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CHAPTER 1

GENERAL THROREVS ON TRANSIENT OSCILLATIONS
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TRANSIENT VIBRATIONS OF ELASTIC SYSTHEMS

GENERAL PROPERTIES

We call elastic system any system in whieh the
potential energy is a‘dei‘inite positive quadratic form of the
coordinates.v Such a system is generally realized if the forces
are conservative and if we consider displacements in the neigh-
bdrhood of a position of stable equilibrium. The theorem of
reciprocity is verified and the relatioms between forces and

displacements are linear.

Consider a contimuous system. A volume force (XYZ)
applied at the point (x'y'2z') causes at the point (x y 2) a

displacement (§ ] 2).
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If the applied forces are harmonic and of same fre-
quency and phase, the displacement has the same property. Taking
’ .
in account the inertia force we get X = Xdarwwf'f' wz/o fﬁwsm ¢
v

which gives three integral equations of the tyvpe,
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In order to simplify the notations we shall consider

only the case where there is one displacement coordinate u
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From the reciprocity theorem (X )= oftx)

The equation corresponding to the free oscillations is
oy w//o/é}wx & ult)d¢

The };ernel is symmetrisable by putting (7 (, 4:’ f} 5,0 ( ”f’

and the équation becomes,

P

A

//,}7: w/wﬂf f}" .aw{fj/ 7/ f“gfj";‘,":“*

There éxis'ts an infinite number of positive characteris-
tie values of mz for which this equation has a solution. From
Hilbert-Schmidt's theorem the solution of the non homogeneous
equation
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may be expanded in a series absolutely and uniformly convergent
of characteristie functions
J=Z 7 Y
Substituting in equation (1)
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multiplying then both sides by the oﬁcthogonal function Y3 and

integrating we get the required solution for the harmonic oscil-
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Hence an harmonic impulse ﬁ ;fﬁ,»r;c? causes an harmonic
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, In order to find the motion eorresponding to a sudden applied

distributed load f(x) we consider as before the integral
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which leads to the solution
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It is interesting to note the order of magnitude of

the coefficients C; they are generally of the order of ﬁw& because
£

the characteristic functions u are asymptotic to the terms of 4

trigonometric Fourier series. Putting f :B % where B has an
w i%
upper limit
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The characteristic numbers w, are of the order of the
terms of the series of positive integers and therefore the con-

 vergence will gemerally be very fast,

If the loading of the system varies with time and is of

the farm g/

Ey - /the motion may be expressed by
‘ £
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@hich by putting mﬁ% {@{,&fj 5‘”3@«? takes the fom
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The Fourier 1ntegral gives
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The density of energy of the impulse speectrum is, |

) g
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and the energy transmitted to each free oseillation of the sﬂsfam

is proportional to
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Henee we get the following theorem:
When an impulse scts on an elastie system each fres ogeillation
of ﬁ'equeney ?f " receives an energy proporticnal to the produet
of a factor characteristic of_’,that free oscillation and of the
spatial loading distribution, by the denmsity of energy of the

impulse speetrum at the frequeney «%&fzm
%



CHAPTER II

CALCULATION OF THE STRESSES OCCURRING IN A

BUILDING DURING EARTHOUAKE



1,

| | In order to give a clear idea Of-the method we shall
>_at_fif3t‘suppose that ﬁhe Buiiaing has a simple structure énd
kqep'for the end-the.generalizﬁtion 0 more compiieated cases.
‘Let it be of‘rectangular shape. The height of the first floor
is genefally‘greater thanithat of the others. The most important
,deformation is an horizontal shear as shownvin fig. 1. This
wbuld natﬁrallj not be tiue for very.high bﬁildings where the
bending would have to be taken into agcount. Furthermore the
shearing rigidity and the mass of each floor isrsﬁpposed'to be
constant from the secaﬁd.floor_té the top. Only the first floor
will be‘of a different rigidity.

'Let h be the height of the building without the first
floor, and x the coordinate counted downwards frém the top as
afigin. We may eonsider this part of the building as ‘an elastic
continuous beam whose 6nly posgible deformation is shear., If
| M is its total mass, /77 % ﬁg§~will_be the mass per unit length.
The number of upper floors being n and iézzfgltheir height,

" if we eall K the foree thai is necesgary to diSplace two con-
éecutive floors so that the relative glide would be equal to

the unit length, the coefficient of corresponding shearing
rigidity of the continuous beam will bve fukz ﬁiﬁl « The rigidity
of the first floor will be characterized by a céefficient G dew
fined in the same way as K. ( fig. 2.)

The grouﬁd isrsupposed to0 move harizentally with a

variable aceeleration j{t). The equation of relative meotion of the
‘ /

beanm is ,
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We define the following notations:

C =, Z§f> ‘ ' | pfapagation_speed of a shear wave,
b= &

- C
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The eguation of mot ion becomes
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All the guantities figuring in this equation are

dimensionless.

§ | FREE OSCILIATIONS

This motion is ziven by the homogeneous equation
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| whieh, by putting j:‘ zt//fe , becomes
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The general solubtien is
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>Cohsider'the boundary conditions,

By putting A= G4/, ratio of the rizldity of the
, t1.



o Heer e .
first to tha_t of the

the farm

From equation (1) B= ¢ amd X =

'From condition (2)

othérs, and (v = A these conditions take

R E=o e 1/
ok =+ 87
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Ay = o

The roots 2& of tvhis -equation correspond to the free osecillatioen

frequencies of the building. We choose certain values of o¢ corres-

ponding to eertain simple values of R and n as follows:

o | Ry Y% 4 1
S w5
10 1.11 1.66 3.33 10
5 0.556 0.834 1.66

TFhe values of 1&

follewirig table:

w2
o | o
0.556 ; 0.68
0.834 § 0.80
1.11 f 0.89
1,66 } 1.03
2,50 | 115
3.33 g 1.23 §'
5,00 § 1.32 §
10.0 1. §

1.57

In fig. 3 are plotted the values of ’%;, where

as a function of o are given in the

A, 5 A, ‘ Q,j A, 'Q 5
5.14 | 6,98 = 9.42 12,56 | 15.70
3,51 6.37 9.48 | 12.60 .« 15.73
3,38 6.41 9.51 = 12.62  15.75
3.45 | 6,45 9.54 12,65 15‘_77
5.58 653 9.59 = 12.69 | 15,80
3.75 6.65 9.67 | 12.76  15.85
3.86 6.74  9.75  12.82  15.91
4.04 6,91 9.90 = 12,95 = 16.0
4,30  7.22 10,13 | 13.20  16.24
4.72 7.85 = 11.0 14,12 Z 17.30
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‘Z’he“perio‘d Tk ’cerrespondihg to (Aé is,
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It is interesting to compare the fundamental period T° to that

Tc' whieh wouldn oceur if the building would be perfectly rigid
from the second floor to the top, the only elasticity being

due to the first floor. We get
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The ratio of frequencies ,_Zi, fon ,.:‘%6; is a function of o¢
# g"i w
-
) : f
. S R 7
o 1
0.556 | 0.910
0.83¢ |  0.875
1.11 . 0.844
1.66 © 0.800
2,50 . 0.725
3,33 . 0.674
5 % 0.590
10 . 0.455
ol Q

§ 2. FORCED HARMONIC OSCILLATION

In this case f{?j:ﬁ ﬁ"ﬁﬁ , and the equation of
motion hecomes "
_ . )
DL o 2Y 4 T
2% T 98 /
‘Which, by putting z/;—'ie takes the form
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The _solu‘tion of this equatien can bhe expressed as a sum of

the orthogonal functions @{kz': %ﬁ'kxé’ satisfying the corresponding
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homogenecus equatmn and the rriven boundary econditions
Carrylnv this express:.on into the d1fferentia1 equation
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Taking into account the identity,
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If we multiply both ,s:‘:.des of thas equation by z and 1ntegrats

from O to 1l with resnect to » , we get
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The econdition of orthogonalltyfg AE afor s ¢ gives
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The required solution is
=S
Z = ..
< e <
e ,,p.,f{
The value of 9, may be given more explicitly
P
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In this series the values of the coefficients /5, tend to

- unity when # inereases indefinitely and the convergence is

absoluts and uniform.

83 EFFECT OF A SUDDEN CONSTANT ACCELFERATION
With the purpose of finding a more general solution
we shall use the preceding results for building a solution whieh

corresponds to

?D{/E)af} T

555?1 = A T x>0
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Con51der the 1ntegral in the. camplex plane,

g,ﬁﬁwi»‘& §w
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taken al@mg the real axis (fig. 4). For Z< o the real part of ¢4 7T

A,

is negative on the half circle of inflnite radius ADC. Eence
we may add this path to the contour of integration without any
_effeet on the value of the integral, For T < ¢ it can then be

written

' e P ‘2
c 7 € :
"“""‘“”;‘{“"” ,u-;._w.b &1»; R - """"{"" S ———— k. :1 podiil
”gkff// A e /o pl
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For the same reason, when T »># we may add the path
ABC and
K*M ,
) ‘¢'»Q e .
/ ﬁ; :2‘ -1 Mg""“, Wewwﬁ . @}fe‘? - i‘
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‘fhe function f[z*/ defined by
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is discontinuous at the origin where it jumps from O to 1 and

is equal to a constant anywhere else. (fig. 5). The solution

corfesponding to each element of this integral is

A e O _Bx e gfﬁygfk
° ta‘“(ﬁ - &,} A

Integrating term by term, we get the required solution in the

form of contour intsgrals
o ‘ ' z':i ko
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we obtain finally - gm

By putting B, =

. | * ,,
C= 7B coxA § ot o i

» Let us study the convergence of this series and compute
the order of magnitude of the rest. Zach of its terms, the first

one excepted, satisfies the inequality )

1 z . :
é /5 x Zk. { &01 I - w_:}.ﬂ_ - £ <.
i 2% AL

"The following inequality gives an upper limit for the

rest,
w
}?’{{5!4»« (e AnT 1) fi.;"
/"“ %*’( é? AN
- v
The value of ,ﬁg fé”i: is given by the Bernoulli number :l%é
pr— N N 2
.,31; , :é:é; = Em o 1‘; G445
On the other hand,
- Aoow B . FL B,
e /{' " ?@é ‘»f‘}%‘ . ‘I‘l fﬁg g .
?ﬁ_‘ e R oy : = e A i
so that ﬁmé = 0,006 , and finally |k, | << j@x 2, &0

Hemco if we take only the four initial terms of the series

“¥

3
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the error due to the terms neglected will be smaller than
ﬁﬁw y D.0908 = o x L DBE0LE
We a]tso see that this series is absolutely and uniformly convergent.

Digplacement

The dimensionless function Z corresponds to a sudden

aeeeleratlon j The real displacement is

Mo ‘5&




y The values of B are ouly functions of ~ , aud are

'~given in the following table:

R S R . T - T I
0.5 2.386  -0,00890  0.000892 -0,000138
»‘0;854”3 1734 - -o0m6 0.000970 -0,000208
101 1.425 f -0,0137 0.00128 -0,000272
0 1.66  1.091 | 0,067  0,00177  =0,000386
2.50 f' 0.902 0,019 0,00254  -0.000544
3.55 . 0.802 = -0,0208 0,00274 ~0.000682
5  0.710 . -0.0210  0,00834 ~0,000912

10 0.612 = -0.0212 0.00404  -~0.00125
@ @518 -0.0192 0.00416  ~0,00150

The meximum displacement takes place at the top, and

its value is given very aecurately by

o = 2 10 4B,

It is practically twice the statical deformation that
would occur under the same acceleration.
Stresses

The total stress due to the shearing deformation is

- g&lgﬁ —
o P

It is the total inertia force 4f,ff multiplied by a dimensionless

funetion




The values of the Bi: . ag funetions;of & are given

¢

~in the following table

4 g =m0 ﬁgiv R | § \ 4%%;
P IR v; R R

'_ 0;555 : é -1.588  0.,0204 -0,00440  0,00131
0.834 . 1.5 0.0804  -0,00822  0.00198
1.1  1.268 0.0473  -0.00788  0.00260
1.66 . -1.123 0.0598  -0.0115  0.00370
2,50 E _-1.036  0.0712  -0.0155 0,00526
3,33 - -0.987 0.0774 ~0,.0185 ~ 0.00865
5  -0.937 0.0850  -0.0235 f 0.00912

10 - -0.880 0.0912  -0,0291 . 0,0127

~0,813 : 0.900 - -0,0385 ' 0,0165

As previously, we can easily cempute the rest of this
series. We encounter the expression fé‘g “/‘)0%@5(8’516113393 Act,

Math. vol. 10, p. 299). But L +.L + L. = / /é6£€ |, Hence

/J 's* ,:?»5
h 2O A 4
e O, O#
] L

The error mede by taking only the four first terms is

smaller than
, ‘é“‘f x 2.0 = O 2045 o

;1‘
The maximm possible value of ££. is
J*’: i ) 1} *7;:”?; B ?g T e 2 . % €3
;' g = - B = 2
&l iwol g

friam

The fellowing table gives the values of these terms:



Skl a

Bag ABysemag) | B
0 ; o 1,00

0,556 0,999  [0,00800 | 0.000421 | 0.0000777 | 1,004

0,834 0,994 . 0,00950 | 0.000809 | 0.000179 | 1.003
1,11 0.986 0,044  0,00132 | 0.000811 | 1.00

1.66 . 0.965 | 0.0254 & 0.00245 ' 0.000640 : 0,99

2.5 | 0.98 - 0,089 | 0,00562 0.00132 | 0.98
5.3 0,951 iﬂ.eﬁll . 0.00825  0.00218 | 0.98

5 E, 0,908 0,066 § 0,0138 | 0.00420 | 0.97
10 0,87 0.0830  0.023 § 0.00875 0,97

0.813 | 0.0800 0,025 = 0.0165 0,95

We could have proved by direct considerations that the
maximum value of the stress must be twice the static stress ﬁf@ .
We actually find «356;;4"3 for this maximum, which is a very goodr
appi'oximation. The above caleculation shows furthermore. that this
maximum stress is very nearly reached during the first i‘undamem:al

ogseillation.



Y (0

=

dn,
Ag
dynamfc
4} ,
Shalie |
/ : )
o5 |
()




S ,{% GSCILLATI@NS DUE. TO MI’IRAHY HDRIZONTAL AGGELE’BATI@IJ
 Let the herazantal aceeleration of the ground be
,ﬁz = 6,@,//43; ,,
- We will‘caléulate the eorresponding motion 6f)the
building‘by considering the curve ﬁ%ﬁg as composed of an-infiniter
: nuﬁbéf of'smail jumps. (fig.vgw) Fach of these inereﬁents can

be written af§5 Y Hr . By using then the funmction
dz
previously mentioned, we get the elementary solution eorresponding

to the increment at the point @ |
Z{z-8) 5£§§“”! 28

The function giving the total motion 1s the 1ntegral

p(3c)= / Z(c-8) w@;{ﬁ(ﬁé}z oy

€

S,
i

Integrating by parts and noting that 2, we get

the more convenient form
T
S NP AR YT /
p(¥2) = [P 5 $(z-0) %

where

Hence, more explieitly,

g
Ay § 7
‘ , - ‘Tﬂﬂ’( y /gﬁ’i Crd?‘\sr Jm? - ’5"‘ ’&} Qg@“
(5) y (’} z) o ey i
K e
Applicatiqn.ﬁ&nrgsonanee
Consider the special case where
wigs= O & = o
;;{;fg’w :SM@ f}ﬁ & -G
Put |
b (T)= ) son 2 g”f’“* 8 son A B A8
%Wv{g J&‘}‘E !}g}té{ ‘“f&gm# ::} ”3_5’27 o M — Jf%ffa}"' ;% ”‘}i’fﬂ T }Jfgk@ ::é*é‘:%gg g ‘;
braf b= Ne-xl o T TR

e fg'ff@.. Q/’,j e g :BA ;‘?ﬁ et *gﬁ §* ﬁf’;s,xr;;g ;2&4,‘2:’ -2,

1.
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If A= 2;, , we have resonance, and the value of fé {z:j beeomes

%i’i’j g"": wr‘}gf ot Qfﬁ%:’%ﬁ?
z P O

_ After a certain time the value of ?{fz‘,} is reduced
to its prineipal term. The amplitude inereases indefinitely,

’ Da 1§‘?;‘ Rl f?? cood % W%:?Z:

0—95

Put

The maximum amplitude takes place at the top and its
actual value is
s 2
a= LS CoT

The coefficients C, are given in the following table:

) oy % " yg i
0556 0,794 | -0.0147 0.00220 -0,0139
0.854 | 0,694 é -0.0197 g 0.00311 ~0,0199
1.11 § 0,633 f -0.0237 § 0.00394 | 20,0254
1.66 | 0.562 . -0.0299  0,00578 § -0,0377
2,50 .é 0.518 0,035  0.00778 § ~0,0517
3.35 | 0.495 -0,0387  0.00024 § -0,0623
5 z 0.468 f 0.0425  0.01176  -0.0812
10 | 0,40 f -0.0456  0.0145 | -0.00835
= 006 §~ -0.0452  0.0164 5 ~0.00830

1z.
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" We have shown 'previou81y that the sti'ess is

B

| o 7 st A e N
S /ﬁﬁ ;355 = y/@—fsf CA' T Aty 2,{3 ﬁ«gﬁdaﬁ*?: ,

‘ . 'aﬁ? . . 7
where €' — S\ S A ,3} _;?K
The maximum stress occurs between the first and the
second floor for the first harmonic and has the value z 2% O s A,
- The stresses due to higher harmonics are ﬁ‘;aﬁi T £§§‘

These :s_tresses can be easily computed from the

- following table or fig. 8:

w b Clesd, ¢ o ¢

0 -0.500 o 0 0 0

0.558 0,540 -0,340  -0.0486  -0,0139 0.00623
0.834 0,555  -0.397 0.0666  -0,0199 0.00942
1.1 ~0.564 -0.438 0.0818  -0.0254 0,0123

1.66  -0.578 ~0,496 0.307 ~0,0377 0.0L77

2,50 -0.596 -0.544 0.133 -0,0517 0.0254

3.33 ~0.,608 -0.572 0.149 -0,0833 0.0324

5.0 ~0.619 ~-0,600 0.172 ~0.0812 0,0451
10 -0,635 -0.629 0.196 -0,105 0.071

-0.637  -0.637  0.212  -0,129 0.091






- hence

~ Upper_limit df resonance stresses

<

Consider the case of résonance with the Pundsmental harmenie

¢
j = \’ﬂfj“ »ﬁmt? .f gg}ﬂ P Eélw. > Feo v:as:m:\ E Fend, T

+ Cor ‘g};_, ﬁ‘* Sem (2 § ?ﬁ
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The last term may be n_eglected, for

| )< A . A O

RIS 35 55 s
on the other hand, (}/j’&% = /"5
‘hence I Yoc Z’WMM Sert ) ?é /?”i < 2
, ‘ K=o
i:

Notlng- the values of B;) in this expression, we see that |
it is comparatively small. We cam write,

AE

oty

< *z'? c! 4@‘3@} + 4

In +this case the stress is never higher than

J;J‘i/f!ﬂgé‘b%}&g”?* g;w]

- ls' e W
The valwes of T? i:; Ao f"a{%%are plotted in i‘ig.';Z

Iri case of resonamce with an harmonie of higher drder
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f?ﬁv A.(’JTIQ"‘I OF EARIE%UAKE ACCE«J-L TI@I*?S, SP;@TRU'*I OF A SISMOGRAM

Most oi‘ the smmograms show the random charagter of
earthqaake accelerations, with, very often, series of quasi periodic
| oseillatiéns. It is therefare difficult to identify he action of
an earthquake with that of the simple acceleration curves ,stﬁdied
. +111 now. Wé might, of éoux_'se, apply equation (3) and c.alculate
 the displacement corresponding to a giﬁen sismogram,

Bubt it i3 much more convenient to divide the problem,
and to analyze séﬁarately the elastic properties of the building
and the frequeney distribution of the earthquake. We need there-
fore a .genéral théorem which we shall here prove in the speeial
case of building oscillations. As we are more interested in the
stresses, we will not give the corresponding equations of the
displacement; the method being exactly the same as befere, we
get the stresses from the displacement by a simple derivation.

ﬁ'quatien (3) may be written
(% [fzj o= *foﬁ’_&f‘_ W__L g/am} /60;{2 3}5* Bl @~ ot
Putting (///é] ; }i’{/ﬁ} the acceleration

and - o
’ I{ij gm f&mﬂﬁ/{ﬁj ﬁ’ﬁ‘ = ?’é’“/m"“w}€ ﬁ/;ﬁff""‘"*‘

%

- Considering then the Fourier integral

-
”gfﬂ*’?f

Ww P8 A8 = A [0 el /:’ et

Rt

?//fj = fZ’L / 6/ B cogea’ 8- ¢} IP,
a

'where j{%) represents an accaleratlon record located in the time

interval (0%), we get

Z//fjjmﬂ- /f(/wg.ﬁ@)*’gg“e}fé gfrad b

Yo




: ’l‘he e;mressien ﬁ/w/} f{gﬂf .,“ ,g‘" ;W) represents what might be

-*ealled the é.enszty of energy as a mnctien of a7, or energys_

'caming back to equation 'éj » We note that f?%t is the resultant
| , of free oselllatiens of amplitude(., ). | The sﬁress at 'a. cai‘tarin
.mcment is the sam of the stresses due o each free osclllatiem
existing at that moment. _,ach of these stresses may be writtem .fflg gg ,,,,, .

or

. | _,M .{ﬁfgﬁ;?até . ﬁﬁfwk) Ei
This resultent vean' be expressed in a more complete manner as
followsa: | |

When an accelergtian j{t) aets upon a building during a
time interval (0%t), the maximﬁm total stress at the final moment
ii’s the gum of the stressesb due to every free oseillation existink

-at that mement, Zach of those siresses is a produet of three

factors; an effect:ﬁre mass,
PR P 7 « -
M E) = | 2L «a«ﬁ,e;m Aef et ¢) somdi§,

an effective acceleration :‘:}’ fd"m

. - ¢
and a coefficient /Z‘“o

The first factor depends only_on the elastice prqperties of the
building. The second'factor,‘ whieh has the dimension of an ac-
eeleration, depends essentiallfr on the shape or speetrum of the
- gismogram. The third one is the relative length of the earthquake.
The problem'i‘s thus div-ided in ﬁm parts,
1) Csleulation of the effective masses for a given building,
2) dalculation of the function A(@«J} or spectrﬁm for a certain

number of sismograms of the region. The use of a Fourier

o A . s i i s e R, -

(1) daffy o §

5. I
AL 2,

Flf”e‘{““‘)""”"ﬂf@ a3 s |



_ | | 17,
analyzer'wili makebthisfﬁart of the work vefy easy.
( A great aavantage of this method is the fact that the
effectlve acceleratlon may be derived in a very simple way fPom

a‘ground dlsplacsment-record. Let a(s) be the displacement.

Puttlng

gfzgghﬁfw% u,i//:2&1¢af“ af?}j¢£ﬂ

f; {wjm \/’jfdmzwf‘cﬁgfgfj adE,

&4

we get

wg@ *f;,? /F(wj&wwﬁa&; f/q,@,{;wj/udm cwl Ao

The accéleration takes the form

‘»‘gfﬁj = d/{:/ /A"' fgx‘{”‘”") cog ew e + /W.EJ;Z,/{ s J et et ffm;

hence N .
WLy fw) = Ly
-ﬁ;!«; mé—i;g 5;‘&’,@}} f(/&lj
. z
Putting then 4{4f9g5=ﬂ£%{&{5+§§%gﬁwe find the required
formula

/fg@j = et Aagf’w;?

This enables us to express very simply the function «£¥{%¢{§
corresponding to the écceleration record, when we know gﬂefg%ﬁﬁﬁ

calculated from the displacement reecord,
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“v o %ﬁe anék&ﬂis of a sisﬁagramfgiVeB a function density
of energy .Afw} or effective aeceleraticn @/{4?/;} having one or
more maxima ag shown in flg. 9, Ina given reglan there generally
g‘exiats eertalnvcharaeterlst1c frequencies of-the 301l_whi@h appear
in many sisnbgrams. These ffeéuencies will cause the mentioned
"maxima to be located in the vieinity of fixed values of w»in

| ';ii_f:t‘erent records. If three critical values w, “‘2"“’3 for the

building are in the region of those maxima we should, if possible,

place them between the peaks. The meximum stresses are ‘given by

7Z"£—' / 71, [f/f—é——lo“’if“" f-'ﬂf_?( 5/ Li“'-’ﬂ + L% Mh‘;ﬂ; f

= Jf*?/é“ ém;? 5 Vijes,) # 4&%5«’}‘&.&’/‘{&;{;%@ fcmm,gfel&"~

In order to illustrate this method we will caleulate
the function A[w} for the acceleration given by a finite sine-

wave of total length T:

4 y fj:‘
Y= bx-F > F
/tﬁ/;—&/@d‘w«xﬁé Feabc F
PR i ~
‘f/wfr: m{f”i /% coteol A QF oft = o
4
- {/.:.z:
_ 7
\ /' f&#*’? e b .“ g
I fey) = 22 [ e st ton A= fefSn Y F Gefen ) T
- W I PV .
k(mz
<

- ,

«z A ’ -

[ | o | dun (v - 2 Z ::,
]/A'{/W} N % [ ¢ N |
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: Thls functien is nlotted in fig. 10. The stresses corresponding

- to dlfferent free oseillations are

H, () o |l ]
ity (1 i

In case of resonance with the harmonic of order k the
corresponding stress- 1s
o [
11 ﬁ{{/’ 22 L
| Lo+ |
The stress may be put in the form already obtained by

a previous method -
L

ﬂ/g ’f; “Fese 45 s L

£ GINERALIZED METHOD FOR BUILDINGS HAVING VARIABLE

5

MASS AND RIGIDITY AT THE DIFFERENT FLOORS

The method is absolutely general and could be used
for eny type of buildingz considering both bending and shearing
deformations., We will restrict ourselves to the shear in case
of variable[l&(x) and m(x). The equation of motion takes the

foi'm
Qé@ + () f o I,

If the acceleration is an harmonic function of time = /. Sistend

' the solution is 4= ?‘Jwizw?, and

’ # P A - 4 s
g iﬁ{i{ﬁ ;;%j + fﬁzgéj w;g = iy ;;;gﬁ@ .



fig 9




T o Developing the solution in terms of the orthogonal

'jfunctions corresponding to the free oscillatlons and defineé

by the equatlans

[ ex ﬂi;a rmpgwil =0, (4

w4 £
- .
ﬁ§ Ao [ g 2 Tirppe = [
tﬁjw =) 7 P -—-‘7/,6?
£

After multiplying both sides by y, and integrating
along the totsl height of the building,

y _
& ) » ‘ fﬂz;k'
ﬁ*" *"”/1;,”2., with C, = /;&Zt '
I sy
J,f/ 7 mie) &%

Findlly, ﬂ é/@ ZZ me:w;;;i* ;f

The displacement corresvonding to a sudden aéceleratien

is

o= (/ f «ﬁ’{xé/@ﬁ,;w fm:;f:]

A
The amplitude of sach free oscillation is given as

a function of the density of energy Zﬂfaéﬁby

“e 7

and'the stress at the coordinate x due to that oscillation by

B ———

’“‘/ <o ﬂjf?w 7"/”??; ‘f

W:é

The total maximum stress is the sum of each of these

expressionas.

20,
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‘ | The'prééadinv:considefatiens'show thét the problem is
”°fsolved whanever we know the set of orthogonal functiens Ty multlplied
 by any factor of prcpartxonalzty, i.2. when we know the shape
. of the free oselllatlons.
o | Frgm yf,we easily‘ ﬁeduée the frequenecy or the corresponding
: wi.by siﬁple energy coﬁsiderations.  Gonsider the building oscil-
lating with that,frequency. The motion is supposed to be free. When

thé smplitude is maximum the kinetie energy is equal to zero and

the potential energy is

On the other hand, the potential emergy passes through
zero when the strain dissppesars; at that moment the kinetic energy

is maximum and has the value

4
él“/%“{)‘;f %‘{/:“‘a&

Equating those two expressions, we get the value of

ol | % .
/M{Pf/wg"‘d“‘

(5)
» /fﬂ(’j g, ok

which is independent of any arbitrary constant multiplying yi.

THE CALCULATION OF THE ORTHOGONAL FUNCTIONS

The orthogonal functions y, may bg found by two methods.
One is semi ~empirital and very simple. We note that those functions

are defined by equation {éif s, Whieh by a ehange of the independent

variable . v/@‘”ﬂ
S S P






”beéames

ﬂﬁ*{%!j L O

This is the equation of buckling under a load P of a beam of

/z/j > m/}r{xj].&) ) = O

moment of 1nerﬁia

R =<
A / 2/ L1 g eot

if we céﬁsidgr}an.elastic strip of uniform thickness h,
its moment of inertia will have‘the value T under the condition
that the vai'iable width b satisfies the equation ,

fﬁé%gﬁ‘:_ I = »a;? R -£Z~

L aFIL
£

F&) . Af}ﬁﬂ%;§

where A is an arbitrary constant. We may choose far z any
scale convenient, for we are only interested in the shape of
the funections Vie
In order to realize the given limit conditions, the
étrip will be repeated symmetrically around a point representing
the top of the building. (fig. 11). The deformation of the half
strip under different loads will give the different functions Ty
Only the first deformation is stable, so that the others will have
to be stabilized by a special bu£ very simple device, We then
comﬁute by the energetic method ﬁhe corresponding values of
"the frequencies. (equafion 5)e
7 Another method is_analytical and might be useful in
' éase'offeniy slight deviations from the case of constant rigidity
and mass pfeviously investigéted; It is known in atomie physies
as “éerturbatien calculus”;‘
Putting mfx) = s+ Cfx)
Sl = et 3{’*’!
P TR

ﬁ% = &% e

22,
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| whére i, , ‘ff{?, %ﬁ M; are known a;nd & (}’; @3: ; ]f%‘ small variations.

The equatmn becoms

v f"‘“»—/&uﬂgf”{,ﬁj :fz’ ” &jgﬂ- 00/ f*’ma f'éf%(g %*+f }{ oot g}m} = o
: L9 e
Taking into aceount the identity

f/}‘ﬁ :{%&/ Pty f4d, gﬁggs w o

and negleetmg the amall terms of hloher order, we findlly get

fﬁ ch\/%ﬁ%w,;, d:\mm ~ d/ﬁyxg {:g’,,,(x/] j,ﬁ/@gpw e Mﬁ«g%

This equation has only finite solutions if the function
of the right side is orthogonal to the charaeteristiec funetions
1)
of the equation obtained by equating the left side to zero j);;

This condition may be written ; ,

/?{w&&/y/j ,%M’J/??- wzgjébf{@4 Dot ;7« *dly oo

~a
and gives the values of /o‘;

The second side of the equatmn is then entirely known

and g is determined by

n ) L o
2 Jpe f Br] v menldpy = [
Hx , ‘ '
Developing the solution in terms of the orthogonal funetions

%’g} = e f“?k fﬁé \

- putting this expression back into the equation

f }5} m, jwés = Wéi]?’fm = /f;{%f) 2

multiplying then both sides by ;’ﬁ(ﬂ , and integrating from O to h,

we get ' i
A = -,”C’( t A

) , .
Hilbert: Courant Chap. v, p. 277,



. ;wﬁere., b"“" o ek ,‘_- o
: & 2 » /; : ""{ »{’jaf
. o o (j: :. / f;{-gp/tﬁﬁ x o
. : . ,I . ) ) o g ‘6 ; ?
| » «é/?‘;’ffr () &

@y

o £ /%) = oG ko At <

‘ Hence

& . 2 2
e T Gy

‘and the required orthogonmal funetions may finally be writtem

=4 o
W;?m Eto ke

gom guir S g AR
¢ o

24,



CHAPTER TIT

CRITICAL TORSIONAL VIBRATIONS OF A ROTATING ACCELERATED SHAFT



| CRITICAL OSCILLATIONS BY TORSION OF A ROTATING ACCHLERATED SEAFT

The method pi'eviqusl-y developed for the caleulation of
' ,‘bhe transient shéaring vibration of a building may be applied to
the study of critical torsional vibrations in a shafi rotating

' With a. constant angular acceleratien. ‘Thesge amplitudes will be
functlons of the angula:r aceeleration and depend on the way the
external moment ,i_s distributed on the shaft, The equation of

oseillation may be written

D 089 . T 28
23] 135

where 9 is the angular coordinate of a cross section.

The equation of the free oseillations is
_ ..
A 25 :
[K{W? o /= /v 22 o

‘ b= Siv)e'
Which has an infinite number of solutions of the type = ﬁi;»»}éf

mhmd where Q{xj verifies the eguations

ar s Ty, fh‘ﬁ vy é) - .
g/ﬁ{x323¢j+ wy AR = (3)

i s vl
If the moment is harmomie -7 EIZZ%?& the solution of (1)
may be expanded in a series 6f orthogonal functions. According to
(1) end (3) we get |
g/xt) = et 575, 0ix)
Ly = TS At Oilw

Mult iplying both sides by @(ﬁf/} and integrating along

e

the shaft, o ' /




The required"solnﬁion is’
&fx & =

The theery of integral equatlons shows that this method

¢

) 13 quite general as'well for flexion as for torsiom. We must now
caleulate the defdrmation-cauéelby a distributed moment

'suddéntly épplied‘to the shaft, HNoting the value of the integral

ol
o Lwt" R P
/ o d&u ot Z;

N N . g}

this moment may be Written,

/" f-«t;‘n‘w? i .

N i

0y

to whieh corresponds the solutlon
P D

{/A"éfm Z[’fiz) {Mj e.ﬁl«;{”‘s et — mg’( O(’j} ’z&’»f”w? £ ,,I

) 'l"_ S
- o (w % M‘j

If the applied moment varies with the time and has the
form J@éxk?}éﬁﬁfit may be considered as composed of an infinité
" number of small jumps Jﬁ@ﬁﬁ,éih ¢ and the corresponding solution

is given by integratlon

éfzfj /ﬁ{’x & - z:j J’ %fﬁjﬁﬁ
~ Integrating by Par’ss and assuming }f*‘f o) = @

9= St 0

. ‘,a,a% ";Td'z& w;f{}»!f,gﬂ? {l‘ /Zﬂ g‘;&g‘?wg&,@‘”&“ ‘a’fg)

e,

= ‘ziijgzi.ig!‘{%%¥&m%ag;

.ﬁ.



By putt ing

: %/w&j - /%—/Zym‘?%* X3 T
é (w’)) '.-;,-M a/?ﬁ\[f;::} e, T d{»

the amplitudes of the free oscillatims eompesing the motion are

C Qg V(w7 [ w:)
et

This formula gives the complete solution of the problem.
Consider a shafi rotéting with a uniform acceleration. in most- .
cases the "smplitudes of the torque variations will be constant.
We call vV the angular acceleration amd put /Qw é«-‘i « The |
variable part of the moment is, per unit length:

’/\]‘0{"9} J‘:‘%ffz £

Applying the preceding formula we get

&
/[//‘4’;) m—,,/&a@w"r ,ﬁg&a{/} 7 ol
5 .

e w E = x
sz =7

| A - « T , oz 2 2 ]
K epd DT *ﬁfm,/g"ﬁ L o= 44«%1/{3’ ) zwﬁs"ﬁ’]w @mﬁxm@; -0 ]
‘ Ao : x o | . '
W/ 1l .:/,m.ﬁgmj o el f.,/m e "= ]
. o N ' ¢
firs *

S
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These expressions may be reduced to the well known

Fresnel integrals ; "

: g ~ Y el

S eevygiay = L) otz or w7 Cpny, T

. & f 2 P é., L 2
e ' VAN E -

We finally get

/'{/w‘j)« L) //-,S fra?i/}J—,S/(/x-—a{/m@m - [x?;j+6$x ws/gfw p‘;‘j{
4 f’ﬁ
By a similar treatment

/{{/éﬂ/} gy}ﬁ /g‘?; ?&{mf 5‘ (:{}:;% f.fh oc (/ef{' é/fi:«zﬁf é’&(a + /:gf{}f “:%‘?__ ,i’f’x_:‘%:«? + ‘19;?;{ &J}/Jcﬂiﬁl( ?Z .

The amplitude of the free oscillations is then ealculated

by putting into (5) the expression

Jleo) = Vgt » [

This gquantity has an upper limit independent of the

time

/[,,UM;‘ //@5‘/‘(w

After a suffie iently;long time and for o> % the value of ‘f‘

- reduees approximately to

) J—

- Fan
b b /T
Flaeds )= :

Fi L . o }f

In short, when a shaft is rotating with a constant angular

acceleration the maximum amplitude of a critical torsional oscillation

"is given by f' /&5 f’g e 0{9‘;

é‘w’

%

* o . .
-Tables of functions S & C: Tohnke and Enide, Funktionentafiln . 33,






Agglieatian.
As an illustration of the theory we shall treat a very

'simple’examble. .Consider a crank (fig.'l) conne#ted by a shaft to
~ a ' flywheel. The system is”supposed to receive nower from a re-
ciprocating ehginé. If the maximum torque on the shaft is M, the
mean tarque will be /2. The variable part of the torque is
" and is spplied with an angular velocity which is twice that of
thé shaft, If X is the torsional rigidity of the shaft an angular
displacement B 6f the erank will produce a restoring moment AZ ;
the characteristic value of & for the free oseillation is a}==fﬁ§;
where I is.the moment of inertia of the erank.
The characteristic function 45%{%} is reduced to a
constant that we put equal to 1, we get,
Co [0, 09O, A
s 809 e

The angular acceleration is supposed {0 be &) and the

=

6@‘*

eS8
e 3
A

maximum torsional amplitude of vibration will be, in radians, smaller

than




