantity § be defined as a characteristic angle which the

shock wave makes with the free stream, i.e.,

* *
tan § = — g(x ,7) = 1 S 8(x) + 0(rD). (2.3)
dx dx
Since T -+ 0, (2.3) implies that the angle also tends to zero uni-
%*
formly if 8’(x ) is uniformly of 0(1l) throughout the flow field.

We now consider the following limit:

M+, §=0 suchthat H = —is =0, (2.4)
. o

The equations of motion derived from the exact, inviscid gasdy-
namic equations under the limit (2.4) are the limiting HSDT equations.
It is to be noted here that in the class of problem considered later,
the assumptions (2.4) underlying the approximation may break down
locally and thus results in certain singular behavior of the solutions.

More explicitly, for the class of flow where
%* %
S(x) =x "

the assumption of small flow deflection § - 0 breaks down at x% = 0
for n < 1 because S'(x*) = o there. On the other hand, the assumption
of strong shock 1/Mi§2 = 0 is violated at x* = o0 for n > 1 because
S'(x*) = 0 at the tip. These singularities will be discussed later.
We will assume here that S'(x*) is‘generally of 0(1) except for

some local points, so that § and 7 will be of the same order of magnitude.
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The physical interpretations of the 1imit (2.4) are as follows.
The limit M; — o corresponds to the case that the free stream sound
speed a_ =—o while the free stream density Peo and speed U_ are kept
fixed, or equivalently, the ambient pressure pm aﬁd temperature T _
tend to zero. The limit § = 0 (or T - 0) corresponds to the case of
small flow deflection., The strong shock limit 1/Mi§2 = 0 (or
llMi'r2 = 0) indicates the fact that the free stream Mach angle vanishes
faster than the local shock wave angle does, because the product M 5
can be interpreted as the ratio of the characteristic shock angle to
the free stream Mach angle.

In carrying out this limiting process, the strained coordinates
T = r*/T, X = xﬁ are used and kept fixed in order to keep the relative
position of a field point and the body surface invariant.

The exact conditions across the shock wave in uniform stream can

be expressed as(ll)
*: P
p -
s o 2 2 1
= in 6 - =5 (2 ° Sa)
2 y+1 (% )
Polco ., M -
o 2]~
s _y+1 2 1
p v - 1 1+ v - L\M sin § (2.5b)
- -}

*

Vs 2 1 2

-ﬁ:=msinbcosé 1 - m (2.5(:)
]



*

u - U 2

s © _ 2 2 1
T =yFsin 8 [1 - (M sin 5)J (2.5d)
(=] o

where the subscripts « and s represent conditions on the upstream and
downstream sides of the shock surface respectively.
A study of Eqs. (2.5) under the limit (2.4) suggests the following

representations of the exact flow fields:

* Kk %
u (x ,r ,7) =1+ 'rzu(x,r) + 0('1'4)
% % %
v (x s¥ s'r) = Tv(x,r) + 0(73)
- (2.6)
*, % % ;
p (x ,r ,'r)/mei = 'rzp(x,r) + 0(74)

p*(X*:r*sT) /Pw o(x,r) + 0("'2)

- %
where the fact that 1lim §/1 = 0(1l) is used and the velocity field q
* Kk % * Kk % * % %
is represented by 'c'{ (x ,r ,71) = U [qu (x ,r ,7) + er (x ,r ,T:I.
The exact équations of steady motion of an inviscid, nonconduct-

ing gas in an axisymmetric field are:

* k% % * %
continuity: -Q?-_-k- (pur)+ é—;— (p*v r) =0 (2.7a)
' ox o or
* * *
* %
axial momentum: u —a%—‘- + v au* + i 5 ap* =0 {2.7b)
ox or p U_ ox
%* %
% *
transverse momentum: u ov_ 4 v ov_, .1 _9%p 0 (2.7¢)



*
entropy: u* 9-—*- + v* -a-; o = 0, (2.74)
x ar /L)Y

The exact boundary condition of tangential flow at body surface is

expressed as

3 Ve - tE(x)] =0 on r = tE(x). (2.8)

Application of the expressions (2.6) and the limit (2.4) to the
equations (2.5), (2.7) and (2.8) results in the following system of

equations for the leading terms of the expansion:

continuity: %x— (xo) + 5= (xov) = 0

. (o EL) oe_
transverse momentum: (ax + v <)V + 5 o =0 (2.9)
entropy: (%— -g—-) =0
v[x, S(x)] = S ’(x)
shock conditions plx,5(x)] = (x) (2.10)

ofx,5(x)] = 3—-*——%—

and body surface condition

vix,£(x)] = £(x). (2.11)



-10-

The system of Eqs. (2.9), (2.10) and (2.11) constitutes a complete
problem for the quantities v(x,r), o(x,r) and p(x,r) and are referred
to as the limiting HSDT equations. The direct problem is the one with
f(x) given and S(x) found together with the solutions, whereas the in-
verse problem deals with a prescribed shock shape and an unknown body
shape.,

As is weli known, these equations of motion are exactly analogous
to those describing the exact unsteady métion in a transverse plane.
One significant feature of the HSDT equations is that the axial per-
turbation velocity u(x,r) is uncoupled from other quantities, and thus
the number of the differential equations in the system is reduced by
one. The solution of u(x,r) can be most conveniently obtained from

. the following emergy integral in the limiting HSDT form:

u+svP+ Y _P-p (2.12)

after the solutions of v(x,r), p(x,r) and o(x,r) are obtained.

(2.1.2) Spe;ial Class of Similarity Solutions--Power-law Shocks.

The iimiting HSDT equations obtained in the previous section ex-
hibits significant simplification compared to the original set of equa-
tions; however, the nonlinearity is still associated with the system
and the task of finding general solutions is still intractable. A
class of similarity solutions associated with power-law shocks (and
bodies) is well known to be admissible to the HSDT system. The set

of partial differential equations is therefore reducible to an
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equivalent set of ordinary differential equations for this special
class of flow fields. The details of the formal deduction of similar-
ity solutions is omitted here and the reader is referred to Mirels(ﬁ)

or Sedov;(lz)

We only note here that for a class of bodies of the
form r a’xn, associated shocks must also have the shapes r ~ X" 80
that both the shock surface and the body surface can be represented
in terms of constant values of similarity variable r/xn. Now, the

body surface prndarycnndiﬁon(Eq. 2.11) shows that bn the body sur-

face,

on the shock surface. Therefore, we see immediately that the represen-
tations of p(x,r), v{x,r) and o(x,r) for this class of similarity solu-

tions must bg

p(x,r) ~x P(ﬁ) (2.13a)
v(x,r) ~ ! v(p (2.13b)

o(x,r) ~ R(T) (2.13¢c)

where T is the basic similarity variable defined by

[EE (2.14)

X
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In the following, one convenient form of the similarity formula-

tion for the problem will be given with a prescribed shock wave

= §(x) = o,

The body shape is represented by

r

£(x)

_bxn

(2.15)

(2.16)

where b, the body shape factor, is to be found.

With the shock wave shape given in Eqs. (2.15), the following

boundary value problem is formulated using Egs. (2.9), (2.10) and

(2.11).

L (o) + & (xov)

(-—-+ ve=)v+ l.%%

('-aa;-* "5

o
vix,x) = i T nx?" 1
p(x,x%) = > i . 2x2(

o(x,x") = Y t i

=0
=0 (2.17)
=0

n-1) (2.18)

and the body shape factor b is determined from

bnxn--l

v(x,bx") .

(2.19)
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It is convenient to express the equations of motion in terms of

a stream function defined by
(2.20)

so that the continuity equation is satisfied identically.
The transformation from the coordinate.system (x,r) to the coordi-

nate system (x,¥) is carried out by observing that

L. rwd, ol (2.21)

so that the derivative along a streamline is

0 0 e
b -&+V—a-£-'-&a

Also, in the following, Physicist's notation will be used, i.e.,
f(x,r) = £(x,¥) .

In terms of the new independent variables, Eqs. (2.17) are re-

written as

1 % VL.V _
2 ox tr ov + o 0
(¢}
—g-;{-v+r-g-‘%-0 (2.22)
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3(y) is the entropy function which should be evaluated at the
shock wave. The mapping of the shock wave from the (x,r) plane to
the (x,Y¥) plane can be effected by using the following relation in

the (x,r) plane:

dy _ oY oY n-1, _ n-1
dax S x t > (x™7) = Cxov), o+ (x0) g vy, PX ’
SoWo ScW. S.We
Therefore, we get
dvy _ _.2n-1
o = nx | (2.23)
SIW.
on using the shock conditions (2.18).
Equation (2.23) is readily integrated to give
Y(x,x") = %— 20 (2.24)

because Y(0,0) = 0. This result could be derived directly from physi-
cal reasoning. The value of ¥ measures the mass flow between a stream
surface and the axis.

The mapping of body surface is done similarly by noting that

1

d _ -
dx Ylbody B ('rov)body + (rc)body (bnx ?

from which it follows that

= 0 (2.25)
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on using the boundary condition (2.19). This merely verifies that the
Sody surface is a stream surface,

Equation (2.25) is also readily integrated to give Y(x,bxn) =0
as' expected. Therefore, in (x,¥) plane, the shock and the body are

represented by

Y = % x2n shock
and

¥y=0 body
respectively,

The function §(Y¥) can then be determined as follows:
3(Y) =
(2.26)
Y Y Lt

. =(x-1 2 2 2(m-1) __2 (y—l) 2 T
v v+ 1 y+1nx v+1l\w+1 n(2Y)
' s.w.

2

in which the relation YS = %— =™ has been used.

et r = G(x,¥). Then we have

or -— _ =
=1 =0orG, = oG G
'S?x ¥ v
and
.a_?_ =0=G-ro‘v§ =6-cv76§
er Y X y
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Thus
L.%@ (2.27)
o ¥ :
v = GX (2.28)

Equation (2.28) states that the transverse component of the veloc-
ity is equal to the slope of the streamline which is also obvious physi-
cally. Substituting Eqs. (2.26), (2.27) and (2.28) into Eq. (2.22),

we obtain the following system of equations for the unknowns p(x,¥) and

G(x,¥):
a1 _
—UY[ Fren” ] vF 1=T %G;?
(2.29)
-a—z-g-+ G -g-% =0,
ox

The corresponding set of boundary conditions (2.18) is transformed

accordingly as follows:

— 1 ' _
Gx(x, 5 X ) =v, = v x (2.30a)

Also

E(x, % x2n) = X0 (2.30b)



-17-

and

G(x,0) = bx" . (2.30¢)

The shock condition on p remains the same, i.e.,

1.2 2 2 2(n-1
p(x‘,-i-xn)=§—+—-i-nx(n ). (2.304d)

Now, the results of the similarity discussion will be applied.
First note that the basic similarity variable 1| is constant along the
lines r ~ x*. In (x,¥) plane, a corresponding similarity variable 1

can thus be defined as

¥
=2 == (2.31)

because a typical similarity line in the (x,r) plane, e.g., the shock

wave, r = = is mapped to &8 line V¥ = L xZn in the (x,¥) plane.

7
Therefore, we write
.2 2 2(ua-1
P(x,Y) = g n'x (@-1) pemp (2.32)
C(x,v) = x"6(7) (2.33)

where P(T) is equal to p(x,Y) /ps.
The derivatives 0G/dx, oG/dY, op/dVY etc. are evaluated according

to
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6 dG
-a-;= G(T])'l'x(a?‘)'nx
5§>_ _ dG
T2
P .2 220-)dP
oY " dn Ty
where
Tk= .D
Ty = .

Equations (2.29) are thus transformed into

n-11
é 1 -1/ n 2%
66’ =3 i———y 31 P 1M | (2.34a)
. 0=sqs1
. G”+2'fp +(@-1) G+Yf:_ - M7 =0 (2.34b)

L)

with the boundary conditions specified along the line 7 = 1 as

G(1) =1
(2.35)

P(l) =1

and the body shape factor determined by
G(o) = b . (2.36)

Further elimination in the system (2.34) is possible by writing

Eq. (2.34a) as



s
pp = (3 ¥ }) n® (GG 7 (2.37)

and substituting into (2.34b). The result is a second order nonlinear

ordinary differential equation for G(M:

G/I(,n)=

SEREPIT{E Sl TalC BT

0<7s1

' (2.38)
with the initial conditions

G(1L)
(2.39)
1vyv-1

- G(1)"'2'z+1°

Equations (2.38) and (2.39) constitute a complete problem for G(T)

and the flow quantities v, p, o are all determined in terms of G(T) as

v(x,m =G (KW = nx" [G(T]) -2l ,

2 2_2(n-1 2 2.2(n-1 -
p(x,M) mnx(n )P(T\)=-,Y—+-1-nx(n )[Gz.,.%) U (GG)Y]

| 1 1
O‘(X,T‘) = = 'i-

1 1
S, Gy, 2 EW EW S
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If v(x,T, p(x,T), o(x,T) are expressed as

v(x,'n) = Q—:Zk_f an-l V('ﬂ) ’
p(x,'n) = :(-_.%—T n2x2(n-1‘) P(TD .

ox,7) %—-’j—-}—ncm .

so that

- v(x,
v(m = -—;—ﬂl

s

P(,n) - P(:HQ ,
‘ s :

’

R(T\) = 0’(2,”) .

s

then V(1) , p(1) and R(Y) are determined by G(7) as

- v = 1%‘1 fe(w - 2n6"(M] - (2.40a) |
n-1
-1\Y T -
P(T) = (%- %ﬁ) 1° [eme’ (1Y (2.40b)
1ya-1 1
R(T]) '= '2" z + 1 G(,H)Gr(,n) ) (2.400)

and the body shape factor b determined by Eq. (2.36).
One advantage of this formulation is that the location of the body
surface (1) = 0) which will be shown to be a singularity of the flow

field for n # 1 involves explicitly the independent variable 7 only.
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This fact facilitates somewhat the procedure of the numerical integra-
-
tion.
It is noted here that the above formulation is essentially the
(8)

same as that adopted by Gersten and Nicolai.

2,2, Behavior of tﬁe Sélutions Near the Body Surface.

For the case n < 1, an extensive literature on the solutions of
the problem exists (Refs, 6,7,8)., Only the main results will be re-
capitulated here for the sake of comparison with the results for n > 1
to be obtained in this sectién. From forebody drag considerations it
is concluded thét physically realistic flow exists for n = 2/(3 + j)
where j = o for two dimensional case and j = 1 for axisymmetric flow.
The limiting case n = 2/(3 + j) corresponds to constant forebody drag,
i.e., the drag on the body is independent pf the length of the body.
Therefore it corresponds to a sudden release of a certain constant
amount of energy at the body nose. Also b = o everywhere except at
the nose where it is undetermined. Physically, this flow pattérn cor-
responds to ?hat due to flow over a blunt nose followed by a circular
cylindrical afterbody (in two dimensional flow, to the flow over a
blunt-nosed flat plate). The density R is zero on the body surface
for all realistic values of y and 2/(3 + j) £ n < 1, while pressure P
and velocity V are finite everywhere in the flow field.

In the following, a detailed analysis of the solutions near the
surface (1 = 0) is presénted for axisymmetric flow, with special em-

phasis on n > 1.
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The starting point is the equations (2.34). It is noticed that

-
the system of equations is invariant under the following affine trans-

a(1/2)(1-1/nY)

formation: T - af, G - G, P » aP, Therefore the fol-

lowing set of invariant coordinates o,g is introduced.

- =k
o= — Iy ‘B = T (2.41)
2 n
M Y.
together with the auxiliary coordinates §,( defined by
_ (1/2) (1+1/ny) dG _ dp
g€=1 d,n 9 C = '(Tﬁ ® (2.42)

Due to the invariant properties of the differential equations,
the system is reducible to a single first order differential equation
in (a,B) plane. The reduction is accomplished as follows: First, two

mapping equations from Eqs. (2.41)

%‘ = T do T ' (2.43)
g - 5(1 - v, o
e (2.44)

are obtained by directly differentiating the equations (2.41) with re-
spect to T and using Eqs. (2.42).

With the aid of the above mapping formulas, the original differ-
ential equations (2.34) are written in terms of these new variablés.as

follows:
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4n {[ﬁ - =1 - -—) ] —(1 + )g} + 25+ (n - L)oo+ 5 i T nag =0
(2.45a)

o = LY =1 g1/Y (2.45b)

The next step is to eliminate € and { in favor of o and B. Equa-

tion (2.45b) gives

Qo
T

11 |
- "IyFla ("‘ t*YEB a) (2.46)

<N

Also combination of Eqs. (2.43) and (2.44) gives

[ﬁ - e

which on using (2 45b) yields

C ceergpYEye E -Re]. e

Finally, the single differential equation in (u,;B) plane is ob-

tained as

48 .
do
y-1 o2allY 1 W2allY N\ y+1 &2/y_ _4&  4.(2/V)+1
BYy+ 1 + ny P -godb - (1 3 _> y-1°%8 y-1°%°
o 1,1 2 1/v +(1/yy 2 2 4 _(2/v)+1
e S Ok s S

(2.48)
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after substituting Eqs. (2.46) and (2.47) into Eq. (2.45a) and rearrang-
ing terms. The boundary condition associated with Eq. (2.48) is easily
obtained from the defining Eq. (2.41) and the boundary condition on P

and G at shock =1, It is simply
a=1, g=1. (2.49)

Actually, Eqs. (2.48) and (2.49) represent the complete solutions
of the problem and qualitative discussions on the behavior of the so-
lutions are possible through the study of integral curves in (o,B)
plane, known as .the phase pléne° Since numerical results are essential
to the work in this thesis, it seems preferable to integrate the orig-
inal equations directly., However, the behavior of the solutions near
the body surface can be deduced from these phase plane equatiomns.

Let us first investigate the behavior of the gqu;tion (2.48) as
o -, It can ge shown from Eq. (2.48) that the only self-consistent

assumption on B is that

kl
B~a . {(2.50a)
where
- _2ny '
kl = n,Y - 1 . (29501'))

Therefore; § -+ » for n > 1 because y > 1.
Then the behavior of T as o = » is similarly deduced from the fol-

lowing equation
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which is obtained by eliminating € from Eq. (2.43) in favor of o, using
Eq. (2.45b). It can also be shown from Eq. (2.51) that as o — o, the

only self-consistent assumption on 7| is

ky
N~a . ‘ {(2.52a)
where
I _—2111__ = -
kz Ay - 1 k1 o {(2.52b)

It is then true that - 0 as o = = for n > 1, and consequently
that o = « corresponds to the body surface. Also obvious from Eq. (2.52)

is the fact that

(

lim 2 (1) = Iim " 1]1/2)(1-1/n~()] - Finite . .53

Thus, the body shape factor b is always finite for concave power-law
shock flows.

The behavior of € as 7 » 0 can also be deduced from Eq. (2.45b) as

( ) ny+2n-1
ny-l 2ny

£~ a-ls_;/Y

~ O (2.54) B

from which the behavior of G'('n) as 1~ 0 is found from Eqs. (2.42) to be
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(T ~ -(1/2)(1+1/nY) - ¢, DM L trns1 (2.55

where C1 is a constant,
Finally, the behavior of P(T), V(1) and R(T) as T — O is obtained,
using Eqs. (2.53) and (2.55) together with Eqs. (2.40). The results

show that both P and V are finite as T — 0 whereas

where C, = constant and thus'R(TD tends to infinite at; the surface for

n > 1, in contrast to the result for n <« 1. Note alse that

1im 1
[G R ] = -2- —(-)- = finite . (2.57)

It is important to remark here that the pressure field is regular
in the whole flow field so that the lift and drag forces on any stream

surfaces should be finite, regardless of the singular density field.

2.3 Numerical Integration of the Differential Equations.

Equation (2.38) with thé initial conditions Egs. (2.39) was pro-
grammed and integrated numerically on IBM 7094 digital computer, using
a fourth order Runge-Kutta method. The sblutions of P(T), V(1) and
R(T) are obtained in terms of G(T) through the use of Egs. (2.40).

The integration is.started at T = 1 and continued toward T\ = 0. The
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value of vy is fixed at 1.40 while the values of n ranges from 1 to 10.
As the fesults presented in Fig. 2 shows, the flow field at n = 10 al-
ready approaches that of the exponential flow field (see Ref. 7) which
is a limiting case of the power-law flow field; it does not seem nec-
essary to go beyond n = 10,

Except for thé case n = 1, the point 7\ = 0 is a singularity of thg
differential equation and therefore integration can oniy be continued
to a point close to )= 0., The step size AT used in the integration

3 4

is usually 10~ at the beginning and reduced to 2x10~ 2

for T < 5x107°,
" Values of G(T), G'(M, P(T), V() and R(T) are obtained for each value
of M. Since we know from the local behavior analysis made in previous

section that

n-1

e'(m =c " | (2.55)

as T — 0, the numerical integration is stopped at some small positive
TL where G'(T) is satisfactorily described by Eq. (2.55). More ex-
plicitly, the computation stops at 7 = TE when the neighboring points
of TE, called Tbl, sz, TbB, etc. have the property that the ratios

6" () (1L, ¢ e ) M6, ORI ana 0/ (1 11, @D are

approximately equal to four significant digits. Values of TL

found in the present investigation are usually of the order of«10—4.

Since G(o) is finite, we can integrate Eq. (2.55) to give

-1
(T = b+, n(i@ ' 1). (2.58)

n -

+ 1
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Therefore, the body shape factor b is found to be

c (E:l.+ 1) ‘
1 ny
b= Gy - gt . (2.58b)
ny . '

Also the éurface value of P(T) can be obtained from Eq. (2.40b) as

p(o) = (2 Y o wY (2.59)

where Cy is the constant obtained from the ratios G (TE )/Th(n Wy
etc., and Eqs. (2.55) and (2.58) have been used. The surface value

of V(TD is simply
V(o) = '-Y—er—-l— b .. (2.60)

Finally, Eq. (2.56) should be used to describe the density field near

the surface with C, determined in a way similar to C,, and of course,

2 1

R(o) = ®  (for n > 1) | (2.61)

It is noted here that for a fixed set of values (n,y), the values
of P, V anq G are practically constant to no less than four decimal
- places when T falls below 10.3n Therefore, for our purpose, the accu-
racy of the equations for surface values derived above is more than
sufficient,

The numerical results are plotted in Figs. 2, 3, 4 and also tab-

ulated in a familiar form with P, V and R as functions of G. Certain

linear interpolation of the computer results is involved in the
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conversion, but the accuracy of the results is believed to be unaffected
due to the small step size AT used in the calculation. In the following

chapters, the Physicist's notation will be used, i.e., we shall write
P(M =P(G) etc.

unless otherwige stated,
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III, Geometrical and Aerodynamic Properties of the Lifting Surface.

3.1 General Considerations.

A 1ift1ng surface is defined here as a stream surface, one side
of which is u;ed as the compression side of an actualfging. The 1lift-
ing surface cggsidered in this thesis is the stream sgeface generated
by‘a sheet of streamlines which originate from a curvé drawn on the

.*n
TX considered

it

slender axisymmetric shock surface of the form r*
in Chapter 2., This curve is called the leading edge of the lifting
surface. The segment of the basic shock wave downstream of the lead-
ing‘edge will therefore be attached to the lifting surface all along
its leading edgeo In the region bounded by this segment of the basic
shock wave and the lifting surface, the original flow field will re-
main unchanged when the original axisymmetric power-law body r* = '1'bx.kn
is replaced by such a lifting surfaee, generally three dimensional.
Therefore, the filow field is known in this region and the forces act-
ing on that side of the lifting surface which faces the attached shock
wave can be calculated using the solutions of the basic flow field.
It is this shock-facing side of the surface that will be used as the
lower surface of an actual wing. The calculation is exact with re-
gard to the HSDT equations, although it is still asymptotic as far
as the complete gasdynamic equations are concerned.

In the following, the geometry and aerodynamics of the lifting
sﬁrface will be discussed in terms of a set of cylindrical coordinate

system (x,r,¢) in which x and r denote the streamwise and transverse

coordinates respectively as defined in Chapter 2, and ¢ denotes the
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azimuthal angle. A related rectangular cartesian coordinate system
(x,y,2z) with its origin fixed at the nose of the basic shock wave will
also be used for auxiliary purpose. The relation of the two system is

given as follows (see Fig. 1):

r =y +2z 3.1

and

Ly = i
Z; = K sin ¢ + 3 cos o) (3.2)
Z& = K cos ¢ - ? sin ¢

where (E;,Z;,Z});and (i:j:ib denote two sets of unit vectors associated
with the cylindrical system and the cartesian system respectively, It
should be recalled here that both systems refer to the so-called hyper-
sonic coordinates in the sense that the lateral coordinates y,z in the
cartesian system and r in the cylindrical system have been stretched by
T in accordance with the HSDT analysis.

-The lifting surfaces investigated in the present thesis have these
geometrical properties in common: (1) A plane of symmetry exists and
is taken to be ¢ = o, hence the leading edge and trailing edge are also

symmetric with respect to ¢ = o; (2) the trailing edge lies in the plane
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x = 1 (henceforth referred to as the trailing edge plane) and joins
the leading edge which lies on the basic shock wave at two points on
the shock surface. Thus the closed curve formed by these edges is

the boundary line of the surface; (3) the azimuthal dimension of the
surface is such that |¢‘ < %; and (4) no éxpansion region exists on
the shock facing side of the lifting surface. Property (2) above is
sufficient to assure a supersonic trailing edge so thét the flow field
upstream of thettrailing edge will not bé influenced by any downstream
conditions; it also simplifies the calculations significantly. Prop-
erty (4) is introduced to make sure that the calculation of the aero-

dynamic forces is indeed made on the high pressure side of the surface,

3.2 The Expression of the Stream Function,

In this section, an analytic expression of the stream function ¥
is derived for the axisymmetric flow field considered in Chapter 2.
This forms the’basis of the geomet:ical aspect of the:problem and is
consequently essential to the calculation of the aerodynamic forces
on the lifting surface.

Recall from Eq. (2.33) that a stream function ¥(x,r) was defined

as satisfying the continuity equation identically, i.e.,

v o ‘
L) =-rov, L) =xo (2.33)
Next we introduce the similarity properties of the flow.

If we follow the Physicist's convention and write ¥(x,r) = ¥(x,G)
etc., then on transforming the independent variables from (x,r) into

(x,G), we have
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3 (3 G 2 |
S reen = (-0 i) veo
d 103

a Y(xsr) = ;"ﬁ S‘G‘ Y(X:G) .

Also, using the similarity properties of the functions o,v, we have .

o(x,r) = R(G) (3.3a) .

-1
v(x,r) = m nxn V(G) ° (3.3b)

Therefore, Eqs. (2.33) become

l; %a ¥(x,G) = x"GR(G) (3.4a)
< ‘,
(’2‘;‘ n g’%ﬁ) ¥(x,6) = Ty -aZL I ™ ev(@RE@) . (3.40)

To solve the system (3.4) for ¥(x,G), Eq. (3.4a) is first substi-

tuted into (3.4b) to yield

d ___2n-1 ( 2
—a;Y(x,G)—nx _GRG-mV>

which is immediately integrated along a similarity line G = constant to

give

x2n 2
1,0 =5 (e - 27 v)+ F© (3.5)

where F(G) is an arbitrary function.
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Differentiating Eq. (3.5) with respect to G and using Eq. (3.4a),

we have an equation for F(G) as

F'G) = - % 0 [GZR' - Yi T (RV + GR'V + GRV’)] .

The original continuity equation (2.l7a) in (x,G) coordinates takes

the form

2

G°r’ 2

- TFI (RV + GR'V + GRVY) = 0 (3.6)

after using the similarity representation (3.3) for o and v,
Thus F/(G) = 0 and F(G) = const = 0 so that ¥(o,G) = O. Finally,

the analytic representation of ¥ is obtained as

’

Y(xr)=§2n£_RL L-J——VE— (37)
? 2 n Sl Y+l om . ‘

and a streamline in this flow field is represented by

y(x,r) = % rx" R(Ln) [EE - T:iz-;—i' V(i;):] = const.
A - (3.8)

¢ = const.

»

3.3. Geometry of the Lifting Surface,

It seems convenient for the purpose of discussion to divide the
lifting surfaces into two types; (A) the surface contains a portion of
the basic body surface r = bx"; (B) the surface does mot have any por-

tion in common with the basic body surface,
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The lifting surface can be determined either by prescribing its
leading edge shape on the basic shock wave or by prescribing its trail-
ing edge shape in the plane x = 1, These two methods will be discussed

in the following.

3.3.1. Lifting Surface With Prescribed Leading Edge.

- 'Suppose that the leading edge is prescribed on the shock surface as

r=xt
| (3.9)
o] = L(x) = o, x <xs1,

so that it is symmetric with respect to ¢ = 0., The condition L(xo) =0
for x> 0 is imposed on the function L(x) to assure the continuity of
the leading edge curve at x = X+ However L(o) = 0 is not necessary be-
cause X = O represents oﬁly a point on the shock surface, i.,e., the nose,
hence continuity is implied if the leading edge goes through the nose.
The significance of the non-negative constant X, is that it serves to
distinguish type A surface (x.o = 0) from type B surface (xo > 0). This
will be discussed later in this section. |

The streamline that penetrates the shock wave at the point (x,r,¢) =
(X ng + L(x,)] on the leading edge has the following parametric repre-

sentation in terms of the’parameter X, s according to Eq. (3.8):

n.fr \|x 2 ¥ _ .2n 2
o) i) i) e

lp] = Llx)  x sx <1, (3.100)
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Equation (3.10a) can be solved explicitly for x,, using R_ =V _ = 1,

to give

1/2n
+ 1 2
X* = [%—:—f rxn R(-::t-{ - _'Y-I--T \)] (3.11)

Combining Eq. (3.11) with Eq. (3.10b), we get an analytic expres-

sion for the lifting surface:

lo] = Lix,)
: | 1/20 (3-12)
with x < x*(x,r) = XLi—% rx" R L | ——%7T-V r <1l.
o Y - Y I Y <

The trailing edge of this surface is the intersection of this sur-
face and the plane x = 1 and is hence easily found to have the follow-

ing representation:

x =1
l¢| = L(x,) (3.13)!
1/2n
with X, < r*(f) = -;Y(—'—f—-% tR{r) !} - -.Y—_%_?-—l- V(r)] < 1;

the relation between the function %, in Eq. (3.12) and the function r,

in Eq. (3.13) being that

% (1,x) =1, (x) (3.13a)
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‘The boundary line of the lifting surface has thus been determined
and some of its normal projections will be deduced below:

Projection onto the Trailing Edge Plane:

Elimination of x from Eq. (3.10) gives the leading edge projection:
lg] = L(rl/n) . (3.14)

Obviously, the trailing edge has its true shape in this plane.

Projection onto the Plane y = o: (Planform)

Elimination of y from Eq. (3.10) and conversion into the cartesian
coordinates (using Eq. (3.1)) give the léading edge projection in terms

of cartesian coordinates,
|z| = CFZn _ 22)1/2 tan [L(x)]
or equivalentlyz |
|z] = x" sin [L(x)] . (3.15)

vThe trailing edge is projected as a segment of x = 1 in the x-z
plane.

Projection onto the Plane z = o: (Elevation)

Elimination of z from Eq. (3.10) and conversion into the cartesian

coordinates give the leading edge projection:

' 1/2
y tan [L(x)] = '(an - yz)
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or equivalently
y = x" cos [L(x)] . (3.16)

Again, the trailing edge projectiorni is simply a segment of the
straight line x = 1.

The equation of the center line of the lifting surface can also be
obtained. Duexyo the assumed symmetry of the surface, this line is simply
the streamline ?ying in the plane ¢ = o and originating from the point
(x;x,0) = (x*,xggL(x*)) on the leading edge with L(x,) = o. Its equa-

tion in the plané ¢ =0 (z = o) is implicitly given as [see Eq. (3.12)]

L':Y._'_"._l. <P Z_Z.__.__?___VZ_ 1/2n=0 .17
y -1 y LY L U S A W > .

‘because y=7x iﬁjthe plane ¢ = 0, A mére convenient expression will be
derived later in{an example where an explicit form of L{x) is given.
It is noted here that the shapes of trailing edge and the center
line serve to give some feeling of the transverse and longitudinal cur-
vature respectively of the lifting surface.
Finally, it will be shown that the case X = 0 corresponds to type
‘A surface whereas the case x, > 0 corresponds to type B surface. This
is done with a study of the equation oOf the trailing edge (3.13).
First, it is observed that the parameter 1 (r) defined in Eq. (3.13)
has the property that r*(l) =1 and r (b) = 0 and is monotone in Ois r<1

,
for all values of n considered in the thesis. The fact that r*(l) =1
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can easily be shown by using the shock wave conditions on V and R.

That r*(b) = 0 is obvious for the case n < 1 where it has been shown

2
vy+1

that R(b) = 0 or finite and also [r - V(r)] =0 at r =0>b due to

the body surface condition of the original basic flow. For n > 1, it

has been established (see section 2.2) that R - Czﬂ-(n-l)/nY [Eq. (2.50)],

2 Va-or-21C Tﬁn—l)/ny Eqs. (2.40) and (2.55)7 as T - 0, hence
vy+1 1 [
1/2n

r, ~ T -+ 0 as T~ 0., Now consider

Case (i): x> 0: 1In this case r*(r) will not go to zero, There-

fore in the plane x = 1, the trailing edge defined by Eq. (3.13) will

be such that r > b throughout. Consequently no point on the body sur-
face (r = b) exists in the trailing edge. Since neither the leading
edge nor the trailing edge contains any point on the surface of the
basic body, the lifting surface must have no portion in common with

the basic body surface. This conclusion is actually obvious from physi-
cal considerations. Note that Eq. (3.13) represents the complete trail-
ing edge in thié;case, the two branches join continuously at a point
(r,¢) = (ro,O) wﬁere L is defined as r*(ro) =X

[o]

Case (ii): X, = 0: 1In this case r,(r) will range from zero to

one, hence the trailing edge does intersect with the circle r = b (the
basic body surface). At the point of intersection |¢| takes on the
value L(o) which is not necessarily zerc. Let L{o) = Qba Thus the
two branches of the curvé given by‘Eq. (3.13) end on the circle r = b

at the points (b,@b) and (b,-Qb) respectively, and they mark the trace

in the plame x = 1 of the streamlinés originating from the points on
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the two branches of the leading edge. The complete trailing edge must
consist of a circular arc: r = b, -@b < ¢s Qb in addition to the curves
given by Eq. (3.13). This segment of the circle represents a segment of
the basic power-law body surface r = bxn, "wet" by the streamlines origi-
nating from the nose (x = 0). it can further be shown that the area of
this segment of the basic body surface (measured by Qb) increases with
increasing value of L(o) which is the angle extended by the two branches
of leading edge at x = o, If L(o) = o, we have 8, =o© and this‘part of
n

the surface degenerates to a line, i.e.y ¢p = 0, v = bx .

An example: Let the leading edge be prescribed as

=L < %, 0« Clln =X sx<1.

-
it
B+ ]
Q
»n
®_JGC
]

The leading edge has constant elevation y=0C>0,

The equation of the lifting surface is then [see Eq. (3.12)]

_a1c
|¢] = cos -

or simply
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The trailing edge is described by [see Eq. (3.13)]

x=1
‘¢‘ - cos"l EE (3.19)
Ty
1/2n
1/n + 1
with C < T, = N =1 rR(r) [ alvere V(rﬂ <1,
or simply
x=1
-1/2
=clyt+1l -2

cqs ¢ = Cli— T rR{(xr) |r v v(r) s T, ST < 1 (3.19a)

wh y+ 1 2 1/2
ere T _ is defined by va—— roR(ro) r, - §7$_I'V(ro) =C .
The planform is [Eq. (3.15)]

1/2
|z! = x0 sin-cos"1 EH = (FZn - CZ) 5 (3.20)

»

bounded by x = 1,

The projection in the plane z = O takes the form [Eq. (3.16)]
y=C, 0<x<l

as expected.
The boundary line of the surface when projected onto the trailing
edge plane becomes the closed curve bounded by the trailing edge curve

[Eq. (3.19a)] and r cos ¢ = C.
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The center line of the lifting surface is [Eq. (3.17) ]

-1 C
cos

or

N

v+ 1 2n 2 y
s et R(X;)[Z;m"(—a)]
. X X X X

In view of the fact that functions R,V are tabulated as functions

of G(% E%), the practical computation of the above equation can be facil-
X

itated by using the following parametric representation

1L
2n
x = |c? z - i 1 > » r,<6=<1
GR(G) [G - m V(G)]
(3.21)
1/2
y = Gx"'= G c? z = i L 5 .
GR(G) l-G - '-,Y—-_l-_—-]-_' V(G):l |
Finally, it is obvious that in this example, x = C]'/n > 0 and

hence the lifting surface belongs to type B.

3.3.2, ‘Lifting Surface With Prescribed Trailing Edge.
let the trailing edge of the lifting surface be prescribed in the

plane x = 1 as

lo] = e
;1u' (3.22)
x:
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where the function &(r) is defined as follows:
Type A: &(r) defined for re[l,b] with &(b) =& >0 (3.22a)

Type B: &(r) defined for re[l,ro] with r_ > b and @(ro) =0,

(3.22b)

Of course, for type A surface, the trailing edge is completed by a cir-
cular arc r = b between ¢ = - @b and ¢ = Qb’

In this section, the geometry of the lifting surface will be dis-
cussed in terms of the trailing edge function 3(r) in general. How-
ever; it is understood that the surface referred to in the following is
the whole lifting surface excluding that portion which is in common with‘
the basic powér-law body r =.bxn, in the case of Type A surface, i.e.,
in the case &(b) > 0,

Consider a streamline that leaves the tfailing edge plane at a
point on the trailing edge, (x,r,¢) = [1,F,+8(¥)]. Its equation is, ac-

cording to Eq. (3.8)

l¢] = 8® .

Considering ¥ as a parameter and letting it vary from one to ro(or b),
we have Eq. (3.23) as a parametric representation of the lifting surface.
The leading edge is the trace of the lifting surface on the basic

shock surface r = x", Its equation is thus obtained as



rx" R(—}%{) E‘;; - —'Y—_%_—-T V(—::I—‘)] = £ R(D) [f - —‘Y-—f_—-l- V(f)]
8] = a(®

r=%X

X
of unity, we rewrite the above equation in a form which represents a

Realizing that EH’ R(ég) and V(%%) onr=x" all take on the value
. X X
parametrized cyrve on the shock surface r = X

| 1/2n
?‘=3%‘%—TER(f) [f--,-v-f_zp—i-V(r]

o] = a(®

n
x o

r

Now that the geometry of the surface and its boundary line is com-
pleted, a few projections will be given below:

Projection in the trailing edge plame (x = 1):

Elimination of x from Eq. (3.24) gives the leading edge projection as

+1 . " 2 . 1/2
r = x——Y_er(f) »[r-mV(r)]

(3.25)
l8] = a(® .

The trailing edge has its true shape in this plane.

Projection in the plane y = o (planform)

Elimination of y from Eq. (3.24) and conversion into cartesian co-

ordinates givé the leading edge projection:



v . 1/2n '
x= Y"1 &g [f - 7{-1- V(i‘)] (3.26)
|z]| = < sin (%) . ,

The trailing edge projects as x = 1 in this plane.

Projection in the plane z = o (Elevation)

Elimination of z from Eq. (3.24) gives the leading edge projection as

1. N 9 1/2n
X = X—‘—",Y_llf-'R(f") r-mv(f")
(3.27)
y = x* cos &(F) .

Again the trailing edge projection is x = 1 in this plane.

The equation of the center line of the lifting surface is obviously

given by

L5
It
o
xﬁ

]
()

¢

for the type A surface, and according to Eq. (3.23),

2n y 2 _ 2
X iﬁ R(i;)[;ﬁ - y T 1 V(iﬁ)] = roR(ro) l:ro - m V(ro)]

with r, defined by @(ro) =0

for the type B surface. The equation above can further be parametrized

as follows:
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1/2
. r R, - 7 V&) ] f2n
GR(G)[G - '«7’%‘? V(G)]
r <G<1 (3.28)
) /2 °
y=cf =g roR(ro)[ro Ty * 1 V(ro)] .

R@)[¢ - —F7 V@ ]

An Examglef. Let the trailing edge be prescribed as

x=1
(1) k;, >b, Type A
r cos ¢ = k1
or
x=1
(ii) r cos ¢ = k2 <b for b<r <1l Type B
K k
-1 72 -1 72,
r=5 for |g| e[—cos T COs -5—]

where kl’kz are cc;nstants so that the trailling edge is at constant ele-
vation y = klf (or kz)e Evidently case (i) corresponds to type B surface
and case (ii) to type A surféce, For the purpose of illustration, only
case (i) will be comnsidered below,
We have
-1 k
3(r) =cos = —

The equation of the lifting surface takes the following parametric

form [see Eq. (3.23)]



b6

er(%[n y+1VG%]=fMﬁ F s Vo]
X ,

-1
#

B

(3.29)

The 1ead1ng edge representation is also parametrized as [see

Eq. (3. 24)]

2 1/2n
x = - VO]
¢ = c:os-1 El
¥
r=xt,

The projection of the boundary line onto the trailing edge plane

is a closed curve represented by

| : 1/2
=lx+ls A
o 3y-1rR(f) [r vy+1v(f)]
(3.30)
-1 k1
¢ = cos = —
£
and the real trailing edge.
The planform is [see Eq. (3. 26)]
1/2n
Sli e r@ (£ a]
n F < 1 (3.31)

|z = ?" ( o kl )

closed by the trailing edge projection x = 1.
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The projection of the boundary line in the plane z = o is

' 1/2n

k1 =¥ <1 (3.32)

also joined by the segment of the straight line x = 1,

The equatipn of the center line of the surface is [see Eq. (3.28) ]

I RQk, ) [k - -—;-ZL-T Vik )] H/2n
p.4
GR(G) [G + = v«;)]
k <G =<1
RO kg - V(kl)]i
=c
GR(G) [G + — V(G)]

(3.33)

The analytical discussion of the geometry of the lifting surface
presented above should be sufficient to illustrate the geometrical as-
pect of the surface. Further information can be obtaimed by properly
using the equations derived above. It is seen that in a given basic
flow field, i.e., for a given set of values of n and vy, a lifting sur-
face is determined by specifying either the leading edge shape on the
basic shock surface r = x° or the trailing edge in the plane x = 1.
Graphical construction of tﬁe actual‘three dimensional surface camn be
done with the aid of the tabulated results of the flow field, using

Eqs. (3.12) or (3.23). This will not be included in the present thesis.

N
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3.4, Aerodynamic Forces on the Lifting Surface.

In this section, methods of evaluating the 1ift and drag forces
on the shock-facing side of the 1lifting surface will be given. First
a direct method is discussed. An indirect method is presented next by
constructing a control volume. The results of this indirect method
will be shown to be accessible to actual caléulation. 'Original‘physi-
cal coordinates and flow variables are used in deriving the formulae
and HSDT expansions introduced in Chapter 2 are used’ afterwards to
get the leading terms. The order of'magnitude of the error terms will

thus become evident in the process,

3.4,1. Direct Method.
, *
Let the lifting surface be denoted by () . Then the pressure force
acting on the shock-facing side of it is the following integral over

the 1lifting surface.

: * %
- J 3 p ds
%
Q
where 3_is the unit normal of the lifting surface directed away from the
* %k *
side on which the pressure acts. If we denote by L ; D and T the lift

force (acting in (- 3) direction), the drag force (acting in ?»directiou)

and the side thrust (acting in ¥ direction), then we have

* * %
L =,j J p ds &
. v

e
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%* * %
[ I8
x
0 %

X
% C
- J J p ds %
z
Q%
z

o
f

)
i

* %
in which ds & is the normal projection of ds ‘onto the plan, i.e.,
y ,
& *
ds'% =3 -0 ds
Yy
*
and ) , 1is consequently the planform of the lifting surface. ds i,
3 X
%* ;
Q% and ds 4, Q' are similarly defined.
X z z

Now, in the HSDT limit,

*
p = p+ O(TA)
%

ds % = tdxdz etc.

a3
8
ey

kAN
b

Therefore,ithe 1lift force, for example, can be expressed as

*
Lv=’73j jpdxdz-’i—O(Ts) .

%

Here p is a known functioﬁ, i.e.,

2 2 2(n~1) _fr
PEyFT™ ¥ P(‘;)

X
but in order to calculate the leading term of L, the function P(ég)
X

must be expressed as a function of (x,z), using the equation of the

lifting surface
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B(x,r,p) = 0

2 1/2

to eliminate r = (y
tegration over the planform.
As shown in the previous section, the function B(x,f,¢) is very
implicit, hence the'process of eliminating r from P(gab would be ex-
X

tremely laborious. Therefore, the direct method is inconvenient for

practical purpose, although it is applicable in principle,

3.4.2, Indirect Method,

Consider a fixed control volume bounded by a closed surface Z? in
a flow field discussed in Chapter 2. Application of the laws of conm-
servation of maés and momentum to-the fluid inside this volume gives

the following equations:

*. : b*
@ 0 onds =0 (3.34)
*

z

0 (3.35)

wk ok ok K-> *
@ q(pgqg *°mn)+pn ds
*
PX
if the effect of body force is neglected,

1(5)

Generalizing Woods idea, we choose a control volume with its
bounding surface formed by these elements: (see Fig. 5)
.
{(1) Q : the lifting surface
*
2) 8y° in plane x = 1, bounded by a2 segment of the trace of the
basic shock wave and the complete trailing edge of the

lifting surface,

+ z2) in favor of (x,z) and then carry out the in-



(3) s:
©(4) .sz.

+

8.
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%*

* ;
3t 8y is the normal projection of the lifting surface

onto the plane x* = X s which is perpendicular to the
undisturbed streamliﬁes and passing through the apex Of,
the lifting surface; sg is -the normal projection of s:
onto the plane x* =X and is thus its true shape.

A surface formed by the sheet of undisturbed streamlines
which connect the boundary line of s; + s; with the lead-
ing edge and the upper boundary of sz, which is a segment
of the trace of the basic shock wave in the trailing edge

plane.

%
With elements of ¥ so chosen, we have the following results:

*
On QO :

On 34:

On W
8y

9%

q

- -
+n=0, n=unit normal vector directed toward the

pressure-acting side.

-»

n=

* -» % - B -5
= p@9 p = p“’ q = Umiﬁ n=-1i
% e . T s 5
Pes P ™ Pgs @ = U“is n = Lrs ne+q =0

Therefore Eqs. (3.34) and (3.35) become, respectively:

‘”‘ pwuuds + ‘“- (q . —’)ds = (3.36)
o
JI [*-’* q ) *-i’]ds* + H [— p&? —‘p,Ui?]ds*
4 g ‘
(3.37)

+ II (p;zr)ds* + J (p*:)ds* =0
a*t

*
A
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The last term in Eq. (3.37) is the pressure force exerted on the

lifting surface by the fluid. We write

* ki %
H (pmds =DT -LF+Tk
J |
a

*
as in section 3.4.1 and remark again that the 1ift force L 1is taken

-
in the negative j direction. Also, we consider p, = 0. Then Eq. (3.37)

becomes

D7 - 1T+ % - H [U,p* *. 'f)'i’ - o3 1’) - *ﬂds*
3
51

after Eq. (3.%6)‘has been used.
Notice from above that the aerodynamic forces are expressible in
terms of integrals in the trailing edge plane.

Introducing the limiting HSDT expansions of Chapter 2 [Eq. (2.6)]

%-'3* = [1 + tPu + 0(74)12 + [fv + 0(73)]Zr

-]

1 ¥ 2 4
— P =Tp+0(r)

*)
L p =o+ 0(72)
Peo \

% * % 2
ds = r dr dg = T rdrdg

we get
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-—-1-7 [D*'f -+ T*Tc']

Pl

2 [ o+ Pol - Ja+ Pol s wd]a+ 2o - Peljraras

51

Tz II {[Tz(-uc -p)+ 0(74)]2 - EGVT + C(T3)}zr}rdrd¢ R
5 -

: -+ - :
Using the relation Lr =k sin ¢ + 3 cos ¢, we obtain the following

formula

. R (-ug - p)rdrdg + 0(r%) (3.38)
PUeo sy |

_1_5 ﬂ* = T3 il ov cos ¢ rdrdg +'0(T5) (3.39)
PeoVs 51

L3 ov sin ¢ rdrdg + 0(T°) . (3.40)
Poseo 8y ‘ - .

The quantity u in Eq. (3.38) can be eliminated by using Eq. (2.12)

to give

1 % _ &4 2 1
—eD =17 ” (g-v + — lrp)rdrdxb (3.38a)
poalri 81 - Y .

Recall that we have

v(x,r) = Y»i I axtd V(ZE>'
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p(x,r) = __g_T_HZXZ(n-l) P(EE)'

v+ %
=y+1p/r}
O‘(x:r) v - 1 R o
X
Thus, in 8y where x = 1 the quantities v,p,g are all functions of

r alone and if we write

*
L 7D = 'rl*(zn) + 76(2131) +t oo,
Pl
1 5 L* = T3(2L) + TS(ZLl) + ooe
Peles

%
Lo -den s e+
PeUeo

then we get

2 = Sy o [[ [%.(_l_f_).l_ V() + = B(0) Jrdrdg
1
2L = ;7%_T n fj R(f) V(r) cos ¢ rdrdg
8y ‘
2T = v % 7B JI R(r) V(r) sin ¢ rd;d¢ .
s
1

Note that (2D), (2L) and (2T) are the leading terms of the dimen-

sionless drag, lift and side thrust respectively and that they are all

expressed as integrals in the trailing edge plane. The area 4 is
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bounded by the trailing edge curve and a segment of the basic shock
wave and is hence symmetric with respect to ¢ = o, If we first inte-
grate along r = const. from ¢ = - 3(r) to ¢ = + §(r) then the follow-

ing results are obtained:

1
2
D = 32 I (RVZ + P) 8(r)rdr (3.41)
Y -1%
» a
1
L= ——2——-n I RV sin §(r) rdr (3.42)
vy-1 - )
T
a
T=20 (3'43)

where |¢l = §(r) is the trailing edge equation which, in the case of

type A surface, does not include the circular arc r = b. Also,

r, =71, > b with @(ro) = o for a type B surface and r, = b for a type
A surface.,

In order to facilitate writing, the following notations are intro-

duced
Jﬂ (r;n,y) = drag function = 5 2 n2 (R‘V2 + P)r’ (3.44)
y -1 :
&?(r;n,y} = 1lift function = ;—%—T-nRVr (3.45)
so that
1 .
D= [H@ema (3.41a)
T

a
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1
L= _f,‘C(r) sin 3(r)dr. (3.42a)

r
a

It is seen that the calculation of D and L involves only single
integrations. Functions {3 (r;n,v) and Z(r;n,y) are fixed functions
of r for every given flow field and thus can be calculated once for
all with given n and Yy, using table 1. Once 3(r) is spécified, the
evaluation of D and L is so simple that even hand calculation is practi-
cal. The advantage of this method over the previous ome is thus evi-
dent.

It might appear that a difficulty exists for a type A surface with
n > 1 because we have then r, = b andZJ}(b) = @, However it will be
shown below that this singularity is an integrable one. Comsider the
contribution to the lift from the elements between r = T, and r = b
where rz is slightly greater than b, and denote this local contribu-
tion by LZ' Then,

r

.
Lz = I §:(r) sin §(x)dr 2
b

U
) j' c(m R(M V(D g% sin § dn
[o]

Y

where nz is defined as G(nz) r, and again the Physicist's convention

2
R(G) = R(T) etc. has been used,

According to the analysis of the local behavior of the functions

R,V,G,G’ in section 2.2, we have

1lim

0 [g(n) g% = finite constant (3.43)



-57-

and also V(1) , G(7) and sin § are constants as 7 - 0.

In the actual calculation, use must be made of the original com-
puter results, that is, the table in which P, V, R and G’ are given
as functions of 7, and nz is so chosen that the prodﬁct sin 3 R(nz)

V(nz) G(nz) %% (ﬂz) = ;CL = constant to four significaht digits. Then

_( 2n ) - ‘
L= G j(z finite constant.

A similar procedure is used for D where we have

y)
2 2 " 2.dc 2 2
DE = Yz s n :J‘(P.q.R('n) A )-‘Tﬁ il d'n = -'Y—z--:—]-- n Tl!, ,(92 = finite constant.
o

In all cases considered in this thesis, Lz and Dz turn out to be
only about 5 percent of the total L and D.

Therefore,awe conclude that the liftvénd drag formulae (3.41),
(3.42) give finite values for L and D even in the use of type A sur-
face with n > 1., This fact is consistent with the physical reasoning
that finite surface pressure should result in finite total forces.

In closing this chapter, the following remark will be made. The
trailing edge function 3(r) has been shown to play a decisive role in
the whole analysis. It determines the geometry of the‘lifting surface
on the one hand and absorbs the dependence of the aerodynamics upon
the geometry of the lifting surface on the other. The distinction be-

tween the type A surface and the type B surface is also evident in the

definition of the function &(r). If 3(r) is definmed for b <r < 1, the
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surface belongs to type A; if it is defined for b < r,sr <1 with
§(ro) = o, the surface belongs to type B,
In the next chapter, further investigation of the lifting sur-

face will be based on the trailing edge function 3(r).
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IV, Optimum Shapes.

4,1, General Discussions.

It has been shown in the previous chapter that a rather wide
class of three dimensional lifting surfaces can be constructed in
a flow field associated with a slender axisymmetric power-law shock
wave in limiting HSDT flows by specifying the trailing edge shapg
which %n turn completely determines the aerodynamic properties of
the surface. A practical question naturally arises as to the feasi-
bility of obtaining, in a specific flow field, a particular surface
which has optimum aerodynamic properties. Among all optimum shapes,
the one giving minimum drag with fixed 1ift seems to be the most in-
‘teresting and useful from a practical point of view. As revealed in
the last section of the previous chapter, the expressions of 1lift

and drag are given as’

1 ,‘
=P J;{(r) sin 5(z)dr (4.1)
T
a
1
p* = [®m syar %.2)
r
a

They all involve the trailing edge shape function %(r) and the thick-
ness ratio T, thus the questions can obviously be answered by seeking
a solution to a certain variational problem to determine the function

3(r) and the associated value of Tt which serve the purpose,
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In this chapter, a variational problem will first be formulated
under certain constraints. Then the solutions of Euler equations are
discussed in details, the behavior of the solutions for different basic

flow fields being noted and explored.

4,2, Constraints.

4,2,1, Isoperimetric Constraint.
. Since a set of solutioms &(r) and T is sought which gives minimﬁm

* : *
D with a fixed L , the following isoperimetric constraint

3 1
T j.&f(r) sin 3(xr)dr = constant (4.3)

T
a

is imposed.

4.2.2, Differenii#l Constraint.

It has been mentioned in Section_(3.1) that the lifting surfaces
considered in this thesis is of such a geometry that the side om which
aerodynamic forces are calculated is completely the compression side,
i.e., at positive angle of attack. It can be shown that this restric-
tion of the surface geometry amounts to following constraint on the
trailing edge shape (see Appendix;g). |

da(r) ' -
2 0 r, <t < 1 4.4
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This inequality constraint can be replaced by the followihg equal-
ity constraint if we introduce an auxiliary real function Q(r) such
that

ds(r) _ 52,y -
rremal Q°(r) =0 | (4.4a)
4.3, The Role of the Function A(r) = () /1L ().

The variational problem to be considered in this chapter is es~

*

sentially that of determining the function §(r) which minimizes D
* % %* ‘
and gives a specified value of L where D and L are given by Egs.

(4.1) and (4.2). The constraint that §’(r) 2 0, r < ¥ <1 brings
a .

out the significance of the function A(r) defined as

_@ _ P
A(r) =,’g(§) = 'y: 1 (V + 'RV) (4.3)

To see this, let us first comnsider very crudely the variational
problem just stated. Following the usual method of the calculus of

~variations, we form the functional

1
e = [ [ @ 2 - ArL sin 8o) Jar
T .

a

If a solution exists at all, it must satisfy the Euler equation,

namely,

%—5 [T4§B(r) 3(r) - )\:TB o‘f(r) sin @(r)] =0
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from which we obtain an equation for &(r) as

O (v)

cos ¥(r) = L- = T A(x) (4.6)
3\’; & (r) 71_

*

Note here that xl»must be chosen to be positive in order to sat-
isfy the condition 0 < 8(x) < :211, since U (), L (r) and 7 are all
positive definite quantities.

From Eq. (4.6), we see that

' |
8 = - fe?s%%)?y .7
1

Equation (4.7) reveals the significance of the functionm A(r). If
A’(x) <0 for r, <r <1, the solution &(r) given by Eq. (4.6) (to be
referred to as the regular arc later) is compatible with the constraint
8’(x) = 0, although other conditions such as transversality conditions
etc, still remain to be verified. However, if A’(r) < 0 is not true
for r, <r <1, the regular arc solution violates the differential con-
straint and hence the introduction of this constraint into the basic
formulation of the variational problem becomes inevitable.

It is obvious that A(r) is a characteristic property of the basic
flow field, therefore, we should expect that the optimum shapes will
have basically different geometry for basically different flow fields.
A detailed analytical study of the function A(xr) is impossible simply
due to the impossibility of obtaining analytical solutions for a gen-
eral flow field. However, the function A’(x) (and of course, A(r))

can be studied analytically at the boundary points r = 1 and r = b as
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a function of the parameters n and ¥, using the shock boundary values
and the established behavior of the solutions near the basic body sur-
face. The details of the calculation are presented in Appendix II and
the results are seen plotted in Fig. 6 in a (n,Yy) plane. It is noted
that A(b) tends to + @ or -® according as n is greater or less than
unity, and is finite for n = 1, the result Being true for all realistig
values of vy. Nevertheless, the behavior'of A’(1) shows a substantial
dependence on % in addition to n. A boundary line exists in the region
n > 1, across which A’(l) changes signs. Therefore there is a finite
domain in the (n,Y) plane in which AT(DA' (D) < 0, i.e.,, the function
A(r) is not monotone. For the rest of the domain in the (n,y) plane,
the function A(r) may be monotone, To fix the idea, we shall consider
v = 1;4Q9 For(this specific value of vy, the following observations
can be made (see Fig. 6): (1). A(r) may be a monotone increasing
function of ¥ for n > 1.065, because both A’(b) and A’(1l) are posi-
tive; (2) A(r) must at least have one maximum for 1,000 < n < 1.065,
because A’(b) > 0 while A’(1) < 0; (3) A(r) may be monotone decreasiug;
because both A’(1) and A’(b) are negative. WNotice that the above ob-
servations are inconclusive, owing to the fact that they'are based
merely on the behavior at the boundary points. Actual numerical cal-
‘culations for A(x) have been carried out for an = 0.50, 0765, 0.75,
1,00, 1.05, 1.50, 2.00, 3.00, 4.00 at this fixed value of v = 1.40,
The results are also plotted in Fig. 7. They confirm the above con-
jectures. Based on the analytical dependence of the flow fields on

the parameters n and v, it seems justified to draw the following

conclusions for'vy = 1.40:
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(1) n > 1.065: A'(f) > 0 and A(r) bounded for b <r < 1;
(ii) 1.065 >n > 1: A'(r) <0 for r <r <1
A'(r) >0 for b<sr < r_; and
A(r) bounded for b s r < 1,
(iii) n = 1: A’(r) < 0 for A(r) bounded for b <r < 1.

(iv) 3 <n < 1: A'(r) <0 for b<r<1i, A(b) = =,

Nj= B

4,4, Optimum Séapes for %-s n<l, yv=1.40.

It has been revealed in the previous section that A’(r) < 0 for
bsr<1in this case, therefore the regular arc to be obtained can
be used throughout and as a consequence, the introduction of the dif-
ferential consé%aint 8/ (r) >0 becomes uﬁnecessary;

We shall f;rst state the variational problem as follows: The

function &(x) and the parameter T are to be determined which minimize

the drag

1 .
D* = 74 j as’(r) AQ(r)dr
T

! %o
under the isoperimetric constraint that the lift

1 .
ﬁ* = T3 J' L (r) sin &(r)dr

T
o]

is fixed,

The end conditions on 3(x) are

free

8(1)
@(ro)

L]
o
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where x, is free and b < r, < 1.

Note that the derivative of the unknown function &§(r) does not
appear in the above variational problem and hence the Euler equation
will be an algebraic equation instead of a differential equation.
Therefore, the fact that end conditions are free is a necessary con-
dition for the solution to exist.

Following the usual procedure of the indirect method of calculus
of variations, we introduce a constant Lagrange multiplier 1: and re-

duce the problem to that of minimizing the functional

1
Hs,7] = | [T“.,a(r) 3(r) = f{f";c(r) sin Q(r)]dr (4.8)

T
o
under the constraint

1
P [ &) sin s(0)dar = L' = fixed (4.9)

r
(o]

Since 7 18 a constant parameter, the usual method of differential

calculus can be employed to yield the first equation:

*
g‘j 0 j O(r)s(r)dr = %-;1- jo‘c(r) sin #(r)dr (4.10)

o_ o

Then, we congider the first variation of the functiomal H, taking

into account the variation of the end point Toe We have from Eq. (4.8)
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1
o= [ [F8 - 7K @) cos a(x) osar

r
o

- [P e - AT LE) sin sy fr, = 0
(4.11)

Consider néw a sub-class of the comparison arcs for which the var-
iations of the end points vanish. If §(r) is the soiution of the orig-
inal more general problem, it certainly has to be the solution of this
restrictive problem. Therefore the above equation asserts the wvalidity

of the Euler equation, i.e.,

*

X ,
D@ = 2 L) cos 30
or
cos §(r) = 3~ A(r) (4.12)
M

%
where ); = )\1/1'°

Then the tranversality condition follows from Eq. (4.11),
AEE )8 ) - AT L (r) sin 3(r) = 0 (4.11a)
o] o] 1 o o] ¢

Note that the Euler equation and the transversality condition
actually can be obtained by applying the results of usual variational
calculus directly (for example, see Ref. 13). The tramsversality com-

dition in general serves to determine the value of . However it is



-67 -

important to note here that it is automatically satisfied in this case
since Q(re) vanishes (by the end condition) and (Jj(ro), gt(ro)) are all
finite for this range of n. This result is by no means trivial, because
it allows the end coordinate to be determined by the solution after it
is found. Were it not 80, a solution might not exist at all,

Now the Eqs. (4.9), (4.10) and (4.12) form a complete system which
determines the unknowns §(r), T and x:.

To proceed, first rewrite Eq. (4.10) as

D=

Mw

le (4.13)

Then Eqs. (4.12) and (4.13) determine xliin the following way. For a
given basic flow field, A(r) is a known function. Thus, varying’x1
gives a family of functions §(r) through Eq. (4.12) with L determined
by @(ro) = 0, Ngte here that since A(l) < A(x) < @ for b<r <1 in
this range of n, thefe always exists such an L b < r, < 1 that

A(ro) =N (i.e., Q(ro) = 0) for any value of A, sreater than A(1),
however large. Each member $(r) gives a set of corresponding.values
of D and L and hence the ratio D/L. Therefore for a given flow field

(i.e., given n) D/L can be found as a function of Aps and we write

D _
This function T(Al) must be found numerically using the solutions of

the basic flow field to evaluate & (r) and (). The functioms T(xl)
for n = 0.50, 0.65 and 0.75 have actually been established and plotted

in Fig. 8. Then Eqs. (4.13) serves to single out the particular value
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of Kl’ called le’ and hence the corresponding values of L and D de-

ted by L d D_ by stati that T is the location of the
noted by L and D by ng (xlp’ (llp)
intersection of the curve D/L = T(xl) with the straight line D/L = 3/4 Ap»

if the two do intersect, i.e.,

_3
-Equation (4.14) has been solved graphically (see Fig. 8) for n = 0.50,
Y & -
0.65, 0.75 agdigt is found that intersections do ocgur. The results are

approximately as follows:

n = 0.50: ) = 0.72, L, = 0.100, D =0.053, r, =0.878
n = 0.65: X£p =0.93, L =0.173, D =0.121, 71, =0.872
m=0.75: A= 1.04, L o=0.223, D =0.173, r = 0.881

; , (4.15)

Finally, Eq. (4.9) determines the value of T associated with every spe-

%*
cified value of L as

w173
L

T ={= {(4.16)

P (LP) | |

Now that the solut;on has been completed, it has to be checked if
the necessary condition, known as Legendre condition, for the extremal
to be a miniﬁal is satisfied. This is done by studying the second var-
iation of the functional H given by Eq. (4.8).

Following the 1inevof reasoning used in deducing the Euler equa-
ti&n from the first variéﬁion of H,;we again consider a subclass of the

comparison arcs for which the variation ofthe endpointvanishes, Therefore
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1
§H = j [frl'ﬁ'(r) - x’{ﬂ;ﬁ(r) cos @(r)-]a@dr
r . . ’

o

Therefore,

1
571 = [ 1 L) sin () (69 %ar

r
o]

4
i

p? A = Alp and (1) =’§p(r) = ¢:osﬂ'1

llxlp A(r), therefore, along the extremal

Along the extremal, v = 7

, 1 ~
52H = Tgxl . [ &) sin 2, (x) (58)dr 4.17)

T
o]

 Since the rightfpand side of Eq. (4.17) is positive definite, we con-

clude that 52H > 0 along the extremal. This shows that the extremal

-1 A(r) (4.18)
"p

@p(r) = cos

satisfies the necessary condition for being a minimal.

Summarizing; we shall state that the ﬁptimum shapes for vy = 1.40
and 1/2 < n < 1 have been determined. The trailing edge function §(r)
is given by Eq. (4.18) and the optimum thickhess ratio 7 is given by

Eq. (4.17). The associated minimum drag is

D =TD (4.19)
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Values of le, Dp and LP for n = 0.50,.0.65 and 0.75 have been
tabulated in Eq. (4.15).

Note that the optimum surfaces can be constructed based on Qp(r)
using the results established in Chapter 3. They all beloﬁg to type B

surfaces for this range of n.

4.,5. Optimum S?ape for n=1, v = 1.40,

This is the‘cone field in limiting hypersonic sﬁall disturbance
flow, Aé was noted before, A’(r) < 0 throughout and hence the differ-
ential constraint is again unnecessary. Therefore, the formulation
together'with the method of solution for this case is exactly the same
as that for the case 1/2'5 n<1l. However, one distinction has to be
borne in mind‘while carrying out the calculation. In contrast to the
previous case, the function A(r) here is bounded on both ends, more
explicitly, A(l) = 0.833 < A{r) < A(b) = 0.8422. This fact causes
the following complication in the analysis, namely, if the particular
value of xlp found in the same way as in previous section is greater
than A(b), then the regular arc will continue until it hits the body
surface r = b but with §(b) > 0. As a consequence, @(ro) =‘0 is not
gatisfied by this regular arc and the transversality condition, Eq.
(4.11a) is violated.

Following the same procedure outlined in the last section, a
curve D/L = T(xl) is first established for this case (see also Fig. 8)
and the partiéﬁlar value xlp defined by Eq. (4.14) is then determined

graphically. The results are approximately



Ap = 1:26, L, = 0.325, D, = 9.308, r =b

Notice that the regﬁlar arc given by

é ='§p(r) = cos-l ?f;é | (4.21)

ends on r = b = 0,915 beyond which the function A(r) is no longer de-
fined, but ve have & (b) = cos™! 0.8422/1.26 = 0.815 >0. Therefore
the difficulty noted above does arise.

This difficulty suggests the imposition of another inequality

constraint
r-bx>0

into the formulation of the variational problem. If %his is done form-
ally, the Euler équations will 1ead’to'thé fesult that the optimum
trailing edgé arc consists of two subcases, one being the regular arc
and the other being the circular arc r = b (to be referred to as the
limiting arc later). A corner point thus exists and has to be taken
care of by formal mathematics.

However, the following rather intuitive approach seemé to be more
direct in getting the same answer. The end point of the regulaf arc
(r,¢)= (b, Qp(b)) can obviously be brought to‘the point (r,¢) = (b,o0)
by fhe limiting arc so that the complete trailing edge funétion sat-
isfies the conditipn @(ro) = 0 and hence the transversality condition.

Since the addition of this limiting arc to the trailing edge arc does

% * .
not affect either the value of D or the value of L , the optimum
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property originally associated with the regular arc still remains with
this combined arc.
Therefore, the optimum shape of thg trailing edge for this case
is a regular arc given by Eq. (4.21) joiﬁed>by a limiting arc r = b,
0 < ¢ <0.815. Again, the optimum thickness ratio T is (see Eqs. (4.16)

and (4.20))

T - @*/0.3251/3 | (4.22)

and the associated minimum drag is

D . =0.308 4.2
min— * TP (u3)

It is noted that the optimum surface belongs to type A,

4.6, Optimum Shapes for n > 1, v = 1.4,

It is known that the function A(r) is not monotone decreasing for
this range of n, consequently, the introduction of the differential
constraint 3’(r) = 0 is necessary. To facilitate the presentation,
type A surfaces and type B surfaces will be discussed separately, that
is, optimum type A surface and optimum type B surface will be discussed

separately for this range of n.

4,6,1, Case 1 <n < 1.,065.
The function A(r) for this case is such that A’(xr) < 0 for r <rsl
and A'(r) >0 for bsr«< r with A'(rm) = 0. Therefore, the regular
arc is not allowed to be used for r < L and another arc has to be
joined to the regular one atlr =T, with T, 2T . A corner point is

thus expected.
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(i) Type A‘surface:
The problem here is to find an arc ¢ = &(r) running from the shock
circle r = 1 to the body circle r = b, and the thickness parameter T

such that

1 )
D* = 74 j f?(r)@(r)dr = minimum
b

with

1
%
L = 73 I & (xr) sin 3(r)dr = given constant.
i :

The end conditions are

3(1)

free

&(b)

free (4.24)

Notice that the 1limits of integration here, unlike those of sec-
tions (4.4) and (4.5), are fixed.

To proceed formally, we follow the multiplier rule of the indirect
method of calculus of variation ?y introducing a constant Lagrange mul-
tiplier K: and a variable Lagrange multiplier x;(r) and form the follow-
ing functional H

. rc 1
H[2,Q;7] I + j T4£7(r)§(r) - X:T35C(r) sin &(r)
b T
c

+apm[e'@ - dw] ‘dr (4.25)



7

the integrél being divided at r = r, to allow for the discontinuity of
§(r)lat r=r.

The variational problem is then formulated as follows: ''In the
class of functions $(r) and Q(r) and constants T which satisfy the dif-

ferential equation

d 2
I ¥ =Qq (r} : (4.26)
and the condition
3t *
T »j'éf(r) sin $(r)dr = L = constant 4.27)
b

find that special set which miniﬁizes the functional H given by Eq.
(4.25), the end conditions being given by Eq. (4.24)."

The procedure for solution goes as follows, First, since T is a
constant parameter, the usual technique in differential calculus for

finding an extremum may be applied, i.e., 83H/37 = O which gives

*
M

1 3 1
j D(x) s(x)ar = 3 -+ J' C(r) sin #(r)dr
! | : y

or

_3 |
D - 2; hl L (4028)

*
where A is, as before, defined as XI/T and also the integral above need

not be divided because only &(r) which is continuous appears.
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The vériation of H due to &(r) and Q(r) is then calculated and set

'+ equal to zero.

ko
c 1
§H = f + J T4£7(r)6§ - X:TBéC(r) cos 3(r)s3
b r
o]

+ hZ(r)aé' - 2)\;(1')(2(1‘)6‘1 dr

: *
Integrating the term associated with Kz(r)8§' by parts and rearrang-

ing, we obtain
Te i\ |
sH = I + I{)[Tl*ﬂ(r) -.}\i 'r3‘,‘(’(r) cos ¥(r) - );’(T)]Ger
“\b r

o X 1 . r=1
o[+ [ ) pmemsa + [lwse@ ]
; r

C

+
r=r

- [xj(r)a@(r)]. ¢ =0 (4.29)

T=r=-
C

where as usual, [f(x)]z:i stands for f(a) - £(b).

Now, consider a sub-class of the comparison arcs for which the
variations of the coordinates of the end points and those of the corner
point vanish and the variation of Q(r), i.e., the variation of 3'(xr),
vaniéh for b <r 1. Since if §(r) is to be the solutions to the orig-
.inal more general variational problem it certainly must be the solution
to this rather restrictive problem, we deduce the firsf Euler equation

from Eq. (4.29), i.e.,
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wh.D'(r) - )\,{'rBQ‘C(r) cos &(r) - x;'(r) =0 (4.30)

Using the same line of reasoning, we can deduce the second Euler

equation as

e =0 (4.31)

'Equations (4.26), (4.27), (4.28), (4.30) and (4.31) constitute a
complete system from which the five unknowns ¥(r), Q(xr), 7, X? and x;(r)'
can be determined.

»

Also deducible from the Eq. (4.29) are the usual transversality con-

ditions

Ny (1) = Ay (b) -0 (4.32)
and the cormer conditions

M (D = Ny = 0 (4.33)

using the arbitrariness of ¥(r) at the ends and at the cormer.
Equations (4.30) and (4.31) state that the solution arc may be

composed of two subarcs, namely,

1]

Regular arcs xz(r) 0, D) = xléﬁ(r) cos $(xr), T, ST < 1

(4.34a)

and\

Singular arc: Q(x)

It
(]
“
L=

It

’Qc = constant, b < ¥ < T, (4.34D)



-77-

The task is first to determine the location of the corner point
which marks the junction of the two arcs, This is done by integrating
Eq. (4.30) along the singular arc & = 3, = constant, using the fact

*
that x;(rc) = xz(b) = 0, and the result is
r

Ay (r,) = j ©

T4[[3(r) - xiéﬁ(r) cos @c]dr =0 (4.35)
b .

Since the continuity of $(r) must be satisfied at the corner, @c

is determined from the regular arc, i.e.,

.
C M Ly M e

Combining Eqs. (4.35) and (4.36), we obtain an equation which de-

termines Tos

Te IT(rc)
[ e -
b A(r)

c

L@|dr=0 I 7))

Note that the corner point location‘depends on the basic flow
field only and is independent of A and therefore independent of the
specified value of 1lift. |

The next step is to determine the shapé of the regular arc, i.e.,
to single out the special value of‘xl_in Eq. (4.34a). This is dome in

much the same way as in Section 4.4, Rewrite Egqs. (4.28) and (4.34a) as
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rc 1 3 rc
Qc J J(@)dr +-J. @ é(x)dr = 7 xl sin Qc I K()dr
b T ‘ b

c

1
+ I K (x) sin §(x)dr (4.38)
r

c

1 O

(4.39)
MK

cos &(r) =
Specifying a value of Xl determines 3(r) and hence Qc = @(rc)
through Eq. (4;39). This expression of §(r) 1s then eubstituted into
Eq. (4.38) whic@ in turn gives a value of A Therefore Eqs. (4.38)
and (4.39) can, in principle, be solved simultaneously by iteration
to yield the speeial value of Kl’ called Klp’ and hence the regular
arc and Q(rc) can be determined. ‘

The complete solution arc is thus:

¢ = &(r) = cos"1 A(x) r <r<l (4.40a)
A ©
ip ~
and
¢ =28, =3() b<r=<r, (4.40b)

with rc determined by Eq. (4.37).

Using the solution arc above, Lp can be evaluated as
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Te 1
Lp = sin &_ j L A(r)dr + I LLx) sin d€r)dr (4.41)
b T

c

The optimum value of T is then obtained from Eqs. (4.27) as

. \1/3
™ = <% /Lg)

It should be mentioned here that the above is a general outline
of the procedure for determining a possible solution. The value of r,
determined by Eq. (4.37) must be greater than or equal to L where
A'(rm) = 0, Also the combined solution arc Eq. (4.40) must be such
that the’Legendré condition is satisfied along each subarc. The last
statement can be made more explicit by writing down the expression for
the second variation of H.v Using the arguments given in Section 4.4,

we have
2 1 4 _ 2 1 * 2
o1 = [[ayr @ sin a0 J60%ar - 2 [ 2,00 (s %ar
b b

Since the integrand of the first integral is always positive along the

combined arc, it will suffice to vequire that

XZ(r) <0 (4 42)

along the solution arc in order to fulfill the necessary requirement
for the solution arc to be a minimal,*namely; 52H =z 0. Along regular

% .
arc, xz(r) = 0, therefore the Legendre condition will be satisfied if
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fr[‘b_(r,) - 7\10‘((1") cos Qc]dr' <0
b

or equivalently

r
J [{7(r') - klai(f') cos Qc]dr’ <0
r
c
in view of Eq. (4.35).

Note that cos Qc = 1/)\1 Aa(rc), so that a simpler expression for

the Legendre condition may be used, i.e.,

Jrﬁ(r')dr' < A(r) fr Lhar’ (4.43)
Te Te

No numerical solutions for this case are included in this thesis,

(ii) Type B Surface.

The only difference in the formulation of this variational prob-
lem compared to that of the type A surface exists in the end point
condition. The Euler equations are hence still the same. Therefore,
we state that if the solution is to exist, it may still only be com-
ﬁosed of two types of subarcs, namely, the regular arc starting from
the shock circle and the singular arc whicﬁ follows. Howe§er, the
singularvarc is radial and hence must run into the body circle because
the possibility of joining it with another regular arc is ruled out
due to the fact that for r < LI regular arcs are all incompatible
with the comstraint 8'(zr) > 0. Therefore, the surface will not be
of type B We then arrvive at the conclusion that optimum type B

shape does not exist for this range of n,



-81-

4,6,2. Case n > 1,065,

This case is characterized by the fact that the regular arc is not
allowed to be used at all because A’(r) >0 for b <r < 1. The singu-
lar arc is therefore expected to prevail in b < x < 10"The formal anal-
ysis will be given below.

(i) Type A Surface.
The probleﬁ here is again to find an arc ¢ = ¥(r)‘ joining two

circles r = 1 and r = b and the thickness parameter T such that

minimum

]

1
- D* = 74‘I &7(r)§(r)dr
b

with

1
L =3 J L(r) sin §(r)dr

b

given constant.

The end conditions are also of the free type

free

8(1)
&(b)

free

Following the procedure used in Section 4.6.1, a constant Lagrange

* *
multiplier *1 and a variable lLagrange multiplier xz(r) are introduced
and the problem is reduced to that of finding a set of functions &(r),

Q{r) and the parameter T which minimizes the functional H, where
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1

H[2,0,7] = [ 170080 - (L @) sin 3()
b
+ @ [#'0) - @ for (4.44)

subject to the constraints

1
7 73-I‘5((r) sin &(r)dr = L (4.45)
o S .

and
& 8 = (o) (4.46)

The end conditions are 3(1) = free, §(b) = free.

This problem is the same as that discussed in Section 4.6.1 except
that the complication due to the cofner point is removed. Therefore,
the results obtained previously are directly applicable to this case
with the corner conditiﬁns deleted, That is, we have the Euler equa-

tions

T - AT L) cos 3(x) - 1, (X) = 0 %.47)
.
A (D) = 0 (4.48)

and the equation of 3H/dT = 0, i.e.,
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*
M

=3 =3

The transversality conditions remain the same
* *
A1) =, (b) =0 (4.50)

Again, the system of Eqs. (4.45) through (4.49) together with the
transveréality conditions completely determines the solutions for &(r),
D), A]s Ap(x) and 7.

Euler equations still assert that the solution arc may consist of
two types of subarcs, namely, regular arc and singular arc. However,
.as was stated before, A’(r) > 0 for b <r < 1, thus the regular arc does
not exist in this case. The Euler equations wili be satisfied in this

case by choosing
Q(r) =0 b < r< 1 (4.51)
ahd
N @ = [ B@ -0 K@ cos s G52
Equation (4.51) when combined with Eq. (4.46) yields

3(xr) = §, = comstant. {4.53)

Therefore, we have

N () = [ D@ -2 L) cos 8] (4.54)
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%
Integrating (4.54) noting that xz(b) = 0, we obtain

‘ T
M@ = o [0 - a L’ cos 3 Jar’ (4.55)
b

Equations (4.55) furnishes one equation for determining A and

*
Qc if we use the fact that 12(1) =0, i.e.,

1 1
: J O (r)dr = Ay cos & J L(x)dr
b b -

Writing
1
[ &trar =, (4.56)
b
1
I K(r)dr = L, (4.57)
b
which are the propertiés of the basic flow field, we have
DA = (}1 cos §c>PA (4.58)

Rewriting Eq. (4.49) as

Mo

1 1
3, I d(x)dr = A sin $. f X (r)dr
b : b

using the fact that &(x) = & constént, we get another equation for

c

determining Qc and Al’ i.e.y
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=3

§CDA =7 kl sin @c LA (4.59)

Equations (4.58) and (4.59) give the results that
8 =3 tan & (4.60)
c 4 *
A, D
1 A 1
1 7 LA cos Qc

It must pe remarked thag the result of @c as shown in Eq. (4.60)
is surprisingiy simple. Since DA and LA drop out in this equationm,
@c is independent of the property of the basic flow field and hence

has the same value for all n in this range, i.e.,

@c = 0,846 = 48,5 deg (4.62)

Corresponding to this value of @c, L can be calculated to be

5
i

X
L Lp = I’(sin &c)ét(r)dr = 0,749 Ly
b

Equation (4.45) can then be used to determine the optimum value

of Teo

L* 1/3 t* 1/3
TP = <6T7Z§—i:> = 1,101 (%X) (4,63)

Values of LA together with those of Dy for n = 1.5, 3.0, 6.0, 10.0

have been calculated numerically and the results are plotted in Fig. 9.
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Now that a solution arc ¢ = §c has been found, the remaining task
is to verify that along this arc, Legendre condition is satisfied. The

second variation 52H is given by Eq. (4.41).

1 1
s%1 = 7 [ L) sin 2 0 ar - 2 [ 1,0 (60 %ar

b b

Along the arc ¢ = Bos T =Ty M =N

P |4

1 : 1
s = co stn g, [ @) 6’ - 2 [ 60
b b

*
where xz(r) is given by Eqs. (4.55) and (4.58).
Since the first term on the right hand side of the above equatiom

is positive definite, azH > 0 is satisfied if

x;(r) <0 bsr <1 (4.64)

Now since

r D | ’
M@ = Eﬁ(r') - -,;i— x(r’)]dr', A1) =0 (4.65)
b ‘

the quantity

r DA

?\2(1‘) '*—’J‘ [o@'(r') - L(x’)|dr’ (4.66)

A f
b

is required to be negative for b < r <1,
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Using the results of the flow field, xz(r) as defined by Eq. (4.66)
can be calculated numerically for each flow field, i.e.,, for each value
of n. This has actually been done for n = 1.5, 3.0, 6.0, 10.0 and the

results are plotted in Fig. 10. It is revealed in this figure that

xz(r) <0 for bsr<l

is actually satisfied. Since analytical dependence of xz(r) on the
parameter n is expected, it seems reasonable to draw the conclusion

from the results for these typical values of n listed;above that

;\z(r)so, b=sr<l

holds for all n in this range. Therefore, the Legendre condition is
satisfied by this arc ¢ = g, = 0.846.
In concluding this section, we shall summarize the results ob-

tained as follows: the optimum trailing edge is

=8 = 0.846

for all values of n. However, the optimum value of r is given by
Eq. (4.63) which evidently varies with different basic flow fields.

The associated minimum drag is

x4 '
Dmin = 'T'p QCDA (4967)

(ii). iType B Surface.
The formulafion of this problem differs from that of the previous

problem only in the end point conditions. Therefore the Euler equations
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remain the same, consequently the optimum arc can only be the singular
arc alone, However the singular arc is radial and must run into the
body surface r = b. Therefore again the conclusion is reached that

the optimum type B surface does not exist in this range of n.

4,7. Concluding Remark.

To conclude the discussion on optimum shapes, the geometrical
aspects of the optimum surfaces are worked out for the range of n be-
tweeh 1/2 and 1, using the results obtained in this chapter and the

methods given in the last chapter. These results are shown in Figs. 11

through 15.
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Appendix 1

Let the trailing edge of the lifting surface be represented by

S
I

3(x)

It is proposed to show in this appendix that the condition
8'(x) 2 0 (a)

is both necessary and sufficient to insure that

d¢
3?20

on the lifting surface at an arbitrary station x = x* where
0 < X S x, < lﬂ

That the coﬁdition is necessary is obvious because otherwise
d¢/dr is negative at least at the trailing edge plane x = 1.

To show that it is also sufficient, we need to investigate the
geometry of theilifting surface determined from the given trailing
edge functiom ¥(r). -

Let the curve

A=
fl

ép(r)

x =1

represent the normal projection of the leading edge corresponding to

the given trailing edge onto the plane x = 1,
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Then from section 3.3.2 we have a parametric representation for

t

the curve ¢ = @P(r) as

1/2
- vm]% (b)

¢ = 8D = 8, (r) | - (©)

Now, it is obvious that the occurrence of
d¢
-a-E<0

at a certain station x = x, means that @p(r) < 3(r) for some r between

b and 1. Therefore, to rule out this possibility we must have

ép(r) > 8(r) (d)

where equality holds only at r = 1,

Numerical evidence shows that in Eq. (b)

(e)

s
[\
H

for all n-= 1/2, equality holding only at £=band ¥ = 1.

Since Eq. (d) requires that
(D) = ¥(xr)
we conclude that the function 3(r) must be such that

8/ (r) >0
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in view of Eq. (e). That is, % must be a monotone increasing func-

tion of r.
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Appendix II

Recall that the function A(r) was defined as

= L@ _ %
Ax) = S5 = A©) |1 (a)
where
e) = B P
i@ = 31 [V + @ ] ®)
and
G == ()
X
Therefore, it follows that
a4k
dr dG
x=1
and
- dA _da dA _dA (@
= — . = = &2
dr r=1 dG G=1 dr r=b dG G=b
dA dA
To study the behavior of Fr and Fry s it therefore suf-
¥ " r=1 r=b
fices to study == and — respectively.
dc G=1 dG G=b

It is comvenient to go back to the original independent variable
T used in the solution of the basic flow fields for this purpose. We

will write
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&) = K(c()) = -Y—E-—l- [Vfﬂ) + i—v ('”)]

where physicist's notation is being used again, Then
& @)
"de /1 T

Let us calculate dK/dT]. From Eq. (é), we have

515

Y

- —

()

Using Eqs. (2.53), we obtain P'(T]), V'('n) and R'('n) as follows

4 "

P—i = i—. log P = n-1 .]L E—- - —
P - dy o8 n oqn-Yg "V o’
I3 7 /4
. %ﬁ log V = - &1+ 21 c
G-276G
R _d _ T’ ¢
i'{—--a—ﬁlogR— - [é*'ﬂ'&-;
(i) Consider %é-! :
Moy
;‘}_Az _ n ’ P(L) e’ R' v’
s v W AR Y631 7)) [Pu) BN R ¢
The boundary conditions G(1) = 1 and G'(1) = %—5—-_—;’_——;
to calculate G”(1) through Eq. (2.51). The result is
1y 6 4>+ By 45
o'y = 3=t (-S4 E i)
(v+ 1) A

enable us
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Therefore, we have

(2'Y-1+1-3'y2)
v+ 1

@ =§%ﬁ-1—1y (- a2+ 'S'H—i)

= =‘T%-"i‘ (-§-+'z K 1)

ﬁ_'(l) = Y + 1

Finally, on using P(1) = V(1) = R(1) = 1, We have

dA
T W = —L—T2¢v - 2)(v+ 1) + n(-3V + 4y + 3)
a (v+1)° [ ; ]
and hence
dA 2
_— = 2¢Yy - 2)(v+ 1) + n(-3V2 + 4y + 3)
dc G=1 (Y - 1)(y+ 1)2 [ ]

in view of Eq} (£).

Therefore, we conclude that

El 2o i 2v-v+ D +n-3 + v+ 0
Tl < <
and the boundary line, i.e., %% = 0, is thus

: =1

2y - 2)(vy+ 1) + n(-3Y2.+ by + 3) =

which is drawn in Fig. 6 in a (n,Y) plane.
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(ii) Consider —— as 'n -+ 0:

dﬂ

We know that

n-1

n
¢+b, G 4c Y (¢;>0), as 10

Thus

GY”IY pl=yln -1 -y
G’”('ﬂ) ‘Y+1 v+ 1 n nkl -_.-n‘lc

n-1 ny 1 M

1y - 1\ 1y -(w1) oy
y+1(2 )b Cl M

v+ 1
Therefore,
:;rl ¢, o=t
2._'. n'll‘._yc HY ~2 11 L ooy
P TnonT s oy Ve T
n-1
, C n-1 n-y n-1 _ n-1
v 1l =n n n
{,—~-bnY+2n-— Y -
R'  m-11
R ~ ny 1
R’ v’
and hence [g—| >> [&], IPIas M-+ 0.
Also,
)
ly-111 ny
R2zyvIog?




' Thus,
-1 n-1
lim lim .,/ - nYy
[(RV> ] >> mo V(M =07
Therefore§
n-1
lim n -1 ny
MOd Yy F D

and
lim 4K _ lim (:A) (dG)] -1 1
G0 dG ﬂ
Therefore, we conclude that

4+ o if n>1

dA _
T ™= 6 if n<1
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¢ |r
H.w———h
- - - X
z
X =X
¢=tan”! z/y

Fig.| COORDINATE SYSTEM



-98-

(Ob'1 = K) Q1314 34NSSIHd 2 'Bi4

uX/4
olo) 660 860 260 960 60 60 €60 260

OO0l _ I _ I T I _ ‘ _

Ol =u \
Ool'l .

JHNSSI™d A2VIHNS

OV AN B o

¢l =u
O¢'| —

.02 =Uu
o'l -
g2 =\u
JO¢ = U
oS|I - Ob=u
\




1S
n= 8.0
n= 30
1LIO}
n=20
.05 n=1.5
.00 1 ] | ] i
095 096 097 0.98 0.99
r/xn
(7 =140)

Fig. 3 VELOCITY FIELD
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093 0.94 095 0.96 097 0.98 0.99 .00

r/x"
Fig- 4 DENSITY FIELD (Y = 1.40)
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Fig.6 THE CURVE A'(l;n,7) =0
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20
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0.85 0.90 0.95 .00
r

Fig.7 THE FUNCTION A(l; n,y) FOR ¥ =140




-104-

0.9~

08

o

0.7

0.6

1.0 20
A

Fig. 8 GRAPHICAL SOLUTION FOR X,
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Fig. 9 Da AND Lp AT y =1.40
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Table 1.

1.0084
1.0165
1.0246
1.0328
1.0408
1.0487

1.0645
1.0723
1.0800
1.0877
1.0954
1.1031
1.1106
1.1183
1.1258
1.1334
1.1409
1.1484
1.1560
1.1635
1.1712
1.1788
1.1864
1.1942
1.2020
1.2099

1.2182

1.2266
1.2355
1.2452
1.2577

n=

1.0132
1.0262
1.0393
1.0523
1.0653
1.0785
1.0917
1.1049
1.1182

1.0566

Numerical Results of Flow Fields (y = 1.40)

1.0043
1.0086
1.0128
1.0170
1.0211
1.0252
1.0292
1.0333
1.0373
1.0414
1.0452
1.0492
1.0530
1.0568
1.0608
1.0645
1.0685
1.0721
1.0759
1.0796
1.0834
1.0871
1.0907

1.0944

1.0981
1.1017
1.1053
1.1089
1.1125
1.1161
1.1197

1.1231

2.5

1.0058
1.0117
1.0174
1,0230
1.0285
1.0342
1.0396
1.0450
1.0502
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R
1

1.0117
1.0239
1.0360

’ 1 00487

1.0617
1.0747
1.0885
1.1027
1.1172
1.1324
1.1480
1.1645
1.1817
1.1994
1.2184
1.2384
1.2602
1.2820
1.3064
1.3324
1.3607
1.3924
1.4269
1.4660
1.5109
1.5632
1.6264
1.7055
1.8114
1.9687
2.2630

=]

1.0202

1.0407

1.0624
1.0849

- 1.1082

1.1329
1.1590
1.1860
1.2150

r/xt
1

0.998

0.998

0.990

NS

n =
P
1

1.0114
1.0225
1.0337
1.0450
1.0560
1.0672
1.0783
1.0894
1.1006
1.1117
1.1229
1.1342
1,1454
1.1568

1.1682

1.1797
1,1913
1,2031
1.2150
1.2272
1.2396
1.2524
1.2656
1.2792
1.2936
1.3090
1.3261
1.3476
1.3496
1.3525
1.3557

1.3601

In =

1.0143
1.0286
1.0430
1.0574
1.,0717
1.0862
1.1007
1.1154
1,1301

2.0
A
1

1.0054
1.0105
1.0157
1,0208
1.0258
1.0308
1.0357
1.0406
1.,0454
1.0502
1.,0549
1.0598
1.0643
1.0688
1.0735
1.0781
1,0825
1.0870
1.0915
1.0958
1.1003
1.1046

1.1089

1.1132
1,1176
1.1218
1.1260
1.1302
1.1305
1.1310
1.1314
1.1317

3.0

1.0063
1.0125
1.0186
1,0246
1.0304
1.0363
1.0422
1.0478
1.0535

R
1

1.0170
1.0342
1.0524
1.0710
1.0904
1.1105
1.1315
1.1535
1.1767
1.2010
1.2265
1.2550
1.2830
1.3144
1.3479
1.3844
1.4242
1.4682
1.5174
1.5730
1.6367
1.7115
1.8019
1.7479
2.0632
2.2775
2.6432
3.6936
3.9792
4,4181
5.2391

(-]

1.0222
1.0452
1.0692
1.0942
1.1205
1.1482
1.1777
1.2089
1.2420



0.950
0.948
0.947
0.9468

0.998

1.1315 1.0555
1.1450 1.0607
1.1585 1.0658
1.1723 1.0710
1.1861 1.0760
1.2000 1.0811
1.2145 1.0860
1.2291 1.0909
1.2440  1.0958
1.2592 1.1005
1.2750 1.1054
1.2915 1.1102
1.3086 1,1149
1.3268 1.,1196
1.3465 11,1243
1.3683 1.1288
1.3951 1.1334
1.4142 1,1356
1.4226  1,1362
n=4,0

1.0158 1,0068
1.0318 1.0134
1,0476 1.0200
1,0636 1.0265
1.0799 - 1.,0327
1.0959 1.0391
1.1121  1.0452

1,1287 1.0513

1.1454  1.0573
1.1623 1,0633
1.1794 1.0692
1.,1969 1.0751
1.2147 1.0808
1.2329 1.0865
1.2517 1.0921
1.2710 1.0976
1.2909 1.1032
1.,3117 1.1087
1.3336 1.1141
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Table 1 (cont'd)

R
1

- 1,2460
1.2789
1.3144
1.3524
1.3939
1.4395
1.4900
1.5464
1.6100
1.6835
1.7702
1.8737
2.0039
2,1745
2.4190
2.8209
3.8171
6.365

@K

1.0247
1.0505
1.0775
1.1062
1.1364
1.1680
1.2020
1.2384
1.2774
1.3195
1.3652
1.4157
1.4712
1.5332
1.6034
1.6837
1.7770
1.8884
2.0259

r/x?
1

0,980

n = 3.0

P v

1 1
1.1449 « 1,0590
1.1601 1.0645
1.1753 1.0700
1.1908 1.0753
1.2065 1.0807
1,2225 1.0860
1.2389 1.0912
1.2557 1.0964
1.2729 1.1016
1.2910 1.1066
1.3097 © 1.1117
1.3294 1.1167
1.3505 1.1216
1.3735 1.1266
1.3994 1.1314
1.4323 1.1362
1.4589 1.1386
1.4630 1.1387

n= 6.0
1.0173 1.0073
1.0348 1.0144
1.0523 1.0214
1.0700 1.0283
1.0877 1.0351
1.1057 1.0418
01,1239 1.0484
1.1423 1.0549
'1.1608 1.0613
1.1800 1.0676
1.1994 1.0740
1.2192 1.0801
1.2397 1.0862
1.2607 1.0922
1.2824 1.0982
1.3050 1.1041
1.3286 1.1099
1.3537 1.1158
1.3805 1.1214

R
1

1.2775
1.3159
1.3560
1.4029
1.4527
1.5080
1.5700
1.6404
1.7222
1.8187
1.9355
2.0832
2.2792
2.5622
3.0462
4.3421
1.0594

ez}

1.0272
1.0560
1.0862
1.1182
1.1520
1.1885
1.2274
1.2690
1.3144
1.3640
1.4185
1.4789
1.5467
1.6234
1.7117
1.8157
1.9405
2,0957
2,2957



0.9518
0.9516
0.9515
0.9514

n=4,0

P \'4

1 1
1.3569 1.1195
1.3820 1.1248
1,4100 1.1299
1.4425 1.1351
1.4871  1.1402
1.4935 1.1407
1,5014 1.1412
1,5063 1.1414
1.5142 1.1416

n = 8.0
1,0181 1,0075
1.0363 1.0148
1.0547 1,0222
1.0731 1.,0292
1.0918 1.0363
1.1106 1.0432
1.1298. 1.0500
1.1491 1.0566
1.1689 1.0633
1.189¢ 1.0698
1.2096 1.0763
1.2307 1.0826
1.2525 1.0889
1.2750 1.0950
1.2983 1,1012
1.3228 1.1072
1,3486 1.,1132
1.,3762 1.1192
1.4059 1.1250
1.4390 1.1308
1.4774 1.1365
1.5270 1.1420
1.5782 1.1454
1.5910 1.1456
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Table 1 (cont'd)

R
1

2.2019
2.4410
2.8017
3.4636
5.8818
6.7905
8.6860
11.075

[>+]

1.0287
1.0587
1.0905
1,1257
1.1604
1.1987
1.2402
1.2850

- 1.3337

1.3874
1.4464
1.5124
1.5872
1.6729
1.7719
1.8905
2.0352
2.2195
2.4657
2.8256
3.4406
5.1334
13.624

-]

r/x?
1

0.960
8
6
4

0.9538

0.9537
0.9536

G.960
8
6
0.9558
0.9556
0.9554
0.9553

n =
P
1

1,4098
1.,4427
1.4821
1.5405
1,5511
1.5585
1.5656

n =

1,0186

~1.0373

1.0560
1.0750
1.0942
1.1136
1,1332
1.1533
1.1737
1.1946
1,2159
1.2377
1.2604
1.2839
1.3082
1.3339
1.3610

1.3902

1.4219
1.4576
1.5003
1.5601
1.5688
1.5792
1.5931
1.6065

6.0
v
1

1.1270
1.1326
1.1381
1.1435
1.1440
1.1442
1.1444

10.0

1.0076
1.0152
1.0225
1.0298
1,0369
1,0440
1.0510
1.0577
1.0644
1.0710
1.0776
1.0841
1.0904

1.0968 -

1.1030
1.1092
1.1153
1.1213
1.1272
1.1330
1.1388
1.1444
1.1450
1.1455
1.1461

1.1464

R
1

2.5747
3.0036
3.8366
7.9740
10.967
16.464

[+ <]

1.0295
1.0605
1.0932
1.1280
1.1652
1.2052
1.2480
1.2947
1.3457
1.4017
1.4639
1.5334
1.6125
1.7035
1.8104
1.9387
2.0972
2.3017
2.5826
3.0086
3.8009
6.6025
7.5653
9.3065
14.605
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