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Constrained Heo-Optimization for Discrete-Time Control Systems

H. P. Rotstein, Ph.D.
California Institute of Technology 1993

In order to formulate a problem in the Hoo-optimal control framework, all specifica-
tions have to be combined in a single Hoo-norm objective, by an appropriate selection
of weighting functions. If some of the specifications have the form of hard time do-
main constraints, the task of finding weighting functions that achieve a satisfactory
design can become arduous. In this thesis, a theory for constrained Hyo-control
is presented, that can deal with the standard Ho, objective and time domain con-
straints. Specifically, the following time domain constrained problem is solved: given
a number v > 0, and a set of fixed inputs {w'}, find a controller such that the closed-
loop transfer matrix has an Heo-norm less than v, and the time response y* to the
signal w' belongs to some pre-specified set ! for each i. Constraints are only im-
posed over a finite horizon, and this allows the formulation of a two step procedure.
In the first step, the optimal way of clearing the constraints is found by computing
a solution to a convex non differentiable problem. In the second, a standard uncon-
strained Hoo-problem is solved. The final controller results from putting together
the solution to both subproblems.

The objective function for the minimization, and the solution to the whole prob-
lem are constructed using state-space formulas. The ellipsoid algorithm is argued
to be a convenient procedure for performing the optimization since, if carefully im-
plemented, it can deal with the two main characteristics of the problem, i.e., non-
differentiability and large-scale. The validity of assuming constraints over a finite
horizon is justified by presenting a procedure for computing a solution that gives an
overall satisfactory behavior. For clarity of exposition, this thesis starts by discussing
a very special instance of the problem, and then proceeds to give the solution to the
general case. Also, a benchmark problem for robust control is solved to illustrate the
applicability of the theory.
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Chapter 1

Introduction

One of the major recent advances in linear optimal control has been the development
of the so-called Hoo-theory, which attempts to design a controller that achieves inter-
nal stability and minimizes a closed-loop Heo-norm when wrapped around a system.
In his 1981 paper, Zames discussed the shortcomings of classical LQG methods for
dealing with uncertainty, and proposed the minimization of the Ho, norm as the
most natural robust control objective, thus initiating the interest in the field. The
febrile activity that followed has produced valuable results, both from a theoretical
and practical viewpoint. Among the former, one may cite the solution to the robust
stabilization or the optimal rejection of norm bounded disturbance problems. Proof
of the latter, is that algorithms for solving H, designs are now standard in com-
mercial control design packages, and numerous successful practical applications are
being reported.

In spite of its success and popularity, He has also some disadvantages, that were
recognized at the early stages of its development. First, the theory addresses the
problem of minimizing the Ho norm of a single transfer matrix, whereas most con-
trol problems require either the simultaneous minimization of several norms or the

minimization of a norm subject to some additional structure (e.g., the minimization



of the structured singular value). Although it is usually possible to formulate any
of these problems as one in the standard form, the conservatism introduced by this
step can render the final result useless. Some iterative schemes to reduce this con-
servatism that seem to work well in practice have been proposed (e.g., Doyle’s D-K
iteration), but this is a current area of active research. A second disadvantage is that
the control specifications must all be translated into a single Ho norm objective,
by designing weighting functions that attempt to reflect the specifications; in the
absence of a formal procedure, this step may turn out to be quite hard and time
consuming. Critics of the paradigm have indeed claimed that the Ho, approach to
control just pushes the design problem one step backwards (from controller to weight
design), but this is somewhat unfair, since a designer with a physical knowledge of
the system that he or she wants to control, and a reasonable flexible set of specifi-
cations, will usually be able to come up with a satisfactory design. When some of
the specifications are hard-bound constraints, then the criticism gains more credi-
bility, since the trial and error process for designing weights might not produce a
good design within a reasonable time frame. Moreover, the designer cannot assess,
by using the Ho machinery, if a given constrained problem has a feasible solution
~or otherwise establish the limits of performance induced by his or her specifications.
This drawback of H, theory can in principle be circumvented by putting the ana-
lytic machinery aside and using numerical methods for determining the parameters
of a controller that achieves the specifications. When the number of parameters is
small and the problem relatively simple, then this naive scheme may produce good
results, since in general simple correlations between the tunning parameters and the
closed-loop behavior might be found. For larger or more complex problems, this is in
general no longer true, and the computation of a controller would potentially require
enormous computer power. And again, if the computer fails to produce a result, it

is not possible to conclude that no solution exists.



1.1 Overview of Previous Works

Several design methods have been proposed for solving constrained control problems,
in the face of the inadequacy of purely linear ones to deal with constraints. Examples
of early efforts included the work of Truxal [70] and Horowitz [37] that attempted to
design a closed-loop transfer function that satisfied a set of constraints formulated in
the frequency domain. Their methods could not take time domain constraints exactly
into account, and frequency domain translations were derived by using second order
model approximations. Fegley and co-workers were probably the first ones to use
numerical optimization to compute a closed-loop design for single input-single output
discrete and continuous time systems, incorporating explicitly and exactly, several
time domain constraints. A summary of the application of linear and quadratic
programming to solve the resulting problems and further references can be found in
[21].

In Fegley’s approach, frequency domain specifications cannot be treated exactly,
since only a finite number of constraints can be considered for each problem. When
algorithms for nondifferentiable optimization became available, Polak, Mayne and
co-workers were able to incorporate frequency domain constraints into the set of ad-
missible specifications [58], and therefore solve in principle a very general instance
of the constrained design problem. However, their method, as well as all the ones
cited so‘far, are “local,” in the sense that the final results cannot be guaranteed to
be globally optimal due to the presence of non convex constraints and/or objective
functions. This major limitation can be lifted by using the Youla Parametrization
Lemma [25], that parametrizes all feasible closed-loop transfer function as an affine
function of a stable transfer function. The affine dependence implies that convex
constraints on the closed-loop translate into convex constraints on the design param-
eter, and stability of the former is equivalent to stability of the latter. Gustafson

and Desoer [30] explored the use of the parametrization on constrained design, al-



though they did not duel with the numerics of the problem. Polak and Salcudean
[59] used the Youla parametrization to formulate the design problem as a constrained
convex optimization problem, describing a fairly large number of convex specifica-
tions, both in the time and frequency domain. The constraints are nondifferentiable,
but they have a nice continuity property (i.e., Lipschitz continuity) that makes it
possible to apply the nondifferentiable optimization algorithms in [57]. Constraints
are also semi-infinite, because for each frequency or time instant there corresponds
a constraint; this issue was addressed by solving a sequence of finite optimization
problems of increasing dimensions. The author feels that, although the whole ap-
proach may work well for relatively small problems (i.e., less than 50 variables and
a couple of hundred of constraints), it will perform very poorly for larger ones, due
to the inherent computational complexity of the algorithms employed.

The problem considered by Boyd and co-workers [10] was similar to the one
in [59], but they concentrated on developing a program to translate discrete-time
control problems into optimization programs, solvable by one of the available general
nonlinear programming packages. This is achieved by formulating the specifications
as constraints. The semi-infinity issue is addressed by considering a finite horizon
and sampling the constraints at a finite number of frequencies. In the book (7], the
approach is further refined be proposing some algorithms for convex programming
that are able to deal with nondifferentiable constraints.

Although the idea of straightforwardly reducing constrained controller design into
an optimization problem is appealing, the resulting minimization may be too hard
even for state of the art numerical algorithms for convex programming. A different
route was followed in the paper by Helton and Sideris [38]. In this approach, the
iterative scheme designed by Lawson to solve the H, optimal control problem with-
out time domain constraints, was modified so as to accommodate linear time domain

constraints. The resulting program is a combination of Lawson’s algorithm steps



with quadratic programming steps. If the algorithm converges, then it minimizes
the infinity norm of a scalar transfer function subject to time domain constraints.
Although this algorithm is intuitively appealing, its convergence properties are hard
to ascertain as it seems to become ill-defined when the problem becomes nondif-
ferentiable. Moreover, it was designed for scalar objective functions and it is not

immediate how to generalize it to a more complex problem.

1.2 General Considerations, Thesis Outline and Notation

The purpose of this paper is to incorporate time domain constraints into the Ho
design framework for discrete-time, linear time invariant systems. In principle, the
approach is restricted to time domain constraints imposed only over a finite hori-
zon. This additional assumption, allows the formulation of a two step procedure,
by which first the constraints are optimally cleared, and then a standard uncon-
strained H, problem is solved. The overall solution is found by putting together
the solution to each sub-problem. The advantage of this scheme is that the problem
of optimally clearing the constraints in an Heo-norm sense can be formulated as a
finite dimensional optimization program with a convex objective function; hence, the
whole problem will be convex if the time domain constraints are. The subdivision of
the problem is done following the idea proposed in [38], but unlike the route taken
there, the state-space approach to He-control is subsequently employed to find a
solution. Considering constraints over a finite horizon may seem to be reasonable,
since stability of the closed loop system implies a decay in the time domain responses,
and one usually expects the system to be “dead” after a certain number of samples.
It turns out that this intuitive idea can actually fail, since a good behavior after the
horizon can conflict with the constrained Ho, optimality criteria. However, taking
the horizon long enough can produce the desired effect, if suboptimal solutions are

taken instead of optimal ones.



There are two main reasons that make the treatment of discrete over continu-
ous time systems desirable, besides the mathematical convenience. First, due to the
use of digital computers and microprocessor based control systems, many control
problems originate in discrete time; even if this in not true for a specific applica-
tion, continuous-time system can always be approximated as close as desired by a
discrete-time one. Second, the majority of the practical control problems involve
a continuous-time system controlled by a digital device. Although one can always
design a continuous-time controller and then discretize it for implementation, this
requires an approximation and hence a potential loss in performance. If instead, the
hybrid closed-loop system is considered directly, then it has recently been shown that
the problem can be reformulated as a special discrete-time one.

The thesis may be divided into four different parts and the conclusions. The
first part consists of Chapter 2, that is devoted to a fairly complete study of the
unconstrained Heo-control problem. The chapter is mostly technical, but is needed
in order to solve the general instance of the constrained problem. It contains results
that are either new or more general than the ones in the literature, and are required in
subsequent developments. The chapter is independent from the rest of the material,
and can therefore be skipped on a first reading and used only as as a convenient
reference. The second part consists of Chapters 3 and 4, and includes the solution of a
simple instance of the time domain constrained H, problem. In spite of its simplicity,
the problem captures the main ideas and properties of the solution, without the
technical difficulties of the general case. In Chapter 3, the problem is transformed
into a finite dimensional optimization problem, by exploiting the fact that constraints
are only imposed over a finite horizon . Then, a state-space procedure is worked out
for computing the objective function, a proof of convexity is given, and a property
of the function is discussed for the limiting case with non binding constraints. The

latter issue has interesting consequences for the numerical properties of the problem.



The chapter also contains some bounds over the order of the solution and a discussion
on the overall behavior of the time response. The main idea in [38] is that if the
horizon is taken long enough then satisfaction of the constraints over the horizon
implies a nice behavior from zero to infinity. It turns out that this may not be the
case (specially if the optimal solution is pursued), since letting the horizon length
trend to infinity does not necessarily imply that the limiting solution will satisfy the
constraints. However, it is shown that this difficulty can be easily overcome by taking
suboptimal solutions; in particular, a scheme for computing one of such solutions
that has guaranteed overall behavior if the horizon is taken long enough is given. In
Chapter 4, the numerical aspects of the problem are treated. First descent algorithms
for nondifferentiable optimizations are considered and subsequently discarded, due
to their seeming inability to deal with large-scale problems. Then, a non descent
method called the Ellipsoid Algorithm is briefly described, and an implementation
that is able to cope with a large number of variables and constraints is discussed.
The chapter also contains a textbook example to illustrate the theory.

The third part of the thesis consists of Chapter 5, where the general instance
of the constrained problem is considered. First, a solution to the so-called “one-
block” problem is presented, that follows closely the treatment of the simple case in
Chapter 3. Then, this result is used in conjunction with the material in Chapter 2
to give the solution to the general problem. The problem is again shown to be
equivalent to a finite convex minimization, and a simple formula for the objective
function is given. In fact, several alternative optimization schemes are proposed, and
their relative numerical merits are investigated. Finally, a state-space realization for
a solution is given and the textbook example in Chapter 4 is continued to show the
applicability of the methodology.

The last part of the thesis consists of Chapter 6, and is dedicated to a case-study.
Although a textbook example is included in Chapters 4 and 5, the application of



the theory and algorithms to a well-known benchmark problem in robust control
is both interesting and enlightening. In particular, the tradeoff between stability
robustness and time domain performance are investigated. The thesis is closed with

some concluding remarks and current research lines in Chapter 7.

Notation

The notation in this paper is standard. & and p denote the largest eigenvalue
and spectral radius respectively. Let G be a matrix valued function. Lo denotes
the Lebesgue space of all functions defined on the unit circle such that |Gl =
sup{a(G(z)) s.t. |z] = 1} < 00. By Heo (Hy,) we denote the Hardy space of stable
(antistable) functions G € L, i.€., G with all its poles inside (outside) the unit disk.
Therefore, 271 represents the unit delay operator. Hy denotes the Hardy space of
complex-valued norm square integrable functions on the unit circle with vanishing
negative Fourier coefficients; i.e., if G € Ha then H(z) = Y20 Hiz™*, and |H||} =
trace(352, HiH;). This norm has the alternative “frequency-domain” characteri-
zation ||H|2 = = [T, 0i(G(e?%)G(e79)t)df. Therefore G € Hoo = G € Ha
and

1/vn||Gllz < [|Glloo- (1.2-1)

A real-rational transfer function may be written as
G(z) = Gp(2) + Gi(2), (12-2)

where Gp(2) is proper and Gj(z) is a polynomial in z. Note that this notation does
not include the dimensions involved, but dimensions will be denoted with supra
indices whenever necessary. For instance HT*" denotes a stable matrix transfer
function with m outputs and n inputs. Let RH denote the set of stable, proper,

real rational transfer functions with a state-space realization, i.e., G(z) € RHos may



be written as

AlB
G(z)=D+C(z1 - A)'B= ( ) : (1.2 - 3)
c|D

See Chapter 2 for more details on several representations of discrete-time systems.

Particularly useful for subsequent development are the following definitions. Let

(0 L o - 0\
o0 I --- 0

A=l oo, (1.2 —4)
0 0 --- 0 I

00 0 0 0

EP =[[;0 ---0]' and E, = [0 ---0 I]%, then the function 27"]; has a realization:

n B

2= |—L (12 - 5)
Et| 0

and if G(z) is an FIR, then

= (Gar -+ Gl | Go El | Go

(1.2 - 6)
i and E? will be denoted Ay and E; respectively whenever the block-dimension is
clear from the context. If G(z) € RHo, G(z) can be expanded as:
G(z)=D+ i CA'Bz0+1), (1.2 -17)
=0
For notational convenience, we will sometimes write Go = D and G; = CA'™™ 1B, i =
1,2,---, and define G, = [ Gy -+ Gn-1 ] It will be assumed in the following

that all transfer functions are in RLs. Define

G~(2) = G(1/2)Y (1.2 - 8)
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then if det(A) # 0, and G(z) is given by 1.2-3,

N A—t | A—tct
G~ = . (12-9)
_p-tA-t | Dt — BtA-tC!

Note that if det(A) = 0, then G~ has a polynomial part.
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Chapter 2

Unconstrained Heo Optimal Control

Although time domain constraints constitute the main topic in this thesis, the first
long chapter will be devoted to study some general properties of discrete-time (DT)
systems and the standard DT Hoo-control problem. Some of the results presented
here are not new, in the sense that alternative expressions may be found in the lit-
erature. However, the problems that arise in constrained Hoo-control do not satisfy
the conditions that are usually assumed elsewhere. As it turns out, these conditions
are not due to any inherent property of discrete-time, but to the form that is used to
represent them. Specifically, a particular Rosenbrock System Matrix form is argued
to be the most natural way of representing real rational DT systems, as opposed to
state-space. The usage of this form both allows the lifting of one of the most critical
assumptions and the simplification of algebraic manipulations. Finally, the treat-
ment in this chapter sheds additional light on the structure of DT Ho-control. For
example, a link will be displayed between the pure algebraic manipulations involved
in solving the Nehari problem to be defined below, and the classical one-step dilation

construction from the operator-theoretic approach to the problem.
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2.1 Introduction

It is well known that most theoretical results for continuous-time systems have a
direct extension to the discrete-time counterpart. This is specially true for Hoo-
Control Theory since, as noted by Glover in his seminal 1984 paper [28], the results for
DT can be obtained from those of continuous time via a bilinear transformation. Such
a procedure often gives rise to complicated expressions that obscure the structure
of the solutions, and it is obvious that a more direct route, i.e., a purely discrete
time derivation, is desirable. Additionally, the fact that most of the results in the
field have first been worked out for continuous-time and then translated into DT,
has created some confusion onto what are the conditions that are needed in order to
guarantee the existence of solutions to different problems. Although these objections
may seem to be only technical details if one is just interested in the standard Hoo
theory, they become of paramount importance for some of the constructions in this
thesis.

Consider, for instance, the condition frequently imposed in the literature, that
systems should not have poles at zero. This assumption certainly does look like a
technical detail, since zero is an interior point of the stability region and therefore
should not merit any special consideration. Indeed, the sole reason for this assump-
tion is that it guarantees state-space representation to be closed under conjugation;
i.e., if a system has a state-space representation, then its conjugate will also have a
state-space representation if and only if the system has no poles at zero. The condi-
tion therefore refers to the way that the system is represented rather than reflecting
any inherent property. The reason that is usually offered to validate the assumption,
namely that the condition will hold generically for any physically motivated system,
is actually weak. For instance, the condition may fail when the feed-through terms
from the control inputs to the controlled outputs or from the disturbances to the

measurements are not full rank. As discussed below, the latter case may occur when
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the system comes from sampling a continuous time system. As for the present thesis,
poles at zero are introduced as an artifice to solve the constrained Ho, problem, and
hence a theory that includes this case is necessary in order to get most of the results.

The remainder of this chapter can be divided into three parts. The first part
consists of a discussion on some polynomial system matrix representations and in
particular of the Rosenbrock System Matrix form, which is the next simplest way
of representing a system, with the additional advantage of being closed under con-
jugation. The second part, comprising of sections 2.3 through 2.5 is a compilation
of results needed for subsequent developments. Although these sections are mostly
technicals, certain topics of independent interest (like the already mentioned above
fact concerning sample-data systems) are also discussed. The last part, that includes
sections 2.6 through 2.8, contains a discussion of the standard H., problem in a way

suitable for use on future chapters.

2.2 RSM Representation

In this section the Polynomial System Matrix (PSM) representation is reviewed. In
particular, a special case of the Rosenbrock System Matrix form [61] is presented
that yields the natural representation for a discrete, finitely dimensional, linear time
invariant system when poles at zero (or infinity) are not ruled out. The reason for
this is that the form preserves the ease of computation of the state-space form, and
is also closed with respect to conjugation.

Let P(z) be a transfer function; then P(z) may be represented by a polynomial
system matriz (PSM) [67] as a set of equations of the form

where P(2z) is a matrix which entries are polynomial in z, and P(z) and ¢ are parti-
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tioned as

P@) = [p:(2) nule) nole) ]
t
¢ = [ ot ol gyt ] )
Here u, y, z are vectors of inputs, outputs and states respectively. If P(z) is a PSM
for P(z), then write P(z) = P(z). A PSM is said to be in Rosenbrock system-matriz
form if it has the form

-T(z) U(z
P(z)z( (=) V() o),
V() W(z) -I

in which case P(z) = V(2)T(2)"'U(z) + W(z). A PSM is said to be in descriptory
form (DF) if it has the form

-F A B 0
P(Z) = o ’
C D -1

in which case P(z) = C(zE — A)"!B + D. A PSM is said to be in state-space form
(SSF) if it has the form

—Iz4+A B 0
P(z) = ,
C D —-I

in which case P(z) = C(2I — A)™!B+ D denoted P(z) = (—%—I%). Finally, a PSM
is said to be in discrete normal form (DNF) if it has the form

-F A B 0
Py =| T :
zF+C D -1

in which case P(z) = (zF+C)(zE— A)"1B+ D. Although the DNF is not standard,
it is arguably the most natural way of representing a DT finite-dimensional system,

as will hopefully be shown in the remainder of the section.
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A useful property of PSM representation is that the transfer function between u

and y is not changed if P(z) is multiplied on the right by a matrix of the form

Rz Ru Ry
R=]10 1 0
0o 0 I

with R; unimodular. Also, multiplication of P(z) on the left by any compatible

dimensioned unimodular polynomial matrix L(z) leaves the transfer functions from

u to y unchanged.
To illustrate the convenience of the DNF representation and show some useful

operations on transfer matrices in DNF, a number of results are collected in what

follows.

Property 2.1 Let P(z) have a DNF:
—-Ez+4A B 0
P(z) = .
o D —-I
Then P(z)~ = P(1/z)! has the DNF:
—E'4+2A* C* 0
P(z) = ¢ .
2Bt Dt —1I
Note that, strictly speaking, DNF’s are not closed under conjugation since a first
order polynomial would alse be needed in the “12” entry. However, the form is

general enough to capture all cases of interest.

Property 2.2 Let P(z) have a SSF:
—=z2I+A B 0
P =| .
C D -1I
Let X and Y be two square matrices of appropriate dimensions, and let

~YXz+YAX YB 0
fit) = CX D -1
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Then P(z) = Pi(z) if X and Y are nonsingular or if P(z) is stable and X,Y solve

the equations

Y = A'YA+C'C
X = AXA'+ BB

Proof: the first part (i.e., X and Y non-singular) follows from general properties

of PSM forms. The second part follows after recognizing that X and Y are the
controllability and observability grammians respectively of P(z) and hence that their

null space corresponds to uncontrollable or unobservable modes.
O

To illustrate the addition and multiplication of DN F', the following result will be
proved.

Theorem 2.1 Let P have a minimal state-space realization, P = (%’%), with

p(A) < 1. Then P~P =1 if and only if

D!IC+B'YA = 0
D'D+B'YB = 1,

where Y denotes the observability grammian, solving the Lyapunov equation ¥ =

AY A + CtC.

Proof: Using DNF representation,

and
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A simple computation shows that:

—zI+ A 0 B 0
P(2)"P(z) = ctc -I+zA* C'D 0
DiC 2B? D'D -I
I oo
Multiplying this system matrix by T = | atx 1 o | on the left leaves the transfer
BtX o0 I
function between u; and y2 unchanged:
—zI+ A 0 B 0
P(z)"P(z) = | C!'C —2A'X + AIXA —I+z2A* C!'D+A'XB 0

—2B'X + BtXA + D'C 2Bt D'D+ B*XB -I

I 00 0
Now multiplying by T1 = }; é (I) 2 on the right:
0 00 I
2[4+ A 0 B 0
P(z)"P(z)=| C'C+A'XA—X —I+z2A! C'D+A'XB 0
BtX A+ DiC 2Bt D'D+ B'XB -I

Let Y be the observability grammian for P(z)). Then:

—zI+ A 0 B 0
P(z)~P(z) = 0 —I+2At C'D+A'YB 0
(C*D + AY B)! 2B D'D+ B'YB -1

Therefore P(z)~P(z) = I if and only if

C'D+ A'YB = 0
DD+ B'YB = I,

thus proving the theorem.
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O
Corollary 2.1 P~P =1 if and only if
DB'+CXA* = 0
DD'+CXC* = 1
where X denotes the observability grammian, solving the Lyapunov equation X =
AXA' + BB
O

The section is closed with a simple property that is required bellow.

Lemma 2.1 Let G, Ep, Er € RHoo have state-space realizations:

A | B1 B
Ap | B AR | Br
G=| Ci|Du D | EL= Er= :

Cr | Dt Cr | Dr
C2 | D21 Do

I 0 I 0
G
0 Ep 0 Ep

Then the stable part of has a state-space realization of the

A | B, B,
form | Cy | Dy; Dyg |, for some matrices Bz,éz,.blz,DZ] and Dzz.
Co | Do Dax

Proof: It follows from simple matrix manipulations.

2.3 The Discrete-time Riccati Equation

The algebraic Riccati Equation plays a central role in both the continuous and the

discrete time Hyo theories. In this section, the Discrete-Time Algebraic Riccati
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equation (DARE) will be reviewed, with a greater generality than the one usually
found in the optimal control literature. Following [71], [2] the solution to the Riccati
equation will be obtained by using the “stable” deflating subspace of a matrix pencil.

Let A € R®*™, B"*™ and R, Q, T be real matrices of appropriate dimensions,

with R and @ symmetric. Define the ordered pair of 2n 4+ m by 2n + m matrices:

A 0 B I 0 0
S=||-Q I =T |,|0 A o0 ||=(5, S2) (23-1)
Tt 0 R 0 —B' 0

associated with the pencil ASy — Si. It will be assumed in what follows that the
pencil is regular, i.e., det(AS2 — S1) # 0; it turns out that, for the case of interest,
this is without loss of generality. Let A; be such that det(A1S2 — S1) = 0 and z be
such that (A\1S2 — S1)z = 0. Then A1 and z are called a generalized eigenvalue and
eigenvector of A\S2 — S; respectively. With an abuse of notation, A; and z will be
called an eigenvalue and an eigenvector of S respectively. By the structure of Sz, the
pencil has at least m generalized eigenvalues at co. This follows form the fact that

the pencil S — AS; has at least m eigenvalues at zero. When R is invertible, 2.3-1
is equivalent to:

ST = ( ) (2.3 —2)

The two pencils have the same finite generalized eigenvalues, and the corresponding

I  BRB!
0 (A— BR-ITY)!

A—BR™ITt 0
TR-ITt—Q I

9

deflating subspaces are closely related (see [71] for details). The pencil S” is the one
usually considered in the literature [39]. Suppose that A\Sj — ST has no eigenvalues
on 8D. Then, since the pencil is symplectic, it must have n generalized eigenvalues

on D [56]. Not surprisingly, a similar property holds for S. To see this, compare the
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functions det(S1 — AS2) and det(uS1 — S2):

- ~

pA—1 0 uB pA—-1 0 B
det | —p@Q pl—A' —pT | = det|| —uQ pl—A" =T ||p"
puT? Bt LR pT? Bt R
' ' (2.3-3)
A-X 0o B |) ([at—xr - 7T |)
det|| —Q T-xat —T || = det 0 I-)XA AB
T? AB' R | \l B! -t R 1)
([r-24 o B
= det -Q A'-) T
\[ -T" B 1y
([ir-4a o0 )
= det|| —Q A—x T ||\
\[ " B R])
([xa—1 o B ]
= det -AQ M- A' -T |]|(2.34)
\| 7 B R

From 2.3-3, S has m infinite generalized eigenvalues. From 2.3-4, S has 2n additional
generalized eigenvalues and comparing 2.3-3 and 2.3-4, A is a generalized eigenvalue
of S if and only if = A7! is also a generalized eigenvalue, with the convention that
oo is the reciprocal of 0. In particular, if S has no eigenvalues on 9D then it has n
eigenvalues on D.

Consider the n-dimensional deflating subspace X' corresponding to these gener-

alized eigenvalues. Finding a basis for this subspace and partitioning it conformally
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with the partition in S,
X1
X=Im| X, ' (2.3 -15)
X3
where X;, X2 and Xj are real matrices of appropriate dimensions. If X; is nonsin-

gular, or equivalently, if the two subspaces

00
X, Im|[71 0 (2.3 —6)
0 I

are complementary, set X = XoX;! and F = X3 X7, It is easy to see [25] that
X and F' are uniquely determined by S. Therefore, define the function Ric by
(X, F) = Ric(S). The domain of Ric, denoted dom(Ric) will consist of pairs S, such
that the pencil has no generalized eigenvalues on D! and the subspaces in 2.3-6 are
complementary. Before proceeding, note (following [51]) that a state feedback does
not affect the solvability of the problem. To be specific, recall that two pencils S
and S; are called strictly equivalent (SE) if Dy SDg = S1, with Dy, Dpg constant

square non singular matrices. In particular, SE pencils share the same eigenvalues.

I o o I 00
Let Dy ={ 0o 1 Kkt |,Dr= o I o|.Then Sin 2.3-1is SE with the pencil:
0o 0 I -K I o
A—-BK 0 B I 0 0
S = K'T'"+TK-Q—-K'RK I —(T—-K'R)|, |0 (A-BK)! 0
Tt — RK 0 R 0 —Bt 0

(2.3-7)

Lemma 2.2 Suppose that S € dom(Ric) and (X, F) = Ric(S). Then § € dom(Ric)

A

and (X, F 4+ KB) = Ric(S).

'In particular this implies that the pencil is regular
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The following lemma generalizes Lemma 2.1 in [39)].
Lemma 2.3 Suppose that S € dom(Ric) and (X, F) = Ric(S). Then.
a) X =X!
b) (X, F) satisfies the equations
X =A'XA-FYB'XB+R)F+Q
(B XA+ TY + (B'XB+ R)F = 0.
¢) The matriz A+ BF is stable

Proof: Since S € dom(Ric), there exist [X} X} X!]' € R™ ™" with full column

rank, and a matrix M; with p(M;) < 1, such that

A 0 B X I 0 0||X
—-Q I -T||Xp|=]0 A" 0| X2 | M. (2.3 -8)
Tt 0 R X3 0 —B' 0 || X3

The proof of part a follows along the lines of [39]. From 2.3-8

AX1+ BX3 = XM,
QX1+ X2 —TX3 = A'Xo M,
TtXl + RX3 = —BtXZMz

Therefore:
XiXo - XiX, = XiTX; - XIT'X: 4+ X1A'XoM, — MIXEAX,
= XiB'XoM, — MIX:BX;+ XIA' XM, — MLXEAX,
= (XIA'+ XiBYXoM, — MLXY(AX: + BX;)
= M (X{X2 — X} X1)My;
this is a Lyapunov equation with M, stable, and hence X% X> = X! X;, which implies
part a. Now 2.3-8 and the definitions of X and F', immediately imply parts b and c.
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O

Lemma 2.4 Assume that A is stable. Then S has no eigenvalues on D if and only
if R—THA—A)"1B 4+ ABY(I — AA)™IT — ABY(I — AAY)7'Q(A — A\I)™1B is non
singular for each X\ such that |\ = 1.

Proof: The stability of A implies that both A — AJ and I — AA? are invertible for

|A| = 1. The proof follows from row operations on S1 — ASs.

O

Lemma 2.5 Suppose that R = D'D, Q = C'C, T = C!D and assume that G =
(—2—-*—%) has no zeros on the unit circle and the pair (A, B) is stabilizable. Then S

has no eigenvalues on 0D.

Proof: assume first that A is stable. Then, from the previous lemma, S has no
eigenvalues on 9D if and only if [D* + AB}(I — AAY)~1C?[D + C(A\ — A)™1B] is non
singular for A € 0D. But this is equivalent to G not having zeros on 9D. If A is
not stable, take K such that Ay = A — BK is stable (the stabilizability condition
guarantees that at least one such K exists). The resulting pencil has @ = C4Cxk
and T = C% D, with Cx = C — DK. Since zeros are invariant with respect to state

feedback, the proof is completed.

]

Lemma 2.6 Suppose that R = D'D with D full column rank, Q = C'C and T =
C'D and assume that G = <—-§—}%) has no zeros on the unit circle and the pair
(A, B) is stabilizable. Then S € dom(Ric) and (X, F) satisfies (B'XA + T?) +
(B'XB+R)F =0 and X = (A+BF)'X(A+ BF)+(C+DF)Y(C+ DF). Moreover,
if (X, F) = Ric(S), then X > 0.
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Proof: Let now X7, X3, X3 be such that

A 0 B X1 I 0 O X1
—C'C I =C'D||Xy|=]0 A" 0|]| Xo |M; (2.3-19)
DiC 0o D'D X3 0 —B* 0 X3

where M, is such that p(M;) < 1, and [X} X} X%’ is full column rank. From 2.3-9,

AX) +BX3 = XiM, (2.3-10)
—CICX1+ X, —C'DX3 = A'XoM, (2.3-11)
D'CX,+ D'DX3 = —B'XoM,. (2.3-12)

Multiplying 2.3-11 on the left by X;:
XiX, = XIC'C X1 4+ XIC'DX; + XA X M.
Replacing 2.3-12 in 2.3-10 multiplied on the left by MIXZ:
MIXIAX, — X1C'DX3 — XiD'DX3 = MLXiX1 M,.
The last two equations now give
XiXy = (CX1 4+ DX3)'(CX1 4+ DX3) + MLX:X1 M,. (2.3 —13)

This is a discrete Lyapunov equation with M; stable, and hence X! X; is symmetric
and positive semi-definite. Let z be such that X;z = 0. Then 2.3-13 implies that
DXs3z = 0. Since D is full column rank, this implies that X3z = 0. Together with
2.3-10, this implies that X3 M;z = 0, and hence the kernel of X; is M -invariant.
Therefore w.l.o.g. take z such that Myz = Az, and |A| < 1. From 2.3-11 and 2.3-12,
this implies that X5z = AA*z and AB'X2z = 0. By the full column rank assumption
of [X] X1 X1]!, X2z # 0, and hence A # 0 and 1/) is an eigenvalue of A. Since
(A, B) is stabilizable, this implies that z = 0 and hence X} is invertible. Multiplying
2.3-13 on the left by Xl_t, on the right by Xl"l and using 2.3-10,

X =(C+DF)(C+ DF)+ (A+ BF)'X(A + BF) (2.3 — 14)
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and hence X is positive semi-definite.
O
The full-rank condition on D is sufficient but it is not necessary and S may belong

to dom(Ric) even if this condition fails to hold.

2.4 Youla Parametrization Revisited

Consider the problem shown in Fig. 1. The plant P(z) is assumed to be of dimension

n, linear and time invariant. The input-output relations are:

;

The closed-loop system resulting from the control law u = Ky is z = Fi(P,K) =

Py Py
Py Py

w]. (24— 1)

u

P11+ PioK(I—Pp K)~ 1 Pyy. Tt is well known [25] that various robust control problems
may be formulated as the minimization of ||F;(P, K)||co with K varying over the set

K of all internally stabilizing controllers. Suppose that P(z) has the state-space

realization:
A ' By B
P(z)=| Cy| D11 D1 (24-2)
C2 | D21 Do

and assume that (A, B2) is stabilizable and (C2, A) is detectable. Then for each
K € K there exist a Q € Hy such that

Fi(P,K) = Ti1 — T12QT2s, (2.4 —3)

T T
7o 11 Ti2
To1r To2

where
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A+ ByF  —BF B, B:R;!
0 A+ HCy |Bi1+ HD 0
_ 2 | B1 21 , (2.4.4)
Ci+ DypF  —DypoF Dy D12 Ry?
0 R;102 Rc_lDzl 0

with F' and H chosen so that A + By F and A + HCj are stable. An important
observation is that under some mild assumptions 732 and 7%; may be chosen to

be inner and co-inner respectively, and that there exist T3 and T5;; such that
Tr2

J and [T2; T»11] are unitary. This fact was derived for continuous time

Ti21
systems in [19] and for discrete time in [36] under the additional assumption that

D12 and D21 were full column and row rank respectively. Although these conditions
are sensible for continuous-time (see the discussion in [29]), they are not needed for
discrete-time, as the following example shows. Consider the transfer function P(z)
given by:

Py Pry
Py1 Py

P(z) = (24 -5)

1 z+.5 z4+.5
z—.9 1 1

Suppose that one wants to find a controller K (z) such that F)(P, K) = Pj1+ P2 K(I—
Py K)~1 Py is internally stable and the infinity norm Fj(P, K) is as small as possible.

Given that Py is stable, all internally stabilizing controllers can be parametrized

as K(Q) = Q/(1 + P»@) = =39 where @ is any stable transfer function.

(z—5)+Q’
Therefore, after some algebra, Fi(P, K(Q)) = L 2 242 5 pony 5 2~1(). Here
Q= —i—f—%z “+(@), and the mapping @ — Q is stable with stable inverse. Therefore
. _ 245 A 245 A
K st;gliil.izing Ilf}(P’ K)“oo - Q Ll;lfble “Z -.5 —f QHOO - Q tltlf ble ”zz -.5 B Q” -
1+ .52
= 1nf ~
Q stable ”2(1 ) ”oo,

where Q(z)"‘ = Q(1/2)?, since taking the conjugate preserves the Ho, norm. By

5z

ﬁ, the optimization problem has been transformed into the one-

calling G =
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block problem with poles at zero: infy ., 4, 1G = Q™| o-

The full rank condition is not only unnecessary but can also be too restrictive
for practical applications. Suppose, for instance, that P(z) comes from sampling
a continuous time system. In this case, the disturbances must be low-pass filtered
before being sampled in order to prevent aliasing, and hence the corresponding feed-
through term must be necessarily zero. In fact, the system could not in general be
internally stabilized without this assumption (see [3]). Therefore, the condition will
not be assumed in what follows.

Let T72 have a DNF:

—2Y 4+ YAr YBR;! 0
Tr2 = i 2 , (2.4 -6)
Cr Dlle:'l i
where Ap = A+ BoF, Cr = Cy1 + D12F, and consider the pencil
A 0 B, I 0 0
S = -—C{Cl I -—CfDlz 10 A 0 . (24-17)

Di,Cy 0 Di,Dy 0 —B' 0
Assume that S € dom(Ric) and let (Y, F') = Ric(S). Then, from Lemma 2.6,
BlYAp + D!LCR=0
Y = AYY Ap + CLCF.

Let Ry, = (D%,D1z + BSY B2)Y/2 and Ry; = (D%, Dip1 + B1YB1)Y2, where

. D
with 1;“ full column rank and as many columns as the number of rows of Cp
1
minus the number of columns of B.

D151, B solve the system:

D!, BY
ch AL

Dyoy
By
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Lemma 2.7 Let T1y be as in 2.4-4, and assume that S in 2.4-7 belongs to dom(Ric).
Consider the system [T12 T12.1] with a DNF:

—2Y+YAr YB,R;! YB:R;!
[ Tioyr The ] = g * b_"; ’ fl . (2.4 - 8)
Cr Doy Ry, DRy

Then [T T121] is unitary.

Proof: With the previous definitions and after some algebra, it is possible to show

that [T12 T121]~[T12 T121] = I. Then the proof follows by construction, because the

system is square.

O
Remark: the above realization is well defined even if Ry or Ry, are singular.
A similar result holds for T5;. Let
At 0 Ct I 0 0
Sl = —BIB:{ I —Bngl 9 0 A 0 . (2-4 - 9)
DBt 0 Dy D 0 Cy 0

If S1 € dom(Ric), let (X, H) = Ric(S1), Ag = A+ HCy, By = By + HD; and Let
Re = (D21 D%, + CzXC’§)l/2. Moreover, let C'y, Dy, solve the system:

XAt XC}

=[o o], (2.4 —10)
B Dj

[ C1 Doy ]

with [ Ci. Dyl ] full row rank and as many rows as the number of columns of B;

minus the number of rows of C2, and R,y = (Dj;3 D%y | + C’_LXCj_)l/z.

Lemma 2.8 Let
To11
T2

where Ay = A+ HC, By = By + HDy;. Then 2.4-11 is unitary.

—2X +AgX By 0 0
= 7CiX  RDy, -1 0 (2.4 — 11)
R71C:X R7'Dyy 0 —I
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Since unitary transfer functions do not change the Ho norm, the following well

known result holds:

o To11 00
IT11 — T12QT21)l0 = ||[[Th2L T12]"Ta -
T 0 Q
(e e]
0 0
= ||[R— , (2.4-12)
0 @ -
where _ ~
~ . ~ Ty11
R = [lel T12] Tll (24 - ].3)
| T
Procceding as in [19] it is possible to get the following realization for G = R™:
G - Gu G2
| Go1 Gae
(_:X+AgX By —AgXFt 0 0

= c—J}C.LX R:iD21l —-Rc—_ﬂC_LXFt 0 -—-I| X
\ R:C:X  R;'Dn —R7'CoXF' -1 0

( —2Y +YAr  YBy R;! YB:R;' 0 0
DilCF.f-BIYAF D, Dﬁ —-10 s

\ 0 0 R, 0-—I

with Dy = (DY, D12J_+BfYBz_L)Rb__E> Dg = (D} D1z +B{YB2)RI,-1. Moreover, due
to their structure, it is possible to reduce each one of the terms above to state-space

form [67] and hence G always has a representation of the form:
A ! By B

G = | C1|Du Dr (2.4-14)
Cy | Da1 Do

On the other hand, R is not guaranteed to have a SSF, since G may have some poles

at zero.
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From 2.4-12, the Hoo-Optimal Control Problem may be reformulated as the ap-
proximation problem:

G G2

Ga1 Ga2
RHoo that achieve

Given G = € RHoeo, and a number v, find all Q €

Giu1 G2
Ga1 G2z

o]
- <. (2.4 —15)
0 Q% 1|,

Yo 1s said to be optimal if it is the infimum number for which 2.4-15 has

a feasible solution.

When all the G;;’s are non zero, 2.4-15 is called a “Four Block” problem [19]. When‘
G11, G12 and Go; are all simultaneously zero, the problem is called “One Block.”
It is well known that, while the latter has an easily computable solution in terms
of the data, no simple closed-form solution exists to the former. However, given a
constant v it is possible to give necessary and sufficient conditions for the existence

of Q € RHo that makes the norm in 2.4-12 less than or equal to 7.

2.5 Further Preliminary Results
2.5.1 Contractive Expansions

Let T € R"*™, and let |T'|| = o(T"). The matrix is said to be a contraction (strict
contraction) if ||7'|| < 1(< 1). If T is a contraction (strict contraction) then it

is convenient to define the positive semi-definite (positive definite) matrix Ar =

(I —T*T)'/2.
Theorem 2.2 Let T be the matriz

A B
T = (25 —1)
C E
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where A, B and C are matrices of appropriate dimension. Then T is a contraction

if and only if [A B] and are contractions and E is a matriz of the form

E=-Z21A'"Zy + ApiUAg, (2.5 —2)

with U an arbitrary contraction and Zy and Z, are contractions that satisfy

€ = Z184 (2.5 - 3)
B = Az

Suppose that instead of being E a real matrix, it is a matrix transfer function.

Then Theorem 2.2 can be extended as follows.

Corollary 2.2 Let T be the matriz

A B
C E

T = (2.5 — 4)

where A, B and C are matrices of appropriate dimension and E is a transfer matriz.
Then T is a stable contraction (i.e., T € Hoo and ||T|lo < 1) if and only if [A B]

and are contractions and E is a transfer matriz of the form 2.5-2 with U a

C

stable contraction.

Corollary 2.3 With the notation of the theorem, the following equalities hold:
t

7_ A [ At Ct ] _ AAt 0 AAt 0
C - - i '—ZlAt Azi —ZlAt Azf
- - 4
At T A 0 A 0
I— [ A B _ A A
Bt | 4 ] —AZy Ag, —AZy, Ag,

The theorem is the main result in [17]. The more general result given by the first
corollary is taken from [24]. The second corollary is also from [24], and follows after

some minor calculations.
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2.5.2 All-pass Embedding

Theorem 2.3 Let G(z) be an pzm transfer function with a minimal state-space

A|B
C|D

and such that max,e[o ) 7(G(e/)) < 1. Then there exist

realization

m n
D, = ( D Dy, ) n
D21 Do m
B, = (B By)
)
Cs
A I B B
such that G4 = C | D Dy | isan all-pass function, i.e.,
Cz | D21 D2

GyGe=GoGy =1 (2.5 — 5)

Proof: This result is the discrete time version of theorem 5.2 in [28], and can be

proved from the latter by means of the bilinear transformation.

2.5.3 Computation of a Spectral Factor

In this section, the state-space formulae for a spectral factorization problem are
reviewed. A more complete treatment and further references (although for the con-
tinuous time case) may be found in [25]. The first lemma is essentially taken from

[28)].



33

A|B
Lemma 2.9 Let G = ( ) € RHoo with p rows and m columns. Then:
C\|D

a) Assume p < m and G controllable. Then GG~ = I if and only if

DB+ CXA* = 0
DDt +CXCt = 1
BB+ AXA' = X.

In this case, G is said to be “co-inner.”

b) Assume p > m and G observable. Then G~G = I if and only if

D'C+B'YA = 0

D'D+B'YB = I

C'C+AYA = Y.
In this case, G is said to be “inner.”

Proof: See [36] or [63] for a more general proof.

O

Note that X and Y are the controllability and observability grammians of G. Next

assume that ||G|loc < 1 and p > m. From Lemma 2.3, there exist By and D; such

AlB By | . . . .
that [G G1] = is co-inner, i.e., G is such that G1Gy = I — GG™.

C|D D

The spectral factorization problem consists of computing G; such that G is outer

(i.e., stable with a stable inverse). Applying the previous lemma,
DB'+ DBl +CXA* = 0

DD!+ DD+ CXCt = I (2.5 - 6)
BB!+4 BiB! + AXA! = X.
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In particular, D1 D} = I — DD' — CXC?, and the fact that |G|l < 1 implies that
DD} > 0. Then, from 2.5-6,

X = AXA*+(AXC'+ BDY)(I-DD'-CXC")™Y(CXA'+DB*)+BB'. (25-71)

Comparing 2.5-6 and 2.5-7 with Lemmas 2.3 and 2.6, (X,—D7‘B!) = Ric(Sx),

where
At 0 Ct I 0 0
Sx = —-BBt I —BD! , 10 A O . (2.5 —8)
DBt 0 DD'-1 0 —-C 0

By Lemma 2.3, A — BlDi‘lC is stable as required.

A| B
G
A similar result holds if p < m. Let } =| ¢c|D |. Then Cq and D,
G1

verify:
D'C+DiC;+B'YA = 0
D'D+ DDy +B'YB = I (2.5 —-9)
C'C+CiCi+AYA =Y,

and therefore (Y, —D71C1) = Ric(Sy), where

A 0 B I 0 0
Sy=||-ctc 1 -DC |,|0 A* 0]]|, (2.5 - 10)
C'D 0 D'D-1 0 —B* 0

and A — BD7'Cy is stable.

2.6 The One-Block Problem: Computation of a Solution

The one-block problem arises when, in 2.4-15, G171, G12 and G2; are identically zero
and G2 = G. Although the literature on the subject is abundant (see [25] and the

references therein), the discrete-time case has received considerable less attention
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than the continuous-time one. Among the pure discrete-time derivations, Ball and
Ran [5] parametrized all suboptimal solutions using the Ball-Helton interpolation
theory under the additional assumption that the original system had no poles at zero.
Moreover, the generator of all solutions falls short from having a simple dependence
on the data of the problem, as compared with the continuous time counterpart. The
exclusion of poles at zero also appeared in [36] and implicitly in [32].

In this section, a solution to the one-block problem that includes the case of
having poles at the origin is worked out following the continuous time procedure in
[45]. This route was also attempted in [32], but the results there are incomplete;
in particular, poles at zero are implicitly excluded since their starting system is
anti-stable and still has a state-space representation. Both [22] and [33] were also
able to lift the additional assumption about the location of the poles, by using
operator theoretic formulas (namely, the former used the Schur representation for
the Commutant Lifting Theorem). The approach taken here is more convenient for
studying the constrained Ho, problem and, in contrast with [22], also holds for the
optimal case. Also, the result highlights the relationship between the final formulas
obtained through algebraic manipulations, and the one-step dilation procedure [1]
which is central to the operator theory of the problem.

Consider the system G(z) with a state-space representation:

G(z) = 415 (2.6 — 1)
C|D

and assume that p(A) < 1. The problem considered in this section is the following:
given v find a Q(z) € RHyo such that ||G(2) — @~ (2)|loc < 7.

This is called the suboptimal approximation problem. From Nehari’s theorem, such
a @ exists if and only if p = ||G(2)||g < v where || - ||z denotes the Hankel norm.

Also the optimal approximation problem, i.e., finding a Q(2) € RHeo such that
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IG(2) — Q(2)~|lo = p, is of interest, but this problem may be addressed by simply
taking the limit 4 | p on the suboptimal solution.

To motivate the solution, consider the weighted H2 optimization problem:

olin llG-@ W2, (2.6 —2)

where G € RHoo and W € RHY such that W~1 € RHy, are given. In view of
the inner product structure of L3, 2.6-2 has an optimal solution given by Q?,pt =
[GW]4+W ™1, where [-]+ denotes the projection on Hg. The central idea in the
Wiener-Hopf approach to Heo control [64] followed here, is that it is possible to
choose W such that minger#, ||[G — @~IW|l2 = mingerny, |G — @7 |lo. With
this motivation, consider a W(z) € RHZ with W(z)™! € RHZ to be specified
latter. Then

GW = [GW]-+ [GW]4
GW = ([GW]-+ D1)+ ([GW]+ — Dy) (2.6-3)
with D7 a constant matrix also to be specified latter. Define
Vo = [GW]-+ Dy
Vo = [GW]y — Dy,
and let E=G—Q~. Then G = E+ Q~, and
E = V,w! (2.6-4)
Q~ = VW (2.6-5)

The free variables are now the system W(z) and D;. Note that W(z) is anti-stable
and hence need not have a state-space representation (i.e., it can have a polynomial

term). Therefore assume that it has the following DNF:

zAL -1 CY 0
W(Z)=( 2B}, I —I)



37

where Ay, Bw,Cyw and I are the corresponding A, B, C and D matrices of a state-

space representation of W(z)~. Now impose the condition that [28]
E(2)~E(z) = 4*I. (2.6 — 6)
From 2.6-4 this holds if and only if
Vi(2)"Vs(2) = ¥*W(2) "W (2).

In the following construction, this condition is shown to be verified if W(z) and D,

are chosen appropriately. First V;(z) and V,(z) are computed as follows.

(_21+A :2BB, B 0

GW = 0 zAL—1 CL 0

\ ¢ DB, D -I

(_2I+A 2BBL+:zAX1AL, — AX; B+ AXiCL 0
= 0 zAl — 1 Cl, 0
| ¢ «ADBL+CXiAL)-CXi D+0XiCl -1

—zI+ A z(BBf,, + AXlA:U - Xl) B+ AX]C,tU 0

= 0 zAL, — 1 Cl, 0
\ C 2(DB}, + CX;AY) D+ CX,CL -1
Taking X3 so that
X1 = AX AL, + BB}, (2.6 —17)

and introducing Dj,

o [ TFITA BHAXiCL 0 .\ ZAL — T ct 0 |
C  E+CXCL -I 2(DBY, + CX1AY) Dy —I
(2.6 — 8)

where E; = D — D;. By comparison with 2.6-3, the first and second terms in 2.6-8

give a DNF of V; and V,, respectively. Using similar manipulations, the following
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DNF representation may be computed for W~W and V;~V;:

(2.6-9)

e — | TH AR But AuXaCl 0
Cu 0 1

~

( —2I+ Aw By + AuX2Cl 0

(I 4 CuwX2Cl),  (2.6-10)
Cuw 0 I

where X3 satisfies the Lyapunov equation

X; = ApX2AL, + B, B!, (2.6 —11)
Similarly
—zI+ A B+ AX,Cy O
VoV = o (2.6-12)
Elct + CpwX1 X3 + BX3A 0 -1
—zI+ A B+ AXiCy O
E]Ct + CwX1 X3+ BX3A 0 -1

+(EL + CuX1CY)(EL + CuX1CY) + (B + CuX1AY) (B + Cu X1 AY)Y,
where X3 satisfies the Lyapunov equation
X3 = A'X3A + C'C. (2.6 — 13)

That is, X3 =Y, where Y denotes the observability grammian of the realization for

G(z). Condition 2.6-6 is satisfied if

A=A, (2.6 — 14)
B+ C X1 A' = BL, 4 Cyp X A (2.6 — 15)
v2Cyp = EXC + CypX1L, + B'L,A (2.6 — 16)

(B} CopX1CY)(EE4CopX1CH (B +C 0w X1 A Ly (B 4Cyy X1 A = 42 (I4+Cyy X2 CL).
(2.6 —17)
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Note that if B = By, then X; = X3 = X, where X denotes the controllability

grammian for the realization of G(z), and 2.6-15 holds. Moreover, from 2.6-16
Cw = (EIC 4+ B'YA)(*I - XY)7}, (2.6 — 18)

where the inverse exists if ¥ > ||T'g|| = p(XY). Equation 2.6-17 is the main difference
between the continuous and the discrete time derivation of the suboptimal solution.
In the continuous time case one gets D{chc = ~2] and hence D;. may be chosen
as YU, where U, is any unitary matrix of appropriate dimension (see [45]). In the
discrete time case it is not obvious that a Dj that solves 2.6-17 exists at all, and some
lengthy matrix manipulation are needed to clarify that point. The final outcome is
quite interesting, as it relates the pure state-space calculations with some deep results
in interpolation theory.

Replacing 2.6-18 in 2.6-17 and after some calculations:

EY(I4+CNXCYE; + BYANXC'E; + EiCNXA'YYB =
=~*] - B'YB - B'YANXA'Y B,
where N = (921 — XY)71. Let

M, = (I+CNXCY):?
M} = M7'CNXA'YB (2.6 —19)
M; = ~*(I+4 B'YNB)™.

Then 2.6-16,2.6-17 hold if and only if
(EXM;y + Mo)(EIMy + M)t = Ms. (2.6 — 20)

Since M; and M3 are positive definite, it is now clear that a solution F; to 2.6-20

(and hence to 2.6-17) exists, and that any solution is given by

Ey = M{'[yU(I + B'YNB)™% — MY, (2.6 — 21)
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where U is an arbitrary unitary matrix of appropriate dimension.

Summarizing,

( 2At— 1 NYC'E,+ A'YB) 0

W) = | (B ) (2.6-22)
| 2B 1 1

e ( —2I+A B+ ANX(C'Ey + A'YB) 0

z) =

) \ C  Ei+CNX(C'Ei+A'YB) —I
( :A'—1  NYC'D,+A'YB) 0

Vu(z) = .

2(DB! + CX AY) Dy 1
From 2.6-22

o[- CLBY) —T €L 0
B = _zB} 1 -1/’

and since Q(z)~ = V,(2)W(2)71,
26y — AAT—CLBY -1 C. 0
| 2cxat+EBY D -1

Note that W' is anti-stable if and only if Q™ is anti-stable, and that Q has the
SSF:

A—-BC, | AXCt+ BE?
Q(Z)=( | axc 1)-

Co | DI
Let
Ag =A—-BCy,=A—-B(D:C +B'YA)N (2.6 — 23)
and
Bg = AXC'+ BE!. (2.6 — 24)

Stability of @(z) is established in the following lemma.

Lemma 2.10 For any E1 computed as a solution to 2.6-20, the matriz Ag is asymp-
totically stable.
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Proof: patient computations show that the following Lyapunov equation holds:
N7'X = AQNT'X A} + BoBg (2.6 — 25)

where N™1X is symmetric and positive definite. Therefore, from standard stability
theory, all the eigenvalues of Ag are inside the closed unit disk. Moreover, if Ag
has an eigenvalue on the unit circle, it must be an uncontrollable mode of the pair
(Ag,Bg). Now suppose that e, w € [0,27], is such an eigenvalue. Then by the
PBH test there exists a vector z such that z*Ag = e/“zt and z*Bg = 0. But
Ag = A-BEI!CN - BB'YAN

= A-BgCN + (AXY — XYA)N

= (y?A— AXY 4+ AXY — XYA)N — BoCN

= N7'AN - BgCN
and hence 2! Bg = 0 implies 2’ N"1AN = e/“zt, which contradicts p(A) < 1. There-
fore p(Ag) < 1.

The following result has been established.

Theorem 2.4 Let G(z) € RHe have the minimal state-space representation 2.6-1,
and assume that p = ||G(2)||g < 7. Let Q(z) € RHe have a SSF:

Q= (AQ BQ) (2.6 — 26)
Cq | Do
with
Ag = A-BCq
Bg = AXC'+ BE!}
Co = (EiC+ B'YA)N
Dg = D'-E},
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where N = (721 — XY)™1, and for any unitary matriz U,
Ei = —(I+CNXCH 'CNXAYYB+~(I+CNXCH™2U(I + B'YNB)™1/2,
Then [|G(2) — Q(2)~lloo = 7 and (G(2) — Q(2)™)~(G(2) — Q(2)™) = +*1.

O

The following corollary allows the derivation of an optimal solution, i.e., the case
v =p.

Corollary 2.4 In Theorem 2.4, Cg can be taken as the solution of

Co(¥*I - XY) = EiC + B'Y A (2.6 — 27)
and
Ei1 = —Z1XY2 A2 Zy 4 y(I — 21 ZD)\PW (I - ZE22) 2, (2.6 — 28)
where Z1 and Zy satisfy:
CXV? = Zy(y*1 - X2 Aty AX Y21/ (2.6-29)
YY?B = (' I-YYPAXAWYR) 2z, (2.6-30)

and are such that 5(Z1) <1, 5(Z2) < 1.

Proof: note that 4 > p implies that, for instance, X1/2A'Y AX'/2 < 42]. Therefore

one can compute Z; and Z; from 2.6-29, 2.6-30 and replace in 2.6-28. Moreover,

tYz = 2AY Az + zC*'Cx < 4*I implies 5(Z1) < 1 and similarly 5(2Z5).

a

Corollary 2.5 The expressions for Cqg and Ey in Corollary 2.4 remain wvalid for
the case p = . Indeed, 2.6-26 provides a non-minimal realization for an optimal
solution, and this realization has at least as many non-controllable modes as the

multiplicity of p as an eigenvalue of XY
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Proof: The proof of this corollary is based on the contractive completion of a matrix.

Consider the matrix:

(2.6 — 31)

Y1/2 g4 x1/2
cx1/?
so that (D (E;)) = p. Moreover all E; that achieve this are of the form

Then since o([YY/2AX'/2 Y12B]) =7 (

) = p, E; may be chosen

B = —ZiXVPAYY2 2y + p(I - 21 242U - Z32,),

where Z; and Z, are contractions that satisfy 2.6-29, 2.6-30 for v = p. To prove that
Cq satisfying 2.6-27 exists, let v be a unitary vector such that X2y x1/2, = P,

and compute

X112y x1/2 X2(AYYB + CtEy)

D(E1)'D(Ey) =
(B'YA+ E!C)XY/?  B'YB+ ElE;
Since
. . v X2y x1/2, p*v
D(E1)"D(Ey) = = :
0 (BYYA+ E1C) X2y (BYY A+ EtC)X'/%y

(BYY A+ EIC)XY2y = 0. But X12Y X2y = p?y = (p*I — XY)(X/21) = 0, and
therefore Ker(p?I — XY) C Ker(B'Y A + EIC). By elementary linear algebra, Cg
solving 2.6-27 exists. To complete the proof, note that from 2.6-25 the controllability
grammian of Q~(z) is (y?1 — XY)X, so that the null space of the grammian has the

same dimension as the multiplicity of the largest eigenvalue of XY
O

Remark: Corollary 2.5 shows that if there exist a F; such that the norm of the

matrix in 2.6-31 remains less than or equal to «, then there exist a solution. Given
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that Dg = D* — D}, and D is the first term in the Taylor’s expansion of @Q, this
can be rephrased as follows. Let Q be expanded as Q(z) = 12, Qiz~" Then if it is
possible to compute the first o, then it is possible to compute the remainder Q;’s
and hence a stable @) that solves the suboptimal approximation problem. This was
shown in [63] to be equivalent to the classical one-step extension method introduced
by Adamjan, Arov and Krein [1,60].

The last result in the section is an alternative realization for (), that follows from

previous manipulations.

Corollary 2.6 Q(z) has the alternative state-space representation:

(2.6 — 32)

o0 ( A— N(AXC! + BE!)C | N(AXC! + BE
z) =

EiC+BYA | D!
O

Realization 2.6-32 may again be modified to hold also for the optimal case.

2.7 The One-Block Problem: Parametrization of All
Solutions

The approach taken in [28] to parametrize all solutions for the one-block problem
is to construct an augmented all-pass error system, and then connect a contraction
around the augmented system to generate all solutions. A similar approach may be
pursued using the formulas derived in the previous section. First some results from

[28] are briefly reviewed.

2.7.1 Linear Fractional Transformations

Consider the interconnection structure of Fig. 1. The transfer function between w
and z is called a linear fractional transformation (LFT) of K with coefficient matriz
G denoted

FI(G,K) = G11 + G12K(I — G2 K) ™' Gay, (2.7 —1)
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where

G G
G = Ho , G111 p1 Xxm1, Goz : p2 X ma.
Ga1 G2

If K is connected around the upper loop, the resulting transfer function is denoted
Fu(G,K) = Gaz + Go1 K(I — G11 K)™'G12. An important property of LFT’s is that
any interconnection of LFT’s is again an LFT. For example, given G; and G3, they

can be interconnected as in Fig. 2.2, and then
FilGr, Fi(G2, K)] = Fi(Fi(Gr, G2), K).

To make the notation Fj(Gi,G2) unambiguous, the sizes of u; and y; should be
specified together with G and G, but this additional information will always be

apparent from the context. Let

Al B B .
Dy1 Dy
Gi=| C1| D Di Ge=| .
Doy 0
Cy| Dy O

Then the following formula is not hard to derive:

A+ ByD11C, I Bi+ B;D11Dyy ByDyy
Fi(G1,G2) = | C1+4 D12D11Cs | D11 + D12D11Day DiaDyy (2.7-2)
D12C, D21 Dy 0

This formula is a clearly a special case of the generic composition of LFT’s.
The following results are the discrete-time versions of Theorem 2.3, Corollary 2.6

and Lemma 2.7 in [34] (see also [28]).

Theorem 2.5 Let det(1—PyK)(00) # 0 and assume that rank(Py;(e?%)) = po Vw €
[0, 7] with P~P = I. Then | Fi(P,K)||co <1 if and only if | K||oo < 1.
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v . ___Z,
P
u y
K |

Figure 2.1: Linear Fractional Interconnection

G1

G2

w1 " 2

Figure 2.2: Composition of LFT’s
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Lemma 2.11 Let P have the state-space representation
A l By B
P=| Cy|Du D |
C2 | D21 Do

where rank D1y = ma, rank Doy = pa, Bs = BgD12, Co = D21Co0, and let K have
a minimal realization. Suppose that P has ezactly k poles outside the unit disk, that
p(A— BC1) <1, p(A—B1C2%) <1 and let K € RHo be such that || K Palloo < 1.
Then Fi(P, K) has ezactly k poles outside the unit disk.

O

Lemma 2.12 Let P and K be rational transfer function matrices, and let G =

G

Fi(P,K). Then if P and G are proper, det P(co) # 0, det(P+ [ . g () #£0 and

Pio and Py are square and invertible for almost all z, |z| = 1. Then K is proper

and K = Fu(P71,G).

Parametrization of all Suboptimal Solutions

Consider first the suboptimal case v > p. The first step in the construction is to

augment G(z) as:

G 0
G, = . (2.7 - 3)
0 0
. . A | B, .
A natural state-space representation for G4(z) is Gq(2) = , with Bg =
C. | D,
D o
[B 0], Cq = and D, = . Replacing in 2.6-19:
0 0
M 0
My =
0 I




My 0
My =
0 0
Mg O
M,s = .
0 ~%I

Unn Ui
Us1 Uz

)

Partitioning the corresponding arbitrary unitary matrix U, as U, = [
2.6-21 yields:

Ey1n —Dqo
—D31 —Da2

1
M7 (UM — M3) My Un
1
U1 M3 vUs2

For reasons to be clarified below, D12 and Dj; must be non-singular. Equivalently,
Ui and Us; must be invertible. In particular, if Uy = Uz = 0 and Uyp = Uy = 1,

then
Ein —Di2

—D31 —Day

—M7 ML yM{!
1 .
YM{ 0

From 2.6-26, the state-space representation for @) is:

Ag l Bg1  Bg2

Qa(2) = g:i Z:z =1 Co1 |Dgn1 Dgi2
) Cq2 | Dg21 D2
[ A- B(B'YA+ EL,C)N | (AXC! + BEL) —BDY,
= (EL,C + B'Y A)N Dt Dy, |.(2.7-4)
\ —-D{,CN Di, D},
The following properties of 2.7-4 are instrumental in proving the main result of the
section:
Ag— B1Dg1,Co2 = NAN™! (2.7 — 5)
and

Aq — Bg2Dgy,Car = 4; (2.7 —6)
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therefore both 12 and ()21 have a stable inverse. But then they have no zero on the

unit circle and in particular they are full rank on the unit circle.

Theorem 2.6 Given G(z) € RHy with minimal state-space realization 2.6-1 and a

number v > |Ta(2)||. Then all Q(z) € RHoo such that
1G(2) = Q(2) 7 flo < v (2.7-7)

are given by
Q(2) = Fi(Qa(2), ®(2)), 2(2) € RHwo, [|(2)]| < 1/7, (2.7-8)

with Qq(z) defined as in 2.7-4.

Proof: Assume without loss of generality that v = 1 (otherwise the problem can be
scaled so that this assumption holds). Let G(2)~ —Q(z) = Fi(Ga(2)~ = Qa(2), ®(2)).
Then, since (Go — Q7)(Gy — Qa) = I and, from 2.7-6, (G4 — Q)21 = Q37, has full
rank on the unit circle, then Theorem 2.5 implies that ||G(2)~ — Q(2)||eo < 1 if and
only if ||®(z)|lc < 1. Hence, any ®(z) in the conditions of the theorem will yield a
Q(z) that satisfies 2.7-7. To prove the converse, suppose that Q(z) € RHqo is such
that 2.7-7 holds. Consider the equation @ = Fj(Qq,®). The invertibility of D12 and
D33, and

D' - D}y Di, ) |

Qa(00) = (
D}, 0

0
imply both det (Qq(o0)) # 0 and det| Q,(c0) + o) # 0. Moreover, from
0 0

2.7-5 and 2.7-6, Qq12 and Qg21 are invertible for all z, [z] = 1. Therefore, the
hypothesis in Lemma 8 hold and there exists a proper ® such that F1(Q.(2), ®(2)) =
Q(z). From 2.7-6 Q21(z) has full rank on the unit circle and hence theorem 2.5 implies
that ||®(z)|| < 1. Finally Lemma 2.12 and 2.7-5, 2.7-6 imply that ®(z) has to be
stable, and the proof is completed.
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O
Corollary 2.7 Q, defined by 2.7-4 has the alternative realization:
AM | amnxc —yNB(I + B'YNB)~%
Qa = B'Y AM B'YAMNXC'+ D'  ~(I+ B'YNB)"%
~(I+CNXCH™3C | —y(I + CNXCH)~% 0
(2.7 -9)
with M = (I + NXC'C)™!.
O

The central solution

The central solution (i.e., the one obtained by setting ® to zero) has some interesting

properties which are easy to derive from its realization.

Theorem 2.7 Consider the central solution Q). with a state-space realization

AL+ NXC'C) | A+ NXCC)TINXC!
©\ B'YA(I+NXC'C)™' | BYA(I + NXC'C)-INXC'+ D' |
(2.7 — 10)
Then:
a) If A is invertible, then Q7 has a state-space realization
_ [ Ata+cienx)|ve
Qc = . (2.7 —11)
CNX | D

b) If the realization 2.7-10 for Q. has some poles at zero (i.e., Ag is singular),
then the poles are non controllable. Therefore Q7 always has a state-space

representation.
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c) Assume that (v*] — X A'Y A) is nonsingular (note that this is generically
true). Then realization 2.7-10 may be ezxpressed as
AT - XAYA)INTT | A(?T - XAy A)1XC!

Qc = ,
BY A(v21 — XA'Y A)~'N-1 | BYY A(yI — XA'Y A)-1XC?
(2.7-12)

that makes sense even for the case v = p.

Proof: the proof is straightforward.

Parametrization of all Optimal Solutions

The parametrization of all optimal solutions to the approximation problem may be

A

0
and Z, = [Z3 0], with Z; and Z; defined in corollary 2.5, and let W, be as above.

Then

obtained from the suboptimal case, using Corollaries 2.4 and 2.5. Let Z;, =

i
Eyy -D
Ea _ 11 12
| —D21 —Da
[ _Z2, X124ty V27, ¢
= +
i 0 0
I-2ZZH)Y2 o | |0 I || IT=-22)2 0
.
0 I1|I o0 0 0
and therefore
En = —Z1XV2ptyl2g,

~Dyy = (I - z12})'/?
—Dy1 = (I - Z}Z,)"/?
—D22 = 0.
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Theorem 2.8 (Parametrization of all Solutions)
Let G(z) € RHoo with minimal state-space realization 2.6-1 be such that ||G(z)||g =
p, and let v > p. Let Cq1, Cg2 solve the equations
Coi(¥*I - XY) = ELC+B'YA
Co(v* 1 - XY) = (I-z:12H)Y2C,
where F11 = ——ZlX%AtY%Zz and Z1, Zy are contractions that satisfy:
CXY? = Zy(2 — X2 Aty AX1/2)1/2
YI2B = (21— YV2AXAYV2)\ 27,

Finally, let
A-BCqi | AXC!+ BEl, B(I - Z17,)'/?
Qa = Cor D! — EY —(I—2Z42,)? | € RHoo.  (2.7—13)
Co2 —(I = 2,2})1/? 0
Then ||G(2) — Q(2)~ |loo < if and only if Q(2) = Fi(Qa(2), B(2)) for some ¥(z) €
RHoo, [[®(2)]loo < -

Theorem 2.9 (Alternative Parametrization)
Let G(z) € RHoo with minimal state-space realization 2.6-1 be such that ||G(2)||g =
p, and let v > p. Then ||G(2) — Q(2)~|looc < 7 if and only if

Ao | B
Q=|——2|,
Cq | Dq

Ag = A-BCqg

with

By = AXCt + BEl(z)t
Co(v*I - XY) = Ei(2)!C+B'YA
Dg = D'—E(2)!
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and E; is a stable transfer function such that the matriz function

Yl/2AX1/2 Yl/ZB

D(E1(2)) = cxi? By

has || D(E1)|leo < 7-

Proof: This result follows from Theorem 2.8 after parametrizing all stable E; that

give 5(D(E1)) < 7.
O

This last parametrization will be the basic tool for proving necessary and sufficient

conditions for both the unconstrained and the constrained four-block H, control

problems.

2.8 The Four-Block Problem

Although the literature on the discrete-time Ho, control problem is now abundant
[39,69,27,48,50], all recent works do not require the solution to a four-block problem.
For example, [39] is the discrete-time counterpart of [18], and gives necessary and
sufficient conditions for the existence of controllers that achieve an Hoo-norm bound,
and a parametrization of all such controllers directly in terms of the data for the
problem.

In the next two sections, the discrete-time counterpart to [45] or [35] is worked
out since, as shown in the next chapter, the formulation of the approximation prob-
lem is needed to transform time domain constrained Mo, control into a tractable
optimization problem. The approach has the further advantage of clarifying the role
of two standard assumptions on the existing discrete time theory, namely the full
column and rank conditions imposed on the feed-through terms from the control

inputs to the controlled outputs or from the disturbances to the measurements. It
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turns out that these conditions are not necessary and this is a relevant fact since, as

stated before, the condition may be too stringent in practice.

2.8.1 Necessary Condition

Solving a four-block instance of the optimal approximation problem is essentially
harder than solving the one-block case; for instance, while the optimal value of the
latter can be easily found by computing the Hankel norm, no simple closed-form
expression exists for the former. However, if instead of the optimal solution one is
contented with finding a solution to Problem 2.4-15 for a fixed 4 or establish that
none exists, then it is possible to reduce the general instance of the problem to the
one-block case; this is the route followed in this section. Set again v = 1, and assume

in what follows that:

Gu
max ¢ ||G11 G12||oo, <1 (2.8-1)

21

This is again without loss of generality if one is only interested in strictly suboptimal

solutions.

Let G € RHoo, With

miy ma
G= [ Gn Gi P1
Go1 G2 P2

The objective is to find necessary and sufficient conditions for the existence of Q €

RHo such that
Gu G12

Gn G2z —Q~
and parametrize all such solutions. Suppose that there exist Q € RH such that

<1

-— 9

(2.8 —2)
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Ag | By \
2.8-2 holds, and let Q~ = . Define:
Cg l Dg /
B - Gu Giz
Ga1 Ga2 — Q™

(4 o0 |B B
0 Ay | 0 B
Cl 0 D11 D12
\ C2 —Cg |Da —Dg

Then, by Theorem 2.3, there exist matrices B;, Cj, BQ;" CQ,- and f),’j such that F,,

is all-pass, where

Gn Gi2 Er3 Erg
Ga1 Gy — Q7 Exz Epq
E3 Es; Es3s Es4
En Eq Es3 Eygg

my m2 pi1 P2

A 0 |B B By B
= 0 A9 |0 By l?‘??' B:Q“ : (2.8-3)
Ci 0 |[Dun D2 Dz D | m
Co —Cq |Dn —Dg Dys Doy | p2
Cs —Cos D31 Ds; Dsz Dsg | my
Cs —Co4 Dyy Diz Dsz D ] ma2

Remark: In 2.8-3 it has been implicitly assumed that Q™ has a state-space represen-
tation. As discussed in [63], this assumption may fail to hold. Although this loss of
generality can be removed using the representation in Section 2.2, doing so would ob-

scure the derivations. Moreover, the results remain valid even when the assumption
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is violated, since all calculations are done in terms of a state-space representation of

Q.
By the all-pass character of E,,,

~

G

[G11 G12] [ ll + [E13 E14 [ E3Ey ] =1 (2.8 —4)
12

Consider now an inner-outer factorization for [E13 E14], i.e., [E13 E14] = Gu3[E}; Ei,],

with G13 outer (i.e., stable with a stable inverse) and [E}, Ei,] inner, i.e.,

[Eis Ei)[Els El)~ =1

Similarly
~ | Gn o | E31
[G11 G31] + [E31E41] =1, (2.8 —15)
21 Ey
E Ei g1 [ E
and factorize R - gfl G31, with G3; outer and ?1 ?fl =1
Ey E}, Ej Ey
Define:
' (70 0 |
I 0 O 0
07 o0
E, = 01 0 0 Eqa e
. e 0 0 Ei
0 0 B~ Ej °
i | 0 0 Ej,

-

Gu G12 G13
= | Gu G —Q~ Ey
G31 Esg 2

Given that |[Egql| = 1 and the matrices multiplying on the left and right have by
construction unitary norm, it follows that ||E,|| < 1. Therefore, Nehari’s Theorem

[25] implies that if G, denotes the stable part of E, then |Gallgr < 1. Moreover,
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Lemma 2.1 implies that G, has a realization of the form:

Al By By Bs
C1|Dun D1z D
C2 | D21 Ez E
Cs | D31 Es2 Ess

Ga (2.8 — 6)

Now note that since G13 and (31 are uniquely determined as the outer solutions to

the spectral factorization problems
Gi13G3 = I — G11GT, — G12GT,

and

G31Gs1 = I — G71Gn — G31Gan.

From Section 2.5.3, it is possible to compute the unknown terms Bz, C3, Di3 and

D3y independently of (). Then 2.5-6 and 2.5-9 imply that:

D11B} + D13BL + D13By + C1 XAY = 0
DuDil -+ DIZDiz + D13Di3 + C1XCf = I (2 g 7)
D4,Cy + D4 Cy+ D4 Cs + BIYA = 0
D} Di1 + Dy Dy + Dy D3y + BiYBy = I
and therefore
D1z = (I —DuDj; — DD}, — C1XCH)Y2 (2.8-8)
Bs = —(AXC}+ B1DY; + B,D%,) Dyl (2.8-9)
D31 = (I — DY Dy — Db Dy — BIYBy)!/? (2.8-10)
Cs = —D3(BIYA+ D} C;+ DL Cs). (2.8-11)
Moreover, X and Y satisfy:
X = AXA'+ B1B!+ BB+ B;B} (2.8-12)

Y = A'YA+CIC+ CiCy + CLCs. (2.8-13)
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From Section 2.5.3, it follows that (X,—Dij3B}) = ric(Sx) and (Y,—D;C3) =

ric(Sy ), where:

-

Al 0 ct I 0 0
Sx = || —~(BiB!+B,BY) I —(BiDi,+B.D4) |,|0 4 o
DuBt+ DBt 0 DyuDi+DiuDh,—I| |0 —¢i o

' (2.8-14)
r A 0 B I 0 o
Sy = || —(ClC1+CiCy) T —(D4,CL+D4Co) |-| 0 A1 0
CiD11 +CiDyy 0 DY Dy + DiyDoyy —1 0 -Bt 0

' (2.8-15)

In particular, X and Y are positive definite, and A — B;;Dl_g] Ci and A — Bngll Ch
are stable. Note that Assumption 2.8-1 implies that all the terms are well defined;

in particular D13D§3 >0 and Dgl D3; > 0 or equivalently:

(I - C1XC} — D11 DYy — D1oDL,)™ > 0 (2.8-16)
(I = BlYB; — Di{,Dy; — D Dyy)™t > 0. (2.8-17)

For future reference, z and y denote the positive square roots of X and Y respectively.

The result obtained so far can be summarized as follows.

Lemma 2.13 (Necessary Condition) Let G = [ g:z (G;:: ], have a state-space real-
1zation:
A l B, B
G=| C1|Dun D12 | € RHw
Ca|Dy; O

and assume that 2.8-1 is satisfied. If there ezists Q € RHoo such that 2.8-2 holds,
then Sx, Sy € dom(Ric), and their associated solutions X and Y respectively are
such that p(XY) < 1.
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Proof: The fact that Sx, Sy € dom(Ric) was established in Section 2.5.3. From
2.8-12 and 2.8-13, X and Y are the controllability and observability grammians
of G4 respectively. By Theorem 2.4, the existence of a solution then implies that

p(XY) < 1, since the Hankel norm needs to be less than or equal to one.

2.8.2 Sufficient Condition and Parametrization of the Solutions

The fact that the conditions discussed in the lemma are necessary is quite natural;
what is surprising is that they are also sufficient. To see this, assume that the

conditions hold, construct B3, D13, C3 and Dj3; as above, and let

A| By By Bs
Ci|Du D D

Ga — 1 11 12 13 ) (28 _ 1)
Cy|Dy1 O 0

C3|D3; O 0

By construction, equations 2.8-7, 2.8-12 and 2.8-13 hold. The condition p(XY) < 1
implies that there exists Q4(2) € RH o such that ||€a(2)||cc = [|Ga(2) = Qa(2)~|oc <

1, and hence it only needs to be shown that there exists a solution of the form:

0 0 0
Qa(2) =] 0 Q2 Q |[; (2.8 -2)
0 Q32 Q33

Q = Q22 then gives a solution to the original problem. Moreover, a parametrization

of all solutions of the form 2.8-2 yields a parametrization of all solutions to the four-
Di1 D12 Das
Dy 0 D3 and

D3y D3z Das

block problem. Let B = [B; By Bs], C = [C} C} Ci)}, D =
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N = (I — XY)™!. By Theorem 2.9, Q4 = F1(Qaa, E?), where

A—NAXCtC'lNAXCt —~NB
Qaa = BtYA Dt I (2.8-3)
C -1 0

and F is such that

yAz yB

Dy(z) =
) Cz E(z)

yAz yB; yBs yBs

Ciz FEi1(z) Ei2(z) Eis(2)
Caz  E51(z) E(z) Ess(2)
Csz  Esi(z) Es(z) Ess(z) |

is a contraction. From 2.8-3, Q(c0)! = D — E(0c0). Therefore, if Q(z) is to be of the

form 2.8-2, then
D11 Dy2 Das

E(c0)=| D2y 0 Dy (2.8—-14)
D31 D3y D3

and

yAzr yB1 yB; yBs
Ciz D D D
Da(00) = 1 u Dz Dis | (2.8 - 35)
Coz Dy 0 Dss

Ciz D31 D3z Dss

Since Dq4(z) has to be a contraction, and

[CI«T D11 Dy D13] =1
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| By D4 Dy DY | = 1

then necessarily,
[Eu(z) E12(2) E13(Z)] = [Du D12 D13]
[ EuG) Bn(2) Bu(»r| = | D4 DY DY .

To see this, let H(z) = [C1z E11(2) E12(2) E13(2)]. Since H € Hoo, H = Y20 Hiz™?,
where Hy = [C1z D11 D12 D3], and H; = [0 E}; E}, Ei;]. Using 1.2-1,

1 > [|H|% 2 @/n)1H]3

= (1/n)trace (f: H,?H;) = (1/n) [trace(HéHo) + trace (i H,-‘H.-)]

[e o]
= 1+ trace (Z HfH,') /n,

i=1

impying H; = 0 for ¢ > 1.
Theorem 2.10 All solutions Qa(z) € RHoo of ||Ga — Q7|| £ 1 of the form

0 0 0
Qa(2) = | 0 Qa2(2) Qa3(z)
0 @32(z) Qs3(2)
are of the form Qq = Fi(Qqa, E), where Quq is as in 2.8-3 and

Dy1 Dr2 D3
E(Z) = D21 Egz(z) E23(Z)
D31 Esz(z) Es3(z)

s stable and makes the matriz

yAz yB } (2.8 — 6)

Da(z) = [
Cz E(z)
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a contraction. All such solutions actually satisfy ||Ga — Q7 || = 1.

Proof: from the previous discussion, the condition is necessary. To establish suffi-

ciency, write E(z) = Fi(E,, Fn(z) En(2) J), where
Esy(2) Ess(2)
[ D1y D1z Dig|0 0]
Dy 0 0 (I 0
Eo=| D33 0 0 |0 [
0 I 000
I 0 0 I |0 O |
Then, from the discussion on LFT’s in Section 2.7.1,

¢
Ey, E3

fI(QaaaEt) =F Qaw (

E;3; Es3

with Qua = Fi(Qua, E!); using Formula 2.7-2

( 00l )
A— NAXC!C — NBD'|NAXC'+ NBD* —NB| 1
0 I
00O 00
Qua = B'Y A+ D'C 000 10 :
00O 0 I
Ch - -
010 070
C, 0
0 0 I 0 0 I
C3 - - }
Dyy Dyp Di3
where D= | D,y 0 0 |. Then, using 2.8-T:
Ds; 0 0

N(AXC'+ BD") = N[o AXC} + B, DY, AXC§+B1D§1]
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0
B'YA+D'C = | BIYA+ DiL,Cy
BiY A+ Di3Cy

This implies that Qgzq12 and Qaq21 have the structure walz = Qaa21 = [ 0 * = ];
then, from 2.7-1,

t 0 0 0
=10 Q2(z) Q2(z2)
0 Qs2(z) Qs3(2)

Ezz(z) Eza(z)

Fi Qaa(z)
E32(z) Es33(z)

as required. Finally, note that by construction =| Gy =1

lGu G2 Gis

(oo}

and therefore, for all such Qq, ||Gs — @7 ]|lc = 1.

Necessary and sufficient conditions can now be derived using Lemma 2.13 and The-

orem 2.10.

Theorem 2.11 Let G € RHoo be as in Lemma 2.13 and assume that the additional
condition 2.8-1 is satisfied. Then the following two conditions are equivalent:

G G12
G21 G2 — Q7

<1.

a) There ezxist a Q(z) € RHoo such that

b) The discrete time algebraic Riccati equations associated with the pencils 2.6-
14 and 2.8-15 have positive semi-definite solutions X and Y respectively, such
that p(XY) < 1.

Proof: a = b was shown in Lemma 2.13. For the converse, note that:

T t
llyAz yBHz=p([yAw yB]{ Aty D =p(yXy) <1

B'y
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A
and similarly ’ < 1. Therefore, in Theorem 2.10 at least one E that makes D,
Cx
0
in 2.8-6 into a contraction exists. Taking @ = [ 07 0 ] Qo | I | completes the
0

proof.

The following result is a useful corollary of the theorem.

Corollary 2.8 There exist a Q(z) € RHoo such that | 2 <1 if and only

Ga1 G2 —-Q~
if there exist a Qa(z) € RHeo such that |Gy — Q7 ||co = 1.

In the parametrization in Theorem 2.10, the free parameter has dimensions (m2+
p1 X pa+m1), larger than those of @, but it is possible to re-parametrize the solutions
in terms of a contraction with the same dimensions as Q. Consider D,(z) partitioned

as:

yAz yB:|yB; yBs
Ciz Du | D12 Dis
Coz Da | E22 Ens
Csz D3y | Es2 Ejss

A B
¢ &) |

From Theorem 2.2 the set of transfer functions £(z) that make D,(z) into a stable

contraction are parametrized by:

aa:-am%+A4m@m%, (2.8 —7)
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where U,y (2) is an (mg + p1 X p2 +m1) stable contraction, and Z;, Z> are contractions

that satisfy:

C = Z1A
124 (2.8 — 8)
B = AAtZz
Note that, from Corollary 2.3,
[ yAz yB |
1 Ciz Di1 :EAty :L‘Cf wC% mC§ Ayt 0 Ayt —-AZ{
i Csz D3y |
_ vB; -
.y . . . D1y .
Multiplying this expression on the right by and using 2.8-7,
Dy
- Dal -
Dy
AZ{ =0. (2.8 —-9)
D3y
Similarly,
[ D12 D1 ] Az, =0. (2.8 —10)

Since Di3 and D31 have full column and row rank respectively, A 7t and Az, have a

singular value decomposition:

(5 0],
Az = U SRS
-0 OJ
o]
Az, = U Vi,
-0 0-

2
Define Wi = U L Wa = [ 5, 0 ] 3
0
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Theorem 2.12 With the previous definitions, all solutions Q@ € RHeo of ||Ga —

QI £ 1 of the form
0 0 0

Qa=10 Qa2 Qu |,
0 Q@32 Q33

are obtained as Qg = Fi(J,U), where U € RHs is an my X py contraction, and

( A— N(AXC'+ BE)C | N(AXC'+ BEY) -N| B, By | W} )
0 0 0
B!Y A+ E!C
J = 0 ZiAZ! W
c
wh| [0 W) 0
\ Cs /
(2.8 - 11)
with
D11 [Di2 Dis)
E.=|[D 2.8 — 12
N ( )
D3,

Proof: From the previous argument, E makes 2.8-6 a stable contraction if and only

it £ = ﬁ(Ea, U), with U an mgy x py stable contraction and

Diin D2 Dz O
A Dy ;
E, = —Z21A'Zy Wi
D3
i 0 Wia 0 J

Now cascade 2.8-3 with Eé to complete the proof.



67

Chapter 3

Constrained Hoo Control:

The SISO Case

3.1 Introduction

In this chapter, the problem of designing an internally stabilizing controller for a
single input-single output system that solves a tracking problem with maximal ro-
bustness is discussed in detail. It is well known that, for pure H, control, the
problem of maximal robustness has little relevance by itself, since one is usually in-
terested in other specifications besides robust stability. Even if that were the case,
the resulting controller may turn out to be useless from a practical viewpoint, or
even worst, the whole problem may be ill-posed [72]. In spite of these shortcomings,
the problem is treated here because it captures all the ideas involved in the solution
of the constrained Ho problem. At the same time, the notation is simplified by
the fact that the problem is SISO, and the technical difficulty of the underlying Hoo
theory is reduced, because it involves the solution of a one-block problem.

The chapter is essentially self-contained, since very little of the previous chapter

is used throughout. This will hopefully allow the reader to proceed through the
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derivations without the need to look for further clarifications of the details. Once
the ideas on this chapter are comprehended, then it should be easier to understand

the general instance of the problem, that is technically more involved.

3.2 Problem Formulation

Let p(z) be the nominal plant, k(z) be the controller to be designed and t(z) =
p(2)k(2)[1 + p(2)k(z)]~! be the complementary sensitivity transfer function which
represents the command response transfer function in the closed loop system of p(z)
and k(z). As t(z) must be stable it has an expansion

t(z) = f: tiz 7t (3.2 -1)

=0
Lettn =[t¢y --- ty—; |- The problem which studied in this chapter is the following.

Time Domain Constrained Ho, Problem: Design a controller k£ such

that convex constraints on ty are satisfied and ||t||oc is minimized.

This problem can be motivated as follows. Suppose that it is desired that the re-
sponse of the closed loop system resulting from given test inputs (for example a step
function) stays within certain bounds for the first n clock times. It is easy to see
that this requirement results in linear constraints on ty. The solution of the problem
above will give a controller that satisfies the given time domain input-output specifi-
cations, and achieves optimal robustness with respect to multiplicative perturbations
of the plant model. Note that no constraints are imposed over the time-domain re-
sponse once the finite horizon has been cleared. It is not clear at this point if an
overall time response can be guaranteed, and this issue will be discussed in a later
section of this chapter.

From Chapter 2, the set of all admissible (i.e., resulting from internally stabilizing

controllers) closed loop transfer functions #(z) can be parametrized in terms of a
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stable transfer function ¢(z) (the free “parameter”) as:
t(z) = u(2) — v(2)q(2), 32-2)
where u, v are stable and v can be selected to be inner, i.e such that v(z71)v(z) = 1
for |z| = 1. Let u(2) = S Rquiz™", v(2) = TR vi2%, and ¢(z) = 5L, giz~". Let
uUp = [ug -+- Up—1], Vo = [vg -+ vp—1] and
dn = [q0 -+ gn-1)- (3.2-13)

Then it is easy to see that:

1

iy = u; — Z V(i—5)q5- (3.2-14)
J=0
In matrix notation:
where i
[ Vo V1 - Up-1
0 vo -+ wvp—
v=| 7 (32— 6)
[0 o o wp |

Equation (3.2-5) implies that convex (linear) constraints on ¢, translate into convex
(linear) constraints on qn. From the discussion in Section 2.4, the minimization of
lltllco is equivalent to the minimization of ||g — ¢~||cc Where ¢ = u™~v € RHoo. The
proposed problem can then be formulated as
inf  |lg = ¢ |0, (32-17)
q € Hoo
qn € )
where 0 = {qn € R"s.t.lb < qnV < ub}. More generally, if w'(z) denotes the
z-transform of an input signal, then y'(z) = [w(2)u(z)] — [w*(2)v(2)]g(z), and the
constraints determine a set Q' = {qn € R"s.t.I6' < quV* < ub’}. The pair (w', Q%)

is called an input-output time domain constraint.
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3.3 Problem Transformation and Solution

In the previous section, the problem of robust performance (with performance speci-
fied in the time domain) was formulated as the constrained Hc, optimization problem

3.2-7. For any z such that |z] =1,

00 . n—-1 = o0 .
lg(2) = §(2)] = lg(2) - Z 2’| =lg(2) = X aiz" = 3 qi2'|

1=0 i=n

= [27"[¢(2) an - (=)™

where ¢1(2)~ = 22, qi+nzi. Let

9(z5am) = 2 g(z) - io ¢ (33-1)
P
and define
¢(dn) = . (E)lg}{w l9(2; dn) — g2(2)™ || co- (33-2)
Then
et o llg = dllo = min ¢(an) (3.3-3)

The following result is now obvious.

Theorem 3.1 With the previous definitions, the optimization problem 3.2-7 is equiv-
alent to the program

Jin, () (3.3—4)

in the sense that if Qi = [q§ ... qj_;] solves 8.3-4 and ¢;(z)™ is the best antistable
approzimation to g(z;q}) then ¢*(z) = ::11 hfz™' 4 27 "g}(z) solves problem (3.2-
7), and conversely if h*(2) = 24 qf 2" solves 8.2-7, then qf, = [¢5, --- q*_4] solves
3.3-4.
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For each vector of parameters qn, the value of ¢ and ¢4(2) may be computed as the
solution to an unconstrained Nehari extension problem. Then Theorem 3.1 shows
how to transform (3.2-7) into a finite dimensional optimization problem, namely the
minimization of ¢(gn) subject to some constraints. The following theorem shows

that ¢(-) is a “nice” function.
Theorem 3.2 Let p(qn) be as defined in 3.3-2. Then ¢(.) is convez.

Proof: Suppose g2, g2 are given. Then there exist 41, @7 € RHso such that

elas) = llg(za3) — 6™ (2)lloo

e(@2) = [l9(z;:92) — ¢#~(2)]lco-

For 0 < A < 1, let §i(2) = Agi (2) + (1 — M)g?(2). Then

n—1 .
PO+ (1= Nad) = min 1-7[6() — T 06+ 0= Neh)e] = @l
n—1 .
< [127"g(z) = ;}(/\qil + (1= Ng)2"] = ¢ (2)lleo

< Mlg(zan) = @™ (2)lloo + (1 = Mllg(2; 9f) — 67~ (2)loo-

As this holds for any qi, g2 the function is convex.

O

Since ¢ is convex, then it is well known that there exist effective algorithms for
computing its global minimum, whenever the constrained set is convex. However,
convexity is not enough to guarantee the existence of efficient algorithms, because the
evaluation of the function by the procedure suggested above, involving the solution
of two discrete Lyapunov equations, becomes unreasonably expensive for a large
horizon. This topic is addressed in the next section, where state-space formulas for

computing ¢(qn) are presented.
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3.4 State-Space Computation of ¢(qp)

Let g(z) € Loo, and let T'y : Iy(—00,0) — I2(0,00) denote the associated Hankel
operator with operator norm ||T'y||. Then there exists a closest function ¢ € He to g
such that ||g— ¢~ ||co = ||Tg]| [25]. In the special case under consideration, the Hankel

c|O

norm is easy to compute. Let 4 b() be a minimal realization for ¢(z) € RHo,
and X,Y denote its controllability an

observability grammians respectively. Then
IT4||I> = max; X;(XY). Recall that X and Y are symmetric positive definite matrices

which satisfy the discrete Lyapunov equations
X = AXA' 4 b (3.4-1)

Y = A'YA+ e (3.4-2)

Note that in general the product XY need not be symmetric but it is easy to show
that p(XY) = p(X/2Y X1/2). A closed-form expression for ¢(-) can then be found
by computing the grammians for

n—1 ,

9(z;an) = 27"g(2) — ZO giz "t

i=
Remark: the assumption that ¢ € RHeo is without loss of generality. If the starting
g € L, then the anti-stable part of g(z) can be subtracted first, and this amounts to
a constant translation of the vector of variables qn. That is, if g = [¢§, -+, g%_;]
denotes the first n terms in the expansion of the anti-stable part of g(z), define
dn = dn — g5 and then:

n—1 .
inf = o -
A llg(z) gq.z 2"q(2)lloo

n—1
= 1 f _— §: i — 275 .
5L Nlgs(2) ’;} §iz" = 2"41(2)lloo
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Let then g(z) =< 4 :; ) € RHo. After some manipulations:
A bel |0
Ae | be
g(zan)=| 0 A |en | = (3.4 — 3)
ce | 0
C —(n | 0

where qn = [g0 1 * gn—1].

Lemma 3.1 Assume that the realization for g(z) is minimal. Then the realization

for g(z;qn) in 8.4-3 is controllable, and it is observable if and only if

A b
det # 0

In particular, if A is invertible then 3.4-3 is observable if and only if go+cA™1b # 0.

The lemma follows from a simple application of the PBH test. Note that the system

is controllable and that by the minimality of g(z) the poles of g(z) are observable.

Therefore, observability would be lost if and only if g(z;qn) has some zeros at 0.
Let X and Y denote the controllability and observability grammians of g(z)

respectively. The grammians of 3.4-3 solve the equations:

Xe = AcX AL+ bb (3.4-4)
Y. = AY.A.+clee. (3.4-5)

Due to the special form of A, and b, the following explicit formulas for X, and Y,

can be obtained (see Appendix A for a derivation):

X 0
Xe = (3.4 - 6)
0 I
Y YO _Yl t
Ye=| l o IZQ;’ (3.4—7)
Y} — QuYis Yy — Y3Qh — QuYi + QuQ},
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where:
Yy = [A'YbAMYD ... A™YY) (3.4-8)
Y, = [& Al e Al (3.4-9)
bYd  BAYYDE ... BA(-Diyp
o b'Y Ab :
Yo = , . , (3.4-10)
| BY A BYb
[0 bict ... BA(=2ic ]
Y, = | . ' ' (3.4-11)
: btct
_0 0 |
and
qgo q1 - {gn-1
0 _
Qn = | TR (3.4-12)
0 - o g0 |

Using the notation z = X 1/2 4 = Y1/2, the following result holds.
Theorem 3.3 With the previous notation, let

0
zYz zY)y

0t 0
Yoz Y5

0 —:chlen

"'(YIIZQn)tx _YZIZQn - (Yzlen)t + Q%Qn !
(3.4— 13)

W(an) =

then ©(an)? = p[W(qn)].
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Corollary 3.1 Let

yAtz yA™ b ... ... yAb yb

cAn_l:z; cA"—Zb e e ch —q0

cA™ 2z cA™3p ... ... —qo —-q1
Wi(an) = , , o , . : (3.4 — 14)

cAz b —q - —Gn-3 —Gn—2
cr —4q0 —q1 - —qn-2 —qn-1 |
Then
1

¢(an) = p[W(qn)]? = T[W1(Qn)]- (3.4 — 15)

Proof: See Appendix A.

O

The corollary also gives a proof of the convexity of ¢(-), since it expresses ¢ as the
norm of a matrix depending linearly on the independent variables. Summarizing,
a solution to the time domain constrained Ho, problem can be found by the con-
strained minimization of the spectral radius of a matrix depending quadratically on
the variables or the maximum singular value of a matrix depending linearly on the
variables. It turns out that the singular value objective function can be again trans-
formed into a spectral radius one. To see this, recall that if the realization for a
scalar transfer function is balanced, then for some sign matrix R (i.e., a diagonal

matrix with either 1 or —1 in its diagonal) the following equalities hold [65]:

¢ = bR

. (3.4 — 16)
RA = AR
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Corollary 3.2 Assume that the realization for g is balanced, and that y is also

chosen diagonal. Let

-

yRA™ yRA™ b ... ... yRAb yRb
BRA™ 1y BRA™2 ... ... BRb —g
btRAn—Zy btRAn—3b T, —qo —q1
Ws(CIn) = . . . . . . y (3.4 — 17)
b*RAy BRb  —qo -+ —Gn-3 —Gn-2
btRy —qo - -t —qn-2 —Qqn-1 |

where R is a sign matriz such that 3.4-16 holds. Then ¢(qn) = p(W5)

Proof: The norm of W1 is preserved if the first block row is multiplied on the left by

unitary matrix R. Since both R and y are diagonal they commute and using 3.4-16,

o(W1) =5(Ws). But W, is symmetric and hence the result follows.

3.5 Degree Bounds

In this section, bounds on the order of the optimal solution g of problem 3.2-7 and

on the optimal controller k are given. Let

n—1 .
9(z5an) = 27"g(2) — > ¢i2'] (3.5 —1)
1=0
where ¢g(2) € RHoo, On = [q0, **+, gn—1] € R" is a fixed vector, and ¢ € RH o is
such that:
&n llg(5an) = ¢ lleo = llg(:s an) = g lloo; (3.5 —2)
moreover, let
n—1 .
g(2) = 3> gz + qu(2)2 7™ (3.5 —3)

=0
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Theorem 3.4 With the previous notation, the order of q is bounded by m +n — rg

where m is the order of g(z) and ro is the multiplicity of the mazimum Hankel
singular value of g(z;qn) in 3.4-3.

Proof: Let X.,Y. be the controllability and observability grammians of g(z;qn).
Define o(z) and f(z) as

Ae w Ae be
o= B~ = , (3.5 —4)
Ce O VtAe the

where v is an eigenvector associated with the largest eigenvalue p? of Y, X, i.e.,

YeXev = p?v and w = p~' X,v. Then ¢ minimizing ||g(-; qn) — ¢;’||co is given by:
~ a
% =9(:;an) —rg (3.5 -95)

Note that 8~ is defined rather than # because the former has a polynomial term in

z and thus no state-space realization. Replacing in 3.5-4,

(4 bet |
a = 0 Af |we
\ c —qnl 0
(4 bet 0 )
B=1o0 Ag en
VA vibel 4+ A | vie |

z

| A |b 11 .

= z + [ vib vk I
A0 -

1

with w and v partitioned according to the block structure of Ae. If v} = (13, .-, 1),
define v} = (v7, .-, 13). Then:
At 0 |

2 "B = 0 Afleq |- (3.5 —6)

—btATt U l 0
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Since the multiplicity of the largest Hankel singular value of g(z;qn) is r,, there
exist 7, linearly independent eigenvectors v* associated with the largest eigenvalue of
Y X. Therefore, one can choose v to have its last r, — 1 entries zero. By the special
form of X, this implies that the last r, — 1 entries of w are also zero, and therefore
a(z) has at least r, — 1 non controllable poles at zero while z~"3 has at least r, — 1
non observable poles at zero. More general, the number of uncontrollable poles of
a(z) at zero is exactly the same as the number of unobservable poles of 2~ "3(z) at
zero. From 3:5-5, qi(2)~ = g(z; qn)—pz,,(—;gﬁ%ﬁ and hence ¢(2)~ = g(z) ——pz_‘;; 3
In order to estimate the number of poles of ¢g(z)™, note that the poles of ¢ and «
must cancel out since they are both stable while ¢ is anti-stable. In particular the
poles of a(z) at zero cancel with those of 2~"f3(z) since it was established that the
realizations for o and 27" ((z) have the same number of controllable and observable

poles at zero. Therefore,
# poles of h(z) = # zeros of z7"B(z) < # poles of 2" B(z) (3.5-17)

since z~ "3 is strictly proper. Now since at least 7, — 1 modes in the realization 3.5-6

of z7"f3(z) at zero are non-observable,
# poles of z7"B(z) <m+n—r,+1 (3.5-128)

and the result follows from 3.5-7 and 3.5-8.

O

For a standard He optimization problem, the multiplicity of the largest Hankel
singular value is generically one. On the contrary, for constrained Mo, a multiplicity
larger than one is likely to occur. The reason for this is that a constrained solution is
computed by minimizing the largest singular value of a matrix; since singular values
are nonnegative it is intuitively clear that the minimization of the largest one will
tend to increase its multiplicity. Theorem 3.5 shows that this increase is dramatic

when constraints are not binding.
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Theorem 3.5 : Assume that q, = [h{, -+ -, hi_1] solves the unconstrained opti-
mization problem mingy, e g T[Wi(qn)], with Wi(qn) defined by 3.4-14. Then W1(qn*)

has at least n + ry singular values, say o1 -+ - Opyr, such that
oi=7Wi(ay)], i=1, ---,n+ry, (3.5-09)
where o is the multiplicity of the largest Hankel singular value associated with g(z).

The proof of Theorem 3.5 is rather technical and relegated to Appendix B. Here an
argument is given to motivate its validity. Let ¢* be the solution to the unconstrained

optimal problem with a minimal state-space realization.

(3.5 — 10)

. Af
q = %* *
[Qn—l e ‘91]

The order of ¢* is m — r,, where r, denotes the multiplicity of the largest Hankel

q0

singular value of g(z). On the other hand, by uniqueness of the solution to the Nehari

extension problem in the SISO case and Theorem 1, ¢* may be written as
n—1 .
¢*(2) = D aqi=7" +27"g (2), (3.5—11)
=0

where g solves

L0 llg(5an) = g7l (3.5-12)

From Theorem 4, the order of ¢; is bounded by n 4+ m — rg and by comparing 3.5-10
and 3.5-11 the order of ¢; is also bounded by m — r,. Both bounds would coincide
if the multiplicity r, of the largest Hankel singular value of g(-;q}) were equal to

n + ry. Theorem 3.5 shows that this is indeed the case.
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In the remaider of the section, a bound on the order of the optimal controller &
is derived using an argument similar to the one used by Limebeer and Hung in [49]

for the unconstrained problem.

Theorem 3.6 Let p be a plant of order m. Then the order vy of the Hoo-optimal

controller with constraints on a horizon of length n is at most n +m — rg.

Proof: Consider the input-output transfer function

t(z) = u(z)—v(z)h(z)
n—1 .
= [u(z) —v(2) 3_ giz™"] — 2 "v(2)h1(2).

1=0
By a well known result [49] the order of #(z) for h!(2) minimizing its infinity norm is
not larger than the number of interpolation points, namely the number of unstable
zeros of v(z) plus n (since 27" has n zeros at infinity), minus the multiplicity ro of
the largest Hankel singular value of [u(z) — v(2) Y% ¢iz~*]. Since the degree of v is
at most m, it follows that the degree of ¢ is at most n+m —rg. But ¢t = pk/(1 + pk),

and hence
r. <n+m-—rg—m+c,

where ¢ denotes the cancellations between p and k which occur as a result of closing
the feedback loop. It is clear that ¢ is bounded above by the order of the plant m,
and then

e <n4+m—rg. (3.5-13)

O

Remark: Theorem 3.5 and some numerical experience suggest that in a typical prob-
lem, if the horizon length n is increased, then the multiplicity of r, also increases.
Theorem 3.6 then shows that the complexity of the solution increases only by n —r,,

which can be significantly smaller than n.
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3.6 Behavior of the Overall Response

In the previous sections, attention was focused on shaping the first part of the time
domain response by imposing constraints over a finite horizon; once the first n pa-
rameters are determined, the tail of the response is computed to minimize the infinity
norm. Unfortunately, this procedure may generate an undesirable behavior after the
time horizon considered. To illustrate this, consider in Fig. 1 the optimal response for
the example treated in the next chapter, for a horizon of 40 samples. After clearing
the constraints, the response has an unreasonable large peak, and then oscillates and
attenuates with a definite pattern. It turns out that rather than being pathological,
these oscillations are due to the character of the optimal solution. Specifically, recall
from the previous section that when the variables of the problem are replaced by
their optimal unconstrained values, the multiplicity of the largest Hankel singular
value is n + r in which case the order of the optimal controller drops to m —r. If a
small perturbation on the vector of variables is introduced so that the largest singular
value becomes unique, the order of the resulting optimal solution correspondingly
increases to m 4+ n — r. This variation on the order is associated with a pole-zero
cancellation occurring in the limiting case. Because of the all-pass character of the
closed-loop transfer function, poles and zeros are inside and outside the closed unit
disk respectively, and hence the cancellations must occur on the unit circle. Suppose
now that the constraints are such that the optimal constrained and unconstrained
solution do not differ much; from the previous discussion, n poles and zeros should
be distributed closed to the unit circle. The behavior is illustrated in Fig. 3.2, which
shows the poles and zeros for the example cited above. Each pole closed to the unit
circle is coupled with a zero, and when excited generates a poorly attenuated oscil-
lation. During the first N samples, the resulting oscillations combine in such a way
that the constraints are satisfied, but once the constraints are cleared, they produce

large peaks in the time response.
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Figure 3.1:
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Figure 3.2: Optimal Closed-loop: Pole/Zero Configuration
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The following argument gives a quantitative explanation for this phenomenon.
Since the frequency response for the optimal approximation is flat, the 2 and the oo

norm coincide, and hence

llg(2) - Zqzz — 2"qu(2)~ |2 = llg(2) — Z ¢iz' — 2"qu(2) |3

1=0 =0
n—1 .
lg(z) = dell3 + lldr + 3 4i="l13 + llae(2) 13 (3.6-1)
=0

where the last equality follows from the ly-orthogonality of the different terms. If
the constraints are such that the 2-norm of the first n terms is small, then the norm
of the tail needs to be large in order to satisfy 3.6-1. Moreover, since the absolute
value of the variables after the horizon is limited by the steady-state constraint, the
norm of the tail will tend to remain essentially constant or decrease slowly when the
number of variables is increased. This implies that taking a larger horizon will not
necessarily produce a better overall response; in fact, the existence of a solution for
the limiting case n — oo cannot be guaranteed.

The salient point of the argument above is the flat response character of optimal
controllers. A natural way to circumvent this difficulty, is to replace the optimal
controller by a suboptimal one that satisfies the time domain constraints but has
a smaller bandwidth and hence, hopefully, better overall time response. Although
the algorithm for the one-block problem in Section 2.5 can be used to compute
a suboptimal solution, it is useful to combine the computation with the following
scheme, which may be used to guarantee good overall behavior. First, introduce the
change of variables z — pz, p > 1 which maps the unit disk into one of radius p.
Then, compute a constrained He, sub-optimal controller for the transformed plant
using the formulas in Section 2.5. The “degree of sub-optimality,” i.e., the number
upper bound on norm/optimal norm, is usually chosen between 1.05 and 1.1. Finally
transform the resulting controller back into the original z-plane by using the change

of variables z — z/p. In this procedure, the time domain constraints should be
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scaled so that they are satisfied by the final closed-loop and not by the transformed

one. The change of variables has the following consequences:

o By the Maximum Modulus Theorem, the norm of the transformed closed-loop

gives a non-achievable upper bound over the actual norm.

e When transformed back into the original variables, the controller will neither
be optimal nor all-pass; this follows from the previous observation and the fact
that the change of variables does not preserve the symmetry between poles and

zeros that characterizes a flat response behavior.

e All the poles of the closed-loop are placed inside a disk of radius 1/p, thus

inducing a decay ratio on the time response.

The pole-placement characteristic is essential in establishing the main result of this
section since it can be used to guarantee an attenuation in the time domain response.
Some further notation is needed before a formal statement. Let y € 2, with the
k —th sample denoted by y. For some fixed N, let yny = [ Yo Y1 o YN—1 ] Let
Q € RY be a convex set and define Q" = {y € 2 s.t. yNn € Q, |yx| <en > k> N},
where e is some small constant. Then Q" corresponds to extending the horizon by n
samples and a tolerance e. Finally, let t"(z) be the closed loop response computed

by the procedure above for some p > 1 and time domain constraints defined by ".

Theorem 3.7 Assume that for some constant K > 0, ||t"(2)|lcc < K for each
n > N. Then there exists M such that t™ € O for every m > M.

Proof: It is well known that!

iy = — ?{C T"(2)z*Vdz

1The idea of using the convolution integral in order to get the needed bound was suggested by
Prof. M. Sznaier
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and since all the singularities are confined to a circle of radius 1/p,
o i/" (e p)p= (k=13 (k=100 g
k 27 J-= )

This implies [t?| < Kp~*=1) and hence by taking M > —log(e/K)/log(p) + 1 the

result follows.

O

This theorem relies on two facts: the existence of a uniform bound K (which is
assured by the existence of a stable-closed loop satisfying the constraints), and the
location of the poles inside a circle of radius strictly less than one. Note that the
latter fails if no transformation is used. If the problem requires a nonzero steady-state
value, a similar result holds.

A uniform bound can be computed as follows. Recall that ¢ = u — vh, and
assume that A = {a1, a2, -+-, a;} is the set of zeros of v(z) outside the unit disk.
Then, it is well known that ¢ is a stable closed-loop transfer function if and only if
t(ai) = u(a), ¢ = 1, ---, I (assuming that each «; is of multiplicity one). Next
compute (if possible) ty;,(z) = Zﬁ;l tiz™% such that t} =[to t1...txy_1] € Q and
trir(ai) = u(ei), i =1, ---, l and set K = ||t5;;(2)]|oo. If tf;, exists, then it may
be computed by solving a linear programming problem whenever the constraints
defining  are linear.

Theorem 3.7 concludes the discussion of the theoretical aspects in the solution
of the simplified instance of the time domain constrained Ho, control problem. The
numerical problems involved in the actual computation of a solution are discussed

in the next chapter.
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3.7 Appendix A: Additional Proofs for Section 3.4

To prove formulas 3.4-6 and 3.4-7, start by partitioning X, conformally with the

At 0 0 0
+ .
e1 bt A? 0 egel

Xeao = A‘theZZAff + 6nefz

block structure of Ae:

Xenn Xe12
Xty Xeao

€

Xty Xez 0 Ay

€

Xetr Xerz } B [A be!

In particular:

Multiplying by e,, en—1, ---, e; on the right, one gets
Xezzen = eq
Xez2€n—1 = €p—1
Xex2e1r = ey,

giving X902 = I. Using this fact in the equation for X,js:

Xe12 = AXele}+be§Xe22A§c
= AXe2A% +bel Ay = AXe2AY,

implying Xe12 = 0. Finally replacing Xe22 and Xe12 in the equation for X¢1; above,
Xe11 = X and 3.4-6 has been established. The computation of Y, is slightly more

A be! 4 e —clan '
0 Ay qntc On'dn

laborious. Again start by partitioning Y. to get:

At 0
e1 bt A‘}

Ye1r Yer2
Ytlz )/;322

€

Ye1r Yer2
"
Y12 Ye22

€

Then, Y11 =Y, and

Yei2 = A'Ybel + A'Ye12A5 — clan
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. Thus:

Yeizer = A'Yb—clgo
Yeizea = A'Yepzer — g = A*Yb— Aldlgy — gy

Yeizen = AWirgen—1 —cgnog = AMYb— AP Dictgg + ... + AYVD — ctgus.

In compact notation:

Yez = Y3 — Y1,Q% (3.7-1)

with Y%, Y}, and Q, defined by 3.4-8, 3.4-9 and 3.4-12 respectively. Finally,
Yezr = e1b'Ybef + ALYp bel + e1b'Vero Ay + A4YersAs + qtian
. Proceeding as above and using 3.7-1,
Yerr = Yz = Y3Qh — @uY3 + QuC0} (3.7-2)

with Y3} and Yzlz defined by 3.4-10 and 3.4-11 respectively, thus establishing 3.4-7

O
Proof of Corollary 3.1: Note that W(qn) in 3.4-13 may be factorized as
_ .
10 Y U ! °
z
W(qn) = [ 1oy 1"’@ . 0 I ,  (3.7-3)
22 T wn
Y“:C Ylt _ %
0 01 12T Yy —Q
where
eYz — 2YLY{e 2Y0 — zYLY!
U= 12412 12 12+ 22 (37 _4)
Yz —YhYiie Y3 - YLV
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From the definitions 3.4-8 through 3.4-11 and using the Lyapunov equations 3.4-4,
3.4-5:

YhY; = Y-A"YA
Y —YhYy = [AMYA™S ... AmYY
[ BtAm-Dty gn=1p ... pAG-Dty 4p BAC-Dtyp |

YD - YLYE = ' . .
oo BAWYA™S ... BATYAD  BAYD

i blY An~1p ce 'Y Ab btY'h |
and then:
F .’EAnty
btA(n—l)ty
U= | stAl-2ty, [ yAtz yA" b ... yb) ] . (3.7-=15)
- bty -

Using this factorization and 3.7-3, W(qan) = Wi(qn)'Wi(qn), with Wi(qn) as in
3.4-14.

3.8 Appendix B: Additional Proofs for Section 3.5

The purpose of the first part of this Appendix is to prove the claim, used in Theorem
4, about the best anti-stable approximation to a stable system in an Hs, sense. Recall
that the Hankel operator I'y corresponding to the stable system g(z) = ¢(2I — A)~'b
has finite rank, and

Lyfpi = oia; (3.8-1)

for : = 1,---,n, where n is the McMillan degree of g, o; is a (Hankel) singular

value, and < a; B ) are the corresponding Schmidt pairs. The fact that the best
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approximation hl(z) € HY to g(z) is given by h!(z) = g(2) —p%é%, where p =7(Ty)
was first established by Adamjan, Arov and Krein. In the continuous time case,
state-space formulas for a(z) and f(z) are given in [25]. If g(z) has no poles at zero
(i.e., the A matrix is invertible) then the discrete time counterparts may be deduced

following the same reasoning. The case with non-invertible A matrix requires the

—2I+A b O
VA v -1

2A'—T v 0
B~
bt 0 -1

ZzAt— T 0 v 0
g-B~ bt —z2I+A 0 0 |. (3.8-2)
0 c 0 —1

use of the DNF. From f(z) = 8(1/2)t ~ ( ) it follows that

and hence

Now let x denote the anti-stable system with a DNF

) At —T v 0
X = ’
—cXA* 0 -1

where X denotes the controllability grammian of g. Then

2At — T 0 v 0
X+g-p~ bt —zI+A 0 0O
—cX At c 0 -1

Multiplying first on the left and then on the right by appropriate matrices, and using
the fact that X = AX A! + bb,

zAt - T 0 v 0
X+g-8 ~ bt — 2 XA '+ AXAY —z2I4+A 0 0O
0 c 0 -1
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zAt— 1T 0 v 0
~ 0 —z2I+A Xv O
0 c 0 -1

From Xv = pw and eliminating unobservable states:

(3.8—3)

—2I4+A w O )
c 0 -1 .

X+g:-B~p (
That is, x + g - B = pa. Taking the stable part on both sides, one gets I'g5 = pa as
desired.
Proof of Theorem 3.5 Assume that dim(A) > 0 (otherwise the result is trivial). The

proof is by induction on n. Consider the matrix

/ cx —qo —q1 -+ —qp-1 \
cAzx cb —qo - —Qgn-2
Wa(ay) = : : : . (3.8 —4)
cA" 1z cA™ % ... b —qo
\ yArz yA™ b ... ... yb )

It is clear that W5 has the same singular values as Wj. Consider first:

* cT —qo
Wa(ai) = .
yAz yb

Note that:
cz
[zct zAly] =zYz.
yAz
Let {v1, -+, vr,} be a set of orthonormal eigenvectors of Yz associated with p?,
vy
and define 7; = [ } Then
0

2

[ N :l
yAzv )

|Wa(an®)9i]|3 = = |viaYav| = p?.
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Assume that for an eigenvector w of y Xy associated with p?, b'yw # 0, and let

zAly

with ||2|| = p. Then:

o (cXAly — qobly)w
Wa(qi)do = =

(cX Aty — qobly)w
yXyw

pPw

Therefore |[Wa(a})dol|/||Po]| = p; but since G(W2) = p, equality must hold. By
assumption blyw # 0, implying that {Dg 71 ---r,} is a set of linearly independent
vectors such that ||Wa(aqn*)?i||/||vi]| = p. Since 7[Wa(dqn*)] = p, the multiplicity of
the largest singular value is at least ry + 1.

Next suppose that no w exists such that blyw # 0, but b Alyw # 0 for some w.

Define
o xAZty
vy = w
b Aty

It is easy to check that ||#]| = p, and

(cX A%y — qobt Aly)w

Wa(h1)do =
y X Alyw

The claim is that ||yX Alyw||?> = wlyAXY X Alyw = p*. To see this, note that
Wy XY Xyw = pt
and then from 3.4-1:
Wy XY Xyw = wly(AX A + 00 )Y (AX A 4 bb')yw.

The claim follows from the fact that blyw = 0. If b Alyw = 0 for every i then the
same argument may be repeated for increasing powers of A until ! A7'yw # 0 for

some w and some j necessarily finite.
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Now suppose that for n — 1 the multiplicity is 74 + n — 1. Let

cr —q0 cer —Qpn-2 | —Qn-1
cAzx cb cer —Qpn-3 | —qn—2
* . . . . Yil YiZ
Wa(an®) = : : : : e | = . (3.8-15)
Yor Ya
cA™ 1z cA™ %y ... cb —qo
yAtz yA" b ... yAb yb
Then

= Y1t1Y11+

Y
Y Y]
You

[ cAC=Dly gn=1p g AG=Dty gn=2p ... zA(=Diyyp |
btA(n—Z)tYAn—-lx BAM=2)ty gn—-2p ... zAM=2)typ

+ )
R BYA™?% ... az¥b |
: : : 1 1 YiI *\t * : :
which implies [V} Y] = Wa(qu-1*)'W2(gn-1*). By the inductive hy-
Ya
pothesis, Wa(qn*) has n + r, — 1 singular vectors associated with p of the form
”
U= ! , t=1,---,n+rg—1, where the v;’s are singular vectors of W5(qn—1*)
0
associated with p. Assume that b'yw # 0 and define
.’EAnty
biA(n—l)ty
g = : w
bt Aty
bly

such that ||W2(Qun)20l|2/]|?0]|2 = p. Since by assumption blyw # 0, the set Ui, 1=
p

0,---,n 4+ 7y — 1} is linearly independent. If b'yw = 0 for every w then the extra
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singular vector must be modified as in the first part of the proof to guarantee that

the set is linearly independent.
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Chapter 4

Numerical Optimization

In this chapter, the problem of computing the optimal constrained Ho, norm is
addressed. The two main characteristics that make the solution to the problem
difficult, i.e., nondifferentiability and large scale, are recognized. Descent methods
for nondifferentiable optimization are first considered together with the reasons that
renders them inefficient for the problem. A particular non-descent method, namely
the Ellipsoid Algorithm, is reviewed and its advantages over descent methods are
discussed. The computation of the objecﬁive function is shown to be the critical
step in the application of the ellipsoid algorithm and hence the topic is treated in
detail. Finally, the calculation of a starting point for the algorithm is discussed and
a “textbook” example of a time domain constrained H, control problem is solved

in detail.

4.1 Introduction

This chapter is devoted to study a numerically efficient algorithm for solving the time

domain constrained Hy, control problem considered in Chapter 3. The numerical
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problem that has to be solved is of the form:

min  ¢(qn).
s.t. Sqn<s

(41-1)

From Theorem 3.3 and its corollaries, ¢(qn) may be alternatively computed as
p(W(an)), @(Wi(dn))? or 5(Ws(qn))?. Here W(-), Wi(-) are symmetric matrices,
W(.), Wi(-), Ws(-) € R™"*7+" 1 denotes the number of states in the realization of
g, and n denotes the length of the horizon. The number of variables of the problem
is n, while the number of constraints is 2¢n, where ¢ denotes the number of specified
input-output time domain constraints. The factor of 2 arises because each sample is
usually constrained to lie within a given upper and lower bound. If n is relatively
large, then it is clear that 4.1-1 becomes a large-scale problem. This is the first main
characteristic of the problem that needs to be taken into account when formulating
an algorithm for computing its solution.

The eigenvalue minimization of symmetric matrices appears in many different ar-
eas of mathematics and engineering, and has received considerable attention in recent
years. Indeed, the closely related problem of optimizing over positive semidefinite
matrices has been shown to be equivalent to a many different convex programming
problems [52]. The reason for the difficulty of the problem and the ongoing activity
in this research area, is that the eigenvalues of a matrix function will not be dif-
ferentiable at the points where they coalesce, even if the matrix function depends
smoothly on the variables. The occurrence of non differentiable points during mini-
mization cannot be discarded as pathological cases, since the optimization objective
tends to squeeze the eigenvalues together and hence to increase the multiplicity.
This intuitive argument is strengthened by Theorem 3.5, since the multiplicity in
the unconstrained case is equal to the number of variables.

To illustrate the short-comings of nondifferentiability, consider the following al-

gorithm for solving Problem 4.1-1 that attempts to exploit the information provided
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by the largest singular value and an associated singular vector.
Algorithm 4.1 A Naive Procedure.

Step 1. Let q° be such that Sq8 <'s, k = 0.

Step 2. Let o, uF, v¥ be such that o* = (M1 (X)), ||«F||, [[v*] =1,
uFt My (g¥)v* = oF.

Step 3. Let g¥t1 = arg{minu**M;(qn)v*, s.t. Sqn < s}.

Step 4. Set k =k + 1 and goto 2.

The appealing characteristic of the algorithm, is that the minimization problem
in step 3 is a linear programming problem (LP), for which efficient codes exist.
Therefore, the optimization is reduced to solving a sequence of LP’s, although the
algorithm is certainly crude (in particular, one would add a trust region in step &
and a linear search between steps 3 and 4). Suppose now that at the k-th iteration,
the largest singular value of Wj (qlli) has multiplicity one. Then 7 is differentiable

and

95(W1(qX))
dqf

where Wj; denotes the derivative of Wi with respect to g;. Then, it is easy to see

= uFtWy 0k, (4.1 —2)

that the cost vector for the problem in Step & is the gradient of the function and
therefore Algorithm 4.1 is just a gradient-based descent procedure. Unfortunately,
if at qX the multiplicity of the largest singular value is larger than one, then the
gradient does not exist at that point, or equivalently, the cost vector is not uniquely
defined since u* and v* may be chosen from a subspace with the same dimension as
the multiplicity. As a consequence, the value of the objective function can no longer
be guaranteed to decrease, and hence the whole idea of the algorithm breaks down.
It is possible to circumvent this difficulty by considering the so-called “generalized

gradient” or “subgradient,” to be discussed next.
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4.2 Nondifferentiable Optimization
Consider the nonlinear optimization problem:
min fo(z) s.t.fi(z) <0 i=1,---,m (42-1)

where fo is a convex continuous function of z. When f(z) is not continuously differ-
entiable, then 4.2-1 is a problem of nondifferentiable optimization. These problems
have received much attention during the past decades due to the wide range of
applications that they encompass. The interested reader is referred to [68] for a
comprehensive introduction and [43] for numerical considerations and an extensive
bibliography up to 1985. Engineering problems are considered in the tutorial [57]
which also includes the semi-infinite case.

Nondifferentiable problems have inherent poor analytic properties, making it hard
to develop local models for the objective functions, to be used for computations. Al-
gorithm 4.1 illustrates this fact, since it is seen to have a plausible behavior at those
points where the gradient exists (note that in this case the gradient provides a good
model for the local behavior of the function) but this plausibility breaks down to-
gether with differentiability. When Problem 4.2-1 is Locally Lipchitz (a property ver-
ified by most problems of practical interest) then Clarke’s work provides a framework
for unifying this nondifferentiable problem with standard differentiable optimization
theory. In particular, it provides a way of establishing nondifferentiable analogues
to the Kuhn-Tucker or F. John conditions for optimality, and to the Lagrange Mul-
tipiers. Unfortunately, the development of nondifferentiable algorithms has proven
to be more arduous, and although there exist efficient algorithms for some specific
problems, no general purpose nondifferentiable optimization algorithm is currently
available. In particular, most “general purpose” algorithms in the literature cannot
deal with large-scale programs and hence cannot be used to solve the problem of

interest.
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Let fo be a convex continuous differentiable function. Then, from classical anal-

ysis and for every z

fo(z) 2 fo(za) + V fo(zo) (z — z0),

where V fo(z¢) denotes the gradient of fo at zg. When fy is non differentiable, V f,
may be substituted by the generalized gradient or sub-gradient defined as [13]:

dfo(zo) = {g € R" s.t. fo(z) > fo(zo) + g'(z — z0)}.

It is well known that 0fp is a nonempty convex compact set which reduces to
{V fo(zo)} whenever the function is differentiable at 9. Moreover, the negative
of the unique element of 0 fo(zo) with minimum 2-norm is a descent direction (in
fact, the first order steepest descent direction) for fy at zo. Unfortunately, the gen-
eralized gradient can be discontinuous and hence 9fy cannot be used to formulate
algorithms for computing unconstrained minimums. An example of one such algo-
rithm that produces a sequence converging to a non-optimal stationary point may
be found in [75]. Instead, V fo should be replaced by the smeared sub gradient or

e-generalized gradient defined as:
Befo(z0) = {g € R™ s.t. fole) > fo(zo) + g'(z —z0) + &, €32 0}.

This set, that reduces to 0 fop when € = 0, collects the generalized gradient information
for a whole neighborhood of zg. In most algorithms based on the e generalized
gradient, € is taken big enough at the beginning of the iterations and then it is

gradually reduced to zero as the algorithm converges.

Generalized Gradient for the Largest Eigenvalue and Singular Value

Suppose that the maximum eigenvalue of the symmetric matrix function M(z) has
multiplicity ¢, with a corresponding orthonormal basis of eigenvalues U(z). Then,

defining < B,C >= tr(B'C), and My = 0M [0z}, the generalized gradient of A(z)
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is the set:

INz)={g € R® s.t. gp =< W,U(z)!Mi(z)U(z) >, for some
W symmetric and s.t. W > 0, tr(W) = 1}.

This formula for the generalized gradient is from [54], where a self-contained deriva-

tion is given. Moreover, using the formula and the generalized gradient algebra from

[13]

05(z) = {g € R s.t. gy =< W,U(z)'My(z)V(z) >, for some
W symmetric and s.t. W > 0,tr(W) = 1}.

where U(z) and V(z) denote a set of orthonormal left and right singular vectors of
M (z) associated with 7. In particular, taking M = W,, with W, defined by 3.4-14
and the notation of the previous section, it is not hard to get the following expression

for the components of a vector g € 9p(qn):

n—k
Gk = ) UrgktiVntk—is (4.2 -2)
i=0

where u and v denote a left and a right singular vector respectively of Mi(qn),

associated with the largest singular value.

4.3 Descent Methods

Algorithms for nondifferentiable optimization can be roughly classified into two
groups: non-descent and descent methods. In this section, descent methods are
considered. Two such algorithms are briefly described: one designed for problems
with linear constraints and a nondifferentiable objective function, and one specialized
on eigenvalue minimization.

Descent methods attempt to construct a sequence of feasible points with mono-

tonically decreasing cost, that will converge to the optimal solution if one exists.
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They have an intuitive appeal, and were the first choice in attempting to solve the
constrained minimization problém of interest; however, they had to be discarded
for reasons to be explained below. Part of the appeal of descent methods, comes
from the fact that they usually constitute a generalization of well established dif-
ferential optimization algorithms. As stated in the previous section, on performing
this extension it is necessary to replace the gradient by the e-generalized gradient,
and drive € to zero as the optimal solution is approached. The lack of first (and
hence higher) derivatives usually make these methods converge at most at linear
rate, although quadratic convergence can be achieved in some cases. For instance,
the algorithm in [53] to be discussed next, is claimed to have quadratic convergence
if a certain parameter is chosen carefully. Descent methods are not new in the robust
control literature; for instance, an upper bound over an appropriately defined notion
of stability margin (i.e. the p function) may be computed by the unconstrained
minimization of a convex nondifferentiable function, and in [16] a descent algorithm
is proposed for performing this task.

When formulating an algorithm for general nondifferentiable programming, it is
usually not reasonable to assume that a complete description of the generalized gra-
dient exists, since this may be expensive to compute or even not available. Due
to this reason, most algorithms start by assuming that only one vector on the e-
generalized gradient is available and then proceed to construct a model for the gen-
eralized gradient using the information obtained in subsequent iterations. This gives
rise to algorithms consisting of two kind of steps: a real step, in which a linear
search along a descent direction is performed, and a null step, in which the model
for the e-generalized gradient is updated with no improvement on the value of the
objective function. Algorithms of this type are available, both for unconstrained
and constrained optimization. [43,44,58]. Consider, for instance, the algorithm for

solving linearly constrained convex nondifferentiable problems in [44], which guaran-
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tees convergence to the optimal solution and requires the evaluation of the objective
function and only one vector in the generalized gradient for each feasible point. At
each iteration, the algorithm computes a descent direction, performs a linear search,
and then updates the model for the generalized gradient. The descent direction is
computed by solving a quadratic programming problem (QP), that has the original
constraints of the problem plus a polyhedral approximation to the objective func-
tion obtained from previous iterations. The contribution of [44] over previous closely
related works ([47], for instance) is that the number of constraints in the QP does
not increase with each iteration, since the approximation is constructed with only
a few previously calculated vectors in the generalized gradient and an aggregated
subgradient [42] is computed as a convex combination of past vectors. Therefore
the algorithm has bounded storage requirements, but if the number of constraints
and variables is large, then the time required for solving the QP at each iteration
becomes unreasonably long and hence the whole approach is ill suited for large-scale
problems. Actually, most of the descent algorithms found in the literature use a QP
for computing a descent direction, and are, for the same reasons, not adequate to
deal with large-scale problems. In order to alleviate this difficulty, one may attempt
to replace the QP by an LP for computing the descent direction, or attempt to up-
date the solution to the problem from one iteration to the other using perturbation
techniques. However, no algorithm that addresses the large-scale issue and preserves
guaranteed convergence has currently been given.

The fact that a relatively simple description exists for the generalized gradient
in the case where the objective function is the largest eigenvalue or singular value
of a matrix, suggests that specialized methods might exist for solving these prob-
lems. This was explored by Overton and co-workers in a series of papers [26,53,54],
using several results in nondifferentiable analysis. The basic idea of the approach is

to formulate the necessary conditions for optimality (which is also sufficient in the
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case of interest since the functions involved are convex) and then iterate trying to
satisfy this condition. The descent direction is computed based on the violation of
the condition, in a way that resembles the procedure for moving off constraints asso-
ciated with Lagrange multipliers with the wrong sign in differentiable optimization.
The basic iteration of the algorithm involves the solution of a QP for computing the
descent direction, and a linear search for updating the value of the function. This
results in an overall Successive QP (SQP) algorithm, and it is claimed in [54] that,
if the quadratic term in the objective functions of the QP’s is chosen carefully, then
quadratic convergence can be obtained. Unfortunately, the constraints of the prob-
lem include the ones of the original one plus (3n —n+r(r+1)/2),where n denotes the
number of variables and r denote the estimated multiplicity of the largest eigenvalue.
Moreover, in [54] only equality constraints are considered, and therefore slack vari-
ables are needed in order to deal with the inequalities. The basic algorithm has been
reported to perform satisfactorily for a small number of variables (i.e., n < 40), but it
becomes very inefficient for larger problems. Given that for large-scale problems, the
time required for solving a QP outweighs the benefits of quadratic convergence, an LP
that preserves the key features of the SQP was considered in [54]. Moreover, the LP
was replaced by a partial LP solver that works with a smaller number of constraints.
The fact that the solution is forced to lie within a trust radius (responsible for 2n
additional constraints), makes this approach reasonable. Although this modification
reduces computation time, the procedure is no longer guaranteed to converge to the
optimal value. Another critical step of the algorithm is the computation of the ob-
jective function and the characterization of the generalized gradient. Since only the
largest eigenvalues are of interest, it is not efficient to use the standard QR algorithm
for eigenvalue decomposition. This is specially true because the matrices on each it-
eration do not differ much (except, perhaps, for the first few) but this information

cannot be incorporated into the QR calculations, since no effective updating scheme
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exists. In [54] several alternate schemes are discussed for the computation, but when
the multiplicity of the largest eigenvalue or singular value is large, these schemes
may perform poorly. A more detailed discussion on the eigenvalue computation is
deferred to Section 4.5.

To summarize, general descent methods are ineflicient for solving the time domain
constrained Heo problem because the computation of the descent directions is too
time consuming. Specialized algorithms are in principle more promising, but unfor-
tunately, in the numerical experiments, they also perform poorly when the number
of variables and constraints is large. Further work should be done to find an imple-
mentation of the latter algorithms tuned up for the requirements of the minimization

problem of interest.

4.4 The Ellipsoid Algorithm

Having reviewed and discarded descent methods for solving the minimization prob-
lem of interest, the purpose now is to discuss an algorithm capable of solving it, even
when a large number of variables and constraints are used, namely the Ellipsoid Al-
gorithm (EA). The EA was chosen among other non-descent methods in the belief
that it is the best suited to address simultaneously the two main characteristics of the
problem, i.e., nondifferentiability and large-scale. The other popular algorithm for
convex programming is Kelley’s cutting plane algorithm [41,7], but it was discarded
because it has, in principle, unbounded storage requirements. It is noteworthy to
say that the distinction between descent and non-descent algorithms is vague; for in-
stance Schor gave an interpretation of the EA as a variable-metric descent algorithm
[68].

The EA was initially developed by the Russian mathematicians Iudin, Nemirovsky
and Schor but it only began to draw attention when Khachiyan used it to give a poly-

nomial time algorithm for LP. Some years later, when Karmarkar gave an ellipsoid-
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type algorithm which seemed to surpass Simplex as a tool for solving linear problems,
this approach became a focus of intense research. In particular, and following the
original motivation of Iudin, Nemirovsky and Schor, several improvements and a
numerically stable implementation were given for solving convex nondifferentiable
problems. In this section, a brief introduction to the EA is given; the interested
reader is referred to [6] and [7] for a detailed treatment; application to convex non-
linear programming can be found in [20].

The Ellipsoid Algorithm constructs a sequence of ellipsoids Fy, FEj, --- with
decreasing volume, in such a way that if the first Ey contains the optimal solution,
then each one of the F; also contains it. Since a positive lower bound over the rate
by which the volume decreases is available, then the volume of Fy determines a finite
upper bound on the number of iterations required to confine the optimal solution
within a given tolerance. On the (k + 1)st iteration, the algorithm checks whether
the center z; of the ellipsoid Ej satisfies the constraints. If not, then one of the
violated constraints is selected, say a -z < b, and the ellipsoid of minimum volume
that contains the half ellipsoid {x € E} / a-z < a- z} is constructed. Note that,
by linearity, all the points discarded also violate the selected constraint, implying
that all feasible points contained in Ej are also contained in the new ellipsoid. If
the point zj is already feasible, then a vector g; in the generalized gradient of the
objective function at zp is computed, and the ellipsoid of minimum volume that
contains the half ellipsoid {z € E} / giz < giz;} is constructed. By the definition
of the generalized gradient, the objective function evaluated at any of the discarded
point is at least as large as the value at z; i.e., all points in E} with costs less than
the value of the objective function at z; are preserved. Therefore, each new ellipsoid
contains the minimizer of the objective function, assuming that it was contained in

the original Ejy.



105

The ellipsoid Ej, centered at zj can be represented as
Ey={z€R" s.t. (z—a3) H (z — 23) <1}, (44-1)

where Hj, is a symmetric positive semidefinite matrix. Then, it is shown in [6] that

for the next iteration

Try1 = zp — 7(Hyga/\/alHya) (4.4-2)
Hyi1 = 6(Hy — o(Hpa(Hya)/(a'Hya))), (4.4-3)

where

r=1/(n+1), o=2/(n+1), s=n’/(n’=1)

for a “feasibility iteration,” that is, an iteration with x; unfeasible in which a is
selected as one of the violated constraints. For a “function iteration” the same
formulas hold with the vector g in the generalized gradient replacing a. Moreover,

defining

up = ,minkfo(:z:,')

l = Tax, {fO(iL'i) - \/afﬂiai} )

then ui and [} give readily computable upper and lower bounds over the optimum,
and then it is easy to get a stopping criterion.

Several implementation aspects should be taken into account to avoid numerical
instability and accelerate convergence. If the starting Hy is positive definite, the Hy’s
are positive definite for all values of k. However, due to roundoff errors the matrix
may become singular or even indefinite, which, from 4.4-2, 4.4-3 is unacceptable.
Fortunately, there is an easy way of circumventing this difficulty, by taking the
factorization Hy = JiJ} and expressing the formulas in terms of Ji. In particular,
the value of J; can be updated directly, with no explicit computation of Hy required.

See [6] for the formulas. Convergence can be accelerated by introducing the so-called
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“deep-cuts” in the algorithm. Suppose that, at the k —th iteration, the algorithm is
working on a feasibility iteration, i.e., the new ellipsoid is computed so that az < axy,
for each € Ejy1. But a feasible point should rather satisfy az < b, for some b, and
hence it is intuitively clear that an Fj; that contains those points and has smaller
volume may be used instead of the one given by 4.4-2, 4.4-3.

Note, also, that the constraints in the Ho, problems usually come in pairs, i.e.,
for each constraint of the form az < b; there is another one of the form —az < by
(this is because the time response is usually specified to lie within upper and lower
bounds) and then it is possible to use both constraints simultaneously to compute
the new ellipsoid. This results in a further reduction of the volume of the updated
ellipsoid. Let o = (azg — b1)/y/aHia® and & = (azy — bz)/\/ZaHkat), and suppose
that aé < 1/n and @ < —& < 1. Then the update formulas are 4.4-2, 4.4-3 with:

o = (1/(n+1))(n+(2/(a-&?)(1—ad-p/2))
T = ((a=&)o

§ = (n*/(n® =1)(1 = (a® + & = p/n)/2)

VA(L — a2)(1 — &2) + n?(42 — a?)2.

p

These formulas were again taken from [6], as originally proposed by [66]. A similar
deep-cut may be implemented for function iterations. In that case, let " be a point
such that fo(z") < fo(z;) for all 0 < ¢ < k. Then, the optimal point lies in the
subspace giz < gizy + (fo(z") — fo(zk)). Since the term on the right is less than
zero, the resulting ellipsoid will again have a smaller volume.

Several other alternative deep-cuts have been proposed in the literature, but
they usually require either a linear search or some other additional computation.
However, from numerical experience [20] deep-cuts do not necessarily produce a sub-
stantial acceleration on the convergence rate for the EA as applied to general convex

programming, and therefore only the simple ones described above were implemented.
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In fact, as discussed in the following section, the speed of convergence is more related

to the appropriate selection of the algorithm for computing the objective function.

4.5 Computation of the Objective Function

A nice property of the Ellipsoid algorithm is that it is relatively easy to obtain an
upper bound for the number of iterations required to compute a solution that comes

as close to the minimum as desired. The key reason for this is that, if Fy C R", then
vol(Eyy1) < e vol(Ey).

Let € be given, and let K be such that o(q¥) > o(q?) + €, ¢(ak*?) < p(q}f) + ¢,
where q, denotes the optimal solution. Then, from 14.4.2in [7],

e‘K/znvOl(E()) > (e/Gn)" Bu,

where G, = max{||g||s-t.g € d¢(dn),dn € Eo} and B denotes the volume of the
unit ball in R®. It is a standard result that vol(Ey) = det(Ho)pBn, and since from
4.2-2, Gy < 1, then

e~ K2 det(Ho)Bn > € fn.

Let h denotes the algebraic mean of the initial axis lengths, i.e., h = (H?=1hi,-)1/ ",

Then, taking the log in the expression above:
—k/2n + nlogh > nloge,

or

K < 2n2log(h/e). (4.5-2)
The formula 4.5-1 used to derive the upper bound was actually proved in [7] for
unconstrained optimization. However, it is not difficult to extend it to the constrained
case if a violation € of the constraints is tolerated, by redefining G, to include the

gradients of the constraints.
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Given that the upper bound on the number of iterations is quadratic in the num-
ber of variables, it is clear that in order to get an efficient algorithm, the computation
time per iteration has to be small. Consider first a feasibility iteration, and let ¢

denote the flop count. From the previous chapter, the constraints are of the form
lbiSCInViSUbia i=17"'ata

where t denotes the number of specified input-output time domain constraints, and
V' is an upper triangular Toeplitz matrix. Since the number of flops for such it-
eration step, is essentially given by the number of flops required for evaluating the
constraints,
cf o~ nt.

On the other hand, function iterations are much more computationally demanding.
Note first, that the evaluation of W(-) at each iteration requires o(n3) flops, while
both Wi(-) and W(-) can be stored when the algorithm is initialized and require
no further calculations (except for the update of the vector dn). Moreover, the
computation of a vector in the generalized gradient depends linearly on n for Wj(+)
and W;(-), but requires o(n?) computations for W(-). The number of flops required
for the computation of the eigenvalues of a symmetric matrix is smaller that the one
required for an SVD computation, p(W;), and hence the best choice for the objective
function is ¢(qn) = p(Ws(an)).

It is well known that the computation of the eigenvalue decomposition for a sym-
metric matrix requires o(n?®) flops; with a cubic growth in the cost of each iteration,
the optimization algorithm becomes very slow for problems with a large number of
variables. Indeed, with more than 60 variables the behavior of the algorithm deterio-
rates rapidly, and hence an alternative algorithm for computing the largest eigenvalue
was pursued. Following the reasoning in [54], section 6, the extended QR algorithm

is inadequate for this task since a) only the largest eigenvalue are of interest and
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b) matrices will not differ much from iteration to iteration after the first few. In
[54] subspace iterations were selected as the appropriate algorithm for computing
the eigenvalues and eigenvectors, because the computation of the descent direction
requires a complete description of the generalized gradient and hence of the subspace
associated not only with the largest eigenvalue but also with every other eigenvalue
in a neighborhood of the largest one. Subspace iterations generalize the idea of the
power iteration, and are adequate to deal with problems that have a cluster of eigen-
values close or equal to the largest one and a good separation between eigenvalues
otherwise. The separation of the eigenvalues is a critical issue, and has to be treated
with great care [54]. In the time-domain constrained He, problem, it is usually the
case that a large number of eigenvalues have absolute values close to the maximum
one, and no clear separation between “large” and “small” eigenvalues exists. The
unconstrained case is the extreme example of this behavior, having n + 1 eigenvalues
equal to the maximum. The existence of large dimensional invariant subspaces asso-
ciated with a cluster of large eigenvalues implies that subspace iteration may become
too costly.

In the previous section, it was shown that the EA requires, for each function
iteration, one vector in the generalized gradient. This is equivalent to having a good
estimate of the largest eigenvalue, since an eigenvector may be then recovered using
an inverse iteration. From this eigenvector, a vector in the generalized gradient may
be computed using Formula 4.1-2. The vector-Lanczos iteration [55,14,31] appears
to be the best choice for this purpose because of its fast convergence rate, even in
the unfavorable case of matrices with a cluster of largest eigenvalues. In contrast,
the power method [31] is not useful for the present problem because it converges
quickly if the ratio |A2/);] is sufficiently smaller than 1, where A; and )y denote the
largest and second largest eigenvalues (in absolute value). Lanczos iteration consists

of two steps: a) computation of a reduced tridiagonal form, and 5) computation of
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the largest eigenvalue and associated eigenvector for the reduced form. The following

is an algorithm for reducing to tridiagonal form, taken from [31].
Algorithm 4.2 Reduction of W to Tridiagonal Form.

Step 1. Let w=0; fo=1, 7 =0 and v be a random unitary vector.

Step 2. If Bj # 0 goto 3. Else stop.

Step 3. t =v; w=1v/p;.

Step 4. v=Wuw.

Step 5. j =j+1; aj = whv; v=v—ajw—Fj—1t; B = ||v|2.

Step 6. Goto 2.

The tridiagonal matrix W; is formed by taking the «;’s in the diagonal and the §;’s
in the upper and lower subdiagonals. If convergence has occurred, the eigenvalues
of W, give some of the extreme eigenvalues of W. Several interesting things may
happen to this iteration, and the reader is referred to [55,14] for a detailed discussion.
The vector w in Step 1 may be taken from the previous eigenvalue computation, and
this may help to accelerate convergence if the matrices have not varied too much.
The final implementation was a variation of the above procedure called “Recursive
Lanczos Iteration” [14]. The condition 3; — 0 is associated with the convergence of
the whole reduced tridiagonalization. However, it is possible to stop the algorithm
after a few iterations and check for convergence of the eigenvalues, which results
in a huge saving of computing time. In the case of interest, the matrix W is not
sparse and hence the flop count for each iteration of Algorithm 4.2 is (2n + 8)n.
Computer experience suggests that o(logn) iterations are needed to converge to an
eigenvalue, and hence the total count adds to o(n?logn) flops, which is a substantial
improvement over the o(n3) of the QR method.

An additional advantage of Lanczos iteration over a standard QR algorithm is

that the storage requirement is much smaller. This is a general property of a Lanczos
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algorithm, since it only requires the storage of the f;’s and o;’s, and probably the v;’s
if one wishes to compute the eigenvector of the whole matrix from the estimate of the
reduced one. It is also specially true in the present case, since although the matrix
W1(-) is not sparse, its structure can be exploited to compute the product Wi(-) - w
without needing to store the whole matrix in memory. This saving in memory storage
becomes important for large problems, and in particular when solving the general

instance of the time domain constrained Ho, control problem.

4.6 Starting Point for the EA

The starting point for the ellipsoid algorithm needs not be feasible, because if at
least one feasible point is contained in the initial ellipsoid Fy, then the algorithm
will perform feasibility iterations until no constraint is violated. The algorithm may
then be started from any point, as long as the initial ellipsoid is taken big enough to
contain a solution. On the other hand, from the upper bound 4.5-2 on the number
of iterations required by the algorithm, one would like the initial ellipsoid to be as
small as possible. It then makes sense to start the algorithm from a feasible point
that is cheap to compute and which approximates the optimal solution, so that Ej
may be taken smaller. Of course, in the absence of any analytical result relating the
optimal solution to the approximate one, the initial ellipsoid needs to be defined by
some ad-hoc rule, and hence it cannot be guaranteed to contain a solution to the
optimization problem. Therefore, upon completion of the procedure, it is necessary
to check whether the final point lies strictly inside the original ellipsoid. If not, then
the lower bound computed over the optimal value may not be valid and the algorithm
should be restarted.

Consider the matrix function W,(qn). The natural approach would be to replace
the minimization of ||Ws(-)||2 by ||Ws(:)||F, where || - || F denotes the Frobenius norm.

The solution of the resulting problem provides an upper bound for the function
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of interest, and is usually much cheaper to compute. Note, however, that in the
unconstrained case the solution to the F-norm minimization gives ¢p = ¢ = --- =
gn—1 = 0, which is in general different from the actual solution. Consider instead the

function

¢(qn) = “Ws(qn) - Ws(qg)”%" (4.6 — 1)

where qp denotes the optimal unconstrained solution. The minimization of ¢ yields
the desired solution in the unconstrained case, and by a well known result in pertur-

bation theory,

n+m

Z (0i(Ws(qn)) — Ui(WS(qg)))z < ¢(gn)- (4.6 —2)

i=1
Recall that the matrix is symmetric, and hence o;(Ws(qn)) = [Ai(Ws(qn))|. In
particular, 4.6-2 implies that 7(W,(qn)) < 7(Ws(qh)) + 1/¢(an)- The bound will
not be tight in general, but it becomes tighter if the singular values have similar
values. From its definition,
n—1
$(an) = Z;)(Qi ~¢f)(n — i)’ (46 -3)
and therefore the initial point may be computed by solving a QP problem. Prelimi-
nary numerical experience indicates that this initial point provides a good estimate
over the optimal solution. Typically, ¢ evaluated at the starting point is between 20
and 40 % larger than its optimal value. The estimate is tight for a small number of

variables, but becomes progressively worse as the number of variables increases.

4.7 A Textbook Example

In this section, the tradeoffs involved in the design of a controller for an unstable
plant are studied. The purpose is to design a controller for the uncertain single-input
single-output discrete time system § illustrated in Figure 4.1. The nominal transfer

function is g(2) = 7:%, and the multiplicative uncertainty description is given

z
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by:
§=(14Aw)g (4.7-1)

with ||A]] £ 1 and w(z) = .3705%. Let ty = kgw/(1 + kg). Robust stability
is equivalent to ||tf|loc < 1. The Hoo-optimal controller gives ||t¢|lcoc = .66 but the
response to an impulse on w has an undesirable settling time and relatively large
peak values for both the control action and the output (see Fig. 4.2). The objective
is to study the tradeoff between control action and robustness. The problem is not
one of the simple ones considered in the previous chapter, since the “time” and the
“frequency” transfer functions are different, but it may still be formulated in the
same framework. Let t; = k/(1 + gk) so that u = t;w. Then the objective is to
design an internally stabilizing controller that minimizes ||f||cc in order to achieve
robust stability, and rejects an impulsive disturbance on w while satisfying some
time domain constraints on the control action. Introducing the parametrization of all
stabilizing controllers, the problem may be written as minpe., ||[r— |00 s.t. hn € Q,
with ) defined so that the control action lies in the envelope illustrated in Fig. 4.4.
A feasible control action can attain a peak value of pk during the first 10 samples,
and then has to decay to a tolerable excursion of .03 after the 20-th sample. Fig. 4.3
shows the optimal value of ||t¢||c as a function of pk, with pk = 2.35 corresponding to
the unconstrained response. This analysis clearly demonstrates what is the minimum
possible control effort required to achieve robust stability. For the preliminary design,
a value of pk = .7 was specified, the horizon length was set to 30 and the EA was
stopped when ub — lb/ub < .05, where ub and b denote upper and lower bounds
respectively over the optimal value. Fig. 4.4 shows the output and the control action
for the optimal controller; note that the time response becomes unacceptable once the
constraints are cleared. As argued in Section 3.6, doubling the horizon by itself would
not help in flattening up the overall response, but replacing the optimal controller by

one 5 % suboptimal (i.e., one that guarantees that the norm of the robustness transfer
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function will lie within 5 % of the optimal value) improves dramatically the response
after the horizon, as illustrated in Fig. 4.5. Meanwhile, the Ho norm increases from
.94 to only .95. The time-domain simulations for this design are shown in Fig. 4.6.
In Fig. 4.7, the absolute value of the eigenvalues of W,(gfi®) with qfi® denoting the
output of the EA is plotted, showing a cluster of eigenvalues close to the maximum
one. The controller has 32 states, which is undoubtedly too many for a third order
plant (including the weighting), since it is well known that an unconstrained third
order controller can be easily computed. However, using a simple balanced truncation
scheme, it is possible to reduce the order of the controller to six. Fig. 4.8 shows the
bode plot for the full and reduced order controllers; both controllers produce almost
identical time domain responses and Ho, norm. The poles of the reduced order
controller are located at —.0192 4 ;.8419, —.426 £ 7.1945, —.9309 + ;.2388, the zeros
at —.0053 £+ ;71.0253, —.9159 + 5.341, —.8677 & 5.259, and the gain was —.7004.

In order to give some idea of the computatidnal effort involved in solving the
optimization program, suppose that the first 20 samples are constrained as illustrated
on Fig. 4.4, the remaining variables are chosen to verify a 5% steady-state error, a
5% tolerance stopping tolerance is selected for the EA, and the horizon length is
varied from 30 to 100.  The performance of the algorithm as a function of the
number of variables is summarized in Fig. 4.9, where the number of iterations (in
thousands), the objective function average computing time (in seconds), the initial
point computing time (in minutes), and the total computing time (in minutes) are
shown clockwise from top to bottom. Only function iterations are counted, since
feasibility iterations amount to an average 3% of the total computing time. Note
that, in particular, the computation of the initial condition is cheap compared to the
total computing time. The experiment is not completely fair in the sense that after
the first few, the variables are constrained to lie close to zero and hence the value

they achieve on the starting point is close to their final one. Although in general



117

0 10 20 30 40 50 60
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a faster growth in computing time is expected, preliminary experience indicates a
satisfactory performance of the algorithm as compared to the results obtained using

the approaches in [7] or [59].
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Chapter 5

The General Problem

In this chapter, the general Time Domain Constrained Ho, Control problem is for-
mulated and solved, by using the ideas introduced in Chapter 3, and the results on
unconstrained Hoo-control derived in Chapter 2. After presenting a suitable frame-
work for treating simultaneously time and frequency domain specifications, the time
domain constrained one-block problem is considered. This problem is closely related
to the one considered in Chapter 3, and is necessary for solving the general instance
of the problem. Then, the four-block case is addressed. A result established in Chap-
ter 2 is used to reduce the four-block to a special one-block problem, and then the
preceding theory is applied. It is shown that if the unconstrained problem is solvable,
then a controller solving the constrained Ho control problem exists if and only if
the solution to an optimization problem is less than the specified norm bound. The

computation of a solution and numerical aspects are also discussed.

5.1 Problem Formulation

In this section, the problem of minimizing the infinity norm of a closed-loop trans-
fer function subject to time domain constraints over a finite horizon is formulated.

Consider the basic block diagram illustrated in Fig. 5.1 Here P is obtained from the
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Figure 5.1: System Interconnection

nominal plant and describes the effect of the vectors of exogenous signals w and con-
trol actions u on the vector of outputs z and measurements y. In this model, inputs
w and outputs z do not only include “real” signals (e.g., disturbances, commands
or actual outputs), but also fictitious ones, which can be thought of as connecting
unmodeled system components to the nominal model, and which can be used for
robust control system design. See [7,74] for a comprehensive discussion on the role
of the system interconnection matrix in modern optimal control.

Much of the work in Heo control has been concentrated on finding a controller K
between y and u, which assures internal stability of the interconnection and minimizes
the co-norm of the (weighted) transfer function between w and z. The motivation
for this is that such a controller solves exactly (or approximately depending on the
model uncertainty structure) the problem of robust stabilization and performance
formulated in the frequency domain. In order to extend this framework to include
time domain constraints, it is convenient to split the vector w of exogenous inputs
into two parts: 1) an exogenous input vector, denoted wy, consisting of all input sig-
nals related to time domain constraints, and #7) an exogenous input vector, denoted
wy, consisting of all input signals related to the Hoo optimization. Correspondingly,
the outputs vector z is split into 7) the output signal vector z; on which one wants
to impose some time domain constraints, and ¢%) the output signal vector z; related

to the Heo optimization. Note that it is permitted for some signals to be included
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both in the “time” and “frequency” signals. The purpose is then to minimize the
oo-norm of the transfer function between wy and zy while some time domain con-
straints reflected on the impulse response matrix between inputs w; and outputs z;
are satisfied. Note that in the special case in which the length of w; and z; is zero,
the formulation reduces to the pure H case.

The configuration can be represented by a transfer function P with input vector

(w? w} u')t and output vector (2} z} y*)!, which can be partitioned as

Pii 0 P
P=1 0 Py Py |, (51-1)
P31 P32 Ps3
so that:
2z = Pnwi+ Pisu

zf = Powys+ Pyu
y = Puawi+ Ppws+ P3u.

Now suppose that the loop is closed with a controller K so that v = Ky. Then,

solving for z; and z¢, the closed-loop transfer functions are obtained:

thwt = Pll + P13I{(I - P33.[{)~1P31
Tepw, = Pao+ PsK(I— Ps3K)™ Py

Using the stabilization results in Chapter 2, the sets of internally stable closed-loop

transfer functions are given by:

Tow, = T —T13QT5
Topw, = T2z —T23QT52,

with Q € R
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There are several reasons which make the separation between “time” and “fre-
quency” signal convenient. First, the interconnection between frequency signals usu-
ally includes weights in order to shape the closed-loop transfer functions, which is
not appropriate when specifying the time domain constraints. Remember that it is
permissible for the same signal to be included both in the “time” and “frequency”
signals. Secondly, it turns out that the mathematical formulation of the constrained
problem becomes more clear and easier to implement when the signals are separated
like this. And thirdly, as discussed in Chapter 2, the parametrization above can be
chosen so that Tb3 and T3y are inner and co-inner transfer functions respectively.
This simplifies the formulation of the Ho optimization problem and is assumed

throughout.

Time Domain Specifications

Consider first the time domain specifications. Suppose that for some fixed input
vector of signals w;, one wants to constrain the j-th output of the system so that
the first N samples satisfy some specified bounds. For instance, w; can be the vector
[00 .- wi ---0]* where w} is a step and one wants the j-th output to remain between
some given bounds. By linearity, it is possible to assume, without loss of generality,
that wy is a signal of the form [0 0 - w! ... 0 0]. This observation permits to
simplify the notation, and the general case may be recovered using superposition.

Then:
Tg:wt = t{?l - t{3Qt3'1’

where lower case letters are used to stress that the functions are just scalars and
t{é, t3, denotes row and column vectors with entries t{; and té'l respectively. To

simplify the notation, call
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b=
c = ti,
and let
o0
a = Easz"s
=0
o0
b = stz_s
s=0
(o ]
c = chz"s
s=0
o0
Q = ZQsz—s.
s=0 -
Then:

0 k r
a-bQc = Y (ar— 3 b—sQscr_,)z".

k=0 r=0 s=0
In particular (@ — bQc)y = aj — Zf=0 > 5=0 Or—sQscr—, implying that convex (linear)
constraints on the input-output Markov parameters translate into convex (linear)
constraints on the Q’s.

Let Qn = [Qo -+ Qn—1] denote the matrix formed by the first n terms of the
expansion of ). Then, 5.1-2 implies that the time domain constraints considered in
this section translate easily into constraints on the matrix Q. The set where Qp
must lie in order to satisfy the time domain constrains is called Q®. See Chapter 3

for an example when all transfer functions involved are scalar.

Frequency Domain Specification

Consider now the transfer function between wy and zy. Then, Equation 2.4-15 gives

1Tz lloo = s (5.1 —2)
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where G = g:z g: is a stable transfer matrix depending on P. Recall that 5.1-2
is called a four-block problem [19], but if G1; = G2 = G21 = 0, then 5.1-2 is called a
one-block problem. The former problem is substantially more complicated, and hence
the latter is considered first. Note that the case studied in Chapter 3 corresponds to
a scalar one-block problem. The frequency domain specification considered is of the

form

G G12
G G — Q7

where « is some performance level. It is well known that a number of control design

<%

—_ 9

(5.1 — 3)

specifications may be translated into a constrain like this one. In the one-block
case, it is straightforward to compute the optimal value for «; in the four-block case,
this is no longer true, but necessary and sufficient conditions for the existence of a
@ € R'H satisfying both 5.1-3 and some time domain constrains may be considered
instead. Given a set of constrains 2 and a v > 0, there may or may not exist a stable
transfer function @) that simultaneously satisfies the frequency domain constrain and
Qn € Q™. For instance, the problem would certainly be infeasible if 4 is taken smaller
than the unconstrained optimal minimum. Therefore, the time-domain constrained

Hoo-control problem may be formulated as:
Find Q(z) € Hoo so that 5.1-8 is satisfied and Qn € Q™. (TDCHw)

If one is interested in the optimal case, i.e., determining the minimum + for which
Problem TDCHso has a solution, then one can follow the usual unconstrained pro-

cedure, by iteratively adjusting v to get as close to the optimal value as desired.

5.2 The One-Block Constrained H,-Control Problem

In this section, the solution to the time domain constrained H, one-block control

problem is studied. For notational simplicity, it is assumed that G is square with [
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inputs and [ outputs. The results here extend those derived for a SISO problem in

3, and are required for solving the four-block problem.

Al|B
Let G = (—l—) € RHoo, and suppose that some Qf = [Qo @1 -+ Qn-1] of
cC|\D

appropriate dimensions is given. Consider the system defined as:
n—1 .
G(z,Qn) = 27"[G(2) = 3 Qi='], (5.2-1)
=0

and let ¢(Qn) = ||G(2; Qu)||#- Then:

Theorem 5.1 With the previous notation,

a) There ezists Q(z) € RHoo such that Qn = Q} and ||G(2) — Q(2)~|lo < 1 if
and only if p(Qn) = [|G(2,Qp)llx < 1.

b) There ezxists an internally stabilizing controller solving Problem TDCHco,
with G = Gap and v =1 in 5.1-3, if and only if minqueqr ¢(Qn) <1

Proof: It follows from the proof of Theorem 3.1.

Consider the realization for 5.2-1

A BE!| 0
.| Ae| Be
G(5Qn)=| 0 Af |E, | = , (5.2 —2)
N Ce | De
¢ Qa0
where Qn = [Q} QY --- Q% _;], and let X, and Y. denote the controllability and

observability grammians of 5.2-2. Let

Yy = [A'YB A®YB ... A™YB|
Yilz — [Ct Atct An—lct]
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[ B'YB  B'AYWEB ... BiA-Dtyp ]
. B'Y AB :
Yy, =
| B'YA~'B ... ... B'YB |
[0 BiCt ... BtA(-2tct ]
1 _ o
Yy = Biot
-O 0 |
Q) Q@ - QL
o - |0 Q) - QL
n - . . . .
0 0 0 Q

Then X, Y, and ¢(Qn) can be computed as in the following theorem.
Theorem 5.2 With the previous notation, the following results hold.

a) The grammians for 5.2-2 have the form:

[ X 0
0 I
L v (V8 - ¥4, 20) |
€ - 9
(Y - YhQ) YR — Y0, — QLY + 040,

therefore, if

0 _x)/llzgn

—(YQn)'z —Y}Qn — QLY + QL Qn
(5.2 = 3)

zYz zY5 }

0t 0
Yigz Yy

W(Qn) = [

then o(Qn)? = p[W(Qu)].
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b) Let
[ yA"z CA"lz CA™ %z ... ... CAz Czr |
yA" 1B CA"?B CA" 3B ... ... CB -Q}
yA"?B CA" 3B CA"™B ... ... —-Q} -0}
Wi(Qn) = . . ; . . . o . !
yAB CHB -Q} cee e —QE_, —Qt_,
| yB -Q} -Qt o o —QL, —QL_y |
(5.2 —-4)

Then ¢(Qun) = T(W1(Qn)).

Proof: Part a) follows by exploiting the structure in the state-space realization 5.2-2
for solving the Lyapunov equations satisfied by X, and Y. Part b) can be obtained
by factorizing W (Qn). The calculations are similar to the ones issued in the proof

of Theorem 3.3.

O

By the previous discussion, one has first to find Q}, that satisfies ¢(Q}) < 1 —this
is done by solving a convex minimization problem in Qu— and then to find a solution
to the “standard” one-block Heo minimization problem ||G(-,Q}) — @ llo £ 1 —
this can be done, for example, by using Theorem 2.9. Then a solution to problem
TDCH can be computed as Q(z) = Z?;OI Qiz" 4+ z27™Qq(2). This procedure
has some disadvantages. First, if G has degree r, then G(z;Qn) has degree In + r
and therefore one needs to manipulate large matrices in order to compute Q(z).
This makes the computation time-consuming and potentially sensitive to numerical
errors. Moreover, one would expect following Theorem 3.4, that the In poles at 0,
which are fictitiously introduced to formulate the problem, should be non-minimal.
Unfortunately, the proof of Theorem 3.4 does not extend to the multivariable case.

Moreover, the proof does not provide a constructive way for cancelling the non-
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minimal modes. The following theorem gives a realization for Q(z) = Y74 Q;z~* +
27 "Q4(z) of order r + nl that circumvents these difficulties.
Theorem 5.3 Assume that Qpn = [Qo - -+ @Qn—1] is such that p = ||G(z; Qn)||lg < 1.
0

Let z, = ’ , Ye = Yel/z, and

0 I

AQ - Ae - BeCQ

[ AXC! - BQo
-1

_Qn—l
Dq

where Cq satisfies
Co(I — XeYe) = —DgCe + BlY. A,

and Dg = —E%), where Ep is such that the matriz

Acz yBe
Da = Y Y (52 — 5)
Cer FEp
is a contraction. Then
A B
Q= L (5.2 —6)
0 —Ef] | Qo

is such that Q@ € RHwo, |G — Q|loc £ 1 and the first n terms in the expansion of Q)
are Qo, Q1,++, Qn-1.

Proof: The first step is to find explicitly an optimal approximation to G(z;Qn).
Applying Theorem 2.9 to realization 5.2-2, compute

A B 0
Ag=Ac—BLg=|0 0 I (5.2 —7)
—Co '
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and
- -
AXC'— BQq
-1
B A BE!} X 0 C? 0 D )
Q= —_ Q= :
0 Ay 0 I —Qp! E, 0
—Yn-1
L Do ]
5.2 — 8)
Ag | B
Let Q¢ = 2179 |. then Theorem 2.9 implies that IG(2; Qn) — Qi(2)]|eo < 1.
Cq | Dq

As stated above, a solution to the constrained one-block problem can be computed
as Q(z) = Y74 Qiz~'+27"Q1(2), and therefore Q(z) has the state-space realization
(see 1.2-6):

( o ] )
A; E.Cq Q’
Q= ] (5.2 —9)
| Do |
0 Ag Bg
\ Ef 0 Qo )
. .. . . Inl [ 0 Iy }
Applying the similarity transformation (recall that r denotes the
0 Inl+r
dimension of A) to 5.2-9
(Af [0 Inz]AQ—Af[O Inl]+EnCQ 0 )
AXC' - BQo
—@1
"Qn—l
Dq
Ej —[0 Ef] Qo )
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Using 5.2-7 it is easy to see that:

[0 Inl]AQ—Af[O Inz]'l'EnCQ

oo 00 I 000 | _
~Cq 000 Co ’
and thus ) )
( AXCt—BQo | )
-1
Ag
Q:
_Qn—l
Dq
\ —[0E7] Qo )

This concludes the proof.
O

In standard He, optimization, the multiplicity of the largest singular value associ-
ated with the Hankel norm is generically one. As discussed in Section 3.5, in the
constrained case the multiplicity can be much larger. For the limiting case in which
the constraints are not binding, it was shown in 3.5 that the multiplicity increases
as much as the length of the horizon. A similar property can be established for the

general one-block case.

Behavior of the Overall Response

The main idea behind the approach for solving Problem TDCH, is to constrain
certain closed-loop responses to specific input over a finite horizon, and hope that the
“tail” of the time response, computed as a solution to an unconstrained Hu, problem,
will behave nicely. From the discussion in Section 3.6, it is possible to select a sub-

optimal solution to enforce a good behavior after the horizon, by using the following
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procedure which has the effect of placing the closed-loop poles inside a disk of radius
strictly smaller than one. First introduce the change of variables z — z/p, p > 1 in
the original transfer matrix. Then compute a constrained suboptimal solution for the
transformed system (for instance, the central or minimal entropy solution). Finally,
transform the controller back by reversing the previous change of variables. Note
that the time domain constraints must be satisfied by the final controller and not
the intermediate one, and hence the constraints for the optimization problem should
be scaled accordingly. It is easy to see that this scheme places the closed-loop poles
inside a disk of radius 1/p and that the largest singular value of the corresponding
W1 matrix provides an upper bound over the closed-loop norm. The fact that all
poles have an absolute value less than 1/p for some p > 1, introduces a damping on
the time domain responses that can be used to prove that if the horizon is extended
long enough, then the satisfaction of the constraints over a finite horizon implies the
satisfaction of the constraints for all times (see Theorem 3.7 for a formal proof and

further details).

5.3 The Four-block Constrained H-Control Problem

In this section the four-block constrained Hoo-control problem is considered. The
main idea is first to reduce the four-block problem to the one-block case by using the
procedure in Section 2.8, and then apply the results for the constrained one-block

case derived in Section 5.2.
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5.3.1 Problem Transformation

Consider first the frequency. domain specification 5.1-3 (recall that v = 1). Let G

have a state-space realization

my1 mQ
Al B B
G = | i . (5.3 —1)
Ci|Dn D2 | m

Co|Dyn O D2

G

Assume, as in Section 2.8, that max {”Gn G12|00s } < 1. Note that this

Gan
assumption holds if the unconstrained optimal norm is strictly less than one; since

one expects that the constrained problem will usually achieve a minimum norm

strictly larger than the unconstrained one, the condition will usually hold (unless

an unconstrained solution satisfies the time domain specifications). In order to re-

duce the problem to the one-block case, consider the discrete-time algebraic Riccati

equations associated with the pencils 2.8-14 and 2.8-15 with positive definite solu-

tions X and Y respectively. From Theorem 2.11, there exist a @) € RHoo such that
Gu G12

Goar G2 —Q~ |
defined by 2.8-9, 2.8-11, 2.8-8 and 2.8-10:

< 1if and only if p(XY) < 1. Let B3, C3, D3 and D33 be

Dis = (I-DyuDi — D1y — CLXChHY?
B3 = —(AXC}+ B1D}, + B:D},) D1y

D3y = (I— DY Dy — DDy — BiYB;)!/?
C3 = —D3(BIYA+ D} C1+ DL Cs).
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By the previous assumption, these matrices are well defined. Let G, be

A| By By B3
C1|Du D1z Dis
Co|Dyy O 0
C3|D3; O 0

and consider the one-block problem associated with G,.

(5.3 —2)

By Theorem 2.10 and

Corollary 2.8, there exists a solution to the four-block problem if and only if there

exists a solution to this one-block problem of the form

Q, Q23, @32, @33 € RHe be such that

Gu G2 G13

Gy Gn-Q~ Gu-Qn| =1

G311 G322 — Q% Giz— Q35

0 0 0
0 * % |. Let then
0 * =
(5.3 —3)
G13(z)

G23(z) — Q32(2)~
Gs3 — Q33(2)~
G13(2)
G2z — Q3

Note that, for z such that |z| =1,
G11(2) G12(z) G13(2)
| Gu(z) Gnl(z)—Q(2)” Ga(z) — @32(2)~
Ga1(2) Ga2(2) — Qas(2)” Gas(2) — Qss(2)”
(| e Gal?)
=7 || Ga(z) Gn(z)- T Qs T2 Qlyn?
> _ Gs1(2) Gaz(2) — TiTg Qa2 — 2" T2 Qb i4n?’
G1(z) Gi2(z)z™"
=7 || Gaa(z) (Ga(z)— T, Qlz ’)Z_" Qi(2)~
\| Ga1(2) (Gaa(2) — i } Q43:2')27" — Qaai(2)™ Gas(2) — Qas(2)™

Here Q¢(2) = 320 Qitnz™", Q23t(z) Yo Q23i4n2 —i and the last expression is

obtained from the previous one by multiplying on the left by the unitary matrix
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M1
0 z—o"I 2 . Since equality holds for every z such that |z| =1,

| o 0 I

G G12 Gi3 Gu T G13(z)
Ga1 Ga2— Q7 Gaz — Q7 = || Gaa  G2(;Qn)—QF G2 — Q3
Gs1 Gs2— Q% Giz3— Q3 . G31 G32(;Q23n) — @23 G33 — Q33 o

where G = G12(2)z™" , Gaz(+; Qn) = [Ga2(2) — T}y Q¥z'lz™" and Gz (5 Qaan) =
[Gs2(z) — T05) Qt23,,izi]z‘". These calculations and Theorem 5.1, establish the fol-

lowing result.

Theorem 5.4 Suppose that Q;, i =1, 2, ---, n — 1 are given. Then there exist

Qi, i=n+1, n+2,--. such that Q(z) = X2, Qiz~" satisfies
Gu Gi2
Ga G2 —Q(2)™ | B

if and only if there exist Qa2an = [@23,0, - Q23,n—1] such that ©(Qn;Q23n) < 1,

where

<1

k)

¢(Qn; Q23n) = ||Ga(Qn; Q23n)”H (5.3-4)
Gu T G13 ‘
= || Ga1 G22(;Qn) Gaz | - (5.3-5)

G31 G32(-;Q23n) Gs3 "

5.3.2 State-Space Computation of the Objective Function

In this section, an expression for ¢(-) in terms of the state-space realization of G,
and the matrices Q);, Q23 is given, following the formulas derived for the one-block
case. Although the number of variables in the problem has been enlarged by the
inclusion of the ()23;’s, it is possible to show that condition 5.3-3 implies that these

variables are uniquely determined by the Q;’s.
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Consider the realization for G4(-; Qn, Q23n)

(4 BE |B 0 B; )

Ga(;Qn, Q23n) = | C1 Dlef Dy 0 D3 | =
C2 -Qn Dy O 0
\ C3 —Qa23a |Ds1 0 0

0Af0E,,o(

A.| B
L=, (53-6)
C. | D.

where

Qn [Qf) Qtl :z—l]
Q2an = [Qés,o Qtzs,l Qé3,n—1]’

The realization for G, in 5.3-6 is similar to the one in 5.2-2; in fact, by following the
same procedure as in the proof of Theorem 5.2, explicit formulas for the grammians
of 5.3-6 can be found. Let X. and Y. denote the controllability and observability

grammians of G, and let

YY = [(A'YBj;+ C!Dyy) A A'Y By 4 CiDyg) --- AP VYA By + C{D12)]
Y, = [ChAlC .. Al=Dic ¢f AlCy - AlVIC]

0 BLC} BLA'CY.- - - BSAC=DCE BYCE BLAYCY - - - BJA=2iCY
0 0 BiCL ..-BLA3Ct 0 BLCY ---BIACICY

o0 0 - B} 0 0 .- Bl
00 0 - 0 0 0 - 0
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Yy =
BLY B, + Di,D1z BLY(A'Y By + CiDyy) - BSADY(AYY By + CiDyy)
(BLY A + Di,C1)B; BLY By 4+ D%,Do -+« BLA(=3){(A'Y By + C}{ D15)
(BLY A + Dt,C1)A=3)B, (BYY A+ D4,C1)AB, ---  B§(A'Y By + C{D12)
| (BLY A+ Di{,C1)A?) B, (BiY A + D},Cy)A(=3)B, ... BLY By + D%,Ds, ]
(5.3—17)
and
Qb i et
0 o o2
0 14
Qn = t t th (5.3-8)
st,o Q23,1 st,n—l
0 Q%3,0 Qt23,n-—2
0 0 33,0

Lemma 5.1 For G, in 5.3-6,

[ x o0
0 I

—

X, =

Y
Y. =

i (Y — YhQn) Y3 — YhQn — QLY + Q1 0n

(Vs — ¥12Qn)

Y

where X and Y are the stabilizing solutions for the pencils 2.8-14 and 2.8-15 respec-
tively. Let Wo(Qn, Q23n) be defined by

I/VO(Qm Q23n) =

then ‘P(’> ) = p[WO('7 )]

zYz
(Y - Y5LQn)lz Y3y — Y Qn — QLY + QL 0,

(¥ - Y1z 0n) } . (53—9)
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Proof: A procedure for finding the formulas for the grammians was discussed above.

The expression for ¢ holds because ¢(-,-) denotes the square of the Hankel norm of

G’a(.; . )

O
Lemma 5.2 Let Wi be defined as:
yA"z  yA"'By yA" B, yAB; yB;
C]An_lx C]An_sz ClA"_3Bz C1B> D19
C]An—zw ClAn—3Bz ClA"—4Bz Do 0
C1Azx C1B; Ds9 0
C].’E D12 0 0
CzAn"'ICL' CzAn—sz CzAn"?'Bz Cy By —Qa
CQA"_ZSL' CzAn-3Bz CzAn_4Bz —Qt —Qt
W1(Qn, Q23n) = _ . . . !
CyAzx Cy B, —-Qf) "Q%—z
Caz -Qb —-Qi —Qh—s
CgAn-l.’lt C3A""2Bz C3An_3Bz C3B, —Qt23’0
C3A™ 2z C3A"3B; C3A™'B, —Qb0 —Qb
Cs3Azx C3 B3 “Q%g,o “"Q%3,n—2
i Csz —Ql30 —Q%3,1 ~Q%3n-1 ]
Then
©(Qn, Q23n) = E[Wl(Qn, Q23n)]2 (5-3 — 10)

Proof: Using the equations and remarks in Theorem 2.10 and after some algebra,

one gets W = W}W; and therefore the proof follows.
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The expressions for the objective function obtained so far, depend on the original
variables of the problem and on the @23;’s that were introduced in the transfor-
mation of the problem discussed in the previous section. However, the structure of
the problem imposes constraints on the value that the Q23;’s can take, once the

Q;’s are fixed. To see this, recall from the remark preceding Theorem 2.10 that
Gu
[ Gy, Gy Gm ] G | = I. Therefore, condition 5.3-3 implies that:

G31
G12
[ % G G;l] Gp-Q~ |=0 (5.3 —11)
G32 — Q%

and hence Q3 = (G31)7 GGz + G51(Ga2 — Q™)) + G32. More specifically, the
following result holds.

Lemma 5.3 The auziliary variables Qs, i = 0,---, n — 1 satisfy the recursion
Qbso = D3 (BiYB:+ Diy D12 — D}, Qp)
Qbs; = D37 (B{A"Y B, + B{AU"D'CI D1y — D}, Q)

i—1 . .
— 3 BIAGTIYCLQL + C1Qbs )

J=0
Ezplicitly,
) ) i—1 . )
Q23 = [BYY Al3B1 + D, C13AL3B1 — QoDa1 — 3 QjCas Az~ Bl Dy}
J=0
where A1z = (A—B1D3_1103), Ci3 = (Cl—D11D3—1103) and Coz = (Cz——Dle;ll Cg).

Proof: See Appendix.
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Remark: By the remark preceding Theorem 2.10, A;3 is stable and therefore the

recursion is stable.
Using the result in the Lemma, it is straightforward to write Q23n as a linear
combination of the Q;’s, and therefore to rewrite matrices W and W as functions of

Qn only. The following theorem gives an alternative objective function, that depends

only on the original variables of the problem.

Theorem 5.5 Let

‘W%“Qn)z
yArz | yA"'B; ---yABy yBi| yA"'B, yA" B, -.- yAB, yB,
ClA”“lx ClAn"zBl cee C]Bl D11 ClAn‘sz C] An—3Bz voee ClB2 D14
ClAn_2il¢ ClA"’_BB] .-« D11 0 Cl An_3Bg ClAn_‘iBz s .D12 0
Ciz D11 o -.- 0 Dis 0 0 0
CQA"‘-I.’L‘ CQA"_2.31 -+« 9By Doy C;)An_2Bz CzAn—sBz <o 9By —Qa
C2An_2il' CzAn_3B1 .« Doy O CzAn_3B2 CQA"'—4B2 oo —QB —Qi
i Coz Dy o --- 0 "’QB _Qtl _Qt2 T fn—l) i
(5.3 12)
Then p(Wy) < 1 if and only if (W) < 1.
Proof: See Appendix.
O

With a slight abuse of notation, let Wy(Qpn) and W1(Qn) denote Wo(Qn, Q23n(Qn))

and W1(Qn, Q23n(Qn)) respectively. Theorem 5.6 summarizes the results as follows.

Theorem 5.6 Consider the problems

po = min p[Wo(Qu)]
p1 = _min F[Wi(Qu)]

Qnen



142
po = Qf;lé%nﬁ[Wz(Qn)],

and assume that Q" is a convexr set. Then:

a) There exist a solution to Problem TDCH if and only if either one of the

i ’s is less than or equal to one.

b) The minimization problems defined by the p;’s and OV are convez.

5.3.3 State-Space Formula for a Solution

Theorem 5.6 shows how to check whether the four-block constrained Heo-control
problem has a solution (i.e., g has to be less than or equal to one), and how to
calculate the first n terms Qq, Q1,---,@n—1 of the expansion of such a solution.
With this Q;’s, and the corresponding ()23,’s computed using Lemma 5.3, Theo-

rem 2.10 can be applied to compute a solution Q4 that solves the one-block problem
0

|Ga(+; Qn, Q23n) — @atlloo < 1. Taking the compression Q¢ = [ 010 ] Qat | T |,
0
gives Q(z) = £ Qiz ™" + 27" Qy(2) solves the four-block TDCHoo problem. Theo-

rem 5.3 can be extended to obtain a realization for Q(z) without the fictitious poles
at zero introduced in the formulation of the problem. To see this, consider again
the realization 5.3-6 for G, and suppose that a solution to the one-block problem is
computed by using Theorem 2.9. From Theorem 2.10, and in order to get a solution

to the four-block problem, take

Diy1n 0 Dy
Ep=| Dy Ex E
D31 E3 Ess
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for some E;j, 4,5 = 2, 3 that make

Bl 0 -B3 -
YeAeTe Ye Ye Ye
0 E, 0
D, = [ C1X Dy E! ] D1y 0 Da3
[ CoX —Qn ] Dy Ey; Ez3
[C(;X —Qa23n D3 Ess Es33
a contraction. Here z, = ¢ and y. = 61/2. Let Qq¢ be such that ||G4 —
0 I

Qatllo £ 1 and let

AQ Bg, Bg, Bg,

Ag | B Co,| 0 0 0
Qat‘-"( < Q)= o : (5.3 — 13)

CQz 0 —E§2 “‘E§2
CQa 0 —Eﬁz “E§3

with Ag, Bg and Cg constructed as in Theorem 2.10. Using the definitions of
Cs, B3, D13 and D31, and Equation 5.6-1 in the Appendix, it is straightforward to
verify that Cg, = 0 and Bg, = 0. Moreover, from 2.6-27

C C C
Ll a-xy)=| ® " |1-xy)= (5.3-14)
CQa CQ31 CQsz
C] Dlef
0 EY Ei ] 0 E! A ByE!
Di; Ei; Ej A Bf 0 0 Ay
Cs —Q23n

and from 2.6-23
A — B3Cqs, BZE{ - B3CQ32

Ag = 0 [0 1] (5.3 — 15)
_CQ21 _Csz
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and
o [ Ax BEL || o} Bi 0 Bs
Q = .
ol e A || -G 0 En
[ AXCY — BLQo + B DY, + B3El; |
—@1
_ —Q2
_Qn—l
I B3y ]
0
Taking Q¢ = [ 07 0 ] Qat | I | gives
0
t=[ ) Bo,
[CQ21 CQ22] _E52

(5.3-16)

(5.3 —17)

and therefore if Q(z) = S Qiz™* 4+ 27 "Qu(2), Q(#) has a state-space representa-

)

tion: i i
Q1
Q2
Ay Ep[Cg, Cg,l :
Q= 0 Aq Q!
| —F2 |
7 Bq,
l E! 0 J Qo

0 I

o]
Taking the similarity transformation |:

establishes the following result.

(5.3 —18)

} as in the proof of Theorem 5.3,
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Theorem 5.7 Suppose Q;, i =0, 1, ---,n— 1 are such that 7[W2(Qpn)] < 1. Let

_ A— B3CQ31 B2E{ — B3Cqs,

Ag = (5.3 — 19)
_EnCQn Af - EnCsz
and
[ (A — BsD5}C1)XCY — (B + BsDi3 D12)Qo + (Bi + Bs D3 D11 DY) |
-1
-Q2
BQz = )
_Qn—l
! Ej ]
(5.3 — 20)
Then,
A B
Q= ¢ 2 (5.3 — 21)
- [ 0 Et J Qo
is such that
G G
11 12 <1
Gar G —Q~ ||

Moreover, Q € RHoo and Q(z) = 20 Qiz™" + 27 "Qu(2), where Q € RHoo.

A bound on the order of a controller that solves the problem is not hard to derive.
For simplicity, assume that the frequency domain condition 5.1-3 holds with strict

inequality.

Theorem 5.8 Let P be an m-th order plant, and suppose that there exist an in-
ternally stabilizing controller solving Problem TDCHyo over a horizon of length n,
under the additional conditions cited above. Then there exist an internally stabilizing

controller of order at most In + m that solves the problem, with | = min(ma,p2).

Proof: Let K;4. be a controller solving Problem TDCHo,. From Theorem 4.1 in [39],

all controllers that satisfy the Ho norm bound (but not necessarily the time domain
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constraints) can be parametrized as K = Fi(Ko,Q), where @ € RHco, [Qlo < 1,

and K, has a state-space representation:

Ak | Bk1 Bk
Ko=1 Ck1|Dku Dkiz | (5.3 —22)
Ck2|Dga1 O

where Ax € R™*™. In particular, there exist Q4. € RHoo, ||Qtdclloo < 1 such that
Kiie = Fi(Ko, Qiac). Assume that I = mg < pz. Let Q3. (2) = T2, szi, and

consider the transfer matrix Qp, = 27" Ef‘;:ol szi. Then, @}, is stable and has a

realization:
As | En
Q?dc = A
Qu| O

with Qn = [Qo Q1 --+Q@n-1). By construction, there exist Q¢ € RHeo such that
1Q%, — @7 llo < 1. Moreover, from Theorem 5.3 there exist a Q1dc, ||Qtdc|[°o <1,
such that Q4. = Z:':ol Qiz™' + 27 "Qu(2) and Q14 has a realization with In states.
Taking IA(tdc = Fi(Ko, Qtdc) then establishes the result.

5.4 Numerical Computation

From the approach to the time domain constrained Hoo-control problem presented in
the previous section, a solution can be computed solving essentially the same convex
minimization problem as in the SISO case, except that the number of variables and
the cost of computing the objective function are [62]. This was extensively discussed
in Chapter 4. Theorem 5.6 shows that in the four-block case, it is possible to choose
between minimizing the largest eigenvalue of Wy or the largest singular value of
Wi or Wy. In order to compare these alternatives, the following estimate of the

computational cost is useful.
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Lemma 5.4 If A € R™*", the cost associated with an eigenvalue Lanczos iteration
is (2k + 8)n flops, were k denotes the average number of non-zero elements per
row. If A € R™ ", the cost associated with a singular value Lanczos iteration is
4n2 +5(m+n), where ng denotes the square root of the number of non-zero elements

i A.

Proof: See [31].

O

A comparison of the efforts involved in the computation of the largest singular value
for Wi and W5 shows that, if the sparsity pattern is taken into account, then the flop
count for both cases is approximately the same. Since the latter does not require the
computation of the auxiliary variables Qa3n, a task that requires o(n3) flops, it is

preferable over the former. For W5 in 5.3-12, and with the notation of the lemma,

2
Ny

= (p1m1 + pima + szl)n2/2 + 1Dzmzn2 + rn(my + mg + p1 + p2).

Hence the Lanczos iteration flop count for the computation of the largest singular

value of W5 is approximately equal to
feso = 2n*(p1m1 + pima + pami + 2pama) + (5 4 r)n(m1 + ma + p1 + p2).

On the other hand, the Lanczos iteration flop count for the computation of the

spectral radius of W is approximately equal to
feew = 2(r + p2n)? + 8(r + pan).

Based solely on this flop count, the largest eigenvalue of W is to be preferred over
the largest singular value of W. However, two additional facts should be considered
before discarding the second objective function. First, note that the computation
of W requires o(n®) flops (note that using Lemma 5.3 it is possible to write W as

a quadratic function of the @;’s alone) and the evaluation of a gradient requires



148

o(n?) flops. On the contrary, W is available and requires no computation, while
the evaluation of the gradient is linear in n. Second, the storage requirement for
W, is approximately rn(mi + mg + p1 + p2) + n(pimi + pima + pam1 + 2pama),
while that for W is rnmga + n®m2/2. This is because the symmetric matrix W
needs to be stored but the product of Wa or its transpose and a vector can be
computed if yA™z, yA'By, Cin:c, CjA‘Bk, Qi are stored, in the memory, with
i=0,---,n—1, 7=1, 2, k=1, 2. This suffices for computing the largest
singular value using vector Lanczos iterations, that were found to be the convenient
choice in [62]. From these observations, the most efficient objective function will also
depend on the implementation and on the actual system in which the computations
are performed.

Given that the aim is to reduce the value of the objective function below one,
it is not necessary (or even desirable) to wait until the optimization algorithm has
converged to a minimum. In principle, one can stop the iterations when the condition
is met, but it is useful to perform some additional iterations and try to obtain a
further reduction on the value of the objective function. This guarantees that the
condition is met even in the presence of numerical errors. Recall, for instance, that
the Lanczos iteration gives an approximation to the actual value of the objective
function, and numerical experience has shown that the discrepancy can be relatively
large (sometime close to .5 %) if the matrix has a cluster of largest singular values
or eigenvalues. Moreover, from Equation 5.3-14, it is convenient to have X Y, < I

to facilitate the computation of the optimal approximation.

5.5 Example

Consider again the example described in Section 4.7, and suppose that the bandwidth
achieved there by the constrained optimal controller is unacceptable. In order to re-

duce it, the weighted infinity norm of the transfer function between w and z is penal-
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ized, thus adding a new objective to the robust performance problem. The weighting
function selected is a high-pass filter W}, with cut-off frequency 2.5 rad/sec. and
frequency response magnitude illustrated in Fig. 5.2. The first approach would be to
minimize the Hoo norm between inputs w, u; and outputs y2, y; in the configura-
tion shown in Fig. 5.3. This gives a four-block problem with an unconstrained Ho,
optimal of 1.6, and therefore it is not clear whether the specifications can or cannot
be met. Note, however, that the aim is not to minimize the above objective function,
but rather to jointly minimize the Hoo norm of the ‘transfer functions between w and
y2 and between u; and y;. Instead of trying to solve this hard problem for which no
closed-form solution exists even for the unconstrained case, one can attempt to mini-
mize the structured singular value of the problem, by performing some D-K iterations
[4]. In the example, after designing one Hoo controller and computing the D-scalings
associated with the closed-loop, the value of the optimal H, norm reduces to .8 and
hence the scaled plant may be used to attempt a design, using the same time domain
specifications as in Chapter 4. In Fig. 5.4, the frequency response of the resulting
controller is illustrated, showing that the objective of reducing the bandwidth of the
controller has been achieved. It is apparent that a simpler controller, i.e., one with
less than 6 states, may suffice to satisfy the time domain constrains and achieve
robust stability. Indeed, the controller may be reduced to third order, with poles at
.0426 + 7.8059, —.0925, zeros at .0213 £ 5.9398, —.8315 and a gain of —.6909. This
controller yields an Heo norm from wuy to y; of .97, with a time domain response
shown in Fig. 5.5. During the course of the optimization, the objective function
became less than one after 15 iterations. The ellipsoid algorithm was stopped one
hundred iterations afterwards, although convergence was not achieved; indeed, there

was almost 20% difference between the upper and lower bounds.
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5.6 Appendix: Additional Proofs
Proof of Lemma 5.3

Although it is possible to prove Lemma 5.3 by performing the calculations suggested
in the discussion preceding the statement of the lemma, an alternate proof is given

which requires fewer algebraic manipulations, and is based on the following fact.

A Bl A B2
Lemma 5.5 Let g1 = € RHwo, g2 = € RHs, and assume
C|D clo0

that (A, By) is controllable. Then [97°g2]— = 0 if and only if D'C + BiY A.

Proof: Using some standard system manipulations (see [63]), it is not hard to obtain
A | B,
D'C+BiYA| 0

the state-space realization [¢7"g2]— = . By the controllability

condition the result follows.

Proof of Lemma 5.3: Let

G 12
g1 = | Go1 g2 = G22('; Qn) - Q;:v
G31 G32('§ Q23n) - Q;M

From the discussion preceding the statement of Lemma 5.3, ¢7°g2 = 0. This im-
plies that [¢7°g2]— = 0, and hence, by the stability of g1, that [¢7'¢g2]- = 0, where
g2 = [§2]-. From 5.3-6

(4 BE! | B (A4 BE |0 )

0 Af | 0 0 A; |E,
g1=| C1 Di2E! | D1 g2=| Ci Di2El | 0
C; —Qun |Dn C; -Qn |0

Cs —Qasn D3 | Cs —Qaan | 0 )
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A ByE! 0

0 A En
by the previous lemma and using the formula for Y in Lemma 5.1, the condition

It is easy to show that ( is a controllable pair; therefore,
[97°g2]— = 0 implies
[ D.:tll C] + D%lcz + Dglc:?. D.:tllDle{ -_ D§1Qn -_ Dngzan ]

ByE!
0 As

+] Bty BIYS - ¥how |

In particular,
DY, D12 Et — Dy Qu — DYy Qasn + BIY BoE} + BY(Y(y — Y{,Qn)As = 0. (5.6 —1)
Multiplying this equation on the right by E; and using the formulas for Y and Y},,
D}, Dy; — D5,Q4 — D4, Qa5 + BiY B2 =0

Since Ds3 is invertible, the formula for Q95 follows. Multiplying on the right succes-
sively by E;, i = 2, ---,n — 1, the recursion is obtained. The explicit formula can

be computed from the recursion by substitution.

Proof of Theorem 5.5

The proof of Theorem 5.5 is cumbersome because it involves the use of matrices
that are difficult to manipulate (let alone, write down). Instead of giving the general

proof, the case n = 2 is treated in detail.

Proof: Let n = 2. Then

| yA%z |yAB: yBi|yABy yB: |
C1Az |C1B1 Du | CiB: Dy
Wo(Qu)=| Ciz | Du 0 | Dz 0
CyAz | C2B1 Dy | C2By —Q}
| Chz | D 0 | —QF -}
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| yA’z yAB yBi yAB, yB; |
CiAz CiB1 Du C1B: Dy
Ciz  Dn 0 Do 0
Wo=| CoAz C3B1 Dy C2By —Q} |,
Cox Dn 0 -QfF -Q}
C3Az C3B1 Dsi Zu  Zio
| Gsz Dai 0 Zn Zyp |

where the Z;; denote some free variables.

-

1t r

Assume that [W3(Q2)] < 1. Since

yA’z yAB; yB yA®z yABi yBi
Ci1Az C1By Dy C1Az C1By D1
Ciz Din 0 Ciz Dn
CoAzx C9By Doy CyAxz C9By Dgy | =
Coz Dy 0 Caz Dy
C3Az C3By Dgs; C3Az C3B; D3
| Csz Dy 0 | | Csz  Dn |

yXy 0 0
0 I 0 (5.6 —2)
0 0 I

and p(XY) < 1, from a well-known result in dilation theory, there exist Zij’s such

that 5(Wa) = 1. Suppose that the Z;;’s are chosen so that 3(W,) = 1. Then, it
follows from 5.6-2 that [Bly D{; 0 D%, 0 D}, 0] has to be orthogonal to any other

column of W,. In particular,

[ny D} 0 D}y 0 D}, 0]

[ yAB;
C1B;
Dr
C2B;

yBs
D12

-Qt
Z12
22
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Therefore, from 2.8-11 and Lemma 5.3, Z11 = C3B2 and Z12 = —Qt23,0. Proceeding

similarly with the second block column of W, it follows that Z3; = —Qgs,o and
Zgy = —Q}%;3 1. Moreover, after some simple manipulations:
[ ¥z 00 2(Y — ¥, Q2) '
: 0 I0 0
WaWa -
0 0 I 0
| (V% - YHhQ)'e 0 0 Y3~ Y50 — Q45+ Q5Qs |

This proves that W in 5.3-9 satisfies (W) < 1. The converse follows immediately
since W5 is the upper part of W,. The proof for the case of n > 2 can be established

following an identical procedure and it only requires a more elaborate notation.
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Figure 5.5: Time Domain Response: Third Order Controller. Control Action (ful).
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Chapter 6

Solution to a Benchmark Problem for

Robust Control

In the 1990 American Control Conference, Wie and Bernstein formulated a bench-
mark problem with the purpose of highlighting the issues of different robust control
design methods [73]. The system, depicted in Fig. 6.1 and consisting of two masses
coupled by a spring with no damping, is claimed to be a generic model of an un-
certain dynamical system with noncolocated sensor and actuator. It is noncolocated
because the control force acts on body 1, while the position of body 2 is measured.
The problem is interesting since it is challenging and at the same time simple to
describe and with specifications broad enough to allow a variety of design strategies.
It has been the focus of special sessions in the 1990, 1991 and 1992 American Control
Conference, and a special forthcoming issue of the AIAA Journal on Guidance and
Control, where numerous alternative solutions have been given. Assuming that the

measurements are corrupted by some noise, it is not hard to derive the state-space
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representation [73]:

~ - - - - - - - -

Z1 0 0 10 z] 0 0
T2 _ 0 0 01 2 N 0 .t 0 "
T3 —k/m1 k/m; 0 0 z3 1/my 0
| T4 | | k/m2 —k/m2 0 0| |zs] | O | 1/m2 |
y = z2+v,
where
x; = position of body 1.
zg = position of body 2.
x3 = position of body 3.
u = control input.
w = plant disturbance.
y = sensor measurement ( = z3 + v).
v = sensor noise.
z = performance variable ( = z3).

Wie and Bernstein proposed the following design problems:

Design 1. Design a controller with the following properties:

1 The closed-loop system is stable for m; = my =1 and .5 < k < 2.0.

ii For w(?) = unit impulse at ¢ = 0, the performance variable z has a settling

time of about 15 seconds for the nominal system m; = my = k = 1.

iii The measurement noise v(t) is to be characterized by each designer to reflect

realism and practical control design.
iv Achieve reasonable performance/stability robustness.

v Minimize controller effort.
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vi Minimize controller complexity.
Design 2. Same as Design 1, except that in place of i insert:

i Maximize a stability performance measure with respect to the three uncertain

parameters mi, mz, k whose nominal values are m; = mg = k = 1.

Following the framework described in Chapter 5, it is possible to draw the block

diagram illustrated in Fig. 6.2, where the signals are:

w plant disturbance (input).

v sensor noise (input).

u; (for i=0, 1 or 2) fictitious input used to assess robust stability.
yi (for i=0, 1 or 2) fictitious output used to assess robust stability.
y  sensor measurement.

z  position of the second mass.

u  control action.

Define the “time” and “frequency” inputs and outputs as follows:

z
U =W Yt =
u
w z
v Uu

uf =1 uo Yr=1%o

U1l Y1

L u2 J » L y2 .
Note that u is included both as an output and an input so that control actions can
be constrained, and that w, z and u are repeated as time and frequency signals. The
corresponding transfer matrix between these inputs and outputs is continuous-time,

and therefore, in order to apply the results on this thesis, it is necessary to compute a

discrete time model, by adding a sampler and a hold device at each output and input
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respectively. A sampling time of .1 secs was chosen, corresponding to approximately
fifteen times the bandwidth of the open-loop system. This selection also involved a
practical issue, since a smaller sampling time implies a larger number of samples, and
hence larger optimization programs for computing a constrained Ho, solution. An
anti-aliasing filter was included at the output of the plant, and it was checked that
relatively large variations, e.g., 30%, in the sampling rate left the results essentially

invariant.

Design 1

For the first design, the only uncertainty considered is in the value of the spring
constant. In order to treat the problem in the Ho framework, it is necessary to
assume that the uncertain parameter £ lies inside a disk of radius é, in the complex
plane, for each frequency w. This assumption makes the approach conservative, since
the resulting robustness problem is possibly much more restrictive than the actual
one. The first design considered was a standard Ho, one, where the objective was
to minimize the Ho norm between ug and yg. As the continuous time system has
poles on the jw-axis, the discretized version has poles on the unit circle and hence is
not well posed for the Ho, design. This difficulty is overcome in [11] by introducing
a bilinear transform that removes the ill-posedness and provides tunning parameters
that can be adjusted to achieve the design specifications. Similarly, it is possible to
use the change of variables introduced in Section 3.6. If the value p is set to 1.03
(recall that this corresponds to placing all closed-loop poles on a circle of radius
1/1.03), the resulting norm is slightly above one. However, as shown in Fig. 6.3, the
control action is too large to be applicable.

In order to investigate the tradeoff between robustness (as measured by the Ho
norm) and tolerable control actions, several constrained controllers were designed,

with p = 1.001 and a horizon of 150 samples; note that this horizon corresponds to
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the 15 seconds specified for the settling time. Results are summarized in Fig. 6.4g;
the main conclusions is that, modulo the conservatism introduced by treating the real
parametric uncertainty as being complex, a control bound of at least .7 is necessary
in order to achieve robust stability. Similarly, the tradeoff between robustness and
the tolerable excursion of the mass mg was investigated, by fixing a settling time
tolerace of .05 (i.e., at t = 150, the variable z2 has to be within £.05), bounding the
control action by one, and varying the tolerable excursion. Results are summarized
in Fig. 6.4b, which shows that, under the conditions of robust stability and control
action bounded by one, the excursion of the second body cannot be constrained to
be less than 2.7. Unfortunately, this result is not conclusive due to the conservatism
cited above and also because the constrains are largely violated after the horizon
is cleared. From the discussion in Chapter 3, one can attempt to improve the tail
behavior by enlarging the horizon and increasing the value of p. Fig. 6.5 shows the
effect of increasing the value of p on both the result obtained from the minimization
(solid line) and the actual He norm of the transfer function between ug and yo.
Note that both functions are sensitive on p and also the gap between them grows
fast, implying that even for p slightly larger than one, the upper bound obtained by
the minimization can be a poor estimate on the actual value of the norm. As an
illustration, a controller was designed by setting the horizon length to 250 and taking
p = 1.03; the upper bound found by the optimization is 2.3 but the actual Ho norm
of the robustness transfer function is 1.6, giving a 40 % gap between both. If the fact
that the uncertainty on k is real is taken into account, the resulting controller turns
out to be robustly stabilizing. However, the controller has very large gains at high
frequencies, and the resulting control action may then be sensitive to measurement
noise.

In order to produce a design that meets all the specifications of Design 1 (except

for the complexity of the controller issue, to be treated a posteriori), the frequency
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domain objective was modified to take into account the transfer functions between w

t
and z and between v and u, i.e., the weighted transfer matrix between [ w v ug ]

and { z u Yo ]t was minimized. The output z was multiplied by a constant of
.1 to reduce the impact on the overall norm, while the control action was weighted
by a high-pass filter with cutoff frequency of 2.5. The idea behind this scheme is
to improve the behavior of the second body (since displacements are now penal-
ized) and reduce the gain of the controller at high frequencies, thus reducing the
sensitivity to measurement noise. An Hs controller with p = 1.01 was designed,
followed by D-K iterations to make the result less conservative (see, for instance,
[4]). The value of the objective function did not seem to improve after one of such
iterations, giving v = 1.4; the Ho norm of the resulting transfer function between
uo and yo is 1.2 and hence the controller achieves robust stability. Fig. 6.6 shows
that, although the time domain responses were closer to the specifications, they are
far from satisfying the time domain constraints. These, and the time responses to
follow, were computed by simulating the continuous-time system with a sample-data
implementation of the controller; in all cases, the dash-dot, solid and dash lines,
correspond to the displacement of the first and second masses and the control action
respectively. The horizon length was fixed to 250, and after several iterations, it was
found that 1.63 < vopt < 1.65, with v, denoting the optimal Hoo-norm. The norm
of the transfer function between ug and yq for the rgsulting controller is 1.4; however,
the Nyquist _plot in Figure 6.7 shows that the closéd-loop system is robustly stable
for real uncertainty. The displacement of the two bodies and the control action are
shown in Fig. 6.8, while the Bode plot of the transfex;‘function between sensor noise
and control action is given in Fig. 6.9. Note that all the specifications are achieved,
but the order of the resulting controller is extremely high and therefore a procedure
for model reduction was needed. The order reduction problem is not hard, becuase

the controller is stable, and its frequency response seems to be fairly “smooth” (see
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Figure 6.5: Hoo-norm vs. p
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the Bode plot in Fig. 6.10, solid line). It was therefore reasonable to expect that the
established methods for order reduction in the frequency domain, should produce a
low-order controller without any significant effect in the closed-loop behavior. Indeed,
a controller with 12 states was computed using the balanced truncation method; its
frequency response has no noticeable difference with the full order one. Moreover,
since robustness becomes critical only at the low-frequency range, this controller
could be further model reduced, by using the weighted balanced truncation method
and a low-pass filter with cutoff frequency .3 as weight. The resulting controller has
7 states, with poles at .7106 & .5947:, .7252 £ .27362, .8372 £ .3283z, .5531, zeros at
.8368 4+ .7054¢, .8602+.4225:, .9896, 1.041, 10.6446, and a gain of —.4377; its trans-
fer function is shown in dash line in Fig. 6.10. The difference in the time responses

between this controller and the full order one is negligible.

Design 2

The objective of this design is to maximize robustness, assuming that the three
parameters k, m; and mg are uncertain and with nominal values k = m; = my = 1.
In the absence of any further information about the spring or the masses, if Ak, Amy
and Amsy denote the amount of uncertainty, the objective is to design a controller
that remains stable for |Ak| < v, |[Ami| < 1/, and [Ama| < 1/7,, with 4, as small
as possible, while satisfying the time domain specifications. In order to use the Hoo
framework, it was assumed that each A lay on a disk in the complex plane, and the
system with four inputs (the sensor noise v and three fictitious inputs ug, u1, u2) and
four outputs (the control action u and fictitious outputs yo, y1, y2) was considered.
The uncertainty blocks where connected around the fictitious outputs and inputs.
The transfer function from v to u was weighted by a high-pass filter with cutoff
frequency 1, in order to penalize the sensor noise amplification at high frequencies.

After one D-K iteration, the norm of the unconstrained transfer function was found
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to be slightly above 4. Fixing 7 to 5.5, a constrained controller was designed for
a horizon of length 250. The structured singular value of the resulting closed-loop
system was found to be 4.5, suggesting a 22 % tolerable uncertainty on the A’s. If
the real nature of the uncertainty is taken into account, then 1/+; is found to be close
to .3, implying that the system tolerates 30 % uncertainty on the three parameters
before going unstable. The displacement in the two masses and control action are
shown in Fig. 6.11. The transfer function from sensor noise to control action is shown
in Fig. 6.12 and has a bandwidth of 1.5 (or 15 Hz for the continuous time system).
The order reduction problem was not much harder than in Design 1. Using balanced
model truncation weighted by a low-pass filter with cutoff frequency at .8, it was
possible to compute a 6-th order controller with characteristics almost identical to the
full order one, which had 274 states. The poles are located at .4472+.55971z, .6927+
13607, .7940 4 .3337i, the zeros at 7.7097, —.5506, .7151 £ .55961, 1.0543, .9885,

and the gain is —0.2334. The frequency response of the reduced order controller is

shown in Fig. 6.13.
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Chapter 7

Summary and Future Directions

This chapter concludes the thesis summarizing the results and suggesting some future

lines of investigation.

7.1 Summary

During the last few years, Ho-optimal control theory has proved to be a very useful
and flexible tool for designing closed-loop controllers for a variety of applications.
On a typical Heo design session, one starts by taking a number of input and output
signals to a system, for which specifications are to be imposed besides the control
actions and measurements. These inputs and outputs usually include actual signals
and also some fictitious ones that are used to isolate model uncertainty. After build-
ing the transfer matrix that relates the inputs to the outputs, one proceeds to design
weighting functions on these signals so that the minimization of the Ho, norm of the
system, results in the satisfaction of all specifications. Although some specifications,
like robustness against unstructured uncertainty, may be exactly formulated in terms
of an Heo norm, some others can be much more challenging, hence requiring a num-
ber of trial and error iterations with no guarantee of producing a satisfactory result.

In that case, one must conclude that either the specifications were too tight and no
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feasible solution exists or that the process of translating the specification introduced
a new -and undesirable- tradeoff.

The main motivation for the present thesis was to study a paradigm for controller
design, that allows for the explicit specification of time domain constraints in the
Hoo-optimal control formulations. These constraints are treated ezactly, i.e., it is not
necessary to translate them into the frequency domain, and therefore the approach is
more apt for designing a controller that satisfies an Ho norm bound and some hard
time-domain constraints or study the related tradeoff involved in a design. The first
case considered was a single input-single output that requires a minimum background
but still can be used to present the main ideas and results. Specifically, the design
problem was first reduced (by using the Youla parametrization) to the minimization
of the norm of a transfer function which depends affinely on the the design parameter
subject to constraints on the coefficients of its Taylor expansion. The fact that time
domain constraints are imposed over a horizon of length N, implies that only the
first N coeflicients of the expansion of the parameter are constrained; then, using
an idea originally proposed in [38], the problem was divided into first computing
these parameters and then calculating the “tail” so as to minimize the Hy norm.
The novelty in the present treatment is that an objective function is formulated in
Chapter 3, which depends only on the first part of the response. By minimizing
this function subject to the constraints, and then adding the tail computed from
an unconstrained Hy problem, a solution to the constrained problem is obtained.
A simple formula for the objective function in terms of the state-space data of the
problem was derived, which expresses it as the norm of a matrix that depends linearly
on the parameters. In particular, this implies that the function is convex in the
parameters, and therefore if the constraints are convex, then the whole optimization
problem is so and can be effectively solved. Unfortunately, minimizing the maxirmum

singular value of a matrix usually produces a nondifferentiable problem, and indeed it
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was shown that in the limiting case when constraints are non-binding, the multiplicity
of the largest singular value is far larger than the upper bound discussed for generic
matrices in [26]. The fact that constraints are imposed only over a finite horizon,
was shown to cause no major trouble, if one is willing to sacrifice optimality; this is
because the optimal solution may not behave well after the horizon, but suboptimal
ones, if appropriately chosen, are guaranteed to satisfy a steady-state constraint. A
numerical procedure for solving the optimization problem was discussed in Chapter 4.
The two main conclusions of this chapter, were that the Ellipsoid Algorithm seems to
be a good candidate for computing a solution —giving its ability to deal with large-
scale problems— and that vector Lancszos iterations provide the best tool for the
computation of the objective function. This is because it is well suited for dealing
with large matrices and a cluster of largest singular values or eigenvalues. The
general instance of the problem can be solved by combining the machinery reviewed
and developed in Chapter 2 for the unconstrained problem with the ideas presented
in Chapter 3. This is done in Chapter 5, which is technically more involved but
otherwise parallels the treatment for of simple case.

To summarize, in this thesis it has been shown that the time domain constrained
Hoo problem may be formulated as a convex optimization, that can be solved using

a numerical procedure which is effective and easy to implement.

7.2 Future Directions

Among the points that deserve further study, there are the following.

e Numerical Optimization. Although in this thesis, an algorithm has been given
that has been used successfully to solve actual problems, the large-scale nature
of the optimization constitutes an obstacle for solving large multivariable prob-
lems. Some aspects of this problem (specifically, the ones related with storage

requirements or the time involved in the evaluation of the objective function)
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may be addressed by using more powerful computers, but the slow converge
rate of the ellipsoid algorithm cannot be improved in this way. Recently, a
number of optimization algorithms for minimizing the spectral radius that are
based on penalty methods and Newton-type iterations have appeared in the
literature [52,40,8], that are guaranteed to have a much faster convergence rate.
The application of these algorithms for solving the minimization problem seems
promising, although it is yet to be established how this algorithms perform on

large-scale problem [9].

Order of the controller. The bounds obtained for the order of the controller are
reminiscent to the ones usually found in /; optimal control [15], in the sense that
they depend on the order of the plant and on the size of the minimization that
needs to be solved in order to compute a solution to the problem. However, the
objective function is an Hs norm with a direct connection with the closed-loop
frequency response, and therefore all the methods available for doing model re-
duction in the frequency domain can be tried on the controller. For instance,
weighted or unweighted balanced model truncation usually produce good re-
sults and also provide a tight estimate on the degradation of norm caused by
the reduction. Note that this is not true for the l; case, since although some
bounds can be computed, they usually give only poor estimates of the actual
degradation in an /3 sense [46]. Of course, the procedures must be applied with
caution, since they do not guarantee that the time domain constraints will be
satisfied by the reduced order controller. On the other hand, some methods
that guarantee a good matching of the first few terms of a Taylor expansion
for the controller exist in the literature, but they provide no estimate on the
error between the full and the reduced order transfer function, measured in the
Heo-norm. The effect of the techniques for order reduction on the time do-

main behavior of the closed-loop system, and the formulation of methods that
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provide guaranteed behavior for both the time and frequency domain aspects
of the design, should be studied further. In particular, the limited experience
with some of the problems solved suggests that there may exist a connection
between the order of the controller and the order of the plant plus the number

of active time domain constraints.

Robust performance. The theory presented in this thesis allows the inclusion
of time domain constraints on the Hy, design methodology, so that for fixed
inputs, the nominal behavior of the outputs can be specified. Although this is
a very desirable characteristic, as discussed above it falls short of being com-
pletely satisfactory, because no guarantees can be given on the time domain
behavior of the uncertain system which is the object of the design. This char-
acteristic is shared by all other methods for constrained Hoo design found in

the literature, and deserves more study.
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