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CHAPTER I 

GENERAL THIDRIDB ON TRANSIE:NT OSCILLATIONS 



1 .. 

'?RA.NSIENT VIBRATIONS OF ELASTIC SYSTEMS 

GENERAL PROPERTIES 

We call elastic system any system in which the 

potential energy is a definite positive quadratic form or the 

coordinates. SUch a system is generally realized if the forces 

a.:re conservative and if we consider displacements in the neigh-

borhood of a position of stable equilibrium. The theorem of 

reciprocity is verified and the relations between forces and 

displacements are linear. 

Consider a continuous system. A volume force (XYZ) 

applied at the point (x'y'z') causes at the point (x y z) a 

displacement <; ~(J. 

~ ·-· at'// x "/- C( I~ .};:' -f- o(_, $ 2 

7 = «.?/ ,X + ~..! Y+- ~3 Z 

If the applied forces are harmonic and oi' same f're-

quency and phase, the displacanent has the same property. Taking 

in account the inertia force we get )( == X !ol/nt()t + C-<J .t,P f S~1w t 
/ 

which gives three integral equations of the type, 

In order to simplify the notations we shall consider 

only the case where there is one displacement coordinate u 



From the reciprocity theorem 

The equation corresponding to the tree oscillations is 
' ,., 

;,_(x.J ... ""l/lt) "'(" rJ u(t)rir ---· 

The kernel is symmetrisable by putting ti(~) : u/ "!) jo (/;,) 
and the equation becomes, 

There exists an infinite number of JO siti ve characteris-

2 ' 
tic values of Ill for which this equation has a solution. Fran 

Hilbert-Schmidt's theorem the solution of the non homogeneous 

equation 

may be expanded in a series absolutely and unifonnly convergent 

of characteristic functions 

multiplying then both sides by the orthogonal function yi and 

integrating we get the required solution for the harmonic oscil-

lation 
I 

- I ::i~t Hence an harmonic impulse 1J i:·>t J e causes an harmonic 
I' / 



vibration. 

In order to find the motion corresponding to a sudden applied 

distributed load f{x) we consider as before the integral 

= 

which leads to the solution 

j ;;t 

L o 

It is interesting to note the order of magnitude of 

the eoef'fic ients C; they are generally of the order of -'-"because 
4-11 

the characteristic functions u are asymptotic to the terms of .a 

trigonometric Fourier series. Putting C:· ::= ::B .. • where B has an 
~ • .it 

t. 
upper limit 

J 
J 

'1'lre vharacteristic numbers w. are of the order of the 
1 

terms of the series of positive integers and therefore the eon~ 

vergenee will generally be very fast. 

If the loading of the syatem varies with time' and isi of 

the form the motion may be expl'essed by 

~) 



4. 

-,hich by putting takes the :f'onn 

$. 

-1: l(,.(x/J,;,,w.:;(!-w;rfrf:J dr 
. !() 

The Fourier integral gives 

ftt;,,. 1r-jZj. f(vu.t.,, r~·vdr 
fl ,... ""'° 

.,..C>Q 

. 4 ftc.,,_p ,,:;, wrd; 
~< ... 00 

The density of energy of the impulse spectrum ts, 

"" ~ J'k>_ j:; 1./1.41 + /, w ) 
' J /'"' J ~ ./ 

Hence we get the following theorem.: 

When an impulse acts on an elastic system each :free oscillation 

ot treque:aey-f:;_..' receives an energy proportional to the :product 

of a factor characteristic of that tree oscillation and of the 

spatial loading distribution, by the density of energy of the 

im.pulse spectrum at the frequency _cv.,· 
·f-r 



CHAPTER II 

CALCULATION OF THE STRESSES OCCURRING IN A 

BUILDING DURING EARTHQUAKE 

•• 



In order to give a cle~ idea of the lll.ethod we shall 

at first suppose that the building has a simple structure and 

keep for the end the generalization to more complicated cases. 

Let it be of rectangular shape. The height of the first noor 

is generally greater than. that of the others. The most important 

deformation is an harizontal shear as shown in fig. 1. This 

would naturally not be true for very high buildings where the 

9ending would have to be taken into account. Furthermore the 

shearing rigidity and the mass of each floor is supposed to be 

constant from the second floor to the top. Only the first floor 

will be of a different rigidity. 

Let h be the height of the building without the first 

floor, and x the coordinate counted downwards from the top as 

origin. We may consider this part or the building as 'an elastic 

continuous beam whose only possible deformation is shear. If 

M is its total mass, m 11:: Ja_ will be the mass per unit length. 

The number of upper floor:bedng n and 4 =~-their height, 
n 

if we call K the force that is necessary to displace two con-

secutive floors so that the relative glide would be equal to 

the unit length, the coefficient of corresponding shearing 

rigidity of the continuous beam will be r ':: 
;., 

The :rigid.1 ty 

of tbe first floor will be characterized by a coefficient G de-

·fined in the same way as K. (fig. 2.) 

The ground is supposed to move horizontally with a 
' 

variable acceleration j(t). The equation of relative motion of the 
I 

beam is) 

\ JjlJ.. . 

r m;tt) 



---;(") 
I E 

I 

f i_g. <.. 



'e define the following notations: 

c~,{i pro:pagation speed of a shear wave, 

L= to 
c 

L - ' t#. -
;/tJ ~ (/of'{tj 

_-5_. ~· s 
J; 

/,{ = ti 
;:t~~ ef' 

The equation of mot ion becomes 
<'J t. ' ';} t. .. 

c)~ ~· = ?J~.t + 

All the quantities figuring in this equation are 

dimensionless. 

6 1 FREE OSCILLATIONS 

This motion is given by the homogeneous equation 

.a 

~~·= 
~ .i ~ 

t'/\i 
whieh, by putting J.:::. zff}e , becomes 

d < . < 
~+'A~= a ds 4 

The general solutian is 

Considel" ·the boundary conditions, 

By putting !J:../b , ratio of the rigidity of the 

2. 



. .fk>cr · 
:first to that of the others, and ~ .= 7f!l ·tbesa conditions take 

the form 

--- + of;;, 
df ' 

F.rom equation (1) ·.23:::. O and % -.;;;;; R ~:f A~ 

From condition {2) A fgfi :: o( 

/' ' ) 

The roots JK of' this equation correspond to the free oscillation 

frequencies of the building. We choose certain values of e.<' cerPes-

ponding to certain simple values of R and n as follows: 

ll 7?. Y1 Yi ~ 1. 

15 1.66 2.50 5 

10 1.11 1.56 3.33 10 
. 

5 0.556 0.8~4 1.66 

The values ot A.k as a .function of o< are given in the 

following table: 

« ').., j} I A.~ 2J 'A,, ~s 
~. ---·-·-----~ ~·~-

0 0 3.14 6.28 9.42 Ui,56 15.70 

o.556 o.68 3.31 6.37 9.48 12.60 15.73 

0.834 o.ao 3.38 6.41 9.51 12.62 15.75 

1.11 0.89 3.45 6.45 9.54 12.65 15.77 

1.56 1.03 3.58 6.53 9.59 12.69 15,80 

2.50 1.15 3.73 6.65 9.67 12,76 15.85 

3.33 1.23 3.86 6.74 9.75 12.82 15.91 

5.oo 1.32 4.04 5.91 9.90 12.93 16.0 

10 .. 0 1.44 4.30 7.22 10.13 13.20 16.24 

~ 1.57 4.72 7.85 11.0 14.12 17.30 

In fig. 3 are plotted the values or ?/ 
/( 

where '.:.t A: T +' I 
,,_~-





The period Tk corresponding to Ak is, 

It is interesting to compare the fundamental pe.riod T to that 
0 

T
0

' which would oeeur if the building would be perfectly rigid 

from the second floor to the top, the only elasticity being 

due to the first floor. We get 

.1 

..t. ''Pl - <""') ~ The ratio of frequencies ~ :: J , ,.,,_ 
I~ r: ~ -~-

C( 

0 

0.556 

0.834 

1.11 

1.56 

2.50 

3.33 

5 

10 

. /,>/f! 
1 

0.910 

0.875 

0.844 

o.ooo 

0.725 

0.674 

0.590 

o.455 

0 

§ .t. FORJED HARMONIC OSCILIATIO:N 

is a function of 

In this ease ff-c): , and the equation of 

motion becomes 

I 

Which, by putting the form 

The solution of this equation ean be expressed as a sum of 

th.a" orthogonal fun.ct ions .f aa tisfying the corresponding 



;homogeneous equation and the given boundary conditions 
~ 

Z= Z 
" 

Carrying this expression into the differential equation 

"""° Ej""R. dt' ~~·~.1- = :t ' 
<) "-d· ~~ 

·S 

Taking into account the identity, 

d'~- = - 'A-l: % ' dt ~ . #- ~ 

If we multiply both sides of' that equation by z and integrate 
~ 

from O to 1 with respect to f , we get 

- l. !'/( J: flij>/·:-A_/-7 ~.z~ df = z,..dt 
o -!i - v~ 

c- I 

The eondi tion of orthogonality£~ .,;:./f; iJ:f'or l(::j: t-' gives 
/''''.!'I:. ~ 

V'd 

,) 

The required solution ia 

"'° z = L ___!!:~~-~ z IC • 

iP "'\ :;> - ') 2-
A. K 

The value of ~ may be 

~ 

z ;:;;- f"4r' z 
"' A,..t x 

In this series the values of the coefficients (3k tend to 

unity when k increases indefinitely and the convergence is 

absolute and uniform • 

._§~-EFFECT OF A SODDEN CONS'l'A.1"1'11 ACCELERATION 

With the :purpose of :f'i nding a more general solution 

we shall µse the preceding results for building a solution which 

corres-ponds to 



Consider the integral in the eample:x: plane, 

d.l r· 

taken along the real axis (fig. 4}. For T< o the real :part of t-A l:' 

is negative. on the halt eircle of int'ini te radius ADC.· Renee 

we may add this pa.th to the contour of integration without any 

e:f'feet on the value of the integral. For T" < o it can then be 

written 

For the san:e reason, when T >P we may add the path 

ABC and 

is discontinuous at the origin where it jumps from O to 1 and 

is equal to a constant anywhere else. (fig. 5). The solution 

corresponding to each element o:t' this integral is 

Integrating term by term, we get the required solution in the 

form of contour integrals 
C.?4.1· 

y 1¥ z:._p~.iA,: . 
(I ·-1 .t 

/l/¥: 

and by taking the residues 

c'Ar 
e 

?11"'"~ 
t 

, r 

d'A 
i 

f 

J 

a .. 
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7. 

;we obtain f'inally 

By putting Bk.:. 

~ 

?' = z; :E!t ~.! :,\~.t 
Q 

Let us study the convergence of this series and compute 

the ordel:' of magnitude of the rest. Each of 1 ts term, the t'irst 

one excepted, satisfies the inequality 
J 

The following inequality gives an u~per 1:lmit for the 

rest, 

..,,,.;, 

Ct4 -e 2- ....L.. 

/" 
k(I 

The value of f 1<1* is given by the Bernoulli number 

~ "' Z -.L~ ~ 7C., =:: I, o 
I ""lj ,Jlo 

On the other band, 

....L- + J f-A l. I. :{'# 
/ <t 

f,> "' 

.,,,.~, .> 
17~,~ 1 

that 
,.,. , 

o} {)o ~ and finally \'R" l < so ~-·- :-:;:. 

.ti if If 
Hence it we take only the four initial terms of the series 

the error due to the terms neglected will be smaller than 

~- y 0. CJ(JG""' = CV x o. ,.;: 
r 

We also see that this series is absolutely and uniformly convergent. 

DiS;.t?lae ement 

The dimensionless function corresponds to a sudden 

acceleration ~0 • The real displaeanent is 



The values of Bk: are only functions of 
' and a:t>e 

given in the following table: 

o( ~ I 3:3, 9· j ...... -'? 

o. oO ;J...) 
l •. ~. 

0 0 u··· 

o.556 2.336 -0.00890 0.000692 -0.000138 

0.834 1.734 -O.Oll6 0.000970 -o.oooaoa 
l.ll 1.425 -0.0137 0.00122 -0.,000272 

1.66 1.091 -0,0167 o.00177 ... 0,000386 

2.50 o.902 -0,0191 0.00234 -0;,000544 

3.33 0.802 -0.0203 0.00274 -o.oooea2 
5 0.710 -..0.0210 0,00334 -o.ooov1a 

10 0.612 -0.0212 0.00404 -0.oOOlat; 

~ o.518 -0.0192 0.00416 -0.00150 

The maximum displacement takes place at the top, and 

its value is given v~ry accurately by 

It is praetieally tWi ee the statical deformation that 

would oecur under the same aeeeleration. 

Stresses 

The total stress due to the shearing deformation is 

It is the total inertia force multiplied by a dimensionless 

function 

whieh, by putting -:A - -- k 



The values of the B' 
/( 

as functions. of tt' are given 

in the :f'ollo\Ving table 

i 2: I I I 

t ?S~ 
l ... ··· 1 

0 f 0 0 0 ! 

o.556 ... 1.588 0.0294 .. 0.00440 0.00131 

o.a34 -1.388 0.0394 -0.00622 0.00198 

l.ll -1.268 0.04'13 -0.00788 o.002eo 

1.66 -1.123 0.0598 ... 0 .. 0115 0.003'70 

2.50 -1.036 0.0712 -0.0155 0.00525 

3.33 -0.98'7 0.0?74 .. 0.0185 0.00660 

5 -0.937 0.0850 ..0.0235 0.00912 

10 -o.aao 0.0912 -0.0291 0.0127 

-0.813 0.900 -0.0325 0.0155 

As previously, we can easily compute the rest of this 
C""1 

series. We encounter the expression ~ iJ =I. toto:f (Stieltjes, Act. 

Math. vol. 10, p. 299). But - 1
- +· 

I" 
I. I 6 ,e, • Hence 

The error made by taking only the four first terms is 

smaller than 

The following table gives the values of these terms: 

:v. 



s '" 
0 J.. 0 Q 0 i.oo 
0.556 0.999 o.oosoo .0.000421 0.0000777 l,004 

0.834 0.994 0.00950 o.oooso9 0.0001?9 l.003 

l~ll 0.986 i 0.0144 0.00132 0.000311 1.00 

1.66 0.;965 . 0.0254 0.00245 0.0000640 0,99 

2.00 0.946 i0.0398 0.00562 0.00132 0.98 

3.33 0.931 o.os11 0.00825 o.0021e 0.96 

5 0.908 : 0.0666 0.,0138 0.00420 0.9'7 

10 0.870 0.0830 0.0234 o.ooe7o 0.97 

0.813 
,. 

0.0900 0.0325 0.0165 0.95 

We could have :proved by direct considerations that the 

maximum value of the stress must be twice the static stress . ./'1/~ . 
We actually find ./_ .S//l :f'or this maximum, which is a very good 

approximation. The above calculation shows furthermore that this 

maximum stress is very nearly reached during the first fundamental 

oscillation. 

J;:u. 
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8 OSCILLATION$ DUE ·To ABBI TaAJ:tY HOBI.ZONTAL ACCEL.EBATION 
J 

Let the horizontal aeeeieration of the ground be 

·I'= /0 f(~J 
We will calculate the corresponding motion of ,the 

building by considering the curve flt) as composed of an inf'inite. 

number of small jumps •. (fig. ). Each of these increments can 

be. written df;;;. ~Citj dr: • By using then the function 
cle 

previously mentioned, we get the elementary solution corresponding 

to the increment at the point Q ~ 

Z-(t: - fJ) d l"f.!!J dB 
d8 

The function giving the total motion is the integral 

f{i~J-=j~(-r:-8) ~Jl~8-l 
0 . 

Integrating by parts and noting that 71'/~/: o, we get 

the more eonvenient form 
t: 

1 {!t:) =fir(&) h k(-&-t!J) 
..,,, t)· 

where - 0,)} ;;;:r - z 73;.;· :::tJ;; <:;;.'.~J ';}'* ! 
Hence, more explicitly, 

{3) 

Application IP~ resonance 

Consider the special case where 

fut 

B < <.::> 

fj >Cl 

11. 

) 



~ 

(~ '7' J ._'11 ">""' ;S11;, • il:' ·,,,;... 
l'J(<r:i "'/ =- . - "\: d .C- -"'~ ··· Cit>"~ ;of k. ;:. ~ 
t I(.::: () . ""i;,,.,{1 

If' 4 = A,t , we have res6nance, .and the value ot <fie. (r:) becomes 

.¢! 11?) ~ ~ ~ A .... -r: .,.. _L 'd1.-h 
~~ L •. il~ 

After a certain time the value of ? (!;;;;I is reduced 

to its principal term. The amplitude increases indefinitely. 

"* (f~J w - cc _&_r: C.Ck1 4 .. t ~ ::f_.,_ - 't'. l ~")~ ~ ""' 
¢.it'fK 

Put 

The maximum amplitude takes place at the top and 1 ts 

actual value is 
1 L 

j.(._ : ~ C0 Cll(; 'l: 

The coeff'ieien.ts CI: are given in the folloWing table: 

t 
ct> 0(. 

_L (!, CL s • 
0 I 0.0 /_J._ ! 0 0 0 

I l-<r;iJ 
" 

o.556 0.794 -0.0147 0.00220 -0.0139 

0.834 o.694 -0.0197 0.00311 ...0.0199 

l.U 0.633 -0.023? 0.00394 ~~0254 

1.66 0.562 -0.0299 0.00578 -0.0577 

2.50 0.518 -0.0356 0.00778 ...0.0517 

3.33 0.493 -0.0387 0.00924 -0,0623 

5 0.468 -0.0425 0.011?5 -0.0812 

10 0,440 -0.0456 0.-0145 -0.00655 

~ 0.406 "".0.0452 0 .. 0164 ... 0 .. 00830 

12. 



We have shown previously thE\t the stress is 

where c• _ 
k 

The naximum stress occurs between the first and the 

second floor for the first harmonic and has the value 1~ 
The stresses due to higher harmonics are /~ 11.. 

These stresses can be easily computed from the 

f'ollowing table or fig. 8: 

ct C 1.tun )\) ci c1 I 
cl CJ p 0 I .e. 

0 -0.500 0 0 0 0 

o.556 -0.540 -0.340 .,0.0486 -0.0139 ·0.00622 

0.834 -0.555 -0.397 0.0666 -0.0199 0.00942 

l.ll -0.564 -0.438 0.0818 -0.0254 0.0123 

1.66 -0.578 -0.496 0.107 -0.0377 0.0177 

2.50 .. 0.596 ... o.544 0.133 -0.0517 0.0254 

3.33 -0.606 -0.5'12 0.149 -0.0633 0.032& 

5.0 -0.519 -0.600 0.172 -0.0812 0.0451 

10 -0.635 -0.629 0.196 .. 0.105 0.071 

-0.63'1 -0.637 0.212 -0.129 0.091 

-z; I ' A {!~ S'tn'l- • 

T ef,; 
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u:iwe!'. limit of.' resonance stresseE,1 

Consider the case of reS$nance with the fundamental harmonic 

...:0(1~ .. .d'~i. A. f. T" .C:i>t14., 'C ..,. f ._!..~/!~. Stfi.i 'A.,.t 
">il .t "". ?.f 

+ -(-:;'( iJ _A15 .· tJ(,~~ 'AL. f I: .. ~ 
. k>r I ';i: " '"~ 

The last term may be neglected, for 

on the other hand, 

...... °"' hence 
J 

-( oe Z -~L .r£;,;t :J K f ~·. (-r / / < 2 I -:15~ I __ '!_,":'*c· 
""'" I '1. t. "iii! ' ,, ' ''" f A 'A 

. " Fl1r . A : , * - ·::t;i 
Noting the values of B' in this expression, we see that 

k 

it is comparatively small. We can write, 

hence 

In this case the stress is never higjler than 

The valws of Tf (~l 4~';lfJl/+j are plotted in fig.f 

In case of resonam e with an harmonic of higher cbrder 

""° 

+ 4 )' 
~!--t 

k"' •'11 

I 
<.:!,< 

14 .. 



Most of the sismograms show the random. el:iaracter of 

earthquake aecelerationa~ with, very o:ften,. series of quasi periodic 

oscillations. It is therefore difficult to identify the action of' 

an earthgµake with that of the simple acceleration curves studied 

till now. We might, of course, apply equation {3) and calculate 

the displacement corresponding to a given sismogram.. 

But it is much more convenient to divide the problem, 

and to analyze separately the elastic properties of the building 

and the frequency distribution of the earthquake. We need there-

fore a .general theorem which we shall here prove in the special 

ease of building oscillations. As we are more interested in the 

stresses, we will not give the corresponding equations of the 

displacement; the method being exactly the same as before, we 

get the stresses from the displacanent by a simple derivation. 

Equation (3) may be written 

(lt1 ,~Jr)= -lot l: /81{.s~ )Jt! /sv~·~,.r.f ;s'AKfJf/b)dfJ-
l 6 A~ L .~ 

Putting (/(fJ:::? f {b) the acceleration 

and 

f,{w) = ff6>) 

Considering then the Fourier integral 

;/IJ = Jtjdw 1; 
~ ~ 

' l "f:./ 

where j(i) represents an acceleration record located in the time 

interval (Ot), we get 



. . l 

, The ex:pression A(w}:::: .Z:f (A} r represents what migllt be 

· called the denSity of energy as a tunction of •, or ene:rc S.Jt~'tlµp.• 

Coming back to equation t lo > we note 1:;hat iJ$/.- is the res", t"""'.t . Jj' ................. 
(l) 

of free oscillations of amplitude .•.• The stress at a eerta:b1 

manent is the sum of the. stresses due to each tree oscillation. 

existing at that moment. Each of these stresses may be wr1 tten 

or 

This result~ can be expressed in a more eomplete manner as 

follows: 

When an acceleration j{t} acts upon a building duri:m.g a 

time interval {Ot}, the :rmxinrom total stress at the final moment 

is the aum of the stresses due to every free os<?illation existil34t 

at that moment. Each of those stresses is a product of three 

factors; an effective mass, 

..ftlk($j:::. .Lt. ~iX,4 Atl.t 7111:,,_f =- J!/1 Cf . 2: 
an eff'eetive acceleration ~~;;,~) 
and a coefficient 

The first factor depends only on the elastic properties of the 

building. The second factor, which has the dimension of an ac-

eeleration, depends essentially ~n the shape or spectrum of the. 

sismogram.. The third one is the relative length of the earthquake. 

The problem is thus divided in two parts, 

1) Calculation of the effective masses for a given building, 

2} Calculation of the function /J.{t..v) or spectrum for a certain 

number of sismograms of the region. The use of a Fourier 

-----~~-·-----------------------



analyzer will make this part of the work very easy. 

A great ad-vantage of this method is the fact that the 

effective acceleration may be derived in a very simple way ffom 

a ground displacement record. Let d(t} be the displacement. 

Putting . t-

. .rj .. /: -w;'="" -LjC-t>:t~t. dftJ c.11- > 
1•l'J ~ I ' wr . & 

I';. 
.. fd /~) ~ ff/ AtA~ ~t d/t) de.,, 

we get 

.The acceleration takes the form 

= d(t-J = -0~d/~J ~~t·d'f,.tJ +· ./:;-41...(:d (w,}4'4·ir c.vl .:::I~..-,.~ 
'O ~ Y 

hence 

>t. 

Putting then AJ'~} ::-[)~)+-{t~we find the required 

formula 

This enables us to express very s].mply the function A(~v 

corresponding to the acceleration record, when we know .t:.le1/'IA.!) 

calculated from the displacement record. 



fhe anll1'8!s of a siamogram gi..,es a function density 

of ener,gy Alw.J or e~fective acceleration z.r::-~· p/i having one or 
\ # 1. yq~, . c: ' -""" 

more marlma as shown in :fig. 9. In a given region there generally 

exists certain charaeteristie frequencies of the soil whieh appear 

in many sismograms. These frequencies will ea.use the mentioned 

maxima to be located in the vie inity of ftx:ed values of W. in 

different records. If three critical values '-ii ltJ2 , ~3 for the 

building are in the region of those maxima we should, if possible, 

In order to illustrate this method we will calculate 

the function IJ(w} tor the acceleration given by a f'ini te sine­

wave of total length T: 

r1(tJ = 0 

(/ ( iJ = rl~4;,,, Ilr 

£; (wJ= 

Ecw)= 
'!. . .'/ 

Near the maximum we hewe appro:x:ima. tely 



,This function is plotted in fig. 10. The stresses corresponding 

to dif'i'erent :free ose:i;llations are 

In case of' resonanee with the harmonic of order k the 

corresponding stress··. is 

I r 
.11. k { fJ -tb- . 

t-., .-t 

The stress may be put in the form already obtained by 

a previous method 

8 b Gll!NERALIZED METHOD FOR BUILDINGS HAVING VARIABLE 
""11 

MASS AND RIGi:on'Y AT THE DIFFERENT FLnORS 

The method is absolutely general and could be used 

for any type of building considering both bending and shearing 

deformations. We will restrict ourselves to the shear in ease 

of variable f (x) and m(x). The equation of motion takes the 

form 

If the acceleration is an harmonic function of time .1 ::.~ 

the solution is u::;:;. :/ .fL~wf, and 
{) 

19. 
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Devalopin.g the solution in ternis of the orthogonal 

functions corresponding to the free oscillations and defined 

we get 

along the 

fi, 
I 

is 

After multiplying both sides by yi and integrating 

total height 
IC•. 

- _/<? ~--
w~- w~t, 

;:. 

Finally, 

. with 

The displacement corresponding to a sudden acceleration 

The amplitude of eaeh free oscillation is given as 

a function of' the density of energy .A(w,) by 

and the stress at the coordinate x due to that oscillation by 

The total maximum stress is the sum of each of these 

expressions. 

20. 



TAe preceding considerations show that the problem is 

solved whenever we know the set of orthogonal functions y
1 

multiplied 

by any f'ao~or of' proporti onali"J;y, i.e. when we lqlow the shape 

of' the free oscillations. 

From y f we easily deduce the f'requency or the corresponding 

wi by simple energy considerations. Consider the building oscil­

lating with that frequency. The motion is supposed to be free. When 

the amplitude is maximum the kinetic energy is equal to zero and 

the potential energy is 

h -L;.· µ/xJ 
~ . { 

·~'I) 

On the other hand, the potential energy passes throu§h 

zero when the strain dis~ppears; at that moment the kinetic energy 

is maximum and has the value 

(5) 

which is independent of' any arbitrary constant multiplying y
1

• 

THE CALCO'IATION OF THE ORTBOGONAL FUNCTIONS 

The orthogonal functions y. may be found by two methods .. 
l. . 

One is sem1-...&mpf;:t:tC:al and very simple. We note that those functions 

are defined by equation (It// , which by a change o:f the independent 

variable 

21. 
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becanes 

This is the equation of bucklin~ under a load P of a beam of' 

moment of inertia 

Jf we consider an ala.st ic strip of' uniform thickness h, 

its moment of inertia will have the value I under the condition 

tbat the variable width b satis:t"ies the equation . 

/~&.! ~ 
£..;? 

where A is an arbitrary con st Gm t • We may choose for z any 

scale convenient, for we are only interested in the shape of 

the :t'unctions y1 • 

In order to realize the given limit conditions, the 

strip will be repeated symmetrically around a point repres.enting 

the top of the building. (fig. 11). The deformation of the half 

strip under different loads will give the different functions y1• 

Only the first deformation is stable, so that the others will have 

to be stabilized by a special but very simple device. We then 

compute by the energetic method the corresponding values of 

the frequencies. (equation 5). 

Another method is analytical and might be useful in 

case of only slight deviations from the case of constant rigidity 

and mass previously investigated. It is known in atomic physics 

as ttperturbation calculus". 

Putting tn(Xj - j1t fl ~· 

- 0 -Ii· ,,. + 

b(j·.<' 
' . - tv ~ 

"i} r 



where ~ r 
, l"·_._l_, q_· A; f/J

1
_ are known and C- .v q: 

"' . /"' ~ f (l I • I 
small variations. 

The equation beeo:rms / 

/-f(j-Q -r /(Ki,} ;I (/c·"t~"!/ -1-
a K fl ct':IJ( . . 

and neglecting the small terms of higher order, we finally get 

This equation has only finite solutions if the function 

of the right side is orthogonal to the eharaeteristie functions 

of the equation obtained by equating the left side to zero(l)~. 
This condition may be written 

1 

1v"l)-:? r!XJ-tl t~~h · ~ PK L<J ax t: (.-,: 

and gives the values of /i- . 
The second side of the equation is then entirely known 

and Ji is determined by 

Developing the solution in terms of the orthogonal functions 

putting this expression baek into the equation 

multiplying then both sides by (/A'» , and integrating from O to h, 

we get 

------------~----------------(1) 
Hilbert Coura.nt Chan. v 277 

.!:' , p. • 
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where .. 

Hence 

and the required orthogonal functions may finally be written 



CHAPTER III 

CRITICAL TORSIONAL VIBRATIONS OF A IDTATING ACCELERATED SHA.Fl' 



,CRITICAL OSCILLATIONS :aY 'roRSION OF A WTATING ACCELERATED SHAF'f 

The method previously developed for the calculation of 

the transient shearing vibration of a building may be applied to 

the study of critical torsional vibrations· in a shaft rotating 

with a constant angular aeeeleration. These amplitudes will be 

functions olt! the angular acceleration and depend on the way the 

external moment is distributed on the shaft. The equation ot 

oscill.8.tion may be written 

(1) 

where f) is the angular coordinate of a cross section. 

The equation of the free oscillations is 

(2) 

Which has an infinite number of solutions of the type 

and where <Q/;<) verifies the equations 

e. 
(, 

= () 
(3} 

. ,( ,',,.; t" 
If the moment is harmonieA':;;4/xJe the solution of (1) 

may be expanded in a series of orthogonal functions. According to 

(1) and (3) we get 

fl(xlj -

_!1D (x} = 

Multiplying both sides by 6J ( X) and integrating along 

the shaft, 

.1 / ' 
(Xj 



The required solution is 

The theory of integral equations shows.that this method 

. is quite general as well for flexion as for torsion. We must now 

calculate the defo:rmation cause by a distributed moment 

suddently applied to the shaft. Noting the value of the integral 

1: 
this moment may be written, 

. +-~.#? 

/ 
e: ,~ ... ..,»I:" .. 1 

_/to(xJ c air~ 
w 

- <.a 

If' the applied moment varies with the time and has the 

form 1'1.jx;l 'f/1:1 it may be considered as composed of an inf'ini te 

number of small jumps 11/>t.J ff di' and the corresponding solution 

is given by integration 

4{xt"J=/~r~, e-r) A -i/'(o/vf'" 
' 

Integrating by parts and assuming 

.. 



By putting c . 

~I w ~) -41 yr/t;J U>4 

/, {w'.) = jf !rJ ¢.,\. ""'r ck 

the amplitudes ot the free oseillaticns composing the motion are 

This formula gives the eomplete solution of the problem. 

Consider a shaft rotating with a uniform aeeeleration. In most 

cases the amplituoes of the torque variations will be constant. 

We eall v the angular acceleration and put f- jf . The 

variable part of the moment is, per unit length: 

.Applying the preeeding formula we get 

j(w,J-j:.,,w,?: ,.t,;,.j3r'dr 
j 

Put 

f
X.f-11'\' 

' ?' 
- CllH~ ~~:; 

- cl 



4. 

These expressions may be reduced to the well kn.own 

We finally get 

/, ( ~,) - f !; If/!~ p;-;,, _,_ :J(x-=::Oi 1=""'. -fc (xf::;f ,_ cr;_--;;f j-vtt xj 
By a similar treatment 

j(vy~ .,,/j I j /er™J- c/;::J ,_1er«Jf u.,J+ r~ rx~- Ptx-ro1/ +-r Pfo1J J.s""-"'} . 
The amplitude of the tree oscillations is then calculated 

by putting into (5) the expression 

This quantity has an upper limit independent of the 

time 

After a sui"fic i ently ~long time and for ot? f" the value of f 
reduces approximately to 

In short, when a shat't is rotating with a constant angular 

aceelera tion the maximum amplitude of a critical torsional ose illation 

is given oy /. / y'Jf~ _,,.~~~·- G!,fx J 
·~ w. f2i' 

....,~--·--~----------- ....... ----------
* Tables o.f functions S & C: Johnke and Enide, Funktionentafiln p •. 23 ,. 





Application. 

As an illustration of the theory we shall treat a very 

simple example. Con.sider a crank (fig. l) conne~ted by a aha.t't to 

a flywheel. The system is supposed to receive TJower from a re ... 

ciprocating engine. If the maximum torque on the shaft is M, the 

mean torque will be M/2. The variable part of the torque is 

and is applied with an angular velocity which is twice that of 

the shaft. If' K is the torsional rigidity of the shaft an angular 

displaca:nent e o:r the crank m11 produce a restoring moment Ka ; 

the characteristic value of tll for the free oscillation is w::. /'f 
where I is the moment of inertia of the erank. 

The characteristic function Si'(~) is reduced to a 

constant tba.t we put equal to 1, we get, 

{! = i~l"ofJ GJ,·l~<j d; 
/.,., J/x:J c9e- .zt,,.9 tt' 'A': 

The angular acceleration is supposed to be V and the 

maximum torsional amplitude of vibration will. be, in radians, smaller 

than 


