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Abstract 

By virtue of various theoretical techniques, the fundamental mechanisms re­

sponsible for intramolecular vibrational energy redistribution (IVR) in isolated 

molecules are studied in this thesis. One such mechanism, the nonlinear resonance, 

is examined in some detail for several systems. In particular, nonlinear stretch-bend 

resonances in a series of isotopically substituted methanes are predicted to have a 

large effect on the spectral properties of those molecules. By using a semiclassical 

analysis, the general properties of stretch-bend interactions are further examined, 

and the quantum mechanical manifestations of classical resonances are character­

ized in detail. A related problem, the role of classical resonances in the multiphoton 

absorption process by an anharmonic oscillator, is also analyzed. 

In addition, it is demonstrated that the quantum mechanical coupled equations 

which describe the fundamental IVR process may be simplified. This simplification 

is achieved by virtue of an "adiabatic" approximation for those state amplitudes 

which are sufficiently off-resonant with (i.e., different in energy from) the experi­

mentally prepared quantum state. The approximate coupled equations are based 

on an effective Hamiltonian which contains renormalized self-energies and interac­

tions between the zeroth-order quantum states. This formalism may be applied to 

describe the quasidissipative fl.ow of probability out of an initially prepared vibra­

tional state in a large molecule, and it may also be adapted to treat multiphoton 

absorption processes in polyatomic molecules when one or more lasers are present. 
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Introduction 

The research presented in this dissertation is centered around providing a the­

oretical description of the nonlinear interactions and energy exchange mechanisms 

between vibrational modes in polyatomic molecules. Understanding and character­

izing these mechanisms is of particular importance to the so-called "laser selective" 

chemistry. 1 That is, if the selective laser excitation and localization of energy in 

specific vibrational degrees of freedom of a molecule is to be achieved, it is criti­

cal that the mechanisms of intramolecular vibrational energy redistribution (IVR) 

be explored and understood. At the fundamental level, highly excited and non­

linearly coupled oscillators exhibit extremely rich quantum and classical mechanics 

and thereby pose many interesting questions to the theoretician. 

In the past ten years or so, it has become increasingly clear that vibrational 

resonances in both classical2 and quantum3 mechanics are of paramount importance 

to the IVR phenomenon.3- 8 A substantial portion of this dissertation is therefore 

devoted to characterizing the effect of resonances on the vibrational dynamics of 

molecules: Classical, semiclassical, and quantum mechanical techniques are utilized 

to treat this problem. At the quantum mechanical level in particular, the effects of 

resonant versus off-resonant interactions are strikingly different, and this situation 

allows for a simplification of the intramolecular dynamics problem. In addition, 

a molecular system interacting,with a radiation field may be treated in a similar 

way since the total Hamiltonian in this case is isomorphic with Hamiltonians which 

give rise to IVR in isolated molecules (i.e., the field simply contributes additional 

coupled degrees of freedom). 

In Chapter 1, a theoretical analysis of the vibrational states of the isotopically 

substituted methanes CHD3, CHT3, and CH3D is presented.4 This work was mo­

tivated by the high C-H overtone spectrum of CHD3 obtained experimentally by 

Perry et al. 5 The C-H overtone spectrum consists of simple two-level Fermi reso­

nances which show very selective and strong zeroth-order state mixing between the 
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"pure" overtone state lv,0,0, ... ,0) (v = 5,6) and a single 1:2 resonant combina­

tion state Iv - 1, 2, O, ... , 0), having two quanta in a bending mode. This severely 

restricted state mixing is quite interesting since the density of zeroth-order vibra­

tional states with the appropriate symmetry to interact with the pure C-H overtone 

state is approximately 35 states per cm-1 • The observed state mixing behavior 

thereby appears to be quite "non-statistical" and hence due to a specific and selec­

tive resonant coupling mechanism. 

A theoretical explanation for the selective coupling behavior observed in CHD3 

is proposed in Chapter 1 which is based on a curvilinear coordinate treatment of 

the quantum mechanical vibrational state problem.4 •6 •7 The analysis in that chapter 

uncovers selective and strong dynamical coupling between the C-H stretch and 

a particular normal mode involving H-C-D bending motions. The experimental 

results on CHD3 are fit quite well by the theoretical model, and similar behavior is 

predicted for the C-H stretching states of CHT3. In addition, the possible origins 

of the more extensive state mixing observed5 in CH3D are discussed. As a whole, 

the work in Chapter 1 serves to further advance the understanding of stretch-bend 

interactions and the breakdown oflocalized excitations in molecules.3 - 8 In general, 

it is found that a specific and identifiable dynamic11.1 coupling mechanism is much 

more important for determining the state mixing in CHDa than is the total density 

of vibrational states. 

The quantum mechanical study in Chapter 1 of the resonant stretch-bend in­

teractions in CHD3 , as well as the multitude of similar resonances observed exper­

imentally in other molecules (see, e.g., references cited in Ref. 8), provides moti­

vation for the development of a semi classical theory of the 1 :2 stretch-bend Fermi 

resonance. 8 In Chapter 2, three semiclassical treatments are used to characterize a 

model having a Morse oscillator stretching mode coupled nonlinearly to a harmonic 

bending mode. These three treatments include a diagonalization of a semiclassical 

Hamiltonian matrix:, a two-state solution of an approximate Schrodinger eq~ation 

obtained from a classically averaged Hamiltonian in action-angle variables, and a 
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uniform semiclassical solution.9 The results of the semiclassical calculations give 

good agreement with the quantum results and are, in general, considerably easier 

to obtain. By virtue of the uniform semiclassical analysis, analytic formulas are also 

derived for the eigenvalue splittings and the overlaps of the wavefunctions with the 

zeroth-order basis functions. The eigenvalue splittings are measured experimentally 

in a Fermi resonance doublet, while the overlaps are important, for instance, in de­

termining the relative intensities of the spectral peaks within a doublet (see, e.g., 

Refs. 4 and 5). These analytic formulas, in conjunction with the corresponding 

classical resonance analysis,2 •3 •8 •9 are found to be valuable in relating molecular pa­

rameters, such as the perturbation strength and the stretching mode anharmonicity, 

to the observed quantum behavior. 

In Chapter 3, an examination of the effect of small classical resonances on 

the quantum mechanics of nonlinearly coupled oscillator systems is presented.10 It 

is well known that there are many classical resonances in such systems, but most 

resonances occupy only a small volume in the energetically allowed phase space (see, 

e.g., Ref. 2). It is therefore examined how the quantum mechanics of the coupled 

oscillator system is affected as the width of a classical resonance is increased in 

classical phase space (specifically; in action-angle space). In particular; in Chapter 

3 an analysis of the eigenvalue spectrum and basis function mixing of a resonant 

oscillator system is performed. By using a suitably modified uniform semiclassical 

treatment for an n: m resonance,8 - 10 it can be demonstrated analytically that the 

quantum mechanics not only "smooths over" small resonances with widths less than 

nn, but also that there is a rather abrupt change as the resonance width increases 

past nn.10 This result represents an explicit confirmation of some ideas proposed 

by other authors.3 •9 •11 

Another interesting and related physical problem is the vibrational excitation 

of an anharmonic oscillator by radiation.12 In Chapter 4, it is demonstrated that a 

uniform semiclassical analysis can be performed using a "dressed state" picture.12 •13 

Consequently, some interesting and useful results regarding the interrelationship of 
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the classical and quantum mechanics of the oscillator-field system are obtained. 

In particular, the uniform semiclassical analysis yields resonance frequencies (i.e., 

field frequencies where the maximum absortion occurs) which are essentially ex­

act. Moreover, the quantum one- and two-photon Rabi frequencies are related via 

the semiclassical analysis to the Fourier components of the dipole moment function 

evaluated in a special way. 12 By using analytic means, or by computing classical 

trajectories with the appropriate initial conditions (as determined by the semiclas­

sical theory), these Fourier components are usually much easier to obtain than the 

corresponding quantum matrix elements. 12•14 The semiclassically calculated Rabi 

frequencies (and hence absorption intensities) are also found to be in excellent agree-

ment with the exact quantum results. The uniform semiclassical analysis provides 

a justification of sorts for the use of Fourier components of the dipole moment in 

the calculation of one-photon absorption intensities. 14 Perhaps most significantly, 

the appropriate Fourier components needed to calculate two-photon absorption in­

tensities semiclassically are derived for the first time. 

A complete quantum mechanical description of IVR processes in polyatomic 

molecules is quite complicated and requires considerable theoretical effort. In Chap­

ter 5, an approximate method is developed for calculating the quantum dynamics 

of initially prepared nonstationary states in polyatomic molecules. 15 This method 

is based on the integration of a set of "adiabatically reduced" coupled equations for 

the time-dependent amplitudes of a set of zeroth-order basis functions. The deriva­

tion of these approximate coupled equations relies on a partitioning of the basis 

states into two subsets: One subset consists of those zeroth-order states that are 

resonant with and/ or strongly coupled to the initial state, while the other subset 

is taken as being those states that are off-resonant with and weakly coupled to the 

initial state. In the proper "rotating frame" representation, 15 the probability of the 

evolving nonstationary state is found to not contain any appreciable amplitude from 

the off-resonant, weakly coupled subset of basis states (on the relevant time scale of 

interest15). This interesting property of resonant v~rsus off-resonant zeroth-order 
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state amplitudes allows one to accurately calculate the dynamics using an effective 

Hamiltonian matrix. Since this effective Hamiltonian has the same dimension as the 

resonant and/or strongly coupled subspace, the method of Chapter 5 may reduce 

considerably the number of coupled equations that must be integrated. 15 It is also 

found that the off-resonant, weakly coupled states can have a suprisingly important 

influence on the dynamics of the initial state. 15 •16 The method of Chapter 5 is ex­

tended to treat non-orthogonal basis sets in Appendix I, and an iterative method 

for determining more accurate effective Hamiltonians 17 is discussed in Appendix II. 

Based on the theory of Chapter 5, approximate coupled equations are derived 

in Chapter 6 which describe the interaction of a molecular system with one or 

more continuous wave lasers. 18 This problem is of particular interest because there 

are numerous multilaser, "pump-probe" experiments which are capable of probing 

various aspects of molecular excita~ion and energy redistribution processes {see, 

e.g., references cited in Ref. 18). The formulation of the approximate coupled 

equations is based on a time-independent dressed state Hamiltonian 13 which in­

cludes the radiation field as a set of harmonic oscillators coupled to the molecule. 

By virtue of the adiabatic approximation implemented in Chapter 5, an effective 

dressed state Hamiltonian may be formulated for a set of resonant, or near resonant, 

dressed molecular states. This effective Hamiltonian contains the generalized Rabi 

frequencies and AC Stark shifts 13 to all orders in the perturbation strength. It is 

also demonstrated in Chapter 6 that an expansion of the effective Hamiltonian in 

terms of the perturbation strength allows for simplified calculations of the relevant 

effective dressed state matrix elements. 

In the final Chapter of this thesis, an approximate theory is developed which 

describes the exponential decay of an experimentally prepared state in a large poly­

atomic molecule undergoing IVR. This behavior, which thus far has been observed 

in a majority of experimental studies on IVR, 19 is also predicted by the well known 

radiationless transitions theory. 20 The derivation of exponential decay behavior in 

isolated molecules given in Chapter 7 does not rely on a resolvent operator approach 
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(as does the usual theory20). Instead, it relies on the adiabatic approximation 15 •21 

given in Chapter 5 and is based on somewhat different physical intuition than 

that employed in previous IVR theories.20 The present theory also gives an ex­

pression for the exponential decay rate which differs from the usual Golden Rule 

rate expression.20 •22 In fact, the theory allows for bottlenecks in the intramolecular 

decay rate which are not directly predicted by the usual Golden Rule-type theo­

ries. Furthermore, the decay rate derived in Chapter 7 is written in terms of an 

"intramolecular width" parameter which is related to the number of intramolecular 

"bath" states participating in the IVR. The possible experimental determination of 

this parameter is discussed in Chapter 7. The theory presented in Chapter 7 offers 

an alternative approach to IVR problems in large molecules, and it yields results 

that differ somewhat from previous theories. 20 
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Chapter 1: The Highly Excited C-H Stretching States of CHD3 , CHT3 , 

and CH3D 

[The text of this Chapter appeared in: G. A. Voth, R. A. Marcus, and A.H. Zewail, 

J. Chem. Phys. 81, 5494 (1984).] 
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The highly excited C-H stretching states of CHD3, CHT 3, and CH3D 
Gregory A Voth, R. A. Marcus, and A. H. Zewai!al 
Arthur Amos Noyes Laboratory of Chemical Physics. hi California Institute of Technology. Pasadena. 
California 91125 

(Received 9 July 1984; accepted 11September1984) 

Unlike many other molecules having local modes, the highly excited C-H stretching states of 
CHD3 show well resolved experimental spectra and simple Fermi resonance behavior. In this 
paper the local mode features in this prototype molecule are examined using a curvilinear 
coordinate approach. Theory and experiment are used to identify the vibrational state coupling. 
Both kinetic and potential terms are employed in order to characterize the coupling of the C-H 
stretch to various other vibrational modes, notably those.including D-C-H bending. Predictions 
are also made for CHT 3 and the role of dynamical coupling on the vibrational states of CH3D 
explored. Implications of these findings for mode-specific and other couplings are discussed. 

I. INTRODUCTION 

The highly excited vibrational states ofC-H stretching 
modes in many molecules have been the subject of consider­
able interest in recent years. 1 The local mode description 1 

has been used to treat these C-H oscillator systems and has 
had considerable success in doing so. Of particular relevance 
to the present paper are.the experimental results of Perry et 
al. 2 which, for CHD3, indicate the specific coupling of the C­
.H stretch to a bending normal mode. For other molecules, 
this type of coupling has been discussed previously by sever­
al authors. 3 The local mode description has recently been 
extended to handle such couplings,4 using curvilinear coor­
dinate systems.5

-
7 These coordinate systems present a natu­

ral way of treating molecular vibrations and provide phys­
ical insight into the coupling mechanisms between 
vibrational states. To such vibrational couplings have been 
attributed the calculated breakdown of localized C-H 
stretching vibrations, t-<.s.9 the observed linewidths of aro­
matic ( - l 00-200 cm - 1

) and aliphatic ( - 20 cm - 1
) local 

mode transitions, •.9-i i and the postulated onset of extensive 
intramolecular relaxation. 4•

9
• 1

2
• 1

3 

With these aspects in mind, the highly excited C-H 
stretching vibrations in CHD3, CHT 3, and CH3D are stud­
ied in the present paper. Recent experimental evidence2 has 
suggested that in CHD3 there are extremely narrow 
linewidths ( < l cm - 1

) and very limited state mixing at a high 
level ofC-H vibrational excitation. An analysis of this spec­
tral data was performed in terms of a simple Fermi reso­
nance between the C-H stretch and a bending normal 
mode.2 In the present paper, using a curvilinear coordinate 
treatment, a theoretical analysis is presented for the vibra­
tional eigenstate problem which includes kinetic and poten­
tial energy coupling terms. An explanation for the observed 
spectrum of CHD3 is proposed and, in tum, predictions are 
made for the high overtone C-H stretching spectrum· of 
CH~. In addition, the difference between the relatively sim­
ple CHD3 spectrum and the highly congested spectrum2 for 
CH3D is discussed in terms of the different dynamical vibra­
tional mode couplings in these two molecular species. 

• 1 Camille and Henry Dreyfus Teacher-Scholar. 
• 1 Contribution no. 7057. 

An outline of the present paper is as follows: A brief 
review of the relevant experimental data2 is given in Sec. II. 
In Sec. III, the curvilinear coordinate formalism is applied to 
CHD3 and CHT3, and couplings between the C-H stretch­
ing vibration and other normal modes of these molecules are 
described. In Sec. IV, the dynamical coupling ot:the C-H 
stretching states to bending normal modes in CH3D is exam­
ined. Concluding remarks appear in Sec. V. 

II. CH03 AND CH3D: SUMMARY Of THE EXPERIMENTAL 
RESULTS 

Recently, using photoacoustic spectroscopy, the high 
C-H overtones of methane and of its isotopic derivatives 
CH3D, CH2D2, and CHD3 have been studied by Perry et al. 2 

Some results obtained for CHD3 and CH3D, both of which 
have very different spectra, can be summarized as follows: 

The CHD3 overtones corresponding in zeroth order to 
five, six, and seven quanta in the C-H stretch have remarka­
ble simplicity. 2 For v = 5 and v = 6, the spectra have a sim­
ple two levei Fermi resonance structure (e.g., Fig. i for 
v = 6). For v = 7, the spectrum is more congested, but it 
appears to be essentially a three level Fermi resonance.2 

When the quantity J.E0 Jv is plotted vs v, J.E0 • being the 
excitation of the C-H overtone in excess of the zero~point 

620. 

16,) 

615 

WAVELENGTH (nm) 
610 

FIG. l. Experimental v = 6 C-H overtone spectrum for CHO, (taken from 
Ref. 2). 

J. Chem. Phys.111 (12), Pt I, 15 Dec. 1984 0021-9606/84/245494-14$02.10 © 1984 American Institute of Physics 



energy, one obtains2 an excellent Birge-Sponer line, 1 but 
with deviations in the v = 5, 6, and 7 regions where these 
Fermi resonances become important. Also, the CHD3 spec­
tra clearly show the P-, Q-, and R-like branches expected for 
a symmetric top molecule with parallel type vibrational/ro­
tational transitions. 14 Considering the size of the molecule 
involved and the density of vibrational states, the simplicity 
of these spectra is quite interesting. 

The spectrum at v = 6 for CH3D (Fig. 2), on the other 
hand, is strikingly different from that for CHD3 at the same 
level of excitation. This transition has a spectral envelope 
with a width at half-maximum of approximately 150 
cm - 1

• The excitation of the C-H stretching states in this 
molecule corresponds to both parallel and perpendicular 
type vibrational/rotational transitions 14 and therefore has 
more complicated selection rules than that for CHD3• The 
level structure underneath the spectral envelope at v = 6 is 
expected to be quite complicated for this and other reasons. 

Several compelling questions arise from the experimen­
tal data on these two molecules. For instance, why do the 
v = 5 and v = 6 transitions in CHD3 have such a remarkably 
simple level structure? A harmonic state count15 yields a 
density of A 1 symmetry vibrational states of about 35 states/ 
cm - 1 at the energy of the v = 6 transition. There are, there­
by, many vibrational states with the proper symmetry to 
couple with the C-H stretch (which has A 1 symmetry) via 
Fermi resonance interactions. The behavior actually ob­
served is highly nonstatistical, however, since very few states 
are significantly coupled. In addition, the observed CHD3 

spectrum at v = 6 is very different from the corresponding 
CH3D spectrum, and a knowledge of the mechanism that 
causes the high degree of congestion in the latter is of parti­
cular interest. 

Ill. THEORY FOR CH03, CHT 3 

A. Curvilinear formalism: qualitathre analysis for CH03 

The general expression for the classical vibrational Ha­
miltonian in curvilinear interval valence displacement co­
ordinates5· 7 is 

620 615 
WAVELENGTH (nm) 

610 

(3.1) 

FIG. 2. Experimental v = 6 C-H overtone spectrum for CH,D (taken from 
Ref. 2). 
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where the G11 (x) are the Wilson G-matrix e!ements16 which, 
in the curvilinear coordinate approach, are dynamical func­
tions of the curvilinear displacement coordinates x, and V (x) 
is some Born-Oppenheimer potential energy surface for the 
molecular vibrations. In the rectilinear coordinate ap­
proach, 6·7· 16 the G-matrix elements are treated as constants 
and the potential V(x) contains extra contributions to com­
pensate for this restriction. 

For any particular molecular vibrational problem, one 
must usually make some approximation for the potential en­
ergy function V (x), since this quantity is rarely known accur­
ately. For the analysis of the vibrations in CHD3, it will first 
be assumed that the single C-H stretching mode may be 
described by a Morse oscillator potential energy function 17 

and that the remaining vibrations are adequately described 
by harmonic (quadratic) potentials. The coupling between 
modes is then qualitatively described by the dynamical de­
pendence of the G-matrix terms in Eq. (3.1). It will be shown 
later in this paper that, in addition to these G-matrix cou­
plings, higher order (i.e., higher than quadratic) curvilinear 
potential energy terms are needed in order to explain more 
quantitatively the observed spectra of CHD3• 

The corresponding quantum mechanical Hamiltonian 
to Eq. (3.1) may be defined in effect by substituting the mo­
mentum operator fa,= (fi/i)a1ax1 forp, inEq.(3.1). This step 
is not rigorously exact, but it is an excellent approximation 
for the limit of relatively small amplitude molecular vibra­
tions. A discussion of this appears in Ref. 7. 

The Hamiltonian [Eq. (3.1)] for CHD3 may be straight­
forwardly transformed into 

H=H0 + V', (3.2) 

where 

H0 =Hm(r,p)+.l ±(Pf +wfQ~) 
2 i=2 

(3.3a) 

and the perturbation V' is given by 

19- 2 i99_ 
V' =- 2:; [G"(x)- l]P, +-I I GiJ(x)P,~. 

2 i=2 2 i=2J=2 

(3.3b) 

In these equations, H,,, (r,p) is the Morse oscillator Hamilton­
ian 17·18 for the C-H stretch with displacement coordinate r 
and conjugate momentum p; the ~(P 7 + wfQ 7) are the har­
monic oscillator Hamiltonians for the eight curvilinear nor­
mal mode vibrations in CHD3• Also, the G/s are the G­
matrix terms transformed via a normal mode 
transformation 16 

9 9 

Gij(x) = L I L ,/ 1G1m (x)L 1;;, 
1
, 

l=l m=t 
(3.4) 

where the G1m 's are the G-matrix terms transformed via a 
symmetry coordinate transformation 16 

9 9 

G,m(x) = L 2:; UuGiJ(x)U,,,J" (3.5) 
i=lj= l 

The coefficients Ui,. and L 1/ 
1
, etc. in these equations are the 

elements of the matrices U and L - 1 that define the transfor­
mations 

q = Ux, Q = L -.1q (3.6) 
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TABLE L Internal symmetry coordinates for CHD3(CHT 3).• 

• r is defined here to be the C-H bond displacement coordinate, r, the C­
D(TI bond displacement coordinates, a, the D-C-D(T-C-Ti angles oppo­

site r,, and P, the H...C-D(T) angles that include the r, bond. 

to curvilinear symmetry coordinates q and normal coordi­
nates Q, respectively. The symmetry coordinates for CHD3 

are given in Table I while the L - 1 matrix is the standard 
normal mode matrix calculated by the methods of Ref. 16 
with all internal coordinates in the G-matrix terms evaluated 
at their equilibrium value. In order that the C-H coordinate 
r be treated as a local mode coordinate, the transformation 
coefficient L 17

1
, where coordinate I is defined as r, is set 

equal to unity and the coefficients L i"i 1
, L 11 1 are set equal to 

zero for i =fa l. This approximation does not diagonalize all 
the off-diagonal quadratic perturbation terms, leaving terms 
proportional to rQ, and pP,. However, the present calcula­
tions show these to be very small and they may be safely 
neglected. This approximation has been known since the ear­
ly days of normal mode theory8 and is a good one due to the 
high frequency of the C-H stretching vibrations; they are 
essentially adiabatic from the rest of the normal modes of a 
molecule when coupling terms of quadratic order only are 
treated. Thus, to quadratic order, the C-H stretching vibra­
tions may be treated separately rather than included in the 
zeroth order normal mode analysis. 

A principal approximation of this paper is to treat the 
dynamical G-matrix elements in Eqs. (3.1) and (3.3b) as func­
tions of the C-H displacement coordinate r only. This ap­
proximation is assumed to be valid because, for the states of 
experimental interest in CHD3,2 the C-H stretching local 
mode is the only vibrational mode with appreciable ampli­
tude. The other internal coordinates of the molecule are tak­
en to be at their equilibrium values when evaluating these G­
matrix elements. Such an approximation simplifies the 
treatment of the vibrations in CHD3 and allows for a 
straightforward physical interpretation of the coupling of 
the C-H stretch to various normal modes. 

The normal modes with possible coupling to the C-H 
stretching local mode in CHD3 consist of two nondegenerate 
A 1 symmetry modes with harmonic frequencies w2 = 2185 
cm- 1 and w3 = 1042 cm - i and three doubly degenerate E 
symmetry modes with frequencies UJ4 = 2337 cm - 1

, 
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w5 = 1335 cm- 1
, andUJ6 = 1070cm- 1

. These modes couple 
with varying degrees to the C-H stretching local mode as a 
result of the G-matrix terms in Eq. (3.3b). 

Since a full matrix diagonalization of the Hamiltonian 
[Eq. (3.2)J in a suitable basis is impractical due to the large 
number of vibrational degrees of freedom in this molecule, a 
simpler, more transparent approach was taken to determine 
which modes couple strongly to the C-H stretch. This ap­
proach was to determine the strength of the coupling of the 
"pure" C-H stretching states jv,0, ... ,0) to resonant "door­
way states"4

•
9 such as Iv - 1,v2,v3, ... ,v9 ). The degree to 

which two such zeroth order states mix was determined by 
simple diagonalizations of 2 X 2 matrices of the Hami\toni.an 
[Eq. (3.2)] represented in this basis. For the nondegenerate 
A 1 symmetry normal mode states, a nondegenerate harmon­
ic oscillator basis19 was used, while, for the doubly degener­
ate E symmetry normal mode states, a doubly degenerate 
harmonic oscillator basis 19 was employed. The C-H stretch­
ing local mode basis states were taken to be Morse oscillator 
eigenfunctions. n,l% The Morse oscillator matrix elements of 
the G-matrix coupling terms [Eq. (3.3b)] were calculated by 
numerical quadrature, rather than using the expansion em­
ployed in Refs. 4(a) and 7 of these terms in a Taylor series. It 
was found that this numerical integration avoide&problems 
due to the slow convergence of the series expansion terms. 
Details of this integration procedure are described in Appen­
dix A. 

B. Vibrational analysis for CHP3 and CHT 3 

Two key features of the vibrational state mixing as de­
scribed by pure G-matrix coupling are first summarized. 
They were investigated and found to simplify the analysis 
considerably: 

( 1) The two A 1 symmetry normal modes are rigorously 
decoupled from the C-H stretch because the G-matrix terms 
in Eq. (3.4) for these modes are independent of the C-H dis­
placement coordinate r. While this behavior is not necessar­
ily evident from Eq. (3.4), it may be shown by demonstrating 
the independence of the A 1 symmetry normal mode frequen­
cies from the C-H bond length using standard normal mode 
techniques. 16 

(2) It is found in the calculations that the doubly degen­
erate E symmetry modes with harmonic frequencies 
w4 = 2337 cm - 1 and UJ6 = 1070 cm - 1 have extremely weak 
coupling to the C-H stretch via G-matrix terms. They also 
have no low order resonance condition with this mode for 
v = l-6. Accordingly, coupling to these modes corresponds 
to effects of second order. For example, the states j6) jO,O) 1 

and j 5) j2,0) 1 (both of A 1 symmetry), where a doubly degen­
erate harmonic oscillator basis In ,l ) ; is used for the particu­
lar E symmetry normal mode i, are coupled. However, the 
ratio of the matrix element that couples these two states 
(with. n= ll 

V12 = UJ; <v - l /G;,;(r)/v)/2 (3. 7) 

to the energy difference between them is straightforwardly 
calculated for 11 = 6 to be 0.002 for coupling to E mode 4 and 
0.019 for coupling to E mode 6. Thus, these vibrational 
modes only weakly couple by G-matrix terms to the pure C-
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H stretch and may be ignored in the present analysis. 
The remaining doubly degenerate E symmetry normal 

mode is found in the calculations to be strongly coupled to 
the C-H stretch, with an average off-diagonal matrix ele­
ment of the G .. coupling term of - 100 cm - 1 in the range 
v = 3-6. Mor~ver, the harmonic frequency (t.15 of this nor­
mal mode satisfies a l :2 nonlinear resonance condition with 
the C-H vibrational frequency at the v = 5 and 6 level of 
excitation. Asa result, the states Iv) IO,O) and Iv - 1) 12,0) in 
this energy regime are approximately degenerate in zeroth 
order. This bending mode involves the E symmetry defor­
mation of the H-C-D angles and it thus interacts strongly 
with the C-H stretch via the curvilinear G-matrix coupling 
effect. The physical origin for this effect is due to the effective 
mass for the H-C-D bend, as described by the inverse of the 
G-matrix term, being increased when the local mode is excit­
ed and the C-H bond is lengthened. No other normal modes 
of the molecule satisfy both a low order resonance condition 
and the condition that the H-C-D bend be included in their 
motion. 

One further possibility to be considered is the coupling 
of the pure C-H stretc~ng state to A 1 symmetry combin~­
tion states by terms like Gij(r)P,Pj in Eq. (3.3b). These combi­
nation states have the form lv-l, ... ,v,,vj•···>· where the nor­
mal mode quantum numbers other than v, and vi are zero. 
The combination state having Vs = 1, v6 = l is the only state 
found to have both an approximate zeroth order degeneracy 
and a nonnegligible interaction with the pure state I v,0,0,. .. ). 
In the calculations, it becomes important only for a level of 
excitation in the C-H oscillator corresponding to at least 
seven quanta in zeroth order. For six quanta in the C-H 
stretch, this combination state is sufficiently detuned from 
the C-H stretching state energy so as to have only a small 
second order effect on the splitting ( < 5 cm - 1

) and the rela­
tive intensity ( < 3 % ) of the Fermi resonance found in this 
spectral region. 

The results of the above analysis indicate that the C-H 
stretch selectively interacts with the doubly degenerate 
bending normal mode with harmonic frequency (t.15 = 1335 
cm - 1

, thereby simplifying the quantitative treatment of the 
C-H stretching states (i.e., only three degiees of freedom 
need be considered). However, since the magnitude of the 
pure curvilinear G-matrix interaction ( - 100 cm - 1

) is larger 

than what is observed experimentally (-35 cm- 1
), the po­

tential energy is postulated to have an important cancella­
tion effect within these matrix elements. Because the avail­
able high order force constants2

0(•) relevant to the Fermi 
resonances at v = 5 and 6 were found to be inadequate, only 
first order effects (in terms of degenerate perturbation the­
ory) were treated. As will be shown later for CHD3, this first 
order treatment is useful in determining both the energies 
and the relative intensities of the pure C-H stretching mode 
states and of combination levels involving the C-H stretch 
and the H-C-D bending mode. 

The Hamiltonian for the coupled C-H stretch and dou­
bly degenerate bending mode is 

H=H0 + V' (3.8) 

with 

and 

(3.10) 

where Q1 and Q2 are the degenerate pair of normal mode 
coordinates for the bending mode with conjugate momenta 
P1 and P2 , Hm(r,p) is the C-H stretch Morse oscillator Ha­
miltonian, and F3 and F4 are the cubic and quartic force 
constants, respectively, for the interaction of the C-H 
stretch with the bend. 

The basis states of the zeroth order Hamiltonian [Eq. 
(3.9)] are the states Iv) In,/ ) 5, where Iv) are the Morse oscilla­
tor eigenfunctions18 for the C-H stretch and )n,l ) 5 is the 
doubly degenerate harmonic oscillator basis 19 for the v5 

bending mode. The Fermi resonances in CHD3 are pre­
sumed to involve the pure C-H stretching state )v) I0,0) 5 of 
A 1 symmetry interacting with the A 1 combination state 
Iv - l) 12,0)5 • The relevant matrix elements for the bending 
normal mode are (in units off!= 1)19

: • 

(n,OIP~ +Pi In+ 2,0) = (n + 2)a>5/2, (3.1 la) 

(n,O\Q7 + Q; \n + 2,0) = -(n + 2)/(2w5), (3.llb) 

(n,OIPi + P~ ln,O) = (n + l)(t.15, (3.l lc) 

and 

(n,OIQf + Q~ ln,O) = (n + l)/(t.15. (3.1 ld) 

The 2 X 2 Fermi resonance matrix for this treatment is 

(H11 H 12) =(Hi+ V11 
W21 H22 Vf2 

where (with Ii= 1) 

and 

H1 = (v - !)(t.11 - (v - !l2(t.11 X + 3(t.15, 

H2 = (v + !)a>1 - (v + !l2(t.11 X + (t.15, 

3(t.I -
V11 =-t (v- ll(Gs.s(r)- l]lv-1) 

3 (F +- ..2.(v-l!rlv-1) 
(t.15 2 

+ ~4 (v - i lr21v - l)), 
V22 = ~s (vi [ Gs,s(r) - l] Iv) 

+ _l_ (F3 (vlrlv) + F4 (vlr21v>), 
(t.15 2 4 

V12 = ~5 (v - l f Gs.s (r)lv) 

(3.12) 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

__ l_ (F3 (v - 1 lr/v) + F. (v - ! lrlv>). 
"15 2 4 

(3.13e) 

The Morse matrix elements of the normal mode-trans­
formed G-matrix element G5•5 (r) [Eq. (3.4)] were calculated 
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by numerical quadrature, as in Appendix A. The matrix ele­
ments of rand r2, known analytically, 18

•
21 are discussed in 

Appendix R Both the cubic and quartic terms, involving the 
Morse matrix elements (ufrjv - 1) and (ufr2ju - 1), respec­
tively, were found to be nonnegligible for v = 5 or 6. The 
force constants in these terms were determined by a nonlin­
ear least squares parameter fit22 of the calculated values to 
the experimental data for u = 1 through u = 6. This fit was 
performed using a 2 X 2 matrix, as in Eq. (3.12), to calculate 
the energies of the C-H overtones and combinations at each 
energy level through v = 6. Using a grid of values for F3 and 
F4 , the minimum of the least squares function was found. 
Since only first order effects were considered in this treat­
ment, the cubic and quartic force constants obtained in such 
an least squares analysis represent a first order estimate. 

The kinetic and potential perturbation contributions to 
the diagonal elements in Eq. (3.12) also contributed in this 
calculation. The contribution from the G-matrix terms to 
the matrix elements V11 represents, in effect, a modification 
of the bending mode's harmonic frequency w5,

23
•
24 namely, 

H,, = E'; + (n + l)w; + (uj v;,.,, fv), 

where 

w; = w5 { 1 + + [ (ujGs,s(r)ju) - 1]} 

(3.l4a) 

(3.14b) 

and E ';: is the energy of the Morse oscillator with u quanta. 
Since the diagonal element (ujG5•5 (r)ju) is always less than 
unity (i.e., the effective mass of the bend increases with in­
creasing u), the effective harmonic frequency w; or' the bend­
ing mode decreases with increasing u. For the CHD3 mole­
cule, the potential energy ·term has a similar effect except 
that it is somewhat more complicated in form. Both contri­
butions give rise, as a result, to an effective anharmonicity 
for the C-H ·overtones. 23

•
24 For the point of view of that 

interpretation, the values of w, and w, x taken from experi­
mentally measured Birge-Sponer lines may deviate some­
what from the "true" Morse parameters for the C-H mode, 
as is shown iater for CHD3• 

The effect of the coupling of the above ju - 1 ) f 2,0) 5 

states toA 1 symmetry states like jv-2)j4,0)5, with four 
quanta in the bending mode, was also examined. These cou­
plings can, in principle, have a large effect, as was suggested 
recently for benzene.4 In the case ofCHD3, however, these 
states are strongly detuned from the principal Fermi reso­
nance due, in part, to the diagonal first 9rder energy correc-

TABLE II. Comparison of theoreticil results. 

v=S v=6 v=S 
splitting' splitting' rel. 

tions just mentioned (Eqs. (3.14a) and (3.14b)]. Moreover, 
these states seem to be particularly sensitive to second order 
corrections from off-resonant states such as f v - 1) f4,0) 5 or 
I u - 3) f 4,0) 5 • These corrections tend to lower the energy of 
these states even more so that they are further detuned from 
the principal Fermi resonance. 

To explore such effects, diagonalizations of 27 X 27 se­
cular determinants for the Hamiltonian [Eq. ( 3. 8 )], including 
states with four quanta in the bending mode and as many as 
nine C-H stretching quanta, were performed. Since it is 
computationally expensive to use a 27 X 27 matrix diagonali­
zation in the determination of the force constants F3 and F4 

by the nonlinear least squares fitting procedure described 
previously, two separate approaches to this problem were 
taken. The first approach was to determine the values of F3 

and F4 using a 2 X 2 matrix such as Eq. (3.12) at each level of 
C-H excitation (u = 1-6) in conjunction with the force con­
stant fitting procedure discussed previously. A 27 X 27 ma­
trix was subsequently diagonalized utilizing the force con­
stants thus obtained. The second approach was to extend the 
nonlinear least squares fitting procedure to include the dia­
gonalization of a 3 X 3 matrix (including the states with four 
bending quanta) at each level of C-H excitation. The force 
constants obtained in this fit were then used in a diagonaliza­
tion of a 27 X 27 secular determinant. 

The results of all four calculations are shown in Table II 
together with the experimental values. It is evident that the 
results for the simple 2 X 2 treatment and the subsequent 
27 X 27 diagonalization are consistent with the experimental 
values and with each other (i.e., the results do not differ sig­
nificantly between the 2X2 and the 27X27 treatment). In­
terestingly enough, as one can see from Table II, the 3 x 3 
treatment does not fit the experimental data as well nor are 
the 3 X 3 results consistent with the subsequent 27 X 27 ma­
trix diagonalization using those parameters. These results 
indicate that the simple 2 X 2 procedure is the best way to fit 
the experimental data. 

Both 27 X 27 matrb!: diagona!i7,.tions eir.hibit the strong 
second order detuning effect of the j v - 2) f 4,0) 5 states men­
tioned previously. For the diagonalization utilizing the pa­
rameters obtained from the 2 X 2 fitting procedure, this ener­
gy shift for the u = 6 region was estimated from second order 
nondegenerate perturbation theory to be 

..j<2>= fV12!
2 + fV13f

2 
=::::-80 cm-1 

E\01 - E~I E\01 - E~o1 , 

V=6 
rel. 

(cm- 1) (enc') intensity intensity 

Ex pt. 133 
2X2 117 

27X27" 131 
3x3 99 

21x27" 138 

•Calculated using parameters from 2 x 2 fit. 
•Calculated using parameters from 3 X 3 fit. 

74 18±8% 55 ± 10% 
79 9% 43% 
78 7% 40% 
59 13% 97% 
84 7% 25% 

'Fermi resonance splittings between eigenstates of Ju) JO,O) and Ju - I) J2,0) parentage. 
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TABLE III. Molecular parameters for CHD,(CHT,). 

CHD, 
CHT, 

•From Ref. 20(a). 
•Fram Ref. 25. 

Morse 
harmonic 

freq. "w,(cm- 1
)' 

3133 
3133 

Morse 
anhannonicity 
w,x(cm-•)• 

58.08 
58.08 

'Calculated from the quadratic force constants given in Ref. 20(a). 
•As determined from least squares parameter fit. 

where 1 denotes the state 14) 14,0)5, 2 denotes the state 
15)14,0) 5, and 3 denotes the state 13)14,0) 5. The exact 
27 x 27 treatment, in this case, has a shift for this state of 
::::: - 120 cm - 1 instead of - 80 cm - 1

• Due to this detuning 
effect, we conclude that the states with four quanta in the 
bend are not important to the observed Fermi resonances. 

C. Results for CHD, 

The energies of the C-H stretch overtones for CHD3, as 
calculated from the 2 X 2 fitting procedure given in Sec. IH B 
and utilizing the molecular parameters from Table III, are 
compared with the experimental results in Table IV. The 
results are in good agreement with experiment for both the 
pure C-H stretching states and the combination levels. The 
corresponding theoretical least squares Birge-Sponer line 
(in cm- 1

) through the v = 6 overtone is given by /JE0 .lv 
= 3047 - 57.56v. Thislinewasdeterminedbyusingalinear 

least squares fit to the calculated points for v = 1 through 4 
and fits the theoretical data very well except at v = 5 and 6, 
where a deviation is expected due to the onset of the Fermi 
resonances. As compared with Ref. 25, where a fit was ob­
tained for the v = 1-4 C-H overtones, there is, from a phen­
omenological point of view, two new pieces of experimental 
data, namely the splittings at v = 5 and 6, and two new pa­
rameters introduced into the fit. Of course, this does not 
require that the model will automatically fit the data, but it 
does nevertheless. The main virtue, we believe, of the present 
analysis is that it describes the physics of the problem. In 
particular, it is found that the treatment of the dynamical 
(i.e., G-matrix) coupling does not quantitatively explain the 

TABLE IV. Energies ofC-H overtones and combinations for CHD3(CHT3). 

CHD,expt.• CHD, calc. 
State• (cm- 1) (cm-') 

fl,O) 2992 2 990 
12.0) s 865 s 864 
13,0) 8 623 8 624 

14.0) II 267 I! 269 
14,2) 13 668 13 684 

IS.O> 13 80! 13 801 
IS,2) 16 156 16149 
16,0) 16230 16228 

v5 mode Cubic force Quartic force 
harmonic constant constant 

freq. (cm - • )' F, (a.u.I" F, la.u.1• 

1335 -2.0Jx 10-5 l.83X 10-5 

1273 - l.82X 10-5 l.64X 10-5 

Fermi resonances, Le., the force constants F3 and F4 should 
be included. Such force constants are ultimately to be com­
pared with ab initio calculations. Other treatments which 
either do not employ curvilinear coordinates and/or poten­
tial energy contributions of cubic order or higher can be con­
sidered to be more phenomenological. 

In Table V, the relative intensities for the two Fermi 
resonances at v = 5 and v = 6 are listed along with the off­
diagonal matrix elements and the detunings of the diagonal 
matrix elemertts. In calculating these relative int~nsities, the 
dipole moment for the C-H stretching transitiGns was as­
sumed to be a function of only the C-H oscillator coordinate 
r. 11°1 As a result, the relative intensity of the two states in­
volved in the Fermi resonance is determined by the overlap 
of the zeroth order pure C-H stretching state with the actual 
eigenstates. The relative intensity is thus defined as 

I, =(b/a)2 Xl00%, (3.15) 

where 

(3.16) 

Here, lv,O) denotes the zeroth order pure C-H stretching 
state Iv) I0,0) 5, r/10 is the eigenstate of Iv) !0,0) 5 parentage, 
and r/12 is the eigenstate of Iv - l) I 2,0) 5 combination state 
parentage. These relative intensities in Table V are in reason­
able agreement with the experimental results, but the dis­
crepancy is larger than that for the splittings. This discrep­
ancy may· reflect slight inaccuracies in the zeroth order 
detunings and/or off-diagonal electrical anhannonicity 
terms contained in the actual dipole moment function. A 
theoretical spectrum (at v = 6) employing the above results 

CHT, calc. 
(cm- 1) 

2990 
s 865 
8 624 

II 269 
!3 558 
13 800 
16029 
16218 

'Refers to the zero.order parentage of the state. This notation denotes the states lu)ln,O) (with I= 0 in all 
cases). 

"Taken from Ref. 2. 
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TABLE V. Relative intensities, off-diagonal matrix elements, and diagonal detunings• for CHD3 and CHT 3• 

Molecule Ex pt. Cale. Otf diagonal Diagonal 
and energy relative relative matrix element detuning 

level intensity• intensity V12 (cm- 1
) li (cm- 1) 

CHD, 

v=5 18±8% 9% -32 98 

CHT3 

v=S 4% -47 223 

CHD, 

v=6 55 ± 10% 43% -36 31 

CHT3 

v=6 9% -52 159 

'The diagonal detuning is defined from Eq. (3.12) as li = (H2 + V,2) - (H, + V11 ). 

•Taken from Ref. 2. 

and the measured excited state rotational constants from 
Ref. 2 is shown in Fig. 3. The main discrepancy with the 
experimental spectrum (shown in Fig. 1) is due to the differ­
ences in the relative intensities. 

The diagonal first order perturbation contributions 
[Eq. (3. l 3d)] to the pure C-H stretching energies are given in 
Table VI. One sees that, according to the results, these terms 
contribute even for the fundamental transition. Further­
more, the G matrix and the potential energy contributions 
are of comparable magnitude for all excitations. Indeed, the 
effective Morse parameters (i) 1 = 3105 cm - 1 and 
(i) 1 x = 57.56 cm - t calculated from the theoretical Birge­
Sponer line for CHD3 are quite different from the actual 
values given for the Morse oscillator in Table III. This differ­
ence reflects the diagonal first order perturbation effect. 
Thus, as noted before, parameters for the C-H bond Morse 
oscillator potential functions obtained from experimental 
Birge-Sponer plots should be used with this in mind: they 
are effective parameters. 

The procedure used for calculating the C~H overtones 
and Fermi resonance combinations was extended to the 
v = 7 region where now both the v5 and v6 modes couple to 
the C-H stretch. A 3 X 3 matrix was used with the zeroth 
order A 1 symmetry basis states (with energies Eco <Ebo 
<E0 o) 

0 z 
::0 

a:i 
0: 
:'> 
uj 
en 

J 
<I 

13684 13801 

ENERGY (an·1) 

FIG. 3. Theoretical v = 6 C-H overtone spectrum for CHD3• 

la0
) = 16) 12,0)5 10,0)6, (3. l 7a) 

lb 0
) = 17)10,0)5 10,0)6, (3.17b) 

lc0
) = 16) [ ~ (11, - l)s,[l,1) 6 + 11,l)sll, -1) 6)], 

(3.17c) 

where the notation Iv) In,/ ) 5 In',/') 6 represents the Morse os­
cillator eigenket for the C-H mode, the In,/) eigenket for the 
fifth normal mode ((i)5 = 1335 cm- 1

), and the In,/) eigenket 
for the sixth normal mode ((i)6 = 1070 cm- 1

), respectively. 
The term 

v56 = G56(r)(Ps,1 P6.1 + Ps.2 P6,2) 

+ FsoTiQs.1 Q6.1 + Qs.2Q6,2) (3.18) 

was added to the perturbation given in Eq. (3.10). 20
(b/ This 

perturbation term is responsible for the coupling of the [c0
) 

state to the la0
) and lb 0 ) states. The subscripts 5 and 6 have 

been added here to distinguish between the two normal 
modes while, as before, the subscripts 1 and 2 in Eq. (3.18) 
refer to the degenerate pairs of coordinates and momenta for 
these vibrations. Diagonalization of the 3 X 3 matrix gave 
perturbed states la), lb), and le) with splittings .:!be -110 
cm- 1 and .dab -55 cm- 1

• The experimental results from 
Ref. 2 give splittings of -120 and -60 cm- 1

, respectively. 
No quantitative comparison of the relative intensities could 
be made since they were not obtained experimentally for this 
level. Nevertheless, the theoretical results suggest that the 
intensity may be distributed approximately uniformly over 
the three levels in qualitative agreement with what may be 
seen from visual inspection of the spectrum at v = 7.2 

D. Results for CHT 3 

The theoretical treatment of Sec. III A for the v = 1-6 
transitions in CHD3 was applied to CHT 3 to investigate the 
effect of the isotopic substitution D to T. It was again con­
cluded that the fifth normal mode is the only vibration inter­
acting strongly with the C-H stretch by G-matrix coupling 
and that the simplified treatment of Sec. III B may be ap­
plied to CHT 3• The cubic and quartic force constants found 
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TABLE VI. Calculated first order diagonal corrections to the local mode states in CHD,. 

Zero-order 6-matrix Potential energy 
local mode contribution contribution 

state u 1=-'l (cm-') 

I -20 -21 
2 -34 -35 
3 -48 -· 47 
4 -62 -59 
s -76 -69 
6 -90 -78 

for CHD3 were transformed to the CHT 3 normal mode coor­
dinate system with the aid of the transformation in Appen­
dix C. The results for the energies are given in Table IV. The 
relative intensities of the Fermi resonances, the off-diagonal 
matrix elements, and the detunlngs of the diagonal matrix 
elements are given in Table V. This model predicts signifi­
cantly less intensity sharing by the combination state5 in the 
v = 5 and 6 regions than in CHD3 due to a detuning of the 
Fermi resonance: the fifth normal mode for CHT 3 has a har­
monic frequencyofonlyw5 = 1273 cm .... 1 as opposed to 1335 
cm - 1 for CHD3• This effect far outweighs the contribution 
due to the increased magnitude of the off-diagonal matrix 
element (as seen in Table V) and results in a much "purer" 
C-H stretching state at v = 5 and 6. 

This analysis of CHT 3 raises two interesting questions. 
First, the density of vibrational states would obviously be 
higher for CHT 3 than for CHD3• Thus, CHT 3 presents a case 
in which the experimental verification of the results predict­
ed by this model would indicate that the density of states 
need not predominate in determining the degree of state mix­
ing in structually similar molecules. Rather, the degree of 
mixing of states may be determined primarily by a specific 
physical mechanism, as in the case of CHD3• Second, CHT 3 

has the possibility of having 1 :3 nonlinear resonance condi­
tions between the C-H stretch, atJA 1 mode (w3 = 905 cm·- 1 

), 

or a doubly degenerateEmode (w6 = 900 cm- 1). This reso­
nance condition is possible around the v = 3 or 4 level of 
excitation in the C-H mode. However, the sixth mode in­
volves almost entirely T-C-T bending and C-T stretching 
motions and so is not expected to be physically coupled to 
the C-H stretch. The third mode, on the other hand, in­
volves both the H-C-T and the T-C-T bending, but, as was 
found for the A 1 symmetry modes in CHD3, it has no G­
matrix element providing coupling to the C-H stretch. In 
addition, the resonant Iv - 1,3), states of either mode can­
not couple directly to the pure C-H stretching states via the 
perturbation terms like those given in Eq. (3.10) as long as 
the harmonic oscillator basis is a good one for those normal 
modes. Experimental observation of significant 1:3 Fermi 
resonances in this molecule would indicate that the simple 
the.oreticaVphysical picture presented in Eqs. (3.8H3.13e) 
needs extension. Possible extensions include a dynamical de­
pendence of the G-matrix term in Eq. (3.101 on the normal 
mode Q6 or the presence of significant fourth order force 
constants proportional to rQ ~ or rQ ~ in the potential energy 
function. 

A curvilinear coordinate treatment is next used to esti­
mate the vibrational state mixing in CH3D. 

Total 
correction 
1=-'l 

-41 
-69 
-95 

-121 
-145 
-168 

IV. THEORY FOR CH3D 
A. Vibrational analysis 

The CH3D molecule has three equivalent C-H oscilla­
tors, so it is useful to prediagonalize the CH3 local mode 
problem 1 before treating the interactions of these modes 
with the bending normal modes. The properly symmetrized 
zeroth order local mode basis states for C30 symmetry were 
found using the method of Halonen and Child. 21

•25 For the 
sake of brevity, these basis states are not presented here, but 
they consist in general of the A 1, A2, E., and Eb linear combi­
nations of different permutations of the unsymfuetrized lo­
cal mode state 

(4.l) 

where the subscripts 1, 2, and 3 refer to the Morse oscillator 
basis states for the three C-H bonds. The corresponding C­
H local mode Hamiltonian is 

Hm =H°,,, + V;,,, 

where 
3 

H°,,, = L H;(p,,r,) 

and 
3 3 

v;,. =I Gij p, pj +·I F;jri rj, 
i>i i>} 

(4.2) 

(4.3) 

(4.4) 

and may be diagonalized in the symmetrized local mode ba­
sis. In these equations, H,(p,,r;) is a Morse oscillator Hamil­
tonian with curvilinear bond displacement coordinate r; and 
conjugate momentum p,; G ij and Fij are the off-diagonal G­
matrix element and the off-diagonal quadratic force con­
stant, respectively, for two C-H stretching local modes i and 
j. The G-matrix element used in this calculation may be 
found analytically, 16 the quadratic stretch-stretch interac­
tion force constant was obtained from the Gray and Robiette 
potential energy surface,20\cl and the Morse parameters are 
the same as those used for CHD3 (Table III). The eigenvalues 
and eigenfunctions of this Hamiltonian were calculated for 
manifolds with v = 4, 5, and 6 total quanta in the C-H 
stretches.21

•
25 Couplings by the perturbation term (4.4) 

between manifolds of states with different total v were ne­
glected since they are far off resonance. Each manifold of 
states has four independent blocks of A 1, A 2, E., and Eb 
symmetry, and the properly symmetrized "pure" local mode 
states (i.e., symmetrized linear combinations of lv,O,O)) are 
nearly degenerate for all blocks that included such states 
(there is one pure state each in the Au E., and Eb blocks). 

The interaction of the prediagonalized local mode 
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states with the bending degrees of freedom was next calculat­
ed. This step is usually omitted in the customary local ~~e 
treatment1

•
21

•
25 but, as was learned in the CHD3 analysis, ts 

useful in understanding the breakdown of localized C-H 
stretching vibrations. As a first step, the interaction of the 
CH local modes with the bending vibrations was calculated 
usU:g only the G-matrix coupling technique presented in Sec. 
m A. Due to the limited experimental resolution of individ­
ual vibrational lines at v = 6 in this molecule, a treatment of 
the potential energy contributions to the state coupling was 
not attempted. 

The description of the normal modes was made by per­
forming a standard normal mode analysis16 on the quadratic 
Hamiltonian 

l I 1 f 
HN = 2 .fr Gij(XolP1 Pi + 2 .fr Fijqiqj, (4.5) 

where the primes on the summations indicate a summation 
over all internal symmetry coordinates q, (see Table VU) 
other than the three C-H stretching coordinates. This treat­
ment defines three normal modes with harmonic frequencies 
w3 = 1366 cm- 1, w5 = 1524 cm- 1

, and w6 = 1222 cm- 1 

that are in approximate l :2 nonlinear resonance with the C­
H stretches. The fifth and sixth vibrations are both doubly 
degenerate modes of E symmetry while the third vibration is 
the A 1 symmetry umbrella mode. 2Dl•I As for C;HD3, the C-H 
stretching coordinates are treated separately when defining 
the zeroth order oscillator basis. 

The curvilinear Hamiltonian used for this problem, 
containing the third, fifth, and sixth normal modes and the 
C-H local modes, is 

H = H 0 + V' + Vd, (4.6a) 
where 

1 p2 2Q2) H0 =H,,. +-( 3 +w3 3 
2 

+ ~ [(PL+ Pt2l +w;(QL + Qt2l] (4.6b) 

+~[(PL +P~.2)+w~(Q~.1 +Q~.2)], 
l -

V' = T [ G3•3 (r1,r2,r3) - l] 

TABLE VII. Internal symmetry coordinates for CH,o.• 

q,=F 
qz=F1 
q,=r2 
q-"=F3 

q,=...!...(a 1 +a, +a,-P, -P,-P,) 
..[6 

q6 =_!_.(2a1 -a,-a,) 
. ..[6 

q, = ...!... (2.B, - p, -{J,) 
..[6 

q8 =...!...(a2 - a,) 
J2 
I 

q. = J2 ip, - {J,) 

'The coordinates are defined the same way as in Table I except that ris now 
the C-D displacement coordinate and r1 is a C-H displacement coordi­
nate. 
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l 2 
- 2 +- L [G5,5,.(r1,r2,r3)- l]Ps,n 

2 •= ! 

l 
2 

- 2 ) +- L [G6,6;n(ri'r2,r3)-l]P6.n (4.6c 
2 •= l 

2 -
+ L Gs.6;n(r1,r2,r3)Ps,. P6,n• 

"=l 

and the diagonal matrix element of the Vd potential energy 
term is written as 

(v3j Vd jv3) = - (v3 + !)2w3 XJ· (4.6d) 

Here, Hm is the C-H local mode Hamiltonian from Eq. (4.2), 
G3,3 (r1,r2,r3 ) is the normal mode transformed G_:matrix ele­
ment [Eq. (3.4)] forthenondegenerateA 1 mode, G,.;,.(r1,r2,r3) 
is the normal mode transformed G-matrix element for dou­
bly degenerate normal mode i with degenerate partner n, and 
G5,6 ,.(r1,r2,r3 ) is the G-matrix cross term for the degenerate 
normal modes 5 and 6 and degenerate partner n. All of these 
G-matrix elements are assumed to depend only on the three 
C-H bond lengths r 1, r 2, and r 3• This approximation is analo­
gous to the one made for CHD3, where the C-H mode was 
taken to be the only vibration with appreciable amplitude. 
The I v3 ) ket denotes a vibrational state of the A 1 !µode such 
that {v31 vd lv3) has the effect of a diagonal anharmonicity 
with the adjustable anharrnonicity parameter w3 x 3• The 
work of Gray and Robiette2Dl•I suggests that this anharmoni­
city is significant and should not be neglected; an approxi­
mate value of 20 cm - t was chosen for this parameter. The 
other matrix elements of this vibrational mode are still treat· 
ed in the harmonic limit, however, because this anharmoni­
city is not large enough to cause significant deviations from 
harmonic oscillator values. 

The basis states defined by the zeroth order Hamilton­
ian [Eq. (4.6b)] are 

l!f) = lv,j,I')jv3)lns.ls)ln6,/6), (4.7) 

where jvJ,I') represents thejth eigenket (ordered by increas­
ing energy) of the prediagonalized CH3 iocal mode Hamil­
tonian H,,. [Eq, (4.2)] from the manifold with v total C-H 
stretching quanta and symmetry r. Also, jv3 ) is the nonde­
generate harmonic oscillator basis for the third mode and 
jr.,,l,) is the doubly degenerate harmonic oscillator basis for 
the fifth and sixth modes. 

The matrix elements for the doubly degenerate bending 
modes were calculated in the same way as those for CHD3/ 

CHT 3 [Eqs. (3. lOaH3.10c)] while the nondegenerate matrix 
elements were calculated from standard harmonic oscillator 
formulas. 19 The matrix elements 

(v',j ',I' jG1,i;n(r1.Y2,r3)jv,j,I' ), (4.8) 

in the prediagonalized local mode basis set I vJ,I' ) , were non­
trivial and could have required copious quantities of com­
puter time. Several simplifications which made the evalua­
tion ofEq. (4.8) tractable are given in Appendix D. 

B. Results for CthD 

In the notation ofEq. (4. 7), the pure local mode state for 
v=6is 

liP1> = j6,l,I') IO) jO,O) j0,0), (4.9) 
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where Jv,l,I') is defined as the symmetrized state of pure 
local mode parentage and of r symmetry. These pure states 
are always lowest in energy within a manifold with v total 
quanta [i.e., in the notation of Eq. (4. 7), they are denoted by 
j = I]. The only zeroth order states with less than or equal to 
four quanta in the bending modes found in the calculations 
to strongly interact by G-matrix coupling with this state are 

and 

lt/t2) = J5,l,F)J2)JO,O)JO,O), 

lr,b3) = JS,l,F)IO)I0,0)12.0), 

lib.>= \4,1,I')\4)\0,0)\0,0), 

(4.lOa) 

(4.lOb) 

\4.lOc\ 

where r denotes states of A 1, E., or Eb symmetry. In the 
calculations, it was also found that no states from Eq. (4. 7) 
containing local mode combination states 1 are found to mix 
to any appreciable extent with the states (4.9) and (4. lOa)­
(4. lOc) when the full matrix diagonalization (including the 
bending degrees of freedom) is performed. 

An approximate theoretical spectral envelope was cal­
culated for the v == 6 overtone of CH3D at 300 K (see Fig. 4). 
Standard selection rules for parallel and perpendicular type 
vil:frational/rotational transitions in symmetric top mole­
cules were used. 14 Moreover, as in the case of CHD3, the 
body fixed C-H stretching dipole moment operator was as­
sumed to have the form 1•

21 

3 

µ(r) = L µ(r1 )e,;, (4.ll) 
i=l 

where e,; is a unit vector directed along the ith C-H bond. 
The overlaps of the molecular eigenstates with the zeroth 
order pure C-H stretching state thus determine the relative 
intensities of the vibrational transitions. For Fig. 4, the indi­
vidual vibrational/rotational lines were given a Lorentzian 
shape with a width at half-maximum of l cm - 1

, as was de­
termined experimentally. 2 A value of - 0.2 cm - 1 was as­
sumed for the ground to excited state rotational constant 
difference AB= (Bu - Bo), representing a crude estimate of 
the change in the rotational constant in going to the excited 

;Ji 
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z 
:0 
a:i 

~ 
(f) 
OJ 
<! 
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FIG. 4. Theoretical C-H overtone spectrum for CH,D. The rotational con­
tours were calculated using the rotational constants B°"J.88 cm- 1 and 
A,,,,5.25 cm-• [Ref. 20(a)] and the excited state rotational constant differ· 
ence 4B'="'- - 0.2 cm - •. The individual vibrational/rotational transitions 
were given a Lorentzian line shape with a width at half-maximum of I 
cm- 1

0 

state. The overall spectral envelope is not particularly sensi­
tive to changes in the value of this parameter. 

When compared with the experimental spectrum in 
Fig. 2, two features of the theoretical spectral envelope in 
Fig. 4 are immediately apparent. First, the two main peaks of 
the experimental envelope presumably correspond to states 
ofzerothorderparentage J6,l,F) JO) JO,O) JO,O) for the eigen­
state to higher energy and J5,l,F)JO)JO,O)J2,0) for the ei­
genstate to lower energy, with an experimental splitting of 
- 60 cm - 1

• The theoretical spectrum has these same states 
present with a splitting of - 50 cm - 1

. Moreover, the relative 
heights of the two peaks seem to be in qualitative agreement 
for the two spectra. A second feature is that the theoretical 
spectrum is noticeably less congested than the experimental 
one. We have considered the Coriolis interactions among 
only the pure local mode states and found them to be very 
ineffective in contributing to the observed spectral conges­
tion (Appendix E). 

For the theoretical spectrum at v = 6 shown in Fig. 5, a 
Lorentzian line shape for each vibrational/rotational transi­
tion with a width of 30 cm - 1 was assumed and is much 
closer in appearance to the experimental one. If one assumes 
a high degree of level mixing of the rcr-vibrational states at 
v = 6, then the "Golden Rule" formula (21T/li)( t'Ypro may 
be used for the rate constant k for decay of the excitation. 
The homogeneous linewidth J.v is then given by k /21Tc,26 

where c is the speed of light. Using the expression 
(21 + !)pu(I') for the average density afro-vibrational states 
Pro with symmetry I' and rotational quantum number J,27 

typical values of the effective coupling element ( V) needed 
to give linewidths of 30 cm - 1 are found to be on the order of 
O.l-l.Ocm- 1, depending on the value of J and the symmetry 
I'. \Note the difference in magnitude of these matrix ele­
ments coupling to individual bath states as compared to 
those coupling the stretch to the bend in CHD3). In these 
calculations, values of 1.85, 1.85, and 7.40 states/cm-' were 
used for the density Pu(I') of A,,A2, and E symmetry vibra­
tional states, respectively, at the energy of the v = 6 transi­
tion. 15 Whether the physical origin of the extra broadening 
in Fig. 5 is due to higher order potential energy and/or Cor­
iolis interactions is at present not known. It should, however, 

;Ji 
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FIG. 5. Theoretical C-H overtone spectrum forCH3D including a broaden­
ing of 30 cm- 1 for each vibrational/rotational transition. 
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be mentioned that thermal congestion may be the source of 
the observed broadening in this molecule provided there are 
small but not negligible Coriolis interactions. 

V. CONCLUDING REMARKS 

In this paper, a theoretical analysis of the C-H stretch­
ing vibrations in CHD3, CHT 3, and CH3D was performed. 
The various coupling mechanisms in these molecules result­
ing from dynamical and, in the case of CHD3 and CHT3, 

potential energy interactions were considered. For CHD3, 

the simplicity of the observed C-H overtone spectrum was 
qualitatively explained by treating the curvilinear G-matrix 
coupling4 of the C-H stretch with the other vibrational nor­
mal modes, but this coupling is seen to be too large to quanti­
tatively explain the Fermi resonances with the v5 mode. Po­
tential energy contributions are therefore assum.ed to 
contribute a cancellation effect within the interaction matrix 
elements between zeroth order states. It was further con­
cluded that the existence of a low order resonance condition 
between the C-H stretch and the other vibrations was cru­
cial in determining the degree of vibrational mode coupling 
in these molecules. In CHD3, it was deduced from the calcu­
lations that the C-H stretching local mode selectively inter­
acts by these mechanisms with only one doubly degenerate 
normal mode involving D-C-H bending. Another approach 
to the present problem is the rectilinear coordinate method 
used by Quack et al. 28

•
29 for the C-H stretching states in the 

CHX3 species (where X = 0, F, etc.). 
Predictions for CHT 3 are also presented, using the same 

model as for CHD3, the only difference being in the normal 
mode frequencies due to the isotopic substitution D to T. 
The predictions of this model indicate the existence of a 
purer C-H stretching mode than was found for CHD3 be­
cause the 1 :2 resonance condition between the C-H stretch 
and the bend is detuned upon isotopic substitution. It is sug­
gested that more subtle vibrational state mixing effects such 
as higher order resonances with other normal modes, weak 
potential energy couplings, and a higher density of states 
may be present in this molecule, although our model indi­
cates that these are not important. The results presented in 
this paper for CHD3 and CHT 3, together with the work of 
Sibert et al. 4 on the benzene local modes suggests it is possi­
ble that many intermediate and large size molecules may 
exhibit interesting behavior that only the detailed examina­
tion of the vibrational state coupling can reveal. One possi­
bility is that certain molecular systems may be thought of as 
decoupled or very weakly coupled subsets of strongly inter­
acting vibrational modes. There are implications of this pic­
ture for vibrational energy redistribution 12 and laser selec­
tive chemistry. 13 In fact, the results presented here are 
consistent with the recent observation in anthracene30 of 
simple quantum beats, indicating that only a few (- 3) levels 
are involved in the coupling even though the total density of 
state5 is quite high. 

For CH30, it is found that the pure C-H stretching 
local modes do, in fact, mix to a greater degree by G-matrix 
coupling with bending normal modes than was found in 
CHD3• It was also shown that local mode combination 
states1 were not significantly coupled to these pure local 

-21-

modes. Thus, the present model suggests that the energy 
flow from an initially excited zeroth order nonstationary 
state like Eq. (4.9) would go almost exclusively into the bend­
ing degrees of freedom coupled to the C-H stretches and not 
into local mode combination states. This picture is similar to 
that presented by several authors4

•
9 for C6H 6 • 

While the calculated spectral envelope (Fig. 4) for 
CH3D is congested due to vibrational/ rotational transitions, 
we were unable to explain the observed high degree of spec­
tral congestion (see Fig. 2) using pure G-matrix coupling ef­
fects. Potential energy or Coriolis couplings between the ro­
vibrational states may be responsible for the added degree of 
congestion observed experimentally in this molecule. 
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APPENDIX A: INTEGRATION OF THE G MATRIX 
ELEMENTS FOR CHD3, CHT, 

The matrix elements (vlGs,s(r)lv') appearing in Eqs. 
(3.7) and (3.13cH3. l3e) were calculated as follows: Comput­
er subroutines were written ( 1) to calculate the G matrix 16 for 
a general tetrahedral molecule, the input parameters being 
the atomic masses and the bond lengths; (2) to calculate the 
normal mode matrix L - 1 for all the displacement coordi­
nates at their equilibrium value; l3) to perform the symmetry 
coordinate transformation [Eq. (3.5)] and the normal mode 
transformation [Eq. (3.4)]; (4) to calculate the value of the 
integrand ~(r)G5 . 5 (r)if u· (r) from the matrix element 
(vlG5,5 (r)\v') for an arbitrary value of the C-H bond dis­
placement coordinate r, lfu and if •. being the Morse oscilla­
tor eigenfunctions17

•
18

; and (5) to numerically integrate the 
integral (vlGs,5 (r)lv') using Gaussian quadrature31 for the 
classically allowed region and Laguerre quadrature31 for the 
classically unallowed region. These subroutines were linked 
into a main computer code such that a value of G5•5 (r) could 
be calculated at each rand the numerical integration in 
(5) performed. It was found that 64-point Gaussian quadra­
ture and 30-point Laguerre quadrature gave values for the 
integrals converged to at least six decimal places. 

APPENDIX B: MORSE MATRIX ELEMENTS FOR r AND r2 
The Morse matrix elements in Ref. 21 for r==(R - R0 ) 

were simplified to give 

(v+jlrlv) 

= ( - l Y + 1 
[ (k - 2v - 1 )(k - 2v - 2j - l)] ui 

a j(k - 2v -j- l) 

x[ (v+J)(v+j-1) ... (v+l) ]1/2 (Bl) 
(k - v - l)(k - v - 2) ... (k - v - J) 

and 

l [ (p- 1 
l ) (vlrlv)=- Ink- 2: +<P(l+z) 

a m=I (p-m)+z 
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+1t1(k-~-1)(l-8.,.,)], (B2) 

where <IJ (x) is the digamma function, 32 k denotes w/ wx, and 
a denotes (2µwx ) 112 /Ii. Also,µ is the reduced mass of the two 
particles having an internuclear separation R and 

Z= k- Int(k), p = Int(k)- l - 2v, (B3) 

where Int(k ) is the integer nearest to k from below. 
The off-diagonal Morse matrix elements of r are given 

by Gallas in Ref. 18(a). However, the diagonal matrix ele­
ments of r, when calculated from the formula given by Gal­
las, 18!al can in general pose serious numerical difficulties [see 
Ref. lS(b)]. They were instead calculated from the formula 

(vlrlv)=:: 2: (vlrlJ) <Jlrlv), (B4) 
jfboundl 

which assumes an approximate completeness relation 

2: IJ><Jl=::l 
jf boundl 

(BS) 

for the Morse oscillator bound states. For relatively low val­
ues of u, it is not expected that the contribution in Eq. (B4) 
from the continuum wave functions is significant. 

APPENDIX C: TRANSFORMATION OF FORCE 
CONSTANTS FOR CHDa TO CHT i 

The transformation of the cubic and quartic force con­
stants from CHD3 normal mode coordinates to CHT3 nor­
mal mode coordinates was performed in a straightforward 
way using the equations 

q=LQ, q=L'Q', (Cl) 

where the primed quantities refer to CHT 3, the unprimed 
quantities refer to CHD3, the Q's are the normal modes, and 
the q's are the internal symmetry coordinates (Tabie I). 
Equating the two expressions in Eq. (Cl), one obtains 

Q = L ~ 1L'Q', (C2) 

i.e., 

Q=AQ', 

where 

A=L- 1L'. 

(C3) 

(C4) 

The cubic and quartic force constants for CHT 3 are 
then easily found to be 

(CS) 

and 

(C6) 

In thls case, A 11 is defined to be equal to unity and the other 
Ali and A;1 are set equal to zero. This was done because 
coordinate l is taken to be the local mode C-H stretching. 
coordinate, and the normal mode transformation is per­
formed independently of this coordinate. 

APPENDIX D: MATRIX ELEMENTS OF GFOR CH3D 

Let Gij(r1,r2,r3) be any general normal mode trans­
formed G-matrix element from Eq. (4.6c). The matrix ele­
ments [Eq. (4.8)] between CH3 local mode states} and/ from 
manifolds with total C-H stretching quanta v and v' [the I' 
indices from Eq. (4.8) have been suppressed] are 

Nf> No 

( ' "IG- I ·> - ~ ~ c1·•'•G ct.• VJ ij VJ - ."'1 £.. i',v' i',i i;V' (Dl) 
i'=O i= I 

where N0 is the number of symmetrized zeroth order wave 
functions for the manifold with v C-H stretching quanta and 

q: = (v,i0 jv,j), (D2) 

with lv,i0 ) being the symmetrized zeroth order wave func­
tion: 

(D3) 
p 

In Eq. (D3), 

c;,"v = (p;vjV,io):=the Symmetrization COefficients,2
S 

(D4) 

and NP is the number of different permutations~p of the un­
symmetrized local mode state Jp;v) with v total C-H quanta 
[in an abbreviated notation for Eq. (4.1 )]. Furthermore, 

(D5) 

· The matrix elements (p';v'IGij jp;v) were computed nu­
merically by the following procedure: ( 1) the standard G ma­
trix in internal valence coordinates is calculated in terms of 
the atomic masses and the quantities (v;!r;- 1Jv;)8 ,8 , , 

V}JJ vkvk 

(v;jr;- 2Jv;)8 ,8 ,, and (v;v
1
.i(r; r

1
r 11v;v

1
')8 ,, where 

vpJ vkuk ukuk 

I v1), Iv;), etc. are Morse oscillator eigenfunctions 17
• 1

8 appro­
priate to the states [p;v) and jp' ;v'); (2) the symmetry coordi­
nate transformation [Eq. (3.5)] is performed with the symme­
try coordinates from Table VII; (3) the normal mode 
transformation [Eq. (3.4)] is performed with the L - 1 matrix 
calculated from the normal mode analysis of Eq. (4.5). As 
before, the three C-H coordinates were excluded from this 
transformation. The ijth term of this matrix of values corre­
sponds to the matrix element (p' ;v' I G ij Jp;v). This procedure 
yields values for the matrix elements in Eq. (Dl) efficiently 
and economically. A direct multidimensional numerical in­
tegration in terms of the three C-H coordinates was antici­
pated to be too expensive and, because of the dependence on 
several coordinates, probably inaccurate. 

APPENDIX E: CORIOLIS INTERACTION AND LOCAL 
MODE DEGENERACY 

In order to determine whether Coriolis interactions can 
strongly effect the threefold near degeneracy of the zeroth 
order states in Eqs. (4.9H4.10c) for the present model of 
CH3D, a simple calculation was performed to estimate these 
effects for the pure A 1, E., and Eb symmetrized zeroth order 
CH3 local mode states25 
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l 
f!f,;A1) =-(fv,O,O) + fO,v,O) + fO,O,v)), (El) 

f3 
l 

ft/l2;E0 ) =-(2fv,O,O) - fO,v,O) - fO,O,v)), (E2) 
J6 

and 

l Jt/J3;Eb) =-(10,v,O) - fO,O,v)). 
fi. 

(E3) 

In this calculation, a rectilinear coordinate treatment was 
used due to the relative simplicity of the equations in this 
approach. 33 In addition, it is well known that the description 
of molecular vibrations in the curvilinear coordinate ap­
proach differs most strongly from the rectilinear treatment 
only for the bending modes. 5 •

6 For these reasons and because 
we only desire to estimate these rotational effects, the recti­
linear coordinate approach is well suited to our purpose. 

The first order Coriolis effect is described in the small 
amplitude limit by the vibration/rotation coupling term33 

v. = - P,fl. , 
"' I, 

(E4) 

where P, is the z projection of the rotational angular momen­
tum, fl, is thez projection of the vibrational angular momen­
tum, and/, is the z component of the inertia tensor (taken as 
a constant). The orientation of the molecule is such that the z 
axis in the body fixed coordinate system is along the symme­
try axis of the molecule. The contribution to this term from 
the CH3 local mode coordinates 7 1, 7 2, and 73 is 

A 

V ' P,~,..( •••• ) "' = - -
1 

,c.,. !> ii 7;pj - 7i p; , 
% t<J 

(ES) 

where the; ij are the Corjolis zeta constants, 33
•
34 and p; is the 

momentum operator conjugate tor;. The first order matrix 
elements are then (with Ii = 1) 

Ern = - K (t/J;;I' fC(r,p)\t/l,-;I"), 
I, . 

(E6) 

where C (r,p) is the summation term in Eq. (ES) and the states 
f i,b;;I') are states from Eqs. (ElHE3). The zeta constants for 
the coordinate system defined by the normal mode transfor­
mation ofEq. (4.5) (excluding the C-H coordinates) and the 
three C-H stretching coordinates were calculated using 
standard techniques. 34 The values for these constants were 
found to bet~2 = - ;~3 = ;~3 = 0.06. The values ofthex 
and y zeta constants ; ij and ; ~ were also calculated and 
found to be even smaller. As a check of the present method, a 
complete normal mode calculation was performed (includ­
ing the C-H coordinates), and we reproduced exactly all of 
the relevant normal mode zeta constants for CH3D (see Ta­
ble vi of Ref. 20). 

In standard normal mode theory,33 the matrix element 
[Eq. (E6)] between doubly degenerate normal modes of E 
symmetry yields the value - (KI I,)( ± l; )8;,. o rr·, where I; 
is the magnitude of the vibrational angular momentum of 
degenerate state i, and hence splits the degeneracy of this 
mode due to the difference in the values of the diagonal ele­
ments. For the local mode states [Eqs. (EIHE3)], the matrix 
element in Eq. (E6) was evaluated numerically. It was found 

that the only nonzero first order matrix element is between 
the E. state [Eq. (E2)] and the Eb state [Eq. (E3)] and, for 
v = 6, that it is extremely small (-4 X 10-7 cm - 1

). 

The second order Coriolis interactions of the states in 
Eqs. (ElHE3) with the symmetrized zeroth order local 
mode combination states of f 5, 1,0) parentage were next cal­
culated. To do this, a Van V1eck transformation35 through 
second order was employed in order to treat the problem by a 
simple 2 X 2 matrix for the states (E2) and (E3) with v = 6. 
The only nonzero perturbations were the first order correc­
tions just described and diagonal second order corrections 
arising from the coupling to the E symmetry combination 
states off 5,1,0) parentage. These interactions were again 
found to be very small (-10-2 cm- 1

). It is clear that, while 
the degeneracy of the local mode states (ElHE3) is lifted by 
the Coriolis interactions, this effect is expected to be entirely 
negligible on the scale of Fig. 4 and thus contributes little to 
the observed spectral congestion. The weakness of these in­
teractions is primarily due to the smallness of the zeta con­
stants ; ij for the local mode coordinates appearing in Eq. 
(ES) and because the local mode states presumably have very 
little vibrational angular momentum. Whether Coriolis ef­
fects are important for the pure local mode states in other 
molecules with different symmetries remains an open ques­
tion. 36 It is also again emphasized that the above calculations 
assume the local axial symmetry of the CH3 group in the 
CH3D molecule. 
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Semiclassical theory of Fermi resonance between stretching 
and bending modes in polyatomic molecules 

Gregory A. Voth and R. A. Marcus 
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Approximate semiclassical solutions are developed for a system of a Morse oscillator coupled to a 
harmonic oscillator via a nonlinear perturbation. This system serves as a model for the interaction 
of an excited stretching mode with a bending mode in a polyatomic molecule. Three semiclassical 
methods are used to treat this modeL In particular, a matrix diagonalization, a two-state model, 
and a uniform semiclassical approximation (USC) based on Mathieu functions are each used to 
determine the splittings and state mixing involved in these stretch-bend Fermi resonances. For 
small perturbations, approximate analytic semiclassical expressions are obtained for the system 
treated. These analytic expressions are given for the splittings using a two-state or use method 
and for the overlaps of the zeroth order states with the eigenstates of the molecule using a use 
method. 

I. INTRODUCTION 

The present paper treats the 1:2 resonant interaction of 
a stretching mode with a bending mode in a polyatomic mol­
ecule. This system is modeled classically using a resonance 
Hamiltonian l-6 to describe the nonlinear interaction of a 
Morse oscillator stretching vibration with a harmonic bend­
ing vibration. Several semiclassical methods are used to ob­
tain information about the quantum Fermi resonance result­
ing from this nonlinear interaction. The results of these 
methods are compared with each other, with those obtained 
from a recent uniform semiclassical treatment, 7 and with the 
exact quantum results. 

The experimental incidence of 1:2 stretch-bend Fermi 
resonance is widespread, the best known being that in eo2• 8 

Previous discussions of these resonances are many, e.g., Ref. 
9, and they have appeared more recently in the local mode 
literature. 10 The model of a local mode C-H stretch interact-
ing resona.11tly with bendirtg normal modes has also been 
proposed as a theoretical explanation for the observed Fermi 
resonances in eHD/ 1

•
12 and for the e-H overtone 

linewidths in benzene. 13 These Fermi resonances are related 
to the existence of one (or more) classical resonance condi­
tions. t-6 The quantum mechanical implications of an isolat­
ed classical resonance have been discussed by a number of 
authors,3

•
7

•
1
4-

27 including their relation to avoided cross­
ings14·24·25 and to Fermi resonances.3•7•14·22 

A straightforward semiclassical matrix technique is 
presented in Sec. II to treat Fermi resonant systems. Two 
other semiclassical methods, namely, a semiclassical two­
state solution and a uniform semiclassical approximation 
(USC), are also formulated later in Sec. IV that are based on 
an elfective classical resonance Hamiltonian for the nonlin­
ear interaction of a Morse with a harmonic oscillator (Sec. 
HIJ. These latter two methods may be used to calculate ana­
lytically the splittings between the eigenstates of the system 
and the overlaps of the zeroth order wave functions with the 
actual eigenfunctions. The three semiclassical methods are 
applied in Sec. V to a model of a e-H stretching local mode 

•I Contribution No. 7062. 

interacting resonantly with a bending mode in a dihalometh­
ane molecule. The results of these calculations, and those 
obtained using the method of Ref. 7, are discussed in Sec. VI, 
and concluding remarks are given in Sec. VU. 

II. SEMIClASSICAl MATRIX DIAGONALIZA TION 

The classical Hamiltonian for a coupled Morse and har­
monic oscillator may be written in action-angle variables as 7 

H(/1, 12, B1, B2 ) 

=l1CtJ~ -Iiw~x+I,wg + V(l1,l2,B1,B2), (2.1) 

where / 1 and / 2 are the action variables28 for the Morse and 
harmonic oscillators, respectively. B, and B2 are the angles 
conjugate to 11 and 12, w~ and w~ are the zeroth order har­
monic angular frequencies of the Morse and harmonic oscil­
lators, respectively, w~x is the anharmonicity of the Morse 
oscillator, and V(/1, / 2, B1, B2) is the perturbation.29 (Ii is set 
equal to l throughout the present paper.) 

One can use a semiclassical matrix treatment30 of the 
Fermi resonance problem for the Hamiltonian (2.1) in ac­
tion-angle variables using, as a basis, the semiclassical wave 
functions25

•
31 

(2.2) 

for the angle representation of the zeroth order states 
ln 1, n2), where ln 1) and ln2 ) arethezerothordereigenfunc­
tions for the Morse and harmonic oscillators, res_{lectivery. 
The semiclassical action and angle operators25

•
31 Ik and Bk 

in the angle representation acting on these wave functions· 
yield 

"1 0T1IOI - I •T1IOI d a •Y1IOI - a .,,101 (2 3) 
k 'I:' n1,n2 - k '1!"' '*1•n2 an Uk'!!" 11 1,n, - Uk '.Y n 1,n2' 4 

where/k and Bk are the classical variables. The/k are related 
to the quantum numbers nk by Ik = nk +!in the case of an 
oscillator, be it Morse or harmonic. 

The semiclassical wave functions are useful because the 
matrix elements of the perturbation have the form of Fourier 
components 

l 12"12" V (I) = -- V(I &)e- ;iie, +me,) dB dB . 
Im (211')2 0 0 ' I 2 

(2.4) 
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If, e.g., the resonant interaction of the three states In, 0), 
In - 1,2), and In - 2, 4) is considered, the Hamiltonian 
represented in this restricted basis has the following diagonal 
element H" for the zeroth order state i: 

H;; = (n\ + !~? - (n\ + !)2w?x 
+ (n~ + !~~ + Viio(IL /~). (2.5) 

where (n\, n~) = (n, 0), (n - l, 2), or (n - 2, 4). The diagonal 
perturbation term V 00 is the (/ = 0, m = 0) Fourier compo­
nent [Eq. (2.4)] evaluated at the actions I\ = (n\ + !), 
I~ = (n~ + !). The off-diagonal perturbation terms H,j 
between the states i andj have the form 

H _ l 12
" 12

"" - i(n\8, + n\9,) .. _ -- e 
I} (217°)2 0 0 

X V(I, G)e'i•/9 , + •i9,J dBi d82, (2.6) 

which is the Fourier component Vim(/~ , I~) of the perturba­
tion with I = n\ - n{ and m = n~ - ~. These semiclassical 
matrix elements are approximate and usually not exactly 
Hermitian since Hij =Vim(/~,/~)# V1m(I'i, /~)=HJ:. 
These matrix elements may be made Hermitian in an ad hoc 
way by evaluating them at any fixed value of the actions [e.g., 
at the resonance center (/ ~ , I;)] or at an intermediate value 
of the actions between any pair of states i and j, using, for 
instance, the arithmetic mean (/ ~ +I jk )12, where 
(k = l, 2). 32 The latter approximation has been used success­
fully in the calculation of transition dipole matrix elements 
for Morse33 and other34 oscillators and has been employed in 
a description of isolated avoided crossings. 24 Semiclassical 
expressions for the matrix elements are frequently simpler to 
compute than the corresponding quantum mechanical ones. 
The resulting sefiliclassical matrix may then be diagonalized 
numerically to find the eigenvalues and eigenvectors as is 
done for standard quantum mechanical matrices. 

Comparison of the .method presented in this section 
with exact quantum results are given later in Sec. V. In Sec. 
IV, we formulate a different semiclassical method based on a 
classical analysis and an effective Hamiltonian given in the 
next section. 

m. THEORY: CLAS-SICAL RESONANCE TREATMENT 

A. Treatment of the perturbation 
The perturbation of these coupled oscillator systems is, 

as usual, t-6 expanded in a complex-valued Fourier series 
® ~ 

V(I,, lz, e,,82) = I I V'im(/1, Ii)e;(/8, +m9,I, 
l=-oom=-a:;i 

(3.l) 

where V1'" (11' 12 ) is given by Eq. (2.4). The V 00(/1, / 2) Fourier 
comJionent is the analog of a quantum mechanical "diag­
onal" first order perturbation correction. These corrections 
have been discussed previously11

•
13

•
35

•
36 within the context of 

stretch-bend interactions in molecules and are found to 
modify the zeroth order oscillator frequencies, sometimes 
appreciably. To include the effect of this perturbation, a new 
zeroth order Hamiltonian may be defined as 

ntoJ (/1, / 2) = I1w~ - Iiw?x + lza1~ + V 00(11, / 2). (3.2) 

(This Hamiltonian is the same as that in Ref. 7, except that 
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the V 00 term is taken as a constant there, namely, its value at 
certain zeroth order "resonant actions" described later in 
the Results section.) 
_..f

0
Han:ilton's equations for the angle variables, based on 

Ji' ) yield 
' 

iJ, = U11(I,, l2) = UI~ - 21,w?x +av oo(I,, 12)/aI,, (3.3) 

82 = w2(I,,J2) = w~ + av00(I1,I2)1a12, (3.4) 

and that / 1 and 12 are constants of the motion for JO 2ince 
this zeroth order Hamiltonian contains no angle variables. 
Since/1 and/2 are functions of E? and E~ (the zeroth order 
energies of the Morse and harmonic oscillators, respective­
ly), Eqs. (3.3) and (3.4) may be rewritten as 

wi(/1,/2) = (w~ - 211w~x)f, 

U12(I,,J2) = UI~ g, 

where 

f= [I +av00(E?,E~)!aE7], 

g= [1 +avoo(E~.EWaEn 

(3.5) 

(3.6) 

(3.7) 

When the angle-dependent perturbation terms from 
Eq. (3. l) are included in the equations of motion, the actions 
11 and 12 are no longer constants of the motion. In the pres­
ence of a nonlinear resonance, these actions slowly oscillate 
near or about their value at the resonance center1

-6 (J ~,I;). 
If the factors/ andg in Eqs. (3.5) and (3.6) are approximated 
as the "average" constants f' andg' [given by Eq. (3.7) eval­
uated at the resonance center], one obtains an effective ze­
roth order Hamiltonian 

(3.8) 

where w1, WtX, and w2 denote w~ f', w~x f', and w~ g', re­
spectively. These effective oscillator parameters are the clas­
sical analog to those obtained empirically from the analysis 
of experimental absorption spectra (cf. discussion in Refs. 
11, 13, 35, and 36). 

The particular classical resonance to be examined here 
is the l :2 resonance defined by the condition 

wi(I~ )'.:::::2w2, (3.9) 

where 

(3.10) 

is the (modified) nonlinear angular frequency of the Morse 
oscillator at the center of the resonance. The· use of these 
modified oscillator frequencies yields values for the resonant 
actions different from those predicted by the zeroth order 
Hamiltonian alone [Eq. (2.1) with V = O]. An accurate ap­
proximate method for finding the values of the resonant ac­
tions I~ and I;, a nonlinear problem, is given in Appendix 
A. 

The resonance condition (3.9) prompts a canonical 
transformation of the zeroth order action-angle variables in 
which there is now a "slow" variable a (low frequency coor­
dinate) 1-7: 

2a=81 -282 +8, fl=82, 

I"' = 211, Ip = 211 + 12• 

(3.11) 

(3.12) 

The8 in Eq. (3.11) is chosen to simplify later the final expres­
sion (3.16) and to make the canonical transformation used in 
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Ref. 7 suitable for any general perturbation. 29 

The transformation (3.12) applied to Eq. (3.8) yields the 
effective zeroth order Hamiltonian in the new action varia­
bles I" and Ip as 

H0(Ia., Ip)= Ian -wtX'I! + Ipw2, 

where 

n = (w1 - 2w2)/2, x' = x/4. 

(3.13) 

(3.14) 

As is standard in the theory of classical resonances, I-<i 

all highly oscillating terms in the Fourier expansion (3.l) are 
omitted, leaving the terms appropriate to the 1:2 resonance 
of the form exp[± ik (81 - 282 )], where k equals (1, 2, ... ),in 
addition to the V 00 term discussed earlier. As usual, t-<i only 
the lowest nonzero k term is then retained, allowing Eq. ( 3. l) 
to be written approximately as 

V(I,, lz, e,, 82)'.'.::::'.2Re! v I -2 (11, Ii)e'16
' -

20"J (3.15) 

when the lowest term is k = l. (In other cases, the k = l term 
may be zero and a term for k > 1 is required.) Since the per­
turbation in Eq. (2.1) is real, the relation Vt., = V _ 1 _,,. was 
used in obtaining Eq. (3.15). If 2V 1 _ 2 is written as V oe1r, 
with V0==21 V 1 _ 2 I, then Eq. (3.15) may be written as 

V'.'.:::='.- V0 cos2a (3.16) 

when one chooses 8 in Eq. (3.11) to equal r + rr to obtain the 
negative sign in Eq. (3.16). 

B. Classical resonance Hamiltonian 

Equations (3.13) and (3.16), evaluated at the resonant 
actions (J ~ ,I; ), yield a resonance Hamiltonian I-<i for the 1 :2 
resonance37 

HR =wiX'I!-Ia.n+ V0 cos2a=ER. (3.17) 

The total Hamiltonian H in Eq. (2.1) is then approximately 
given by 

H.w:=lpw2 -HR, (3.18) 

which will henceforth be termed the "effective" Hamiiton­
ian. Since Ip is a constant of the motion in this approxima­
tion, fp(J) 2 is a constant. The phase plane behavior of Eq. 
(3.17) is discussed in Appendix B. 

From Eqs. (3.9), (3.10), and (3.14), the resonant action 
I~ is given by fl lwiX. Since, semiclassically, I 1 equals 
(n 1 +!),a resonant Morse "quantum number" n~ may be 
defined by 

n~ = (11 /wtX) -!· (3.19) 

In general, nl is not an integer. 
The two-state and uniform approximation solutions in­

troduced in the next section are based on the effective Hamil­
tonian (J.18) .. 

IV._THEORY: SEMICLASSICAl METHODS BASED ON 
H•fi 

A. Two-state solution 

Introduction of the action operator25
•
31 

/" = (l/i)d I 
da + l into the classical resonance Hamiltonian [Eq. (3.17)] 
yields the semiclassical Schri:idinger equation 7 

d
1

1/J -2i(S-1)# +[A-2qcos2a]if;=0, (4.1) 
da2 da 

with a being in the interval (0, rr) and 

S = 2fl /WtX = 2ni + i, 
A= (4(il+ER)/wtX] - l, 

q = 2VofwiX. (4.2) 

For the model oscillator system considered in the pres­
ent paper, the near 1 :2 resonance condition can lead to a near 
degeneracy between the zeroth order states In, O) and 
In - 1,2) forsomevalueofn. Inmanycasesofexperimental 
interest, these two states may be the most important states 
involved in a Fermi resonance. For this reason, and because 
it is desirable to obtain a simple analytic solution, a two-state 
solution for Eq. (4.1) of the form 

i/J'.::::,atf/'~I + bt/J'~l_ 1 (4.3) 

is considered first, where a and b are constants to be deter­
mined and where tf/'~I equals rr- 112 exp[2ina] and 1/f~l_ 1 
equals rr- 112 exp[2i(n - l)a] (e.g., Refs. 25 and 31). When 
Eq. (4.l) is diagonalized in this basis, the eigenvalues are 
given by 

A± =Ao± !(4ef + d z)112, (4.4) 

where 

A0 = - [ 4(nl)2 -v2(n) + 2v(n)- 2], 

d = 4[ 1 -v(n)], v(n) = 2(n - nl ), 

(4.5) 

(4.6) 

and q is given in Eq. (4.2). In terms of Eq. (3.19), this v(n) is 
twice the "distance" of the eigenstate with quantum number 
n 1 = n from the center of the resonance nl. 

The approximate splitting ,J,E of these two eigenstates 
by the Fermi resonance is therby found from Eqs. (4.2) and 
(4.4H4.6) to be 

,J,E = WtX'(4q2 + d 2)112, (4.7) 

and the two approximate eigenfunctions are38 

if;+ = al/}~' + blf}~l_ 1 , 

J/r = - blf}~I + alf}~l_ t> 

where 

a= [(I'+ d )12I']1 12, 

b = [(I'-d)/2I'] 112, 

I'= (4q2 + d2)1/2. 

(4.8) 

(4.9) 

(4.10) 

Calculations employing Eqs. (4.7H4.10) involve determin­
ing nl from Eq. (3.19) and q from Eq. (4.2), both of which are 
readily obtained. 

The two-state solution presented in this section is not, 
in general, the same as a semiclassical 2 X 2 matrix diagonali­
zation using the method of Sec. II. The difference between 
these two methods results from the use in the present section 
ofa resonance Hamiltonian (3.17) based on the effective Ha­
miltonian (3.18), while the method of Sec. II is based directly 
on the original Hamiltonian (2. l ). 

B. Uniform semlclassical approximation (USC) 

A uniform approximation for the present coupled oscil­
lator system is obtained by converting Eq. (4.1) to the stan-
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dard Mathieu equation. 7'
25 A function F(a), defined by25 

F(a)=exp[i(l-s)a]\b(a), (4.11) 

is used for this purpose: It satisfies Mathieu's equation301•l 

d 2F(a) 
~+[a. -2qcos2a]F(a)=0, (4.12) 

where 

av= (t- 1)2 +A= 4[(il /wtX)2 + ER/WtX], (4.13) 

and v is the order of the Mathieu equation. 391"1·40 Equation 
(4.13) is rearranged to give the energy of the rotor Hamilton­
ian HR as 

(4.14) 

Semiclassical expressions for the Fermi resonance split­
tings between the eigenstates of the Hamiltonian may be ob­
tained from Eq. (4.14). In general, one is concerned with a 
resonant progression of nearly degenerate zeroth order 
states lnt>n2 ) for the zeroth order Hamiltonian (2.1): In, 0), 
In - l, 2). In - 2, 4), etc. The action Ip from Eq. (3.12) 
semiclassically equals 2n 1 + n2 + 3/2 and remains constant 
along this progression. For any two states of orders v 1 and v 2 

involved in this resonant progression, the splittings are given 
from Eq. (4.14) as 

l<iE 1-2 I= !av, - av, \wtX', (4.15) 

where40 

(4.16) 

For example, one uses n\1l = n and n\2l = n - l in calculating 
the splitting between the nearly degenerate states In, 0) and 
In -1, 2). Thecharacteristicvaluesav oftheMathieuequa­
tion may be obtained from expansions391

b1 (if q is small), from 
tables,41

•
42 or from semiclassical phase integral arguments.43 

When the relevant dipolemoment operator is assumed 
to be a function of the C-H stretching coordinate only, the 
overlap (squared) of the zeroth order pure local mode state 
jn, O) with the actual eigenstates describes the Fermi reso­
nance intensity sharing, 11

•
13

•
35

•
44 and so is ofinterest. When q 

is small enough, an expansion39101·42 for the solution F(a) of 
the Mathieu equation (4.12) may be used. From the defini­
tion of the wave function i/l(a) in Eq. (4.11 ), and using Eq. 
(4.2) for sand the expression for v in Ref. 40, the unnorma­
lized wave function may be written as 

. q [ e2i(n, + Ila 
.1. (a) e2'"•a 
'l'n, - - 4 [v(n

1
) + l] 

e2i(n, - l)a ] 

[v(n,)-1] 

e2i(n, - 2)a ] 

+ + .... 
[ v(n 1) - l ][ v(ni) - 2] 

(4.17) 

Equation (4.17) properly normalized (cf. Appendix C) yields 
the following formulas for the overlaps of the zeroth order 
In, O) local mode state with the eigenstates of In, O), 
In - !, 2), and In - 2, 4) parentage: 

[ tJi~l•(a)r,b.(a)da = [iiN., (4.18) 

[ 
.1i0l•(a)·'· (a)da - - l1i N [ q ] 

o'f'n 'f'n-1 - '\J1Tn-I 4(1-in-l)+l]' 
(4.19) 

and 

f i,[l~l•(a)¢._ 2 (a)da 

- .[i-N [ q2 ] (4.20) 
- ·-

2 32[v(n-2)+l][v(n-2)+2]. 

Here, i,[1~1(a) denotes 1T- in exp(2ina] and is the properly 
normalized zeroth order local mode state In, O), and i/!m 
(m = n, n - I, n - 2) is the approximate normalized eigen­
state based on Eq. (4.17). It is also ofinterest to determine the 
overlap of the zeroth order state In 2, 4) with the eigen­
state i/!n- 1 (a). This overlap is given by 

[ 
.i;o),. (a)·1• (a)da - 11iN [ q ] 
'f'n - 2 'f' n - I - V 1T n - I 4 [ v(l? _ l) _ l] • 

(4.21) 

where r,#,?I_ 2 denotes1T- 112 exp[2i(n - 2)a]. At m:very close 
to the actual avoided crossing point between t'wo states, 
some of overlaps in Eqs. (4.18)-(4.21) are not suitable for 
computation and a different expression is used. 45 

V. APPLICATION 

A. The model Hamiltonian 

As an application, we consider a model Hamiltonian for 
a single C-H stretch interacting with a bending mode involv­
ing the C-H bond in a dihalomethane molecule. In curvilin­
ear coordinates,46 such a Hamiltonian may be phenomeno­
logically written as46l•l 

H = -
1
- P ii + D [ 1 - exp( - aR ) ] 2 

2µ 

+_!_ 1p2+(J)o2Q2)- 3:_Rp2 2' 2 2 , (5.1) 

where R and Qare, respectively, the curvilinear displace­
ment coordinates for the C-H stretch and for the bend, PR 
and Pare their conjugate momenta,µ is the reduced mass of 
the C-H bond, D and a are the C-H Morse parameters, A. is a 
coupling constant, and w~ is the zeroth order angular fre­
quency of the bending mode. The constant A. generally has a 
complicated dependence13·46l•I on the atomic masses, equi­
librium bond angles and lengths, and the bending normal 
coordinate47 coefficients L ij 1• This coupling constant will 
be treated as a variable parameter in the present paper. 

For energies in the vicinity of the 13, O) state, it is as· 
sumed in this model that only one of the C-H local mode 
vibrations need be considered.35 For these energies, the 
quantum mechanical eigenvalues for the symmetric and 
asymmetric combinations35 of local modes in the dihalo· 
methanes become virtually degenerate, and hence the two 
CH's in the molecule have negligible direct coupling to each 
other. 

The Fourier expansion for the displacement coordinate 
R of a Morse oscillator is given in Ref. 48. Since the bending 
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mode is a harmonic oscillator [cf. Eq. (5.1)], a suitable trans­
formation to action-angle variables is to set Q and P equal to 
(212/w~) 112 sin 82 and (21~wg)' 12 cos 82, respectively. This 
transformation yields the (1, - 2) and (0,0) Fourier compo­
nents 

(5.2) 

and 

JwOA ( l (1 )1/2) v.. (I ,I ) = - _2_2_ Jn + - y . 
00 I 2 2a Z(l _ y) 

(5.3) 

where y = E? ID, and E ~ and D are the energy and dissocia­
tion energy of the zeroth order Morse oscillator, respective­
ly. These expressions may be used in Eqs. (2.5), (2.6), (3.7), 
and (3.16). 

B. Calculations 

Calculations were performed for the resonant interac­
tion of the 13, 0), 12, 2), and I I, 4) states for the model Ha­
miltonian (5.l). The values used in Eqs. (5.1H5.3) for 
w?, w?x. D and a, obtained from thedataofofRef. 35, were 
3143, 63.2, 39 076 cm- 1

, and 0.988 a.u., respectively. The 
zeroth order bend frequency w~ was not determined there, 
but is estimated to be - 1400 cm- 1

• The coupling parameter 
A. was allowed to vary in the present calculations to yield 
quantum off-diagonal matrix elements between the zeroth 
order states 13, O) and 12, 2) in the range of 5-30 cm-•. The 
resonant actions I~ and I; used in evaluating the USC and 
two-state solutions were determined by the method de­
scribed in Appendix A. 

The Fermi resonant splittings and overlaps were talcu­
lated as a function of A. using the three semiclassical methods 
presented in the previous sections. For the two-state and 
3 x 3 semiclassical matrix treatment, calculations were per­
formed using both the resonant and mean actions (cf. Sec. II) 
to evaluate the 3 X 3 semiclassical off-diagonal matrix ele­
ments and to obtain q for the two-state calculation (Sec. 
IV A). In all cases, diagonalizations of quantum mechanical 
2 X 2, 3 X 3, and 78 X 78 matrices were performed for com­
parison. 

C. Results 

The calculated splittings between the eigenstates of 
13, O) and 12, 2) parentage and between the eigenstates of 
13,0) and ll,4) parentage are shown in Tables I and II, 

TABLE I. Splittings(in cm- 1
) between states of 13, 0) and 12, 2) parentage. 

A (a.u.) 78X78Q 3x3" 3 X 35C" 3x3sc'< USC' 

0.037 31.0 31.1 31.3 31.8 33.4 
0.077 30.8 31.1 31.9 33.5 35.5 
0.121 35.4 35.8 37.4 40.1 41.S 
0.170 43.1 43.8 46.I 49.2 49.7 
0.227 53.0 54.4 57.4 59.8 59.I 

•Calculated with Fourier components [Eq. (2.6)] evaluated at mean actions 
for each pair of states. 

•Calculated with Fourier components [Eq. (2.6)] evaluated at the resonant 
actions" 

'Uniform semiclassical calculation (cf. Sec. IV Bl based on H'" [Eq. (3.18)]. 

TABLE II. Splittings (in cm- 1
) between states of i 3, 0) and I I, 4) parent-

age. 

A (a.u.) 78X78Q 3x3Q 3x3SC" 3x3sc'< USC' 

0.037 61.9 62.3 62.2 61.2 64.l 
0.077 69.8 71.5 71.2 66.9 73.3 
0.121 78.0 82.2 81.7 71.9 82.3 
0.170 87.8 95.7 95.l 77.4 92.2 
0.227 100.4 113.8 113.2 84.I 103.J 

•Calculated with Fourier components [Eq. (2.6)] evaluated at mean actions 
for each pair of states. 

•calculated with Fourier components [Eq. (2.6)] evaluated at the resonant 
actions. 

'See footnote c of Table I. 

respectively. In Table III, the exact and the present uniform 
semiclassical (USC) results are compared with those ob­
tained by the method of Ref. 7 (USC°). As in Ref. 7, the 
resonant actions for the USC0 calculation were found using 
the zeroth order frequencies, i.e., using Eq. (Al) instead of 
Eq. (3.9). The "diagonal" perturbation term V 00 was then 
taken, in the USC° method, as a constant value evaluated at 
these zeroth order resonant actions. Also shown in Table III, 
for comparison with and for analyzing the method of Ref. 7, 
are results from a quantum mechanical 3 X 3 matrix diagon­

alization method (3 X 3Q") having the diagonal first order 
perturbation corrections taken as a constant (e.g., zero). In 
addition, the relative overlaps of the zeroth order states 1/J)01 

with die actual eigenstates t/J 1, defined as I ( r/1;01 It/J1 ) I I 
I (r/lt11t/l;) I, are given in Table IV for two values of A. For the 
various two-state calculations, the calculated splittings 
between the eigenstates of 13, 0) and 12, 2) parentage are 
given in Table V as a function of A.. 

VI. DISCUSSION 

The quantum 3 X 3 and converged (78 X 78) results are 
seen from Tables I, II, and IV to be in good agreement (ex­
cept at high A. where the discrepancy in Table II is - 10 
cm - 1 

). Thus, the present Fermi resonance is well character­
ized by considering only the interaction of the three zeroth 
order states 13, 0), 12, 2), and 11. 4). For the splittings, the 
3 X 3 and USC semiclassical methods in Tables I and II yield 
results comparable to each other and in reasonable agree-

TABLE III. Calculated splittings (in cm-') of 13, o> and 12, 2) states by 
exact quantum, zero order uniform semiclassical (USC°),• zero order 
3 X 3Q" quantum,• and effective uniform semiclassical (USC)' methods. 

USC° USC 
A. (a.u.) 78X78Q 3X3Q" [Ref. 7 (Present) 

0.037 31.0 38.3 38.7 33.4 
0.077 30.8 44.4 45.7 35.5 
0.121 35.4 53.7 55.9 41.5 
0.170 43.I 65.7 68.l 49.7 
0.227 53.0 80.6 >80" 59.l 

'Using zeroth order frequencies [cf. Eq. (2.1)) to calculate l;, l;, v, and q. 
•Calculated by setting all dia·gonal perturbations equal to zero in the 3 X 3 
quantum matrix. 

'See footnote c of Table I. 
•This value is estimated from the tables given in Ref. 41. The values of q 

there go to 2.5 whereas q equals 2.54 for the present USC° method (with 
..i =0.227). 
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TABLE IV. Relative overlaps.• 

Rel. 
A. (a.u.) overlap• 78x78'l 3x3Q 3 x3sc" USC' 

0.037 
2:3 0.154 0.154 0.163 0.205 
1:3 0.008 0.008 0.008 0.007 
2:1 0.100 0.099 0.100 0.065 

0.077 
2:3 0.347 0.344 0.359 0.507 
1:3 0.029 O.Q28 0.030 0.023 
2:1 0.189 0.186 0.186 0.111 

•Relative overlap j:iis defined as I (.pi,0'1.P,) I/I (#,0111/1,} I. where 11/1,,1 ) is the 
eigenstate of zeroth order I .P~j1 ) parentage. States 3, 2, and I are defined as 

13, 0), 12, 2), and 11, 4), respectively. 
•Calculated with Fourier components [Eq. (2.6)) evaluated using mean ac-

tions for each pair of states. 
"Present USC method (see footnote c of Table I). 

ment with the quantum mechanical values. The results 
shown in Tables I-Vindicate that, of the semiclassical two­
state, 3 x 3, and USC methods, the 3 x 3 one using mean 
actions in the evaluation of the Fourier components appears 
to be the most accurate for calculating both the splittings and 
the relative intensities. In addition, the results in Table III 
for the USC0 method of Ref. 7 show that the nonconstancy 
of the diagonal perturbation term V 00 has an appreciable 
effect for the system studied. 

Of the two-state calculations, the quantum 2 X 2 values 
[based on the original Hamiltonian ( 5.1)] and the semiclassi­
cal two-state ones based on Helf [Eq. (3.18)] and employing 
mean actions in the calculation of the Fourier components 
are in better agreement than those based on H.rr and reso­
nant actions. Diagonalizations of semiclassical 2 X 2 matri­
ces were also performed using the method of Sec. II. These 
results were essentially the same as those in Table V based on 
Hert and mean actions. Thus, for the present model Hamil­
tonian (5.1), the two-state (Sec. IV A) and 2X2 (Sec. II) 
methods are essentially equivalent, although this is not nec­
es.sarily the c.ase in general. 

The 3 X 3 (and 78 X 78) basis set calculations show that 
the 11. 4} state mixes significantly with the other zeroth or­
der states. Thus, the two-state treatments are incorrect for 
determining the eigenfunctions, and hence the overlaps (rel­
ative intensities), although they yield reasonable values for 
the eigenvalues (splittings) in Table V. 

The semiclassical matrix calculations in Tables I-V in­
dicate the principal weakness of the uniform approximation. 
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FIG. I. An (n 1, a) phase plane portrait of the rotor Hamiltonian IB2) for the 
model Hamiltonian (5.1 }. The angle variable a is given in fractions of 11'. 

In the derivation of the Mathieu equation and its corre­
sponding solutions, q, and hence the 1, - 2 Fourier compo­
nent, was approximated as a constant, i.e., it was evaluated 
at the resonance center. This approximation assumes, in ef­
fect, that all the matrix elements such as (n, OI Vin - l, 2) 
and (n - 1, 21 Vin - 2, 4) have the same average value. The 
semiclassical matrix technique employing mean actions for 
the evaluation of individual matrix elements H;1 avoids this 
restriction of constant Fourier components and thus obtains 
better agreement with the purely quantum treatments in the 
general case. Nevertheless, the USC is useful because, when 
q is small and expansions39ibH9lcl may be used for av and 
F (a) of the Mathieu equation, it yields approximate analytic 
solutions. These solutions may also provide some additional 
physical insight when coupled with the classical analysis 
presented in Sec. III and Appendix B. 

As an example of this latter point, one may consider the 
dependence of the Fermi resonances on the classical reso­
nance width [Eq. (B3)]. Examination of the classical (na ,a) 
surfaces of section in Figs. land 2 for the Hamiltonian (5.1) 
with q = 0.8 shows that the states 13, 0) and 12, 2). with 
n 1 = 3 and n 1 = 2, are within the width of the resonance. 

TABLE V. Splittings (in cm- 1
) between states of 13. 0) and 12, 2) parentage using two-state solutions. 

A. (a.u.) Two-state"'" Two-state sc b 

0.037 
0.077 
0.121 
0.170 
0.227 

31.0 
30.8 
35.4 
43.I 
53.0 

30.2 
28.4 
32.8 
43.i 
58.6 

33.2 
35.4 
42.0 
51.5 
62.7 

32.3 
32.3 
37.3 
47.0 
61.3 

'Calculated using the method of Sec. IV A based on the effective Hamiltonian H"' [Eq. (3.18)] and using 
resonant actions in the evaluation of q [Eq. (4.2)]. 

"Calculated using the method of Sec. IV A based on the el!'ective Hamiltonian H.,, [Eq. (3.18)] and using the 

mean actiom between the states 13, O} and 12, 2) in evaluating q [Eq. (4.2)]. 
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FIG. 2. An (n,, a) surface of section for the Hamiltonian (5.1) taken for 
P = 0, Q > 0, and,< = 0.077 a.u. (q = 0.8). Trajectories labeled (A), (BJ, and 
(C) are for initial condition corresponding to " 1 = 3, n 1 = 2, and n, = I, 
respectively. All trajectories have Ip= 211, + n2 + 3/2 = 7.5. The angle 
variable a is given in fractions of :r. 

Hence, one would expect significant mixing for these states, 
and this is indeed found to be the case (cf. Table IV for 
A,= 0.077). On the other hand, the state I l, 4), with n 1 = l, 
is well outside the classical resonance zone and does n_ot mix 
strongly with the 13, 0) or 12, 2) states. One obtains similar 
conclusions about the degree of state mixing from purely 
quantum mechanical arguments by comparing the coupling 
elements H;j to the diagonal energy differences E; - Er 
However, when many states are involved, the semiclassical 
phase plane picture allows one to estimate the degree of cou­
pling by a single quantity, the width of the resonance [Eq. 
(B3)]. 

VII. CONCLUDING REMARKS 

The semiclassical methods presented in this paper all 
involve the use of the Fourier components of the perturba­
tion, some of which exist in analytic form33

•
34

•
48 or are 

straightforward to evaluate in the typical case by numerical 
quadrature. For the calculation described in Sec. V, the se­
miclassical matrix elements (i.e., Fourier components) were 
analytic and could be evaluated by the use of a hand calcula­
tor. The quantum mechanical Morse matrix elements of, for 
instance r or r2, while analytic,49 are more complicated to 
compute. The semiclassical techniques can therefore be par­
ticularly useful when one wishes to use relatively simple 
methods for comparison with experimental absorption spec­
tra: In actual experiments, the rovibrational structure may 
only be partially resolved (e.g., Ref. 35), and so a quick and 
approximate estimation of the Fermi resonance splittings 
and relative intensities can be helpful in fitting the data to 
various models. 
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APPENDIX A: APPROXIMATE EVALUATION Of THE 
RESONANT ACTIONS 

The solution of Eqs. (3.9) and (3.12) to calculate the 
resonant actions I~ and I 2 involves the determination of the 
angle-independent effective oscillator frequencies from Eqs. 
(3.5H3.7). One recalls that these frequencies are nonlinearly 
dependent on the resonant actions I; and I 2, so the follow­
ing approximate root finding procedure was used to deter­
mine them: (1) A value for the zeroth order resonant action 
I'; was determined from the zeroth order resonance condi­
tion 

w7-2I-:'w7x=2.a.J~, (Al) 

and/: was found from Eq. (3.12) (one recalls that Ip is taken 
as a constant of the motion). (2) The zeroth order values of I-;' 
and I: were used to calculate the constants g and f"' from 
Eq. (3.7). (3) Approximate values for 1; and 12 were calcu­
lated from Eqs. (3.9) and (3.12) usingg and/"' in determin­
ing the frequencies [Eqs. (3.5) and (3.6)] for the effective ze­
roth order Hamiltonian [Eq. (3.81]. If desired, this procedure 
may then be iterated. However, for the model Hamiltonian 
given by Eq. (5.1), one iteration was sufficient to determine 
I~ and I~ to within 5% of the exact numerically calculated 
values and was the procedure used in the present paper. 

APPENDIX B: PHASE PLANE BEHAVIOR Of THE 
RESONANCE HAMILTONIAN 

The analysis of the (Ia, a) phase plane behavior for the 
resonance Hamiltonian [Eq. (3.17)] is standard. For a given 
energy ER of the a motion in Eq. (3.17), Ia is given by 

la =I: ±2[il2+wiX(ER -V0 cos2a)] 112
/wiX, 

(Bl) 

where, from Eqs. (3.9), (3.10), (3.12), and (3.14), I~ denotes 
2f1 lwiX. Since/a = 211 and,semiclassically,11 = (n 1 +!),a 
phase plane portrait for the Morse "quantum number" n 1 

may be generated from Eq. (Bi) as a function of a: 

n, = n~ ± [ n 2 + lLliX(ER - Vo cos 2a)] 112/WiX, (B2) 

where n~ is given by Eq. (3.19). 

Figure I shows an (n 1, a) phase plane plot on the inter­
val (0, 11') for the three' different types of motion of Eq. (B2). 
This idealized behavior for the full Hamiltonian (2.1) is iden­
tical to that for a pendulum or "rotor" Hamiltonian. l-6 The 
curves that pass through a single point at a = 0 and 1T corre­
spond to the separatrix trajectory. The phase plane curves in 
Fig. l above and below the separatrix correspond to "rota­
tions" in the (n" a) space. These are motions in which the 
action/1 = Ia/2(orthequantumnumbern 1 =11 - ~)varies 

only slightly over a cycle of motion. Thereby, there is rela­
tively little classical energy transfer between the Morse and 
harmonic oscillators. The phase plane curves inside the se­
paratrix represent motions in which n 1 varies greatly over a 
cycle of motion and thus reflects a large transfer of energy. 
Such a large variation in n1 is expected for any initial n 1 

within the resonance width 

.:111 1 = .:1/1 = 2(2V ofwiX) 112 = 2,fq, (B3) 

defined by the separatrix trajectory. i-6 The width of the reso-
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nance increases with increasing coupling element V0 and 
with decreasing effective anharmonicity WtX of the Morse 
oscillator. The less the anharmonicity, the less the states in 
the progression In, 0), In - 1,2), etc. pass out of resonance. 

In Fig. 2, an(n1> a) surface of section (e.g., Ref. l 7)ofthe 
Hamiltonian (5.1) is shown for actual classical trajectories 
having initial conditions corresponding to Ip = 7.5 and 
n1 = I to 3.6. For this model Hamiltonian, this plot shows 
the "rotor" or "pendulum" behavior, although it is some­
what distorted from Fig. l. For larger perturbations, the 
surface of section becomes increasingly distorted from the 
idealized behavior shown in Fig. l (cf. discussion in Ref. 25). 

A few remarks on the rate of classical and quantum 
energy exchange among the oscillators are perhaps in order. 
For a classical resonance Hamiltonian [e.g., Eq. (3.17)), there 
is extensive classical energy exchange when the system is 
within the cosine well. (la changes considerably during the 
latter motion.) The frequency of the oscillatory energy ex­
change is then obtained by expanding the cos 2a term about 
its minimum and is found to be porportional to the square 
root of the coefficient of the cosine term in Eq. (3.17) [i.e., it is 
proportional to the square root of the ( l, - 2) Fourier com­
ponent of the perturbation]. Quantum mechanically, this 
type of energy exchange is expected to be approached when 
the initial wave packet consists of many eigenstates. When 
there are only two or three states, as in the present analysis, 
the frequency of energy exchange between zeroth order 
states is, in the case of an exact zeroth order degeneracy, 
proportional to the coupling matrix elements between the 
states. In the semiclassical limit, these matrix elements cor­
respond to the Fourier components of the cosine perturba­
tion term in Eq. (3.17). As a result, the quantum energy ex­
change frequency may be thought of, in the case of an exact 
resonance, as being proportional to the coefficient rather 
than, as in the purely classical case, the square root of the 
coefficient of the cosine function. Thus, it is expected that, in 
any wave packet analysis, one must distinguish between the 
classical (i.e., many quantum states) and highly quantum 
(i.e., few quantum states) cases. 

APPENDIX C: NORMALIZATION OF THE WAVE 
FUNCTION (4. 17) 

A normalized wave function N., t/J., (a) satisfies 
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small relative to q2m for that state (m = l, 2). In that case, 
one can determine the other overlaps < t/}~1 1t/J1 ) of nonnegli­
gible magnitude and then use the normalization condition 
for the Fermi resonance 

(C3) 

to determine the absolute value of the unknown overlap. 
This approximation was tested in quantum mechanical cal­
culations discussed in Sec. V and found to agree with the 
exact results in the system chosen to within 2%. The semi­
classical wave functions are not suitable for determining the 
overlaps with the zeroth order states when the normalization 
series (C2) does not converge for several of the semiclassical 
eigenstates. 
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Chapter 3: On the Relationship of Classical Resonances to the Quantum 

Mechanics of Coupled Oscillator Systems 

[The text of this Chapter appeared in: G. A. Voth, J. Phys. Chem. 90, 3624 

(1986).] 
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I. Introduction 

The quantum mechanical implications of isolated classical 

resonances1-5 in coupled oscillator systems have been discussed by a 

number of authors.6-26 For example, classical resonances have been 

related by a variety of techniques to avoided crossings9
-
12 and Fermi 

resonances. 13- 18 It is found in general that a large classical resonance 

zone has a pronounced effect on the eigenvalues and eigenfunctions of a 

coupled oscillator system.4•6-25 As a result, the character of the quantum 

mechanical solution for such a system can be quite different from that 

described by the "zeroth-order" Hamiltonian H 0.27 Of course, it is always 

possible that quantum effects such as tunnelling can significantly modify 

the eigenvalues and eigenfunctions of an oscillator system even when no 

classical resonances are present. 

In the usual classical treatment of resonances in two dimensions 

(e.g., ref 3), one chooses a zeroth-order Hamiltonian H 0(I 1,I2) for which a 

set (!1,!2,8 1,(3 2) of action-angle variables exists and then examines the 

effect of the resonant perturbation on the dynamics of the total Hamil­

tonian H(f 1,!2,8 1 ,8~. In order to do this, the perturbation is usually 

expanded in a double Fourier series in the zeroth-order angle variables 

(8 1,82).28 The Hamiltonian thereby contains terms having, in principle, 

all combinations of these angles, including a term containing solely the 

"slow" or "resonant" angle variable er. This angle is given by1
-
4 

( 1) 

The slow angle reflects the resonance condition (Le., frequency commen­

sur!'lbility) for the full dynamics of H such that 

0 ' (2) 
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where c.;f (JI .12) is a zeroth-order frequency a H ol a Ii, and (II J2) are the 

resonant zeroth-order action variables that give rise to the resonance 

condition (eq 2). All other combination terms of the angles 8 1 and 8 2 in 

the Fourier expansion of the perturbation are rapidly oscillating "fast" 

terms, 1•3.4 and hence averaging over e 1 (or 8 2) effectively removes their 

contribution to the dynamics of H. By virtue of a suitable canonical 

transformation and, if necessary, a Taylor series expansion of the angle­

averaged Hamiltonian H(I 1,J 2, Br) about the resonant action variables 

(ll ,J2), the standard Chirikov analysis1 reduces fl(I 1,I2 ,8r) to a constant 

term29 plus an effective
11
hindered rotor" Hamiltonian. This rotor Hamil­

tonian contains the slow angle er and its canonically conjugate action. 

As a result of the ·chirikov analysis, the zeroth-order actions (I 1,I 2) 

for resonant classical trajectories are predicted to oscillate periodically 

about their resonant values (11',J2). The range of initial values of (11,12) 

giving this oscillatory behavior define resonance "widths" D.Ii centered 

about I[ (i = 1,2). These widths are found to be proportional to the square 

root of the Vn,-m (I 1.12) Fourier component of the perturbation evaluated 

at (I 1,I 2) = (11 .12) .1•
3

•
8

-
10

• 1
2

· 
17

• 
18

·
21 Any classical trajectory having actions 

within the range I[± ~Ji (i=l,2) is thereby found to be strongly 

affected by the resonance. A typical nonlinearly coupled oscillator system 

has many classical resonances, but most of these are of negligible width 

(see, e.g., refs 3, 7, and 8). 

Quantum mechanically, the existence of a classical n :m resonance 

condition at approximately the energy of the zeroth-order state 

I 1'~02n2> = 11/IJ~ > implies the existence of near degeneracies in the mani-

fold of states l~J?~>. l~J~n.k-Fm>. l~J~2n,k-F2m» etc., where mn1 + nnz 

equals a positive constant.29 It has been proposed4·7-10 that these 
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zeroth-order states will not strongly mix or "feel" the classical resonance if the widths 

AJ1 and AJ2 , in units of h = 1, are less than n and m, respectively.30 That this is 

intuitively reasonable is seen by considering the semiclassical quantization condition 

for the zeroth-order oscillator actions: 

(3) 

where n1 is a positive integer (or zero), and Ii is the usual action variable Ji 31 

divided by 211". Thus, if a classical resonance for the Ii action variables is weak, 

the widths Ali are less than n and m, respectively, and it is not possible for at 

least two quantum states from the nearly degenerate manifold to be contained in 

the width of the resonance. As a result, one expects little mixing of the zeroth­

order eigenfunctions and relatively small changes in the eigenvalue spectrum. This 

proposed behavior is expected to be a direct manifestation of an action-angle-like 

uncertainty principle (which has not as yet been rigorously formulated) and suggests 

that quantum mechanical wavefunctions will "smooth over" structures in classical 

phase !ipace that have negligible measure (e.g., weak resonances). 7 - 10 

In the present paper, the effect of small classical resonance zones on the quantum 

eigenvalues and eigenfunctions of a general class of two-dimensional coupled oscilla­

tor systems is explicitly examined. In section II, a classical resonance Hamiltonian 

will first be formulated for these systems using standard techniques. 1•3 In section 

III, a uniform semiclassical approximation that has been found useful for a semiclas­

sical description of coupled local modes in H20,21 avoided crossings,12 and Fermi 

resonances17•18•24 will be used to quantize the resonance Hamiltonian. The analysis 

of sections II and III is based on techniques which have been developed by a number of 

authors, and it is induded here for the purpose of continuity and completeness. New 

results are presented in section IV which demonstrate analytically the dependence of 

the quantum eigenvalues and eigenfunctions on the classical resonance width. These 

results indicate directly how the quantum mechanics is affected by the existence of 

sm~ll classical resonances. Concluding remarks are given in section V. 
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IL Classical Resonance Theory 

In the present paper, a particular class of two-dimensional coupled 

oscillator Hamiltonians will be treated. In action-angle variables, these 

Hamiltonians are of the form 

where c..; 1, c..; 1x 1• CJ2, CJ2Xz, and A are constants,32 (Ii,ei) are the zeroth­

order action-angle variables for Ho (i.e., for V = 0), and V(I 1,Iz,8 1,8.z) is 

the perturbation. Examples of Hamiltonians of this kind include those for 

two coupled Morse oscillators,21 ·
23

•26 for a Morse coupled to a harmonic 

oscillator, l 5-l8 and for a nonlinear oscillator system treated to low order 

.by classical perturbation theory (e.g., refs 12 and 24). The validity of 

using low order classical perturbation expansions to semiclassically treat 

resonant systems has been discussed recently within the context of a uni-

f ·1 ·1 ai· 25 arm sermc ass1ca an ys1s. 

If an n :m resonance condition exists (cf. eq 2), the perturbation 

may; as stated before, be averaged over the fast angles, leaving the 

approximate term 

This expression may be made into an action-independent one by 

evaluating (I 1,/ 2) at the resonance center (I'i .I2) .1·3 This approximation is 

usually a good one (e.g., ref 18), although it was recently found to give 

qualitatively incorrect results in a classical model of formaldehyde.33 

Since the treatment in the present paper is concerned with weak pertur­

bations, it will be assumed that the averaging of the perturbation over 

the fast angles and the subsequent evaluation of Vn,-m (I 1,I 2) at the reso­

nance center provides an accurate approximation to V(J1,I2,8 1,82). 
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The resonance condition (eq 2) suggests a canonical transformation 

to a set of new action-angle variables Ua.lp.a.{3) given by 

(6) 

(7) 

where o is a constant chosen to give the perturbation a negative sign in 

the following analysis. The angle 2a is seen by comparison of eqs 1 and 6 

to be the "slow" or resonant angle 8r, and the approximate expression in 

eq 5 for the perturbation can hence be written as 18 

V ~ -V0 cos 2a: , (8) 

where V0 = 2 \ Vn,-mU~ ,I~)\, and o is chosen as in ref 18. The fast-angle­

averaged 0 Hamiltonian j[ in the new action-angle variables ts thereby 

given from eqs 4 - 8 as 

-( ) 2 2 H I a.Ip.a: = I aO - I a CJaXa + I pc.Jp - Ip CJpXp - Vo cos 2a , (9) 

where 

(10) 

The action variable I fJ is inferred to be an approximate constant of the 

motion for the resonant dynamics of the full Hamiltonian since its conju­

gate angle (3 does not appear in the fast angle-averaged Hamiltonian H 

(eq 9). 

0 A resonance Hamiltonian 1-4 HR may be defined from eq 9 as 

( 11) 
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such that 

(12) 

The analysis of the "hindered rotor" Hamiltonian in eq 11 is standard 

(see, e.g., refs 3,8-10,18,21). For a given conserved action Ip and rotor 

energy ER, the (I a.a) phase-plane curves for eq 11 are given by 

( 13) 

where the resonant value Ya is given by 

(14) 

and the angle a is taken on the interval (0,7T). The action Ia given by eq 13 

can either have oscillatory or "rotational" behavior .1•3• 12• 18·21 The oscilla­

tory behavior gives closed curves centered about (I~,7T/2) in the Ua,a) 

phase plane (see, e.g., ref 18) and indicates that the two oscillators are in 

classical resonance (Le., the action I a oscillates periodically about /~ ). 

The "rotational" behavior gives curves of approximately constant I a vs. a 

and occurs when the two oscillators are out of resona.TJ.ce. The (I a,a) 

curve that separates the oscillatory and rotational types of motion is the 

separatrix trajectory1
•
3

•
12

•
18

•
21 which has a rotor energy Efi given by 

(15) 

The two possible values of I a on the separatrix curve, evaluated at 

a = rr/ 2, define the width of the resonance l:J a• 
1

·
3 given in this instance 

by 

(16) 

where 

(17) 
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Any trajectory having an action I a within the range I~ ± *Lil a will be 

strongly in the resonance, and I a will hence exhibit oscillatory 

behavior.1-4,8-12,17,18,21 

Using the canonical transformation given in eqs 6 and 7, the resonant 

action and resonance width may be found for the action I 1. These quanti­

ties are given by 

(18) 

and 

(19) 

In the present analysis, the action variable conjugate to the slow angle 2a 

was chosen to be directly proportional to I 1 (cf. eq 6), although one could 

just as easily choose / 2 for this purpose. For the above treatment, the 

resonant value~ of 12 may be found using eq 18 and the (constant) value 

for Ip (ct eq 7). A width M 2 for the action 12 may also be found from an 

analogous resonance analysis to that given above. In addition, using eqs 3 

and 18, it will be found useful later to define resonant "quantum 

numbers" given by 

(20) 

These numbers are not in general integers. 

As mentioned in the Introduction, the resonance condition in eq 2 

implies that, for a given 11 and Yz, there exists a near degeneracy 

between the zeroth-order quantum basis states of H 0 in the manifold with 

mn 1 + nn2 equal to a constant.29 The correspondence of the quantum 

near-degeneracy of these states with the existence of the classical reso­

nance condition ( eq 2) results from the fact that 
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Here, flE(O) is a (small) zeroth-order Bohr frequency between two adja­

cent basis states in the nearly degenerate manifold (e.g., 11/1}?~> and 

11l'J~.k+m>), c.;p(I).+o1I 1.I2+o212) is a zeroth-order classical frequency 

aH0/aJi, and (J1+o1I 1,!2+o2J2) are values of the action variables very 

near (Ji.~). For a specific system, a similar result is discussed in App en-

dix B of ref 12. 

In the following section, a uniform semiclassical analysis, developed 

by several authors12
·
17

•
18

•
21

·
24 to quantize specific hindered rotor-like 

resonance Hamiltonians, will be used to quantize the general n:m reso-

nance Hamiltonian ( eq 11). 

Ill. Uniform Semiclassical Treatment 

The approximate classical Hamiltonian ( eq 9) may be quantized by 

converting it into a wave equation 12• 17· 18•21 ·24 using semiclassical action 

operators.34 The approximate operators 1a and 1p corresponding to the 

classical variables I a and I 11 may be chosen in the angle representation to 

be 

""' 1 d m+n 1fi =- i d{J + 2 (22) 

where n equals unity. The wave function I 'fr> which satisfies the 

Schrodinger equation obtained via substitution of the above operators in 

the angle-averaged Hamiltonian (eq 9) is separable and written in the 

angle representation as 

<.a,(3 J 'lr> = 'Y(a,fJ) = jll(a)rp((3) (23) 

Here, rp(f3) equals exp[iI11(111 - n;m ) d.6'] (aside from a normalization 
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factor) and is a function of the conserved action I 11 , while 1/l(a:) satisfies 

the differential equation 

d
2
1f(a) - 2 · (2 r / ) d:J;(a) + (A - 2q cos 2a)~1i(a) = 0 . d a2 7. n 1 n d a 'I' 

(24) 

In eq 24, n"i is the resonant "quantum number" defined in eq 20, q is 

defined in eq 17, and A is given by 

A= (0/n + En)/(GJaXa) - 1/n2 (25) 

Using a function F(a:), defined as 

F(a) = exp(-2in'ialn)'if;(a) , (26) 

equation 25 may be transformed into a Mathieu equation of order 1..1 for 

F( a): 12, 11.18,24,35 

d 2F(a) _ __.2_,__ + (a.11...,, Zq cos 2a)F(a) = 0 , 
da 

(27) 

where the characteristic eigenvalue35 av is 

(28) 

The order u of the Mathieu equation35 is found, for instance, by the 

method of ref 18 to be 

(29) 

The order v(n 1) is a function of the zeroth-order quantum number n 1 

because the solution of the zeroth-order Mathieu equation (Le., with 

q = 0), along with eq 26, must give the WKB wavefunction 

"/l~~>(a) = (nrr)'-*exp(2in 1a/n). 18 In general, v(n 1) is not an integer. 

The energy Ee of the quantized resonance Hamiltonian is given from 

eqs· 25 and 28 by 

(30) 
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When q is small and v(n 1) is not an integer, an expansion for a. 11 may be 

used, 35 which yields 

(31) 

where the expansion has been truncated to second order in q. 

Under the same conditions, the unnormalized uniform semiclassical 

wave function 'iflit~(a) for the a-motion may be obtained using an expan-

sion35 for F(a) in terms of q along with eq 26. The wave function is given 

to second order in q by 

8 2i(ni-n)a/n l 
[v(n 1)-1] 

The normalized wave functions 1/ln
1
(a) = Nn

1
1/lit1;'(a.) are found by normaliz-

ing eq 32. The normalization factor Nn
1 

is given to second order in q by 

(33) 

where 

(34) 

The uniform semiclassical wave functions 1/ln1 (a) for the a-motion hence­

forth ha.ve a.n n1 subscript since they IU'e related via the Mathieu equation 

analysis to the zeroth-order states 1/7~~) (a). 
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N. The Effect of Small Resonance Zones on the Eigenvalues and Eigen-

functions 

The width M 1 of the n :m classical resonance zone is given in eq 19 in 

terms of the parameter q. In the following analysis, the effect of small 

resonance zones, and hence small q, on the uniform semiclassical eigen-

values and eigenfunctions will be examined. By treating !if 1 as a variable 

parameter, one may examine such properties as the splitting of the 

eigenstates or the mixing of the zeroth-order wave functions as the reso­

nance width increases. In this way, information is obtained on how weak 

classical resonances influence the quantum properties of a nonlinear 

oscillator system. 

Nonlinear resonances can have a pronounced effect on the eigenvalue 

spectrum of coupled oscillator systems.6-26 (Consider, for example, the 

simple Fermi resonance. 13-18 ) The splittings till between the adjacent 

semiclassical eigenstates 111-'J,k> and \¥'J±n,.1c:;:m> of zeroth-order paren­

tage 111-'J?~> and 11/-'J~n.kBn>. respectively, are, for fixed Ip. given from eqs 

12 and 30 by 

(35) 

Using the expansion (eq 31) to second order in q for a. 11,
36 the splitting 

may be written approximately as 

(36) 

where 

r 
Ci = l[v(j ±~)2-1] _1 ]· 

[v(j )2-1] 
(37) 

In eqs 35 - 37, the orders v(j) and v(j ±n) correspond to the solutions of 
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the Mathieu equation (eq 27) having zeroth-order state parentage I 'V-'J~> 

and \'lf}<Jln,Jc"F"m>. respectively. In addition, as the reader may easily verify, 

the term [v(j ±n)2 - 11(j)2Jc.;aXa in eq 36 is just the (exact) zeroth-order 

energy difference t::,.E(O) between these two states. Using the definition 

given in eq 19 for the resonance width D.I 1 in terms of q, the splitting of 

the two states due to the perturbation may be written as36 

(38) 

Also of interest are the squared overlaps of the zeroth-order basis 

functions with the actual eigenfunctions. These squared overlaps are of 

importance in determining, for instance, the effect of resonances on the 

probability amplitude distributions and the nodal patterns of the 

wavefunctions.6•9-11·22 Also, for dipole moment functions aligned along a 

particular vibrational coordinate, they are crucial in understanding the 

relative intensities of absorption lines in the vicinity of an overtone tran­

sition. 15, 16, 18 

Due to the separability of the total semiclassical wave function '¥(a,{1) 

( eq 23), the following analysis needs only involve the wave function for the 

a-motion (i.e., the wave function for the pi-motion is the same for all 

nearly degenerate states having the same Ip). Hence, the overlap 

squared of, for instance, the basis function I ill}?i> with the eigenfunction 

\'\llj,k> (i.e., that of predominantly liYJ?'> parentage) is determined from 

the semiclassical analysis to be 

(39) 

Here, the zeroth-order semiclassical wave function ripj0)(a) in the angle 
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representation equals (nn)~exp(2jia/n), 1fJ1 (a) is the normalized uni-

form semiclassical wave function given in eqs 32 and 34, and the normali-

zation factor H;· is given by eq 33. Similarly, the overlap squared of the 

zeroth-order state 11/JJ~> with the eigenfunction of 11/J}<Jln,k~> parentage 

is given semiclassically by 

r 2 l - n-rv2 l .. .. q 
- iu j:±:n 16[v(j±n)1="1]2 j ' (40) 

For small enough q, the normalization factors in eqs 39 and 40 may be 

expanded about q = 0, and the definition of l::J 1 given in eq 19 used to 

yield 

(41) 

and 

In eqs 41 and 42, B1 is the value of eq 34 for the specific quantum number 

j, and the fact that v{j ±n) equals v(j) ± 2 has been used. An alternate 

derivation of eqs 41 and 42, along with a discussion of the limits of their 

validity, is given in the Appendix. Also, by an analysis similar to that given 

in this section, one can derive formulas analogous to eqs 38, 41, and 42 in 

terms of (AI2/'m)4 , provided one initially chooses Ia equal to 2ly'm and 

fJ equal to fJ 1/ m in eqs 6 and 7. 
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V. Concluding Remarks 

The formulas given in eqs 38 and 41 - 42 for, respectively, the eigen­

value splittings and the mixing of the basis functions are particularly 

revealing. One sees by examination of these expressions that their depen­

dence on the ratio !lI 1/n is to the fourth power. Hence, the argument4
•
7·IO 

that the quantum states should not "feel" the effect of small classical 

resonances with Ill 1 « n (or equivalently b.l 2 << m) is explicitly 

confirmed by eqs 38, 41, and 42. More specifically, for any classical reso­

nance with a width in / 1-space significantly less than n, the corrections to 

the zeroth-order eigenvalues and eigenfunctions are negligibly small. 

(The exception to this statement 1s when the two states are identically at 

the avoided crossing point. 37 ) As the width !lI 1 increases to be on the 

order of n, a rather abrupt change in the. eigenvalues and eigenfunctions 

will occur due to their dependence on !lI 11 n to the fourth power. This is 

a manifestation of the fact that the n :m resonance can begin to contain 

two quantum states as the width /l/1 increases past n.7
-
10 In addition, the 

overall effect of the classical resonance on the quantum properties given 

in eqs 38, 41, and 42 is modulated by the constants c1 (eq 38) or Bi (eqs 

41 and 42). These constants reflect the energy detuning of the zeroth-

order states and hence decrease in value with increasing "distance" from 

the avoided crossing point. Figure 1 shows the behavior of the squared 

overlaps, given by eqs 41 and 42, as a function of increasing resonance 

width for two states near the center of a 1:2 Fermi resonance. 

The analysis of the present paper indicates that the quantum 

mechanics of a nonlinear oscillator system is not sensitive to any weak, 

isol!ited classical resonances that will distort small regions of classical 

phase space. In fact, one might also speculate from the present results 
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that the quantum mechanics may "smooth over" the small regions of 

classically irregular or chaotic behavior that occur when two or more 

small classical resonance zones overlap. 1- 10•38 However, a quantitative 

relationship between overlapping classical resonances, classical chaos, 

and quantum chaos (if it exists) is at present not known. (Some qualita­

tive relationships between these phenomena have certainly been 

proposed.5-lO ) For realistic molecular oscillator systems, it is also not 

clear to what degree classical resonances are responsible for significant 

basis function mixing and eigenvalue changes, or, rather, if these effects 

can for the most part be attributed to purely quantum mechanical 

mechanisms. Further studies in this regard may prove quite informative. 
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Appendix: An Alternate Derivation of the Overlap Formulas 

Under the appropriate circumstances to be specified below, the nor­

malized wave functions 11'-'i,Ji:» 111-'i-n.k+m» and l'it'i+n,k-m> of the full 

Hamiltonian (eq 4) may be written approximately using first-order per­

turbation theory as 

<'V']~n,lc-m I VI 1J?~> I (Q\ 1 ' . 
+ (0) (0) 1/l)+!n,k-m> j (Al) 

E- '" - E· ,_ 3,,.. ;+n,,..-m 

and 

I lr 1 
(O) <'\t'J~jV\11-'f~n,k"l="m> l.,!J{O)>r2) 

'l/lj±n,k:r:rn> ~ N'i±n,k=F'rn 1/l;±n,k'Fm> + (0) (0) 'l'J ~ 
E- k"" -E· 1! ' J±n, -.-m J,,.. 

where N'n
1
,n

2 
is a normalization factor (which differs by a factor of (nn)°""* 

from eq 33), and the zeroth-order wave functions 11'-'A~~na> are taken to be 

WKB wave functions in action-angle variables. 12
· 
18

·
21

·
34 These wave func-

lions are defined, in the angle representation, as 

(A3) 

and 

In eqs Al - A4, we consider only the zeroth-order wave functions ht}~> 

and 11'-'J~n.Ji::i=rn.> with quantum numbers (n1,n2) equal to (j ,k) and 

(j ±n,k+m), respectively. These wave functions are assumed to be from a 

nearly resonant manifold of states having a constant value of I fJ 
29 but 

also ·having weak couplings (Le., a weak resonance). These states are 

moreover assumed to have the strongest mixing due to "direct", or 
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classical-like, first order couplings between the basis states with zeroth­

order quantum numbers n 1 and n 2 differing byn and m, respectively (cf. 

discussion in the Introduction and ref 30). For a given conserved action 

Ip.29 the center of the classical resonance is also assumed to be given by 

resonant "quantum numbers" (eq 20) close to the zeroth-order quantum 

numbers of the I '¢1}~> state. 

For WKB basis functions, the matrix elements of the perturbation 

appearing in eqs Al and A2 have the form of Fourier components, 18 e.g., 

f 27ff 27f 
<""{O) I VI ,,1,(0) > = 1 d 8 d 8 V(fint 8)e -i(n61 - m8a) 

't'J+n,k-m 'I'],~ (27r)2 a 0 1 2 ' 

(A5) 

where [int = (Ifnt ,J~nt) are some intermediate values of the actions 

chosen, as in ref 18, to give good agreement between the Fourier com­

ponent and the quantum matrix element (and also to make the former 

Hermitian 18 ) . If the zeroth-order states described by the wavefunctions 

in eqs A3 and A4 are near the center of the classical resonance, and if the 

width of the resonance contains only two or three quantum states, the 

choice (lint .I~nt) = (!LI~) (Le., the resonant actions) gives good agree­

ment between the WKB and exact matrix elements.18 The relationship of 

the Fourier components evaluated in this way to the width of the classical 

resonance is given in eqs 8 and 16 - 19. Using that relationship, and the 

(exact) expression given in eq 36 for the zeroth-order energy differences 

that appear in the denominators of the perturbation expansion terms, 

the approximate wave functions may be rewritten as 
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- , rl (Q) qei7 (0) l\llj,lc> - N j,k 1\11;,k> - 4[v(j) _ l] l\11;-n,k+m> 

qe-i7 (O) l 
+ 4[v(j) + l] I it'; +n,k-m> (A6) 

and 

I - , rll (o) - ge :.pj.7 I co) l 
\llj±n,k:i=rn> - N j±n,k:r:'rn \ll;±n,k?rn> + 4[v(j) ± l]1/l;,k> · (A?) 

The phase e ±i7 in eqs A6 and A? is defined as in ref 18, and the number 

v(j) is the order of the Mathieu equation (eq 29) for n 1 = j (cf. discussion 

following eq 37). 

The squared overlaps of interest in the present paper are hence given 

by 

I <\llJ~ I 1/11 ,k > 1 2 = I N'j ,k 1
2 (AS) 

and 

I (O) I"" 12 _ N' qe:.pj.7 
I 1

2 ' 
<\11;,k 'f'j±n,k'Fm> -

1 

j±n,k=Fm 4[ll(i) ± l] 
1 

(A9) 

which, upon expansion to. second order about q = 0, yield the same 

expressions as are given in the text (eqs 41 and 42). These overlap formu­

las are valid as long as the two zeroth-order states 11/IJ?~> and 11/l}~n,k'Fm> 

are, for a given I fJ• near the center of the classical resonance and not 

directly at their avoided crossing point.36 It was also assumed in the 

derivation given in this Appendix that the width 6./ 1 of the resonance was 

small ( < n) and therefore that q was small. 

A final point with regard to the limits of validity of eqs 41 and 42 of 

the text concerns the contribution to these formulas from unphysical 

"states" in the uniform semiclassical wavefunction (eq 32). These 
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unphysical states correspond to zeroth-order WKB wave functions (cf. eqs 

A3 and A4) with negative quantum numbers.39 For example, it is known 

for the n :m resonance that the constant action Ip equals 

mn 1 + nn2 + (n+m)/2 for states in the nearly degenerate resonant 

manifold.29 Therefore, a resonance having resonant "quantum numbers" 

(ni ,nz) ~ (j-ne-,O+mc), where c is a small parameter, would give 

Ip~ mj + (n+m)/2. As a result, an a-motion state 1/ln
1
(a) withn 1 = j+n 

would, for constant I 13, require n 2 to equal - m and would there by be 

unphysical. In this special case, the uniform serniclassical wave function 

would indeed have a contribution"" exp[2i(j + n)a/n] as can be seen by 

inspection of eq 32. A similar statement may also be made for the case in 

which (nLn2) ~ (O,k), and, in that instance, an unphysical state with a 

negative n 1 would contribute to the uniform semiclassical wave function. 

In both of the cases mentioned above, the unphysical states have a 

small contribution to the normalization factor Nn
1 

(eqs 33 and 34) and 

would therefore lead to slight errors in the overlap formulas (eqs 41 and 

physical zeroth-order states that are nearest the center of the classical 

resonance, e.g., !1J.'}?J> and 11/IJ~.m>· This situation supposes that the 

resonant quantum numbers (ni ,n2) are some values intermediate 

between (j ,0) and (j-n,m), but not those giving an avoided crossing. 36
•37 

The contribution from these physical states to the normalization factor 

Nn
1 

(eqs 33 and 35) will then be much larger than that from any unphysi-

cal state(s). (The unphysical zeroth-order state in the present example 

would be 11/l}~n.-m>.) More specifically, the factor [z;(j) - 1]-2 in eqs 33 

and 34 corresponding to the contribution from the physical zeroth-order 

state tJ~(a) to the normalization factor for the eigenstate ti(a) will be 
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much larger than that for any unphyskal states. (The two interacting 

physical states are near, but not at, their avoided crossing point. 12·36·37 

Hence, the term ,... [v(j) - 1]-2 in Ni corresponding to the contribution 

from the physical zeroth-order state I 1frJ~n.m> to the normalization of 

\1'1,0> is large since [v(j) - 1] < 1 in that case. The term"' [v(j) + 1]-2 

corresponding to the contribution from the unphysical zeroth-order state 

11'.PVn ,-m> to the normalization of the 11'i ,o> eigenstate will be much 

smaller.) 

In the alternative derivation of the overlap formulas given in this 

Appendix, any unphysical zeroth-order states with negative quantum 

numbers for n 1 or n 2 are omitted by fiat. 39 
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~I = 1 ,...., I 
1 

Resonance Width 1.4 

Figure 1. The squared overlaps I <t£~) 1f/3,o> 1
2 and I <'!fl£$ I 1f/2,2> J 2 as a 

function of b.J 1 for a 1:2 Fermi resonance with n 1 = 2.4. The value of 

611 = 1 is marked by the vertical dashed line. 
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Chapter 4: Semidasskal Dressed State Theory for the Vibrational Ex­

citation of a Morse OsdUator by Radiation 

[The text of this Chapter appeared in: G. A. Voth and R. A. Marcus, J. Phys. 

Chem. 89, 2208 (1985).] 
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~troductian 

In the present paper, uniform semi.classical expressions are obtained 

for the resonant and Rabi frequencies for one- and two-photon absorption 

by a Morse oscillator. The correspondence of the results for these fre­

quencies with quantum mechanical dressed state theory1 is described. 

Th.is semi.classical treatment is derived for a diatomic molecule and is 

then adapted to the excitation of an isolated vibrational state in a polya­

tomic molecule. Experimental or theoretical studies of CH3F,2 0 3,
3 BC13,

4 

and S02
5 and of certain local mode molecules such as HD06a and CHD3

6b 

suggest that such state-to-state behavior can be observed at low energies 

in some polyatomic molecules. 

Many studies in the past few years 7 ·8 have been devoted to the 

development of exact and approximate quantum mechanical treatments 

for the vibrational excitation of a single anharmonic oscillator by an elec­

tromagnetic radiation field. 9 In addition, there have been several classi­

cal and quantum resonance studies of related driven oscillator 

systems,8•10-
17 including the early work by Chirikov15 Shuryak, 16 and 

Zaslavsky. 17 Recently, Gray18 discussed the semi.classical aspects of a 

Morse oscillator driven by a classical radiation field by formulating the 

matrix representation of an appropriate classical resonance 

Hamiltonian 14"21 using WKB wavefunctions22 for the basis states. A uni­

form semi.classical "dressed state" approach is developed in the present 

paper that circumvents the use of a multilevel matrix treatment (e.g., ref 

18) to describe the absorption of two (or more) photons. An alternative 

semi.classical approach for an explicitly time-dependent Hamiltonian is 

presented in the Appendix. 
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Classical Resonance Hamiltonian 

The energy-conserving Hamiltonian for the dipole interaction of a 

Morse oscillator with a classical radiation field is 13·23 

where P and Q are the abstract momentum and coordinate of the field, 

respectively, w is the angular frequency of the field, Ve is the volume of 

the radiation cavity, µ(r) is the dipole moment, and Hm is the zeroth 

order Hamiltonian for a Morse oscillator24 with displacement coordinate 

rand conjugate momentump. 

If a canonical transformation is made t0 Morse oscillator action-angle 

variables Um, em )25 and to harmonic oscillator action-angle variables 

(11 ,(J1 ) for the field, given in the latter case by Q = (211 I r..J)*cos e 1 and 

p = -(211r..J)Yt. sm 81. eq 1 is transformed to 

(2) 

where CJ~ and G.J~X are the harmonic angular frequency and anharmoni­

city, respectively, of the Morse oscillator and E 0 = (8TII1 w/ l1c )*is defined 

as the field strength. 11• 12 The actions Ii in eq 2 are defined as the usual 

action variables26 divided by 2rr and n = 1 throughout the present paper. 

A 1:1 resonance condition1
5-

17
•
19 exists when, for the value I;;, of the 

action Im, the frequency of the Morse oscillator c..im = (aHm/ aim)fm.=lrl.. 

satisfies 

(3) 

When nonlinear coupling between oscillator modes is present and there is 

a near 1:1 resonance, the variable em-8/ is a "slow" angle. 15-17·19 By 
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virtue of eq 3, this angle satisfies 

(4) 

This condition suggests a canonical transformation15-17•19 such as 

(5) 

(6) 

where o is a constant chosen as in ref 27 to ensure a real, negative conti­

bution for the last term in eq 8 below (e.g., for the linear dipole approxi­

mation used later, o equals n). The zeroth order Hamiltonian in the new 

action-angle variables becomes 

(7) 

where 0 = (CJ~ - c.J )I 2 and x' = xi 4. The perturbation term in eq 2 

-EoJJ-(Im,8m)cosfJ1 is then expanded in a complex-valued double Fourier 

series in Bm and e I, expressed in terms of the new angle variables a and 

(3, and averaged over the "fast" variable (3. Only the terms having the 

"slow angle" variable 2a will remain after this averaging, 15-17·19 so the 

Hamiltonian for this 1: 1 resonance system becomes 

(8) 

where V0 denotes I ZV1-1UrJ'.I1) I: V1_ 1 is the (1,-1) Fourier component, 

-(2rrr2J'2:" j'l:fl' EoJJ-(frJ',8m)cos8 J e-i(em-e1 )d Bmd e I, evaluated at the 
0 0 

:resonance center15-17•19 Im = I,J' and at any 11 . 

Because the angle (3 conjugate to the total action of the system Ip 

does not appear in eq 8, I fJ is a c0nstant of the motion in this approxima­

tion. The Hamiltonian (8) may then be written as 
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(9) 

where Eis the total energy and He is a "resonance" Hamiltonian: 15- 17•19 

(10) 

The quantity V0 in eq 10, given earlier, may be rewritten as 

( 11) 

which is simply the field strength E 0 times the fundamental Fourier com-

ponent fl of the dipole moment function evaluated at the center oi the 

:resonance. 

Uniform Semidassical Approximation 

The oscillator-field system may be quantized by converting eq 9 into 

a Schrodinger equation. To do this, the h's are replaced by semiclassical 

action operators,21•22 given by (lli) dlda + 1 for the a motion and by 

( 1/ i) di df3 + 1 for the f3 motion. For a separable semiclassical basis 

'l/l(a)rp({J), this procedure yields the semiclassical Schrodinger equations 

for 1/;(a) and <p({3): 

~ p - i [ E pl c.; - 1] rp = 0 , (12) 

where E fJ = I pGJ, and 

d 2,,1i d"'' 
~ - 2i(~-1) ~ + [A - 2q cos 2a] 1/; = O 
da2 da ' 

(13) 

where 

Solution of eq 12 yields an equation for the (normalized) primitive semi -
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classical wavefunction22 (2n)-*exp[ i(I ~-l)p]. Equation 13 may be solved 

by, defining an auxilary function F(a), given by21 

F(a) = exp[i(l-~)a],V(a) , ( 15) 

and introducing it into eq 13. One thus obtains Mathieu's equation28•29 for 

F(a): 

where 

d
2
F(a) + [a..

11 
- 2q cos 2a]F(a) = 0 , 

da.2 

a"'= (~-1)2 +A . 

The order v of the Mathieu equation28•29 is given by30 

( 16) 

(17) 

(18) 

which is, in general, not an integer. The solutions of eq 16 together with 

eqs 12, 14, and 17 give the uniform semiclassical eigenvalues for the Ham-

iltonian (1) as 

(19) 

Semiclassical Dressed State Description 

When the semiclassical eigenvalues of the Hamiltonian ( 1) as given by 

eq 19 are plotted as a function of the field frequency c.,;i and at constant 

E 0 , they exhibit avoided crossings, as in Figure 1. The frequencies c.; at 

which these avoided crossings occur may be obtained from the semiclas­

sical uniform approximation formula (eq 16); namely they occur when the 

orders of the Mathieu equation correspond to integers21 ·28 such that 

1.1 = -1,l , (20) 
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Here, v and v' correspond to the two different states involved in the 

avoided crossing. Typically, the characteristic values a. 11 and b 11 of the 

Mathieu equation (eq 16) are associated with these states.21 ·28 ·29 

The interpretation of the states involved in an avoided crossing may 

be clarified by considering the quantum numbers associated with the 

zeroth order actions: 

(21) 

1:n = (n:n + *) , Ij = N , 

where N is a very large number of "background" photons for the typical 

laser cavity,31 n is the number of photons to be absorbed (n « N), and 

~ (~)is the quantum number of the Morse oscillator. These quantum 

numbers in eq 21 are associated with the zeroth order semiclassical 

eigenstates,22 denoted in this section by 111.m.N+n> and l~.N>. A 

further simplification may be made since N is normally so large that it 

may be taken as a constant and hence the field strength 

EQ = (BrrNGJ/ Vi;)* is constant 11
•
12

•
32 

For a two-level modeI,33 an isolated avoided crossing21 of the eigen­

values indicates a zeroth order degeneracy between the basis states (e.g., 

l'nm..N+n> and l~.N> in the present instance) at the avoided crossing. 

Therefore, for non-zero coupling between the field and the oscillator, the. 

avoided crossing condition identifies the resonant excitation frequency 

where the Morse state lnm> absorbs n photons and is excited to the 

state In~>. 

The avoided crossing condition is given by eq 20 and is satisfied when­

ever~ equals nm + n~ + 121 or, from eq 14, 



-69-

I.,ri = (71.m + ~ + 1)/ 2 (22) 

This /.,ri is seen to be the mean action Tm between the two levels undergo-

ing the avoided crossing. Hence, eq 22 together with eq 3 indicates that, 

at a field frequency 

0 - 0 
GJ = Wm - 21 m WmX ' (23) 

a field induced resonance between states with Morse quantum numbers 

71.m and~ occurs. It has been noted (e.g., ref 34) that n times the classi-

cal frequency in eq 23 corresponds exactly to the quantum mechanical 

resonant excitation (or Bohr) frequency, ""n~11m =En;,., - E71m, between the 

two Morse oscillator levels with energies E~ and Enm.. 

The splittings between states at isolated avoided crossings are,21•28 

for small enough q (the typical case in the present problem35), 

(7'1.m ~ Tt.m +2) 

(24a) 

/n4L \ \G D) 

and so on for higher order transitions. One recalls from eqs 11 and 22 

that the V0 's in eqs 24a and 24b are functions of 71.m and ~. When the 

system is initially in one of the zeroth order states involved in the 

avoided crossing, the splittings !::.En of the eigenvalues give the charac­

teristic Rabi frequency GJR for oscillation between these zeroth order 

states.33 One may demonstrate this as follows: 

Suppose at t = 0 the system is in an initial state I ,V(O)> that may be 

expn;=?ssed as a linear combination of only two "exact" semiclassical 

wavefunctions I a> and I b. >. Due to the coupling between the field and 
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the oscillator, this state evolves in time as 

where Ca. equals <a l'\l'(O)>, Cb equals <b /'\l'(O)>, and #,c is the semiclas­

sical Hamiltonian (9) (expressed, as in the previous section, in terms of 

semiclassical action-angle operators). The probability amplitude 

l<'\V(O)!w(t)>l 2 for the state lw(O)> oscillates in time as 

cos2([Ea - Eb ]t / 2), where Ea > Eb. If the field frequency CJ is such that 

the exact states I a> and / b > are at an avoided crossing, then their split­

ting il.E~ =:Ea. - E,, is defined as the Rabi frequency wR. 33 

When 11(0)> is taken to be the "unexcited" dressed state IT1m.N+n>, 

the probability for being in the excited dressed state I ~.N> is given 

by33 

(26) 

while the probability for being in the state / Tl.m, .N +n > is given by 

(27) 

For the present two-level model, the energy absorption8 

<E ( t) > - <E ( 0) > of the Morse oscillator starting in the state I Tim> is 

given by 

(28) 

This field-induced oscillation between zeroth order states describes the 

time-varying absorption process of n photons by the Morse oscillator. It 

has recently been demonstrated numerically that a two-level Rabi model 



-71-

is a good approximation at (or close to) resonance even for large laser 

intensities (e.g., 44 TW /cm2).8 

Relationship to Quantum Dressed State Theory 

In the quantum dressed state picture, 1 the classical Hamiltonian in 

eq ( 1) is quantized by first replacing the classical variables (p , r, P, Q) 

with the quantum mechanical operators (ji, r, P, Q) and then solving the 

matrix representation of the quantum counterpart of eq (1) for the eigen­

values and eigenvectors. When plotted vs. GJ, an avoided crossing of two 

eigenvalues of this matrix (the dressed state matrix1•36 ) identifies, as 

already noted for the semiclassical case, a resonant excitation frequency, 

and the splitting between the states at the avoided crosslng is the Rabi 

frequency of the transition. 1 For a given field frequency c.i, the correspon­

dence of the quantum Rabi and resonant excitation frequencies with 

those obtained by the semiclassical treatment in the previous section 

may be demonstrated as follows: 

To describe an isolated quantum mechanical avoided crossh1g 

corresponding to an n-photon transition, it is convenient to transform 

the full dressed state matrix H via a Van Vleck transformation37 T-1H T of 

order k (where k ~ n ). This transformation serves to diagonalize H to 

order 'le except for any zeroth order states that are degenerate or nearly 

degenerate. This procedure is ideal for the present purpose of treating an 

isolated avoided crossing, since here one is dealing with a case where only 

two zeroth order states are degenerate or nearly degenerate. 

Specifically, if an isolated avoided crossing between two levels, as in Fig­

ure _1, occurs in a small frequency interval l::i.c.i, there are only two states 

in that interval which are nearly degenerate amid the vast number of 
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states in H. The Van Vleck transformation then yields a matrix G that is 

diagonal to kth order except for a 2 x 2 submatrix 

(29) 

that includes the two degenerate or nearly degenerate quantum states 

l~.N> and IT1.m.N+n>. In eq 29, Enm (En;,) is the energy of a quantum 

mechanical Morse oscillator eigenstate 171.rn > (I~>), 0k) is the pertur-

bation coupling of order k between states, and N, n, and CJ are as defined 

previously. There are, in general, some diagonal perturbation corrections, 

but. for realistic laser intensities ( < 1 TW /cm2), they are estimated to 

have a negligible effect on the resonant excitation frequencies. 37 The con­

tribution from the off-resonant components of the matrix H is shifted via 

the Van Vleck transformation to the coupling term 0k). Expressions for 

the coupling elements 0k) through third order (k = 3) may be found in 

:ref 37. In general, a coupling element of at least order n is necessary to 

induce an n-photon transition (Le., 0k), where k < n, would be equal to 

zero for the n-photon transition). Higher order terms (k > n) usually 

have a negligible contribution for such transitions, so only terms v{n) of 

nth order will be considered.38 

The two diagonal elements of the matrix (29) become degenerate and 

hence undergo an avoided crossing when n GJ equals GJ~nm. As in the sem-

iclassical case, there is a field induced resonant transition between Morse 

oscillator states l'1'tm> and I~> at this frequency. In the previous sec­

tion, n times the semiclassically calculated resonance frequency (eq 23) 

was .stated to correspond exactly with the quantum value for "'n~71m. This 

·may be demonstrated by considering the quantum expression for c.;n · n : 
mm 
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For the 1: 1 resonance, this is simply nc.1, where c.:i is the classical fre­

quency in eq 23 and n equals ~ - TLm. 

At the resonant field frequency, the matrix (29) yields the time­

dependent Rabi flopping form·ula33 ,.... sin2(c.JRt I 2) for the probability of 

being in the dressed Morse oscillator state I n.:n.N> after starting in 

dressed state lnm,N+n>, where the quantum Rabi frequency r;,;R for n 

photon absorption equals 2 I y(n) I ~ 33 It is seen from eqs 24a, 24b, and 29 

that, at resonance, the semiclassically calculated Rabi frequency flEn is 

to be compared, in this approximation, to the quantum Rabi frequency 

2 J y(n) j. These quantities are now considered for two specific cases: 

a) One-photon absorption 

The semiclassical one-photon Rabi frequency is given by eq 24a as 

EJJ,, whereas the quantum one-photon Rabi frequency is given by39 

E0<~lillnm.> with~ equal to nm+ L In this case, the Morse oscillator 

matrix element <1'~1itl7im> appearh1g in the qua..YJ.tum mechanical quan-

tity v<:1> is to be compared with the fundamental Fourier component j1 

(cf. eq 11) evaluated at the mean action Tm= nm+ 1 for the one-photon 

transition. The same semiclassical Rabi frequency for one-photon absorp­

tion in terms of a Fourier component has been obtained by a somewhat 

different argument. 18 These Fourier components have recently been 

shown to give excellent agreement with the quantum matrix elements for 

Morse34•40 and other40•41 oscillators. Using HF Morse parameters ?a and a 

linear dipole approximation, values of <~ +1 Ir ln 1> and r(Tm) are com­

par.ed in Table I. 
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b) Two-photon absorption 

The semiclassical two-photon Rabi frequency is given by eq 24b as 

(Eof1) 212GJ~x. F'or this case, j1 is the fundamental Fourier component of 

the dipole moment function evaluated at the mean action 

Im = (211..m + 3)/ 2 for the two-photon transition between the Morse states 

111..m > and 11'1.m +2>. It is clear that the semiclassical two-photon Rabi fre­

quency has the proper dependence on the field strength42 unlike a previ­

ous semiclassical study. 18 Moreover, this quantity is inversely dependent 

on GJ~X.. reflecting the detuning of the two-photon resonance by the Morse 

anharmonicity. 

To demonstrate the correspondence of the serniclassical Rabi fre­

quency with the quantum result, the quantum two-photon coupling ele­

ment 0 2) is examined. This coupling term for the resonant field fre­

quency 2GJ = c..i~n,,,,· where n:n. =nm + 2, and for large N is given by43 

(31) 

with E 0 being a constant. Using the resonance condition (eq 23) and not­

ing that the term with <nm +21µ1Ttm.+1><'71.m+11 µI nm> is the dominant 

contribution to the sum over Morse states IP >, 44 the quantum two­

photon Rabi frequency is given approximately by 

(32) 

From eqs 24b and 32, the agreement between the serniclassical and quan­

tum Rabi frequencies is expected to be good if 

(33) 
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A comparison of these two quantities for HF and a linear dipole approxi­

mation is given in Table IL 

Adaptation to a Polyatomic Molecule 

For a non-rotating polyatomic molecule in a radiation field, it is 

assumed that the Hamiltonian may be written as 

(34) 

Here, I1 and e1 refer to the radiation field as before, and the (1,8) form 

a set of "good" action-angle variables describing perhaps Morse~Iike 

vibrational modes with no internal resonances. 15•19 These variables may 

be obtained, for instance, by perturbative or other approxlrn.ate methods. 

If there is a resonance between the field and some vibrational frequency 

c.;m = aH0 / Blm of the molecule, Im being the mth action with conjugate 

angle em. then the angle variable em - ef becomes a "slow" angle. If the 

Hamiltonian H in eq 34 is averaged over all molecular angle variables ei 
except em and if H 0 can be expanded in a Taylor series in Im about 

Im = 0, one obtains 

where H~ (I') is a constant term for the set of actions I' excluding Im. If 

Hm is truncated at a quadratic function of Im (which may depend on I'), 

the Hamiltonian in eq 35 has the form of eq 2, but CJ~ now denotes 

(aHc/ olm)I,,,,=O and CJ~X denotes *(a2H 0 / 61~)!,,,,=0· 

Discussion 

A semiclassical treatment of o_ne- and two-photon absorption by a 
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Morse oscillator has been presented in this paper that has a direct 

correspondence with the quantum mechanical dressed state approach. 

The use of the Mathieu function uniform approximation allows one to cal­

culate the Rabi and resonant excitation frequencies directly from eqs 23 -

24b without the use of a multistate matrix treatment. For this reason, 

the present uniform semiclassical method is useful for characterizing 

multiphoton absorption processes in a simple way. In addition, it has 

been noted 18 that, for realistic laser intensities ( < 1 TW I cm2), two-photon 

absorption may correspond to a non-classical path. (More specifically, 

classical calculations8 have shown no two-photon absorption). This fact 

indicates the usefulness of an appropriate uniformization procedure to 

treat such a process purely semiclassically, for such a uniform approxi­

mation permits quantum mechanical tunneling. 

It has been noted 18 that the solutions of the Mathieu equation (eq 16) 

contain contributions from unphysical "states" corresponding to negative 

quantum numbers. This problem arises whenever primitive semiclassical 

wavefunctions in an (approximate) action-angle representation22 are 

used. In the case of an oscillator, one usually omits, by fiat, states with 

negative principal quantum numbers. In the present case, however, these 

"states" are distant in energy and found not to have a significant contri­

bution. A similar situation would occur in other uses of Mathieu functions, 

e.g., in a description of molecular Fermi resonances.27 

The uniform semiclassical technique presented in this paper is not 

applicable in the regime of overlapping classical resonances15-17•19•20 

and/or overlapping avoided crossings (e.g., ref 20). When there are over­

lapping classical resonances, the dynamics are thought to be chaotic 

classically, 15-17• 19•20 and, when there are overlapping avoided crossings, 
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the system may in some sense be regarded as quantum mechanically 

chaotic (e.g., ref 20). One could use, however, a multilevel semiclassical 

matrix treatment18 when a simple two-level treatment is not applicable. 

The uniform semiclassical method allows one to calculate the absorp­

tion probabilities using the Fourier components of the dipole moment 

function, some of which exist in analytic form. 40
•
45 In some cases, this 

may be pref er able to calculating the more complicated quantum dipole 

matrix elements for the Morse oscillator.46 When not determined analyti­

cally, the Fourier components for any general dipole moment function 

may be found numerically by integrating a classical trajectory with the 

appropriate mean action as an initial condition and then calculating the 

power spectrum of µ(t ).34•41•
47 
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Appendix: An Alternative Semiclassical Approach 

It has been noted 11-13 that the time-independent23 and time­

dependent, classical radiation field9 formulations of the molecule-field 

Hamiltonian are equivalent when the number of photons N is large. For 

completeness, we derive here the semiclassical Schrodinger equation (eq 

13) starting from the time-dependent, classical radiation field point of 

view. 

The time-dependent Hamiltonian for the interaction of a Morse oscil­

lator with a classical radiation field is given by9 

H(r,p,t) = Hm,(r,p) -Eo1-L(r)cos G)t (Al) 

where Hm (r ,p) is the Morse oscillator Hamiltonian in terms of the dis­

. placement coordinate r and its conjugate momentum p. Written in Morse 

oscillator action-angle variables Um.em), 25 eq Al becomes 

The formulation of the resonance Hamiltonian for the 1: 1 resonance 

is performed in two steps. First, the V = -Eof-L(Im,8,.,,,)cos r..;t perturba­

tion term is expanded in a Fourier series in Bm; the result is expressed in 

terms of the "slow" angle variable Bm - t:..Jt and averaged over all remain­

ing functions of flm· Second, the time-dependent canonical transforma­

tion 

Ia = 21.,,,, , 2a = Om - wt + S (A3) 

is introduced to yield a new set of action-angle variables (1 otia) appropri­

ate for the 1: 1 resonance. This transformation is generated by the F 2-

type generating function (e.g., ref 18 and ref 26, p.383) 

(A4) 
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and thus gives the new Hamiltonian K from the expression 

(A5) 

The new Hamiltonian K now given by 

(A6) 

where V0 is the same as in eq 11 of the text. Using the definitions of 0 and 

x.' given previously, the resonance Hamiltonian is written as 

(A7) 

which is identical to eq 9 of the text minus the constant I pw term. Gray18 

has obtained a very similar, but not identi~al (because of the use of a 

slightly different canonical transformation), resonance Hamiltonian. 

As in the text, introduction of the semiclassical action operator 

(1/i)d/da+ 1 into eq A7 yields eq 13. As a result, both the time­

dependent, classical radiation field and time-independent formulations 

yield the same uniform semiclassical Mathieu equation and hence the 

same semiclassical resonant and Rabi frequencies. 

The direct correspondence of the time-independent semiclassical 

formulation with the quantum dressed state theory is presented in the 

texL The time-dependent, classical radiation field Hamiltonian (Al) may 

be converted to a time-independent Floquet matrix49 that is formally 

equivalent49
•
50 to the quantum dressed state matrix when N is large. The 

language of avoided crossings may then be used in relation to the so­

called quasi-energies50 of this Floquet matrix. 
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TABLE I: Quantum (nm + 11 r I nm> vs. Semi classical r<f m) 

nm Q (a. u.) SC (a. u.) 

0 o. 1246 0. 1246 

1 0. 1781 o. 1781 

2 0. 2205 0. 2205 

3 0.2575 0. 2576 

4 o. 2912 0. 2913 

5 0.3228 0. 3229 
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TABLE II: Quantum (nm+ 2 jr !nm+ 1)(nm + 11 r !nm> vs. Semiclassical (Y(fm) ] 
2 

nm Q (a. u.) SC (a. u.) 

0 0.0222 0.0235 

1 o. 0393 0.0401 

2 0.0568 0.0574 

3 0.0750 0.0755 

4 0.0940 0.0945 

5 0. 1139 0. 1143 
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Figure L A serniclassical two-photon avoided crossing of the dressed 

states I 0,N +2> and I 2,N>. The resonant excitation frequency 

c..i20/ 2 = 3879 cm-1 is indicated by the location of the avoided crossing. 
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Chapter 5: Adiabatically Reduced Coupled Equations for Intramolecular 

Dynamics Calculations 

[The text of this Chapter appeared in: G. A. Voth and R. A. Marcus, J. Chem. 

Phys. 84, 2254 (1986).] 
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Adiabatically reduced coupled equations for intramolecular 
dynamics calculations 

Gregory A. Voth and R. A. Marcus 
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California 9J125 
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"Adiabatically reduced" coupled equations are derived to obtain an approximate quantum 
mechanical solution for the dynamics of nonstationary states in isolated polyatomic molecules. 
Under suitable conditions, the number of such equations is considerably less than the number of 
coupled equations needed in practice for the exact calculation. The relationship of the present 
technique to several other methods, including the partitioning method, is discussed, and specific 
applications of the present treatment are given. 

I. INTRODUCTION 

In recent years, there has been much experimental and 
theoretical interest in the quantum dynamics of initially pre­
pared nonstationary vibronic, 1•

2 rovibronic, 3 rovibrational,4 
and vibrational~16 states in isolated polyatomic molecules. 
The richness of the underlying dynamics is evident, e.g., in 
recent experimental results on the evolution of initially pre­
pared vibronic states in anthracene.7

•
8 In these experiments, 

periodic few-state quantum evolution or "beating" was ob­
served at low excess energies, and dissipative17 intramolecu­
lar vibrational energy redistribution (IVR) was detected at 
higher energies. 

Theoretically, the exact treatment of the dynamical evo­
lution of initially prepared zeroth-order states is, in princi­
ple, straightforward (e.g., Refs. 1-16). In practice, it is 
usually quite difficult or not computationally feasible due to 
the large number of states in a typical molecule. 18 For this 
reason, a variety of approximate or phenomenological meth­
ods have been devised to treat these problems, ranging from 
few-level treatments for sparse level densities (e.g., Ref. 7) 
to Bixon-Jortner-like models19 for large level densities. In 
general, it is often assumed that any zeroth-order states cou­
pled weakly to and/or reasonably off-resonant from the ini­
tially prepared state do not significantly affect the subse­
quent evolution of that initial state (e.g., Refs. 12 and 14). 
An important exception to this situation is when the weakly 
coupled states provide the only coupling pathway of the ini­
tial state to other resonant states. 15

•
20 This latter effect, 

which has been discussed only recently within the context of 
IVR, 15

•
20 has also been suggested as being particularly im­

portant in the direct multiphoton excitation of few-level 
quantum systems (e.g., Ref. 21 ). Model calculations, given 
below, also show that weakly coupled/off-resonant 
stares22

C•> can have an important effect on the dynamical 
evolution of initially prepared states even when there is di­
rect coupling to resonant or nearly resonant states. 

_ With the advent of increasingly high resolution spec­
troscopy and real-time experiments such as those in Refs. 7 
and 8, the usefulness of detailed and accurate dynamical cal­
culations is apparent. In Sec. II, reduced coupled equations 

•>Contribution No. 7291. 

are derived that allow one to solve for the dynamics of a 
strongly coupled and/or resonant subset of states that in­
cludes the initial state. In suitable circumstances, this treat­
ment considerably reduces the number of coupled eqUations 
needed in a typical calculation by using an effective Hamil­
tonian. The relationship of this effective H:imiltonian to 
those obtained by several existing techniques is ~iscussed in 
Sec. III, and the theory is applied in Sec. IV to some model 
systems. A discussion of the results is given in Sec. V, along 
with concluding remarks in Sec. VI. 

II. THEORY: ADIABATICALLY REDUCED COUPLED 
EQUATIONS 

The general solution !'ll(t)) of the time-dependent 
Schrodinger equation may be written in terms of a time­
dependent phase factor and a new function 1¢'(t)) (with 
n= 1>: 

l'll(t)) = li,b(t) )exp( - i( H)t). (2.1) 

where ( H) is the time-independent mean energy of the non-
stationary state given by · 

( H) = ('i'(t)jH j'l'(tl}. (2.2) 

This separation of the phase factor exp ( - i ( H ) t) from the 
time-dependent wave function represents a type of interac­
tion representation for a nonstationary state in which the 
phase due to the mean energy of the initial state is removed 
from jlJl(t}). If the second time-dependent factor lib(t)) is 
then expanded in terms of some orthonormal zeroth-order 
bai;is as 

N 

lib<t» =I b;U>lcp,>. c2.J> 
i-1 

the following coupled equations are obtained: 

db.(t) N . 

-d1 t =i(H)bj(t) -i L b;(t)~,. (2.4) 
1~1 

In Eq. (2.4), the coefficients bi (t) are the time-dependent 
amplitudes of the zeroth-order states jcpi), ~' equals the 
matrix element {cpilHlcp,) of the total Hamiltonian H 
= H 0 + V, and ISV;) is an eigenstate of H 0• The usefulness of 

a coupled equations approach for determining the dynamics 
of nQnstationary states has been discussed recently. 12•14 In 
particular, it allows the inclusion of more basis states in the 

J. Chem. Phys. 84 (4), 15 February 1986 0021-9606/86/042254-08$02.10 © 1986 American Institute of Physics 



calculations because an internal computer storage of large 
matrices is not required. In addition, the dynamics of the 
zeroth-order states are obtained directly from the ampli­
tudes bj ( t) rather than from an expansion in terms of the 
eigenstates and eigenvectors of the total Hamiltonian, the 
latter usually being obtained by a previous matrix diagonali­
zation.18 

It is now assumed that the complete set of zeroth-order 
states may usefully be partitioned into a set {l<Pj>} 
(j = 1, ... ,n) of states nearly resonant (and/or strongly in­
teracting), a linear combination of which constitutes the ini­
tial state, and into a set {l<Pk)} (k=n+ l, ... ,n+m) of 
states off-resonant and/or weakly coupled22

c•l to the mani­
fold {I <Pj)}. (In the simplest case, the initial state is one of 
the l<P1) 's.) The coupled equations for the two sets of states 
may be written in vector-matrix notation as 

and 

wherebR(t) [b0 (t)j isann (m)-dimensionalcolumn vector 
containing the amplitudes for the resonant (off-resonant) 
states, ( H )IR ( ( H)l0

) isannxn (m Xm) diagonal matrix 
with the elements ( H)8;,., HR (H0

) is the nxn (mXm) 
Hamiltonian matrix for the resonant (off-resonant) states, 23 

and VR 0 (V°R) is an nXm (mXn) matrix composed of the 
coupling matrix elements (<P1 I Vl<Pk) «<Pk I Vlip1)) between 
the two manifolds {l<P1)} and {l<Pk)} (j = l, ... ,n; k = n 
+ l, ... ,n+m). ThesummationlimitNinEq. (2.4) equals 
n+m. 

If the off-resonant/weakly coupled amplitudes b0 
( t) re­

main negligible in magnitude throughout the course of the 
dynamics, then the derivative in Eq. (2.6) satisfies 

!!_ b0 (t)==:O. 
dt 

(2.7) 

Specifically, it is intended that Eq. (2.7) be valid over any 
relevant time scale of interest [e.g., for some fraction of time 
needed for an appreciable change in the resonant amplitudes 
bR ( t) to occur]. That is, db0 

( t) I dt is, on the average, zero on 
this time scale. 22

<b J This approximation is similar in spirit to 
those sometimes used in this study of the dynamics of direct 
multiphoton absorption by multilevel quantum mechanical 
systems. 24 It is also similar to the steady-state approximation 
used.in solving reaction rate equations in chemical kinetics. 

By virtue ofEqs. (2.6) and (2.7), the amplitudes b0 (t) 

may be solved for in terms of the amplitudes bR(t) provided 
the matrix ( ( H) 1° - H 0

) is nonsingular. One thereby ob· 
tains 

(2.8) 

From Eqs. (2.5) and (2.8), the reduced coupled equations 
for the desired amplitudes bR(t) are thus given by 
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= i[ ( HW- HR - vRo(( H)lo - Ho)-IV°R JbR(t). 

(2.9) 

Equation (2.9) is expected to provide an accurate ap­
proximation to the true dynamics of the manifold of states 
{l<Pj)} (j = l, ... ,n) provided the amplitudes b0 (t), as deter­
mined by the exact dynamics, remain small. When the ap­
proximate dynamics are obtained by integrating the reduced 
coupled equations in Eq. ( 2. 9), an a posteriori error estimate 
may be obtained by calculating b0 (t) via Eq. (2.8) [i.e., the 
elements ofb0 (t) obtained in this way should remain small]. 
The amplitudes b0 (t) are clearly small, for instance, if all of 
the elements of the matrix ( ( H ) 1° - H0

) -
1 are small. In 

some cases, such a condition may be too restrictive because 
sign variations in these elements, as well as in V°R and bR ( t), 

may lead to some cancellation. 
The reduced coupled equations [Eq. (2.9) j have a par­

ticularly simple form when there is no coupling ainong the 
states in the off-resonant manifold {I <Pk ) } . This would be the 
case, for instance, if the manifold {lipk)} (k = n + l, ... ,N) 
had been prediagonalized. In that case, the matrix elements 
[ (( H)l0 

- H°)- 1]kk' equal (( H) -Hkk )- 1a;k.,andthe 
reduced coupled equations for the {I ip1 )} states are given by 

db (t) 
-

1
- = i( H )bj (t) 

dt 

-ii (s1, + f ~k vki )b;(t). 
1=1 k=n+i (H)-Hkk 

(2.10) 

If the strongly coupled manifold of states {I ip)} is 
weakly and smoothly coupled to a quasicontinuous back­
ground of states in the {I <Pk ) } manifold, the summation over 
the l<Pk} states in Eq. (2.10) may be approximated by an 
integral: 

N V V la_ I < jk ki _ p<A>t<A>dA, 
k=n+ I H) -Hkk d.un 

(2.11) 

where 

/(A)==~k (A) Vk1 (A)!A, (2.12) 

and the integration limits Amin to Am.. span the range of 
energy differences A==( H) - Hkk· Equations (2.11) and 
( 2.12) lead to a dependence of the coupled equations for the 
{/lp1 )} manifold on the density p(A) of l'Pk) states. Thus, in 
addition to the possible "dissipative" effect of a background 
quasicontinuum states, 17 the. {I IP)} states can also exper· 
ience this added dynamical effect. In the quantum beats 
found experimentally in anthracene,7

•
8 the simple dynamics 

observed between the two or three vibronic levels may be due 
either to a very weak, nondissipative interaction with the 
background quasicontinuum of states, or to a direct coupling 
of those few "relevant" levels to each other, or to both. 

In related treatments, 24 a reduction of the original cou­
pled equations [e.g., Eq. ( 2.4)] to new equations in some 
subspace has sometimes been called "adiabatic elimination" 
or "adiabatic following." The adiabatic connotation in the 
present context is that the perturbation due to the off-reso-
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nant states has distorted the subspace of interest, but its di­
mension (characterized by a set of quantum numbers) re­
mains intact. When the interaction representation given by 
Eq. (2. l) is used, the dynamics describing the coupling of 
the "resonant" subspace, which includes the initial state, to 
the oJf-resonant states involves large energy diJferences and 
hence large frequencies relative those characterizing that 
resonant subspace. In this general way, the separation and 
reduction of the coupled equations can be termed an adiaba­
tic reduction. 

In the next section the relationship of the present meth­
od to several existing quantum mechanical methods is dis­
cussed. For brevity, we have not included a discussion of the 
many useful semiclassical techniques that are present in the 
literature. 

Ill. RELATIONSHIP TO OTHER QUANTUM 
TECHNIQUES 

A. Partitioning methods 

In order to relate the formalism of Sec. II to Hamilton­
ian matrix partitioning methods, the solution of the coupled 
differential equations in Eq. (2.9) is written as 

bR(t) = u exp( - (J..R t)UtoR(O), (3.l) 

where 

exp( - iJ..R t) = ut exp( -1H~tr t)U. (3.2) 

In Eq. (3.2), H~tr is the effective Hamiltonian matrix for the 
(resonant) {lq:i)} manifold given from Eq. (2.9) by 

H~tf =HR+ yRo(( H)lo-H°)-tVJR - ( HW, (3.3) 

and U and J.. R are, respectively, the unitary matrix of eigen­
vectors and the diagonal matrix of eigenvalues of H~«. 

Several partitioning methods have been used to solve the 
matrix-eigenvalue problem for the time-independent SchrO­
dinger equation (e.g., Refs. 25-27). It was shown25 how a 
finite-dimensional Hamiltonian matrix can be formally par­
titioned into a new Hamiltonian for a particular subspace of 
interest (here, the resonant manifold {Jq:ij)} ). For the prob­
lem discussed in Sec. II, the exact partitioned Hamiltonian 
would be28 

(3.4) 

In an exact treatment of the eigenvalue problem, the secular 
equation 

detlH~.""' - ElR I= 0 (3.5) 

is then solved for the eigenvalues }.,~"""'. Since the expression 
for H: ... , [ Eq. ( 3.4)] involves the matrix E 1°, the solution 
for the roots A; of Eq. ( 3.5) is still a complicated problem, 
although the reduced dimension of the secular determinant 
may be helpful. As a result, a number of related iterative and 
perturbative schemes have been devised25

•
27.29

•
30 to simplify 

the solution ofEq. (3.5). For a nondegenerate energy level, 
the matrix H: ... , has one element and these methods are 
potentially quite powerful, while for degenerate or nearly 
degenerate levels, approximate approaches based on Eqs. 
( 3.4) and ( 3.5) are more difficult and have met with varying 
degrees of success (cf. discussion in Refs. 27 and 30). 

The method developed in the present paper amounts to 
defining an effective Hamiltonian by replacing the matrix 
Ei0 inEq. (3.4) bytheconstantmatrix ( H)l0

. This method 
yields eigenvalues for the { l'Pi)} manifold which depend on 
( H ) and hence the initial nonstationary state. The correct 

·eigenvalues are, of course, independent of the initial condi-
tions. The present choice of ( H) in Eq. ( 3.3) arose from a 
dynamical, rather than a static, analysis and provides an ap­
proximate or "average" representation of the exact eigenso­
lutions ofEq. ( 3.5). The dynamics of the initial state are thus 
obtained using an eJfective Hamiltonian [Eq. (3.3)] rather 
than by performing an accurate determination of the roots of 
Eq. (3.5). TheeffectiveHamiltoniangivenbyEq. (3.3) may 
not, therefore, be the method of choice when the primary 
purpose is to obtain highly accurate eigenvalues of the exact 
Hamiltonian [Eq. ( 3.5)]. However, it is useful in obtaining 
approximate, and simplified, solutions for the dynamics. 

Theabovepartitioningformalism [Eqs. (3.3)-(3.5)] is 
also closely related to a resolvent plus projection operator 
treatment of the dynamics. 31 For this purpose, it is useful to 
introduce here the projection operators for the {I 'P)} and 
{lipk)} manifolds: 

• N 
P= I lq:ij) (q:ijl, Q= L lq:ik) (ipkl· (3.6) 

)=I k=n+l 

These projection operators have the usual properties that 
P 2 (Q 2 ) equals P(Q) and that PQ(QP) equals zero. Using 
N xNmatrix representations P and Q of these operators in 
the zeroth-order basis, where the elements of P for j > n and 
ofQ fork< n + 1 are all zeros, the coupled equations in Eq. 
( 2. 9) for the states spanned by the operator P may be written 
as 

~Pb(t) =i(H)Pb(t) 
dt 

-iP[H + VQ( ( H)I- QHQ)- 1QV]Pb(t), (3.7) 

where V is the cotipling matrix, and all matrices are N-di­
mensional. By inspection of Eq. (3.7), it is seen that the 
dynamics of the amplitudes Pb(t) are determined by the 
effective Hamiltonian32 

H.;r = P[H + VQ( ( H)l- QHQ)- 1QV - ( H) JP. 

(3.8) 

We next compare this result with that based on the re­
solvent operator. Using an earlier partitioning formal­
ism, 26·33 the amplitudes Pb(t) for the exact problem have 
been expressed31 in terms of a projection of the resolvent 
operator. These exact amplitudes bj ( t) are given in terms of 
the resolvent operator G(E) by31 

bj(t) = ~i dE e-iEt (q:iilPG(E)P lq:i;). (3.9) 
21Tl c 

where the integration contour C runs from + oo to - oo 

and is infinitesimally above the real energy axis where the 
singularities in G(E) occur; lq:i;) is taken here as the initial 
state. The partitioned resolvent operator PG(E)P for the 
amplitudes of the {lcpi)} states may be written as31 

PG(E)P= [E-PH0 P-PR(E)P]- 1P, (3.10) 

where H 0 is the zeroth-order Hamiltonian, and R (E) is de-
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fined as the level shift operator,31
•
33 given by 

(3.11) 

Equations ( 3.9 )-{ 3.11) provide an exact expression for the 
amplitudes of the states spanned by the projector P. In this 
formalism, the operator R(E) in Eqs. (3.10) and (3.11) is 
responsible for the shifts and couplings of the energy levels in 
the { l'P)} manifold, including the contributions from the 
off-Fesonant {lipk)} states. A number of authors [e.g., Refs. 
l(a) and l(c), and references therein] have used this for­
malism to describe formally the competing radiationless and 
radiative decay dynamics of initially prepared vibronic 
states in polyatomic molecules.34 Several authors1<•>.3 t.33 

have also discussed the smooth energy dependence of R (E) 

when the projection operator P spans one1<•»33 or two31 

states. In addition, when P spans a number of states, it has 
been suggested [Ref. 1 (a), p. 86] that an effective resolvent 
operator in Eq. (3.9) could be defined by treating R(E) as 
an energy-independent operator evaluated at the average ze­
roth-order energy of those states in P. The perturbation the­
ory based on the projection operator approach (e.g., Ref. 33 
and references cited therein) has also been further devel­
oped35 using an iterative scheme and continued fractions. 

The present approximation, given by Eq. (3.7), may be 
written in terms of a resolvent operator formalism for the 
effective Hamiltonian in Eq. ( 3.8). The approximate ampli­
tudes bj (t) for the resonant states are thereby given by 

b(t) =-1- r dEe-i<E-(H))t (ip IPG (E)Plip > (3.12) 
J 21Ti Jc J elf ' ' 

wherePG.w (E)P is the effective resolvent operator for the P 
space: 

(3.13) 

and the ( H) in the exponential term ofEq. (3.12) simply 
describes a constant shift of the energy levels. The relation of 
the approximation deveioped in Sec. II to this formalism is 
clear: It simplifies the evaluation of the poles of the resolvent 
operator in Eq. (3.9) by evaluating the level shift operator 
R (E) at the mean energy of the nonstationary state 
E = ( H ) and hence making it energy independent. 

The present approximation is also complimentary to a 
recent method developed by Schultheis et al. 36 These auth­
ors derive an approximate solution of the time-dependent 
Schrooinger equation based on a partitioning of the Hamil­
tonian and a conversion of the exact Schrooinger equations 
for the P and Q spaces into second order differential equa­
tions. Their method is accurate for short time solution!!, in­
cluding those for problems in which the Q space dissipates 
some probability from the P space (i.e., from the subspace of 
interest). The method of the present paper, however, relies 
on the fact that the Q space cannot dissipate the P space 
probability because these two spaces are defined as being 
detuned in energy from each other.22 The method of 
Schultheis et al. 36 has been found useful in treating systems 
where the perturbation acts for a small time duration and 
where it may be desirable to have states in the P space which 
are nearly degenerate with some states in the Q space. Such a 
system was found, e.g., in heavy ion collisions. 36 

· 

B. Van Vleck-like approaches 

As discussed by Killingbeck,27 the Van Vleck approach 
to degenerate or nearly degenerate perturbation theory (e.g., 
Ref. 37) is based on transformation theory rather than parti­
tioniµg techniques. The usual procedure is to find a unitary 
transformation of order n that block diagonalizes the Hamil­
tonian to order n and hence leaves an effective Hamiltonian 
for the degenerate or nearly degenerate submatrix of inter­
est. To the extent that such a method is accurate, the effec­
tive Hamiltonian matrix for the resonant { l'Pj)} states could 
be used in Eqs. ( 3.1) and ( 3.2) to determine the dynamics of 
that subsystem of interest. However, as noted elsewhere,25 

this approach relies on expansions in orders of a perturba­
tion parameter, whereas a partitioning approach based on 
Eqs. ( 3.3) or ( 3.4) does not. In particular examples having 
strong couplings in the off-resonant manifold of states 
{lipk) }, we have found that the Van Vleck treatment of the 
dynamics gave qualitatively incorrect results for the initial 
state probabilities in several model systems, whereas the ap­
proach developed in Sec. II and based on Eq. (2.9) contin­
ued to give accurate results. 38 

IV. APPLICATIONS 

A. Coupled Morse oscillator systems: local mode 
evolution 

Recently, Hutchinson et al. 15 have discussed the dy­
namics of two-degrees-of-freedom coupled Morse oscillator 
systems. Of particular relevance to the present work is their 
dynamical study of the quantum local mode states in these 
systems in which they gave an approximate numerical solu-

1.0 

00 

00 'i II r ,(' ( i'>) 11 0 

FIG. I. Local mode probabilities P0•3 and P 3•0 as a function of time for the 

I0,3) and 13,0) zeroth-order coupled Morse oscillator states, respectively, 
of Ref. 15. The exact results are given by the solid lines and the approximate 
results based on Eqs. ( 4. I) and ( 4.2) are given by the dashed lines. The 
exact probabilities Pc.2 and P,,, of the 12,l) and I 1,2) zeroth-order states, 

respectively, are shown for comparison with the local mode probabilities. 
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FIG. 2. A schematic of the model system used in Sec. IV B. Dotted lines 
represent the couplings between the zeroth-order states and 1'1'1) is the ini­
tial state. 

tion based on time-independent perturbation theory and a 
truncated basis set. Equation (2.9) may be used to solve the 
equations for the dynamics of the zeroth-order Morse oscil­
lator local mode states IO,n) ( ln,O) ), with n quanta initially 
in one bond. For example, in the case of the I 0,3) state, the 
time-dependent probabilities of these states are given ana­
lytically from Eq. (2.9) by 

P0•3 (t)=cos2 (!lt/2); P 3,0 (t)=sin2 (!lt/2), (4.1) 

where P0,3 (P3,0 ) is the probability lbj (t) 12 of being in the 
10,3) <13,o)) state, and the oscillation frequency n is given 
by 

n = 2[ v .. + (2V, V3A. + v~ v2 + v~ V2 )/(ii2 
- v~ >]. 

(4.2) 

In Eq. (4.2), v1, v2, V3, and V4 equal (1,21VI0,3), 
(l,21 v12,l), (2,ll v I0,3),and (3,0I VI0,3),respectively,and 
A. is the zeroth-order detuning between the states I0,3) 
( \ 3,0)) and \ l ,2) ( 12, l)). The restricted number of basis 
states used here are the same as those employed in the analy­
sis of Ref. 15, and the states I 1,2) and 12,l) are treated in the 
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formalism of Sec. II as the "off-resonant" {l'Pk)} manifold. 
For the values of the above matrix elements and A. given in 
Ref. 15, !l is calculated to be 2.66 cm - •, whereas the exact 
result15

•
16

•
39 was reported to be 2.7 cm- 1

• A result for n 
based on time-independent perturbation theory is given ana­
lytically by•S.39 

il = 2( V4 + (2V1 V3 A. + V~ V2 )/A.2
] (4.3) 

and equals 2.6 cm-•. In Fig. 1, the time dependence of the 
exact (solid lines) and adiabatically reduced coupled equa­
tions (dashed lines) probabilities is shown. The probabilities 
of the off-resonant 12,1) and I 1,2) states are also shown for 
comparison with the local mode 13,0) and I0,3) probabili­
ties. As is also discussed in Sec. II, it is seen from the P2•1 (t) 

[ P1•2 (t)] plot in Fig. l that dP2•1 (t)/dt, and hence db0 (t)/ 
dt [Eq. (2.6) ], can oscillate quite rapidly in time but, on the 
average, is equal to zero for the time scale of interest. As a 
result, P2,1 (t), and hence the magnitude ofb0 (t), remains 
small throughout the course of the relevant dynamics. 

B. Model calculations 

Time-dependent calculations were performed for the 
model 13-level system depicted schematically in Fig. 2. This 
model is chosen to represent a physically reasonable few­
level quantum dynamical system in a polyatomic molecule. 
Three levels were taken to be nearly degenerate and signifi­
cantly coupled to each other as well as to the initial state 
(shown as lip1 ) in Fig. 2). Nine other levels were placed 
randomly in a region 30-70 cm - 1 above and below the four­
level subsystem. The elements of the Hamiltonian matrix H 
used in the exact coupled equations [Eqs. (2.4)] for this 
system are given in Table I. Shown in Fig. 3 is the evolution 
of the initial state probability I b 1 ( t) I 2 for the exact dynamics 
(solid line), the adiabatically reduced coupled equations dy­
namics (dashed line), and the isolated (i.e., neglecting the 
nine off-resonant states) four-state dynamics (dotted line). 
In Fig. 4, the Fourier transform spectrum of the initial state 
amplitude b1 (t) is given. In addition, the evolution of the 
lcp1) state probability is shown in Fig. 5 for a somewhat dif­
ferent model system (cf. Table II). This model was chosen 

TABLE I. The Hamiltonian matrix H (in=-') for the modelsystem in Figs. 2 and 3.• 

""j 2 4 6 7 9 10 11 12 13 

I 65 2 0 0 I 2 2 I 2 I I 3 3 
2 65 3 5 0 0 0 0 0 0 0 0 0 
3 64.9 0 I 2 2 I 2 I 2 3 I 
4 6S.5 I I I 2 I 3 3 2 I 
s 2 
6 13 0 7 15 
8 24 
9 99 

10 Ill 
II 114 
12 126 
13 131 

• H is a symmetric matrix. 

J. Chem. Phys., Vol. 84, No. 4, 15 February 1988 



-97-

1.0 
I 

: ; i 
. . .. I 

! l 11 

·,: : : : . I 
: '' :: :: :~' 
• .. 1:.:i:.;::r !: 1. :· :· 

:1 !'I I 1' Ir''! ! I 

•... ' I '. 'J'. I, ' •! 

0.0 

0.0 Time (r~) !2G 0 

FIG. 3. The 19' 1) zeroth-order state probability as a function of time for the 
model system shown in Fig. 2 and given in Table I. The exact results are 
given by the solid line, the results obtained using Eq. ( 2. 9) by the dashed 
line, and the results obtained by integrating the coupled equations [ Eq. 
( 2.4)] for the four resonant states while neglecting the nine oft'-resonant 
states are given by the dotted line. 

so that the four states of interest are no longer nearly degen­
erate. In Fig. 6, the lip1) probability is shown for a model 
system having the same couplings and zeroth-order energies 
as in Table I but with an added diagonal perturbation term 
V11 = 5.0 cm - 1

• Here, the solid line is the exact result, the 

0.9 

00 

56 2 

II .: 1: 

7:17 

FIG. 4. The Fourier transform spectrum of b, (I) for the model system of 
Figs. 2 and 3 and Table I. The labeling of the lines is the same as in Fig. 3. 
For the two central peaks, the approximate results based on Eq. ( 2.9) 
(dashed lines) essentially coincide with the exact results (solid lines) and 
are hidden by the latter. 

1 0 

0.0 

00 \4.0 

FIG. 5. The I 91 1) zeroth-order state probability as a function of time for the 
model system in Table II. The labeling of the lines is the same as in Fig. 3. 

dashed line is the result calculated by integrating Eq. (2.9), 
and the dotted line is now the result calculated by equations 
similar to Eq. (2.9) except using the energy E~ of the ze­
roth-order state jip1) instead of ( H) in Eq. (2.9) [i.e., using 
a phase factor exp( - iE? t) instead of exp( - i( H )t) in 
Eq. (2.1) and then solving for the reduced equations as in 
Sec. II based on this choice of phase]. 

Vo DISCUSSION 

It is clear from the results shown in Fig. 3 that the off­
resonant states can qualitatively effect the dynamics of the 
initial state and that the approximate coupled equations in 
Eq. ( 2.9) give accurate results for this system. The influence 
of the off-resonant states in the frequency domain is seen in 
the Fourier transform spectrum of b1 (t) shown in Fig. 4. In 
particular, the relative Fourier amplitude of the two central 
peaks is significantly changed by the presence of the off­
resonant states and hence the time-dependent probability 
amplitude in Fig. 3 is also changed. It is also interesting that 
the frequency components of b1 (t) are not as sensitive to the 
off-resonant states as are the Fourier amplitudes. This fact is 
probably due to the zeroth-order near degeneracy of the four 

TABLE II. Hamiltonian submatrix (in cm - ') for the model system in Fig. 
s.• 

~ 2 3 4 

I 65 IO 0 0 
2 100 II 9 
3 70 0 
4 ·75 

•The submatrix is for the four strongly interacting states (cf. discussion in 
Sec. IV B) and is a symmetric matrix. The remainderof the Hamiltonian is 
the same as in Table I. 
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FIG. 6. The jip 1) zeroth-order probability as a function of time for the mod­
el system shown in Fig. 2 and given in Table I, except that a diagonal pertur­
bation V11 = 5 .0 cm - ' is now added to the Hamiltonian. The exact results 
are given by the solid line, the results obtained using Eq. ( 2. 9) by the dashed 
line, and the results obtained by using Eqs. ( 2.1 ) tbrougb ( 2. 9) with a phase 
exp( - iE~ t) (cf. discussion in Secs. IV Band V) are given by the dotted 

line. 

resonant states shown in Fig. 2; i.e., the wave functions and 
hence the Fourier amplitudes are quite sensitive to small 
detunings in the energy. The dynamics of the initial state for 
the nondegenerate system (cf. Table II) shown in Fig. 5 is 
less susceptible to the presence of the off-resonant states, but 
those states nevertheless have an important effect. For this 
system, the reduced coupled equations also prove to be accu­
rate. 

In Fig. 6, a comparison of the initial state dynamics for 
two possible choices of the reference or interaction phase in 
Eq. (2.l) is shown. In that system, a diagonal perturbation 
V11 of 5 cm - t was added to distinguish between the choices 
of E ~ t and ( H) t for the phase. From Fig. 6, one sees that 
the latter choice (dashed line rather than dotted line) is a 
better one for that system, and thus far we have found this 
choice of phase to give the best results in other model calcu­
lations. Other choices for the phase in Eq. ( 2.1 ) such as the 
average zeroth-order energy (EJ> •• t or the average expec­
tation value (( H) j) •• t, where av denotes an arithmetic 
average over the f tpj )'s, were also tested. In general, they did 
not give as accurate results as did the choice of ( H) t. How­
ever, as is evident in Fig. 6, the approximate dynamics based 
on Eq. (2.9) were not strongly sensitive to the choice of the 
reference phase in Eq. (2.l) (i.e .. , the results did not differ 
strongly for these different phases). This behavior is a mani­
festation of the smooth energy dependence mentioned pre­
viously by several authors1<•>.31

•
33

•
35 in regard to the level 

shift operator R (E) discussed in Sec. III A. 
For the model systems in the present paper, the approxi­

mate approach based on Eq. ( 2. 9) used approximately eight 
times less computer time than was required for the exact 
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calculations in Figs. 3 and 5. In general, when there are 
many off-resonant/weakly coupled states, one can expect a 
considerable savings in computer time by using the reduced 
coupled equations in Eq. ( 2. 9), although the inversion of the 
matrix ( ( H) 1° - H°) may require some CPU time. In some 
cases, an approximate approach based on those equations 
may allow a practical treatment of problems that cannot as 
yet be treated by an exact calculation. 

VI. CONCLUDING REMARKS 

Adiabatically reduced coupled equations have been de­
rived for the propagation of nonstationary states in polyato­
mic molecules. In appropriate cases, the present method al­
lows one to significantly reduce the number of coupled 
equations included in a time-dependent calculation. It was 
found that the adiabatically reduced coupled equations gave 
an accurate approximation to the dynamics for coupled 
Morse oscillator local mode states and for the model systems 
presented in Sec. IV B. Moreover, strong dynamical effects 
due to the presence of off-resonant states were found for 
these model systems. Other model calculations performed 
by us have, in general, exhibited significant dynamical con­
tributions from the off-resonant states, and similar results 
have been discussed by Hutchinson et al. 15

•
20 from a time­

independent point of view. An application of the methods 
presented in this paper to the problem of energy transfer 
between ligands of a heavy atom will be given elsewhere. 40 
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Chapter 6: Approximate Coupled Equations for Multiphoton Processes 

Induced by One or More Lasers 

[The text of this Chapter appeared in: G. A. Voth, Chem. Phys. Lett. 129, 315 
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1. Introduction 

With the advent of powerful lasers, experimental techniques based on nonlinear 

optical processes have rapidly developed. In particular, the experimentalist now 

has at his or her disposal many experimental probes of molecular systems based on 

multiphoton processes stimulated by one or more lasers [1-4]. These experimental 

probes typically involve the multiphoton excitation, ionization, and/or dissociation 

of molecules [1]. There are also numerous experiments based on, for example, optical 

double resonance [2], double frequency pulsed NMR [3], or stimulated emission 

pumping [4] techniques. 

The basic theory of resonant muitiphoton processes between two molecular 

levels has also been developed [5,6]. However, in the case of one or more intense 

laser fields interacting with a multi-level quantum system, the accurate description 

of multiphoton processes can be a difficult problem and must usually be treated by 

a many-state numerical calculation.* Promising numerical approaches capable of 

treating in an efficient way the general intense field multiphoton problem include the 

many-mode Floquet theory [7] and the RRGM method [8]. In view of the numerous 

experimental techniques based on multiphoton processes, theories which simplify 

the detailed calculation of state-to-state multiphoton processes are potentially quite 

useful. 

Central to the usual non-perturbative, though approximate, theory of resonant 

multiphoton processes is the procedure of adiabatic elimination, in one form or an­

other [9,10], of the off-resonant intermediate states from the quantum mechanical 

equations of motion. This approximate treatment is primarily based on the phys­

ical property that the off-resonant intermediate states cannot build up significant 

amplitude for any length of time [9]. Within the context of multiphoton processes, 

adiabatic elimination has generally been applied to the density matrix equations 

based on time-dependent "semiclassical" Hamiltonians, i.e., those Hamiltonians in 

* There have been numerous calculations of state-to-state multiphoton processes. 

It is beyond the scope of the present letter to reference all of those studies here. 
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which the molecular system is treated quantum mechanically and the radiation field 

is treated classically. For some relatively simple cases (i.e., simple field-molecule 

resonance conditions), the adiabatic elimination procedure yields approximate, yet 

accurate, analytic results for the state probabilities and/ or other physical properties 

of the system [5,6,9,10]. 

Recently, an adiabatic approximation for time-independent Hamiltonians has 

been shown to be useful for intramolecular dynamics calculations [11]. The salient 

features of the latter theory are (1) the number of coupled equations that must be 

integrated to obtain a reasonable description of the dynamics is reduced, perhaps 

considerably, and (2) the adiabatic approximation in the intramolecular context can 

be related in a specific way to several well known time-independent partitioning and 

projection operator techniques [11]. 

In the present letter, an approximate set of coupled equations based on the 

theory of ref. [11] will be developed to treat the several laser (i.e., many-mode), 

multiphoton dynamics of a general laser-molecule system in a time-independent 

Hamiltonian framework. Dressed state theory [12] will be used to formulate the 

appropriate fully quantum mechanical time-independent Hamiltonian. The dressed 

state approach has recently been found to be particularly useful for treating intense 

field multiphoton effects in NO [13] and for calculating dynamic polarizabilities [14]. 

The adiabatic elimination procedure used in ref. [11] will then be performed based 

on a partitioning of the Hamiltonian into resonant and off-resonant subspaces, and 

the approximate coupled equations will be derived. The central result of the present 

paper is given in eqs. (7) and (8) below. 

The usefulness of the present formalism is that many-mode multiphoton proc­

esses may be treated to arbitrary orders of the perturbation, albeit approximately, 

without resorting to the usual rotating wave-like approximations (RWA) commonly 

used in semiclassical multiphoton theories [6]. The so-called generalized rotating 

wave approximation (GRWA) appropriate for multiphoton processes in one or more 

classical laser fields is not unique when there is no unique field-molecule resonance 



- 103 -

condition and can thereby be difficult to formulate [6]. (See, however, ref. [15] for 

a somewhat different approach). In particular, more subtle non-RWA effects such 

as dynamical Stark shifts, appropriately generalized to the multiple laser case, can 

be treated in a systematic fashion using the time-independent Hamiltonian. (For 

the more standard approach based on semiclassical Hamiltonians, see Appendix 

A of ref. [9].) The relationship to other quantum techniques is also readily estab­

lished [11,16]: The present approach is complementary to approximate multiphoton 

formulations [17] based on the pole approximation for the resolvent operator [11,18]. 

2. Theory 

The quantum mechanical Hamiltonian for a molecule interacting with M radi­

ation field modes may be written as [19] 

M 

iI = Hm + L liwka!ak + V (1) 
k=l 

where Hm is the molecular Hamiltonian operator, and each nwkakak term is a 

radiation field mode Hamiltonian of frequency Wk, written here in terms of the 

harmonic oscillator creation and annihilation operators at and ak, respectively. 

The field-molecule coupling operator V is given in the dipole approximation by [19] 

M 

V = i I: (2n1iwk/Vc) 1/
2 fl,· ek(at - ak) (2) 

k=l 

whereµ· ek is the scalar product of the molecular dipole moment (vector) operator 

fl times the polarization vector ek of field mode k, and Ve is the volume of the 

radiation cavity. 

The dressed state basis [12] for the field-molecule Hamiltonian in the absence 

of the interaction Vis written as l'Pi) = i{nm},N1, ... ,NM), where {nm} denote 
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the quantum numbers for the molecular levels, and Nk, (k = 1, ... ,M), are the 

photon occupation numbers for the field modes. In the present picture, the system 

is assumed at time t = 0 to be in the initial dressed state l{nm},N1, ... ,NM) at 

which time the interaction V is turned on instantaneously. The resulting dynamics 

induced by the field-molecule interaction thereby involves transitions to the other 

dressed states l{n~}, NL ... , Nl..i) [12]. This non-stationary dynamical process de­

scribes the absorption and stimulated emission of radiation by the molecule. An 

exact calculation of the state amplitudes during the multiphoton dynamics involves 

either the diagonalization of the dressed state Hamiltonian matrix to obtain the 

representation of the propagator in terms of the eigenvalues and eigenvectors (see, 

e.g., ref. [14]), or the numerical solution of a set of coupled first-order ordinary 

differential equations. An approximate approach based on the latter method is 

developed in what follows. 

In the presence of the interaction V, the general time-dependent wavefunction 

may be expanded [11] in terms of Ne dressed state basis functions as** 

. Ne 

lw(t)) = exp(-k (H) t) Lbi(t) l)Oi) 
i=I 

where the expectation value of fI for the dressed state initial condition Jw(O)) 

1)01) = l{nm}, Ni, ... , NM) is given by 

M 

(H) = E{n,..} + L Nkn,wk 
k=l 

(3) 

(4) 

In eq. (4), E{n .... } is the energy of the initial molecular level having the quantum num­

bers {nm}· Substitution of eq. (3) for Jw(t)) into the time-dependent Schrodinger 

** In practice, one selects for the full dressed state basis those states which are cou­

pled to the initial dressed state by reasonably low-order resonant and off-resonant 

multiphoton processes, depending of course on the strength of the interaction. Such 

a selection procedure is physically motivated and hence limits the dimension of the 

total dressed state Hamiltonian matrix. 
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equation and using the orthonormal properties of the dressed state basis yields the 

coupled first-order differential equations for the amplitudes b; ( t): 

.i. db;(t) 
'ii£ dt 

Ne 

L(H;i - (H) Oi;)bi(t) 
i=l 

(5) 

The matrix elements H;i are simply the matrix elements of the total Hamiltonian 

[eq. (1)] represented in the dressed state basis. 

Following the treatment of ref. [11], the basis states are now partitioned into 

two subsets. One subset includes those dressed states that are resonant with and/or 

strongly coupled to the initial state, while the other subset contains all other states 

(i.e., those states sufficiently off-resonant with the initial state [11]). For example, 

one might use a simple criterion for including states in the resonant manifold such 

as including all dressed states of zeroth-order energy E? that satisfy the condition 

IE{n,,.} + f Nk1iwk - E?I :::; 'fJ 
k=l 

(6) 

where 'f/ is a generalized detuning parameter which may be adjusted depending 

on the strength of the field-molecule interaction. A more detailed partitioning 

scheme could, for instance, be based on artificial intelligence algorithms [20]. In 

matrix notation, the Hamiltonian sub-matrix containing the initial state and those 

states satisfying eq. (6) is denoted by HR, the sub-matrix with the off-resonant 

states by H 0 , and the coupling matrices between the two subspaces by yRo and 

yoR. The latter two matrices are simply Hermitian conjugates of each other. 

Once the appropriate partitioning is determined, the adiabatically reduced coupled 

equations for the resonant ("R") dressed state amplitudes bR(t) may be derived 

:using the adiabatic approximation of ref. [11]. The resulting coupled equations for 

the resonant subspace are given by 

·1: dbR(t) 
in dt (7) 
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where the effective dressed state Hamiltonian H~ff is given by 

(8) 

and bR(t) is the column vector containing the amplitudes for the resonant dressed 

states. The matrices 1 R and 1° are identity matrices having the dimensions of the 

resonant and off-resonant subspaces, respectively. The conditions for validity of eq. 

(7) are discussed in ref. [11]. 

The effective coupled equations in eq. (7) are initial condition dependent be­

cause the number (H) [eq. (4)] depends on the initial dressed state of the field-

molecule system. However, the number of coupled equations that must be inte­

grated is given by the dimension of HR only. This approach is expected to be 

most useful when there are a few distinct dressed states that satisfy the resonance 

criterion [cf. eq. (6)] and for moderate laser intensities ( ....... 106 - 1010 W /cm2), 

depending on the magnitude of the dipole matrix element. Of course, for processes 

involving high laser intensities and/or numerous resonance conditions, one has the 

flexibility of including more and more states in the resonant Hamiltonian HR (vs. 

H 0 ) in order to obtain increasingly accurate results. 

The effective Hamiltonian in eq. (8) describes the interactions between the 

dressed states in the resonant manifold to all orders and is therefore particularly 

useful for an approximate and simplified numerical solution of the many-mode, 

many-state problem. However, a useful expansion [21] of the second term of the right 

hand side of eq. (8) may be employed to further simplify the results and to avoid 

the inversion of the matrix ( (H) 1° - H 0 ). Writing the off-resonant" Hamiltonian 

matrix H 0 as E 0 + v 0 , the inverse of the matrix ( (H) 1° -H0 ) may be represented 

by a power series as 

(9) 

where ~E is defined as the diagonal matrix ( (H) 1° - E 0 ), which is trivial to 

invert, and v 0 is the matrix of couplings among the off-resonant dressed states. 
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Using this expansion in eq. (8), one obtains the expanded effective dressed state 

Hamiltonian 

00 

H~ff HR+ L yRO .6.E-1 (vo .6.E-1) myoR (10) 
m=O 

This expansion brings in, term by term, increasingly higher order couplings between 

the states in the resonant dressed state manifold. Thereby, each higher order term in 

the summation involves increasingly complicated "virtual state" configurations [12]. 

The off-diagonal matrix elements of H~ff provide the generalized Rabi frequencies 

for the multiphoton transitions [5,6,9], while the diagonal elements contain the 

radiative shift terms corresponding to the generalized dynamical Stark shifts. If 

rapidly convergent [21], eq. (10) is expected to be particularly useful for calculations 

performed on high speed vector supercomputers because it involves repeated matrix 

multiplications. 

The form of the coupling matrix elements in the dressed state picture may also 

be simplified for laser fields of normal or higher intensity (see, e.g., refs. [12] and 

[22]). The matrix elements Vi'i of the perturbation V [eq. (2)] between the dressed 

states i{n~}, Ni, ... , NM) and !{nm}, Ni, ... , NM) are given by 

M 

Vi;ti = i L (27rnwk/Vc) 
112 ({n~}I µ,. ek !{nm}) 

k=l 

However, since the classical radiation field strength Eok for mode k is given by 

[12,22] 

(12) 

and since yf(N1c + m) ~ J'Nk for Nk ~ m, the matrix elements Vi'i can be written 

to a very good approximation (see, e.g., ref. [22]) as 

. M 

Vi1i ~ ~ L Eok ({n~JI fl' e1c !{nm}) (8N~,N,..+l - ON~,N,..-d (13) 
k=l 
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This form of Vi'i simplifies the calculation of the summation terms in eq. (10). 

Moreover, when the field-molecule coupling is written in this way, the relationship of 

dressed state theory to time-independent Floquet theory has been noted by several 

authors (see, e.g., ref. [23]). Equation (12) also determines the relationship between 

the laboratory quantity E 0 1c and the initial state photon occupation numbers Nk 

(k = 1,,,., M) used in the dressed state calculations [e.g., eqs. (6)-(10)]. 

3. Summary 

Approximate coupled equations have been presented which can simplify the 

calculation of state-to-state multiphoton processes in molecular systems. These 

coupled equations are based on a partitioning of the time-independent dressed state 

Hamiltonian matrix into resonant and off-resonant sub-blocks, and on a subsequent 

adiabatic elimination of the off-resonant state amplitudes [11] from the coupled 

equations arising from that Hamiltonian. The partitioning scheme offers one the 

:flexibility to obtain increasingly accurate results by numerically integrating any 

number of dressed state amplitudes exactly, while treating the remaining ampli­

tudes in an effective way. Artificial intelligence algorithms [20] could prove to be 

particularly useful in that regard. 

An expansion of the effective Hamiltonian in terms of the perturbation strength 

may also be performed which brings in, order by order, the generalized Rabi fre­

quencies and dynamical Stark shifts for multiphoton transitions between states in 

the resonant subspace of interest. This latter expansion approach is similar in spirit 

to the Generalized Van Vleck (GVV) perturbation theory treatment of dressed state 

[22] and semiclassical Floquet [7,24] matrix treatments, although the GVV method 

is based on perturbative unitary transformation theory rather than the partitioning 

approach (cf. discussion in ref. (11] and references cited therein). The present 
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approach is also complementary (see, e.g., refs [11] and (18]) to resolvent operator 

approaches for the multiphoton problem based on the pole approximation [17]. 

In view of the recent experimental results on the multi photon dynamical Stark 

effect in molecules [13], and the success of dressed state theory in treating this effect 

in NO [13], the present theory may prove to be quite useful in the interpretation of 

future experimental results along these lines. In particular, one should be able to 

reduce the full dressed state matrix to a smaller matrix containing only the resonant 

states, examine the generalized Rabi frequencies and Stark shifts for these states 

order by order, and then integrate the coupled equations to obtain the detailed 

dynamical results for the state-to-state transition amplitudes. If necessary, suit­

able time-averaging and/ or coarse graining of the results could then be performed. 

Further work to extend the present approximate treatment to include dressed state 

theories which incorporate resonance fluorescence [25] may also p·rove useful. 
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Chapter 7: Quasidissipative Behavior in Isolated Molecular Systems 
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I. INTRODUCTION 

The flow of probability from a metastable quantum state into a dense set of 

"receptor" states has been discussed by many authors. In fact, the basic theory of 

metastable state decay may be found in most textbooks on Quantum Mechanics 

(see, e.g., Refs. 1-3) and dates back to the seminal work of Wigner and Weisskopf. 4 

The standard treatments of a decaying metastable state are based on certain phys­

ically motivated pole approximations which simplify the energy dependence of the 

resolvent operator (see, e.g., Ref. 5). The time-dependent behavior of the decaying 

state is then obtained via inverse Laplace transformation of the simplified integral 

equation. In this way, the approximate time-dependent probability of the initial 

state is found to obey the exponential decay law P(t) ....... exp(-rt), having a decay 

rate r which is given by the "Golden Rule" expression 1,2 

(1.1) 

Here, (JVF2 ) is the average of the absolute square of the matrix elements coupling 

the initial state to the receptor states,6 p(Ei) is the density of receptor states at 

the energy Ei of the initially prepared state, and n equals unity. For short times, 

this result agrees, of course, with that obtained from time-dependent perturbation 

theory (see, e.g., Refs. 1-3). 

In the field of intramolecular dynamics, the decay of probability of initally 

prepared quantum states in "large" molecules is a subject of great interest. For 

example, there is an extensive literature on the dynamics of electronic radiationless 

transitions 7 in molecular systems (i.e., redistribution of electronic energy). The 

theoretical approach to these problems is also based largely on approximate resol­

vent operator approaches (see, e.g., Ref. 7), and results similar to those mentioned 

above have been derived. More specifically, Golden Rule exponential decay rates 

are predicted for initially prepared states in large molecules which undergo elec­

tronic radiationless transitions and have large densities of states.7 •8 The theory of 
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electronic radiationless transitions has been rather successful in explaining experi­

mental trends and results (see, e;g., Ref. 7). 

The phenomenon of intramolecular vibrational energy redistribution (IVR) is 

perhaps more subtle than that for electronic energy redistribution because, in the 

former case, the coupling mechanisms are more diverse and not as well character­

ized as in the latter case. Nevertheless, "real time" experiments which probe the 

process of IVR in large molecules have suggested that exponential decay of initially 

prepared states is the norm at moderate to high energies (see, e.g., Refs. 9 and 10). 

Theoretical studies,11 - 14 many of which are based on the same formalism devel­

oped to treat electronic radiationless transitions,11 •12 also predict that exponential 

decay of the initial state is the most probable behavior in large molecules. It is 

perhaps useful then to ask the following question: Given that the probability of an 

initially prepared state in a large molecule is expected to decay exponentially, can 

a quantum dynamical theory be formulated which not only predicts this behavior, 

but also allows one to calculate the IVR decay rate more accurately than is given 

by the Golden Rule? It is the purpose of this chapter to demonstrate that, upon 

consideration of the basic phenomenology of IVR processes, it is indeed possible to 

derive a somewhat more flexible and general formula for the decay rate. 

The theoretical approach used in this chapter represents an extension of the 

theory developed in Chapter 5 and is intended to be complementary to those ap­

proaches based on resolvent operator equations.1 - 5 ,7,i 2 The present approach is 

based on the adiabatic approximation, which has been related by previous authors 

to certain pole approximations for the resolvent (see, e.g., Refs. 15 and 16). This 

chapter is organized as follows: In Sec. II, the basic phenomenology of IVR in large 

molecules is discussed and the present theory is derived. In Sec. III, the relationship 

between average coupling matrix elements for different basis sets is examined, and 

the relevance of those results to the theory of Sec. II is indicated. A discussion of 

the results is given in Sec. IV, and condudi~g remarks appear in Sec. V. 
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II.THEORY 

It is first assumed that there exists a zeroth-order orthonormal basis set which 

captures the essential features of the molecular (i.e., nuclear) motions of a large 

molecule in a given Born-Oppenheimer electronic state. An example of such a basis 

set would be the harmonic normal mod.es of the molecule, and the present approach 

does not preclude a treatment of molecular rotations. As usual, the zeroth-order 

basis {j<pi)} satisfies the time-independent Schrodinger equation for the zeroth-order 

Hamiltonian Ho: 

Ho l1n·) - E· I,,....\ 
lri - i IY*f ' 

r2 1 \ \ .... } 

where E1 is the zeroth-order energy of the state l<pi)· The coupling term V in the 

total Hamiltonian H (= Ho + V) introduces couplings between the zeroth-order 

states. 

It is also assumed that one of the zeroth-order states carries all of the oscillator 

strength for a radiative transition from the ground state. Therefore, this is the 

state that is prepared by an appropriate pulsed laser excitation and is the state 

that subsequently undergoes IVR (cf. discussion in Ref. 9 by Bloembergen and 

Zewail). The coupling between the zeroth-order states is responsible for the flow of 

probability from the initially prepared state. By virtue of that coupling, the initial 

state interacts with a set of other states, which interact with even more states, 

and so on. This "tier" structure of the basis states is suggested to give rise to the 

basic phenomenology of intramolecular vibrational (and rotational} energy flow .17 

A tier structure has been invoked, for example, in the numerical analyses of IVR 

in benzene13 and hydrocarbon chains, 14 and is not inconsistent with experimental 

results on anthracene and t-stilbene at higher energies,9 p-difiuorobenzene, IO,ll 

and tetramethyldioxetane. 18 Most of the earlier approximate resolvent operator 

treatments12 of IVR are also based on vario~s simple tier models. 19 

In order to exploit the basic phenomenology of IVR, the basis set is partitioned 

into three unique sets: The inital state (denoted by "P"), those states which are 
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coupled to the initial state (denoted by "Q"), and the remaining states (denoted 

by "Q' "). It is assumed that the Q' -space contains many states since the present 

analysis is concerned with the large molecule limit. If the general time-dependent 

wavefunction J'l!(t)) is expanded as 15 

N 

Jw(t)) = exp(-i (H) t) L bi(t) l'Pi) , (2.2) 
i=l 

where (H) equals the expectation value of the energy for the initial state, then the 

coupled differential equations for the amplitiudes bi(t) are given by 

i :t bp(t) - yPQbQ(t) (2.3) 

i ~bQ(t) - yQPbP(t) + (HQ - (H) lQ)bQ(t) + yQQ'bQ' (t) (2.4) 
dt 

i ~bQ' (t) yQ'QbQ (t) + (HQ' - (H) 1 Q')bQ' (t) . (2.5) 
dt 

In these equations, the previously mentioned partitioning scheme has been imple­

mented, and vector-matrix notation has been used. (The superscripts identify the 

different subspaces.) The l's are identity matrices, the h's contain the state am­

plitudes, the H's contain the different Hamiltonian matrix sub-blocks, and the V's 

contain the coupling matrices between the different subspaces. The dimensions of 

the P, Q, and Q' subspaces are given by the numbers Np, N Q, and N Q', respec­

tively. For simplicity, Np equals unity in the present analysis, but this is not a 

crucial restriction. 

It is now assumed that there are so many states in the Q' -manifold that the 

derivatives dbQ' / dt satisfy the approximate relation 

(2.6) 

This approximation is based on the assumption that the probability will flow slowly 

and uniformly into the Q' states, and hence the individual Q' state probabilities 

will have magnitudes of the order l/Nq1. Similar approximations have been used 
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to eliminate the continuum state's contribution to the density matrix equations 

describing the multiphoton ionization of atoms (see, e.g., Ref. 20). It is also noted 

here that the physical basis for this approximation differs somewhat from that used 

in Chapter 5 and Ref. 15. 

By virtue of the approximation given in Eq. (2.6), the Q' amplitudes are found 

from Eq. (2.5} to be 

(2.7) 

If the states in the Q' subspace are thought of as being "prediagonalized" (i.e., the 

matrix HQ' is prediagonalized), then Eq. (2.7) simplifies to 

(2.8) 

where EQ' is a diagonal matrix containing the prediagonalized Q' -space state en­

ergies E~
1

• The approximate expression for bQ' (t).given in Eq (2.8) is then inserted 

into Eq. (2.4) for dbQ / dt, yielding. 

i ! bQ(t) '.'.:::'. VQPbP(t) + (HQ - (H) 1 Q)bQ(t) 

+ VQQ'((H) 1Q' -EQ')- 1VQ'QbQ(t) , (2.9) 

where now the amplitudes bQ' (t) do not appear explicitly in this equation. 

The elements of the matrix yQQ'((H) 1Q' - EQ')-1 VQ'Q in Eq. (2.9) are 

particularly simple because EQ' is a diagonal (i.e., prediagonalized) matrix. They 

are given by 

(2.10) 

The matrix elements Vi~Q' (and V1c~'Q) give the couplings between the Q-space 

states and the prediagonalized Q' -space states. In principle, obtaining these Q- Q' 

matrix elements would require the actual diagonalization of the very large Q1 sub­

block of the Hamiltonian matrix HQ'. (An extremely difficult task!) However, it 

will be shown in the next section that this is not required in the present theory. 
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Since the density of Q' states is assumed to be large, the Q' -space energy 

spectrum may be treated as continuous and the diagonal terms in Eq. (2.10) written 

as a contour integrals,3 •20 i.e., as 

11 QQ' Q' 12) ~ lim /
00 

\Vi (E ) p (EQ')dEQ' 
e-+O+ _

00 
(H) - EQ' + ie Q' ' 

(2.11) 

where PQ'(EQ') is the density of Q' states, and (IViQQ' (EQ')l 2
) is the average 

of the absolute squared matrix element which couples the Q-space state lrp~) to 

the Q1 -space states at the energy EQ'. The condition that the Q' -space states 

are prediagonalized is crucial to making the above approximation. [That is, the 

prediagonalization condition allows the sum to be converted to the simple intergral 

in Eq. (2.11).] In Sec. III, it will be shown that the prediagonalization of the 

Q1 -space is not necessary in order to apply an approximate form of the present 

theory [Eqs. (2.22) and (2.27)]. 

In Eq. (2.11), the function (IV/~Q' (EQ')l
2
JPQ'(EQ') is assumed to be a well 

behaved function in the neighborhood of EQ' = (H) and sufficiently decaying for 

large values of IEQ' - (H) I· By using the property (e.g., Ref. 2, p. 1470) 

lim j'" 00 

jix~ dx = P.P. j" 00 

f(x) dx =F i7r 1-= j(x)o(x)dx , 
t:-+O+ _

00 
X te _

00 
X _

00 

(2.12) 

where 6(.x) is the Dirac delta-function and "P.P." denotes the Cauchy principal 

part, the integral in Eq. (2.11) may be performed, yielding 

- 1l9 - : r9 
a 2 a (2.13) 

In Eq. (2.13), fl.~ represents a shift in the energy of the Q-space state lrp~) 

which equals 

(2.14) 
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and r? is that state's decay "width" 

(2.15) 

In the present treatment, the energy shifts A? are assumed to be small due to the 

postulated "smooth" coupling to the quasicontinuous Q' -space, and hence they 

are neglected. (Alternatively, the zeroth-order energies E'jJ of the Q-space states 

might be "renormalized" so as to contain the shifts A?). 
The off-diagonal elements in Eq. (2.10) require a somewhat different approach: 

In general, the terms Vi2Q' Vk~, Q are expected to have essentially random signs for 

realistic molecular systems. Thus, when summing over the Q'-state index k, the 

simplest approximation is to assume that the sign variations are random enough 

so as to cause a cancellation of terms. Thus, the off-diagonal terms in eq. (2.10) 

may be taken to be quite small and are thereby neglected. It is unlikely that a 

more detailed analysis of these off-diagonal elements would yield significant low­

order corrections to the end result, although this aspect of the theory may warrant 

further study. 

If the function \IViQQ' ((H))l 2 )PQ•((H)) in Eq. (2.15) could be determined ac­

curately, the decay widths r? could, in principle, reflect rather subtle properties of 

the couplings between the Q- and Q' -manifolds. However, the calculation of these 

quantities is not much easier than solving the entire problem numerically, i.e., it is 

only slightly easier than a diagonalization of the entire Hamiltonian matrix. There­

fore, an approximation is introduced into Eq. (2.15) by substituting (IViQQ' 1
2 ) for 

(IViQQ'((H))l 2
), where (IV/-'Q'l 2 ) is the average of the squared coupling elements 

between the state jcp?) in the Q-manifold and all of the states in the Q'-manifold. 

The decay widths r? are then given by the functions 21l"(IViQQ'i 2 )pQ'((H)). If the 

Q - Q' subspace couplings are fairly random, some justification for this approxi­

mation is suggested from random coupling models. 12 In addition, in Sec. III this 

approximation will be shown to be crucial to the simplification of the present theory. 

By virtue of the above approximation, the coupled equations for the Q-space 
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amplitudes are given by 

(2.16) 

where rQ is a diagonal matrix containing the Q-space widths r?. If the widths 

r? are equal to or larger than the Q-space energy level spacings, then one may 

treat the derivatives in Eq. (2.16) in a manner analogous to that given in Eq. (2.6). 

That is, if 

(2.17) 

where PQ (E~) is the density of Q-space states at the energy E?, then it is expected 

that dbQ / dt ~ 0 is a good approximation for the Q-space amplitude derivatives. 21 

By applying this approximation to Eq. (2.16), one obtains 

(2.18) 

Upon insertion of this approximate expression for bQ(t) into Eq. (2.3), an 

approximate differential equation for the amplitude bP(t) is obtained: 

(2.19) 

Provided the off-diagonal elements of the matrix HQ are smaller than the magnitude 

of the diagonal elements of the ( (H) 1 Q - HQ+ irQ /2) matrix, the in~erse in Eq. 

(2.19) may be expanded in a series as 

00 

((H)1Q-HQ+irQ/2)- 1 = (.6.E+irQ/2)- 1 L [vQ(.6.E+iI'Q/2)- 1]m, 
m=O 

(2.20) 

where .6.E is defined as the diagonal matrix ( (H) 1 Q - EQ), EQ is the matrix 

consisting of the diagonal elements of HQ, and yQ is the matrix containing the 

off-diagonal elements of HQ. For a description of the decay dynamics of an initially 

prepared state in the large molecule limit, it is not expected that the couplings 

between the Q-space states are of particular importance. 
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A particularly simple expression for the bP(t) differential equation [Eq. (2.19)] 

is obtained if only them= 0 term in Eq. (2.20) is retained: 

(2.21) 

where L)..Ei is a diagonal element of the ( (H) 1 Q - EQ) matrix, and 

(2.22) 

In Eq. (2.22), (l'ViQQ' 12 ) is the average of the squared matrix elements between 

the Q-space state lc,o?) and all of the prediagonalized Q'-space states. It is again 

noted here that in the present analysis the P-space has only one state lc,of) (i.e., 

the initial state). 

Equation (2.21) may be further simplified by separating the real and imaginary 

parts of the :right-hand-side. Thus, 

0 dbf (t) 
i dt - (Llf - irf ;2) bf (t) , (2.23) 

where 
Nq 

-2= (2.24) 
i=1 

and 
Nq yPQVQP 

p "'\:'"' Q ji ij r; = L.J r. 
i=1 ' LlEf + (r? /2)2 

(2.25) 

The factor Llf in Eq. (2.23) contributes an overall phase to the time-dependent 

amplitude, while the width rf gives the decay rate. Hence, the time-dependent 

probability P1(t) of the initial state is given by 

(2.26) 

where rf is given in Eq. (2.25), and 1i equals unity. This expression is the central 

:result ofthe present chapter. Provided that the "P" state carries all of'the oscillator 
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strength for a radiative transition from the ground state, the Fourier transform of 

bf (t) is proportional to the spectral lineshape of that state.22 In this case, the 

Fourier transform will give a Lorentzian lineshape with a fwhm of rf /2. 

A useful approximate expression for the rate rf may be derived from Eq. (2.25) 

and is given by an average of the squared coupling elements over a unit normalized 

Lorentzian distribution function L(.b..Ei; (rQ)). That is, 

Nq 

rf ~ 211" I: 1vi~p 12 
L(t:..Ei ; (rQ)) (2.27) 

i=l 

where 
1 1rQ) 

L ( t:..E, ; (rQ)) = \ 
21r t:..E[ + ( (rQ) /2) 2 (2.28) 

The Q-state widths r~ in Eqs. (2.22) and (2.25) have been replaced in Eqs. (2.27) 

and (2.28) by the average Q-state width 

(2.29) 

where the quantity ( (IVQQ' 12 )) is explicitly written as 

(2.30) 

This "double" average is simply the average of all of the squared coupling elements 

in the yQQ' Hamiltonian matrix sub-block. Equations (2.27)-(2.30) are expected 

to give a good approximation to Eq. (2.25) when there are many non-zero matrix 

elements between the Q- and Q' -spaces, 

For a dense set of Q states and very weak coupling between the Q and Q' 

subspaces, the usual Golden Rule decay rate may be obtained by first converting 

Eq. (2.27) into an integral: 

(2.31) 
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If the EQ-dependent term (lv?P(EQ)l
2

) is replaced by its average (IV?Pl 2
) over 

all couplings between the P- and Q-space states, one obtains 

(2.32) 

For weak Q - Q1 couplings, the width (rQ) of the Lorentzian function [Eq. (2.28)] 

is sharply peaked about D.E = 0 (Le., EQ = (H)). Therefore, the usual Golden 

Rule expression is obtained as the approximate result: 

(2.33) 

It is expected, however, that in a realistic system the Q-space will not be particu­

larly dense and will also have significant couplings to the Q' -space. 

It is also possible to generalize the present results to include more than one 

state in the P-manifold. This case is important when there are a few basis states, 

including the initial state, that are strongly coupled together, or when the initial 

excitation forms a linear combination of basis states. The suitably generalized forms 

of Eqs. (2.23)-(2.25) are given by 

. dbf (t) 
i dt 

Np 
~ fuP Ju\>:., , AP .-·T'IP '2\ bP1 .. , 

,...,, L,., \"• ... jj' - \.L.I. / UJ3' T ~ii' - u. ii' I ) i' l c) 

j'=l 

(2.34) 

where Hfj, are Hamiltonian matrix elements for the P-space, and the generalized 

shifts and widths are given respectively by 

and 

t>,°f., n 

ri:., = 
JJ 

Nq 

I: (2.35) 
i=l 

Nq 

I: (2.36) 
i=l 

Coupled differential equations of this form can give rise to such interesting behavior 

as biexponential decay of the initial state probability. 
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In the next section, a rigorous result which simplifies the numerical evaluation 

of Eqs. (2.25), (2.27), (2.35)i and (2.36) will be derived. 

III. AVERAGE MATRIX ELEMENTS 

A calculation of the two approximate results for the decay rate of the initially 

prepared "P" state [Eqs. (2.25) and (2.27)] is a relatively straightforward matter 

except for the evaluation of the quantities r? and (rQ), respectively. More s:pecif­

ically, in a typical calculation one can probably determine the "P" initial state, 

the "Q" states that are coupled to the initial state, and the value df the coupling 

elements between the P and Q states. However, depending on which approximate 

result one uses, the widths r? or (rQ) of the Q-space states l<p?) must also be 

explicitly calculated. These quantities involve a calculation of, in the former case, 

the average [cf. Eq. (2.22)] 

(3.1) 

and, in the latter case, the further average [cf. Eqs. (2.29)-(2.30)] 

(3.2) 

The coupling elements in Eqs. (3.1) and (3.2) describe the couplings between the 

zeroth-order Q-space states l<p?) and the many prediagonalized Q'-space states. 

As mentioned before, in order to calculate each of the Q - Q' .matrix elements indi­

vidually requires that one actually prediagonalize the entire Q' -space Hamiltonian 

to find the Q' -space eigenvectors. This is clearly a difficult, if not impossible, task 

for any large molecule. It is therefore important to consider in more detail the 

explicit expression for the averages in Eqs. (3.1) and (3.2). 
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The explicit form of the prediagonalized Q'-space wavefunction l'l/1~
1

) is given 

by 
Nq1 

1-iP~') = L Unkl'P~
1

) l (3.3) 
n=l 

where {jcp~
1

)} is the Q'-space zeroth-order basis, and the coefficients Unk contain 

the overlaps ( cp~1 1-iP~'). The matrix: U contains a column of coefficients U nk for 

each state 1-iP~') and diagonalizes the Q'-space Hamiltonian sub-block HQ': 

(3.4) 

In this equation, the diagonal matrix EQ' contains the prediagonalized Q' -space 

energies E~
1 

• 

By virtue of Eq. (3.3), the expression for the matrix element which couples the 

Q-space state lip?) to the prediagonalized Q1-space state 1-iP~') is found in terms 

of the zeroth-order basis to be 

(3.5) 

where v~Q' is the matrix element ( <p? IV lip~') between zeroth-order states. The 

absolute value squared of this matrix: element may be written as 

(3.6) 

In order to calculate the approximate Q-space widths m Eq. (2.22), one 

evaluates Eq. (3.1). However, by using Eq. (3.6), this equation can be written 

more explicitly as 

(3.7) 



- 125 -

Equation (3. 7) may be easily rewritten as 

where 

1 

Nq1 

Nq1 

Anm = L UnkUkm . 
k=l 

(3.8) 

(3.9) 

Since U is the unitary transformation matrix that diagonalizes HQ' [cf. Eq. (3.4)], 

it is easy to show that Anm equals the Kronecker delta Onm. Hence, 

(3.10) 
n=l 

where (lv~Q
1

1 2 ) is the average coupling element between the zeroth-order Q-space 

state jcp?) and the zeroth-order Q'-space states {lcp~')}. This result significantly 

simplifies the evaluation of Eqs. (3.1) and (3.2) and hence the application of the 

present theory because no diagonalizations are now required in order to calculate 

the relevant quantities in Eqs. (2.23)-(2.36). 

IV. DISCUSSION 

The present theory is most useful when detailed theoretical information is avail­

able regarding the initial state, those "first tier" states that are coupled directly to 

the initial state, and the magnitudes of the couplings between them. Given that 

knowledge, the approximate result in Eq. (2.27) for the IVR decay rate is particu­

larly useful for a comparison with experiment. That is, the experimental decay rate 

could be fit to a function of the form given in Eq. (2.27), provided one could calcu­

late theoretically the Q-P couplings Vi~P. The "intramolecular width" parameter 

(rQ) could then be determined from the combined experimental and theoretical 
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results. Alternatively, one could evaluate (rQ) [Eqs. (2.29) and (2.30)] directly 

from the zeroth-order matrix elements and an estimate23 of PQ' ( (H)), calculate the 

decay rate [Eq. (2.27)] using the theoretical value for (rCJ), and then compare the 

result with the experimental value. 

By virtue of its form, the parameter (rQ) [Eq. (2.29)] provides valuable in­

formation regarding the degree of coupling (or mixing) among the intramolecular 

"bath" states. It is also interesting to note that the additional parameter (rQ) PQ~, 

where Pq~ is the average density of Q'-space states over the width (rQ), gives an 

estimate of the total number of Q' -space bath states that participate in the IVR. 24 

A comparison of the value of (rQ)PQ~ with the total density of states at the mean 

energy (H) of the initial state [P( (H))] provides information regarding the degree 

to which interactions with off-resonant states (i.e., with energies Ei -:I (H)) are 

important (see, e.g., Ref. 11). It should be mentioned that (rQ) is not the homo­

geneous spectral linewidth12•13 of the initial state. Rather, (rCJ) reflects properties 

of the intramolecular bath states. 

The approximate formulas for the decay rate [Eqs. (2.25) or (2.27)] also suggest 

the possibility of bottlenecks in the flow of probability out of the initial state. In 

particular, if the energies EfJ of the Q-space states are outside of the intramolecular 

width (rQ) of the initial state, then the exponential decay rate is diminished. 

This effect is shown more clearly by considering the relative contributions orf 
to the rate in Eq. (2.27) from a state jcp~) which is degenerate with the initial 

state, and from a state Jcp?) which is outside of the intra.molecular width (i.e., 

IEi - (H) I = IAE,;I ~ (rQ)/2 ). It may be shown that the ratio of these state's 

contributions to the decay rate is given by 

(4.1) 

Thus, the contribution. to the decay rate for first tier (Q-space) states outside of 

the width (rCJ) diminishes rapidly with increasing energy difference AEi. 
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On the other hand, Q-space states !So?) that are within the intramolecular 

width (rQ) can contribute considerably to the initial state's decay rate. In that 

case (i.e., .6.Ei ~ (rQ) /2), it can also be shown that those state's contributions to 

the decay rate are insensitive functions of their zeroth-order energies. The relative 

contributions srr and sr5 to the initial state's decay rate are found to be given 

in this case by 

1vi~Ql2 
,....., 

1v,~Ql2 
(4.2) 

where all quantities are as defined in the previous paragraph. For states with 

.6.Ei ~ (rQ) /2, it is clear from Eq. (4.2) that those state's contribution to the 

rate is only weakly <J.ependent on their energy. For a typical large molecule, 13 (rQ) 
may be on the order of 10-100 cm-1, so Eq. (4.2) raises some interesting questions 

concerning the reievance of different energy level distributions25 to IVR rates. 

The present theory may also be applied to calculate the decay rates of the C-H 

overtone states in benzene. 13 By using the theoretical values for the energy differ­

ences .6.Ei and coupling elements Vi~P given by Sibert et al., 13 the decay lifetimes 

(= n/rf) of the vcH = 5, 6, and 9 overtones were calculated from Eq. (2.27) to be 

0.065, 0.052, and 0.154 ps, respectively. The values calculated numerically by Sib­

ert et al. were 0.062, 0.067, and 0.160 ps, respectively. In the present calculations, 

a value for (rQ) of 100 cm-1 was used for calculating the v = 5 and 6 overtone 

lifetimes, while a value of 150 cm- 1 was used for the v = 9 overtone. These widths 

were taken to be the same as the phenomenological decay widths used in the de­

tailed time-dependent calculations of Sibert et. al. The agreement between the two 

sets of results is quite encouraging. By using a value of 150 crn- 1 instead of 100 

cm- 1 for (rQ) in Eq. (2.27), the v = 5 and 6 overtone lifetimes were calculated to 

be 0.064 and 0.063 ps, respectively. (The widths used by Sibert et al. should not 

necessarily be the same as (rQ), but it is expected that these two numbers should 

be reasonably close in value.) 
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V. CONCLUDING REMARKS 

In Eqs. (2.25) and (2.27), approximate results have been given for the exponen­

tial IVR decay rate of an initially prepared zeroth-order state in a large polyatomic 

molecule. In addition, the appropriate generalized coupled equations for several 

strongly coupled states are given in Eqs. (2.34)-(2.36). The derivation of these 

approximate results was based on a partitioning of the zeroth-order Hilbert space 

into three subsets which are, respectively, the initial state ("P"), those states which 

are directly coupled to the initial state ( "Q"), and all remaining states ( "Q' "). 

The procedure of adiabatic elimination 15•16 was then used on the Q' -space am­

plitudes to simplify the coupled differential equations for those states. By treating 

the Q' -space states as being prediagonalized, the appropriate sum over Q' -space 

states in Eq. (2.10) was treated as a contour integral [cf. Eq. (2.11)], and the decay 

width r? due to the "background" Q'-space states [Eq. (2.22)] was obtained. By 

virtue of an expansion [Eq. (2.20)] and the subsequent adiabatic elimination of the 

Q-space states from the coupled equations, the approximate decay rate rf for the 

intial P-space state was derived [Eq. (2.25)]. [An approximation given in Eqs. 

(2.27)-(2.29) further simplified the result for rf .] In Sec. III, it was also demon­

strated that no prediagonalization of the Q' -space states is necessary in order to 

determine the relevant decay widths in the present theory. 

The approximate results for the IVR decay rate rf [Eqs. (2.25) or (2.27)] are 

more detailed in form than the usual Golden Rule expression [Eq. (1.1)]. This fact 

is because the matrix elements for the first tier Q-space states that are directly 

coupled to the initial state are treated explicitly. Nevertleless, no diagonalizations 

of matrices or integrations of coupled equations are required in the present theory 

[unless desired: cf. Eqs. (2.34)-(2.36)]. In addition, the value of the intramolecular 

width (rQ) in Eq. (2.29) is a potentially useful parameter which may be calculated 

by averaging matrix elements [cf. Eq. (2.30)] or, more importantly, by comparison 

with experimental results. 
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son and K. A. Holbrook, Unimolecular Reactions (Wiley, New York, 1972), p. 

131]. 

(24) The parameter (rQ)Pq~ is somewhat different from, but related to, the param­

eter N employed by Dolson, et al. (Ref. 11). The latter parameter, defined 

as 2n(V11~)i2 , is based on a model having an initial state l'Pa) coupled to a 

single tier of l'Pt) states with an average density p. The parameter N provides 

a measure of the number of lcp1) states that participate in the IVR of the l'Ps) 

state. To the extent that we view the lcpz) states as being the prediagonal­

ized bath states (i.e., Q + Q' states), these two parameters should have similar 

interpretations. 

(25) For a review, see Eo R Stechel and E. J. Heller, Annu. Rev. Phys. Cherri. 35, 

563 (1984). 
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Appendix I: Adiabatically Reduced Coupled Equations for Non-orthogonal 

Basis Sets 

For certain applicationsj it may be desirable to use a non-orthogonal basis set 

expansion of the time-dependent wave function,* i.e., 

N 

jw(t)) = exp(-i (H) t) L bi(t) l<pi) , (I.1) 
i=l 

where 'Ii equals unity, and (H) is the expectation value of the energy for the initial 

state. This expansion is similar to that given in Eqs. (2.1) and (2.3) of Chapter 5, 

except that now the overlaps (<pij<pj) equal a value Sij rather than the Kronecker 

delta 8ii· 

By substituting Eq. (I.I) into the time-dependent Schrodinger equation and 

multiplying from the left by exp(i (H) t) (<pjl, the following coupled equations for 

the amplitudes bi(t) are obtained: 

d 
iS dt b(t) = (H - (H) S)b(t) , (I.2) 

where H is the Hamiltonian matrix represented in the non-orthogonal basis {l<pi) }, 

b(t) is a vector containing the amplitudes bi(t), and S is the overlap matrix com­

posed of the elements Sij· The initial conditions for Eq. (I.2) are given by the 

vector b(O) = s-1a(O), where the vector a(O) has the elements ai(O) = (<p£17/l(O)). 

Equation (I.2) may be rewritten as 

i :t b(t) = (A - (H) l)b(t) , (I.3) 

. where the matrix A is defined as s- 1H. The matrix A determines the time evo­

lution of the non-orthogonal basis state amplitudes b(t) in the same way that H, 

when represented in an orthogonal basis, determines the state amplitudes in the 

* See, for example, T. J. Park and J.C. Light, J. Chem. Phys. 85, 5870 (1986). 
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theory of Chapter 5. In the present instance, therefore, a partitioning of the state 

amplitudes into resonant/strongly coupled and off-resonant/weakly coupled sub­

spaces may be performed based on an examination of the elements of the matrix 

A relative to the value of the initial state energy (H) (cf. Chap. 5). The adiabatic 

treatment of Chapter 5 may then be utilized by taking care to use the partitioned 

matrix A rather than present H (which is represented in a non-orthogonal basis). 

It is hence a relatively straightforward matter to adapt the theory of Chapter 5 to 

treat non-orthogonal basis sets. 
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Appendix II: Iteratively Determined Effective Hamiltonians for the Adi­

abatically Reduced Coupled Equations Approach to Intramolecular Dy­

namics Calculations 

[The text of this Appendix appeared in: S. J. Klippenstein, G. A. Voth, and R. A. 

Marcus, J. Chem. Phys. 85, 5019 (1986).] 
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Iteratively determined effective Hamiltonians for the adiabatically reduced 
coupled equations approach to intramolecular dynamics calculations 

Stephen J. Klippenstein, Gregory A. Voth, and RA. Marcus 
Art~ur A_mos Noyes Laboratory of Chemical Physics, California Institute of Technology,"' Pasadena, 
California 9 I 125 

(Received 20 June 1986; accepted 22 July 1986) 

An iterative procedure is proposed for determining increasingly accurate effective 
!familtonians for use in the adiabatically reduced coupled equations approach to 
mtramolec~l~r dynamics calculations [ J. Chem. Phys. 84, 2254 ( 1986)]. The relationships 
between this 1terat1ve determination of the effective Hamiltonian, which is based on an 
adiab_atic ~pproxin:iation, and some other partitioning methods for determining an effective 
Hamiltoman are_d1scussed. The present iterative procedure provides accurate agreement with 
the exact dynamics for the two specific model systems studied. 

I. INTRODUCTION 

In recent years, there has been considerable theoretical 
and experimental interest in the quantum dynamics of ini­
tially prepared nonstationary states in isolated polyatomic 
molecules. More specifically, the time-evolution of initially 
prepared states resulting from vibronic, 1 vibrational, 2 and 
rovibrational3 coupling mechanisms is of particular interest. 
The "exact" treatment of the dynamics of these states re­
quires, in typical situations, the numerical diagonalization of 
a Hamiltonian matrix having a very large number of basis 
states. Since there are, at present, computational limitations 
on the size of matrices which can be diagonalized, methods 
which reduce the size of the Hamiltonian matrix to be dia­
gonalized, or, alternatively, new methods for determining 
the quantum dynamics, 4 must be developed. 

By virtue of clever numerical methods, several authors 
have been able to increase the number of basis states which 
may be included in a typical calculation. For example, Nauts 
and Wyatt5 have developed the recursive residue generation 
method ( RRG M) to determine the relevant time-dependent 
transition amplitudes directly without requiring the diagon­
alization of the Hamiltonian matrix. Moreover, Tietz and 
Chu, 6 as well as Chang and Wyatt, 7 have implemented artifi­
cial intelligence algorithms in their studies of multiphoton 
excitation of molecules which allowed them to consider a 
large number of basis states and then to include in their dy­
namical calculations only those states which had the largest 
effect on the dynamics. These methods represent potentially 
quite powerful numerical approaches for obtaining the dy­
namics of nonstationary states. 

Recently, Voth and Marcus8 have developed an ap­
prox_imate dynamical approach which is based on a parti­
tioning8·9 of the basis set into a subset of states which are 
resonant and/or strongly interacting with the initial state, 
and a subset of states containing the remaining off-resonant/ 
weakly coupled states. 8 Their approach then treats the off­
resonant/weakly coupled states in an effective manner by 
virtue of an adiabatic approximation. This latter method 

"Contribution No. 7434. 

also allows one to determine the dynamics directly by inte­
grating the effective coupled equations and hence does not 
rely on a calculation (and computer storage) of the eigenval­
ues and eigenvectors of the system. 

In this article, an iterative scheme is applied to the adia­
batically reduced coupled equations approach of'Voth and 
Marcus. 8 With each iterative step, new effective coupled 
equations for the resonant/strongly coupled subspace are 
obtained, and hence a new effective Hamiltonian is derived. 
If the initial adiabatic approximation is a good one (cf. Dis­
cussion in Ref. 8), the resulting dynamics calculated from 
the effective coupled equations exhibit accurate agreement 
with the exact dynamics. 

The derivation of the reduced coupled equations is re­
viewed in Sec. II and the iterative scheme is presented there. 
In Sec. III the present time-dependent method for determin­
ing the effective coupled equations is shown to be related to 
the iterative solution of an equation for the effective interac­
tion in nuclei derived from a time-independent viewpoint by 
Schucan and Weidenmiilier. '0 The relationship of the pres­
ent effective Hamiltonian to that given by Lee and Suzuki 11 

and to the partitioning formalism of Lowdin 12 is also dis­
cussed in Sec. III An application of the effective coupled 
equations to two model problems is given in Sec. IV, and the 
results are discussed in Sec. V. Concluding remarks appear 
in Sec. VI. 

II. THEORY 

A. Coupled equations 

The time-dependent wave function (in atomic units) is 
expanded as8·13 

N 

jlfl(t)) =exp( -i(H)t) I b1 (t)j<p1), (1) 
i=l 

where the basis states j<p1 ) are eigenfunctions of a suitably 
chosen zeroth-order Hamiltonian H0 , and (H) is the expec­
tation value of the total Hamiltonian H( = H 0 + V), de­
fined as (H) = (lfl(t) IH jW{t) ). By substituting this expan­
sion for jlfl{t)) into the time-dependent Schrodinger 
equation and using the orthonormal properties of the { jcp,)} 

J. Chem. Phys. 85 (9). 1 November 1986 0021-9606/86/215019-08$02.10 © 1986 American Institute of Physics 



-137-

basis, the following coupled first-order differential equations 
for the amplitudes b, (t) are obtained: 

db (t) N 

-
1-=i(H)bj(t) -i I HAU>' (2) 
dt i= I 

whereH1, = (.p1 1Hlcp,). 
The zeroth-order basis is now partitioned into a subset 

of states which are nearly resonant with and/or strongly 
coupled to the initial state and another subset containing all 
remaining off-resonant/weakly coupled states. The coupled 
equations may then be written in vector-matrix notation as8 

!£bR(t) =i((H)lR-ffR)bR(t)-zVR°bO(t), (3) 
dt 

!£ b0(t) = i((H)1°- H 0 )b0(t) -1V0RbR(t). (4) 
dt 

By denoting the dimension of the resonant/strongly coupled 
subspace by NR and the off-resonant/weakly coupled sub­
space by N 0 , the quantities in Eqs. ( 3) and ( 4) are defined as 
follows: J;R(t) [b0 (t)] is an NR (N0 )-dimensional column 
vector containing the amplitudes for the resonant ( off-reso­
nant) states, 1R(1°) is theNR XNR (N0 XN0 ) identity ma­
trix, ffR(H0

) is the N,R XNR (N0 XN0 ) Hamiltonian sub­
matrix for the resonant (off-resonant) states, and VR0( v0R) 
is theNR XN0 (N0 XNR) coupling matrix between the two 
subspaces. 

Et Iterative scheme for the effective coupled equations 

The adiabatic approximation given in Ref. 8 was based 
on the physical property that the off-resonant amplitudes 
b0 (t) will remain negligibly small during the time evolution 
and hence the derivatives db0 (t)/dt in Eq. ( 4) are effective­
ly equal to zero. The validity of this approximation depends 
on the partitioning scheme, and the reader is referred to Ref. 
8 for further details in that regard. With the approximation 
of db0 (t)/ dt-:::::0, which hereafter will be termed the "zeroth­
order" approximation, effective coupled equations for calcu­
lating the dynamics of the resonant amplitudes may be de­
rived. 8 It will be shown here how increasingly accurate 
higher-order effective coupled equations can be derived iter­
atively by obtaining improved approximations for the off­
resonant derivatives in Eq. ( 4). 

Equation ( 3) can be rewritten in the form 

VR°b0 (t) = i!£ bR(t) + ((H)lR - HR)bR(t) (5) 
dt 

and Eq. ( 4) can also be rearranged to give 

b0 (t) = -i((H)1° -H0 i-•!£ b0 (t) 
dt 

+((H)10-Ho)-1VoRbR(t). (6) 

As a metioned before, the zeroth-order adiabatic ap­
proximation used in Ref. 8 was 

·d bo(t)-:::::0, 
dt 

which, when substituted into Eq. ( 6), yields 

bo(t)=:::((H)lo _ Ho)-1VoRbR(t). 

(7) 

(8) 

Substitution of this expression for b0 (t) into Eq. ( 3) gives 

d bR R R - (t)=::: - iHetl'O b (t), 
dt . (9) 

where the zeroth-order effective Hamiltonian is given by 

H~«.o =HR - (H)1R + v1'°((H)10 _ Ho>-•voR. 

( 10) 

An iterative formula for the general nth-order effective 
Hamiltonian, H~ff.n• may be derived as shown below, for 
which the corresponding coupled equations are given by 

dbR R bR - (t)=::: - iHetl'n (t)' ( 11) 
dt . 

where 

H~ff.n = (1R+F- 1 (H~ff.n-1 + (H)1R-HRl]- 1 H~ff.O 
(12) 

and 

F-' = yRo((H)lo- Ho)-1(VR0)-'. ( 13) 

Equations ( 11 )-( 13) constitute the central result of the 
present paper. 

To derive Eqs. (l l)-(13), Eq. (5) is first rewritten as 

bo(t)=:::(VRO)-l(H~ff.n - l + (H )lR - HR\bR(t)' 
(14) 

where (VR 0
)-

1 isa "left" inverse, andidbR(t)/dt in Eq. (5) 

has been taken to be equal to H~ff.n _ 1 bR(t) (i.e., it is taken 
from the previous iteration). For example, the first-order 
approximation to b0 (t) is obtained by replacing idbR(t)/dt 
in Eq. (5) by H~«.obR(t). By taking the derivative of Eq. 
( 14) and then substituting the resulting expression for 
db0 (t)/dt into Eq. (6), an approximation for b0 (t) is ob­
tained, namely 

b0 (t)=::: - i((H)1° - H0)-'(VRO)-'(H~ff.n _ 1 

+ (H )1R - HR)!£ bR(t) 
dt 

+ ( (H )10 - HO)- lVORbR(t) . (15) 

Substitution of Eq. ( 15) for the off-resonant amplitudes into 
Eq. (3) and collecting the terms for dbR(t)/dt yields the 
nth-order effective coupled equations given by Eqs. ( 11 )­
(13 ). 

The present iterative procedure can be repeated ad in­
finitum to give, in principle, better and better approxima­
tions to the off-resonant amplitudes and hence to give more 
and more accurate effective coupled equations. However, 
the accuracy of the coupled equations determined from this 
procedure depends crucially on how good the initial choice 
for the time derivatives of the off-resonant states is. (This 
choice was zero in the present case.8

) When the initial ap­
proximation for those derivatives is not a sufficiently accu­
rate one, the iterative procedure may give qualitatively in­
correct results for the dynamics. From the nature of the 
iterative formula, it is clear that the convergence properties 
depend very much on the "magnitude" of VR0 (or v0 R) 
relative to the magnitude of ( (H) 1° - H 0

). 
8 

The following notation is introduced here to simplify 
the expressions for the effective Hamiltonians: 

Vo =H:ff.o• 
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V,=VRo((H}10-Ho)-u+1iyoR, i)L (16) 

For example, the first-order effective Hamiltonian is now 
given by 

H~tr.1 = [1R + yRo((H)lo- Ho)-2yoR 1- 'H~tr.o 

= (lR + V 1 i-•v0 , (17) 

and the second-order effective Hamiltonian by 

H~tr.2 = (1R+V 1 -V2 (1R+V1 )-'Va]-'Va. (18) 

C. Expansions of the effective Hamiltonian 

The effective Hamiltonian determined from the present 
iterative procedure may be expanded in various ways. For 
example, due to computational limitations, it may not al­
ways be desirable to invert the matrix ( (H) 1° - H 0

) pres­
ent in V, [Eq. ( 16) ]. In that case, the following expansion 
could prove useful (e.g., Ref. 12, with (H) replaced by an 
energy eigenvalue E): 

((H)lo-Ho)-1 = ((H)lo-Eo)-1 

00 

X L [Vo((H}lo-Eo)-']", 
n=O 

(19) 

where the matrix H 0 has been separated into E0 + V 0
, with 

E0 containing the diagonal elements of H 0 and V 0 contain­
ing the off-diagonal elements of H 0

. Since the matrix 
( (H) 1° ....:. E0

) is a diagonal matrix and thereby trivial to 
invert, each of the terms in the expansion may be straightfor­
wardly evaluated. 

Another expansion which may prove useful is a series 
expansion in powers ofV, [cf. Eq. ( 16), and see, e.g., Ref. 
10]. For example, the series expansion of H~ll'.z in powers of 
V, is given by 

H~tr.2 = m~o [ V2 .t ( -V1 )"Va - V, rVa . (20) 

With the further definition of 

(21) 

the second-order effective Hamiltonian may be rewritten as 

H~tr.2 = (lR - ViVb)-'Vb. (22) 

A final series expansion which may prove useful is one in 
powers ofV; (see, e.g., Ref. 10), which for H~tr.z is given by 

00 

H~tf.2 = I cv; v; i·v; . 
n=O 

Ill. RELATIONSHIP TO OTHER PARTITIONING 
TECHNIQUES 

(23) 

The relationship between the present time-dependent 
me~hod for determining the effective coupled equations, and 
hence the effective Hamiltonian, and some time-indepen­
dent methods w-• 2

• 14-
16 for determining eigenvalues using ef­

fective Hamiltonians is discussed next For the purpose of 
comparison, the preceeding dynamical analysis of Sec. II B 
may be viewed as a complementary way of determining an 
effective Hamiltonian, although the focus of the present pa-

per is towards a determination of the dynamics rather than 
the eigenvalues. 

Several authors (e.g., Refs. 10, 11, 14-16) have used 
partitioning techniques to construct an effective interaction 
Hamiltonian for the determination of a subset of energy lev­
els in nuclei. A summary of the work in this field is given in 
Ref. 16. One frequently used formula for determining the 
effective interactions is the Des Cloiseaux and Brandow ex­
pansion, 14

•
15 given in the present notation 17 by 

HR =HR -A. 1R + f -.!!:__yRo(Elo- Ho)-1 
elf .£:a (dE)" 

xV0
R I ..!..cH~trl 0 • (24) 

E~,i n! 
In this equation, the quantity A. is taken to be a general pa­
rameter which should, in principle, be chosen to give the best 
agreement between the eigenvalues of the effective Hamilto­
nian and the corresponding eigenvalues of the exact Hamil­
tonian. For a nondegenerate resonant subspace~ deciding 
upon the appropriate choice of A. is nontrivial. 17 Following 
our analysis in Ref. 8, we make the choice A. = (H), since it 
gave the most accurate effective coupled equations for calcu­
lating the resonant state dynamics. The relationship of the 
effective Hamiltonians determined by the present iterative 
scheme to those determined by previous authorsia- 12

·
1
4-

16 

can also be shown, noting that we have replaced their A by 
our (H). 

Schucan and Weidenmiiller 1a (SW) have considered 
the application of partitioning techniques to the determina­
tion of energy levels in nuclei. SW derived the following 
equation for the effective interaction 17

: 

H~tr =[IR+ F- 1 cH~jf +A. IR - HR)] -•va, (25) 

where this F- 1 denotes VR 0 (A. 1°- H 0
)-

1(VR 0
) 

1
, and 

Va is given in terms of A. by HR - A 1 R 

+ vR0 (A. 1° - H 0 )- 'V0
R. This equation is equivalent IO to 

the implicit equation for H~ff given by the Des Cloiseaux and 
Brandow expansion [Eq. (24) ]. Comparison of Eq. (25) 
above for the SW effective interaction with Eq. ( 12) for the 
present nth-order effective Hamiltonian shows that H~tr.n is 
just the nth iterative solution to Eq. (25), with the specific 
choice of A.= (H ). SW discuss solving Eq. (25) iteratively, 
and, by making expansions in powers of V,'s or v;·s, they 
derive series expansions for the effective Hamiltonian which 
are similarly related to nth order forms of Eqs. (20) and 
( 23) by making the choice A = (H). Discussions of the co­
vergence properties of the eigenvalues of the unexpanded 
and various expanded forms of the effective Hamiltonians 
are given in Refs. 10, 11, and 14-16, for example. 

Recently, Lee and Suzuki" have derived an iterative 
formula for an effective Hamiltonian H" for use in obtaining 
the eigenvalues in the case of a degenerate subspace. This 
formula, generalized to the case of a nondegenerate sub­
space, 16·17 is given in the present notation [Eq . .(16)] by 

Ho =Va, 

H.=[1R+V1- ± (-)mVm TI Hk-1] 
m 2 k=n-m+2 

n)l, (26) 
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with V 0 given as in the expression following Eq. ( 25) and 
with the V,'s for i> 0 given by Eq. (16) and having the (H > 
replaced by A.. In Appendix A, it is shown that the present 
H:w .• is equivalent to the nth-order effective Hamiltonian 
H. of Lee and Suzuki, 11 given by Eq. ( 26), once the specific 
choice of A = (H ) is made. 

The eigenvalues obtained from the present iterative 
scheme for the effective Hamiltonian are also related to the 
Newton-Raphson technique for determining the eigenval­
ues for the exact partitioned Hamiltonian of Lowdin. 12 The 
exact partitioned Hamiltonian is given in the present nota­
tion by8 

H:xact =HR+ vRo(Elo-Ho)-1voR, (27) 

where the constant factor - (H) lR has been omitted. The 
eigenvalues are then determined by solving the secular equa­
tion 

(28) 

which, due to the dependence ofH:,ac, on E, may require the 
use of a root search technique such as the Newton-Raphson 
method. 12 

The relationship between the Newton-Raphson solu­
tion to the above secular equation and the present effective 
Hamiltonian method may be established in the case of a one­
dimensional resonant subspace. In this situation, the expres­
sion for the eigenvalue derived from the first-order effective 
Hamiltonian is identical with the expression derived from 
the first iteration of the Newton-Raphson method with the 
initial guess for E of (H}. However, the relationship between 
the higher-order effective Hamiltonians and further itera­
tions of the Newton-Raphson method (as well as for reso­
nant subspaces of dimension greater than one) requires 
further investigation. 

The effective Hamiltonian method for determining 
eigenvalues is also related to various other formulations of 
degenerate or nearly degenerate perturbation theory. These 
relationships are not as relevant to the dynamical analysis of 
the present paper and will not be discussed here. Further 
discussions in that regard are given in Refs. 18 and 19. 

IV. APPLICATIONS 

In order to illustrate the possible applications of this 
technique and the accuracy of the effective coupled equa-

~ 
w z 
w 
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FIG. l. A schematic diagram of the four-state model system used in Sec. IV. 
Dotted lines denote the couplings between the zeroth-order states, and j.p 1) 

is the initial state. 

tions, two model systems are considered here. The zeroth­
order energy levels and couplings for the first system studied 
are depicted schematically in Fig. 1. The four basis states for 
this system are separated into two resonant states lq:i,) and 
lip2 ) and two off-resonant states lip3 ) and lq:i4 }. The state 
lip 1 ) is taken to be the initially prepared state. This effective 
two-level model has features in common with the energy 
transfer dynamics of the local mode states in a model of 
H20.8•20 In the present model, the relevant matrix elements 
are given by HR =E11R.H?,=E1 +A..Hf2 =Hf1 = V2, 

and V~0 = v~R = Vloij. 
By using the formulas for the zeroth- and first-order 

effective Hamiltonians given in Eqs. ( 10) and ( 17), the fol­
lowing analytic result for the time-dependent probability 
P1 (t) of the initial zeroth-order state is obtained: 

where the zeroth- and first-order effective frequencies !10 

and ft 1 are given, respectively, by 

(30) 

n.
1 
= 12(1::..2 

- Vil{[ CA.2 
- Vi )2 +Vi (A2 + Vi)] Vi V2 - 2A.2 Vi v2} I 

[ (A.2 
- Vi) 2 + Vi (A.2 + v~) ]2 - 4A2 Vi Vi 

(311 

An analogous analytical formula for the second-order effec­
tive frequency 0.2 can be obtained from Eq. ( 18), although it 
is omitted here for brevity. The "exact" frequency2' which 
would appear instead of n., in Eq. ( 29) is denoted below by 
ft. 

The time evolution of P, {t) is plotted in Fig. 2 for the 
exact, zeroth-, and first-order coupled equations. The pa­
rameters used in making this plot were V1 = - 43.9, 
V2 = - 50.6, A= 337.7 cm- 1

• For these parameters, the 
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w 

~ 
UJ 
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FIG. 2. Initial state probability P, (t) for the model system shown in Fig. I, 
with A= 337.7, V, = -43.9, and V, = -50.6 cm-•. The exact results 
are given by the solid line, the zeroth-order results by the long dashed line, 
and the first-order results by the short dashed line. 

values of !10 , il 10 and !12 were calculated to be 1.7495, 
1.6588, and 1.6614 cm - 1

, respectively, while the result for 0. 
is 1.6613 cm- 1

• In Fig. 3, the initial state probability P 1 (t) is 
plotted once again, but now for the exact, zeroth-, and sec· 
ond-order coupled equations, and with the zeroth-order de­
tuning Ii decreased to 150 cm - 1

• In this case, the values of 
!10, !1 1, and !12 were calculated to be 9.781, 7.056, and 7.481 
cm- 1

, respectively, while the result for !1 is 7.426 cm - 1
• In 

Table I, the resonant subspace eigenvalues for the above two 
sets of parameters, as calculated from the exact, zeroth-, 
first-, and second-order effective Hamiltonians, are given. 

The second model system considered consists of 55 basis 
states, with the resonant subspace having 10 states and the 

10~~~~~~~~~· 

( \ j ! . , I : , :J.'.1 

• ' 11 /' ! I i '\ ~ :' I fi:ii\i 
: ·:,11'1 11 I 1 f'! ,11:' , 1;j1:.111~i111, 
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1 I: i, ii :H I~: . 
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1 f 'i I '\' U \.~.v I . . \ r ·: :' :1 ! 
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4 8 Q 

TIME (psi 

FIG. 3. Initial state probability P, (t) for the model system shown in Fig. I, 
with A= 150.0, V1 = -43.9, and V, = 50.6 cm-•. The exact results are 
given by the solid line, the zeroth-order results by the long dashed line, and 
the second-order results by the short dashed line. 

TABLE I. Eigenvalues for the resonant subspace in the four-state model 
system. 

IJ.• Exact Second First Zeroth 

337.7 - 6.562 66 -6.562 74 - 6.559 32 - 6.712 68 
- 4.901 33 - 4.901 34 -4.900 56 - 4.963 20 

150.0 - 16.612 14 - 16.667 92 - 16.223 89 - 19.388 43 
- 9.186 53 ·- 9.187 33 - 9.168 14 - 9.607 23 

'The other parameters in the four-state model were V, = - 43.9 and 
V, = - 50.6 cm-•. All units are in cm-•. 

off-resonant subspace having 45 states. The initial state ener­
gy Hf, was arbitrarily set equal to zero and all the other 
diagonal elements of HR were chosen to have random values 
between ± 10 cm - 1

• The diagonal elements ofH0 were cho­
sen randomly within the limits - 55.;;;H~ < - 10 cm- 1 and 
10.;;;H~,.;;55 cm- 1

• The off-diagonal elements of HR, H 0
, 

and all the elements ofVR0 and v0 R were chosen randomly 
to be between ± 2 cm - 1

• These matrices were made to be 
Hermitian. The initial state probability P, (t) as calculated 
by the exact, zeroth-, and first-order coupled equations is 
plotted in Fig. 4 for this system. In Table II, the eigenvalues 
for the resonant subspace, as calculated from the exact Ham­

. iltonian, and the zeroth- and first-order effective Hamilto­
nians, are given. 

The probabilities in Figs. 2-4 obtained by integration of 
the effective coupled equations are seen to remain somewhat 
above the peaks and valleys of the exact probability curves. It 
is perhaps desirable to have the effective probability curves 
follow the "average".ofthe exact curves. For this purpose, a 
correction factor fR, derived in Appendix B, may be used. 
This factor takes into account the small fraction of probabil­
ity remaining, on the average, in the off-resonant states (cf. 
Appendix B) and is given by 

:I:. " " 
w II 
~I: f-' • 
en ~ 

<t :1: 
i== I:: z :: 
~' ~: 

000 24 

TIME (ps) 

FIG. 4. Initial state probability P 1 (I) for the second model system discussed 
in Sec. IV of the text. The exact results are given by the solid line, the zeroth­
order results by the long dashed line, and the first-order results by the short 
dashed line. 
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TABLE !I. Eigenvalues for the resonant subspace in the 55-state model 
system.• 

Exact 

- 7.8342 
- 3.4768 
- 2.6149 
- U356 

0.6269 
l.1780 
4.5006 
5.9862 
6.1681 
7.6073 

•All units are cm-•. 

First 

- 8.1506 
- 3.5308 
- 2.6338 
- L3344 

0.6268 
L!8ll 
4.3520 
6.1315 
6.2137 
7.7074 

1 N, 

fR = 1 - - 22 M;; ' 
NR i~I 

where the matrix M is 

M = vRo( (H) 10 - Ho) -2yoR . 

Zeroth 

-· 9.1006 
-4.!809 
-· 2.9832 
- 1.5533 

0.7097 
1.3642 
5.3627 
6.8652 
7.3159 
8.5667 

(32) 

(33) 

In Figs. 5 and 6, all the initial state probabilities from Figs .. 3 
and 4 are plotted, but the approximate ones are now multi­
plied by the overall correction factor fR . 

V. DISCUSSION 

From the results shown in Figs. 2-6, it is clear that by 
using such higher-order effective Hamiltonians one can ob­
tain more accurate approximations to the dynamics than by 
just using the zeroth-order one. In addition, the results 
shown in Fig. 3 indicate that, even in the case of an interac­
tion with the off-resonant states which is fairly large relative 
to the splitting between the resonant and off-resonant sub­
spaces, the approximate resonant state dynamics obtained 
from a higher-order effective Hamiltonian may still be able 

TIME (ps) 

FIG. S. "Corrected" initial state probability P, ( t) XfR for the model sys­
tem show~ in Fig. I, with ii.= 150.0, V, = - 43.9,and V2 = - 50.6cm-•. 
The exact results (with no correction factor) are given by the solid line, the 
zeroth-order results by the long dashed line, and the second-order results by 
the short dashed line. 

FIG. 6. Corrected initial state probability P1 ( t) XfR for the second model 
system discussed in Sec. IV of the text. The exact results (with no correction 
factor) are given by the solid line, the zeroth-order results by the long 
dashed line, and the first-order results by the short dashed line. 

to reproduce the most important trends in the dynamics. 
However, in each case it is also apparent that the zeroth­
order approximation gives a reasonably good description of 
the correct average behavior, apart from a shift in the oscilla­
tion frequency. As mentioned before, this situation is neces­
sary for the higher-order effective coupled equations to be 
accurate. In addition, Figs. 5 and 6 indicate that the correc­
tion factor JR [Eq. (32)] is indeed useful forobtaining better 
average dynamics. 

An inspection of the results given in Table I shows that 
the eigenvalues in the effective two-level model become more 
accurate with successive steps in the iteration procedure. 
From the results given in Table II for the second model sys­
tem, one can again see that the eigenvalues which are ob­
tained from the first-order effective Hamiltonian are more 
accurate than those obtained from the zeroth-order effective 
Hamiltonian, with the ones closest to the initial state energy 
(H) ( = H f1 = 0) being the most accurately determined. 
In addition, calculations for this and other model systems 
have shown that more accurate dynamics and eigenvalues 
may also be obtained by increasing the dimension of the reso­
nant subspace relative to the dimension of the off-resonant 
subspace. This result illustrates the potential power of a 
co~bined partitioning and iterative formalism. 

It is also noted here that although the zeroth-order ef­
fective Hamiltonian is Hermitian, since H is Hermitian, the 
nth-order effective Hamiltonian is not in general Hermitian. 
If desirable, this situation can be remedied in various ways. 
For example, a Hermitian effective Hamiltonian may be ob­

tained by defining it to be (H~w .• + H~;. )/2. This simple 
symmetrization of the effective Hamiltonian has been used 
in nuclear physics applications, 19 but was found in those ap­
plications and in the present dynamical calculations to have 
a negligible effect. Other alternatives in this regard include 
transformations which make the initial non-Hermitian ef­
fective Hamiltonian Hermitian. 14

•
15

•
19 
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VI. CONCLUDING REMARKS 

An iterative procedure for obtaining increasingly accu­
rate effective coupled equations has been presented in the 
present paper. This procedure extends the adiabatic approxi­
mation developed by Voth and Marcus8 and is related to 
several effective Hamiltonian techniques1

0-
12·1

4-
16·18·19 used 

predominantly in the nuclear physics literature. A general 
prescription for obtaining the effective coupled _equations, 
and hence an effective Hamiltonian, has been formulated. 
This prescription may be used to calculate the dynamics of a 
subset of resonant/strongly coupled states (relative to the 
initially prepared state). The model calculations performed 
to test the accuracy of the iterative procedure indeed yielded 
very encouraging results. 

The results presented in this paper suggest the following 
possibilities for use of the higher-order effective coupled 
equations in intramolecular dynamics calculations: ( l ) as a 
test for the usefulness/ accuracy of the zeroth-order adiabati­
cally reduced coupled equations approach, 8 

( 2) as a means 
for obtaining more accurate dynamics in any given applica­
tion of the zeroth-order coupled equations, and ( 3) as a 
means to obtain the approximate intrarnolecular dynamics 
in a situation where, due to computational limitations, one 
cannot obtain convergence of the zeroth-order dynamics by 
simply increasing the dimension of the resonant subspace. It 
is planned to give specific applications of the present theory 
in later publications. 
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APPENDIX A: EQUIVALENCE OF EQ. (12) TO EQ. (26) 

It is given that Ho = H~w.o, and so using the method of 
induction, the equality of the two effective Hamiltonians 
H~;r .• and H. [Eqs. (12) and (26), respectively] may be 
established by assuming that H~w .• = H. and then showing 
that H~«.• + 1 = H. + 1 • 

Equation ( 12), with n replaced by n + I and setting 
H~«.• = H., yields 

H~w.n+1 = [lR+F-1(H. + (H)lR-HR)]-1F-1FVo 

= (F+H, + (H)1R-HR]-'FV0, (Al) 

recalling Eq. (16) for V0. There is also the identity, 

H. = V0 - (V0H.- 1 -1R)H. 

=Vo- [ (H. vo- l>- 1 - lR ]H.. (A2) 

Introducing the expression for H., given by Eq. (26), into 
the fl'rst H. term on the right-hand side.ofEq. (A2) yields 

H. = V0 -(v1 - i ( - )mV,,, Il Hk-1 JH. 
m=2 k=n-m+2 

n+I n+l 

=Vo- L (- )mVm-1 TI Hk-1• (A3) 
m=2 k=n-m+3 

-142-

upon using Eq. ( 16). Substituting this expression for H. 
into Eq. (Al) yields 

Observing that 

FV 1 = V0 + (H)lR - HR (A5) 

and 

FV,. =V,._,, (m>2), (A6) 

one sees that Eq. (A4) may be rewritten as 

{ [ 

n +I 
H~if,n+I = F 1R+V1- m~2 (-)mV,,, 

n +I l J - I 

xk~n'[Im+3 Hk- • J1 FVo 

= H. + 1 v0- 'F- 1FV0 

(A7) 

upon using a result for the produce of inverses, and introduc­
ing Eq. (26) (for n + l instead of n). 

APPENDIX B: DERIVATION OF THE CORRECTION 
FACTOR fR 

The total probability (\ll(t) j\ll(t)) of the quantum dy­
namical system satisfies the condition 

(Bl) 

where PR (t) and P 0 (t) are the resonant and off-resonant 
basis state probabilities, respectively (cf. Sec. II A). The lat­
ter two quantities may be written in terms of the vectors 
containing the resonant and off-resonant state amplitudes as 

PR (t) = bRt(t)bR(t) and P0 (t) = b 0 t(t)b0 (t), 

(B2) 

respectively. If the probabilities are now long-time-aver­
aged, the average resonant state probability PR is given from 
Eq. (Bl) as 

PR= I -P0 , (83) 

where PR and P0 are given by 

- 1 LT P; = lim - P; (t)dt, 
r-oo T O 

(i=R,0). (B4) 

By virtue of Eq. ( B2) and the "zeroth-order" adiabatic 
approximation for the amplitudes b0 (t) [Eq. ( 8)], the long­
time-averaged off-resonant state probability may be ap­
proximated as 

(BS) 

where the matrix Mis given by Eq. ( 33) of the text, and NR 
is the dimension of the resonant subspace (cf. Sec. II A). 
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This expression could, in principle, be evaluated from an 
actual dynamical calculation of the vector bR(t) using the 
effective coupled equations [Eqs. (11 )-(13) ]. 

It is desirable, however, to obtain simple approxima­
tions for the long-time averages of /bf (tJl2 and 
bf*(t)bf(t) and to thereby simplify Eq. (BS). To achieve 
this goal, the resonant state basis functions /.pf) are as­
sumed to be adequately described as a linear combination of 
the resonant state eigenfunctions/~), i.e., as 

N, 

/.pf)::::,, L C;n/~). (B6J 
n= I 

It is assumed here that the contributions from the off-reso­
nant basis functions l'P f) to the resonant eigenfunctions 
I !/I:) are small. With the further assumption of strong mix­
ing among the resonant basis functions due to the perturba­
tion and their near degeneracy, the magnitude of the expan­

sion coefficients IC;. ! may be approximated by II .JN;. By 
virtue of these latter two approximations and the fact that 
b f(t) = {rp fJ'l'(t)), the first term in Eq. (B5) becomes 

(B7) 

The second term in Eq. ( B5) is assumed to be approximately 
equal to zero since each b f"'(t)b 1R(t) term, with i#j, is 
highly oscillatory. With the above approximations for the 
long-time averages in Eq. (BS), the simple approximate for­
mula for P 0 is obtained: 

(BS) 

If dynamics calculations are performed using the effec­
tive coupled equations [Eqs. ( 11)-(13)] and an initial state 
probability normalized to unity, the results ofEq. (BJ) and 
(B8) suggest that the calculated resonant state probabilities 
should be multiplied by the correction factor 

(B9) 

where P 0 is given by Eq. (BS). The factor fR corrects phe­
nomenologically for the small fraction of probability which 
is present, on the average, in the off-resonant "virtual" 
states.8 
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