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ABSTRACT

A wind tunnel was built at the California Institute of Tech-
nology to provide two uniform coflowing streams at Mach numbers of
0.6 and 1. 4 with a plane mixing layer in between. Preliminary stud-
ies were made of this free shear layekr, indicating a region of self-
similar behavior and general agreement in growth rate with previous
studies.

A program of experimental and theoretical work was completed
in which wedges were installed in the supersonic stream to create
shock waves incident on the shear layer. Similar studies were per-
formed with wedges in the subsonic stream. GCood agreement was
found between the analytic first-order theory and experiment in show-
ing that the upstream propagation of pressure disturbances ahead of
their source in the uniform subsonic stream is limited to about 0.6
subsonic layer thicknesses.

The problem of an airfoil in Spahwise—varying transonic shear
was studied experimentally with the goal of understanding the interac-
tions in the shear region between the supersonic and subsonic streams,
especially in terms of deviations from quasi-two-dimensional behav-

ior. The effect of modest angle of attack was also examined.
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I. INTRODUCTION

1.1 Transonic Axial-Flow Compressor

Throughout the history of manned flight, the contintually-
increasing demands placed on flight vehicle power plants has stimu-
lated a large amount of research in airbreathing propulsion systems.
During the last three decades, the turbojet engine and its evolution-
ary derivatives have gained considerable popularity.  This gain has
been accompanied by increasing interest in one of its primary corrmn-
ponents, the axial-flow compressor.

An axial-flow compressor is built up from one or more stages,
each consisting of a set of rotor blades and a set of stator blades
spaced at equal intervals circumferentially around the annular flow
area. As is shown in Figure 1.1, the rotor blades are fixed to the hub
which rotates at several thousand RPM, while the stator blades are
fixed to the cylindrical casing and remain stationary. The detailed
design of the rotor and stator blades will not be discussed here (see
Reference 1 for a thorough discus‘sion). It will suffice to say that a
stage may consist of, say, sixty blades of each type equally spaced
around the hub. The blades are twisted and they vary in cross section
from root to tip. The purpose of the rotor blade is to do work on the
fluid, raising the static pressure and increasing the kinetic energy of
the fluid, while the stator blades serve to remove the fluid rotation
introduced by the rotor by turning the flow back to more or less its
original direction and in addition transform some of the velocity head
into additional pressure rise. The pressure ratio of a transonic stage

can exceed 1, 8.
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Assume that ahead of the rotor the flow is axial of magnitude
c - At a given radius r from the centerline of the rotor the velocity

of the blade is {ir , where (1 is the rotation speed in radians per sec-
s p

ond. The air velocity relative to the blade is then

W = Jcaz + (Qr)z . (1.1)

For many years, the tacit assumption was made by compres-
sor designers that all air velocities relative to both the rotor and
stator blades should be subsonic, as the presence of supersonic ve-
locities must entail a large performance and efficiency penalty due to
compressibility effects and shock losses. Thus, most compressor
research was devoted to the subsonic rotor, in which the air velocity
relative to the rotor blade is subsonic everywhere. A comprehensive
discussion of subsonic compressor stages‘ is provided in Reference 1.

The majority of the design methods are based on a combina-
tion of theoretical and experimental results of two-dimensional flow
through cascades with blade sections tested as a two-dimensional air-
foil in a uniform flow with properties appropriate to the specific
radius. A series of blade cross sections are calculated for several
radial locations at a prescribed design flow pattern,and a final form
of the blade is faired in from the calculated sections. Such a pro-
cedure is referred to as blade element theory, and is essentially the
procedure by which compressor blades are designed today. Its
drawback lies in an inadequate treatiment of radial flow effects, and
it succeeds because at subsonic speeds (i.e., a maximum relative

Mach number less than about 0.7 to 0.75) these secondary effects
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are in fact quite small. Various early tests confirmed that a serious
drop in performance occurred at transonic speeds 2 where the flow
becomes more complicated.

In addition to the subsonic rotor, attention has been given
(ca. 1950) to the supersonic rotor, in which the relative air veloci-
ties over the rotor blades are supersonic everywhere. Certainly by
the very nature of supersonic flow the spanwise effects have a limited
region of influence. Shock lecsses can be minimized by using blades
that are quite thin and have their maximum thickness well aft of the
leading edge to keep the leading angle as small as possible. A low
camber angle is also desirable. The merits of this design are that
with the inherently higher throughflow velocity the same mass flow
can be passed with a lesser frontal area, thus reducing the drag of
the engine. In addition, because of the higher relative speeds, the
entire compression process is more energetic. Thus, an individual
stage can be expected to have a higher pressure ratio, permitting a
reduction in the total number of stages and thus the overall weight
and complexity of the engine.

Of course, for a compressor to operate at supersonic speeds
it must first accelerate through transonic speeds, where spanwise
effects are known to domiﬁate 3 . A linearized analytic calculation
for non-lifting transonic rotor blades (blades in which the relative
air velocity is subsonic at the hub and supersonic at the tip) was de-
veloped by McCune in 1958 4,5 showing as expected the deficiencies
of blade element theory. Later work by Okurounmu and

McCune 6,7 has extended the theory to lifting blades. These ad-
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vances have shown on a mathematical basis that the actual flow devi-
ates strongly from the predictions of blade element (quasi-two-
dimensional) calculations, even in the case of uniform loading per
unit span of the blade, over the entire transonic blade.

Uncertainty over:the behavior of a compressor in the tran-
sonic region, coupled with a belief that deviations from expected per-
formance would be unfavorable, led to serious doubts about whether
the supersonic compressor could be started and what its off-design
periormance would be. However, in actual tests it was found that the
transonic performance was the best of all! (See Reference 2 for a
discussion of this. The work of this reference is not the first in the
field, but is the best documented of the early studies. )

Of course, the next step in this research program (early
1950's) was to construct a compressor stage explicitly designed for
transonic operation. The rotor was the pioneering portion of the
project; the stator was designed to be wholly subsonic and to use ex-
isting knowledge only. The results were extremely encouraging,
showing no loss of efficiency until the rotor tip relative Mach number
was in the upper Ae;__n‘d of the transonic range (Mt = 1.1). The pressure
ratio of 1.47 and adiabatic efficiency of over 90 per cent were both
better than the anticipated‘ values, and the pressure ratio was con-
siderably better than for existing subsonic compressors. While new
losses due to shocks were present, the level of work input was also
higher and the overall efficiency did not suffer.

Naturally, these results stimulated a program of research

into transonic compressors to gain a better understanding of the
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processes at work., The goal was to assemble a large body of data
similar to that on subsonic compressors which culminated in the
preparation of Reference 1. The double circular arc airfoil was
chosen as a reference based on preliminary studies. This program
continued to bear out the high initial promise of the transonic com-
pressor. Test rotors showed pressure ratios of 1.9 to 2.0 with
adiabatic efficiencies of 87 to 92 per cent (both of these parameters
would be reduced with the addition of a stator to form a complete
stage). Production engines appear feasible with single-stage com-
pression ratios above 1.5, compared with 1. 18 for a subsonic

stage

Unfortunately, transonic compressors are often quite sensi-
tive to inlet flow distortion, and small errors in design and fabrica-
tion have a very significant effect. Excéllent dimensional reliability
is demanded. (The discussion of the preceding several pages was
drawn largely from References 2 and 9.)

After 1957, the research interest in transonic compressors
was markedly reduced, as it was felt that a reasonable amount of in-
formation ilad been gathered. However, this interest has been re-
viving lately. The National Aeronautics and Space Administration's
Lewis Research Center is directing several research projects in the
field.

The design of a transonic compressor blade still largely fol-
lows the tenets of blade element theory in lieu of any other practical
technique. An additional complication is the presence of shock waves

in the system. Development of a smooth shock system, minimizing
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disruptive effects, requires an iterative design procedure . Span-
wise effects over a blade are still not well understood, and conse-

quently represent a major potential source of problems.

1.2 Non-Rotating Studies

!
Thus far, studies of rotating systems have not resulted in a

good understanding of the characteristics of the flow field. With this
in mind, the L.ewis Research Center of the National Aeronautics and
Space Administration has contracted with the California Institute of
Technology to study a relevant non-rétating flowfield.

The assumption has been made in this study that to some sub-
stantial extent the effects due to compressibility observed in a tran-
sonic rotor can be distinguished from those due to rotation, and
hence treated separately.

Tomeet the goal of simulating in some way the Mach number
effécts in a non-rotating system, a wind tunnel producing a transonic
shear flow was designed by Zukoski and Dolait 1 at Caltech. The
notable feature of this tunnel is that the test section flow consists of
two parallel streams of design Mach numbers 1.4 and 0.7, with a
plane shear (mixing) layer in between. This Mach number distribu-
tion may be compared to that of a currently-studied transonic rotor
in Figure 1.2. It should be emphasized that this facility is not in-
tended to duplicate the flow over a transonic rotor blade neglecting
rotational effects. Rather, the purpose is to permit the study of a
flow field in which some of the gross features are similar to those

over an actual blade, with an eye toward gaining understanding of the
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basic fluid dynamic mechanisms involved.

The mixing between the su.perl.éonic and subsonic streams at
constant static pressure of itself is an interesting problem which is
discussed in Chapter III. However, in the context of the larger study,
‘the shear layer can better be regarded as a region where, in the
presence of a perturbation to either stream (such as a model placed
within the test section), a comple_x interaction occurs between the
two streams.

The project had two objectives: to study the way in which the
disturbance from a model modifies the inviscid supersonic flow up-
stream of the model (the disturbance wave must first enter the sub-
sonic stream to propagate upstream, then re-enter the supersonic
flow); and to examine the flow field adjacent to and downstream of a
representative airfoil placed within a flow in which the freestream
Mach number varies along its span.

- Chapter II of this thesis describes the design and operation of
the Transonic Shear Flow Wind Tunnel. The flow within the tunnel
when no models are present is discussed in Chapter II. This in-
cludes consideration of the shear layer, the inhomogeneous structure
of the unperturbed flow, and the blockage and choking effects rele-
vant to the tunnel.

Chapter IV discusses the two-dimensional "wedge' problem
of a thin plate attached to either the supersonic (top) or subsonic (bot-
tom) wall of the tunnel across the full width. This plate, with its in-
clined leading and trailing edges (hence the label '"wedge''), permitted

the study of a relatively simple system in which the disturbance
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source was well defined. In addition, it was felt that a general study
of the reflection of shock waves off the transonic shear layer would
be of interest. This problem, with some simplifying assumptions,
was modeled in a first-order analytic calculation evaluated on the
computer. Reasonable agreement was found between theory and ex-
periment.

The main portion of the project is described in Chapter V. At-
tention centers on the case of a 6% - thick biconvex airfoil in the center
of the tunnel with the freestream Mach number varying from 0. 6 to
1.4 along its span. The flow field is considered in detail through ex-
perimental data from the airfoil in both a non-lifting configuration
and at modest angles of attack. More abbreviated discussions are
presented of the similar cases of a pitot strat (t/c = 20%, diamond
section) passing spanwise through the flow.

In Chapter VI the results of these studies are summarized
and recommendations for future work involving this facility are pre-
sented. Suggestions for improving the operation of the tunnel are

also noted.
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II. THE TRANSONIC SHEAR FLOW WIND TUNNEL

2.1 Design

The Transonic Shear Flow Wind Tunnel, also known as the
Bisonic Wind Tunnel, was designed by E. E. Zukoski and J. P. Do-
lait 1 as a part of Dolait's work toward the degree of Aeronautical
Engineer at the California Institute of Technology. Briefly, the ob-
jective was to provide two parallel-flowing streams of air at ambient
total temperature and equal static pressures, one stream being su-
personic and the other subsonic. The design goals for this tunnel
were I\/J[l = 1.4 and 'MZ = 0.7 (throughout this report, except where
specifically stated otherwise, the subscript '"1'" identifies the super-
sonic stream and ''2'"' the subsonic stream). In actual practice, the
measared values are I\/I1 = 1.400 £.015 and MZ =.590 £ .035, The
large deviation of M‘2 from the design goal will be discussed later.

The Transonic Shear Flow Wind Tunnel (TSFWT) is driven by
the first and second stages of the -GALCIT Hypersonic Wind Tunnel
compressor plant, with a power consumption of about 140 kw. The
total mass flow rate of air is designed to be 1. 69 pounds per second.
A schematic diagram of the entire air system is presented in Figure
2.1. A more detailed drawing of the installation in the wind tunnel
room in the basement of the Guggenheim Building is presented in
Figure 2.2, which is to accompany the following description.

The six-inch feedline from the compressor room passes up
through the floor into the tunnel room, and immediately encounters a

hand-operated valve. This valve is employed in an on-off manner

only, for tunnel startup and shutdown, and is not used for flow meter-
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ing. The main feendline branches into two lines, eventually destined

, »
for the supersonic and subsonic nozzles (also referred to as the upper
and lower nozzles, feedlines, etc., respectively, in reference to
their installed positions). The upper feedline runs directly into the
upper plenum chamber, while the lower feedline first passes through
a hand-operated valve (used for flow regulation) and a fixed orifice of
3.01 inches inside diameter (used to cause the necessary loss of total
pressure for equal static pressures at different Mach numbers) and
then delivers its air to the lower plenum chamber.

Upon entering the plenum chamber, the jet of high-speed air
is broken up by a perforated steel plate, and then passes through a
honeycomb grid and a fine mesh screen in order to reduce the turbu-
lence level. Depending on the number of wind tunnel runs since the
brass screen was last cleaned, the loss of total pressure through the
plenum chamber ranges from .05 psi to 1.0 psi (when the loss
reaches 1.0 psi, cleaning is considered mandatory).

Upon leaving the plenum chambers, the air goes through two
identical nozzles which accelerate it to Mach 0.5, and then through a
converging-diverging nozzle (upper stream) or a converging nozzle
(lower stream) which provide the final test section flow. At the noz-
zle exits, the streams should have the same static pressure and
Mach numbers 1.4 and 0.7. The valve in the lower feedline is ad-
justed as necessary to control the total pressure in the subsonic
stream. The splitter plate separating the upper and lower flows is
1/4 inch thick in the plenum chambers and low-épeed nozzles, and

1/16 inch thick in the high-speed nozzles, ending with a 3° taper;
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the trailing edge is at the nozzle exit plane and is blunted . 005 inch.

The test section is 50. 00 mm (1. 969 inch) wide, and is 100 mm
high (50 mm for each stream) at the nozzle exit plane, expanding
slowly by means of adjustable top and bottom walls from 100 mm high
at the nozzle exits to 100 mm to 120 mm high at the downstream end

f the test section. The test section is 1 meter long (about 40 inches)
with its upstream end being at the nozzle exit plane. Two types of
sidewalls are available, both running the full length of the test sec-
tion: steelé to permit pressure measurements or model attachment
as necessary; and glass, to permit the use of schlieren system, shad-
owgraph, or other optical measurement techniques. Pressures are
read out electronically using transducers. Flow properties important
to the operation of the tunnel, such as supply pressure, plenum pres-
sure, accuracy of balancing the exit pressure of the two nozzles, and
press‘ureAloss through the upper plenum chamber, are continually
monitored through a set of pressure gauges. A telephone links the
wind tunnel with the adjacent control room where the operation of the
compressor plant is controlled and monitored.

The tunnel-based coordinate system used for recording data is
depicted in Figure 2.3. A traversing strut, capable of making static
or pitot pressure meas urerﬁents in the z = 0 plane (wind tunnel cen-
terline) versus y for several values of x, has been used to survey
the shear layer. In addition, because the cross-section of the strut
is approximately that of a double-wedge airfoil, qualitative observa-
tions of the flow with the strut installed were used in conjunction with

the airfoil studies.
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A schlieren system is attached to the tunnel and has given
useful qualitative results on Polaroid film, though admittedly the sys-
tem quality is rather poor. Static pressure taps have been installed
in the walls in large number. These taps, through banks of toggle
v—alves and hand-operated Scanivalves, can be interrcgated individually
and read by means of the pressure transducer.

On leaving the test section, the air enters the eight-inch di-
ameter exit diffuser, where the supersonic stream shocks down to
subsonic velocity and the two flows mix thoroughly. A 1/4-inch mesh
copper screen is installed at the dolwhs‘tream end of the exit diffuser
to trap any free objects that might otherwise be swept into the com-
pressors. From the screen, the exit line returns to the compressor
plant in the Guggenheim sub-basement, on the floor immediately be-
low the wind tunnel.

The test section sidewalls are readily removable, as are two
of the three sections forming the top and bottom walls of the test sec-
tion. These parts, known as the first and second removable sections,
span the d%stance from x = 3 inches (i.e., 3 inches downstream of the
plane of the nozzle exits and the splitter plate trailing edge) to x = 15
inches and from x = 27 inches to x = 39 inches, respectively. The
center section, from x = 15 inches to x = 27 inches, is also remov-
able, though with somewhat more difficulty. Figure 2.3 is a section
view of the tunnel cut on the z = 0 plane to show.the arrangement of
the top and bottom wall sections, and Figure 2.4 is a cut through a
repl.'esentative plane of x = const., showing the arrangement of the

sidewalls, top and bottom walls, and their supporting structure.
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Z,2 Operation

Table A. 1 (Appendix A) lists all runs of the Transonic Shear
Flow Wind Tunnel through the completion of this project. The first
run was on 19 March 1973, and Runs 1 through 25 were mainly con-
cerned with the shakedown of the win,d‘ tunnel and the evolution of
operating procedures, although data from Runs 14 through 21 have al-
so been used in this report. Some runs after Run 26 yielded no data;
these are noted in Table A.1l. The normal operating procedures are
given in Appendix A, which is largely taken from an operaticn and
maintenance handbook prepared by the author.

The usual data returned from the tunnel are wall static pres-
sures. Holes of 1/16-inch diameter were drilled into the wall from
the outside of the tunnel, almost to the inner face. A drill of .020-
to . 030-inch diameter was us e-d to complete the tap to the inner sur-
face, and burrs were removed with a fine stone. A brass tube was
force-fit into the 1/16-inch hole and sealed with epoxy so that about
an inch protruded from the wall. To promote sealing, an epoxy ring
was painted around the outside of the tube near the open end, and a
vinyl plastic tube was slipped over this after the epoxy had hardened.
The plastic line is run into either a bank of toggle valves or one of
several 24-pole, single-throw Scanivalves, which can be switched by
hand as desired to interrogate an individual pressure tap. Response
times, depending on the length of the line to a specific tap, range up
to a couple of seconds. As no attempt has been made to measure
timé-varying phenomena in the test section, this response is consid-

ered quite satisfactory.
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Readings are made to an accuracy of 0. 1 per cent by the
Statham pressure transducer, which 1s driven by a standard power
supply built previously at Caltech, and read by a digital voltmeter.
Océasionally, readings accurate to 0.5 per cent are made using an
x-y plotter.

Before a run, the air in the circuit is dried out overnight to
lower its dewpoint to the neighborhood of -60° F. The air supply is at
ambient total temperature (about 80° ¥') and is delivered from the com-
pressors at approximately ambient total pressure (14. 3 psia at Pasa-
dena's altitude) though various flow losses reduce the total pressure
to about 12.0 to 12. 5 psia by the time the air reaches the plenum
chambers immediately upstream of the nozzles. These flow losses
turned out to be about twice what was expected during the design
~ phase, and are considered responsible for the under-performance of
the subsonic nozzle. With an unanticipated loss of total head, the ve-
locity in the lower plenum chamber is less than intended, and conse-
quently the Mach number at the exit of the subsonic nozzle is less

than designed.
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III. EMPTY WIND TUNNEL DATA

3.1 General Discussion

Once assembly of the Transonic Shear Flow Wind Tunnel was
complete, the irnmediate goal was to gain familiarity and confg’idence
in the tunnel and to develop the proper operating procedures. These
procedures are described in Appendix A. This task began with the
first run on 19 March 1973 and was completed with Run 24 on 5 Sep-
tember 1973. |

The compilation of research data used for this report com-
menced with Run 26 on 10 October 1973 (Run 25 on 8 October 1973 was
intended to provide research data but was aborted). The general goal
of the empty-tunnel runs was to assemble a body of reference data
concerning the nominal flow to be expected, so that comparisons
could later be made to see the effect of various models on the overall
flowfield.

First, the strut mentioned in the previous section was used to
survey the shear layer by means of a pitot probe at four stations,
varying from x = 4. 19 inches to x = 28. 18 inches. Shadowgraph stud-
ies of the shear layer were also performed. The results of these ex-
periments will be described in the next section.

The other phase of fhe empty-tunnel runs was to determine the
schlieren and wall-pressure measurements that would be found when
no model was present in the tunnel. Several runs were performed in
the process of locating and stopping numerous troublesome leaks be-
fore any valid data were obtained. Also, it was determined that cer-

tain leaks were inherent in the design and consequently could only be
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minimized, rather than completely stopped. This was especially
noticeable in the seals at the upstrea:fn and downstream ends of the
windows. No reliable method of completely suppressing leaks at
these positions was ever found, thoqgh judicious use of electrical tape
'and grease was definitely helpful. Once it was felt that the best prac-
tical procedures had been found, the studies of the empty-tunnel flow
proceeded quickly. This portion of the results is described in Sec-
tion 3. 3,

Several additional relevant studies were performed which,
while they were generally computational rather than experimental in
their basis, provide additional interesting detail concerning the fluid
mechanics evident in the wind tunnel. These data, which discuss
such questions as the range of application of linearized theory, con-
siderations of the generalized choking condition for a non-uniform
stream, and the effect of subcritical blockage, are discussed in

Section 3. 4.

3.2 Shear Layer

The first data taken in the Transonic Shear Flow Wind Tunnel
were pitot pressure surveys through the shear layer in the center of
the tunnel at four streamwise positions (pitot strut centerlines at
x = 5.75 inches, 12.25 inches, 21.00 inches, and 29.75 inches).
These raw pitot pressure profiles were measured with an open-ended
1/32 inch O.D. tube aligned with the flow, attached to a strut passing
vertically across the tunnel. The strut cross-sgcfion is a double-

wedge with a flat in the center at the point of maximum thickness,
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1/16 inch, This causes a tunnel blockage of 3. 18 per cent. A hollow
tube runs down inside the strut, connected to the pitot tube at one end
and a pressure transducer at the other. The pitot tube projects 13 to
2 inches ahead of the strut centerline. The strut can be moved verti-
cally (i.e., along its axis) by a traversing mechanism mounted out-
side the wind tunnel. This mechanism permits traverses at rates as
slow as .0005 in. /sec., and via a potentiometer permits position
readout accurate to . 001 inches. The transducer output versus verti-
cal position (y-coordinate) for the four streamwise (x-coordinate) po-
sitions is presented in Figure 3. 1.

The static pressure was measured at the top and bottom walls
in the immediate vicinity of the pitot measuring plane. Generally,
these pressures were the same to the measuring accuracy of the sys-
tem (0. 01 psia, 0.3 per cent), but where they differed slightly it was
assumed that the subsonic wall pressure was valid all across the sub-
sonic stream (a good assumption, as it turned out) and that in the
supersonic stream the static pressure varied linearly from the sub-
sonic wall pressure at y = 0 (approximately the sonic line) to the
supersonic wall pressure. Figure 3.2 shows sidewall pressure
measurements for an empty-tunnel run which indicates the accuracy
of these assumptions. Thé error in the assumed static pressure dis-
tribution is generally negligible in the subsonic stream and of the
order of one per cent in the supersonic stream. From these data, the
Mach number profiles of Figure 3.3 were calculated and distributions
of velocity were found. These curves should be accurate to 0.3 per

cent in the subsonic stream and 1.3 per cent in the supersonic stream.
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Figure 3.3: Mach Number Profiles
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By coffsetting the pitot probe from the centerline of the tunnel toward
a sidewall, the two-dimensionality of the unperturbed flow at x =
17. 85 inches, somewhat downstream of the point where models are
installed, is verified (see Figure 3.4).

Next, an attempt was madq to check for similarity in the ve-
locity distribution by plotting the profiles against the usual similarity
parameter. The results are shown in Figure 3.5. The maximum-
slope velocity thickness, 6S , was also calculated and is presented in
Figure 3. 6. These figures taken together suggest the shear layer

exhibits similarity for x less than 14 inches, growing at a rate of

and then changes to a mean growth rate of

-d:-é-i = .029
dx ) )
Presumably this change in (d6s/dx) reflects the point at which the
shear layer and boundary layer begin to interfere with each other;
however, the figure previously mentioned in support of two-dimen-
sional flow at x = 17. 85 inches shows that this interference must be
quite minor for some distance beyond x = 14 inches. In making com-
parisons to the results of other shear layer experiments, it seems
valid to talk about the first region of shear layer growth only, where
the effects of interference presumably are inconsequential.
For M1 = 1.4 and M, = 0.6, the velocity ratio becomes
(UZ/Ul) = 0.489, and the density ratio is (pZ/pl) = 0.770 under the

assumption that the total temperature is the same in each stream.

Brown and Roshko 13 give a best-fit line for low Mach number shear
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layer data:

dsd l—UZ/Ul

S
& = B TyoyT

1
with RMS deviation of . 015 in the coefficient. For the case in ques-

tion here, this expression reduces to

as
S5 - 062 £ .005 ,
dx

which agrees well with the measurement in the initial growth region.

While the shear layer is transonic to an observer in a sta-
tionary reference frame, to an observer rnbving with the low-speed
flow, the high-speed flow appears subsonic (at a Mach number of
0.716). Maydew and Reed 14 conclude for compressible axisymmet-

ric jets into still air that as long as the jet core is subsonic relative
to the surrounding fluid, the Mach number has no perceptible effect
on the spreading rate. This can also be seen in Brown and Roskho
(Figure 15, Reference 13) which shows that for a subsonic relative
Mach humber, the spreading ratée for a compressible flow is the same
as for incompressible flow at the same density ratio across the shear
layer.

The graph of Figure 3.7, based on the reference just cited,
estimates the effect of compressibility (as measured by M,', the
Mach number of the high-speed side relative to the low-speed side)
on the shear layer spreading rate. This effect will be measured by
the function f(Ml'). The effect of density ratio and velocity ratio
from the same reference can be combined with the compressibility

effect to give a modified form of eq. (3.1):
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ds, <p2\‘3. 153 1- UZ/Ul
3 = g1l = ! ,
& - 018 pl) M) oo, (3.2)

again with RMS deviation of +.015 in the coefficient. This new rela-

tion reduces to a nearly identical result:

ds
S = .060 %.005
dx

which ﬁow embraces the compressible-flow data cited by Brown and
Roshko. It should be noted that eq. (3.2) has only been fitted to data
in which the entire flow has the same total temperature.

The preceding discussion is valid only if the mixing layer is
planar. In a wind tunnel, this means the thickness of the shear layer
must be considerably less than the width of the tunnel (b) so that the
main characteristics of the shear layer are not affected by its {inite
width. In other words, the aspect ratio A = b/6S must be consider-
ably greater than one. A breakdown in this assumption as 6s in-
creases and A decreases is seen in Figure 3. 6 in the range from
x = 11 inches (A = 2.9) to x = 18 inches (A = 2.0). Presumably this
change is more gradual than the straight lines which have been fitted
to the data in the figure.

It should also be noted that Maydew and Reed 14 and Siriex
and Solignac 15 conclude that up to low supersonic Mach numbers
(say, Ml' less than 2), compressibility has little effect on the shape
of the velocity profile. This effect, not included in eq. (3.2), sets a
limit on M,' for validity of this expression, anci results in an over-

1

prediction of the spreading rate for higher relative Mach numbers.
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3.3 Empty-Tunnel Measurements

At the first complete run of the wind tunnel, it became appar-
ent that the flow without any model present would still have a certain
inhomogeneous structure and would not conform to the ideal of uni-
.forrn, constant-pressure flow. Thus, an early task was to gain an
understanding of the empty-tunnel flow field in order to distinguish
later which observed effects were inherent in the tunnel and which
were due to a specific experiment. It was hoped that in the process
of making these measurements, a high level of repeatability would be
demonstrated.

Two phenomena are consistently present in the empty tunnel:
a shock system originating at the trailing edge of the splitter plate
{x = 0) which causes certain slight periodic ‘press ure disturbances on
the subsonic wall for the first 12 to 15 inches of the test section; and
a constant-rate drop of static pressure throughout the remainder of
the test section. If the windows or sidewalls were installed with even
a slight offset (say, 0.005 inch) they likewise set up a shock system
persisting downstream through several cycles of reflection off the
walls. These phenomena will be discussed individually.

First consider the shock system which is created at the trail-
ing edge of the splitter plate. The initial shock and its first reflec-
tion show up very clearly on schlieren photographs and on supersonic
wall and sidewall pressures. On reflection into the supersonic
stream off the wall, the wave becomes sufficiently diffuse due to the
wall boundary layer that it is barely visible in schlieren photographs,

and it becomes completely invisible after the next reflection off the



shear layer. However, its continued presence can be noted in super-
sonic wall pressure measurements through several complete cycles of
reflection off the wall and the shear layer (see Figure 3. 8a).

Primarily, this shock is created by the geometry of the split-
ter plate trailing edge. The splitter is smooth to the trailing edge on
the supersonic side, but is tapered upward at a 3° angle on the sub-
sonic side, and ends with a blunt edge where its thickness is approxi-
mately 0.005 inch. The trailing edge was blunted slightly as a safety
precaution in view of the work to be performed manually in the test
‘section close to the splitter plate between runs.

Two characteristics of the shock are significant. First, the
shock is fully formed no more than 1/8 inch downstream of the trail-
ing edge. This makes it seem unlikely that it might result from a
coalescence of small-amplituae compression waves, which in turn
cases doubt on the possibility that it is created in some way by the
boundary-layer wake flow downstream of the splitter. In addition, no
related expansion fan is visible in the schlieren system, as would be
expected in a supersonic wake collapse. Second, measurements of
both the shock angle and the wall pressure rise after reflection, to-
gether with the computed Mach number at the nozzle exit, indicate
the shock has a deflection angle of 0. 8° to 1.0°.

The primary mechanism responsible for the creation of this
shock seems to be the 3° up-angle imparted to the subsonic stream
in the immediate vicinity of the trailing edge due to the taper of the
spl.itter plate. Estimates of shock strength can be made by balancing

the net momentum vectors of both streams before and after the shock.
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This balance indicates that a flow deflection of 0. 67° « i ne pro-
duced. This result is close enough to the calculated value to be con-
sistent with the model. In addition, there is the effect of unequal
mass entraiﬁment in the splitter plate wake from the supersonic and
subsonic streams, though this must have a relatively small influence,
Eggers 16 , lkawa 17 , and other investigators report that the rate of
entraﬁment of mass decreases somewhat as Mach number increases.
This is related to the observation of the previous section, that the
spreading rate (related to the entrainment rate) of a shear layer de-
creases for increasing Mach number. Thus, the larger portion of
the mass needed to fill in the wake from the splitter plate must be
supplied by the subsonic stream, increasing the local up-angle of the
subsonic stream immediately downstream of the trailing edge, and
consequently increasing slightly the shock wave deflection angle.

The subsonic stream soon reaches equilibrium after its flow
area has increased sufficiently to cause a pressure rise equivalent to
that due to the shock. The shock wave, after reflecting off the su-
personic wall, returns to the interface and reflects as an expansion
fan at about x = 4 inches. The reader is referred to Chapter IV for
a consideration of the mechanisms by which a shock reflects off the
shear layer. Considering that the supersonic wave changes sign at
each reflection from the shear layer, the entire pattern should re-
éeat at intervals of about 8 or 9 inches, with a considerably reduced
amplitude at the subsonic wall on successive cy;cles, due to attenua-
tion at each reflection. In fact, these wave disturbances are not

distinguishable on the subsonic wall after about 15 inches (i. e. , two



-40-
wave cycles). The disturbances on the supersonic wall are more per-
sistent.

The second phenomenon in the empty tunnel consistently pres-
ent is a constant-rate decrease of subsonic wall static pressure (and,
necessarily, overall mean test section pressure, though the éffect is
most apparent near the subsonic wall). This decrease starts at x =

15 inches (see Figure 3. 8b) and has the slope

dp _ .
rel -0.002/inch.

O

It may be recalled that the wind tunnel design allowed the top
and bottom walls of the test section to be movable. When the tunnel
was assembled, the walls were set at their maximum divergence.
Apparently, this design-limited divergence was inadequate to cope
with the combined effects of the spreading shear layer and the thicken-
ing boundary layers on all the walls. In any event, the one-dimension-
al analyées of the following section will show that to raise the test-
section static pressure, the top and bottom walls should be diverged
still further (about 4 mm, or .16 inch, at the downstream end of the
test section). Unfortunately, the remedy of this deficiency would
have required total disassembly and recalibration of the wind tunnel.
The expense in time and money was not considered justifiable.

The pressure decréase rate was very repeatable between runs;
the value quoted is accurate to 0.0003/inch. The splitter shock sys -
tem was less repeatable, by far. The magnitude of the first pressure
rise on the supersonic wall seemed to fall randomly anywhere between

0.08 and 0. 14 (in terms of pressures normalized by the nozzle exit
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static pressure). Qualitatively, the structure remained the same,
but this annoying lack of repeatability, together with other effects
mentioned in the follcwing section, made quantitative comparisons of
supersonic wall data very difficult.

Another source of non_répeatable pressure fluctuations which,
however, could be suppressed with diligent effort, was due to the de-
sigﬁ of the interface in the x = 0 plane between the window (or steel
sidewall) and the steel sideplates of the high-speed nozzles.

The windows fit against the upstream and downstream ends of
the window cavity as plugs, with the ends cut at a 450 angle. This
required a careful, iterative adjustment plus a certain amount of good
luck to adjust the size of the opening JU.St riéht so that the window butts
up flat against the top and bottom walls all along the span of the test
gection,and with a thin gasket in place forms an airtight seal at the
bevel at each end without applying too much stress at the ends (one
window was broken in this manner). The difficulty under these cir-
cumstances of getting the installed, tightened-down window coplanar
with the nozzle sidewalls without an air leak when the tunnel circuit
was evacuated often resulted in a mismatch, which set up a long-
persisting shock system that reflected from side to side down the
length of the test section, impairing the usefulness of the data. Win-
dow effects were not noticeable, however, in data taken within the
sﬁbsonic layer.

Redesign of the windows was considered in order to replace
the bevelled-plug installation with some other geometry, such as a

straight-sided plug with O-rings, but it was found eventually that



-42 -
careful adjustment could control the problem and the redesigning ef-

forts were not pursued.

3.4 Blockage and Choking Effects

In general, a gas flow is said to be ''choked' at a particular
station if the mass flow rate at that station cannot be increased by any
changes downstream of the station. Thus, when the flow is choked,
the maximum possible mass flow is passing through the area in ques-
tion.

For one-dimensicnal flow, this corresponds to a ''throat, ' or
section of minimum. area, at which the Mach number is one. It can

readily be shown that the mass flow per unit area for specified up-

v

stream conditions is maximum at the sonic speed; so at a throat, the
filow passage area determines the net mass flow for the entire system.
From another point of view, the choking area for a specified flow is
the minimum area through which the flow can pass consistent with the
specified upstream conditions. The choking area of a specified in-
viscid, isentropic, one-dimensional flow is uniquely determined by
the upstream flow properties. In a two-dimensional, inviscid, isen-
tropic stream, however, the choking area depends additionally on the
streamline curvature in the vicinity of the minimum-area section.
Departures from one-dimensional flow will tend to reduce the choking
mass flow rate, Effects such as boundary layers also tend to lower
the choking mass flow.

The basic concepts just described are relevant to the consid-

eration of choking for the two-stream system under consideration
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here, although other effects must be considered as well., Consider the
idealized model of an inviscid, irrotational, isentropic flow composed
of two uniform streams flowing through a duct, separated by a shear
(or vorticity) layer of zero thickness. The upstream flow properties
are specified and remain constant for all pei‘turbatibné of the flow in
the region of interest. If the walls are gradually constricted, slowly
enbugh that at a particular section the Mach number remains uniform
across each separate stream and the pressure is uniform across the
combined flow, then the situation is analogous to that described earli-
er as ''one-dimensional' flow; that term will be employed in the two-
stream case as well.

This two-stream, one-dimensional flow of course has some
minimum area for changes of geometry consistent with the specified
upstream flow; this is the choking area. In this case, however,
neither stream is at sonic speed; stream 1 is still supersonic, and
stream 2 is still subsonic. The necessary condition for choking is
that the overall flow area be a minimum consistent with the upstream

constraints, e.g. that the equation

dAl dA2
or the relation
(M.2-1) (1-M.%)
A 1 - A 2 (3. 4)
1 Z 2 2 :
I\/I1 M2

be satisfied.
Since p, Ml , and M2 are monotonically related to each other

{total pressure is constant in each stream), either Mach number could
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have been used instead of pressure in eq. (3.3) and eq. (3.4) would
still have been obtained. Figure 3.9 presents choking margin (per-
centage reduction in overall flow area to cause choking) versus Ml
and M, for the two-stream system in which the streams have? equal
areas in the upstream condition. Frc;m this figure, one can feadily
see that the choking margin depends much more strongly on M, than

on Ml . For M, = 1.4, the system is choked at M, = 0.8195 when

1
upstream the condition is A1 equal to A‘2 and MZ = 0.6. Tables

2

3-1a and 3-1b present computer -calculated choking-area ratios and
normalized choking pressure for various values of the initial area
ratio AZ/AI’ M, and M, . Table 3-2 presents stream Mach num-

bers, pressure, and stream and net flow area for the case where ini-

tially the flow met the conditions A1 = A2 , M. = 1.4, and 1\/12 = 0.6,

1
which is approximately the experimental cé.se that was investigated.

To determine the magnitude of the effect of the shear layer on
the choking, a similar analysis was performed in which the shear lay-
er was given finite thickness (comparable to the experimental case at
the primary station of interest) and broken into 100 isentropic streams
of equal area with a linear distribution of Mach number. The results
of this are also presented in Figure 3. 9. Although there is a consist-
ent reduction of the choking margin due to the thickness of the shear
layer, the reduction is relatively small. Thus, the errors introduced
into the choking margin calculations by assuming the shear layer to
have zero thickness are slight.

A decrease in flow area of greater magnitude than the choking

margin would presumably have a large effect. It was assumed that
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3.2: One-Dimensional Variation of Flow
Properties about Reference Case
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such an occurrence would entail a shock somewhere in the supersonic
nozzle so that the flow would be wholly subsonic, Certainly, the noz-
zle exit pressures in each stream would no longer be equal; the static
pressure throughout the system upstr\eam of the constriction would
rise. Whether this would happen dis continuously or simply be occa.-
sioned by the onset of a continuous Pressure rise as the minimum
area is reduced is open to question. However, the new operating
point would depend on the entire system, especially on the cperating
line of the compressor plant.

Disturbances of relatively short span in the streamwise direction
may have blockage ratios greater than the choking limit without any
problems of this sort arising., This is because in transonic shear flow
the one-dimensional choking margin is related to a minimum area re-
duction necessary to choke the tunnel if the constriction is maintained
over an axial distance of several duct heights so the two streams can
reach relative equilibrium, If the perturbation is not maintained for
this distance, then the effect of the interaction between the two streams
is lessened, and their response tends to be more independent of each
other.

- For example, a uniform stream at Mach 1.4 has a choking
margin of 11,5 percent, and for a stream at Mach 0, 6 the margin is
18.8 percent. Thus, for a disturbance of sufficiently short span that
the stream interactions do not have a significant effect, each stream
can withstand a blockage very close to these individual limits (say, a
10 pércent blockage of each stream). As this 10 percent blockage takes

on a larger streamwise extent, the flow approaches a choked condition
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due to the supersonic and subscnic streams reaching equilibrium with
each other. Eveniually, if the blockage is maintained, the tunnel will
choke and the conditions at the source of the flow must change.

The reason why the equilibrium choking margin is much less
for the combined flow than for either stream considered separately is
that the value of dA/dp is of different sign in subsonic and supersonic
streams. A given minute change of pressure (reversing for the pur-
pose of illustration the usual cause-and-effect sequence) causes off-
setting changes of area in each stream at equilibrium, and the net
area change is less than the change in either of the separate streams.

The equilibrium choking margin is modified considerably by
the presence of boundary layers on the walls, and by the finite thick-
ness of the shear layer, The effect of the thickness of these layers
is illustrated in Figure 3.10, Growth of the boundary layers on the
walls, pa.rticularly on the subsonic wall, accounts for the increased
choking margin, Regions of flow which were at Mach number 0.6 (in

the model without boundary layers) have been replaced by flows at

- lower Mach numbers where %‘; is much greater. A measure of the

choking margin, employed in Eq, (3, 3), is
dA

dA n
dp"zdp ’

'n
. dA .

The flow is choked when ap = 0. The unperturbed flow is character -

ized by a positive—%- » so the changes introduced by the subsonic

boundary layer increase the magnitude of—% and move the flow farther

from a choked condition. By contrast, it has already been seen (cf.

Figure 3, 9) that the effect of finite shear layer thickness is to decrease
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slightly the choking margin, The supersonic boundary layer has rela-

- . s . . dA
tively little effect since within that region there are strips where &

is positive and others where it is negative., These have a largely off-
seiting effect,

Thus far, all of the discussions of choking margin have been
based on theoretical grounds. Figure 3,11 presents the one-dimen-
sioﬁal Achoking margin based on experimentally-measured Mach number
distributions (those shown in Figures 3.3 and 3.4). This shows a re-
duction of the choking margin in the streamwise direction. The com-
bined flow has many qualitative aspects of uniform subsonic flow, since
%—% is positive., The gradual drop in static pressure through the test
section, illustrated in Figure 3. 8b, confirms that this subsonic-like
flow is tending toward a choked condition in the streamwise direction,
It has been seen that this condition is due to the wall divergence lirmi-
tation of the wind tunnel design: a greater wall divergence (which is
not possible) would correct the losses in static pressure and in choking
margin. In the context of the preceding discussion, Figure 3,11 indi-
cates that the subsequent changes in choking margin from a given state
are due to the spreading shear layer {(which tends to reduce the margin)
and that the shear layer grows at a much faster rate than the subsonic
boundary layer. This difference in growth rate can be seen in Figures
3.1 and 3. 3.

The response to area chan‘g‘es of less than the one-dimensional
choking limit remains to be considered. This ha:s relevance in deter -
mining the effect of model blockage on the flow., The mechanism for

this study was a partial span strut (bearing a pitot tube, which is
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incidental to this discussion) which traversed in the vertical plane in
the center of the tunnel, The strut could be mounted in either the top
or the bottom wall and could be retracted to within 1/16-inch of the
wall, When extended fully, it reached through both streams to the
ofher wall, The cross section of the\:strut was a diamond of chord
5/16 inch and maximum thickness 1/16 inch. Fully extended, it
blocked about 3. 04 percent of the flow passage area (recall that this
is greater blockage than the one-dimensional choking margin of 2, 86
percent),

In the blockage experiments, the strut was mounted through the
subsonic wall so as to minimize its disturbance to the flow when fully
retracted, and it was mounted with its centerline at the 29, 75~inchﬁ
access port (the farthest-downstream position available) in order to
obtain the most information possible on the upstream influence of flow
blockage. Several taps were selected in both the subsonic and super -
sonic walls, and the pressure at the wall was measured versus strut
extension, Percentage pressure deviations, compared to local readinkgs
when the strut was fully retracted, were plotted for a number of wall
taps. Some of these data are presented in Figure 3,12,

An examination of the figure reveals that the disturbance,
whose source is at x = 29, 75 inches, seems to have undimished
strength throughout the test section and into the subsonic plenum
chamber, The mean flow loss of total pressure can be shown to be
negligible when the strut is confined to the subsonic stream, but
quickly becomes important as the strut enters the supersonic stream.

The figure shows that the trend of wall pressure can be related to
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this mean loss. This realization, and the fact that the pressure in
the subsonic plenum chamber is also dependent on the strut extension,
means that there is an interaction bet';veen the compressor plant and
the test section model of sufficient strength to affect the test section
flow a few percent, This tu‘nnel/plant» interaction is di.'écgssed further
in Appendix C,

Pressure variations due to the interaction aré both larger and
more irregular on the supersonic Wall than on the subsonic wall, This
is because the initial strength of the splitter plate shock and its sub-
sequent propagation characteristics are sensitive to the nozzle exit

conditions Ml’ MZ’ P Of these, P and fhrough it MZ’

tl’ 2° t2’

the splitter plate shock system, and all supersonic wall pressures,

and Pt

are seen to be fairly sensitive to the tunnel/plant interaction. Thus,
a regular procedure could not be devised through which pressure vari-
ations in the supersonic stream seen on the walls could be corrected

by reference to the unperturbed flow condition,
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IV, WEDGE STUDIES

4,1 Discussion

A substantial portion of the experiments performed as a part
of this project was concerned with the effects of a thin finite wedge
attached to either the supersonic V(to'p) lwall or the subsonic (bottom)
wall. It was hoped that these comparatively simple experiments
would give a degree of insight into the performance of the wind tunnel,
the approximately two-dimensional interaction of weak shock waves
with a transonic shear layer, and the effect of a change of overall
flow area‘ on the two-stream flow field. In addition, we hoped to ob-
tain some information concerning the extent to which the inviscid
flow would be modified in the region upstream of some obstructing
object.

Two wedges were constructed for fhese studies, each of which
had different angles at the leading and trailing edges so that by flip-
ping the piece end-for-end it would do double duty. The length of
both wedge pieces was fifteen inches from leading edge to trailing
edge. As the nominal height of a stream tube is 2. 15 inches, the ef-
fects due to the leading and trailing edges are separated by 6 or 7
stream-heights. Each wedge piece had 13 static pressure taps and
was secured to the top or bottom wall with 16 screws of size 1-64.
Sealing around the static taps in the wedge, which were aligned with
existing static taps in the wall, was accomplished by putting a gener-
ous layer of machine oil on the mating surface before the wedge was
attached to the wall. On the whole, this procedure worked well,

though occasionally data were lost due to an inadequate seal.
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The two wedge pieces will be referred tc as the "thick'' and
"thin" wedges. The thick wedge had a body thickness of 3/32-inch
and was built with wedge angles of 4° and 8°. After a few runs, the 8°
angle was cut down to 2°. The reasons for this will be discussed in
Section 4.5. The thin wedge was 3/64-inch thick (i.e., half that of
the thick wedge), and was built with wedge angles of 2° and 4°.

- The trailing edge of the wedge was sufficiently far downstream
of the leading edge that all interactions measured in the first two or
three supersonic-stream wavelengths (i. e., the first 8 to 12 inches)
‘were free of trailing-edge effects. This fact is well supported by
both theoretical and experimental data, and will be discussed in de -
tail later in this chapter. Thus, we had within the region of interest
the fairly simple case of a constant-angle flow deflection at the wall,
ifollowed by a wall parallel to the original line but displaced outward
by a small amount. Only leading edge interactions were studied.

The area blockages for the two wedges were 1.09 per cent
and 2. 18 per cent of the original flow area. The size of this block-
age was chosen in an effort to remain within the range of linear be-
havior. Nevertheless, there were distinct nonlinear effects in the
data, and in some of the experiments the tunnel appeared to be close
to choking.

A major goal of the wedge experiments was to study the
transmission and reflection off the shear layer of a disturbance wave
generated in either the supersonic or subsonic stream. A point of
special interest was in the way a disturbance wave generated in the

supersonic stream might enter the subsonic stream, propagate up-
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stream, and re-enfer the supersonic stream, thus modifying the
stream ahead of the disturbance sour_ée.

The wedges were usually installed with the Jeading edge 10
inches downstream of the nozzle exit plane. At this point, the shear
.la‘/er has a maximum-slope velocity thickness of 0. 62 inch and a
perceptible thickness of about 1. 00 inch, and extends almost equal
distances to either side of the plane of the splitter plate, y = 0. It
was also possible to mount the wedge plates at the station x = 17 inch-
es, where the maximum-slope thickness is 0. 94 inch, in order to
note the effect of shear layer thickness.

The baseline case about which parametric studies were per-
formed was that of the 4° angle, 3/32-inch thick wedge attached at
x = 10 inches. Data were obtained as wall and wedge surface pres-
sures and by schlieren photography. It was not possible to obtain re-
liable data from probes introduced into the flow due to the inherent
sensitivity of the perturbed transonic flow field in the interaction
region.

In Section 4. 2, a qualitative discussion of the response to a
shock wave impinging on a zero-thickness shear layer is presented,
followed by a consideration of the modifications when the shear layer
has finite thickness. The governing equations, accurate to first
order, for perturbations to a general shear layer are obtained.

Section 4. 3 presents the development of the first-order mathe-
matical solution to the shear layer of zero thickness for the wedge
problems. In Section 4.3.1, the basic method to be employed is out-

lined. It is based on Fourier transforms, and draws heavily on work
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by'H. S. Tsien and M. Finston concerning a similar problem 18 . The
general solution to the transformed governing equation is obtained.
The solution for the supersonic wedge problem is found in Section
4.3.2, and that for the subsonic wedge problem in Section 4.3.3. In
Section 4. 3.4 the algorithm by which numerical results were obtained
is briefly outlined. A more complete discussion is presented in Ap-
pendix C.

Section 4.4 compares the present calculation with the results
of Tsien and Finston 18 , which are a'limiting case, and finds general
agreement.

The supersonic wedge case is studied in Section 4.5. First,
it is seen that theory and experiment show good agreement for a se-
lected reference case. Next, perturbatiops of various parameters
(wedge angle and thickness, and shear layer thickness) about the ref-
erence cl:ase are studied both theoretically and experimentally, and
the limits of validity of the first order theory are established. Final-
ly, theoretical parametric studies are presented of variation of prop-
erties which were fixed by the design of the wind tunnel (Ml’ MZ’ and
hl/hz) and whose influence thus could not be established experimen-
tally.

Similar theoreticai studies are presented in Section 4. 6 for
the subsonic wedge. Due to problems with the repeatability of the
tunnel, experimental verification of these results generally was not
possible. The amplitude of the pressure perturbation is related to
the choking margin (see Section 3. 4) of the unperturbed flow for a

given disturbance geometry.
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A summary discussion of these studies is presented in Section

4.17.

4.2 Simplifiéd Shock Reflection and Transmission

To get some sort of intuitive feel for the processes at work
when a shock wave strikes a subsonic flow, consider the simplified
model of Figure 4. la, in which there are two distinct streams of uni-
form upstream Mach number with a zero-thickness shear layer be-
tween them. |

There are two extreme cases, which are presented in parts b
kand c of Figure 4. 1. ﬁMost practical problems in this experiment
fall between the extremes and combine certain of the characteristics
of each.

In the first case, Figure 4. 1b, the subsonic stream is un-
bounded. The impinging shock wave, of deflection angle 60 , strikes
the interface. Because the subsonic layer cannot support a discon-
tinuous increase in pressure, an expansion fan of deflection angle 61
must be generated at the interface so that the pressure downstream
of the expansion is the same as that upstream of the shock. The net
deflection of both streams at the impingement point (taken positive
into the supersonic stream) is -(60+61). The subsonic stream obeys
the dictates of potential flow and is stagnant at this cusp in the inter-
face. This means that locally upstream of the cusp the subsonic
stream must also be at a somewhat elevated pressure. With the re-
quirement of constant pressure on each side of the interface, this

elevated pressure must be generating compression waves in the
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supersonic stream upstream of the impingement point. 5Similarly,
downstream of the impingement point (or the cusp), the pressure must
fall and thus expaasion waves must be passed into the supersonic
stream. Knowing all the flow properties, we can readily determine
the angular deflection immediately ahead of and behind the cusp, and
far downstream, but the length scale of the interaction region must be
found in some other manner.

In the other extreme case, a wall bounding the subsonic stream
is sufficiently close to the interface that the subsonic flow must quickly
return to its original direction, though its stream-tube area and pres-
sure will be larger than before. The possibility of a pressure rise
large enough to cause stagnation of the subsonic stream,or separation
as in boundary layer theory, will not be considered here.

As before, the requirement of no discontinuous pressure in-
crease in the subsonic layer means that a cusp will form in the inter-
face, requiring a stagnation point in the subsonic stream. The analy-
sis remains the same upstream of the cusp, but downstream of the
cusp the expansion waves will be partially replaced by the compres-
sion waves necessary to turn the flow back to the horizontal. The net
pressure will increase, and thus the subsonic stream must have
larger area than upstream.“ This problem was treated analytically in
some detail by Tsien and Finston !

It should be noted that this entire discussion is only valid if
PtZ < Pl* , where P;c is the pressure at which a fluid element in the
supersonic stream has sonic speed under isentropic changes. This

requirement can also be expressed as
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2 2 2
< { .~ }.
MZ | \1\/11 1) . (4. 1)
At Ml = 1.4, the requirement is that M, be less than 0.8%4. The

relation is satisfied for all M2 less than one if M.1 is gregxter than
1.484,
| The next step is to estimate the effect of finite shear layer
thickness on the response just outlined. If a wave in an unbounded -
flow strikes an interface between two supersonic flows, each sepa-
rately having a uniform Mach number, part of the wave will be trans-
mitted through the interface and part will be reflected (see Figure
4.2). For a small difference in Mach number between the two layers,
the strength of the reflected wave (in terms of deflection angle) is

2

2-M AM
2 M (4.2)
2(M“-1)

r =

and the strength of the transmitted wave is (1-r), where the incoming
wave has a strength of one. It can be seen that the reflected wave is
of the same sign as the incoming wave (compression or expansion) if
M < /2 and is of opposite sign if M >./2 , with zero reflection at

M = /2. If we now consider a flow of three supersonic layers rather
than two (see Figure 4.2b), we find repeated reflection of a wave in
the middle layer trapped between the two interfaces. It should be
noted that the reflection coefficient, r, is generally quite small and
the strength of the trapped wave is substantially reduced at each re-
flection. Using this observation as a guide, we can now construct a
plausible situation for a continuous velocity gradient (i.e., infinitely

many shear layers) as is shown in Figure 4.2c. Within the shear
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lay}er, there is a discontinous jump in pressure at the leading porticn
of the wave (the magnitude of the jump being reduced as the wave
passes into the shear layer until it has vanishingly small strength at
the sonic line) with a region of continuous compression (preceded by
an expansion if the Mach number is greater than ,\/'2-‘) behind the lead-
ing portion of the wave. The strength of these compressions de-
creases spatially to zero downstream from the leading wave. The
thickness of the incoming wave can be considered to be zero, but the
reflected wave has a thickness of the same order as that of the super-
sonic portion of the shear layer (see Figure 4.2c). The disturbance
imposed on the subsonic portion of the flow at the sonic line is a con-
tinuously increasing pressure, compared with the result of a discon-
tinuous change in flow inclination angle for the shear layer of zero
thickness.

The next step is a mathematical investigation of disturbances
to the uniform two-dimensional shear layer. A perturbation expan-
sion scheme will be used. The parameter ¢ will be used as an indi-
cator of the magnitude of the disturbance. A well known result is
that changes of entropy in a compressible flow are of third order in
the disturbance strength when the Mach number is close to one.

Thus, consideration of effects of first and second order may proper-
ly assume that a fluid element behaves isentropically. In addition,
transport properties such as viscosity and heat conduction will be
neglected. Then, in two-dimensional flow, the mass continuity

equation becomes



du du , 0P

pl.l a + o] 'é—y- + -'ax = 0 N
0 ov 0P

058 3 + pv -8_37 + ?Y— 0

By eliminating density and pressure from these equations (using the

isentropic condition), we find that

2 2, 0u 2 2. 0v du  ov |
(a -u )5§+(a -V )-g};—llv(‘é';'i‘s;) = 0 (4. 3a)
0 0 v du ’
(a5z +v By W5x - —8y) = 0 (4. 3b)

where a is the local speed of sound. By defining the local vorticity,

W, as

1,0v 0du
W= gl -3y (4. 4)

we see that eq. (4.3b) tells us that a fluid element retains constant
vorticity.

Consider a flow in the x-direction whose unperturbed proper-
ties vary only in the y-direction. Superimposed on the flow are per-
turbations. Call the main flow velocity profile Uo(y); the x- and y-
components of the perturbation velocities are u'(x,y) and v'(x,y).
Then the net velocity components are

u(x,y) = U_(y)+u'lx,y) , (4.52)
vix,y) = vi(x,v) . (4. 5b)
Substituting into eq. (4.4), we see that (

ou' ov'
_au?:_%_r_. (4. 6)
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EXI-)ressing the perturbation velocity vector as the gradient of a scalar

potential, ¢, we get

3= et el b, (4.72)
u' = 8%/9x | . (4.7Db)
vl = 98%/o9y . S (4. 7c)

Equation (4. 6) is now satisfied identically by this approach. Equation.
(4.7) can be substituted into eq. (4.3a) to give a series of terms in
powers of €. The first-order result (terms containing el ), which
is valid only in the limit as the disturbances become vanishingly
small, is

> 82¢' . 82¢‘ MO dUO 3

(1-M ") A ,
o 8X2 ay a, Jdy 9y

= 0 . (4. 8a)

Should a second-crder correction to the first-order result be desired,
then after obtaining ¢'(x, y) it would be necessary to solve for ¢''(x,y)

the follo{ving equation:

2. ol gn 2y Mg AU g
A-M)—F t— - —— 55 5y ° (4. 8b)
ox Oy - rO y y
MO 9 [( +1) 82¢' +(y-1) 82¢v + 1 9¢ <dU° 8¢ +2 ——824" >
a_ ox LV Tz TN T Z By \dy ox o xdy /"
o ox oy ag

Of course, in the general problem, Mo’ a, and U0 are all known
functions of y. Equation (4. 8a) is relatively easily solved only when
Mo’ a,s and U0 are constants; then the equation has only two terms
and the coefficients are constant.

To treat the present problem, divide the flow region into n

strips with boundaries on lines of constant y. Each has its own uni-

form values of M_ and a . Two boundary conditions must be im-
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posed at each interface between the strips: continuity of pressure and
flow inclination angle. One boundary condition, that of flow inclina-
tion angle, must be applied at each wall. For small perturbations the
boundary conditions can be applied to the walls and interfaces at their
undisturbed locations. In a region composed of n strips there are 2n
boundary conditions.

The simplest non-trivial example relevant to the present
problem is that of two strips, one supersonic and the other subsonic,
with a shear layer of zero thickness separating them. This example
is a good approximation to the present study because the shear layer
in fact is fairly thin. In Section 4. 3 the first-order solution to this

problem is obtained.

4.3 Linearized Theory Development

4.3.1 General considerations and derivations. Consider the

unperturbed flow model of Figure 4.3, and using linearized small-
perturbation theory let us develop solutions which consider wave-like
behavior in both stream tubes in a two-dimensional manner. This
will permit, for example, the imposition of various wall profiles on
the top and bottom walls. Specifically, a full linear theory to treat
the experimental cases of wedges on each wall will be presented. '
The calculations are analytic rather than based on a finite-difference
scheme, though the results are sufficiently complex to require their
numerical evaluation on a digital computer. For this purpose, the
IBM 370/158 of the Computing Center of the California Institute of

Technology was used.
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Consistent with linear thf";‘ory, the first-order effects in the
imposed disturbances will be treated and higher-order effects will be
disregarded as insignificant. This approximation, strictly speaking,
is valid only for infinitesimal perturbations. Both the subsonic and
Supersonic flows will be assumed inyiscid, irrotational, non-heat-
conducting, and two-dimensional. Velocities will be related to the
gradient of a scalar potential, and»will be calculated using the tech-
niques of Fourier and complex analysis which will express solutions
as infinite series whose convergence can be demonstrated.

Throughout this analysis the subscripts 1 and 2 will be used
to identify respectively the supersonic and subsonic streams. Sub-
scripts x and y preceeded by a comma, will indicate partial differ -

entiation. Thus, P is the partial derivative of the supersonic

l,x
stream pressure with respect to x.

The unperturbed velocity in each stream is uniform, so eq.

(4. 8a) becomes

2

(M1_1)¢1’XX_¢> h z2y=z20 M. >1 (4. 9a)

l,yy:O 1

(1-M22)¢2,XX+¢2, yy = O “hy Sy S0 M, <1 (4. 9b)
where the interface is the plane y = 0 and the flow is supersonic or
subsonic respectively where y is greater than or less than zero.

All calculations will be accurate to first order only, and the 'prime"
superscript on the velocity potential will be deleted.
Within each stream, U is constant. Thus, it becomes per-

missible to modify slightly the definition of the relation between the

perturbation velocity vector and the velocity potential:
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o = U_gradé . (4.10)

This is not the standard usage, but it does greatly simplify the appli-
cation of boundary conditions to the problem under study, since ti‘le
local flow inclination angle is (9¢/9y) rather than ( T e

Equation (4. 9) shows the expected hyperbolic ’t(;ehavior of d)l
and elliptic behavior of ¢, . Take the Fourier transform of these
equations with respect to x:

(x,y) = (k,y)

Denote the Fourier transform of f(x,y) by ':.Ev(k, y) and, using the

transform relations

v 1 2 ikx

flk,y) = [ f(x, y)e™Fax (4.11a)
V2T oo
1 P~ -ikx

flx,y) = —— [ f(kyle Tdk , (4. 11b)
2T -

write the general equations as

31y tEMI-DY = 0 (4. 12a)
3 kK2(1-M2)3. = 0 (4. 12b)
%2,yy - Mz )op = ' :

The general solution of these equations can be found by the method of
separation of variables. Defining the quantity B simplifies the nota-

tion:
B = /M| . (4. 13)

The general solution of eq. (4. 12) can be found:
El(k, y)= C,(k)cos kﬁl(y-h1)+C12(k)sinkﬁl(y-hl) (4. 14a)

3,(k,y) = C, ((K)coshkBy (y+hy J+C,, (K)sinh kB, (y+hy) (4. 14b)
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where the walls are at y = hl and --h2 . Four boundary conditions wil]T
be applied to find the four coefficients" Ci.j(k)' They will be in the
form of specified flow inclination angle at the walls (two walls, thus
two conditions) and equal pressure and inclination angle at the inter-
face in each stream. Two basic types of problermn must be considered,
in which the perturbation is specified cn either the supersonic or the
subsonic wall; two of the four boundary conditions are formed differ-
ently in each case. Since the problem is linear, composite solutions
can be formed by superposition of solutions of each of these two
types.

Three of the four boundary conditions to be applied are in the
form of the flow inclination angle, v'/U = ¢, - This is why the non-
standard relation of eq. (4.10) was introduced: confusing factors of
Ul and U2 are not introduced. The expression of inclination angle

for each stream is more concise.

"4.3.2 Supersonic wedge problem. In this problem, a flow in-

clination angle Vw(x) will be specified on the supersonic wall and the
subsonic wall will be unperturbed. Each boundary condition will be
expressed in working form in (k, y) coordinates, i.e., under a Fourier
transformation, rather than in (x, y) space.

The first condition is the specified supersonic wall inclination

angle:
¢y = V) at y=h
~ ~ (4. 15)
d)l, y = VW(k) at y = hl

Continuity of flow inclination angle across the interface yields the



condition
(1)1’ v = (1)2’ v at y = O
_ - ‘ (4, 16)
q:l’ . = 42’ v at y=0

Since each stream has a uniform total pressure, the pressure pertur-
bation is given by

P' = _puu' = -yPMzd)X (4. 17)

and the condition of pressure continuity across the interface can be

written as

2 2
Mpdy,x = Mpd, . aty=0
(4. 18)
MZ"' - ME3 ty=0
191 = Myo at y=0,

since the unperturbed pressure, P, is the same in both streams. The
final condition, applied at the subsonic wall, is

¢2 = 0 at y = -h2
(4.19)
(})2 = 0 at y = —h2
Using these boundary conditions to solve for the coefficients

Cij(k) in eq. (4. 14) and inverting the Fourier transform gives the ve-

locity potential for a general wall profile Vw(x):

7~

1 2 VeI p 1. _ikx
d)l(x, y) = = IOO “{{ i3 cos kﬁl(y_hl)+gz smk@l(y-hl)}e dk
(4.20a)
Mlz S ikx
¢2(x, y) = Kq () vV (k)coshkﬁz(y+h2)e" dk (4.20b)
J27 oo q( w
where >

B, M,

2 2 . .
f(k) = M, cos kﬁlhl coshkﬁzh2 +—B_1—— sin kﬁlh1 smhkﬁzh2 , (4.21)
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k) = 1\/[2 kp.h sinhkB h, - I\/I2 inkB . h hkB, h (4. 22)
‘q()_ﬁz ) cos pl p sin oy -P M, sin Bl j cos ohs, .

The boundary condition Vw(x.) is presented in Figure 4.4, and repre-

sents the supersonic wedge problem described previously. The func-

tian Vw(x), which is the flow inclination angle at the wall, is:

VW(X) = 0 x < -Blhl
VW(X) = g -Blhl <x < -Blhl-l—t/e (4.23)
VW(X) = 0 X > -[31h1 + t/e

Applying the Fourier transform gives the result

. Sik(@.h, -t/e) -ikB_h
T (k) = = [e 11 e 1 1] (4.24)

w k2T

and the expressions for the velocity potentials are determined. The
potentials themselves are not needed; what are required are the x-
and y-derivatives of each potential. By expressing sines and cosines

in terms of complex exponentials, the potentials can be expressed as

d)l,x e(Ill + 112 - 113 - 114) (4.25a)
*Ly T Py -l ) - elly oL 5) (4.25D)
2
2
b g = B My (I - L)  (4.254)
where
1 > f -iksln
Iln:Z}-j‘m-Eq_e dk n = 1,2, 3,4: (4.263.)
. 00 -ikS -Zikﬁﬁh1
_ _i 1 In 1 -
IZn = - I ‘foo e <l+e )dk n=1,3 (4. 26b)
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Supersonic Wedge Problem
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-ikS,)n

e - coshkﬁz(y+h2)d}: n=1,2
-ikS

£ e Znsinh liﬁz(y+h2 Jdk n=1,2

X-t/e-l—f?)ly
x + 2B h, -t/e-ﬁly
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x-i—ZBlh1 - ﬁly’
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.26d)

27a)

27b)

27c¢)

27d)

27e)

27f)

All the integrals of eq. (4.26) have poles on the path of inte-

gration in the complex k-plane, and all but eq. (4.26b) have poles in

the plane away from the path of integration as well.

Equation (4.26b)

has a éingle pole at k = 0; the others have poles at all points where

kq(k) = 0, i.e., at the origin k = 0 and at all points where q(k) = 0,

k0.

The integrals will be evaluated through contour integration

and the method of residues.

all the poles. The equation q(k) = 0 reduces to

where

tanh k‘Bth2 = r tan kﬁlhl

2
BIMZ

T a2
PaMy

To do this, it is first necessary to find

(4.28)

(4.29)

Resolve the complex k of this equation into real and imaginary parts:
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k = k_+ ik, (k. and k. real)
r i r i

It can be seen that except for singular cases the poles are
either pure real or pure imaginary, i.e., poles lie only on the axes
of the complex k-plane, and are governed by the equations

k. = 0 tanh kr Bzhz = r tan kr Blhl s {4.30a)
k =0 tan ki ﬁzhz = r tanh ki Blh'l . (4. 30b)

Note that the solution for the poleé depends only on M1 » My, hl , and
hZ , and not on x and y. Thus, for a given set of these parameters,
the set of poles is the same for all (x,y). Due to the periodic nature
of the tangent functi-on, each part of eq. (4.30) defines an infinite set

of poles {kr(‘])} and {ki(J)} (see Figure 4.5). We can see that
(

o< er)ﬁlhl < jr+ tan”Y(1/1)
. j . -1
jT < ki(‘])ﬁzhz < jw + tan “(r) ,
restricting the poles so that

j=z0, kr(3)>0 ’ki(J)>0

Under this formulation there are five groups of poles: k=0, k =
& kr(j) , and k = = iki(j), as shown :Ln Figure 4.5. For each positive
j, there can be one and only one solution kr<j) and ki(j). However,
for j = 0 there may be no positive (i. e., excluding zero) solution at
all, as is illustrated in Figure 4. 6.

In finding a numerical solution for these poles, it will be nec-
essary to know the conditions for which a given pole with j= 0 van-
ishes, as poles at the origin must be treated differently from those

not at k = 0. It can be seen that one and only one of the two poles

with j = 0 will (in general) vanish. The division between these two
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regions is the line

Mlzal\ hl l—MZZ
P, My, by /hy) = (o )((E) - —F = 0, (43D
Ml 2 1\/[2

which is the line on which the flow is choked at the unperturbed condi-
tion. If F is negative, the behavior of the flow for area changes is
"subsonic-like'' (i.e., area increases cause a rise in pressure) and

the valid terms of the k ( ()

. series
r i

3 series start at j = 0 while the k

starts at j = 1. Conversely, if F is positive, the behavior is '"'super-
()

sonic-like'' (area increases cause a drop in pressure) and the kr

(j)

;i series starts at j= 0. When

series starts at j = 1 while the k
F = 0, the unperturbed flow is choked and the first-order linearized

theory breaks down for even the smallest perturbations.

Integration from k = - to k = 0o can be represented as a
limit:
0 co+id
I = dim
o) 5=0 -oo+id
6>0

in which the contour of integration is displaced an infinitesimal amount
above the real k-axis so that the path of integration does not pass
through the poles on the real axis. To see that the path must be dis-
placed upward rather than downward, we must realize that the poles
on the real axis represent'spatially-oscillating solutions, while those
on the imaginary axis are spatially-damped solutions. It will be
shown later that for points (x, y) far upstream of the disturbance
sources, only poles above the integration path will contribute to the

solution.
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Physical intuition tells us that disturbances must die out up-
stream, and thus the real axis must be excluded. Therefore, the path
of integration must be displaced above the real axis, and the formula-
tion presented here is the proper one. he contour will be closed in
either the upper or lower half plane at a radius of infinity, whichever
half plane causes the semicircular portion of the contour to make zero
coﬁtriﬁution to the result (see Figure 4.7). The rejected half-plane
contour will generally cause the result to blow up. Then, from resi-

due calculus:

0o

[ f(k)dk = [ f(k)dk = #2miZR_,
c n n

-00

where the plus or minus sign depends respectively on whether the di-

rection of the path of integration on the contour C is positive (ccunter-

clockwise) or negative (clockwise), which refers respectively to con-

tours in the upper or lower half plane. The factor 2 Rn is the sum of

n
the residues of all the poles within C. If C is closed in the upper
(j)

half plane, then this refers to the s"i;igle set of poles k = iki How -

ever, if C is closed in the lower half plane, then C encloses the
poles k=0, k== kr(j), and k = -iki(j) and the summation must be
performed over all these poles. The condition for choosing the proper
contour will be discovered later in this analysis.

All poles away from the origin (except possibly for isolated
cases, depending on the initial data) are first order. If the integrands

are expressed as p(k)/qo(k) where p and d, aré polynomials, then

the residue of a first-order pole at k = ko is given by



w33

X Upper haif-plane
>< closure
X
X
, X 4
NE NS NSNS N7 NS NL NS NS NS
INT AN NN PN FAY /\ P AN N T -
X E—=0
X
N
/)
7 Lower half-plane
closure

Figure 4.7: Contours of Integration



-84~
pk )
Res[—g(i(—)—— Lk ] = —2
q, (k) o q (k)

Integral (4.26b) will be discussed later, since it is of a much
simpler form than (4.26a, ¢, and d). These other integrals have at
the origin either a second-order pole or a first-order pole and a re-
movable singularity. In both of these cases, since the third deriva-

tive of the denominator vanishes at the origin, the residue is given by

p(k) - 2p'(o)
ReS[qo(k) 5 O] = —q—;ﬁ—(—é—)— .

Now consider the integral of eq. (4.26b):

kS| -2ikp b,
e (l+e )dk n=1,3 (4.26b)

] b

;o
IZn = - F.,r
eo)
With a single pole at the origin (k = 0), this is the easiest of all the

integrals to evaluate:

L, = -HS ), (4.32)

Zn in
where H(x) is the unit step function. The singular lines S‘ll = 0 and

S., = 0 are the physically-expected lines for such a calculation: they

13
are the Mach lines into the flow from the shoulder and leading edpge,
reSpectivély, of the wedge.

The other integrals become the sum over all relevant poles of
the residues of the integrand, i.e.,

-ikS

_ i £ In _

Iln = :tzRes<—2— ox e ,k)- i%Res(Jln, k) (4.33a)
i -ikSZn

I3n = :&:ZR_es(—l—{—q— e coshkﬁz(y-l-hz), k> = :i:%)Res(J3n, k)

(4.33b)
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-ikS

i 2n . . .
I = :tERes(Ea—e 11SJ.nhkﬁZ(yi—hz), k): :‘;ER‘%S(% , k)

4n
(4.33¢)

The factor of (27i) has been included in these expressions., From this
point on, the superscript {j) on the notation of the poles will be dropped.
It is to be understood that a reference to kr or ki refers to the entire

set.

At the real poles k = kr (which does not include the pole k = 0),
we have q = 0 and q' = 0 (the poles are first order) and the terms of
the series can be evaluated as

; f exp[-lkrSin]

Res(d)k,) = 5 — e (4.34a)
r r
i
s e e ——— r_i N 7
Re (J3n, kr) qu,(kr) exp[ 1kr SZn] coshkr Bz(y-i-hz) (4.34b)
. 1 . .
R;es(cﬂ4n, kr) = qu,(kr eXpE-lkrszn] smhkr ﬁz(y-!-hz) . (4. 34c)

Note that the residues of the real poles occur only in pairs of
kr and —kr - Taking advantage of this, put

R__(k_) = Res(d sk )+ Res(d_ ,_k ),
mn' r mn’ r mn r

f(k_)sin kS,

R (k) = K q(&) o
r r

) .
. coshkrﬁZ(Y"“hz)SlnkrSZn (4.35b)
2n'r k_q'(k_) .

T r

T 2 sinhk B, (y+h,)cos 5S2n (4.35¢)
4n"r’ T qux(kr) o

Differentiate eq. (4.22) with respect to k and get:
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, 2, 2 .2 .2 _
qi(k) = B, hZMl -(31 thZ Jcos kﬁlhlcosh kﬁzhz-
2 20
-ﬁlﬁz(hll\/il +h21\/12 }sin kﬁlh181nhk£32h2 . (4. 36)

Adopt the notation that f(iki) = f*(ki) . Then

S 2 2 2 2
q (ki) = (62 hzl\/I1 -ﬁ»l thZ )coshkiﬁlhlcos kiﬁzh.2
; 2 2. . .
+Blﬁz(nlMl +h2M2 )Jsinh kiﬁlhl.;ln kiﬁzhz s (4. 37)A
2 BoM . :
f (ki) = M2 coshkiﬁlhlcos kiBZhZ - Bl 51nhkiﬁlhlsmkif32h2 , (4.38)
and
" fa:(k. Jexp(k.S. )
s 1 _
R, (k)=5—2- 1D (4.354)
k.q (ki)
" exp(k.S, )cosk.B,(y+h,)
Ry (k) = L Zn 27 2 (4.35e)
kiq (ki) .
" exp(k.S2 )sink.|32(y+h2)
an (k) = Sl =2 (4.35f)
. kia (k;)

The next task is the calculation of the residues at k= 0, Re-
call that for polynomials p(k) and q(k),

251
Res(g: 0) = ql?n(((;)))

when q"'(0) = 0 as it does for all these poles. The residues at k=0

can be found to be 2
(@) . Y251n 4.35
In = qu(os ( . g)
g .
r(°) Zn (4.35h)

3n - q'(0)
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+h
Eif;;) = ?%%Tz_)_ (4.35i)
No analytic form has been found for the infinite series described by
the Rij of eq. (4.35a-f). The character of the series is complicated
considerably by the nonuniforim spacing oi the poles ki and kr . How-
ever, the repetition of the poles does become uniform in the limit as j
becomes large and the hyperbolic tangent of eq. (4.30) becomes close
to unity. This limit describes an asymptotic solution.

A different series, based on the asymptotic representation of
ki and kr , can be shown to be a hypergeometric function, and the
terms of the actual series will become vanishingly close to the terms
of the asymptotic series as j approaches infinity. In fact, it can be
seen that the error is less than one part in 105 when only 6 or 7 actual
terms are included. Calling the cutoff value j = J, the method which
will be adopted can be described as

J

actual solution = asymptotic solution +j20 l[actual jth term -

H

- asymptotic jth term7 ,

where ""asymptotic solution'' means the hypergeometric function
covering the series from j= 0 or 1, whichever is proper according
to the condition of eq. (4.31). The advantage of this rather than a
"brute force' method of simply summing the actual terms as long as
necessary lies in the simplifications available in treating cases where
convergence, although uniform, is quite slow. Analytic approxima-
tions are available in treating a hypergeometric series under these
conditions. The problem of slow convergence will be seen later to

come up frequently, especially in some of the more interesting
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evaluations.

To find the asymptotic poles, replace the hyperbolic tangent
in eg. (4.30) by unity wherever it appears. This is equivalent to the
following replacements:

. w 1
smhkrﬁzhz, cc»shkrﬁzh2 z exp(krBZhZ)
. 1
smhkiﬁ lhl’ coshkiﬁzh2 - 3 exp(kiﬁzhz)

and the poles are then given by

kB b = 8 +jm (4.392)

kf,h, = O.+jm (4.39b)
where -

er = tan_l(r) , (4.403a)

8. = tan~i(1/1) . (4.40b)

1

In order to simplify slightly the coming algebra, let

2, 4 2 4
£ = /ﬁle TRy My  (4.41)
Then another way of expressing eq. (4.40) would be
B oM,
sinf_ = co0sf., = —p—n (4. 42a)
r i 3

2

P M,

3

As has been mentioned previously, the procedure will be to

(4.42b)

cos 8 = sin§.
r i

evaluate the integral Imn by an infinite series of residues. These

residues are of four types; denote each type by _Imn\):

v = 1 sum over all real non-zero poles,
v = 2 sum over positive imaginary poles,

v = 3 pole at origin,
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v = 4 sum over negative imaginary terms.
Then, if the contour of integrétion is closed in the upper half
plane,

Imn =’ IngI ; (4.43a)

and if the contour closes in the lower half plane,

Imn = —Imnl - Irnn3 - Irnn4: ? ' (4.43b)

the change of sign being due to the sense of the contour of integration
being opposite that which defines a positive residue.
No asymptotic form is required for the residue v=3. We

have from eq. (4.35) the resulis

MZZS”l

a3 = 25770 (4. 44a)
SZn

) (4. 44b)
B, (y+h,)
2 2

141’13 = —-—a‘—('(—)-y——— (4.44:C)

Using eq. (4.35), the remaining series (still in terms of actual rather

than asymptotic poles) are
f(kr)

Ilnl = 7 Tk.q(k_) Slnkrsln (4.45a)
r r
S B L
In2 = 27 exp(k.S, ) (4. 45b)
k.q (k)
1 1
15 f"‘(ki)
I = =5 L4d =T eXp(—k-S ) (4.'. 45(:)
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1 . '
I, ° Z%DEZEFUE;T coshk B, (y+h,)sink S, (4. 45d)
 SED Y . cos k.B, (y+h, )exp (k:S. ) (4. 45¢)
f3n2 C 5 T i YTy N EXP AR S, -
J k.qg (k.)
i i ,
L o= oDt coskh (y+h, ) exp(-kK.S. ) (4. 456)
3nd TG HT KiPp YTy 7 €XPL-K20 0 :
J k.q (k.)
1 1
1 .
14:111 = Z?W Slnhkrﬁz(y+hZ)COSkr82n (4:.45g)
1o = 2 = sink B, (y+h,)exp (k.S, ) (4. 45h)
C kg (k)
I = 0 — 2 Gink.p.(y+h,)exp(-k.S, ) (4. 451)
dnd - F T it YThp Jexpl=-Xon :
Tk (k)

The notation will be adopted that the superscript (*) denotes a
function or series whose poles are found by the asymptotic substitutions
of eq. (4.39). Each of these asymptotic series will be evaluated by

placing it in the form of a hypergeometric function:

1 n

Fa, 1;8+l;z) = 0 nFaz

h8

where z may be complex. The limits of convergence for this series
are that \zl <1 and z % 1 . Adopting the conventional usage that
Re(z) and Im(z) respectively refer to the real and imaginary parts of

7z, the result is

1 581 1 TAy P
o= imle " ' Dam e D) ) (4. 462)
2. 2
28, M "M 8.A TA, n
_ 2771772 i"2 1 2
Ian - _—TTEZ—— © 21;2 n+ 9,/ (e ) (4. 46b)



2
; i zﬁlemz ee A, 5 1 ( TA, ? .,
nd T T e WS (4. 46c)
. 8 A TA, n B8 A -TA_ n
. ) g 1 4 5 1 5
iy = -sgmle " Wamm e e g )
(4.464d)
. 8.A TA, n
. 2 6 1 6
13112 = ?r_%— Re[e B %} W (-e ) (4.'¢ 4:66)
2 91A7E 1 TA, 1
I\3114 - F{Re[e n n+8; 7 (-e ) (4.461)
b A TA, n 86 A TA_n
_ 2 4 1 4 r’5 1 5
b = mgRele T Raglmiee He T PR 7 (e )
(4. 46g)
8.A TA, n
2 T it 1 6
Yino = 7g m|e Z;'H:eyw-e ) (4. 46h)
. 2 T 91A7 1 rrA7n
l4n4=FglmLe D (e ) (4. 461)
where
Sln :
Ap = it (4.47a)
171
S. -28.h
In 171
A, =-an 11 (4. 47b)
2 B,h,
A - Sln+1rﬁlh .
3T TR e
_ o1 -
1 .
A5 = E_1h~1['(2+y/h2)52h2“52nj (4.47e)
A :Szn—ﬁlhl+i(1+ /h.) 4. 47f
6 = B y/hy (4. 474)

272
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- S, B b

= - S .:Ll‘i" /h 4.47
A,? —B—Z*H-Z-“ T ( Y/ 2) ( g}

We can see that the conditioné for convergence are those pre-

sented in Table 4-1, In Table 4-2 are presented the admissible range
for integration contours to be clqs eld in the upper or lower half plane
for each integral. A glance at this table will reveal that the conver-
gence conditions have some ambiguity as to the propér value of Sij at
which the integration contour should switch from the upper half plane
to the lower half plane.

This ambiguity can only be resolved by considering the physi-
cal situation in ter:fns of where it seems reasonable for the physical
flow to undergo a (possibly) sudden change. This physical layout is
presented in Figure 4. 8.

The natural lines of discontinuity on the supersonic stream
are S., =0 and S

11 13~

erably through mathematical consideration of the condition of con-

0. Either through similar reasoning or pref-

tinuity of pressure and inclination angle across the interface, it can
be shown that the corresponding switching points in the subsonic
stream are the lines 521 = [31h1 and S22 = ﬁlhl . The final choice of
integration contour is presented in Table 4-3. In a condition where

the integration is in the upper half plane,

Imn = IxnnZ ; (4. 433)
and in the lower half plane,
Inrm = 'Imnl - Imn?: - Imn4 : (4.43b)

4.3.3 Subsonic wedge problem. This problem considers the

same type of boundary condition discussed previously, that of a thin
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TABLE 4-1. Integral Convergence Conditions

Integral ‘z; <1 or z 41

Ilnl (not relevant) Sln: iB lhl’ i=20,1,2,3,...

Iin2 Sip < 280y -- @

Iina Sin > -2y -

Lan1e tany y <0 y=0, S5, # B0 (2j+1)
i=0,1,2,...

Iinz’ Lan2 S, <Bhy Son = ﬁlhl , V£ 0O

I3na’ ana Son ™ PPy Son = FiPps VO

15n1 converges everywhere

Tt Jar Tgn1 fom - V> 2 y=hy, S, #2fhy
520,1,2,...

Tsn2 Sgn < Piby Ssn # Piby

Ten2' T7n2 Tgn2 Tonz Sen <0 Sen =0, v# -hy

Tsna. Ssn > B0y Sen # B by

I6n4’ I'Zné}c’ I8n4’ I9n4 Sén >0 Sén =0, v# —hZ

TABLE 4-2.

Integral
Iln

I3n’ I4n

ISn

Ién’ I‘?n’ I811’ I9n

Integration Contours for Convergence

Upper Half Plane Lower Half Plane

S, < 28,h, S, > -2B,h
San <Py Son > Pl
S5n < Pihy S5n > Py
Sén <0 Sén >0
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TABLE 4-3. Final Choice of Integration Contrurs

Integral Upper Haif Plane Lower Half Plane
Iy ha Syp <0 5170

Ty Ipy 5, <0 S5 >0

I3y Iy S21 <Pk S21 7P 0

Taor g2 Sz2 <Piby Sp2 >B by

L5y 152 S5p < By S52 > P1hy

530 Isg Sgq < PPy Sgq > Piby

o1 L7 Tg10 1o Sg1 <0 S¢17 0

I 5o Togs I 1oy S¢p <0 Sgp > 0
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wedge of finite extent turning the flow inward, although in this case
the wedge is fitted on the subsonic wall rather than on the supersonic
wall.
The governing equation (4. 9) and the general solution (4. 14)
are still valid. The first boundary condition is that there be no ver-

tical velocity component at the supersonic wall:

d)l,y: 0 at y:h1

3

(4. 48)

0 at y:hl

2 v
The conditions of continuity of pressure and inclination angle at the
interface (eqgs. (4.16) and (4. 18)) are still valid. The final boundary

condition is that the flow inclination angle at the subsonic wall must

meet the prescribed distribution VW(X):

. . V=) at y= -h, ,
~ ~ (4.49)
R at y-=-h,

Applying these boundary conditions to the general solution yields the
expressions:
2
M2 oo

1 ~ -ik
N j:oo ) ¥ (k)cos kB, (y-h))e

X

6, (xy) = - dk (4.50a)

o ¥V (k)
b, (x, y) = :/..2_1:_; joo —{ 583 coshkﬁz(y+h2)+312— sinhkf,(y+h,) |

e K¥qy (4. 50b)
where q(k) is the same function defined in eq. (4.22), and

B M2

g(k) = Tli sinkp h, sinhk@,h, -Mlzcos kB,hy coshkB,h, . (4.51)
2

The geometry of the problem is illustrated in Figure 4.9. In
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this case, the function VW(X) is

V (x) = 0 x <0
W

V (x) = ¢ 0 <« x < t/eg
W .

V. (x) = 0 x > t/e

and under the Fourier transformation,

(k):.._iﬁ._(l_

7 € elkt/ €
w ka2

)

(4.

(4.

52)

53)

Putting eq. (4.53) into eq. (4.50) and taking the partial derivatives

with respect to x and y as before, we get that

2
O, x = My g Hgp-Igs-15,)
. 2
O,y = P Mp g -Igp-Igztls,)
€ .
%2,x = B, (Tgy-Tea 71 -172)
= -1 -
%,y = &lg1-Igatlg;-1g95)
where
oo -ikS -
_ 1 1 5n _
1511_ -z‘?j -R?]-e dk n_1,2,3,4
-0
B M2 00 ikS
_ 172 1 "7"én . . _
Ién = - J:wkqe s1nk(31hlsn1hkf32ydy n=1,2
2
BZMI o -1k86n
I’?n: - —= Oome coskﬁlhlcoshkﬁzydy n=1,2
iB M2 0o -ikS
I, o= -—2] oM inkp b cosh d
gn =" 2w J_kq° sinkPihycoshifyydy  n=1,2
2 .
1{3le o -lksén
Ign-— - == -m-l—(-q—e coskﬁlhlmnhkﬁzydy n=1,2

and

(4

(4.

(4.

(4.

(4.

.54a)

54b)

54c¢)

. 54d)

55a)

. 55b)

.55¢)

. 55d)

55e)
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Sg, = ¥ y-h) (4. 56a)
552 = x—ﬁl(y—hl) ; (4.56b)
Sey = % - % +6,(y-h)) (4. 56¢)
S., = % _-t-e— - B,(y-h)) (4.564)
Sgp = x | (4.56e)
Sy, = x - tle (4. 56%)

All these integrands have poles at the entire set of singular
points considered in the supersonic wedge case; specifically, there
are poles at k = * kr(j), k = :':iki(j), and k = 0. These integrals will
be evaluated as before, using the same three-index notation to identify
the various series.

At the origin, the integrals 15n and I?ﬁ have a second-order

pole; ISn and I9n have a first-order pole and a removable singularity;

and I, has a double removable singularity. The results for the pole

6n
at the origin are:
SSn
1sn3 = - 297(0) (4.57a)
16n3 = 0 (4.57b)
2
L - PMiSen (4.57c)
7n3 q'(o) :
2
B, M,S ~
1727 6n
gn3 = —qoT (4.574)
2
‘32M1Y
191’13 = ——q—T(-c—)—)—— . (4. 576)

All the poles where k is non-zero are first order. The result for the

entire set of real poles is:
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ISnl = 2-1—(—-—7« sink S5&

I = -2 MZE» 1 sink S, sink B.h, sinhk B,y
6nl 1772 3 qu' r 6n r 171 r 2
I = 2B MZZ——L sink S, cosk_B,hcoshk_ f3
Tnl 21 T kg r~6n r"1 27
ISnl = ZﬁlMZ ?kr - cos k S() smkrﬁlhlcoshkrﬁzy
1. . = 286.M°Y —L cosk.S, cosk B h sinhk B
9nl lequcsrén P i R

The series for the ki poles are:

k.S

1 i 5
Isnz = -%Zlﬁe PR
J kq
I . = pMET 2 ekisénsinhkﬁ h. sink.(
pn2 T V12§ F 7171 S P
J kg
4 k.S
_ 2 1 i"6n
I7n2 = -BZMI %:/k =T € coshkiﬁlhlcos kiﬁzy
;9
k.S
_ 2 1 i“6n .
18n2 = [311\/12 ?;———-,—e 51nhki{31h1 cos kiﬁzy
iq
k.S
_ 2 1 i 6n .
I9n2 = ﬁZMl ;Z/-———-—-k q*l e coshkiﬁlhlsmkiﬁzy
i
I _ 12 1 -kiSSH
5nd - 25 wT ©
J k.q
1
-k.S
_ 2 1 i6n . .
Iing = -8, M, Zj)k T e sinhk;.h sink B,y
iq
E -kisén
I7n4 = {321\/1 coshkiﬁlhlcos kiﬁzy

az

(4.58a)

(4.58b)

(4.58c¢)

(4.584d)

(4.58e)

(4.59a)

{4.59b)

(4.59c)

(4.59d)

(4.59%e)

(4. 60a)

(4. 60b)

(4. 60c¢)
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-k.8 -
2 1 i“én .
— S0 _ ;
I8114- B ﬁlMZ “ T © Slnhkiﬁlhlc.os kiﬁz‘}’ (4. 604d)
i

Now make the substitutions for the asymptotic forms of the series as

+ +thao
before. Note that Ién and I7n appear only as (16n+17n), and that

I and I appear only as (18n+19n) . It will not affect the result if

8n 9n

that portion of these series that vanishes under the additions is de-

leted here.
B.\n
® 1 m 1
151’1 - [ nn+6 (-e ) ] (4.61a)
2
2., M M 5 B TB.\n
A _ | AP My r2 1 2
I(ml - I'Zml - Trgz Im[e %WG} ) ] (4. 61b)
Ton1 “Ton1 7 - iy Re[e R T8 /7 (e ) ] (4.61c)
8.8 B, \n
s _ 1 "i74 1 4
Lnz = "78° W 7 (- %) (4. 62a)
2
p.M 8.B TB_.n
~ T2 5 1 5
T6n2 TE Im{e n nt8./m ( © ) J (4. 62D)
2
[32M 8.B mB_.\n
- _ 1 i~5 1 5
17n2 T omg Re\:e ;ani- WED (-e > ] (4. 62¢)
2
~ .M e.B 8.B_.n
— 172 i~5 1 175
Tgnz = 7 Re| o LoeTe (e+7®) ] (4. 62d)
2
B, M 6.B 8.B_.n- .
£ - 271 i™5 ) 1 175
I9n2 T oowg Im[e %n-& e (e ) ] (4. 62¢e)



“ 1 65 1 ( 6"
na = 7% © éJmei wl-e ) (4. 632)
2
p.M 8.B TB_\ 1
- 172 -7 1 < 7\ ]
161'14 = - T Im{e % m}—ﬁ— - ) _{ (47. 63b)
2
p,M - 8.B TB,\n i
~ _ 1 r7it7 1 7V 1
I7n4 = -ﬂ_g Re-Le %n‘i—,i ~ (-e ) ] (4. 63¢)
2
B, M 8.B TB.,\n
A P [ i77 1 7 ]
Igna = E Re| e %-——-n.+ei/-;— (—e > (4.63d)
2
P, M 8.B TB_\n
a _ 1 i1 1 7) ]
I9n4 Sl Im[e %n-Jr T <-e (4. 63e)
where
_ 1
B, = .___._Blhl (-B,h, +155n) (4. 64a)
1 , .
B, = f’lh (-(32112 - {52y + 15611') (4. 64c)
_ 1
By = -p_;ﬂé (SBn - Blhl) (4. 64d)
B, - b ¥ (4. b4e)
5 Bl By
1
B6 = - EEH; (S5n + Blhl) (4. 641)
B, = S6n ;i L (4. b4g)
7 Bohy R
The conditions for éonvergence of these series are presented
in Table 4-1. Table 4-2 presents the admissible range for closure of

the lower half plane. As before, the mathematical requirements of

convergence alone are not sufficient to permit an unambiguous defini-

tion of the proper closure for one of the integrals, in this case, ISn

Consideration of the physical situation (Figure 4. 8) or the mathe-
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matics of the requirement of continuity of pressure and inclination
angle at the interface resolves this conflict and shows that the pre-
ferred lines of discontinuity are S;, = Blhl and 554 = ﬁlhl . These
are compatible with the convergence conditions. Table 4-3 presents

the final choice of integration contour.

4,.3.4 Computer Calculation Description. The calculations

described in the previous section were executed in a FORTRAN IV
program run on the IBM 370/158 computer of the Computing Center
of the California Institute of Technology. The program is described
in Appéndix C.

In brief outline, the program is provided with such basic in-

formation as Ml’ MZ.’ h., and h2,’ together with the wedge angle €

1’
and the wedge thickness t. Next, a modified form of Newton's meth-
od is used to solve for the first 50 poles of the series klfj) and ki(j)
feq. (4.30)]. Since the entire derivation assumes the validity of
linear superposition, a composite solution can be built up as desired
from several of these simple solutions. This can be accomplished
eésily within the main program by repeated calling of the subroutine
XPHI, which generates one simple solution for either the supersonic
or subsonic wedge. This subroutine acts as a control];er and causes
the calculation of poles, real terms, and asymptotic series, as neces-
sary.

The heart of the program is the evaluation of the series

QO

S = 2

n=0 n+a&

L» (4. 65)

which, in cases where lzl is approximately unity, may converge

quite slowly. By manipulating eq. (4. 65), the series expansions for
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(1-z) " log -5 where m is an integer can be obtained and S may be
converted to a series that converges more rapidly. In this way, for

instance, one can obtain

2
1 r 1oz a(l-) /1-z\ 1 :
S-E‘Cx‘-i-l_l—a z 2 ( Z > Jlog ]1-z :
a(1-&) /(1 3 x
g ( = - 5) _a(1_c,)(z_a)nZ: b, (4. 66a)
where
b ! n (4. 66b)

n n(n+l)(n+2)(n+0’.) z
is an equivalent form with much more rapid decrease of the early
terms of the series. Of course, the expression still does not con-

verge for z = 1.

4.4 Linearized Theory Results

The cornputational algorithms of the computer calculation in-
volve summing exponentials of arguments of order (nhl/hz) and (nx).
Several cutoff switches were placed in the program to stop the sum-
mation of the series as the magnitude of the argument becomes un- -
manageably large (about 175 for the IBM 370), which means that the
resulj:s are accurate within the first couple of wave cycles of the ini-
tial disturbance (n\x\ < 175) and are accurate when h1 and h2 are
of the same order, and lose accuracy due to truncation of the series
occurring at lower n as”’kth”ese limits are passed. For h1 = h2 =
2. 15 inches, satisfactory results are obtained for |x| less than
about 14 inches. Note that the x referred to here is not the same
tunnel-based x employed elsewhere. In the computer calculation

only, x is fixed to the disturbance (as in Figures 4.4 and 4. 9).
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/B h
A study was made of the cases K ; l> = 10.5 and 42 for the
2
supersonic wedge and 21. 1 for the subsonic wedge, which corre-

sponds to the supersonic wall being moved away from the interface
so that effects of subsequent return of a wave reflected a\x}ay from
the interface in the supersonic stream are removed from the initial
interaction (by 10.5, 42, etc., thicknesses of the subsonic layer).
This is approaching the limit represented by the study of Tsien and
Fins.ton18 in which this parameter is infinite, as is the parameter
(t/ E:hz). This second parameter is the number of subsonic layer
- thicknesses separating the leading edge and the shoulder of the
wedge. As the parameter becomes large, the interaction effects due
to each are separated so that the subsonic stream response to the
leading edge interaction is complete before the start of the shoulder-
wave interaction. Thus, as both parameters become very large, the
first subsonic stream interaction is a response only to the leading -
edge compression wave. In the study, -values of (t/ehz) of 26. 8 and
107.3 were used for the supersonic wedge and 53. 7 for the subsonic
wedge. This was considered ample, since Tsien and Finston's re-
sults predicted that the subsonic-layer pressure disturbance due to a
discrete incoming wave is confined to two or three subsonic layer
thicknesses upstream and downstream of the point where the super-
sonic wave strikes the interface. Comparisons were also made for
tﬁe case of a wedge attached to the subsonic wall.
The results of this comparison study are presented in Figure

4, 1.0 . The Mach numbers selected were M1 = 1.4 and M2 = 0.744.
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Tsien and Finston present their data for specific values of a parameter

8, defined by:

2
M 2 1\/12
8 { ”\ 2. 2 0<6 <
COS—Z‘_ \ Z 2 ) T
l l ‘

The Mach numbers chosen yield 8= .757 , which is one cf their tabu-

lated cases.

As can be seen in Figure 4. 10a, agreement between the present
calculation and that of Tsien and Finston for the su.pérsonic wedge is
quite good except in the immediate region of the primary wave im-
pingement (i. e., within about 0.2 subsonic-layer thicknesses up-
stream and downstream of x = 0). This is ascribed to numerically
unstable behavior in the present calculation as the logarithmic singu-
larity of the supersonic wave is approached; the curve would presum-
ably converge to the actual solution if a larger computing capability or
a better algorithm were available which permitted evaluation of more
terms‘in the series. As it is, the solution with (__ﬁ_}l;_l_) = 10.5 actual-
ly agrees more closely with the Tsien-Finston result than does the |
Pif

h,
ciently high that the leading-edge wave interaction is independent of

solution with < ) = 42 . This is because both values are suffi-
all others, but the lower value permits including more terms in the
series without exceeding the capability of the computer. It should be
noted that changing the computational mode from single precision to
double precision does not alleviate this problem; the difficulty is in
evaluating terms like e” where z is too large in absélute magnitude

for the capability of the computer. A better computational algorithm,
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one intended from the start for cases where hl and hZ are not of the

same order, could be expected to yield hetter results in the limit as

B,h
.

) approaches infinity.

Tsien and Finston developed their subsonic wedge calculation
to model the case of a wedge placed on a wall in a2 supersonic bound-
ary layer so that flow angle changes and pressure differences caused
by the wedge must first be transmitted through the subsonic layer to
reach the supersonic stream. A comparison between the present cal-

culation and the Tsien-Finston work can be made as before in the dual
B.h

171
h,

presented in Figure 4. 10b.

limit of ( > and (t/ Ehz) approaching infinity. This comparison is

‘The agreement between the two theories is fairly good on the
subsonic wall, especially more than 0.4 h2 upstream of the leading
edge (at x = 0 ). However, agreement concerning the interfacial pres-
sure was disappointing, to say the least., Upon checking both deriva-
tions carefully, an error was found in equation 53 of the paper by
Tsien and FinstonlB, which accounts for the discrepancy. The cor-
rected solution, also shown on Figure 4. 10b, is in good agreement
with the results of the present work (see Appendix F).

The good agreement between the present computation and that
of T'sien and Finston provides a check on the accuracy of the solution.
We can now proceed to apply this theory to the evaluation of the prob-

lems of interest.

4.5 Results -- Supersonic Wedge

The primary case of interest in the wedge studies was that of
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the 40, 3/32-inch thick wedge attached to the supersonic wall with its
leading edge at the station x = 10 inches. This is referred to as the
"baseline supersonic'' case, and is illustrated in Figure 4. 11.

Several perturbations about this baseline case were possible.
The leading angle could be increased to 8° or decreased to 2° while
maintaining the same thickness; the thickness could be halved {to 3/64
inch) at either the 2° or 4° angle; and the leading edge could be placed
at x = 17 inches so that the shear layer in the region of the shock im-
pingement point would be about 50 per cent thicker.

All data used for comparison purposes have been corrected;
i.e., they are expressed not in absolute terms but in terms of a de-
viation from the pressure measured at the same point in undisturbed
(e. g. empty-tunnel) flow. As usual, pressures have been normalized
by the nozzle exit pressure. .This permits elimination of effects due
to boundary layer growth on the sidewalls and the static pressure
gradient through the test section. To a‘considerable extent, the ef-
fects in the subsonic stream of the splitter plate shock system can
be removed. Unfortunately, in the supersonic stream, this shock
system is not very repeatable; this lack of repeatability prevents the
formulation of a systematic method for eliminating its effects in the
data. The wall pressure rise due to the shock is about 10 per cent of
its ambient value in its first cycle, and the strength diminishes about
one-third on each subsequent cycle as the wave is reflected off the
shear layer and wall. However, the strength of the initial wave in
facf varies in a seemingly random manner between 6 per cent and

14 per cent (in terms of pressure rise) on separate runs. Several
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methods were tried to make this shqck more uniform (at any strength)
on different runs; unfortunately, nothing seemed to help. Quantitative
comparisons of pressure data from the suéersonic weall are subject to a
fairly large uncertainty; therefore, they are not generally presented in
the following sections. In the subS(;nic stream, however, repeatability
was excellent; pressure measurements often agreed within 0.2 per cent
on éepérate days for the same model.

Figure 4.12 illustrates the correction procedure. Part ''a' of
the figure presents the raw subsonic wall pressure data for Run 52,
which was run at the baseline supersonic wedge configuration. The
raw data were examined over the first 7 or 8 inches to determine
which empty-tunnel run provided the best agreement in the initial re-
gion where the flow was unaffected by the presence of a model. Once
the desired reference run (Run 53, in this case) was selected, the pres-
sure was recast as a perturbation from the reference condition (Fig-
are 4. 12b).

4.5.1 Baseline Case. With a relatively straightforward data

reduction procedure in hand for the subsonic wall data, the first task
was to examine the baseline supersonic case (4°, 3/32-inch thick wedge
on the supersonic wall with its leading edge at x = 10", trailing edge at
x = 25"). Attention was at first directed toward upstream propagation
of disturbances in the inviscid flow, which meant that the subsonic
sfream rather than the supersonic stream was to receive attention
(since no perturbation to the supersonic stream c’:ould propagate up-
stream without first entering the subsonic flow). The type of data gen-

erally studied were subsonic wall pressures. This form of comparison
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was also attractive because of its good repeatability from run to run.

Figure 4.13 presents subsonic wall pressure for the baseline
supersonic case. Both the corrected experimental data and the results
of the calculation from linearized theory are shown. It is felt that the
-.008 perturbation for x less than 4'" is not a real effect, but is rath-
er due perhaps to an unintentional change in wall installation which
modified the flow (compared to the reference run). Note that both the-
ory and experiment indicate no substantial pressure changes propagate
upstream more than an inch or two from the shock impingement point,
even though the 4o_deflection-angle shock carries a pressure ratio of
oner 1.202:.< In fact, the pressure drops in the subsonic stream. This is
due to a net displacement downward of the dividing streamline (DSL)
and gll the streamlines in the subsonic flow, causing an area contrac-
tion. The DSL actually displaces downward about twice as far as the
displacement of the wedge on the supersonic wall (this displacement

ratio depends on M, and especially on MZ ). This downward displace-

1
ment is due to the fact that, to first order, the 4° incoming compression
wave reflects as a 4° (approximately) expansion wave at the shear layer
in order not to impose a discontinuous change of pressure on the sub-
sonic stream. This means that the shear layer is turned downward
about 8°. The process repeats with opposite sign for the expansion fan
from the shoulder of the wedge, and for waves which return to the shear

Iayer after reflecting from the supersonic wall (though these additional

reflections are not the current point of discus siﬂon).

“The fact that the theoretical subsonic stream perturbation begins at
x = 10 inches, the leading edge position in the supersonic stream, is
coincidental.
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In another sense, the pressure drops rather than rises because
the entire flow is qualitatively subsonic. The unperturbed static pres-
sure is greater than that for choking, and in a one-dimensional sense
a small area reduction of the entire duct causes the pressure to drop.
Thus, the response of the subsonic stream pressure is dominated by
the large-scale area chaﬁges rather than by the details of the shock
wave reflection.

Note in referring to Figure 4. 13 that the initial downward
curve of experimental data seems to be displaced forward of the theo-
retical data by a nearly constant distance of about 0.7 inch. The line-
ar theory, with its necessary assumption of isentropic flow, makes
all disturbances in the supersonic stream, including the leading edge
shock, move along lines inclined at the Mach angle to the unperturbed
flow direction. In reality, however, the leading shock has a finite
magnitude and assumes an angle of 51° with respect to the flow rather
than the value of 45, 6° required by the first-order theory. T‘his
angular difference, with its consequent effect on the shock/interface
impingement point, accounts for 0.4 inch of the 0.7 inch translation
in the region of x from 10 to 14 inches. The remainder of the dif-
ference is attributed to the fact that the wall boundary layer is thick-
ened ahead of the wedge, and thus rﬁoves the effective origin of the
shock system upstream. These advanced compression waves can be
seen in the flow with the aid of the schlieren system.

A glance at Figure 4. 13 shows that while the first-order
theory predicts the subsonic wall pressure will recover to its unper-

turbed value at about x = 21 inches, the experimental data fall short
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by about 4 per cent. To understand this, we must realize that two
separate response mechanisms are in action: a change in the equilib-
rium pressure due to the thickness of the wedge, and streamwise vari-
‘ations about that mean pressure due to the presence of a train of com-
pression and expansion waves in the supersonic stream.

The linear theory pressure distribuation has a mean perturbation
of about -0.047. This is in complete agreement with the linearized
prediction of one-dimensional equilibrium pressure for the same Mach
number profile assumed by the theory. The experimental oscillations
are about a somewhat lower mean value, approximately -0.06. Based
on the measured Mach number distribution at the region of interest,
the equilibrium pressure perturbation can be estimated through the
usual one-dimensional computation to be -0. 030. The effect of the
loss of total pressure through the leading edge shock wave is to lower
the equilibrium normalized pressure an additional 0. 005. The re-
mainiﬁg perturbation, about -0, 025, presumably is due to the thicken-
ing of the boundary layers over the wedge and sidewalls of the tunnel
as they flow through the adverse pressure gradients caused by the
shock wave. An increase of the mean displacement thickness of abbut
0. 010 inch would fully account for the discrepancy.

The oscillating portion of the theoretical solution continues in-
definitely because no processes are present to damp it out. When the
wave system (in the theory) first strikes the interface, the interface is
deflected downward into the subsonic flow and the waves reflect into
the supersonic stream with reversed sign (i.e,, -compressions be-

come expansions and vice versa). In reflecting from the wall, the

hi
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waves retain the same sign, so at the next encounter with the inter-
face, the perturbations from the previous wave/interface interaction
are exactly reversed. The first reflection drives the normalized
pressure down about 0. 10, the second reflection returns it to the un-
| perturbed value, etc.

The experimental data show that this streamwise variation of
pressure is soon attenuated. This weakening of the .oscillation is due
to a number of causes. Even if the supersonic region were un-
bounded, the interference between the compression wave from the
leading edge and the expansion wave from the shoulder would gradu-
ally weaken the system. The shear layer, by dispersing the waves
still more at each reflection, promotes this weakening. To a lesser
extent, the same thing happens wherever the waves encounter a
boundary layer. As the wave pattern spreads out, the successive
cycles of reflection between the supersonic wall and the shear layer
(which have offsetting effect) begin to overlap and thus lower the
magnitude of the perturbation still mére.

Figure 4. 14 presents experimental data from the tunnel side-
wall, showing lines of constant pressure {(isobars). The compression
waves from the supersonic stream ahead of the leading edge are re-
vealed quite clearly. Unfortunately, the boundary layers on the side-
wall wash out most of the detail of the interaction between the shock
wave and the shear layer. Away from this interaction region, the
vertical pressure gradients in the subsonic stream are relé,tively
minor. Near the impingement point, the subsonic stream responds

mainly as an unconfined stream, i.e., the static pressure remains
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nearly at its unperturbed value. Changes in pressure in the subsonic
sfream occur somewhat further downstream, in response to varia-
tions in the net flow area.

Another comparison to be nofced in Figure 4. 13 is that the
.6verall wavelength of the pressure perturbation is smaller in experi-
ment than in theory. This is attributed to the assumption made in de-
riving the theory that the shear layer has zero thickness. Since in
reality the shear layer causes some stream tubes near the interface
(the y = 0 plane) to have a Mach number closer to unity than the free-
stream value, the path of a disturbance in the supersonic stream in
this region will be steeper, and the wave will complete a cycle of mo-
tion from the supersonic wall to the sonic surface and back to the
supersonic wall in less distance in the x-direction compared to the
first-order theory. Another éction causing this is the difference in
wave angle mentioned previously. The linear theory assumes the
waves move through the flow at the Mach angle, while actually the
finite amplitude waves make a steeper angle. However, after the
first cycle, the wave has been diffused and the individual wavelets do
in fact cut' the flow at the Mach angle. Thus, the angular difference
probably has little effect, compared to the shear layer thickness, in
contracting the wavelength of the disturbance after the primary wave.

4.5.2 Effect of Wedge Thickness. The next study to be per-

formed was an examination of the effect of wedge thickness on the
flow field. Both theoretical and experimental studies were per-
formed, concentrating on determining the effect on the subsonic

stream of the 4° wedge mounted on the supersonic wall with its lead-
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ing edge at x = 10!, The two wedges compared had thicknesses of
3/64' and 3/32'', In the experiment, the trailing edge of the wedge
plate was at x = 25", ending with a 2° angle. The theoretical calcu-
lations were stopped at x = 24", This was upstream of the trailing
edge, and it was assumed that in this region the trailing edge had no
influence. This assumption was supported by the severely limited
up.str>ear.r1 influence of the leading edge. Farther downstream, the
flow is affected by boundary layer separation at the aft shoulder of
the wedge.

The theoretical and experimental data are presented in Figure
4.15. Itis felt that the experimental perturbations seen upstream of
the leading edge are so small as not to be significant but rather are
due to imperfect removal of empty-tunnel phenomena in the data re-
duction. In any event, this is not a genuine upstream-propagating
wave, since such a wave upstream of the leading edge should not be
oscillatory but rather should be monotonically decaying to zero.

The experimental perturbation amplitudes seem to compare
well with those predicted by the theory, indicating that the linear
equations.are still valid and that choking is not modifying the behavior.
The thick wedge has a geometrical blockage ratio of 2. 18 per cent. It
will be recalled that the one-dimensional prediction of the choking
margin without boundary layers is 2. 86 per cent and with boundary
layers, etc., it is about 7.5 per cent (see Figure 3.11). Of course,
the effective blockage ratio of the wedge is modified somewhat by
changes in boundary layer growth. The geometric blockage ratio is

about one-third of the actual choking margin.
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As before, the initial dip in the experimental pressure data is
displaced upstream from the linear prediction, and the experimental
perturbation wavelength seems shorter. These differences are all
felt to be due to the pheromena previously discussed which are omit-
ted from a linear theory: boundary layer compression in advance of
the le‘ading edge of the wedge, the difference in angle between infini-
tesimal and finite-amplitude waves, and the finite thickness of the
shear layer. The first and second of these will tend to shift upstream
the initial part of the pattern, and the second and third will tend to de-
crease the perturbation wavelength.

The notable difference between the wedges in the experimental
data is seen in the static pressure far downstream, x = 30" to 35",
The pressure from the thin wedge seems to recover to a net loss of
acout 1 per cent, while the thick wedge shows a net loss on the order
of 4 per cent. Because the test section ends at about x = 40", it is
not clear whether the pressure would, if permitted, recover more
fully (with oscillations) to its unperturbed value.

The boundary layer is‘known (through oil flow studies) to sep-
arate at tﬂe trailing shoulder of the wedge. As the displacement
thickness of the free shear layer and subsequently re-attached bound-
ary layer returns to its unperturbed level, the flow will respond to a
gradually increasing net flow area with a mean pressure recovering
to its unperturbed value. A complete recovery seems unlikely, as
the equilibrium static pressure has been lowered slightly (about 0.5
per cent) by the 0.4 per cent loss of total pressure in the supersonic

stream due to the leading-edge shock wave. In addition, it is not
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clear whether the boundary layer would ever return to its unperturbed
state.

Sidewall pressure data are not presented here or in the follow-
ing sections. In the subsonic stream, vertical pressure gradients
generally vanish (see Figure 4. 14) and thus the subsonic wall pres-
sure distribution depicts quite well the response of that stream. Data
from the supersonic stream are flawed by the inhomogeneous wave
structure present, which introduces large-scale inaccuracies, and
details of the shock/shear layer interaction are obscured by the side-
wall boundary layers.

Figure 4. 16 presents the same data as Figure 4. 15 except
that the pressure is scaled with the thickness of the wedge. The ex-
perirnental data seem to show the same variation with thickness as
the theoretical data. The initial drop in static pressure is shifted up-
stream- about 0. 3 to 0. 4 inch for the thin wedge (compared to the thick
wedge). This is due to the geometry of the problem: the wedge angle
was held constant at 4° while the thickness was varied by a factor of
two. Thus, the distance from the leading edge to the shoulder was
1. 34 inch for the thick wedge and 0. 68 inch for the thin wedge. This
represents a shift upstream for the thin wedge of 0. 34 inch in the lo-
cation of the center of the disturbance, agreeing well with the experi-
mentally and theoretically observed shifts. The amplitude of the
measured pressure perturbations scales very well with the wedge
thickness. This good agreement indicates that for cases where the
geometric blockage ratio is less than one-third of the choking margin,

nonlinear effects have negligible influence on the pressure data. Note
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that the first pressure rise around x = 19" also scales well.

4.5.3 Effect of Wedge Angle. The next comparison performed

was a study of the effect of leading edge angle for the supersonic wedge
of 3/32-inch thickness with its leading edge at the station x = 10'. As
before, both theoretical and experimental results were obtained. The

(o]

experimental data were for wedge angles of 20, 47, and 80; the line-

arized calculations wére for angles of lo, 20, 40, 60, and 80. The
results of each are presented in Figure 4. 17.

The linearized theory shows that for angles larger than about
40, the wedge angle has little effect on either the location (x = 15.5")
or magnitude (9.5 per cent drop) of the pressure minimum. However,
for lesser angles the minimum pressure becomes higher (i.e., less
perturbation) and moves downstream somewhat. This is because the
angle at the leading edge was studied in wedges of constant thickness:
increasing the angle moved the shoulder of the wedge closer to the
leading edge. For wedge angles above 40, the expansion fan from the
shoulder weakens the leading-edge shock before it strikes the inter-
face. In addition, the close proximity of the shock and expansion on
the interface means that within the subsonic stream there will be a
partial cancellation of effects.

The length of the inclined face in the flow direction is t/e€
(where t is the wedge thickness and ¢ is the flow deflection angle).
These data suggest that the subsonic stream pressure is sensitive to
e only when.

—_ > 0.6 , (4. 67)
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which in turn implies that in some sense a disturbance to the subsonic
stream has a region of influence of about 0. 6h2 upstream from its
source (this is 1.29 inches for our case). For the 4° baseline wedge,
the shock impinges on the shear layer at about x = 11.74". Thus, the
staggestion is made that the limit of upstream influence is about x =
10. 45", This seems to agree with the experimental data of Figure
4.15 for the 2° and 4° wedges.

Similarly, the adjacent cycles of reflection of the upstream
perturbation overlap and interfere with each other when the inclined
face length (t/e) becomes of the same order as the supersonic stream
wavelength (2 lhl)' When this interference occurs, the amplitude of
the perturbation is materially reduced. The computer data suggest
this occurs for € less than 20, or

t

> 0.6 ) (4. 68)
2ep by

With some sort of qualitative understanding of the linearized
results, we will now proceed to consider the experimental data. As
before, it is felt that the small perturbations upstream of x = 8' to 9"
are not '"'real’ effects, but rather are due to imperfect correction pro-
cedures.

The minimum pressure points of the 2° and 4° experiments
seem to compare well with the linear calculation. The experimental
arhplitudes are greater than calculated by 2 per cent of the predicted
amplitude (2O wedge) and 7 per cent (4O wedge), ;fhough the discrepancy
increases to 40 per cent for the 8° wedge. The amplitude error in the

2° case falls within the measurement error. For larger angles, the
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onset of nonlinearity (especially in the g° wedge case) is visible as the
flow deflection angle becomes sufficiently large that the higher order
terms assume importance. Thus, a linearized theory seems inappro-
priate for a wedge angle larger than about 4 or 5°.

Table 4.4 presents certai.f; parameters of interest in making
these comparisons. It was felt that study of the value of x at which
AP/P = -0.050 would be the best basis for examination of the effects
by which the pressure perturbation in the subsonic stream is trans-
lated upstream from the linearized isentropic solution. Line 6 of the
table presents the difference in x at which this pressure is reached,
and Line 7 identifies that portion of the difference that is due to the
finite -amplitude versus infinitesimal wave angle. The remainder
(Line 8) is attributed to the boundary layer compression ahead of the
leading edge of the wedge, and in fact agre‘es well with the precom-
pression‘ lengths measured from schlieren photographs in the case of
the 4° and 8° wedges (Line 9). Schlieren photography failed to reveal
the shock wave in the case of the 2° wedge; therefore, for the wave to
be invisible, boundary layer compression must have occurred in this
case as well and "washed out' the wave.

As long as the leading edge angle of the wedge is less than
about 50, the agreement between theory and experiment is good.
Those differences which are present can be understood in terms of
the dependence of wave angle on Mach number and the upstream
transmission of pressure disturbances through a supersonic boundary
layer. For wedge angles greater than 5° (approximately), the non-

linear effect in the pressure distribution assumes greater importance
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TABLE 4-4. Effect of Wedge Angle

Experiment (Theory)

1. Wedge Angle 2° 4° 8°
2. Minimum :
Pressure -0.092(-0.090) -0.101(-0.094) -0.133(-0.095)
3. Discrepancy -0.002 -0.007 -0.038
4.‘ x at Minimum
Pressure (in.) 15.2(16.5) 14.7(16.0) 14.6(15.8)
5. x at AP/P =
-0.050 (in.) 13.5(14.0) 12.6(13. 3) 11.2(12.9)
6. Discrepancy :
‘ (in. ) 0.5 0.7 1.7
7. Discrepancy
Due to Wave
Angle (in.) 0.18 0.37 0.83
8. Remainder
(in. ) 0.32 ’ 0.33 0.87
9. Boundary Layer
Separation Dis-
tance from -
Schlieren (in.) - 0.4 1.0

and the first-order theory fails to adequately model the problem. It
is seen that the upstream transmission of pressure disturbances
through the subsonic stream is limited to distances of about 0. 6h2.

4.5.4 Effect of Shear Layer Thickness. The final set of ex-

perimental comparisons for the supersonic wedge study concerned
the effect of shear layer thickness. The 3/32-inch thick, 4° angle
wedge was mounted on the sapersonic wall with its leading edge at
x = 10" (normal position) and x = 17" (displaced position) where the

maximum slope thicknesses of the shear layer were respectively
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0.63 and 0. 94 inch (in each case, this thickness is about 60 per cent
of the perceptible thickness of the shear layer).

The experimental data are present‘ed in Figure 4.18 . Since
the linearized theory makes the assumption of zero shear layer thick-
ness, no theoretical comparisonsl "WAe_re possible. However, the base-
line theoretical calculation is also presented in the figure for refer-
enée.

As before, we see that the initial perturbation is translated
upstream somewhat, due to wave angle differences and supersonic
boundary-layer precompression. The initial minimum pressure is
approximately that predicted by linear theory in the thin shear layer
case, while in the thicker case the minimum is considerably lower.
This suggests the increasing dominance of nonlinear effects as the
shear layer thickens and the choking margin of the combined flow is
reduced. (Figure 3.11 shows the calculated choking margin of the
tunnel based on measured Mach ntlmber profiles at various stations. )

This margin is affected by several things (cf. Section 3. 4).
First, the empty-tunnel uncorrected pressure data showed static pres-
sure continually decreasing in the downstream direction as the shear
_layer thickened. The one-dimensional studies showed that as the
choking limit is approached the static pressure decreases. Thus, the
farther downstream in the tunnel the closer the flow is to being
choked. The increasing shear layer thickness of itself will alsc re-
duce the choking margin. ’

In addition, we know that the area decreases and pressure per-

turbations of the wedge experiments are a substantial fraction of those
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necessary for one-dimensional choking. The wedge has a geometric
blockage ratio of 2. 18 per cent. At the normal wedge position (x = 10
inches) the chcking margin is seen in Figure 3. 11 to be about 7.5 per
cent, while at the displaced wedge position (x = 17 inches) the margin
>is about 4 per cent. In the latter case, the ratio of geometric blockage
to choking margin is above 0.5. This is a strong suggestion that non-
linear effects related to choking become increasingly important at the
displaced location.

Finally, we must note that choking, being essentially a non-
linear phenomenon, is not embraced in the linearized theory. Thus,
as the wedge experiment is translated downstream, one reasonably ex-
pects increasing departures from the linearized theory, largely due to
the reduction of choking margin, but also aggravated by the increasing
thickness of the shear layer failing to fit the zero-thickness model.

Next, we see that the pressure fails to make a full recovery to
its unperturbed state in the vicinity of 9 inches downstream of the
leading edge of the wedge. This is due to the attenuation of the super-
sonic wave pattern, as described in Section 4. 5. 1.

Once the trailing edge (15 inches downstream of the leading
edge) is passed, the pressure should begin a recovery to nearly its
unperturbed value as the boundary layer re-attaches and its displace-
ment thickness returns to the reference condition (see the discﬁssion
of Section 4.5.2, 'Effect of Wedge Thickness').

The decreasing wavelength of the perturbation as the shear
layer thickness increases is due to the decreasing Mach number in

portions of the supersonic stream, which causes a local steepening of
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waves in the supersonic stream and the completion in less streamwise
distance of a cycle of reflections off the shear layer and the super-
sonic wall.

A substantial cause of the departure of the experimenf;al data
from the theoretical calculation is the effect on the kinematics of the
wave reflection system in the spreading shear layer in a manner not
considered in the model. The dispersion of the waves incident on the
shear layer becomes increasingly dominant, causing the oscillations
to die out more rapidly as the shear layer thickness is increased.

Aﬁ increase of the ratio of geometric blockage to choking mar-
gin above about 0.4 seems to mark the point beyond which the first-
order calculation does not predict well the amplitude of the disturb-
ance pressure. This amplitude, as would be expected, exceeds the
linearized result. In addition, the increas;ing shear layer and bound-
ary layér thicknesses, which are not included in the computational
model, introduce deviations from the linearized result. At the nor-
mal leading edge station, the perceptible shear-layer thickness is
about 25 per cent of the flow area; it is closer to 40 per cent at the
displaced leading-edge station. The latter value seems to exceed the
range of validity of the theory in comparison with actual measure-

ments.

4,5,5 Additional Studies. This section describes the theo-

retical results of those parametric studies which could not be verified
experimentally; examinations of the effect of Ml’ M,, and h2 . A
discussion of the effect of h1 is not included because the dependence

of the system on hl is mainly in terms of the distance required for a
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wave leaving the interface to return toc the interface after an interven-
ing reflection off the supersonic wall.

Figure 4. 19 shows the dependence of the subsonic wall pres-
sure on Ml . The shift upstréam and decreasing amplitude of the pat-
tern with decreasing I\/Il are expected results for a constant-deflection
wedge. The minimum pressure, and the value of x at which it occurs,
scale linearly with ﬁlz

X o in = 9.38" + 6. 8161 in. : (4. 69)
Pmin = 0.964 - 0. 059{31 (4.70)

The effect of M, is shown in Figure 4.20. The increasing
magnitude of the pressure drop with increasing M2 is due to the sys-
tem approaching unperturbed choked flow at M, = 0.8195. It is not
proper to say that choking is included within the linearized theory, be-
cause any area reduction can be evaluated without a breakdown of the
equations. However, as the area is reduced, the linearized results
lose validity and eventually become nonsensical (e. g., negative pres-
sures). It is not believed, for instance, that an experiment duplicat-
ing the curve at M, = 0.7 would agree at all with the data. The curve
presented simply represents the first of a series of functions in the
exact solution: the higher-order functions,which were not included in
the calculation, play an increasingly important role near the choking
limit.

The effect of subsonic layer thickness, }1"2 , on the wall pres-

sure distribution is presented in Figure 4.21. The comments of the

preceding paragraphs apply to this figure as well. Since the choking
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margin depends also on (hl/hz)’ the choking limit is being approached
in this study, too. This occurs because the choking margin is based
on the combined properties of the entire ﬂow. The unperturbed flow
is qualitatively subsonic. Therefore, a reduction of h2 causes a
lessening of the relative influence of the subsonic stream compared
to the supersonic stream. The qualitative behavior of the supersonic
stream becomes more important, and the combined flow tends toward
supersonic behavior, which implies a tendency also toward choked
flow.

In another sense, the supersonic wave system imposes the
same disturbance pattern on the interface in all the cases, but as the
subsonic layer becomes thinner the area changes within the layer be-
come proportionally larger and the amplitude of the response is in-
creased.

For completeness, the first-order solution for the pressure on
the supersonic wall in the case of the baseline supersonic wedge is
presented (Figure 4.22). However, the inherent deficiencies in the
calculation (zero-thickness shear layer, first-order accuracy) are
particulariy acute in this» case, and this figure is scarcely realistic.
It was felt that parametric studies of the supersonic wall pressure
Wouid be an academic exercise only and would have no physical
meaning, since the supersonic wall boundary layer and the disper-
sion of shock waves at the shear layer (see Section 4.2) strongly in-
fluence the supersonic wall pressure distributio.n. Both of these
- phenomena, of course, were omitted from the theoretical model,

Therefore, parametric studies of the supersonic wall pressure will
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not be included.

4.6 Results -- Subsonic Wedges

A program of experimental and theoretical work was under-
taken for the wedge attached to the subscnic wall, similar to that
described in Section 4.5 for the wedge fixed to the supersonic wall.
Data taken on the supersonic wall were subject to a fairly large amouﬁt
of scatter due to the non-repeatable wave structure in the supersonic
stream. In addition, data from the subsonic wall in the region covered
by the wedge plate were tainted because of the difficulty in obtaining
an airtight seal in the subsonic wall seam at x = 15 inches. There was
a tendency for air to leak in through the seam into the space between
the wedge plate and the wall, affecting data in the region of x from 13
to 17 inches. Because of these difficulties, which reduced the quality
of data for the subsonic wedge problems, only a limited program was
undertaken.

The work already described in this chapter gave us a reason-
able level of confidence in the first-order calculation. Indeed, be-
cause the disturbance pressure gradients are considerably lessened
when the wedge is transferred from the supersonic wall to the sub-
sonic wall, it seems that the accuracy of the calculation will be im-
proved.

One of the more interesting results of the linear theory is the
"wall equality paradox.' This is the prediction that, to first order,

a specified geometric disturbance (t and ¢) in a flow of constant pa-

rameters (MI’MZ’ hl’ and hZ) will produce the same pressure dis-
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tribution on the unperturbed wall of the wind tunnel whether the dis-
turbance wedge is attached to the supersonic wall or the subsonic
wall.

The apparent paradox perhaps can best be understood by con-
sidering identical disturbances on each wall. In a linear app‘roxima-
tion, the supersonic disturbance will be transmitted with unchanged
form along a Mach line to the interface; it will be diffused to some
extent in the subsonic stream, and a more dispersed pressure dis-
tribution will be seen on the subsonic wall. Conversely, the disturb-
ance originating on the subsonic wall will be diffused to exactly the
same degree between the subsonic wall and the interface. From the
interface to the supersonic wall, this pattern moves up into the su-
personic stream with unchanged form along the Mach lines. Because
the entire system is linear (in the first-order calculation), the dis-
turbancé fields due to subsequent reflections off the supersonic wall
simply add up.

Figure 4. 23 presents the experimental data that were obtained
in support of this prediction. The basic trends seem to support the
theory. However, due to the difficulties already discussed, there is
a superimposed structure on the data from the supersonic wall. This
is particularly noticeable at x = 13 to 14 inches and around x = 17
inches, which correspond roughly to pressure extremes previously
noted in the empty-tunnel flow (see Figure 3. 8a, page 37).

The other experimental comparison made was a study of the
effect of wedge angle on the subsonic wall pressure, the results of

which are presented in Figure 4.24. Agreement between theory and
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experiment is only qualitative at best. The theory predicts that the
wedge angle has little effect on the subsonic wall pressure. If any-
thing, the experimental data present the unpredicted result that the
4° angle causes an additional 0.01 drop of normalized pressure be-
yond that caused by the 2° angle. Perhaps the cause of this is a non-
linear response of the subsonic wall boundary-layer displacement
thickness with increasing wedge angle, which may cause the wedge to
appear thicker than it actually is. It seems at least as likely, though,
that this is not a real effect but rather is due to some experimental
or correction error (though it seems too large to be a subsonic
stream correction error).

As with the supersonic wedge experiments, additional compu-
tations were made to ascertain the effect of wedge thickness t, Ml’
MZ’ and h2 on the subsonic Wé.ll pressure. Recall that in all cases
in this first-order theory, the supersonic wall pressure for the sub-
sonic wedge is the same as the subsonic wall pressure for the super-
sonic wedge, already presented.

The effect of wedge thickness on the subsonic wall pressure is
shown in f‘igure 4.25. A negative singularity is seen as expected in
the region of x = 10. 8" to 12. 0" at the shoulder of the wedge, similar
to the singularity at x = 10.0'" at the leading edge of the wedge.
Downstream of the shoulder, the pressure oscillates with a wave-
length of about 8. 5'" in response to the reflection of waves off the
.. supersonic wall and the interface. The pressure amplitude shows

linear dependence on t at all points beyond about x = 13",
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Figure 4.26 describes the effect of Ml on the subscnic wall
pressure. No effect can be seen until x = 12" to 13" when the first
waves from the initial perturbation return to the interface after re-
bounding off the supersonic wall. The increasing wavelength of the
disturbance with increasing 1\111 : reflgcts the change of {31 in the quan-
tity (Zﬁlhl), the supersonic stream disturbance cycle length. The
arﬁplifude of the disturbance after about x = 12" reflects the decreased
choking margin of the unperturbed flow as I\/I1 increases.

The effects of varying M, (Figure 4. 27) and h2 (Figure 4.28)
show a similar dependence on the unperturbed choking margin. It
should be repeated for emphasis that choking as such is not embraced
in the first-order theory; the amplitude of the disturbances, however,
can be related to the unperturbed choking margin.

Figure 4.29 correlates for Figures 4.27 and 4. 28 the minimum
pressure in the vicinity of x = 16" and the maximum pressure in the
vicinity of x = 21" with the choking margin. In all cases the flow is
""qualitatively subsonic, '' i. e., the static pressure at choking is less
than the unperturbed static pressure,and decreases in the flow area
therefore cause the equilibrium static pressure to fall. As is seen in
Figure 4.29, the correlation is quite good.

In an attempt to verify experimentally some of the results of
the theory of Tsien and Finstonls, a study similar to the present sub-
sénic wedge experiment was performed by Holder, Chinneck, and

Ga.dd19 with an apparatus in which Ml = 1.6, h1 = 5,9, M, could be

varied from 0. 50 to 0. 98, and h2 from 0. 1" to 0. 4", Wedges of de-

flection angles 2%0 and 5° were attached to the subsonic wall at
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Figure 4.29:

Dependence of Disturbance Pressure on
Unperturbed Choking Margin (Subsonic
Wedge)



x =3.,1" or 6.1'.

By x = 3.1", there was no uniform region in the subsonic
stream. With vorticity throughecut the low-speed flow, their experi-
ment more closely resembled a boundary layer (as it was intended to)
than does the current study, and the results were more typical of
boundary layer results. Significant pressure disturbances were
found as much as 10 h2 upstream of the leading edge of the wedge,
compared with the present results of 0. 6h, .

Furthermore, their results did not scale with h2 as that pa-
.rameter was varied: a reduced h, was accompanied by enhanced
upstream propagation in terms of x/h‘2 . As h2 is decreased, the
mezn distance of a subsonic stream tube from the vorticity source
(the dividing streamline in the shear layer) is lessened. Thus, the
mean subsonic flow receives more vorticity through momentum dif-
fusion. The velocity profile is smoothed out and resembles much
more closely a supersonic boundary layer. A slight suggestion of
this dependence of upstream compression on the vorticity content of
the subsonic stream is seen in Figure 4. 18, though it is not a strong
effect.

The present study and those of Tsien and Finstonlg: Holder,
Chinneck, and Gaddlg; and Liepmann, Roshko, and Dhawanzo; il-
luminate substantial differences between the combined shear layer/
subsonic stream/subsonic boundary layer in the current study and a
supersonic laminar boundary layer. In the present study, there are
substantial regions of uniform (irrotational) subsonic flow, for which

potential theory is a good representation. Potential theory, of course,



breaks down where vorticity is present, and in the limiting case of a
supersonic boundary layer there is a smooth distribution of velocity
from the freestream value to zero velocity at the wall.

The upstream propagation of disturbances through the sub-
sonic layer {scaled with the thickness of the subsonic layer) is
strongly related to the smoothness of the velocity distribution. Where
a significant plateau of uniform flow is present, as in the current
work, upstream propagation of disturbances is very slight (confined
to a distance of about 0. 6h2). As the velocity distribution becomes
smoother (the cases of reduced h2 in ref. 19, for example), the dis-
turbances propagate upstream several subsonic layer thicknesses.
This should not be compared with a supersonic laminar boundary
layer, in which upstream propagation disﬁances are governed by

boundary layer separations.

4.7 Discussion of Results

The work described in this chapter was undertaken as a pre-
liminary to the study of a blade in a flow of spanwise-varying Mach
number, discussed in Chapter V. In these experiments, the objec-
tives were to gain experience with the new Transonic Shear Flow
Wind Tunnel, and to gain understanding of the interactions between
the supersonic and subsonic streams, especially in terms of wave
propagation upstream of a source and in large-scale response to area
changes. In addition, it was hoped that agreement between the first-
order theory and the experiments could be demonstrated within some

range of validity.
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The compazrisons between theory and experiment have been
noted. - Agreement is reasonably good where the blockage/cheking
margin ratio is less than about 0.4, é,nd where inclination angles to
the unperturbed flow are less than 5°. The computational model as -
sumes a zero-thickne‘ss shear layer. The actual thickness seems to
affect the agreement between theory and experiment when the per-
ceptible shear-layer thickness is about one-third of fhe tunnel height.
The general shape of the pressurev distribution is well predicted with-
in the subsonic stream.

In the subsonic stream, the upstream propagation of perturba-
tions is limited to a' length of about 0. 6h‘2 from the source (the shock
impingement point in the case of the supersonic wedge). Based on a
comparison of the present study with work by Holder, et al. 19, it ap-
pears that as the transonic shear layer spreads inte the subsonic
stream, i.e., as the velocity profile in the subsonic stream is
smoothed out, the upstream propagation of disturbances is enhanced.
The combined flow behaves more nearly as a superéonic boundary
layer, in which precompression distances on the order of tens of
subsonic layer thicknesses have long been measuredzo’ 21,

Precompression of préssure disturbances was also noted in
the supersonic boundary layer ahead of the leading edge of the wedge.
This perturbation agreed with numerous studies of a supersonic
boundary layer over a wedge.

The experimental datarsupported the prediction of thé first-
order theory that for specified flow coﬁditions (M

17 M,, hl/hz) a

given disturbance geometry may be attached to either the supersonic
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or subsonic wall and the pressure distribution on the unperturbed
wall in both cases will be the same.

A parametric study, using the linear theory, was made to de-
termine the effect of Ml’ MZ’ and h2 for the subsonic wedge. This
showed a strong inverse dependence between the disturbance ampli-

tude on the subsonic wall and the unperturbed choking margin.



5.1 General Discussion

The ultimate portion of the experiment was the qualitative
simulation of the compressibility effects on a transonic compressor
rotor blade by placing in the wind tunnel an airfoil passing spanwise
through the transonic shear layer (see Figure 5.1). The goal was to
gain an understanding of the inviscid flow field ahead of the blade and
within the blade passage.

The experiment proceeded in three stages. ’%he first stage
was the examination from another point of view of the data taken in the
empty-tunnel runs with the pitot strut installed at various stations in
the tunnel. This strut has very nearly a diamond cross section, with
a chord of 5/16-inch and a maximum thickness of 1/16-inch. It was
hoped that an examination of already available data in the form of wall
pres‘surés and schlieren photographs would yield some insight to the
flow processes involved.

The next step in the experiment was the attacvhment of a half-
profile of diamond cross section to one of the side walls. This, of
course, could only represent va zero-lift blade, and to some extent the
desired features were ''washed out" by the sidewall boundary layers
flowing over the profile. Since using one of the steel side walls for
mounting the half-airfoil precludes the use of the schlieren system,
observations were limited to wall pressure measurements and sur-
face oil flow visualization.

These studies were considered preliminary and will not be

discussed in detail. The final and most important step, which will be
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considered more carefully, was the mounting of an airfoil to pass
spa.nwise through the shear layer in the middle of the tunnel. In ad-
dition to the zero-lift case, this permitted studies with the airfoil at
small angles of attack. Schlieren and spark shadowgraph photography
were also possible except where the shadow of the airfoil eclipsed the
view. Wall pressure measurements and surface flow visualization
stﬁdiés were obtained. A biconvexh(circula.r-arc) airfoil section was
chosen with a thickness ratio (t/c) of 6 per cent. No roughness bands
or other devices were applied to any of the models to trip the boundary
layer.

An attempt was made to extend the two-dimensional theory of
Chapter IV to the three-dimensional airfoil problem. This extension
is described in Appendix D. Fundamental problems were encountered
in the mathematics, which represents the solution as double-infinite
series, and this line was not pursued.

5.2 Strut

It has already been mentioned that due to the similarity of the
pitot strut to a diamond-section airfoil a study of the strut flow field ~
is educatiénal in terms of understanding the larger airfoil flow field.
The principal difference between the strut and the sidewall airfoil is
that the leading-edge deflection angle is 14° for the strut, and 4° for
the sidewall airfoil (also a diamond section). This difference is es -
pecially significant because at Mach 1.4, a shock cannot remain at-
tached to the leading edge of a wedge if the deflection angle is greater
than about 9. 5°. Geometrically, the strut has a thickness ratio (t/c)

of 20 per cent, while for both types of airfoils (sidewall -mounted and



~159-
free) the thickness is about 6 per cent.

Therefore, while there are significant differences, the basic
form of the perturbation to the flow is nevertheless similar. In ad-
dition, data from the installation of the pitot strut were availgble
quite early in the project. |

The principal factor in the flow field is that a detached shock,
as expected, stands ahead of the strut in the supersonic stream at all
times, due to the large leading-edge wedge angle. In the sidewall and
free airfoil experiments, the shock would be expected to remain at-
tached (efccept as affected by the sidewall boundary layer or by lead-
ing edge bluntness). As revealed by schlieren photography, the shock
as viewed from upstream of the strut is convex, standing about an
inch ahead of the strut near the supersonic wall and about 1/2 inch
ahead near the sonic surface in the shear iayer. Presumably, the
shock bends around the strut to either side until it strikes the side-
walls. The shock wave has only a weak effect on the sidewall pres-
sure, due to the closeness of the expansion from the shoulder of the
strut to the leading-edge shock, causing a closely-following cancella-
tion of the pressure rise.

The detachment of the leading shock complicates the flow field
to the point that non-empirical analyses fail completely. Nevertheless,
a rough parallel with both experimental and theoretical data of the
wedge experiments is noted. Experimental pressure measurements
show that in neither the supersonic nor the subsonic stream does the
presence of the strut affect the flow field more than about 1/2 inch

(i. e., 1/4 of the duct width) upstream of the shock or, in the sub-
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sonic stream, upstream of the shock/shear layer intersection (see
Figure 5.2).

This knowledge lends credibility to the pitot-tube data of
Chapter III, in which the measuring plane of the pitot tube stocod 1.75
inches to 2 inches upstream of the strut (i.e., completely away from
the measured disturbance).

Figure 5.3 shows the general features of the pitot strut flow
field as revealed by the schlieren system. The origin of the waves
described as ''secondary'’ will be discussed in the following section.
It should be noted that the strut thickness of 1/16-inch represents a
tunnel blockage of 3. 18 per cent, exceeding the one-dimensional
choking limit of 2. 86 per cent. The limited upstream influence of the
strut together with the presence of supersonic flow indicates that
choking has not occurred. This is ascribed to the increased choking
margin related to short-span disturbances, previously discussed in
Section 3.4. The differences between the supersonic boundary layer
and the shear layer in their effect on the leading detached shock will

be outlined in Section 5. 4. 1. 2.

5.3 Sidewall Airfoil

The ''sidewall airfoil" is a symmetric diamond airfoil of 6 per
cent thickness ratio and a 3-inch chord, cut on the plane passing
through the leading and trailing edges. A certain number of static
pressure taps were drilled through the airfoil in a pattern to match
the taps drilled in one of the steel sidewalls, in the manner described

previously for the supersonic and subsonic wedges. The airfoil is
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Figure -5.2: Subsonic Wall Centerline Pressure Data
Showing Limited Upstream Influence of
Pitot Strut
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Leadmg Detached Shock

Figure 5.3: Pitot Strut Flow Field Structure
(Strut centerline at x = 12.25 inches)
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secured to the sidewall by 4 socket-head cap screws of size 1-64.
The leading-edge deflection angle is 40, and the maximum half-thick-
ness is .093-inch. Both these values correspond well to the baseline
case of the wedge experiments.

The airfoil could be mounted on either the instrument;d side-
wall (leading edge at x = 9.75") or the plain sidewall (x = 10.00"), so
that the free stream Mach number varied in the spanwise direction.
Pressure data could be taken on both the supersonic and subsonic
walls of the wind tunnel and on the instrumented sidewall, whether the
airfoil was attached to it or to the solid sidewall at the opposite side
of the tunnel.

This was intended only as a preliminary to the full set of ex-
periments on the free airfoil, and hence it was not intended that a great
deal of quantitative data should be obtained. Rather, the goal of these
experiments was a first-cut qualitative understanding of the processes
at work.

5.3.1 Discussion of Flow Field. As the sidewall airfoil of

necessity is mounted on one of the steel walls, it was not possible
during this series of experiments to mount both glass windows, and
thus schlieren photography was not possible. Consequently, the data
used to analyze the flow field were static pressures on the walls, sup-
plemented by oil flow observations.

To a reasonable degree, the flow field exhibited run-to-run
repeatability. This is illustrated in Figures 5.4 and 5.5, which pre-
sent measured static pressures on the centerlines of the supersonic

and subsonic walls for all runs performed with the sidewall airfoil.
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One quickly notices, especially in Figure 5.5 (subsonic wall pres-
sure) that while the data from all other runs form a reasonably com-
pact band, data from Runs 66 and 67 show basic differences and yet
are consistent among themseives. A glance at Table 5-1, which
shows nozzle exit Mach numbers for all the runs, reveals théz cause
of this: in Runs 66 and 67, M, was considerably lower than in all the
other runs. Thus, the response of the subsonic stream was much
""softer'' in that the influence of the wall was considerably less. The

subsonic layer, therefore, experienced a reduced perturbation pres-

sure amplitude,

TABLE 5-1. Flow Properties for Sidewall Airfoil Runs

Run e (in. ) Day M1 MZ Wall Attached
47 10,00 26 June 74 1.40 - 0.61 solid

48 . 10.00 2 July 74 1.39 0.63 "

55 - 9.75 1 Aug 74 1. 40 0.63 instrumented
66 9.75 12 Dec 74 1.44 0.52 "

67 9.75 8 Jan 75 1.43 0.53 "

68 9.75 13 Jan 75 1.40 0.61 oo

69 9.75 15 Jan 75 1.40 0. 60 "

97 10.00 27 May 75 1.42 0. 60 solid

A primary factor affecting the sidewall data certainly was the
boundary layer from the wall that flowed over the airfoil. It is as-
sumed that the boundary layer affected the initial compression wave

of the airfoil in the same way (approximately) that it did the super-
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sonic wedge. Both models were mounted at the same leading edge
station (within 1/4 inch) and had the same leading-edge deflection
angle, the difference of course being that the airfoil was fixed to the
sidewall Whilé the wedge was fixed to the top wall.

The boundary layer caused the pressure rise to be dispersed
over a small region near the leading edge. The distributed compres-
sions (in the case of the wedge) coalesced within the first inch from
the source into a sharp wave which was displaced upstream about 1/4
inch from the expected inviscid wave location. This is in qualitative
agreement with photographs at Mach 1.4 to 1.5 of a shock wave in a
.corner from Liepmann, Roshko, and Dhavvanzo, which show apparent
shifts upstream in the concentrated wave on the order of the boundary
layer thickness.

A:tj»ﬁl\'{Iach 1.4, both isertropic and real 4° shocks have a theo-
retical pres;ure ratio of 1.219. However, the data already presented
in Figure 5.4 and the pressure map for the supersonic wall presented
in Figure 5.6 show an overcompression to about 1.24 or 1.25 in nor-
malized pressure. This is a fairly common feature of shock/boundary
layer interactions, and is shown in data presented by McCa‘be22 in
considering the three-dimensional interaction of an oblique shock
propagating across a boundary layer so that one edge of the shock is
continually grazing the boundary layer. | These results show that at
léast 106* and often a considerably longer distance from the point of
contact is required for the overcompression to l;e relieved. It should

. - B (ﬁ
be noted that the pressure distribution of Figure 5. :

s based on data

taken on the tunnel centerline and 1/2 inch to either side of the center-
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line at 1/2-inch intervals in the streamwise direction.

With the primary shock being attenuated at one end by the
grazing interaction with the boundary layer and at the other end by a
similar interaction with the shear layer, one would expect the shock
to have a maximum strength in the center of the supersonic s%tream,
and to be considerably reduced in strength toward either the inter-
face (about y = 0 ) or the supersonic (top) wall. This expectation is
borne out by the static pressure contours on the opposite sidewall,
presented in Figure 5.7. The maximum pressure measured on the
wall in the vicinity of (x,y) = (11.0, 1.0)was 1.33. Since the theoreti-
cal wall pressure for inviscid reflection of a 4° shock at Mach 1.4 is
1.57, there is a reasonably strong interaction with the boundary layer
that reduces the pressure. By this stage, the two-dimensionality of
the flow has been destroyed, and cross flows of significant propor-
tion are present.

Observed oil-flow patterns from the supersonic wall and the
sidewall on which the airfoil is mounted are sketched in Figure 5. 8.
Unfortunately, attempts to photograph the oil patterns were frustrated
by bad camera angles and inability to color the oil sufficiently to ob-
tain adequate contrast. Part "a' of Figure 5.8 contains no surprises:
the oil deflects in the direction expected, and the pattern repeats with
alternating direction for several cycles as the lateral (i.e., two-
dimensional) wave reflects between the sidewalls. Part ''b'" provides
more interesting information. Note that a small compression wave is
created in the shear layef near the leading edge and propagates

obliquely into the supersonic stream. Its effect can be noted on even
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the upperrmost streamline.

This is caused by the presenc‘é of an elevated pressure in the
subsonic stream in all directions near the leading edge of the airfoil,
while in the supersonic stream the pressure is unperturbed at all
Ipoints ahead of the bow shock wave, Th;us, for some region near the
leading edge, the subsonic stream is at elevated pressure compared
to the supersonic stream, and a compression wave is passed up into
the high-speed flow.

After this precompression wave, the interface at the center-
line of the runnel deflects downward, passing expansion waves into the
supersonic stream and relieving considerably the pressure that would
otherwise be imposed locally on the shear layer. As the influence of
the lower wall is felt, the subsonic streamlines return to the hori-
zontal. The process is repeated with opposite sign as the convex
corners near the centerline of the airfoil are passed. The trailing
edge of the airfoil is blunted about . 010 inch; thus, the pressure in
this region responds as some sort of base pressure. This would be
expected to be lower in the supersonic flow than in the subsonic flow,
and the slow secondary flow of oil into the supersonic stream at the
trailing edge is a consequence of this. Beyond the trailing edge, no
substantial éil deflections were observed.

The sidewall pressure contours of Figure 5.7 show generally
that oblique vertical waves quickly lose dominance downstream of the
trailing edge. This is due primarily to the high level of attenuation
and dispersion that occurs at each reflection off the shear layer.

The lateral (two-dimensional) waves are considerably more persist-
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ent, losing only a small fraction (about 10 per cent) of their pressure
amplitude at each reflection.

Subsonic wall pressures are presented in Figure 5.9 on the
following page (the locations of the pressure taps used in generating
this figure are shown in Appendix A). These generally show‘that lat-
eral pressure gradients exist only in the immediate vicinity of the air-
foil. The mean subsonic stream pressure (on the wall at a given x-
station) is lowered nearly 10 per cent in the vicinity of the trailing
edge in response to the induced variations in the location of the sonic
surface. The sonic surface, being generally deflected downward into
the subsonic stream and thus reducing the flow area, causes the drop
in static pressure on the subsonic wall. Figure 5.9 serves mainly to
show the absence of lateral pressure gradients away from the airfoil.
Deflections of the sonic surface are better inferred from Figure 5. 5.
It should be noted that the perturbations upstream of the leading edge
agree well with the empty-tunnel variations previously discussed.

Figure 5. 10 presents a comparison of experimentally-meas -
ured pressures on the airfoil and the opposite wall deep in the sub-
sonic stream (y = -1.75 inch) versus calculations from first-order
linearized theory for the same airfoil in uniform flow at Mach 0. 6.
The measurement error in the experimental data is estimated at
.003. This suggests that at stations upstream of the leading edge of
the airfoil, uniform-flow linearized theory is an accurate model.
This then implies that upstream interactions between the supersonic

and subsonic streams are negligible.
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5.4 Free Airfoil

The ultimate objective of the experiment was to place a free
airfoil in the wind tunnel passing spanwise through the transonic shear
layer (see Figure 5.1). Since such an airfoil would be supported only
at the supersonic and subsonic walls and not at the sidewalls, the use
of glass windows permitting schlieren and shadowgraph photography
w.ﬁs pbssible. Of course, the steel sidewalls could also be used as
desired for pressure measurements.

The goal was to place static pressure taps in the airfoil at
several chordwise stations and, by traversing the airfoil spanwise
while the tunnel was in operation, to obtain continuocus pressure dis-
tributions for each tap. The need to keep the tunnel blockage ratio
limited to 5 per cent meant that the maximum thickness of the airfoil
could not exceed about . 098 inch. This ruled out traditional methods
of constructing metal wind-tunnel airfoils with pressure taps, and
our atteﬁtion was drawn to the method of Collins23 in which an airfoil
is cast of epoxy with pressure lines down the middle of the casting.
After the epoxy hardens, holes are drilled through one side of the air-
foil into the lines at the desired locations.

It was decided first to cast a pilot model, referred to as the
"solid'' airfoil, and to caét the 'tapped' airfoil later after experience ‘
had been gained in the first job. A section view of both airfoils is
presented in Figure 5. 11. The casting of the ai:ffoils and the prob-
lems encountered are described in Appendix E. '

5.4.1 Zero Angle of Attack. The flow field around the air-

foil at zero angle of attack is dominated by strong three-dimensional
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effects, both within the airfoil/wall passage and downstream of the
trailing edge. The origin of these disturbances, aside from the

more obvious boundary layer effects, is in the velocity gradient of the
shear layer. These interactions have two basic causes. The first is
the basic qualitative difference between subsonic and supersénic flow
in the pressure profile over a given airfoil: the region near the shear
layer must make a transition in the pressure distribution due to Mach
number effects. This, in turn, will introduce departures frorﬁ two-
dimensionality. The second cause is the large difference in total
pressure ‘(a factor of 2. 5) across the shear layer, which means that
pressure perturbations on the supersonic portion of the airfoil will be
much larger than those on the subsonic portion. The difference in
dynamic pressure is even larger (q,/q, = 5.5).

The three-dimensional effects are lnot confined to viscous-
dominated regions such as boundary layers and separated-flow areas,
though the presence of these phenomena aids the disruption of local
two-dimensionality. Inviscid three-dimensional interactions, causing
large displacements of the sonic line of the shear layer from its un-
perturbed position, generate waves with strong spanwise components
in the vicinity of the airfoil in both the supersonic and subsonic
streams. The lateral waves in the supersonic stream, reflecting
from one sidewall to the other, experience very little attenuation.
Vertical waves in the supersonic stream, reflecting between the shear
layer and the top wall of the tunnel, are dispersed considerably on
each reflection from the shear layer, and thus decay more rapidly.

Pressure waves in the subsonic stream vanish within one chord
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length downstream of the trailing edge, except as excited by waves in
the supersonic stream.

The leading-edge shock wave in the supersonic stream under-
goes a strong Mach-reflection interaction with the wall because its
strength is too great for regular reflection regardless of shock wave -
boundary layer interaction. This situation is further confused by the
boundary layers on the wall. As a result, the shock configuration »
somewhat resembles choked flow at the entrance to a duct. Howeve;‘,&
the word ''choked' is highly misleading in this case. The situation
will be discussed in detail in the next section.

Due to the bluntness of the leading edge of the airfoil, a de-
tached shock, made visible by the schlieren system, stands ahead of
the airfoil.

There is the expected upstream propagation of pressure per-
turbatiéns in the supersonic wall boundary layer from the leading-
edge shock wave impingement point. - As expected, the extent of this
was seen to be approximately 2 6. 99 However, upstream transmis-
sion of pressures within the inviscid subsonic flow is virtually non-
existent. Without inviscid modification of the upstream subsonic
flow, no similar modification of the upstream supersonic flow (ex-
cept for the shock/boundairy layer interaction already mentioned) was
expected, and none was observed.

Discussion of the flow field will proceed in three stages.
First, the leading-edge shock wave system and its interaction with
the sidewall will be discussed. Consideration will focus on regions

in the supersonic stream far enough from the shear layer so that
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three-dimensional effects, wh.ile still present to some degree, are
much less important than the two-dimensional interaction of the wave
with the wall and boundary layer. Second, the detached shock ahead
of the airfoil leading edge will be considered. Third, the full flow
field will be described.

An additional section will discuss modifications to the previ-
ously-outiined analysis in the case of the shear layer being about
twice as thick. Experiments conducted at X E S 11,50 in. (6s =

0.72 in. ) will be contrasted with the data used for the preceding com-

mentary (x = 5,00 in., 65 = 0.31 in. ).

LE
5.4.1.1 The bow shock system. In this discussion, it will

be assumed that the region of influence of the leading edge bluntness
is confined to the immediate neighborhood of the airfoil, and that the
fact that the leading edge is biunted up to . 010 inch is immaterial in
the flow channel. This assumption will be supported in Section
5.4.1.2.

The basic sources of experimental data available which permit
the inference of the form of the blow shock system are static pres-
sures on t.he surface of the airfoil and the sidewall, and pitot pressure
surveys several inches downstream of the trailing edge. Unfortunate-
ly, the schlieren system cannot be aligned along the span of the air-
foil to reveal waves within the airfoil/wall passage. The region of
the bow shock system, which was wholly within the passage, was thus
in the shadow of the airfoil and was inaccessible to optical measure-
ments. Pressures on the top and bottom walls of the tunnel were

only of slight interest in determining the wave shape because the
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presence of the maounting attachments on the walls at either end of
the airfoil did not permit the placement of pressure taps within the
airfoil passage. |

The data taken from one surface of the airfoil are illustrated
in Figure 5.12. As usual, the pressures have been normalized by the
nozzle exit pressure. To obtain these points, the airfoil was moved
a small distance in the spanwise direction and the sfatic pressure in
each tube was read by means of avS canivalve and transducer with a
digital voltmeter (DVM). Earlier, the pressures were read continu-
ously by an X-Y plotter, but the use of a DVM permitted greater ac-
curacy in an observ;ation with less time and less wear and tear on the
airfoil (since it was not necessary to traverse the airfoil once for
each individual tap) at the expense of missing any fine detail in the
surface pressures.

From a collection of the individual surface pressure data
points (such as that shown in Figgre 5.12), a computer-driven data

reduction program plotted

ntours of constant pressure for each

surface of the airfoil (Fig:'ule 13) and interpolated between the

readings of each airfoil tap to calculate chordwise pressure distribu-
tions at a number of spanwise stations (Figure 5. 14),

The pressdre contour plots of Figure 5. 13 are quite striking
in their demonstration of the departure from quasi-two-dimensional
(QTD) flow, especially in the supersonic region adjacent to the shear
layer (y = 0 to 0.7 inch). For QTD flow, the contours shoul.d be ap-
proximately elliptical and without relative maxima and minima in the

shear layer. Outside the shear layer, the contours should be verti-
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cal. In addition, it is readily noted that substantial pressure fluctua-
tions are confined to the supersonic stream. This is because the dy-
namic pressure of the supersonic stream is nearly 5.5 times that of
the subsonic stream. Unfortunately, this figure also reveals some
asymmetry in the airfoil. Because the data of this run were taken at
a nominal geometric angle of attack of 0° (£0. 20), the isobar plots
shoula be identical for both surfaces. At least they show the same
trends.

The chord Reynolds number in the supersonic stream is
about 375, 000. According to some published datazo, transition to a
turbulent boundary layer is not expected at values less than 1, 000, 000
for a 6 per cent thick biconvex airfoil. Therefore, with a laminar
boundary layer, the pressure rise due to a shock incident on the air-
foil surface will be diSpersedbver several boundary-layer thickness-
es. The presence of such a dispersed reflection, with a static pres-
sure rise of about 20 per cent, can be seen in the isobar contours
(about . 55 inch aft of the leading edge within the range of y from 0. 5"
to 1. 5'") and more readily in the chordwise pressure distributions of
Figure 5. 14. |

Figure 5 15 presents a construction of the supersonic flow at
y = 1. 00 inch (center of the supersonic stream) based on pressure
data. The flow field behind the leading wave (before it is modified by
the shock branch that rebounds to the airfoil) is'known. Data from
Kirnz4 suggest that the sonic line in the region of the detached shock
wave reaches the airfoil surface very close to the edge of the blunt

section (see Section 5. 4. 1.2); after that, a Prandtl-Meyer expansion
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starting at the sonic point (modified by the reflection of expansion
waves off the rear of the initial shock) yields the flow behind the
shock. This enables us to trace the ‘airfoil—incident wave back to its
intersection with the bow wave.

Knowing that these two waves intersect and that a third wave
must continue across the channel from the bifurcation point, the
shock polars for Mach 1. 4 (the free stream Mach ndmber) and vari-
ous rebounding waves are plotted together (Figure 5. 16) in terms of
pressure versus flow deflection angle. An intersection of the polars
would indicate a triple point satisfying continuity of angle and pres-
sure across the contact surface behind the shocks. The only such
intersections found did not fit the physical reality of the system since
they described the case of a stronger shock overtaking and merging
with a weaker shock, rather than the case of a bifurcated shock.

A realistic steady solution is therefore possible only if the
flow is subsonic somewhere behind the shock, i.e., if the main shock
across the passage is nearly normal (as drawn in Figure 5.15). The
existence of this normal shock is confirmed by the total pressure
measurements of Figure 5.17. This figure compares experimentally-
measured total pressures at x = 17. 85" in the empty tunnel with those
for the airfoil installed with its leading edge at x = 11. 50", While the
airfoil is at a different position from that in the preceding discussion
(where the leading edge was at x = 5,00"), the features of the flow are
the same. The probe was offset 0.3 inch from the centerline of the
tunnel so that it would be away from the wake of the airfoil. Com-

parison of the data shows a loss of total pressure in the supersonic
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stream of 5 to 6 per cent. Computed data for one-dimensional flow >

predict a loss of 4.2 per cent for a nérmal shock. The remainder of
the loss presumably is due to several oblique shocks farther own-
stream (to be discussed in Section 5.4, 1.3). Furthermore, note that
the loss is confined to the region y = 0.5'" to 1. 6", which must define
in the vertical direction the extent of the normal shock.

If the oblique shock at the leading edge continued withcut bi-
furcation or other medification to the plane of the wall, expansion
waves from the airfoil surface would reduce its strength to a];out 5°,
This is still above the limit for regular reflection at Mach 1.4 (which
is about 4.5°). Thus, the normal shock is a Mach reflection phe-
nomenon, and does not depend on boundary layers for its existence;
it is inherent in the inviscid flow. Figure 5.18 illustrates the com-
plexity of an inviscid Mach reflection. It is not believed, either, that
this phenomenon is due to the thickness of the airfoil in view of the
large amount of flow relief to the supersonic stream provided by the
deflection of the sonic surface in the region of maximum thickness
(also to be discussed in Section 5. 4. 1.3). The boundary layers and
airfoil thickness govern the extent of the normal leg.

It should be noted that even the idealized Mach reflection model
of Figure 5. 18 is not completely accurate. In the vicinity of the triple
point, the figure depicts the assumption of Guderley and Von Neu-
mann that the shocks may be considered locally planar, i.e., that the
shock curvatures are fairly modest, and the shocks therefore fit the
Rankine-Hugoniot model of pseudo-one-dimensional flow. However,

near this point there are in fact strong gradients of pressure and
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temperature parallel to the shock front as well as normal to it. The
triple point actually is a finite zone C"If continuous transition between
the incident and reflected shocks on one side and the strong shock
(sometimes referred to as the Mach stem) on the otherzé. This re-
‘Sults in a significant modification of the actual flow near the triple
point.

Because boundary layers are present, the foot of the shock
(near the sidewall) is diffused upstream and downstream of the in-
viscid impingement point. This is shown in Figure 5.19, which pre-
sents isobar contours on the sidewall. A complex interaction between
the normal shock and the boundary layer is created,27 and it is not
surprising that the pressure rise due to a normal shock (P = 2. 120) is

28,2
8, 9. The point at which the pressure rise

not measured on the wall
begins ahead of the shock enables us to fit the upstream compression
waves shown in Figure 5. 15.

- As was mentioned previously, from data on the loss of total
pressure the vertical extent of the nofmal shock is inferred to be
y = 0.5'" to 1.6'". For y greater than 1. 6", the shock is dispersed by
a grazing interaction with the top wall boundary layer and thus the
loss of total pressure thri;ugh the shock is much reduced. At values
of y less than 0.5'", a similar grazing interaction occurs with the
shear layer. These interactions were discussed in connection with
the sidewall airfoil (Section 5.3.1).

The flow must quickly re-accelerate to supersonic speeds be-

cause the extent of the subsonic region behind the shock cannot be

large compared to the thickness of the buffer layer between the wall
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and the edge of the normal shock (see Figure 5. 15).;% Otherwise, the
high pressure associated with the subsonic flow would inevitably be
transmitted to the wall. Since, for subsonic flow, the pressure must
be at least 1. 61, Figure 5. 19 provides convincing evidence of the
rapid re-acceleration. Pres unlably, the normal shock is slightly con-
cave, so that behind the wave the streamlines are convergent and
thﬁs a.ccelerating. It should also be noted that oil flow studies indi-
cated that there are no boundary layer separations on the sidewall re-
lated to this shock system. This means the maximum pressure any-
where could not have gone above 1. 80 (the normal shock pressure ra-
tio is 2. 120) and indicates that there was no high-pressure region
near the wall so situated that it was not detected by the static pres-
sure taps.zo’ 27

5.4.1.2 The detached shock wave. Discussion of the de-

tached shock wave standing ahead of the airfoil leading edge will pro-
ceed in two stages: first, verification of the assumption of a limited
region of influence on leading-edge bluntness; and second, considera-
tion of three-dimensionality as it affects the shock standoff distance.
To establish the lateral limit of bluntness influence in the
main supersonic stream, a mathematical calculation was made for a
blunted wedge of the same semivertex angle as the experimental air-
foil (Figure 5.20). The parameters of the problem are 6, (wedge
sémivertex angle), h (height of the blunted region), D (shock stand-
off distance), R (shock radius of curvature aloné the axis of the
wedge), and M (freestream Mach number). The object was to find

the lateral distance y' at which the pressure immediately behind the
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A. Assumed Bluntness Geometry

B. Computational Model

Figure 5.20: Leading-Edge Bluntness Models
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detached wave is within a specified tolerance of the pressure behind
the equivalent attached (i. e., sharp leading edge) wave.

The shock was assumed to be a hyperbola whose asymptotic
angle to the freestream is 90 , the wave angle relative to the stream
for an attached shock at Mach number M with deflection angle 60 .
This hyperbola was fitted to the experimental data of Kim24, match-
ing DA and R. The experiments of Kim are for a circular cylinder
rather than a wedge. The presence of an afterbody behind the cylin-
der in the computational model does not affect the shock in the re-
gion just ahead of the nose of the model. Influence from the afterbody
is only felt downstream of the Mach line starting at the transition
point from cylinder to wedge. The flow at this point is known to be at
supersonic speed (neglecting the presence of a very thin boundary
layer). Experimental results show the angle around the surface of
the cylinder from the leading stagnation point to the sonic point is
48.0° at Mach 4 24 and 48.2° at Mach 2’30; while the transition from
cylinder to wedge is at (900-60), which for 60 = 6.9° works out to
83.1°.

At Mach 1. 4, Kim shows for a circular cylinder a standoff
distance of 3.0h to 5.0h (where h is the cylinder diameter), while
Moeckel:‘}1 shows for a blunt rectangular plate D = 3.2h. This indi-
cates that the computational model's assumption of a cylinder will not
lead to gross errors compared to the actual situation in which a flat
face is presented to the flow. |

Using Kim's data, this exercise generated the curve of Fig-

ure 5.21 relating the perturbation in normalized pressure behind the
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the shock (detached-shock pressure minus attached-shock pressure
divided by pressure upstream) versus lateral distance from the wedge
centerline. ’I‘his shows that for perturbafions on the order of a few
per cent, the region of influence is confined relatively close to the
leading edge. In examining the figure, it should be recalled that the
sidewall is at y' = 0.988 inch.

o Defining a small parameter ¢ such that

_ A(tan8)
€ = .12_5?1_5;_ s (5.1)

where A(tan9) is the difference in wave slope between the detached
and attached cases, the calculation yields
R cot 90
Y' = — . (5. 2)
NZe
Recourse to the standard oblique shock relations, with ( )' and ( )"
respectively indicating quantities upstream and downstream of the
wave at a given y , gives
4yMzsin B cos?®
o} o

A 1"
= > IN: (5.3)
2yM Sineo-(y-l)

accurate to first order. Since

AB = ¢ cos2 eo (5. 4)

and the attached-shock pressure ratio (p'/p') is a known function of
M and 5, the normalized pressure perturbation (Ap''/p') is a known
function of y, presented in Figure 5.21. In making this calculation,
a value of R = 8.0h (x1.0h) has been estimated from Kim's figure

10.
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The translation upstrearn of the asymptotic detached shock

from the attached shock location can also be found:

h

o"Ztanéo (5.5)

2
A = D+ Rcot 8

which, for the case under consideration, is 0.034 inch, assuming h =
0.010 inch.

~ An illustration of the observed detached shock ahead of the air-
foil is provided in Figure 5.22. This figure is based on a spark shad-
owgraph study during Run 99 and ca.ﬁ be regarded as an iﬁétantaneous
measure of shock location. The basic form of the shock remains the
éame in all observations, but pictures taken during the same run oc-
casionally show variations in standoff distance, indicating that the
shock is oscillating. A similar conclusion is reached by noting that
schlieren photographs, taken with an exposure time of 1.25 second,
sometimes show the detached shock as perfectly sharp and sometimes
as blurred. The source of this apparently random transition between
steady and oscillating behavior is not understood.

The variations in standoff distance are not due to small varia-
tions in installed airfoil angle of attack between runs. While all runs
presently under discussion were performed at a nominal angle of at-
tack of OO, schlieren photography of a run at a 2° nominal angle of
attack revealed a steady shock at a location agreeing well with the 0°
drata (the installation error is estimated at 0. 20).

The éhock is approximately two-dimensional from y = 0. 30"
to y = 1.27" with a standoff distance of . 035" to .040". This agrees

well with the prediction of Kim using the formula
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_ h >
D = "MC;——I(Z'729”'5Mw) 1< MOO<~ (5.6)

modified from fig. 6 of his paper with a bluntness height of . 010 inch.
At values of y less than .30 inch, the shock shows apparent warpage
and unsteadiness. This cutoff value of y is about 5 - 1G per% cent of
the shear layer thickness inside the layer from the supersonic edge.
In this region, the mean standoff distance is somewhat larger as

well -- .07 to .08 inch. No shock wave is visible for y less than .07
inch.

For y from 1.27 to 1. 81 inch, the standoff distance D stead-
ily increases to about . 12 inch in a near-linear manner. In the re-
gion of y from 1. 81 to 2. 05 inches, the wave becomes dispersed in
an interaction with the wall boundary layer, and no wave is visible
from 2. 05 inches to the wall (y = 2. 15 inéh).

'Alperin32 determined that at Mach numbers from 1.3 to 2.0
the detached wave ahead of a model is two-dimensional if the station
of interest is at least 30h removed from contaminating influences
such as tunnel boundary layers, the end of the model, etc. Since
h =.010", this suggests a spanwise equilibrium distance of about
.30 inch. The boundary layer on the supersonic wall is about . 40
inch in this region, implying that the detached wave should not be
two-dimensional for y greater than 1.45 inch, approximately.

This agrees roughly with the present work. The shock is dispersed
by developing a lambda foot near the boundary area, as would be ex-
pected. Interestingly, only a very slight flow separation occurred

on the wall at the base of the shock. This separation was only . 040
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inch (estimated from oil flow patterns) in extent, indicating that the
wave had undergone considerable attenuation and dispersion.

The modification of the shock within the shear layer is more
interesting. No variation of the shock geometry is noticed until the
édge of the shear layer; certainly, no relaxation on the order of 30 h.
This is assumed to be because the spanwise variations of flow proper-
ties are an order of magnitude less in the shear layer than they were
in the boundary layer.

In a quasi-two-dimensional (QTD) calculation, the shock stand-
off distance would be infinite at the sonic line, decreasing to .035 to
. 040 inch at the supersonic edge of the shear layer and remaining con-
stant at that distance across the main supersonic stream. Of course,
in fairing together these QTD surfaces in the spanwise direction, a
composite detached shock is férmed with large inclination angles in
the spanwise direction on the extended centerline of the airfoil.

Where this three-dimensional cdrvature introduces inclina-
tions greater than the local Mach angle, no steady shock can exist.

A rough calculation indicates that this occurs for y less than 0.2
inch, where the freestream Mach number is about 1. 16. The un-
steadiness noted for y less than 0.3 inch therefore is not surprising;
it is due to this and to excitation from the tﬁrbulent shear layer.
Above this cutoff level, the observed shock standoff distance com-
pares well to QTD predictions, though the shock consistently re-
mains about . 010 inch closer to the body within the shear layer re-
gioﬁ than expected. This seems due to the three-dimensional relief

afforded by the shear region through the subsonic flow behind the
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shock. The high pressures between the shock and the blunted leading
edge are relieved by spanwise flow down into the lower-pressure por-
tions of the layer, and into the subsonic stream.

Even though the basic outline of the shock agrees with QTD
predictions in the upper reaches of the shear layer, the three-
dimensional curvature considerably reduces the strength of the shock
(néwhere in the shear layer is the shock normal), creating lower
peak pressures and losses than expected through QTD theory.

5.4.1.3 The three-dimensional flow field. It often de-

velops in transonic flow problems, even those that are nominally two-
dimensional, that significant three-dimensional variations are present
with time-unsteadiness33’ 34. In addition, such flows are known to be
highly sensitive to the freestream conditions and the state of the
boundary layer on all surfaceé, particularly where a shock wave is

20, 35'37. The viscous interactions are not localized, but

incident
rather have a significant effect on major portions of the flow field,
especially where flow separations are present. Presumably, there-
fore, the extent of viscous three-dimensional effects in the present
study can .be correlated with the magnitude of viscous-dominated re-
gions such as boundary layers and wakes, and with the presence or
absence of regions of separated flow.

Even neglecting viscosity, strong three-dimensional flow
modifications are known to occur when an airfoil is attacked by a flow
whose velocity varies in the spanwise direction across the transonic

regime. The original impetus for studying this problem is in the

analysis of transonic axial- flow compressors. These machines are
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generally designed by a quasi-two-dimensional (QTD) theory which
locally neglects spanwise effects in calculating the flow at a specific
radial blade station. The occurrenc‘e of substantial spanwise effects,
especially in the distortion of stream surfaces, has been known ever
‘since the development of transonic compressors began. Amnalytic
work in this field has been performed by McCune and his associates
for a rotating blade system4-7, and by Namba for a-blade spanning

38, 39

two infinite walls with transonic shear in between , a rotating

system40, and for a subsonic cascade4l. Earlier calculations for a
thin wing in shear flow were performed by Honda42’ 43. The weak-
ness of all these a.ﬁalytic calculations is that they are based on a line-
arization of the governing equations. Consequently, displacements
of the stream surfaces are not represented. As will be shown, these
displacements in the spanwise direction are substantial and strongly
influence the overall flow field.

An analytical and experimental study of an airfoil in incom-
pressible shear flow was performed by Kotansky44, who also found
strong inviscid three-dimensional effects. Useful summaries of

46, 47 are presented

knowledge in secondary ﬂows45 and shear flows
by W. R. Hawthorne. Reference to these works will be made through-
out the following >discussion. In addition, finite-difference calcula-
tions are currently being performed at the Massachusetts Institute of
Technology which are not subject to the objections raised toward the
linearized analytical results. Some results of these studieé have

been published48.

The following discussion concerns inviscid main-stream flow



-206~

modifications. These effects on the flow would be essentially the
same if boundary layers were not present: their existence is not a
viscous phenqmenon. Only a brief mention will be made of the effects
of viscosity, for two reasons: study of inviscid flow modification was
the primary goal of this study; and inviscid processes caused much
larger perturbations to the flow than did viscous-induced effects.

o The flow field within the airfoil passage (the region between the
airfoil and the tunnel sidewall) is completely dominated by a strong
interaction within the shear layer between the supersonic and subsonic
streams. In the introduction to Section 5.4.1 it was pointed out that
these interactions have two basic sources: the qualitative difference
in the two-dimensional flow pressure distribution on the surface of
identical airfoils in supersonic and subsonic flow, and the large dif-
ferences in total pressure and dynamic pressure which affect the mag-
nitude of the surface pressure distribution (the dynamic pressure ef-
fect in essence was that which Kotansky studied). Both of these ef-

“fects, by introducing largelgradients in the inviscid pressure distribu-
tion, set up significant three-dimensional flows near the shear layer.
These flows are not confined to the boundary layer, though naturally
they are quite noticeable there. The large pressure gradients in the
inviscid flow induce appreciable streamline curvature in the span-
wise direction.

Because the flow at speeds slightly greater than sonic will
transmit disturbances laterally with minimal variations in amplitude,
the three-dimensional perturbations are expected to be most severe at

the slightly supersonic stations. This expectation is borne out by the
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-40 . .
analytical works’ 38 . Perturbations in the pressure are smoothed

out away from the sonic surface in eiféher direction along the span of
the airfoil, though this is much méré pronounced on the subsonic side.
Distinct compression and expansion waves move up the blade on the
'supersonic sections38_40.

Perhaps the most important single parameter is the local dis-
placement of the sonic surface from its unperturbed location. It is
this displacement that shows the breakdown of QTD theory (by reveal-
ing spanwise displacement of stream surfaces in general) and domi-
nates the creation of spanwise effects.

Four methods are available in deducing the location of the son-
ic surface and/or its local inclination. The most reliable is from
spark shadowgraph photographs of the shear layer. A fine grainy
structure is visible within the shear layer. Presumably this is from
turbulent eddies created by the mixing process. There is generally a
distinc¢t line, assumed to be the edge of the shear layer in the subsonic
stream, below which these eddies losé their definition and the flow ap-
pears Iioinogeneous. Thus, perturbations of this line represent per-
turbations of the shear layer as a whole and particularly the sonic line.

Another. useful method, available only a considerable distance
downstream of the airfoil, is to survey the shear layer with a pitot
probe.

A third method, which is considered less precise than the first
two but is useful within the airfoil passage, is based on Wali static

pressure measurements. These data can be used to infer changes in

sonic line as follows. By reading at a given x the static pressure on
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the wall and the airfoil (if the x in question lies in the airfoil passage)
a mean value of the static pressure ds, a function of y, averaged over
z {the lé'teral direction) can be estimated for the subsonic stream.
{Use of the subsonic stream is to be preferred because pressure
gradients are considerably reduced and of more regular behavior.
Thus, estimation of a mean pressure is far more reasonable than it
would be in the supersonic stream. )

Within the subsonic stream, the main portion of the flow is
isentropic and perturbations in static pressure can be related to per-
turbations in flow area. By separating the subsonic stream into a
number of lamina to be treated separately, a composite area change
can be calculated and can be simply related to the deflection of the
sonic line. The results of this estimation procedure are presented in
Figure 5.23, along with those of the shadowgraph method,which seem
in general agreement. This procedure only yields a mean value of
the sonic surface displacement; deflections are greater near the air-
foil and less near the sidewalls. The entire pattern of sonic surface
displacements when viewed from above resembles the Kelvin ship
wave pattern for deflections of a surface of water over which a ship is
passing. The displacements generally travel at an oblique angle be-
hind the soui‘ce with diminishing amplitude as distance from the source
increases.

The fourth method available is that of using oil flow patterns on
the various surfaces to suggest surface streamlines. Unfortunately,
these oil flow lines respond not only to the shear stress vector (paral-

lel to the velocity vector) as desired, but also to the pressure-

by
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gradient vector (i.e., the velocity-acceleration vector) and to a less-
er extent the grawvity vector. The oil flow lines show extensive curva-

seen in the sketch of Figure 5.24. The large curvatures

"

ture, as i
show the presence of large pressure gradients normal to the velocity
vector, which means that the oil cannot be assumed to follow closely
the streamlines. The actual streamlines probably follow trajecto-
ries with somewhat less curvature than illustrated in the figure,
where deflections on the order of 1/2 inch were noted.

All in all, Figure 5.23, based on shadowgraph and mean
static pressure, seems reasonable for establishing in general terms
the response of the sonic surface. No attempt should be made, hc;w-
ever, to draw quantitative conclusions from this figure.

The leading-edge shock system is essentially two-dimensional
away from the shear and boundary layers. This system has already
been discussed. Deep within the supersonic stream and ahead of the
Mach conoid centered at the leading edge/sonic surface intersection,
the flow must also be two-dimensional, except as modified by shock/
boundary layer interactions whose mechanism is independent of the
presence of the inviscid subsonic layer. Behind the normal shock
there is a thin subsonic region (see Figure 5.15) where the presence
of the shear layer can be felt. This region is of the order of 1/4-
inch thick, so the presence of the shear layer provides pressure re-
lief about 1/2 inch (i.e., two thicknesses of the subsonic region)
from itself. This condition is partly responsible for the disappear-
ance of the normal shock near the shear layer, as has been noted.

The required pressure ratio for the existence of a normal shock is
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relieved and the shock cannot exist. This induces a strong downward
flow in the mainstream near the interface about 0.7 inch downstream
of the leading edge.

Ahead of this initial downward deflection, we see in Figure
5.23 that there is a slight upward deflection of the mean sonic surface.
The subsonic stream is at elevated pressure throughout the region
neér tile leading edge, while the supersonic stream is at increased
pressure only at points behind the leading oblique wave. There exist
regions near the leading edge, upstream of the initial shock, where the
pressure is higher in the subsonic stream than in the supersocnic
stream, and hence the sonic surface is deflected upward. The deflec-
tion is quite small, as both the spatial extent (less than 1/2 inch) and
the maximum possible pressure difference (about 0.20 in normalized
pressure} in this upward-forcing pressure gradient are considerably
smaller than those disturbances immediately following which favor a
deflection of the sonic surface into the subsonic stream. The down-
ward deflection, in response to the pressurek gradient through the
shear layer, begins immediately behind the leading shock wave.

The extent of the region in which the subsonic stream is at
higher pressure than the supersonic stream determines the inviscid
modification of the supersonic flow ahead of the leading edge. It was
shown in Section 5. 3. 1 that ahead of the leading edge the subsonic
stream pressure conforms reasonably well to that predicted by
uniform-flow potential theory. It is known that no substantial up-
stream interaction is occurring for the case under study; if such an

interaction were present, then potential theory represents an upper
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bound to the subsonic stream pressure (since the inferaction acts to
relieve the subsonic stream overpre_.ssu.re).

Figure 5. 25 presents first-order calculations of potential
flow about the 6 per cent-thick biconvex airfoil at various values of
M, showing that the upstrearm propagation of disturbances is en-
hanced by increasing M, . It should be noted that the thickness dis-
tribution of this uncambered airfoil is symmetric abeut the mid-
chord line. In subsonic potential flow, therefore, the pressure dis-
tribution must also be symmetric about this point. The figure pre-
sents data in terms of lx-x \ , the distance upstream or downstream
of the centerline (i. e., the mid-chord point) of the airfoil. The lead-
ing and trailing edges are 0.75 inch from this point.

Decreasing 1\'11 would also magnify upstream supersonic ef-
fects since perturbations to the supersonic flow originating in the sub-
sonic stream ahead of the leading edge would move across the flow at
a more nearly normal angle, thus staying ahead of the airfoil much
deeper into the supersonic flow.

These changes to both M1 and M, affect the choking margin
of the flow. The processes just described do not depend on choking
but rather on the nature of waves in subsonic and supersonic flow.
Howgver, choking effects will play an increasing role as Ml and MZ
approach unity, or in general as the unperturbed choking margin is
decreased.

Also, of course, the choking condition is approached as the
thickness of the airfoil, t, or the stream blockage ratio, t/b, is in-

creased. There will be some value of t/b slightly larger than the
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unperturbed choking margin at which the minimum flow srea will be
inadequate. Then the region of upstream influence will naturally be
unbounded except for the upstream confinement of the wind tunnel
nozzles and the {low will be choked.

It has been seen that the initial downward deflection of the in-
terface is due to the presence of regions of high pressure behind the
normél shock. Relief of this pressure is caused by the deflection of
the sonic line into the subsonic stream near the foot of the normal
shock. This causes a series of expansion waves to be passed into
‘the supersonic stream from the shear layer, as is illustrated in
Figure 5.26.

From Figure 5.23, we see that the sonic surface takes a
sharp deflection downward of about . 13 inch or .06 h, over the final
third of the airfoil chord. There is no sudden drop of static pres-
sure in the subsonic stream at the 0. 7c¢c to 0. 8c¢ location, which
would reflect a sudden decrease of the net flow ares (see Figure
5.14, y = -2" and -1"). Instead, the subsonic flow area changes at a
relatively constant rate throughout the airfoil passage. The deflec-
tion of the sonic surface over the final one-third chord is caused by
the rapid decrease in the thickness of the airfoil from 4.5 per cent
local blockage to zero local blockage. To maintain the same net
subsonic flow area, the sonic surface therefore would have to deflect
into the subsonic stream about 0. 045 h2 (0.097 i’nch). The remainder
of the deflection is due to the constant rate of reduction of the net
flow area. Once the trailing edge is passed, the sonic surface re-

mains at approximately the same position, displaced downward about
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(. 14 inch, with minor fluctuations as waves in the supersonic stream
impinge on the shear layer. The total pressure profiles of Figure

5. 17, taken at a point about 4. 85 inches downstream of the trailing
edge (i.e., slightly more than three chord lengths) show a displace-
ment downward of about 0. 14 £, 01 inch in the shear layer, showing
that this displacernent is fairly steady.

With the basic geometry of the sonic surface now understood,
let us return to consideration of the supersonic flow field. The sub.
sonic region behind the normal shock quickly re-accelerates to su-
personic flow, probably aided by a convexity in the shock surface
(cf. Figure 5.15). Two families of Prandtl-Mayer expansions act on
this flow: one family of lateral expansion due to the curvature of the
airfoil surface; and a more complicated three-dimensional expansion
due to the warpage of the sonic surface. The net expansion around
theairfoil is 13.78%; the expansion due to the sonic surface is a func-
tion of position and is not amenable to computation. However, the
relatively large increase in supersonic flow area suggests that the
Mach number will be considerably larger than its unperturbed value
(1.4) by the point where the trailing shock is reached.

The Mach number just ahead of the lateral trailing shock can
be estimated by the inclination angle of the oblique compression
wave ascending into the supersonic stream from the trailing edge/
shear layer interface. The angle measured from schlieren photo-
graphé is 35.5° (taking the flow to be exactly horizontal),and assum -
ing an uncertainty of 2. 0° in the flow inclination angle we get I\/I1 =

1.72 £,08. In this region, the flow angle is probably downward in



response to the expansion waves from the shear layer, which means
the Mach number would be somewhat less than 1.72.

Another estimate of this Mach number can be obtained by not-
ing the point at which the lateral trailing shock strikes the sidewall
(1.05 # .05 inch downstream of the trailing edge) and its pressure
ratio including reflection at the sidewall (1.85 & .05) in the line y =
1. 00" (near the middle of the supersonic stream). Sidewall pressures
in the streamwise (x) direction for various values of y are presented
in Figure 5. 27. This is a slightly different presentation of data simi-
lar to Figure 5. 19, which makes it easier to infer shock pressure
ratios.

In Figure 5.27 we also note the transition in the pressure dis-
tribution on the sidewall from a characteristic supersonic form dom-
inated by distinct cornpressioh and expansion waves (5.27 a, b, ¢, and
d) through a transition region in the shear layer (5.27 e and f) to a
smooth subsonic wall pressure proﬁle(S.Z?g’and}ﬂ.

From these data one can calculate that just upstream of the
lateral trailing shock the Mach number is 1. 67 * .06 and the shock
deflection angle is 6.0° +0.7°. This angle is certainly in the right
range considering the trailing-edge semivertex angle is 6.84° and
that by the point where the shock reaches the wall the expansions
from the airfoil surface should reduce its strength somewhat (a cal-
culation of the reduced strength is not possible Without better infor-
mation on the sonic surface deflection). Then, as is illustrated in
Figure 5. 15, downstream of the reflected wave the Mach number is

about 1.27.
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At the point where this shock system strikes the sidewall (x =

-

14. 1 inches), the boundary layer is observed to separate briefly.

This separation extends vertically from about y = 0. 6" to 1.6", which
compares well with the previous estimate of the vertical extent of the
superscnic core flow region, This separation is always in the same

. SR , » a7
location (+ 0. 05 inch). Daia from Fage and Sargent

suggest that
for the flow to separate at the Mach numbers in question due to a
shock incident on the boundary layer, a pressure ratio (with reflec-
tion) of at least 1.8 is required, agreeing with the measurements
which show a pressure ratio of 1. 85.

Figure 5.28 presents Mach number profiles, generated by
pitot and static probe surveys, in a vertical cut at a station 4. 85
inches downstream of the trailing edge and offset 0. 3 inches in the z+
direction (so that the probe is not in the airfoil wake). For compari-
son purposes, Mach numbers at the same location with the airfoil
removed are also presented. This figure shows the downward shift
of the entire shear layer of about 0. 14 inches. It also shows that 3
chord lengths downstream of the trailing edge the supersonic Mach
number is 1.28 £ .03, about the same as it was after the reflection
of the lateral trailing-edge shock from the wall about one chord
length downstreém of the trailing edge.

Note that M, is reduced throughout the supersonic stream
from 1.41 to 1.28, while M2 remains nearly constant at 0.53,
Kotansky44 observed a similar effect with a thin airfoil in an incom-
pressible shear layer. In that case, the change in velocity ratio was

due to a change in the areas of the two streams (increase of the high-
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speed flow area as the interface deflected intc the low-speed stream
caused a reduction in high-speed velocity and an increase in low-
speed velocity). In the present study, the relationship between area
and velocity ratio is somewhat ambiguous, since a deﬂecttiog of the
sonic surface into the subsonic, stream will tend to accelerate both
streams. The loss of total pressure in the supersonic stream ap-
pears more important, since to pass the same mass flow with a loss
a larger area is required downstream of the airfoil.

Figure 5. 19 (the sidewall pressure contours) shows readily
that reflections of the lateral wave on the sidewall after the initial
reflection are considerably weakened. This is because the lateral
waves from the airfoil are continually being attenuated by their self-
interactions: the set of expansions from the airfoil surface continu-
‘ally weakens the shocks from the leading and trailing edges. In addi-
tion, thé wave grazes along the shear layer during its entire journey,
resulting in a cumulative Wez;.kening as described by 1\/IcCaLbeZ2 and
previously discussed in Section 5. 3.1. A similar, though less se-
vere, weakening occurs as the wave grazes the top (supersonic) wall
boundary layer. Progressive weakening is to be expected, too, at
each reflection from the sidewall boundary layer.

Figure 5.29 presénts measured pressures on the supersonic
wall centerline (i.e., in the plane of the airfoil) compared with data
from a representative empty-tunnel run. The excursions of pres-
sure more than an inch upstream of the leading edge are the various
empty-tunnel phenomena that were discussed in Chapter III and do

not represent an interaction due to the airfoil. Downstream of the
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airfoil, the lateral frailing shock is dispersed somewhat by a graz-
ing interaction,and the pressure rise due to it on the top wall is dis -
tributed over more than an inch, starting about 1 to 2 inches down-
stream of the trailing edge. About 3 inches downstream, the trailing
vertical shock wave from the shear layer strikes the wall (see Fig-
ure 5.26). This impingement point is verified by schlieren photo-
graphs. Schiieren photographs reveal that in this location (x = 17'")
the lateral and vertical shocks unite and the wall pressure is elevated
to about 1. 16, followed by oscillations with a wavelength of 5 to 6
inches as the combined wave continues to reflect between the top wall,
the sidewalls, and the shear layer. The amplitude of this wave is
redaced about 50 per cent in each cycle through vits interaction with
the shear léyer.

Subsonic wall centerline pressure data are presented in Fig-
ure 5.30. These data are shown in normalized form without any at-
tempt to remove empty-tunnel effects. Consequently, the expected
upstream variation due to the splitter plate shock system is present.
The perturbation ahead of the leading edge is not due to the presence
of the airfoil. This figure shows that the subsonic layer loses all
significant oscillations by the point where the trailing vertical wave
has returned to the shear layer after reflecting off the supersonic
wall at about x = 17 inches, 5.5 inches downstream of the leading
edge. Beyond about 7 inches from the leading edge, the only varia-
tion is the tunnel static-pressure gradient due to the inadeéuate ad-
justment limit of the top and bottom walls. This effect was dis -

cussed in Chapter III and is inherent in the current design of the



™~
[N

4

o

Ci

(seysul 06 1T = X
£ TTOFATY 2924) 2INSS9Ig SUTTISIUSD TTBM OTUOSQNS . 10€°G @anbrg

[2uung-Ardwe e og
v 88
.0 /8 uny

sayoul ‘*'x-x
0/

. N—I ¢.I

00’1

2INSS9id POZTITERWION



~228=
wind tunnel,

Figure 5,31 shows the rapid aiteruation of all lateral pressure
gracients in the subsonic layer downstream of the trailing edge of the
alrfoil. The data presented are for the subsonic wall centerline, and
the sidewall and airfoil surtace at y = -1.75"., Discrepancies be-
tween the sidewall value and the other two at a given location are a
measure of the lateral gradients. After about 0.7 inch downstream
from the irailing edge, lateral gradients in ’;he inviscid subsonic
flow {i. e., outside of the shear and boundary layers) are insignifi.
~cant, less than 0.004 in normalized magnitude. Not only has the sub-
sonic stream lost its own lateral gradients, but it dces not respond
to the supersonic lateral waves (specifically, the lateral trailing edge
shock} in a lateral mode but only in a vertical mode as caused by
vertical displacements of the sonic surface.

Several conclusions have been drawn from the data of this
section. Within the airfoil passage, the presence of the shear ijayer
weakens considerably the shock waves expected in a quasi-two-
dimensional consideration of the flow field.

L&édification of the supersonic stream ahead of the leading
edge due to disturbances passed upstream through the subsonic layer
is very slight in the present study. More generally, an upper limit
is set for this upstream modification of the subsonic stream by con-
sidering the potential flow pressure field at a uniform Mach number
M, ahead of the same airfoil.

The initial deflection of the sonic surface into the subsonic

stream occurs immediately behind the leading shock wave. How-
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ever, the larger portion of the displacement of this surface occurs
near the aft portions of the airfoil, where the thickness of the airfoil
is decreasing most rapidly. In this region, the reduction of subsonic
layer flow area due to the sonic surface displacement almost exactly
cffsets the increasing flow area as the thickness of the airfoﬂ is
reduced.

Most of the adjustment of the combined flow in reaching a new
equilibrium is completed within 1 to 2 chord lengths downstrean of
the trailing edge. The most highly damped oscillations are lateral
waves in the inviscid portion of the subsonic stream, which vanish
within half a chord length. Vertical waves disappear as quickly,
except where excited by waves in the supersonic stream,

Vertical waves in the supersonic stream generally cease to affect
the system after their first reflection off the shear layer. This is
due to fhe dispersion of the wave, which has been discussed in Sec-
tion 4.2. Only lateral waves in the supersonic stream, reflecting
between the sidewalls, are more persistent. Their effect on the
sidewall pressure distribution can be noted several chord lengths
downstream of the airfoil. The effect of these waves on the subsonic
layer is relatively minor.

5.4.1.4 Effect of shear layer thickness. To estimate the

effect of shear layer thickness, comparisons were made between air-
foil runs at a leading edge position x = 11.50" (6S = 0.70", the
"thick' shear layer), with the position x = 5. 00" (6S = 0.31" the
""thin'' shear layer). Kotansky44 suggests the use of the dimension-

less parameter



- ¢ dU - 5 7
ST P dy = 3 (5.7)
S ITmax . 3

to characterize shear flows; the larger the parameter becomes,

the more dominant the three-dimensional effects are. E-Iawthorne4
2lso adopts this measure of shear layer importance and concludes
that as ¢ becomes vanishingly small the flow apprecaches cascade
flow (potential flow), The experiments performed here were at
values of s of 4. 92 (sidewall airfoil), 4. 85 (free airfoil at 5, 00
and 2. 14 (free airfoil at 11, 50"), Tl;ie studies of Kotansky; were per -
Iormed at values of 0. 30, 0.75, and 1, 50,

The effect of thickening the shear layer was to weaken some-
what the three-dimensional effects, as expected both from Kotansky's
work and from the realization that the strength of the three~dimensicnal
waves depends on the magnitude of their source, the shear layer
velocity gradient, A Weak.ening of this source by thickening the shear
layer must be expected to weaken the spanwise waves,

| Figure 5, 32 presents subsonic wall centerline pressure dis-
tributions for the two shear layer thicknesses.. Data from a repre-
sentative empty-tunnel run are also shown, While it appears that the
thick shear layer might have a larger pressure amplitude (presum-
ably due to the decreased choking margin) the effect is certainly
minor. Furthermore, the equality of the pressure downstream of
the airfoil suggests that the displacement of the sonic surface is not
sensitive to the thickness of the shear layer for the 45% change in
thickness affected here.

The basic character of the pressure distribution on the

b
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sidewall seems unaffected by the thickened shear layer {see Figure
5.33 compared with Figure 5.19). On the surface of the airfoil,
however, the differences are quite noticeable, The surface pressure
contours (Figure 5, 34 compared with Figure 5.13) show a marked
Asmoothing of the pressure distribution over the entire airfoil, The
comparison is most striking in the vicinity of the sonic line, where a
complex set of maxima and minima have been diffused into a more
nearly monotonic distribution (Figure 5. 35 compared with Figure
5.14), The mid-chord shocks become considerably weaker and the
supersonic pressure distribution in general conforms much better to
the monotonic situation expected in two-dimensional flow.

Basic structural qualities of the flow, such as the shock and
expansion waves and the interface displacement, all remain about the
same, This is seen in the consistency of the subsonic wall pressure
for each case (Fig. 5.32). Except for a greater dispersion of waves
in the supersonic stream, no substantive changes were noted.

5.4,2 Effect of Angle of Attack. The tapped airfoil warped

during the first run at an angle of attack and took on a permanent set,
Attempts to bend the airfoil back to its original state were unsuccess-
ful; the single-wave warpage was only changed to a multiple -wave
deformation, Cohsequently, no further attempt was made to obtain
quantitative data using the tapped airfoil. The dummy (i, e., solid)
airfoil, however, was run at geometric angles of attack of OO, * 10,

and *2° and wall pressure data and schlieren photographs were

obtained.
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The effect of angle of attack on the blockage ratic for the blade
passages is presented in Figure 5. 36, As indicated by the nouzie
exit Mach numbers, the range of o studied appears to have no effect
on the operating point of the compressor plant. The convention has
been adopted that for a positive angle of attack the leading edge of the
aiffoii is deflected in the z+ direction. Conseqguently, the z+ surface,
which faces the tapped sidewall (the wall is at z = +0, 385") is the
suction surface. For a negative angle of attack, therefore, the z+
surface is the pressure surface of the airfoil,

The pressure in the subsonic stream is slightly elevated ahead
of the pressure surface passage (higher blockage ratio) and somewhat
lowered ahead of the suction surface passage (see Figure 5.37, which
presents pressure data from a grid on the subsonic wall), This is
also evident in Figure 5, 38, which shows measured sidewall pressures
in the subsonic stream. Both figures indicate this precursor begins
at about x = 10, 3", or about 1, 2' ahead of the leading edge, and that
the lateral pressure gradient in the subsonic stream increases until
the leading edge is reached at x = 11,5", This gradient induces a
lateral streamline curvature in the subsonic flow (see Figure 5. 39)
which increases somewhat the local angle of attack, This upwash
ahead of the leading edge is a well-known result of subsonic potential
flow over a lifting airfoil. In this case, however, it is aggravated by
the area contraction in the pressure passage; flow resistance due to

the contraction tends to increase the pressure ahead of the leading

edge and thus divert flow into the other passage, This effect would
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Suction
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Pressure
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Figure 5.39: Subsonic Induced Flow near the
Leading Edge (v _ = geometric angle
of attack; e, ="induced angle of
attack) *
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be less severe if the airfoil were in a cascade rather than in a rec-
tanguiar channel, In the supersonic stream, except within the shear
layer where the flow is influenced bf pressure gradients in the sub-
sonic stream, the inviscid flow is unperiurbed until it passes the bow
‘shock and therefore the induced‘a;ngle of attack is zero,

Within the supersonic stream, the bow shock is weakened on
the suction side to a deflection 60 - a, where 60 is the zero-angle -
of-attack flow deflection angle, and the shock is strengthened on the
pressure side to 60 + @, This change affects the strength of the bow
shock but not the basic geometry of the system. By comparing the
sidewall pressure distributions of Figures 5,40 (o = —20) and 5,41
(o = +20) with that of Figure 5,19 (; = OO), it can be seen that the
point of maximum pressure on the supersonic sidewall always re~
mains at about the same place, even though the peak pressure varies
from 1,27 to 1.43,

. This monotonic dependence of pressure on o is as_expected,

even though the magnitude of the dependence is consider.ably less
than expected in uniform supersonic flow, As was seen in Section-
5.4.1, the spanwise effects tend to reduce pressure extremes, The
reduction in the dependence on o is proportionally about the same as
the overall reduction in the extrema.

Figure 5,42 presents these and other data in a different format:
the dependence of sidewall pressure on angle of attack is illustrated
at a number of static pressure taps., Parts a, b, and ¢ present data
at y = 1,75, 0, and -0, 50 inches, respectively, for a number of

values of values of x starting upstream of the airfoil leading edge
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Figure 5.40: Sidewall Pressure Contours, q = -2°
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Figure 5.41: Sidewall Pressure Contours, o = +2°
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and continuing to one to two chord lengths downstream of the trailing
edge.

This figure shows that near and downstream of the trailing
edge of the airfoil the dependence of pressure on o undergoes a basic
éhange in character, going from a monotonic dependence on o to a
dependence on {Q |. In other words, the distribution of pressure on
the pressure~surface sidewall is approaching that on the suction
surface sidewall. This modification can first be noticed in the sub-
sonic stream, even somewhat upstream of the trailing edge. By
3 = 12, 75", the monotonic character is lost for y = -, 50; the trend
is visible by x = 12, 25" (recall that the trailing edge is at x = 13, 00'),

Because the airfoil is mounted in and pivots about the center-
lJine of the tunnel, at a given value of o the pressure on the tapped
sidewall is the same as that oﬁ the untapped sidewall at ~a, There-
fore, this tendency for the wall pressure to become symmetric in
a means that the lateral pressure gradiénts in the subsonic stream
must die out very quickly (in considerably less than one chord length)
downstream of the trailing edge.

In .;gtll measurements downstream of the trailing edge, the sub-
sonic stream pressure drops as |0z| increases, in response to the in-~
creased deflection of the mean sonic surface into the subsonic stream.
This is due to the increased loss of total pressure in the supersonic
stream, with its consequent decrease in the equilibrium static pres-
sure for the combined flow,

As is to be expected, it takes considerably longer for lateral

pressure gradients at y = 1, 75" (as measured by the inequality in
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42a of pressure for o and -a) to die out, A lateral wave in

e X

(33

Figure
the supersonic stream is only attenuated by interaction with the bound-
ary layers and by interference between expansions and compressions
of the airfcil wave system. However, the figure indicates that by

x = 16, 00" the modification is beginning to dominate,

Therefore, beyond about two chord lengths behind the trailing
edge, thelateral and vertical waves in the supersonic stream are the
only substantial waves left in the flowfield, as was seen for « =07,
Figure 5,43 shows that these waves, caused by the displacements of
the sbnic surface within the airfoil passage, continue downstream for
a considerable distance.

Figure 5,44 shows that all variations in the subsonic stream
quickly become unimportant and that the stream takes on a limited
homogeneous response (the stream responds as a whole, without
substantial cross-flow pressure gradients) to vertically-running waves
in the supersonic stream. These waves do not excite any subsonic
layer response at all after the first reflection (about x = 17" to 19"),
due to their dispersion in interacting with the shear layer,

5.5 Discussion and Conclusions

The previous study of airfoils in a spanwise-varying shear
flow has been outlined at the beginning of Section 5,4.,1, 3, All these
studies for compressible flow start with the linearized equation for
the perturbation pressure, p:

2 2 2 dM

2 O p,0p,9dp 2 o dp _
[1 —MO(Y)] 2+ 2+dzz‘

=0
dx dy Mo(y) dy dy

or a similar equation for the perturbation velocity potential, ¢ (see
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equation 4, 7a}, This means the results are those of small-disturbance
theory, and that spanwise displacerernti of stream surfaces is treated
only in a grossly-simplified manner. Solutions of this problem are
quite complex, and it seems nearly impossible to make physical
interpretations about the nature of the flow by examining the resulting
equations, which are infinite series., Rather, studies of the equations
are made by comparing the numerical results of several cases, and
obtaining insight into the processes in operation depends both on good
fortune in selecting the specific cases to be evaluated and on the per-
ception of the person examining the results,

Comparisons between theory and experiment for a single
airfoil in incompressible shear flow were made by Kotansky44 in
1965, While his theory was also based on a linearizaticn, he applied
a post-éolution correction for the spanwise displacement of stream
surfaces which improved markedly the agreement between theory
and experiment,

Consideration of the effects of transonic shear about an air -
foil should be made in two distinct steps: treatment of flow on and
very near the surface of the airfoil (including upstream of the airfoil);
and discussion of the flow'sufficiently far downstream of the airfoil
that the perturbations in the flow quantities about some mean value
are relatively small,

Within the subsonic flow, there is an induced upwash near
the leading edge of the airfoil, strongest near the subsonic wall,

which adds an angle of attack (ozi) to the geometric value (ag). This
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. . . . 44 . .
effect has been noted in Section 5.4.2, Kotansky concluded from

is studies that the three-dimensional influences on the section 1ift

jox

coefficient are due to changes in a; at a fixed ag (i. e., that the pres-
sure distribution over the airfoil in a shear flow is the same as in
two~dimensional flow, though at some other angle of attack), The
data he presents in support of this is persuasive,

38, 39 and the present work

However, theoretical studies
{Section 5, 4. 2) show that o, vanishes, as would be expected, a shert
distance into the supersonic stream from the sonic surface, Further-
more, at subsonic stations where compressibility is important, the
basic character of the pressure distribution is changed from the two-

41

2
. . 39 . . . .
dimensional” "’ in a manner not described simply by changes in

the local effective angle of attack. Departures from QTD flow are

38, 39, where

the most pronounced at the 1o§ver supersonic stations
the gradients in the flow properties are very high and the flow is
quite "'stiff' in that at near-sonic condit.ions a stream tube is at a
minimum possible area and perturbations cross it with minimal
reduction in strength, Furthermore, strong and corriplicated inter -
actions arhe set up between regions of locally supersonic and sub-
sonic flow, These severe fluctuations are visible in the data,
especially in Figure 5,13, near y = 0,

As the distance along the span from the sonic station in-
creases (in either direction) the disturbances become more nearly

38, 39

two-dimensional in both theory and experiment39. This is
illustrated in Figure 5,45, which compares the current chordwise

pressure distributions with experimental data for a 6%-thick biconvex
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airfoil in uniform Subsonic flowé,}(;i and with the results of shock-
expansion theory at supersonic spee(‘is. Within the subsonic stream
(y = -0. 50"} the data show reasonable agreement over the first two-
thirds of the airfoil chord., At that pﬁoint, the sonic surface takes
| a strong downward deflection (see Section 5.4, 1. 3) and the compari-
son diverges., Near the sonic surface (y = 0) but still slightly in the
subsonic flow, the two traces show similar trends, though the shear
flow data has significant perturbations and the entire pressure level
is elevated, In the supersonic stream (y = 1.00'") agreement is very
bad over the first 0.4c, probably due to the fact that the pressure is
elevated because of the detached shock. The deviations from
attached~shock assumptions in shock-expansion theory are sub-
stantial, It was noted that within the lower supersonic portions of
the shear layer the bow shock wave was not visible. This is due to
the pressure relief through the shear layer into the subsonic stream
(see Section 5,4,1.2),

A consistent result of all the studies mentioned in this Section’
is that airfoil stations at the low-speed side of the shear layer tend
to have their loading increased above the QTD levels while those on
the high-speed side of the shear layer tend to have reduced loading,
Presumably, therefore, the low-speed airfoil section is more prone
to stall than in two-dimensional flow, This is because the vmagnitude
of the pressure differences is naturally greater on the high-speed
side: these larger pressures tend to be relieved somewhat by span-
wise flow into the low-speed side, The perturbations; and thus the

lift distribution, are smoothed out, Namba39 shows that the extent
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and magnitude of the unloading are most severe when the maximum
Mach number is in the range of 1.0 t§ 1.2,

The boundary layer moves in response to the spanwise pres-~
sure gradient and by moving along a favorable gradient it is thinned
out, Kotansky has demonstrated that because of this the airfoil
may be more heavily loaded on the high-speed side without stalling
than would be possible in two-~dimensional flow, The induced drag
due to non-uniform circulation along the blade is reduced, tooc,

The shock wave pattern presented in Figure 5,15 is stfb?f‘gly

0, 52 in the range of

suggestive of a highly~loaded transonic rotor
tip Mach number near 1.4, This resemblance is quite encouraging,
especially in light of Figure 1,2 which shows that the airfoil thick-
ness ratio of 6?’3, while a good mean value, is too large to be truly
representative of typical blades near their tip.

Downstream of the airfoil the effect of interest is the displace~
ment of stream surfaces, particularly the sonic surfac‘e, in the span-
wise direction, It has been shown (Section 5, 4,1, 3) that the sonic
surface displaces downward about 0.14 inch at zero angle of attack,

It is believed that this displacement is governed by the redistribution
of total pressure throughout the flow due to the presence of the air -
foil, Therefore, this quantity (4) can be expected to scale with an
airfoil-related parameter, such as the chord (A = 0,093 c) or the
maximum thickness (A = 1,5 t), In this particular study, perhaps
the thickness is to be preferred. The changes in total pressure are

affected only by the drag of the airfoil, with which the thickness is

most closely associated, However, in a compressor the
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redistribution of total pressure is mainly affected by the lift of the
blade, and the chord seems a better scaling parameter,

The lateral pressure gradients have been shown to die out
very guickly, and the streamwise gradients nearly as rapidly, in
the subsonic stream., This suggests that beyond two chord 1éngths
downstream of the trailing edge the sonic surface is cnce again
planar (except for minor perturbations),

At nonzero angle of attack, the displacement of the sonic
surface intc the subsonic stream is seen to increase. Even in the
case of a lifting airfoil, the surface becomes planar about as quickly
as before,

The mean position of the sonic surface {neglecting the presence
of any three-dimensional perturbation waves) depends on the upstream
flow conditions, the net flow area at a given streamwise station, and
the distribution of total pressure in each stream. A successful
effort was made to select the various angle of attack comparison
runs so that the upstream conditions were virtually identical and the
wall geometry (net flow area) was not altered between runs,

The increasing deflection of the sonic surface into the sub-~
sonic stream, as angle of attack is increased, is caused by the in-
creasing loss of total pressure in the supersonic stream, largely’
because of the presence of the nearly-normal branch of the bow
shock., Losses of total pressure in the subsonic stream are negli-
gible compared to this (see Figure 5,17), The deflection of the sonic
surface is somewhat greater (by about 20%) than that predicted by a

linearized calculation using the measured loss of total pressure in
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the supersonic stream, This difference is ascribed tc nonlinear
effects,

This significant displacement of the sonic surface illustrates
the breakdowﬁ of QTD theory and places limits on the usefulness of
linearized analytic calculations which neglect such effects. For the
case in question, the QTD theory assumes that streamlines in the
y =0 i:)lane downstream of the airfoil (for instance) were at the y = 0
plane upstream of the airfoil (C. 955 Mach) when in fact they were at
about y = 0,14" (1,125 Mach)., The shift represents differences for
the streamline in its source state of 17, 8% in Mach number, 18, 0%
in total pressure, and 38, 8% in dynamic pressure,

Another conclusion of the present study is that the propagation
of pressure waves upstream of the leading edge through the subsonic
layer is very slight for the case studied, In a more general problem
where substantial portions of the subsonic stream are still irrota-
tional, I believe that an upper limit on this upstream propagation
can be estimated through conventional potential theory., Consider the
same airfoil in uniform subsonic flow at the Mach number in question,
As a first approximation, this amounts to neglecting all interactions
through the transonic shear layer. In this problem, a scale distance
for the decay of pressure perturbations ahead of the airfoil can be
determined., This is an upper bound for the scale distance of the full
problem, since the inclusion of these upstream interactions causes
the relief of subsonic stream overpressures ané a consequent con-

traction of the scale distance.
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As the shear layer thickens, its effect is to smooth out the
pressure distribution on the airfeil. Sharp compression regions
become more diffuse, as was seen in Section 5.4, 1, 4.

Most of the displacements of the sonic surface (and the shear
layer in general) occur within the airfoil passage or within one chord
length downstream of the trailing edge. Four actions affect this dis-
placement: the disturbance ahead of the leading edge ofthe airfoil,
which has been seen to be relatively minor; the pressure gradient
through the shear layer in the airfoil passage caused by the presence
of shock waves over the supersonic i)ortions of the airfoil; the thick-
ness distribution of the airfoil; and the redistribution of total pressure
in the flow, OQfthese, only the total pressure effect has influence on

the equilibrium location of the sonic surface for downstream.
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V. SUMMARY

6.1 Results and Conclusions

The important results of this project have already been
summarized in Sections 4, 7 (wedge experiments) and 5.5 (airfoil
experiments),

The two-dimensional problem of a full-width wedge attached
to the supersonic (top) wall of the tunnel was studied experimentally
and theoretically through a first ;order (linearized) calculation using
Fourier analysis, Good agreement between theory and experiment
‘was demonstrated, In particular it was interesting to note that the
pressure disturbance propagation upstream in the subsonic layer
caused by the shock impinging on the shear layer is limited to dis-
tances on the order of 0,6 subsonic layer thicknesses. Through
parametric studies of the effect of wedge angle, afterbody thickness,
and shear layer thickness, the limits of linearized theory for this
problem wefe established. |

Studies much less extensive were made of the wedge fixed
to the subsonic (bottom) wall of the tunnel. The experimental data
returned in this work were of low quality. The computational study
indicated a strong correlation between disturbance amplitude on the
subsonic wall and the unperturbed choking margin for the same geo-~
metric disturbance with varying subsonic stream source conditions.

The airfoil studies focussedonthe free airfoil placed in the
center of the tunnel, spanning the channel between the top and bottom

walls. This airfoil was installed in a flow field consisting of uniform
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supersonic and subsonic streams, with a plane shear layer separating
the two, Within the shear region, shock waves are weakened con-
siderably; outside the shear region only the bow shock is unaffected
by the presence of shear in the unperturbed velocity elsewhere in the
flow field, Over the aft one-third of the airfoil chord, the sonic sur-
face takes a strong downward deflection (into the subsonic stream)

on the order of 0. lc and remains at approximately this new position
through the rest of the test section., This strong displacement repre-
sents a breakdown of the quasi-two-dimensional (QID) theory by
which compressor blades are designed. Increases in the geometric
angle of attack prorﬁote significantly the departure from QTD results,
Deviations from QTD pressure distributions on the surface of the air-
foil are most significant at the lower supersonic stations.

Downstream of the airfoil, all pressure variations in the sub-

sonic stream are quickly lost except in response to waves in the
supersonic stream which are continually reflecting between the shear
layer and the supersonic wall,

6.2 Recommendations for Future Research

To pursue the simulation of the compressibility effects of flow
over a transonic rotor blade, it seems the next step is to construct a
cascade of three or four blades of 1/2'"to 3/4' chord in order to study
blade-to-blade interactions, Because of the strong influence of the
sidewalls, the current study conformed neither to an isolated airfoil
experiment nor to a cascade study (in which the sidewall Woﬁld be
regarded as a plane of symmetry), A cascade study would seem

particularly fruitful if a two- or three-axis pitot/static probe or a

b
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suitable laser Doppler velocimelry system can be developed.

The three-dirmensional flow field studies described here have
essentially been confined to the 6%-thick biconvex airfoil. In Section
5.4, 1.3 it was hinted that by moving aft on the airfeil the point of

‘maximum thickness, the displacement of the sonic surface might be
reduced, Also, it would be intér ;sting to test an airfoil. of reduced
leading edge deflection angle so that the reflection of the bow shock
at the sidewall would be better behaved. Thus, a comparison of the
6%-thick biconvex airfoil with s?mmetric 6% multiple ~circular -arc
sections seems desirable,

The study of the effect of angle of attack should be redone
with a more sturdy airfoil in order to obtain valid surface pressure
data from which the effect of shear on the distribution of section lift
coefficient can be deduced. Many of the problems involved in
building the instrumented airfoil used in this project could be avoided
in the future through a suggestion by W. R. Hawthorne: cast the air-
foil with a spar in the middle for. strength; instead of using metal
tubes for pressure measurements, nylon filaments (say, .015" to
. 020" diameter) can be strung through the mold and withdrawn after
the epoxy hardens, Then it is a trivial matter to drill pressure taps
into the resulting cavities,

Because the high-speed nozzle blocks are separately remov~
able, there is an added dimension for study in that different values of
M1 and M2 are possible, Taking advantage of this, a detailed study
of the transonic mixing layer should be performed. Anatol Roshko

has suggested the use of inserts on the test section sidewalls to
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investigate the effect of shear layer aspect ratio onthe growth rate
(c, f. Section 3.2 and the discussion of Figure 3,6). Spark shadow-
graph photographs have hinted at the existence of large-scale struc-
ture in the shear layer; a detailed study of this seems worthwhile,
E. E, Zukoski has noted that injection of a different gas, such as
helium, into the plenum chamber or nozzle on one side (preferably
the subsonic side) of the shear layer right provide the difference in
index of refraction necessary to photograph the structure with a
spark shadowgraph.

It would be interesting to repeat some of the wedge experi-
ments under conditions where the function F(Ml, 1\/12, hl /hZ) of equa -~
tion 4. 31 is positive, so that qualitative behavior of the combined
flow is supersonic rather than subscnic.

6.3 Recommendations for Improvements to the Wind Tunnel

Several modifications to the wind tunnel to improve its opera-
tion have been suggested in Chapters III, IV, and V and in Appendix B,
They mainly are concerned with reducing the empty-tunnel flow non-
uniformities and with reducing the interactions between the test
section and the compressor plant, All of these changes are con-
cerned with improving the repeatability of measurements,

The splitter plate shock system should respond well to reduc-
tions in the trailing edge taper angle, which currently is 3°, This
should be sharpened as much as possible, and the trailing edge should
not be blunted deliberately as was done before. In an effortto reduce

these extraneous waves it also seems advantageous to employ wall
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porosity or some other means to control the trailing edge shock at
its first reflection off the supersonic wall.

The window mounting system should be completely redesigned
to eliminate the beveled fittings at each end, A design using a rec-
A’tangular pane of glass is much to be preferred. Care should be exer -
cised in designing a replacement to ensure that a high~quality seal
against the atmosphere is formed everywhere.

To eliminate the slow drop in static pressure through the
test section, the tunnel support beams should be modified so that the
divergence between the top and bottom walls can be increased slightly,
say 0.2 inch at the downstream end of the test section,

As outlined in Appendix B, one of the manifestations of the
tunnel/compressor plant interaction is a reduction in the system
mass flow rate due to losses of total pressure within the test section,
One cure, therefore, might be to compensate for test section losses
by installing a second throat at the downstream end of the test section
to provide better pressure recovery. The tunnel design provides fof
this feature but it was never installed, Alternatively, direct control
of the mass flow, either by a choked orifice in the primary feedline
between the compressors and the wind tunnel plenum chambers, or
by the bleeding of air into the circuit somewhere between the exit
diffuser and the compressor intakes, is suggested.

Oil thrown off the compressors into the gas flow severely
limits the duration of a schlieren or shadowgraph run by srhearing
the inside surfaces of the windows., Also, silica gel from the dryer

after a few runs clogs the anti-turbulence screen in the supersonic
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plenum chamber so that it must be removed and cleaned. This is
especially severe on the first run of the Transonic Shear Flow Wind
Tunnel afier cne or more runs of the Hypersonic Wind Tunnel,
Therefore, a separator should be installed in the main feedli'ne,‘
as close to the tunnel as possible, |

The author feels that a three~axis traversing probe system
for the tunnel is feasible if a future program should warrant its devel-
opment, The primary consideration is that the blockage (in terms
of projected frontal area) should be kept below 3%, This suggests a
system similar to that in the GALCIT Hyperscnic Wind Tunnel, where
the probe runs into the test section from the downstream diffuser
where streamwise translations are controlled and the pressure line
is removed from the tunnel, Lateral and vertical translations could
be driven through a full-span strut mountea in the test section several
inches downstream of the measurement region, To obtain valid data,
the measuring point of the probe should be at least two inches up-
stream of any obstructions such as a strut, shroud, etc. Of course,
for velocity vector information the ideal approach would be a laser

Doppler system.
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APPENDIX A: Additional Wind Tunnel Information

This appendix is to provide the reader with supplementary
information on the wind tunnel operaﬁ;ion and on the points at which
wall pressure data can be obtained,

Table A-1, presented at the end of this appendix, is a log of
all runs (including those which were aborted with no data) through
the completion of this project in Septeraber 1975, |

A summary of the operating procedures for a typical run will
be presented here. It should be understood that these procedures are
guidelines only, and that modifications were not unusual. The full set
of procedures is derscribed in a manual at GALCIT prepared by this =
author,

To lower the dewpoint of the air in the wind tunnel circuit, a
silica-gel dryer was generally operated overnight before a run.
Nominally, this would be expected to lower the dewpoint to about
-40°F to -60°F., Due to various problems with the drying agent, this
operation was not completely reliable.

Pressure data were typically obtained by a Statham 0-15 psia
strain gauge transducer, powered by a 5-volt supply built at Caltech.
Before each run, this transducer was calibrated at vacuum and atmos-
pheric pressure. The value of the ambient pressure was obtained
through a barometer accurate to 0.01 inch of mercury,

To prevent damage to the wind tunnel windows should an
earthquake occur while the system is idle, the windows are not rigidly
sealed against the tunnel until a few minutes before the system is

started, The difficulties associated with the windows have been



described previously.

When a1l is in readiness to start up, the system is set for
operation except that valve 52 in the rnain feedline is closed, The
motors are started and the circuit is evacuated in a no-flow condition,
When the air pressure drops to about 2 psia, this valve is opened and
flow is established. The valve in the subsonic feedline is adjusted to
match the pressure at each nozzle exit as indicated by pressure taps
in the top and bottom walls,

To shut down the tunnel, the motors are simply shut off and
the circuit is vented to the atmosphere.

Pressure taps generally were installed on the top and bottcm
wall sections on the centerline at one-inch intervals throughout the
The first removable sections, spanning the distance
from x = 3 inches to 15 inches, had taps af intervals of +-inch on the
centerline. In addition, one section, which could be mounted as
either the supersonic or subsonic wall, had taps at F-inch intervals
in the streamwise direction on and 1-inch to either side of the center -
line. The distribution of taps on the sidewall is shown in Figure A. 1.

These static pressure taps were connected by vinyl tubes to
toggle valve or to manually-operated Scanivalves., The transducer

was then switched among the taps as desired.
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i

TABLE A-1 {(continued)
HNotes
(1) Ratio of nozzle exit pressure, subsonic to supersconic.
{2) Run aborted due to leaks..
(3) No data obtained due to instrumentation failure.

. (4) Fixed pitot probe mounted in supersonic wall at Sta. 1.

(5) First use of the dryer to remove water from the air in the
circuit before a run. This was done for all subsequent

runs.
(6) Schlieren photographs taken.

(7) This was a shutdown of the tunnel and immediate restart
to check the repeatibility of runs without additional ad-
justments of the controls. The results were unsatisfac-

tory.
(8) Marginal data quality.
(9) Orifice plate was removed for this run.
(10) Oil flow study.

(11) Spark shadowgraph photos taken.



APPENDIX B. Tunnel/Compressor Plant Interactions

The schematic diagram of Figure B. 1 is proposed in an effort
toward understanding the interactions between the wind tuanel and the
compressor plant. In reality, the system is a closed circuit (dashed
line) as is shown in Figure 2.1, page 12, but vents are open to the
atmosphere just downstream of the pumps. It is assumed that the
presence of these vents fix.ed part of the circuit at atmospheric pres-
sure. Neglecting any slight leakage into the circuit, in steady-state
operation the net mass flow rate through these vents must be zero.

It is assumed that models in the test section affect the com-
pressor plant by modifying the total pressure of the flow at the com-
pressor intake. Neglecting flow losses, this pressure can be put as:

P Gl ik (B. 1)

1 . .
m1+m2

Because m, is nearly three times as large as n'12 , and a

1
given model.caus es a greater loss of total pressure in stream 1 than
in stream 2, changes in P.1 are dominated by losses in the total pres-
sure of the supersonic stream. Since the supersonic stream passes
through a throat with constant upstream conditions for all test section
configurations (in this idealized model), rhl must remain constant.
The compressor plant operates at a constant intake volumet-
ric flow rate. Therefore, changes in P, must result in changes to
the overall mass flow rate, thus changing rr'12: :
Am, AP,

1
Y = (B. 2)
m, P

accurate to first order.
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For an aircoil of chord ¢ in a channel of width b, the net loss
of total pressure is given by

AF )2
= -¥M°C

D(b

where CD is the drag coefficient based on planfoi‘m area.

Using this model rwith the assumption that PtZ is constant
(i. e., pressure in the subsonic plenum chamber is unaffected by this
interaction) the effect of the half-span pitot strut blockage on the noz-
zle exit pressure will be estimated. The results of the calculation
may be compared with Figure 3. 12, a portion of which is replctted as
Figure B.2.

Recall that the strut enters the flow from the subsonic wall.
As long as the strut is entirely confined to the subsonic stream, the
losses {and thus the interaction) are assumed to be negligible, but
must be-considered once an appreciable portion of the strut is in the
supersonic stream.

The strut is a double-wedge section with a chord of 5/16-inch
and a maximum thickness of 1/16-inch (t/c = 0.2). I—Ioerv'ner51 pre-
sents data based on the transonic similarity rule which yields an esti-
mate of CD = 0.219 at Mach 1. 4. The thickness ratio of the strut is
larger than would normally permit thé use of a similarity rule, but
only a rough estimate of the effect is desired. Several phenomena,
such as the flow loss through the pipes and its dependence on the mass

flow rate, have been neglected which probably have a significant in-

fluence.
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From this, the supersonic stream loss of total pressure can
be estimated at 3.0 per cent using eq. (B.3). Thev decrease in :s?flz
therefore is 11. 1 per cent, and M, drops from 0. 60 to 0.50. This
causes a rise in the nozzle exit S‘tg‘ticvpressure, P2 , of abou!’c 7 per
cent. In Figure B.2, this estimate is seen to over-predict somewhat
the actual interaction effect, which was measured in the range of 4 to
5 per cent. Considering the number of simplifying approximations
made, it is felt that this represents reasonable accuracy.

The interaction takes the form of changes in the system mass
flow rate vdue to losses of total pressure in the test section of the
wind tunnel. Several means of compensation seem possible.

The first method would be to install a second throat in the exit
diffuser of the wind tunnel, thus increasing the pressure recovery
and offsetting test section losses. Or, perhaps the solution is to
contrél the mass flow rate by placing a choked orifice in the primary
feedline between the exit of the compressors and the wind tunnel.
Another technique which suggests itself is direct control of the Sys -
tem mass flow rate through the bleeding of air into the circuit up -

stream of the compressor intakes.
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APPENDIX C. Linearized Theory Program

The program described in this appendix was prepared to solve
the equations derived in Section 4.3 for the supersonic and subscnic
wedge problems.

Figure C. 1 presents in the form of a flow chart the sequence of
operations performed by the program. The main program acts as a
bookkeeper and performs all input-cutput duties. Computations are
periormed in various subroutines.

Table C-1 identifies the variable names used within the pro-
gram. Figures C.2 through C. 12 present listings of the main pro-
gram and all the subprograms. Figure C.13 is a sample of the out-
put for the baseline supersonic and subsonic wedge cases. The fol-
lowing dés criptions outline the duties of the subprograms.

Main Program

Sets initial data, controls output and proper sequence for
calling POLES and XPHI.

Subroutine POLES

Contains logic for a modified Newton's method solution to find
the zeros .of function ¥, and also establishes the number of actual
terms to be evaluated as corrections to the asymptotic solution.
Function F

Contains the functions of eq. (4.30), whose roots are the poles
kr and ki'

Subroutine INPUT

Reads in the values of the system variables into the program

according to the format of Table C-2.



Function XPHI

Causes the problem of a single wedge to be sclved for the de-
p 4
rivatives of & at a specific point (x, v}.

Function XINT

Causes calculation of a specific I evaluates IZn and deter-

mn'’

mines for all other integrals the correct half-plane contour.

Function XINT2

Evaluates all the integrals ‘ImnB; for other integrals, causes
a preset number of actual terms to be summed and also causes calcu-
lation of the asymptotic solution.

Function RELTRM

Evaluates a specific term of any actual series.

Function ASYSER

¥Finds X, Y, a, and z for the asymptotic series so that the

expression is in the form

f - X(Im>\:eyz -—l—zn:| . (C. 1)

mnvy Re n nta

Function CSUM

This is a buffer between ASYSER and CBSER whose purpose is
to put z and a into the proper form.

Function CBSER

Given z, a, and the limits of n from the series ASYSER, this
routine performs the summation

1 n

—

n nt+a
It invokes an approximation series for faster convergence if neces-

sary depending on the magnitude of z.
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AA

ASYSER
BETAI
BETAZ
CBSER
CI

CSER
CSUM

EPS

EXPMAX

GAMMA
Hl
HZ

IDENT

INPUT
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TABLE C-1. Identification of Program Variables

1
( Flog z) in the function ASYSER from the series of

eq. {4.65)

plus or minus 1; sets the sign of the coefficient in func-
tion ASYSER
function that evaluates the asymptotic series, eq. (4.65)
VR
vt
2
J1o- M,
evaluates the hypergeometric series
NI
a dummy function, equal to CBSER. Prepares data for

the asymptotic series evaluation

adds the leading multiplicative coefficient to the hyper-

geometric series calculated by CBSER
e , the wedge deflection angle (radians)

a limiter to control arguments of exponentials so as to
avoid overflow and underflow problems

a function which evaluates eq. (4.30)

adiabatic exponent

h1 , height of the supersonic stream (inches)

h2 , height of the subsonic stream (inches)

parameter in Subroutine INPUT which identifies the type

of variable being input

subroutine which causes new problem conditions to be

read into the program via cards

a logical variable which is set '"true' if no more terms of

the actual series can be evaluated



LPOLE

NN
NASYMX

NBR

NCASE

NDER
NINT
NPCLE
NPOLMX

NSWTCH
NTYPE
NYSUBC

NYSUBW
P(N)

PHI(I, J)

PI

POLES
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TABLE C-1 (continued)

a logical variable used in Subroutine INPUT to signal that

1\/11 s M2 s hl , and h2 have been changed and that the set
of poles must be recalculated

used in Subroutine INPUT

Y(NN) is the point in the supersonic stream on the inter -

face

the maximum number of terms the asymptotic series can
contain for a given value of TOLASY
the subscript '""V'" in the expression I
mny
identifies a case number; printed with the output as a
convenience (NCASE = 0 suppresses this output)
NDER = 1 refers to 0¢/9x, =2 refers to 9¢/dy
the subscript "m' of I
mn

NPOLE = n identifies the nth‘term of the actual series
maximum number of terms in the k-series

program prints a warning and stops summation if the

asymptotic series has not converged by n = NSWTCH

= 1 for the supersonic wedge problem, = 2 for the sub-

sonic wedge problem

number of the first point in the Y-array in the subsonic

stream
total number of points in the Y-array (not more than 12)
normalized pressure at the points y = Y(N)

the array of I = NDER derivatives at the point y = Y(J)

for the value of x currently under consideration
T

subroutine that calculates the poles ki and kr
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) TABLE C-1 (continued)
R g .M.
. e . . th . ]} )
RELTEM evaluates the n  term of the actuzl series

SWITCH negative (positive) if the contour is to be evaluated in the

upper (lower) half pilane
T thickness of the wedge plate {inches)
THETAI o i defined in eq. (4.40})
THETAR. Ql_ , defined in eq. (4. 40)

TOLASY evaluation of the individual terms of the asymptotic series

is stopped when the magnitude of the terms is less than

TOLASY
TOLXK maximum imbalance permitted in solving eq. (4.30)
TZMIN if the magnitude of z is less than TZMIN, the series

converges so quickiy that the asymptotic series need not

be calculated
VALUE parameter read in through Subroutine INPUT
X ) x-coordinate under current consideration
XA distance from the leading edge of the wedge
XEPS(N) flow inclination (degrees) at y = Y(N)
XINT subroutine that evaluates the series Imn

XINT2 expresses all series as an asymptotic solution and a cor-

rection of real terms
XKI(N) the array of poles ki
XKR.(N) the array of poles kr
XLE the value of x at the leading edge
XMAX stopping value of X in the calculations

XMIN starting value of X in the calculations



xXM1
XM

XPHI

XSH

XSTEP

Y(N)

ZSWTCH
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TABLE C-1 (continued)
M,
i
MZ
function that calculates a specific derivative of ¢ at a

specific point
x-coordinate of the shoulder of the wedge
the increment of X between successive evaluations

this array contains in non-increasing order the y-
coordinates of all points to be evaluated (N not to exceed

12)

the magnitude of z above which the approximation to the

asymptotic series is employed
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CoMmmH /Bl
CEMMON/BLELR/MIYSUE0 MY sUY
COWHGN/BLEIKA/NPOLMY, THETOR,, THE TR
N/BLECKY/TOLOSY RSV RESTNL Z9ETCH  HSHTCH » TEMIN
COMRBH/BLOCKE/ NOREE JRTYPE  NHIN AU HETER LELPOLE
COMMON XHBLUD Y MU0
OIENSIGH PHI(2,12)3:XEPSC12),PUIRY.
LOGICAL LPALE
TOLASY=7.,0E-6
ARS7HK=1,
NSWYCH=250
XN=FLORT{NSHTCHD
ESHTCH=CXN=TALASY w1, /30
XN=TOLASY+#{ ~ . 25)
NASYHY=INT(XN+1 . )
GRMHMA=1 .4
P1=3,1415527
HPOLMK=30
TEMIM=( FLOATCNPOLIMX D= TOLRSY dwx( § . /FLEATCNPELI))
99 CALL INPUT
BHI=BETRI {1
JF (N7 LPOLED 68 TO 172
¥i=THETRR/P]
X2=THETRI/P]
HRITE (6,118) BETAL,BETA2,TOLASY ,ABSZMX ,NASYMX . X1, X2, 2SHTCH
119 FORMAT (////78H BETAL =FB6.3/8H BETA2 =F6.3/23H ASYMPTOTIC TOLERPNCE
* = {PES.2/2UH MAX Z FOR CONVERGENCE = OPF7.4/32H MAX NUMBER OF TE
«AMS REQUIRED IS 13/ THETAR / P)} =°,FS5.3/° THETRI / Pl =’,F5.3/
* ' 7 SHITCH AT 68S(Z) =*,F7.4)
172 XSH=XLE+T/EPS
00 160 NOER=1,2
KWRITE (6,109)
109 FORMAT (IHIUX'BISONIC WIND TUNNEL LINEARIZED FOURIER ANALYSIS™)
MRITE (6,121)
121 FORMAT (SX, 'LERDING INTERACYIGN ONLY’)
IF (NCASE.EQ.0> GG TO 200
KRITE (6,201) NCASE
201 FORMAT (5X,°'CASE’,I13)
200 1F (NTYPE.EG.1> HWRIYTE (6,170>
IFf (NTYPE.EQ.2) HRITE (6,211)
211 FGRMAT (5X, 'SUBSANIC KEDGE'/)>

2 A,

1/¥MT XM BETRTBETH2,HL L2, T.EFS

Figure C.2: Listing of the Main Program



170 FORMAT (%3

vla.

o
{ i
HWRITE (V ‘%x} HE XL NG
181 FORMAT (GX'LERGING E0GE RT’,F6,2,° THCHES, HEDGE mNGLE’,
¥ F8.3." DEGREES, JUOULDER AT7,F6.,2,7 INCHESY)
HRITE (6,1713 it
171 FORMAT (85X, ’S@? REGHIC HALF-HAVELERGTH ,F6.3, " THOHES )
KRITE (68,1103 MHL¥H2.HLH2,T

110 FORMAT (//7u4XIHHI=F2.3,8 K2=FS,3,84 HI=FG.3,6H H2=F5.3.4H T=

% Fd.377)
(iF (HOER.EZ.1) WRITE (8,111)
IF (HOER.EQ,2) HRITE (6,141)
111 FORMAT (SX, 'MORFALIZED PRESSURE'/)
11 FORMAT (SX, 'FLOM INCLINRTION, DEGREES'/)
FRITE (8,142 (YD N=1 ,NYSUBKS
142 FORMAT (BXIHASX,12F8.2)
X=XMIN
113 YP=X-XLE
00 114 NY=1,HYSUBH
114 PHICNDER,NY 3=XPHICNDERLNY , XA NTYPE, T,EPS)
If (HOER.EG.1D GO TO 1Y
06 115 NY=1,NYSURM
135 FEPSIRY 2=150  +RTERCPHILZ L NY ) 0/P)
HRITE (6,145 X, (XEPSU(I,K=1,NTSUBH)
145 FORMAT (5XF5.2,2X,12F8.3)
GO TG 148
144 NN=NYSUBC-1
D3 116 NrY=1,NN
118 P{NY)=1,~GRMHA%( XM %22 04PHIC1,NT)
00 117 NY=NYSUBC,NYSUBHW
117 PONY )=1 . -GAMMA®( XM2##2 )+PHI( 1 ,NY)
DO 120 K=1,NYSUBW
IF (PCKOLLT. .00 P{K)=.0
120 IF (P(K>.GT.9.993) P(K)=8,993
KRITE (6,147) X, (P(H),H=1,NYSUBH)
147 FORMAT (5XFS5.2,2X,12F8.4)
148 X=X+XSTEP '
IF (X.LE.XMAXY GO 7O 113
160 CONTINUE
GO 70 99
END

Figure C.2, cont'd.: Listing of the Main Program
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AEL S XHELEETAL LBETRZ ML L HZ AT LREPS
2/NYSUBL L NYSUBH L Y(12)
S/RCASE S MTVPE, KR TN XHAX  XOTEP JWLE LPILE

Fi=3,14]
RERD (5,100 JDENT.N,VARLUE
10 FORMAT (2i2.75.0)
IF CTOEHT.EB.0) §TOP
GOT6 1z
11 BERD (5,105 IDENT.N,VRLLE
IF CIDENT.EB.G) GO 16 20
IF CIOENT LE.SO LPOLE=.TRUE,
12 6B 70 ({01.102.103,104,108,106,107.108,103,110.111,112,113,
#  31UG,118), IDENY
101 MI=VYALUL
BETRI=SGRT(XMI=XMI-1.)
Ga 10 11t
102 XM2=VALUE
BETR2=CGRT(T .~XM24XM2)
GG 10 11 ’
103 Hi=VRLUE
GO 70 11
104 H2=VALLE
GO 70 11
105 BV=VRLUE
GO T3 it
106 QEPS=TaN(VALUE=P1/160.>
GO 10 11
107 NYSUBC=N
G3 10 11
108 HYSUBH=N
G0 1O 11
108 Y(N)=VALUE
G 10 11
110 NCRSE=N
Go 70 11
111 NTYPE=N
GO 10 11
112 XMIN=VARLUE
GG 10 it
113 XMAX=VALUE
GO 70 11
114 XSTEP=VALUE
GO 10 1t
115 XLE=VALUE
GO 1O 11
20 IF (LPOGLE) CALL POLES
RETURN
END

Figure C.3: Listing of Subroutine INPUT



SUBRGUTINE POLES
Lrmmmm e CRLCULRTE THE BERL. ARD IMAGINGRY POLES
COMMOM/BLACK XXMA,?ﬁZ,B ETHILEBETEZ JHL H2 AT .REPS
COMMUN/BLOBCKS/NPOLMY, THETRR . THETRI
COMMON XKRCUD) . XKIUD)
DOUBLE PRECISION XNGH . FNAW,SLOPE .F
Pl=3, 1415327 ‘ :
TOLAK=1 .E~-5
R=(BETRL/BETRZ 32 XM/ YHT dx22
THETRAR=ATAMC 1 ./RD
THETRI=HTENCR)
N=1
132 XNOW=(THETAR+FLOATCN-1 =PI )/¢ Bfr_THia'Hi)
130 FNOMH=F(1 ,XNOH,R)
IF (DRBS(FNGH) LT.TOLXK) GO TO 131
SL@PEwﬁ*Bth1$Hi/(9683(XN@H*BETHI*HI)**2\—SET92$H7$(I.-DTHNH(XN@W
#  wBETHA24H2 dwx2)
XNOW=XKOH-FNOH/SLOPE
G4 70 130
131 XKRCON >=XNOKW
Hebe i
IF CNLLELNPOLNX) GO TO 132
M=1
135 XNOW=( THETRI+FLERTCN-1 4P 1 )/ (BETA22H2 )
133 FNOW=F(2,XNOH,R)
IF CDABSCFNOH) LT.TOLXK) GO TO 134
SLOPE=BETRZ*H2 /¢ DCAS( XNOW+BE TA2#H2 J##2 )-RxBETAL sH1 % 1 . ~DTANHC XNON
& FBETALIxH1 )%x2)
XNOH=XNOH-FNG#KH/SLOPE
Gd 70 133
134 XHICN =XNOW
=N+1
IF (NL.LENPOLMX) GO TO 135
GO TO 105
105 WRITE (6.106) NPOLMX, TOLXK
106 FORMAT (20HIEIGENVALUE SUMMARY 13,64 POLES/13H YOLERANCE =
x=  1PE9.2/3X1HNEXUHREAL3XSHIMAGINRRY/ )
DO 107 N=1,NPALMX
107 HRITE (6,108) N, XKA(N), XKI(N)
108 FORMAT (I3,4X,F8.4,2X.F8.4)
RETURN
END

Figure C.4: Listing of Subroutine P@LES
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DOUSLE PREVISIEN FUNCTION F (HGED
Comemommeee=RUBTS OF THIS FUNCTIEN BRE THE POLES XHR fHD X
(mmmommmmmeizl RERL PART
Crmmommeaaf=2  IMAGINARY PAR

COMMON/8LECHT /Y0 %ﬁ?.ﬁ*iﬁa;ﬁﬁTwQ»Hi.HS,T PS

DOUSLE PRECISION F. X

GO 1O (io0. 1015 H

100 FafsDTRNOGBETAT=HL 3-DTENH( X+BETR2+H2 )

RETURN

101 F=DTANCGBETAZHH2 )~ReDTANH X+BETAT #HL )
RETUAN
END

Figure C.5: Listing of Function F
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FUNCTION YPHT (HDERGEY X LWNTYPE AT .05PS

3 § pE iy UF 805 Ny B 2T i T T W Y MR 4 4]
SANOHBLOCK L /XML Xi2 ,BETALLEETRS JHL L HE L TL.EPS
SE0LNYSUBK,LYY(12)

V=T
EPS=EEPS

=YY HY )

FHTYPEEG.2) GO T8 105
HETRIaH
i =X+BETR =M

S=X~T/EFS

FEOONY L GE MNYSUBC) 6B T8 103

RLPHERT =0 PHR+BETRI={Y~H1)

BLPHA2=CL PHE-BETRI=(Y-H1 )

BLPHAS=XPEHI +BETRIw{ Y~H1 )
PLPHOU=XPEHI-BETRIx( Y-RH1)

H2=RLPHAL

HU=0] PHAS

IF (NOER.EQ.2) GB T8 102
XPHI=EPS=(XINT( L ALPHRL .Y LALPHRT D+ XINTC 1 .OLPHEZ L YLA2D
*Refz§%NT(1.QLPHRS.Y,QLPHQS)~XINT<I,ﬁLPHG%,Y,ﬁ%>)

102 XPHI=CPS+BETALI=( XINT( L, ALPHRL Y, ALPHAT1 )-XINTC 1 .OLPHA2,Y,02)
£ =XIHTCE BLPHAR,YLGLPHEI D+ XINT L L ALPHAN Y LB ))
*RFTaggS*(XINT(QpﬁLPHQI.Y.HLPHHI)wXINT(ZaQLFHQBsY.QLPHﬁﬁ))

103 IF C(HNDER.EQ.2) GB 7O 104

§§¥émgﬁﬁm(Xﬁi$#QBm(XINT(ﬁ,QLPHQ.Y.S)mXINT<S,XPEH1pY.X)}
ey ’f""h
104 é§¥gﬁqEP3*B§?Q2$(XMI*&Q)%(XINT(%.ﬁLPHH.Y.S)«XINY(%;XFSHl,Y.X))
105 X=XX%
IF. (WY .GE.NYSUBC) GO 1O 107
Ri=X+BETRIAC Y~H1)
A2=X~-BETRI*(Y~-H1 ) :
A3=X-T/EPS+BETAI = Y-H1) o
RY=X-T/EPS-BETAL#( Y~H1 )
52=A2-BETR1=H]
=HUY-BETH=H1
iF (NDER.EG.Z) GO TO 105
XPH1=EPSa{ XM2#42 3= XINT(S A1 .Y ,52 )+ XINTCS,.02,Y,52)-XINT(5.A3.Y.
*  SYI-XINT(S,RY,Y,54))
BETURN '

106 XPHI=EPS+BETA1#({ XM2+%2 )% XINT(S,A1,Y,52)-XINT(5.02,Y,52)>
2 =XINT(5,83,Y.94)+XINT(S,.0UL,Y,S4))

RETURN

107 B=Y-T/EPS _

IF (NOEBR.EQ.2) GO T8 108
XPHI=(EPS/BETA2 )+ XINT(E, X, Y, X)-XINTCE,0,Y ,A)+XINTC7.X, Y. X)
* ~X§NT(7.9,Y.Q))

RETUR
108 XPHI=EPS*(XINT(8,X.Y,X)-XINT(8,A,Y ,AXINT(S,X,Y.X)
% -XINT(S.R.Y.A>
RETURN
END

Figure C.6: Listing of Function XPHI



Relyiele

=295~

i %gw?\rgzw3,ﬂﬁﬁ,¥,upzTcﬁ)
43 100,101,102

101 )

102 X

103 1 010,105

i0l Xiviz L2005, 1)

105 éé?&f}xg%? CHINT 18R, Y )-XINT2CNINT 3,806, ¥ )-XINT2CHINT 4 ,ARG, )
D

F
i
]
100 Y1
R
¥
R
X

Figure C.7: Listing of Function XINT

F 3?f7 KINTZ (NINT, NSRL6RG.Y)
Q 1 ER

=1 REAL
NiR-2  POSITIVE IMOGINARY
Nip=3 ZERD_
baR=i  NEGATIVE IMAGINARY
C&F?@%/ﬂLﬁCﬂi/%ﬂlyX“’,pETﬂl.@EIQQ,HI,HQ.T.EPS
COHMON/BLOCKS/HPOLIX » THETAR » THETAT
LeGicaL L
JPOLHY=HPOL Y
I GG, NE 53 68 1O 105
Qetizeet BETE2H00 yand=H1w¢ BETAL#X2 diss
GO TO (400,10 . 103.104,107.101,108.1 89,110y, NINT
1000 YINTZed Xri2anZ WriaB/( 2 40
BE TURMN
101 XINT2=.0

RETURN
103 XINT2=ARG/Q
RETUAN
104 XINTZ=BETA2=(Y+H2)/Q

RETURN
105 SUMDIF=.0
L=, FRLSE,
DO 108 NPﬁLE 1 ,NPOLMX
IF (L) GO 10 200
106 SUM?%FQE?MDlr+ﬁELTHM(NINT.NBB.HBG.Y-NPOLE.L)

Ga
200 NPOLMX=NPOLE-1
201 XINT2=RSYSER(NINT .NBR,ARG.Y )+SUMDIF
NPOLMX=JPCLMX
RETURN
107 XINT2=-ARG/(2.%Q)
TURN

RE
108 XINT2=-BETH2%(XMI*+2)*AAG/A
RETUR

TURN
- 108 XINTZ2=((BETA1%XM2 )%*2)+H1/Q

RETURN
110 XINT2=((BETA2%XMI )#%2 )xY/Q
RETURN

Figure C.8: Listing of Function XINT2



FIRCTION RELTRM (MNINT.MNORLARG.Y RPELE L)
C~~~~ww~«-THIS $3 9 BOUTINE 7D CHLCUATE THE ACTUAL VRLLE &F THE RESIDUE
Lmmmme——efT # SPECIFIC POLE
e ﬁﬁw/ OCHIAKME A2 BETHLLBETAZLHL M2 . TL.EPS
CEMUON XKS’UG) XEICUD)D
LeGcical L
EYPHnd=80, ‘
RELTRM=.0
BHI=BETAL=H]
BH2=BETAZeH2
G318 (102.108,103,1083, NBR
$02 XH=XHR(NPGLE)
IF CRBSOHHILLTY. 0005) RETURK
XKBH1 =XKEH1
YHBH2=XKaBH2
IF (ABSOXHBHL ) GTEXPMAX) GO TO 200
IF £RBSOXRBH2)..GT.EXPHMAX) GO TD 200
IF (RESCXHARGY.GTEXPMAXY GO T3 200
THSQ=THNHC HBHZ dmx2
DENCM=H2%( (BETAZ#XMT J2a2 D 1 o~ THSQ >~ H17{ Y2442 3 D= (BETR1 242
# m(Xﬁz**u)+(BETR2¢*2)¢(XH1$@%)@THSQ)
TO UGS 105,108,107, 114,115,.120,118,1215, HINY
105 F&L‘h%mf(ﬁrYﬁl$$/>*(XM“4$ﬂ>+\W“TQP*$f)4(§ Tl D THER D
£ BT XHRRG D/ CCBETATANMZ daer2 3 XKalENGM
103 RETURN
- 108 RELTRN=2 .#COSH{ XK+BE TA2={ Y +H2 ) 28 INC XK=RRG )/ XK«COSC XKBHT )
C % »COSH( XKBH2 d»DENGH D
RETURN
107 RELTRM=2. *SINH(XK*BFTﬂzﬁ(Y+H2))*LOS(XK$ﬁHG)/(XK*CSS(XABH1>
& sCOSH(XKBHZ2 >+=DENGM >
RETURN
108 XM=-XKI(WNPOLE)
GO 10 110
109 XH=XHI(NPGLE)
110 IF (ABS(XH)HY.LT..C005) RETURN
XKBH1=XK=BH1
XKBH2=XK+BH2
IF (ABS(XHBH1)Y.GT.EXPMAX) GB TO 200
IF (RABS(XKBH2).GT,.EXPHAX) GO TO 2060
IF (ABS(XK+RRG).GT .EXPMAX)Y GO TO 200
IF (ABS(XH*({ARG-2.#BH1 ) .GT.EXPMAX)> GO T8 200
THS@=TANH{ XKBH1 J#x2
DENOM=(H2/( XM 142 ) d{ ( BETAZ 42 dl XM1 #etl] D+ BETAT 242 Je{ XM2#en} )
&  #THSQ)>-Hi=((BETA1+XM2 d%%2 d«(1.~-THSQ)

Figure C.9: Listing of Function RELTRM
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FIRICTION RELTRH. COHTD

GO 1O {111,109.112.113, 017, 118,122, 118,183, NIKTY

111 RELTRM={ K22 B AP ARSRRG Yl 1 .~ THEG 3/( 2, adifal ﬁ@ﬁ}
FETURN

112 BELTRN=FEXPCHHRRG 3=COSOMHABETAR%C Y +H2 Y W/ HH«COSHO HBHL Y
% 0OSCHHBH2 WDENGH)
RETURN

113 RELTRM=EXPOR=ARG M IHNC XH=BE VA2 Y +H2 ) W/ (K= COSHOMHBHL )
w205 KHEHZ »+DENDH)

RETURN
114 RELTRM=-SINC XK+PRG 3/ { XHaCOS{ XHBH1 d+COSH! XHBH2 )«DENDH)
RETURN

115 PELTRH=-2 ,#BETAZx{ XM 1 242 YuS TN ¥H=ARG D= TARHL XHBH2 M5 INH XK+BETR22Y )
2 /CAR=COSHO MKBH2 d=DENGY)
RETURH
116 RELTRM=2.2BETA2e( M1 =22 )2CASHH=ARG Y=COSH{ XK=BETA2=Y 3= TRANH( XKBH2)
w JOMACOSHO AMEN2 Y2 0ENDY)D
RETURN ;
117 RELTRM=~ . SsEXPOHARRE Y/ OMaLOSH XKBHT (O XHBH2 Y«=DENGH »
RETURN
1418 PELTRN=BE TR sl M2 2 3aEXPC XK «ARG D= TRNHO XHBHT S TN AR28ETR24Y )
2 f{RKSCOSOMBHZ d=DEREM)
RETURM ,
1319 RELTAN=BETA ={ XM2=22 )aEXP{ XK+ARG Y= TANH XKBHT )=C0S( XH{=BETA22Y)
#  SOXRACOSC XKBH2 Y+0ENOH )
RETURN -
120 RELTRH=-2 . »BETA2={ XM1%x2 )25 IN( XK#ARG d=COSH XK+BETR22Y )
#  /{ XK+=COSH{ XKBH2 )»DENCM)
RETURN
121 RELTRH=2.sBETA2x( XM1 222 I=COF( XK*ARG d=SINH{ XK=BETAZ2=Y )
* /¢ XK+COSH{ XKBH2 )+«0ENOM )
RETUAN
122 RELTRH=~BETO22({ XM14+2 )EXP( XK*HHG YxCOS{ XK+BETA2#Y )/ XK=COSC ¥KBH2)
= *DENOM)
RETURN
123 RELTRM=BETA2%{ XM1+%2 )xEXP{ XH#ARG DS TN XH4BETAZ%Y )/ XKL GS( XKBH2)
+  2JENCM)
RETURN
200 L=.TRUE.
RETURN
END

‘Figure C.9, cont'd.: Listing of Function RELTRM
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108

99
100

101
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FUNCTION aSYSER (HNINTHER.PRG.Y)
S ORTR ?Q& INPUT TG THE HIFINIDTE

Ad fuh

[

Lﬁ“%ﬁﬂzﬁLC“ﬁi/ﬁﬁi,x ﬁt AILBETER HI M2, TL.EP
COMMON/BLOCHS/RPOLMK L THETAR, THETAL
CGHWLiX Cl.8.2.81.82,21 .22 .C8ER,CSUM.CBEER
CSER(RLPHAL 2 )=CBSER(ALFHA,Z, . 0)
HSYSER=.0
IF (HBR.EG.3) BETURN
IF (NINY.EG.2) BETURR
PI=3. 1415527
Ci={.0,1.)
BHI=BETR]+H1
BH2=BETRZ2+H2
IF (NINWT.NE,1) GO 70 100
G2 70 (108.,109.99.108>, NBR
=( 1 =RAG/BH1
ASYSER=-RIMAG(CSUM(A,1.,0,. 1) W/ (PI+BETARL )
RETUAN
THETA=THETRI .
IF (NBR.EQ.1) THETA=THETRA
YR=1.+Y/H2
SﬁTmsQﬁT((@FTHI**2)$(XM2$$Q)+(BET§2$$2)*(XWI**Q)>
AN1=2,/(PI=SHTD
€0 Y0 (101.103,98,1055. HER
I (HINT.LGT.UY GO 70 11

- RI=(BETAZ=Y+CIaRRG)/BHI

103

106
104
105

300

=( ~BH2+( 2, +Y/H2 )+CI*ARG )/BHI1
XX==-XX1
If (NINT.EQ.3) ASYSER=XX=+AIMAG(CSUM(AL,~1.,0,03+CSUMA2.~1..C.0))
IF (NINT.EQ.U) ﬂSYSEH=XX*HEﬂL(CSUh(RIa-l .0, 0)—CSUM<92.—1¢.0 o»
RETURN
IF (NINT.GT.Y> GO 7O 114
R=( ARG-BH1 )/BH2+CI»YA

=2./(PI%8RT)
IF (NINT.EQ.3) ASYSER=XX*REAL(CSUK{fA.~1.,1.0))
IF (NINT.EG.Y) ASYSER=XX+AIMAG(CSUM(A,- 1..1 :0)
RETURN
ASYSER=XX+REAL( CEXP( THETA=A )«CSER(ALPHA, 2>
RETURN
ASYSER=XX#A1MAG( CEXP{ THETA=A dxCSER(ALPHA,Z ) )
RETURN
IF (NINY.GT.4)> GO 70 117

=-( ARG+BH1 )/BH2+CI*YR

IF (NINT.EQ.4) GO TO 207
XX=-2./(PI»SRT)
ASYSER=XX=REAL(CSUM(A.~1..1.03)

Figure C.10: Listing of Function ASYSER
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BETURN
207 ¥A=2./{P1=SRT)
BEYER= X AR A CEUM( B -1 .,1.003
CTURN
108 =2, ¥ 1sN2 bl heBETO2/{ PIs{{ BETR w2 da{ {H2eadil )
& 2(BETA2#%e2 0l Alasll D))
IF (NEREG ALY X=X
IF (MER.EG.2) A=(RRG~2.=0M1 )/BHZ
IF (HER.EG M Re=-(PRG+2 . #B8H1 )/GH2
ASYSFER=RA=L80M(8.1.,1,.0)
FETURH
111 IF (WINT.GY.S) GO TO 120
XK= A PI=SRT )
e -PH 240 1ARG )/ BHT
301 BSYSEA=XX2RIHRG{CSUM(R.~1..0.00
FETURN
120 ¥X=-2 #BETA14BETAZAL O TaXM2 Y032 3/ (P I SRTw22 3 )
R=( BH24{ Y/H2-1 . »+CI1+0RG 3/BHI
IF (HINT.EQ.G.CR.MINT.EQ.7Y ASYSER=-XXA=QIMAG(CSUMIRA, 1. .00
IF {HINT.EG.8.08.NINT.EG.9) BSYSER=X{sRERL{CSUN(R,.1..0,0
RETUAN
114 IF (HINT.GT.5) GB TO 116
W=} {PI2GRTD
B FRG~-BHT 2/BH2
G0 70 200
N8 (=RRG/EHZ+ U eY/H2
=1,
128 CONTIMUE
GO Y6 (99,9%,98.98.99,124,125,128,127), NINY
117 IF (NINT.GT.S5) GG TO 119
XX=1,/¢(PI+5RT)
A=~ PRG+BH1 )/BH2
GO 10 300
118 88=-1.
A=-PRG/BH2+CIaY/H2
60 16 128
124 ¥X=FR=BETAR1#({ XM2%x2 )/(P1+SRT)
ASYSER=AX+RIMAG( CSUM(R,.~1.,1.,0))
RETURN
125 XXA=-RA*BETAZ2#{ XM1#+23/(PI+SRT)
G2 10 300
126 XA=BETA1%{ XM2%%2 )/{PI%SRT)
G0 10 300
127 XX=BETH2=(XM12«2)/{PI*=SAT)
RSYSER=XX+AIKAG(CSUMN(A,~1.,1.0))
RETURN
END

AFigure C.10, cont'd.: Listing of Function ASYSER



QU* (1, QQ,J KD
Y q&v}?w

s e e 23 s s s e &I

(. XL THETAR, THETAL
.,:;: E’ﬁ‘\l‘n 5:21..;1.7\,’: .
02 fi”?p“vﬁ%fﬁ
PE} THETA=THETAI
ETR/FT
FPiafs
¢ THE VR )+ LBSER(ALFHALE. LD

Figure C.ll: Listing of Function CSUM

COMPLEX FUNCTION CHSER (A,.CZ.ORG)
COMPLEX Lﬁwiﬁ £Z2,CT07, Cﬁﬂu»QZI.Ca?»XL@G.§§§
THIS PAGTINE 15 7O EVALUATE FAGHM N = NPOLMX TO INFINITY
THE SERIES (7ol )/(H4A)
COaMMON/BLOCKS/NPOLHX, THETRR . THETAI -
COMMAN/BLOCKT/ TOL . NHAX  ABSZHX  ZSHTCH  NSHTCH, TZMIN

Citi=.0
CRSER=,0
IF CCRBS(CZ).LE. TEMIND RETURN
IF (CABSCCZ ). LE.1.0001> 68 16 101
NRITE (B, 100)

100 FORMAT {° CONVERGENCE ERROA’)
RE TURN

101 H=1

IF (CRBS(CZ).LE.Z8HTCH)Y GO 7O 105
102 ¥p=FLOAY(N)
Cﬂ&ﬁx(ﬁawwﬁﬁl(xX%+ﬂ)*(XN+1 Y XN+2 . d=XN)
CYOT=CYOT+CHR0D
IFN(gﬂBJ(CﬁQQ) LT.TOLDY GO 7O 104
IF (H.LE NMBX) GO TO 102
WRITE (6,103) NMaxX
103 FORMAT ( * FRILEC TO CONVERGE SFTER,IY.” TERMS®)
104 CZi=1./CZ
CZ2=CZ1#%2
o
CBSER= -H+ S+A=Als(CZ1~1 . 5)+(A1 +R/CZ- . S5+AxR1#({ | ,~CZ )/CZ D:2)
% #CLOG(1./(1.~CZ 3 ~RsD1*A2+CTAT

D0 108 N=2,NPOLMX
108 CBSER=CBSER-( CZe#(N-1>)/¢FLOATCN-1)+A)
RETURN

105 N=NPGLMX

107 XN=FLOAT(N)
CROD=C CZ=%N )/ XN+8 )
CBSER=CBSER+CADD
éF (CABS(CRDD).LT.TOL > RETURN

IF (N %E NSHTCH) GO 7O 107

WRITE 106)
106 gg?ﬁgg (* RLTERNATE SERIES FAILED TO CONVERGE®)

Figure C.12: Listing of Function CBSER
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Table C=2.
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Data Input Format

col, 1-2 Col. 3-4 Col. 5=-12
00 —— -
01 - Ml
2 o
02 M2
03 —— hl
04 e h2
05 e t
06 - €
07 NYSUBC e
08 NYSUBW —
09 NN Y (NN)
10 NCASE ——
11 NTYPE ——
12 — XMiN
13 —— XMAX
14 - XSTEP
15 - XLE

One "00" card--end of
data for this case. Two
consecutive "00" cards—--
stop execution

Wedge thickness

Wedge deflection angle
in degrees, taken positive
into the flow

The y-array in non-
decreasing order

Case number; = 0 will sup-
Press this printout

01, supersonic wedge
02, subsonic wedge
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APPENDIX D, The Three-Dimensional Calculation

Several approaches to the first-crder calculation of the three-
dimensional flow fieid of Figure D. 1 will be described. Methods
similar to that of the wedge problem (Section 4. 3) will be employed.
| Depending on whether the calculation uses as the dependent
variable the pressure perturbation, p, or the perturbation velocity
potential, ¢, the governing equation is:

2 2 2 dM
b 9
(1,M2)a§+ §+ IZ’Nf dO?—E:O, (D. 1a)
° ax oy 0z o W y

‘or the extension to three dimensions of eq. (4. 8a),

2
2. 0% 0% 8% Mo U, a4 .
(1-MJ)—F+—ft = =S =222 -0 . (D. 1b)
8x dy oz o y oy

The pressure perturbation equation is used by Namba40’ 41,50

2
42,43 in studying stationary airfoils in compressible shear

and Honda
flow, while the equation for perturbation velocity potential is us ed by
I\/IcCuneAL_7 for rotating systems. The choice between the two ap-
proaches should be made in view of the type of boundary conditions
to be applied to the perturbation equation: a pressure condition sué-
gests the use of eq. (D, la); a geometric condition is more easily im-
plemented through eq. (D. 1b).

It should be noted that the velocity potential of eq. (D. 1b) is
the traditional one:

Q' = grad ¢ . . (D. 2a)

For the velocity potential empioyed in Section 4. 3,

ut = U (y)grad¢ , (D. 2b)
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A. View from Above
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B. View from Side

Figure D.l: The Three-Dimensional Problem
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the governing equation is

2 82' & azé 82¢ 2. 08 1 dUO
Y, e -+ + (2 M e e 2
L o’ L < 4 A ol Gv U b

o oy 9z L

Y. i 2
17 U 2f 1 9Ug 7
- | = 0 (D.lc)

r 5
Polus T Mo \TT wy
8] d‘.g)/ ) )

To‘ ea.f:h eguation, apply a Fourier transform with respect to x and
then use the method of separation of variables of the form

fk, vy, z) = Y(y;k)Z(z:k)
treating the Fourier variable, k, as a parameter rather than as an

independent variable., Also, assume for all cases that

Z'" =k A _Z_ . : (D.3)
n nn

Thus, we see that this is an eigenvalue problem. The governing

eqaation for Yn{y;k) from eq. (D. laj is:

dM
2 o 2,.2 2.
11 1 - - -
Y]n ~—-——M0 & Yn Ynk (xn+1 Mo) 0 (D. 4a)
for eq. (D. 1b),
Mf du,, 2.2 2
Yo == Y' - Y k(A +1-M7) = 0 (D. 4b)
n Uo dy "n n n o
and for eq. (D. lc),
2. 1 dUo 1 dZUo 1 dUo :
YIUH(2-M D) mr— e Y +Y [—-———- M (“““"‘2’)
n o UO dy 'n n Uo dy 0 UO dy
2
-k ()\2+1-MZ)] = 0 . (D. 4c)
n o

For equations hased on the perturbation velocity potential, the unper-
turbed distrisution of total temperature must also be known (or some

other functicn independent of MO) to provide a link between U, and
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M’,O . Two cases of interest are those of Lmifor:m unperturbed stati;i
temperature and uniform total temperature throughout the flow field.
In the case of uniform static ’;e:mperature, the unperturbed

sonic speed a, is constant and egs. (D. 4bj and (D. 4c),related re-

spectively to the conventional and modified perturbation velocity po-

tential, become
dM
2,2 2
YoM e Y LY KO +1-MT) = 0, (D.5a)
1 o dy n n n o
RV IV L ey A By,
g T P vy (L[S (90) Jacn2un)
n M dy 'n "n M dya dy n o}

(D.5b)
For uniform total temperature, it can be seen that

dUO 5 , @M

1 o
U o dy M dy

2+(y-l)MOZ o]

Under this substitution, egs. (D.4b) and (D. 4c) respectively become:

2
amM )
Y- 1 do -YI‘1~Ynk2(>\j+1-M§) -0 (D.5¢)
24 (y -1)M y _
2 2
T YL Y I A A PR TV
2
dM ,
2 1 o ] 2,2 23
+(1-M_) M ay J K O MO =0 . (D.5d)

2
T 24y —1)1\/[O o}

The orthogonality condition for eqns. (D. 1) under the two temperature
cases of interest are provided in Table D-1. Except with the pressure
perturbation equation, the additional condition is imposed that

dMo/dy' = 0 at the top and bottom walls. In the problem of interest,

the wall geometry is prescribed. Since pressure perturbations are
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not known a priori‘(their calculation is the goal of the computation),
one of the approaches based on the pér%urba'ﬁ;ion velocity potential is
preferred. Furthermore, a condition of the experiment is that the
total temperature is uniform in e‘ach stream. For ease of applying
bomiidary conditions, the modified perturbation velocity potential of
eq. (D.2b) is chosen. The sclution is governed by eq. (D. lc), and the
gseparation functions by equns, (D.3) and (D. 5d). The orthogonality

condition to be applied is

I1<~I—J-) My Y dy = 0 . (D. 6)

o Tm n
2 t o

Because the two streams separately are uniform, eqns. (D.5d) and

{D.6) can be simplified to

2. _2 .2
1 B AT, = <y < a)
Y1n+k (‘)1 )\nn’ln 0 0=y hl (D.72)
. 2.2 2 _
o " k (A, -Bp )Y, = 0 -h, £ y 50 (D.7b)
and the orthogonality condition is
X by _X_ o
y-1 2) J-1 2 ( y-1 z> Y-I 2
<1+ =My [ oMy v, dy+l+= M, [ M)y, v, dy
0 -h,
=0 (D. 8)
The solution is
$(k,y,2) = ZA (K)Y (yik)Z (zk) , (D.9)
and the boundary conditions to be applied are
1 . —_—
Yln(hl.k) =0 (D. 10a)
! . — 1 . ‘
Yln(o’k) = an(o,k) ‘ (D. 10b)

2 2
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71 h 2 —

Y5, (-hpik) = 0 | (D. 10d)
Z {b:k) = O (D. 10e)
n

T kv, 0) = Ty, k) (D. 10f)

1
: a
where € (y, k) is the Fourier transform of the prescribed fiow in-
clination angle in the + 2z direction at the wall z = 0. The general

forms of the solutions of egs. (D.3) and (D.7) are

¥, _(yik) = C,_(klcos(y-hyko/B - -1 +D,_()sin(y-h kB 212,
(D.11a)

Fon(yik) = Capllcoshlyrhy Jm- +D, _(k)sinh(y+h, )k«/ﬁ_;:;f_ ,
(D.11b)

Z (zik) = C, (kjcos(z-blkd +D, (k)sin(z-bJk}r . D, 110)

The application of egs. (D. 10a-¢) to these general solutions yields:

Dln(‘k) = D, (k) = Dy (k) = 0, (D. 12a)
1\./,[12 cos hlkq/@l —}\2
c, (k) = —5 0 Cratk) (D. 12b)
? M, h hkyB 242 i
cos 2 {32 o
1 22 2772 1 AN 2 .z
FJﬁl A tanhlkJﬁl A = —I\Z?Jﬁzun tanh(h,kv/B, )
1 2 (D. 12¢)
Without loss of generality, we can put .
Cink) = : P ——— ) (D. 124d)
2
M1 cos hlkdﬁl -Kn
1
C,,(K) = , (D. 12e)
2 AN
M2 cosh hzk“/ﬁz +Xn
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C, (k) = 1 . (D. 121)

The firal boundary condition, eq. (D. 10f), and the orthogonality con-
dition, eq. (IJ.6), enable us to solve for the coefficients An(k) :

1 P
I €y = MY (yik)dy
..nz t o
A (k) = . (D.13)
. \ P 2.2
H . i 7 {<r-
z! (0:k) [ MY “(yik)dy

P,
-h2 t o

Equation (D. 12c¢) defines an infinite set of eigenvalues {)\n} for a spe-
cific value of k. Substitution into the orthogonality condition of eq.
(D. 8) results in a modification to eq. (D. 12c):
2 .2 3 2 2 2 .2 . 2 .2
Lo Jer s tanhk/BI S = /B S tanh bk B, 0D = B
M * '
1 2

g

(D.14)
where the function B(k), which remains to be determined, is con-
stant for all eigenvalues for a given k.

In the case where the shape of the ai;:foil (or, more generally,
the geometric disturbance) is uniform in the y-direction, the function
€ does not depend on y . In any event, the function An(k) shows a
very compiex dependence on k, Xn(k), and B(k). No criterion for
establishing B(k) has been found. This function, An(k)’ must be sub-
stituted into the full solution of eq. (D.9), and the resulting infinite
series is to be evaluated by the inverse Fourier transform, given in
eq. (4.11b). The resulting expression is

1 5 Skx
b(x,y) = = j:mﬁ A_(Y_(gik)Z (zik)e™ dk . (D. 15)

Also, there is an infinity of solutions of eq. (D.12c), each of which
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(except for siﬂg’ula} cases) is at a different value of B(k), defined by
eq. (D.14). To proceed with a soluti.on, it is necessary to find the
poles of the integrand. The poles of the function An(k) are: Xn =0,
which reduces to the two-dimensional wedge problem expressicn (de-
pendence on Z vanishee); B(k) = 0, which is only satisfied for dis-
crete combinations of (k, )\n); sin )\nkb = 0 ; and whatever additional
poles are contained in the boundary condition function ?(y;k) . Iteap-
pears that the solution of eq. (D. 15) is several double infinite series,

summed over n and over all values of k for which there are poles in

the integrand at a specific n.
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APPENDIX E. Airfoil Casting FProcedure

This appendix describes the casting of the sclid and tapped
airioils used in the experimental studies of Chapter V. The method is
irom Collinszs and several discussions were held with him to refine
t'he technique in view of the special requirement that the maximum
thicknese be kept below 0.098 inch.

The airfoil was chosen to be a biconvex section, and a thick-
ness ratio of 6 per cent was selected as representative {(cf. Figure
1.2). A chord length of 1.5 inches, giving a maximum thickness of
0. 090 inch, was chosen.

A pilot model, the "'solid" airfoil, was first cast (see Figure
5.11 for a section view of the airfoils). A spar was machined of
phosphor bronze to run down the middle of the mold, around which the
epoxy would be cast, to give strength to the finished airfoil. A usable
airfoil resulted on the third attempt using the compound Epoxylite
4141-44. The first attempt failed due to imprcper mixing of the
epoxy. The components were mixed in the ratio of 10:1 by volume,
when it should have been done by weight. In the second attempt, the
epoxy was prepared correctly and hardened to a glass-like finish but
suffered from some voids in the finished casting.

On the third attempt, care was taken during the mixing of the
epoxy resins to entrain as little air as possible. In addition, after
mixing the epoxy was placed in a near-vacuum. - The mixture frothed
up quite strongly, quadrupling its volume within about 30 seconds. At
this.point, the vacuum jar was vented and the mixture rapidly col-

lapsed to its original size. Vacuum was re-applied, and the frothing
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repeated with apparently the same vigor. It was decided that perhaps
volatile components of the spoxy wer‘é vaporizing, and that further
time in a vacuum might do more harm than good. The total tirmme under
vacuurmn was estimated at 3 minutes .

The other problem with the second attempt was that the central
spar {12 inches long, .063 inch thick) was supported within the 10-
inch long mold only at the ends, and apparently had been in contact
with the inner surface of the mold in places. In the vicinity of these
reduced-clearance places, the epoxy was unable to flow and left voids
and exposed sections of spar in the final casting. This was remedied
by using a thinner spar (. 045 inch) and putting a few drops of solder on
each side, filed down to hold the body of the spar at least .018 inch
away from the mold. After seeing the finished casting, it was felt that
. 012 inch would have been sufficient.

Both of these solutions worked: the {inal casting was free of
voids 'and exposed sections of spar. Immediately after the injection of
epoxy was completed, the vacuum jar was vented to atmospheric pres-
sure and the epoxy was allowed to harden. A test sample was poured
out of the same batch sc that the rate of hardening could be monitored.
To facilitate opening the mold, all interior surfaces were given a thin
coating of silicone grease before the injection to prevent adhesion of
the epoxy, while the central spar was cleaned with first acetone, then
methanol (to remove a slight residue left by the acetone).

The airfoil casting was about 10 inches long, with about 1 inch
of the spar protruding at each end. The best 4.3 inches of airfoil

were chosen to be preserved, and the remainder of the eopxy was cut
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away using a Dremel hand-keld tool. Care should be taken during this

to avoid damaging the leading and trailing edges of the airfoil,

4]

process

The finished airfoil had a thickness of . 086 = ,002 inch, arnd
was sufficiently faithful to the mold that the minute scratches\ left in
the mold by the scraper during construction of the moid Were‘ visible
in the finished airfoil. The epoxy was strong enocugh that erosion of
the material while in the wind tunnel was not the problem that was
feared. However, it would have been prudent nevertheless to have
given the leading edge a coat of a light lacquer for protection.

Considerably more problems were encountered in the casting
of the instrumented airfoil. The idea was to place as many pressure
taps as possible at separate chordwise locations, and by translating
the airfeil i the spanwise direction while the tunnel was in operation,
continuous pressure distributions at each ’;ap could be obtained.

As the mold used for the previous casting was still in good
condition, it was used for the instrumented casting as well. The cen-
tral spar of the airfoil was made of 19 hollow tubes in line, the cen-
tral 13 having .049-inch diameter, and the outer 3 tubes at each end
were of ,033-inch diameter. The tubes were attached together by
epoxy at several spanwise locations.

The casting process was performed in the same manner as
before using a slightly different compound, Epoxylite 4141-65, which
is colored red rather than the blue of the previous castings. The red
compound cast equally well as the blue, but hardened into a glossier
finish with a tougher, finer structure. Consequently, use of this red

compound is recommended for future work.
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The material was sufficiently hard for handling in eight hours,
though it retained some plasticity for an additional twelve hours. Af-
ter the airfoil was removed from the mold and had finished hardening,
all casting flares were removed and the fit of the airfoil in the mount-
ing assembly was checked.

Translation of the airfoil was to be driven by the same unit
which had previously been used for the pitot probe. An assembly
which attached to the wind tunnel walls at each end of the airfoil was
constructed to permit the translation and reading of the static pres-
sure taps while sealing against the atmosphere. Also, the assembly
permitted setting the airfoil at angles of attack up to ® 5°. The air-
foil was put in tension by attaching it to the drive unit at its upper end
while hanging 40 pounds of weight from its lower end.

At first, the airfoil did not fit through the seal assembly near
either end of its span; only the center 5 inches (where fortunately the
taps had to be placed anyway) were within tolerance. On inspection,
it was found that at each end the airfoil was . 010 inch too thick. This
additional thickness was filed off. It is testimony to the hardness of
the epoxy ‘;hat this task required 4 hours' work! Certainly this work
resulted in deviations from the nominal airfoil contour, but it was
felt that as this area was about two chord lengths of span away from
the static pressure taps, the effect on the pressure data would be
negligible.

As has already been mentioned, provision was made for 19 taps
in the airfoil. The taps were to be drilled to alternating surfaces (see

Figure 5.11). Substantial problems were encountered in doing this,
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which required three weeks to overcome. These were due to the
basic concept used in installing the téps\, which was to drill through
the surface of the airfoil into the metal tubes after the epoxy had
hardened. In practice, the epoxy was not rigid enough to prevent the
‘drill from wandering around the edge of the tube rather than cutting
into it. This problem was solved by cutting a channgl . 042 inch wide
into the surface of the airfoil deep enough that a flat was put into the
surface of each tube in the desired location. Holes of . 020 inch di-
ameter were drilled into the tubes through the flats and were then
plugged with greasgd half-inch long wires. The channel was refilled
with epoxy, and after hardening the filler was cut off flush with the
original surface. This method was very tedious, and the results
were not always satisfactory; the use of 5 of the 19 taps was never
regained. A slightly different method of installing taps in a cast air-
foil was suggested by W. R. Hawthorne and is described in Section

6.2.
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APPENDIX F., Correction to the Calculation of Tsien and Firnston

This appendix presents the derivation of the correction to the
s _ S 18 R ; e : .
calculation of Tsien and Finston =~ for the problemi of the wedge at-
tached to the subsonic wall., When this modification is inserted in
their calculation, the results are in good agreement with the limiting
case of the present calculation as presented in Section 4. 4,
Tsien and Finston impose as a boundary condition the flow in-
clination angle e(x) at the subsonic wall:
e(x) = O x <0
. -Bx
e(x) = e x >0 B > 0)
In the limit as B vanishes, the perturbation is that of an infinite
wedge,
The conventional relation between perturbation velocity com-

ponents and the gradient of the velocity potential is employed, namely:

I

u 9¢/0x , (F. la)

1l

v d¢/ dy . (F.1b)
The change in static pressure is given by
AP = -pUud' . / (F.2)

A parameter 6§ is defined as

2 2 2 2
cos-g-: <—1\1\_:——22_>//(_1\1\;1{22_> +E—22—— , 0<b<m, (F.3)
1 1

[31
Expect where specifically stated, the notation adopted in Chapter IV
will be employed in this appendix. The general expression for the

subsonic stream perturbation velocity potential is found to be (ref.

18, eq. 46):



SRR : .
&, = U 8. | : (B cos Ax + X sinAx]dA
R VPl
:m w-
+ “lo cosh‘)\ﬁz(y%h,&)[az(?\)sin )\‘x+b2(?\)cos ?\x]d)\j' . (F.4)

Application of the boundary conditions yields the expressions for the
I?o'urié_r coefficients, az(H and bZ(M, presented as equations (52}

and {53) in Tsien and Finston's paper:

5
[cos” _2@_ coshz)\11262+sin2 -2— sinhz)\hzﬁz'_\ a2(7\) =
2
[& Mio2e 1P 5, | (F. 52)
cos —-+— sinh 5 . F.5a
ﬁ (‘32_}_}\2 x 2 2 2 > 2" 2
[cos :,:cosh )\*12{32+sm2 -§51nh2)_hzﬁzjb2(k) =
2
M B
e [ —cos” S (B L sinn2in,g, 1 L (F5D)
BB +\) M, 2

The factor which was omitted by Tsien and Finston is the quantity
(/1) on the right-hand side of eq. (F.5b). The work of Tsien and
Finston up to the point where eq. (53) is obtained from eqs. (48), (49),
(50), and (51) is correct. The evaluations will be carried out in the
limit where B tends toward zero; thus, inclusion of this factor will
eventually result in a considerable simplification.

The integration variable A and the space coordinate x are re-
defined as dimensionless quantities:

S = Zh B, (F.6)



Note that all the integrands in eq. (F.4) are even functions of A. If

f(A) is even, then

Fran = 5[ foa
0 ' e

The integrands will be evaluated by the same technique as was em-
ployed in Chapter IV, and then the limit of the expressions will be

taken as B vanishes. First-order poles exist at the points

A o= *ip (F. 85)
and
S = im(2n+1 £8/mw) (F. 8b}
S = -in(2n+1 £ 8/7) . (F. 8c)
The solution for the pressure perturbétion at the interface is
A - Zcos s T, (i) £ <0 (F. 9a)

1
('aPlU; )(E-;)
= 1-2cos 2 F;(£:0) £>0 (F. 9b)

where, in the notation of Tsien and Finston,

| @ 0 o-@ntl+8/m)|g]

F3(§;9} = ?r_n:()(_l) 2n+l + /7 ’ (F.102)
. -(2n+1 - 8/m)|¢]|

F,(E:8) = ;1;%3:0(-1)n T (F. 10b)

The equations (F.9) should replace equations (54) and (55) in ref. 18.

All other work in that paper has been verified,
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