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Abstract

Vortex-induced vibrations (VIV) have been studied experimentally with emphasis put on

damping and Reynolds number effects. Our system is an elastically-mounted rigid circular

cylinder, free to oscillate only transverse to the flow direction, with very low inherent damp-

ing. We are able to prescribe the mass, m, damping, b, and stiffness, k, of the system over

a wide range of values of interest. Unlike most studies of VIV, where the damping cannot

be controlled, we are able to impose our system damping through the use of a custom-made

variable magnetic eddy-current damping system. This control has allowed us to explore

various damping effects on VIV behavior.

Although some results and ideas are discussed in the traditional nondimensional for-

mulation, special emphasis is put on a different formulation of nondimensional parameters,

known as the effective stiffness formulation. The advantages of this formulation over the

traditional one are explained, and an important parameter, the effective stiffness, k∗eff , is

introduced. Through the use of this new formulation, the amplitude, A∗, and frequency,

f∗, response are only a function of three parameters, damping, b∗, Reynolds number, Re,

and effective stiffness, k∗eff , instead of four when using the traditional formulation.

We show the effects that damping and Reynolds number each have on the amplitude

and frequency response profiles, respectively. This allows us to make the interesting obser-

vation that, in general, damping and Reynolds number have similar affects on the response

profiles. That is, a decrease in damping has similar affects that an increase in the Reynolds

number has. The similarity between damping and Reynolds number effects is highlighted by

showing how the large-amplitude portion of the response profile can be eliminated by either

increasing the damping or decreasing the Reynolds number. We also show that numerous

unique combinations of damping and Reynolds number values exist that produce a similar

amplitude response profile for each system.

The maximum amplitude, A∗
Max, of our system has been studied in detail. Using the
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effective stiffness formulation, we are able to theoretically show that maximum amplitudes

should be functions of both damping and Reynolds number. We also define maximum

amplitudes in the case of zero damping as limiting amplitudes, A∗
Lim, and show that they

are only a function of Reynolds number. Using the effective stiffness parameter, we ex-

perimentally find that maximum amplitudes occur at roughly the same effective stiffness

value, k∗eff |A∗
Max

, for all the systems studied. This allows us to create constant-Reynolds-

number curves of maximum amplitude over a large range of damping values, which we

call a “generalized” Griffin plot. Extrapolating these results to zero damping, we are able

to experimentally determine our limiting amplitude dependence on Reynolds number over

the range 200 . Re . 5050. By examining the wake structure of these maximum ampli-

tude points we note that the wake for an oscillating cylinder is close to two dimensional at

Re ≈ 200 but is strongly three dimensional by Re ≈ 525. We also note that up to Re ≈ 1000,

the wake structure of A∗
Max contains two single vortices shed per cycle (2S), even though the

existence of the large-amplitude, upper branch and the location of the maximum amplitude

in the Williamson-Roshko (WR) plane both suggest a wake structure involving two pairs

of vortices shed per cycle (2P). However, above Re ≈ 2600 we do observe the expected 2P

wake structure of A∗
Max.

Discontinuities in the amplitude response profile are also investigated, which happen

to occur in hysteresis regions. The discontinuity between the initial branch and the large-

amplitude, upper branch portion of the response is studied in two ways. First, the time-

averaged behavior is examined in an attempt to understand what controls the hysteresis

as well as any damping and Reynolds number effects. We find that as tunnel velocity is

increased, the system jumps upward, past the 2S/2P dividing curve of the WR-plane, and

well inside the 2P wake structure region. However, as tunnel velocity is decreased, the

system jump downward is controlled directly by the 2S/2P dividing curve. We showed the

effects that damping has on this region, for both directions of tunnel velocity changes, and

how sufficient damping eliminates the large-amplitude portion of the response curve. This

region was also examined by tracking the transient behavior as the system underwent this

discontinuous change in amplitude. The transient behavior was induced either by changes

in the tunnel velocity or system damping. We note that for tunnel velocity changes, the

system will always quickly move from a small- to a large-amplitude response. However,

the system will not always move from a large- to a small-amplitude response, and instead
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will sometimes stay in a “steady” transient condition. On the other hand, for damping

changes, the reverse holds, the system will always quickly move from a large- to a small-

amplitude response but will not always move from a small- to a large-amplitude response

and instead will find a “steady” transient condition. We also find a new discontinuity

hysteresis region that involves a jump between the lower branch and the desynchronized

region. This hysteresis appears to be a low Reynolds number effect and is only seen in

systems with Re . O(103).
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Chapter 1

Introduction

1.1 Importance

The potential destructive forces that can result from the interaction between a moving fluid

and a structure were spectacularly displayed in 1940 with the collapse of the Tacoma Nar-

rows Bridge. This collapse resulted from a complicated fluid-structure interaction between

the gusting wind and massive bridge. This interaction caused the bridge to undergo com-

plex oscillations that eventually reached a severe enough magnitude to cause the dramatic

collapse of the bridge.

As a fluid moves past a bluff, non-streamlined, body, the fluid detaches from the body

and an unsteady wake is created. This causes vortices to detach and shed from alternate

sides of the body and be convected downstream by the flow. These shedding vortices produce

periodic forces on the body and, in many cases, these forces are strong enough to start the

body into oscillatory motion. Such behavior is known as vortex-induced vibrations (VIV).

Since most objects are not streamlined, an enormous number of structures are susceptible

to VIV. Some of these susceptible structures include bridges, smokestacks, underwater and

hanging cables, towed objects, and off-shore platforms.

The understanding of VIV is critical in order to safely design many common engineering

structures. Yet, for all the work that has been done in the past half century, many funda-

mental fluid mechanics and basic engineering questions remain unanswered. This fact was

reinforced when, in January 2002, a tall circular steel support structure, that was part of

the Vertigo thrill ride at Cedar Point, suddenly collapsed. After an investigation, the cause

of the collapse was deemed to be due to a vortex-shedding phenomenon. Clearly, there is

much that still needs to be learned regarding VIV.
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1.2 Previous Work: One-Degree-of-Freedom Free-Vibrations

of Rigid Circular Cylinders

There has been an enormous amount of research done on VIV during the past fifty years.

Much of this work is documented in the comprehensive reviews of Sarpkaya (1979, 2004),

Griffin and Ramberg (1982), Bearman (1984), Parkinson (1989), and Williamson and Go-

vardhan (2004). The majority of the work has involved two different approaches to the

problem, free- and forced-vibration studies. Free-vibration studies themselves have involved

both experimental and computational investigations of one- and two-degree-of-freedom mo-

tion on rigid, flexible, pivoted, and cantilevered cylinders. The most popular geometry for

experiments is the rigid circular cylinder with only one-degree-of-freedom motion (transverse

to the flow direction). However, for simulations, there is not such a preferred configuration

and one can find both one- and two-degree-of-freedom motion on both rigid and flexible

cylinders. Comparably, forced-oscillation studies are much less diverse, most of them in-

volve the experimental investigation of constant amplitude and frequency movement of a

rigid cylinder undergoing one-degree-of-freedom motion.

Since this thesis only involves the canonical geometry for VIV (one-degree-of-freedom,

rigid circular cylinder), we will mainly discuss previous work involving this type of config-

uration. Furthermore, since this geometry still involves an enormous amount of literature,

we will concentrate on previous work that involved understanding the amplitude and fre-

quency responses, the wake structures, and the damping and Reynolds number effects. In

the next two sections however, we will briefly discuss one-degree-of-freedom forced-vibration

experiments and then two-degree-of-freedom free- and forced-vibration studies. This is done

so that we can discuss how, if at all, our results and conclusions from the restrictive one-

degree-of-freedom, free-vibration, rigid circular cylinder case can be generalized and applied

to these two other VIV configurations. Therefore, previous work using these two config-

urations will be presented along with a brief discuss of the relationship and coupling to

one-degree-of-freedom, free-vibrations, of rigid circular cylinders.

For free-vibrations, at least two types of system response are possible for VIV, as re-

ported by Khalak and Williamson (1997b). One of these involves a small-amplitude, two-

branch response and is believed to correspond to high “mass-damping”. Mass-damping

refers to the historical practice of combining the system mass and damping into a single
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parameter. These branches were labeled as the “initial” and the “lower” branch (using

the terminology of Khalak and Williamson). This type of response is similar to what Feng

(1968), and many other early researchers, observed. These early investigations involved

systems that used air as the working fluid and had a nondimensional mass of O(102). The

large system mass meant that the mass-damping parameter was always large, regardless

of the damping. A defining characteristic of this type of response is that the frequency

at which vortices are shed from the cylinder abandons the Strouhal relationship (see Sec-

tion 2.3) and instead “closely” matches the natural frequency of the system. In the past,

this phenomenon has been called various things including “lock-in,” “synchronization,” and

“self-excited oscillations.” It is worth mentioning here that in this thesis, these terms will

each have their own meaning. “Lock-in” will refer to when the shedding frequency breaks

from the Strouhal relationship and matches the natural frequency of the system. “Synchro-

nization,” on the other hand, will only mean that the shedding frequency has broken from

the Strouhal relationship but is matched to a particular frequency that is not necessarily

the natural frequency. Therefore, lock-in is a special case of synchronization. Finally, al-

though the exact phrase “self-excited oscillations” will not be used, similar terms such a

free-vibrations, and the more general term vortex-induced vibrations (VIV), will refer to a

fluid driven oscillating system, regardless of the shedding frequency.

The second type of reported response is a large-amplitude, three-branch response that

was believed to result from low mass-damping. These three branches were labeled the

“initial,” “upper,” and “lower” branches, also by Khalak and Williamson (1997b). This type

of response has been seen more recently in systems that used water as their working fluid, so

that the nondimensional mass was O(10), and had extremely low inherent damping. This

allowed for a very small mass-damping parameter. Much of the current work on VIV has

centered around systems with low mass and damping and the resultant interesting behavior.

Besides the large-amplitude, three-branch response, one interesting behavior these types of

systems exhibit is a much wider response range, or range of flow velocities that cause a

response. Griffin and Ramberg (1982) noted the widening of the response region for these

small mass type systems. Work done with high mass-damping, small-amplitude response

systems resulted in the belief that substantial amplitudes could only result from lock-in.

However, this is not the case with low mass-damping system. Therefore, another interesting

behavior that they display is that only synchronization is needed for substantial amplitudes.
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In Govardhan and Williamson (2000), they showed the departure that the frequency could

take from classic lock-in while still producing large-amplitude oscillations. In order to clearly

show this however, they needed a small nondimensional mass of O(1), which explained why

early investigators only saw lock-in behavior.

The characteristics of the wake behind an oscillating cylinder were studied in detail

by various investigators. Early work was restricted to the small-amplitude, two-branch re-

sponse system. The velocity fluctuations in the near wake as well as the phase angle between

the displacement and velocity fluctuations were measured by Griffin (1972). Lift coefficients,

energy transfer, and flow visualization photographs of the wake were presented in Griffin

et al. (1973). Brika and Laneville (1993) showed the wake structure of the initial and lower

branches using smoke visualization. We mention their work in this section even though

they used a flexible, free-vibrating cable. Later work, with smaller mass-damping valued

systems, explored the wake for a large-amplitude, three-branch response system. Khalak

and Williamson (1999) measured lift and drag coefficients over the entire response region

and did hydrogen bubble flow visualization. The wake structure behind large-amplitude,

three-branch systems and small-amplitude, two-branch systems was carried out in detail by

Govardhan and Williamson (2000). They found (using the terminology of Williamson and

Roshko (1988)) that the wake structure of the initial branch had two single vortices shed

per cycle (2S) while the wake structure of upper and lower branches both had two pairs of

vortices shed per cycle (2P).

Some early studies of VIV explored the effects of damping on the response behavior

of the system. For instance, Vickery and Watkins (1964) reported peak amplitudes in air

and water against a mass-damping parameter and Scruton (1965) plotted the amplitude

response profile for three different damping values. The most extensive damping study may

have been by Feng (1968) who explored the effects of damping on both the amplitude and

frequency response profiles for five different damping values. Feng used an electromagnetic

eddy-current damper designed by Smith (1962) to impose controlled damping values on

his system. However, Feng’s system had high mass-damping (due to the large m∗ since

his working fluid was air) and was constrained to the small-amplitude, two-branch response

behavior. Due to this, he was only able to look at what effect a threefold increase in damping

had on a low-amplitude response profile.

More recent studies of damping effects on VIV have been largely directed toward low
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values of system mass and damping and the high amplitudes that they allow. Over the past

twenty-five years, the mass-damping parameter has replaced the actual system damping

value as the parameter that is reported in damping studies. Unfortunately, most studies

involving mass-damping effects have only looked at the maximum amplitude response point

of the system. A few studies have investigated the entire response behavior. For example,

Khalak and Williamson (1997a) have full amplitude response curves of three different system

masses, each exposed to four different damping values. However, as in the past, the range

of damping values they spanned was small and a change in system response was not seen,

other than a slight decrease in the maximum amplitude. Another recent study was by

Hover et al. (1997) who used a force-feedback controlled oscillation apparatus and reported

total lift coefficient, phase angle, and amplitude response. Although they spanned a much

larger range of damping values than previous investigators, the amplitude response profile

remained a large-amplitude type response with slight changes until the highest damped

case, which resulted in almost no response.

Even though it is perhaps the most important nondimensional number in fluid mechan-

ics, most early studies of VIV did not emphasize Reynolds number. While most researchers

did make reference to the Reynolds number of their experiments, they usually only gave

a range of Reynolds numbers corresponding to when amplitudes occurred. Recently how-

ever, Reynolds number has begun to be recognized as an extremely important parameter

in VIV. Consequently, research has begun to look directly at Reynolds number effects.

Anagnostopoulos and Bearman (1992) explored VIV at low Reynolds number, Re ≈ 100,

and compared this to higher Reynolds number experiments. Ryan et al. (2005) simulated

Reynolds number effects associated with the “critical mass” defined by Govardhan and

Williamson (2002). And the importance of the Reynolds number on the maximum ampli-

tude was pointed out by Klamo et al. (2005).

Finally, we briefly mention a different approach to the study of VIV, working on methods

to suppress them. Much of this work is summarized in the review by Zdravkovich (1981)

and books by Blevins (1994) and Sumer and Fredsoe (1997). Designing a structure that

will not be excited by any of the flow velocities it experiences while in service is not always

possible. Nor is it always possible to have a large enough structural damping to keep the

excited oscillations small. Therefore, various devices that are added to the structure to

interfere with the shedding vortices have been studied. Although this list is not inclusive,
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we briefly mention three different suppression devices. Long splitter plates, long enough to

extend past the vortex formation region, were studied by Roshko (1954), Apelt et al. (1973),

Sallet (1970), and Stansby and Pinchbeck (1986). Helical strakes, originally proposed by

Scruton and Walshe (1957), were investigated by Woodgate and Maybrey (1959), Cowdrey

and Lawes (1959), Jones and Lamb (1992), and Branković (2004). Finally, helical wires

were studied by Chyu and Rockwell (2002) and Hover et al. (2001). Although this is an

important part of studying VIV, suppression strategies will not be discussed in this thesis.

1.3 Connection to One-Degree-of-Freedom Forced-Vibrations

of Cylinders

The main emphasis of most forced-vibration studies is to measure the fluctuating lift and

drag forces, vortex shedding frequencies, and phase difference between the motion and

forces. Also, the wake is usually observed to look for recognizable structures. Some of

the first work done with forced-vibrations was conducted by Bishop and Hassan (1964)

in which they measured the fluctuating lift and drag forces. They also noted that when

the frequency of the forced oscillations was close to the Strouhal frequency, the wake and

cylinder frequencies became “synchronized.” This synchronization lasted over a large range

of oscillation frequencies and they termed it the “range of sychronization.” They also noticed

that their system exhibited hysteresis. Other early experiments also measured the lift

coefficient and phase angle (Protos et al., 1968; Toebes, 1969; Stansby, 1976). Sarpkaya

(1977, 1978) did extensive measurements of the transverse force coefficient and separated it

into an inertial component, in-phase with the cylinder acceleration, and a drag component,

in-phase with the cylinder velocity.

More recent experiments have focused on collecting force measurements over a wide

Reynolds number range, predicting free-vibrations behavior from forced-vibration results,

and looking at wake transitions. Sarpkaya (2004) continued his earlier forced-vibration

studies but spanned a much larger Reynolds number range as well as specifically looking for

Reynolds number effects. Low Reynolds number forced-vibration experiments were carried

out by Koopmann (1967) and Griffin (1971). Both Staubli (1983) and Sarpkaya (1978)

used forced-vibration force measurements to predict free-vibration VIV behavior. Moe and

Wu (1990) compared forced-vibration results to free-vibration results for both one- and
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two-degree-of-freedom motion. Forces and phase angles from free- and forced-vibration

tests were compared under identical conditions in Morse and Williamson (2006). Carberry

et al. (2001, 2003, 2005) studied the transitions in the wake as the system changes from

a “low-frequency state” to a “high-frequency state.” By studying these transitions, they

discovered a self-excited change from a low-frequency state to a high-frequency state but

never the reverse. They also discovered an “intermediate state” that has certain features

similar with each of the other two states.

Finally, at the merging point between free- and forced-vibration experiments, Hover et al.

(1997, 1998) used a force-feedback testing apparatus. Their system involved measuring the

instantaneous forces on an oscillating cylinder, using these results in a numerical simulation

of an equivalent mass-damper-spring system, and then finally driving the cylinder to the

position predicted by the simulation. The process was then repeated for a long enough

time to allow for a large number of oscillation cycles to be completed. Besides showing the

resultant amplitude, frequency, force coefficients, and phase angles, they also produced a

plot showing excitation contours (which shows the direction of energy transfer between the

cylinder and fluid stream).

An important question involves how much of the results from forced-vibration tests

can be applied to free-vibrations and thus predict naturally occurring VIV. The differences

between free- and forced-vibrations are numerous. Free-vibration tests almost always involve

generating the response profile by spanning all tunnel velocities of interest, which means

that each point is at a different Reynolds number. On the other hand, forced-vibration

tests look at the response profile by varying the amplitude and frequency of oscillation at a

constant tunnel velocity, and thus a constant Reynolds number. Also, free-vibration tests

are driven by a coupling between the wake and body motion, each affecting the other, and

therefore the response depends not only on the present state but also on past states. The

resultant motion varies in both amplitude and frequency over time. Forced-vibration tests

involve driving the cylinder at a predetermined constant amplitude and frequency with no

possibility for the wake to affect the motion. The cases are clearly not the same, therefore

the important question is what, if anything, can one obtain from a forced-vibration test

that can be applied to predict free-vibration behavior.

If the system parameters are such that the amplitude and frequency fluctuations are

small, and thus the motion is well approximated by a constant amplitude and frequency
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sine wave, then the measured forces from a forced-vibration test will compare reasonably

well to results from a free-vibration test. This will be true as long as the tests match

the Reynolds number and geometry arrangement, among other things. However, these

limitations greatly restrict when such a strategy can be used. For instance, “beating” is

usually observed at the initial onset of the response for all systems and certain systems

have amplitude variations throughout their response range of around 10 percent. Using

force measurements from constant amplitude and frequency forced-vibration experiments

will not be able to reproduce such complicated motions.

In an attempt to reproduce large fluctuating motions more accurately, Morse and

Williamson (2006) split the continuous response from a free-vibration test into two sep-

arate response behaviors, one that had response characteristics of the upper branch and the

other had lower branch response characteristics. They then noted that they could produce

similar force and phase angle results by conducting two separate forced experiments, one at

each of the average amplitude and frequency values of the upper and lower branches. While

this result suggests an interesting way to attempt to use forced-vibration experiment data in

regions that display variations between two dominant states, there are still problems. First,

one does not know when the free-vibration response would move from one state toward the

other. And second, as the free-vibrations system moves between states, one does not have

any force or phase angle information for these transients. Even if one attempted to perform

a time-varying amplitude and frequency forced-vibration test, the results could very likely

not be applicable to free-vibrations. In free-vibrations, there is a coupling between the

cylinder motion and the wake. Slight changes to the cylinder motion will cause changes

to the wake, which in turn alters the motion of the cylinder. However, in forced-vibration

tests, the cylinder affects the wake but the wake cannot affect the cylinder. Any changes in

the wake have no influence on the motion.

1.4 Connection to Two-Degree-of-Freedom Free-, Forced-,

and Simulated-Vibrations of Cylinders

Since most naturally occurring VIV involves a two-degree-of-freedom geometry, there has

been an extensive amount of experimental work done involving such systems. Moe and Wu

(1990) and Sarpkaya (1995) each did free-vibration studies on unmatched masses and natural
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frequencies in the two directions of freedom. Jauvtis and Williamson (2003, 2004) did free-

vibrations studies on a pendulum system, which allowed for matched masses and natural

frequencies in the two directions of freedom. Vandiver and Jong (1987) and Vandiver (1993)

have carried out field and laboratory tests of cable dynamics. Tests on a flexible cylinder

exposed to vertically sheared flows were conducted by Marcollo and Hinwood (2006). Work

at high Reynolds number, using various arrangements, including a two-degree-of-freedom

pinned beam, has been carried out by Triantafyllou et al. (2003). There has even been two-

degree-of-freedom forced-oscillations, carried out by Jeon and Gharib (2001) where they

restricted the motion to be a figure-eight pattern.

There is an enormous body of computational work involving VIV, much of it involving

two-degree-of-freedom vibrations. However, due to the limitations that a direct numerical

simulation (DNS) puts on Reynolds number, almost all of these are for systems with Re ≈

O(102). Blackburn and Karniadakis (1993) and Blackburn and Henderson (1996) simulated

both free- and forced-vibrations in two dimensions using a 2D DNS code. Mittal and Kumar

(1999) did similar studies while Newman and Karniadakis (1996, 1997) explored two-degree-

of-freedom flexible cables using a 3D DNS code. Zhou et al. (1999) used a 2D vortex-in

cell (VIC) code to simulate their two-degree-of-freedom system. Finally, Singh and Mittal

(2005) spanned a wide range of low Reynolds numbers using a 2D DNS code. In order to

simulate higher Reynolds numbers, some researchers have used RANS methods, such as

Guilmineau and Queutey (2004), and LES methods, such as Zhang and Dalton (1996) or

Al-Jamal and Dalton (2004).

Due to the extra degree of freedom, two-degree-of-freedom VIV motion has the potential

to be governed by a much larger number of important parameters. The complicated two-

dimensional motion that two-degree-of-freedom systems can take compared to the straight-

line motion of a one-degree-of-freedom system is another difficulty. These are some of the

reasons why many investigations of VIV have used the most basic system, a one-degree-

of-freedom rigid cylinder. It is hoped that what has been learned from such idealized

situations can be extended to the more complicated two-degree-of-freedom arrangements.

However, because of these extra complications, there is a possibility that only some of the

results from one-degree-of-freedom tests can be applied to the more realistic, two-degree-of

freedom situations.

Because there is a large amount of variability in the predicted amplitudes of even one-
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degree-of-freedom simulations, we will not attempt to include simulation results in our

discussion. There is another reason as well that is worth noting. We attempt to determine

if, or under what conditions, we can use one-degree-of-freedom results to predict naturally

occurring two-degree-of-freedom VIV. For this prediction to succeed, the Reynolds numbers

of the two situations must be matched. However, naturally occurring VIV usually involves

Reynolds numbers that are orders of magnitude higher than the low Reynolds numbers

that simulations are capable of, making the simulation results very limited for predictive

purposes.

Due to the complicated non-linear behavior of the fluid system, the motions in each

direction of a two-degree-of-freedom system are not independent of each other. The past

motion of the cylinder will affect the nature of the flow around the cylinder, including the

separation points, correlation length, and pressure distribution, which will in turn affect

the motion of the cylinder (Moe and Wu, 1990). Therefore, we must determine under

what conditions two-degree-of-freedom systems have similar behavior to the idealized one-

degree-of-freedom systems. It appears that if the system natural frequencies are matched

in each direction, then the resultant transverse component of the two-degree-of-freedom

motion is very similar to the one-degree-of-freedom results. In fact, Jauvtis and Williamson

(2004) also matched the mass ratios in each direction and found almost identical transverse

component behavior when compared to one-degree-of-freedom results. This included seeing

the same distinct branches and corresponding wake structures, down to a mass ratio as low

as m∗
tr ≈ 6. When Sarpkaya (1995) only matched the natural frequencies, he saw about a

20 percent increase in maximum amplitude and response range. Triantafyllou et al. (2003)

ran one- and two-degree-of-freedom tests on the same system at high Reynolds number and

observed the same response trends in both cases. However, when the natural frequencies

are not matched (Moe and Wu, 1990; Sarpkaya, 1995), the distinct response branches are

no longer seen and the maximum amplitude occurs at a much higher reduced velocity value.

Also, even for cases with matched masses and natural frequencies, if the nondimensional

mass drops below m∗
tr ≈ 6, then new branches and wake states exist and the response region

around the large amplitude portion is fundamentally different. Finally, the wake dynamics

behind flexible cylinders is different enough such that results from one-degree-of-freedom

tests cannot be used as pointed out by Vandiver and Jong (1987) and Marcollo and Hinwood

(2006).
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1.5 Thesis Layout

Chapter 2 first covers the basic topics associated with bluff-body separated flow, for both

stationary and oscillating cylinders. In the second part of the chapter, we introduce and

discuss how the relevant parameters for an oscillating cylinder are nondimensionalized in

two different formulations.

Chapter 3 begins by explaining the experimental setup of our VIV system. The middle

part of the chapter describes the various pieces of equipment that were used to acquire our

results. The final part of Chapter 3 covers different exploratory tests that were done to

ensure that unwanted effects were not distorting our results.

Chapter 4 is a general chapter that covers a broad range of VIV behavior. A sample of

some basic results are presented so that different parameter formulations can be compared.

Next, the complex time-varying motion of a VIV system is highlighted by examining both

the amplitude and frequency responses as well as the wake structure. We also look at

limiting structural parameters, the system singularities they cause, and the interesting

behavior that results. Finally, we show and discuss the interesting fact that damping and

Reynolds number have similar effects on the amplitude and frequency response profiles of

our system.

Chapter 5 deals specifically with understanding the maximum amplitude that a VIV

system can have. Previous work on the subject is discussed, followed by theoretical pre-

dictions, and then current results are presented. Next, the idea of limiting amplitudes, as

damping tends toward zero, are discussed. Finally, some of our results are further explored

with flow visualization.

Chapter 6 deals with exploring the individual cycle-by-cycle motions of a VIV system

and the interesting discontinuous behavior that it allows one to observe. The first part of the

chapter looks at two different hysteresis regions and explores how damping and Reynolds

number affect their existence. The second part of the chapter deals with purely transient

VIV behavior induced by either changing the flow velocity or system damping.

Chapter 7 is the final chapter and is a summary of the important results presented in

this thesis along with recommendations for future work.
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Chapter 2

Theory and Parameters

2.1 Chapter Overview

In this chapter we develop some of the mathematical theories governing VIV as well as

introduce all the relevant parameters. We start in Section 2.2 by describing the character-

istics of bluff-body flows and one parameter that control such flows, the Reynolds number.

We discuss the connection with a stationary cylinder and introduce two more important

parameters, the Strouhal number and lift coefficient, in Section 2.3. In Section 2.4 we de-

scribe the various wake structures behind an oscillating cylinder. We then move into our

specific problem formulation and develop our governing equation of motion in Section 2.5.

We briefly discuss two common models used to predict VIV behavior in Section 2.6. Next,

we define the parameters that have traditionally been used to study VIV in Section 2.7,

and the parameters we prefer to use in Section 2.8. In Section 2.9 we connect these two

formulations. Finally, in Section 2.10 we introduce a new parameter, the effective stiffness,

that appears in our formulation, and discuss this parameter in Section 2.11.

2.2 Bluff-Body Flows

A bluff body is any non-streamlined shape. Since few objects are actually streamlined,

with the exception of airfoils at modest angles of attack, almost all objects are bluff bodies.

One of the consequences of being a bluff body is that, above a certain Reynolds number,

a low-pressure region develops behind them due to the flow separating as it moves around

the body. This type of behavior is controlled by the Reynolds number, which is perhaps

the most important parameter in fluid mechanics.
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The Reynolds number, Re, is a measure of the inertial effects to the viscous effects of

the fluid. The Reynolds number is defined as

Re =
ρ`U

µ
, (2.1)

where ρ and µ are the fluid density and dynamic viscosity, ` is the characteristic length

scale of the flow, and U is the fluid velocity. One of the reasons that the Reynolds number

is so important is that its value determines the type of flow around a bluff body.

For a stationary circular cylinder, there is a stagnation line at the leading face of the

cylinder for all Reynolds number. However, the behavior of the boundary layers wrapping

around both sides of the cylinder depends on the value of the Reynolds numbers (Taneda,

1956). For Re . 5 these boundary layers remain attached and meet at the back edge of the

cylinder, forming a second stagnation point. For higher Reynolds number, these boundary

layers will separate and the vorticity in the free shear layers produced from their separation

rolls up into vortices and is convected downstream in the wake. For 5 . Re . 40 these

vortices are steady and the wake is symmetric. For 40 . Re . 180 the wake becomes

unstable, remains two dimensional, and the classical Kármán vortex street is formed where

vortices are periodically shed from alternating sides of the cylinder. For 180 . Re . 1000

the stationary cylinder wake becomes three dimensional (Williamson and Roshko, 1988).

For Re & 1000 the shear layers are turbulent. The actual Reynolds number that these

various transitions occur at can be affected by the aspect ratio of the cylinder (Norberg,

1994).

2.3 Stationary Cylinder Considerations

There has been a great deal of work done on measuring various parameters of a stationary

cylinder. Two of the most important ones are the frequency at which vortices are shed into

the wake and the fluctuating lift coefficient.

Strouhal, while studying the Aeolian tones produced by wind passing over a wire, de-

veloped a nondimensional parameter relating the observed vortex shedding frequency, flow

velocity, and wire diameter. This nondimensional frequency at which the vortices are shed
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Figure 2.1: Strouhal number, St, dependence on Reynolds number, Re. Figure and refer-
ences from Norberg (2001).

into the wake is known as the Strouhal number

St = fshed
D

U
, (2.2)

and is obtained by nondimensionalizing the observed vortex shedding frequency, fshed, with

the cylinder diameter, D, and free-stream velocity, U . The Strouhal number dependence

on Reynolds number has been investigated (Norberg, 2001) and can be seen in Figure 2.1.

In this thesis, when the Strouhal number relationship, Equation (2.2), is used to estimate

the vortex shedding frequency, then this resultant calculated shedding frequency will be

denoted as fSt. Although at times the Strouhal frequency is used by some to characterize

the vortex shedding frequency of both stationary and oscillating cylinders, we restrict the

use of the term Strouhal frequency to refer to the shedding frequency of only a stationary

cylinder.

A stationary cylinder, or similar bluff object, will experience a force due to its interaction

with the fluid moving past it. This force can be decomposed into two orthogonal compo-

nents, one in the direction of the flow path, called the drag force, and one transverse to the
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Figure 2.2: Root-mean-square fluctuating lift coefficient, CL
′ for a stationary circular cylin-

der as a function of Reynolds number, Re. Figure and references from Norberg (2001).

flow path, called the lift force. This leads to an important parameter, the nondimensional

lift force, known as the lift coefficient,

CL =
FL

1
2ρaU2

, (2.3)

and is obtained by nondimensionalizing the lift force, FL, with the fluid density, ρ, charac-

teristic area of the body, a, and free-stream fluid velocity, U . This is a general definition

that is used for any body shape.

For a stationary circular cylinder, even though there is periodic shedding from alternat-

ing sides of the body, due to symmetry, the time-averaged lift coefficient is zero. Instead,

the fluctuating lift is of interest. Like the Strouhal number, this fluctuating lift also shows

a dependence on Reynolds number. Norberg (2001) experimentally measured this fluctuat-

ing lift on a circular cylinder and his results are shown in Figure 2.2. This fluctuating lift

coefficient is defined as

CL
′ =

2FL
′

ρD`cU2
, (2.4)

where FL
′ is the root-mean-square lift fluctuations which act on a cylinder with diameter D

and spanwise segment of length `c. The other parameters where defined in Equation (2.3).
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2.4 Oscillating Cylinder Wake Structure

For a stationary cylinder with Re & 40, the wake takes on only one general structure, the

classic von Kármán vortex street. This involves the shedding of opposite signed vortices from

alternating sides of the body into the wake. These structures are convected downstream

by the flow and eventually are dissipated away. The three dimensionality and stability of

this wake structure are controlled by the Reynolds number. However, if the body is now

allowed to oscillate transverse to the flow direction, various other structures in the wake are

possible. These various wake structures were investigated and reported by Williamson and

Roshko (1988). In that work, they present a map of the amplitude and frequency space for

the forced oscillations of a cylinder and show the wake structure that is present for a given

oscillation amplitude and frequency at the Reynolds number they investigated. The wake

structures are labeled based on the number of vortices shed per cycle. For example, a 2S

wake structure involves two single vortices shed per cycle and a 2P wake structure involves

two pair of vortices (four total vortices) shed per cycle. There can be combinations of these

single and pair vortices, for example S+P, which involves a single and a pair of vortices

shed per cycle. The map that Williamson and Roshko produced has become known as

the Williamson-Roshko plane (WR-plane, henceforth). The full plane space can be seen in

Figure 2.3 and a detailed view of the 2S and 2P regions, which, as we will see, are important

in VIV, can be seen in Figure 2.4.

2.5 Governing Equation

The canonical arrangement for the study of VIV has been the elastically-mounted, rigid

circular cylinder in cross-flow that is restricted to motion only in the transverse direction.

Consider such a system, as shown in Figure 2.5, with the structural side characterized with

mass, m, damping, b, and elasticity, k. The fluid side of the system is characterized by the

free-stream fluid velocity, U , and fluid properties of density, ρ, and dynamic viscosity, µ.

The characteristic length scale for the system is the cylinder diameter, D.

The system shown in Figure 2.5 is a classical forced mass, damper, spring system with

the fluid supplying the forcing term. Such a system has a well-known governing equation

of motion given by

mÿ + bẏ + ky = FL , (2.5)
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Figure 2.3: Full Williamson-Roshko plane mapping of the various possible wake structures
behind the forced oscillations of a circular cylinder. Figure and parameter definitions from
Williamson and Roshko (1988).
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Figure 2.4: Detailed Williamson-Roshko plane mapping of the 2S and 2P wake structures
behind the forced oscillations of a circular cylinder. Figure and parameter definitions from
Williamson and Roshko (1988).

Figure 2.5: Canonical arrangement for the study of vortex-induced vibrations (VIV).
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where y, ẏ, and ÿ are the displacement, velocity, and acceleration in the cross-flow direction

and all the parameters are currently dimensional. The fluid forcing term is labeled FL since

only the lift component of the fluid force contributes to the motion. Using the definition of

the lift coefficient, Equation (2.3) in Section 2.3, one can rewrite Equation (2.5) as

mÿ + bẏ + ky =
1
2
ρaU2CL . (2.6)

Various nondimensional groups have been used in previous studies to nondimensionalize the

equation and those groups will be discussed in Sections 2.7 and 2.8.

2.6 Various Vortex-Induced Vibration Response Models

At the core of modeling VIV, one must determine a relationship between the time-varying

lift coefficient, CL(t∗), and its dependence on various parameters, such as Reynolds number,

Re, cylinder displacement, Y ∗, velocity, Ẏ ∗, and acceleration, Ÿ ∗. This relationship could

then be combined with the governing equation of motion, Equation ( 2.6), to solve for

the amplitude and frequency behavior of the system. However, the dependence of the

lift coefficient on these parameters is quite complex and the functional relationships are

unknown. Many researchers have attempted to reproduce VIV behavior by using various

simplified lift coefficient models. We discuss two of the most commonly used models.

One type of simplified model is the amplitude-dependent lift model described by Blevins

(1994). This model involves a sinusoidal form for the time-varying lift coefficient so that

CL(t∗) = CL,o sin(ωStt
∗) , (2.7)

where CL,o is the amplitude of the sinusoidal lift, the frequency of forcing is at the Strouhal

frequency, ωSt = 2πfSt, and t∗ is the nondimensional time. The cylinder amplitude depen-

dence is captured in the lift amplitude term through a relationship of the form

CL,o = α + βA∗ + γA∗2 , (2.8)

where α, β, and γ are fitting parameters and A∗ is the nondimensional cylinder oscillation

amplitude in the cross-flow direction. Although with an appropriate choice of α, β, and γ
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the model can capture the experimentally seen behavior, as tunnel velocity is continually

increased, of initially increasing lift followed by a decrease back down to zero near the

resonant condition, there are still many problems with the model. The first is that the

frequency cannot be modeled as a constant value if one hopes to capture the full range of

behavior. The oscillation frequency varies throughout the response range and the extent of

its deviation from the natural frequency is controlled by the nondimensional mass of the

system. Also, the parameters α, β, and γ need to at least be functions of Reynolds number,

and likely more parameters as well.

The second type of model is the wake-oscillator model in which one usually uses a van

der Pol type equation for CL(t∗) that has correct limit-cycle behavior for the fluid force of a

stationary cylinder. The affinity for the van der Pol type equation results from the fact that

it describes self-sustaining oscillations in which small oscillations fed energy into the system

and large oscillations remove it, both of which are believed necessary in a model trying to

accurately predict VIV. One of the most comprehensive of such models was constructed

by Skop and Balasubramanian (1997). Their improvements to previous models involved

adding an additional damping term to the fluid force model. This allowed them to obtain

reasonable results in the limiting case of structural damping. However, all models of this

type are problematic for low mass because in the limiting case of zero mass, the fluid force

is identically zero for all time, but cylinder motions of substantial amplitudes still occur.

Another problem with these types of models is that the constants appearing in the van der

Pol equation depend on the actual system parameters, instead of only depending on the

flow.

2.7 Traditional Formulation

Early studies of VIV involved nondimensionalizing the various parameters independently

of each other and not necessarily in a consistent manner. We will refer to these resul-

tant nondimensional parameters as the traditional parameters. The system mass, m, was

nondimensionalized using the physical concept of the displaced fluid mass. This made the

nondimensional mass term

m∗
tr =

m
π
4 ρLD2

, (2.9)
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where L is the wetted length of cylinder and the other parameters have been previously

defined.

The system damping, b, was nondimensionalized using the approach that is taken in

classical forced vibrations analysis. In such an analysis, the system value 2
√

mk compared

to b controls the type of system response and is thus termed the “critical” damping value

(since it has units of damping). The damping is then nondimensionalized using this critical

damping term. This approach was applied to the traditional formulation parameters and

meant that the nondimensional damping term was given by

ζ =
b

2
√

mk
=

b

2mωN
, (2.10)

where ωN =
√

k/m is the natural angular frequency of the system in air. It is interesting

to note that even the same symbol, ζ, that is used in classic vibration analysis, was used in

the traditional formulation.

The elasticity, k, of the system was not explicitly nondimensionalized in this traditional

approach. Instead, the free-stream tunnel velocity was nondimensionalized in a manner that

was convenient for conducting experiments (since tests were carried out by spanning tunnel

velocities of interest, this allowed the direct nondimensionalization of those velocities). This

lead to the creation of a parameter called the reduced velocity, UR, defined as

UR =
U

ωND
. (2.11)

Although these three nondimensional groups have been presented as ad hoc parameters,

some of the rational for there use can be seen by defining a nondimensional position and

time as

Y ∗ =
y

D
, (2.12)

τ = ωN t . (2.13)

Using this scaling for time results in the time derivatives being nondimensionalized as

d

dt
=
(

d

dτ

)(
dτ

dt

)
= ωN

d

dτ
, (2.14)
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by making use of the chain rule of differentiation. By substituting Equation ( 2.12) and

Equation (2.14) into Equation (2.6) one gets

mDωN
2Ÿ ∗ + bDωNẎ ∗ + kDY ∗ =

1
2
ρLDU2CL , (2.15)

where the time derivatives, (˙), are now in terms of the nondimensional time, τ , and the

characteristic area, a, is the wetted area of the circular cylinder, the product of diameter,

D, and wetted length, L. By reorganizing terms and noting that ωN =
√

k/m, one can

obtain

Ÿ ∗ +
b

mωN
Ẏ ∗ + Y ∗ = CL

(
1
2ρLD2

m

)(
U

ωND

)2

, (2.16)

where the previously defined terms in Equation (2.9), (2.10), and (2.11) can be seen. By

noting these previously defined terms, one can rewrite Equation (2.16) in these traditional

parameter groups

Ÿ ∗ + 2ζẎ ∗ + Y ∗ =
2
π

UR
2

m∗
tr

CL , (2.17)

where the 2/π factor must be introduced because of the incompatible definition of m∗
tr

previously.

The response parameters in the traditional formulation follow logically from the previous

scaling of time and space. In a consistent manner to how the position was nondimension-

alized in Equation (2.12), the nondimensional amplitude response is

A∗ =
A

D
, (2.18)

where A is the amplitude of the system oscillations. Since time was nondimensionalized with

the system natural frequency in Equation (2.13), the nondimensional frequency response of

the system is

f∗
tr =

f

fN
, (2.19)

where fN is the system natural frequency and ωN = 2πfN.

This formulation gives the governing equation of motion in terms of the traditional

parameters of m∗
tr, ζ, and UR. A problem with the traditional formulation is that the

characteristic length and time scales lack any connection to the fluid side of the system.

The parameters of time, frequency, damping, and even the fluid velocity, are nondimen-
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sionalized with the structural system properties of mass and elasticity. This also causes

the nondimensioal parameters to break down and become undefined in the case of limiting

structural parameters such as no mass or elasticity. This will be discussed more in detail in

Section 4.6.

2.8 Effective Stiffness Formulation

Instead of using the structural system natural frequency to scale time, we prefer to use

a fluid mechanics approach in a manner consistent with the Strouhal frequency, St (see

Section 2.3). This means that we nondimensionalize time by

t∗ = t
U

D
, (2.20)

using a fluid time scale. Identical to the traditional formulation, Equation (2.12), we use

the characteristic length scale D to nondimensionalize position

Y ∗ =
y

D
. (2.21)

By taking such an approach, the time derivative is scaled by

d

dt
=
(

d

dt∗

)(
dt∗

dt

)
=
(

U

D

)
d

dt∗
, (2.22)

so that only the fluid velocity and characteristic length scale are needed, there is no connec-

tion to the structural mass-damper-spring system. In essence, the time scale of our problem

is the fluid time scale, not the structural oscillation time scale. By following Shiels (1998)

or Gharib (1999) and substituting Equation (2.21) and Equation (2.22) into Equation (2.6)

one gets

mD

(
U

D

)2

Ÿ ∗ + bD
U

D
Ẏ ∗ + kDY ∗ =

1
2
ρLDU2CL , (2.23)

where the time derivatives, (˙), are now in terms of the nondimensional time, t∗, and the

characteristic area, a, is again the wetted area of the circular cylinder. By simplifying terms

and dividing by the necessary right-hand-side terms so that only CL remains, one gets

m
1
2ρLD2

Ÿ ∗ +
b

1
2ρLDU

Ẏ ∗ +
k

1
2ρLU2

Y ∗ = CL , (2.24)
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where each of the terms is a nondimensional group. Logically naming each nondimensional

group allows one to rewrite Equation (2.24) in these parameter groups

m∗Ÿ ∗ + b∗Ẏ ∗ + k∗Y ∗ = CL , (2.25)

where all the parameter groups are purely mathematically derived groups. For clarity, these

groups are restated. The nondimensional mass, m∗, is

m∗ =
m

1
2ρLD2

, (2.26)

the nondimensional damping, b∗, is

b∗ =
b

1
2ρLDU

, (2.27)

and the nondimensional elasticity, k∗, is

k∗ =
k

1
2ρLU2

, (2.28)

and it should be noted again that only the fluid velocity, U , and density, ρ, and characteristic

length scale of the flow, D, are needed to nondimensionalize all quantities. Our lift coefficient

is defined in a consistent manner to Equation (2.3) such that

CL(t∗) =
FL(t∗)

1
2ρLDU2

. (2.29)

Of particular interest is the response of the system, characterized by the nondimensional

amplitude, A∗, and frequency, ω∗, which we define as

A∗ =
A

D
, (2.30)

and

ω∗ = ω
D

U
, (2.31)

where we have maintained our consistent nondimensionalization so that only the tunnel

velocity, U , and characteristic length, D, are used.
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2.9 Formulation Comparison

It should be noted that the two formulations, traditional and effective stiffness, are not

incompatible. In fact, one can go between the various parameters in the following manner

m∗ =
π

2
m∗

tr , (2.32)

b∗ =
(

π

UR

)
m∗

trζ , (2.33)

k∗ =
(π

2

) m∗
tr

UR
2 . (2.34)

The mass and damping are obviously very important parameters in VIV systems. However,

there has been much debate over the past quarter century, as pointed out by Sarpkaya

(2004), regarding whether they each act independently, or in combination, in the form of a

“mass-damping” parameter, m∗ζ. This question appears to be answered by looking at the

parameter formulation comparison. The mass term acts independently. However, the indi-

vidual damping term, ζ, in the traditional formulation is simply poorly nondimensionalized

since it needs to be combined with the mass to be meaningful in this problem. This can be

seen by noting what the equivalent parameter to our b∗ is in terms of the traditional for-

mulation parameters. Our b∗ term requires both the mass, m∗
tr, and damping, ζ, as well as

the additional factor of 1/UR when written in terms of traditional formulation parameters.

Another important difference between the damping terms is that the traditional formula-

tion damping term, ζ, is a constant for a given system but the effective stiffness formulation

damping term, b∗, varies for a given system during a test. This is because all of our tests will

involve spanning the fluid velocities of interest and b∗ contains the fluid velocity whereas ζ

only contains structural parameters of the system. Therefore, to establish a damping value

for a given system when using the effective stiffness formulation, we will use b∗|A∗
Max

, the

system damping value at the maximum amplitude.

2.10 Effective Stiffness Parameter

Although the full behavior of VIV cannot be accurately captured using a constant amplitude

and frequency sinusoidal forcing term, the behavior of a single test point experiencing

sufficient amplitude, can be reasonably approximated by just such a forcing term. If we
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make this assumption for the lift coefficient, CL, we have

CL = CL,o eiω∗t∗ , (2.35)

and we would expect resultant sinusoidal motion of the form

Y ∗ = A∗eiω∗t∗ . (2.36)

Upon substitution of Equation (2.35) and Equation (2.36) into the nondimensional equation

of motion Equation (2.25) one obtains

(−m∗ω∗2 + iω∗b∗ + k∗)A∗ = CL,o , (2.37)

where one can see that two real terms and one imaginary term exist. If we group real and

imaginary terms separately,

(
[−m∗ω∗2 + k∗] + i[ω∗b∗]

)
A∗ = CL,o , (2.38)

we see that the real part of the equation, the mass and elasticity of the system, could be

combined into a single parameter. We call this parameter the effective stiffness, k∗eff , of the

system, that is,

k∗eff = −m∗ω∗2 + k∗ . (2.39)

The name of the parameter comes from the fact that the dimensional equivalent of the

parameter would have units of stiffness, hence effective stiffness.

This led to the proposal by Shiels et al. (2001) that for an undamped system (b = 0),

the motion of the system is simply controlled by

k∗effA∗ = CL,o , (2.40)

and the idea was also extended to a system with damping, so that the motion of the system

is then controlled by

(k∗eff + iω∗b∗)A∗ = CL,o . (2.41)

It should be noted that this is a mathematical construct and is not guaranteed to be
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a useful parameter. An assumption was made about the sinusoidal lift coefficient which

allowed the parameters to be grouped into the real and imaginary terms that govern the

motion. Mathematically speaking, in terms of phase, grouping the real (in-phase) terms

as a single entity, separate from the imaginary (out-of-phase) terms, makes sense. In a

physical sense, one might argue that since the mass and elasticity of the system are in

phase, the fluid system cannot tell whether it is forcing a massive, very stiff system or a

lightweight system, with soft springs. However, until this parameter is used to unify actual

experimental data, its usefulness is uncertain.

2.11 Comments on the Effective Stiffness Parameter

At first it may appear that one does not have enough control over the effective stiffness

parameter in order to make sure that all the values of interest are spanned. In most

experiments, the traditional parameter that most results are plotted against is the reduced

velocity, UR. It is easy to see the direct linear connection between actual tunnel velocity

and reduced velocity. In order to span the UR space, one only needs to span the available

tunnel velocities. However, that same result holds for the effective stiffness parameter; all

values of interest can be spanned by simply spanning the available tunnel velocities. To

understand this, it is helpful to write the effective stiffness in a different form

k∗eff =
1

U2

(
−ω2D2m∗ +

2k

ρL

)
, (2.42)

which highlights the connection between the effective stiffness and tunnel velocity. Because

D, m∗, k, ρ, and L are constant during an experiment and ω is bounded, changes in the

effective stiffness are strongly connected to changes in the tunnel velocity. Therefore, in

general, as the tunnel velocity is increased, the value of the effective stiffness will decrease.

As long as a wide enough range of tunnel velocities are spanned, the necessary range of

effective stiffness values will be covered.

The application of the effective stiffness parameter involves knowing the value of the

elasticity of your system quite accurately. However, measuring the system elasticity, or

each spring stiffness directly, with the necessary accuracy, is quite complicated. Instead,

our experimental configuration allows for a simple, direct, and accurate measure of the
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natural frequency of the system in air. Therefore, it is advantageous to write Equation

(2.39) in a form involving the natural frequency of the system instead of the elasticity. This

can be done by factoring out the nondimensional mass, m∗, and noting that ωN
2 = k/m,

to write

k∗eff = m∗
(
ω∗

N
2 − ω∗2

)
, (2.43)

which eliminates the need to know the elasticity directly. The form of Equation (2.43) also

highlights the importance of being able to accurately measure frequencies as well as the

influence that mass has on the effective stiffness value. There is a region of the response

curve, near the maximum amplitude point, where the system oscillation frequency passes

through the system natural frequency. Therefore, there exists a response region of interest,

due to its proximity to the maximum amplitude location, where the two frequencies are

extremely close and an accurate measurement of both frequencies is necessary. The nondi-

mensional mass of the system will effect just how close the system remains near the natural

frequency during the majority of its response behavior (Govardhan and Williamson, 2002).

The nondimensional mass will also directly effect the effective stiffness, as can be seen in

Equation (2.43). The value of the difference between the natural and oscillation frequen-

cies is scaled by the nondimensional mass. Therefore, the slight error in the measurement

of either frequency is exaggerated by the value of the mass. Therefore, from the point of

getting extremely accurate effective stiffness values, one prefers a system with a low natural

frequency (so that the oscillation and natural frequencies can be measured very accurately)

and a small nondimensional mass (so that any error in the frequency difference is scaled by

as small a quantity as possible).
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Chapter 3

Experimental Setup and Test
Procedures

3.1 Chapter Overview

In this chapter we discuss the experimental test facility and laboratory equipment used. We

also show and comment on results from studies that explored the boundary layer influence,

cylinder end effects, and starting method of cylinder oscillation dependence. All experi-

mental work was performed in the Noah water tunnel, described in Section 3.2, which is

located in the Guggenheim building of the Graduate Aeronautics Laboratory at the Cali-

fornia Institute of Technology (GALCIT). The main experimental setup was positioned on

top of the test section of the water tunnel and consisted of a traversing plate mounted on

air bearings with adjustable mass and elasticity, described in Section 3.3, and adjustable

damping provided by a variable magnetic eddy-current (VMEC) damping system, described

in Section 3.4. In Section 3.5 we describe the various circular cylinders that were attached

to the traversing plate and suspended downward into the test section. Various data and vi-

sualization recording equipment was used to collect and store the results from each test. In

Section 3.6 we describe the methodology and arrangement of a linear variable displacement

transducer (LVDT). Two different flow diagnostic tools were used for various portions of

this study, digital particle image velocimetry (DPIV), described in Section 3.7, and dye flow

visualization, in Section 3.8. Next, our general test procedure is explained in Section 3.9,

and in Section 3.10 we give the parameter values of all the system configurations we used. In

Section 3.11 we briefly discribe how we obtained our amplitude and frequency results from

the LVDT. Finally, we validate our experimental setup and test methodology by looking
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for any cylinder end effects and boundary layer effects in Section 3.12 and any dependence

on the starting method of the cylinder motion in Section 3.13.

3.2 Noah Water Tunnel

The Noah water tunnel is a low-velocity, free-surface water tunnel facility and can be seen

in Figure 3.1. The water tunnel consists of a large settling chamber with two sections of

honeycomb, two metal grids, and four screens of increasing fineness. This is followed by

the contraction section of the tunnel which has a ratio of approximately 9 to 1. The test

section is 45.75 cm (18 inches) wide, 60 cm (22 inches) deep and 150 cm (60 inches) long.

The test section is made of glass and allows for the flow to be viewed from either side, as

well as the bottom. The test section can be seen in detail in Figure 3.2.

The Noah water tunnel settling chamber includes four custom-made screens. The screen

frames were rectangular in shape measuring 1.85 m (6.1 ft) across and 0.61 m (2.0 ft) tall.

They were made of PVC and had a beveled edge around the outside that allowed them to

be set into grooves in the walls of the water tunnel. The screens were made of stainless steel

wire mesh and were aligned in the tunnel to have increasing mesh fineness (24 x 24 mesh

first, then 28 x 28 mesh, then 32 x 32 mesh, and finally 36 x 36 mesh) in order to destroy

successively smaller structures in the flow. For this wire mesh, the mesh number referred

to the number of stainless steel wires per inch. The screens were made with a small enough

diameter wire so that the Reynolds number, based on mesh wire diameter, for the fastest

flow of the tunnel, would not be above about 30. This ensured that vortex shedding around

the wires would be avoided.

The tunnel has a minimum velocity of 3.33 cm/s and a maximum velocity of approxi-

mately 50 cm/s. The test section was visually unsteady, the appearance of standing waves

were visible in the test section, during high velocities (U & 35 cm/s) and consequently

no tests were preformed at velocities above this. For the velocities used in this study, the

free-stream turbulence level on the centerline was below 0.5 percent. A LabView program

controlled the voltage supplied to the motor as well as when that voltage was changed and

when cylinder oscillation data was recorded. The test section velocity was calibrated using

DPIV that was performed without any cylinder in the test section. By determining the

planar velocity vectors, we not only obtained a calibration curve but verified the uniformity
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Figure 3.1: General layout of the Noah Water Tunnel. The settling chamber is visible on
the left with the contraction in the middle and the test section on the far right. Visible in
front of the test section is the water tunnel motor controller.

Figure 3.2: Detailed view of the Noah Water Tunnel test section. Flow is from left to right
in this view.
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Figure 3.3: Transient response of the tunnel velocity in the test section caused by an extreme
“impulsive” tunnel velocity change, from an initial velocity of 3.33 cm/s to a final velocity
of 35 cm/s, recorded using a Nixon Streamflo velocity meter.

of the flow in two dimensions.

The transient velocity settling time and the natural frequencies in the test section of

the tunnel were explored using a Nixon Streamflow miniature propeller velocity meter. The

velocity meter allowed us to measure the instantaneous flow velocity in the test section. In

order to determine the settling time for the most extreme transient, the tunnel velocity was

increased from its minimum velocity of 3.33 cm/s to its maximum uniform flow operating

velocity of 35 cm/s as quickly as the motor allowed. The transient test section velocity was

recorded using the miniature propeller situated in the middle of the test section. Figure 3.3

shows the recorded transient behavior of the velocity in the test section. The initial part

of the curve represents the tunnel operating at 3.33 cm/s. The steep rise corresponds to

the tunnel velocity “impulsively” increasing to 35 cm/s. Of course, the tunnel could not

instantaneously make the change so the curve represents the motor’s maximum increase.

The final part of the curve shows the final steady velocity of 35 cm/s in the test section.

The oscillatory part of the response right after the sharp increase is the transient response
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Figure 3.4: Power spectrum of frequencies in the test section caused by an extreme “impul-
sive” tunnel velocity change.

of the tunnel. One can see the overshoot of the tunnel velocity and then the sinusoidal

oscillations as the transients die out. As can be seen in Figure 3.3, the settling time for this

large impulsive change is around 60 seconds.

Due to the extreme nature of the tunnel velocity change, we were able to record a

fair number of flow velocity oscillations following the overshoot. This oscillating data was

analyzed by looking at the power spectrum in Fourier space to determine the dominant

frequency of the velocity fluctuations in the test section. The results of this power spectrum

can be seen in Figure 3.4. The dominant frequency of velocity fluctuations is approximately

0.167 Hz, which corresponds to a period of about six seconds.

A more appropriate tunnel velocity transient was also investigated. For all of our tests,

the tunnel velocity was incremented at either 0.25 cm/s or 0.50 cm/s. Therefore, we looked

at the transient velocity response that resulted from an impulsive change of 0.50 cm/s. This

was carried out in the same manner as the extreme transient test. The results for the test

section velocity can be seen in Figure 3.5, which shows a transient settling time of roughly

five seconds for normal operating velocity changes.
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Figure 3.5: Transient settling time for regular operating “impulsive” tunnel velocity changes
of 0.50 cm/s

The water tunnel was periodically filtered using an externally connected filter line. This

line contained a large filter tank that consisted of six Aqua-Tek filters, 5 cm in diameters

and 60 cm in length. A small motor was attached to the filter tank which allowed water to

be moved through the system.

3.3 Traversing Plate with Adjustable Mass and Elasticity

A detailed view of the traversing plate with adjustable mass and elasticity can be seen

in Figure 3.6. The traversing plate consisted of a Plexiglas plate with various mounting

points that rode smoothly on a pair of air bearings. The air bearings served two purposes.

First, they restricted any motion in the direction of the flow, thus ensuring purely one-

dimensional motion transverse to the flow. Second, they allowed for a very small inherent

system damping value. There was a mounting location in the center of the plate that

allowed for the cylinder to be attached and suspended downward into the test section.

Other mounting points on the plate allowed for various masses and springs to be attached
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Figure 3.6: General overview of the traversing plate with multiple stainless steel plates
attached, for varying the system mass, and multiple springs attached, for varying the system
elasticity. Also visible are the LVDT (on the left) and the VMEC damping system (on the
right) as well as a test cylinder, suspended downward into the test section.

to it.

The mass of the system was adjusted by stacking various-sized stainless steel plates

(which contained enough chromium to be nonmagnetic) onto the traversing plate and se-

curing them using sets of bolts, washers, and nuts. These plates were either “large” plates,

with a mass of approximately 310 grams, or “small” plates, with a mass of approximately

90 grams. This can be seen in Figure 3.6 where two large and six small plates are shown

attached. For finer mass adjustments than the small plates allowed, the number of bolts

and nuts used to secure the plates was varied. For very fine mass adjustments, small bolts

and nuts could be attached directly to the traversing plate along with various numbers of

washers. This gave us the ability to control the system mass to within approximately three

grams.

The elasticity of the system was varied by placing springs in parallel. This can be seen

in Figure 3.6 where three springs are attached in parallel to both sides of the traversing

plate. By placing the springs in parallel, the total elasticity of the system was simply the

sum of the stiffness of each spring used. The springs were custom made from long coils of
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metal with diameters between 5 mm and 7 mm obtained from Century Spring Corporation.

This allowed for the stiffness and length of each spring could be controlled. It was found

that long springs had a smaller inherent damping value than shorter springs of the same

stiffness. This is believed to result from the shorter springs being strained more than the

longer springs for the same amount of physical displacement. Therefore, extremely long

springs were desired. However, there is a certain physical spring length, different for each

stiffness, beyond which the spring will sag under the influence of its own weight. Since this

first becomes an issue for the softer springs, this critical length was determined by varying

the length of the softest spring. The critical length turned out to be approximately 25 cm

and then the remaining, more stiff, springs were all made this same length to allow for them

to be easily attached in a parallel fashion. The individual springs used in the study varied

in stiffness from around 6.5 N/m to 75 N/m.

3.4 Variable Magnetic Eddy-Current Damping System

Controlled damping values for the system were made possible through the use of a variable

magnetic eddy-current (VMEC) damping system, inspired by the basic system built by

Smith (1962) and used by Feng (1968) in his study of VIV. The system works on the basic

physical principal that if a conductor is exposed to a changing magnetic flux, an induced

voltage is generated in the conductor. This induced voltage produces eddy currents in the

conductor which generate internal resistive heating and oppose the motion.

The VMEC damping system can be seen in detail in Figure 3.7 and consisted of six

electromagnets and a copper conducting plate. The six electromagnets were identical with

each one made of 1” diameter 1018 steel wrapped in 200 feet of 18 gauge magnet wire.

These magnets were attached to aluminum plates to keep them aligned. The system was

activated using a Kepco power supply with current control to provide the desired current to

the magnet wires. This supplied current, isup, induced a magnetic field which was amplified

by the iron in the steel rods. The conducting plates were copper alloy 110 with thicknesses

of 1/8”, 1/16”, and 1/32”. It was found that the thickness of the conductive plate affected

the amount of imposed damping, the thicker the conductive plate, the more damping that

was achieved. The copper plate was attached to the traversing plate so that it moved in

unison with the cylinder and traversing plate. Thus, the conductive plate oscillated between
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Figure 3.7: General overview of the variable magnetic eddy-current (VMEC) damping sys-
tem. Shown are the three top electromagnets and the copper conducting plate attached to
the traversing plate. The three bottom electromagnets, located underneath the conducting
plate, are not visible.

the pairs of electromagnets and created the changes in magnetic flux that the conductive

plate felt. The six electromagnets were arranged in vertical pairs of two with opposite

polarities facing each other in an attempt to straighten the magnetic field lines and lessen

the dependence on the conducting plate’s location in the gap between the magnets. In

order to generate the higher damping values needed in this study, a strong magnetic field

was needed. Since the apparatus was space limited as well as power supply limited, the

steel rods could not simply be wrapped with an enormous number of coils (magnetic field

strength is proportional to number of coils). Instead, large currents, between one and two

amps, were supplied to the electromagnets.

The possible damping values that can be obtained by the system depend on the amount

of current supplied to the system and thickness of the copper conducting plate used. The

range of values can be seen in Figure 3.8. From the theoritical derivation in Appendix C, the

magnetic damping in our system should vary as i2sup. This predicted functional relationship

is confirmed by the curves in Figure 3.8 which all have the form bmag = Ci2sup where C is a

constant and depends on numerous parameters.
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Linear vibration theory predicts a linear relationship for the free-vibration logarithmic

decay of the system amplitude over time for ideal, linear damping (the derivation can

be found in Appendix B). We show some selected free-vibration natural decay data in

Figure 3.9, which verifies that one gets ideal linear damping from the VMEC damping

system. One particular concern was the overheating of the magnets due to the high currents

that were sometimes supplied and the duration of test runs, some taking almost two days

to complete. This overheating could cause the magnet wires to melt. A series of tests

were undertaken to check for changes in the system damping when the VMEC system was

supplied with a current of around one amp and left on continuously for two days. The

applied damping value was measured multiple times throughout the two days and found

to never vary beyond the uncertainty and repeatability of the measurements. Perhaps one

reason for resistive heating in the magnet wires not being a problem is even though there

is almost a quarter mile of wire in the system, the total system resistance is only 8 ohms,

so even currents of the order of 1 amp do not produce that much resistive heating.

3.5 Cylinder Models and Mounting Collars

Two types of circular cylinders of various sizes were used in this study. The most common

type were smooth hollow pyrex cylinders that were glass blown at Caltech. They all had a

consistent thickness of approximately one millimeter. These cylinders had various diameters

with one open end (the top) and one closed end (the bottom). The other type of cylinder,

which was seldom used, was a solid plexiglass cylinder. All the cylinders had a smooth

rounded bottom, although the curvature slightly changed depending on the actual diameter

of the cylinder. The characteristics of all the cylinders used for the study can be found in

Table 3.1 and seen in Figure 3.10.

The hollow, pyrex cylinders had various diameters and lengths, although the lengths of

all the cylinders were fairly consistent as can be seen in Table 3.1. Attaching the hollow

cylinders to the traversing plate was accomplished by using collars that went around the

top of the cylinders. These collars had bored internal holes that allowed them to fit over the

top of the cylinders. The cylinders were then secured by gluing them into the collar which

made a permanent connection. The top center of the collar was drilled and threaded so

that a bolt could be used to secure it to the traversing plate. The solid plexiglass cylinder,
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Figure 3.8: Available range of imposed magnetic damping values, bmag, possible using the
VMEC damping system as functions of supplied current, isup, and copper conductive plate
thickness.

Figure 3.9: Sample of free-vibration decay curves showing the linear relationship between
the logarithm of amplitude against time for ideal viscous damping.
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Figure 3.10: View of the four basic circular cylinders used for this study.

Figure 3.11: View of the three collars for the hollow cylinders, used to attach them to the
traversing plate, and the collarless solid cylinder.
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D (mm) L (cm) Ltotal (cm) L/D G/D

hollow pyrex
6.0 46.95 67.31 78.25 5.33
10.0 46.65 66.99 46.65 3.50
37.8 46.95 67.31 12.42 0.85

solid Plexiglas
19.3 46.65 66.99 24.17 1.80

Table 3.1: Characteristics of the circular cylinders used in this study.

on the other hand, had a large enough diameter so that an internal hole was drilled and

threaded within the cylinder itself. Then it was mounted to the traversing plate directly

using this threaded hole without the use of a collar. A detailed view of the hollow cylinders

with their collars and the collarless solid cylinder can be seen in Figure 3.11.

3.6 Linear Variable Displacement Transducer

The main data acquisition tool was a DC-750 series linear variable displacement transducer

(LVDT) from MacroSensors. This is a non-contact device that measured the instantaneous

location of the cylinder while providing frictionless operation. This type of LVDT consists

of two cylindrical cylinders, one of which is solid and fits inside the other larger, hollow one.

The hollow outer cylinder contains three co-axially wound solenoids, with the middle one

called the primary coil and connected to an AC voltage. This causes a magnetic field to

be set up in the primary coil, which is linked to the two outer solenoids, called secondary

coils, by the ferromagnetic core of the solid inner cylinder. The magnitude of the voltage in

each secondary coil depends on the position of the inner cylinder relative to each of them.

Both the input (±15 volts) and output (±10 volts) voltages of the LVDT were DC with

the internal circuitry handling the conversion between AC and DC voltages. Therefore, the

output DC voltage was linearly proportional to the location of the inner cylinder. Also, the

sign of the output voltage represented which side of the null position the core was on. By

attaching the inner cylinder to our traversing plate, we were able to record the instantaneous

position of the VIV system.

One major advantage of the LVDT is that it is a non-contact measurement device.

However, the solid inner core fits freely, but closely, to the hollow outer core. Therefore, a
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Figure 3.12: View of the setup for the LVDT system showing the six-degree-of-freedom
mounting stand along with the attachment point to the traversing plate.

six-degree-of-freedom mounting stand was designed so that the two cylinders could be prop-

erly aligned. This mounting stand consisted of optical slides and rotation tables attached

orthogonal to each other. The layout and mounting method for the LVDT can be seen in

Figure 3.12.

3.7 Digital Particle Image Velocimetry

Digital particle image velocimetry (DPIV) allows the determination of a planar group of

velocity vectors by considering the movement of particles in consecutive frames separated by

a short time span. When used with bluff-body separated flows, the velocity field can be used

to determine other flow quantities, such as vorticity, which allows one to investigate and

analyze the wake. For more information regarding DPIV, see Willert and Gharib (1991).

Our DPIV setup involved seeding the tunnel with 40 micron reflective silver particles

that were illuminated by a New Wave Class IV laser. The laser emitted a pulse of wavelength

532 nm and a diameter of approximately 5 mm. The laser was passed through a lens that
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produced a diverging horizontal sheet that was roughly 20 cm wide and 3 mm thick at the

center of the tunnel test section. A timing box, run by the data-logging computer, controlled

the laser externally in order to maintain the appropriate spacing and separation of the

pulses. A Pulnix analog CCD camera with a 35 mm focal length lens was placed underneath

the test section and transferred the images to the data-logging computer. The camera was

positioned so that its full-field view captured the laser sheet from the upstream end of the

cylinder to four diameters downstream. Particle image pairs were digitally analyzed using a

cross-correlation method of subimages (Willert and Gharib, 1991; Westerweel et al., 1997).

The image sizes were 480 x 640 pixels with the interrogation boxes being 32 x 32 pixels,

and the step size was 16 x 16 pixels. The individual calculated velocity and vorticity fields

were then assigned to one of sixteen bins based on the cylinder’s position within a cycle.

These bins were then averaged to eliminate random noise from individual frames.

Two factors limited the effectiveness of our DPIV method. First, since the actual cylin-

der diameter used was rather large (37.8 mm), the corresponding laser sheet needed to be

quite long, in order to capture the wake four diameters downstream, as well as quite wide,

to minimize vortices prematurely exiting through the sides. This caused the intensity of

the laser sheet to be at the lower limit of what is acceptable for normal DPIV studies. The

second difficulty was in keeping a high particle density in the test section. After a few tunnel

recirculation times, the particle density would dramatically drop due to particles getting

trapped in the screens and honeycombs. The trapped particles could be freed by increasing

the tunnel velocity or manually shaking the screens, however, both of these disrupted the

flow and thus could not be done during a test.

3.8 Dye Flow Visualization

Basic dye-injection flow visualization of the wake was also conducted. A red dye was made

by mixing 2000 mL of tap water with 80 mL of extra concentrated Red40 food coloring and

a blue dye was made by mixing 2000 mL of tap water with 160 mL of Blue1 food coloring.

The dye was carried by flexible tubing and injected into the fluid through small holes in

specially designed hollow pyrex cylinders, that were identical to the previously discussed

cylinders except for the addition of injection holes. These injection holes were located at

roughly the vertical midpoint of the cylinders and at about 60◦ on either side of the front
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Figure 3.13: Detailed view of the dye-injection ports on the 38 mm diameter circular cylinder
used for flow visualization.

stagnation point. For the 6 mm cylinder, only one injection hole was possible, and this

was located at the front stagnation point. The cylinders, tubing, and injection holes can be

seen in Figure 3.13. In order to allow for the tubing that carried the dye to pass through

the collars and into the cylinders, new collars were used. These new collars were similar to

the permanent fit ones but they contained a large axial through hole, near the center, that

allowed the flexible tubing to pass through to the interior of the cylinders. These collars

were also different due to the fact that the cylinders were secured to them using three or

four plastic set screws to pin them in place. The new collars along with this attachment

method can be seen in Figure 3.14.

The red and blue dye mixtures were stored in separate glass beakers placed sufficiently

high enough above the test section to allow gravity to drive the injection process. The

actual dye injection rate was controlled using a flow dial installed along the dye path. The

full set up can be seen in Figure 3.15
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Figure 3.14: General overview of the cylinder component of the flow visualization setup
showing the flexible tubing, adjustable collar, and hollow circular cylinder with injection
ports.

Figure 3.15: Overall view of the complete flow visualization setup. The two large beakers
held the food coloring mixtures at a sufficient height to allow gravity to drive the flow of
dye. The two dials used to adjust the flow can also be seen (light blue circular knobs).
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3.9 General Test Procedure

For a given system with certain m, b, k, and D values, a typical complete test, known

as a Run, involved spanning the range of tunnel velocities of interest four times, twice in

increasing and twice in decreasing increments. This was done to look for hysteresis effects

in the behavior as well as to gauge the repeatability of the results. During a run, the

tunnel velocity and data recording was remotely controlled by a LabView program. This

program first calculated the necessary voltage needed by the motor to produce the correct

tunnel velocity of the next test point. Then it output this voltage to the motor, thereby

impulsively incrementing the velocity, and held this voltage while the data recording phase

occurred. The data recording phase involved waiting a fixed amount of time to allow the

structural system to reach steady-state oscillations (typically approximately 250 oscillation

cycles), then recorded the position output from the LVDT for a fixed amount of time

(typically around 500 oscillation cycles). Finally, once the data recording phase was done,

the necessary voltage for the next tunnel velocity was calculated and the entire process was

repeated. The success of this strategy lies in the fact that as U is varied over a large enough

range, as long as k > 0, all values of k∗eff of interest will be spanned.

3.10 Parameter Values

During the course of each experiment, the water temperature was monitored using an Omega

DP41-RTD thermometer with Fluke Y2039 probe and was found to be 20 ± 1 ◦C. This

temperature corresponded to a kinematic viscosity of ν = 1.004× 10−6± 0.030× 10−6 m2/s

and resulted in variations of Reynolds number during experiments of about 3 percent.

Therefore, Reynolds number ranged from Re = 200± 6 at the low end to Re = 5050± 150

at the high end. The circular test cylinders had diameters between 6 mm and 38 mm. The

system mass varied between 1.85 kg and 3.70 kg and the total system elasticity between

13.5 N/m and 295 N/m. In this investigation we only considered high aspect ratio cylinders

L/D > 10. The specific system values for each test configuration can be seen in Table 3.2.
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run no. D (mm) m (kg) k (N/m) m∗ Re|A∗
Max

01(a)–(n) 10.0 1.850 65.5 79.3 525
02(a)–(i) 10.0 3.700 135 158.6 525
03(a)–(l) 10.0 1.850 265 79.3 1000
04(a)–(l) 37.8 2.390 13.5 7.1 2600
05(a)–(c) 10.0 1.850 36.5 79.3 400

05(d) 6.0 1.850 295 218.9 400
06(a)–(d) 6.0 1.850 175 218.9 300

06(e) 10.0 1.850 24.0 79.3 300
07(a)–(c) 6.0 1.850 74.5 218.9 200
08(a)–(c) 19.3 1.975 60.5 22.7 1660

09(a) 37.8 2.140 24.0 6.4 3400
10(a) 37.8 2.125 48.5 6.3 5050

Table 3.2: Various fixed system parameters for each test configuration.

3.11 Data Reduction Methodology

The recorded data file was a list of voltages output from the LVDT that corresponded to

the instantaneous position of the traversing plate and thus the VIV system, as described

in Section 3.6. This data file was then put through a series of MatLab functions which

converted, filtered, processed, and output the data. First, the raw data was converted from

voltages to physical displacements using the LVDT calibration curve and a corresponding

time vector was creating using the sampling rate, which was 250 samples/sec for all the

experiments. Then the data was filtered using an optimal Wiener filter scheme in Fourier

space. The noise signal estimate that is needed for such a scheme was determined by

comparing our measured signal power spectrum to the power spectrum of a pure sine wave.

The filtered data was then sent through a function that located the positive and negative

extrema in the signal. These extrema were then used to calculate cycle-by-cycle amplitude

and frequency values. The amplitude for a given cycle was the average of two positive

extrema and the negative extrema that occurred between them, with the negative one

weighed twice. The frequency was the inverse of the time difference between the two positive

extrema. The cycle-by-cycle data was then used to compute statistics on the response,

such as the average, minimum, maximum, and standard deviation of the amplitudes and

frequencies. Finally, parameters, such as the effective stiffness, were determined along with

error values for all relevant parameters. A more detailed explanation of the data reduction
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process, particularly the signal filtering, can be found in Appendix A. The determination

of the system damping values, which are an integral part of this thesis, can be found in

Appendix B.

3.12 Cylinder End Effects and Boundary Layer Effects

In order to ensure that there were no cylinder end effects or boundary layer effects with the

bottom of the water tunnel, a series of tests, called gap distance (GD) tests, were performed

where the gap distance, G, (the distance between the bottom of the cylinder and the bottom

of the test section) was varied. The amplitude and frequency response of these tests were

then examined to see if there were any noticeable difference in the system response.

Four different test configurations were used for these tests, which can be seen in Ta-

ble 3.3. Care must be taken when setting up such a series of tests and comparing the re-

test no. L/D G/D b (kg/s) m∗ b∗|A∗
Max

Re|A∗
Max

GD01 45 5.5 0.102 86.7 0.504 905
GD02 47 3.5 0.106 82.9 0.513 880
GD03 48 1.8 0.111 80.0 0.509 905
GD04 50 0.4 0.118 77.8 0.521 905

Table 3.3: System configurations used for the gap distance (GD) tests. All GD test config-
urations had D = 10 mm, m = 1.930 kg, and k = 205 N/m.

sultant amplitudes. It is known that A∗
Max is a function of both damping, b∗, and Reynolds

number, Re (Klamo et al., 2005). Therefore, one must match these two parameters across

all tests or else one would not know if any observed amplitude differences were caused by

cylinder end effects and boundary layer effects or damping and Reynolds number effects.

Unfortunately, damping was nondimensionalized by the wetted length of the cylinder, L,

and this was precisely the parameter we were changing during the gap distance tests. There-

fore, we had to apply an external amount of damping, with the VMEC damping system,

to compensate for changes in b∗ caused by changes to L. As can be seen from Table 3.3,

the damping and Reynolds number values were held as constant as the experiment would

allow and the nondimensional mass, m∗, although consistent, was allowed to vary freely.

The nondimensional mass changed, even though the physical system mass, m, remained

constant, due to the changing wetted cylinder length, L, across the tests.



49

U (cm/s) Rex δ/x ReD δ/D

5 25150 0.0315 498 1.59
10 50300 0.0222 996 1.13
15 75450 0.0182 1494 0.92
20 100600 0.0157 1992 0.80

Table 3.4: Reynolds number and nondimensional laminar boundary layer thickness at var-
ious tunnel velocities using two different characteristic lengths, downstream distance from
the beginning of the test section to the cylinder, x = 50.5 cm, and diameter of cylinder,
D = 10 mm.

For a laminar, flat-plate boundary layer, the nondimensional boundary layer thickness

δ/x is given by
δ

x
=

5√
Rex

, (3.1)

where x is the distance downstream and characteristic length scale used in the Reynolds

number. For our setup, the cylinder was located about 50.5 cm downstream from the

entrance of the test section. Therefore, for the given fluid properties, at this x = 50.5 cm

location in the test section we expect to see the range of boundary layer thicknesses given

in Table 3.4 for typical tunnel velocities listed.

Due to the inverse relationship between boundary layer thickness and Reynolds num-

ber, for a fixed location, as the tunnel velocity is increased the boundary layer thickness

decreases. Therefore, if a cylinder is outside the boundary layer at the minimum test veloc-

ity, it will remain outside the boundary layer as velocity is increased throughout the test.

This was the case for gap distance tests GD01–GD03. They all had a G/D > 1.8 while

the boundary layer δ/D at the minimum tunnel velocity was smaller than this. Therefore,

we did not expect to see any boundary layer effects for this three tests. However, GD04

had a G/D = 0.4, which was smaller than the thinnest boundary layer, δ/D = 0.8, at

U = 20 cm/s. Therefore, this cylinder was submerged in the boundary layer during the

entire test. If there were boundary layer effects, we would expect to see them in this test.

The results of the gap distance study can be seen in Figure 3.16 for the amplitude

response and Figure 3.17 for the frequency response. There appears to be no effect caused

by changing the ratio of gap distance, G, to cylinder diameter, D, by an order of magnitude

(from 0.4 to 3.5) on the amplitude or the frequency response profiles. Also, because the

amplitude and frequency response of GD04 was consistent with the other three gap tests,
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Figure 3.16: Amplitude response profile dependence on the gap distance, G/D, between
the end of the cylinder and bottom of the test section.

Figure 3.17: Frequency response profile dependence on the gap distance, G/D, between the
end of the cylinder and bottom of the test section.
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it appears that there was no effect from the boundary layer on the results either.

3.13 Starting Method Dependence

Various researchers have reported a difference in cylinder oscillation behavior depending on

how the cylinder motion was started. For instance, Brika and Laneville (1993) reported

that the highest amplitude portion of their response curve could only be reached through

small incremental increases in the tunnel velocity with the initial conditions of the system

at each increment being its previous state. Large increases in velocity increments, starting

the cylinder from rest at each velocity increment, or externally imposing a large initial

amplitude at each velocity increment did not allow the flexible cylinder to reach the highest

amplitude portion of the curve. In another example, Anagnostopoulos and Bearman (1992)

reported that they obtained a maximum amplitude of 53 percent of a diameter for cylinder

oscillations developing from rest but a maximum amplitude of 60 percent of a diameter for

oscillations developing from an already oscillating cylinder.

Due to the results of these studies, we conducted a series of experiments to test the

cylinder response dependence on the initial conditions of the system. The two system

configurations used for these initial condition, or starting method (SM), tests can be seen

in Table 3.5.

test no. D (mm) m (kg) b (kg/s) k (N/m) m∗ b∗|A∗
Max

Re|A∗
Max

SM01 10.0 1.880 0.032 295 80.5 0.130 1050
SM02 37.8 2.180 0.024 15.0 6.5 0.038 2700

Table 3.5: System configurations used for the starting method (SM) tests.

Five different initial conditions were investigated. One involved a small incremental

increase or decrease in the tunnel velocity with the cylinder still oscillating from its previous

steady-state condition. These two test methods were referred to as “up” and “down” tests.

The third initial condition involved allowing the tunnel velocity to reach the desired value

and then releasing the cylinder from rest. This test was referred to as a “rest” test. The

fourth method involved having the cylinder and tunnel at rest, then impulsively starting

the tunnel to the desired velocity. This type of test was referred to as a “start” test. The

final initial condition involved setting the tunnel to the desired velocity, giving the cylinder



52

the largest displacement that the air bearings would allow, and then releasing the cylinder

from this extreme amplitude. This type of test was referred to as an “impulse” test.

The amplitude response profiles of SM01 and SM02 can be seen in Figure 3.18 and the

corresponding frequency response profiles in Figure 3.19 for these various initial conditions.

As can be seen in both figures, there appears to be no dependence of the initial conditions

of the system on the steady-state, time-averaged amplitude or frequency response profiles.

The small variations in the amplitude and frequency responses between the starting method

tests is within the experimental repeatability variations. One reason for the lack of initial

condition effects in our system compared to the previously cited work could be from the

rigidity of our cylinders. Brika and Laneville (1993) used flexible circular cylinders. Anag-

nostopoulos and Bearman (1992) used a rigid cylinder, however, it had an extremely small

diameter, approximately 1.6 mm, so that perhaps it behaved as a slightly flexible cylinder.

This could explain why they saw weaker effects of the initial conditions on the amplitude

and frequency response profiles compared to Brika and Laneville. Perhaps a flexible circular

cylinder will display initial condition effects and the more a cylinder behaves like a perfectly

rigid cylinder, the less important the initial conditions become.
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Figure 3.18: Amplitude response profile dependence on various starting method techniques
for SM01 and SM02.

Figure 3.19: Frequency response profile dependence on various starting method techniques
for SM01 and SM02.
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Chapter 4

Basic Results

4.1 Chapter Overview

The first part of this chapter reviews the different types of behavior that exist in VIV us-

ing the traditional formulation and, at the same time, adding new insight to them using

the effective stiffness formulation. In the second part, we explore damping and Reynolds

number effects on the amplitude and frequency response profiles of an elastically-mounted,

rigid, circular cylinder. In Section 4.2 we show some generic amplitude and frequency re-

sponse profiles allowing us, in Section 4.3, to compare and contrast them in the two different

formulations, traditional and effective stiffness. The fluctuations in the time-varying ampli-

tude and frequency responses of the oscillating system are discussed in Section 4.4. Then,

in Section 4.5 we discuss common wake structures seen in free-vibrations using a selected

system. Next, in Section 4.6 we discuss some particular limiting-parameter cases of VIV.

We look at damping effects on the amplitude response profile in Section 4.7 and how a given

system transitions from a large-amplitude response profile to a small-amplitude response

profile. This process will involve two processes, the scaling down of the lower branch and

the “erosion” of the upper branch. Next, the corresponding frequency response changes,

as damping changes, are studied in Section 4.8. Then we look at Reynolds number ef-

fects on the amplitude response profile in Section 4.9 and the frequency response profile in

Section 4.10. This allows us to point out the similarities between damping and Reynolds

number effects. Finally, Section 4.11 explains how to use these results to predict when

structures are susceptible to large, flow-induced oscillations.
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4.2 General Characteristics of Amplitude and Frequency Re-

sponses

As will be shown, there is no such thing as a “typical” VIV amplitude or frequency response

profile. However, for the sake of comparing and contrasting results in the traditional and

effective stiffness formulations, as well as making some general conclusions, we will show two

distinct types of response profiles that are commonly seen in the literature. To accomplish

this, we will be using two different systems configurations. The parameters for the two

configurations can be seen in Table 4.1.

run no. m (kg) b (kg/s) k (N/m) m∗ ζ b∗|A∗
Max

Re|A∗
Max

02(a) 3.700 0.023 135 158.6 0.0005 0.194 525
04(a) 2.390 0.016 13.5 7.1 0.0014 0.026 2600

Table 4.1: System configurations used to compare the traditional and effective stiffness
formulations.

We begin by looking at the amplitude and frequency response profiles in the traditional

formulation, plotted against the reduced velocity, UR. The amplitude response profiles are

shown in Figure 4.1 and the corresponding frequency responses in Figure 4.2. Looking

first at the large nondimensional mass, low Reynolds number system, Run02(a), we see the

amplitude response profile that was seen in early studies of VIV. The response profile has

two distinct “branches” that Khalak and Williamson (1997b) defined and were discussed

in Section 1.2. The frequency response of this system shows the classic “lock-in” behavior,

meaning that the majority of the frequency response occurs with the system oscillation

frequency and wake frequency “locking” into the system natural frequency. Next we look

at the response profiles of the small nondimensional mass, high Reynolds number system,

Run04(a). We notice that the amplitude response profile shows a different type of behavior

that includes a large-amplitude region and thus shows three distinct branches. These three

branches were also defined by Khalak and Williamson (1997b) and were also discussed in

Section 1.2. The frequency response for this system is also quite different from the previous

one. It shows a behavior that violates the common idea that large amplitudes occur only

for a system experiencing “lock-in”. More surprising, the system does not “lock” onto any

frequency. It appears that its oscillation frequency continues to increase as UR is increased.
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Figure 4.1: Two distinct amplitude response profiles, shown in the traditional formulation
plotted against the reduced velocity, UR, for systems experiencing VIV. Arrows mark a
point in each run where time-varying motions will be investigated in Section 4.4.

Figure 4.2: Corresponding frequency response profiles for Figure 4.1, shown in the tradi-
tional formulation plotted against the reduced velocity, UR.
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Systems that exhibit this lack of “lock-in” behavior have been studied recently by various

researchers (Gharib, 1999; Khalak and Williamson, 1997b). Such a system has a frequency

response that does not lie on, or “too near,” the natural frequency of the system.

The response profiles of these same two systems are also shown in the effective stiffness

formulation. Their amplitude response profiles can be seen in Figure 4.3 and their corre-

sponding frequency response profiles in Figure 4.4, both plotted against negative effective

stiffness, −k∗eff = ω∗2m∗ − k∗. It is important to note that in general, for a given system,

the effective stiffness decreases as flow velocity increases. Therefore, for convenience in

comparing with the traditional formulation plots in Figure 4.1 and Figure 4.2, we present

plots against negative effective stiffness, −k∗eff , since this increases with increasing UR.

4.3 Formulation Comparison of Response Profiles

By comparing the system response profiles in the traditional formulation, Figure 4.1 and

Figure 4.2 to the same system response profiles in the effective stiffness formulation, Fig-

ure 4.3 and Figure 4.4, one can see some of the advantages of using the effective stiffness

formulation.

First, in the effective stiffness formulation, there is a collapse of the amplitude response

profile and therefore the existence of universal critical values, that represent the beginning,

maximum, and ending of the response. In the traditional formulation, the nondimensional

mass of the system effects the range of reduced velocity values that one observes a system

response. The less massive system, Run04(a), in Figure 4.1 has a much larger range of

reduced velocity values over which you see a response than the more massive one, Run02(a).

However, this is not the case in the effective stiffness formulation because, by reducing the

number of parameters, we have eliminated the effects of mass. Instead, the mass and

elasticity of our system are implicitly part of the effective stiffness parameter. For every

system, measurable amplitude responses occur over a range of −1 . k∗eff . 10 regardless of

the actual nondimensional mass.

The reduced velocity is a logical experimental parameter, since most VIV experiments

involve spanning tunnel velocities of interest. Nondimensionalizing the tunnel velocity with

a characteristic length (cylinder diameter) and time (system natural frequency) appears to

be a good idea at first. However, as mentioned above, the reduced velocity parameter is mass
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Figure 4.3: Two distinct amplitude responses profiles, shown in the effective stiffness for-
mulation plotted against the negative effective stiffness, −k∗eff , for systems experiencing
VIV. Arrows mark a point in each run where time-varying motions will be investigated in
Section 4.4.

Figure 4.4: Corresponding frequency responses profiles for Figure 4.3, shown in the effective
stiffness formulation plotted against the negative effective stiffness, −k∗eff .
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dependent, so critical reduced velocity values can only be applied to systems that, at the very

least, have identical masses. On the other hand, the effective stiffness parameter, by taking

into account the mass, elasticity, fluid velocity, and oscillation frequency of the system,

collapses the response profile for all systems, regardless of their actual mass. Therefore,

the values that correspond to the beginning, maximum, and end points of the response, are

roughly universal ones.

The fact that all systems have approximately the same effective stiffness value for their

maximum amplitudes is a useful advantage of the effective stiffness formulation. We will

take advantage of this fact in Chapter 5 to analyze maximum amplitudes. In the traditional

formulation, based on the ideas of “lock-in” and resonance, it followed that the maximum

cylinder amplitude would occur when the flow conditions were such that the shedding

frequency, fshed, of an equivalent stationary cylinder equalled the natural frequency, fN,

of the VIV system. This meant that the maximum cylinder amplitude should occur when

fshed ≈ fN and at a reduced velocity value of

UR =
U

2πfND
≈ U

2πfshedD
≈ 1

2πSt
≈ 0.758 , (4.1)

where St is taken to be 0.210 for a stationary circular cylinder. Although the maximum

amplitude will indeed occur near this reduced velocity value, the actual value will depend

on the various systems parameters. Furthermore, the deviation from this value increases

as certain system parameters such as mass or Reynolds number approach their extreme

limits. However, the effective stiffness formulation allows all maximum amplitudes to occur

at approximately the same effective stiffness value. We denote the value of the effective

stiffness at peak amplitude as k∗eff |A∗
Max

. For a variety of system configurations tested, we

find that the peak amplitude in each case occurs around k∗eff |A∗
Max
≈ 2.5, with k∗eff varying

from 10 to -1. This can be seen in Figure 4.5 where we plot various systems together,

including the two previously discussed ones, Run02(a) and Run04(a). The damping and

Reynolds number values for all the systems can be found in Table 5.1.

In fact, we find that for lightly to moderately damped systems, the location of the

maximum amplitude is invariant to individual system mass and elasticity and always occurs

around the same value. We only assign an approximate value to k∗eff|A∗
Max

because we find

that the actual value does vary slightly depending on the the specific damping value and
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Figure 4.5: Maximum amplitude, A∗
Max, of various system configurations plotted against

effective stiffness, k∗eff . Note that the maximum amplitude point for each configuration
always occurs around k∗eff |A∗

Max
≈ 2.5. Damping and Reynolds number values for each run

can be found in Table 5.1.

Reynolds number of the system. This is mainly due to the fact that a system with an upper

branch will have a slightly different k∗eff|A∗
Max

then one that does not have an upper branch.

Also, the large-amplitude portion of a high Reynolds number system has large enough

variations in the cycle-by-cycle amplitudes to effect the representative average value and

cause k∗eff |A∗
Max

to move slightly, even for consecutive identical runs. It is interesting to

note that the maximum amplitude does not occur at k∗eff = 0 (which corresponds to the

“lock-in” condition, ω∗ 2 = ω∗ 2
N = k∗/m∗) but at a higher positive value. This highlights

the problem with using UR = 0.758 as the maximum amplitude point since it assumed that

the maximum amplitude occurred while the system’s shedding and oscillation frequencies

were “locked-in” to the system’s natural frequency.

A second advantage of the effective stiffness formulation is that it expands areas of

interest (the region of largest amplitudes) and compresses areas of less interest (the nearly

constant amplitude portion of the lower branch) on the amplitude and frequency response

profiles. The traditional formulation does the opposite; it compresses the largest response

region and exaggerates the lower branch response portion. Part of the problem is that the
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traditional formulation has an equal spacing in abscissa between all points, assuming a test

involved constant incremental changes in fluid velocity. However, the bigger problem is

that the largest amplitude region occurs over a relatively small reduced velocity range while

the lower branch exists over a large one. This happens even though the system undergoes

vary dramatic changes through the largest amplitude portion and very little change through

the lower branch portion. The effective stiffness parameter captures the dramatic changes

as the system passes through the largest amplitude portion of the response curve and its

value changes substantially, expanding the largest amplitude portion of the profile curve.

This region corresponds to roughly 0 . k∗eff . 3. On the other hand, the effective stiffness

parameter also captures the fact that very little is changing with the system as it goes

through the lower branch and consequently, k∗eff changes very little. In fact, it actually

reduces the lower branch down to nearly a single point, corresponding to roughly k∗eff ≈ 0.

Third, the effective stiffness formulation has an advantage over the traditional formu-

lation with respect to the frequency response profile. In the traditional formulation, the

nondimensional frequency is the ratio of oscillation frequency to system natural frequency,

f∗
tr = f/fN . However, the range that this parameter takes is rather large since the response

frequency has contributions from two different sources. At the beginning and end of its

response, it roughly follows the Strouhal shedding frequency line, fSt. During the middle

part of the system response, it lies near the system natural frequency line, fN. However,

these two lines are independent of each other and, in most cases, are far apart from each

other at the beginning and end of the response profile. This causes the frequency response

to undertake a large range of values. The behavior of the parameter f∗
tr is also heavily

dependent on the actual nondimensioal mass of the system. As can be seen in Figure 4.2,

the less massive system has a frequency response that is farther from the “lock-in” con-

dition than the more massive system. The idea of “lock-in” was reinforced by these two

unfortunate side effects of the traditional formulation. Since studies of early systems were

in air, they had a large nondimensional mass and thus sat very near the natural frequency

line. However, it appeared that the system was exactly on the natural frequency line since

the range over which the parameter was viewed was large, owing to the effort to capture the

natural and Strouhal frequency effects. Khalak and Williamson (1997b) showed that if you

had an extremely small nondimensional mass system, you could capture the large range of

frequencies and still easily notice the lack of “lock-in.” But this would be nearly impossible
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Figure 4.6: Frequency response in the traditional formulation displayed over the entire
range of interest which causes the response profile to appear to be “locked-in” to the system
natural frequency.

Figure 4.7: Same frequency response as Figure 4.6 but now only displayed over a small
range near the system natural frequency.
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to do in air; they had an m∗
tr = 2.4. In Figure 4.6, the traditional method is used to plot the

frequency response profiles of the same systems from Figure 4.2 and it appears that both

systems are experiencing “lock-in.” However, if only the area around the natural frequency

line is plotted, as in Figure 4.7, it becomes apparent that the small nondimensional mass

system, Run04(a), is not “locked” into the natural frequency and only Run02(a) is, owing

to its large nondimensional mass.

In the effective stiffness formulation these problems are not present. The mass depen-

dence is resolved because it is implicitly captured by the effective stiffness parameter, as

first mentioned in Section 2.10 and discussed earlier in this chapter. The “lock-in” issue is

resolved by not using two different frequency time scales, the fluid shedding frequency and

structural natural frequency, in the problem as the traditional frequency does. Instead, only

the the natural fluid time scale, D/U , is used. By doing this, the entire frequency response

profile can be shown in a compact manner and the frequency contributions from the two

independent sources are captured without having to worry about decreasing the parameter

viewing range.

It it interesting to note that in the effective stiffness formulation, the Strouhal frequency

and natural frequency lines are orthogonal to each other. On the other hand, in the tra-

ditional formulation, they cross each other at an angle. The effective stiffness parameter

therefore transforms the traditional formulation by stretching the frequency plane out so

that those two line are orthogonal.

4.4 Time-Varying Motion

A major difficulty in representing VIV motion is that it is not a steady-state motion. The

amplitude and frequency values of each oscillation cycle are constantly changing in time.

Therefore, the data in Figure 4.1 – Figure 4.4 only represents an average behavior over

time. As mentioned in Section 3.11, our results are based on an average using every cycle

of our time sample, other researchers average various subsets from their entire time sample,

but regardless of the method, one must never forget that each data point is only an ap-

proximation of the actual behavior. To highlight this difficulty, we look at the time-varying

motion of a similar point for the two distinct systems that we have previously compared,

Run02(a) and Run04(a). The point in each run that we are comparing is highlighted with
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Figure 4.8: Amplitude fluctuations per cycle of a low Reynolds number, high mass system
(Run02(a)) viewed over approximately 400 cycles.

Figure 4.9: Same amplitude fluctuations per cycle as shown in Figure 4.8 but now displayed
over a much smaller amplitude range, 0.014 units, in order to show the cycle-by-cycle
fluctuations clearly.
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Figure 4.10: Frequency fluctuations per cycle of a low Reynolds number, high mass system
(Run02(a)) viewed over approximately 400 cycles. The fluctuations are below our mea-
surement resolution, causing the response to alternate between our two minimum resolved
frequencies.

an arrow in Figure 4.1 and Figure 4.3. Both of these points lie in the lower branch region

of the response curve and have nearly equal time-averaged amplitudes of A∗ ≈ 0.54.

In some cases, these time variations are small, and representing the amplitude or fre-

quency at a particular response point as a single value is reasonable. We have found that

such a situation exists for large nondimensional mass systems at low Reynolds number,

such as Run02(a). Our analysis method allows us to keep track of each cycle of motion,

therefore, we have cycle-by-cycle amplitude and frequency results. Figure 4.8 shows the

time-varying amplitude response of the highlighted point for Run02(a) over a reasonable

amplitude range, 0.2 units. By using such a range, the fluctuations between each cycle

cannot be seen. In order to see the small fluctuations that occur in each cycle, refer to

Figure 4.9. The largest variations, however, are less than 2 percent away from the reported

time-averaged value.

The frequency response shows similar behavior, but now, the fluctuations over time are

so small, they are at the resolution limit of the data acquisition. Therefore, the time varying

fluctuations simply jump between the two smallest values that we can resolve. This can
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be seen in Figure 4.10, where the data forms a thin, dense band because the response is

jumping between our two minimum resolved frequencies.

These amplitude and frequency response fluctuations can be compared and contrasted

against a light mass system in a high Reynolds number flow, such as Run04(a). Our cycle-

by-cycle amplitude results, for the highlighted lower branch point, are shown in Figure 4.11

over the same resonable viewing range, 0.2 units, as Figure 4.8. Our corresponding cycle-

by-cycle frequency results are shown in Figure 4.12. For this system, the time variations

are much more dramatic. For comparison sake, we roughly match the amplitude response

range of Figure 4.11 and Figure 4.8 and the frequency response range of Figure 4.12 and

Figure 4.10.

In Figure 4.8, the amplitude response of the large mass, small Reynolds number system

is fairly constant, on the other hand, the response for the light mass, high Reynolds num-

ber system, Figure 4.11, shows dramatic amplitude fluctuations over time. Run02(a) had

roughly 2 percent amplitude fluctuations compared to the roughly 10 percent for Run04(a).

This same difference can be seen in the frequency response. Whereas Run02(a) responded

at only one frequency (within our ability to resolve), Run04(a) showed a region of response

frequencies. In this case, the frequencies varied by about 5 percent.

To see if there were one or two dominant amplitudes or frequencies, histogram plots of

the oscillation response of the light mass, high Reynolds number system, Run04(a), were

created. This can be seen in Figure 4.13 and in Figure 4.14 respectively. If the system had

one or two dominant states, we would expect to see a corresponding number of peaks in

our histogram data. Instead, we see a well distributed response suggesting that the system

fluctuations are not caused by it moving between two preferred states but rather oscillating

within a range of permissable amplitude and frequency values.

4.5 General Wake Structure

The different branches of the response profile have different wake structures associated with

them. In order to capture the various wake structures, DPIV was done at several points

in the response profile of the large-amplitude system, Run04(a). A total of six different

cases will be presented here. The various points that DPIV was performed at can be seen

in Figure 4.15.
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Figure 4.11: Amplitude fluctuations per cycle of a high Reynolds number, light mass system
(Run04(a)) viewed over approximately 250 cycles.

Figure 4.12: Frequency fluctuations per cycle of a high Reynolds number, light mass system
(Run04(a)) viewed over approximately 250 cycles.
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Figure 4.13: Amplitude cycle-by-cycle histogram results for four runs, approx 1000 cycles,
of a high Reynolds number, light mass system (Run04(a)).

Figure 4.14: Frequency cycle-by-cycle histogram results for four runs, approx 1000 cycles,
of a high Reynolds number, light mass system (Run04(a)).
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Figure 4.15: Locations in the amplitude response profile were the wake structure was in-
vestigated using DPIV.

Previous researchers have shown the various permissible wake structures, depending on

the oscillation amplitude and frequency, through forced oscillation experiments (Öngören

and Rockwell, 1988a,b; Williamson and Roshko, 1988). The work by Williamson and Roshko

(1988) included a “mapping” of such structures. This mapping was discussed in Section 2.4

and shown in Figure 2.3. Based on this work, we can anticipate what the wake structure,

for a freely-vibrating system, should be.

Accordingly, the initial branch (case 1) has an amplitude and frequency response that

should correspond to a classic 2S wake structure (similar to a von Kármán street). In an

early study using a flexible cable, Brika and Laneville (1993) reported that their corre-

sponding initial branch was a classic 2S wake structure, and this is similar to what we find.

This wake structure involves the shedding of two single (2S) counterrotating vortices, of

opposite sign and approximately equal strength, each cycle. This can be seen in the DPIV

images of Figure 4.16 where a cycle is shown over sixteen frames, going from top to bottom,

left to right. Also note that the vortices are shed in phase with the motion of the cylinder,

the top, clockwise rotating, vortices (blue) are shed when the cylinder is at the top of its

motion. The opposite is true for the bottom, counterclockwise rotating, vortices (red), they
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are shed at the bottom of the cylinder motion.

Figure 4.16: Wake structure of the initial branch (case 1).

The upper branch has been reported by various investigators as having a 2P wake

structure (Khalak and Williamson, 1999). This structure involves the shedding of two pairs

(2P) of counterrotating vortices, of opposite sign and roughly equal strength, each cycle.

Recently, Govardhan and Williamson (2000) found that the 2P structure that they observed

in the middle of the upper branch was slightly different. They reported seeing an unbalanced

vortex pair, with the second vortex in the pair having roughly 20 percent the circulation of

the first. By exploring more points in the upper branch, we find that the wake structure

of the system immediately after it changes to a large-amplitude state (case 2) is neither a

classic 2S nor 2P structure. Instead, we find some characteristics that are typical of each

mode. The wakes structure of this point can be seen in Figure 4.17.
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Figure 4.17: Wake structure of the beginning of the upper branch (case 2).

The vortices that are shed are only two single vortices each cycle, this is the 2S contri-

bution. But, due to the large motion of the cylinder, they are shed obliquely, resembling

a 2P trajectory. Also, the alternating shear layers that are rolling up cross over the back

stagnation point, also consistent with a 2P structure. However, they do not cross over

enough to extend beyond the opposite side of the cylinder. It is also interesting to note

that it appears that the phase of the shedding has changed. The vortices are now shedding

as the cylinder passes through the zero amplitude point.

The middle of the upper branch (case 3) begins to show a definite 2P wake structure, al-

though we find that the second vortex in each pair has almost zero strength. This extremely

unbalanced 2P wake state can be seen in Figure 4.18. Since the second vortex in the pair

is extremely weak it does not appear in the downstream wake. However, by observing the
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near wake, it is possible to see a small, very weak, vortex emerge from the pinch-off of the

large shear layer that has wrapped up behind the cylinder.

Figure 4.18: Wake structure of the middle of the upper branch (case 3).

At the end of the upper branch (case 4), we begin to see the second vortex of each pair

in the downstream wake. It is still extremely weak relative to the first and has decayed

below our ability to discern it within two frames after it was pinched off. This can be seen

in our DPIV images in Figure 4.19.

Unfortunately, we did not do a quantitative study on the vortices so we are not able

to compare our results to the 20 percent strength value that is reported in Govardhan and

Williamson (2000). All we can deduce is that as you move through the upper branch, the

second vortex in each pair steadily grows in strength.

As we move into the beginning of the lower branch (case 5), we continue to see the trend
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Figure 4.19: Wake structure of the end of the upper branch (case 4).

that we observed while moving throug the upper branch: a 2P wake structure that has the

second vortex in each pair growing in strength. As can be seen in Figure 4.20, there are

two pairs of vortices shed each cycle, and the second vortex in each pair is stronger than in

Figure 4.19. However, the second vortex are still not near the strength of the first vortex.

In fact, one needs to go into the middle of the lower branch (case 6) in order to find where

each vortex in the pair is of nearly the same strength, at least qualitatively. This can be

seen in Figure 4.21.

Care must be taken when averaging images from many cycles to produce one repre-

sentative image. It is the same type of problem that one encounters when averaging the

complete oscillation trace to produce a single amplitude value. In the amplitude case, the

single, average value could not capture how much variation there was in the complete trace.
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Figure 4.20: Wake structure of the beginning of the lower branch (case 5).

In the flow visualization of the wake state, there is no way to capture how much the wake

state is changing, if at all, between cycles. As an example, let us further examine the

middle point of the upper branch (case 3) that was shown, through cycle-averaged DPIV,

to have a definite 2P wake structure with the second vortex in each pair being very weak.

However, by using dye flow visualization and looking at two different instantaneous images

of the cylinder wake a few cycles apart, Figure 4.22 and Figure 4.23, we get a very different

picture. In the first image, Figure 4.22, we notice that there are not extremely weak second

vortices paired with the strong vortices. Instead, the very small amount of opposite color

dye near each vortex was caused by entrainment of the near wake. Also, the vortices are

shed closer to the centerline than expected (this can be noticed by comparing the vertical
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Figure 4.21: Wake structure of the end of the upper branch (case 6).

distance between the red and blue vortices in Figure 4.22 and the two red vortices in Fig-

ure 4.23). This wake state is perhaps closer to a 2S state than a 2P state. A completely

different wake structure is seen in the second image, Figure 4.23. In this image, two clear

and distinct pairs of vortices exist. Although the vortices in each pair are not quite equal

in strength, they are much closer in strength, and thus much closer to a classic 2P wake

structure, than the DPIV images suggest. Remember that these two flow visualization im-

ages came from the same test, less than 20 cycles apart. Clearly, the DPIV cycle-averaged

images cannot begin to represent the fluctuating and changing wake structure of a system

in the upper branch and thus can lead to an insufficient representation of the actual wake

dynamics.

According to the WR-plane, the upper and lower branch both lie in the 2P wake struc-
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Figure 4.22: Flow visualization of the wake during an individual cycle in the middle part
of the upper branch (case 3) showing a structure resembling a 2S wake.

Figure 4.23: Flow visualization of the wake during an individual cycle of the middle of the
upper branch (case 3) showing a structure resembling a classic 2P wake.
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ture. However, we see changes in the amplitude and frequency responses while moving

through those branches. Perhaps the reason for this is that the 2P portion of the plane

includes a wide range of wake states that all resemble the classic 2P structure, in a general

sense. This wide range of states extends all the way from completely unbalanced (second

vortex in pair has zero strength, case 2) to completely balanced (second vortex has equal

strength to first, case 6). And during a VIV test, as you move across the WR-plane, you are

moving through this region that involves the changing strength of the second vortex in the

pair. This changing strength of the second vortex affects the response of the cylinder. The

last piece of support for this could be the fact that the lower branch coalesces into a single

point in the effective stiffness formulation. This point could correspond to when the second

vortex becomes about equal in strength to the first and no further changes can occur, as

the tunnel velocity is increased, until a desynchronized wake state is reached.

4.6 System Singularities

The study of limiting structural parameters, such as zero system mass, damping, or elas-

ticity, has the potential to contain interesting behavior. This is another advantage of the

effective stiffness formulation: it can handle limiting structural parameters without causing

singularities in the formulation. This is because the nondimensionalization does not de-

pend on the system natural frequency. In cases where there is zero mass or elasticity, the

natural frequency is undefined, causing problems with the nondimensional parameters in

the traditional formulation. This problem is usually side stepped by defining the natural

frequency to be zero without addressing such issues as what is the new nondimensional

response frequency since f∗
tr = f/fN is either identically zero or infinite for all times and,

more importantly, does such a thing as a “natural frequency” even exist in such a system.

One recent example of exploring limiting parameters has been the discussion surrounding

the “critical mass” of a system (Govardhan and Williamson, 2002). This concept involves

the idea that for any mass-damper-spring system with m∗ below a certain critical mass,

m∗
crit, there is no upper limit on the reduced velocity, UR, where large-amplitude oscillations

disappear and a desynchronized state is reached. In essence, one could keep increasing

UR “forever” with any system that had m∗ < m∗
crit and never see the large oscillations

disappear. They reported that m∗
crit = 0.54 in the traditional formulation (in the effective
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stiffness formulation, m∗
crit = 0.85) for a circular cylinder allowed to oscillate only normal

to the flow direction. To verify that such a light mass system would oscillate “forever,” they

removed the springs from a system with m∗ < m∗
crit. They pointed out that UR = ∞, since

they defined the natural frequency of this system to be zero, and noted that the springless

system had appreciable amplitudes.

However, it is more interesting to view a springless system through the viewpoint of the

effective stiffness. In fact, by doing so, one can see that this situation corresponds to simply

a restricted portion of the response curve. By removing the springs from the system, the

effective stiffness parameter is forced to always be negative. This can be seen from Equation

(2.39), where it follows that,

k∗eff = −m∗ω∗2 < 0 , (4.2)

since k = 0 and m∗, ω∗ > 0. Thus, the system can only exist on a restricted portion of the

amplitude response profile, the part corresponding to k∗eff < 0. This is highlighted in the

schematic in Figure 4.24, with the solid line corresponding to permissible system states and

the dashed line corresponding to system states that are not allowed for this configuration.

Most springless systems will have a k∗eff � 0 and thus the corresponding amplitude A∗ ≈ 0.

This is because, under most flow conditions, the vortex shedding frequency will not be near

the system natural frequency, and the system will behave in a similar manner to a stationary

cylinder. This means that

k∗eff = −m∗ (2πSt)2 < −1.74m∗ � 0 , (4.3)

since ω∗ ≈ ωshedD/U = 2πSt and m∗ ≈ O(1). However, for systems with small enough

nondimensional mass and experiencing the right flow conditions, the system will break from

the Strouhal relationship. It will oscillate at a frequency that makes the effective stiffness lie

within the range corresponding to measurable amplitude responses. In fact, from examining

Figure 4.4, one can see that the nondimensional frequency response of a system in this region

is bounded, 0.10 < f∗ < 0.16, and therefore one can obtain the maximum nondimensional

mass that will allow for the necessary effective stiffness values. For the springless system,

in order for A∗ & 0.1, one needs −0.3 . k∗eff < 0. Using the definition of effective stiffness

and these bounds and ranges, we can determine the largest possible nondimensional mass
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Figure 4.24: Schematic showing allowable system states for two limiting structural param-
eter cases, a zero mass and zero stiffness system.

as

m∗ = −
k∗eff

(2πf∗)2
. 0.76 , (4.4)

where the lower bound was used on k∗eff and f∗. These bounds were used to determine the

largest mass that a system could have and still experience oscillations. A less massive system

will take on values that fall within the specified ranges of k∗eff and f∗ while it oscillates.

One other interesting conclusion, realized through the effective stiffness approach, is

that all these possible available operating points are lower branch points and are not the

maximum amplitude point of the system. The largest amplitude value that one would see

for a springless system will depend on the Reynolds number and damping values, which

would establish the trajectory line, and the system mass, which would establish how high

up the trajectory line the system could move. But one could never see the maximum possible

amplitude that would occur if the elasticity (springs) were added to the system.

Another possible limiting case would be to remove the mass of the system. Although

this cannot be done experimentally, it can be done computationally and was explored by
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Shiels et al. (2001). By removing the mass from the system, the effective stiffness parameter

is now forced to always be positive. This can be seen from Equation (2.39), where it follows

that,

k∗eff = k∗ > 0 (4.5)

for m = 0 and assuming that the elastic components are regular springs such that k > 0.

Therefore, the system can again only exist on a restricted portion of the amplitude response

profile, the part corresponding to k∗eff > 0. This is highlighted in the same schematic as

before, Figure 4.24, where this time the dashed line represents permissible system states and

the solid line corresponds to system states that are not allowed. Various massless system

cases were run by Shiels et al. (2001) and verified that indeed the system can only exist on

a partial portion of the response curve. In Figure 4.24 we show that their computational

results, for a system with zero mass, only lie on the corresponding restricted response

branch.

Since the effective stiffness domain is positive for a massless system, this limiting case

is not as interesting as the springless system. Unlike the springless case, where a very

limited, and steep, portion of the response profile could be spanned, in the massless case,

most of it can be spanned. However, there are still interesting points to be considered. In

the springless case, you could not control the effective stiffness value directly because of

the implicit relationship on the frequency response. Therefore, it was not possible to know

under what flow velocities the Strouhal relationship would be broken and allow appreciable

amplitudes. But in the massless case, one can control the value of the effective stiffness

directly. It is possible to come up with the relationship to control k∗eff for our system as

follows

k∗eff = k∗ =
2k

ρLU2
=

k

235U2
, (4.6)

where k is in N/m and U is m/s and using the typical system parameters, ρ = 1000 kg/m3

and L = 0.47 m. Unlike the restricted resonance “forever” situation for a system with

m∗ < m∗
crit, for the massless system, you truly could have resonance “forever.” In the

m∗ < m∗
crit system, the “forever” only applies to large reduced velocity values as you tend

toward UR → ∞. However, in the massless system, the “forever” includes both high and

low flow velocities. This is because we can control the effective stiffness directly and we

only need k∗eff . 7 for A∗ & 0.10 and, the smaller the effective stiffness value, the larger the
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amplitude will be. By looking at Equation (4.6), we can see that for a soft enough elasticity,

k, regardless of the flow velocity, the required effective stiffness value can be obtained. Using

the effective stiffness value that corresponds to the onset of amplitudes, k∗eff ≈ 7, we get the

following relationship between elasticity and flow velocity

k

U2
= 1645 . (4.7)

Therefore, for all flow speeds greater than U ≈ 3 cm/s (the minimum speed of our water

tunnel) if you had a spring that was softer than k . 1.5 N/m, the system would oscillate

for all our available tunnel speeds.

However, the ultimate resonance forever situation would be a massless and springless

system. Such a system would be restricted to one effective stiffness state, k∗eff = 0, and thus

would oscillate at any tunnel velocity with the amplitude only depending on the system

damping and Reynolds number of the flow. Shiels et al. (2001) simulated this situation,

showing that the apparent mass force balances the forces from the wake and produces

system oscillations with A∗ ≈ 0.47 at Re = 100 with zero damping. Although, similar

to the springless system, the maximum possible amplitude of this system could never be

realized either.

4.7 Damping Effects on the Amplitude Response Profile

The transition undertaken by a system going from a large-amplitude, three-branch response,

to a small-amplitude, two-branch response can be seen in Figure 4.25 using the traditional

formulation. The damping values for Sequence 03 can be found in Table 5.1. The most

lightly damped case, Run03(a), shows the expected low mass-damping, three-branch re-

sponse. It contains an initial, upper, and lower branch as pointed out by Khalak and

Williamson (1997b). The highest damped case, Run03(l), shows the expected high mass-

damping, two-branch response. It contains only an initial and lower branch and is similar,

although not identical, to the response observed by Feng (1968). The results of Run03(e)

– Run03(i) show how the system transitions between these two very different response pro-

files. The two most dramatic changes are the scaling down of the lower branch portion and

the “erosion” and eventual disappearance of the upper branch, or large amplitude, portion
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Figure 4.25: Sample of Sequence 03 amplitude response profiles in the traditional formula-
tion showing the two effects that cause the scaling down of the lower branch as damping is
increased. Damping values for each run can be found in Table 5.1.

of the response. These same results are also shown in Figure 4.26 using the effective stiffness

formulation.

The scaling down of the lower branch is due to two factors, both of which can be seen

by looking at the lower branches in Figure 4.25. First, the value of A∗ decreases, for a given

UR, as damping is increased. This trend is shown by the vertical arrow in Figure 4.25,

notice the diminishing amplitudes of the nearly-constant-amplitude portion of the lower

branch for the three most lightly damped cases in the range 0.90 < UR < 1.10. For the

most lightly damped case, the lower-branch constant-amplitude portion is approximately

A∗ ≈ 0.54 and, as damping is increased, it steadily goes down A∗ ≈ 0.50 [Run03(c)] and

A∗ ≈ 0.46 [Run03(e)].

Second, as damping is increased, the reduced velocity value that corresponds to the

system entering the desynchronized region decreases. This trend is shown by the horizontal

arrow in Figure 4.25. For instance, for the most lightly damped case, the desynchronized

region is entered at UR ≈ 1.50 and as damping is increased, this region is entered sooner,

UR ≈ 1.25 [Run03(g)] and UR ≈ 1.00 [Run03(l)].

The “erosion” of the upper branch is part of the transition from a large-amplitude, three-
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Figure 4.26: Same results as Figure 4.25 showing the effects that damping has on the
amplitude response profiles, but now displayed in the effective stiffness formulation plotted
against negative effective stiffness, −k∗eff . Damping values for each run can be found in
Table 5.1.

branch response to a small-amplitude, two-branch response that involves the disappearance

of the upper-branch portion of the profile. It is a gradual process that occurs over a range

of damping values. To explore this “erosion,” we use systems which have a low enough

damping and sufficiently high enough Reynolds number to allow for an upper branch to

exist (Klamo et al., 2006). This “erosion” can be seen in Figure 4.25 and Figure 4.26.

Because the upper branch is partially located in a hysteretic region, that has been noted by

several investigators (Feng, 1968; Brika and Laneville, 1993; Khalak and Williamson, 1999),

the “erosion” of the upper branch is associated with two effects. One occurs for increasing

tunnel velocities and one for decreasing tunnel velocities.

To understand the “erosion” of the upper branch, one must first note that the right side

of the upper branch ends at a fixed reduced velocity value. This value is different for each

particular system, but is independent of damping. For increasing tunnel velocity tests, as

damping is increased, the jump from the initial to upper branch is delayed. Each delayed

jump causes a smaller upper branch to exist until, for high enough damping values, the

jump will be delayed until it occurs at this right side fixed UR value, in which case, the
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system will simply move into a lower branch state. For decreasing tunnel velocity tests, the

jump downward is controlled by the system reaching the WR-plane 2S/2P dividing curve.

As damping is increased, the decreased amplitudes that result, along with the shape of the

dividing curve, cause the system to reach the dividing curve sooner and thus the downward

jump to occur sooner, reducing the size of the upper branch as well. The “erosion” of the

upper branch will be explored in further detail in Section 6.3 when we explore the various

hysteretic regions in detail.

4.8 Damping Effects on the Frequency Response Profile

The corresponding changes in the frequency response profile, as the upper branch amplitude

profile is being eroded away, are shown in the effective stiffness formulation in Figure 4.27.

Increasing tunnel velocity data is shown using solid lines and decreasing tunnel velocity data

is shown using dashed lines. The frequency response for these cases, ones that include an

upper branch, exists along three branches. Branch 1 frequencies correspond to initial branch

amplitudes, branch 2 frequencies to upper branch amplitudes, and branch 3 frequencies to

lower branch amplitudes.

As damping is increased three changes in the frequency response profile take place. First,

the jump from branch 1 to branch 2, as tunnel velocity increases, is delayed and occurs at

a slightly smaller effective stiffness value. Second, the slope of the roughly linear branch 2

decreases. Lastly, the jump from branch 2 to branch 1, as tunnels velocity is decreased, is

expedited and occurs at a slightly smaller effective stiffness value. This, coupled with the

first change, makes the size of the hysteresis, the difference between the solid and dashed

lines, decrease as damping is increased. These three changes are displayed in simplified form

in the schematic of Figure 4.28, which is representative of the general trend of damping

effects.

4.9 Reynolds Number Effects on the Amplitude Response

Profile

Damping and Reynolds number have the interesting property that they have similar effects

on the response behavior of VIV. This means that similar results can be obtained by either
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Figure 4.27: Effects of damping on the frequency response profiles of the upper branch
systems of Sequence 03 in the effective stiffness formulation. Solid lines represent increasing
tunnel velocities; dashed lines represent decreasing tunnel velocities; fSt: stationary cylinder
Strouhal frequency; fN : system natural frequency in air. Damping values for each run can
be found in Table 5.1.

increasing damping or decreasing the Reynolds number. Because of this, the damping

effects on the amplitude and frequency response, discussed previously, can also be caused

by Reynolds number changes. As an example, we look at the elimination of the the upper

branch from the amplitude response profile. As discussed previously, this is possible by

increasing the system damping. Such a situation is shown in Figure 4.29 where the Reynolds

number, as well as other relevant parameters, were consistent throughout the two tests. In

one test, the damping value is small enough to allow for an upper branch, however, in

the second test, the damping value is increased to a large enough value to suppress the

upper branch. Contrast that with Figure 4.30 where the damping was the same in the two

tests. This time however, the two tests had different Reynolds numbers. The test with the

higher Reynolds number shows the existence of the upper branch while the lower Reynolds

number test does not. Thus, Reynolds number effects are analogous to damping effects on

the amplitude response profile. This means that the existence of an upper branch response

is not simply dependent on damping, or the “mass-damping” parameter, as previously
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Figure 4.28: Schematic showing the general trends of damping effects on the frequency
response profiles for upper branch systems.

thought. In order to have an upper branch response, one needs a low damping value and

a high enough Reynolds number. The response profile of the system is controlled by the

combination of damping and Reynolds number.

This is not to imply that there is a direct coupling between damping and Reynolds

number. Something as simple as “a doubling of damping is exactly equivalent to reducing

the Reynolds number in half” does not exist. One reason for this is that there appears to

be limits for certain behavior. For example, it appears that an upper branch cannot occur

at Re . 500 regardless of how small the damping. However the general effects caused by

increases in damping are similar to the effects that one sees by decreasing the Reynolds

number. This is highlighted in Figure 4.31, which shows the amplitude response profile for

three distinct systems, each with a different combination of damping and Reynolds number.

However, the combination of damping and Reynolds number is adjusted for each system

such that the amplitude response profile of all three is very similar.
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Figure 4.29: Elimination of the upper branch portion of the amplitude response profile
through an increase in damping for Re|A∗

Max
≈ 1000.

Figure 4.30: Elimination of the upper branch portion of the amplitude response profile
through a decrease in Reynolds number for b∗|A∗

Max
≈ 0.13.
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Figure 4.31: Three distinct systems, each with a different damping and Reynolds number
value, but by appropriate combinations of them, the amplitude response profiles of the three
systems are nearly the same.

4.10 Reynolds Number Effects on the Frequency Response

Profile

Damping effects on the frequency response profile for systems with an upper branch were

discussed in Section 4.8. Because of the similarities between damping and Reynolds number

effects on amplitude responses, as shown in Section 4.9, we expect there to be Reynolds

number effects on the frequency response as well. These Reynolds number effects are shown

in Figure 4.32 and are similar to the previously discussed damping effects.

The figure shows two systems with different Reynolds numbers but runs with closely

matched damping values. By examining a given color, one can see the Reynolds number

effects by comparing the two shades of that color (darker shade is Re|A∗
Max
≈ 1000, lighter

shade is Re |A∗
Max
≈ 2600). By doing this, one will notice that decreasing the Reynolds

number for a given damping value decreases the slope of the roughly linear Branch 2 of

the response profile. This is analogous to what an increase in damping did as discussed in

Section 4.8.

There are a few Reynolds number effects on the frequency response profile that do not
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Figure 4.32: Effects of Reynolds number on the frequency response profiles of upper branch
systems in the effective stiffness formulation. fSt: stationary cylinder Strouhal frequency;
fN : system natural frequency in air.

have analogous damping effects. These unique Reynolds number effects can be seen by

comparing Figure 4.27, the previously discussed frequency response for Sequence 03, to

Figure 4.33, the frequency response profile for the upper branch cases in Sequence 04. The

damping values for Sequence 04 can be found in Table 5.1. Perhaps one of the most obvious

differences is the jump between branch 1 and 2. In Figure 4.27 (Sequence 03), the jump has

a slightly negative slope whereas in Figure 4.33 (Sequence 4), the jump has a large positive

slope. Another difference is the shape of branch 1 as it approaches the Strouhal frequency

line (fSt).

4.11 Practical Application

In order to accurately predict VIV behavior in structures, one must know the fluid velocity

that will cause the maximum amplitude. One approach to estimate the problematic fluid

velocity would be to match the system natural frequency to the shedding frequency of an

equivalent stationary cylinder,

fshed = St
U

D
= fN , (4.8)
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Figure 4.33: Effects of damping on the frequency response profiles of the upper branch
systems of Sequence 04 in the effective stiffness formulation. Solid lines represent increasing
tunnel velocities; dashed lines represent decreasing tunnel velocities; fSt: stationary cylinder
Strouhal frequency; fN : system natural frequency in air. Damping values for each run can
be found in Table 5.1.

and obtain the following estimate

U =
fND

St
. (4.9)

However, we know that the maximum amplitude does not occur at this “lock-in” point (see

Section 4.3). Therefore, we know that this approach is fundamentally flawed and as the

nondimensional mass of the system increases, the maximum point moves farther away from

this point, causing the predicted velocity to have a larger error.

A better approach is to use the effective stiffness formulation since we know that max-

imum amplitudes occur at k∗eff |A∗
Max
≈ 2.5 for all systems studied. Because the effective

stiffness is itself a function of the oscillation frequency, one needs to know the oscillation

frequency, ω∗, at the maximum amplitude denoted ω∗ |A∗
Max

. Referring to Figure 4.27 or

Figure 4.33 we find that

ω∗ 2|A∗
Max
≈ ω∗(k∗eff ≈ 2.5, b∗,Re) ≈ 1.45± 0.15 , (4.10)
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run no. actual U|A∗
Max

predicted U|A∗
Max

% diff predicted U|A∗
Max

% diff

Equation (4.9) Equation (4.11)
01(a) 5.04 4.51 -10 4.89 -3
02(a) 5.00 4.55 -9 4.99 0
03(a) 9.73 9.03 -7 9.83 1
04(a) 6.93 6.79 -2 6.69 -3
05(a) 4.35 3.38 -22 3.64 -16
06(a) 5.00 4.39 -12 4.83 -3
07(a) 3.28 2.88 -12 3.15 -4
08(a) 8.22 8.12 -1 8.55 4
09(a) 9.08 9.52 5 9.33 2
10(a) 13.38 13.71 3 13.30 -1

Table 4.2: Comparison between two predictive relationships for U |A∗
Max

. Note that all
U|A∗

Max
values are given in cm/s.

for lightly damped systems at the Reynolds numbers tested. From the definition of k∗ and

k∗eff , we find

U2|A∗
Max

=
2k

ρL(k∗eff|A∗
Max

+ m∗ ω∗2|A∗
Max

)
. (4.11)

Therefore, one can use k∗eff|A∗
Max
≈ 2.50 and ω∗ 2|A∗

Max
≈ 1.45 to determine the fluid velocity

using Equation (4.11).

This method, Equation (4.11), is an improvement over the previous method, Equation

(4.9). As an example, these two different predictive equations are used to calculate U|A∗
Max

in Table 4.2. The effective stiffness method was consistently closer to predicting the fluid

velocity at maximum amplitude than the frequency matching method. In fact using the

frequency matching method, the relative error in the predicted velocity was approximately

10 percent. The method does appear to give better results at higher Reynolds numbers,

Re|A∗
Max

& 1600, where the relative error was approximately 5 percent. However, with the

proposed effective stiffness method, the relative error is less than 4 percent for all systems

studies except one.
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Chapter 5

Maximum and Limiting
Amplitudes

5.1 Chapter Overview

In this chapter we investigate the maximum oscillation amplitude that a free-vibration sys-

tem can obtain and determine the parameters that control it. In Section 5.2 we discuss the

difficulties in predicting maximum amplitudes while also looking at recent developments

and conclusions. Our theoretical development in Section 5.3 leads to a precise definition

of the maximum amplitude and its limit as damping becomes negligible, the limiting am-

plitude. In Section 5.4 we discuss briefly the experimental test scheme used to obtain the

data. Then, in Section 5.5 we show some basic experimental results that display the maxi-

mum amplitude dependence on the controlling parameters. Section 5.6 deals with extending

those basic results to both lower and higher Reynolds numbers. We use these maximum

amplitude results to determine limiting amplitudes in Section 5.7. In Section 5.8 we frame

our results with previous work done in this area and comment on the differences that exist.

We suggest reasons for the various regions of behavior in the limiting amplitude plot with

the aid of flow visualization in Section 5.9. Finally, the phenomena that one sees for a

heavily damped system are discussed in Section 5.10.

5.2 Background

One of the most important issues from the design and survivability viewpoint of structural

engineering involves being able to predict the maximum amplitude that a freely-vibrating

structure would obtain during service. However, since the coupling of the structural and
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fluid systems involve nonlinear mechanics, determining that maximum amplitude is not

a simple endeavor. It is interesting, though, to see the predicted motion and amplitude

if the problem were a simple mass-damper-spring linear vibration system with constant

amplitude and frequency sinusoidal fluid forcing function, such as FL(t) = FL,o sin(ωd t).

Assuming constant amplitude and frequency forcing is not exactly correct, but they are not

unreasonable assumptions for the traditionally termed “resonant region,” which includes the

maximum amplitude location. Experimentally measured lift forces appear to be reasonably

approximated by constant amplitude and frequency sine waves (Govardhan and Williamson,

2000; Sarpkaya, 2004).

Under this assumption, the dimensional governing equation, Equation (2.5), first dis-

cussed in Section 2.5, would then be given by

mÿ + bẏ + ky = FL,o sin(ωd t) , (5.1)

where the dimensional steady-state closed form solution is well-known and can be written

in the form

y =
FL,o√

(k − ωd
2 m)2 + (ωd b)2

sin (ωd t− θ) , (5.2)

where

θ = tan−1

(
ωd b

k − ωd
2 m

)
, (5.3)

is the phase difference between the driving force and the system response. The dimensional

maximum amplitude for such a forced system can be written in a form that shows the

importance of the difference between the driving and natural frequencies, as well as the

damping, as

AMax =
FL,o/(ωd m)√

((ωN
2 − ωd

2)/ωd)
2 + (b/m)2

. (5.4)

This form highlights that at the actual resonance condition (ωd = ωN), the amplitude is

limited only by structural damping in the system. It is useful to look at the predicted

maximum amplitude in nondimensional terms. In the traditional formulation, the response
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from Equation (5.4) can be written as

A∗
Max =

CL,o(UR
2/πω∗

tr)√(
(m∗

tr/2ω∗
tr)(1− ω∗

tr
2)
)2 + (m∗

trζ)2
, (5.5)

where the system response frequency, ω, is the same as the driving frequency, ωd, (see

Equation (5.2)) so that ω∗
tr = ωd/ωN. In the effective stiffness formulation, the maximum

amplitude response is given by

A∗
Max =

CL/ω∗√
(k∗eff/ω∗)2 + b∗2

. (5.6)

The usefulness of this simple derivation and resultant maximum amplitude prediction,

using either Equation ( 5.5) or Equation ( 5.6), remains an important question to this

day. As noted previously, we needed to make the initial assumption of constant amplitude

and frequency forcing to solve Equation (5.1). But perhaps a bigger problem for such an

assumption is the fact that the lift coefficient amplitude appears to have a strongly nonlinear

dependance on the motion of the cylinder itself, making the governing equation non-linear

(Sarpkaya, 2004).

Since analysis similar to the one we just presented shows a dependence on a parameter

that is the product of mass and damping, maximum amplitude data has usually been

presented against a mass-damping parameter. Various mass-damping parameters have been

used in the past (Vickery and Watkins, 1964; Scruton, 1965) and continue to be used to this

day, although in different forms (Khalak and Williamson, 1996; Williamson and Govardhan,

2004). Most are only different by a scale factor, making the trends they convey depend

very little on the actual parameter used. Perhaps because Griffin and collaborators did

extensive early work collecting and plotting maximum amplitude data, the most common

mass-damping parameter is SG, the parameter they used. This parameter can be written

in the traditional formulation as SG = 2π3St
2m∗

trζ and the effective stiffness formulation as

SG = 2π2St
2URb∗. Before leaving this idea, it is important for use in discussion later, that

both Equation (5.5) and Equation (5.6) can be written in terms of SG in a functional form

of

A∗
Max ∝

A√
B + SG

2
, (5.7)
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where A and B capture all the terms other than SG. It should be noted that the maximum

amplitude, A∗
Max, goes as

(
1 + SG

2
)−1/2 using this prediction equations.

If one feels uneasy about the assumptions necessary to arrive at either Equation (5.5)

or Equation (5.6), then a different approach can be taken. Such a derivation was shown by

Sarpkaya (1978) as part of his attempt to explore the reasons for the apparent correlation

of maximum amplitude experimental data with SG. In his derivation, he does not make

any assumptions about the lift force amplitude or frequency in Equation ( 5.1). Instead,

he derives a normalized relationship between the amplitude and phase of the system from

Equation (5.1). He then makes the assumption that the oscillation frequency to natural

frequency ratio is close to one, f/fn = 1− ε, and substitutes this into his amplitude-phase

equation. This assumption is justified for large m∗ systems (m∗ � 1) since the cylinder

oscillation frequency at resonance will be close to both the stationary cylinder shedding

frequency and system natural frequency (Bearman, 1984). After ignoring all third- and

higher-order terms of ε, Sarpkaya arrives at the expression

A∗
Max =

0.5 CL (fSt/fN)2√
(ε/ao)2 + SG

2
, (5.8)

where he concludes that only if CL and ε/ao remain constant would there be a unique rela-

tionship between A∗
Max and SG. It is interesting to note that although different assumptions

were made, Equation (5.8) and Equation (5.7) have the same functional dependence on the

mass-damping, SG, of the system.

Because numerous derivations to determine predictive relationships between the max-

imum amplitude and a mass-damping parameter exist, we present one more extremely

common method. This method involves substituting not only a sinusoidal lift force, but a

sinusoidal response motion out of phase with the lift, into Equation (5.1). Then the response

amplitude and frequency can be derived. This approach has been undertaken by Khalak

and Williamson (1999), where they arrive at

A∗
Max =

1
4π3

CY sinφ

(m∗ + CA)ζ

(
U∗

f∗

)2

f∗ , (5.9)
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as well as Sarpkaya (2004), where he arrives at the expression

A∗
Max =

1
2
CY sinφ

St2

SG

(
U

fvacD

)2 fvac

fcom
, (5.10)

with each of the nondimensional parameters being specific to those authors and defined

in their papers. The differences between the two expressions mainly arises from the fact

that Khalak and Williamson, in an effort to capture low m∗ systems, choose to include the

added mass term in their nondimensionalization whereas Sarpkaya does not. However, the

most important point is that both expressions give the same functional relationship between

A∗
Max and mass-damping, m∗ζ or SG. The maximum amplitude, A∗

Max, goes as SG
−1 using

this methods. This is markedly different than the behavior that was predicted previously

and shown in Equation (5.7).

As mentioned previously, the usefulness of Equation (5.7) has been continuously debated

for various reasons. One reason involves the disagreement over the idea of combining the

mass and the damping into a mass-damping parameter or if the mass and damping act

independently on the response. It was pointed out by Sarpkaya (1978) that the governing

equation of motion shows that the system response is independently governed by m∗ and

ζ, and that the governing equation cannot be written in terms of a single mass-damping

parameter. On the other hand, Griffin and Ramberg (1982) performed two experiments at

a roughly constant SG but with m∗ changing by an order of magnitude and observed about

the same maximum amplitude, suggestive of a dependence on the combined mass-damping

parameter. The majority of the debate has concentrated around under what conditions

would a mass-damping parameter be useful. Much of the debate was exasperated by the

traditional formulation and its specific nondimensional parameters. Sarpkaya’s point can

be understood by looking at Equation (2.17) where m∗ and ζ appear separately. Others

were driven by the fact that all the maximum amplitude derivations, such as Equation (5.5),

contained their product. However, in our formulation this debate does not exist. There is no

attempt to combine mass, m∗, and damping, b∗. Instead, mass is combined with elasticity

to form the effective stiffness parameter and the maximum amplitude is controlled by both

effective stiffness and damping.

It is worth mentioning that some researchers have attempted to represent the compli-

cated fluid forcing function in a variety of ways, including using van der Pol equations and
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amplitude dependent lift coefficients. This was discussed briefly in Section 2.6. Perhaps the

most extensive model was started in Skop and Griffin (1975) and then further developed by

Skop and Balasubramanian (1997). However, no attempt to date has come close to accu-

rately capturing the maximum amplitude response over a full range of system parameters

and Reynolds numbers.

It is interesting that the various attempts at predicting the maximum amplitude produce

results with different functional forms. Obviously, the predicted responses of the form of

Equation ( 5.9) and Equation ( 5.10) are troubling because for low mass-damping, the

maximum amplitude appears to be unbounded. on the other hand, adopting a response

of the form Equation (5.7) and treating the parameters A and B as roughly constant has

dramatic implications for the maximum amplitudes at small damping values. The response

of Equation (5.7) is an even function which means that the maximum amplitude function

must pass through b∗ = 0 with zero slope. Therefore, the maximum amplitudes should

asymptote to some value and remain constant below a certain mass-damping value. On

physical grounds, one would expect the maximum amplitude to smoothly increase through

zero damping. Once could imagine a system with slightly negative damping. Such a system

would logically have a slightly larger amplitude than a system with the equivalent positive

damping.

Due to the complicated natural of the oscillating structure and the fluid wake, along

with the nonlinear mathematics it creates, the most insight gained into understanding

the maximum attainable amplitude has been through experimental work. A significant

advancement on the subject was made by Griffin and collaborators by collecting various

experimental results in air and water and compiling them in a single plot. One of the

first plots appeared in Skop and Griffin (1975) with a more detailed plot appearing in

Griffin (1980). Due to his early involvement, this type of plot, one where the observed

maximum amplitude is plotted against a mass-damping parameter, is now often referred to

as a “Griffin plot.” There is however, no consistent axis scaling or damping parameter that

is currently universally used. One such Griffin plot is a recent representation by one of the

original researchers (Skop and Balasubramanian, 1997), shown in Figure 5.1. In the figure,

the curve fit has the form given by Equation (5.7) with A = 0.385 and B = 0.12.

In order to make amplitude predictions using such a plot, researchers would use an

equation of the form Equation (5.7) to curve fit the data, as shown in Figure 5.1. However,
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Figure 5.1: A typical “Griffin plot” in log-log form showing the proposed maximum ampli-
tude, A∗

Max, dependence on a “mass-damping” parameter, in this case SG. Curve fit given
by Equation (5.7) with A = 0.385 and B = 0.12. Figure from Skop and Balasubramanian
(1997).

a major problem was experienced when trying to assign values to the parameters A and B

that would capture all the experimental data. Consequently, their values have been obtained

in different ways. In some cases, these values were based on estimating the parameters

that contribute to their values, such as the lift coefficient, from stationary cylinder tests.

However, in other cases, the values are obtained by a least-squares curve fit, in the form

of Equation (5.7), to all the available data with no inclusive of fluid mechanics principles.

Both methods produce less than satisfactory results that do not accurately represent all of

the data.

One of the concerns of such a plot is the large amount of data scatter from the best-fit

line that is apparent even in a log-log scaling, which compresses much of the scatter. This

shortcoming was highlighted by Williamson and Govardhan (2004) where they added more

experimental data to Figure 5.1 and changed the scaling to a log-linear plot to accentuate

the scatter. Their plot can be seen in Figure 5.2 along with the same curve fit line as in

Figure 5.1.
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Figure 5.2: A typical “Griffin plot” but in linear-log form to accentuate the large amount of
scatter that exists in the compiled data. Curve fit given by Equation (5.7) with A = 0.385
and B = 0.12. Figure from Williamson and Govardhan (2004).

Since one of the original objectives of this work was to determine the maximum attain-

able amplitude, one must extrapolate the experimental values to SG = 0. We see that a

confident extrapolation to zero damping is not possible using such plots. The large amount

of scatter that develops as data from various experiments is added has again raised ques-

tions as to whether the mass should be lumped together with the damping. This question

was addressed, for example in Williamson and Govardhan (2004), where they concluded

that perhaps the mass and damping can be lumped together down to a value of SG ≈ 0.01,

which would be two orders of magnitude lower than the value often cited in the literature.

To improve the utility of the Griffin plot, Williamson and Govardhan (2004) restricted

the type of experimental data that is used. Previous researchers had included various

geometries in their Griffin plots. For instance, Griffin (1980) produced a plot that included

spring-mounted rigid, cantilevered flexible, and pivoted rigid cylinders all on a single plot. In

the Williamson and Govardhan rendition, only similar geometries and arrangements were

compared, in this case, rigid circular cylinder undergoing one-degree-of-freedom motion.

The result of this effort can be seen in Figure 5.3. Even though this is an improvement,

there is still an appreciable amount of scatter. It is at this time that we mention that the

most important fluid mechanics parameter had not yet been discussed or included. In every
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Figure 5.3: A “Griffin plot” modified by Williamson and Govardhan to show only similar
geometries in order to reduce the scatter in the reported data. Figure from Williamson and
Govardhan (2004). (Note that “lower branch” data has been removed for simplicity.)

variation of the Griffin plot that has been created, the maximum amplitudes are always only

a function of the mass-damping parameter. This makes it impossible to represent possible

Reynolds number effects. In the next section we present a unified approach that includes

Reynolds number as a parameter.

5.3 Theoretical Development

For a stationary cylinder, which has zero-degree-of-freedom motion, one has the simple

relationships for the amplitude and frequency responses

A∗ = 0 , (5.11)

ω∗ = ω∗(Re) = 2πSt(Re) . (5.12)

There is no amplitude response since the cylinder is fixed and the frequency response is

taken to be the frequency at which vortices are shed into the wake. This nondimensional
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frequency is the previously discussed Strouhal number, St (see Section 2.3), and is only a

function of the Reynolds number of the flow.

The frequency response in Equation (5.12) is a simple universal relationship, only de-

pending on one parameter, the Reynolds number. One could naturally wonder if a similar

relationship exists for a cylinder released from such tight constraints and allowed one-

degree-of-freedom motion. One might immediately think that such a simple and universal

relationship cannot exist since the new degree of freedom introduces so many new param-

eters into the problem. However, for maximum and limiting amplitudes, similar universal

relationships can be obtained.

For a cylinder that is allowed to only oscillate normal to the flow direction (one-degree-

of-freedom motion) and has a large enough aspect ratio so as to minimize end effects, three

more parameters must be considered besides the Reynolds number, and we expect

A∗ = A∗(m∗, b∗, k∗,Re) , (5.13)

ω∗ = ω∗(m∗, b∗, k∗,Re) , (5.14)

where the frequency response is now the oscillation frequency of the system and the param-

eters are the same as those defined in Section 2.8.

If we assume sinusoidal motion, then as discussed in Section 2.10 and proposed by Shiels

et al. (2001), the mass and elasticity of the system can be combined into a single parameter,

k∗eff , the effective stiffness of the system. This potentially simplifies the response behavior

to be dependent on only three parameters as follows

A∗ = A∗(k∗eff , b∗,Re) , (5.15)

ω∗ = ω∗(k∗eff , b∗,Re) , (5.16)

where the effective stiffness parameter is defined and discussed in Section 2.10.

For such a system, one expects there to be a maximum amplitude at some point during

its full response domain. Previous researchers have used the phrase “maximum amplitude”

and the symbol A∗
Max imprecisely, sometimes even using it to highlight the maximum am-

plitude that is observed during only a partial test even though a larger amplitude may exist
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in the remainder of the test. We put a strict definition on the term maximum amplitude.

We introduced and defined our maximum amplitude, A∗
Max, in Klamo et al. (2004), and

continue with that definition here so that

A∗
Max(b

∗,Re) = max
k∗
eff

A∗(k∗eff , b∗,Re) , (5.17)

which shows that maximum amplitudes, A∗
Max, are a function of only two parameters and

do not depend on the individual mass of the system. One of the main objectives of this

chapter is to experimentally determine the function A∗
Max for a range of Reynolds numbers.

This will result in essentially a generalized version of the traditional Griffin plot and will

help explain the reason for the scatter in the compiled data.

As shown by Equation (5.17), maximum amplitudes depend on both the damping and

Reynolds number. Since we are interested in the largest maximum amplitudes, we look at

cases that have zero damping. We call such points limiting amplitudes, A∗
Lim, since they

occur in the limit of zero damping at each Reynolds number, and can be written simply as

A∗
Lim(Re) = A∗

Max(b
∗ → 0,Re) , (5.18)

which shows that limiting amplitudes, A∗
Lim, are only a function of the Reynolds number.

Another main objective of this chapter is to experimentally determine the function A∗
Lim

for a range of Reynolds numbers. Through this derivation, we have obtained a simple and

universal relationship between limiting amplitudes and Reynolds number,

A∗
Lim = A∗

Lim(Re) . (5.19)

Notice that Equation (5.19) mirrors the stationary cylinder frequency case, Equation (5.12),

and stresses the importance of Reynolds number in this problem.

5.4 Experimental Procedure

A major problem in previous investigations was that, almost without exception, the mass-

damping parameter was not varied systematically. Instead, values of mass and damping

were the ad hoc values of the particular experiment. This in itself produces data scatter
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even if Reynolds number is considered. To remedy this, we systematically varied the mass-

damping parameter, which for us is simply b∗.

For a certain system with m, b, k, and D values, a test Run was completed by spanning

the range of tunnel velocities of interest four times, twice in increasing and twice in decreas-

ing increments. From such a test run, the maximum amplitude for that specific system

was determined. By spanning a large enough velocity range, a maximum amplitude was

guaranteed to be observed due to the similarities between spanning UR and spanning k∗eff ,

as discussed in Section 2.11. This procedure was then repeated multiple times on the same

system (same m, k, and D values) but with different values of damping, b. These repeated

test runs at various b values then encompassed a test Sequence. Controlled imposed damp-

ing values on the system were made possible by the use of our VMEC damping system,

described in Section 3.4.

A large portion of the damping plane was explored using four different system config-

urations and three different Reynolds numbers. Various system damping parameters and

the Reynolds numbers for these test runs can be seen in Table 5.1

5.5 Generalized Griffin plot

Four test sequences were carried out in order to experimentally determine Equation (5.17)

over a wide range of b∗ values. Each of these four sequences are shown in the following

manner, Sequence 01 in Figure 5.4, Sequence 02 in Figure 5.5, Sequence 03 in Figure 5.6,

and Sequence 04 in Figure 5.7. In all the figures, the independent parameter is the effective

stiffness and the damping values for each run can be found in Table 5.1.

We denote the value of the effective stiffness at peak amplitude as k∗eff|A∗
Max

. Note that

the peak amplitude in each case occurs around k∗eff|A∗
Max
≈ 2.5, while k∗eff varies from 10 to

-1 in a typical experiment. In fact, we find that for lightly to moderately damped systems,

the location of the maximum amplitude, A∗
Max, is invariant to individual system mass and

elasticity and always occurs near k∗eff|A∗
Max

, with the actual specific value depending only on

the specific damping and Reynolds number.

Although each point that is part of a given test run, for example Run01(a) in Figure 5.4,

corresponds to a different tunnel velocity, and thus a different Reynolds number and b∗ value,

each value of k∗eff shared within a test sequence (except k∗eff slightly less than 0) corresponds
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run no. b (kg/s) ζ m∗
trζ b∗|A∗

Max
Re|A∗

Max

01(a) 0.0172 0.0008 0.039 0.147 ± 0.008 518 ± 23
01(b) 0.0182 0.0008 0.041 0.150 ± 0.030 527 ± 4
01(c) 0.0183 0.0008 0.042 0.157 ± 0.003 516 ± 17
01(d) 0.0363 0.0017 0.083 0.299 ± 0.004 528 ± 5
01(e) 0.0445 0.0020 0.102 0.372 ± 0.007 528 ± 27
01(f) 0.0616 0.0028 0.141 0.486 ± 0.004 540 ± 4
01(g) 0.0742 0.0034 0.169 0.573 ± 0.019 555 ± 3
01(h) 0.0925 0.0042 0.213 0.731 ± 0.004 540 ± 4
01(i) 0.1230 0.0056 0.283 0.972 ± 0.046 540 ± 3
01(j) 0.1533 0.0070 0.353 1.262 ± 0.005 519 ± 4
01(k) 0.1872 0.0085 0.429 1.540 ± 0.003 519 ± 3
01(l) 0.2155 0.0098 0.494 1.773 ± 0.004 519 ± 4
01(m) 0.2385 0.0108 0.547 2.139 ± 0.018 483 ± 2
01(n) 0.2903 0.0132 0.665 2.726 ± 0.019 459 ± 3
02(a) 0.0226 0.0005 0.051 0.194 ± 0.002 517 ± 23
02(b) 0.0470 0.0011 0.111 0.387 ± 0.041 533 ± 3
02(c) 0.0772 0.0017 0.175 0.635 ± 0.004 526 ± 3
02(d) 0.1089 0.0025 0.247 0.896 ± 0.003 530 ± 4
02(e) 0.1358 0.0031 0.309 1.118 ± 0.007 530 ± 2
02(f) 0.1688 0.0038 0.384 1.449 ± 0.003 501 ± 5
02(g) 0.2004 0.0045 0.454 1.720 ± 0.004 505 ± 3
02(h) 0.2313 0.0052 0.526 1.985 ± 0.051 509 ± 5
02(i) 0.2629 0.0059 0.597 2.358 ± 0.006 489 ± 2
03(a) 0.0264 0.0006 0.030 0.116 ± 0.004 995 ± 12
03(b) 0.0465 0.0011 0.053 0.200 ± 0.001 1031 ± 32
03(c) 0.0672 0.0015 0.077 0.284 ± 0.002 1019 ± 13
03(d) 0.0907 0.0021 0.104 0.375 ± 0.001 1045 ± 5
03(e) 0.1129 0.0026 0.129 0.467 ± 0.001 1050 ± 10
03(f) 0.1675 0.0038 0.192 0.678 ± 0.003 1077 ± 24
03(g) 0.2249 0.0051 0.258 0.911 ± 0.004 1083 ± 16
03(h) 0.3139 0.0071 0.360 1.271 ± 0.004 1077 ± 10
03(i) 0.3760 0.0085 0.431 1.554 ± 0.005 1061 ± 10
03(j) 0.4417 0.0100 0.506 1.865 ± 0.021 1032 ± 13
03(k) 0.4778 0.0109 0.548 2.017 ± 0.009 1031 ± 15
03(l) 0.5368 0.0122 0.615 2.315 ± 0.014 1019 ± 10
04(a) 0.0159 0.0014 0.006 0.026 ± 0.001 2635 ± 20
04(b) 0.0172 0.0015 0.007 0.030 ± 0.003 2541 ± 134
04(c) 0.0622 0.0055 0.025 0.104 ± 0.001 2554 ± 45
04(d) 0.1203 0.0106 0.048 0.202 ± 0.001 2534 ± 39
04(e) 0.1803 0.0159 0.072 0.303 ± 0.003 2550 ± 39
04(f) 0.2352 0.0211 0.096 0.382 ± 0.015 2652 ± 14
04(g) 0.3094 0.0274 0.124 0.503 ± 0.002 2639 ± 40
04(h) 0.4637 0.0410 0.186 0.731 ± 0.009 2729 ± 34
04(i) 0.6207 0.0551 0.250 1.009 ± 0.007 2595 ± 34
04(j) 0.7780 0.0688 0.312 1.265 ± 0.013 2619 ± 14
04(k) 0.9366 0.0830 0.376 1.624 ± 0.016 2463 ± 50
04(l) 1.0881 0.0965 0.438 1.887 ± 0.016 2481 ± 31

Table 5.1: Imposed system damping values for sequences with moderate Reynolds number
525 . Re|A∗

Max
. 2600.
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Figure 5.4: Select runs showing Sequence 01 response amplitude, A∗, dependence on the
effective stiffness, k∗eff , for various damping values

Figure 5.5: Select runs showing Sequence 02 response amplitude, A∗, dependence on the
effective stiffness, k∗eff , for various damping values
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Figure 5.6: Select runs showing Sequence 03 response amplitude, A∗, dependence on the
effective stiffness, k∗eff , for various damping values

Figure 5.7: Select runs showing Sequence 04 response amplitude, A∗, dependence on the
effective stiffness, k∗eff , for various damping values
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Figure 5.8: New “Generalized” Griffin plot showing maximum amplitude, A∗
Max, dependence

on damping, b∗, and Reynolds number, Re.

to nearly the same tunnel velocity and Reynolds number for those points. Therefore, the

differences in a test sequence at k∗eff|A∗
Max

are essentially only due to damping effects since

they share a common Reynolds number. The simplicity of this approach is that now a

constant-Reynolds-number curve can be constructed in the amplitude-damping plane by

using the points that correspond to k∗eff|A∗
Max

for a given test sequence. This experimental

result allows us to determine A∗
Max(b

∗,Re) for a fixed Re by varying b∗ as described above.

By taking the maximum amplitudes for each test run from Figure 5.4 – Figure 5.7, we

can construct a Griffin plot of maximum amplitude against damping. Figure 5.8 shows the

results of transferring the data from Figure 5.4 – Figure 5.7 into such a plot. Since not only

damping effects but also Reynolds number effects are considered, we refer to Figure 5.8 as a

“generalized” Griffin plot since it is a generalization of the concept that Griffin introduced.

We present maximum amplitude against both damping and Reynolds number. Four test

sequences covering three Reynolds numbers (Re ≈ 525, Re ≈ 1000, and Re ≈ 2600) are

shown. For most points in the figure, the uncertainty in the damping was less than the size

of data point itself. There were a few runs however that had higher uncertainty, and in those
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cases, the horizontal bars represent the uncertainty in the measured damping value of the

system. As mentioned in Section 4.4, the oscillation amplitude varies in time. Therefore,

in order to represent the variation from the plotted average value, we display vertical bars

for each individual data point that represents the range necessary to capture 95 percent of

the observed time-varying oscillation amplitudes. The trendlines shown are least-squares

fourth-order polynomials. The effect of Reynolds number is clearly demonstrated and is

the obvious reason why early attempts to compile various data contained so much scatter.

Furthermore, this is a graphic representation of A∗
Max, which was defined in Equation (5.17),

and shows that indeed there is a two parameter dependence.

As discussed in Section 2.10, an important result of the effective stiffness formulation

over the traditional formulation is that mass is not an independent parameter but is im-

plicitly contained within the effective stiffness. Therefore, theoretically, only one m∗ case,

of arbitrary value, needs to be carried out for each constant-Reynolds-number curve in Fig-

ure 5.8 because every other value of m∗ will still conform to this curve. To validate this

assertion, two curves in the damping plane with two different masses, one twice as massive

as the first, were generated for the same Reynolds number. As can be seen in Figure 5.8,

the two sets of data for Re ≈ 525 corresponding to two different mass systems show little

dependence on the actual system mass.

5.6 Extending the Reynolds Number Range

The generalized Griffin plot shown in Figure 5.8 contains only three different constant-

Reynolds-number curves and therefore cannot show the possible importance of Reynolds

number over a larger range. Figure 5.8 is adequate to show the damping and Reynolds

number effects on the maximum amplitude, however, it would be advantageous to cover

a larger Reynolds number space on the generalized Griffin plot. This would then allow

us to locate more than three limiting amplitude points, as defined in Equation ( 5.18).

Therefore, to get a better representation of Reynolds number effects on A∗
Max as well as

locating more A∗
Lim, we also explored three test sequences for Reynolds numbers in the

range 200 . Re |A∗
Max

. 500 and three test sequences for Reynolds numbers in the range

Re|A∗
Max

> 103.

The three test sequences for Re|A∗
Max

< 500 were numbered Sequence 05 – Sequence 07,
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and their relevant system parameters can be seen in Table 5.2. The three test sequences

that were carried out with Re|A∗
Max

> 103 were numbered Sequence 08 – Sequence 10, and

their relevant system parameters can be seen in Table 5.3.

run no. b (kg/s) ζ m∗
trζ b∗|A∗

Max
Re|A∗

Max

05(a) 0.0158 0.0010 0.049 0.156 ± 0.058 432 ± 1
05(b) 0.0313 0.0019 0.096 0.308 ± 0.003 433 ± 3
05(c) 0.0487 0.0030 0.149 0.479 ± 0.003 430 ± 2
05(d) 0.0538 0.0011 0.155 0.517 ± 0.086 426 ± 2
06(a) 0.0272 0.0008 0.105 0.387 ± 0.014 298 ± 1
06(b) 0.0322 0.0009 0.125 0.458 ± 0.004 297 ± 1
06(c) 0.0350 0.0010 0.136 0.497 ± 0.004 298 ± 2
06(d) 0.0432 0.0012 0.168 0.613 ± 0.003 301 ± 1
06(e) 0.0158 0.0012 0.060 0.221 ± 0.014 305 ± 1
07(a) 0.0179 0.0008 0.107 0.387 ± 0.007 196 ± 2
07(b) 0.0233 0.0010 0.139 0.505 ± 0.004 196 ± 1
07(c) 0.0280 0.0012 0.166 0.607 ± 0.002 195 ± 1

Table 5.2: Imposed system damping values for sequences with Re|A∗
Max

< 500

run no. b (kg/s) ζ m∗
exζ b∗|A∗

Max
Re|A∗

Max

08(a) 0.0186 0.0008 0.012 0.050 ± 0.001 1582 ± 21
08(b) 0.0954 0.0044 0.063 0.245 ± 0.001 1665 ± 22
08(c) 0.1675 0.0076 0.111 0.430 ± 0.001 1665 ± 22
09(a) 0.0160 0.0011 0.005 0.020 ± 0.001 3422 ± 44
10(a) 0.0158 0.0008 0.003 0.013 ± 0.001 5043 ± 65

Table 5.3: Imposed system damping values for sequences with Re|A∗
Max

> 103

The general experimental approach for these sequences was the same as for Sequence 01

– Sequence 04, but we did not span the same magnitude of damping values. We did,

however, attempt to make sure that for the sequences with Re |A∗
Max

< 500, we spanned

a large enough damping space to make a reasonable extrapolation back to zero damping.

This is an important point, since as a general rule of thumb, as Reynolds number decreases,

the minimum possible b∗ increases. This is due to the small values of diameter, D, and

tunnel velocity, U , contained within b∗ for these sequences. Sequence 08 also had a fairly

large minimum b∗ value so that it was treated like the Re|A∗
Max

< 500 sequences. Therefore,

Sequence 05 – Sequence 08 were comprised of three runs that were carried out for each
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Figure 5.9: Detailed view of the “Generalized” Griffin plot for low damping, b∗ < 0.75, and
various Reynolds numbers, 100 . Re . 5050.

Reynolds number explored. The first run was the most lightly damped case possible for

that configuration (inherent damping only). The remaining two runs were spaced out evenly

so that the third run had b∗|A∗
Max
≈ 0.50. This value was chosen because it was observed

from earlier runs, see Figure 5.8, that a linear interpolation to zero damping was a fairly

reasonable assumption for this damping range. It should be noted that because some

systems had fairly high inherent b∗|A∗
Max

values, we relaxed the restraint and allowed up to

b∗|A∗
Max
≈ 0.60. The last two sequences, Sequence 09 and Sequence 10, only involved a single

test run since their inherent b∗ values were small enough so that their A∗
Max values were

representative of their extrapolated A∗
Lim values.

The results of Sequence 05 – Sequence 10 have been added to the previous generalized

Griffin plot, Figure 5.8, and are shown in an updated plot, Figure 5.9. Because a smaller

range of b∗ values were spanned for these sequences, we restrict ourselves to only focus on the

generalized Griffin plot in the area of low damping (b∗ < 0.75). There are some important

things to note about Figure 5.9. First, the least-squares fourth-order polynomial curve fits

have been replaced with least-squares linear curve fits for all sequences, except Sequence 09
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and Sequence 10 since they only contain a single data point each. All runs in a particular

sequence that had a b∗ < 0.60 were used in the curve fit calculation. These linear curve-fit

lines will be used to extrapolate to zero damping and determine A∗
Lim in Section 5.7. Second,

two new sequences appear that are not discussed previously, these are labeled with a + and

x symbol in the figure. These data points were obtained in the traditional ad hoc way where

there is not a consistent system configuration used for the test sequence. Third, in order to

reaffirm that the difference in the amplitudes of the sequences was a Reynolds number effect

and not a cylinder diameter effect, one run in Sequence 05 and Sequence 06 was completed

with a different cylinder diameter. These two points are highlighted in Figure 5.9 with a

pink colored band around the data point. These points each agree with the rest of the points

in their respective sequences, verifying that we are indeed seeing Reynolds number effects.

Fourth, the slopes of the linear curve-fit lines for Sequence 01 – Sequence 06, Sequence 08,

Re ≈ 650, and Re ≈ 850 is surprisingly consistent. There was one exception though. It was

noticed that the slope of Sequence 07, the lowest Reynolds number case run, is considerably

shallower than the other slopes. However, when this shallow slope is compared with the

computational results at Re = 100 of Shiels et al. (2001), the two slopes are very closely

matched. These two curves are highlighted in Figure 5.9 by dashed lines. Finally, it should

be noted that the least-squares linear curve-fit line for Sequence 05 had a steeper slope than

the other experimental results. In order to get a better extrapolation to zero damping, we

used the slope of a neighboring Reynolds number sequence, Re = 525 in this case, and

instead only did a least-squares fit on the y-intercept of the linear equation. This modified

curve is the one shown in Figure 5.9.

5.7 Limiting Amplitudes

In Figure 5.10 we present limiting amplitudes obtained from extrapolating the maximum

amplitude results of the generalized Griffin plot shown in Figure 5.9. We call such a plot,

a “limiting amplitudes” plot. For the sequences that contain least-squares linear curve fits,

the limiting amplitudes for Figure 5.10 were determined by extrapolating these curves back

to zero damping. For the other two sequences (Sequence 09 and Sequence 10), which contain

only one damping value, b∗ was small enough so that A∗
Max was used as A∗

Lim.

As can be seen in Figure 5.10, there appears to be a definite dependence of Reynolds
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number on limiting amplitudes as predicted by Equation (5.19). Over the Reynolds number

range of 200 . Re . 5050 the limiting amplitude, A∗
Lim, increases as Reynolds number

increases. There appears to be a possible diminished Reynolds number effect on the limiting

amplitude in the range 1000 . Re . 2600. This can be seen in Figure 5.10 by noting

the two dashed lines that represent the general trend of the data below Re . 1000 and

above Re & 2600. However, because there is only one point in this range, we cannot say

whether the limiting amplitude is independent of Reynolds number or whether there is a

weak dependence on Reynolds number. Nevertheless, it appears that there is a relationship

change.

It is worth mentioning here that determining A∗
Lim for the low Reynolds number cases

is more uncertain than the higher Reynolds number cases. As the Reynolds number of

the sequences decrease, the minimum possible nondimensional damping value increases.

This makes the extrapolation somewhat uncertain because we are not able to get actual

points near the b∗ = 0 axis. And while the slopes for Sequence 05 and Sequence 06, being

consistent with higher Reynolds numbers slopes, are suggestive of the extrapolation curve

being reasonable, the much shallower slope for Sequence 07 has no basis. We noted the

similarity to computational results done at Re = 100, however, assuming a slope that is the

same as the computational data is dangerous for a few reasons. One, the computational

results could be wrong. Two, they may only be valid for that specific Reynolds number.

Third, we could have three-dimensional effects that were not present in the purely two-

dimensional computational grid of that simulation.

5.8 Comparison with Previous Work

There exists numerous reported maximum amplitudes from experiments at high Reynolds

number and computations at low Reynolds numbers. Some of the computations involved

zero damping, but most of them, along with all the experiments, involved finite damping. In

order to incorporate these reported maximum amplitudes, that cover a much broader range

of Reynolds number, in our limiting amplitudes plot, we relaxed the restriction on zero

damping. We created an “approximate” limiting amplitudes plot that included reported

maximum amplitudes with finite, but small, values of damping along with zero damping

cases. The results of this can be seen in Figure 5.11, where the figure legend shows the zero
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Figure 5.10: Reynolds number effects on limiting amplitudes, A∗
Lim, over the range 200 .

Re . 5050 for our data extrapolated to zero damping.

Figure 5.11: Reynolds number effects on maximum amplitudes, A∗
Max, with small, but finite,

damping values. For these cases, A∗
Max should approximate A∗

Lim fairly well since b∗ < 0.10.
Experimental data compiled by Williamson and Govardhan (2004).
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and finite damping results. Besides our extrapolated A∗
Lim values, we also included some

computational results at zero damping. These included two 2D DNS codes (Shiels et al.,

2001; Willden and Graham, 2006), a 2D and 3D DNS study (Evangelinos and Karniadakis,

1999) and a 3D DNS simulation (Lucor et al., 2005). It should be noted that the 3D

DNS codes mentioned here involved using a Fourier expansion in the z-direction so that

periodicity of the solution along that axis is implied. For maximum amplitudes that contain

a finite amount of damping, we only included results for which we estimated b∗ < 0.10

so that Figure 5.11 may provide a reasonable representation of what the actual limiting

amplitudes plot would look like. The two 2D DNS results with finite damping involved

using a vortex-in-cell method (Fujarra et al., 1998; Zhou et al., 1999) with the remaining

computational results involving turbulence modeling using LES (Saltara et al., 1998) and

RANS (Guilmineau and Queutey, 2004). The numerous experimental results reported by

various investigators were tabulated in Williamson and Govardhan (2004).

Many of the reported experimental results, and the simulations by Lucor et al. (2005),

calculated the maximum amplitude by averaging only the top 10 percent of recorded am-

plitudes, compared to our averaging of every recorded amplitude. Therefore, we need to

adjust those reported values in order to incorporate them into our figure. In Figure 5.11,

the open data points show the reported value while the filled data points show the adjusted

value. The adjustment was a simple linear correction based on Reynolds number. From our

own results over the Reynolds number range 525 . Re . 5050, we calculated the maximum

amplitudes by averaging both the top 10 percent amplitudes and every amplitude of our

data and noted the difference between them. This increasing difference as Reynolds num-

ber increased was least-squares fit with a linear curve. This curve was then used to predict

what the difference would be for data below Re ≈ 104. Above this Reynolds number, the

extrapolated difference became enormous, and a fixed 15 percent difference was used. This

adjustment factor is described in more detail in Appendix D. Even with this adjustment

factor and the uncertainty it introduced, there appears to be a strong Reynolds number

effect over the entire displayed Reynolds number range.

Looking first at the high Reynolds number results in Figure 5.11, one notices the gen-

eral agreement with all the experimental data showing a smooth increase in amplitude as

Reynolds number increases. It is interesting to note that the top 10 percent amplitude

results follow the trend of our 200 . Re . 1000 data. However, if you adjust the data
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to represent every observed amplitude in the set, the data drops slightly and agrees quite

closely with our 1650 . Re . 5050 data. This suggests that using the top 10 percent am-

plitudes might lead to missing subtle behavior in the data. For Re ≈ 1000, there is almost

no difference between our extrapolated results, the top 10 percent value, and our adjusted

value. However, as Reynolds number increases, the difference between top 10 percent values

and our extrapolated values grows. This causes the top 10 percent values to take on artifi-

cially high values. This could potentially result in missing the saturating limiting amplitude

value. Although more data at higher Reynolds number is necessary, it appears that the top

10 percent data hints at no such saturation value.

Next we turn our attention to the low Reynolds number results in Figure 5.11. The

first thing that one notices is the lack of data in this region. One of the reasons for this

is that there are many reported maximum amplitudes at low Reynolds number, but most

of them are for either rigid cylinders with two-degrees-of-freedom motion (Blackburn and

Karniadakis, 1993; Singh and Mittal, 2005), or flexible cables (Newman and Karniadakis,

1996). Another reason is that many of the simulations, and all of the experiments, involve

damping values that are too large. It is difficult to maintain a small damping value for

low Reynolds number experiments; this is what forced us into our somewhat uncertain

extrapolation back to zero. One free-vibration experiment at low Reynolds number was

carried out by Anagnostopoulos and Bearman (1992). They explored response behavior at

Re|A∗
Max
≈ 100. However, due to the low flow velocities and extremely short wetted length

(approximately 13 cm) and small diameter (1.6 mm) of the cylinder, their b∗ value was quite

large, we estimate roughly 0.53, and so their results cannot be used on our approximate

limiting amplitudes plot. However, this is not a problem for computations. The problem

arises when, instead of exploring zero damping behavior, the computation attempts to

match a high damping experiment. In order to include more low Reynolds number results,

these two-degree-of-freedom motion and flexible-cable results are sometimes included with

one-degree-of-freedom motion (Williamson and Govardhan, 2004). However, we take the

cautious approach and do not include these results.

The small amount of one-degree-of-freedom data that does exist does not allow many

conclusions to be drawn from the low Reynolds number region. One interesting observation

is that the 2D DNS simulations at zero damping for Re ≈ 100 have much larger amplitudes

than our experimental data would suggest for that Reynolds number. This can be seen
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in Figure 5.11 by noting that Shiels et al. (2001) predicted A∗
Lim ≈ 0.59, Evangelinos and

Karniadakis (1999) predicted A∗
Lim ≈ 0.50, and Willden and Graham (2006) predicted

A∗
Lim ≈ 0.49 while our data, if it maintained its behavior, predicts an extrapolated value of

A∗
Lim ≈ 0.40. However, our experimental results may not maintain the same behavior down

to Re = 100 that they do between 200 . Re . 1000. The simulations with finite damping

at Re ≈ 200 also have larger amplitudes than our experimental results. Zhou et al. (1999)

predicted an A∗
Max ≈ 0.50 while Fujarra et al. (1998) predicted an A∗

Max ≈ 0.60. Since

both have very small damping values (we estimate around b∗ ≈ 0.05), it is reasonable to

assume that each of these A∗
Max values represents their corresponding A∗

Lim value reasonably

well. The vast amount of two-degree-of-freedom simulations all concentrate around A∗
Lim ≈

0.50 − 0.60 for Reynolds numbers between 100 and 300. In fact, Singh and Mittal (2005)

conducted a series of computational runs at various Reynolds numbers and report a nearly

flat region of maximum amplitudes where there is little, if any, dependence on Reynolds

number. The difference between our experimental results and the computations at Re = 200

could be caused by various factors. One could be that the vortex-in-cell computations are

not accurate. Another could be that the flow at this Reynolds number has three-dimensional

effects that are O(1) but do not appear that severe in the flow visualizations.

5.9 Flow Visualization

Our results show a smooth, fairly constant, increase in limiting amplitudes, A∗
Lim, as

Reynolds number increases from at least as low as Re ≈ 200 to around Re ≈ 1000. That

has dramatic ramifications on what effects, if any, the transition from a two-dimensional

to a three-dimensional wake structure has on the oscillation amplitude. For a stationary

cylinder, the wake transitions to a three-dimensional one around Re ≈ 180 (Williamson and

Roshko, 1988). For an oscillating cylinder this transition should occur at a higher Reynolds

number since it has been observed that cylinder oscillations unify the spanwise flow and

would thus delay the transition to a three-dimensional wake. Thus we would expect this

transition to occur somewhere between Re ≈ 180−O(103). Furthermore, we might expect

that there should be a change in the limiting amplitude dependence on Reynolds number

at this transition point. If this transition occurred at the slightly higher Reynolds number

of 200, this might explain why there appears to be such differences between computational
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and experimental results at Re = 200. The experiments could have this transitionary three-

dimensional wake while the computations, being purely two-dimensional simulations, do

not. Of course, this difference could be an artifact of the differences between real flows

and simulations, and not indicative of a transition point. Unlike simulations, purely two-

dimensional flow will never exist in our experiments. Finite aspect ratio effects could be

O(1), for example the drag coefficient for a purely two-dimensional flow over a flat plate is

CD = 3.6 while experiments produce CD = 2.0. This could cause experiments and simula-

tions to never agree exactly. With this in mind, we explored the dimensionality of the near

wake behind an oscillating cylinder.

We determined the dimensionality of the cylinder near wake, at the maximum amplitude

point for different Reynolds numbers, using flow visualization. First, we examined the near

wake of a lightly damped system in Sequence 07, which is at Re|A∗
Max
≈ 200. A still image

of the wake can be seen in Figure 5.12. Although not a pure two-dimensional flow, as can

be seen by the slightly three-dimensional vortex being shed from the wake, the scale of the

three-dimensional structures appears to be less than a cylinder diameter.

Next we looked at the near wake of a lightly damped system in Sequence 01 for Re|A∗
Max
≈

525. A still image of this wake can be seen in Figure 5.13.

This Reynolds number has a completely different wake structure. The vorticity in the

near wake is stretched vertically, as can be seen by the “corkscrew” looking vortices. The

scale of this three dimensionality appears to be at least five diameters. Thus, we see a

transition from a two-dimensional to a three-dimensional wake between Re ≈ 200 and

Re ≈ 525. However, even though the wake has transitioned in this region, we do not see a

change in the limiting amplitude dependence. We feel that Re ≈ 200 experiments were two-

dimensional enough such that the difference between the experimental and computational

results cannot simply be wake dimensionality effects.

There is a difference in our results that occurs around Re ≈ 200, the abrupt slope

change in the generalized Griffin plot. Due to the time it takes to simulate enough cycles to

get good representations of freely-vibrating cylinders, computational results rarely include

the dependence of maximum amplitude on damping. If one only cares about limiting

amplitudes, the simulations are run with zero damping; they are not burdened with the need

to extrapolate back to zero damping. That is unfortunate because then they cannot explore

how the maximum amplitude response behaves as it approaches zero damping. However,
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Figure 5.12: Flow visualization showing the nearly two-dimensional flow around an oscil-
lating cylinder at its maximum amplitude, A∗

Max ≈ 0.35, for Re ≈ 200.

Figure 5.13: Flow visualization showing the three dimensionality of the flow around an
oscillating cylinder at its maximum amplitude, A∗

Max ≈ 0.55, for Re ≈ 525.
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Shiels et al. (2001) looked at damping effects on the maximum amplitude at Re = 100. When

Shiels’ results and our Re ≈ 200 results are compared in the generalized Griffin plot, one

notices that the slopes of those two constant-Reynolds-number curves are nearly identical

and much shallower than all of our other curves, which share an almost equal slope for low

damping. This slope agreement is true even though our experimentally determined limiting

amplitude trend does not agree with the computational results at Re = 100, if extrapolated

to such a low Reynolds number. Therefore, we believe that possibly the dimensionality of

the wake affects not the limiting amplitude values themselves, but instead the maximum

amplitude dependence on damping.

In order to better understand the change in dependence on Reynolds number in the

region 1000 . Re . 2600, flow visualization results were examined at the beginning and

end of this region to see if some insight could be gained. It has been documented by

various researchers that the large-amplitude section (upper branch) of the response curve

is an unbalanced 2P wake structure (Govardhan and Williamson, 2000). By unbalanced

we mean that one of the two vortices that make up the pair contains significantly lower

circulation than the other. Since both of these runs have low enough damping and high

enough Reynolds number for an upper branch to exist (Klamo et al., 2005), we expect

that they would have the same wake structure, an unbalanced 2P. The wake structure for

Re ≈ 1000 can be seen in Figure 5.14 and for Re ≈ 2600 in Figure 5.15.

We find that the two runs actually have different wake structures. The beginning of this

region (Re ≈ 1000) appears to have a classic 2S wake structure while at the end (Re ≈ 2600)

it appears to have the expected unbalanced 2P wake structure. Therefore, it seems possible

that in this region, the wake structure at the maximum amplitude changes from a 2S to a

2P one. This could account for the slight change in the trend of limiting amplitudes in this

region. We suspect that all runs with an A∗
Max at Re . 1000 will have a 2S wake structure

at its maximum amplitude. On the other hand, all runs with an A∗
Max at Re & 2600 will

have a 2P wake structure at its maximum amplitude. To verify this, we examined the wake

structure at the maximum amplitude for other systems. For Re . 1000, we examined the

wake of the maximum amplitude of a lightly damped system in Sequence 01 at Re ≈ 525

and the maximum amplitude of a lightly damped system in Sequence 08 at Re ≈ 200.

Both runs showed a 2S wake structure at the maximum amplitude. The Re ≈ 200 wake

structure can be seen in Figure 5.16. For Re & 2600, we examined the wake of the maximum
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Figure 5.14: Flow visualization showing a 2S wake structure for an oscillating cylinder at
its maximum amplitude, A∗

Max ≈ 0.61, for Re ≈ 1000.

Figure 5.15: Flow visualization showing a 2P wake structure for an oscillating cylinder at
its maximum amplitude, A∗

Max ≈ 0.73, for Re = 2600.
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amplitude of a lightly damped system in Sequence 10 at Re ≈ 5050 and show the results in

Figure 5.17. Both this run, and A∗
Max of Sequence 04 at Re ≈ 2600, had an unbalanced 2P

wake structure at the maximum amplitude point.

5.10 Heavily Damped Systems

It is not a straightforward matter to extend the generalized Griffin plot to higher damping

values than are shown in Figure 5.8. We refer to systems with damping values higher than

b∗|A∗
Max

> 1.75 as heavily damped systems. The behavior of such systems is different from

lightly and moderately damped systems, which causes problems when attempting to analyze

all of them in a consistent manner.

One difference in heavily damped systems is that their A∗
Max occurs at a different k∗eff

then the lighter damped systems. As first mentioned in Section 4.3, k∗eff |A∗
Max

normally

occurs around 2.5, however, for heavily damped systems this value is lower, usually causing

k∗eff|A∗
Max

to occur around 1 instead.

The more general fact is that the overall behavior of these heavily damped systems is

different. They begin to resemble the response of a forced mass-damping-spring system. In

the traditional formulation, the response profile changes to one that only has substantial

amplitudes near the resonance condition with the rest of the response being more symmet-

rical about the maximum peak and decreasing quickly on either side. Due to the fact that

the large response regions outside of the resonance condition have been damped away, the

amplitude response in the effective stiffness formulation is missing the middle portion of the

response profile where the maximum amplitude normally falls. This can be seen by referring

to Figure 5.18, which shows results for a heavily damped system of Sequence 02 in the ef-

fective stiffness formulation. Notice how there is no response in the domain 1.5 < k∗eff < 4.5

since the system simply jumps through those possible effective stiffness values. This is the

type of change that we see for all heavily damped lower Reynolds number systems. We see

a similar, although slightly different change, for higher Reynolds number systems that are

heavily damped.

The changes that occur to a higher Reynolds number system, in this case Re |A∗
Max
≈

2600, can be seen in Figure 5.19. Notice how when the system damping pases through

b∗ |A∗
Max
≈ 1.75 the behavior of the response begins to change. First the system seems to
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Figure 5.16: Flow visualization showing a 2S wake structure for an oscillating cylinder at
its maximum amplitude, A∗

Max ≈ 0.35, for Re = 200

Figure 5.17: Flow visualization showing a 2P wake structure for an oscillating cylinder at
its maximum amplitude, A∗

Max ≈ 0.78, for Re = 5050
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jump between an upper and lower branch state as seen by the large scatter in the data

where the upper branch response normally lies. Then, as the system damping is further

increased, the amplitude of the system actually increases through the beginning of the lower

branch region instead of decreasing as it does for lighter damped systems.
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Figure 5.18: Select runs from Sequence 02 showing the changes to the amplitude response
profile for heavily damped systems, b∗|A∗

Max
> 1.75, along with lightly damped systems for

reference. Damping values for each run can be found in Table 5.1.

Figure 5.19: Select runs from Sequence 04 showing the changes to the amplitude response
profile for heavily damped systems, b∗|A∗

Max
> 1.75, along with lightly damped systems for

reference. Damping values for each run can be found in Table 5.1.
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Chapter 6

Discontinuities: Hysteretic Regions
and Transient Behavior

6.1 Chapter Overview

We begin by introducing the rational for exploring the hysteretic regions and transient be-

havior in Section 6.2. In Section 6.3 we explore the hysteretic region between the initial

and upper branch and frame our investigation within the context of the numerous previ-

ous studies of this region. We then investigate the region connecting the upper and lower

branches and make comparisons to previous conclusions in Section 6.4. Next, in Section 6.5

we describe a newly found hysteretic region between the lower branch and the desynchro-

nized region. Our focus then changes to exploring the transient behavior in the hysteretic

region between the initial and upper branch. These transient behaviors are induced two

ways, by slight changes in slight tunnel velocity, as discussed in Section 6.6, and by changes

in the system damping parameter, covered in Section 6.7. Finally, in Section 6.8 we make

comparisons between velocity- and damping-induced transient behavior.

6.2 Background

Most studies of VIV involve recording long time traces of the amplitude and frequency

responses, after the transients have died out, while holding the system parameters constant.

These time-varying responses are then averaged using a certain method to obtain a single

amplitude and frequency value that is supposed to represent the system behavior during

that entire test. These time-averaged values are then used to produce the full amplitude

and frequency response profiles. In this chapter we break from this tradition and instead
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look at hysteretic regions and transient behavior.

There are three known parts of the amplitude response profile that have the potential

to exhibit discontinuous behavior due to either hysteretic jumps or intermittent switching.

These three regions are (1) the change from the initial branch to the upper branch for large-

amplitude systems, or to the lower branch for small-amplitude systems, (2) the change from

the upper branch to the lower branch for large-amplitude systems, and (3) the change from

the lower branch to the desynchronized region for both systems.

For small-amplitude systems (those lacking an upper branch), region 1 has been in-

vestigated by numerous researchers (Feng, 1968; Brika and Laneville, 1993; Khalak and

Williamson, 1999). Even though this discontinuous hysteretic region is interesting, we will

not explore it here. For large-amplitude response systems, regions 1 and 2 have been inves-

tigated and discussed by Khalak and Williamson (1997a, 1999). They found a hysteretic

region between the initial and upper branch (region 1), and an intermittent switching region

between the upper branch and the lower branch (region 2). We will explore both of these

regions in the context of our formulation. The region 3 discontinuity occurs for both large-

amplitude and small-amplitude systems, however, as we will show later, only for a small

enough Reynolds number. There has been a recent study by Singh and Mittal (2005) for a

flexibly mounted cylinder that included region 3, however, in general, there has been very

little discussion on the transition from the lower branch to the desynchronization region.

This discontinuous region was noticed experimentally and discussed by Klamo et al. (2006).

Although traditional VIV research has involved calculating average values of the system

amplitude and frequency response, as well as wake properties, there have been some stud-

ies that looked at the transient response of the system. Brika and Laneville (1993) have

long time traces of cylinders started from rest and started impulsively, for constant tunnel

velocities, showing the displacement and phase changes as the cylinder reaches steady-state

conditions. Transient behavior of the wake was investigated by Carberry et al. (2001, 2003)

using controlled forced-vibrations. They showed the self-excited change in the wake from

a low-frequency, 2P wake structure, to a high-frequency, 2S wake structure, at constant

forcing amplitude and frequency. In our experiments, we explore the transient behavior of

the system by changing the input parameters in either of two ways, by changing the tunnel

velocity or the system damping, and then recording the transient response as the system

goes from one response behavior to another.
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Figure 6.1: Erosion of the upper branch for Sequence 03. Solid lines represent increasing
tunnel velocities and dashed lines represent decreasing tunnel velocities. Damping values
for each run can be found in Table 5.1.

6.3 Hysteresis Between Initial Branch and Upper Branch

The first hysteretic region that we explore involves the initial and upper branches. Because

this region partially lies in the maximum amplitude portion of the response profile, it has

been observed and studied by many researchers (Feng, 1968; Brika and Laneville, 1993;

Khalak and Williamson, 1999). Our focus is to explore this hysteretic region in terms of

its involvement in the “erosion” of the upper branch, as described in Section 4.7. Since

the upper branch is partially located in this hysteretic region, the “erosion” of the upper

branch is associated with two effects. One occurs for increasing tunnel velocities and one for

decreasing tunnel velocities. This “erosion” of the upper branch can be seen in Figure 6.1,

in the traditional formulation plotted against reduced velocity, which shows the results for

the four most lightly damped cases from Sequence 03 (Re|A∗
Max
≈ 1000). The damping values

for Sequence 03 can be found in Table 5.1.

The first important point to notice in Figure 6.1 is that the upper branch meets the

lower branch at a fixed value of UR, independent of damping. For this particular system
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it occurs at UR ≈ 0.90; for other systems the value is different but always independent

of damping. The first effect that controls the existence and size of the upper branch is

the point at which the jump from the initial to the upper branch occurs for increasing

tunnel velocities (solid lines in Figure 6.1). As damping is increased the size of the upper

branch decreases due to the fact that this jump to the upper branch is delayed. This

can be seen in Figure 6.1 as a higher reduced velocity value at which the amplitude jump

discontinuity occurs. For Run03(a), the jump occurs around UR ≈ 0.84 while for Run03(f)

it occurs around UR ≈ 0.88. Since the ending of the upper branch for this system is fixed

at UR ≈ 0.90, as the jump to the upper branch moves toward higher reduced velocities, the

size of the upper branch decreases.

The second effect that controls the existence and size of the upper branch is the point

where the jump downward from upper to initial branch occurs (dashed lines in Figure 6.1).

As damping is increased, this point occurs at higher values of UR. In Figure 6.1, for

Run03(a), it occurs around UR ≈ 0.80, while for Run03(c), the jump downward occurs

around UR ≈ 0.83. This downward jump from upper to initial branch, as reduced velocity

is decreased, is known to be connected to the 2S and 2P regimes of the WR-plane (see

Section 2.4). Previous researches have noted that jumps between the initial and upper

branches correspond to changes between 2S and 2P wake structures, and thus jumps between

the two WR-plane regimes (Khalak and Williamson, 1999). More specifically though, we

observe where this jump in the WR-plane occurs when reduced velocity is decreased. In

Figure 6.2, we show that the jump downward occurs when the response profile reaches

the boundary between the 2S and 2P regimes. Note that the independent variable is now

1/f∗. Because of the negative slope of this dividing line and the fact that an increase in

damping decreases the overall response amplitude, this line is crossed at higher values of

reduced velocity, UR, as damping is increased. Ultimately, by this process, the upper branch

disappears for decreasing tunnel velocity tests. As seen in Figure 6.2, we observe the same

phenomenon for Sequence 02 (Re|A∗
Max
≈ 525) and Sequence 04 (Re|A∗

Max
≈ 2600).

On the other hand, we observe that, as reduced velocity is increased, the system jumps

to various locations in the 2P regime which are removed from the 2S/2P dividing boundary

curve. We plot the same cases as were shown in Figure 6.2 for decreasing reduced velocity,

but this time we plot their corresponding increasing reduced velocity cases. These are shown

in Figure 6.3.
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Figure 6.2: Amplitude response downward jump from the upper branch to initial branch for
decreasing UR along with its dependence on the WR-plane 2S/2P dividing curve. Shown
are selected runs from Sequence 02 – Sequence 04; the damping values for each run can be
found in Table 5.1.

Figure 6.3: Amplitude response upward jump from the initial branch to upper branch for
increasing UR along with the WR-plane 2S/2P dividing curve displayed for reference. Shown
are selected runs from Sequence 02 – Sequence 04; the damping values for each run can be
found in Table 5.1.
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Figure 6.4: Transition region between the upper branch and lower branch, highlighted by
the gray ellipse, shown in the traditional formulation.

In order to further highlight the locations where the system jumps to inside the 2P

region, we connect these points with a dashed curve. It is interesting to note the relationship

between this curve and the traditional location of the WR-plane 2S/2P dividing curve. The

curvature of the two lines appears to be close, ultimately however, we are not able to make

any statements about whether the 2S/2P dividing curve itself has any hysteretic behavior.

For instance, one of the two increasing velocity runs for both Run04(c) and Run04(e) jumped

upward to a point near the actual 2S/2P dividing curve, not the dashed curve. Also, for

higher damped runs with lower Reynolds numbers, such as Run02(a) and Run02(b), there is

not a difference in the jump location between an upward and a downward jumping system.

6.4 Transition Between Upper Branch and Lower Branch

The second part of the amplitude response profile that we examine is the transition area

between the upper and lower branches. This area is highlighted in Figure 6.4 using the

traditional formulation, and in Figure 6.5 using the effective stiffness formulation.

One reason that this region is interesting is that according to the oscillation amplitudes

and frequencies of the upper and lower branches, both lie inside the 2P wake structure regime
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Figure 6.5: Transition region between the upper branch and lower branch, highlighted by
the gray ellipse, shown in the effective stiffness formulation.

of the WR-plane. However, even though both branches possess essentially the same general

wake structure, they exhibit different amplitude and frequency behavior. Another reason

that this region is interesting is that Khalak and Williamson (1997a), and later Govardhan

and Williamson (2000), speculated that in this region there is an intermittent switching,

where the system jumps between two responses, each distinct to one of the branches. They

arrived at this conclusion by first looking at Hilbert space transforms of the phase angle

between the lift and displacement. They noticed frequent jumps between two phase angle

values, 0◦ and 180◦, signalling changes between upper and lower branch behavior. Looking

at the Hilbert transform of the frequency data, they noticed a similar behavior of the data

coalescing around two values with rapid jumps between.

We were never able to get useful results from the Hilbert transform of our frequency

data because those transform results turned out to be too noisy. However, we examined

cycle-by-cycle results and looked for this intermittent switching. Our cycle-by-cycle results

for Run04(a) are shown in Figure 6.6 for the amplitude and in Figure 6.7 for the frequency.

The four subplots of each figure result from the fact that a run involved spanning the

velocities of interest four times.
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Figure 6.6: Cycle-by-cycle amplitude results from four tests of Run04(a) in the transition
region between the upper and lower branch.

Figure 6.7: The corresponding cycle-by-cycle frequency results from four tests of Run04(a)
in the transition region between the upper and lower branch.
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Figure 6.8: Cycle-by-cycle amplitude results from the four tests in Figure 6.6 shown in a
single histogram.

Our results show that, although there is not a single dominant amplitude or frequency,

there are no two “states” that the system seems to be intermittently switching between. It

may indeed be true that the phase angle between the lift and displacement are switching

randomly by 180◦. This could explain why the system seems to chaotically wander over a

range of values. At one phase angle, the system prefers a smaller amplitude, in this case

around A∗ ≈ 0.56 and when the wake switches to the other phase angle, the system prefers a

larger amplitude states and heads toward amplitudes around A∗ ≈ 0.66. However, it is not

obvious to us that the actual amplitude and frequency response should be represented as

two distinct responses at the same reduced velocity value. To further look for two distinct

system responses at this reduced velocity, we considered histograms of the amplitude and

frequency. If the system were indeed jumping between two dominant states, we would

expect to see two peaks in our histogram data. Our amplitude histogram results are shown

in Figure 6.8 and our frequency histogram results are shown in Figure 6.9. Although the

results are not a perfect normal distribution, they suggest a broad response range over

which the system operates.
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Figure 6.9: Cycle-by-cycle frequency results from the four tests in Figure 6.7 shown in a
histogram.

6.5 Hysteresis Between Lower Branch and Desynchronized

Region

We have found a hysteretic region between the lower branch and the desynchronized region.

We also notice that the size of this hysteresis is damping dependent. This new result can

be seen in Figure 6.10 in the traditional formulation. The damping values for Sequence 01

can be found in Table 5.1. In this figure, the solid lines represent the amplitude response

for increasing tunnel velocity, and the dashed lines represent the response for decreasing

velocity. As can be seen in Figure 6.10, the reduced velocity value at which the system

changes between the lower branch and a desynchronized state depends on whether the tunnel

velocity is increasing or decreasing. Another interesting result is that, unlike the increasing

tunnel velocity case where the amplitude slowly decreases for each response point until the

desynchronized region is reached in a fairly smooth manner, for the decreasing velocity case

the change from desynchronized state to lower branch is dramatic and takes the form of a

jump discontinuity.

The size of this hysteretic region depends on the level of damping in the system. In
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Figure 6.10: Amplitude response profiles for Sequence 01 showing the lower branch to
desynchrozined state hysteresis. Solid lines and white data points show increasing tun-
nel velocities and dashed lines and colored data points show decreasing tunnel velocities.
Damping values for each run can be found in Table 5.1.

general, as damping is increased, the width, in ∆UR, of the hysteretic region decreases. This

can be seen be noting the large hysteretic zones for the most lightly damped cases, Run01(b)

– Run01(f), the smaller width as damping is increased for Run01(i), and finally, in the most

heavily damped system, Run01(k), the width of the hysteresis is only a single response

point. It is difficult to assign single reduced velocity values for where these hysteretic jumps

will occur since they appear to be sensitive to factors such as slight perturbations in the flow.

This is not to say that the existence itself is sensitive, for the presence of these hysteretic

jumps is always observed in repeated tests. However, the reduced velocity values at which

the jumps occur does vary during identical repeated tests.

Perhaps one reason that the lower branch to desynchronized region hysteresis has been

missed is the fact that it appears to be a low Reynolds number effect. We found that our

Re|A∗
Max
≈ 2600 (Sequence 04) amplitude profile displayed no hysteresis of this type and our

Re|A∗
Max
≈ 1000 (Sequence 03) amplitude profile displayed hysteresis only for the two most

lightly damped cases. However both of our Re|A∗
Max
≈ 525 amplitude profiles showed this
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hysteresis prominently.

6.6 Velocity-Induced Transients

Before showing the transient behavior results, it is important to first establish some ter-

minology. This is necessary because sometimes, as the system moved along its transient

path, changing frequency and amplitude values every cycle, it would occasionally settle

on a certain frequency-amplitude combination, (1/f∗, A∗), that allowed the system to stay

near that particular combination for an extended number of cycles. When the system did

this, we called the frequency-amplitude combination that it was operating at, a “marginally

stable” one. By our definition then, a “marginally stable” combination means a frequency-

amplitude combination, (1/f∗, A∗), where the system oscillates at roughly the same fre-

quency and amplitude values for more than 10 cycles. Finally, there is no attempt to

link our terminology to strict mathematical definitions of stability or stable and unstable

behavior.

All of the transient behavior results presented here involved exploring the large discon-

tinuity in the amplitude response profile between the initial branch and the upper branch.

We investigated velocity-induced and damping-induced transient responses of systems un-

dergoing this jump discontinuity in our transient behavior (TB) tests. Two different system

configurations, TB01 and TB02, were used. The major parameters for each of the two con-

figurations can be seen in Table 6.1. In this section involving velocity-induced transients,

test no. D (mm) m (kg) k (N/m) m∗ Re|A∗
Max

TB01 10.0 1.860 260 79.3 1000
TB02 37.8 2.385 13.5 7.1 2600

Table 6.1: System configurations for the transient behavior (TB) tests

these two systems have no external damping applied to them from the VMEC system. The

only damping was the inherent damping within the system, hence these tests are designated

ID, for inherent damping. This inherent system damping is caused by various things such

as the air drag on the moving system and the stretching of the springs. This ID label will

distinguish them from tests in the next section using the same system configurations, but

with external damping applied to them at two levels, low damping (LD) and high damping
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(HD). Both ID systems had a small enough inherent damping and a high enough Reynolds

number such that they were large-amplitude (upper branch) systems. The specific damping

values used for each configuration can be seen in Table 6.2. Across these two configurations,

configuration no. b (kg/s) b∗|A∗
Max

TB01(ID) 0.0564 0.224
TB01(LD) 0.0597 0.237
TB01(HD) 0.3150 1.327
TB02(ID) 0.0154 0.022
TB02(LD) 0.0185 0.027
TB02(HD) 0.6216 1.082

Table 6.2: Imposed system damping values for damping-induced transient tests

the nondimensional mass changed by an order of magnitude and the Reynolds number by

almost a factor of three. It should be noted that the parameters of TB01(ID) are similar

to Run03(c) and TB02(ID) to Run04(a).

The location of the jump discontinuity and the test methodology can be seen in Fig-

ure 6.11 for TB01 and Figure 6.12 for TB02. Because the amplitude discontinuity that we

are exploring occurs in a hysteretic region, as described in Section 6.3, the point at which

the jump between the two branches occurs depends on whether the tunnel velocity is in-

creasing or decreasing. Furthermore, for such lightly damped systems, the location of this

jump, for each direction of velocity change, is not fixed. It varies slightly from test to test

as can be clearly seen in Figure 6.12 where the jump downward occurred at two different

reduced velocity values during successive tests. In Figure 6.11 the jump upward, from the

initial to the upper branch, occurs in the range of reduced velocities of 0.83 . UR . 0.85

while the jump downward, from the upper to the initial branch, occurs in the range of

0.81 . UR . 0.83. In Figure 6.12 the jump upward occurs in the range of reduced velocities

of 0.67 . UR . 0.70 while the jump downward occurs in the range of 0.63 . UR . 0.67.

Our velocity-induced transient response tests, using TB01(ID) and TB02(ID), involved

getting the oscillating system into a steady-state behavior at a reduced velocity value near

the edge of one of the jump boundaries. A large number of cycles (between 300 to 500)

were then recorded at this steady-state condition. Next, the tunnel velocity was changed by

increments of about 2.5 cm/s until the jump upward or downward was observed. During this

transient behavior, the system response was recorded. After this transient had occurred, a



138

Figure 6.11: Test methodology for transient behavior (TB) tests involving velocity- and
damping-induced transients on TB01 configuration.

Figure 6.12: Test methodology for transient behavior (TB) tests involving velocity- and
damping-induced transient on TB02 configuration.
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large number of cycles were again recorded to locate the postjump steady-state condition.

For all three increasing tests of TB01(ID), the system jumped from an initial branch

state to an upper branch state when the reduced velocity was increased from 0.834 to 0.852.

The jump downward from an upper branch state to an initial branch state occurred when

the reduced velocity decreased from 0.834 to 0.816 for all three decreasing tests as well.

The amplitude response for all six tests, three upward and three downward jumps, can be

seen in Figure 6.13.

Even though all six tests involved undergoing transient behavior from the same reduced

velocity, UR = 0.834, the behavior between upward and downward jumps was different.

The jump upward occurred over about 100 cycles and the amplitude increase per cycle was

fairly consistent. However, for the downward jumping tests, the jump took more than twice

the number of cycles to reach an initial branch state. Also, the amplitude decrease per

cycle was not as consistent as the upward jumping cases. Instead, the amplitude decreases

at a very slow rate per cycle until the amplitude falls bellow about A∗ ≈ 0.50, then the

amplitude decreases at a rate similar to the upward jumping cases.

The frequency-amplitude response of this system can be seen in Figure 6.14 along with

the WR-plane 2S/2P dividing curve superimposed. The frequency response of systems with

a configuration similar to TB01 does not change much between initial and upper branches.

(See Figure 4.27 for the frequency response profile for such a system.) Because of this, the

transient response of TB01 does not move much in the horizontal direction in the figure.

Instead, the discontinuous jumps involve almost exclusively amplitude changes when moving

between the steady-state points. However, one should not conclude that the frequency of

the system is not important. For the slight change in tunnel velocity causes the frequency

response, f∗ = fD/U , to change even for a constant frequency, f , since U changed. And

this change is enough to force the system into a new state.

Some care must be taken in this transient analysis since the parameter 1/f∗ contains

the tunnel velocity and the response frequency is therefore not nondimensionalized with a

constant. Because we induced the transient system behavior through a small increase or

decrease in tunnel velocity, we need to take this period of changing velocities into account.

Fortunately, the magnitude of the velocity change was small, and the transient time of the

tunnel was on the order of five seconds. Since the oscillation period was around 0.5 seconds,

the velocity was constant within about ten oscillation cycles. Therefore, only the first ten
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Figure 6.13: Time traces of TB01(ID) amplitudes through the discontinuous region for
increasing (left) and decreasing (right) tunnel velocities; blue data: UR = 0.816, red data:
UR = 0.834, and green data: UR = 0.852; – : steady-state, ◦ : transient.

Figure 6.14: Frequency-amplitude mapping of TB01(ID) through the discontinuous region
for increasing (left) and decreasing (right) tunnel velocities; blue data: UR = 0.816, red
data: UR = 0.834, and green data: UR = 0.852; 2: steady-state, ◦: transient. Also shown
is the WR-plane 2S/2P dividing curve.
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cycles of the transient nondimensional frequency response need to contain a velocity term

that is time dependent. Another important consideration is the effect that the transient

behavior of the tunnel itself has on the system response. However, since the transient time of

the tunnel, about ten system oscillation cycles, was an order of magnitude smaller than the

transient time of the system itself, we feel that the effects due to the transient behavior of

the tunnel have been minimized. But, there still could be minor effects from low frequencies

embedded in the tunnel test section that could persist for hundreds of cycles.

The same test approach was used for TB02(ID) to observe the transient system response.

All four increasing tests of TB02 jumped from an initial branch state to an upper branch

state when the reduced velocity was increased from 0.678 to 0.702. However, there was a

major difference between the jump downward tests. As can be seen in Figure 6.15, this

downward jump had more variability associated with it. Sometimes it occurred when the

reduced velocity was decreased from 0.678 to 0.654, however, other times it occurred when

the reduced velocity was decreased even further to 0.630. All eight tests, four upward and

four downward jumping, can be seen in Figure 6.15

Similar to TB01(ID), there were also dramatic differences between the upward and

downward jumps of TB02(ID). The jump upward for this system occurred over about 20

to 40 cycles. The variation in the number of cycles appears to be caused by the system

sometimes pausing when it reaches A∗ ≈ 0.40. These pauses can be seen in test 1 (top)

and 4 (bottom) while tests 2 (middle top) and 3 (middle bottom) did not show this pause.

The downward jumping tests exhibited extremely interesting behavior. When the reduced

velocity is changed from UR = 0.678 to UR = 0.654 the system undergoes a quick slight

drop in amplitude. However, instead of continuing to decrease down to an amplitude value

that corresponds to an initial branch state, the system remains in a marginally stable upper

branch state. The number of cycles the system stays in this state varies, in test 2 it existed

for roughly 20 cycles; in test 1 it existed for almost 125 cycles, while in test 4 it existed

for almost 200 cycles. Also, in tests 1 and 2 the system finally underwent the downward

jump. But in tests 3 and 4, the tunnel velocity had to be reduced again, to a value of

UR = 0.630, before the system made the downward jump into an initial branch state. In

a similar manner to the upward jumps, once the downward jump began, it took between

40 to 60 cycles to complete, with there appearing to be pause that occurred again around

A∗ ≈ 0.40.
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Figure 6.15: Time traces of TB02(ID) amplitudes through the discontinuous region for
increasing (left) and decreasing (right) tunnel velocities; purple data: UR = 0.630, blue
data: UR = 0.654, red data: UR = 0.678, and green data: UR = 0.702; –: steady-state, ◦:
transient.

Figure 6.16: Frequency-amplitude mapping of TB02(ID) through the discontinuous region
for increasing (left) and decreasing (right) tunnel velocities; purple data: UR = 0.630, blue
data: UR = 0.654, red data: UR = 0.678, and green data: UR = 0.702; 2: steady-state, ◦:
transient. Also shown is the WR-plane 2S/2P dividing curve.
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We again examine the frequency-amplitude response of this system in Figure 6.16 along

with the WR-plane 2S/2P dividing curve superimposed. For systems with configurations

similar to TB02(ID) there is a substantial change in the frequency response between initial

and upper branches. (See Figure 4.33 for the frequency response profile for such a system.)

Examining the upward jumping cases first, the slight increase in reduced velocity causes

the system to appear to initially move to an operating location roughly centered around

(1/f∗, A∗) = (5.3, 0.4), which we estimate as the operating location of the system if it were

to stay in the initial branch portion of the response profile. By this we mean that, if you

extrapolated the initial branch curve to higher reduced velocities, this point would be on

that curve. This might be a possible explanation for why the system pauses there on the

upward jump. However, this is an unstable operating point so the system cannot stay there

indefinitely and eventually increases in amplitude and decreases in 1/f∗ until the upper

branch operating location is reached. This point lies near, but definitely on the 2P side of,

the 2S/2P dividing curve.

The process of the downward jump begins much the same way. This time, the slight

decrease in reduced velocity causes the system to appear to initially move to an operating

location centered around (1/f∗, A∗) = (4.6, 0.65), which we estimate is the likely operating

location of the upper branch corresponding to this reduced velocity value. This operating

location appears to be marginally stable and the system can reside there for a very large

number of cycles. However, a large enough perturbation would cause it to go to the initial

branch state. In runs 1 and 2 this perturbation was internal, in run 3 and 4 this perturbation

was a further slight decrease in reduced velocity. It is interesting to note that again the

system seems to pause around A∗ ≈ 0.40 although the frequency-amplitude combination

appears to not be located near any stable regions.

For TB02(ID), the system oscillation period was around three seconds. This meant

that the tunnel velocity’s main transient response was finished after only one or two oscil-

lation cycles. Therefore, only the first two cycles of the transient nondimensional frequency

response contained a velocity term that was time dependent. Furthermore, because, just

like TB01(ID), where the number of oscillation cycles during the tunnel velocity transient

is very small compared to the number of oscillation cycles involving the complete system

transient response, we feel that the effects of the transient behavior of the tunnel itself on

the system response has again been minimized.
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6.7 Damping-Induced Transients

An increase in damping causes the system to jump from the initial to the upper branch at

a higher reduced velocity, as discussed in Section 6.3. This allowed the transient behavior

between these two branches, that we induced using velocity changes in Section 6.6, to be

induced using damping changes. Because these damping-induced transients involve a con-

stant tunnel velocity, we do not have to worry about the effects that the transient response

of the tunnel has on the system transient response. We used system configurations TB01

and TB02 to explore the damping-induced jump discontinuity region between the initial

and upper branches. The location of the jump discontinuity for each system configuration

can again be seen in Figure 6.11 for TB01 and Figure 6.12 for TB02 and is designated by

the vertical double arrowed lines.

Our damping-induced transient tests were run by getting the system into a steady-state

behavior at the appropriate reduced velocity value for either the low damping (LD) or high

damping (HD) configuration. A large number of cycles (between 300 to 500) were recorded

at this steady-state condition, then the damping was switched to the opposite configuration

(LD or HD) until the jump upward or downward was observed. After the transient had

occurred, a large number of cycles were again recorded to locate the post jump steady-state

condition. Because these tests involved manipulating the damping value of each system,

TB01 and TB02 each had two imposed damping values. The specific damping values used

can be seen in Table 6.2. It should be noted that our two LD configurations had a slightly

higher damping value than their corresponding ID configurations did in the velocity-induced

transient section. This was because when the HD configuration was switched to a LD

configuration, a weak residual magnetic field remained in the VMEC damping system, and

caused a slightly increased damping value.

The reduced velocity value that was maintained throughout the test was chosen as one

that corresponded to the middle of the upper branch for the LD configuration and not too

near the maximum amplitude point of the HD configuration so it would still be in an initial

branch state. For TB01, this corresponded to a reduced velocity of UR = 0.852, and for

TB02, to a reduced velocity of UR = 0.702.

For all three tests of TB01, the system jumped upward from an initial branch state

to an upper branch state when the damping was changed from a high damped to a low
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damped state. It also jumped downward from an upper branch to an initial branch state

when the damping was changed from a low damped to a high damped state for all three

tests. Amplitude data for all six tests, three upward and three downward jumps, can be

seen in Figure 6.17.

As the results show, even though the reduced velocity, UR = 0.834, was held fixed, we

were still able to induce transients by changing the structural system parameters, in this

case, damping. As with the velocity-induced transient tests, we noticed differences in the

behavior between upward and downward jumps. The jump upward occurred over about

50 to 100 cycles and the amplitude increase per cycle was fairly consistent. The downward

jump occurs much quicker, it took less than half the number of cycles to reach the initial

branch. And although the amplitude decrease per cycle was larger, its value appears roughly

consistent, as in the upward jumping cases. There is one other thing of interest to note.

Once the amplitude decreased below A∗ ≈ 0.30, further decreases in amplitude, down to

the steady-state value of A∗ ≈ 0.25, occurred at a much slower rate.

The frequency-amplitude response of TB01 can be seen in Figure 6.18 along with the

WR-plane 2S/2P dividing curve superimposed. From the velocity-induced transient results,

we do not expect a large frequency change when TB01 jumps between initial and upper

branches. However, for our damping-induced transient tests, the steady-state frequency of

the system in the LD and HD configurations is the same. This can be seen in Figure 6.18,

noting the system oscillating at 1/f∗ ≈ 5.4 at the beginnings at ends of the tests. Also

note however that the frequency does slightly change during the transient response. The

oscillation frequency of the system slightly decreases, causing 1/f∗ ≈ 5.5, for both upward

and downward jumping tests. Since U and D are constants during these tests, the changes

in 1/f∗ are due solely to changes in the oscillation frequency.

We also conducted damping-induced transient tests on TB02. See Figure 6.19 for the

specific amplitude responses. All three tests of TB02 jumped downward from an upper

branch state to an initial branch state when the system damping went from the LD to the

HD configuration. However, the upward jump was sometimes difficult to achieve through

a relaxing of the damping. As can be seen in Figure 6.19, for tests 1 and 2 this upward

jump had more variability associated with it. In fact, for test 1, the transient run ended

before the upward jump was observed. The upper branch response (green data) shown for

this test is the expected response using the results from test 2. In order to test the width
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Figure 6.17: Time traces of TB01 amplitudes through the discontinuous region involving
damping decreases (left) and increases (right) at UR = 0.852; blue data: low damping (LD)
state, red data: high damping (HD) state; –: steady-state, ◦: transient.

Figure 6.18: Frequency-amplitude mapping of TB01 through the discontinuous region in-
volving damping decreases (left) and increases (right) at UR = 0.852; blue data: low damp-
ing (LD) state, red data: high damping (HD) state; 2: steady-state, ◦: transient. Also
shown is the WR-plane 2S/2P dividing curve.
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of this variability, a third test was undertaken at a higher reduced velocity, UR = 0.736,

whereas test 1 and 2 were undertaken at a reduced velocity of UR = 0.702. This slightly

higher reduced velocity appears to eliminate the variability and causes the upward jump to

occur immediately.

As has been the case for all the transient tests, there were dramatic differences between

the upward and downward jumps of TB02. The downward jump was extremely abrupt,

it occurred over less than ten cycles once the damping was changed from the LD to the

HD configuration. The third test, at the higher reduced velocity, shows no change in the

abruptness of the amplitude decrease. The upward jumps exhibit the stability phenomenon

again that was first observed with downward jumping velocity-induced transient systems.

When the damping is changed from a HD to a LD configuration, the system undergoes a

quick increase in amplitude from A∗ ≈ 0.225 to A∗ ≈ 0.35 in about ten cycles. However,

instead of continuing to increase to an amplitude value that corresponds to an upper branch

state, the system remains in a marginally stable initial branch state. The time the system

stays in this state varies, in test 1 it remained in it for around 125 cycles until the test

was stopped, while in test 2 it remained in it for almost 100 cycles. In test 2, the system

eventually completed the full upward jump. Test 1, however, was stopped after 350 total

cycles so it is unknown when, or if, the system would have finished its upward jump. It is

surprising that this marginally stable state exists. For if the cylinder is started from rest

in the LD configuration, the system amplitude will rapidly increase to its upper branch

state in a repeatable fashion. In test 3, the reduced velocity value was larger, and when the

damping state went from a HD to a LD configuration, the system immediately started its

upward jump and continued until the full jump had been completed. This jump was not

nearly as abrupt as all three downward cases, but occurred within about twice the number

of cycles, roughly 20.

We once again examined the frequency-amplitude response of this system in Figure 6.20

along with the WR-plane 2S/2P dividing curve superimposed. We observed that for a

velocity-induced transient, TB02 underwent a substantial change in the frequency response

during the jump between initial and upper branches. In our damping-induced transients, we

again noticed a substantial change in the frequency response even though the tunnel velocity

has not changed. Examining the downward jumping cases first, the increase in damping,

to the HD configuration, causes the system to immediately move toward the initial branch
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Figure 6.19: Time traces of TB02 amplitudes through the discontinuous region involving
damping decreases (left) and increases (right) at either UR = 0.702 (top and middle plots)
or UR = 0.736 (bottom plots); blue data: low damping (LD) state, purple data: “marginally
stable” low damping state, green data: expected low damping state, red data: high damping
(HD) state; –: steady state, ◦: transient.

Figure 6.20: Frequency-amplitude mapping of TB02 through the discontinuous region in-
volving damping decreases (left) and increases (right) at UR = 0.702 or UR = 0.736; blue
data: low damping (LD) state, purple data: “marginally stable” low damping state, green
data: expected low damping state, red data: high damping (HD) state; 2: steady-state, ◦:
transient. Also shown is the WR-plane 2S/2P dividing curve.
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operating location. The system response takes a nearly straight path between the states. It

is interesting to note, although possibly just a coincidence, that the path is roughly parallel

to the WR-plane 2S/2P dividing curve. As discussed above, the upward jumping process

is much more complicated. This time, the decrease of damping, to a LD configuration,

causes the system to move to a new neighboring operating location and into a marginally

stable state, since it moves around this location for a large number of cycles. In fact, test

1 ended before the system completed its upward jump. But for test 2, a large enough

perturbation caused the system to finish its upward jump and move into an upper branch

state. Unlike previous, marginally stable operating areas, which sat along the projected

path of the current motion, this operating location is not located near any stable operating

areas. For test 3, where the reduced velocity value was slightly larger, we see that the

system quickly heads to its upper branch state when the damping is decreased. In this case,

the trajectory is slightly higher than the path of the lower reduced velocity value tests and

crosses over the 2S/2P dividing curve before reaching its steady state value.

6.8 Comparison of Velocity- and Damping-Induced Transients

By looking at all the TB tests as a whole, we can make some general conclusions about

velocity- and damping-induced transients. To pull down the system from a large- to a small-

amplitude state, increasing the system damping is much more efficient than decreasing the

reduced velocity value. Increasing the damping pulled the system down to a lower amplitude

in less than half the number of cycles, and in the case of TB02, it was less than a quarter

of the number. It is even more efficient when one considers that a marginally stable region

exists when decreasing the amplitude by decreasing tunnel velocity, and the system could

reside at that marginally stable region for a large number of cycles. On the other hand,

when changing from a small- to large-amplitude state, there is not much difference between

decreasing the damping or increasing the tunnel velocity. This holds as long as the system,

such as TB02, moves through the other marginally stable region. If the system remains in

this region, then increasing reduced velocity is more efficient.

The appearance of marginally stable regions of oscillation are quite interesting and there

are some conclusions that can be drawn. First, no marginally stable behavior was observed

for TB01, it was only observed for TB02. Whether this means that it is a Reynolds number
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or m∗ effect, or both, is impossible to say since we do not have enough different config-

urations. Second, a marginally stable region existed during the downward jump caused

by decreasing the reduced velocity and a different such region existed for an upward jump

caused by decreasing the damping. This means that one of the marginally stable regions

is a large-amplitude, upper branch state and the other is a small-amplitude, initial branch

state. The large-amplitude, upper branch marginally stable region could perhaps have been

anticipated by looking at the work of Carberry et al. (2001). In their forced-vibration exper-

iments, they noted a self-excited change from a low-frequency, 2P wake, to a high-frequency,

2S wake. This suggests that both wakes can exist for a given operating condition with the

2S wake structure ultimately being the preferred state. However, there is no available infor-

mation to suggest that a small-amplitude, initial branch state could be marginally stable. In

Carberry et al. (2001), they mentioned that they never observed the reverse, a self-excited

change from a 2S to a 2P wake. Also, as mentioned before, when TB02 was released from

rest in the LD configuration, the system always quickly moved into a large-amplitude, up-

per branch state. Therefore, seeing a marginally stable region in the initial branch when

damping is reduced is quite surprising. Finally, both marginally stable regions can easily

be eliminated, by moving to a slightly lower reduced velocity value for the large-amplitude,

upper branch region (tests 3 and 4 in Figure 6.17) or a slightly higher reduced velocity value

for the small-amplitude, initial branch region (test 3 in Figure 6.19).
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Chapter 7

Summary and Future
Considerations

In this chapter we summarize our major results and make recommendations for future

work. In Section 7.1 we discuss the basic results that includes the advantages of the ef-

fective stiffness formulation over the traditional formulation, time-varying motion, general

wake structures, system singularities, and the similar effects that damping and Reynolds

number have on the response profiles. We summarize all of our findings that relate to the

system maximum amplitude in Section 7.2. These include the strict definitions of maximum

and limiting amplitudes as well as a creation of a generalized Griffin plot and a limiting am-

plitudes plot, which shows the importance of Reynolds number in vortex-induced vibrations

(VIV). In Section 7.3 we discuss our results that relate to discontinuities in the amplitude

response profiles. These arise from two different situations. The first are regions of hys-

teresis, of which we examine two such regions. And second, transient behavior induced by

either a velocity or damping change. Finally, in Section 7.4 we suggest future experiments

and simulations that could help in further understanding VIV behavior.

7.1 Summary of Basic Results

Two different system configurations were used to compare and contrast the amplitude and

frequency response profiles in the traditional and effective stiffness formulations. The con-

figurations were chosen so that the two distinct types of responses, classified by Khalak and

Williamson (1997b), were observed, one type by each configuration. These were the small-

amplitude, two-branch response at high mass-damping, for us the large mass, low Reynolds
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number system, and the large-amplitude, three-branch response at low mass-damping, for

us the small mass, high Reynolds number system. The former shows the classic “lock-in”

behavior while the former does not. In fact the small mass, high Reynolds number system

does not lock onto any frequency. Instead, the frequency appears to steadily increase as

reduced velocity is increased.

There are numerous advantages to using the effective stiffness formulation over the

traditional formulation. One is that there is a collapse of the amplitude response profile.

Because of this, the response behavior begins and ends at approximately the same effective

stiffness values, meaning universal critical values exist. The most important universal value

is k∗eff|A∗
Max

, the effective stiffness value at which the maximum amplitude occurs. We show

this by plotting numerous system configurations together and noting that A∗
Max occurs at

k∗eff|A∗
Max
≈ 2.5 for all of them. A second advantage is that the effective stiffness expands the

area of most interest, the large-amplitude, upper branch region, and compresses the region

of less interest, the slowly changing lower branch. Third, the frequency response profile

does not occur over as wide a range of values. This means that changing the scaling of the

frequency axis on which you view the results will not affect how close oscillation frequencies

appears to the system natural frequency. A fourth advantage is that the effective stiffness

formulation can handle limiting structural parameters while the traditional formulation

cannot since it uses these parameters in its nondimensionalization. A final advantage is

that when using the effective stiffness parameter, the results are mass independent.

We showed that the motion of VIV is not a steady-state motion. Instead, the amplitude

and frequency are changing cycle-by-cycle and we discussed some of the difficulties that

this causes. However, sometimes these variations are small and a single time-averaged

value is appropriate. We showed that this was the case for a high m∗, low Reynolds

number system where the amplitude fluctuations around the mean were less than 2 percent.

However, for a low m∗, high Reynolds number system a time-averaged value was not nearly

as appropriate and can be misleading since we showed that the amplitude response can

varying by 10 percent around the mean at certain locations.

We also showed how the wake structure differs at various locations in the response

profile. For the initial branch, we found a 2S-type wake structure. In the large-amplitude,

upper branch response portion we initially found a hybrid structure that showed both 2S

and 2P characteristics. As we increased the reduced velocity and moved through the upper
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branch, we noticed that the wake structure become a 2P one, however, the second vortex

in each pair was extremely weak. It was not until we reached the lower branch that the

second vortex had any substantial strength, and, not until the middle of that branch, that

the second vortex was nearly equal. We noted that care must be taken when using cycle

averaged DPIV images since the wake structure can vary dramatically between cycles. As

an example, we showed a situation where a given cycle had a classic 2P wake structure,

but within a few cycles, the structure had changed to a wake that resembled more of a 2S

structure.

We explored the interesting behavior that results from limiting structural parameters

using the effective stiffness formulation. For a system with zero elasticity (springless), the

response is restricted to only negative effective stiffness values, k∗eff < 0. Furthermore, a

small nondimensional mass, smaller than a certain limiting value, is necessary in order for

the system to experience oscillations. We calculated this limiting value to be m∗ ≈ 0.76.

However, such a system would never be able to obtain A∗
Max since k∗eff|A∗

Max
> 0. For a system

with zero mass, the response profile is restricted to the other portion of the response region,

that which effective stiffness is positive, k∗eff > 0. Although not possible experimentally,

this result was shown computationally by Shiels et al. (2001). Unlike the springless case,

in the massless case, one can control the value of the effective stiffness directly. Therefore,

the amplitude response can be dictated through appropriate choices of the elasticity and

tunnel velocity. This is important since, for a given damping and Reynolds number, the

amplitude is only controlled by the value of the effective stiffness. Finally, a massless and

springless system is restricted to only one response point, k∗eff = 0, which corresponds to a

system response regardless of tunnel velocity.

We showed how a given system transitions between the two classic response classifica-

tions as damping is varied. We observed that a mass-damping parameter was insufficient

to define the classification. This is because Reynolds number also has an important ef-

fect. We also found that low damping and high Reynolds number were necessary for the

large-amplitude, upper branch response to exist. We also studied the frequency response

profile and noted three changes that occur in the upper branch as damping is increased.

Furthermore, we pointed out that damping and Reynolds number have similar effects on the

response profiles. Decreasing the damping has roughly the same effects on the response that

increasing the Reynolds number does. As an example, we showed how the upper branch can
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be eliminated by either increasing damping or decreasing the Reynolds number. We further

made this point by showing three different systems that each had the right damping and

Reynolds number combination such that they all had roughly the same amplitude response

profile. We also looked at the various effects that Reynolds number has on the frequency

response profile as well.

Finally, we showed the advantages of using the effective stiffness parameter in predicting

the flow velocity that causes the system maximum amplitude. If one simply matches the

oscillation frequency with the natural and predicted Strouhal frequencies then the predicted

flow velocity can be off by 10 percent. However, this error is greatly reduced by using the

effective stiffness and we showed that the error in our predicted tunnel velocity was less

than 4 percent.

7.2 Summary of Maximum and Limiting Amplitudes

We showed various relationships that predicted the maximum amplitude and emphasized

how it depended on a mass-damping parameter. However, the most insight came from

experimental results. In order to guide our experiments, we showed how, using the effective

stiffness formulation, it was possible to reduce your dependence space down to only three

parameters, effective stiffness, damping, and Reynolds number. By spanning all k∗eff values

of interest, we found A∗
Max and showed how maximum amplitudes are only a function of

damping and Reynolds number. By taking the limit as damping goes to zero, we concluded

that limiting amplitudes are only a function of Reynolds number.

It was demonstrated that maximum amplitudes, A∗
Max, depend on damping and Reynolds

number and that instead of fitting a universal curve to all VIV data in the Griffin plot, our

data segregate onto constant-Reynolds-number curves. Also consistent with the effective

stiffness formulation, we showed that there is no dependence on the mass parameter, m∗.

In order to cover a large range of Reynolds numbers, we performed tests at low damping,

b∗ < 0.50, for Reynolds numbers between 200 . Re |A∗
Max

. 5050. These results were

extrapolated to zero damping, resulting in limiting amplitudes, A∗
Lim. This showed the

dependence on, and importance of, Reynolds number for VIV. We also showed that our

results are consistent with higher Reynolds number experiments by comparing them to other

reported experimental results at small, but finite, damping. However, our results, when
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compared to similar low Reynolds number computations, raise some interesting questions.

We performed flow visualization to determine the dimensionality and structure of the

wake at the maximum amplitude point. We observed for Re ≈ 200 flow, the wake was

nearly two dimensional, but by the time the Reynolds number was raised to Re ≈ 525, the

wake was highly three dimensional. We also noticed that below Re ≈ 1000 the wake at the

maximum amplitude was a 2S structure. This happens even though an upper branch existed

and according to the Williamson-Roshko plane (WR-plane), the wake structure should be

2P. For Re & 2600 we observe the expected 2P wake structure at the maximum amplitude.

Finally, we recognized the difficulties in extending the generalized Griffin plot to high

damping values, b∗ > 1.75. The main difficulty is that the maximum amplitude point,

k∗eff|A∗
Max

begins to move toward a lower value as the system begins to respond more like a

traditional linear forced mass-damper-spring system.

7.3 Summary of Discontinuities

We discussed how the nonlinear features of VIV can be missed by representing the response

behavior using time-averaged values. These include discontinuities caused by regions of

hysteresis and transient behavior.

We examined the disappearance of the large-amplitude, upper branch portion of the

response profile as damping and Reynolds number change. This large-amplitude region

occurs in a well-known hysteretic region. Therefore, its disappearance depends on which

direction it is approached from. We find that for increasing tunnel velocities, the system

jumps upward from the initial to the upper branch to a point well inside the WR-plane

2S/2P dividing curve. As damping is increased, this upward jump is delayed, causing a

decrease in the size of the upper branch. On the other hand, we find that for decreasing

tunnel velocities, the jump downward from the upper to the initial branch is controlled by

the WR-plane 2S/2P dividing curve. As damping is increased, this downward jump occurs

earlier, also causing a decrease in the size of the upper branch.

We also examined the transition between the upper and lower branches. This region

was noted to be an intermittent switching region by Khalak and Williamson (1997a). They

observed that their system would switch back and forth between the amplitude, frequency,

and phase that was characteristic of each branch. Instead of seeing any switching, we
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observe a system that takes on a wide range of amplitudes and frequencies and appears to

be randomly moving through all the permissible values of each.

In addition to the well-known hysteresis jump between the initial and upper branches

of the three-branch response, we find another hysteresis in the transition from the lower

branch to the desynchronized region. We described the effects of damping and Reynolds

number on this hysteresis region. This hysteresis exists for low Reynolds numbers and is not

observed in Re|A∗
Max

experiments greater than around O(103). Furthermore, as damping is

increased, the size of the hysteresis decreases.

We next examined purely transient behavior as the system underwent an amplitude jump

discontinuity between the initial and the upper branch. These transients were induced by

changing the flow velocity or damping. For transients induced by changing the flow velocity,

we noticed that the system always moved quickly from the low-amplitude state to the high-

amplitude state. On the other hand, our high nondimensional mass, low Reynolds number

system did not jump downward from a large- to a small-amplitude state as quickly. And

our low nondimensional mass, high Reynolds number system would sometimes remain in

a marginally stable large-amplitude state and only after the tunnel velocity was reduced

further would it move to the low-amplitude state.

For transients induced by changing the system damping, we noticed some interesting

trends. This time, the system would always go from a large-amplitude to a small-amplitude

response by increasing the damping. However, jumps upward, induced by decreasing the

damping on the system, were much slower to occur. And just like the velocity-induced

transient cases, the amount of delay depended on the system. Our large nondimensional

mass, low Reynolds number system always went to the large-amplitude response but at a

much slower rate than it jumped downward. On the other hand, our small nondimensional

mass, high Reynolds number system sometimes got stuck in another marginally stable

response for a large number of cycles before finally moving to a large-amplitude response.

7.4 Future Considerations

A fundamental question that remains in VIV is to what extent the canonical situation

of a rigid, elastically-mounted, circular cylinder with only one-degree-of-freedom motion

can be generalized to more practical real world situations. There have been many studies
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that used more realistic system arrangements. Some of these systems not only had two-

degree-of-freedom motion, but some even used flexible circular cylinders, or cables. Other

systems explored not only elastically-mounted but cantilevered, pinned, pivoted, and even

tethered cylinders. Due to this work, there is a much better understanding of the conditions

necessary for a realistic system to behave in a similar manner to a canonical system, such

as ours. However, another important aspect of the system has received much less attention;

the shape of the bluff body. For the most part, all investigations of VIV has involved the

circular cylinder. This is with good reason, since an enormous amount of previous work on

stationary bluff bodies involved circular cylinders. While a few previous studies have used

different cross-section shapes, such as D-shaped (Feng, 1968) and dodecagonal (Scruton,

1965), there is still a number of unique shapes to investigate. The shapes of most interest

would be ones that have fixed separation points, such a D-shaped and triangular-shaped

cross sections. This thesis pointed out many Reynolds number effects experienced by a

circular cylinder. For a circular cylinder, the location of its separation points are not fixed

and will move depending on the Reynolds number of the flow. How would these Reynolds

number effects be altered, if at all, for a geometry that had fixed separation points.

Since Reynolds number and m∗ are both dependent on the cylinder diameter, in general,

the higher the Reynolds number, the lower the m∗, in VIV experiments. This has made

it very difficult to sort out what are Reynolds number and what are m∗ effects in certain

situations. In the effective stiffness formulation, there are no individual m∗ effects when

using time-averaged amplitude and frequency values obtained from roughly steady-state be-

havior. However, when dealing with the instantaneous cycle-by-cycle, time-varying motion,

m∗ effects could be present in the formulation. For example, the cycle-by-cycle amplitude

values of high Reynolds number, small m∗ systems have a larger scatter around their time-

averaged mean values than do low Reynolds number, large m∗ systems. Therefore, it would

be very helpful to have high Reynolds number, large m∗ tests and low Reynolds number,

small m∗ tests. These could then be compared to the large amount of previous and current

work at high Reynolds number, small m∗ and low Reynolds number, large m∗ to determine

the relative effects of Reynolds number and m∗.

In regards to limiting amplitudes, it would be interesting to extend experimental work

into both extreme ends of the Reynolds number range. It would be extremely helpful to

perform experiments at Re|A∗
Max

< 200 with reasonably low damping. If a sufficiently small
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damping value cannot be obtained, then numerous tests at various damping values should

be undertaken such that a reasonable extrapolation to zero damping can be accomplished.

This would allow one to determine if the amplitude eventually increases to around the

A∗ ≈ 0.60 value that many simulations predict at Re = 100 or the A∗ ≈ 0.40 value that our

experimental results predict when extrapolate down to that Reynolds number. It would also

be insightful to perform tests at Reynolds numbers that are an order of magnitude higher

than what have been previously done. All results for Re|A∗
Max

< O(105) appear to show the

limiting amplitudes increasing with Reynolds number. It would seem that the amplitudes

should eventually saturate. For stationary cylinders, the drag crisis, and then the roughly

constant drag coefficient, occurs around Re ≈ O(106). VIV studies must be performed in

this range to see if unexpected behavior occurs, as well as amplitude saturation.

Finally, due to the time-varying visual features that wake structures can take, especially

a 2P one, it would be advantageous to attempt to describe the state on more quantitative

qualities of the wake instead of visual ones. For instance, the amount of opposite-signed

vorticity that crosses the rear stagnation point of the cylinder could be used for the 2P

wake structure. This would allow for there to be less interpretation of what type of wake

structure is present.
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Appendix A: Detailed Overview of
the Data Reduction Process and
Filtering Scheme

The measured signal is recorded as a data file that contains a vector of voltages output from

the LVDT at every sample time. This vector is analyzed by sending it through a series of

MatLab functions.

The first function takes the recorded data of voltages, V , and converts it into physical

position, y, using the conversion factor

y(mm) = 5.0 V (volts) . (A.1)

The mean value of the vector is then subtracted away so that the converted data is centered

about zero. The time vector, corresponding to each displacement point, is calculated by

making the first data point occur at time zero seconds and then the corresponding time for

each point after that is determined using the sampling rate. Since the sampling rate was 250

samples per second, the time separation for each point was 1/250 = 0.004 seconds. Finally,

both position and time are nondimensionalized according to the effective stiffness formula-

tion although both nondimensional and dimensional quantities are carried throughout the

code.

The second function performs an optimal Wiener filter on the data. Since we do this

filtering in Fourier space, we first make the data periodic by finding the first and last zero

crossing, going in the same direction, and remove the points before and after them. Then

the data is converted into Fourier space using MatLab’s fast Fourier transform (FFT). In

order to use the Wiener filter, we need an estimate of the noise in the measured signal.

Luckily, even a rough estimate of the noise will produce sufficient filtering. To accomplish
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the noise estimation, we determine the power of the Fourier coefficients for a pure sine wave.

For

Ao sin(2πft) , 0 < t < T (A.2)

the power of the Fourier coefficients are given by

| ck |2=
(

Ao sin2(πfT )
π(k + fT )(k − fT )

)2 (
k2 cos2(πfT ) + (fT )2 sin2(πfT )

)
(A.3)

where Ao, f , and T need to be assigned values. We determine f , the oscillation frequency, by

looking at the power spectrum of our recorded data and finding the frequency corresponding

to the maximum power. We then perform a least-squares fit on the Fourier power coefficients

of the pure sine wave to the power spectrum of the recorded data, using Ao and T as the

fitting parameters. While it is true that we could have also determined the value of T from

our recorded data, in order to make the Fourier power coefficients of the pure sine wave

better match the recorded data power spectrum, we do not do this. For example, in the

unfortunate situation that the product fT , determined from our recorded data, was exactly

an integer, our pure sine wave Fourier coefficients would be zero for all values of k except

two, k = ±fT . This resultant set of coefficients would be worthless in helping estimate

the noise. Instead, we allow T to be a free fitting parameter with the one condition that

T cannot take on a value that makes fT equal to an integer. By doing this, we force the

power of the k = 0 pure sine wave Fourier coefficient into a nonzero value as well as make

the power spectrum of the rest of the Fourier coefficients better match the shape of the

recorded data power spectrum. When performing the least-squares fit, we only consider

the Fourier coefficients corresponding to frequencies greater than f to minimize the error

against. Furthermore, this minimized error is only based off considering the bottom edge

of the high frequency portion of the recorded data. We iterate to the values of Ao and T

that minimize the distance between the Fourier power coefficients of the pure sine wave

and the bottom edge of the recorded data power spectrum, for high frequencies. A sample

plot showing the results of “fitting” these coefficients to our recorded data is shown in

Figure A.1.

By looking at the difference between the actual recorded data and the least-squares

fitted coefficients, we can obtain a rough noise estimate. Once we have this noise estimate

in Fourier space, constructing the filter is a straightforward task. The optimal Wiener filter
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Figure A.1: Noisy measured signal data (green data) along with the “fitted” ideal power
spectrum (black data) and the Wiener filtered results (red data). Note that for frequencies
below about 1 Hz, the measured noisy signal and the filtered results coincide.

is given by

Φ(f) =
| C(f) |2 − | N(f) |2

| C(f) |2
(A.4)

where Φ(f) is the optimal filter, C(f) is the recorded, noisy data, and N(f) is the noise

estimate, all of which are in Fourier space. Then we simply arrive at our filtered recorded

data, in Fourier space, through the relationship S(f) = C(f)Φ(f) where S(f) is the optimal

filtered data. The filtered power spectrum | S(f) |2 can be seen in Figure A.1 as the red

data. It is important to note that when we arrive at our noise estimation, we do not consider

power spectrum spikes that occur at harmonics in the Fourier space of the recorded data as

noise. Instead, we allow them to be included in the filtered results. This is accomplished by

assigning the harmonic frequencies a value of zero in our noise estimation. The harmonics

for the case shown in Figure A.1 are the three decreasing magnitude spikes in the power

spectrum. The filtered recorded data is then transformed back into time space using the

inverse fast Fourier transfer (IFFT) and the results are past to the next function.

This next function locates the extrema points of the time series. This is accomplished

by looking for a sign change in the slope between consecutive points. Since the points are
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sampled at a constant interval, only the actual value of each point is necessary to determine

the sign of the slope. By subtracting the values of the points on either side of our point of

interest from the value of that point of interest and then multiplying these two differences,

we can tell if our point of interest is a local extrema. If the multiplication produces a

negative signed term, the point of interest is a local extrema. If the multiplication produces

a positive signed term, the point of interest in not a local extrema and we move on to the

next point in the data vector. A second test is done on the local extrema points that passed

the first criteria to eliminate any artificial extrema that results from residual high frequency

noise. All the extrema are put in a bin with their corresponding time values. Then we move

through this bin and look at the time difference between consecutive extrema. We know

that the time difference between the extrema should be the same order of magnitude as

the average oscillation period, 1/f , determined previously. Therefore, if we see any time

difference that is an order of magnitude less than this, we know that one of the two extrema

involved in that time difference is an artificial extreme point. Of the two, the one that has

a time difference closer to the oscillation period, when compared to the time value of the

last known actual extreme point, is kept and the other is eliminated. After making sure

that all the local extrema occur at the right time scale, we pass these extrema values on

to the next function. Our optimal Wiener filter worked so well however, that our resultant

filtered curve was sufficiently smooth so that we observed no artificial extrema. A typical

result can be seen in Figure A.2. Note that even for displacements as small as 0.5 mm,

which are about the minimum displacement we consider for cylinder movement, the Wiener

filter produces a smooth curve. On the other hand, a simple high frequency truncation

filter produces occasional artificial extrema, as seen in Figure A.2 for t ≈ 297 or t ≈ 299.

Therefore, this extra step of checking the time difference between extrema turned out to be

redundant.

The next function took the extrema data and turned it into cycle-by-cycle results. First,

the function found the first and last positive extrema and threw away the negative extrema

on the ends, if ones existed. This was done so that we would not be left with any half cycles

at the end of the data and would always have a positive-negative-positive oriented cycle

(although negative-positive-negative would have worked just as well). The amplitude of

each cycle was calculated by averaging the value of the three consecutive extrema, P1, N1,

and P2, with the negative one, N1, weighted twice. Then the function moved to the next
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Figure A.2: Comparison of the optimal Wiener filter to a simple high frequency truncation
filter. The measured noisy signal (green data)is shown along with the truncation filter
results (blue data) and Wiener filter results (red data).

cycle, P2, N2, P3, and repeated the process. The frequency of the cycle was determined

by looking at the time difference between successive positive points. For instance, the first

cycle period involved the time difference between P1 and P2; the next cycle period involved

P2 and P3. The frequency was simply the inverse of the time difference.

The last function determined the statistics of the cycle-by-cycle results. These included

the minimum, maximum, mean, and standard deviation of the amplitude and frequency.

The standard deviation was calculated using the built-in MatLab function STDEV. The

effective stiffness parameter was also computed at this time using Equation (2.43).
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Appendix B: Damping Theory and
System Damping Determination
for Free-Vibration Natural Decay

The governing equation for a mass-damper-spring system undergoing free vibration natural

decay is

mÿ + bẏ + ky = 0 , (B.1)

where m, b, and k, are the system mass, damping, and elasticity respectively. The time

eigenvalues of this equation are

λ = λA ± λB = − b

2m
±

√(
b

2m

)2

−
(

k

m

)
. (B.2)

For lightly damped systems, b < 2
√

mk, λB will be imaginary and the system will undergo

oscillatory motion. For heavily damped systems, b > 2
√

mk, λB will be real and the

behavior of the system will not be oscillatory. This “critical” value of damping, b = 2
√

mk

which causes λB to change from imaginary to real is termed the “critical damping” value.

For a lightly damped system governed by Equation ( B.1) and released from initial

position y(0) = Yo and zero initial velocity ẏ(0) = 0, the time decaying motion is given by

y(t) = Yo

√
1 +

(
b

2mωo

)2

e−
b

2m
t cos(ωot− α) , (B.3)

where ωo is the damping altered natural frequency given by

ωo =

√
ωN

2 −
(

b

2m

)2

, (B.4)
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and α is the phase shift given by

α = tan−1

(
b

2mωo

)
. (B.5)

The system damping, b, was determined in two different ways, depending on the num-

ber of cycles that the decaying system experienced. For a system that went through a

large number of oscillations, the damping value was obtained by examining the decaying

amplitudes. The time decaying amplitudes, A(t), from Equation (B.3) are given by

A(t) = Yo

√
1 +

(
b

2mωo

)2

e−
b

2m
t . (B.6)

We can then use properties of logarithms to write the amplitudes as

ln(A(t)) = ln

Yo

√
1 +

(
b

2mωo

)2
− b

2m
t . (B.7)

This shows that the logarithm of the decay amplitudes is a linear function of time

ln (A(t))︸ ︷︷ ︸
y

= − b

2m︸ ︷︷ ︸
η

t + ln

Yo

√
1 +

(
b

2mωo

)2


︸ ︷︷ ︸
y−intercept

, (B.8)

with the slope being related to the system damping, b. Therefore, we simply use a least-

squares linear curve fit to the logarithm amplitudes to determine the slope η. This process

can be seen in Figure B.1. The strongly linear nature of the actual data reaffirms the linear

nature of our setup and points to the validity of this approach to determine the damping

value.

This method to determine the slope, η, could not be used for systems that only went

through a few oscillations before coming to rest. This was because such systems could only

provide a few amplitude points with which to use in the curve fit. This limited number of

points caused a large amount of error in the value of η. Instead, the full time trace of the

decay was used to determine η. Going back to Equation (B.3), one can see that the decay
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response can be represented by

y(t) = eηt (A sin(ωot) + B cos(ωot)) , (B.9)

where we used two trigonometric functions instead of a single one with a phase angle.

Representing the response with this functional form, we performed a least-squares fit on

the full time series decay data with the fitting parameters being A, B, ωo, and η. Due to

the non-linear natural of the curve fitting function, in order to determine the four fitting

parameters, a simple Newton iteration method for matrices was used. This method can be

written as

x(n+1) = x(n) −
[
F ′(x(n))

]−1
F (x(n)) , (B.10)

where n is the current iteration number and (n + 1) is the next step. F is composed of the

four functions that minimize the error expression with respect to each fitting parameter. A

typical result of the Newton iteration method to determine the fitting parameters for our

functional representation can be seen in Figure B.2. Fitting a curve to the entire time trace

is a straightforward way to determine the value of η when a limited number of amplitude

cycles exist.

Regardless of which of the two methods was used, once the parameter η is determined,

the system damping b was given by

b = −2mη . (B.11)
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Figure B.1: Least-squares linear curve fit to the amplitudes of a free-vibration natural decay
test undergoing a large number of oscillations. The actual amplitude (blue data) deviates
very little from the linear curve fit (green line) and only noticeably at the beginning and
end of the time trace.

Figure B.2: Least-squares exponentially decaying sine wave curve fit to the full displacement
time trace of a free-vibration natural decay test undergoing a limited number of oscillations.
The actual displacement (yellow data) deviates very little from the curve fit (red data).
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Appendix C: Variable Magnetic
Eddy-Current Damping System
Theory

We can arrive at an approximation for how the system damping, b, will depend on the

VMEC input parameter, supplied current, isup, by making some simplifying assumptions

and focusing our attention locally around the edge of one of the electromagnets. The local

induced voltage, Vinduced, in the conductor plate can be estimated, using Faraday’s Law and

assuming that our electromagnet has roughly constant magnetic field, B, as

Vinduced =
d

dt

(∫
B · da

)
= Bwv , (C.1)

where w is the width (non-oscillating direction) of the conducting plate and v is the oscil-

lation velocity of the plate. Next, we make the simplifying assumption that the induced

voltage, and resultant eddy current, ieddy, will behave approximately according to ohm’s

law,

Vinduced = ieddyR , (C.2)

where R is the local resistance of the conductive plate. Then, one can combine Equation

(C.1) and Equation (C.2) to create an expression for the eddy current generated in the

conductive plate

ieddy =
Bwv

R
. (C.3)

The force, F , experienced by a current carrying material, in this case the conductive

plate with eddy currents, through a magnetic field is given by

F = |ieddyL×B| = ieddywB . (C.4)
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In this approximation, we assumed that the eddy current flows uniformly in an approximate

rectangular path within the plate so that two portions of the current flow path produce equal

and opposite forces and a third portion is outside the magnetic field and experiences no

force.

The result from Equation (C.3) can then be combined with Equation (C.4) to arrive at

F =
w2B2v

R
. (C.5)

Linear viscous damping is modeled as a force proportional to velocity, with the constant of

proportionality being the damping, such that

F = bv . (C.6)

By noting the form of the linear viscous damping model in Equation (C.6), we can determine

the parameters that make up the magnetic damping term, bmag, in Equation (C.5)

F = bmagv = fn(w,R, . . .)B2v , (C.7)

meaning that the magnetic damping term is composed of

bmag = fn(w,R, . . .)B2 . (C.8)

For a simple electromagnet, such as those being used in this apparatus, we know that

B = krel µo n isup , (C.9)

where krel is the relative permeability, µo = 4π× 10−7 T/amp/m, and n is the turn density

(loops per unit length). Therefore, we expect to see a functional relationship between

magnetic damping and supplied current of the form

bmag = fn(w,R, k, µo, n, . . .)isup
2 , (C.10)

for our VMEC system. The exact form of the leading term is not a trivial calculation.

First, the nature of eddy current behavior is not well understood. Also, other parameters
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that were excluded due to our assumptions, such as distance between the conducting plate

and magnets, play a role in system performance and must be included in a more thorough

analysis. However, the magnetic damping dependence on isup
2, that this derivation predicts,

is clearly seen in the experimental validation tests on the system.
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Appendix D: Top 10% Average
Amplitude Adjustment Factor
Calculations

In the literature, the time-averaged amplitudes of free-vibration systems are determined in

various ways. Two of the most common methods are the full average value, obtained by

averaging every recorded cycle’s amplitude, and the top 10% average value, obtained by

averaging only the largest 10% of recorded cycle’s amplitudes. Unfortunately, in certain

cases, the different averaging methods can result in identical tests giving substantivally

different A∗
Max values. Throughout this thesis we have used the full average value method

and, in order to compare our results to the numerous higher Reynolds number results that

used the top 10% average value method, we determined an adjustment factor in order to

relate the two methods.

We determined the maximum amplitude, A∗
Max, of all our lightly damped systems

(b∗ . 0.50), for each of our numerous test sequences using both of these popular aver-

aging methods. These test sequences covered a substantial range of Reynolds numbers

(200 . Re|A∗
Max

. 5050). To highlight the difference between the two averaging methods, we

show in Figure D.1, using the most lightly damped case in each sequence, two calculated

maximum amplitudes, one for each of the two methods. The difference between the two

methods at low Reynolds number (Re . 1000) is less than three percent and therefore

insignificant. However, for higher Reynolds numbers, the difference is significant. Using

the two sets of calculated maximum amplitudes for all lightly damped systems tests, we

can determine an average percentage difference between the two methods for each Reynolds

number. This can be seen in Figure D.2, which shows the average percent difference be-

tween the top 10% average value method, A∗
top10%, and the full average value method, A∗,

for various Reynolds numbers.
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Figure D.1: Differences in maximum amplitudes, A∗
Max, determined by averaging every cycle

(full average value) and by averaging the largest 10% amplitude cycles (top 10% average
value).

Figure D.2: Increasing percent difference between the top 10% average value and full average
value methods as a function of Reynolds number. Dashed line is least-squares linear curve
fit, for Re < 104, and constant value approximation, for Re > 104.
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We determined the least-squares linear fit to our average percent difference data, which

is also shown in Figure D.2. By using this curve fit, we could adjust the top 10% average

values reported in the literature so that they would be consistent with our method. The

adjustment factor was

A∗
full ave = PA∗

top 10% , (D.1)

where P is the percent difference between the two methods and is determined using the

curve-fit parameters such that

P = 1− 1
100

(0.00129 Re + 1.6) for Re < 104 (D.2)

P = 1− 1
100

(15) for Re > 104 . (D.3)

One cannot extrapolate the percent difference value P to an infinitely large Reynolds num-

ber using the curve-fit parameters. The curve-fit parameters were obtained over a Reynolds

number range of 102 < Re < 104. Predicting the percentage difference using these pa-

rameters at Re > 104 gives an incorrectly large percent difference value. Therefore, for a

correction factor above Re > 104, a constant percent difference of 15% was used.
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