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Abstract

By virtue of various theoretical techniques, the fundamental mechanisms re-
sponsible for intramolecular vibrational energy redistribution (IVR) in isolated
molecules are studied in this thesis. One such mechanism, the nonlinear resonance,
is examined in some detail for several systems. In particular, nonlinear stretch—bend
resonances in a series of isotopically substituted methanes are predicted to have a
large effect on the spectral properties of those molecules. By using a semiclassical
analysis, the general properties of stretch—bend interactions are further examined,
and the quantum mechanical manifestations of classical resonances are character-
ized in detail. A related problem, the role of classical resonances in the multiphoton
absorption process by an anharmonic oscillator, is also analyzed.

In addition, it is demonstrated that the quantum mechanical coupled equations
which describe the fundamental IVR process may be simplified. This simplification
is achieved by virtue of an “adiabatic” approximation for those state amplitudes
which are sufficiently off-resonant with (i.e., different in energy from) the experi-
mentally prepared quantum state. The approximate coupled equations are based
on an effective Hamiltonian which contains renormalized self-energies and interac-
tions between the zeroth-order quantum states. This formalism may be applied to
describe the quasidissipative flow of probability out of an initially prepared vibra-
tional state in a large molecule, and it may also be adapted to treat multiphoton

absorption processes in polyatomic molecules when one or more lasers are present.
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Introduction

The research presented in this dissertation is centered around providing a the-
oretical description of the nonlinear interactions and energy exchange mechanisms
between vibrational modes in polyatomic molecules. Understanding and character-
izing these mechanisms is of particular importance to the so-called “laser selective”
chemistry.! That is, if the selective laser excitation and localization of energy in
specific vibrational degrees of freedom of a molecule is to be achieved, it is criti-
cal that the mechanisms of intramolecular vibrational energy redistribution (IVR)
be explored and understood. At the fundamental level, highly excited and non-
linearly coupled oscillators exhibit extremely rich quantum and classical mechanics

and thereby pose many interesting questions to the theoretician.

In the past ten years or so, it has become increasingly clear that vibrational
resonances in both classical? and quantum? mechanics are of paramount importance
to the IVR phenomenon.3—% A substantial portion of this dissertation is therefore
devoted to characterizing the effect of resonances on the vibrational dynamics of
molecules: Classical, semiclassical, and quantum mechanical techniques are utilized
to treat this problem. At the quantum mechanical level in particular, the effects of
resonant versus off-resonant interactions are strikingly different, and this situation
allows for a simplification of the intramolecular dynamics problem. In addition,
a molecular system interacting with a radiation field may be treated in a similar
way since the total Hamiltonian in this case is isomorphic with Hamiltonians which
give rise to IVR in isolated molecules (i.e., the field simply contributes additional

coupled degrees of freedom).

In Chapter 1, a theoretical analysis of the vibrational states of the isotopically
substitqted methanes CHD3, CHT3, and CH3D is presented.* This work was mo-
tivated by the high C-H overtone spectrum of CHD3 obtained experimentally by
Perry et al.’ The C-H overtone spectrum consists of simple two-level Fermi reso-

nances which show very selective and strong zeroth-order state mixing between the
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“pure” overtone state |v,0,0,...,0) (v = 5,6) and a single 1:2 resonant combina-
tion state |v — 1,2,0,...,0), having two quanta in a bending mode. This severely
restricted state mixing is quite interesting since the density of zeroth-order vibra-
tional states with the appropriate symmetry to interact with the pure C-H overtone
state is approximately 35 states per cm™?. The observed state mixing behavior
thereby appears to be quite “non-statistical” and hence due to a specific and selec-

tive resonant coupling mechanism.

A theoretical explanation for the selective coupling behavior observed in CHD;
is proposed in Chapter 1 which is based on a curvilinear coordinate treatment of
the quantum mechanical vibrational state problem.*®” The analysis in that chapter
uncovers selective and strong dynamical coupling between the C-H stretch and
a particular normal mode involving H-C-D bending motions. The experimental
results on CHDj; are fit quite well by the theoretical model, and similar behavior is
predicted for the C-H stretching states of CHT3. In addition, the possible origins
of the more extensive state mixing observed® in CH3D are discussed. As a whole,
the work in Chapter 1 serves to further advance the understandingiof stretch-bend
interactions and the breakdown of localized excitations in molecules.®~8 In general,

it is found that a specific and identifiable dynamical coupling mechanism is much

more important for determining the state mixing in CHDj3 than is the total density
of vibrational states.

The quantum mechanical study in Chapter 1 of the resonant stretch-bend in-
teractions in CHD3, as well as the multitude of similar resonances observed exper-
imentally in other molecules (see, e.g., references cited in Ref. 8), provides moti-
vation for the development of a semiclassical theory of the 1:2 stretch-bend Fermi
resonance.® In Chapter 2, three semiclassical treatments are used to characterize a
model having a Morse oscillator stretching mode coupled nonlinearly to a harmonic
bending mode. These three treatments include a diagonalization of a semiclassical
Hamiltonian matrix, a two-state solution of an approximate Schrédinger equation

obtained from a classically averaged Hamiltonian in action-angle variables, and a
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uniform semiclassical solution.? The results of the semiclassical calculations give
good agreement with the quantum results and are, in general, considerably easier
to obtain. By virtue of the uniform semiclassical analysis, analytic formulas are also
derived for the eigenvalue splittings and the overlaps of the wavefunctions with the
zeroth-order basis functions. The eigenvalue splittings are measured experimentally
in a Fermi resonance doublet, while the overlaps are important, for instance, in de-
termining the relative intensities of the spectral peaks within a doublet (see, e.g.,
Refs. 4 and 5). These analytic formulas, in conjunction with the corresponding
classical resonance analysis,?3:®? are found to be valuable in relating molecular pa-
rameters, such as the perturbation strength and the stretching mode anharmonicity,
to the observed quantum behavior.

In Chapter 3, an examination of the effect of small classical resonances on
the quantum mechanics of nonlinearly coupled oscillator systems is presented.!® It
is well known that there are many classical resonances in such systems, but most
resonances occupy only a small volume in the energetically allowed phase space (see,
e.g., Ref. 2). It is therefore examined how the quantum mechanics of the coupled
oscillator system is affected as the width of a classical resonance is increased in
classical phase space (specifically, in action-angle space). In particular, in Chapter
3 an analysis of the eigenvalue spectrum and basis function mixing of a resonant
oscillator system is performed. By using a suitably modified uniform semiclassical
treatment for an n : m resonance,® =10 it can be demonstrated analytically that the
quantum mechanics not only “smooths over” small resonances with widths less than
nhi, but also that there is a rather abrupt change as the resonance width increases
past nh.1% This result represents an explicit confirmation of some ideas proposed
by other authors.3%1?

Another interesting and related physical problem is the vibrational excitation
of an anharmonic oscillator by radiation.’? In Chapter 4, it is demonstrated that a

uniform semiclassical analysis can be performed using a “dressed state” picture.12:13
P

Consequently, some interesting and useful results regarding the interrelationship of
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the classical and quantum mechanics of the oscillator-field system are obtained.
In particular, the uniform semiclassical analysis yields resonance frequencies (i.e.,
field frequencies where the maximum absortion occurs) which are essentially ex-
act. Moreover, the quantum one— and two—photon Rabi frequencies are related via
the semiclassical analysis to the Fourier components of the dipole moment function
evaluated in a special way.'? By using analytic means, or by computing classical
trajectories with the appropriate initial conditions (as determined by the semiclas-
sical theory), these Fourier components are usually much easier to obtain than the
corresponding quantum‘matrix elements.}?:1* The semiclassically calculated Rabi
frequencies (and hence absorption intensities) are also found to be in excellent agree-
ment with the exact quantum results. The uniform semiclassical analysis provides
a justification of sorts for the use of Fourier components of the dipole moment in
the calculation of one-photon absorption intensities.'* Perhaps most significantly,
the appropriate Fourier components needed to calculate two-photon absorption in-

tensities semiclassically are derived for the first time.

A complete quantum mechanical description of IVR processes in polyatomic
molecules is quite complicated and requires considerable theoretical effort. In Chap-
ter 5, an approximate method is developed for calculating the quantum dynamics
of initially prepared nonstationary states in polyatomic molecules.!® This method
is based on the integration of a set of “adiabatically reduced” coupled equations for
the time-dependent amplitudes of a set of zeroth-order basis functions. The deriva-
tion of these approximate coupled equations relies on a partitioning of the basis
states into two subsets: One subset consists of those zeroth-order states that are
resonant with and/or strongly coupled to the initial state, while the other subset
is taken as being those states that are off-resonant with and weakly coupled to the
initial state. In the proper “rotating frame” representation,!® the probability of the
evolving nonstationary state is found to not contain any appreciable amplitude from
the off-resonant, weakly coupled subset of basis states (on the relevant time scale of

interest!%). This interesting property of resonant versus off-resonant zeroth-order



-5 —

state amplitudes allows one to accurately calculate the dynamics using an effective
Hamiltonian matrix. Since this effective Hamiltonian has the same dimension as the
resonant and/or strongly coupled subspace, the method of Chapter 5 may reduce
considerably the number of coupled equations that must be integrated.!® It is also
found that the off-resonant, weakly coupled states can have a suprisingly important
influence on the dynamics of the initial state.!%:1¢ The method of Chapter 5 is ex-
tended to treat non-orthogonal basis sets in Appendix I, and an iterative method

for determining more accurate effective Hamiltonians!7 is discussed in Appendix II.

Based on the theory of Chapter 5, approximate coupled equations are derived
in Chapter 6 which describe the interaction of a molecular system with one or
more continuous wave lasers.!® This problem is of particular interest because there
are numerous multilaser, “i)ump—probe” experiments which are capable of probing
various aspects of molecular excitation and energy redistribution processes (see,
e.g., references cited in Ref. 18). The formulation of the approximate coupled
equations is based on a time-independent dressed state Hamiltonian'® which in-
cludes the radiation field as a set of harmonic oscillators coupled to the molecule.
By virtue of the adiabatic approximation implemented in Chapter 5, an effective
dressed state Hamiltonian may be formulated for a set of resonant, or near resonant,
dressed molecular states. This effective Hamiltonian contains the generé.lized Rabi
frequencies and AC Stark shifts!2 to all orders in the perturbation strength. It is
also demonstrated in Chapter 6 that an expansion of the effective Hamiltonian in
terms of the perturbation strength allows for simplified calculations of the relevant

effective dressed state matrix elements.

In the final Chapter of this thesis, an approximate theory is developed which
describes the exponential decay of an experimentally prepared state in a large poly-
atomic molecule undergoing IVR. This behavior, which thus far has been observed
in a majority of experimental studies on IVR,!? is also predicted by the well known
radiationless transitions theory.?® The derivation of exponential decay behavior in

isolated molecules given in Chapter 7 does not rely on a resolvent operator approach
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(as does the usual theory?®). Instead, it relies on the adiabatic approximation!?:?!
given in Chapter 5 and is based on somewhat different physical intuition than
that employed in previous IVR theories.?® The present theory also gives an ex-
pression for the exponential decay rate which differs from the usual Golden Rule
rate expression.29+22 In fact, the theory allows for bottlenecks in the intramolecular
decay rate which are not directly predicted by the usual Golden Rule-type theo-
ries. Furthermore, the decay rate derived in Chapter 7 is written in terms of an
“intramolecular width” parameter which is related to the number of intramolecular
| “bath” states participating in the IVR. The possible experimental determination of
this parameter is discussed in Chapter 7. The theory presented in Chapter 7 offers
an alternative approach to IVR problems in large molecules, and it yields results

that differ somewhat from previous theories.2?
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Chapter 1: The Highly Excited C-H Stretching States of CHD3;, CHT3,
and CH3D

[The text of this Chapter appeared in: G. A. Voth, R. A. Marcus, and A. H. Zewail,
J. Chem. Phys. 81, 5494 (1984).]
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The highly excited C~H stretching states of CHD;, CHT;, and CH;D

Gregory A. Voth, R. A. Marcus, and A. H. Zewail®
Arthur Amos Noyes Laboratory of Chemical Physics,” California Institute of Technology, Pasadena,
California 91125 :

(Received 9 July 1984; accepted 11 September 1984)

Unlike many other molecules having local modes, the highly excited C-H stretching states of
CHD; show well resolved experimental spectra and simple Fermi resonance behavior. In this
paper the local mode features in this prototype molecule are examined using a curvilinear
coordinate approach. Theory and experiment are used to identify the vibrational state coupling.
Both kinetic and potential terms are employed in order to characterize the coupling of the C-H
streich to various other vibrational modes, notably those including D-C-H bending. Predictions
are also made for CHT, and the role of dynamical coupling on the vibrational states of CH,D

explored. Implications of these findings for mode-specific and other couplings are discussed.

i. INTRODUCTION

The highly excited vibrational states of C-H stretching
modes in many molecules have been the subject of consider-
able interest in recent years.' The local mode description’
has been used to treat these C-H oscillator systems and has
had considerable success in doing so. Of particular relevance
to the present paper are.the experimental results of Perry et
al.? which, for CHD,, indicate the specific coupling of the C

'H stretch to a bending normal mode. For other molecules,

this type of coupling has been discussed previously by sever-
al authors.® The local mode description has recently been
extended to handle such couplings,* using curvilinear coor-
dinate systems.”™” These coordinate systems present a natu-
ral way of treating molecular vibrations and provide phys-
ical insight into the coupling mechanisms between
vibrational states. To such vibrational couplings have been
attributed the calculated breakdown of localized C-H
stretching vibrations,'™*® the observed linewidths of aro-
matic (~ 100-200 cm™") and aliphatic {~20 cm™") local
mode transitions,**!* and the postuiated onset of extensive
intramolecular relaxation.*%1%13

With these aspects in mind, the highly excited C-H
stretching vibrations in CHD,, CHT;, and CH,D are stud-
ied in the present paper. Recent experimental evidence? has
suggested that in CHD, there are extremely narrow
linewidths ( < 1 cm ™'} and very limited state mixing at a high
fevel of C-H vibrational excitation. An analysis of this spec-
tral data was performed in terms of a simple Fermi reso-
nance between the C-H stretch and a bending normal
mode.? In the present paper, using a curvilinear coordinate
treatment, a theoretical analysis is presented for the vibra-
tional eigenstate problem which includes kinetic and poten-
tial energy coupling terms. An explanation for the observed
spectrum of CHD, is proposed and, in turn, predictions are
made for the high overtone C-H stretching spectrum’ of
CHT,. In addition, the difference between the relatively sim-
ple CHD, spectrum and the highly congested spectrum? for
CH,D is discussed in terms of the different dynamical vibra-
tional mode couplings in these two molecular species.

* Camille and Henry Dreyfus Teacher-Scholar.
' Contribution no. 7057.

J. Chem. Phys. 81 (12), Pt. |, 15 Dec. 1984

0021-9606/84/245494-14$02.10

An outline of the present paper is as follows: A brief
review of the relevant experimental data® is given in Sec. IL.
In Sec. I1I, the curvilinear coordinate formalism is applied to
CHD, and CHT,, and couplings between the C-H stretch-
ing vibration and other normal modes of these molecules are
described. In Sec. IV, the dynamical coupling of-the C-H
streiching states to bending normal modes in CH,D is exam-
ined. Concluding remarks appear in Sec. V.

Il. CHD; AND CH,D: SUMMARY OF THE EXPERIMENTAL
RESULTS

Recently, using photoacoustic spectroscopy, the high
C-H overtones of methane and of its isotopic derivatives
CH,D, CH,D,, and CHD;, have been studied by Perry er al.?
Some results obtained for CHD; and CH,D, both of which
have very different spectra, can be summarized as follows:

The CHD, overtones corresponding in zeroth order to
five, six, and seven quanta in the C-H stretch have remarka-
ble simplicity.® For v = 5 and v = 6, the spectra have a sim-
pie iwo level Fermi resonance siructure (e.g., Fig. i for
v =6). For v =7, the spectrum is more congested, but it
appears to be essentially a three level Fermi resonance.’
When the quantity 4E,,/v is plotted vs v, 4AE,, being the
excitation of the C-H overtone in excess of the zero-point

15,24> 16,
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FIG. 1. Experimental v = 6 C-H overtone spectrum for CHD, (taken from
Ref. 2).
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energy, one obtains® an excellent Birge-Sponer line,’ but
with deviations in the v = 5, 6, and 7 regions where these
Fermi resonances become important. Also, the CHD, spec-
tra clearly show the P-, -, and R-like branches expected for
a symmetric top molecule with parallel type vibrational/ro-
tational transitions.** Considering the size of the molecule
involved and the density of vibrational states, the simplicity
of these spectra is quite interesting.

The spectrum at v = 6 for CH,D (Fig. 2), on the other
hand, is strikingly different from that for CHD; at the same
level of excitation. This transition has a spectral envelope
with a width at half-maximum of approximately 150
cm ™! The excitation of the C-H stretching states in this
molecule corresponds to both parailel and perpendicular
type vibrational/rotational transitions'* and therefore has
more complicated selection rules than that for CHD,. The
level structure underneath the spectral envelope at v = 6 is
expected to be quite complicated for this and other reasons.

Several compelling questions arise from the experimen-
tal data on these two molecules. For instance, why do the
v = 5and v = 6 transitions in CHD, have such a remarkably
simple level structure? A harmonic state count'® yields a
density of A, symmetry vibrational states of about 35 states/
cm ™! at the energy of the v = 6 transition. There are, there-
by, many vibrational states with the proper symmetry io
couple with the C-H stretch (which has 4, symmetry} via
Fermi resonance interactions. The behavior actually ob-
served is highly nonstatistical, however, since very few states
are significantly coupled. In addition, the observed CHD,
spectrum at v = 6 is very different from the corresponding
CH,D spectrum, and a knowledge of the mechanism that
causes the high degree of congestion in the latter is of parti-
cular interest.

ill. THEORY FOR CHD,, CHT,
A. Curvilinear formalism: qualitative analysis for CHD,

The general expression for the classical vibrational Ha-
miltonian in curvilinear interval valence displacement co-
ordinates®’ is

1 N
H(xp) =3 Gy, 5, + V(%) 3.1
Y
16cy>
2
e
2
a
kL
o
g
et

WAVELENGTH (nm)

FIG. 2. Experimental v = 6 C~H overtone spectrum for CH;D (taken from
Ref. 2).
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where the G, ;(x) are the Wilson G-matrix elements'® which,
in the curvnlmear coordinate approach, are dynamical func-
tions of the curvilinear displacement coordinates x, and ¥ (x)
is some Born-Oppenheimer potential energy surface for the
molecular vibrations. In the rectilinear coordinate ap-
proach,®”'® the G-matrix elements are ireated as constants
and the potential ¥ (x) contains extra contributions to com-
pensate for this restriction.

For any particular molecular vibrational problem, one
must usually make some approximation for the potential en-
ergy function V'(x), since this quantity is rarely known accur-
ately. For the analysis of the vibrations in CHD,, it will first
be assumed that the single C-H stretching mode may be
described by a Morse oscillator potential energy function'’
and that the remaining vibrations are adequately described
by harmonic {quadratic) potentials. The coupling between
modes is then qualitatively described by the dynamical de-
pendence of the G-matrix terms in Eq. (3.1). It will be shown
later in this paper that, in addition to these G-matrix cou-
plings, higher order (i.e., higher than quadratic) curvilinear
potential energy terms are needed in order to explain more
quantitatively the observed spectra of CHD,.

The corresponding quantum mechanical Hamiltonian
to Eq. {3.1) may be defined in effect by substituting the mo-
mentum operator p, = (#/i)d/dx; forp, in Eq. (3.1). This step
is not rigorously exact, but it is an excellent approximation
for the limit of relatively small amplitude molecular vibra-
tions. A discussion of this appears in Ref. 7.

The Hamiltonian {Eq. (3.1)] for CHD; may be straight-
forwardly transformed into

H=H,+V’, (3.2)
where
Hy=H,{rp)+— Zz (P} +aiQ) {3.3a)
and the perturbation ¥’ ‘1s given by
=_; 5 [Gutx) - 1]P2+—-‘122 ;
{3.3b)

In these equations, H, (r,p) is the Morse oscillator Hamilton-
ian'™'® for the C-H stretch with displacement coordinate »
and conjugate momentum p; the (P} + wQ?) are the har-
monic oscillator Hamiltonians for the eight curvilinear nor-
mal mode vibrations in CHD,. Also, the Z}'ij’s are the G-

matrix terms transformed via a normal mode
transformation'$
9
2 z Lll GIm(X)L/m 3 (3'4)
iI=lm=1

where the G,,,’s are the G-matrix terms transformed via a
symmetry coordinate transformation'®
9

2 2 Uh qx)Um[ (35)

i=1j=1
The coefficients U, and L ;!, etc. in these equations are the
elements of the matrices U and L' that define the transfor-
mations

Elm (x)

g=Ux, Q= L‘,lq (3.6)
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TABLE I. Internal symmetry coordinates for CHD,(CHT;).>

qf-zrl

q:‘=‘7:‘"’|+"2+’3)
V3
1

@=—lo ot e, — - B
V6

E, 1

g =—=2r—r—r)

4 V;é H 3

g = — 20—y - ay)
v6
1

qf’ = —,:{Zﬂ; —B:—B)
N

» !

g5 = ey =)
;

£,

gs" = — (o2 — a3)

3 ? 3

g5t =— (8~ B)

*r is defined here to be the C-H bond displacement coordinate, 7, the C-
D(T| bond displacement coordinates, a; the D-C-D{T-C-T) angles oppo-
site 7,, and 5, the H-C-D(T) angles that include the r, bond.

to curvilinear symmetry coordinates q and normal coordi-
nates Q, respectively. The symmetry coordinates for CHD;
are given in Table I while the L™! matrix is the standard
normal mode matrix calculated by the methods of Ref. 16
with all internal coordinates in the G-matrix terms evaluated
at their equilibrium value. In order that the C-H coordinate
7 be treated as a local mode coordinate, the transformation
coefficient L (7", where coordinate 1 is defined as », is set
equal to unity and the coefficients L 7 ', L ;! are set equal to
zero for i 1. This approximation does not diagonalize all
the off-diagonal quadratic perturbation terms, leaving terms
proporiional to rQ; and pP,. However, the present calcula-
tions show these to be very small and they may be safely
neglected. This approximation has been known since the ear-
ly days of normal mode theory® and is a good one due to the
high frequency of the C-H stretching vibrations; they are
essentially adiabatic from the rest of the normal modes of 2
molecule when coupling terms of quadratic order only are
treated. Thus, to quadratic order, the C-H stretching vibra-
fions may be treated separately rather than included in the
zeroth order normal mode analysis.

A principal approximation of this paper is to treat the
dynamical G-matrix elements in Egs. {3.1) and (3.3b) as func-
tions of the C~H displacement coordinate » only. This ap-
proximation is assumed to be valid because, for the states of
experimental interest in CHD,,? the C-H stretching local
mode is the only vibrational mode with appreciable ampli-
tude. The other internal coordinates of the molecule are tak-
en to be a their equilibrium values when evaluating these G-
moatrix elements. Such an approximation simplifies the
treatment of the vibrations in CHD, and allows for a
straightforward physical interpretation of the coupling of
the C~H stretch to various normal modes.

The normal modes with possible coupling to the C-H
stretching local mode in CHD, consist of two nondegenerate
A, symmetry modes with harmonic frequencies @, = 2183
cm™! and w; = 1042 cm ™! and three doubly degeneraie E
symmetry modes with frequencies w,= 2337 cm™!,
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@s = 1335cm ™", and wg = 1070 cm ™. These modes couple
with varying degrees to the C-H stretching local mode as a
result of the G-matrix terms in Eq. (3.3b).

Since a full matrix diagonalization of the Hamiltonian
[Eq. (3.2)] in a suitable basis is impractical due to the large
number of vibrational degrees of freedom in this molecule, a
simpler, more transparent approach was taken to determine
which modes couple strongly to the C-H stretch. This ap-
proach was to determine the strength of the coupling of the
“pure” C-H stretching states |v,0,...,0) to resonant “door-
way states™® such as |v — LUp¥s,...,0s). The degree to
which two such zeroth order states mix was determined by
simple diagonalizations of 2 X 2 matrices of the Hamiltonian
[Eq. {3.2)] represented in this basis. For the nondegenerate
A, symmetry normal mode states, a nondegenerate harmon-
ic oscillator basis'® was used, while, for the doubly degener-
ate E symmetry normal mode states, a doubly degenerate
harmonic oscillator basis’® was employed. The C-H stretch-
ing local mode basis states were taken to be Morse oscillator
eigenfunctions.'”*® The Morse oscillator matrix elements of
the G-matrix coupling terms [Eq. (3.3b)] were calculated by
numerical quadrature, rather than using the expansion em-
ployed in Refs. 4(a) and 7 of these terms in a Taylor series. It
was found that this numerical integration avoided-problems
due to the slow convergence of the series expansion terms.
Details of this integration procedure are described in Appen-
dix A.

B. Vibrational anaiysis for CHD; and CHT,

Two key features of the vibrational state mixing as de-
scribed by pure G-matrix coupling are first summarized.
They were investigated and found to simplify the analysis
considerably:

{1) The two 4, symmetry normal modes are rigorously
decoupled from the C-H stretch because the G-matrix terms
in Eq. (3.4) for these modes are independent of the C-H dis-
placement coordinate r. While this behavior is not necessar-
ily evident from Eq. (3.4), it may be shown by demonstrating
the independence of the 4, symmetry normal mode frequen-
cies from the C~H bond length using standard normal mode
techniques. '

(2) It is found in the calculations that the doubly degen-
erate £ symmetry modes with harmonic frequencies
@, = 2337 cm ™! and w4 = 1070 cm ™ ! have extremely weak
coupling to the C-H stretch via G-matrix terms. They also
have no low order resonance condition with this mode for
v = 1-6. Accordingly, coupling to these modes corresponds
to effects of second order. For example, the states |6) 0,0},
and |5)]2,0); (both of 4, symmetry), where a doubly degen-
erate harmonic oscillator basis |7,/ ), is used for the particu-
lar E symmetry normal mode /, are coupled. However, the
ratio of the matrix element that couples these two states
(with i == 1}

Vio =, {v = 11G,,(r)|v) /2 (3.7)
to the energy difference between them is straightforwardly
calculated for v = 6 to be 0.002 for coupling to E mode 4 and

0.019 for coupling to E mode 6. Thus, these vibrational
modes only weakly couple by G-matrix terms to the pure C-
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H stretch and may be ignored in the present analysis.

The remaining doubly degenerate E symmetry normal
mode is found in the calculations to be strongly coupled to
the C-H stretch, with an average off-diagonal matrix ele-
ment of the G;; coupling term of ~100 cm™! in the range
v = 3~6. Moreover, the harmonic frequency s of this nor-
mal mode satisfies a 1:2 nonlinear resonance condition with
the C-H vibrational frequency at the v =15 and 6 level of
excitation. Asaresult, the states |v) [0,0) and |v — 1)|2,0) in
this energy regime are approximately degenerate in zeroth
order. This bending mode involves the E symmetry defor-
mation of the H-C-D angles and it thus interacts strongly
with the C-H stretch via the curvilinear G-matrix coupling
effect. The physical origin for this effect is due to the effective
mass for the H-C-D bend, as described by the inverse of the
G-matrix term, being increased when the local mode is excit-
ed and the C-H bond is lengthened. No other normal modes
of the molecule satisfy both a low order resonance condition
and the condition that the H——C—D bend be included in their
motion.

One further possibility to be considered is the coupling
of the pure C-H stretching state to 4, symmetry combina-
tion states by terms like G, 4 (NP P; in Eq. (3.3b). These combi-
nation states have the form lv—l, «0;5V;5...}, Where the nor-
mal mode quantum numbers other than v; and v; are zero.
The combination state having vs = 1, vs = 1 is the only state
found to have both an approximate zeroth order degeneracy
and a nonnegligible interaction with the pure state {v,0,0,...).
In the calculations, it becomes important only for a level of
excitation in the C-H oscillator corresponding to at least
seven quanta in zeroth order. For six quanta in the C-H
stretch, this combination state is sufficiently detuned from
the C-H stretching state energy so as to have only a small
second order effect on the splitting { < 5 cm ™ ') and the rela-
tive intensity ( < 3%) of the Fermi resonance found in this
spectral region.

The resuls of the above analysis indicate that the C-H
sireich selectively interacts with the doubly degenerate
bending normal mode with harmonic frequency @s = 1335
cm ™!, thereby simplifying the quantitative treatment of the
C~H stretching states (i.e., only three degrees of freedom
need be considered). However, since the magnitude of the
pure curvilinear G-matrix interaction (~ 100 cm™") is larger
than what is observed experimentally (~ 35 cm ™), the po-
tential energy is postulated to have an important cancella-
tion effect within these matrix elements. Because the avail-
able high order force constants’®® relevant to the Fermi
resonances at v = 5 and 6 were found to be inadequate, only
first order effects (in terms of degenerate perturbation the-
ory) were treated. As will be shown later for CHD,, this first
order ireatment is useful in determining both the energies
and the relative intensities of the pure C-H stretching mode
states and of combination levels involving the C-H stretch
and the H-C-D bending mode.

The Hamiltonian for the coupled C-H stretch and dou-
bly degenerate bending mode is

H=H,+ V' (3.8)
with

Ho=H,(rp) +1[(P? + P}) + 02(Q2 + 02)] (3.9)
and
V' =1[Gssl) — 1](P? + P2) F’r(Q +03)
+5101 403, (3.10

where Q, and Q, are the degenerate pair of normal mode
coordinates for the bending mode with conjugate momenta
P, and P,, H, {rp) is the C-H stretch Morse oscillator Ha-
miltonian, and F; and F, are the cubic and quartic force
constants, respectively, for the mteractlon of the C-H
stretch with the bend.

The basis states of the zeroth order Hamiltonian [Eq.
(3.9)] are the states [v) |n,] ) 5, where |v) are the Morse oscilla-
tor eigenfunctions'® for the C-H stretch and |n,! )5 is the
doubly degenerate harmonic oscillator basis'® for the v
bending mode. The Fermi resonances in CHD; are pre-
sumed to involve the pure C-H siretching state |v)0,0) 5 of
A, symmetry interacting with the 4, combination state
{v — 1){2,0) 5. The relevant matrix elements for the bendmg
normal mode are {in units of # = 1)!>:

(1,0[P? + P2in + 2,0) = (n + 2Jws/2, (3.11a)

(n01Q7 +Q3ln + 2,00 = — (n + 2/2ws), (3.11b)

(n0|P} + P%[n,0) = (n + lws, (3.11c)
and

(n0|@% + 23 |n0) = (n + /w5 (3.11d)

The 2 X 2 Fermi resonance matrix for this treatment is

H, Hy, _(H1+Vxx Via )
(Hzl sz)— Ve H,+V,,]’ (312)
where (with # = 1)
H,={— Yo, ——4fo, ¥+ o, (3.13a)
H,={v+ o, -+ Vo, y+aos {3.13b)
Vo= 225 0~ 1{[Guslr) ~ 1] jo = 1)
B3 o 1iry -
+ o (2 (v—1ljrlv~1)
Fary _
+ w1 1>), (3.13¢)
Vo =22 (0l[Gislr) = 1]10)
(3.13d)

(B F 1
- ( =S (olro) + 5 <urr;u>),
and

Vie= f’;— (v —1/Gs 5(r)|v)

i (F, F, 3
o (B o=+ w—i2w).
(3.13¢}

The Morse matrix elegxents of the normal mode-trans-
formed G-matrix element G ;(r) [Eq. (3.4)] were calculated
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by numerical quadrature, as in Appendix A. The matrix ele-
ments of » and 72, known analytically,'®*! are discussed in
Appendix B. Both the cubic and quartic terms, involving the
Morse matrix elements {v|r{v — 1) and {v|*|v — 1), respec-
tively, were found to be nonnegligible for v = 5 or 6. The
force constants in these terms were determined by a nonlin-
ear least squares parameter fit”* of the calculated values to
the experimental data for v = 1 through v = 6. This fit was
performed using a 2 X 2 matrix, as in Eq. (3.12), to calculate
the energies of the C~H overtones and combinations at each
energy.level through v'= 6. Using a grid of values for F; and
F,, the minimum of the least squares function was found.
Since only first order effects were considered in this treat-
ment, the cubic and quartic force constants obtained in such
an least squares analysis represent a first order estimate.
The kinetic and potential perturbation contributions to
the diagonal elements in Eq. (3.12) also contributed in this
calculation. The contribution from the G-matrix terms to
the matrix elements ¥, represents, in effect, 2 modification

of the bending mode’s harmonic frequency @5,° namely,
H;, =E7+(n+ lws + (U!V;':otlL’)r (3.14a)
where
1 -
o} =41+ W[50 = 1] (3.14b)

and E 7 is the energy of the Morse oscillator with v quanta.
Since the diagonal element {(v|Gs s (r}|v) is always less than
unity (i.e., the effective mass of the bend increases with in-
creasing v), the effective harmonic frequency @/} of the bend-
ing mode decreases with increasing v. For the CHD, mole-
cule, the potential energy term has a similar effect except
that it is somewhat more complicated in form. Both contri-
butions give rise, as a result, to an effective anharmonicity
for the C-H overtones.?>** For the point of view of that
interpretation, the values of w, and w, y taken from experi-
mentally measured Birge-Sponer lines may deviate some-
what from the “true” Morse parameters for the C-H mode,
as is shown later for CHD;,.

The effect of the coupling of the above [v — 1}]2,0)
states to 4, symmetry states like {v — 2){4,0);, with four
quania in the bending mode, was also examined. These cou-
plings can, in principle, have a large effect, as was suggested
recently for benzene.* In the case of CHD;, however, these

tions just mentioned [Eqs. (3.14a) and (3.14b)]. Moreover,
these states seem to be particularly sensitive to second order
corrections from off-resonant states such as |v — 1) [4,0) or
|v — 3)|4,0) 5. These corrections tend to lower the energy of
these states even more so that they are further detuned from
the principal Fermi resonance.

To explore such effects, diagonalizations of 27 X 27 se-
cular determinants for the Hamiltonian [Eq. (3.8)], including
states with four quanta in the bending mode and as many as
nine C-H stretching quanta, were performed. Since it is
computationally expensive to use a 27 X 27 matrix diagonali-
zation in the determination of the force constants F, and F,
by the nonlinear least squares fitting procedure described
previously, two separate approaches to this problem were
taken. The first approach was to determine the values of F,
and £, using a 2 X 2 matrix such as Eq. (3.12) at each level of
C-H excitation {v = 1-6) in conjunction with the force con-
stant fitting procedure discussed previously. A 27X 27 ma-
trix was subsequently diagonalized utilizing the force con-
stants thus obtained. The second approach was to extend the
nonlinear least squares fitting procedure to include the dia-
gonalization of a 3 X 3 matrix (including the states with four
bending quanta) at each level of C-H excitation. The force
constants obtained in this fit were then used in a diagonaliza-
tion of a 27 X 27 secular determinant.

The results of all four calculations are shown in Table I1
together with the experimental values. It is evident that the
results for the simple 2 X2 treatment and the subsequent
27 % 27 diagonalization are consistent with the experimental
values and with each other (i.e., the results do not differ sig-
nificantly between the 2 X2 and the 27X 27 treatment). In-
terestingly enough, as one can see from Table II, the 3X 3
treatment does not fit the experimental data as well nor are
the 3 <3 results consistent with the subsequent 27 X 27 ma-
trix diagonalization using those parameters. These results
indicate that the simple 2 X 2 procedure is the best way to fit
the experimental data.

Both 27 %27 matrix diagonalizations exhibit the strong
second order detuning effect of the |v — 2} |4,0); states men-
tioned previously. For the diagonalization utilizing the pa-
rameters obtained from the 2 X 2 fitting procedure, this ener-
gy shift for the v = 6 region was estimated from second order
nondegenerate perturbation theory to be

.. . 2 2
states are strongly detuned from the principal Fermi reso- AD = [¥ia] L% ~—80 ¢cm™},
nance due, in part, to the diagonal first order energy correc- EQO_EO EQO_EO®
TABLE 1. Comparison of theoretical results.

r=>5 v==6 U= v==6
. B splitting® splitting® rel. rel.
(em~1) {em~F) intensity intensity

Expt. 133 74 18 +8% 55 4 10%
22 117 79 9% 43%
27X 131 78 7% 40%
3x3 99 59 13% 97%
27X 27" 138 84 7% 25%

® Calculated using parameters from 22 fit.
® Calculated using parameters from 3 X 3 fit.

° Fermi resonance splittings between eigenstates of |v)[0,0) and Jv — 1)|2,0) parentage.
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TABLE 1L Molecular parameters for CHD,{CHT,}).

Morse Morse vs mode Cubic force Quartic force

harmonic anharmonicity harmonic constant constant

freq. @, (cm ™) wy y lem™ ') freg. (cm™')° Fylau) F,{au)
CHD, 3133 58.08 1335 ~2.03%x107° 1.83107°
CHT, 3133 58.08 1273 - 1.82x10°° 1.64x107°

*From Ref. 20(a).

°From Ref. 25.

< Calculated from the quadratic force constants given in Ref. 20(a).
4 As determined from least squares parameter fit.

where 1 denotes the state [4)|4,0);, 2 denotes the state
[5)]4,0)s, and 3 denotes the state |3){4,0)5. The exact
2727 treatment, in this case, has a shift for this state of
~ — 120cm ™" instead of — 80 cm™". Due to this detuning
effect, we conclude that the states with four quanta in the
bend are not important to the observed Fermi resonances.

C. Results for CHD,

The energies of the C-H stretch overtones for CHD;, as
calculated from the 2 X 2 fitting procedure given in Sec. III B
and utilizing the molecular parameters from Table III, are
compared with the experimental results in Table IV. The
results are in good agreement with experiment for both the
pure C-H stretching states and the combination levels. The
corresponding theoretical least squares Birge-Sponer line
(in ecm™!) through the v = 6 overtone is given by 4E,,/v
= 3047 — 57.56v. This line was determined by using a linear
least squares fit to the calculated points for v = 1 through 4
and fiis the theoretical data very well except at v = 5 and 6,
where a deviation is expected due to the onset of the Fermi
resonarnces. As compared with Ref. 25, where a fit was ob-
tained for the v = 1-4 C-H overtones, there is, from a phen-
omenological point of view, two new pieces of experimental
data, namely the splittings at v = 5 and 6, and two new pa-
rameters introduced into the fit. Of course, this does not
require that the model will automatically fit the data, but it
does nevertheless. The main virtue, we believe, of the present
analysis is that it describes the physics of the problem. In
particular, it is found that the treatment of the dynamical
{i.e., G-matrix) coupling does not quantitatively explain the

TABLE IV. Energies of C-H overtones and combinations for CHD,{CHT,).

Fermi resonances, i.e., the force constants F; and F, should
be included. Such force constants are ultimately to be com-
pared with ab initio calculations. Other treatments which
either do not employ curvilinear coordinates and/or poten-
tial energy contributions of cubic order or higher can be con-
sidered to be more phenomenological.

In Table V, the relative intensities for the two Fermii
resonances at v = 5 and v = 6 are listed along with the off-
diagonal matrix elements and the detunings of the diagonal
matrix elements. In calculating these relative intensities, the
dipole moment for the C-H stretching transitions was as-
sumed to be a function of only the C-H oscillator coordinate
r.'® As a result, the relative intensity of the two states in-
volved in the Fermi resonance is determined by the overlap
of the zeroth order pure C-H stretching state with the actual
eigenstates. The relative intensity is thus defined as

I = (b /a)*x 100%, (3.15)
where
a= (w0, b=|{v0ls)] (3.16)

Here, |v,0) denotes the zeroth order pure C~-H stretching
state [v)]0,0)s, ¥, is the eigenstate of |v){0,0), parentage,
and 1, is the eigenstate of |v — 1)]|2,0) 5 combination state
parentage. These relative intensities in Table V arein reason-
able agreement with the experimental results, but the dis-
crepancy is larger than that for the splittings. This discrep-
ancy may- reflect slight inaccuracies in the zeroth order
detunings and/or off-diagonal electrical anharmonicity
terms contained in the actual dipole moment function. A
theoretical spectrum (at v = 6) employing the above results

CHD, expt.® CHD, calc. CHT; calc.
State® {cm™Y) fem™1) fem™Y)
1,0 2992 2990 29%
12,0y 5 865 5864 5 865
13,0) 8623 8624 8624
|4,0) 11267 11269 11269
|4,2) 13 668 13 684 13558
15,0) 13 801 13 801 13 800
15,2) 16 156 16 149 16 029
16,0) 16 230 16228 16218

*Refers to the zero-order parentage of the state. This notation denotes the states {v)|n,0) (with [ =0 in all

cases). -
®Taken from Ref. 2.
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TABLE V. Relative intensities, off-diagonal matrix elements, and diagonal detunings® for CHD, and CHT,.

Molecule Expt. Calc. Off diagonal Diagonal
and energy relative relative matrix element detuning
level intensity® intensity Vi, fem™1) S{em™Y
CHD,
v=5 18 +8% 9% - 32 98
CHT,
v=§ 4% — 47 223
CHD,
v=6 55 + 10% 43% —-36 31
CHT,
v=6 9% — 52 159

*The diagonal detuning is defined from Eq. {3.12) as § = (H, + V) — (H, + V},).

>Taken from Ref. 2.

and the measured excited state rotational constants from
Ref. 2 is shown in Fig. 3. The main discrepancy with the
experimental spectrum (shown in Fig. 1) is due to the differ-
ences in the relative intensities.

The diagonal first order perturbation contributions
{Eq. (3.13d)] to the pure C-H stretching energies are given in
Table V1. One sees that, according to the results, these terms
contribute even for the fundamental transition. Further-
more, the G matrix and the potential energy contributions
are of comparable magnitude for all excitations. Indeed, the
effective Morse parameters o,=3105 cm™' and
w, y = 57.56 cm ™! calculated from the theoretical Birge-
Sponer line for CHD, are quite different from the actual
values given for the Morse oscillator in Table IT1. This differ-
ence reflects the diagonal first order perturbation effect.
Thus, as noted before, parameters for the C-H bond Morse
oscillator potential functions obtained from experimental
Birge-Sponer plots should be used with this in mind: they
are effective parameters.

The prnner‘nrn nead for calenlatine

i 2 TOCCCUre USCQ 10T Ccardllialing

and Fermi resonance combinations was extended to the
v = 7 region where now both the v and v, modes couple to
the C-H stretch. A 33 matrix was used with the zeroth
order 4, symmetry basis states (with energies Ko <E,.
<Eyp)

the C-H overtones

ABS. (ARB. UNITS)

alll

1 1
13684 13801
ENERGY (cm)

FIG. 3. Theoretical v = 6 C-H overtone spectrum for CHD,.

%) = |6)]2,0)5/0,0)s,
’b 0) = ‘7>|010)5]O»0>6»

(3.17a)
(3.17b)

) = |6) f};(u, ~ Dyl LDe+ 1,151, — D],

(3.17¢)

where the notation |v) |n,/ )s|n',l "), represents the Morse os-
cillator eigenket for the C-H mode, the |a,/ ) eigenket for the
fifth normal mode (ws = 1335 cm ™), and the |n,/ ) eigenket
for the sixth normal mode (@g = 1070 cm '), respectively.
The term

Vs = Gss(r(Ps,, Poy + Py Py)

+ Fsgr@s1 Qo1 + @5202) {3.18)

was added to the perturbation given in Eq. (3.10).2°® This
perturbation term is responsible for the coupling of the |c®)
state to the |a°) and |5 °) states. The subscripts 5 and 6 have
been added here to distinguish between the two normal
modes while, as before, the subscripts 1 and 2 in Eq. (3.18)
refer to the degenerate pairs of coordinates and momenta for
these vibrations. Diagonalization of the 3X3 matrix gave
perturbed states |@), |b ), and |¢) with splittings 4, ~ 110
cm™! and 4,, ~55 cm™'. The experimental results from
Ref. 2 give splittings of ~ 120 and ~60 cm ™!, respectively.
No quantitative comparison of the relative intensities could
be made since they were not obtained experimentally for this
level. Nevertheless, the theoretical results suggest that the
intensity may be distributed approximately uniformly over
the three levels in qualitative agreement with what may be
seen from visual inspection of the spectrum at v = 7.2

D. Results for CHT;

The theoretical treatment of Sec. III A for the v = 1-6
transitions in CHD; was applied to CHT to investigate the
effect of the isotopic substitution D to T. It was again con-
cluded that the fifth normal mode is the only vibration inter-
acting strongly with the C-H stretch by G-matrix coupling
and that the simplified treatment of Sec. III B may be ap-
plied to CHT,. The cubic and quartic force constants found
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TABLE VL. Calculated first order diagonal corrections to the local mode states in CHD,.

Zero-order G-matrix Potential energy Total
local mode contribution contribution correction
state v fcm—") fem™Y) . {em™Y)

1 - 20 - 21 —41
2 - 34 - 35 — 69
3 — 48 - 47 —95
4 - 62 - 59 - 121
5 - 76 - 69 — 145
6 ~ 90 —~ 78 — 168

for CHD, were transformed to the CHT, normal mode coor-
dinate system with the aid of the transformation in Appen-
dix C. The results for the energies are given in Table [V. The
relative intensities of the Fermi resonances, the off-diagonal
matrix elements, and the detunings of the diagonal matrix
elements are given in Table V. This model predicts signifi~
cantly less intensity sharing by the combination states in the
v ==5 and 6 regions than in CHD, due to a detuning of the
Fermi resonance: the fifth normal mode for CHT, has a har-
monic frequency of only ws = 1273 cm ™' as opposed to 1335
cm ™! for CHD,. This effect far outweighs the contribution
due to the increased magnitude of the off-diagonal matrix
element (as seen in Table V) and results in a much “purer”
C-H stretching state at v = 5 and 6.

This analysis of CHT, raises two interesting questions.
First, the density of vibrational states would obviously be
higher for CHT, than for CHD,, Thus, CHT, presents a case
in which the experimental verification of the results predict-
ed by this model would indicate that the density of states
need not predominate in determining the degree of state mix-
ing in structually similar molecules. Rather, the degree of
mixing of states may be determined primarily by a specific
physical mechanism, as in the case of CHD,. Second, CHT,
has the possibility of having 1:3 nonlinear resonance condi-
tions beiween the C~H stretch, an 4, mode (@, = 905cm ™ 1),
or a doubly degenerate E mode (ws = 900 cm ™). This reso-
nance condition is possible around the v =3 or 4 level of
excitation in the C-H mode. However, the sixth mode in-
volves almost entirely T-C-T bending and C-T stretching
motions and so is not expected to be physically coupled to
the C-H streich. The third mode, on the other hand, in-
volves both the H-C-T and the T-C-T bending, but, as was
found for the 4, symmetry modes in CHD,, it has no G-
matrix element providing coupling to the C-H stretch. In
addition, the resonant |v — 1,3), states of either mode can-
not couple directly to the pure C~H stretching states via the
perturbation terms like those given in Eq. (3.10) as long as
the harronic oscillator basis is a good one for those normal
modes. Experimental observation of significant 1:3 Fermi
resonances in this molecule would indicate that the simple
theoretical/physical picture presented in Eqgs. (3.8}{3.13e)
needs extension. Possible extensions include a dynamical de-
pendence of the G-matrix term in Eq. (3.10} on the normal
mode ¢, or the presence of significant fourth order force
constants proportional to 7Q } or »Q ? in the potential energy
function.

A curvilinear coordinate treatment is next used to esti-
mate the vibrational state mixing in CH,D.

V. THEORY FOR CH,D
A. Vibrational analysis

The CH,D molecule has three equivalent C-H oscilla-
tors, so it is useful to prediagonalize the CH; local mode
problem’ before treating the interactions of these modes
with the bending normal modes. The properly symmetrized
zeroth order local mode basis states for C;, symmetry were
found using the method of Halonen and Child.*""* For the
sake of brevity, these basis states are not presented here, but
they consist in general of the 4, 4,, £, and E, linear combi-
nations of different permutations of the unsyminetrized lo-
cal mode state

[v4s03,03), (4.1)
where the subscripts 1, 2, and 3 refer to the Morse oscillator

basis states for the three C-H bonds. The corresponding C-
H local mode Hamiltonian is

H,=H%+V,, (4.2)
where
3
HS =3 H/(p.r) (4.3)
and
- -
V=2 Gypip + 2 Fyriry (44
i>j i>j

and may be diagonalized in the symmetrized local mode ba-
sis. In these equations, H,(p,,r;) is a Morse oscillator Hamil-
tonian with curvilinear bond displacement coordinate »; and
conjugate momentum p;; G; and F;; are the off-diagonal G-
matrix element and the off-diagonal quadratic force con-
stant, respectively, for two C-H stretching local modes / and
j. The G-matrix element used in this calculation may be
found analytically,'® the quadratic stretch-stretch interac-
tion force constant was obtained from the Gray and Robiette
potential energy surface,”® and the Morse parameters are
the same as those used for CHD; (Table ITI). The eigenvalues
and eigenfunctions of this Hamiltonian were calculated for
manifolds with v =4, 5, and 6 total quanta in the C-H
stretches.?»?® Couplings by the perturbation term (4.4)
between manifolds of states with different total v were ne-
glected since they are far off resonance. Each manifold of
states has four independent blocks of 4,, 4,, £,, and E,
symmetry, and the properly symmetrized “pure” local mode
states (i.e., symmetrized linear combinations of |v,0,0)) are
nearly degenerate for all blocks that included such states
(there is one pure state each in the 4, E,, and E, blocks).
The interaction of the prediagonalized local mode
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states with the bending degrees of freedom was next calculat-
ed. This step is usually omitted in the customary local mode
treatment2"** but, as was learned in the CHD; analysis, is
useful in understanding the breakdown of localized C-H
streiching vibrations. As a first step, the interaction of the
CH, local modes with the bending vibrations was calculated
using only the G-matrix coupling technique presented in Sec.
III A. Due to the limited experimental resolution of individ-
ual vibrational lines at v = 6 in this molecule, a treatment of
the potential energy contributions to the state coupling was
not attempted.

The description of the normal modes was made by per-
forming a standard normal mode analysis'® on the quadratic
Hamiltonian

1 7 1 «f
H, ‘—“72 G{xolp;: p; +'T2“Z Fyq.9; (4.5)
18] W

where the primes on the summations indicate a summation
over all internal symmetry coordinates g, {see Table VII)
other than the three C-H streiching coordinates. This treat-
ment defines three normal modes with harmonic frequencies
@3 = 1366 cm™!, ws = 1524 cm™!, and we = 1222 cm ™!
that are in approximate 1:2 nonlinear resonance with the C—
H stretches. The fifth and sixth vibrations are both doubly
degenerate modes of E symmetry while the third vibration is
the 4, symmetry umbrella mode.’®® Asfor CHD,, the C-H
stretching coordinates are treated separately when defining
the zeroth order oscillator basis.

The curvilinear Hamiltonian used for this problem,
containing the third, fifth, and sixth normal modes and the
C--H local modes, is

H=H,+ V' +V,
where

Ho=Hm+%(P§+w§Q§)

(4.6a)

+ - [(PL, + PLa) + @303, + Q%)) (4.60)

i
+ 1[0 + PL) +03(Q% + QL1
s L=
4 :E[Gs.s("u”zﬁ's)“"l]

TABLE VII. Internal symmetry coordinates for CH,D.*

g ="
G2 =71
gy=r
ge="T3
%=7_6"‘(‘1|+az+a3-’ﬁl By~ Bs)
i
‘Io‘_”"“j"a'(zaz—az"aa)
1
Q7=7.6-(‘235 :._ﬁz—ﬁl)
4133""1—(‘11—03)
VZ
1
99=7i‘tﬁz‘ﬁs)

*The coordinates are defined the same way as in Table [ except that ris now
the C--D displacement coordinate and #, is a C~H displacement coordi-
nate.
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[6s,s;n(f1’fz:’3) - 1]P§.n

1

+
Y PN NY N

Me M

[66.6;:: (PysPass) — I]Pg.n

1

2 —
+ Y GsenlrvPurslPs, Pop,

n=1

and the diagonal matrix element of the ¥, potential energy
term is written as

(| Plo3) = — (o3 + s x5 {4.6d)
Here, H,, is the C-H local mode Hamiltonian from Eq. (4.2),
G 3(ri,r7s) is the normal mode transformed G-matrix ele-
ment [Eq. (3.4)] for the nondegenerate 4, mode, G, ., {r;,75,73)
is the normal mode transformed G-matrix element for dou-
bly degenerate normal mode i with degenerate partner #, and
G5 6,2{P1572:75) is the G-matrix cross term for the degenerate
normal modes 5 and 6 and degenerate partner . All of these
G-matrix elements are assumed to depend only on the three
C-H bond lengths r,, 7,, and ;. This approximation is analo-
gous to the one made for CHD,, where the C~H mode was
taken to be the only vibration with appreciable amplitude.
The |v;) ket denotes a vibrational state of the 4, mode such
that (v;|¥,|v;) has the effect of a diagonal anharmonicity
with the adjustable anharmonicity parameter w, y;. The
work of Gray and Robiette™¥ suggests that this anharmoni-
city is significant and should not be neglected; an approxi-
mate value of 20 cm ™' was chosen for this parameter. The
other matrix elements of this vibrational mode are still treat-
ed in the harmonic limit, however, because this anharmoni-
city is not large enough to cause significant deviations from
harmonic oscillator values.

The basis states defined by the zeroth order Hamilton-
ian [Eq. (4.6b)] are

[9) = [v, /i Y |vs) |ns,ds) | m,le), {4.7)
where |v/,I" ) represents the jth eigenket (ordered by increas-

ing energyj of the prediagonalized CHj, local mode Hamil-
tonian H,, [Eq. (4.2)] from the manifold with v total C-H
stretching quanta and symmetry I'. Also, |v,) is the nonde-
generate harmonic oscillator basis for the third mode and
|2,,4; } is the doubly degenerate harmonic oscillator basis for
the fifth and sixth modes.

The matrix elements for the doubly degenerate bending
modes were calculated in the same way as those for CHD,/
CHT, [Egs. (3.10a}+3.10c)] while the nondegenerate matrix
elements were calculated from standard harmonic oscillator
formulas.'® The matrix elements

W.ijir |6i,i;n(’19f2”3)lv:jf): (4.8)
in the prediagonalized local mode basis set [v,/,” ), were non-
trivial and could have required copious quantities of com-

puter time. Several simplifications which made the evalua-
tion of Eq. {4.8) tractable are given in Appendix D.

+

{4.6¢)

3
[l

B. Resuits for CH;D

Ia the notation of Eq. (4.7), the pure local mode state for
v==6is

[#1) =16,1,"}]0)[0,0|0,0), {4-9)
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where |v,1,I") is defined as the symmetrized state of pure
local mode parentage and of I” symmetry. These pure states
are always lowest in energy within a manifold with v total
quanta [i.e., in the notation of Eq. {4.7), they are denoted by
J = 1]. The only zeroth order states with less than or equal to
four quanta in the bending modes found in the calculations
to strongly interact by G-matrix coupling with this state are

[#) = 5,1, 3(2)(0,0}]0,0), (4.10a)

l¥s) =15,1,1")[0)[0,0)|2,0), {4.10b)
and

Iy = 14,1,7)]4){0,0){0,0), {4.10¢)

where I” denotes states of 4, E,, or E, symmetry. In the
calculations, it was also found that no states from Eq. (4.7)
containing local mode combination states’ are found to mix
to any appreciable extent with the states (4.9) and (4.10a)}
{4.10c) when the full matrix diagonalization (including the
bending degrees of freedom) is performed.

An approximate theoretical spectral envelope was cai-
culated for the v = 6 overtone of CH,DD at 300 K (see Fig. 4).
Standard selection rules for parallel and perpendicular type
vibrational/rotational transitions in symmetric top mole-
cules were used.'* Moreover, as in the case of CHD,, the
body fixed C-H stretching dipole moment operator was as-
sumed to have the form**!

wlr) = i pirile,,

iw= 1

(4.11)

where e, is a unit vector directed along the ith C-H bond.
The overlaps of the molecular eigenstates with the zeroth
order pure C-H siretching state thus determine the relative
intensities of the vibrational transitions. For Fig. 4, the indi-
vidual vibrational/rotational lines were given a Lorentzian
shape with a width at half-maximum of | cm ™', as was de-
termined experimentally.? A value of — 0.2 cm™! was as-
sumed for the ground to excited state rotational constant
difference 4B = (B, — B), representing a crude estimate of

the change in the rotational constant in going to the excited

ABS. (ARB. UNITS}

— 1 ]
We-20 (75 Gp*+ 0
ENERGY (om™)

FIG. 4. Theoretical C~H overtone spectrum for CH,D. The rotational con-
tours were calculated using the rotational constanis B~:3.88 cm™' and
A=5.25 cm™' [Ref. 20(a)] and the excited state rotational constant differ-
ence 48~ — 0.2 cm~". The individual vibrational/rotational transitions
were given a Lorentzian line shape with a width at half-maximum of 1
cm™'.

state. The overall spectral envelope is not particularly sensi-
tive to changes in the value of this parameter.

When compared with the experimental spectrum in
Fig. 2, two features of the theoretical spectral envelope in
Fig. 4 are immediately apparent. First, the two main peaks of
the experimental envelope presumably correspond to states
of zeroth order parentage |6,1,5" }|0)|0,0)|0,0) for the eigen-
state to higher energy and |5,1,1" }|0)[0,0)]2,0) for the ei-
genstate to lower energy, with an experimental splitting of
~60 cm~!. The theoretical spectrum has these same states
present with a splitting of ~ 50 cm ™. Moreover, the relative
heights of the two peaks seem to be in qualitative agreement
for the two specira. A second feature is that the theoretical
spectrum is noticeably less congested than the experimental
one. We have considered the Coriolis interactions among
only the pure local mode states and found them to be very
ineffective in contributing to the observed spectral conges-
tion (Appendix E).

For the theoretical spectrum at v = 6 shown in Fig. 5, a
Lorentzian line shape for each vibrational/rotational transi-
tion with a width of 30 cm ™' was assumed and is much
closer in appearance to the experimental one. If one assumes
a high degree of level mixing of the ro-vibrational states at
v = 6, then the “Golden Rule” formula (27/#){ V" )?p,, may
be used for the rate constant k& for decay of the excitation.
The homogeneaus linewidth A% is then given by k& /27c,*®
where ¢ is the speed of light. Using the expression
(27 + )o,(I" ) for the average density of ro-vibrational states
Pr, with symmetry I and rotational quantum number J,*
typical values of the effective coupling element (¥ ) needed
to give linewidths of 30 cm ~* are found io be on the order of
0.1-1.0cm ™!, depending on the value of J and the symmetry
I'. {(Note the difference in magnitude of these matrix ele-
ments coupling to individual bath states as compared to
those coupling the stretch to the bend in CHD,). In these
calculations, values of 1.85, 1.85, and 7.40 states/cm ™' were

“used for the density p,(I") of 4,, 45, and E symmetry vibra-

tional states, respectively, at the energy of the v = 6 transi-
tion."> Whether the physical origin of the extra broadening
in Fig. 5 is due to higher order potential energy and/or Cor-
iolis interactions is at present not known. It should, however,

ABS. (ARB. UNITS)

L i !

Wy 90

ENERGY fom™)

FIG. 5. Theoretical C-H overtone spectrum for CH,D including a broaden-
ing of 30 cm ™' for each vibrational/rotational transition.
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be mentioned that thermal congestion may be the source of
the observed broadening in this molecule provided there are
small but not negligible Coriolis interactions.

V. CONCLUDING REMARKS

In this paper, a theoretical analysis of the C~H stretch-
ing vibrations in CHD,, CHT;, and CH,;D was performed.
The various coupling mechanisms in these molecules result-
ing from dynamical and, in the case of CHD, and CHT,,
potential energy interactions were considered. For CHD,,
the simplicity of the observed C-H overtone spectrum was
qualitatively explained by treating the curvilinear G-matrix
coupling® of the C-H stretch with the other vibrational nor-
mal modes, but this coupling is seen to be too large to quanti-
tatively explain the Fermi resonances with the v; mode. Po-
tential energy contributions are therefore assumed to
contribute a cancellation effect within the interaction matrix
elements between zeroth order states. It was further con-
cluded that the existence of a low order resonance condition
between the C-H stretch and the other vibrations was cru-
cial in determining the degree of vibrational mode coupling
in these molecules. In CHD,, it was deduced from the calcu-
lations that the C~H stretching local mode selectively inter-
acts by these mechanisms with only one doubly degenerate
normal mode involving D-C-H bending. Another approach
to the present problem is the rectilinear coordinate method
used by Quack et al.*®** for the C-H stretching states in the
CHX, species (where X = D, F, etc.).

Predictions for CHT, are also presented, using the same
model as for CHD,, the only difference being in the normal
mode frequencies due to the isotopic substitution D to T.
The predictions of this model indicate the existence of a
purer C-H stretching mode than was found for CHD; be-
cause the 1:2 resonance condition between the C-H stretch
and the bend is detuned upon isotopic substitution. It is sug-
gested that more subtle vibrational state mixing effects such
as higher order resonances with other normal modes, weak
potential energy couplings, and a higher density of states
may be present in this molecule, although our model indi-
cates that these are not important. The results presented in
this paper for CHD, and CHT,, together with the work of
Sibert et al.* on the benzene local modes suggests it is possi-
ble that many intermediate and large size molecules may
exhibit interesting behavior that only the detailed examina-
tion of the vibrational state coupling can reveal. One possi-
bility is that certain molecular systems may be thought of as
decoupled or very weakly coupled subsets of strongly inter-
acting vibrational modes. There are implications of this pic-
ture for vibrational energy redistribution'? and laser selec-
tive chemistry.”® In fact, the results presented here are
consistent with the recent observation in anthracene®® of
simple quantum beats, indicating that only a few (~ 3} levels
are involved in the coupling even though the total density of
states is quite high.

For CH;D, it is found that the pure C-H stretching
local modes do, in fact, mix to a greater degree by G-matrix
coupling with bending normal modes than was found in
CHD,. It was also shown that local mode combination
states’ were not significantly coupled to these pure local
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modes. Thus, the present model suggests that the energy
flow from an initially excited zeroth order nonstationary
state like Eq. (4.9) would go almost exclusively into the bend-
ing degrees of freedom coupled to the C-H stretches and not
into local mode combination states. This picture is similar to
that presented by several authors*® for C H.

While the calculated spectral envelope (Fig. 4) for
CH,D is congested due to vibrational/rotational transitions,
we were unable to explain the observed high degree of spec-
tral congestion (see Fig. 2) using pure G-matrix coupling ef-
fects. Potential energy or Coriolis couplings between the ro-
vibrational states may be responsible for the added degree of
congestion observed experimentally in this molecule.
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APPENDIX A: INTEGRATION OF THE G MATRIX
ELEMENTS FOR CHD;, CHT,

The matrix elements (vl@s,s(rnu’) appearing in Egs.
(3.7} and (3.13c}{3.13e) were calculated as follows: Comput-
er subroutines were written (1) to calculate the G matrix'® for
a general tetrahedral molecule, the input parameters being
the atomic masses and the bond lengths; (2) to calculate the
normal mode matrix L~! for all the displacement coordi-
nates at their equilibrium value; (3) to perform the symmetry
coordinate transformation [Eq. (3.5)] and the normal mode
transformation [Eq. (3.4)]; (4) to calculate the value of the
integrand ¥%(r)Gss(r)¥, (s} from the matrix element
(|G 5(P)|') for an arbitrary value of the C-H bond dis-
placement coordinate 7, ¥, and ¥, being the Morse oscilla-
tor eigenfunctions'”'%; and (5) to numerically integrate the
integral {v|G;s{r)|v’) using Gaussian quadrature®' for the
classically allowed region and Laguerre quadrature®' for the
classically unallowed region. These subroutines were linked
into a main computer code such that a value of 55,5 () could
be calculated at each r and the numerical integration in
(5) performed. It was found that 64-point Gaussian quadra-
ture and 30-point Laguerre quadrature gave values for the
integrals converged to at least six decimal places.

- APPENDIX B: MORSE MATRIX ELEMENTS FORrAND 2

The Morse matrix elements in Ref. 21 for r==(R — R,)
were simplified to give

(v+jiriv) :
_{= Y+ [k—20— 1)k - 20 -2~ 1]'7?
a Jk—20—j—~1)
]1/2 B1)

% [ w+w+j— 1)+ 1)
tk—v— Yk —v—2.lk—v—)

and

o) =2 [mfe~ (5 ——L—

et (p—m)+z+¢(]+z))
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—22=

. 1
+ 33— —qa-sal. (B2
f; k—v—j)
where @ (x} is the digamma function,*? k¥ denotes w/ay, and
adenotes (2uwy )'/%/#. Also, u is the reduced mass of the two

particles having an internuclear separation R and
z=k—Intk), p=Inttk)—1—2p, (B3)
where Int(k ) is the integer nearest to k from below.

The off-diagonal Morse mairix elements of # are given
by Gallas in Ref. 18(a). However, the diagonal matrix ele-
ments of 7, when calculated from the formula given by Gal-
las, '@ can in general pose serious numerical difficulties [see
Ref. 18(b}). They were instead calculated from the formula

GlF= 3

Jj{bound}

(vlrl ) irlod, (B4)
which assumes an approximate cbmpleteness relation

> inGl=1 (B5)
Jj{bound}
for the Morse oscillator bound states. For relatively low val-
ues of v, it is not expected that the contribution in Eq. (B4}
from the continuum wave functions is significant.

APPENDIX C: TRANSFORMATION OF FORCE
CONSTANTS FOR CHD; TO CHT,

The transformation of the cubic and quartic force con-
stants from CHD; normal mode coordinates to CHT, nor-
mal mode coordinates was performed in a straightforward
way using the equations

q=LQ, q=L0Qq, 1)
where the primed quantities refer to CHT,, the unprimed
quantities refer to CHD,, the Qs are the normal modes, and
the g's are the internal symmeiry coordinaies {Tabie I).
Equating the two expressions in Eq. (C1), one obtains

Q=L"'L'Q, (€2)
ie.,

Q=AQ, {C3)
where

A=L""L". (C4)

The cubic and quartic force constants for CHT, are
then easily found to be

wim = 3 Py Ay Ay A, (C3)
- .k
and
F;lmp = Z Fln‘jk Ahn Ail Ajm Akp“ (C6)
- higk

In this case, 4, is defined to be equal to unity and the other
A, and 4, are sei equal to zero. This was done because
coordinate 1 is taken t0 be the local mode C-H stretching
coordinate, and the normal mode transformation is per-
formed independently of this coordinate.

APPENDIX D: MATRIX ELEMENTS OF G FOR CH,D

Let f?,,(r,,rz,r;) be any general normal mode trans-
formed G-matrix element from Eq. (4.6¢). The matrix ele-
ments [Eq. (4.8)] between CH, local mode states j and /' from
manifolds with total C-H stretching quanta v and v’ [the I
indices from Eq. (4.8) have been suppressed] are

- Ne N, ) .
WJlGlvg) = 3 3 Ciu*G,,Ci, (D1)
F=0i=1

where /, is the number of symmetrized zeroth order wave
functions for the manifold with v C-H stretching quanta and
Cly = (dolv, /), (D2)
with |v,i,) being the symmetrized zeroth order wave func-
tion:
NP

liig) = S C1 lpw).
In Eq. (D3),

(D3)

CE = (pw|vip)==the symmetrization coefficients,”

{D4)

and &, is the number of different permutations’p of the un-

symmetrized local mode state [p;v) with v total C~H quanta
[in an abbreviated notation for Eq. (4.1)]. Furthermore,

N, Ny ~ ,
Gi= 3 Y ChXpwGlpnCy,.

p=1p =1

(D%)

- The matrix elements (p';v’|5,,. |p;v) were computed nu-
merically by the following procedure: (1) the standard G ma-
trix in internal valence coordinates is calculated in terms of
the atomic masses and the quantities {v;|r,” '|v])é
Qilr 2Iv;)6uﬂiavkvk
[v;), |v}), etc. are Morse oscillator eigenfunctions'” '8 appro-
priate to the states |p;v) and |p’;v'); (2) the symmetry coordi-
nate transformation [Eq. (3.5)]is performed with the symme-
try coordinates from Table VII; (3) the normal mode
transformation [Eq. (3.4)] is performed with the L' matrix
calculated from the normal mode analysis of Eq. (4.5). As
before, the three C-H coordinates were excluded from this
transformation. The jjth term of this matrix of values corre-
sponds to the matrix element (p';0'|G; |p;v). This procedure
yields values for the matrix elements in Eq. (D1 efficiently
and economically. A direct multidimensional numerical in-
tegration in terms of the three C—H coordinates was antici-
pated to be too expensive and, because of the dependence on
several coordinates, probably inaccurate.

S,
LA
, and (v;|(r; '}')—1|"f"f)5uku;’ where
17,18

APPENDIX E: CORIOLIS INTERACTION AND LOCAL
MODE DEGENERACY

In order to determine whether Coriolis interactions can
strongly effect the threefold near degeneracy of the zeroth
order states in Eqs. (4.9}+4.10c) for the present model of
CH,D, a simple calculation was performed to estimate these
effects for the pure 4, E,, and E, symmetrized zeroth order
CH, local mode states’
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Wisd,) = —=(11,0,0) + [00,0) + [0,0,0), (E1)

-

"ﬁz;Ea) =~J€(2tv,0’0> b fO,v,O) - ]0,0,0)), (EZ)

and

03, =j—§-uo,u,o> —~100.0)) (E3)
In this calculation, a rectilinear coordinate treatment was
used due to the relative simplicity of the equations in this
approach.* In addition, it is well known that the description
of molecular vibrations in the curvilinear coordinate ap-
proach differs most strongly from the rectilinear treatment
only for the bending modes.>® For these reasons and because
we only desire to estimate these rotational effects, the recti-
linear coordinate approach is well suited to our purpose.
The first order Coriolis effect is described in the small
amplitude limit by the vibration/rotation coupling term*’

v, = - Ll (E4)
T,

where ?’2 is the z projection of the rotational angular momen-
tum, 3, is the z projection of the vibrational angular momen-
tum, and /, is the z component of the inertia tensor (taken as
a constant). The orientation of the molecule is such that the z
axis in the body fixed coordinate system is along the symme-
try axis of the molecule. The contribution to this term from
the CH, local mode coordinates 7y, 7,, and r, is

= ——~Z§.,( =¥ Bi, (ES)

z i<j

where the £ %, are the Corjolis zeta constants,™** and j, is the

momentum operator conjugate to 7;. The first order matrix
elements are then (with #i = 1)

EW = - X (Ul |CRBIvT, (E6)
where C (£,p) is the summation term in Eq. (ES) and the states
|9,;I" ) are states from Egs. (E1)-{E3). The zeta constants for
the coordinate system defined by the normal mode transfor-
mation of Eq. (4.5) (excluding the C-H coordinates) and the
three C~H stretching coordinates were calculated using
standard techniques.’* The values for these constants were
foundtobel:, = — &35 = &% = 0.06. The values of the x
and y zeta constants {7 and ¢ were also calculated and
found tobe even smaller Asacheck of the present method, a
complete normal mode calculation was performed (includ-
ing the C~H coordinates), and we reproduced exactly all of
the relevant normal mode zeta constants for CH;D (see Ta-
ble V1 of Ref, 20).

In standard normal mode theory,* the matrix element
[Eq. (E6)] between doubly degenerate normal modes of £
symmetry yields the value — (K /L) £ [,)6,;6r, where [,
is the magnitude of the vibrational angular momentum of
degenerate state /, and hence splits the degeneracy of this
mode due to the difference in the values of the diagonal ele-
ments. For the local mode states [Eqs. (E1}-{E3)], the matrix
element in Eq. (E6) was evaluated numerically. It was found
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that the only nonzero first order matrix element is between
the E, state [Eq. (E2)] and the E, state [Eq. (E3)] and, for
v = 6, that it is extremely small (~4Xx 107 cm ™).

The second order Coriolis interactions of the states in
Egs. (E1)+E3) with the symmetrized zeroth order local
mode combination states of |5,1,0) parentage were next cal-
culated. To do this, a Van Vleck transformation® through
second order was employed in order to treat the problem by a
simple 2 X 2 matrix for the states (E2) and (E3) with v = 6.
The only nonzero perturbations were the first order correc-
tions just described and diagonal second order corrections
arising from the coupling to the £ symmetry combination
states of |5,1,0) parentage. These interactions were again
found to be very small (~ 1072 cm™!). It is clear that, while
the degeneracy of the local mode states (E1)~{E3) is lifted by
the Coriolis interactions, this effect is expected to be entirely
negligible on the scale of Fig. 4 and thus contributes little to
the observed spectral congestion. The weakness of these in-
teractions is primarily due to the smallness of the zeta con-
stants § § for the local mode coordinates appearing in Eq.
{ES)and because the local mode states presumably have very
little vibrational angular momentum. Whether Coriolis ef-
fects are important for the pure local mode states in other
molecules with different symmetries remains an open ques-
tion. > It is also again emphasized that the above calculations
assume the local axial symmetry of the CH, group in the
CH,D molecule.
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Semiclassical theory of Fermi resonance between stretching
and bending modes in polyatomic molecules

Gregory A. Voth and R. A. Marcus
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Approximate semiclassical solutions are developed for a system of a Morse oscillator coupled toa
harmonic oscillator via a nonlinear perturbation. This system serves as a model for the interaction
of an excited stretching mode with a bending mode in a polyatomic molecule. Three semiclassical
methods are used to treat this model. In particular, a matrix diagonalization, a two-state model,
and a uniform semiclassical approximation (USC) based on Mathieu functions are each used to
determine the splittings and state mixing involved in these stretch~bend Fermi resonances. For
small perturbations, approximate analytic semiclassical expressions are obtained for the system
treated. These analytic expressions are given for the splittings using a two-state or USC method
and for the overlaps of the zeroth order states with the eigenstates of the molecule using a USC

method.

I. INTRODUCTION

The present paper treats the 1:2 resonant interaction of
a stretching mode with a bending mode in a polyatomic mol-
ecule. This system is modeled classically using a resonance
Hamiltonian'™ to describe the nonlinear interaction of a
Morse oscillator stretching vibration with a harmonic bend-
ing vibration. Several semiclassical methods are used to ob-
tain information about the quantum Fermi resonance result-
ing from this nonlinear interaction. The results of these
methods are compared with each other, with those obtained
from a recent uniform semiclassical treatment,” and with the
exact quantum results,

The experimental incidence of 1:2 stretch~bend Fermi
resonance is widespread, the best known being that in CO,.%
Previous discussions of these resonances are many, e.g., Ref.
9, and they have appeared more recently in the local mode
literature.'® The model of a local mode C-H stretch interact-
ing resonantly with bending normal modes has also been
proposed as a theoretical explanation for the observed Fermi
resonances in CHD,'"? and for the C-H overtone
linewidths in benzene.'? These Fermi resonances are related
to the existence of one (or more) classical resonance condi-
tions. ™ The quantum mechanical implications of an isolat-
ed classical resonance have been discussed by a number of
authors,>'"*?7 including their relation to avoided cross-
ings'*?*% and to Fermi resonances,*’-14??

A straightforward semiclassical matrix technique is
presented in Sec. II to treat Fermi resonant systems. Two
other semiclassical methods, namely, a semiclassical two-
state solution and a uniform semiclassical approximation
(USC), are also formulated later in Sec. IV that are based on
an effective classical resonance Hamiltonian for the nonlin-
ear interaction of a Morse with a harmonic oscillator (Sec.
IIT). These latter two methods may be used to calculate ana-
lytically the splittings between the eigenstates of the system
and the overlaps of the zeroth order wave functions with the
actual eigenfunctions. The three semiclassical methods are
applied in Sec. V to a model of a C-H stretching local mode
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J.Chem. Phys. 82 (9), 1 May 1985

0021-2606/85/094064-09$02.10

interacting resonantly with a bending mode in a dihalometh-
ane molecule. The results of these calculations, and those
obtained using the method of Ref. 7, are discussed in Sec. V1,
and concluding remarks are given in Sec. VIL

il. SEMICLASSICAL MATRIX DIAGONALIZATION

The classical Hamiltonian for a coupled Morse and har-
monic oscillator may be written in action-angle variables as’
H(, 1,0, 6)

= Lo} “‘I%‘L'?X + Lol + VI, 1,, 0, 8,), {2.1)
where [, and I, are the action variables?® for the Morse and
harmonic oscillators, respectively. 8, and 8, are the angles
conjugate to [, and J,, »{ and ) are the zeroth order har-
monic angular frequencies of the Morse and harmonic oscil-
lators, respectively, ©f y is the anharmonicity of the Morse
oscillator, and V' (I,, I, 6,, 8,} is the perturbation.?® (% is set
equal to 1 throughout the present paper.)

One can use a semiclassical matrix treatment®® of the
Fermi resonance problem for the Hamiltonian (2.1) in ac-
tion-angle variables using, as a basis, the semiclassical wave
functions®*!

w0 = Lexpliin,6, + n,6,)] 22)
2T

for the angle representation of the zeroth order states
[n), n,), where |n,) and |n,) are the zeroth order eigenfunc-
tions for the Morse and harmonic oscillators, respectively.
The semiclassical action and angle operators™~' [, and 8,
in the angle representation acting on these wave functions’
yield

I w0, =L¥9, andb w0, =6,¥°, = (23
where I, and 8, are the classical variables, The /,, are related
to the quantum numbers n, by I, = n, + }in the case of an
oscillator, be it Morse or harmonic.

The semiclassical wave functions are useful because the
matrix elements of the perturbation have the form of Fourier
components

1 217

21
Y, (I) = Wf f V(I 8)e 0+ m8) g 4o,  (2.4)
T Jo o

© 1985 American Institute of Physics



If, e.g., the resonant interaction of the three states |n, 0),
|n— 1,2), and |n — 2, 4) is considered, the Hamiltonian
represented in this restricted basis has the following diagonal
element A, for the zeroth order state i:

H; = (n} +%)“’(1) - ("'l + %)2‘0?1’
+ (15 + Pood + Vooll 1, 13) (2.5)

where (n}, ni) = (n,0), (n — 1, 2), or (n — 2, 4). The diagonal
perturbation term ¥V, is the (/ = 0, m = 0} Fourier compo-
nent [Eq. (2.4)] evaluated at the actions I} = (n} +}),
I = (n} +}). The off-diagonal perturbation terms H,,
between the states / and j have the form

1 2T, Ao ig
Hij= ZJ- f e~ int : + n38;)
2m)f o Jo

X V{i, 8je™®+"# gg de,, (2.6)

which is the Fourier component V,, (I}, I;) of the perturba-
tion with / = n} — n and m = n’ — n},. These semiclassical
matrix elements are approximate and usually not exactly
Hermitian since H,; =V, (I{, I{)#V,, I}, 1) =H}.
These matrix elements may be made Hermitian in an ad hoc
way by evaluating them at any fixed value of the actions [e.g.,
at the resonance center (J |, })] or at an intermediate value
of the actions between any pair of states / and j, using, for
instance, the arithmetic mean ([% + 1%)/2, where
{k = 1, 2).** The latter approximation has been used success-
fully in the calculation of transition dipole matrix elements
for Morse* and other™* oscillators and has been employed in
a description of isolated avoided crossings.** Semiclassical
expressions for the matrix elements are frequently simpler to
compute than the corresponding quantum mechanical ones.
The resulting semiclassical matrix may then be diagonalized
numerically to find the eigenvalues and eigenvectors as is
done for standard quantum mechanical matrices.

Comparison of the method presented in this section
with exact quantum results are given later in Sec. V. In Sec.
1V, we formulate a different semiclassical method based on a
classical analysis and an effective Hamiltonian given in the
next section.

ill. THEORY: CLASSICAL RESONANCE TREATMENT

A. Treatment of the perturbation
The perturbation of these coupled oscillator systems is,
as usual,'® expanded in a complex-valued Fourier series

Vi, I, 0u0)= 3 S Vially L)%+ mea,
l= —om= —w

! (3.1
where V,,,,({,, I} is given by Eq. (2.4). The ¥,{/}, [,) Fourier
component is the analog of a quantum mechanical “diag-
onal” first order perturbation correction. These corrections
have been discussed previously'!'**>3% within the context of
stretch-bend interactions in molecules and are found to
modify the zeroth order oscillator frequencies, sometimes
appreciably. To include the effect of this perturbation, a new
zeroth order Hamiltonian may be defined as

HOL, L) = L] - Ity + Lo? + Vell,, 1) (3.2)
(This Hamiltonian is the same as that in Ref. 7, except that
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the ¥V, term is taken as a constant there, namely, its value at
certain zeroth order “resonant actions™ described later in
the Results section.)

%—Iamilton’s equations for the angle variables, based on
H®) yield :

91 =oly, L) =] — 2Ly + Vool y, 1,)/314, (3.3)

8, = oI ,,L,) = 3 + Vool },15)/3L,, (3.4)

and that J, and I, are constants of the motion for I; Ogince
this zeroth order Hamiltonian contains no angle variables.
Since I, and I, are functions of E¢ and E ¢ (the zeroth order
energies of the Morse and harmonic oscillators, respective-
ly), Egs. (3.3} and (3.4) may be rewritten as

w(l,],) = (w? - 211‘0(1],1’)1‘; (3.5)

woll D) =0} g, (3.6)
where

F=[1+3VyES,ES)V/IE?],

g=[1+dVxlES.ESV/GES]. (3.7)

When the angle-dependent perturbation terms from
Eq. (3.1) are included in the equations of motion, the actions
1, and I, are no longer constants of the motion. In the pres-
ence of a nonlinear resonance, these actions slowl} oscillate
near or about their value at the resonance center'=® (I'],1}).
if the factors fand g in Eqgs. {(3.5) and (3.6} are approximated
as the “average” constants f"and g” [given by Eq. (3.7) eval-
uated at the resonance center], one obtains an effective ze-
roth order Hamiltonian

Hyl, L) =1Lo — 1%‘”1,1/ + Lo, (3.8)

where @,, @y, and w, denote &? 7, @Sy f', and &3 ¢, re-
spectively. These effective oscillator parameters are the clas-
sical analog to those obtained empirically from the analysis
of experimental absorption spectra (cf. discussion in Refs.
11, 13, 35, and 36).

The particular classical resonance to be examined here
is the 1:2 resonance defined by the condition

(I 7)==, (3.9)
where
wf ]} = (3HD/3II)L py =W U oy (3.10)

is the (modified) nonlinear angular frequency of the Morse
oscillator at the center of the resonance. The use of these
modified oscillator frequencies yields values for the resonant
actions different from those predicted by the zeroth order
Hamiltonian alone [Eq. (2.1} with ¥ = 0]. An accurate ap-
proximate method for finding the values of the resonant ac-
tions 7 { and I}, a nonlinear problem, is given in Appendix
A,

The resonance condition (3.9) prompts a canonical
transformation of the zeroth order action-angle variables in
which there is now a “slow” variable a (low frequency coor-
dinate)'":

20=0,-20,+5, B=6, (3.11)
I, =20, Iy=2I+1I, (3.12)

Thedin Eq. (3.11) is chosen to simplify later the final expres-
sion {3.16) and to make the canonical transformation used in
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Ref. 7 suitable for any general perturbation.?®

The transformation (3.12) applied to Eq. (3.8) yields the
effective zeroth order Hamiltonian in the new action varia-
bles I, and [ as

Hl, L) =12 —ayTi + Lo, (3.13)
where
2 =w, —2w,)/2, ¥ =y/4 (3.14)

As is standard in the theory of classical resonances,
all highly oscillating terms in the Fourier expansion (3.1) are
omitted, leaving the terms appropriate to the 1:2 resonance
of the form exp[ + ik {6, — 26,)], where k equals (1, 2, ...),in
addition to the ¥V, term discussed earlier. As usual,'™® only
the lowest nonzero k term is then retained, allowing Eq. (3.1)
to be written approximately as

Vil I, 6, 6,)=2Re{ V| _, I, L' ~2%)} (3.15)

when the lowest term isk = 1. (In other cases, the k = 1 term
may be zero and a term for k> 1 is required.) Since the per-
turbation in Eq. (2.1)isreal, the relation ¥}, = V' _,_ ,, was
used in obtaining Eq. (3.15). If 2¥, _, is written as Ve?,
with ¥,=2|V, _, |, then Eq. (3.15) may be written as

Ve — Vycos 2a (3.16)

when one chooses § in Eq. (3.11) to equal ¥ + « to obtain the
negative sign in Eq. (3.16).

B. Classical resonance Hamiltonian

Equations (3.13) and (3.16), evaluated at the resonant
actions (7,7 4), yield a resonance Hamiltonian'~ for the 1:2
resonance®’

Hyg =a Il —I.02+ Vycos2a = Eg. (3.17)
The total Hamiltonian H in Eq. (2.1) is then approximately
given by

Hy = Iy, — Hy, (3.18)
which will henceforth be termed the “effective” Hamilton-
ian. Since I, is a constant of the motion in this approzima-
tion, Jyw, is a constant. The phase plane behavior of Eq.
(3.17) is discussed in Appendix B.

From Eqs. (3.9), (3.10), and (3.14), the resonant action
I] is given by 2 /w,y. Since, semiclassically, I, equals
{r, + 1), a resonant Morse “quantum number” n] may be
defined by

nl ={2/oy) -1 (3.19)
In general, ] is not an integer. ,

The two-state and uniform approximation solutions in-
troduced in the next section are based on the effective Hamil-
tonian (3.18). .

V.. THEORY: SEMICLASSICAL METHODS BASED ON
He

A. Two-state solution

Introduction of the action operator™> T, = (i/7id/
da + 1 into the classical resonance Hamiltonian [Eq. {3.17)]
yields the semiclassical Schrédinger equation’

% e 4Y - =
o T UE - 1) == 4= 2qcos2a]$ =0, (4.1)

with a being in the interval {0, 7} and

£=20/0,y =2n] + 1,

A=[42 + Ep)/ox] -1,

g =2Vy/oy. (4.2)

For the model oscillator system considered in the pres-
ent paper, the near 1:2 resonance condition can lead to a near
degeneracy between the zeroth order states |n, 0) and
|n — 1,2) for some value of n. In many cases of experimental
interest, these two states may be the most important states
involved in a Fermi resonance. For this reason, and because

it is desirable to obtain a simple analytic solution, a two-state
solution for Eq. (4.1) of the form

Yayy + by (4.3)
is considered first, where a and b are constants to be deter-
mined and where ¢/ equals =~ '/2 exp{2inal and ¢¥°_,
equals 7~ V/% exp[2i(n — 1)a] (e.g., Refs. 25 and 31). When
Eq. (4.1) is diagonalized in this basis, the eigenvalues are
given by

AT =4+ 4" +d7)'7?, (4.4)
where

Ay= — [4(n; )f — vn) + 2vin) - 2], {4.5)

d=4[1—vn)], vin)=2{n—n}), . (4.6)

and g is given in Eq. (4.2). In terms of Eq. (3.19), this v{n) is
twice the “distance” of the eigenstate with quantum number
n; = n from the center of the resonance n].

The approximate splitting AE of these two eigenstates
by the Fermi resonance is therby found from Egs. (4.2) and
(4.4)4.6) to be

AE=wy'(4qg" +d7'" (4.7)
and the two approximate eigenfunctions are®®

Y =ayy + by, (4.8)

Y= o) +ay (4.9)
where

a={I"+d)/2ri?,

b=[I-d)/2rij':

I =(4g* +d 32 (4.10)
Calculations employing Eqs. (4.7}~4.10) involve determin-
ing n} from Eq. (3.19) and ¢ from Eq. (4.2), both of which are
readily obtained.

The two-state solution presented in this section is not,
in general, the same as a semiclassical 2 X 2 matrix diagonali-
zation using the method of Sec. II. The difference between
these two methods results from the use in the present section
of a resonance Hamiltonian (3.17) based on the effective Ha-
milionian (3.18), while the method of Sec. I is based directly
on the original Hamiltonian (2.1). :

B. Uniform semiclassical approximation (USC)

A uniform approximation for the present coupled oscil-
lator system is obtained by converting Eq. (4.1) to the stan-
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dard Mathieu equation.”> A function F (c), defined by*
Fla)=expl{l — &)aldla), (4.11)
is used for this purpose: It satisfies Mathieu’s equation**®
2
e
where
a, = (&~ 12 4d= 4[(2 /wl,y)z + Ex/wy], (4.13)

and v is the order of the Mathieu equation.”*®*¢ Equation
(4.13) is rearranged to give the energy of the rotor Hamilton-
ian Hy as

[a, — 29 cos 2a)Fla) =0, (4.12)

Ex =a,0y —{n] + )02 {4.14)

Semiclassical expressions for the Fermi resonance split-
tings between the eigenstates of the Hamiltonian may be ob-
tained from Eq. (4.14). In general, one is concerned with a
resonant progression of nearly degenerate zeroth order
states |n,,n,) for the zeroth order Hamiltonian (2.1): {n, 0),
|n—1,2), {n—2,4), etc. The action I, from Eq. (3.12)
semiclassically equals 2, + n, + 3/2 and remains constant
along this progression. For any two states of orders v, and v,
involved in this resonant progression, the splittings are given
from Eq. (4.14) as

|4E, _;| =la,, —a,lox, (4.15)
where??
vi=vin) =2 — nf) (i=1,2) 4.16)

For example, one uses #!") = nand n® = n — 1 in calculating
the splitting between the nearly degenerate states |n, 0) and
|n — 1, 2). The characteristic values a, of the Mathieu equa-
tion may be obtained from expansions®*™® (if g is small), from
tables,*'**? or from semiclassical phase integral arguments.*
When the relevant dipole moment operator is assumed
to be a function of the C-H stretching coordinate only, the
overlap (squared) of the zeroth order pure local mode state
|n, 0) with the actual eigenstates describes the Fermi reso-
nance intensity sharing,'""'**>* and sois of interest. When g
is small enough, an expansion®*"*? for the solution F{a) of
the Mathien equation (4.12) may be used. From the defini-
tion of the wave function #{a) in Eq. (4.11), and using Eq.
(4.2) for £ and the expression for v in Ref. 40, the unnorma-
lized wave function may be written as
eZl‘(n, + Ha

|

g2in — e ]
4

(Mm) + 1] [vny)— 1]
i e2iln + 1
+ 32 [ [vin,) + 1] [vn,) + 2]

gl — 2

* {v(n,)—lllv(n,)—21]+

(4.17)

Equation (4.17) properly normalized (cf. Appendix C) yields
the following formulas for the overlaps of the zeroth order
{n,0) local mode state with the eigenstates of |n,0),
[n—1,2), and [n — 2, 4) parentage:

f" YO*(aly, (@)da = JTN,, (4.18)

[ v, e = — v, | st

4fvin — 1)+ 1]
4.19)
and
j; YO @l _ 5 (a)da
_ = 7 (4.20)
‘/;N“'Z[ 32[vin — 2} + 1] [vin — 2) + 2] ]

Here, #/%a) denotes =~ 2 exp[2ina] and is the properly

normalized zeroth order local mode state |n, 0), and ¢,
(m =n, n — 1, n — 2) is the approximate normalized eigen-
state based on Eq. (4.17). It is also of interest to determine the
overlap of the zeroth order state |n — 2, 4) with the eigen-
state ¢, _ , (). This overlap is given by

[ woeaiaw, - (aa =, [ ]

40n — 1) — 1]
(4.21)

where ¢/, denotes 7~ 2 exp[2i(n — 2)a]. At o very close

to the actual avoided crossing point between two states,
some of overlaps in Eqs. (4.18)~4.21) are not suitable for
computation and a different expression is used.*’

V. APPLICATION
A. The model Hamiltonian

As an application, we consider a model Hamiltonian for
asingle C-H stretch interacting with a bending mode involv-
ing the C-H bond in a dihalomethane molecule. In curvilin-
ear coordinates,* such a Hamiltonian may be phenomeno-
logically written as**®

H= iPiw{uexp(—aRnZ

+%{P2+w‘z’2QZ)-— %RPZ, (5.1)
where R and Q are, respectively, the curvilinear displace-
ment coordinates for the C-H stretch and for the bend, Py
and P are their conjugate momenta, x is the reduced mass of
the C-H bond, D and a are the C-H Morse parameters, A isa
coupling constant, and o9 is the zeroth order angular fre-
quency of the bending mode. The constant A generally has a
complicated dependence'***® on the atomic masses, equi-
librium bond angles and lengths, and the bending normal
coordinate®” coefficients L ;7 '. This coupling constant will
be treated as a variable parameter in the present paper.

For energies in the vicinity of the |3, 0) state, it is as-
sumed in this model that only one of the C-H local mode
vibrations need be considered.’®* For these emergies, the
quantum mechanical eigenvalues for the symmetric and
asymmetric combinations® of local modes in the dihalo-
methanes become virtually degenerate, and hence the two
CH’s in the molecule have negligible direct coupling to each
other.

The Fourier expansion for the displacement coordinate
R of a Morse oscillator is given in Ref. 48. Since the bending
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mode is a harmonic oscillator [cf. Eq. (5.1)], a suitable trans-
formation to action-angle variables is to set Q and P equal to
(20,/w3)"* sin 8, and (20,03)"/2 cos §,, respectively. This
transformation yields the (1, — 2) and (0,0) Fourier compo-
nents

Lo {1 — pilf2
Vi_Uuh) = 2: ( ! (}l’l/zy) ) (5.2)
and
oA )2
Vbl = = S LELZA) s

wherey = E9/D, and E? and D are the energy and dissocia-

tion energy of the zeroth order Morse oscillator, respective-

- ly. These expressions may be used in Egs. (2.5), (2.6), (3.7),
and (3.16).

B. Calculations

Calculations were performed for the resonant interac-
tion of the |3, 0), |2, 2), and |1, 4} states for the model Ha-
miltonian (5.1). The values used in Egs. (5.1}~5.3} for
2, %y, D and a, obtained from the data of of Ref. 35, were
3143, 63.2, 39076 cm ™!, and 0.988 a.u., respectively. The
zeroth order bend frequency »9 was not determined there,
but is estimated to be ~ 1400 cm ™', The coupling parameter
A was allowed to vary in the present calculations to yield
quantum off-diagonal matrix elements between the zeroth
order states |3, 0) and |2, 2) in the range of 5~30 cm ™", The
resonant actions /| and I'; used in evaluating the USC and
two-state solutions were determined by the method de-
scribed in Appendix A.

The Fermi resonant splittings and overlaps were talcu-
lated as a function of A using the three semiclassical methods
presented in the previous sections. For the two-state and
3% 3 semiclassical matrix treatment, calculations were per-
formed using both the resonant and mean actions (cf. Sec. II)
to evaluate the 3 X3 semiclassical off-diagonal matrix ele-
ments and to obtain g for the two-state calculation (Sec.
IV A). In all cases, diagonalizations of quantum mechanical
2% 2, 3% 3, and 78X 78 matrices were performed for com-
parison.

C. Results

The calculated splittings between the eigenstates of
13,0) and |2, 2) parentage and between the eigenstates of
13,0) and |1, 4) parentage are shown in Tables I and II,

TABLE 1L Splittings (in cm ™) between states of {3, 0) and |1, 4) parent-
age.

A fan)  78x782  3Ix3? IXFC Ik UsCr
0.037 61.9 62.3 62.2 61.2 64.1
0.077 69.8 715 712 66.9 73.3
0.121 78.0 82.2 81.7 719 82.3
0.170 87.8 95.7 95.1 774 92.2

0.227 100.4 113.8 113.2 84.1 103.1

® Calculated with Fourier components [Eq. (2.6)] evaluated at mean actions
for each pair of states.

®Calculated with Fourier components [Eq. (2.6)] evaluated at the resonant
actions.

¢ See fooinote ¢ of Tabie I.

respectively. In Table III, the exact and the present uniform
semiclassical (USC) results are compared with those ob-
tained by the method of Ref. 7 (USC®). As in Ref. 7, the
resonant actions for the USC? calculation were found using
the zeroth order frequencies, i.e., using Eq. (A1) instead of
Eq. (3.9). The “diagonal” perturbation term ¥, was then
taken, in the USC® method, as a constant value evaluated at
these zeroth order resonant actions. Also shown in Table I11,
for comparison with and for analyzing the method of Ref. 7,
are results from a quantum mechanical 3 X 3 mattix diagon-

alization method (3X39") having the diagonal first order
perturbation corrections taken as a constant (e.g., zero). In
addition, the relative overlaps of the zeroth order states ¢\”
with thie actual eigenstates ¥, defined as [(¢!”|¥;)|/
{19, )|, are given in Table IV for two values of A. For the
various two-siate calculations, the calculated splittings
between the eigenstates of |3, 0) and |2, 2) parentage are
given in Table V as a function of 4.

Vi. DISCUSSION

The quantum 3 X 3 and converged (78 X 78) results are
seen from Tables I, II, and IV to be in good agreement {ex-
cept at high A where the discrepancy in Table II is ~ 10
cm ™). Thus, the present Fermi resonance is well characier-
ized by considering only the interaction of the three zeroth
order states |3, 0), |2, 2), and |1, 4). For the splittings, the
3 3 and USC semiclassical methods in Tables I and II yield
results comparable to each other and in reasonable agree-

TABLE I1I Calculated splittings (in cm~') of {3, 0} and |2, 2) states by
exact quantum, zero order uniform semiclassical (USC®),* zero order
3% 39° quantum,” and effective uniform semiclassical (USC)* methods.

usc’ usc
TABLE 1. Splittings {in cm ~ ') between states of {3, 0) and |2, 2) parentage. A {au) 78 % 789 3w 3e’ [Ref. 7 ] (Present)
Afau)  78x782  Ix32  3xPC 3x3C USCe 0.037 31.0 383 38.7 334

. 0.077 30.8 444 45.7 355

0.037 310 311 313 31.8 334 0.121 35.4 53.7 55.9 41.5
0.077 30.8 311 319 335 355 0.170 43.1 65.7 68.1 49.7
0.121 354 358 374 40.1 41.5 0.227 53.0 80.6 >80 59.1
0.170 43.1 43.8 46.1 49.2 49.7
0.227 53.0 54.4 57.4 59.8 59.1

* Calculated with Fourier components [Eq. {2.6)] evaluated at mean actions
for each pair of states.

® Calculated with Fourier components [Eq. {2.6)] evaluated at the resonant
actions.

¢ Uniform semiclassical calculation (cf. Sec. [V B) based on H,, [Eq. {3.18)].

*Using zeroth order frequencies [cf. Eq. {2.1)] to calculate [ |, /], v, and g.

® Calculated by setting all diagonal perturbations equal to zero in the 3X3
quantum matrix.

¢ See footnote ¢ of Table I.

¢ This value is estimated from the tables given in Ref. 41. The values of ¢
there go to 2.5 whereas ¢ equals 2.54 for the present USC® method (with
A =0.227).
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TABLE IV. Relative overlaps.®

Rel.
A{au) overlap® 78x78¢ 3x3¢ 3Ix3  Usc
0.037
2:3 0.154 0.154 0.163 0.205
1:3 0.008 0.008 0.008 0.007
21 0.100 0.099 0.100 0.065
0.077
23 0.347 0.344 0.359 0.507
1:3 0.029 0.028 0.030 0.023
21 0.189 0.186 0.186 0.111

*Relative overlap j:i is defined as [ ("], }|/[{¥"1¥,) |, where |4, ;) is the
eigenstate of zeroth order |¢/), ) parentage. States 3, 2, and 1 are defined as
13,0}, |2, 2), and |1, 4), respectively.

b Calculated with Fourier components [Eq. (2.6}] evaluated using mean ac-
tions for each pair of states.

°Present USC method (see footnote ¢ of Table ).

ment with the quantum mechanical values. The results

shown in Tables -V indicate that, of the semiclassical two-

state, 33, and USC methods, the 3 X3 one using mean
actions in the evaluation of the Fourier components appears
to be the most accurate for calculating both the splittings and

the relative intensities. In addition, the results in Table III

for the USC® method of Ref. 7 show that the nonconstancy

of the diagonal perturbation term ¥y, has an appreciable
effect for the sysiem studied.

Of the two-state calculations, the quantum 2 X 2 values
[based on the original Hamiltonian (5.1)] and the semiclassi-
cal two-state ones based on H., [Eq. (3.18)] and employing
mean actions in the calculation of the Fourier components
are in better agreement than those based on H,4 and reso-
nant actions. Diagonalizations of semiclassical 2 X 2 matri-
ces were also performed using the method of Sec. II. These
results were essentially the same as those in Table V based on
H & and mean actions. Thus, for the present model Hamil-
tonian (5.1), the two-state (Sec. IV A} and 2X2 (Sec. II)
methods are essentially equivalent, although this is not nec-
essarily the case in general.

The 3X 3 (and 78 X 78) basis set calculations show that
the |1, 4) state mixes significantly with the other zeroth or-
der states. Thus, the two-state treatments are incorrect for
determining the eigenfunctions, and hence the overlaps (rel-
ative intensities), although they yield reasonable values for
the eigenvalues (splittings) in Table V.

The semiclassical matrix calculations in Tables -V in-
dicate the principal weakness of the uniform approximation.

150 190 230 270 310 350

MORSE QUANTUM NUMBER

LIO

S070

00 014 029 043 057 O7 086 100

Q

FIG. 1. An(n,, @) phase plane portrait of the rotor Hamiltonian {B2) for the
model Hamiltonian (5.1). The angle variable a is given in fractions of .

In the derivation of the Mathieu equation and its corre-
sponding solutions, ¢, and hence the 1, — 2 Fourier compo-
nent, was approximated as a constant, i.e., it was evaluated
at the resonance center. This approximation assumes, in ef-
fect, that all the matrix elements such as (n, 0|V |{n — 1, 2)
and (n — 1, 2|V |n — 2, 4) have the same average value. The
semiclassical matrix technique employing mean actions for
the evaluation of individual matrix elements K, ; avoids this
restriction of constant Fourier components and thus obtains
better agreement with the purely quantum treatments in the
general case. Nevertheless, the USC is useful because, when
g is smali and expansions®*®**® may be used for a, and
F (a)of the Mathieu equation, it yields approximate analytic
solutions. These solutions may also provide some additional
physical insight when coupled with the classical analysis
presented in Sec. III and Appendix B.

As an example of this latter point, one may consider the
dependence of the Fermi resonances on the classical reso-
nance width [Eq. {B3)]. Examination of the classical {n,,a)
surfaces of section in Figs. 1 and 2 for the Hamiltonian (5.1)
with ¢ = 0.8 shows that the states |3,0) and |2, 2), with
n, =3 and n; = 2, are within the width of the resonance.

TABLE V. Splittings (in cm ™) between states of |3, 0) and |2, 2) parentage using iwo-state solutions.

A (aud 78X 782 2% 22 Two-state™" Two-state”
0.037 310 302 33.2 32.3
0.077 30.8 28.4 35.4 323
0.121 35.4 32.8 420 373
0.170 43.1 43.1 515 470
0.227 53.0 58.6 62.7 61.3

“Calculated using the method of Sec. IV A based on the effective Hamiltonian H [Eq. (3.18)] and using

resonant actions in the evaluation of ¢ [Eq. (4.2)].

® Calculated using the method of Sec. IV A based on the effective Hamiltonian H ¢ [Eq. {3.18)] and using the

mean actions between the states |3, 0) and |2, 2) in evaluating ¢ [Eq. (4.2)].
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FIG. 2. An (n,, a} surface of section for the Hamiltonian (5.1} taken for
P=0,0>0,and A = 0.077 a.u. (g = 0.8). Trajectories labeled (A}, (B}, and
{C) are for initial condition corresponding to n, =3, n, =2, and n, = 1,
respectively. All trajectories have Iy = 2a, + n, + 3/2 = 7.5. The angle
variable a is given in fractions of 7.

Hence, one would expect significant mixing for these states,
and this is indeed found to be the case {cf. Table IV for
A = 0.077). On the other hand, the state |1, 4), with n, = 1,
is well outside the classical resonance zone and does not mix
strongly with the |3, 0) or |2, 2) states. One obtains similar
conclusions about the degree of state mixing from purely
quantum mechanical arguments by comparing the coupling
elementis H,; to the diagonal energy differences E;, — E .
However, when many states are involved, the semiclassical
phase plane picture allows one to estimate the degree of cou-
pling by a single quantity, the width of the resonance [Eq.
(B3)].

Vil. CONCLUDING REMARKS

The semiclassical methods presenied in this paper all
involve the use of the Fourier components of the perturba-
tion, some of which exist in analytic form>~**® or are
straightforward to evaluate in the typical case by numerical
quadrature. For the calculation described in Sec. V, the se-
miclassical matrix elements (i.e., Fourier components) were
analytic and could be evaluated by the use of a hand calcula-
tor. The quantum mechanical Morse matrix elements of, for
instance 7 or 7%, while analytic,*® are more complicated to
compute. The semiclassical techniques can therefore be par-
ticularly useful when one wishes to use relatively simple
methods for comparison with experimental absorption spec-
tra: In actual experiments, the rovibrational structure may
only be partially resolved (e.g., Ref. 35), and so a quick and
approximate estimation of the Fermi resonance splittings
and relative intensities can be helpful in fitting the data to
various models.

ACKNOWLEDGMENT

This work was supported by a grant from the National
Science Foundation.

~32—

APPENDIX A: APPROXIMATE EVALUATION OF THE
RESONANT ACTIONS

The solution of Egs. (3.9) and (3.12) to calculate the
resonant actions I | and '} involves the determination of the
angle-independent effective oscillator frequencies from Egs.
(3.5)~(3.7). One recalls that these frequencies are nonlinearly
dependent on the resonant actions I'] and I}, so the follow-
ing approximate root finding procedure was used to deter-
mine them: {1) A value for the zeroth order resonant action
I7 was determined from the zeroth order resonance condi-
tion

o} — 2l y =203, (A1)
and ! § was found from Eq. (3.12) (one recalls that I, is taken
as a constant of the motion). (2) The zeroth order valuesof I 7
and [ were used to calculate the constants g” and f* from
Eq. (3.7). (3) Approximate values for | and I; were calcu-
lated from Eqs. (3.9) and (3.12) using g” and f” in determin-
ing the frequencies [Eqs. (3.5) and (3.6)] for the effective ze-
roth order Hamiltonian [Eq. (3.8)]. If desired, this procedure
may then be iterated. However, for the model Hamiltonian
given by Eq. (5.1), one iteration was sufficient to determine
I} and I'; to within 5% of the exact numerically calculated
values and was the procedure used in the present paper.

APPENDIX B: PHASE PLANE BEHAVIOR OF THE
RESONANCE HAMILTONIAN

The analysis of the (/,, «) phase plane behavior for the
resonance Hamiltonian [Eq. (3.17)] is standard. For a given
energy E of the a motion in Eq. (3.17), 1, is given by

I, =1, +£2[027 + oylEx — V,cos 2a)] "oy,
(B1)

where, from Egs. (3.9), (3.10), (3.12), and (3.14), I, denotes
2 /wy. Since I, = 21, and, semiclassically, I, = (n, + }),a
phase plane portrait for the Morse “quantum number” n,
may be generated from Eq. (B1) as a function of a:

ny=n; + [2? + wylEg — Vycos 2a)]"*/ oy, (B2)

where n] is given by Eq. (3.19).

Figure I shows an (n,, ) phase plane plot on the inter-
val (0, ) for the three different types of motion of Eq. (B2).
This idealized behavior for the full Hamiltonian (2.1) is iden-
tical to that for a pendulum or “rotor” Hamiltonian.'™ The
curves that pass through a single point at & = 0 and 7 corre-
spond to the separatrix trajectory. The phase plane curves in
Fig. 1 above and below the separatrix correspond to “rota-
tions” in the (n,, @) space. These are motions in which the
action f; = I,,/2 (or the quantum number n, = I, — 1} varies
only slightly over a cycle of motion. Thereby, there is rela-
tively little classical energy transfer between the Morse and
harmonic oscillators. The phase plane curves inside the se-
paratrix represent motions in which n, varies greatly over a
cycle of motion and thus reflects a large transfer of energy.
Such a large variation in n, is expected for any initial a,
within the resonance width

A, = AL, =22V /0. x)"* = 2Jg, (B3)

defined by the separatrix trajectory.'® The width of the reso-
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nance increases with increasing coupling element ¥, and
with decreasing effective anharmonicity @,y of the Morse
oscillator. The less the anharmonicity, the less the states in
the progression |n, 0), [r — 1,2), etc. pass out of resonance.

InFig. 2, an (n,, a)surface of section (e.g., Ref. 17) of the
Hamiltonian (5.1) is shown for actual classical trajectories
having initial conditions corresponding to Iz = 7.5 and
ny =1 to 3.6. For this model Hamiltonian, this plot shows
the “rotor”” or “pendulum” behavior, although it is some-
what distorted from Fig. 1. For larger perturbations, the
surface of section becomes increasingly distorted from the
idealized behavior shown in Fig. 1 (cf. discussion in Ref. 25).

A few remarks on the rate of classical and quantum
energy exchange among the oscillators are perhaps in order.
For a classical resonance Hamiltonian [e.g., Eq. (3.17)], there
is extensive classical energy exchange when the system is
within the cosine well. {7, changes considerably during the
latter motion.) The frequency of the oscillatory energy ex-
change is then obtained by expanding the cos 2a term about
its minimum and is found to bé porportional to the square
root of the coefficient of the cosine term in Eq. {3.17) [i.e., itis
proportional to the square root of the (1, — 2) Fourier com-
ponent of the perturbation]. Quantum mechanically, this
type of energy exchange is expected to be approached when
the initial wave packet consists of many eigenstates. When
there are only two or three states, as in the present analysis,
the frequency of energy exchange between zeroth order
states is, in the case of an exact zeroth order degeneracy,
proportional to the coupling matrix elements between the
states. In the semiclassical limit, these matrix elements cor-
respond to the Fourier components of the cosine perturba-
tion term in Eq. (3.17). As a result, the quantum energy ex-
change frequency may be thought of, in the case of an exact
resonance, as being proportional to the coefficient rather
than, as in the purely classical case, the square root of the
coefficient of the cosine function. Thus, it is expected that, in
any wave packet analysis, one must distinguish between the
classical (i.e., many quantum states) and highly quantum
(i.e., few quantum states) cases.

APPENDIX C: NORMALIZATION OF THE WAVE
FUNCTION (4.17)

A normalized wave function N, ¢, (o) satisfies
w3, [ i@, faa = 1. c1)
(]

By truncating the expansion {4.17) at terms of order ¢* and
using Eq. (C1), N2 is found to be given from

1 - i 1 1
et e [ )+ 17 Mn,)—m]
g* [ 1
1024 | Tofn) + 1P omy) + 212

T

viny) — 11[v{n,) — 21°
The normalization series in Eq. (C2) may be “slow” to
converge for one of the semiclassical eigenstates ¢;(a) in-
volved in the resonance, an example being when v{n,) 4+ mis

2
1 (€2)

~33=

small relative to g™ for that state (m = 1, 2). In that case,
one can determine the other overlaps (|, ) of nonnegli-
gible magnitude and then use the normalization condition
for the Fermi resonance

> K =1 (C3)

I

to determine the absolute value of the unknown overlap.
This approximation was tested in quantum mechanical cal-
culations discussed in Sec. V and found to agree with the
exact results in the system chosen to within 2%. The semi-
classical wave functions are not suitable for determining the
overlaps with the zeroth order states when the normalization
series (C2) does not converge for several of the semiclassical
eigenstates.
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1. Introduction

The quantum mechanical implications of isolated classical
resonances'™ in coupled oscillator systems have been discussed by a
number of authors.®®® For example, classical resonances have been

912 2nd Fermi

related by a variety of techniques to avoided crossings
resonances.'> 8 It is found in general that a large classical resonance
zone has a pronounced effect on the eigenvalues and eigenfunctions of a
coupled oscillator systemf;'e'25 As a result, the character of the quantum
mechanical solution for such a system can be quite different from that
described by the "zeroth-order” Hamiltonian H0.27 Of course, it is always
possible that quantum effects such as tunnelling can significantly modify

the eigenvalues and eigenfunctions of an oscillator system even when no

classical resonances are present.

In the usual classical treatment of resonances in two dimensions
(e.g., ret 3), one chooses a zeroth-order Hamiltonian Hy(/;,/3) for which a
set (Iy,15,84,05) of action-angle variables exists and then examines the
effe;:t of the resonant perturbation on the dynamics of the total Hamil-
tonian H([;,15,6,,65). In order to do this, the perturbation is usually
expanded in a double Fourier series in the zeroth-order angle variables
(61,62).28 The Hamiltonian thereby contains terms having, in principle,
all combinations of these angles, including a term containing solely the

"slow" or "resonant” angle variable &,. This angle is given by1°4
6,«=n31—-mez . (1)

The slow angle reflects the resonance condition (i.e., frequency commen-

surability) for the full dynamics of A such that

d
L (n6,~m6y) » nof(.15) —mefI,15) = 0 , ()
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where w?(J7,13) is a zeroth-order frequency 8Ho/ 81;, and (/7,1%) are the
resonant zeroth-order action variables that give rise to the resonance
condition (eq 8). All other combination terms of the angles @, and 6, in
the Fourier expansion of the perturbation are rapidly oscillating "fast”

terms,l’s""

and hence averaging over 8, (or 8,) effectively removes their
contribution to the dynamics of H. By virtue of a suitable canocomnical
transformation and, if necessary, a Taylor series expansion of the angle-
averaged Hamiltonian H(/,,/2,6,) about the resonant action variables
(I7.1%), the standard Chirikov e\nalys‘is1 reduces H(/;,/5,6,) to a constant

term<® plus an effective"hindered rotor” Hamiltonian. This rotor Hamil-

tonian contains the slow angle 8, and its canonically conjugate action.

As a result of the Chirikov analysis, the zeroth-order actions (/;,75)
for resonant classical trajectories are predicted to oscillate periodically
about their resonant values (/7,/3). The range of initial values of (7,/5)
giving this oscillatory behavior define resonance "widths' AJ; centered
about IT (i = 1,2). These widths are found to be proportional to the square
root of the V, _,,(/4,/5) Fourier component of the perturbation evaluated
at (J1,13) = (1"",[5).1’3”8‘10'12‘17’18'21 Any classical trajectory having actions
within the range II £ %A, (i=1,2) is thereby found to be strongly
affected by the resonance. A typical nonlinearly coupled oscillator system
has many classical resonances, but most of thesé¢ are of negligible width
(see, e.g., refs 3, 7, and 8).

Quantum mechanically, the existence of a classical n:m resonance
condition at approximately the energy of the zeroth-order state
W@na} = |9{9> implies the existence of near degeneracies in the mani-
fold of states |¥{Q>, (¥ @ krm> 1% Dzn kram> etc., where mn, + nn,

equals a positive constant.®® It has been proposed4’7°10 that these
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zeroth-order states will not strongly mix or “feel” the classical resonance if the widths
AI; and Al,, in units of & = 1, are less than n and m, respectively.?® That this is
intuitively reasonable is seen by considering the semiclassical quantization condition

for the zeroth-order oscillator actions:
L=n;+1/2 , (:=12) , (3)

where n; is a positive integer (or zero), and I; is the usual action variable J; 3
divided by 27. Thus, if a classical resonance for the I; action variables is weak,
the widths AI; are less than n and m, respectively, and it is not possible for at
least two quantum states from the nearly degenerate manifold to be contained in
the width of the resonance. As a result, one expects little mixing of the zeroth-
order eigenfunctions and relatively small changes in the eigenvalue spectrum. This
proposed behavior is expected to be aa. direct manifestation of an action-angle-like
uncertainty principle (which has not as yet been rigorously formulated) and suggests
that quantum mechanical wavefunctions will “smooth over” structures in classical
phase gpace that have negligible measure (e.g., weak resonances).”~10

In the present paper, the effect of small classical resonance zones on the quantum
eigenvalues and eigenfunctions of a general class of two-dimensional coupled oscilla-
tor systems is explicitly examined. In section II, a classical resonance Hamiltonian
will first be formulated for these systems using standard techniques.!'? In section
ITI, a uniform semiclassical approximation that has been found useful for a semiclas-
sical description of coupled local modes in H30,2! avoided crossings,!? and Fermi
resonances'?!%:24 will be used to quantize the resonance Hamiltonian. The analysis
of sections Il and III is based on techniques which have been developed by a number of
authors, and it is included here for the purpose of continuity and completeness. New
results are presented in section IV which demonstrate analytically the dependence of
the quantum eigenvalues and eigexifunctions on the classical resonance width. These
results indicate directly how the quantum mechanics is affected by the existence of

small classical resonances. Concluding remarks are given in section V.
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II. Classical Resonance Theory

In the present paper, a particular class of two-dimensional coupled
oscillator Hamiltonians will be treated. In action-angle variables, these

Hamiltonians are of the form
H = ]101 —I'izwlxl -+ Izwz ““12?&)2)(2‘%‘}\.{1[24‘ V([l,lz,ﬁl,ﬁz) ,V (4)

where wj, wiX;, W, WoXs, and A are constants,® (I;,8,) are the zeroth-
order action-angle variables for Hy (i.e., for V = 0), and V(/,,15,61,02) is
the perturbation. Examples of Hamiltonians of this kind include those for
two coupled Morse oscillators,21’23’26 for a Morse coupled to a harmonic

oscillator, 15-18

and for a nonlinear oscillator system treated to low order
by classical perturbation theory (e.g., refs 12 and 24). The validity of
using low order classical perturbation expansions to semiclassically treat
resonant systems has been discussed recently within the context of a uni-

form semiclassical analysis.25

If an n:n resonance condition exists (cf. eq 2), the perturbation
may, as stated before, be averaged over the fast angles, leaving the

approximate term
V(I1.15,61,602) ~RRetVy, ([ I)exp[i(ng; —mE)]} . (5)

This expression may be made into an action-independent one by
evaluating (/;,/5) at the resonance center (7] ’1-5).1.,3 This approximation is
usually a good one (e.g., ref 18), although it was recently found to give
qualitatively incorrect results in a classical model of formaldehyda33
Since the treatment in the present paper is concerned with weak pertur-
bations, it will be assumed that the averaging of the perturbation over
the fast angles and the subsequent evaluation of V,, _,,(/,I) at the reso-

nance center provides an accurate approximation to V(/4,75,64,632).
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The resonahce condition (eq 2) suggests a canonical transformation

to a set of new action-angle variables ([a,l,g,cx,ﬁ’) given by

[a:2]1/’n R 2a:n61"'m62+5 , (6)

Ig=mly+nly, B=6y/n , (7)

where ¢ is a constant chosen to give the perturbation a negative sign in
the following analysis. The angle 2a is seen by comparison of eqs 1 and 6
to be the "slow"” or resonant angle 8,, and the approximate expression in

eq 5 for the perturbation can hence be written as 18

Vo~ ~Vycos2a , (8)

where Vo= 2|V, -n(I7,/5)|, and ¢ is chosen as in ref 18. The fast-angle-
averaged Hamiltonian A in the new action-angle variables is thereby

given from eqs 4 - 8 as

H(Ia1g,0) = I — IEwaxa + Tgwg — I§ waxg — Vo cos 2a (9)
where
= M@ MR Imosxa A |
= + + —
2 ’; n 2 }[ﬂ ’
WaXa = (nPwixy + mPugxg + mmA)/4 (10)

wg= W/, wexg = Waxa/ NR

The action variable Ig is inferred to be an approximate constant of the
motion for the resonant dynamics of the full Hamiltonian since its conju-
gate angle § does not appear in the fast angle-averaged Hamiltonian A

(eq 9).

‘A resonance Hamiltonian!™ Hp may be defined from eq 9 as

Hp = I2waxa — 1,0 + Vocos 20 = Ep (11)
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such that
F=Iﬁw5~I§wﬁxﬁ~Hﬁ (12)

The analysis of the "hindered rotor" Hamiltonian in eq 11 is standard
(see, e.g., refs 3,8-10,18,21). For a given conserved action Ig and rotor

energy Eg, the (/,,a) phase-plane curves for eq 11 are given by
I =I5 + [(I5)? + (Ep— Vocos 20)/ (waxa) (13)
where the resonant value /7 is given by
Ia =/ (RuaXa) (14)

and the angle a is taken on the interval (0,7). The action 7, given by eq 13
can either have oscillatory or “rotational” behavior."3 121821 The ggeilla-
tory behavior gives closed curves centered about (/5,7/2) in the (I,,a)
phase plane (see, e.g., ref 18) and indicates that the two oscillators are in
classical resonance (i.e., the action /, oscillates periodically about 7).

The "rotational” behavior gives curves of approximately constant I, vs. a

and occurs when the two oscillators are out of resonance. The (/

curve that separates the oscillatory and rotational types of motion is the

1.3,12,18,21

separatrix trajectory which has a rotor energy £ given by

E§ = Vo = Q% (doxa) - (15)

The two possible values of I, on the separatrix curve, evaluated at

a = mw/2, define the width of the resonance Al a,l’s given in this instance
by

A, = 4Vg (16)

whgare

g = VO/ (2waXa) . (17)
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Any trajectory having an action /, within the range /5 + BAI, will be
strongly in the resonance, and [, will hence exhibit oscillatory

behavior, 1"48-12,17,18,21

Using the canonical transformation given in eqs 6 and 7, the resonant
action and resonance width may be found for the action /;. These quanti-

ties are given by
T =/ (4uXa) (18)
and
Al =2nVg . (19)

In the present analysis, the action variable conjugate to the slow angle 2a
was chosen to be directly proportional to /4 {cf. eq 8), although one could
just as easily choosé 15 for this purpose. For the above treatment, the
resonant value /5 of /3 may be found using eq 18 and the (constant) value
for I (cf. eq 7). A width AJ; for the action J; may also be found from an
analogous resonance analysis to that given above. In addition, using eqs 3
and 18, it will be found useful later to define resonant "quantum

numbers” given by
ni=N-%; ng=15-% . (20)
These numbers are not in general integers.

As mentioned in the Introduction, the resonance condition in eq 2
implies that, for a given /7 and /5, there exists a near degeneracy
between the zeroth-order quantum basis states of Hy in the manifold with
mny, + nng equal to a constant.?® The correspondence of the quantum
near-degeneracy of these states with the existence of the classical reso-

nance condition (eq 2) results from the fact that
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nod(IT+8,1 1,15 +0215) — mwd(IT+6,11, 15406215 ~ AE©Q (21)

Here, AE® is a (small) zeroth-order Bohr frequency between two adja-
cent basis states in the nearly degenerate manifold (e.g., W}?kb and
W}@nllﬁmﬂ, wd(IT +6,1,,5+65]5) is a zeroth-order classical frequency
dHg/ 81;, and (I7+6,/,,/5+62/5) are values of the action variables very
near (I7,1%). For a specific system, a similar result is discussed in Appen-

dix B of ref 12.

In the following section, a uniform semiclassical analysis, developed
by several authorg'® 17182124 4+, quantize specific hindered rotor-like
resonance Hamiltonians, will be used to quantize the general n:m reso-

nance Hamiltonian (eq 11).

[I. Uniform Semiclassical Treatment

The approximate classical Hamiltonian (eq 9) may be quantized by

converting it into a wave equation12’17’18'21'24

using semiclassical action
c:vpe1:°aft.o:rs‘,f34 The approximate operators 7, and 75 corresponding to the
classical variables Iy and /g may be chosen in the angle representation to

be

Ia

IH
i

1 d ., min
idg 2 (22)

1 d i -
e

ida tm I
where % equals unity. The wave function |¥> which satisfles the
Schriidinger equation obtained via substitution of the above operators in

the angle-averaged Harniltonian (eq 9) is separable and written in the

angle representation as

<a,Bl¥> = ¥(a,B) = y(a)p(B) . (23)
Here, ¢(B) equals exp[ifﬁ(lﬁ - n;m ) d8] (aside from a normalization
0
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factor) and is a function of the conserved action /g, while ¥(a) satisfies

the differential equation

do?

() _ 2i(2n§/n)%%l— + (4 ~2g cos2a)y(a) =0 . (24)
In eq 24, n7 is the resonant "quantum number” defined in eq 20, g is
defined in eq 17, and 4 is given by
A=(Q/n + ER)/ (0aXa) = L/ 1* . (25)
Using a function F{a), defined as
F(a) = exp(=Rinjo/n)y(a) , (26)

equation 25 may be transformed into a Mathieu equation of order v for
F(a) 12,17,18,24,35

2
E&ﬁ‘%‘)— +(a, —2¢ cos 2a)F(a) =0 , (27)
o
where the characteristic eigenvalue35 @, is
a,=@Bni/n)2+4 . (28)

The order v of the Mathieu ec:;ua"aion35 is found, for instance, by the
method of ref 18 to be
v=vn;) =2n,-nl)/n . (29)

The order v(m;) is a function of the zeroth-order quantum number n,
because the solution of the zeroth-order Mathieu equation (i.e., with
g =0), along with eq 26, must give the WKB wavefunction

’gli;(;‘i)(a) = (nnw) %exp(2in 10t/'n.).18 In general, v(n,) is not an integer.

The energy Ep of the quantized resonance Hamiltonian is given from

egs 25 and 28 by

Ep =a,0.xs ~(n] + B)Q/n . (30)
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When g is small and v(n;) is not an integer, an expansion for a, may be

d,35

use which yields

ER o rv(nl)z + q2 CaXa — (n’{ + %)Q/n v (31)
[ 2u(n, 7 — 1]

where the expansion has been truncated to second orderin g.

Under the same conditions, the unnormalized uniform semiclassical
wave function wﬁ?(a) for the a—motion may be obtained using an expan-

sion®® for F(a) in terms of g along with eq 26. The wave function is given

to second order in g by

Jin(a) w gBen _ g [0 A
B 4 | [v(ng)+1] [v(ny)-1]
2 [ gRmg+en)asn o 2iny—2n)asn

(32)

+ -
R |[u(n)+1][vn)+2]  [v(ng)-1][v(n,)—2]
The normalized wave functions ¥, (@) = Np ¥3(a) are found by normaliz-
ing eq 32. The normalization factor N, is given to second order in g by
N, =[(nm)(1 + ¢*B,,/ 16)]% , (33)

where

[ { + 1
T o)+ T ()17

It

B, (34)
The uniform semiclassical wave functions 1,,(a) for the a—motion hence-

forth have an n; subscript since they are related via the Mathieu equation

analysis to the zeroth—order states 11)5,‘?(0;)
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IV. The Effect of Small Resonance Zones on the Eigenvalues and Eigen-

functions

The width A7, of the n.m classical resonarnce zone is given in eq 19 in
terms of the parameter g. In the following analysis, the effect of small
resonance zones, and hence small g, on the uniform semiclassical eigen-
values and eigenfunctions will be examined. By treating A/, as a variable
parameter, one may examine such properties as the splitting of the
eigenstates or the mixing of the zeroth-order wave functions as the reso-
nance width increases. In this way, information is obtained on how weak
classical resonances influence the quantum properties of a nonlinear

oscillator system.

Ncnljnear resonances can have a pronounced effect on the eigenvalue
spectrum of coupled oscillator systems.6°26 (Consider, for example, the
simple Fermi resonance. 518 ) The splittings AF between the adjacent
semiclassical eigenstates l@llj,k> and thn'k;m> of zeroth-order paren-
tage 1¢Jf?g> and ]'#/}?t),,,,k:m>, respectively, are, for fixed /4, given from egs

12 and 30 by

AF = Ej»k - Ejtn,km == [mv(j) e a‘u(j:tn)]waXa . (35)
Using the expansion (eq 31) to second order in ¢ for a,v,36 the splitting

may be written approximately as
AE = [v(j+n)? — v(j)¥]waXa + 9°Ci%aXa/ R (36)

where

P 1
1= |Gt G0

(37)

In eqs 35 - 37, the orders uv(j) and v(j+n) correspond to the solutions of
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the Mathieu equation {(eq 27) having zeroth-order state parentage W}?,b
and W}‘i)n,k:m>, respectively. In addition, as the reader may easily verify,
the term [v(j+n)? — v(5)%]waX, in eq 36 is just the (exact) zeroth-order
energy difference AE® between these two states. Using the definition

given in eq 19 for the resonance width Al; in terms of g, the splitting of

the two states due to the perturbation may be written as 8
AL/ )G
AE - ap© = 8117 "‘622 1%aXa (38)

Also of interest are the squared overlaps of the zeroth-order basis
functions with the actual eigenfunctions. These squared overlaps are of
importance in determining, for instance, the effect of résonances on the
probability amplitude distributions and the nodal patterns of the
wavefunctions. 891122 Also, for dipole moment functions aligned along a
particular vibrational coordinate, they are crucial in understanding the
relative intensities of absorption lines in the vicinity of an overtone tran-
sition.'5:16.18

Due to the separability of the total semiclassical wave function ¥{«,f3)
(eq 23), the following analysis needs only involve the wave function for the
a—~motion (i.e., the wave function for the f-motion is the same for all
nearly degenerate states having the same Iﬁ)n Hence, the overlap
squared of, for instance, the basis function W}?,b with the eigenfunction
|¥; &> (ie., that of predominantly l'&}f’,@) parentage) is determined from

the semiclassical analysis to be

2

[<pfQ1 Y 6> 1% = POy (@) da| =nnNF . (39)
0

Here, the zeroth-order semiclassical wave function ¥{%(a) in the angle
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representation equals (nm) %exp(27ia/ n), ¥;(a) is the normalized uni-
form sermiclassical wave function given in eqs 32 and 34, and the normali-
zation factor N; is given by eq 33. Similarly, the overlap squared of the
zeroth-order state l}b}f}b with the eigenfunction of W}@n,km> parentage
is given semiclassically by

2

nw
] <1L’J((.:2 |¢jtn,k4’-‘m> ] 2 = W}O).(a)’lbjtn (a) do
0

[ 2 ]
— s e NI 2 q
= nu}\vJ:{:nlls[UU rn)?-' 1]2 l

. (40)

For small enough ¢, the normalization factors in eqs 39 and 40 may be

expanded about g = 0, and the definition of A/; given in eq 18 used to

yield
Al/n)4B;
| <¥fR 1Y e>1P 1 - ‘4(-;15512—]“ (41)
and
(). 2, Wyny T 1
l<1{ﬁ ,g “W; tn1k¥m>l == 556 lB] [U(J ):F 1]2 (4'2)

In eqs 41 and 42, B; is the value of eq 34 for the specific quantum number
j, and the fact that v{j+n) equals v(j) + 2 has been used. An alternate
derivation of eqgs 41 and 42, along with a discussion of the limits of their
validity, is given in the Appendix. Also, by an analysis similar to that given
in this section, one can derive formulas analogous to eqs 38, 41, and 42 in
terms of (Alz/ m)*, provided one initially chooses I, equal to 2/5/ m and
B equal to 64/ m in eqs 6 and 7.
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V. Concluding Remarks

The formulas given in eqs 38 and 41 - 4R for, respectively, the eigen-
value splittings and the mixing of the basis functions are particularly
revealing. One sees by examination of these expressions that their depen-

dence on the ratio Al;/ 7 is to the fourth power. Hence, the argument4'7"°

that the quantum states should not "feel” the effect of small classical
resonances with A/; «<n (or equivalently Al < m) is explicitly
confirmed by eqgs 38, 41, and 42. More specifically, for any classical reso-
nance with a width in /;-space significantly less than n, the corrections to
the zeroth-order eigenvalues and eigenfunctions are negligibly small.
(The exception to this statement is when the two states are identically at
the avoided crossing point,m ) As the width A/, increases to be on the
order of n, a rather abrupt change in the eigenvalues and eigenfunctions
will occur due to their dependence on Al;/7n to the fourth power. This is
a manifestation of the fact that the n.m resonance can begin to contain
two quantum states as the width A/; increases past n. "0 addition, the
overall effect of the classical resonance on the quantum properties given
in egs 38, 41, and 42 is modulated by the constants C; (eq 38) or B; (egs
41 and 4R2). These constants reflect the energy detuning of the zeroth-
order states and hence decrease in value with increasing "distance” from
the avoided crossing point. Figure 1 shows the behavior of the squared
overlaps, given by eqgs 41 and 42, as a function of increasing resonance

width for two statés near the center of a 1:2 Fermi resonance.

The analysis of the present paper indicates that the quantum
mechanics of a nonlinear oscillator system is not sensitive to any weak,
isolated classical resonances that will distort small regions of classical )

phase space. In fact, one might also speculate from the present results
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that the quantum mechanics may "smooth over” the small regions of
classically irregular or chaotic behavior that occur when two or more
small classical resonance zones overlap.l“m'38 However, a quantitative
relationship between overlapping classical resonances, classical chaos,
and quantum chaos (if it exists) is at present not known. (Some qualita-
tive relationships between these phenomena have certainly been
proposed.s'10 ) For realistic molecular oscillator systems, it is also not
clear to what degree classical resonances are responsible for significant
basis function mixing and eigenvalue changes, or, rather, if these effects
can for the most part be attributed to purely quantum mechanical

mechanisms. Further studies in this regard may prove quite informative.
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Appendix: An Alternate Derivation of the Overlap Formulas

Under the appropriate circumstances to be specified below, the nor-
‘malized wave functions 1Y x> | ¥enkem> 804 |Vjin k—m> of the full
Hamiltonian (eq 4) may be written approximately using first-order per-
turbation theory as

<‘%(9)n.k+m| Vl/lb]((,:2>
Ef -EQ tim

[
[ 06> o N'j,k'{l"/ﬁ(?lg> + W}%,Ic+m>

<’¢3(3=)n,k-ml VWJ(?P

4
E:;(,ok) - Ejj(-?-)n.]c -7

0 ] . N
|k em> j (A1)

and

| V19, pom>
|Vjen ewm > ™ N’jtn,km[ YD ewm> + J'(%) jin'kforgz [¥{R> }Az)
‘ Ein kwm — B}

where N', . is a normalization factor (which differs by a factor of (nm)™*

from eq 33), and the zeroth-order wave functions Wr(g?n? are taken to be

WKB wave functions in action-angle variables. 182134 These wave func-

tions are defined, in the angle representation, as
<6,,62|9f%> = (2m)Texpli (j 61 + k 62)] (A3)
and
<61, 021U kwm> = (2m)expli(j£n)6; + i(kTm)6,] . (A4)
In egs Al - A4, we consider only the zeroth-order wave functions }1/)}?2>
and ]'g//}ot)n,km> with quantum numbers (nq,mn3) equal to (j,k) and
(7 +n k¥ m), respectively. These wave functions are assumed to be from a
nearly resonant manifold of states having a constant value of /4 29 put

also ‘having weak couplings (i.e., a weak resonance), These states are

moreover assumed to have the strongest mixing due to "direct”, or
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classical-like, first order couplings between the basis states with zeroth-
order quantum numbers n; and n; differing by n and m, respectively (cf.
discussion in the Introduction and ref 30). For a given conserved action
15,29 the center of the classical resonance is also assumed to be given by
resonant "quantum numbers” (eq 20) close to the zeroth-order quantum

numbers of the l1//}?,2> state.

For WKB basis functions, the matrix elements of the perturbation

appearing in eqs Al and A2 have the form of Fourier ccsmpo]:len‘ts,18 e.g.,

2 2w e
<Y k-m | VIUE> = (2;_)2 f d 6,d 8, V(I 6)e 81~ ™8
0 0

= Ve (I, (A5)

where I'™ = (J¥ ,J3%) are some intermediate values of the actions
chosen, as in ref 18, to give good agreement between the Fourier com-
ponent and the quantum matrix element (and also to make the former
Hermitian '8 ). If the zeroth-order states described by the wavefunctions
in eqs A3 and A4 are near the center of the classical resonance, and if the
width of the resonance contains only two or three quantum states, the
choice (I¥,1§%) = (I7,13) (i.e., the resonant actions) gives good agree-
ment between the WKB and exact matrix elements.!® The relationship of
the Fourier components evaluated in this way to the width of the classical
resonarce is given in eqs 8 and 16 - 19. Using that relationship, and the
{exact) expression given in eq 36 for the zeroth-order energy differences
that appear in the denominators of the perturbation expansion terms,

the approximate wave functions may be rewritten as
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[ i
Y > = N'j,lcll%(?g> - m|¢;(9n,k+m>

e "7 (0)
+ 4[1/(]) + 1] ‘¢J+n,k-—m> (AG)
and
[ i
Yitnkom> = N'jinkom l'%(ot)n,km> ¥ ﬁi—ﬁwfﬂ> (A7)

The phase e**? in eqs A8 and A7 is defined as in ref 18, and the number
v(7) is the order of the Mathieu equation (eq 29) for ny = 7 (cf. discussion
following eq 37).

The squared overlaps of interest in the present paper are hence given

by
| <@ Q¥ > 1% = | N'j e |2 : (A8)
and
Fiy
Q 2 - ' e
|<’¢/3(,2 l'&l/jtn.km>l - Ithn,k4-'m 4[U(J) + 1] l » (Ag)
which, upon expansion to second order about ¢ = 0, yield the same
expressions as are given in the text (eqs 41 and 42). These overlap formu-
las are valid as long as the two zeroth-order states lﬂ,(/}?;b and I’g(/_,(?__)n,k;.-m>
are, for a given Iﬂ, near the center of the classical resonance and not
directly at their avoided crossing point,.36 It was also assumed in the
derivation given in this Appendix that the width AJ, of the resonance was
small (< n) and therefore that ¢ was small.
A final point with regard to the limits of validity of eqs 41 and 4R of

the text concerns the contribution to these formulas from unphysical

"states” in the uniform semiclassical wavefunction (eq 32). These
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unphysical states correspond to zeroth-order WKB wave functions (cf. eqs
A3 and A4) with negative quantum numbers.>® For example, it is known
for the n:m resonance that the constant action /75 equals
mng + nng + (n+m)/2 for states in the nearly degenerate resonant

manif old.29

Therefore, a resonance having resonant "quantum numbers"”
(n],ng) ~(j—ne0+me), where & is a small parameter, would give
Ig~mj + (n+m)/2. As a result, an a—motion state Y5 () withn; = j+n
would, for constant J & require n, to equal — m and would thereby be
unphysical. In this special case, the uniform semiclassical wave function
would indeed have a contribution ~ exp[2i(; + n)a/n ] as can be seen by
inspection of eq 32. A similar statement may also be made for the case in

which (n],n3) ~ (0,k), and, in that instance, an unphysical state with a

negative n; would contribute to the uniform semiclassical wave function.

In both of the cases mentioned above, the unphysical states have a

small contribution to the normalization factor N, (egqs 33 and 34) and

would therefore lead to slight errors in the overlap formulas (egs 41 and

physical zeroth-order states that are nearest the center of the classical
resonance, e.g., 1¢§?3> and I'W}inm) This situation supposes that the
resonant quantum numbers (n},n}) are some values intermediate
between (7,0) and (7 —n,m), but not those giving an avoided crossing.,ss’a'7

The contribution from these physical states to the normalization factor
Nn, (egs 33 and 35) will then be much larger than that from any unphysi-
cal state(s). (The unphysical zeroth-order state in the present example
would be |%{%, —m>.) More specifically, the factor [v(j) — 1]7? in egs 33
and 34 corresponding to the contribution from the physical zeroth-order

state w}%(a) to the normalization factor for the eigenstate ¢, (a) will be
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much larger than that for any unphysical states. (The two interacting
physical states are near, but not at, their avoided crossing pointhlz"sﬁ’s'?
Hence, the term ~ [v(j) ~ 1]7® in N; corresponding to the contribution
from the physical zeroth-order state W}E?n,m> to the normalization of
|%; 0> is large since [u(j) — 1] < 1 in that case. The term ~ [v(j) + 1]7®
corresponding to the contribution from the unphysical zeroth-order state

W;(g-)n.—m> to the normalization of the |¥;0> eigenstate will be much

smaller.)

In the alternalive derivation of the overlap formulas given in this

Appendix, any unphysical zeroth-order states with negative quantum

numbers for n; or ny are omitted by fiat. 39
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Chapter 4: Semiclassical Dressed State Theory for the Vibrational Ex-

citation of a Morse Oscillator by Radiation

[The text of this Chapter appeared in: G. A. Voth and R. A. Marcus, J. Phys.
Chem. 89, 2208 (1985).]
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Introduction

In the present paper, uniform semiclassical expressions are obtained
for the resonant and Rabi frequencies for one- and two-photon absorption
by a Morse oscillator. The correspondence of the results for these fre-
quencies with quantum mechanical dressed state theoryl is described.
This semiclassical treatment is derived for a diatomic molecule and is
then adapted to the excitation of an isolated vibrational state in a polya-
tomic molecule. Experimental or theoretical studies of CHE;F,2 03,3 BC13,4
and SO,° and of certain local mode molecules such as HDO® and CHD,®?

suggest that such state-to-state behavior can be observed at low energies

in some polyatomic molecules.

Many studies in the past few },rears?"8 have been devoted to the
development of exact and approximate quantum mechanical treatments
for the vibrational excitation of a single anharmonic oscillator by an elec-
tromagnetic radiation field.? In addition, there have been several classi-
cal and quantum resonance studies of related driven oscillator

8,10-17 including the early work by Chirikov!® Sh‘t.lryak,16 and

systems,
Zaslewsky,fr7 Recently, Gray18 discussed the semiclassical aspects of a
Morse oscillator driven by a classical radiation field by formulating the
matrix representation of an appropriate classical resonance

1421 using WKB wavefunctions® for the basis states. A uni-

Hamiltonian
form semiclassical “dressed state” approach is developed in the present
paper that circumvents the use of a multilevel matrix treatment (e.g., ref
18) to describe the absorption of two (or more) photons. An alternative

semiclassical approach for an explicitly time-dependent Hamiltonian is

presented in the Appendix.



-64—

Classical Resonance Hamiltonian

The energy-conserving Hamiltonian for the dipole interaction of a

Morse oscillator with a classical radiation field 1513’23

H = Hn(r p) + 5 (P*+&%Q%) = (4n?/ V, hu(r)@ (1)

where P and & are the abstract momentum and coordinate of the field,
respectively, w is the angular frequency of the field, V, is the volume of
the radiation cavity, wu(r) is the dipole moment, and H,, is the zeroth
order Hamiltonian for a Morse oscillator®* with displacement coordinate

7 and conjugate momentum p.

If a canonical transformation is made te Morse oscillator action-angle
variables (Im,ﬁm)25 and to harmonic oscillator action-angle variables
(If.64) for the field, given in the latter case by @ = (21f/w)%cos @; and

P =-(2If w)¥sin 6, eq 1 is transformed to
H = Laof —L3wdx + I;@ = Egu(ly,Op)cos 65 (2)

where w2 and wdx are the harmonic angular frequency and anharmoni-
city, respectively, of the Morse oscillator and £, = (87/,w/ V,)*is defined
as the field str‘el.'igth.ll’12 The actions I; in eq 2 are defined as the usual

action variables®® divided by 2m and fi = 1 throughout the present paper.

16-17,19

A 1:1 rescnance condition exists when, for the value I, of the

action I, the frequency of the Morse oscillator w,, = (8H,,/ alm)l,n:[ﬂ,;

satisfies
(I = 0 —2L7uhx ~ o . (3)

When nonlinear coupling between oscillator modes is present and there is

a near 1:1 resonance, the variable 6,— 6, is a "slow" angle. 151719 gy
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virtue of eq 3, this angle satisfies

d ., \

This condition suggests a canonical transformation'® 1?19 such as
Id=21m R Iﬂ:lm+[f v (5)
Ra =6y —67+6, =65 , (6)

where ¢ is a constant chosen as in ref 27 to ensure a real, negative conti-
bution for the last term in eq 8 below (e.g., for the linear dipole approxi-
mation used later, é equals m). The zeroth order Hamiltonian in the new

action-angle variables becomes
Hollalg) = 1,0 —wpx' 13 + Igw (7)

where (= (wl—-w)/2 and ¥ =x/4. The perturbation term in eq 2
—E (I, 6 n)cosf is then expanded in a complex-valued double Fourier
series in &,, and Gy, expressed in terms of the new angle variables a and
B, and averaged over the "fast” variable 8. Only the terms having the
"slow angle” variable 2a will remain after this am’eragirl,cg,,1547'19 so the

Hamiltonian for this 1:1 resonance system becomes
H=1I,0-wlxIZ + Igw— V,cos 20, (8)

where V, denotes |2Vi_y(/mi.J¢)|: Vi-1 is the (1,-1) Fourier component,
m(gﬁ)“2f2” ZWEO;L(;[,{,Bm)coste-i(a”‘_ef)d 6md 6y, evaluated at the
0 0

resonance center 971719 Im

= I, and at any /.
Because the angle § conjugate to the total action of the system /g
does not appear in eq 8, /4 is a constant of the motion in this approxima-

tion. The Hamiltonian (8) may then be written as
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H=lgo—Hp=E |, (9)

where E is the total energy and Hp is a "resonance’ Hamiltonian: %1719

Hp = Ep = wdx'I2 = I + V,cos 2a . (10)

The quantity V, in eq 10, given earlier, may be rewritten as

E°f2ﬂ L78 Jet¥mge |=E i
- / P'(m.s m)e m| = Lo (11)

[+

which is simply the field strength £, times the fundamental Fourier com-
ponent & of the dipole moment function evaluated at the center of the

resonarnce.

Uniform Semiclassical Approximation

The oscillator-field system may be quantized by converting eq 9 into
a Schrodinger equation. To do this, the [;'s are replaced by semiclassical

21,22 given by (i/4)d/da + 1 for the a motion and by

action operators,
(i/i)d/dg + 1 for the 8§ motion. For a separable semiclassical basis
¥(a)g(B), this procedure yields the semiclassical Schrodinger equations

for ¥(a) and ¢(8):

98 _i[Eg/w-1]p=0 , (12)
g
where Eg = Igw, and
2
%-21‘1@—1)%-%“ [4 —2gcosRa]¥y =0 , (13)
da da

where
E=20/ whx=2lLy, A=[4Q+Eg-E) whx] =1, g =2V,/ whx .(14)

Solution of eq 12 yields an equation for the (normalized) primitive semi -
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classical wavefunction®? (2n)'%exp[i(lﬁ-1)ﬁ]. Equation 13 may be solved

by. defining an auxilary function F(a), given by*:

F(a) = exp[i(1-&aly(a) | (15)

and introducing it into eq 13. One thus obtains Mathieu's equaﬁnionga'29 for

Fla):

2
Qdﬂizg)_ +[a, = Rgcos 2a]F(a) =0 , (16)
a
where
a,=(E-1%+4 . (17)
28.29

The order v of the Mathieu eqtiation is given by30

v=2ly, —§= 2([m _Imr) ’ (18)

which is, in general, not an integer. The solutions of eq 16 together with
egs 12, 14, and 17 give the uniform semiclassical eigenvalues for the Ham-

iltonian (1) as

E=Eg+ Iy —oa,09% . (19)

Semiclassical Dressed State Description

When the semiclassical eigenvalues of the Hamiltonian (1) as given by
eq 19 are plotted as a function of the field frequency w and at constant
E,, they exhibit avoided crossings, as in Figure 1. The frequencies w at
which these avoided crossings occur may be obtained from the semiclas-
sical uniform approximation formula (eq 16); ﬁamely they occur when the

orders of the Mathieu equation correspond to i.nteger‘szl’28 such that

v=—y . (20)
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Here, v and V' correspond to the two different states involved in the
avoided crossing. Typically, the characteristic values a, and &, of the

Mathieu equation (eq 16) are associated with these states. #2829

The interpretation of the states involved in an avoided crossing may
be clarified by considering the quantum numbers associated with the
zeroth order actions:

Ip=(npm +%) , I =N+n
(R1)
In=(nm+¥%) , Iy =N |

where N is a very large number of "background” photons for the typical
laser ca'ij.ty,31 n is the number of photons to be absorbed (n « N), and
N, (Ty) is the quantum number of the Morse oscillator. These quantum
numberé in eq 21 are associated with the zeroth order semiclassical
eigenstates,?"z denoted in this section by |n, N+n> and |n, N> A
further simplification may be made since N is normally so large that it

may be taken as a constant and hence the field strength

E, = (BnNw/ V, Y is constant, 111232

For a two-level 1711ode1,83 an isolated avoided crossing21 of the eigen-
values indicates a zeroth order degeneracy between the basis states (e.g.,
|t ,N+1> and |7,,, N> in the present instance) at the avoided crossing.
Therefore, for non-zero coupling between the field and the oscillator, the.
avoided crossing condition identifies the resonant excitation frequency
where the Morse state |n,,> absorbs n photons and is excited to the

state |n,,>.

The avoided crossing condition is given by eq 20 and is satisfied when-

ever £ equals n,, + ., + 12! or, from eq 14,
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7= (N + 1y + 1)/2 . (22)

This 7,7 is seen to be the mean action 7,, between the two levels undergo-
ing the avoided crossing. Hence, eq 22 together with eq 3 indicates that,

at a field frequency
w = wh — 2l whx (23)

a field induced resonance between states with Morse quantum numbers
n,, and 7, occurs. It has been noted (e.g., ref 34) that n times the classi-
cal frequency in eq 23 corresponds exactly to the quantum mechanical

resonant excitation (or Bohr) frequency, Wpn =By — En , between the
two Morse oscillator levels with energies 157,;,";B and £, .

The splittings between states at isolated avoided crossings are,zi'z8

for small enough g (the typical case in the present problem35),

(@) - bi)ng

(i, » gp+1) AE; = 7 =V, + 0(g% , (24a)
as —bo)wd V2

(s + T #2) Mg = 227020mX - Yo L 50y | am)
4 2WmX

and so on for higher order transitions. One recalls from eqs 11 and 22
that the V,'s in eqs 24a and 24b are functions of n,, and n,,. When the
system is initially in one of the zeroth order states involved in the
avoided crossing, the splittings AE,, of the eigenvalues give the charac-
teristic Rabi frequency wp for oscillation between these zeroth order

states.® One may demonstrate this as follows:

Suppose at £ = 0 the system is in an initial state |¥(0)> that may be
expressed as a linear combination of only two “exact” semiclassical

wavefunctions |a> and |b>. Due to the coupling between the field and
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the oscillator, this state evolves in time as

E,

19(£)> = e =t |3(0)> = G la>e™ bt

L4 G b>e , (25)

where G, equals <a |[¥(0)>, G, equals <& |¢¥(0)>, and H, is the semiclas-
sical Hamiltonian (9) (expressed, as in the previous section, in terms of
semiclassical action-angle operators). The probability amplitude
[<y(0)[w(t)>|® for the state [¥(0)> oscillates in time as
cos?([Eq— Ey ]t/ 2), where E; > Ep. If the field frequency w is such that
the exact states [@> and |b> are at an avoided crossing, then their split-
ting AE, = E; — B} is defined as the Rabi frequency wR‘SS

When |¢(0)> is taken to be the "unexcited" dressed state |n, N+n>,
the probability for being in the excited dressed state |n,,,N> is given
by33

—~iHyt

: - ! 2
P ®) = | <nom N [e ™t |7 Nan> (2 (26)

while the probability for being in the state |n,, ,N+n> is given by

~iHgt

Ppon (t) = | <y N4n e Ny N4> |2 . (27)

For the ©present two-level model, the energy a“bsorption8

<E(t)> —~ <E(0)> of the Morse oscillator starting in the state |n,> is

given by
<'¢(t) IHm, l}ﬁ(t)) - Enm = E%Pn,‘nnm(t) + E%[annm(t) 1]
=y Pory () (28)

This field-induced oscillation between zeroth order states describes the
time-varying absorption process of n photons by the Morse oscillator. It

has mrecently been demonstrated numerically that a two-level Rabi model
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is a good approximation at (or close to) resonance even for large laser

intensities (e.g., 44 TW/cm?) 8

Relationship to Quantum Dressed State Theory

In the quantum dressed state picture,1 the classical Hamiltonian in
eq (1) is quantized by first replacing the classical variables (p, 7, P, @)
with the quantum mechanical operators (F, 7, P, §) and then solving the
matrix representation of the quantum counterpart of eq (1) for the eigen-
values and eigenvectors. When plotted vs. w, an avoided crossing of two
eigenvalues of this matrix (the dressed state matrix3 ) identifies, as
already noted for the semiclassical case, a resonant excitation frequency,
and the splitting between the states at the avoided crossing is the Rabi
frequency of the transition.! For a given field frequency w, the correspon-
dence of the quantum Rabi and resonant excitation frequencies with
those obtained by the semiclassical treatment in the previous section
may be demonstrated as follows:

To describe an isoclated quantum mechanical avoided crossing
corresponding to an n-photon transition, it is convenient to transform
the full dressed state matrix H via a Van Vleck transformation®’ T~'H T of
order k& (where k& =n). This transformation serves to diagonalize H to
order k except for any zeroth order states that are degenerate or nearly
degenerate. This procedure is ideal for the present purpose of treating an
isolated avoided crossing, since here one is dealing with a case where only
two zeroth order states are degenerate or mnearly degenerate.
Specifically, if an isolated avoided crossing between two levels, as in Fig-
ure 1, occurs in a small frequency interval Aw, there are only two states

in that interval which are nearly degenerate amid the vast number of
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states in H. The Van Vleck transformation then yields a matrix G that is

diagonal to &% order except for a 2 x 2 submatrix

L . . k)
Gornr Gain _ B+ No W N
Gnmn,',, Gnmnm - yik)® Enm+ (N+n)w (29)

that includes the two degemnerate or nearly degenerate quantum states

| T , N> and |7y, , N+n>. In eq 29, E,. . (En’vu) is the energy of a quantum

mechanical Morse oscillator eigenstate |7,> (|7n,>), V) is the pertur-
bation coupling of order k between states, and N, n, and w are as defined
previously. There are, in general, some diagonal perturbation corrections,
but, for realistic laser intensities (< 1 TW/cm?), they are estimated to
have a negligible effect on the resonant excitation frequencies.37 The con-
tribution from the off-resonant components of the matrix H is shifted. via
the Van Vleck transformation to the coupling term ik, Expressions for
the coupling elements V%) through third order (k = 3) may be found in
ref 37. In general, a coupling element of at least order n is necessary to
induce an m-photon transition (i.e., V*), where k < n, would be equal to
zero for the m-photon transition). Higher order terms (k > n) usually
have a negligible contribution for such transitions, so only terms V") of

n® order will be considered.®®

The two diagonal elements of the matrix (29) become degenerate and

hence undergo an avoided crossing when no equals Wp'n - As in the sem-

iclassical case, there is a field induced resonant transition between Morse
oscillator states |m,> and |m,> at this frequency. In the previous sec-
tion, n times the semiclassically calculated resonance frequency (eq 23)

was stated to correspond exactly with the quantum value for Cp'n - This

‘may be demonstrated by considering the quantum expression for Wn'n
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O = (Ton= T )0 = (M= T ) (T + M+ Doox (30)

For the 1:1 resonance, this is simply nw, where w is the classical fre-
 quency in eq 23 and n equals Ty — My .

At the resonant field frequency, the matrix (29) yields the time-
dependent Rabi flopping formula®® ~ sin®(wpt/ 2) for the probability of
being in the dressed Morse oscillator state |n,, N> after starting in
dres.sed state |ng,,N+n>, where the quantum Rabi frequency wg for n
photon absorption equals 2| V(")Iv.33 It is seen from egs R4a, 24b, and 29
that, at resonance, the semiclassically calculated Rabi frequency AF, is
to be compared, in this approximation, to the quantum Rabi frequency

2| V*)|. These quantities are now considered for two specific cases:

a) One-photon absorption

The semiclassical one-photon Rabi frequency is given by eq 24a as
E I, whereas the quantum one-photon Rabi frequency is given by39
E,<n, | i|ny,> with n,, equal to n,,+ 1. In this case, the Morse oscillator
matrix element <n,,|fln,> appearing in the quantum mechanical quan-
tity ¥ is to be compared with the fundamental Fourier component &
(cf. eq 11) evaluated at the mean action I, = n,,+ 1 for the one-photon
transition. The same semiclassical Rabi frequency for one-photon absorp-
tion in terms of a Fourier component has been obtained by a somewhat
different argument. 18 These Fourier components have recently been

shown to give excellent agreement with the quantum matrix elements for

34,40 40,41

Morse and other oscillators. Using HF Morse parameters7a and a
linear dipole approximation, values of <n,,+1|r |n;> and #(7,,) are com-

pared in Table I.



Tl

b) Two-photon absorption

The semiclassical two-photon Rabi frequency is given by eq 24b as
(E )%/ 2wlx. For this case, f is the fundamental Fourier component of
the dipole moment function evaluated at the mean action
In = (8ny, + 3)/ 2 for the two-photon transition between the Morse states
|y > and |n, +2>. It is clear that the semiclassical two-photon Rabi ire-
quency has the proper dependence on the field strength42 unlike a previ-
ous semiclassical s’c,udy.18 Moreover, this quantity is inversely dependent
on wly, reflecting the detuning of the two-photon resonance by the Morse

anharmonicity.

To demonstrate the correspondence of the semiclassical Rabi fre-
quency with the quantum result, the quantum two-photon coupling ele-
ment V® is examined. This coupling term for the resonant field fre-

quency 2w = Gp s where n,, = n,, + 2, and for large N is given by43

V@ = EF Zf<nm+2|ﬁlp ><p | |1y, >

7 ; (31)

- W~ Ypny,

with E, being a constant. Using the resonance condition (eq 23) and not-
ing that the term with <n,, +2|G|ny, +1><ny +1|G| "y, > is the dominant
contribution to the sum over Morse states |[p >,'9‘4 the quantum two-

photon Rabi frequency is given approximately by

W

2
2| VR ~ 2E° Ny +R| A Mg +1>< 1 + 1| B 1 > . (32)
X

From eqs 24b and 32, the agreement between the semiclassical and quan-

tum Rabi frequencies is expected to be good if

[B (T) P > < 42| 2| 7 + 1> < + 1| B > (33)
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A comparison of these two quantities for HF and a linear dipole approxi-

mation is given in Table II.

Adaptation to a Polyatomic Molecule

For a non-rotating polyatomic molecule in a radiation field, it is

assumed that the Hamiltonian may be written as

H=HI)+ Ijw—Eqgu(l 0)cos 6, . (34)

Here, I; aﬁd @ refer to the radiation field as before, and the (1,8) form
a set of "good" action-angle variables describing perhaps Morse-like
vibrational modes with no internal resonances.'®!® These variables may
be obtained, for instance, by perturbative or other approximate methods.
If there is a resonance between the field and some vibrational frequency
Wy, = 8H,/ 8l,, of the molecule, J,, being the m® action with conjugate
angle &,,, then the angle variable 8m — 67 becomes a "slow" angle. If the
Hamiltonian H in eq 34 is averaged over all molecular angle variables 6;
except 8, and if H, can be expanded in a Taylor series in /[, about

Im = 0, one obtains

H=Hp(Up IV + Ifo— Equll,6p)cos 6; + H(I') (35)
where H,(I') is a constant term for the set of actions I’ excluding I, . If
H,, is truncated at a quadratic function of I, (which may depend on I ),

the Hamiltonian in eq 35 has the form of eq 2, but w% now denotes

(8Ho/ 81) 1 =0 and wlhy denotes %(8%H,/ 815);, =o-

Discussion

A semiclassical treatment of one- and two-photon absorption by a
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Morse oscillator has been presented in this paper that has a direct
correspondence with the quantum mechanical dressed state approach.
The use of the Mathieu function uniform approximation allows one to cal-
culate the Rabi and resonant excitation frequencies directly from egs 23 -
24b without the use of a multistate matrix treatment. For this reason,
the present uniform semiclassical method is useful for characterizing
multiphoton absorption processes in a simple way. In addition, it has
been noted!® that, for realistic laser intensities (< 1 TW/cm?), two-photon
absorption may correspond to a non-classical path. (More specifically,
classical calculations® have shown no two-photon absorption). This fact
indicates the usefulness of an appropriate uniformization procedure to
treat such a process purely semiclassically, for such a uniform approxi-

mation permits quantum mechanical tunneling.

It has been noted'® that the solutions of the Mathieu equation (eq 16)
contain contributions from unphysical "states” corresponding to negative
quantum numbers. This problem arises whenever primitive semiclassical
wavefunctions in an (approximate) action-angle represen’c‘a't,ionz2 are
used. In the case of an oscillator, one usually omits, by fiat, states with
negative principal quantum numbers. In the present case, however, these
"states” are distant in energy and found not to have a significant contri-
bution. A similar situation would occur in other uses of Mathieu functions,

e.g., in a description of molecular Fermi resonances.?’

The uniform semiclassical technique presented in this paper is not

applicable in the regime of overlapping classical resonances'®!719:20

and/or overlapping avoided crossings (e.g., ref 20). When there are over-

lapping classical resonances, the dynamics are thought to be chaotic

15-17,19,20

classically, and, when there are overlapping avoided crossings,
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the system may in some sense be regarded as quantum mechanically
chaotic (e.g., ref 20). One could use, however, a multilevel semiclassical

matrix treatment'® when a simple two-level treatment is not applicable.

The uniform semiclassical method allows one to calculate the absorp-
tion probabilities using the Fourier components of the dipole moment
function, some of which exist in analytic form.*%*% In some cases, this
may be preferable to calculating the more complicated quantum dipole
matrix elements for the Morse oscillator.*® When not determined analyti-
cally, the Fourier components for any general dipole moment function
may be found numerically by integrating a classical trajectory with the

appropriate mean action as an initial condition and then calculating the

power spectrum of u(t).34147
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Appendix: An Alternative Semiclassical Approach

It has been noted!!!® that the ’r.ime—indepe:nden‘r.23 and time-
dependent, classical radiation field® formulations of the molecule-field
Hamiltonian are equivalent when the number of photons N is large. For
completeness, we derive here the semiclassical Schrodinger equation (eq
13) starting from the time-dependent, classical radiation field point of
view.

The time-dependent Hamiltonian for the interaction of a Morse oscil-

lator with a classical radiation field is given by9
H(rp,t)= Hy,(rp) - Eu(r)cos ot (A1)

where H,,(r p) is the Morse oscillator Hamiltonian in terms of the dis-
_placement coordinate r and its conjugate momentum p. Written in Morse

oscillator action-angle variables (I’mﬁm),25 eq Al becomes
H{lp,Omt) = Ipwd — 1200y — Equ(lm,Bm )cos wt . (A2)

The formulation of the resonance Hamiltonian for the 1:1 resonance
is performed in two steps. First, the V = —E u(l,,,6,,)cos wt perturba-
tion term is expanded in a Fourier series in &,,; the result is expressed in
terms of the "slow" angle variable 8, — wé and averaged over all remain-
ing functions of &,,. Second, the time-dependent canonical transforma-
tion

Io = 2In, 20 = 0 — wt + 6 (A3)

is introduced to yield a new set of action-angle variables (/,,a) appropri-
ate for the 1:1 resonance. This transformation is generated by the Fg-

type generating function (e.g., ref 18 and ref 26, p.383)

Fa=14(6pm —wt +6)/2 (A4)
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and thus gives the new Hamiltonian K from the expression

K =H(Igot)+ 8Fs/ 0t . (A5)

The new Hamiltonian X now given by

K =140l —w)/2-12w0x/ 4 — V,cos 2a (A8)

where V, is the same as in eq 11 of the text. Using the definitions of (I and

x' given previously, the resonance Hamiltonian is written as
Hp = —K = wlx 1% —I,Q + V,cos 2a , (A7)

which is identical to eq 9 of the text minus the constant /gw term. Gray
has obtained a very similar, but not identical (because of the use of a

slightly different canonical transformation), resonance Hamiltonian.

As in the texi, introduction of the semiclassical action operator
(i/4)d/da + 1 into eq A7 yields eq 13. As a result, both the time-
dependent, classical radiation field and time-independent formulations
yield the same uniform semiclassical Mathieu equation and hence the

same semiclassical resonant and Rabi frequencies.

The direct correspondence of the time-independent semiclassical
formulation with the quantum dressed state theory is presented in the
text. The time-dependent, classical radiation field Hamiltonian (A1) may
be converted to a time-independent Floquet matrix®® that is formally
equivalent49’5o to the quantum dressed state matrix when N is large. The
language of avoided crossings may then be used in relation to the so-

called quasi«energies50 of this Floquet matrix.



=80=

References

(1)

(2)

(3)

(4)

(5)

(6)

(7)

E.g., C. Cohen-Tannoudji, in "Frontiers in Laser Spectroscopy”,

North-Holland, Amsterdam, 1977, p. 14.

W.K. Bischel, PJ. Kelly, and C.K. Rhodes, Phys. Fev. Lett., 34 , 300
(1975).

D. Proch and H. Schroder, Chem. Phys. Lett., 61 , 426 (1979).

See, for instance, R.V. Ambartzumian and V.S. Letokhov, Acc. Chem.
Res., 10, 81 (1977).

J.V. Tietz and S.I. Chu, Chem. Phys. Lett., 101, 446 (1983).

(a) For a theoretical study of HDO and related molecules, see J.S.
Hutchinson, E.L. Sibert III, and J.T. Hynes, J. Chem. Phys., 81, 1314
(1984); (b) L. Halonen and M.S. Child, J. Chem. Phys., 79, 4355 (1983);
G. A. Voth, R. A. Marcus, and A. H. Zewail, J. Chem. Phys., 81, 5494

fann s

(1984); J. W. Perry, D. J. Moll, A. Kuppermann, and A. H. Zewail, J.

Chem. Phys., 82, 1195 (1985).

(a) R.B. Walker and R.K. Preston, J. Chem. Phys., 67, 2017 (1977); (b)
F.V. Bunkin and L.I. Turgov, Phys. Rev. 4, 8, 6801 (1973); V.E. Merchant
and N.R. Isenor, /EEE J. Quan. Elec., 12 , 603 (1978); F.H.M. Faisal,
Nuovo Cim. B, 33, 776 (1976); L.M. Narducci, S.S. Mitra, R.A. Shatas,
and C.A. Coulter, Phys. Rev. 4, 16 , 247 (1977), 1. Schek and J.
Jortner, Chem. Phys. Lett., 63 , 5 (1979); I. Schek, M.L. Sage, and J.
Jortner, ibid., 63 , 230 (1979); . Schek, J. Jortner, and M.L. Sage,
Chem. Phys., 59 , 11 (1981); S.C. Leasure and R. E. Wyatt, Chem.



(8)

(9)

-81-

Phys. Lett., 61 , 625 (1979); Opt. Eng., 19, 46 (1980); J. Chern. Phys.,
73 , 4439 (1980); S.C. Leasure, K. Milfield and R.E. Wyatt, ibid., 74 ,
6197 (1981); J.V. Moloney and F.H.M Faisal, J. Phys. B, 12 , 2829
(1979); S.I. Chu, J.V. Tietz, and K.K. Datta, J. Chem. Phys., 77 , 2968
(1982); T.S. Ho and S.I. Chu, J. Chem. Phys., 79, 4708 (1983); D.C.
Clary, Mol. Phys., 46 , 1099 (1982); S. Leasure, Chemn. Phys., 67, 83
(1982); K.B. Whaley and J.C. Light, Phys. Rev. 4, 29 , 1188 (1984);
C.A.S. Lima and L.C.M. Miranda, J. Phys. Chem., 88, 3079 (1984).

P.S. Dardi and S.K. Gray, J. Chemn. Phys., 77, 1345 (1982); 80, 4738
(1984). "

"Quantum mechanical” refers in refs 7 and 8 to the treatment of the
molecular system. A standard approach, sometimes called “semiclas-
sical”, treats the field as a classical oscillator (i.e., with a well defined
phase and amplitude) and the molecule quantum mechanically. A
quantum mechanical time-dependent Hamiltonian is thus used
including a driving term wF cos wi to describe the effect of the field
on the molecule (e.g., ref 32, p. 43). This treatment is known to be an
excellent approximation when the number of photons in the field is
Iarge.li'lz’az We shall refer to this as the "time-dependent, classical

radiation field"” formulation.

(10)J. Lin, Phys. Lett., 70A, 195 (1979); K.M. Christoffel and J.M. Bowman,

J. Phys. Chemn., 85, 2159 (1981).

(11)J.R. Stine and D.W. Noid, J. Phys. Chemn., 86 , 3733 (1982); D.W. Noid

and J.R. Stine, Chem. Phys. Lett., 65, 153 (1979).



-89
(12)M.J. Davis and R.E. Wyatt, Chem. Phys. Lett., 86, 235 (1982).

(13)R.B. Shirts and T.F. Davis, J. Phys. Chem., 88, 4665 (1984). This paper
also contains an independent derivation of a similar 1:1 classical
resonance Hamiltonian to that given by eq 10 of the text. We are

indebted to the authors for a preprint of their article.
(14)S.K. Gray, Chem. Phys., 75, 67 (1983).

(15)B.V. Chirikov, Phys. Repls., 52 , 263 (1979), and references cited

therein.
(16} E.V. Shuryak, Sov. Phys. JETP, 44, 1070 (19786).

(17)G.M. Zaslavsky, Phys. Repts., 80 , 157 (1981), and references cited

therein.
(18) S.K. Gray, Chem. Phys., 83, 125 (1984).

(19) G.H. Walker and J. Ford, Phys. Rev., 188, 416 (1969); For reviews, see
E.F. Jaeger and A.J. Lichtenberg, 4nn. Phys. N.Y,, 71, 319 (1972); M.
Tabor, Adv. Chem. Phys., 46, 73 (1981); P. Brumer, Adv. Chem. Phys.,
47, 201 (1981).

(P0)R.A. Marcus, 4nn. N.Y. Acad. Sci., 357, 169 (1980).
(21)T. Uzer, D.W. Noid, and R.A. Marcus, J. Chem. Phys., 79, 4412 (1983).

(22) R.A. Marcus, Chem. Phys. Lett., 7, 525 (1970).



=8 3=

(R3)E.T. Jaynes, in "Coherence and Quantum Optics”, L. Mandel and E.
Wolf, Eds., Plenum, New York, 1973; M.D. Crisp and E.T. Jaynes, Phys.
FRev. 4, 179, 1253 (1969); W.H. Miller, J. Chem. Phys., 69, 2188 (1978).

(24)P.M. Morse, Phys. Rev., 34, 57 (1929).

(25) A canonical transformation to Morse oscillator action-angle variables,
with the action defined semiclassically, for i=1, as [, — 1/2, is

given by C.C. Rankin and W.H. Miller, J. Chern. Phys., §5, 3150 (1971).

(26)H. Goldstein, "Classical Mechanics”, Addison-Wesley, Reading, Mass.,

1980, p. 457.

(27) G. A. Voth and R. A. Marcus, J. Chem. Phys., 82, 4064 (1985).

(2B) N.W. McLachlan, "Theory and Applications of Mathieu Functions",
Clarendon, Oxford, 1947.

(29)M. Abramowitz and I.A. Stegun, Eds., “Handbook of Mathematical
Functions”, Dover, New York, 1965, Chap. 20.

(30) Since a general solution®® to the zeroth order Mathieu equation (i.e.,
with g =0) is ~ e*¥®, the zeroth order wavefunction in the angle a may

be written from eq 15 as ~ e*=1*¥)a The zeroth order primitive

ila=Da _ 2 (K)o

2 is also ~e =

semiclassical wavefunction , SO com-

parison of the two zeroth order wavefunctions yields v = 2I,, — ¢ for the

order of the Mathieu equation.28:29

(31) The zero point energy of the field mode is not written explicitly here

since N > %. For a photon energy of ~ 1000 cm™, the photon densi-



~84 -

ties for laser intensities 1 GW/cm® and 1 TW/cm? are ~ 10!8

photons/cm?® and ~ 10?! photons/cm?, respectively.

(32) R. Loudon, "Quantum Theory of Light"”, Clarendon, Oxford, 1973, Chap.
7.

(33)E.g., -C. Cohen-Tannoudji, B. Diu, and F. Laloe, "Quantum Mechanics
Vol. I", Wiley, N.Y,, 1977, Chap. IV.

(34) M.L. Koszykowski, D.W. Noid, and R.A. Marcus, J. Phys. Chem., 86 ,

2113 (1882); J.R. Stine and D.W. Noid, J. Chem. Phys., 78, 1876 (1983).

(35)For HF Morse paramet.ers7a and a laser intensity of 1 T'W/cm2,18 the
expansions for @, and b, in ref 28, p. 16, are found to be rapidly con-

vergent.

(36) This matrix is defined as the matrix representation of the Hamil-
tonian (1) using the quantum “dressed state" basis? |p.j>, where
|p> and |j> denote a Morse oscillator eigenstate with quantum
number p and a harmonic oscillator photon state with occupation

number j, respectively.

(37) The Van Vleck transformation is given, for example, in J.E. Wollrab,
"Rotational Spectra and Molecular Structure', Academic Press, New
York, 1967, Appendix 7. In the matrix (29), the diagonal self energy
corrections for the typical Morse oscillator had a negligible effect on
the resonant excitation frequencies for the system treated and have
been neglected (e.g., for a laser intensity of 1 TW/cm? the one- and
two-photon peaks for HF show virtually no shifts from the expected

zero-order Morse oscillator resonant excitation freque:nci.es8 ).



=85~

(38) For the perturbation V = —(4me?/ V. )#u(r)@ in eq 1, the quantum
one- and two-photon matrix elements are given at resonance by

v) = <n,,,N|V|n,, N+1> and

¥

V@ = ZZ <P N1 VP 5 ><p | Vinm N+2>

~ & (N+2-jlo = wpn
respectively. The summations in the latter case are over the photon
states |7 > and Morse oscillator states |p >, excluding those appearing
in the diagonal elements of eq 28. The equality at resonance

2w = W has been used here to simplify the expression for V® in

ref 37. For the general case of the field tuned slightly off-resonance
- 2 PP

from the two-photon transition frequency D V@ ig given by the

above expression with an added multiplicative factor

(dpj + A/2)/(dpj + A), where dp; is the denominator term from above, and

A is identified as wpr_p,, — 2w.

(39) From footnote 38, 4% is given by
~(4meR/ V. R<no, | 1| nm ><N | Q| N+1>. Using harmonic oscillator
selection rules for the field mode, this expression reduces to
—(Br(N+1)e/ V, Yocnm,, | | ma, >/ 2. Since N >> 1 and N equals Iy, v
may be written as —E <n,, |u|n,, >/ 2, where E, = (Bnl; 0/ V., )% as in
the text.

(40) D.M. Wardlaw, (private communication).

(41)D.M Wardlaw, D.W. Noid, and R.A. Marcus, J. Phys. Chem., 88 , 536
(1984).



~86~

(42)E.g., T. Oka and T. Shimizu, Phys. Rev. 4, 2, 587 (1970), and refer-

ences cited therein.

(43)From footnote 38, the summation over the field states |j> in the
expression for V® has only one non-zero term (ie., for
|j> = |N+1>). Since each numerator term reduces to
EZ<n,, |ulp><p |ulng,>/4 (cf. footnote 39), the summation is then
given by eq 31.

(44)Including only the nearly resonant term for the dressed state
| 7% +1,N+1> (cf. footnote 36) is similar to making the rotating wave
approximation (RWA). For a discussion of the usual RWA, see ref 48
below. A discussion of the RWA in relation to dressed state theory is
given in ref 1, p. 18. Using the parameters for HF given in ref 7a and a
laser intensity of 1 TW/cm?, the neglected terms in the summation (eq

31) were found to contribute less than 5% to the Rabi frequency.

{(45)1.E. Sazonov and N.I. Zhirnov, Opt. Specirosc., 34 , 254 (1973); R.H.

Tipping, J. Mol. Spec., 53, 402 (1974).

(46) M.L. Sage, Chem. Phys., 35, 375 (1978); J.A.C. Gallas, Phys. Rev. 4, 21,
1829 (1980).

(47)D.W. Noid, M.L. Koszykowski, and R.A. Marcus, J. Chem. Phys., 67, 404
(1977).

(48)M. Sargent, M.0. Scully, and W.E. Lamb, "Laser Physics", Addison-
Wesley, Reading, Mass., 1974, p. 18; M. Quack, J. Chem. Phys., 69 ,
1282 (1978).



-87 =

(49) J.H. Shirley, Phys. Rev., 138, 979 (1965); "Interaction of a Quantum
System with a Strong Oscillating Field”, Ph.D Thesis, California Insti-
tute of Technology, Pasadena, California, 1963.

(50} M.J. Davis, R.E. Wyatt, and C. Leforestier in "Intramolecular Dynam-
ics"”, J. Jortner and B. Pullman, Eds., Reidel, Dordrecht, 1982, p. 403.



-88~

TABLE I: Quantum (n, + 1|7’|"m> vs. Semiclassical?(fm)

", Q (a.u.) SC (a.u.)
0 0.1246 0.1246
1 0.1781 ~ 0.1781
2 0. 2205 0. 2205
3 0. 2575 0. 2576
4 0. 2912 0. 2913
5

0. 3228 0. 3229
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TABLE II: Quantum (n,, + 2l bz, + 1)0,,+ 1|7 |n,,) vs. Semiclassical [7(T,)]*

n,, Q(a.u) SC (a.u.)
0 0.0222 - 0. 0235
i 0. 0393 0. 0401
2 0. 0568 0. 0574
3 0. 0750 0. 0755
4 0. 0940 0. 0945
5 0.1139 0.1143
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Figure 1. A semiclassical two-photon avoided crossing of the dressed
states [O,N+2> and |2,N>. The resonant excitation frequency

wao/ 2 = 3879 cm™! is indicated by the location of the avoided crossing.
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Chapter 5: Adiabatically Reduced Coupled Equations for Intramolecular
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“Adiabatically reduced” coupled equations are derived to obtain an approximate quantum
mechanical solution for the dynamics of nonstationary states in isolated polyatomic molecules.
Under suitable conditions, the number of such equations is considerably less than the number of
coupled equations needed in practice for the exact calculation. The relationship of the present
technique to several other methods, including the partitioning method, is discussed, and specific

applications of the present treatment are given.

i. INTRODUCTION

In recent years, there has been much experimental and
theoretical interest in the quantum dynamics of initially pre-
pared nonstationary vibronic, " rovibronic, rovibrational,*
and vibrational®'% states in isolated polyatomic molecules.
The richness of the underlying dynamics is evident, e.g., in
recent experimental results on the evolution of initially pre-
pared vibronic states in anthracene.”® In these experiments,
periodic few-state quantum evolution or “beating” was ob-
served at low excess energies, and dissipative!” intramolecu-
lar vibrational energy redistribution (IVR) was detected at
higher energies.

Theoretjcally, the exact treatment of the dynamical evo-
lution of initially prepared zeroth-order states is, in princi-
ple, straightforward (e.g., Refs. 1~16). In practice, it is
usually quite difficult or not computationally feasible due to
the large number of states in a typical molecule.'® For this
reason, a variety of approximate or phenomenological meth-
ods have been devised to treat these problems, ranging from
few-level treatments for sparse level densities (e.g., Ref. 7)
to Bixon~Joriner-like models'® for large level densities. In
general, it is often assumed that any zeroth-order states cou-
pled weakly to and/or reasonably off-resonant from the ini-
tially prepared state do not significantly affect the subse-
quent evolution of that initial state (e.g., Refs. 12 and 14).
An important exception to this situation is when the weakly
coupled states provide the only coupling pathway of the ini-
tial state to other resonant states.'>?® This latter effect,
which has been discussed only recently within the context of
IVR, ' has also been suggested as being particularly im-
portant in the direct multiphoton excitation of few-level
quantum systems (e.g., Ref. 21). Model calculations, given
below, also show that weakly coupled/off-resonant
states™® can have an important effect on the dynamical
evolution of initially prepared states even when there is di-
rect coupling to resonant or nearly resonant states.

. With the advent of increasingly high resolution spec-
troscopy and real-time experiments such as those in Refs. 7
and 8, the usefulness of detailed and accurate dynamical cal-
culations is apparent. In Sec. II, reduced coupled equations
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are derived that allow one to solve for the dynamics of a
strongly coupled and/or resonant subset of states that in-
cludes the initial state. In suitable circumstances, this treat-
ment considerably reduces the number of coupled equations
needed in a typical calculation by using an effective Hamil-
tonian. The relationship of this effective Hamiltonian to
those obtained by several existing techniques is discussed in
Sec. III, and the theory is applied in Sec. IV to some model
systems. A discussion of the results is given in Sec. V, along
with concluding remarks in Sec. VI.

H. THEORY: ADIABATICALLY REDUCED COUPLED
EQUATIONS : '

The general solution |¥(r)) of the time-dependent
Schrédinger equation may be written in terms of a time-
dependent phase factor and a new function |¢(z)) (with
A=1)

[W(2}) = |¢(r))exp{ — i H)1), 2.1

where ( H ) is the time-independent mean energy of the non-
stationary state given by ’

(H) = (¥()|H¥(@®). 2.2)
This separation of the phase factor exp( — i{ H )¢) from the
time-dependent wave function represents a type of interac-
tion representation for a nonstationary state in which the
phase due to the mean energy of the initial state is removed
from |¥(£)). If the second time-dependent factor |(¢)) is
then expanded in terms of some orthonormal zeroth-order
basis as

N
() =¥ b,(Dl@), (2.3)
i=1 )
the following coupled equations are obtained:
db; (¢ N
1 () =i(H)bj(t)_i2 b () H). (2.4)

dt =1
In Eq. (2.4), the coefficients b, (¢) are the time-dependent
amplitudes of the zeroth-order states |@,), H, equals the
matrix element {@;|H |@;) of the total Hamiltonian H
= H, + ¥, and |@,) is an eigenstate of H,. The usefulness of
a coupled equations approach for determining the dynamics
of nonstationary states has been discussed recently.'>" In
particular, it allows the inclusion of more basis states in the

© 1986 American Institute of Physics



calculations because an internal computer storage of large
matrices is not required. In addition, the dynamics of the
zeroth-order states are obtained directly from the ampli-
tudes b; (¢) rather than from an expansion in terms of the
eigenstates and eigenvectors of the total Hamiltonian, the
latter usually being obtained by a previous matrix diagonali-
zation.'®

It is now assumed that the complete set of zeroth-order
states may usefully be partitioned into a set {lg,)}
(j = L,..,n) of states nearly resonant {(and/or strongly in-
teracting), a linear combination of which constitutes the ini-
tial state, and into a set {|g,)} (k=n+ 1,..,n +m) of
states off-resonant and/or weakly coupled®® to the mani-
fold {|@;)}. (In the simplest case, the initial state is one of
the |@,;)’s.) The coupled equations for the two sets of states
may be written in vector-matrix notation as

d

dt

bR(2) = i({ H)IF — HO)BR (1) — iVERO(2) (2.5)

and
%b"(t) = i(( H)I® — HOb%(¢) — iVRR(r), (2.6)

where 5%(¢) [b°(¢)] is an 7 (m)-dimensional column vector
containing the amplitudes for the resonant (off-resonant)
states, { H)I? (( H)1°yisann X n (m X m) diagonal matrix
with the elements { H)8,., H® (H®) is the nXn (mXxXm)
Hamiltonian matrix for the resonant (off-resonant) states,?
and VR® (V°®) is an n X m (m X n) matrix composed of the
coupling matrix elements (@, |V |@.) ({@.|¥ |@,)) between
the two manifolds {|@;)} and {lg.)} (j=1,..m k=n
+ 1,...,n2 + m). The summation limit ¥ in Eq. (2.4) equals
n 4 m.

If the off-resonant/weakly coupled amplitudes b°(¢) re-
main negligible in magnitude throughout the course of the
dynamics, then the derivative in Eq. (2.6) satisfies

-‘ibo(t)zo‘ 2.7y
dt
Specifically, it is intended that Eq. (2.7) be valid over any
relevant time scale of interest [e.g., for some fraction of time
needed for an appreciable change in the resonant amplitudes
BR(#) to occur]. Thatis, db°(#)/dt is, on the average, zeroon
this time scale.”*® This approximation is similar in spirit to
those sometimes used in this study of the dynamics of direct
multiphoton absorption by multilevel quantum mechanical
systems.?* Itis also similar to the steady-state approximation
used in solving reaction rate equations in chemical kinetics.
By virtue of Egs. (2.6) and (2.7), the amplitudes b°(¢)
may be solved for in terms of the amplitudes b () provided
the matrix ({ H )I° — H°) is nonsingular. One thereby ob-

tains
B%(8) = (( H)I° — H®) ~'VORbR(1). (2.8)

From Egs. (2.5) and (2.8), the reduced coupled equations
for the desired amplitudes b®(¢) are thus given by
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4

bR(t
7 )

= i[( H)F - HF — VRO((H)HI® —~ H®) ~'VR bR (2).
(2.9)

Equation (2.9) is expected to provide an accurate ap-
proximation to the true dynamics of the manifold of states
{lg,>} (j = 1L,...n) provided the amplitudes b°(1), as deter-
mined by the exact dynamics, remain small. When the ap-
proximate dynamics are obtained by integrating the reduced
coupled equations in Eq. (2.9), an a posteriori error estimate
may be obtained by calculating b°(z) via Eg. (2.8) [ie, the
elements of b(¢) obtained in this way should remain small].
The amplitudes b°(¢) are clearly small, for instance, if all of
the elements of the matrix (( H )I® — H®) ! are small. In
some cases, such a condition may be too restrictive because
sign variations in these elements, as well as in V°® and b* (1),
may lead to some cancellation.

The reduced coupled equations [Eq. {2.9)] have a par-
ticularly simple form: when there is no coupling among the
states in the off-resonant manifold {|@, ) }. This would be the
case, for instance, if the manifold {|@,)} (k=n + L,..,.N)
had been prediagonalized. In that case, the matrix elements
[({HI® — H®) "', equal (( H) — Hy,) ™ '8, ,and the
reduced coupled equations for the {|g,) } states are given by

db; (1)
de

= i( H)bj(t)

n N V., V..
-1 H, + — )bi(t)'
i;x( / k=n+l<H>’Hkk

(2.10)

If the strongly coupled manifold of states {|g;)} is
weakly and smoothly coupled to a quasicontinuous back-
ground of states in the {|@, ) } manifold, the summation over
the |@, ) states in Eq. (2.10) may be approximated by an
integral:

d Vie Vii

e (H) — H
where

)=V, (M) ¥V, (A)/A, (2.12)

and the integration limits A_;, to A_,, span the range of
energy differences A=( H) — H,,. Equations (2.11) and
(2.12) lead to a dependence of the coupled equations for the
{|@, >} manifold on the density p(A) of |@, ) states. Thus, in
addition to the possible “dissipative” effect of a background
quasicontinuum states,'” the {|@;)} states can also exper-
ience this added dynamical effect. In the quantum beats
found experimentally in anthracene,”® the simple dynamics
observed between the two or three vibronic levels may be due
either to a very weak, nondissipative interaction with the
background quasicontinuum of states, or to a direct coupling
of those few “‘relevant” levels to each other, or to both.

In related treatments,”* a reduction of the original cou-
pled equations [e.g., Eq. (2.4)] to new equations in some
subspace has sometimes been called “adiabatic elimination”
or “adiabatic following.” The adiabatic connotation in the
present coniext is that the perturbation due to the off-reso-

Amax
=f p(A) A(A)A,  (211)
Amin
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nant states has distorted the subspace of interest, but its di-
mension (characterized by a set of quantum numbers) re-
mains intact. When the interaction representation given by
Eq. (2.1) is used, the dynamics describing the coupling of
the “resonant’ subspace, which includes the initial state, to
the off-resonant states involves large energy differences and
hence large frequencies relative those characterizing that
resonant subspace. In this general way, the separation and
reduction of the coupled equations can be termed an adiaba-
tic reduction.

In the next section the relationship of the present meth-
od to several existing quantum mechanical methods is dis-
cussed. For brevity, we have not included a discussion of the
many useful semiclassical techniques that are present in the
literature.

Hi. RELATIONSHIP TO OTHER QUANTUM
TECHNIQUES

A. Partitioning methods

In order to relate the formalism of Sec. IT to Hamilton-
ian matrix partitioning methods, the solution of the coupled
differential equations in Eq. (2.9) is written as

bR(t) = Uexp( — AR )UBR(0), 3.1
where
exp( — A% 1) = Ut exp( — HE nU. (3.2)

In Eq. (3.2), HY is the effective Hamiltonian matrix for the’

{resonant) {|,)} manifold given from Eq. (2.9) by
HE =H + VRO(H)P ~H) T 'VR — (H)I?, (33)

and U and A® are, respectively, the unitary matrix of eigen-
vectors and the diagonal matrix of eigenvalues of HY;.

Several partitioning methods have been used to solve the
matrix-eigenvalue problem for the time-independent Schro-
dinger equation (e.g., Refs. 25-27). It was shown® how a
finite-dimensional Hamiltonian matrix can be formally par-
titioned into a new Hamiltonian for a particular subspace of
interest (here, the resonant manifold {|g,)}). For the prob-
lem discussed in Sec. II, the exact partitioned Hamiltonian
would be?® )

HR, . =HF + VROUEP . H%) ~ VR 3.4
In an exact treatment of the eigenvalue problem, the secular
equation

det/HR,, — EIf| =0 (3.5)
R

is then solved for the eigenvalues A%, . Since the expression
for HE,., [Eq. (3.4)] involves the matrix £1° the solution
for the roots 4, of Eq. (3.5) is still a complicated problem,
although the reduced dimension of the secular determinant
may be helpful. As a result, a number of related iterative and
perturbative schemes have been devised?>2"*° to simplify
the solution of Eq. (3.5). For a nondegenerate energy level,
the matrix HZ ., has one element and these methods are
potentially quite powerful, while for degenerate or nearly
degenerate levels, approximate approaches based on Eqgs.
(3.4) and (3.5) are more difficult and have met with varying
degrees of success (cf. discussion in Refs. 27 and 30).

The method developed in the present paper amounts to
defining an effective Hamiltonian by replacing the matrix
EPinEq. (3.4) by the constant matrix { A )I°. This method
yields eigenvalues for the {|g, ) } manifold which depend on
( H) and hence the initial nonstationary state. The correct

“eigenvalues are, of course, independent of the initial condi-

tions. The present choice of { H ) in Eq. (3.3) arose from a
dynamical, rather than a static, analysis and provides an ap-
proximate or “average’” representation of the exact eigenso-
lutions of Eq. (3.5). The dynamics of the initial state are thus
obtained using an effective Hamiltonian [Eq. (3.3)] rather
than by performing an accurate determination of the roots of
Eq. (3.5). Theeffective Hamiltonian given by Eq. (3.3) may
not, therefore, be the method of choice when the primary
purpose is to obtain highly accurate eigenvalues of the exact
Hamiltonian [Eq. (3.5)]. However, it is useful in obtaining
approximate, and simplified, solutions for the dynamics.

The above partitioning formalism [Egs. (3.3)-(3.5) ] is
also closely related 1o a resolvent plus projection operator
treatment of the dynamics.?! For this purpose, it is useful to
introduce here the projection operators for the {|@;)} and
{|@, )} manifolds:

" N
P=_zl @) @l Q=k z @) (@l

=n+1

(3.6)

These projection operators have the usual properties that
P2(Q?) equals P(Q) and that PQ(QP) equals zero. Using
N X N matrix representations P and Q of these operators in
the zeroth-order basis, where the elements of P for j > 7 and
of Q for k < n + 1 are all zeros, the coupled equations in Eq.
(2.9) for the states spanned by the operator P may be written
as

d
—Pb(t) =1
7 (t) = i{ H)Pb(z)

—iP[H+ YQ(( H )1 - QHQ)'QV]IPb(r), (3.7)

where V is the cotipling matrix, and all matrices are N-di-
mensional. By inspection of Eq. (3.7), it is seen that the
dynamics of the amplitudes Ph(¢) are determined by the
effective Hamiltonian?

H,=P[H+VQ({ H)I-QHQ) 'QV — (H)]P.
(3.8)

We next compare this result with that based on the re-
solvent operator. Using an earlier partitioning formal-
ism,%%3? the amplitudes Ph(¢) for the exact problem have
been expressed®! in terms of a projection of the resolvent
operator. These exact amplitudes b, (¢) are given in terms of

the resolvent operator G(E) by>!

b= [ dEe = (g IPCEPIR), ()
2mi Je

where the integration contour C runs from + o t0 —

and is infinitesimally above the real energy axis where the

singularities in G(E) occur; |@,) is taken here as the initial

state. The partitioned resolvent operator PG(E)P for the

amplitudes of the {|g,; ) } states may be written as’'

PG(E)P = [E ~ PH,P— PR(E)P]"'P, (3.10)
where H, is the zeroth-order Hamiltonian, and R (E) is de-
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31,33

fined as the level shift operator, given by

R(E)=V + VQ(E — QHQ)~'QV.

Equations (3.9)-(3.11) provide an exact expression for the
amplitudes of the states spanned by the projector P. In this
formalism, the operator R(E) in Eqgs. (3.10) and (3.11) is
responsible for the shifts and couplings of the energy levelsin
the {|@,}} manifold, including the contributions from the
off-resonant {|@, ) } states. A number of authors [e.g., Refs.
1(a) and 1{c), and references therein] have used this for-
malism to describe formally the competing radiationless and
radiative decay dynamics of initially prepared vibronic
states in polyatomic molecules.’* Several authors'(®-!-*?
have also discussed the smooth energy dependence of R(E)
when the projection operator P spans one'®»* or two®!
states. In addition, when P spans a number of states, it has
been suggested [Ref. 1(a), p. 86] that an effective resolvent
operator in Eq. (3.9) could be defined by treating R(E) as
an energy-independent operator evaluated at the average ze-
roth-order energy of those states in P. The perturbation the-
ory based on the projection operator approach (e.g., Ref. 33
and references cited therein) has also been further devel-
oped*’ using an iterative scheme and continued fractions.
The present approximation, given by Eq. (3.7), may be
written in terms of a resolvent operator formalism for the
effective Hamiltonian in Eq. (3.8). The approximate ampli-
tudes b, (¢) for the resonant states are thereby given by

(3.11)

b1y == [ dEe=1E= 0 (g 1PG L (EVP|@,), (3.12)
2t Je

where PG, ¢ (E)P is the effective resolvent operator for the P
space:

PG4 (E)P=[E—PH,P—PR({(H))P]~'P, (3.13)

and the { H) in the exponential term of Eq. (3.12) simply
describes a constant shift of the energy levels. The relation of
the approximation deveioped in Sec. II to this formalism is
clear: It simplifies the evaluation of the poles of the resolvent
operator in Eq. (3.9) by evaluating the level shift operator
R(E) at the mean energy of the nonstationary state
E = { H'} and hence making it energy independent.

The present approximation is also complimentary to a
recent method developed by Schultheis er al.3¢ These auth-
ors derive an approximate solution of the time-dependent
Schrédinger equation based on a partitioning of the Hamil-
tonian and a conversion of the exact Schrodinger equations
for the P and Q spaces into second order differential equa-
tions. Their method is accurate for short time solutions, in-
cluding those for problems in which the Q space dissipates
some probability from the P space (i.e., from the subspace of
interest). The method of the present paper, however, relies
on the fact that the Q space cannot dissipate the P space
probability because these two spaces are defined as being
detuned in energy from each other.?? The method of
Schultheis ef a/.> has been found useful in treating systems
where the perturbation acts for a small time duration and
where it may be desirable to have states in the P space which
are nearly degenerate with some states in the Q space. Such a
system was found, e.g., in heavy ion collisions.*®

B. Van Vieck-like approaches

As discussed by Killingbeck,”” the Van Vleck approach
to degenerate or nearly degenerate perturbation theory (e.g.,
Ref. 37) is based on transformation theory rather than parti-
tioning techniques. The usual procedure is to find a unitary
transformation of order n that block diagonalizes the Hamil-
tonian to order 7 and hence leaves an effective Hamiltonian
for the degenerate or nearly degenerate submatrix of inter-
est. To the extent that such a method is accurate, the effec-
tive Hamiltonian matrix for the resonant {|g, ) } states could
be used in Egs. (3.1) and (3.2) to determine the dynamics of
that subsystem of interest. However, as noted elsewhere,?
this approach relies on expansions in orders of a perturba-
tion parameter, whereas a partitioning approach based on
Eqgs. (3.3) or (3.4) does not. In particular examples having
strong couplings in the off-resonant manifold of states
{|@. )}, we have found that the Van Vleck treatment of the
dynamics gave qualitatively incorrect results for the initial
state probabilities in several model systems, whereas the ap-
proach developed in Sec. II and based on Eq. (2.9) contin-
ued to give accurate results.®

IV. APPLICATIONS

A. Coupled Morse oscillator systems: Local mode
evolution .

Recently, Hutchinson ez al.'’> have discussed the dy-
namics of two-degrees-of-freedom coupled Morse oscillator
systems. Of particular relevance to the present work is their
dynamical study of the quantum local mode states in these
systems in which they gave an approximate numerical solu-

He . W},%”W'&
S

Probability

0.0 e (px) 1o

FIG. 1. Local mode probabilities P, ; and P, as a function of time for the
10,3) and {3,0) zeroth-order coupled Morse oscillator states, respectively,
of Ref. 15. The exact results are given by the solid lines and the approximate
results based on Egs. (4.1) and (4.2) are given by the dashed lines. The
exact probabilities P, , and P, of the |2,1) and |1,2) zeroth-order states,
respectively, are shown for comparison with the local mode probabilities.
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FIG. 2. A schematic of the model system used in Sec. IV B. Dotted lines
represent the couplings between the zeroth-order states and |g,) is the ini-
tial state.

tion based on time-independent perturbation theory and a
truncated basis set. Equation (2.9) may be used to solve the
equations for the dynamics of the zeroth-order Morse oscil-
lator local mode states |0,n) ({n,0)), with 7 quanta initially
in one bond. For example, in the case of the |0,3) state, the
time-dependent probabilities of these states are given ana-
Iytically from Eq. (2.9) by

Py, (1) = cos?(Qe/2); Pyo (1) =sin®(Qe/2), (4.1)
where Py 5 (P;,) is the probability |5, (#)|* of being in the
10,3) (]3,0)) state, and the oscillation frequency (2 is given
by
Q=2[V,+ QV, VA + ViV, + VI V) /(A= VD) ].

(4.2)

In Eq (4.2), V), ¥, Vi, and ¥, equal (1,2|7]0,3),
(1,2|%12,1),{(2,1|¥{0,3),and (3,0| ¥ |0,3), respectively,and
A is the zeroth-order detuning between the states |0,3)
(]3,0) and |1,2) (|2,1)). The restricted number of basis
states used here are the same as those employed in the analy-
sis of Ref. 15, and the states |1,2) and |2,1) are treated in the
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formalism of Sec. II as the “off-resonant” {|@, ) } manifold.
For the values of the above mairix elements and A given in
Ref. 15, 2 is calculated to be 2.66 cm ~ !, whereas the exact
result'>'%* was reported to be 2.7 cm™'. A result for
based on time-independent perturbation theory is given ana-
lytlcally by15.39

Q=2[V,+ QV, VA + V3 V,)/A%] (4.3)

and equals 2.6 cm ™. In Fig. 1, the time dependence of the
exact (solid lines) and adiabatically reduced coupled equa-
tions (dashed lines) probabilities is shown, The probabilities
of the off-resonant |2,1) and |1,2) states are also shown for
comparison with the local mode |3,0) and |0,3) probabili-
ties. As is also discussed in Sec. II, it is seen from the P, , (¢)
[P,,(2)] plot in Fig. 1 that dP,, (¢)/dr, and hence db°(2)/
dt [Eq. (2.6) ], can oscillate quite rapidly in time but, on the
average, is equal to zero for the time scale of interest. As a
result, P,, (), and hence the magnitude of b°(2), remains
small throughout the course of the relevant dynamics.

B. Model calculations

Time-dependent calculations were performed for the
model 13-level system depicted schematically in Fig. 2. This
model is chosen to represent a physically reasonable few-
level quantum dynamical system in a polyatomic molecule.
Three levels were taken to be nearly degenerate and signifi-
cantly coupled to each other as well as to the initial state
(shown as |@,) in Fig. 2). Nine other levels were placed
randomly in a region 30-70 cn ™! above and below the four-
level subsystem. The elements of the Hamiltonian matrix H
used in the exact coupled equations [Eqgs. (2.4)] for this
system are given in Table I. Shown in Fig. 3 is the evolution
of the initial state probability |5, (¢)|” for the exact dynamics
(solid line), the adiabatically reduced coupled equations dy-
namics (dashed line), and the isolated (i.e., neglecting the
nine off-resonant states) four-state dynamics (dotted line).
In Fig. 4, the Fourier transform spectrum of the initial state
amplitude &,(#) is given. In addition, the evolution of the
|@,) state probability is shown in Fig. 5 for a somewhat dif-
ferent model system (cf. Table IT). This model was chosen

TABLE L. The Hamiltonian matrix H (in cm™') for the model system in Figs. 2 and 3.*

5\\j 1 2 ' 6 7 &8 9
1 6 2 0 0 -1 2 2 1 2
2 6 3 5 0 o 0 0 o
3 49 0 1 2 2 1 2
4 655 1 11z 1
5 2

6 13

7 15

8 24

9 99
10

1

12

13

10 11 12 13
1 1 3 3
0 0 0 0
1 2 3 i
3 3 2 i
i1
114
126

131

*H is a symmetric matrix.
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0.0 Time {px) 1260

FIG. 3. The |@,) zeroth-order state probability as a function of time for the
model system shown in Fig. 2 and given in Table I. The exact results are
given by the solid line, the results obtained using Eq. (2.9) by the dashed
line, and the results obtained by integrating the coupled equations [Eq.
(2.4)] for the four resonant states while neglecting the nine of-resonant
states are given by the dotted line.

so that the four states of interest are no longer nearly degen-
erate. In Fig. 6, the |@,) probability is shown for a model
system having the same couplings and zeroth-order energies
as in Table I but with an added diagonal perturbation term
¥, == 5.0 cm ™. Here, the solid line is the exact result, the

0.2

Amplitude

0.0

¥ T T T T T

56.2 7.7

Fnergy (em™")

FIG. 4. The Fourier transform spectrum of b, (¢) for the model system of
Figs. 2 and 3 and Table I. The labeling of the lines is the same as in Fig. 3.
For the two central peaks, the approximate results based on Eq. (2.9)
(dashed lines) essentially coincide with the exact resuits (solid lines) and
are hidden by the latter.

Probability

0.0

0.0 Time (ps)

FIG. 5. The |@,) zeroth-order state probability as a function of time for the
model system in Table II. The labeling of the lines is the same as in Fig. 3.

dashed line is the result calculated by integrating Eq. (2.9),
and the dotted line is now the result calculated by equations
similar to Eq. (2.9) except using the energy E of the ze-
roth-order state |@,) instead of { H ) in Eq. (2.9) [i.e., using
a phase factor exp( — iE 9 t) instead of exp( — /( H )t) in
Eq. (2.1) and then solving for the reduced equations as in
Sec. II based on this choice of phase].

V. DISCUSSION

It is clear from the results shown in Fig. 3 that the off-
resonant states can qualitatively effect the dynamics of the
initial state and that the approximate coupled equations in
Ea. (2.9) give accurate results for this system. The influence
of the off-resonant states in the frequency domain is seen in
the Fourier transform spectrum of b, (¢) shown in Fig. 4. In
particular, the relative Fourier amplitude of the two central
peaks is significantly changed by the presence of the off-
resonant states and hence the time-dependent probability
amplitude in Fig. 3 is also changed. It is also interesting that
the frequency components of b, (¢) are not as sensitive to the
off-resonant states as are the Fourier amplitudes. This fact is
probably due to the zeroth-order near degeneracy of the four

TABLE II. Hamiltonian submairix (incm™") for the model system in Fig.
52

1 65 10 0 0
2 100 1 9
3 70 0
4 75

“The submatrix is for the four strongly interacting states (cf. discussion in
Sec. IV B) and is a symmetric matrix. The remainder of the Hamiltonian is
the same as in Table L.
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FIG. 6. The |@,) zeroth-order probability as a function of time for the mod-
el system shown in Fig. 2 and given in Table I, except that a diagonal pertur-
bation ¥}, = 5.0 cm ™" is now added to the Hamiltonian. The exact results
are given by the solid line, the results obtained using Eq. (2.9) by the dashed
line, and the results obtained by using Eqs. (2.1) through (2.9) with a phase
exp( — iE§ 1) (cf. discussion in Secs. IV B and V) are given by the dotted
line.

resonant states shown in Fig. 2; i.e., the wave functions and
hence the Fourier amplitudes are quite sensitive to small
detunings in the energy. The dynamics of the initial state for
the nondegenerate system (cf. Table II) shown in Fig. 5 is
less susceptible i the presence of the off-resonant states, but
those states nevertheless have an important effect. For this
system, the reduced coupled equations also prove to be accu-
rate.

In Fig. 6, a comparison of the initial state dynamics for
two possible choices of the reference or interaction phase in
Eq. (2.1) is shown. In that system, a diagonal perturbation
¥,, of 5 cm ™" was added to distinguish between the choices
of E9 ¢t and ( H )¢ for the phase. From Fig. 6, one sees that
the latter choice (dashed line rather than dotted line) is a
better one for that system, and thus far we have found this
choice of phase to give the best results in other model calcu-
lations. Other choices for the phase in Eq. (2.1) such as the
average zeroth-order energy (E0),, ¢ or the average expec-
tation value ({ H),),, & where av denotes an arithmetic
average over the |@;)’s, were also tested. In general, they did
not give as accurate results as did the choice of { H )¢. How-
ever, as is evident in Fig. 6, the approximate dynamics based
on Eq. (2.9) were not strongly sensitive to the choice of the
reference phase in Eq. (2.1) (i.e., the results did not differ
strongly for these different phases). This behavior is a mani-
festation of the smooth energy dependence mentioned pre-
viously by several authors' 313333 ip regard to the level
shifi operator R(E) discussed in Sec. IIT A.

For the model systems in the present paper, the approxi-
mate approach based on Eq. (2.9) used approximately eight
times less computer time than was required for the exact
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calculations in Figs. 3 and 5. In general, when there are
many off-resonant/weakly coupled states, one can expect a
considerable savings in computer time by using the reduced
coupled equations in Eq. (2.9), although the inversion of the
matrix ({ H }I° — H°) may require some CPU time. In some
cases, an approximate approach based on those equations
may allow a practical treatment of problems that cannot as
yet be treated by an exact calculation.

Vi. CONCLUDING REMARKS

Adiabatically reduced coupled equations have been de-
rived for the propagation of nonstationary states in polyato-
mic molecules. In appropriate cases, the present method al-
lows one to significantly reduce the number of coupled
equations included in a time-dependent calculation. It was
found that the adiabatically reduced coupled equations gave
an accurate approximation to the dynamics for coupled
Morse oscillator local mode states and for the model systems
presented in Sec. IV B, Moreover, strong dynamical effects
due to the presence of off-resonant states were found for
these model systems. Other model calculations performed
by us have, in general, exhibited significant dynamical con-
tributions from the off-resonant states, and similar results
have been discussed by Hutchinson et al.'**® from a time-
independent point of view. An application of the methods
presented in this paper to the problem of energy transfer
between ligands of a heavy atom will be given elsewhere.*’

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the support of this re-
search by the National Science Foundation. GAV would like
to thank Dr. S. N. Dixit for several helpful discussions.

'For reviews, see (a) K. F. Freed, Top. Appl. Phys. 15, 23 (1976); (b) P.
Avouris, W, M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77, 793 (1977);
(c) S. Mukamel and J. Jortner, in Excited States, edited by E. C. Lim
(Academic, New York, 1977), Vol. 3, p. 57.

2W. Rhodes, J. Phys. Chem. 87, 30 (1983).

3See, for example, H. Kono, S. H. Lin, and E. W_Schlag, J. Chem. Phys. 77,
4474 (1982), and references cited therein.

“See, for example, K. T. Chen, B. E. Forch, and E. C. Lim, Chem. Phys.
Lett. 99, 98 (1983); N. L. Garland and E. K. C. Lee, Faraday Discuss.
Chem. Soc. 75, 377 (1983); A. Lorincz, D. D. Smith, F. Novak, R. Kos-
loff, D. J. Tannor, and 8. A. Rice, J. Chem. Phys. 82, 1067 (1985); P. M.
Felker and A. H. Zewail, /bid. 82, 2994 (1985).

SFor recent reviews, see V. E. Bondybey, Annu. Rev. Phys. Chem. 35, 591
(1984); F. F. Crim, ibid. 35, 657 (1984); E. B. Stechel and E. J. Heller,
ibid. 35, 563 (1984); R. E. Smalley, J. Phys. Chem. 86, 3504 (1982); M. L.
Sageand J. Jortner, Adv. Chem. Phys. 47, 293 (1981); S. A. Rice, ibid. 47,
117 (1981).

SN. Bloembergen and A. H. Zewail, J. Phys. Chem, 88, 5459 (1984).

"P. M. Felker and A. H. Zewail, Chem. Phys. Lett. 102, 113 (1983).

8P. M. Felker and A. H. Zewail, Chem. Phys. Lert. 108, 303 (1984); J.
Chem. Phys. 82, 2975 (1985).

°E. J. Heller, Chem. Phys. Lett. 60, 338 (1979); J. Chem. Phys. 72, 1337
(1980); M. J. Davis, E. B. Stechel, and E. J. Heller, Chem. Phys. Lett. 76,
21 (1980); E. J. Heller, E. B. Stechel, and M. J. Davis, J. Chem. Phys. 73,
4720 (1980); M. J. Davis and E. J. Heller, ibid. 75, 246 (1981); R. L.
Sundberg and E. J. Heller, Chem. Phys. Lett. 93, 586 (1982); J. Chem.
Phys. 80, 3680 (1984); M. J. Davisand E. J. Heller, bid. 80, 5036 (1984);
D. J. Tannor, M. Blanco, and E. J. Heller, J. Phys. Chem. 88, 6240 (1984).

'°p, R. Stannard and W. M. Gelbart, J. Phys. Chem. 85, 3592 (1981), and
references cited therein.

J. Chem. Phys,, Vol. 84, No. 4, 15 February 1986



-99-

UM R. Diibal and M. Quack, Chem. Phys. Lett. 80, 439 (1981).

12§ L. Sibert III, W. P, Reinhardt, and J. T. Hynes, J. Chem. Phys. 81, 1115
(1984).

3See, for example, D. F. Heller and S. Mukamel, J. Chem. Phys. 70, 463
(1979); S. Mukamel and R. E. Smalley, ibid. 73, 4156 (1980); K. F. Freed
and A. Nitzan, ibid. 73, 4765 (1980); S. Mukamel, /bid. 82, 2867 (1985),
and references cited therein.

43, §. Hutchinson, J. T. Hynes, and W. P. Reinhardt, Chem. Phys. Lett.
108, 353 (1984).

153, 8. Hutchinson, E. L. Sibert III, and J. T. Hynes, J. Chem. Phys. 81, 1314
(1984).

16R, L. Sibert IIL, J. T. Hynes, and W. P. Reinhardt, J. Chem. Phys. 77, 3595
(1982).

"The term dissipative here is meant to describe the exponential decay of the
initiaily prepared nonstationary state into the intramolecular “bath”
states, This behavior alone is not truly dissipative (i.e., irreversible) since
reoccurrences of the initial state probability would eventually occur if the
molecule did not undergo other relaxation processes such as collisions,
radiative decay, etc.

'8 An iterative numerical approach for determining the time dependence of
zeroth-order state amplitudes that is not based on the diagonalization of
large matrices has been developed in A. Nauts and R. E. Wyatt, Phys.
Rev. Lett. 51, 2238 (1983); Phys. Rev. A 30, 872 (1984); R. A. Friesner
and R. E. Wyatt, J. Chem. Phys. 82, 1973 (1985); K. F. Milfeid, J. Cas-
tillo, and R. E. Wyaii, ibid. 83, 1617 (1985).

M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968); G. C. Steyand R.
W. Gibberd, Physica (Utrecht) 60, 7 (1972); R. Lefebvre and J. Savo-
lainen, J. Chem. Phys. 60, 2509 (1974); C. Tric, Chem. Phys. Lett. 21, 83
(1973); F. Lahmani, A. Tramer, and C. Tric, J. Chem. Phys. 68, 4431
(1974); P. W. Milonni, J. R. Ackerhalt, H. W. Galbraith, and M. L. Shih,
Phys. Rev. A 28, 32 (1983).

205, S. Hutchinson, J. Chem. Phys. 82, 22 (1985).

*'See, for example, D. M. Larsen and N. Bloembergen, Opt. Commus. 17,
254 (1976); G. A. Voth and R. A. Marcus, J. Phys. Chem. 89, 2208
(1985).

(a) In general, these states satisfy the criterion |V, /(E? — E$)|<l,
where V), and E] — E{ are, respectively, the coupling matrix element
and the zeroth-order energy difference between the state |@;) in the reso-
nant/strongly coupled manifold of states and the state |@, ) in the mani-
fold {|@, )} of states off-resonant and/or weakly coupled to the {|g,)}
states. (b) The rapidly oscillating derivatives db°(¢)/dr and the resuiting
negligible magnitudes of the b°()'s are related to the fact that those off-
resonant states are detuned in energy [cf. Ref. 22(a)] from the nonsta-
tionary state energy ( H ). More specifically, a substantial buildup of
probability for any length of time in the off-resonant states would require
the violation of energy conservation of the nonstationary state. In the lan-
guage of quantum field theory, the off-resonant states are energy-noncon-
serving “virtual™ states, and the probability in those states is modulated,
in some sense, by the time-energy uncertainty principle (i.e., the system
can violate energy conservation, but it must do so on a very short time
scale).

The matrix H” is the matrix representation of the total Hamiltonian oper-
ator H in the off-resonant manifold {|@, )} of the basis states and is not to
be confused with the zeroth-order Hamiltonian matrix H,.

*An approximation equivalent to Eq. (2.7) is used by S. N. Dixit and P.
Lambropoulos [ Phys. Rev. A 27, 861 (1983) ] to help solve the dynamical
equations for the density matrix describing multiphoton absorption and
ionization. Similar approximations have been applied to the dynamical
equations for these processes written in the Heisenberg representation
[e.g., J. L. F. de Meijere and J. H. Eberly, Phys. Rev. A 17, 1416 (1978);
P. W. Milonni and J. H. Eberly, J. Chem. Phys. 68, 1602 (1978), and
references cited therein . A related approximation [cf. discussion in B. W.
Milonniand W, A. Smith, Phys. Rev. A 11, 814 (1975)] that relieson a

simplification of the poles of the resolvent operator for these systems has
been used by, e.g., B. L. Beers and L. A. Armstrong, Jr., Phys. Rev. A 12,
2447 (1975); S. N. Dixit and P. Lambropoulos, /bid. 21, 168 (1980), and
references cited therein.

P. 0. Lowdin, J. Chem. Phys. 19, 1396 (1951); also in Perturbation The-
ory and Its Applications in Quantum Mechanics, edited by C. H. Wilcox
(Wiley, New York, 1966), p. 255; Int. J. Quantum Chem. 2, 867 (1968),
and references cited therein.

SH. Feshbach, Ann. Phys. (NY) 5, 357 (1958); 19, 287 (1962).

*"For a review, see J. Killingbeck, Rep. Prog. Phys. 40, 963 (1977).

**The constant matrix { & )1? has been deleted and would simply introduce
a constant shift in the eigenvalues of HR ., . In the integration of the cou-
pled equations [Eq. (2.9)], however, this factor is of particular value
since the diagonal terms ( H ) — H, are small and the amplitudes bi()
thereby have less oscillatory character. The coupled equations are thus
easier to integrate numerically.

*See also the related treatment in P. R. Certain and J. O. Hirschfelder, J.
Chem. Phys. 52, 5977 (1970); P. R. Certain, D. R. Dion, and J. O. Hirsch-
felder, ibid. 52, 5987 (1970); J. O. Hirschfelder, Chem. Phys. Lett. 54, 1
(1977).

*J. H. Choi, Prog. Theor. Phys. 53, 1641 (1975), and references cited
therein.

*'L. Mower, Phys. Rev. 142, 799 (1966); 165, 145 (1968); see also, J. D.
Cresser and B. J. Dalton, J. Phys. A 13, 795 (1980).

32The Hamiltonian matrix partitioning discussed in Sec. III A may also be
cast in a projection operator form using similar techniques (e.g., Refs. 25
and 26).

M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New
York, 1964), Chap. 8, and references cited therein. i

**To include the radiative decay dynamics in the equations developed in
Sec. 11, a phenomenological radiative damping matrix I"is included in a
new Hamiltonian H' such that H' = H ~ /T". More details of this proce-
dure are given in Ref. 1.

35L. Mower, Phys. Rev. A 22, 882 (1980); see also, S. Swain, J. Phys. A §,
1277 (1975); 9, 1811 (1976).

*H. Schultheis, R. Schultheis, and A. B. Volkov, Ann. Phys. 141, 179
(1982), and references cited therein.

3See, for example, J. E. Wollrab, Rotational Spectra and Molecular Struc-
ture (Academic, New York. 1967), Appendix 7; see also B. Kirtman, J.
Chem. Phys. 49, 3890 (1968).

3 A straightforward illustration of this point may be seen in a system related
to that presented in Sec. IV A. If one sets ¥; and ¥, equal to zero, the
coupled local mode system of Ref. 15 has only “sequentiai” coupling
between zeroth-order levels. The form of the solutions for the |0,3) and
13,0) states probabilities are the same as in Eq. (4.1), but the result based
on the reduced coupled equations [Eq. (2.9)] now gives a frequency 2
equalto 2V V,/(A* — ¥3). A Van Vleck treatment (e.g., Ref. 37) gives
Q equal to 2V} ¥,/A”. In the limit of ¥,>A (i.c., strong coupling in the
{|@:)} manifold), the frequency obtained from Eq. (2.9) equals 22 /¥,
whereas the frequency based on the Van Vleck treatment remains the
same. Numerical calculations for this model have verified that the latter
frequency differs significantly from the exact resuit, whereas the result
based on Eq. (2.9) showed good agreement for the parameters examined.
Presumably, the Van Vieck perturbation expansion for this strong cou-
pling case does not converge or converges slowly.

3*The authors of Refs. 15 and 16 assume an approximate time-dependent
solution for the local mode probability of the form (in their notation)
cos*( At /2#), where A is the splitting between the symmetric and asym-
metric local mode eigenstates. Their exact and approximate values for A
(our ) are given in the text.

0S. M. Lederman, G. A. Voth, V. Lopez, and R. A. Marcus (to be submit-
ted).

J. Chem. Phys., Vol. 84, No. 4, 15 February 1686



- 100 -

Chapter 6: Approximate Coupled Equations for Multiphoton Processes

Induced by One or More Lasers

[The text of this Chapter appeared in: G. A. Voth, Chem. Phys. Lett. 129, 315
(1986).]
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1. Introduction

With the advent of powerful lasers, experimental techniques based on nonlinear
optical processes have rapidly developed. In particular, the experimentalist now
has at his or her disposal many experimental probes of molecular systems based on
multiphoton processes stimulated by one or more lasers [1-4]. These experimental
probes typically involve the multiphoton excitation, ionization, and/or dissociation
of molecules [1]. There are also numerous experiments based on, for example, optical
double resonance [2], double frequency pulsed NMR [3], or stimulated emission
pumping [4] techniques.

The basic theory of resonant multiphoton processes between two molecular
levels has also been developed [5,6]. However, in the case of one or more intense
laser fields interacting with a multi-level quantum system, the accurate description
of multiphoton processes can be a difﬁcult problem and must usually be treated by
a many-state numerical calculation.* Promising numerical approaches capable of
treating in an efficient way the general intense field inultiphoton problem include the
many-mode Floquet theory [7] and the RRGM method [8]. In view of the numerous
experimental techniques based on multiphoton processes, theories which simplify
the detailed calculation of state-to-state multiphoton processes are potentially quite
useful.

Central to the usual non-perturbative, though approximate, theory of resonant
multiphoton processes is the procedure of adiabatic elimination, in one form or an-
other [9,10], of the off-resonant intermediate states from the quantum mechanical
equations of motion. This approximate treatment is primarily based on the phys-
ical property that the off-resonant intermediate states cannot build up significant
amplitude for any length of time [9]. Within the context of multiphoton processes,
adiabatic elimination has generally been applied to the density matrix equations

based on time-dependent “semiclassical” Hamiltonians, i.e., those Hamiltonians in

* There have been numerous calculations of state-to-state multiphoton processes.

It is beyond the scope of the present letter to reference all of those studies here.
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which the molecular system is treated quantum mechanically and the radiation field
is treated classically. For some relatively simple cases (i.e., simple field-molecule
resonance conditions), the adiabatic elimination procedure yields approximate, yet
accurate, analytic results for the state probabilities and/or other physical properties
of the system [5,6,9,10].

Recently, an adiabatic approximation for time-independent Hamiltonians has
been shown to be useful for intramolecular dynamics calculations [11]. The salient
features of the latter theory are (1) the number of coupled equations that must be
integrated to obtain a reasonable description of the dynamics is reduced, perhaps
considerably, and (2) the adiabatic approximation in the intramolecular context can
be related in a specific way to several well known time-independent partitioning and
projection operator techniques [11]. |

In the present letter, an approximate set of coupled equations based on the
theory of ref. [11] will be developed to treat the several laser (i.e., many-mode),
multiphoton dynamics of a general laser-molecule system in a time-independent
Hamiltonian framework. Dressed state theory [12] will be used to formulate the
appropriate fully quantum mechanical time-independent Hamiltonian. The dressed
state approach has recently been found to be particularly useful for treating intense
field multiphoton effects in NO [13] and for calculating dynamic polarizabilities [14].
The adiabatic elimination procedure used in ref. [11] will then be performed based
on a partitioning of the Hamiltonian into resonant and off-resonant subspaces, and
the approximate coupled equations will be derived. The central result of the present
paper is given in eqs. (7) and (8) below.

The usefulness of the present formalism is that many-mode multiphoton proc-
esses may be treated to arbitrary orders of the perturbation, albeit approximately,
without resorting to the usual rotating wave-like approximations (RWA) commonly
used in semiclassical multiphoton theories [6]. The so-called generalized rotating
wave approximation (GRWA) appropriate for multiphoton processes in one or more

classical laser fields is not unique when there is no unique field-molecule resonance
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condition and can thereby be difficult to formulate [6]. (See, however, ref. [15] for
a somewhat different approach). In particular, more subtle non-RWA effects such
as dynamical Stark shifts, appropriately generalized to the multiple laser case, can
be treated in a systematic fashion using the time-independent Hamiltonian. (For
the more standard approach based on semiclassical Hamiltonians, see Appendix
A of ref. [9].) The relationship to other quantum techniques is also readily estab-
lished [11,16]: The present approach is complementary to approximate multiphoton

formulations [17] based on the pole approximation for the resolvent operator [11,18].

2. Theory

The quantum mechanical Hamiltonian for a molecule interacting with M radi-

ation field modes may be written as [19]

M
H=Hn+Y hoalar + 7, (1)
k=1
o, PR — g 1‘
where nm is the molecular Hamiltonian operator, and each hwyd;dx term is a
radiation field mode Hamiltonian of frequency wpg, written here in terms of the
T

harmonic oscillator creation and annihilation operators a, and dk, respectively.

The field-molecule coupling operator V is given in the dipole approximation by [19]

M
Z (2rhwi /Ve) 1/24. ek(a, —ak) (2)

where fi - & is the scalar product of the molecular dipole moment (vector) operator
i times the polarization vector éx of field mode k, and V. is the volume of the
radiation cavity.

The dressed state basis [12] for the field-molecule Hamiltonian in the absence

of the interaction V is written as |@;) = [{nm}, Ni,..., Nas), where {nn,} denote
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the quantum numbers for the molecular levels, and Ng, (kK = 1,...,M), are the
photon occupation numbers for the field modes. In the present picture, the system
is assumed at time ¢ = O to be in the initial dressed state [{nm}, N1,...,Np) at
which time the interaction V is turned on instantaneously. The resulting dynamics
induced by the field-molecule interaction thereby involves transitions to the other
dressed states |[{n],}, Ni,...,N},) [12]. This non-stationary dynamical process de-
scribes the absorption and stimulated emission of radiation by the molecule. An
exact calculation of the state amplitudes during the multiphoton dynamics involves
either the diagonalization of the dressed state Hamiltonian matrix to obtain the
representation of the propagator in terms of the eigenvalues and eigenvectors (see,
e.g., ref. [14]), or the numerical solution of a set of coupled first-order ordinary
differential equations. An approximate approach based on the latter method is
developed in what follows.

In the presence of the interaction V, the general time-dependent wavefunction

may be expanded [11] in terms of N, dressed state basis functions as**
i e
[¥(@)) = ezp(~7 (H)?) PRIV (3)
i=1

where the expectation value of H for the dressed state initial condition |¥(0)) =

le1) = {nm}, N1,..., Nag) is given by

M
(H) = €nny+ ) Nehwr . (4)
k=1

In eq. (4), €{n,,} is the energy of the initial molecular level having the quantum num-

bers {n,}. Substitution of eq. (3) for |¥(t)) into the time-dependent Schrédinger

** In practice, one selects for the full dressed state basis those states which are cou-
pled to the initial dressed state by reasonably low-order resonant and off-resonant
multiphoton processes, depending of course on the strength of the interaction. Such
a selection procedure is physically motivated and hence limits the dimension of the

total dressed state Hamiltonian matrix.
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equation and using the orthonormal properties of the dressed state basis yields the

coupled first-order differential equations for the amplitudes b, (t):

N,
0 - S (- msg)nt) ®)

The matrix elements H;; are simply the matrix elements of the total Hamiltonian
[eq. (1)] represented in the dressed state basis.

Following the treatment of ref. [11], the basis states are now partitioned into
two subsets. One subset includes those dressed states that are resonant with and/or
strongly coupled to the initial state, while the other subset contains all other states
(i.e., those states sufficiently off-resonant with the initial state [11]). For example,
one might use a simple criterion for including states in the resonant manifold such

as including all dressed states of zeroth-order energy E? that satisfy the condition

M

€{nn} T Z Nihwy — EP
k=1

<7

? (6)

where 7 is a generalized detuning parameter which may be adjusted depending
on the strength of the field-molecule interaction. A more detailed partitioning
scheme could, for instance, be based on artificial intelligence algorithms [20]. In
matrix notation, the Hamiltonian sub-matrix containing the initial state and those
states satisfying eq. (6) is denoted by HE, the sub-matrix with the off-resonant
states by HO, and the coupling matrices between the two subspaces by VEC and
VOR, The latter two matrices are simply Hermitian conjugates of each other.
Once the appropriate partitioning is determined, the adiabatically reduced coupled
equations for the resonant (“R”) dressed state amplitudes b?(t) may be derived

using the adiabatic approximation of ref. [11]. The resulting coupled equations for

the resonant subspace are given by

., db®(t)
7

= (HE - HE1®)bR(@) (7)
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where the effective dressed state Hamiltonian HY; is given by
BE, = H® 4 VRO((H)10 - HO)'VOR (8

and b®(¢) is the column vector containing the amplitudes for the resonant dressed
states. The matrices 1® and 1© are identity matrices having the dimensions of the
resonant and off-resonant subspaces, respectively. The conditions for validity of eq.
(7) are discussed in ref. [11].

The effective coupled equations in eq. (7) are initial condition dependent be-
cause the number (H) [eq. (4)] depends on the initial dressed state of the field-
molecule system. However, the number of coupled equations that must be inte-
grated is given by the dimension of HR only. This approach is expected to be
most useful When there are a few distinct dressed states that satisfy the resonance
criterion [cf. eq. (6)] and for moderate laser intensities (~ 10° — 1010 W/cm?),
depending on the magnitude of the dipole matrix element. Of course, for processes
involving high laser intensities and/or numerous resonance conditions, one has the
flexibility of including more and more states in the resonant Hamiltonian H® (vs.
HO) in order to obtain increasingly accurate results.

The effective Hamiltonian in eq. (8) describes the interactions between the
dressed states in the resonant manifold to all orders and is therefore particularly
useful for an approximate and simplified numerical solution of the many-mode,
many-state problem. However, a useful expansion [21] of the second term of the right
hand side of eq. (8) may be employed to further simplify the results and to avoid
the inversion of the matrix ((H) 1° — H©). Writing the off-resonant Hamiltonian
matrix HC as E©+VO, the inverse of the matrix ((H) 1° ~HC) may be represented
by a power series as

o
((H)1° —H°)™! = AE™! [Z (VOAE‘I)m] : (9)
m=0
where AE is defined as the diagonal matrix ((H)1° — E©), which is trivial to

invert, and V© is the matrix of couplings among the off-resonant dressed states.
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Using this expansion in eq. (8), one obtains the expanded effective dressed state

Hamiltonian

oo
HE: = HR + ) VROAE!(VOAE!)"VOR | (10)
m=0 ;
This expansion brings in, term by term, increasingly higher order couplings between
the states in the resonant dressed state manifold. Thereby, each higher order term in
the summation involves increasingly complicated “virtual state” configurations [12].
The off-diagonal matrix elements of HE; provide the generalized Rabi frequencies
for the multiphoton transitions [5,6,9], while the diagonal elements contain the
radiative shift terms corresponding to the generalized dynamical Stark shifts. If
rapidly convergent [21], eq. (10) is expected to be particularly useful for calculations
performed on high speed vector supercomputers because it involves repeated matrix
multiplications.

The form of the coupling matrix elements in the dressed state picture may also
be simplified for laser fields of normal or higher intensity (see, e.g., refs. [12] and
[22]). The matrix elements Vji; of the perturbation V [eq. (2)] between the dressed
states |[{n],},N{,..., N} ) and [{nm}, N1,..., Nas) are given by

M
Vi = 1y (2mhn/Ve)"? ({nn}| 2 &k [{nm})
k=1
X (6wt N+1V Ne +1 =6y v 1V NE) . (11)

However, since the classical radiation field strength E,x for mode k is given by
[12,22]
Eok = (SﬂNkﬁwk/Vc) 1/2 N (12)

and since \/(Nx + m) ~ /Nj for Ni > m, the matrix elements Vis; can be written

to a very good approximation (see, e.g., ref. [22]) as

.M
z ~ A

Vii = 2 E Eok ({nm} &« &k [{nm}) (6, me+1 — Ny, ne—1) (13)
k=1
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This form of Vii; simplifies the calculation of the summation terms in eq. (10).
Moreover, when the field-molecule coupling is written in this way, the relationship of
dressed state theory to time-independent Floquet theory has been noted by several
authors (see, e.g., ref. [23]). Equation (12) also determines the relationship between
the laboratory quantity E,; and the initial state photon occupation numbers Ny,

(k=1,...,M) used in the dressed state calculations [e.g., egs. (6)-(10)].

3. Summary

Approximate coupled equations have been presented which can simplify the
calculation of state-to-state multiphoton processes in molecular systems. These
coupled equations are based on a partitioning of the time-independent dressed state
Hamiltonian matrix into resonant and off-resonant sub-blocks, and on a subsequent
adiabatic elimination of the off-resonant state amplitudes [11] from the coupled
equations arising from that Hamiltonian. The partitioning scheme offers one the
flexibility to obtain increasingly accurate results by numerically integrating any
number of dressed state amplitudes exactly, while treating the remaining ampli-
tudes in an effective way. Artificial intelligence algorithms [20] could prove to be
particularly useful in that regard.

An expansion of the effective Hamiltonian in terms of the perturbation strength
may also be performed which brings in, order by order, the generalized Rabi fre-
quencies and dynamical Stark shifts for multiphoton transitions between states in
the resonant subspace of interest. This latter expansion approach is similar in spirit
to the Generalized Van Vleck (GVV) perturbation theory treatment of dressed state
[22] and semiclassical Floquet {7,24] matrix treatments, although the GVV method
is based on perturbative unitary transformation theory rather than the partitioning

approach (cf. discussion in ref. [11] and references cited therein). The present
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approach is also complementary (see, e.g., refs [11] and [18]) to resolvent operator
approaches for the multiphoton problem based on the pole approximation [17].

In view of the recent experimental results on the multiphoton dynamical Stark
effect in molecules [13], and the success of dressed state theory in treating this effect
in NO [13], the present theory may prove to be quite useful in the interpretation of
future experimental results along these lines. In particular, one should be able to
reduce the full dressed state matrix to a smaller matrix containing only the resonant
states, examine the generalized Rabi frequencies and Stark shifts for these states
order by order, and then integrate the coupled equations to obtain the detailed
dynamical results for the state-to-state transition amplitudes. If necessary, suit-
able time-averaging and/or coarse graining of the results could then be performed.
Further work to extend the present approximate treatment to include dressed state

theories which incorporate resonance fluorescence [25] may also prove useful.
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Chapter 7: Quasidissipative Behavior in Isolated Molecular Systems
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I. INTRODUCTION

The flow of probability from a metastable quantum state into a dense set of
“receptor” states has been discussed by many authors. In fact, the basic theory of
metastable state decay may be found in most textbooks on ‘Quantum Mechanics
(see, e.g., Refs. 1-3) and dates back to the seminal work of Wigner and Weisskopf.*
The standard treatments of a decaying metastable state aré based on certain phys-
ically motivated pole approximations which simplify the energy dependence of the
resolvent operator (see, e.g., Ref. 5). The time-dependent behavior of the decaying
state is then obtained via inverse Laplace transformation of the simplified integral
equation. In this way, the approximate time-dependent probability of the initial
state is found to obey the exponential decay law P(t) ~ ezp(—Tt), having a decay

rate ' which is given by the “Golden Rule” expression's?
T = 2 {|V|*)p(E:) . (1.1)

Here, <|V!2> is the average of the absolute square of the matrix elements coupling
the initial state to the receptor states,® p(E;) is the density of receptor states at
the energy E; of the initially prepared state, and % equals unity. For short times,
this result agrees, of course, with that obtained from time-dependent perturbation
theory (see, e.g., Refs. 1-3).

In the field of intramolecular dynamics, the decay of probability of initally
prepared quantum states in “large” molecules is a subject of great interest. For
example, there is an extensive literature on the dynamics of electronic radiationless
transitions’ in molecular systems (i.e., redistribution of electronic energy). The
theoretical approach to these problems is also based largely on approximate resol-
vent operator approaches (see, e.g., Ref. 7), and results similar to those mentioned
above have been derived. More specifically, Golden Rule exponential decay rates
are predicted for initially prepared states in large molecules which undergo elec-

tronic radiationless transitions and have large densities of states.”"® The theory of
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electronic radiationless transitions has been rather successful in explaining experi-
mental trends and results (see, e.g., Ref. 7).

The phenomenon of intramolecular vibrational energy redistribution (IVR) is
perhaps more subtle than that for electronic energy redistribution because, in the
former case, the coupling mechanisms are more diverse and not as well character-
ized as in the latter case. Nevertheless, “real time” experiments which probe the
process of IVR in large molecules have suggested that exponential decay of initially
prepared states is the norm at moderate to high energies (see, e.g., Refs. 9 and 10).
Theoretical studies,’>~* many of which are based on the same formalism devel-
oped to treat electronic radiationless transitions,!'12 also predict that exponential
decay of the initial state is the most probable behavior in large molecules. It is
perhaps useful then to ask the following question: Given that the probability of an
initially prepared state in a large molecule is expected to decay exponentially, can
a quantum dynamical theory be formulated which not only predicts this behavior,
but also allows one to calculate the IVR decay rate more accurately than is given
by the Golden Rule? It is the pufpose of this chapter to demonstrate that, upon
consideration of the basic phenomenology of IVR processes, it is indeed possible to
derive a somewhat more flexible and general formula for the decay rate.

The theoretical approach used in this chapter represents an extension of the
theory developed in Chapter 5 and is intended to be complementary to those ap-
proaches based on resolvent operator equations.!=%:"12 The present approach is
based on the adiabatic approximation, which has been related by previous authors
to certain pole approximations for the resolvent (see, e.g., Refs. 15 and 16). This
chapter is organized as follows: In Sec. II, the basic phenomenology of IVR in large
molecules is discussed and the present theory is derived. In Sec. III, the relationship
between average coupling matrix elements for different basis sets is examined, and |
the relevance of those results to the theory of Sec. Il is indicated. A discussion of

the results is given in Sec. IV, and concluding remarks appear in Sec. V.
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II. THEORY

It is first assumed that there exists a zeroth-order orthonormal basis set which
captures the essential features of the molecular (i.e., nuclear) motions of a large
molecule in a given Born—Oppenheimér electronic state. An example of such a basis
set would be the harmonic normal modes of the molecule, and the present approach
does not preclude a treatment of ‘molecular rotations. As usual, the zeroth-order
basis {|i;) } satisfies the time-independent Schrédinger equation for the zeroth-order
Hamiltonian Hg:

Holei) = Eilpi) (2.1)
where Ej is the zeroth-order energy of the state |©;). The coupling term V in the
total Hamiltonian H (= Hp + V) introduces couplings between the zeroth-order
states.

It is also assumed that one of the zeroth-order states carries all of the oscillator
strength for a radiative transition from the ground state. Therefore, this is the
state that is prepared by an appropriate pulsed laser excitation and is the state
that subsequently undergoes IVR (cf. discussion in Ref. 9 by Bloembergen and
Zewail). The coupling between the zeroth-order states is responsible for the flow of
probability from the initially prepared state. By virtue of that coupling, the initial
state interacts with a set of other states, which interact with even more states,
and so on. This “tier” structure of the basis states is suggested to give rise to the
basic phenomenology of intramolecular vibrational (and rotational) energy flow.!”
A tier structure has been invoked, for example, in the numerical analyses of IVR
in benzene!® and hydrocarbon chains,'4 and is not inconsistent with experimental
results on anthracene and t—stilbene at higher energies,® p—difluorobenzene,9:!!
and tetramethyldioxetane.!® Most of the earlier approximate resolvent operator
treatments'? of IVR are also based on various simple tier models.!?

In order to exploit the basic phenomenology of IVR, the basis set is partitioned

into three unique sets: The inital state (denoted by “P”), those states which are
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coupled to the initial state (denoted by “@”), and the remaining states (denoted
by “@' ”). It is assumed that the @’ —space contains many states since the present
analysis is concerned with the large molecule limit. If the general time-dependent

wavefunction |¥(t)) is expanded as!®

N

() = exp(—i (H)1) D bilt) lo:) (2.2)

=1

where (H) equals the expectation value of the energy for the initial state, then the

coupled differential equations for the amplitiudes b;(¢) are given by

i%b"(t) = VPeLR() | (2.3)
z‘%bq(t) — VOPLP(f) 4+ (HO — (B)19bO(t) + VOB(r) , (2.4)
i%b‘?’(t) = VR + (HY - (H)19)b'(f) . (2.5)

In these equations, the previously mentioned partitioning scheme has been imple-
mented, and vector-matrix notation has been used. (The superscripts identify the
different subspaces.) The 1’s are identity matrices, the b’s contain the state am-
plitudes, the H’s contain the different Hamiltonian matrix sub-blocks, and the V’s
contain the coupling matrices between the different subspaces. The dimensions of
the P, Q, and Q' subspaces are given by the numbers Np, Ng, and N¢, respec-
tively. For simplicity, Np equals unity in the present analysis, but this is not a
crucial restriction.

It is now assumed that there are so many states in the @'—manifold that the

derivatives db@’ /dt satisfy the approximate relation

d. o
—b® ~
dtb (t) ~ 0 . , (2.6)

This approximation is based on the assumption that the probability will flow slowly
and uniformly into the Q' states, and hence the individual Q' state probabilities

will have magnituées of the order 1/Ng. Similar approximations have been used
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to eliminate the continuum state’s contribution to the density matrix equations
describing the multiphoton ionization of atoms (see, e.g., Ref. 20). It is also noted
here that the physical basis for this approximation differs somewhat from that used
in Chapter 5 and Ref. 15.

By virtue of the approximation given in Eq. (2.6), the Q@' amplitudes are found
from Eq. (2.5) to be

b (1) ~ ((H)1% —H?)"'Vee(t) . (2.7)

If the states in the Q' subspace are thought of as being “prediagonalized” (i.e., the
matrix H? is prediagonalized), then Eq. (2.7) simplifies to

b?'(t) ~ (H)19 - E?)Vee(1) |, (2.8)

where E?' is a diagonal matrix containing the prediagonalized Q' —space state en-
ergies EI?'C The approximate expression for b?' (t).given in Eq (2.8) is then inserted
into Eq. (2.4) for db®/dt, yielding.

d

Zb9(t) = VOPRP() + (HO - (H)19b9()

)
+ VO ((H)19 —EX)IVW®WAL) , (2.9)

where now the amplitudes b?' (¢) do not appear explicitly in this equation.
The elements of the matrix V@9 ((H) 19 — E?)"1V®Q'? in Eq. (2.9) are

particularly simple because E?' is a diagonal (i.e., prediagonalized) matrix. They

are given by

] [ H 7 NQ' VQQIVQ'Q
(Ve (H)19 - E?)1ve Q]ij = Z —i—LQ, (2.10)
k=1 <H> - Ek

The matrix elements Vng' (and Vlglq) give the couplings between the Q—space
states and the prediagonalized @' —space states. In principle, obtaining these @ — Q'
matrix elements would require the actual diagonalization of the very large Q' sub-
block of the Hamiltonian matrix H?'. (An extremely difficult task!) However, it

will be shown in the next section that this is not required in the present theory.
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Since the density of Q' states is assumed to be large, the Q'—space energy
spectrum may be treated as continuous and the diagonal terms in Eq. (2.10) written

as a contour integrals,®20 i.e., as

7 ; 12
LvEvae = (Ve (B9)|%)
k=1 (H) — Ei?' e—0+ J_oo (H) — EQ +1e

pQI(EQI)dEQI 5 (211)

where pgr (EQ') is the density of @' states, and <|V5QQ'(EQ'”2> is the average
of the absolute squared matrix element which couples the Q—space state ]cp?) to
the Q'—space states at the energy EQ. The condition that the Q’'—space states
are prediagonalized is crucial to making the above approximation. [That is, the
prediagonalization condition allows the sum to be converted to the simple intergral
in Eq. (2.11).] In Sec. III, it will be shown that the prediagonalization of the
Q'—space is not necessary in order to apply an approximate form of the present
theory [Egs. (2.22) and (2.27)].

In Eq. (2.11), the function <|ViQQI (EQ')‘2>pQ' (ERQ') is assumed to be a well
behaved function in the neighborhood of EQ' = (H) and sufficiently decaying for
large values of |EQ' — (H) |. By using the property (e.g., Ref. 2, p. 1470)

~00

im [ L2 g - PP f %ﬂ dz F in f f@)é(z)de , (2.12)

e—0t J oo T L 1E

where 6(z) is the Dirac delta—function and “P.P.” denotes the Cauchy principal
part, the integral in Eq. (2.11) may be performed, yielding

No' 1,0Q' Q'@ :

Vi* V.2 i
E ‘ﬁ jad A? — E I‘? B (2.13)
k=1 k

In Eq. (2.13), A? represents a shift in the energy of the Q—space state I(p?>

which equals

VQQ ) , '
A% = PP / (l EEQ,] ) por(B9)4E? (2.14)
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and I‘? is that state’s decay “width”
' 2
I? = 2n([VE39 (@) )re ((H)) - (2.15)

In the present treatment, the energy shifts A? are assumed to be small due to the
postulated “smooth” coupling to the quasicontinuous Q’—space, and hence they
are neglected. (Alternatively, the zeroth-order energies Ef? of the @ —space states
might be “renormalized” so as to contain the shifts AZ).

The off-diagonal elements in Eq. (2.10) require a somewhat different approach:
In general, the terms ViQIVIgQ are expected to have essentially random signs for
realistic molecular systems. Thus, when summing over the Q’—state index k, the
simplest approximation is to assume that the sign variations are random enough
so as to c’a.use a cancellation of terms. Thus, the off-diagonal terms in eq. (2.10)
may be taken to be quite small and are thereby neglected. It is unlikely that a
more detailed analysis of these off-diagonal elements would yield significant low-
order corrections to the end result, although this aspect of the theory may warrant
further study.

If the function <|ViQQI((H))[2>pQ:((H)) in Eq. (2.15) could be determined ac-
curately, the decay widths I‘Q could, in principle, reflect rather subtle properties of
the couplings between the @— and Q' —manifolds. However, the calculation of these
quantities is not much easier than solving the entire problem numerically, i.e., it is
only slightly easier than a diagonalization of the entire Hamiltonian matrix. There-
fore, an approximation is introduced into Eq. (2.15) by substituting <]I/}QQ'|2> for
(lViQQ'((H ))]2>s where <|ViQQ’ |2) is the average of the squared coupling elements
between the state |<p?> in the @—manifold and all of the states in the Q'—manifold.
The decay widths I'? are then given by the functions 27r<]ViQQ' 12V pq: ((H)). If the
Q@ — Q' subspace couplings are fairly random, some justification for this approxi-
mation is suggested from random coupling models.!? In addition, in Sec. III this
approximation will be shown to be crucial to the simplification of the present theory.

By virtue of the above approximation, the coupled equations for the Q@ —space
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amplitudes are given by

i%bQ(t) ~ (H? - (H)19 -iT?/2)b?(t) + VOFBP(1) , (2.186)

where I'? is a diagonal matrix containing the @—space widths I‘?. If the widths
I‘? are equal to or larger than the Q—space energy level spacings, then one may
treat the derivatives in Eq. (2.16) in a manner analogous to that given in Eq. (2.6).
That is, if )

I? > 1/p(ER) , (2.17)

where pg (E?) is the density of @—space states at the energy Ef2 , then it is expected
that db? /dt ~ 0 is a good approximation for the Q—space amplitude derivatives.?!
By applying this approximation to Eq. (2.16), one obtains

b2(t) ~ ((H)19 - H? +:T9/2) ' VePLP(1) . (2.18)

Upon insertion of this approximate expression for b?(t) into Eq. (2.3), an

approximate differential equation for the amplitude b¥(¢) is obtained:
i%bp(t) ~ VPR((H)19 ~ H? +iT%)2) 'VePLP() . (2.19)

Provided the off-diagonal elements of the matrix H? are smaller than the magnitude
of the diagonal elements of the ((H) 19 — H? + iT'?/2) matrix, the inverse in Eq.

(2.19) may be expanded in a series as

((#)19 -H9 +:79/2)"" = (AE+ir%/2)7 i [Ve(aE +:ir9/2) 7],
m=0

| (2.20)
where AE is defined as the diagonal matrix ((H)19 — E®), E? is the matrix

consisting of the diagonal elements of H?, and V@ is the matrix containing the
off-diagonal elements of H?. For a description of the decay dynamics of an initially
prepared state in the large molecule limit, it is not expected that the couplings

between the @ —space states are of particular importance.
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A particularly simple expression for the b¥ (¢) differential equation [Eq. (2.19)]
is obtained if only the m = 0 term in Eq. (2.20) is retained:

Ng PQyQP
db} (t) ~ |3 Vii " Vi
dt ~ AE; +40'2/2

=]

i

b7 () (2.21)

where AE; is a diagonal element of the ((H) 19 — E9) matrix, and
¢ ~ 2n(|V29 2o ((H)) - (2.22)

In Eq. (2.22), <[V;QQ'|2> is the average of the squared matrix elements between
the Q—space state lcp? ) and all of the prediagonalized Q' —space states. It is again
noted here that in the present analysis the P—space has only one state |tpf > (i.e.,
the initial state).

Equation (2.21) may be further simplified i)y separating the real and imaginary
parts of the right-hand-side. Thus,

. dbf (2) n
i = (A7 - i07/2) 6 (2.23)
where
Neq vPQyQP
Af = z AE; £ , (2.24)
= AE} + (T /2)
and
Ng PQ+,QF
vPeyY
rf => r¢ T (2.25)
& ' AR+ (T?/2)

The factor Af in Eq. (2.23) contributes an overall phase to the time-dependent
amplitude, while the width I‘f gives the decay rate. Hence, the time-dependent
probability P;(¢) of the initial state is given by

Pj(t) ~ exp(-T%t) , (2.26)

where I‘f is given in Eq. (2.25), and A equals unity. This expression is the central

result of the present chapter. Provided that the “P” state carries all of the oscillator
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strength for a radiative transition from the ground state, the Fourier transform of
bf (t) is proportional to the spectral lineshape of that state.?? In this case, the
Fourier transform will give a Lorentzian lineshape with a fwhm of I“f /2.

A useful approximate expression for the rate I‘f may be derived from Eq. (2.25)
and is given by an average of the squared coupling elements over a unit normalized

Lorentzian distribution function L(AE; ;<I‘Q>)., That is,

Ng
rf =~ o2r ) [VIPPL(AE: (r9)) (2.27)

where
. _ 1 <PQ>
L(AE; ;(T9)) = 2T AE? + ((I9)/2)° “ 22%)

The Q—state widths I' in Eqs. (2.22) and (2.25) have been replaced in Eqs. (2.27)
and (2.28) by the average @—state width

(T9) = 2n (Ve |?))pq ((H)) , (2.29)

where the quantity <<|V’QQ’ 2)) is explicitly written as

Ng qul

(Vo) = gam DL V. e

i=1 k=1

This “double” average is simply the average of all of the squared coupling elements
in the V@@’ Hamiltonian matrix sub-block. Equations (2.27)-(2.30) are expected
to give a good approximation to Eq. (2.25) when there are many non-zero matrix
elements between the @— and Q'—spaces.

For a dense set of @ states and very weak coupling between the @ and Q'
subspaces, the usual Golden Rule decay rate may be obtained by first converting

Eq. (2.27) into an integral:

I = or [(VOP(EO))L(AR; (1))a(B)ER . (231
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If the EQ —dependent term <{VjQP (EQ)IZ> is replaced by its average _<|VJ.QP |2} over

all couplings between the P— and @ —space states, one obtains
IT =~ 2n([VRT ) f L(AE;(I'?))pq(E®)dE? . (2.32)

For weak Q — Q’ couplings, the width <FQ> of the Lorentzian function [Eq. (2.28)]
is sharply peaked about AE = 0 (i.e., E? = (H)). Therefore, the usual Golden

Rule expression is obtained as the approximate result:
P
IF ~ 2n([V3T %) pq((H)) . (2.33)

It is expected, however, that in a realistic system the @—space will not be particu-
larly dense and will also have significant couplings to the @' —space.

It is also possible to generalize the present results to include more than one
state in the P—manifold. This case is important when there are a few basis states,
including the initial state, that are strongly coupled together, or when the initial
excitation forms a linear combination of basis states. The suitably generalized forms

of Egs. (2.23)—(2.25) are given by

ey
L)
—
e
e
»
o~
N
o
[43]
13
S

where H f;-, are Hamiltonian matrix elements for the P—space, and the generalized
shifts and widths are given respectively by
Ng VvPQy QP

AP, = AE; — 2 , 2.35)
7 };1 " AEZ+(T2/2)2 7 (

and
viev3Fk

Nq
rf, = re & i : 2.36
= L SE et (259

i=1
Coupled differential equations of this form can give rise to such interesting behavior

as biexponential decay of the initial state piobabilityn
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In the next section, a rigorous result which simplifies the numerical evaluation

of Egs. (2.25), (2.27), (2.35), and (2.36) will be derived.

III. AVERAGE MATRIX ELEMENTS

A calculation of the two approximate results for the decay rate of the initially
prepared “P” state [Egs. (2.25) and (2.27)] is a relatively straightforward matter
except for the evaluation of the quantities I‘? and <PQ>, respectively. More specif-
ically, in a typical calculation one can probably determine the “P” initial state,
the “Q” states that are coupled to the initial state, and the value of the coupling
elements between the P and @ states. However, depending on which approximate
result one uses, the widths I‘? or <I‘Q> of the Q—space states Igo?) must also be
explicitly calculated. These quantities involve a calculation of, in the former case,

the average [cf. Eq. (2.22)]

NQI
8 1 ]
(WP = §= 2 W& (3.1)
k=1

and, in the latter case, the further average [cf. Eqs. (2.29)-(2.30)]

Ng
(o) = 5= L) (32

The coupling elements in Egs. (3.1) and (3.2) describe the couplings between the
zeroth-order @) —space states |<pf‘?> and the many prediagonalized @’ —space states.
As mentioned before, in order to calculate each of the @ — @' matrix elements indi-
vidually requires that one actually prediagonalize the entire Q' —space Hamiltonian
to find the Q’—space eigenvectors. This is clearly a difficult, if not impossible, task
for any large molecule. It is therefore important to comsider in more detail the

explicit expression for the averages in Eqgs. (3.1) and (3.2).
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The explicit form of the prediagonalized Q' —space wavefunction ‘1,&,?’) is given

by
NQI

I¢k’> = E Unk|‘PS,> 3 7 (3=3)

n=1
where {[@,?i)} is the Q' —space zeroth-order basis, and the coefficients Uni contain
the overlaps <gan'|1/1,?‘>. The matrix U contains a column of coefficients Uy, for

each state Izﬁ,?’) and diagonalizes the Q'—space Hamiltonian sub-block H?':
U'H?U = EY . (3.4)

In this equation, the diagonal matrix E?' contains the prediagonalized Q'—space
energies E’S' .
By virtue of Eq. (3.3), the expression for the matrix element which couples the

Q—space state |<p, > to the prediagonalized Q' —space state l’(/)k > is found in terms

of the zeroth-order basis toc be

Ng:
ViSQ = Z Uﬂkvng 3 (3.5)
where vQQ is the matrix element ((pz IV{tpn ) between zeroth-order states. The

absolute value squared of this matrix element may be written as

Ngi Ng
vae|? Z Uni "2 + 37 Uil] 023052 (3.6)
n=1 n=1m#n

In order to calculate the approximate Q—space widths in Eq. (2.22), one
evaluates Eq. (3.1). However, by using Eq. (3.6), this equation can be written

more explicitly as

qu qu ; Nq: Nqi

(TEP) = g 3 | X 10l 8P + 305 Um0

k=1 n=1m#n

(3.7)
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Equation (3.7) may be easily rewritten as

Nagi Ng: qu
(VR = N Y AnalvdP Z Y AnmvE2 023, (3.8)
Q' n=1 n=1 m%¥n
where
qu
= Z UnkUlZm . , (3.9)
k=1

Since U is the unitary transformation matrix that diagonalizes H?' [cf. Eq. (3.4)],
it is easy to show that A,,, equals the Kronecker delta ,,,,. Hence,

Ngs
(VI¥*) = Z W3R = (P (3.10)

where <]'va.Q Q' jz> is the average coupling element between the zeroth-order @ —space
state Ip?> and the zeroth-order Q' —space states {](pg'>} This result significantly
simplifies the evaluation of Egs. (3.1) and (3.2) and hence the application of the
present theory because no diagonalz;zations are now required in order to calculate

the relevant quantities in Egs. (2.23)-(2.36).

IV. DISCUSSION

The present theory is most useful when detailed theoretical information is avail-
able regarding the initial state, those “first tier” states that are coupled directly to
the initial state, and the magnitudes of the couplings between them. Given that
knowledge, the approximate result in Eq. (2.27) for the IVR decay rate is particu-
larly useful for a comparison with experiment. That is, the experimental decay rate
could be fit to a function of the form given in Eq. (2.27), provided one could calcu-
late theoretically the @ — P couplings VQ The “intramolecular width” parameter

<I‘Q> could then be determined from the combined experimental and theoretical
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results. Alternatively, one could evaluate (I'?) [Eqgs. (2.29) and (2.30)] directly
from the zeroth-order matrix elements and an estimate?® of pg: ((H)), calculate the
decay rate [Eq. (2.27)] using the theoretical value for (I'?), and then compare the
result with the experimental value.

By virtue of its form, the parameter <FQ> [Eq. (2.29)] provides valuable in-
formation regarding the degree of coupling (or mixing) among the intramolecular
“bath” states. It is also interesting to note that the additional parameter <I‘Q> PG
where pg; is the average density of Q' —space states over the width <FQ>, gives an
estimate of the total number of Q' —space bath states that participate in the IVR.?4
A comparison of the value of <FQ>paQ'~i with the total density of states at the mean
energy (H) of the initial state [p((H ))] provides information regarding the degree
to which interactions with off-resonant states (i.e., with energies E; # (H)) are
important (see, e.g., Ref. 11). It should be mentioned that <I‘Q> s not the homo-
geneous spectral linewidth!%!2 of the initial state. Rather, (T'?) reflects properties
of the intramolecular bath states.

The approximate formulas for the decay rate [Eqgs. (2.25) or (2.27)] also suggest
the possibility of bottlenecks in the flow of probability out of the initial state. In
particular, if the energies E? of the Q—space states are outside of the intramolecular
width (I'?) of the initial state, then the exponential decay rate is diminished.
This effect is shown more clearly by considering the relative contributions 6I‘f
to the rate in Eq. (2.27) from a state | ) which is degenerate with the initial
state, and from a state |<p?> which is outside of the intramolecular width (i.e.,
|E; — (H) | = |AE;] > (I'9)/2 ). It may be shown that the ratio of these state’s

contributions to the decay rate is given by

sTP VRO’ ((FQ>)2

Ty !V;ISQ}Q 2AE;

(4.1)

Thus, the contribution to the decay rate for first tier (Q—space) states outside of

the width <PQ> diminishes rapidly with increasing energy difference AE;.
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On the other hand, @—space states |<p?> that are within the intramolecular
width <I‘Q> can contribute comsiderably to the initial state’s decay rate. In that
case (i.e., AE; < (I'?)/2), it can also be shown that those state’s contributions to
the decay rate are insensitive functions of their zeroth-order energies. The relative
contributions 6T'F and 6T'Y to the initial state’s decay rate are found to be given

in this case by

str RSl |, (zAEi)z
T8 [vhe) (re) ’

where all quantities are as defined in the previous paragraph. For states with

(4.2)

AE; < (T?)/2, it is clear from Eq. (4.2) that those state’s contribution to the
rate is only weakly dependent on their energy. For a typical large molecule,!® <I‘Q>
may be on the order of 10-100 cm ™!, so Eq. (4.2) raises some interesting questions
concerning the relevance of different energy level distributions?® to IVR rates.

- The present theory may also be applied to calculate the decay rates of the C-H
overtone states in benzene.!3 By using the theoretical values for the energy differ-
ences AE; and coupling elements V; jP given by Sibert et al.,'2 the decay lifetimes
(=h/ I‘f ) of the veg = 5, 6, and 9 overtones were calculated from Eq. (2.27) to be
0.065, 0.052, and 0.154 ,ps, respectively. The values calculated numerically by Sib-
ert et al. were 0.062, 0.067, and 0.160 ps, respectively. In the present calculations,
a value for <I‘Q> of 100 cm™! was used for calculating the v = 5 and 6 overtone

I was used for the v = 9 overtone. These widths

lifetimes, while a value of 150 cm™
were taken to be the same as the phenomenological decay widths used in the de-
tailed time-dependent calculations of Sibert ef. al. The agreement between the two
sets of results is quite encouraging. By using a value of 150 cm™! instead of 100
cm~! for (I'?) in Eq. (2.27), the v = 5 and 6 overtone lifetimes were calculated to
be 0.064 and 0.063 ps, respectively. (The widths used by Sibert et al. should not

necessarily be the same as <I‘Q>, but it is expected that these two numbers should

be reasonably close in value.)
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V. CONCLUDING REMARKS

In Egs. (2.25) and (2.27), approximate results have been given for the exponen-
tial IVR decay rate of an initially prepared zeroth-order state in a large polyatomic
molecule. In addition, the appropriate generalized coupled equations for several
strongly coupled states are given in Egs. (2.34)—(2.36). The derivation of these
approximate results was based on a partitioning of the zeroth-order Hilbert space
into three subsets which are, respectively, the initial state (“P”), those states which
are directly coupled to the initial state (“Q”), and all remaining states (“Q' ”).
The procedure of adiabatic elimination%1¢ was then used on the Q’'—space am-
plitudes to simplify the coupled differential equations for those states. By treating
the Q'—space states as being prediagonalized, the appropriate sum over Q'—space
states in Eq. (2.10) was treated as a contour integral [cf. Eq. (2.11)], and the decay
width I‘? due to the “background” @Q'—space states [Eq. (2.22)] was obtained. By
virtue of an expansion [Eq. (2.20)] and the subsequent adiabatic elimination of the
Q-space states from the coupled equations, the approximate decay rate I‘f for the
intial P—space state was derived [Eq. (2.25)]. [An approximation given in Egs.
(2.27)-(2.29) further simplified the result for I'].] In Sec. III, it was also demon-
strated that no prediagonalization of the Q'—space states is necessary in order to
determine the relevant decay widths in the present theory.

The approximate results for the IVR decay rate 'Y [Eqs. (2.25) or (2.27)] are
more detailed in form than the usual Golden Rule expression [Eq. (1.1)]. This fact
is because the matrix elements for the first tier Q—space states that are directly
coupled to the initial state are treated explicitly. Nevertleless, no diagonalizations
of matrices or integrations of coupled equations are required in the present theory
[unless desired: cf. Egs. (2.34)-(2.36)]. In addition, the value of the intramolecular
width (I'?) in Eq. (2.29) is a potentially useful parameter which may be calculated

by averaging matrix elements [cf. Eq. (2.30)] or, more importantly, by comparison

with experimental results.
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‘Appendix I: Adiabatically Reduced Coupled Equations for Non-orthogonal

Basis Sets

For certain applications, it may be desirable to use a non-orthogonal basis set

expansion of the time-dependent wave function,* i.e.,

N
0(0) = eapl—i (H)) Y bil) ) (L1)

where % equals unity, and (H) is the expectation value of the energy for the initial
state. This expansion is similar to that given in Eqgs. (2.1) and (2.3) of Chapter 5,
except that now the overlaps (p;|©;) equal a value S;; rather than the Kronecker
delta &;;.

By substituting Eq. (L.1) into the time-dependent Schrodinger equation and
multiplying from the left by ezp(: (H) t) (p,], the following coupled equations for
the amplitudes b;(t) are obtained:

d
isdb) = @ - (m)9hb() (12
where H is the Hamiltonian matrix represented in the non-orthogonal basis {|e:)},
b(t) is a vector containing the amplitudes b;(t), and S is the overlap matrix com-
posed of the elements S;;. The initial conditions for Eq. (I.2) are given by the
vector b(0) = S~1a(0), where the vector a(0) has the elements a;(0) = (p:|¥(0)).

Equation (I.2) may be rewritten as

.d
o b(t) = (A — (H)1)b(t) , (1.3)
“where the matrix A is defined as S™'H. The matrix A determines the time evo-
lution of the non-orthogonal basis state amplitudes b(¢) in the same way that H,

when represented in an orthogonal basis, determines the state amplitudes in the

* See, for example, T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
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theory of Chapter 5. In the present instance, therefore, a partitioning of the state
amplitudes into resonant/strongly coupled and off-resonant/weakly coupled sub-
spaces may be performed based on an examination of the elements of the matrix
A relative to the value of the initial state energy (H) (cf. Chap. 5). The adiabatic
treatment of Chapter 5 may then be utilized by taking care to use the partitioned
matrix A rather than present H (which is represented in a non-orthogonal basis).
It is hence a relatively straightforward matter to adapt the theory of Chapter 5 to

treat non-orthogonal basis sets.
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Appendix II: Iteratively Determined Effective Hamiltonians for the Adi-
abatically Reduced Coupled Equations Approach to Intramolecular Dy-

namicg Calculations

[The text of this Appendix appeared in: S. J. Klippenstein, G. A. Voth, and R. A.
Marcus, J. Chem. Phys. 85, 5019 (1986).
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lteratively determined effective Hamiltonians for the adiabatically reduced
coupled equations approach to intramolecular dynamics calculations
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An iterative procedure is proposed for determining increasingly accurate effective
Hamiltonians for use in the adiabatically reduced coupled equations approach to
intramolecular dynamics calculations [J. Chem. Phys. 84, 2254 (1986) ]. The relationships
between this iterative determination of the effective Hamiltonian, which is based on an
adiabatic approximation, and some other partitioning methods for determining an effective
Hamiltonian are discussed. The present iterative procedure provides accurate agreement with
the exact dynamics for the two specific model systems studied.

I. INTRODUCTION

In recent years, there has been considerable theoretical
and experimental interest in the quantum dynamics of ini-
tially prepared nonstationary states in isolated polyatomic
molecules. More specifically, the time-evolution of initially
prepared states resulting from vibronic,' vibrational,” and
rovibrational® coupling mechanisms is of particular interest.
The “exact” treatment of the dynamics of these states re-
quires, in typical situations, the numerical diagonalization of
a Hamiltonian matrix having a very large number of basis
states. Since there are, at present, computational limitations
on the size of matrices which can be diagonalized, methods
which reduce the size of the Hamiltonian matrix to be dia-
gonalized, or, alternatively, new methods for determining
the quantum dynamics,* must be developed.

By virtue of clever numerical methods, several authors
have been able to increase the number of basis states which
may be included in a typical calculation. For example, Nauts
and Wyatt® have developed the recursive residue generation
method (RRGM) to determine the relevant time-dependent
transition amplitudes directly without requiring the diagon-
alization of the Hamiitonian matrix. Moreover, Tietz and
Chu,® as well as Chang and Wyatt,” have implemented artifi-
cial intelligence algorithms in their studies of multiphoton
excitation of molecules which allowed them to consider a
large number of basis states and then to include in their dy-
namical calculations only those states which had the largest
effect on the dynamics. These methods represent potentially
quite powerful numerical approaches for obtaining the dy-
namics of nonstationary states.

Recently, Voth and Marcus® have developed an ap-
proximate dynamical approach which is based on a parti-
tioning®® of the basis set into a subset of states which are
resonant and/or strongly interacting with the initial state,
and a subset of states containing the remaining off-resonant/
weakly coupled states.® Their approach then treats the off-
resonant/weakly coupled states in an effective manner by
virtue of an adiabatic approximation. This latter method

* Contribution No. 7434,

J. Chem. Phys. 85 (9}, 1 Novemnber 1986

0021-9606/86/215019-08%02.10

also allows one to determine the dynamics directly by inte-
grating the effective coupled equations and hence does not
rely on a calculation (and computer storage) of the eigenval-
ues and eigenvectors of the system.

In this article, an iterative scheme is applied to the adia-
batically reduced coupled equations approach of Voth and
Marcus.® With each iterative step, new effective coupled
equations for the resonant/strongly coupled subspace are
obtained, and hence a new effective Hamiltonian is derived.
If the initial adiabatic approximation is a good one (cf. Dis-
cussion in Ref. 8), the resulting dynamics calculated from
the effective coupled equations exhibit accurate agreement
with the exact dynamics.

The derivation of the reduced coupled equations is re-
viewed in Sec. IT and the iterative scheme is presented there.
In Sec. III the present time-dependent method for determin-
ing the effective coupled equations is shown to be related to
the iterative solution of an equation for the effective interac-
tion in nuclei derived from a time-independent viewpoint by
Schucan and Weidenmiilier.'® The reiationship of the pres-
ent effective Hamiltonian to that given by Lee and Suzuki'!
and to the partitioning formalism of Léwdin'? is also dis-
cussed in Sec. III. An application of the effective coupled
equations to two model problems is given in Sec. IV, and the
results are discussed in Sec. V. Concluding remarks appear
in Sec. VL.

il. THEORY
A, Coupled equations

The time-dependent wave function (in atomic units) is
expanded as®'?

) N
[#(0)) =exp( —i(H)®) ¥ 5,(D)|@;), (H
i=1

where the basis states |@,) are eigenfunctions of a suitably
chosen zeroth-order Hamiltonian H,, and (H ) is the expec-
tation value of the total Hamiltonian H( = H, + V), de-
finedas (H ) = (W (1)|H |¥(r)). By substituting this expan-
sion for |¥(¢)) into the time-dependent Schrodinger
equation and using the orthonormal properties of the {|@, ) }

© 1986 American Institute of Physics
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basis, the following coupled first-order differential equations
for the amplitudes b, (¢) are obtained:

db; (1)

N
=I(H>bj(t) -1 Z iljibi(!), (2)
=1
where H; = (g, |H |p,).

The zeroth-order basis is now partitioned into a subset
of states which are nearly resonant with and/or strongly
coupled to the initial state and another subset containing all
renraining off-resonant/weakly coupled states. The coupled
equations may then be written in vector-matrix notation as®

%b“(r) = i((H)IR — HR)BR(1) — VEO(r),  (3)

%bo(t) = (({(H)1° — HOHb(t) — iVoRbR(1) . (4)

By denoting the dimension of the resonant/strongly coupled
subspace by Ny and the off-resonant/weakly coupled sub-
space by Ny, the quantities in Egs. (3) and (4) are defined as
follows: B%(#)[b°(1) ] is an Ny (N, )-dimensional column
vector containing the amplitudes for the resonant (off-reso-
nant) states, 1¥(1°) is the Ng X Nz (N, X N, ) identity ma-
trix, HR(H®) is the Ny X Nz (N, X N,) Hamiltonian sub-
matrix for the resonant (off-resonant) states, and VRO(V9F)
is the Ny X N (N X Ny ) coupling matrix between the two
subspaces.

B. iterative scheme for the effective coupled equations

The adiabatic approximation given in Ref. 8 was based
on the physical property that the off-resonant amplitudes
bP(¢) will remain negligibly small during the time evolution
and hence the derivatives db°(#)/dt in Eq. (4) are effective-
ly equal to zero. The validity of this approximation depends
on the partitioning schéme, and the reader is referred to Ref.
8 for further details in that regard. With the approximation
of db°(z)/dt=0, which hereafter will be termed the “zeroth-
order” approximation, effective coupled equations for calcu-
fating the dynamics of the resonant amplitudes may be de-
rived.® It will be shown here how increasingly accurate
higher-order effective coupled equations can be derived iter-
atively by obtaining improved approximations for the off-
resonant derivatives in Eq. (4).

Equation (3) can be rewritten in the form

VEB(E) = LB + (DI —HOBYD) (5)
and Eq. (4) can also be rearranged to give
bo(t) = —i((H)1° - H?) “i% bO(2)

+ ({H}1°— H%) ~'VoRpR(s) . (6)

As a metioned before, the zeroth-order adiabatic ap-
proximation used in Ref. 8 was

“d
— bo(£)=~0, (7
o (t)
which, when substituted into Eq. (6}, yields
BO(1) == ((H )1° — H?) ~'VoRpa(y) . (8)

Substitution of this expression for BY(¢) into Eq. (3) gives

%bk(z‘)f_\:—zﬂfmb‘*(t), (9)

where the zeroth-order effective Hamiltonian is given by
Hio =HF — (H)1% + VR9((H 1% — H%) ~'VoF
(10)
An iterative formula for the general nth-order effective
Hamiltonian, HY; ., may be derived as shown below, for
which the corresponding coupled equations are given by

ibR(t)z——leﬁ,,bR(t), (1D
dr

where
HE, = [1°+F '(HBE. . + (H)1? - HY]'HE,
(12)
and
F~ ' =VR((H)1° — H°) ~'(VRo)~1, (13)
Equations (11)~(13) constitute the central result of the

present paper.
To derive Egs. (11)-(13), Eq. (5) is first rewritten as

bO(1) =(VEO) ~H(HE, | + (H 1R~ HMR (),
(14)

where (V2?) ~'isa “left” inverse, and idb® (1) /dt in Eq. (5)
has been taken to be equal to HY; , _,b?(¢) (i.e., it is taken
from the previous iteration). For example, the first-order
approximation to b°(z) is obtained by replacing idb®(z)/dr
in Eq. (5) by H%,b%(¢). By taking the derivative of Eq.
(14) and then substituting the resulting expression for
db®(r)/dt into Eq. (6), an approximation for b°(¢) is ob-
tained, namely

b= — i({H )1° — H%) "1 (VRO "V (HR,, _,
+ (H)IR — H’*)—d— bR (2)
dt

+ ({H)1° — H°) ~'VRpR(z) . (15)

Substitution of Eq. (15) for the off-resonant amplitudes into
Eq. (3) and collecting the terms for db®(¢)/dt yields the
nth-order effective coupled equations given by Egs. (11)-
(13).

The present iterative procedure can be repeated ad in-
finitum to give, in principle, better and better approxima-
tions to the off-resonant amplitudes and hence to give more
and more accurate effective coupled equations. However,
the accuracy of the coupled equations determined from this
procedure depends crucially on how good the initial choice
for the time derivatives of the off-resonant states is. (This
choice was zero in the present case.®) When the initial ap-
proximation for those derivatives is not a sufficiently accu-
rate one, the iterative procedure may give qualitatively in-
correct results for the dynamics. From the nature of the
iterative formula, it is clear that the convergence properties
depend very much on the “magnitude” of V2 (or VoF)
relative to the magnitude of ((H )1° — H?).2

The following notation is introduced here to simplify
the expressions for the effective Hamiltonians:

— R¥R
v0 - Heﬂ'.o $
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v =VR0((H>10-*~HO)“(H‘nVOR, i)lt (16)

For example, the first-order effective Hamiltonian is now
given by

HY, = [1°+ VRO((H )1° - HO) VR 1~ 'HE,
= (1R +V,)"'V,, an
and the second-order effective Hamiltonian by
HE, = [1R 4V, =V, (1R 4+ V)"V, ] 7'V, . (18)

C. Expansions of the effective Hamiltonian

The effective Hamiltonian determined from the present
iterative procedure may be expanded in various ways. For
example, due to computational limitations, it may not al-
ways be desirable to invert the matrix ((H )1° — H?) pres-
ent in V; [Eq. (16)]. In that case, the following expansion
could prove useful (e.g., Ref. 12, with (H ) replaced by an
energy eigenvalue £):

(HYI°—H)'= ((H)1°—EH ™!
E% ',
(19

where the matrix H has been separated into E® 4 V©, with
E° containing the diagonal elements of H® and V? contain-
ing the off-diagonal elements of HC Since the matrix
((H)1° — E°) is a diagonal matrix and thereby trivial to
invert, each of the terms in the expansion may be straightfor-
wardly evaluated.

Another expansion which may prove useful is a series
expansion in powers of V; [cf. Eq. (16), and see, e.g., Ref.
10]. For example, the series expansion of HY;, in powers of
¥, is given by

Hfmz = z

m=0

X 3 [VO((H)1O -

V, S (=V)W, =V, | V,. (20)
n=0

With the further definition of

Vi =[1"+V, ]V, i»0, (20
the second-order effective Hamiltonian may be rewritten as
HS, = (1R = V3V) " 'v; (22)

A fina] series expansion which may prove useful is one in
powers of V; (see, e.g., Ref. 10), which for HY;, is given by

HE, = Z (V3V5)"V; . (23)

n=0

lil. RELATIONSHIP TO OTHER PARTITIONING
TECHNIQUES

The relationship between the present time-dependent
method for determining the effective coupled equations, and
hence the effective Hamiltonian, and some time-indepen-
dent methods'®'%!*"16 for determining eigenvalues using ef-
fective Hamiltonians is discussed next. For the purpose of
comparison, the preceeding dynamical analysis of Sec. I B
may be viewed as a complementary way of determining an
effective Hamiltonian, although the focus of the present pa-

per is towards a determination of the dynamics rather than
the eigenvalues.

Several authors (e.g., Refs. 10, 11, 14-16) have used
partitioning techniques to construct an effective interaction
Hamiltonian for the determination of a subset of energy lev-
els in nuclei. A summary of the work in this field is given in
Ref. 16. One frequently used formula for determining the
effective interactions is the Des Cloiseaux and Brandow ex-

pansion,'*'* given in the present notation'” by
HRﬂ-—wﬂR—}»lR-i- Z d )"VRO(EIO HO)—-l
X VOr —-(H )" (24)

E=ANn

In this equation, the quannty A is taken to be a general pa-
rameter which should, in principle, be chosen to give the best
agreement between the eigenvalues of the effective Hamilto-
nian and the corresponding eigenvalues of the exact Hamil-
tonian. For a nondegenerate resonant subspace, deciding
upon the appropriate choice of A is nontrivial.'” Following
our analysis in Ref. 8, we make the choice A = (H ), since it
gave the most accurate effective coupled equations for calcu-
lating the resonant state dynamics. The relationship of the
effective Hamiltonians determined by the present iterative
scheme to those determined by ptevious authors'®™'%14-16
can also be shown, noting that we have replaced their 4 by
our {H ).

Schucan and Weidenmiiller'® (SW) have considered
the application of partitioning techniques to the determina-
tion of energy levels in nuclei. SW derived the following
equation for the effective interaction'”:

HY =[1*+F '(H + A1 —HY ] 7Y, (29)
where this F~! denotes VR?(4 1% — H%) ~(V®9)~!, and
V, is given in terms of A by HF-A1"
+ VRO(4 1° — H°) ~ V&, This equation is equivalent'® to
the implicit equation for H, given by the Des Cloiseaux and
Brandow expansion [Eq. (24)]. Comparison of Eq. (25)
above for the SW effective interaction with Eq. (12) for the
present nth-order effective Hamiltonian shows that HY; | is
just the nth iterative solution to Eq. (25), with the specific
choice of A = (H ). SW discuss solving Eq. (25) iteratively,
and, by making expansions in powers of V,’s or V/’s, they
derive series expansions for the effective Hamiltonian which
are similarly related to sth order forms of Egs. (20) and
(23) by making the choice A = (H ). Discussions of the co-
vergence properties of the eigenvalues of the unexpanded
and various expanded forms of the effective Hamiltonians
are given in Refs. 10, 11, and 14-16, for example.

Recently, Lee and Suzuki'' have derived an iterative
formula for an effective Hamiltonian H,, for use in obtaining
the eigenvalues in the case of a degenerate subspace. This
formula, generalized to the case of a nondegenerate sub-

space,'®!” is given in the present notation [Eq. (16)] by
H, =V,
n i
H,=|1*+V,— ¥ (-)"V, H Hk-i] Vo,
m o 2 . k=n—m+2
n>1, (26)
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with V, given as in the expression following Eq. (25) and
with the V,’s for i > 0 given by Eq. (16) and having the (H )
replaced by 4. In Appendix A, it is shown that the present
HZ;, is equivalent to the nth-order effective Hamiltonian
H,, of Lee and Suzuki,'! given by Eq. (26), once the specific
choice of 4 = (H ) is made.

The eigenvalues obtained from the present iterative
scheme for the effective Hamiltonian are also related to the
Newton~Raphson technique for determining the eigenval-
ues for the exact partitioned Hamiltonian of Léwdin.!? The
exact partitioned Hamiltonian is given in the present nota-
tion by®

Hfmt = HR + VRO(E 10 _ HO) - lVoR’ (27)

where the constant factor — (& )1® has been omitted. The
eigenvalues are then determined by solving the secular equa-
tion
det{Hfm, ~E1R | =0, (28)
R

which, due to the dependence of H., ., on E, may require the
use of a root search technique such as the Newton-Raphson
method. '?

The relationship between the Newton-Raphson solu-
tion to the above secular equation and the present effective
Hamiltonian method may be established in the case of a one-
dimensional resonant subspace. In this situation, the expres-
sion for the eigenvalue derived from the first-order effective
Hamiltonian is identical with the expression derived from
the first iteration of the Newton-Raphson method with the
initial guess for Eof (H ). However, the relationship between
the higher-order effective Hamiltonians and further itera-
tions of the Newton-Raphson method (as well as for reso-
nant subspaces of dimension greater than one) requires
further investigation.

The effective Hamiltonian method for determining
eigenvalues is also related to various other formulations of
degenerate or nearly degenerate perturbation theory. These
relationships are not as relevant to the dynamical analysis of
the present paper and will not be discussed here. Further
discussions in that regard are given in Refs. 18 and 19.

V. APPLICATIONS

In order to illustrate the possible applications of this
technique and the accuracy of the effective coupled equa-

ENERGY
=<

FIG. 1. A schematic diagram of the four-state model system used in Sec. IV.
Dotted lines denote the couplings between the zeroth-order states, and |@,)
is the initial state.

tions, two model systems are considered here. The zeroth-
order energy levels and couplings for the first system studied
are depicted schematically in Fig. 1. The four basis states for
this system are separated into two resonant states |@,) and
|@,) and two off-resonant states |@;) and [@,). The state
|@,) is taken to be the initially prepared state. This effective
two-level model has features in common with the energy
transfer dynamics of the local mode states in a model of
H,0.52% In the present model, the relevant matrix elements
are given by HY = E 1R H=E, +AHO =HS =V,
and Vi°=V2* =V,

By using the formulas for the zeroth- and first-order
effective Hamiltonians given in Eqgs. (10) and (17), the fol-
lowing analytic result for the time-dependent probability
P, (1) of the initial zeroth-order state is obtained:

Pi(t) = |bR(D) |2 =cos® (2 /2), (i=0,1), (29)
where the zeroth- and first-order effective frequencies 0,
and {1, are given, respectively, by

J
2
0= |27 | (30)
A*— V3
o ;IZ(AZQVg){[(AZ*Vi)z»k VI(AT+ V) ViV, — 282V Va} 31y
| S -

[(a2 =P+ V(a2 + V) ]* ~4a?ViV3

An analogous analytical formula for the second-order effec-
tive frequency §}, can be obtained from Eq. (18), although it
is omitted here for brevity. The “exact” frequency®' which
would appear instead of £}, in Eq. (29) is denoted below by
.

—

The time evolution of P,(¢) is plotted in Fig. 2 for the
exact, zeroth-, and first-order coupled equations. The pa-
rameters used in making this plot were V, = —43.9,
V,= —50.6, & =337.7 cm™". For these parameters, the
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PROBABILITY OF INITIAL STATE

(o]
Q

TIME (ps)

FIG. 2. Initial state probability P, () for the model system shown in Fig,. 1,
with A = 337.7, ¥, = —43.9, and ¥, = — 50.6 cm™". The exact results
are given by the solid line, the zeroth-order results by the long dashed line,
and the first-order results by the short dashed line.

values of {2y, A;, and {}, were calculated to be 1.7495,
1.6588, and 1.6614 cm ™', respectively, while the result for &
is 1.6613 cm ™", In Fig. 3, the initial state probability P, (¢) is
plotted once again, but now for the exact, zeréth-, and sec-
ond-order coupied equations, and with the zeroth-order de-
tuning A decreased to 150 cm ™. In this case, the values of
Q,, §1,, and 1, were calculated to be 9.781, 7.056, and 7.481
cm™ !, respectively, while the result for 2 is 7.426 cm ™. In
Table |, the resonant subspace eigenvalues for the above two
sets of parameters, as calculated from the exact, zeroth-,
first-, and second-order effective Hamiltonians, are given.
The second model system considered consists of 55 basis
states, with the resonant subspace having 10 states and the

10

PROEABILITY OF INITIAL STATE

[e]

O3
s

TIME (ps)

FIG. 3. Initial state probability P, () for the model system shown in Fig. 1,
with A = 150.0, ¥, = —43.9, and V, = 50.6 cm™". The exact resulis are
given by the solid line, the zeroth-order results by the long dashed line, and
the second-order results by the short dashed line.

TABLE I. Eigenvalues for the resonant subspace in the four-state model
system.

Ar Exact Second First Zeroth
3373 — 656266 656274 —655932 671268
~4.90133 —490134 —490056 —496320
150.0 — 1661214 1666792 — 1622389 —19.38843
—~9.18653 —9.18733 —9.16814 -9.60723
*The other parameters in the four-state model were ¥, = —43.9 and
V, = —50.6 cm™'. All units are in cm~".

off-resonant subspace having 45 states. The initial state ener-
gy H¥T, was arbitrarily set equal to zero and all the other
diagonal elements of H? were chosen to have random values
between + 10cm ™. The diagonal elements of H® were cho-
sen randomly within the limits — 55<HY?< — 10 cm ™' and
10<HZ<55cm™". The off-diagonal elements of HF, H°,
and all the elements of V29 and V® were chosen randomly
to be between + 2 cm™'. These matrices were made to be
Hermitian. The initial state probability P, (¢) as calculated
by the exact, zeroth-, and first-order coupled equations is
plotted in Fig. 4 for this system. In Table II, the eigenvalues
for the resonant subspace, as calculated from the exact Ham-

-iltonian, and the zeroth- and first-order effective Hamilto-

nians, are given.

The probabilities in Figs. 24 obtained by integration of
the effective coupled equations are seen t0 remain somewhat
above the peaks and valleys of the exact probability curves. It
is perhaps desirable to have the effective probability curves
follow the “average” of the exact curves. For this purpose, a
correction factor fp, derived in Appendix B, may be used.
This factor takes into account the small fraction of probabil-
ity remaining, on the average, in the off-resonant states (cf.
Appendix B) and is given by

S

TIME {(ps)

FIG. 4. Initial state probability P, (¢) for the second model system discussed
in Sec. IV of the text. The exact results are given by the solid line, the zeroth-
order results by the long dashed line, and the first-order results by the short
dashed line.

J. Chem. Phys., Vol. 85, No. 9, 1 November 1986



~141-

TABLE I1. Eigenvalues for the resonant subspace in the 55-state model
system.®

Exact First Zeroth
— 7.8342 — 8.1506 - 9.1006
— 3.4768 — 3.5308 — 4.1809
—2.6149 — 2.6338 — 2.9832
- 1.3356 — 1.3344 — 1.5533
0.6269 0.6268 0.7097
11780 1.1811 1.3642
4.5006 4.3520 5.3627
5.9862 6.1315 6.8652
6.1681 6.2137 7.3159
7.6073 7.7074 8.5667
® All uniis arecm™ .
1 &
szl“TZMn’ (32)
R i=1

where the matrix M is
M = VRO((H )1° — HO) ~?VOok (33

In Figs. 5 and 6, all the initial state probabilities from Figs. 3
and 4 are plotted, but the approximate ones are now multi-
plied by the overall correction factor fj .

V. DISCUSSION

From the results shown in Figs. 2-6, ii is clear that by
using such higher-order effective Hamiltonians one can ob-
tain more accurate approximations to the dynamics than by
just using the zeroth-order one. In addition, the results
shown in Fig. 3 indicate that, even in the case of an interac-
tion with the off-resonant states which is fairly large relative
to the splitting beiween the resonant and off-resonant sub-
spaces, the approximate resonant state dynamics obtained
from a higher-order effective Hamiltonian may still be able

w D
ke R
i . Jki
B oo
i Lo
g at
Z b '
s o
> ly ‘
- > ]
] i i
& & ﬁj'
e , 1
& | aHe
Q| ‘ .
@ .
x| D :
. Y
i B
TIVE {ps)

FIG. 5. “Corrected” initial state probability P, (z) X f,, for the model sys-
tem shown in Fig. |, with & = 150.0, ¥, = ~ 43.9,and ¥, = — 50.6cm ™"
The exact results (with no correction factor) are given by the solid line, the
zeroth-order results by the long dashed line, and the second-order results by
the short dashed line.

TIME (ps)

74

FIG. 6. Corrected initiai state probability P,(#) X f for the second model
system discussed in Sec. IV of the text. The exact results (with no correction
factor) are given by the solid line, the zeroth-order results by the long
dashed line, and the first-order results by the short dashed line.

to reproduce the most important trends in the dynamics.
However, in each case it is also apparent that the zeroth-
order approximation gives a reasonably good description of
the correct average behavior, apart from a shift in the oscilla-
tion frequency. As mentioned before, this situation is neces-
sary for the higher-order effective coupled equations to be
accurate. In addition, Figs. 5 and 6 indicate that the correc-
tion factor fg [Eq. (32) ] is indeed useful for obtaining better
average dynamics.

An inspection of the results given in Table I shows that
the eigenvalues in the effective two-level model become more
accurate with successive steps in the iteration procedure.
From the results given in Table I for the second model sys-
tem, one can again see that the eigenvalues which are ob-
tained from the first-order effective Hamiltonian are more
accurate than those obtained from the zeroth-order effective
Hamiltonian, with the ones closest to the initial state energy
{H) ({ = HY = 0) being the most accurately determined.
In addition, calculations for this and other model systems
have shown that more accurate dynamics and eigenvalues
may also be obtained by increasing the dimension of the reso-
nant subspace relative to the dimension of the off-resonant
subspace. This result illustrates the potential power of a
combined partitioning and iterative formalism.

It is also noted here that although the zeroth-order ef-
fective Hamiltonian is Hermitian, since H is Hermitian, the
nth-order effective Hamiltonian is not in general Hermitian.
If desirable, this situation can be remedied in various ways.
For example, a Hermitian effective Hamiltonian may be ob-
tained by defining it to be (H%, + HX;,)/2. This simple
symmetrization of the effective Hamiltonian has been used
in nuclear physics applications, '® but was found in those ap-
plications and in the present dynamical calculations to have
a negligible effect. Other alternatives in this regard include
transformations which make the initial non-Hermitian ef-
fective Hamiltonian Hermitian.'*'>!°
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Vi. CONCLUDING REMARKS

An iterative procedure for obtaining increasingly accu-
rate effective coupled equations has been presented in the
present paper. This procedure extends the adiabatic approxi-
mation developed by Voth and Marcus® and is related to
several effective Hamiltonian techniques'®'#!4-16:!8.19 yged
predominantly in the nuclear physics literature. A general
prescription for obtaining the effective coupled equations,
and hence an effective Hamiltonian, has been formulated.
This prescription may be used to calculate the dynamics of a
subset of resonant/strongly coupled states (relative to the
initially prepared state). The model calculations performed
to test the accuracy of the iterative procedure indeed yielded
very encouraging results.

The results presented in this paper suggest the following
possibilities for use of the higher-order effective coupled
equations in intramolecular dynamics calculations: (1) asa
test for the usefulness/accuracy of the zeroth-order adiabati-
cally reduced coupled equations approach,® (2) as a means
for obtaining more accurate dynamics in any given applica-
tion of the zeroth-order coupled equations, and (3) as a
means to obtain the approximate intramolecular dynamics
in a situation where, due toc computational limitations, one
cannot obtain convergence of the zeroth-order dynamics by
simply increasing the dimension of the resonant subspace. It
is planned to give specific applications of the present theory
in later publications.
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APPENDIX A: EQUIVALENCE OF EQ. (12) TO EQ. (26)

It is given that H, = HX,, and so using the method of

induction, the equality of the two effective Hamiltonians
HE:, and H, [Egs. (12) and (26), respectively] may be
established by assuming that HY; , = H,, and then showing
thatHfﬂ".n+1 =Hn+l°

Equation (12), with n replaced by n + 1 and setting
HEY , =H,, yields

HE, = [1"+F '(H, + (H)1* ~HY ] 'F'FY,

=[F+H, + (H)1* -~ H*"]7'FV,, (Al)
recalling Eq. (16) for V,,. There is also the identity,
H, =V, — (VH '~ 19H,
=V,— [(H,Vg7H ™' — 17 ]H,. (A2)

Introducing the expression for H,,, given by Eq. (26), into
the first H,, term on the right-hand side of Eq. (A2) yields

H,,:Vo-»[v, - > (=), I Hkﬁx]Hm
m=2 k=n—m+2
LER : A1
=Vo— ¥ (=)"V,_, H,_,, (A3
m=2

k=n—m+3
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upon using Eq. (16). Substituting this expression for H,
into Eg. (Al) yields

HR

effn + 1
=[F+ Vy+ (H)1®" —HF
n+ 1 n 4t -1
-3 (—=)"V,._, Hk—l] Fv,
m=12 k=r—m+3
(A4)
Observing that
FV, =V, + (H)1®R - H? (AS5)
and
one sees that Eq. (A4) may be rewritten as
n+1
HY, . = [F[1t v =S (o),
m=2
n 41 ~ 'l] -1
X H Hk-ln Fv,
k=n—m+3
=H"+1VO-IF—]FVO
=H, (AT)

upon using a result for the produce of inverses, and introduc-
ing Eq. (26) (for n + 1 instead of ).

APPENDIX B: DERIVATION OF THE CORRECTION
FACTOR

The total probability (¥(z)|W(z)) of the quantum dy-
namical system satisfies the condition

Pty +Po(t)y =1, (BI)
where Pg (t) and P, (¢) are the resonant and off-resonant
basis state probabilities, respectively (cf. Sec. II A). The lat-

ter two quantities may be written in terms of the vectors
containing the resonant and off-resonant state amplitudes as

Po(n)=b""()BR(¢) and P,(t) =8°T()b°(n),
(B2)
respectively. If the probabilities are now long-time-aver-
aged, the average resonant state probability £, is given from

Eq. (B1) as

B, =1-P,, (B3)
where P, and P, are given by
B =lm-~[ Pya, (i=RO). (B4)

T T Jo
By virtue of Eq. (B2) and the “zeroth-order” adiabatic
approximation for the amplitudes b°(¢) [Eq. (8)], the long-
time-averaged off-resonant state probability may be ap-
proximated as

Ng
Pomiim| L 5w, [0
()

Tewl T =

Ng Ng

+1 >y M, fbf*(t)bf(z)dt],
1

T i jeki

(BS3)

where the matrix M is given by Eq. (33) of the text, and N
is the dimension of the resonant subspace (cf. Sec. II A).
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This expression could, in principle, be evaluated from an
actual dynamical calculation of the vector b®(¢) using the
effective coupled equations [Egs. (11)~(13)].

It is desirable, however, to obtain simple approxima-
tions for the long-time averages of |bR(t)}?> and
b*(1)b [ (¢) and to thereby simplify Eq. (B5). To achieve
this goal, the resonant state basis functions |@ ®) are as-
sumed to be adequately described as a linear combination of
the resonant state eigenfunctions [¢%), i.e., as

Na

D=3 Caldh). (B6)

It is assumed here that the contributions from the off-reso-
nant basis functions @ ?) to the resonant eigenfunctions
[¢R) are small. With the further assumption of strong mix-
ing among the resonant basis functions due to the perturba-
tion and their near degeneracy, the magnitude of the expan-
sion coefficients |C,, | may be approximated by I/Jﬁ; . By
virtue of these latter two approximations and the fact that
bR = (@ R|¥ (1)), the first term in Eq. (B5) becomes

1 M 1 L=
lim — $° M, f[bf(:);zaiz;:-— S M, (B7)
0

e T {21 Np &4

The second term in Eq. (BS) is assumed to be approximately
equal to zero since each & f*(£)b f(1) term, with i), is
highly oscillatory. With the above approximations for the
Iong-time averages in Eq. (BS), the simple approximate for-
mula for B, is obtained:

— 1 Ye
Py Z M.

NR i=1

(B8)

If dynamics calculations are performed using the effec-
tive coupled equations [Egs. (11)~(13)] and an initial state
probability normalized to unity, the results of Eq. (B3) and
(B8) suggest that the calculated resonant state probabilities
should be multiplied by the correction factor

fe==1 =Py, (89)
where P, is given by Eq. (B8). The factor f; corrects phe-
nomenologically for the small fraction of probability which
is present, on the average, in the off-resonant “‘virtual”
states.?
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