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ABSTRACT 

Picosecond time-resolved rotational coherence spectroscopy is developed as 

a probe of excited state rotational level structure and alignment. The mea­

surement technique employs a combination of supersonic cooling by molecular 

beam expansion, coherent picosecond pulsed laser excitation, and time-resolved 

and polarization-analyzed detection of spectrally dispersed :fluorescence. The 

requisite measurement system response time of approximately 50 picoseconds is 

attained using time-correlated single photon counting and a microchannel plate 

detector. 

In the case of purely rotational coherence (PRC), i.e., when rotation may be 

treated in the rigid rotor approximation, analysis of the polarization-analyzed 

fluorescence provides direct information about the rotational constants and 

structure of the molecule's excited vibronic state. This method of structural 

determination of excited states has the inherent advantages over conventional 

frequency-domain spectroscopy of sub-Doppler resolution and insensitivity to 

ground state structure. As a result, it is particularly valuable in investigations 

of large molecules and complexes. Analyses of PRC measurements on eight 

different molecular systems are detailed in this thesis. These provide illustrative 

examples of various aspects of the technique while permitting the derivation 

of new information about the excited states of six of the eight molecules or 

complexes studied. Principal among the findings are values of the sum of 

rotational constants B' and C' of the t-stilbene S 1 electronic state ( B' + C' = 
0.5132 ± .0008 GHz) and of all three S1 rotational constants of anthracene. 

We also report measurements of time-resolved and polarization-analyzed 

fluorescence as a function of excess vibrational energy in the S1 electronic states 

of both t-stilbene and anthracene. We are able to distinguish the contribution 

of purely rotational coherence from the contributions of purely vibrational ( or 

rovibrational) coherence to the evolution of fluorescence from the vibrationally 

excited molecule. Our results provide a test of the extent of coupling between 
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vibrational and rotational motion and its influence on intramolecular vibrational 

energy redistribution. 

Measurements of polarization-analyzed fluorescence of dissociation products 

demonstrate that. rotational coherence of the reagent can be transferred to its 

fragments. In order to interpret the results of these and related experiments, 

a classical model of fluorescence anisotropy in prompt, impulsive dissociation 

reactions is developed. 
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Chapter 1 

Introduction 
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A primary determinant of chemical reactivity in polyatomic molecules is the 

extent to which energy deposited in one of the many degrees of freedom remains 

localized or is redistributed. I For this reason, understanding the mechanisms and 

time scales of energy flow has been a ·goal of fundamental importance in chemical 

physics. Experimental studies of redistribution processes in isolated molecules, 

partir.ularly jn excited electronic states, have focused on the vibrational degrees 

of freedom in an effort to quantify the roles of density of states, coupling 

strengths, and mode and symmetry restrictions in the onset of intramolecular 

vibrational energy redistribution (IVR).2 Ultrafast pulsed laser and molecular 

beam techniques have made it possible to trace in real-time the consequences of 

dynamic behavior in isolated molecules and have thereby contributed greatly to 

these investigations. 3 

As clear indications of the involvement of rotational degrees of freedom in 

redistribution processes came to light in the early 1980's,4 a number of experi­

ments were undertaken to illuminate the nature of the interactions. Fluorescence 

polarization measurements, both steady state5 and time-resolved,6•7 •8 were moti­

vated by the understanding that coupling between vibration and rotation which 

results in a breakdown of the rigid rotor approximation will affect the degree of 

polarization anisotropy. 9 The extremes of complete separability of vibration and 

rotation and complete randomization of vibrational-rotational energy, within the 

constraints of angular momentum conservation, constitute the so-called regular 

rotor and statistical rotor limits of molecular rotation, respectively. 

The time-resolved polarization studies presented in this thesis began with 

the objective of clarifying the role of rotations in the well documented IVR 

behavior in the S1 electronic states of the molecules t-stilbene and anthracene. 3 

In the early course of this work, polarization transients related to free regular 

rotor rotation rather than to vibration-rotation coupling were observed. The ori­

gin of these transients is purely rotational coherence or, in other words, coherence 

within a superposition of multiple rigid rotor-like rotational quantum states.IO 
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Although fluorescence depolarization as a probe of molecular rotational diffusion 

in liquids had long been known11 and studied extensively using laser excitation 

on the nanosecond and picosecond time scales,12 there had been no analogous 

st,udjes of the free rotation of isolated molecules. The characteristics of rotational 

dephasing due to free rotation had received some theoretical attention in the 

1960's, 13 but the expected dephasi11g rates were not accessible to measurement 

with the techniques of the day. By the time the above-mentioned investigations 

of the role of vibration-rotation coupling in IVR were undertaken, improvements 

in laser and molecular beam apparatus had brought the picosecond and sub­

picosecond realm of molecular rotation into the reach of direct experimental 

observation. In order to correctly extract from polarization experiments on those 

time scales effects originating in nonrigid rotation, it therefore became essential 

to understand the manifestations of rigid-rotor rotation associated with purely 

rotational coherence (PRC). The advancement of this understanding has been 

the primary goal of this thesis. Based on the knowledge acquired, it has then 

been possible to examine fluorescence polarization measurements of vibrationally 

excited molecules for evidence of deviation from regular rotor behavior. 

Beyond its use as a diagnostic for rotational involvement in IVR, studies 

of molecular alignment also play an important role in the field of unimolecu­

lar and bimolecular reaction dynamics. When a reaction is initiated from an 

anisotropic population of precursors, details of the dynamic interactions may 

be manifested in preferential product alignment or angular distributions. The 

extraction of these details from experimental observations has been the subject 

of much interest.14 For reactions, as for isolated molecules, the effect of rotation 

must be accounted for in the analysis of alignment sensitive observables. In 

particular, the interpretation of product fluorescence anisotropy requires an 

understanding of the consequences of rotation of both reactants anrl products 

and the correlation between the two. Each isolated phase of· this rotational 

evolution can be treated classically in a manner which is formally equivalent 



4 

to the dassical treatment of purely rotational coherence. In conjunction with 

studies of dissociation dynamics in our laboratory, 15 time-resolved fluorescence 

anisotropies of dissociation products have also been measured. In order to 

interpret the .results of these and similar measurements, a classical model of 

the evolution of alignment and angular momentum in an impulsive dissociation 

reaction has been developed. 

In addition to the preceding dynamic implications1 the opportunity for a 

completely distinct and unexpected application of time-resolved polarization 

measurements was presented by one aspect of our observations. This was the 

presence of intensity recurrences or rephasings at times related to the structural 

parameters of the excited state.16 Frequency resolution and assignment of the 

individual rotational lines of vibronic transitions has long been employed for the 

precise detemrination of the rotational constants of excited electronic states of 

small molecules. In order to extend this technique to larger molecules, whose 

spectra have denser rotational structure, ultra-high resolution lasers and strongly 

collimated molecular beams to reduce the Doppler linewidths are required. 17 For 

sufficiently dense spectra, as measured on the scale of the natural linewidth, due 

. either to size, asymmetry, ur direction of the transition moment, this technique 

is not applicable. Purely rotational coherence spectroscopy is found to offer an 

alternative, effectively Doppler-free, time domain approach to the determination 

of excited-state rotational constants. Due to the nature of the phenomenon of 

PRC, this approach has criteria for applicability completely different from those 

of the frequency domain measurement. In particular, because the time scale 

of recurrences lengthens as the rotational constants get smaller, the technique 

is readily applicable to large molecules. A major focus of the work presented 

in this thesis is demonstration of the practical utility of PRC spectroscopy for 

determination of excited-state rotational constants and structures. Results have 

shown that the usefulness of the technique is not severely limited by requirements 

of symmetry or dipole direction and that the information obtainable is compa-
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rable and complementary to that derived from high resolution frequency domain 

spectroscopy. Moreover, PRC recurrences have now been observed by a variety of 

detection schemes, including multi-photon ionization,18 fluorescence depletion, 19 

and laser induced fluorescence. 20 These facts and the inherent advantages of the 

technique suggest it can find broad application in the study of excited electronic 

states of large molecules. 

Briefly, the organization of the remaining chapters is as follows. Chapter 2 is 

intended to give the reader a thorough grounding in the theoretical foundation 

of PRC. Section I of that chapter gives an overview of the phenomenon and 

describes the principle features of the quantum mechanical treatment, which has 

been fully developed elsewhere.10 Section II takes a detailed look at the classical 

treatment of alignment phenomena. In Part A, a general classical derivation of 

polarization anisotropy is given. Application both to isolated, stable molecules 

and to dissociation products, under the restriction of symmetric top motion, 

is the subject of Part B. Section III focuses on the implications of molecular 

asymmetry both for the observable characteristics of PRC and for its numerical 

calculation from the quantum mechanical expression. Chapter 3 is devoted 

to a description of the experimental apparatus and procedures employed in 

· the measurement of time-resolved and polarization-analyzed fluorescence. The 

methods of analysis of this data, principally involving comparison and fitting 

to numerical simulations of PRC signals, is described in Chapter 4. Finally, 

experimental results are presented and discussed in Chapter 5. The arrangement 

of that chapter is detailed in its own introduction. 
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Chapter 2 

Theory of Rotational Coherence and Alignment 

Portions of this chapter are taken from the following published articles: 

"Purely Rotational Coherence Effect and Time-resolved Sub-Doppler Spec­

troscopy of Large Molecules. II. Experimental," by .l. S. Baskin, P. M. Felker, 

and A. H. Zewail. 

Reprinted with permission from The Journal of Chemical Physics, Volume 

86, p. 2483. Copyright 1987 American Institute of Physics. 

and 

"Determination of Excited-State Rotational Constants and Structures by 

Doppler-Free Picosecond Spectroscopy," by J. S. Baskin and A. H. Zewail. 

Reprinted with permission from The Journal of Physical Chemistry, Volume 

93, p. 5701. Copyright 1989 American Chemical Society. 
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I. Purely Rotational Coherence in Symmetric Top 

Molecules 

As an introduction to the theory of purely rotational coherence (PRC), we 

describe here a simple, physically intuitive picture of the phenomenon. It is 

based on the fact that the properties ( e.g., time and polarization dependence) of 

PRC fluorescence signals can be understood as arising from the classical motion 

of each molecule-fixed transition dipole as the molecules of the sample rotate 

freely in space. This classical motion, coupled with the quantization of angular 

momentum, reproduces the quantum mechanical manifestations of PRC both 

qualitatively and, to a great degree, quantitatively.1 

For example, Figure 1 illustrates the classical rotation of a rigid prolate 

symmetric top of moment ofinertia 10 about the figure axis and lb about any axis 

perpendicular to it. (We designate the unique axis of the top by the term figure 

axis instead of symmetry axis since the latter has more general applications. The 

figure axis of an accidentally symmetric top need not even be a true symmetry 

axis.) This can be described as consisting of two motions: 1) a precession or 

nutation of the figure axis about the total angular momentum vector J, at 

angular frequency w1 or frequency v1 = w1 /(21r); and 2) a rotation about the 

figure axis of the body at angular frequency w2 • Although the first motion is 

commonly referred to as precession, nutation is the more proper technical term 

when the motion is not induced by the action of a torque. Fig. 1 shows the 

position of the body at two different times separated by half of the nutation 

period. The angle 6 between the figure axis and f remains constant so that 

the component of J along the figure axis 

frequencies v1 and v2 are given by2 

.K) has constant magnitude. The 

V1 = l I Jl / I = Jh 41r B = 2B J 
27T" b 21r 

(1.1) 

(1.2) 
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where J and K are the magnitudes of .f and K, respectively, in units of 'Ii and 

the definitions of the rotational constants B h/ ( 41r I1J and A = h/ ( 4rr Ia) have 

been used. (For an oblate top, v2 simply changes to 2(B - C)K.) 

Thus, it is seen that a dipole that is parallel to the figure axis partakes 

only of the nutational motion, sweeping out a cone in space at the frequency 

v1 = 2BJ. As a result, the radiation from this dipole in any given direction 

returns to its original value at the period 1/(2BJ). It is clear then that the 

intensity may be modulated only by the nutation frequency, and possibly higher 

harmonics thereof, but not by the rotation frequency. By contrast, when the 

dipole is perpendicular to the figure axis, it undergoes both nutational and 

rotational motion so frequencies based on both v 1 and v2 may appear. For v2 , 

only the second harmonic, i.e., 4(A - B)K, is relevant since a rotation about 

the figure axis of 180° returns the dipole to its original direction. Both the 

time dependence and polarization dependence of the fluorescence from individual 

molecules can be derived from this model. 

In practice, the measured fluorescence signals to be considered in this thesis 

arise from excitation by a linearly polarized pulse of macroscopic samples con­

taining molecules in a large number ( typically thousands) of different rotational 

states. At t = o+, the dipoles of the excitation transition are partially aligned 

along the direction of the excitation polarization. The molecules thereafter 

undergo various forms of the motion described above, producing their own indi­

vidual modulation or beat patterns with a wide range of modulation frequencies 

determined by the angular momentum and the excited state rotational constants 

B' and A'. The alignment and synchronization imposed by the excitation pulse 

and the postulate that J and K may assume only integral values then lead to 

the following quantitative picture of the macroscopic behavior of PRC when the 

dipoles of the excitation and detection transitions have the same orientation 

in the molecule: 1) For parallel transitions (dipole parallel to the figure axis), 

a total spatial realignment or rephasing of dipoles occurs at the fundamental 
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nutation frequency 2B', since all molecules nutate at some multiple of that 

frequency. 2) For perpendicular transitions, rephasings occur at 4(A' B'), 

which is twice the fundamental rotation frequency, as well as at the fundamental 

nutation :frequency 2B', but these rephasings are only partial unless the two 

frequencies are commensurable. Recurrences in fluorescence ( or absorption) 

intensities associated with such patterns of dipole rephasings constitute the 

principle observable consequences of PRC in symmetric tops. The exact nature 

of the recurrences will depend on the fluorescence component detected. For 

example, in the cases described above, the major recurrences will clearly be 

positive in the fluorescence component with polarization vector parallel to that 

of the excitation pulse (henceforth referred to as parallel fluorescence). If, on the 

other hand, the excitation and detection dipoles are perpendicular to each other, 

parallel fluorescence will display negative recurrences. In each case, recurrences 

of opposite phase will appear in the perpendicular component of fluorescence. 

These properties and specific cases will be discussed in more detail in Section II 

of this chapter. 

The preceeding picture of PRC as a consequence of the orientational evo­

lution of isolated molecules has its quantum mechanical analog in the evolving 

character of a coherent superposition of rotational eigenstates. This superposi­

tion is prepared by the coherent excitation of multiple excited electronic state 

rotational levels from a single ground state rotational level, as permitted by the 

appropriate electromagnetic transition selection rules and the laser bandwidth. 

Since these excited state levels may in turn emit to certain common ground state 

levels, quantum interference effects ( quantum beats) are expected in fluorescence 

when the detection does not resolve the separate emission channels3 • In this case, 

the fluorescence will be modulated at frequencies corresponding to the energy 

splitting between the interfering excited state rotational levels, with amplitudes 

which depend on the particular excitation/emission channels involved. Since 

fluorescence polarization also varies with rotational state, the resultant beat 
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pattern is detection polarization dependent. This is a common feature of all 

quantum beats arising between rotational levels, such as Zeeman4 or Stark5 

quantum beats. In those cases, however, the beats appear only in the presence 

of an applied field and correspond to a precession of the molecules induced by 

the torque on a permanant dipole. 

For a rigid prolate symmetric top molecule, the rotational levels in the 

excited state have energies E given by 

E/h = F(J',K') B'J'(J' + 1) + (A' B')K' 2 (1.3) 

where J 1 and K' are the quantum numbers for total angular momentum and 

projection of angular momentum along the figure axis, respectively. Selection 

rules for electric dipole excitation are t::..J = O, ±1, t::..K = 0 for parallel dipole 

transitions and 6.J = O, ±1, i:::l.K = ±1 for perpendicular dipole transitions. 

For the present considerations, selection rules on the magnetic quantum number 

(i.e., the quantum number for the z component of total angular momentum), 

M, are not of concern, since M does not affect the rotational energy. Thus, for a 

given vibronic transition from a single ground state (J0 , K 0 ) level, three and six 

different excited state levels may be reached for parallel and perpendicular tran-

. sitions, respectively, when the laser coherence width 6.v"°h is sufficiently broad. 

This process is illustrated for a parallel transition in Fig. 2, which is reproduced 

from Ref. 1. e1 is used to designate the polarization of the excitation pulse. 

Emission paths for detection polarization e2 II e1 are also shown explicitely, 

showing the sharing of final states that is essential tu quantum i11terfere11ce. The 

upward pointing arrows represent the possible use of alternate probe schemes 

in which the second transition is absorption rather than emission. The three 

energy differences, and hence possible beat frequencies, between the three states 

comprising the parallel transition-induced superposition state are always multi­

ples of 2B', what ever the initial (JO, K O) level. This may be easily confirmed by 

consideration of Eq. (1.3) for AK = 0. Five of the fifteen differences between 

the six energy levels for a perpendicular transition take on identical values, so 
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at most ten distinct frequencies may be involved. Again, three are multiples 

of 2B', the fourth is a multiple of 4( A' - B'), and the six others are sums and 

differences of the fourth frequency and each of the first three. These last are 

not, in general, multiples of any combination of molecular constants. 

The actual beat frequencies depend, for both dipole directions, on the 

jnitial ( J 0 , K 0 ) level involved, so that the rotational beat patterns arising from 

different initial states will be different. The frequencies present in the rotational 

quantum beat patterns of individual molecules are found to match closely those 

of the fluorescence modulations derived from the classical rotational motion. 

For example, Fig. 3 shows the expected parallel :fluorescence intensity when the 

( J0 = 6, K 0 = 3) rotational level of a symmetric top molecule with rotational 

constants approximating those of t-stilbene is excited by a delta function pulse. 

This M quantum number has been summed over to obtain this intensity, so that 

it corresponds to an average over spatial orientations rather than to a true single 

molecule. The fundamental nutation period of t-stilbene is 1/2B' 1.95 ns, and 

the pertinent transition dipoles are both assumed parallel. The signal is seen 

to repeat exactly with the 1.95 ns period. It also shows a major quasi-periodic 

. oscillation resulting from the superposition of beat frequencies at J0 • 2B' 12B' 

and (J0 + 1) • 2B' = 14B1• This pair of frequencies is.the quantum analog of 

the single classical nutation frequency of the J0 = 6 molecules. The smaller 

recurrence also has its classical equivalent due to the fact that the figure axis 

is approaching a complete reversal of direction at the midpoint of its nutation 

trajectory (see Section II). 

Since commensurability of the frequencies ofindividual molecules is a shared 

characteristic of quantized classical fluorescence modulations and quantum beat 

patterns, previous comments on the effect of thermal averaging on the former 

apply equally to the latter. Thus, although signals such as that of Fig. 3 

are not observed experimentally, macroscopic recurrences at the fundamental 

frequencies 2B' and, for a perpendicular transition, 4(A' - B') do appear in the 
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fluorescence intensity. Numerous examples of such thermally averaged signals 

may be seen in later sections. 

In the quantum mechanical description of PRC, the simple consideration of 

rotational selection rules and energies has been sufficient to derive the modula­

tion frequencies which may appear in the fluorescence signal. To confirm other 

properties predicted by the classical picture, such as the phase dependence of 

recurrences for given dipole directions and detection polarization, a detailed 

calculation is required. Derivation of the appropriate quantum mechanical ex­

pressions has been given in Ref. 1 employing a density matrix formulation. An 

alternate derivation is given in the remainder of this section, permitting a simple 

statement of the basic equation for PRC beats. Reduction of this basic equation 

to the specific analytical expressions given in Ref. 1 can be done, but it involves 

fairly laborious algebraic manipulations. In the treatment of Ref. 1, powerful 

tensor algebra and symmetry properties could be exploited to carry out this 

reduction efficiently. 

Consider a polyatomic molecule in which we assume the electronic (qa), 

nuclear (q0J, and rotational (a,t,, 1 ) coordinates are completely separable. Ig­

noring spin, the total wavefunction of the molecule can be written as follows: 

(1.4) 

In the electric dipole approximation, the composition of the coherent superpo­

sition prepared in an excited electronic state by the excitation pulse is governed 

by the transition dipole matrix element (1j,0 jdKl'lf'1 ). Here the operator dK is the 

component of the electric dipole moment J, along the direction of polarization of 

the linearly polarized excitation. The nuclear contribution to the electric dipole 

gives no contribution to the transition dipole for a transition between electronic 

states, since it does not operate on the orthogonal electronic wavefunctions. 

It is sufficient, therefore, to let d be the electric dipole due to electrons only: 

d = La -e • ra. If this operator in the chosen molecule-fixed coordinate frame 
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has components Jr' i x, Y, z, then JK is given in terms of these components 

and the direction cosine operators relating the two reference frames by 

Substituting Equations (1.4) and (1.5) into the dipole matrix element, one 

finds 

('¢0JJKl'lf'1) = ~ (! ¢;ib0 'lf1vib1 dTvib) (! 1f;ot0 cos0Ki1Prot 1 dTrot) 
i 

X (! 'lf':1)t'lf'e}i dTel) • (1.6) 

The first integral is the standard vibrational Franck-Condon factor, fFa· The 

electronic integral is the ith component of the transition dipole moment, des­

ignated by dr. The integral over rotational coordinates is referred t.o RS the 

direction cosine matrix element. For symmetric top rotational wavefunctions 7 •8 

this matrix element is a, function of the initial and final values of the rotational 

quantum numbers J, K, and M. In the notation of Ref. 8, 

Then Eq. (1.6) reduces to 

(,PoldKIV'1) = fpo L(~Ki)J0 K 0 M0 ;J1 K 1 M1 dt · 
i 

(1.7) 

(1.8) 

Explicit expressions for (~Ki) JoKoMo;J
1

K
1

M
1 

are given in Ref. 8 in which the 

symmetric top figure axis is the z axis, and angular momentum is quantized 

along the space-fixed Z axis. The electric dipole rotational selection rules for 

electronic transitions simply state the combinations of parameters for which 

these expressions are nonzero. 

The superposition state excited from a single ground state, for given transi­

tion dipole moment and excitation polarization directions, may now be specified. 
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The Z axis is chosen in the direction of the excitation polarization without loss of 

generality. It is assumed that a delta function excitation pulse at t = 0 accesses 

a single upper vibronic state ( jS1 v1 ) in Fig. 1) and that all I J1 K 1 i'\11 ) rotational 

states for whkh Li ( if? zJ JoK0Mo;J1K1M1 dr is nonzero are within reach of the 

excitation bandwidth. The rotational wavefunction in the excited state at t = 0 

is then 

If the sum in parentheses is abbreviated by MJO;l}, the time evolution of the 

superposition state is given by 

(1.10) 

where E(Ji,K1 ,M1 ) is the energy of the eigenstate IJ1 K1 M1 ). In the absence 

of applied fields, E does not depend on M 1 • 

The fluorescence intensity of polarization L from this superposition state 

to the state IJ2K 2M 2 ) is proportional to I ('1,1,rot(t)jdf IJ2 K 2 M 2 ) i\ and the total 

detected intensity is 

IdJo,Ko,Mo,t) oc L l('l,l,rot(t)ldi,IJ2K2.NI2)( • 
J,K,Mi 

(1.11) 

The emission dipole need not be the same as the absorption dipole, as indicated 

by the prime on the dipole operator. The range of J2 is always J0 - 2 to J0 + 2. 

The maximum ranges of K 2 and lvf2 are K 0 2 to K 0 + 2 and M 0 - 1 to 

M 0 + 1, with the chosen convention of excitation polarization. On substituting 

Eq. (1.10) in Eq. (1.11), one finds the final expression for the polarization­

analyzed fluorescence intensity for arbitrary dipole and detection polarization 

directions: 
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(1.12) 

where (M')1
1

;
2

} is equal to ~i(iJ?Lit1K1M1;J2K2M,dr'. 

The origin of the PRC modulations may be easily recognized in Eq. (1.12). 

For certain values of 12 , K 2 , and M 2 , the interior sum over excited-state rota­

tional quantum numbers has more than one term with nonzero coefficient. (In 

a representation like Figure 2 or 3, such a final state is one that is reached by 

more than a single path.) 'When the square modulus is taken in these cases, 

one obtains not only time independent diagonal contributions but also time 

dependent cross-terms with frequencies fixed by the energy differences between 

contributing excited states. Each cross-term is complex, but it is paired with its 

complex conjugate so that their sum is real. Since the total intensity is given by a 

square modulus, it is positive as well. The terms contributing to the sum depend 

on the directions of the transition dipoles and of the detection polarization, so 

that when these change, the beat modulations change accordingly. 

Equation (1.12) is the expression for the true single molecule PRC intensity, 

showing the dependence on all three rotational quantum numbers of the initial 

state. Such an equation must be used when the rotational energy depends 

on M as well as J and K. The results of Ref. 1 for field-free single initial 

rotational levels are obtained from this equation by summing over M0 • For 

actual comparisons with experiment, a further weighted snmmat,ion over all 

populated rotational levels of the ground state is required. 
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II. Classical Time-dependent Fluorescence Anisotropy of 

Symmetric Top Molecules 

A. General derivation 

This section begins with a derivation of the time evolution of probe signal 

intensities following excitation of an isotropic sample by a linearly polarized 

delta function light pulse. The nature of the molecular motion following ex.ci­

tation remains arbitrary in this derivation. The consequences of symmetric top 

motion will be examined subsequently. The probe process of primary interest is 

polarization-analyzed fluorescence detection, but probing by a properly chosen 

polarized excitation/ detection sequence is equally suitable. The derived time­

dependence will be applicable to the latter case when the signal observed is 

proportional to the total population of the terminal state of the pump/probe 

excitation sequence. 

Many facets of the present derivation, and many of the conclusions drawn, 

can be found in an extensive literature of theoretical treatments of molec­

ular alignment phenomena. These have treated fluorescence of both stable 

molecules9 - 20 •1 and of dissociation products,21 - 24 as well as dissociation frag­

ment angular distributions25 - 31 and Doppler profiles.32 In many cases both 

classical and quantum mechanical derivations have been given, demonstrating 

that the classical treatments give very satisfactory results for most situations 

of practical interest. Previous treatments have often been adapted to special 

cases, dealing with, e.g., time-integrated fluorescence, rutatiunal diffusion iu 

liquids, linear molecule rotation, or specific transition dipole directions. The 

derivation here of classical time-resolved and polarization-analyzed fluorescence 

is intended to be general enough to admit application both to stable molecules 

and photodissociation products. Particular attention is given to all factors which 

may influence measured fluorescence evolution, since direct comparison with 

experimental results is the ultimate goal. 

We describe :6.rst the nature of the experiment to be considered a.nd de:6.ne 
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the physical parameters and nomenclature. An initially isotropic population of 

ground-state molecules forms the sample under study. We designate a molecule 

in this sample by M1 . e 1 is a unit vector designating the direction of polarization 

of the linearly polarized excitation pulse. Excitation (as well as detection) is 

assumed to be via an electric-dipole allowed vibronic transition, with a transition 

dipole moment di whose direction is fixed in the molecular frame. The instant of 

excitation defines t = O. Because the probability for absorption of the polarized 

pump pulse is dependent upon the orientation of d~ relative to i 1 , there will 

be created at this instant an excited-state population (Mi) with a well-defined 

spatial alignment. At some later time t, a transition of the molecule M2 is 

probed, where M2 is either equal to Mi or is one of its photoproducts. The 

instantaneous transition probability of each M2 is determined by the orientation 

of the dipole moment d~ of the probe transition to the probe polarization vector 

e2 • Thus the time evolution of alignment of dipole moments d~ in the sample 

will be reflected in a time-dependent polarization anisotropy of the signal. In 

order to calculate the time dependence of the probe signal as a function of probe 

polarization, the rotational motion of each dipole must be traced continuously 

from t = O, the moment when the alignment of the population is created by the 

· excitation pulse. 

As in previous treatments it will be shown that the quantity governing 

the polarization dependence of intensities is TJ, the time dependent laboratory 

angle between the evolving direction of d~ and the direction of di at t = 0. 

Final intensity expressions derived here and elsewhere are distinguished by the 

specific distribution of ri(t) in the ensemble. Note that the classical treatment of 

molecular rotational motion that is employed here corresponds in the quantum 

mechanical description to coherent excitation spanning all rotational branches of 

the pertinent transitions. In a branch resolved excitation and detection sequence, 

no such time evolution is manifested. 

As initial conditions for the pump/probe experiment, we assume that a 
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very large number N of M1 molecules in a single vibronic state are accessible 

to the pump laser. The normalized rotational state distribution is given by 

pJ({i}), where {i} represents any complete set of rotational coordinates for M1 . 

This leads to an expected population PA { i}) = N PA { i}) in rotational state 

{ i} . The molecules have transition moments and angular momenta distributed 

uniformly over 41r steradians, though these distributions are not, in general, 

independent of each other. Since absorption of a photon can change the angular 

momentum or any of its components by at most 'Ii, in the classical limit the 

rotational state of Mi will be assumed identical to that of M1 • The orientational 

evolution which is pertinent to the pump/probe process is completely expressed 

in the function r,( t) as defined above. This is evident since interaction of the 

radiation fields and the molecules is solely through the dipoles. Therefore, we 

may treat each subset of M2 molecules characterized by a specific 11(t) as a 

distinguishable final state, and designate the set of parameters on which 17( t) 

depends by ( {f} ). Note that since ( {f}) must specify all rotational motion 

after t = O, in the case of dissociation it may depend on the rotation of Mi as 

well as of M2 • The designation "fiual" might then be more properly replaced 

by "post-pump." Intensities calculated for each {/}-state will be referred to as 

· state-resolved since they may exhibit classically distinguishable evolution, but 

no direct correspondence to quantum-mechanical states is implied. Finally, we 

define Pi-+/ as the branching ratio from initial to final state, giving the expected 

fraction of those molecules excited in state { i} which yield fragments in state 

{/}. 

To derive the probe signal intensity from molecules characterized by arbi­

trary {f} and for an arbitrary sequence of pump/probe polarizations, we refer 

to the geometry of Fig 4. The probe polarization vector e2 is rotated from 

e1 by an angle delta in the laboratory. Since the population excited by the 

pump pulse must have cylindrical symmetry about e1 at all time, the choice of 

azimuthal orientation of e2 about e1 is arbitrary. We write first the probability 
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for absorption during a delta-function pump pulse by a molecule in state { i} 

with d~ as shown. In the linear or low intensity regime 

(2.1) 

where P2(x) = ½(3x2 -1) is the second order Legendre polynomial and C
0 

is a 

constant of proportionality which is independent of the laboratory orientation 

of the dipole. Ca will depend in general on the specific vibronic transition and 

the characteristics of the pump pulse, and may depend on the initial rotational 

state, particularly when the frequency spread of rotational transitions is as great 

as, or greater than, the pump bandwidth. Explicit indication of this and other 

functional dependences will generally be dropped in the following equations for 

readability. 

We require next the conditional probability Ppr/a. for detection of probe 

absorption or emission by M2 in state {f} with dipole J; at time t, given that 

it was excited by the pump at t = 0. For the particular J; orientation shown, 

we may write 

where, again, the first term has no angular dependence, but may depend on the 

rotational state. This probability should be interpreted as follows: if, of all M 2 

in the specified {f} rotational state, a large number n have dipoles oriented, 

at time t, in the indicated direction, the number of detected probe transitions 

e~pected from these molecules in a single measurement (single probe pulse or 

single fluorescence channel width) is npprja(t). Note that the population n does 

not depend on vibronic state, so it changes in time only as the dipoles rotate. 

If the probe process is absorption, Cpr is determined by the same factors as Ca. 

but now may vary in time since the vibronic state of the fragment may be time 

dependent. When the probe is fluorescence detection in a direction normal to i2 , 

Cpr depends on the spontaneous emission strength (probability for a downward 
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transition) at wavelengths within the spectral window of detection, and also 

accounts for the solid angle of fluorescence collection and detection efficiency. 

In this case, Cpr must be time-dependent since the probability of the fragment 

remaining in the excited vibronic state decreases with time. In the simplest case, 

the probability per unit time for emission by an excited M2 will be constant 

and Cpr will decay exponentially, as it may also for an absorption probe from 

an excited state. However, for either type of probe, the vibronic state of the 

fragment may also be subject to nonradiative evolution ( as, for example, when 

the vibrational character of the molecule is altered by intramolecular vibrational 

energy redistribution) leading to temporal changes in absorption or emission 

strength at the probe wavelength. A special case of this type is the spectral shift 

of a probe transition caused in the early stages of dissociation by the proximity 

of the two fragments. 33 Similarly, in the case of predissociation, the spectrum 

will shift from that of Mi to that of M2 when the separation of fragments occurs. 

Such a time dependence may be a function of {f} but cannot depend on the 

orientation of the molecule in the lab frame. 

The probability for excitation of M 1 in state { i} with dipole di as shown7 

creation of M2 in state {f}, and detection of a probe transition at a time t for 

which the angle between di (0) and 4z is r,, can be found by combining the above 

results and averaging over possible directions of li: 

(2.3) 

Each value of ¢' is weighted equally in this average since the azimuthal orienta­

tion of the molecule about J; at t = 0 was isotropic. The average in Eq. (2.3) 

may be carried out simply by referring to Figure 3 and applying the addition 

theorem for spherical harmonics to P2 ( cos ,B). 34 This gives 
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The total number of transitions expected from molecules in the state {/} 

when the sample is probed at time t is found by multiplying Eq. (2.4) by 

P 1 ( { i}), averaging over the uniform initial distribution of d~, and summing 

( or integrating) over initial states. Multiplication by hvP"' where vP,,. is the 

probe transition frequency, then gives the detected energy. The state resolved 

average probe intensity over the spatial and temporal extent of the probe beam 

or detector, will be proportional to this energy with a proportionality constant 

C col!lpletely determined by the characteristics of the probe. Thus, 

(2.5) 

Following the average of P2(cos1) over phi, one obtains 

( ) (
~ ( . ) ca ) cpr(t) 16 {f}, t = C L-, PJ {i} 3 Pi->/ hvpr 

3 
{i} 

X ( ( 1 + 2P2 (cos a)) ( 1 + 2P2 ( cos 6)P2 (cos17)P2 ( cos a))) !:~6) 

where terms which cannot depend on the initial state have been factored from 

the summation. The notation a 4 ,r recalls that the remaining average is pa.rt 

f h . . al h ( ) i r2n t f11' • d d,1.. o t e origm average over a sp ere: ... (et,4>)
4

,,. 2 '/1' Jo 2 Jo ••• sm a a 'f'• 

· This average is zero for P2 ( cos a) and g for Pf ( cos a). Furthermore, note that 

if P; ( {/}) is defined as the total number of M2 fragments created in the state 

{f}, one has 

P;({f}) = LPJ({i}) Ca (1 +2P2 (cosa)) Pi---•f 
{i} 3 (a:,4>)4,r 

L PA {i}) ~a Pi--f , (2.7) 
{i} 

which is precisely the sum appearing in Eq. (2.6). If the remaining alignment 

independent factors C hvpr ½Cpr(t) are combined into a single function a( {f}, t), 

the final generally applicable intensity expression can be written 
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where the complete functional dependence of each term is indicated. The 

macroscopic signal is then obtained by a sum over all product states: 

I6(t) = L Ic5 ( {!}, t) 
{J} 

(2.9) 

From these equations, several well-known general properties of the polariza­

tion-analyzed intensities are immediately evident. These deal specifically with 

intensities measured at 6 = 0°, 54. 7°, and 90°, designated 1
11

, 154 _7 0 (magic 

angle intensity), and I l.' respectively. (It is assumed in the following that 

the detection efficiency, and hence Cpr('t), is independent of 8. In practice 

this condition is often not met and data collected at different angles must be 

normalized to compensate for this bias.) First, from Eq. (2.8) one finds 111 + 
21 l. = 3P; ( {f}) a({/}, t), which is independent of the orientational evolution 

of the population. Physically, this reflects the equivalence of all directions of 

perpendicular polarization, and the fact that the sum of intensities from a dipole 

emitter measured with polarizations along any set of three orthogonal axes is 

independent of the orientation of the dipole. Secondly, because P2 (cos(54.7°)) 

is zero, 154 .7 0 = P; ({/})a({/}, t) = ½(111 + 21 l.), and hence is also insensitive 

to orientational effects. Thirdly, applying the general definition of polarization 

anisotropy {r = {1
11 
-Il.)/(111 + 2Il.)) to the state resolved intensities, one finds 

the simple relations 

(2.10) 

and 

(2.11) 

where o.6 has the value 2P2 ( cos c). Eq. (2.10) shows that the initial anisotropy 

is equal to 0.4 in the usual case that the pump and probe dipoles have the 

same orientation in the molecule-fixed frame. It also shows that the anisotropy 

of an isotropic sample has a minimum value of -0.2 which it reaches at times 

when 17(t) = f, meaning that every J; has reached a position such that it 
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is perpendicular to the direction of d~ at t = 0. Finally, the anisotropy of 

the macroscopic intensities [Eq. (2.9)] is given by a weighted sum of the state 

resolved anisotropies: 

r(t) = LP;({f})a({f},t)r({f},t) /(LPi({f'})a({f'},t)) 
{f} {!'} 

(2.12) 

Since the anisotropies contain all available information about the dipole 

orientation, it will be convenient in the following discussions to restrict our 

attention to Equations (2.10) and (2.12) whenever possible. If the intensity for 

arbitrary delta is required, it may be re~owm~d from the anisotropy by use of 

Eq. (2.11) or, for the macroscopic intensity, by 

Ia(t) = (1 + a:6r(t)) x ( L P;({f})a({f}, t)) 
{/} 

= (1 + a,sr(t)) X l54,7a{t) (2.13) 

where Equations (2.9), (2.11), and (2.12) have been used. From the experimental 

point of view, Eq. (2.13) confirms the sufficiency of measuring only the two 

principal polarization components, I 11 and l1,, because both 154 _7• and r(t) can 

be derived from them. 

A simplification of practical utility is achieved in the above equations when 

separability of the state and temporal dependence of a( {f}, t) according to the 

perscription a({/}, t) = B ( {/}) A( t) is assumed. This can usually be considered 

a reasonable approximation, in which B ( {/}) reflects the strength of the probe 

transition for the particular rotational state, and A(t) depends only on the 

evolution of the vibronic state. (This assumption is actually less restrictive than 

it might appear since A( t) need be constant only over those rotational states 

for which B( {/}) has a substantial amplitude.) When the above separation is 

made, A(t) may be factored from all final state sums. In particular, the weights 

in Eq. (2:12) reduce to Pi ( {f} )B( {/}), which are related to time-integrated 

spectroscopic data, and the time dependence of r(t) is completely attributable 
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to the rotational dynamics manifested in TJ(t). A full characterization of the 

intensities depends additionally only on the measurement of the macroscopic 

magic angle intensity, which is in this case equal to A(t) to within a multiplicative 

constant. 

For all calculations presented in this thesis, it will be assumed either that a 

common temporal envelope A( t) characterizes all pertinent rotational states or 

that the sum in Eq. (2.9) may be separated into at most two parts to account 

for contributions from two different population components having different A's. 

It is further assumed that B depends only on the position of the transition 

frequency of each state within the spectral window of the probe, and there­

fore depends only on the energy of the state. This spectral sensitivity is then 

determined from the overlap of the rotational band contour with the probe 

pulse bandwidth in absorption or the monochromator bandpass in fluorescence. 

The spectrally broad picosecond or femtosecond pulses used in the time-resolved 

experiments will typically span the entire rotational co:µtour with approximately 

constant intensity. Thus, uncertainty in B, even in the abscence of satisfactorily 

resolved and assigned time-integrated spectra of congested rotational bands, will 

usually not be of great concern. In the classical picture being developed here, it 

would appear that the final state weights in Eq. (2.12) could be changed arbi­

trarily by varying the choice of B to obtain many different forms of macroscopic 

anisotropy. This is actually not the case, however, since time dependence can 

only be observed when the probe pulse coherently spans multiple branches of 

the rotational band contour, as mentioned at the beginning of this section. 

Eq. (2.10) reveals the central role played by the function 11(t) in the evolution 

of the signals we wish to calculate. We now derive the form of this function for 

the specific case that all motion of the dipole ~ for t > 0 is associated with 

the free rotation of a symmetric M2 • This situation applies both for excitation 

of a stable symmetric M1 and for very rapid dissociations that give rise to a 

symmetric fragment M2 • 
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Symmetric top rotation was described in Section I of this chapter and illus­

trated in Fig. 1. Referring again to that figure, we recall that the motion is char­

acterized by a constant total angular momentum vector f and a constant angle 0 

between J and the figure axis. A complete specification of the orientation of the 

top in a space-fixed frame can be given by means of a commonly employed35 set 

of Euler angles ( 0, 4>, 1¥ ), as shown in Fig. 5. To be consistent with the definition 

of the angle 0 defined in Fig. 1, the space-fixed frame (X, Y, Z) is chosen with 

the Z axis along J while the z axis of the molecule-fixed frame coincides with 

the figure axis of the molecule. Since the directions of the pertinent angular 

momentum and of the principal inertial axes may change in a dissociation, we 

reserve the use of capital letters (f, (0, cJ?, '11)) for the description of M1 , while 

f and ( 0, ¢, '¢) will apply to M2 • 

Using the Euler angle description, the form of 17(t) for symmetric M2 can 

be easily derived. We first determine the motion relative to the space-fixed X, 

Y, and Z of the principal axes of M2 • This is described by a uniform change in 

¢ at rate w1 (nutation about j) and in '¢ at rate w2 (rotation about the figure 

axis). The equations of motion of unit vectors along the top ax.es are therefore 

~(t) ( cos( '¢0 + w 2t) cos w1t cos 8 sin('¢0 + w2t) sin w 1t)X 

+ (cos0sin('¢0 +w2t)cosw1t + cos('¢0 +w2t)sinw1t)Y 

+ sin0 sin('¢0 + w 2t)Z (2.14a) 

y(t) = (-sin(1/J0 +w2 t)cosw1t- coslJcos(-ip0 +w2t)sinw1t).X 

+ ( cos O cos( '¢0 + w2t) cos w1 t - sin( '¢0 + w2t) sinw1 t)Y 

+ sin 0 cos( '¢0 + w2t)Z 

z(t) = sin8sinw1 t.X - sin8cosw1 t:f,. + cos OZ 

(2.14b) 

(2.14c) 

where the arbitrary value of ¢0 has been taken as 0. The classical angular 

frequencies are as given in Section 1: w1 = 471" B 1.i and w2 = 41r(B
11 

- B 1.)i cos 8, 

where now B 11 and B .1. are the rotational constants of the molecule about its 
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figure axis and about any a.xis perpendicular to it, respectively. Note that the 

frequencies in this form are also valid for oblate tops, for which B 11 = C and w2 

is negative. For now, no distinction need be drawn between the dimensionless 

j = li1/h in these expressions and the quantum number j associated with the 

eigenvalue j (j + 1) of the angular momentum squared. This correspondence 

must be treated more carefully, however, when recurrences are considered. 

Given the projections of di and d~ on the M2 principal axes, it is now 

straightforward to calculate 

cos(77(t)) = ~~ ~(t) = d 
1d-(d1zm(O) + d111y(O) + di.iz(O)) 

1 2 1 2 

. ( d23'x(t) + d2yY(t) + d2_,,z(t)) (2.15) 

by using Equations (2.14) to reduce the time-dependent basis vectors to a 

common lab-fixed frame. d1 and d2 in Eq. (2.15) are the amplitudes of vectors 

~ and d~. Note that while both ~ and da must be expressed in terms of 

projections on the M2 principal axes, because d~ is associated with a transition 

of M1 , there need be no symmetry restrictions on its components even for a 

rigorously symmetric M2 • 

. B. Applications 

i. Isolated stable molecules 

Our principal interest in discussing the anisotropy of isolated stable mole­

cules undergoing free rotation is to establish a connection between the theoretical 

development of the preceding section and the results of previous classical and 

quantum mechanical treatments.1113120 We demonstrate thereby the validity of 

the present formalism and develop further insight into its implementation in 

treating specific cases. Comparisons with quantum mechanical results available 

in the domain of stable molecules permit an objective assessment of the appli­

cability of the classical model, which may, by extrapolation, serve as a guideline 

in applications to dissociation. 

According to the preceding derivation, Equations (2.10), (2.14), and (2.15) 
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provide a complete prescription for calculation of the state-resolved probe signal 

anisotropies. The latter two equations show that these may be functions not 

only of time, but also of j ( through the frequencies), 0 (both explicitly and 

through w 2 ), and -ip0 • Thus the pertinent final state coordinates for symmetric 

top motion are ( {/}) = (j, 0, -ip0 ). As an example of an elementary though 

important application of these equations, consider the case of di and '2 parallel 

to the figure axis of M2 • The relation of the two transition moments to the 

M 2 figure axis is designated by the notation (II, Ii), With d~ = d1 • z(O) and 

'1;(t) = d2 • z(t), application of Equations (2.14) and (2.15) leads to the following 

expression for cos 77(t): 

cos 77( t) = sin2 8 cos w 1 t + cos2 8 . (2.16) 

Substitution into Eq. (2.10) gives the state resolved anisotropy 

rll,11 (j, O, "Po, t) 

= ! sin4 
(} cos2 w1t + ~ sin2 () cos2 

(} cosw1 t + ~ cos4 8 - ! 
5 5 5 5 

= 1 
(3cos2 

() -1) 2 + ~ sin2 0 cos2 0 cosw1t + ~ sin4 0 cos(2w1t). (2.17) 
10 5 10 

Expressions equivalent to Eq. (2.17) were derived classically for this special case 

in both Ref. 1 and Ref. 20. 

A unique aspect of this expression is traceable to the fact that rotation 

about the figure axis has no effect on the motion of a parallel dipole. As a 

result, r depends neither on the rotation frequency w2 nor on -ip0 • Absence of a 

dependence on '¢0 means that the same anisotropy is displayed by all fragments 

occupying a common energy level: r
11

,
11 
(j, 8, "Po, t) = r

11
,

11 
(j, 0, t). 

Eq. (2.17) is an analytical expression of the behavior which was predicted 

in the discussion of Section I. The anisotropies are seen to be periodic with the 

nutation period 21r/w1 = 1/(2B J_j), independent of 0. The initial anisotropy 

is equal to 0.4, as expected. A situation of particular interest and simplicity is 
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that of 0 = f which applies to all linear M2 when electronic and spin angular 

momenta may be neglected. The anisotropy then reduces to12 ,20 

(2.18) 

which oscillates at twice the nutation frequency. Here w 1 has been replaced 

by jwno where wno = 41r BJ_ in order to show the dependence on j explicitly. 

Wno will be referred to as the fundamental nutation frequency of the molecule. 

For a linear molecule without electronic or spin angular momenta, nutation and 

rotation are interchangable terms since there is no rotation about the figure axis. 

Eq. (2.17) may also be compared with the results of the full quantum 

mechanical treatment.1 Eq. (2.12) gives the anisotropy after averaging over 

an isotropic sample, so comparison with the M summed quantum results is 

required. As stated above, Eq. (2.17) gives both r
11

,
11 
(j, 0, 1/,0 , t) and r

11
,

11 
(j, 8, t), 

and therefore corresponds tu the quantum result for energy level (j, k = j cos fJ). 

For example, Fig. 6a shows the case of 111 ex: 1 + 2r(t) for j = 6 and fJ = ,r/3, 

i.e. k = 3. The B rotational constant was chosen to permit direct comparison 

with Fig. 3. The two plots begin in a similar fashion but diverge near half 

the fundamental nutation period. Use of j = ..(6:7 = 6.48, corresponding to 

the actual total angular momentum of the quantum level of Fig. 3, also fails 

to exactly reproduce the quantum behavior at long times.1 This discrepancy 

can be resolved, as pointed out in Ref. 20, by replacing the classical frequencies 

w1 = jwno and 2jwno by ½[iwno + (j + l)wnol and (2j + l)wno for integral j. 

These a.re the exad q1rn.nt11m beat frequencies for the (II, II) dipole case, as easily 

found from Eq. (1.3). When this substitution is made, the I 11 shown in Fig. 6b 

results. While not identical to the quantum result, this calculation reproduces 

the recurrence behavior of Fig. 3 quite well. From comparisons such as this, one 

is lead to conclude that the classical treatment can be useful even at very low 

values of angular momentum. 

For all other dipole cases, it is found that the classical state resolved 

anisotropy depends on 1/,0 • For symmetric M2 , 1/,0 specifies only the rotational 
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phase of the M2-fixed frame in the f-fixed reference frame at t = 0 and does not 

affect the energy. Comparison of the classical results with quantum mechanical 

energy level resolved expressions for other than the (II, II) case therefore requires 

application of Eq. (2.12) with the summation over states limited to an integration 

over 'lj;0 only. The weight accorded to each state is P; ({/})a( {f}, t). When it 

is assumed that a({f},t) = B({.f}) A(t) and that B depends only on the rota­

tional energy, as discussed previously, a( {f}, t) may be factored from Eq. (2.12) 

and canceled. For the thermal samples under consideration, the rotational state 

populations P;(j, 8, 'lj;0 ) also depend only on the rotational energy. Thus the 

general classical expression for the anisotropy of the (j, 8) energy level involves 

an integration over 'lj;0 with uniform weighting: 

1 12,r 
r(j,8) = - r(j,B,1/;0 ). 

21r 0 
(2.19) 

r(j, B, 'lj;0 ) is found using Equations (2.10), (2.14), and (2.15) as before. 

The classical anisotropy as a function of energy level has been derived 

according to this formula for the four distinct symmetric top principal axis 

dipole cases: (II, II), (II, ..L), (..L, II), and (..L, ..L). These are found to agree exactly 

with the high j limits of the quantum expressions for these cases, which were 

given explicitly in Ref. 1. In particular, the (..L, ..L) case can be derived by letting 

both d~ and~ lie along either the x or y molecular axis. Choosing x one finds, 

after some simplification, 

COS1J(t) = £(0) • x(t) = -cos8sinw1t sinw2t + cosw1t COSW2t+ 

(1- cosw1t)sin2 0 sin'lj;0 sin('lj;0 +w2t). (2.20) 

When this is substituted into Equations (2.10) and (2.19), the following result 

is obtained: 

r .L,.L ~(3 cos2 () - 1 )2 + ~ cos2 fJ sin2 8 cos w 1 t + 3 
sin4 fJ cos(2w1 t) 40 10 40 

+ ~ sin4 B cos(2w2 t) + ~(l + cos 8)2 sin2 
() cos((w1 + 2w2 )t) 

80 40 
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+ :
0

(1 cosfJ)2 sin2 B cos((w1 -2w2 )t) + 
1
:

0 
+cosfJ)4 cos(2(w1 +w2 )t) 

3 
+ 

160
(1 - cos8)4 cos(2(w1 - w2 )t) . (2.21) 

One finds again that the detailed calculation confirms the properties expected 

from the simple considerations of Section I. Modulations of the anisotropy are 

due to both nutation an<l rotation but only the first harmonic of the rotation 

frequency appears. 

·while Eq. (2.21) agrees exactly with the high j limit of the (.L, .l) case 

given in Ref. 1, it is in disagreement with the high j expression for this case 

given in Eq. (12) of Ref. 20. For comparison with that result, the last four terms 

of Eq. (2.21) can be rewritten as 

3 3 
... + 

20 
(1-cos4 B) cosw1t cos(2w2t)+ 

80 
(1+6 cos2 fJ+cos 4 fJ) cos(2w1t) cos(2w2t) 

to cosO sin2 0 sinw1tsin(2w2t)-
2
3
0 

cos0(1+cos2 B)sinw1t sin(2w2t). (2.22) 

The last two terms in Eq. (2.22) are omitted in Ref. 20 with the explanation 

that terms in sin{2w2t) cancel in the ensemble average. As pointed out, because 

2w2 ex k, sin(2w2t) is an odd function in k, and positive or negative k are 

. equally probable. The terms associated with positive and negative k do not 

cancel, however, because cosn (J = (k/j)" is also an odd function of k for odd n. 

Thus, each complete term is even ink, and the identical anisotropies calculated 

for positive and negative k add constructively rather than cancel. Such must 

be the ca.se physically, for the choice of a positive reference direction for the 

specification of k is completely arbitrary for any particular molecule. 

We now consider calculation of the macroscopic anisotropy, based on the full 

summation over final states indicated in Eq. (2.12). The evaluation of Eq. (2.12) 

must in general be carried out numerically for a Boltzmann distribution in the 

stable molecule problem. The general features of the resulting anisotropies can, 

however, be illustrated fairly accurately by a situation for which an analytical 

solution is possible. This is the case of a linear or diatomic M2 when it is assumed 
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that the product of PJ and B, expressed as a function of the one dimensional 

variable j, is a Gaussian centered at j 0 with half-width at 1/ e of Aj. Considering 

first j 0 = 0 and j continuously distributed over O to +oo, upon substitution for 

r(j, t) from Eq. (2.18), the integration of Eq. (2.12) can be carried out exactly 

to give 

r
11

,
11
(t) = J.00 

.-(Chol/Ad)' (0.1 + 0.3cos(2jwn0t)) dj / (J. 00 

.-(U-;,)/Ad)' dj) 
= 0.1 + o.ac;:-(Aiw,.ot)

2 
• (2.23) 

Thus, the initial anisotropy of 0.4 decays nonexponentially with a rotational 

coherence time of Tc (Ajwn0)-1 to the asymptotic value of 0.1. Allowing only 

integral j does not alter the dephasing time even if aj is as small as 2 or 3. Two 

differences are noted, however. First, the asymptote in the discrete case increases 

to 0.1 + .15/(2.:::; e-(j/ 4 i)
2

) because the constant contribution to the anisotropy 

(of 0.4) associated with j = 0 is no longer of infinitesimal measure. Secondly, 

full recurrences in the anisotropy occur at times t = n/( 4B .1.) for integer n. 

(The asymptote above is less than the time average of r(t) because of these 

positive recurrences.) These features are suggestive of expected distinctions 

between the quantum mechanical and classical behavior, but they should not 

be considered quantitatively accurate due to the approximate nature of the 

classical to quantum frequency correspondence. Of primary importance to us 

here is the fact that comparisons of measured and calculated early time behavior 

will be sensitive to the choice of a discrete or continuous distribution of angular 

momenta only for Aj ~ 5. 

If the above Gaussian distribution is displaced to a nonzero center frequency 

j 0 , the integration can still be carried out if the distribution is extended to -oo. 

This gives a result which approaches the integral of the actual distribution, which 

is truncated at j = O, for j 0 ~ Aj and also provides a good approximation for 

j 0 2:: Aj. One finds in this case a damped oscillation of the anisotropy: 

(2.24) 
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The coherence decay rate as revealed by the damping of the oscillations is pro­

portional to t1j, as before. The initial decay of the anisotropy is now determined 

. primarily by j 0 and is faster than before, since j 0 ~ t1j. For example, a diatomic 

thermal distribution at a high enough temperature so that the most probable j is 

much greater than 1/2 can be reasonably approximated by a Gaussian for which 

.io ':'::' 1.13.oj. When these values are substituted into Eq. (2.24), the initial decay 

of r(t) is followed by a clearly discernible dip below the 0.1 asymptote before 

the cuhereuct:! is completely lost. The basic properties of the time depe11de11ce 

of r
11

,
11 

displayed in Eq. (2.24), although derived for a diatomic M2 and an ideal 

distribution of angular momenta, can nevertheless be recognized in the behavior 

of more complicated systems. 

If the Gaussian distribution in Eq. (2.23) is replaced by the high j, one di­

mensional Boltzmann distribution 2je-½Bhi
2 
/(kaT) for a diatomic at rotational 

temperature T, the macroscopic r
11

,
11
(t) can be given exactly by expanding the 

exponential and cosine, and integrating term by term. The result is expressible 

as a series expansion in the product (k'}T)t2, as recognized by Gordon. 12 One 

finds 

'u 0.1 + 0.4, t.(-1)", 3 • 2<••-2
) 
2
n~! ( ¥) n t'" . (2.25) 

Thus, the time evolution of the signal scales as JI/(kbT) ex (TB)-½. This 

scaling has also been shown to be valid to good approximation for thermal 

distributions of nonlinear molecules.1 

ii, Time dependent alignment of dissociation products 

In this subsection, we are concerned with the time evolution of product 

alignment under collisionless conditions following a unimolecular dissociation 

or "half-collision," which is initiated by pulsed laser excitation. The systems 

considered dissociate into atom+ molecule, i.e., 

M* 1 (2.26) 

M2 may range from a diatomic to a large polyatomic, under the restriction, 
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however, that only symmetric top motion will be treated in detail. The reaction 

is illustrated in Fig. 7 for a single moleeule. i 1 , i 2 , d~, ~, and Ii have been 

previously defined. In the particular case shown, d~ and da are both parallel to 

the figure axis of M2 • The time cvoltition of alignment of the dipole moments 

( d~) of the product molecules will be reflected in a time-dependent polarization 

anisotropy of the signal. 

Two types of dissociation process will be considered in this thesis: those 

for which the initially excited state is bound, such as the various types of 

predissociation; and those for which the initial excitation is to an unbound 

state of the system, as to a repulsive electronic potential surface. In the case 

of predissociation, a finite time td is required for transition from the initially 

excited state to an unbound state of equal total energy. In the second type of 

process described above, td = 0. vVe will refer henceforth to any case for which 

td is negligible on the scale of rotational motion as prompt dissociation. In it, 

the motion of free Mi can be ignored, resulting in a much simpler treatment. 

The results may also serve as a useful approximation for cases in which td is not 

completely negligible but still short compared to the period of rotation of the 

parent M1 • 

In order to calculate the time dependence of the probe signal as a function 

of probe polarization for the reaction described by Eq. (2.26), the rotational 

motion of each dipole must be traced continuously from t = O, the moment 

when the alignment of the reactant population is created by the excitation 

pulse. This requires a knowledge not only of the free motion of Mi preceeding 

dissociation ( t < td) and that of the free M2 following complete separation of the 

fragments, but also a knowledge of any motion occurring while the fragments 

are in close proximity, during which time the partition between potential, trans­

lational, and rotational energy is still evolving. Such a detailed calculation 

is possible only when the interaction potential of the fragments is precisely 

defined. Single particle trajectory calculations of this type for specific model 
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potenfails, similar to those carried out in the investigation of product rotational 

energy distributions,22 •36 •37 may be instructive, revealing unique consequences 

of the final state interactions. However, the data available on excited electronic 

potential surfaces is often insufficient to warrant such a precise treatment on 

a case by case basis. To permit a simple, unified treatment of the generic fast 

dissociation reaction, it will be assumed here that the duration of the "transition 

state" between reactant and free product is negligible when compared with the 

rotational periods entering significantly into the calculation. In this uimpul­

sive dissociation" approximation, only the initial geometry, the direction of the 

impulse in the molecular frame and the available energy E' need be specified. 

Failure to achieve detailed quantitative agreement between the predictions of 

this simple model and experimental results may serve as an indicator of the 

importance of final state interactions in the particular system under study. 

Referring again to Fig. 7, we now define those quantities specific to the 

dissociation problem. The position occupied by A within M1 , relative to the 

center of mass of M2 , is designated by r. In the impulsive approximation adapted 

here, M2 acquires an angular momentum jinstantaneously at td. The transla­

tional motion of the fragments in the Mi center of mass frame is characterized 

· by separation of the centers of mass of M2 and A with equal and opposite 

linear momenta, along trajectories which are displaced from each other by the 

impact parameter b. The energy difference E' between the internal energy of Mi 
and that of the products appears as kinetic energy of rotation and translation. 

Conservation of total angular momentum yields the condition 

(2.27) 

where l is the angular momentum of separation of A and M2 , referred to as 

the orbital angular momentum of the products. Lis determined completely by 

b and the velocities of separation. 

In prompt, impulsive dissociations, only M2 rotation is important, so 11(t) 

is determined as it was for stable molecule rotation by the three parameters j, 8, 
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and 'I/Jo. The classical state resolved anisotropies r(j, 0, -ip 0 , t) are thus identical 

for the two cases. It is only the different weights in the summation of Eq. (2.12) 

which distinguish the two. The divergence will begin in general even with the 

integration over 'I/Jo to find the anisotropies of individual energy levels, for, while 

'l/J0 is uniformly distributed over 211" for a thermal distribution of stable molecules, 

the distribution of 1/J0 following dissociation will normally be very nonuniform 

( vide infra). 

In one case, however, differences in the distribution of '1/;0 are unimportant. 

This is the (II, II) dipole case, for which it was found that r(j,0,-ip0 ,t) is indepen­

dent of 'l/J0 • Consequently, r
11

, 11 (j, 0, t) following prompt, impulsive dissociation is 

identical to that for the excitation of an isotropic sample of stable, freely rotat­

ing symmetric top molecules, as given in Eq. (2.18) and previously derived.1 •20 

Even in this simple case, macroscopic anisotropies can differ substantially if the 

distribution of dissociation products over rotational energy levels is not similar 

to a thermal distribution. 

In all other situations of interest, values for the weights in Eq. (2.12) are 

required. Pj(j, 0, -ip0 ), the distribution of final rotational state populations, is 

again the factor of greatest concern. It is this distribution that establishes the 

link between time-resolved anisotropy and the geometric and dynamic details 

of dissociation. These details determine the state-to-state branching ratio p,_,, 1 

which appears in the general expression for P; [Eq. (2. 7)]. P; itself is most 

generally only an intermediate product oft he calculation of r( t) using Equations 

(2.7) and (2.12). In certain cases, however, P; may be derived from measured 

distributions of dissociation products. These measurements give the populations 

of rotational energy levels, P3(j, 0), leaving only the 'l/J0 dependence of the full 

distribution to be determined. When this dependence is known or can be ap­

proximated ( as, e.g., for (II, ii) dipoles) the time evolution of the macroscopically 

observable anisotropy will be completely determined by P3(j, 8) and the spectral 

window opened by the probe. However, even in this case, the dynamic origins 
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of P; are of fundamental interest. In the remainder of this section, P; will be 

related directly to the three physical sources of M2 rotation: initial rotation of 

M1 , the torque applied by repulsion between M2 and A as they dissociate, and 

initial vibratio.n of M1 . 

When a rotating rigid body falls apart without release of internal energy 

(E' = 0) the kinetic energy and hence the velocities of all its constituant parts are 

conserved. In the present context, M2 and A will separate with the instantaneous 

relative velocity of their centers of mass, and M 2 will have angular momentum 

f,. determined by the instantaneous angular velocity w0 of M1 at t = 0. With 

Il1 and lI representing the inertia tensors of M1 and M2 , respectively, one has 

w0 = (Il')-1 f and therefore 

f,. = II(Il')- 1 J. (2.28) 

(For a linear M1 , for which the inertia tensor is not invertible, the inertia tensors 

may be replaced by the scalar moments about the perpendicular axes.) In this 

general form, Eq. (2.28) is understood to require the evaluation of all terms 

relative to parallel cartesian coordinate axes at t = 0. However, it is more 

convenient and appropriate to represent f and Il' in the M1 principle axis frame 

( frame 1 ), while j and Il are naturally represented in the M2 principle axis frame 

(frame 2). Using the subscripts 1 and 2 to indicate the reference frame of the 

representation, one may write 

J,.2 Il2 (u(II'i)-luT) (u.t;) 
Il2 U(II'i )-1 J~ (2.29) 

where U is the matrix of the unitary transformation from frame 1 to frame 2. 

Il'i and II2 are both diagonal with diagonal elements Ii and I!, i = x, y, z. As 

a simple example of the use of Eq. (2.29), when Il' and Il are diagonal in the 

same reference frame, a fraction Id l! of the M1 angular momentum along the 

ith coordinate axis is transferred to M2 • 
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The unitary matrix U may be given explicitly for principal axis coordinate 

systems of M1 and M2 which are applicable for all symmetric top M2 as well as 

for any system in which the atom A lies in a symmetry plane of M2 • In these 

situations the choice and/ or labeling of axes of the M2 coordinate system can 

be made in such a way that the atom A lies in its yz plane. vVe are concerned 

primarily with symmetric M 2 , for which, as usual, the figure axis is taken as 

the z axis. The principle moments of inertia of M2 are J:i:, Iy, and Iz., and the 

components of the vector i' locating A in the M 2 frame ( with origin at the M 2 

center of mass) are (0, YA, zA)· From these data, the inertia tensor of M1 relative 

to an axis system with axes parallel to the M2 principle axes may be written 

(2.30) 

where µ is the reduced mass of M2 and A. With the axes of the M1 principle 

axis frame labeled so that I~ > I~, the principle moments of M1 are 

I' = I + µr 2 
:i: :i: 

I~= ~(ly + Iz. + µr 2
) + ~✓w2 + (2µyAzA) 2 

I~ ~(Iy + Iz. + µr
2

) ~ Jw 2 + (2µ-yAzA) 2 

where w = IY - I:,;+ µ(zl - Yl)- Finally, defining D± as 

the transformation matrix U, composed of the eigenvectors of 11' 2 , is 

u 
0 
~ 

D_ 

-µ&~Z.A 

(2.31) 

(2.32) 

(2.33) 

The corresponding equations of transformation for matrix A and vector if are 

(2.34) 
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If we consider next a stationary rigid M1 which is split apart by an impulsive 

force, the resulting angular momentum of M2 can be calculated by invoking 

conservation of energy and momentum. Recall that r locates A in the M2 frame 

(Fig. 7). Taking .f as a unit vector in the direction of the force on M2 , i a 

unit vector in the direction of r x J (i.e., in the direction of the torque on M2 ), 

b0 = Ir x JI, and /J. the reduced mass of A and M:n his given by 

(2.35) 

Frame 2 is the natural frame of representation for all quantities in this equation. 

When a rigidly rotating molecule dissociates impulsively, the final angular 

momentum of M 2 is composed of two independent contributions: 

(2.36) 

with fr and h calculated by Equations (2.29) and (2.35). The key to this inde• 

pendence is the assumption of impulsive dissociation under which all interaction 

is complete before any relative motion of the products can occur. Note, however, 

that although h does not depend directly on J, if the assumption of rigidity 

. is relaxed, the initial rotational motion may affect it indirectly by inducing 

distortion of M1 and thereby changing the direction of j. 
Vibrations of M1 that involve displacement of A affect the final rotation 

of M2 in a more complicated manner. The f produced from a given J may 

be different a.t each point of the vibrational trajectory due to varying geometry, 

instantaneous angular velocity of M2 , and available vibrational potential energy. 

In the cases we will consider, the vibrational energy initially in the M2-A bond 

is small compared to the total kinetic energy of the products. In view of the very 

approximate nature of the impulsive dissociation mechanism used to determine 

the partitioning of most of this energy between rotation and translation, a 

detailed treatment of the small vibrational contribution is not warranted here. 

The constant sum of kinetic and potential vibrational energy will simply be 
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incorporated into E' and partitioned as determined by the resulting "effective'' 

impulse. The effect of initial geometry on f, and on~ in particular, can be major, 

however, so the distribution of geometries associated with vibrational motion 

may not be neglected in general. A simple model of the role of vibration can be 

realized by averaging the rigid body dissociation described by Eq. (2.36) over 

a distribution of positions of A along the appropriate coordinate. vVe therefore 

proceed to derive the P3 arising from a single fixed geometry, bearing in mind 

that a final vibrational average may be required to yield the final distribution. 

Writing Eq. (2.36) as JI(II1
)-

1 J + J;, we see that for fixed J; the mapping 

of initial J to final fis one-to-one. (This is true in three dimensions only if both 

II' and JI are invertible, but similar results are applicable in two dimensions for 

linear molecules.) Thus Pi ..... f is simply a delta function corresponding to the 

mapping defined by Eq. (2.36). That is, in the discrete formulation of Eq. (2.7), 

the desired population Pj (j) is 

(2.37) 

where J(j) is found by inverting Eq. (2.36); 

(2.38) 

As discussed in connection with Eq. (2.28), Eq. (2.38) can be written in a form 

more suitable for calculations with specification of the representation used for 

each quantity: 

1i II' un-1 ( .... 
1 2 Ja (2.39) 

If the angular momentum is to be treated as continuously distributed, the 

population functions PAJ) and P;(j) are defined so that fff PJ d3J = N for 

a nonlinear molecule and JJJ PJ d2J = N, (f. = 0) for a linear molecule, and 

likewise for P1. In this case, when applying the change of coordinates from J to j 

space defined by Eq. (2.38), the absolute magnitude of the Jacobian determinant 
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of the transformation must be included in Eq. (2.37) to account for the change 

in volume element. 

In the calculations to follow, we will consider only situations for which the 

initial angular momentum distribution is thermal. The correct high J limit for 

M1 of arbitrary structure is 

(2.40) 

where E = h(BzJ; + BYJ; + B 1J:) for Jin the M1 principle axis frame and 

the classical rotational partition funetion Q is equal to J1rk3T3 /(h3 B.,,ByBz) 

for nonlinear M1 or kT / ( B h) for linear M1 . To facilitate the transformation to 

j space, E/kT may be written as 

{2.41) 

where 

F= /h(~ O 
y,a; 0 ~ 0 ) 0 . 

~ 
(2.42) 

With the definition G = Il'i UII21
, Equations (2.37), (2.39), (2.40), and (2.41) 

may be combined to give the explicit dependence of product population on the 

vector f, following dissociation of a thermally equilibrated sample: 

(2.43) 

The Jacobian determinant, IGI, of the linear transformation is a constant. 

Equations (2.43), (2.35), and (2.12) constitute the general framework for 

calculation of the anisotropies of dissociation products. Specific examples of 

such calculations are discussed in Section IV of Chapter 5. 
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III. Purely Rotational Coherence of Asymmetric Top 

Molecules 

In the first two sections of this chapter, a detailed picture of rotational 

coherence in symmetric top molecules was developed. By restricting the discus­

sion to symmetric tops, the major features of the phenomenon could be revealed 

with a minimum of complication. However, because most molecules are not 

symmetric tops, the quantitative analysis of experimental results is principally 

dependent on a detailed understanding of rotational coherence in asymmetric 

top molecules. Such is clearly the case for the measurements discussed in Section 

II of Chapter 5. The rigorous quantum mechanical theory of PRC in asymmetric 

tops was developed in Ref. 1. Later in this section, we will review the details of 

this theory as they relate to the implementation of efficient simulation and fitting 

procedures used in the analysis uf uur experimental data. First, we attempt to 

give some physical insight into the way in which asymmetry alters the by now 

well-known characteristics of PRC as manifested in symmetric top molecules. 

Consider again the picture of PRC as developed in Section I and based on 

the classical rotation displayed in Fig. 1. For a prolate symmetric top such as 

the one pictured, the figure axis, as the axis of smallest moment of inertia, is the 

a axis. When the two principal moments of inertia about axes perpendicular to 

the a axis differ, the axis are designated b and c according to the convention 

Ia < lb < Ic. The rotation of the asymmetric top is naturally more complicated 

than tl{at shown in Fig. 1, with the degree of deviation depending both on 

the degree of asymmetry and the direction of f in the molecule. When f is 

near either the a or c axis ( corresponding to the highest and lowest rotational 

energies, respectively, for the given J = I.fl), the motion is very close to that 

of a symmetric top with the role of the figure axis played by the principal axis 

nearest J. The nutation frequencies in the two limits differ, however, as they 

depend on the average of the moments about the axes perpendicular to the 

effective figure axis. Moreover, for a range of intermediate energies determined 
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by the degree of asymmetry, the motion is very irregular, with no principal a..·ds 

maintaining even an approximately constant angle with J. This leads to a loss 

of commensurability of the periodicities associated with different initial states 

so that the regularly spaced sharp recurrences seen following thermal averaging 

in the symmetric limits are expected to broaden (initially) and diminish as the 

asymmetry increases. 

Considering the problem from the quantum mechanical perspective, we 

recall that PRC recurrences in symmetric tops were a consequence of the regular 

spacing ofrotational energy levels. Asymmetry shifts rotational levels away from 

this regular spacing, with the shift strongly dependent on the corresponding 

symmetric limit K value. This produces just the result expected: quantum 

beats from different initial levels are not commensurable, and the frequencies 

are associated in some stmse with the direction of .f relative to the principal 

axes of the molecule. Macroscopic recurrences will be weakened accordingly. In 

fact, strictly periodic recurrences are not expected since no single frequency will 

be shared by all molecules of the sample. However, simulations have shown that, 

even for fairly large asymmetries, the equal spacing of clearly defined nutation­

like recurrences is retained to good approximation. In contrast, distinct, periodic 

rotation recurrences are seen only for very small asymmetries. We will refer to 

the (quasi-) periods associated with these two types of recurrences as ,-1 and ,-2 , 

respectively. 

Due to the incommensurability of beats in the asymmetric top, the rela­

tionship between excited-state rotational constants and PRC recurrence periods 

is no longer trivial. In the following, approximate expressions for the rotational 

energies of an asymmetric top are used to investigate this relationship. Because 

it is based on rotational energy expansions that are accurate at low J only, this 

treatment is only applicable to samples at low rotational temperatures, such as 

those encountered in molecular beam experiments. 

For low values of J, it is possible to represent the energies of an asymmetric 
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rigid rotor in power series expansions in .l( J + 1) and the asymmetry parameter 

b = ½(C - B)/[A - ½(B + C)], which goes to zero in the prolate symmetric 

limit.38 (An equivalent expansion in b" = ½(A - B)/[C - ½(A+ B)] is preferred 

when the molecule is near oblate. The discussion below is based on the prolate 

case.) Energy levels are each designated by a value of K from O to J with two 

levels for each nonzero K. From these expansions, the following conclusions may 

be drawn: 1) For small b, the energy expressions are approximated by those of a 

symmetric top with B replaced by fJ = ½(D + 0), A first estimate of rotational 

constants is thus provided by the modified symmetric top relations 

B' + C' '.::::'. l/T1 {3.1) 

and 

(3.2) 

2) Leading corrections to the symmetric top-like expressions are of second order 

in b for all levels, except for a first-order splitting of the K = 1 levels. Since a 

pure level splitting (i.e., without displacement of the average energy) results in 

quantum beat frequencies symmetrically displaced from the unperturbed value, 

it will affect recurrence amplitudes but have little effect on recurrence periods 

in thermally averaged PRC signals. Therefore, the b2 terms are the first terms 

capable of causing deviations from the expressions given above. 

Including expansion terms up to b2 , but neglecting asymmetry splitting, 

one obtains the following expression for rotational energy: 

E/h = F(J,K) = [B + i(A - .B)b2 ]J(J + 1) + (A- .B)(l - ib2 )K2 

+ !11(K)(A B)b2 .12(.l + 1)2 (3.3) 
8 

which can be written 

F(J,K) = B*J(J + 1) + (A-B)*K 2 + f(J,K). {3.4) 
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The function ry(K) is equal to l/(K2 -1) for all K other than 1, while 17(1) = -¼, 
It may be noted that B* is equal to B + b.B:fr as defined by Herzberg in his 

. discussion of asymmetric top spectra. 39 

Without the term f( J, K), these energies would lead to rer.nrrence periods 

given by l/(2B*) and 1/[4(A - B)*] by analogy with the symmetric top. Un­

fortunately, /( J, K) plays a significant role and the effect of its dependence on 

both J and K defies any simple expression. 

Consider for example the spacings between adjacent J levels at fixed K, 

which are responsible for the symmetric top nutation period. These are 

b.1f_1 ,1 = F( J, K) F( J 1, K) [2B* + ~11(K)(A B)b2 J 2
] J (3.5) 

and 

With an effective rotational constant Betr defined by 

Betr(J,K) B* 171(K)(A - B)b2 (J2 + J + 1) 
= tJ + l(A - B)b2 [1 + 11(K)(J2 + J + 1 )] ' (3.7) 

these may be written 

(3.8) 

and 

(3.9) 

where 

(3.10) 

These two splittings and their sum, 2Betr(J, K)(2J + 1) + 8(j, K), are then 

the beat frequencies associated with the quasi-nutation of the molecule in the 

single level with initial quantum numbers J and K. These frequencies are not 
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exactly commensurable due to S( J, K), but this last term is generally very 

small relative to 2Beff( J, K). Thus, the single level rotational coherence will 

be nearly periodic with a fundamental frequency given to good approximation 

by 2Beff( J, K). The primary contribution of S( J, K) will be simply to slowly 

damp the recurrences. 

Of more concern than the effect. of li( J, K) is the fact that Beff is a function 

of J and K. Because of this, single-molecule rotational coherences at many 

different fundamental frequencies will contribute to the macroscopic PRC signal. 

This is precisely the circumstance that the qualitative description at the begin­

ning of this section led us to anticipate. Macroscopic recurrences will still be 

seen, however, when the fundamental frequencies of a substantial fraction of the 

sample population lie close enough together that peaks in the corresponding beat 

patterns partially overlap and reinforce each other. The resultant frequency 1/r1 

will then be a weighted average of the frequencies 2Beff( J, K) of the contributing 

levels, or 

where the angle brackets denote the required average. If we define a parameter 

a by 

(3.12) 

and approximate (A B) in Eq. (3.11) by (A 1/(2-r1 )), we may give the 

following correction to Eq. (2.1): 

(3.13) 

We refer to the second term of the right-hand side of this equation as the 

asymmetry correction. A similar correction could, of course, be derived for the 

rotation period given by Eq. (3.2). A clear example of rotation recurrences 

has not been seen experimentally, however, so there has been no practical 

requirement for such a correction. PRC simulations indicate that Eq. (3.13) 
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accounts well for the dependence of the asymmetry correction on b. The practical 

application of this equation will be discussed after consideration of the parameter 

a. 

. Due to the natme of the superposition process, the wejghts in the average 

of Eq. (3.12) are not simply determined by the level populations and intensities, 

so an analytical evaluation of a appears impossible. For the purpose of making a 

reasonable estimate of its value, we note that 'TJ(K) is always positive unless K = 

Oorl. (Recallthatry(K) -1,-1/4,1/3,1/8,1/15, ... ,forK 0,1,2,3,4, .... ) 

The large size of 17(0) makes the frequencies of K O levels differ greatly both 

from those of all other K levels and from each other for different J, minimizing 

the possibility of constructive interference. The contribution of K = 0 is further 

reduced by its single weight. For K 1, due to the rapid increase with J of 

the asymmetry splitting, constructive {in-phase) addition of beats from its two 

components alternates with out-of-phase addition (for changes of a few quanta 

or less in J in the asymmetry range considered), so many K = 1 levels have 

little or no potential of contributing to PRC recurrences. And again, as for 

K = O, peaks that do appear are relatively unlikely to overlap with the peaks 

of higher K level beats because of the size and sign of r,. These considerations 

suggest, and simulations confirm, that the prominent macroscopic recurrences 

in asymmetric top PRC are associated with the K 2 2 manifolds. Thus, the 

quantity (r,(K)(J2 + J +½))may be well approximated by ((J2 + J)/(K2 -1)). 

J and K in the above average are both low integers with J 2 K 2 2. For 

J < 15 individual terms range from 1.08 up to 70, yielding an average always 

greater than, but of the order of, 1. For the molecules and conditions relevant to 

the experimental studies in Cha.pter 5 of this thesis, values ranging from ~ 2 to 8 

have been derived by comparison with PRC simulations. The higher values are 

associated with the more prolate molecules as might be expected due to the low 

population of high K levels. By contrast, for oblate tops the largest populations 

are found in levels with K = J, and a value of ((J2 + J)/(K2 - 1)) = 1.6 was 
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derived from a PRC simulation for a set of rotational constants much nearer the 

oblate symmetric top limit (b* = -0.167). 

If the average (77(K)(J2 + J + ½ )) were O, Eq. (3.11) tells us that 1/r1 

would hfl eqnal to 2.B + ½(A B)b2 = 2B*, as predicted from Eq. (3.4) when 

f( J, K) is neglected. However, from Eq. (3.12) and the fact that the average is 

grea,ter than 1, we conclude that the asymmetry correction is actually at least 

twice as large. The result for the prolate top is a recurrence period T1 such that 

r 1 < 1/(2B*) < 1/(2.B). For the oblate top, the corrections are of opposite sign, 

since A' is replaced by C 1 in Eq. (3.13), and C' 1/(271 ) is negative. 

Although a is found to be molecule and temperature dependent, Eq. (3.13) 

may still be of practical value. From PRC simulations covering the range 

of rotational constants and temperatures of interest in our experiments, we 

found that the empirically determined asymmetry correction was given to within 

~ 50% accuracy by Eq. (3.13) with a = 3. From this result we conclude that, 

given an experimentally determined recurrence period and approximate values 

of A' and b, one may apply Eq. (3.13) with a 3 to quickly obtain a fairly good 

idea of the size of the asymmetry correction. It can then be decided whether a 

_full PRC simulation is required. For many of the experimental determinations 

of rotational constants discussed in Chapter 5, the estimated correction was 

much smaller than the experimental error, and no simulation was required. 

Uncertainties in A' and b further reduce the accuracy of Eq. (3.13), but these 

uncertainties are equally present in asymmetry corrections determined from 

simulations. Simulations can be advantageous in reducing these uncertainties 

only if one attempts to fit the PRC beat pattern. 

We now turn to a detailed examination of the calculation of simulated PRC 

signals in asymmetric tops. The principle of these calculations is identical to 

that developed in Section I and expressed in Eq. (1.12). The only difference 

will be that the rotational eigenstates take a different form, giving different 

direction cosine matrix elements [Eq. (1. 7)} and different rotational energies. 
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The rotational energy eigenstates of an asymmetric top are designated by the 

quantum numbers J and lvl, which have the same meaning as for symmetric tops, 

and an index r: IJrM). As for symmetric tops, the energy does not depend on 

M. There are 21 + 1 energy levels with quantum number J, which converge in 

the symmetric top limit to the levels associated with each of the 2J + 1 values 

of K from -J to J. For convenience, the index Tis also taken to run from -J 

to J. Because the eigenstates of the symmetric and asymmetric top are both 

also eigenstates of the total angular momentum and the Z component of angular 

momentum, the symmetric top eigenstates { I J KM) : K -J . .. J} form a 

basis for the subspace of asymmetric top eigenstates with the same J and NI. 

The matrix elements of the asymmetric top Hamiltonian in the chosen ( either 

oblate or prolate) symmetric top basis are easily derived.40 The coefficients of 

the expansion 
J 

jJrM) = I: a(JrK) jJKM) (3.14) 
K=-J 

are elements of the eigenvectors of this matrix and depend on the relative sizes 

of the rotational constants. For computational efficiency, an alternate basis 

of the ( J M)-subspace which is closely related to the symmetric top I J KM) 

· basis is actually used to calculate the a coefficients. In this alternate basis, the 

(2J + 1 )-dimensional Hamiltonian is block diagonal with four blocks of dimension 

~ (2J + 1)/4. The eigenstates of each block are associated with a different 

rotational symmetry species. (See below.) 

Serving as the basis for our asymmetric top PRC simulations is the fol­

lowing expression for the time evolution of polarization-analyzed and thermally 

averaged fluorescence derived in Ref. 1: 

(3.15) 
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The subscript O in this equation denotes quantities associated with the ground 

or initial state, while the subscript 1 refers to the excited state. The terms 

preceeding the bracketed quantity represent the summation over the ground 

state manifold r 0 = {J0 r 0 }, with the contribution of each level scaled by 

its statistical weight, G(r O ), and its thermal population. (Magnetic quantum 

number summations have already been carried out in this equation.) Q is simply 

the rotational partition function. \i\Tithin the brackets is a summation over all 

pairs of excited state rotational levels which are reached via excitation from 

a given ground state level. Each such pair gives rise to an interference term 

which is modulated at a beat frequency proportional to the energy difference 

between the levels. Multiplication by a single exponential excited state decay 

envelope, where -y is the radiative lifetime of the excited state, is also indicated. 

Other forms of vibronic state temporal evolution may also be used, however, 

as discussed in Section II of this chapter, and demonstrated in Section III of 

Chapter 5. 

The dependence of the intensity on time (t) and on sample rotational 

temperature (T) are shown explicitly in Eq. (3.15). Only the angle between 

the excitation and detection polarization directions ( e1 and e2 , respectively), 

· is important and appea.rs in the expression for the Fourier amplitudes of the 

interference terms: 

J' l 
-K"' 1 

J' l 
1 

(3.16) 
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Primes serve in this equation to distinguish quantities associated with the two 

interfering excited state levels. Unprimed and double-primed terms indicate one 

level, while single and triple primes indicate the other. The Euler angles (¢,6, 0) 

fix the relative orientation of e2 and e1 • However, the element D~~i)( 4>, IJ, 0) of 

the Wigner rotation matrix does not depend on ¢ and is equal to the Legendre 

polynomial PL
1 
(cos()). The components of the transition dipoles in a spherical 

vector representation are JL~ ,q;, qi = -1, O, 1 where i = 1 and 2 for the excitation 

and detection transition, respectively. The sums over qf) are then equivalent 

to the sums over dipole components (i in Eq. (1.9)) implicitly contained in 

Eq. (1.12). Q1 and Q2 are indices which determine the polarization state of the 

excitation and detection pulses: 0 for linear polarization and ±1 for right- and 

left-hand circular polarizations. 

The subscripts on the eigenstate expansion coefficients indicate that the 

rotational eigenstates of the ground and excited electronic states will in general 

be different due to differing rotational constants. Under the assumption of 

negligible vibration-rotation interaction, the rotational levels of any molecule 

may be classified according to their behavior with respect to 0 2 rotations about 

, the principal axes of inertia. The resulting rotational symmetry species are 

designated and -- in Dennison's notation,41 and rotational levels 

for a given J are divided approximately equally among the four. These species 

are distinguished by restrictions on the properties of the ai coefficients, and 

through them, the radiative selection rules are implicitly contained in Eq. (3.16). 

Specifically, only even or only odd K terms that are either symmetric or anti­

symmetric in K may contribute to the eigenstates of a given species. It is easy 

to see from these properties and the fourth and fifth 3-j symbols in Eq. (3.16) 

that only certain combinations of species will yield nonzero amplitudes for a 

given dipole component. In fact, each Cartesian component of the dipole will 

induce transitions connecting each species with one of the other three. Thus, 

transitions from the state IJ-rM) may occur to about 1/4, 1/2, or 3/4 of the 
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6J + 3 rotational levels satisfying the .J selection rule ( D..J = O, ±1) when the 

dipole has respectively, one, two, or three nonzero components along principal 

axes of the molecule. In this rigid rotor limit, the point group of the molecule will 

play a role only through restrictions which symmetry may place on the direction 

of the transition dipole. It is appropriate to point out here that computation 

times for PRC frequency spectra, which increase as the square of the number of 

transitions, become significantly longer for off-axis dipole moments. 

In practice, all experiments for this thesis were performed with linearly 

polarized excitation and detection. Thus in the programs employed for simula­

tion and fitting, such as those in Appendix II and Appendix III, the values of 

Q 1 and Q2 are set equal to zero. Either of the first two 3-j symbols then shows 

that f is zero unless L1 is O or 2. The fourth and fifth 3-j symbol permit us 

to make the substitutions q1 = K1 - K0 and q~ = K6 Ki, eliminating the 

independent summations over the q1 's. Likewise, the sixth 3-j symbol requires 

that q~ = -Ki'' + Ki' + q2 • Noting furthermore that (-l)Ki is a constant 

for any summation over a specific rotational state (from the symmetry species 

properties), and, as a result, that (-l)Ki+K~' is always equal to 1, we may 

reduce Eq. (3.16) to a form which more closely resembles that employed in the 

computer implementation. This is 

L (2L 1 + l)PL1 (cos 0) ( ~ 
L1=0,2 

1 
0 

( 
L 1 

K" - K 111 
l l 

J' l 
-K"' 1 

1 

J' 1 
1 

L1 ) 
K 111 

- K" 1 1 

K'" - K" - q 1 1 2 
(3.17) 
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The (K0 , K 1 ) sums, primed and unprimed, are completely contained in their 

respective brackets. Nate that these sums over the dummy K variables differ at 

most by a sign when r 1 is equal to ri. They can also be shown to be pure real 

or pure imaginary. 

The evaluation of Eq. (3.17) has been greatly accelerated by utilizing the 

properties of the expansion coefficients. For example, it can be shown that 

f (10 , 11 , JL -r0 , Ti, -rD and f( J 0 , Ji, J11 -r0 , T~, -r1 ) are real and equal, so that only 

one of the two must be calculated. This fact also ensures that I is real and 

modulated only by cosine terms. It is, of course, self-evident that I is real 

when it is expressed in the form of Eq. (1.12), so the demonstration thereof for 

the above equations serves only as a test of the correctness of the equations 

themselves. 

The proof that J( J0 , J1 , J{, r 0 , r1 , r{) and /( J0 , Jl, J1 , -r0 , T;, T1 ) are real and 

equal can be conveniently carried out in two steps, showing first that the two 

f's are complex conjugates of each other, then showing that f is always real. 

The proof relies on the fact that for a given J0 -r0 ~ J1-r1 transition, only a 

single Cartesian component of the transition dipole produces a nonvanishing 

. contribution to the (K0 , K 1 ) sum. Thus, the properties off depend only on the 

particular set of dipole components responsible for the two interfering excitation 

channels. There are nine such sets: (x,x), (x,y), etc. In practice, the ordering 

of the components is unimportant, and the three diagonal cases, in which both 

excitation transitions are induced by the same dipole moment, can be treated 

together, leaving six distinct cases to consider. (The above sets of excitation 

components should not be confused with the dipole pairs discussed in Section 

II and Ref. 1 which refer to the excitation/detection sequence of principal axis 

dipoles.) 

In the same way that the equality off (Jo' Jl' Ji' 'To' 'T1' -rn and f (JO' JL 11' 

-r0 , -ri, r 1 ) makes it possibly to restrict the r 1 r~ sums to Ji ~ J 1 and -rl ~ -r1 for 

Jf = J11 it can be shown that the (K0 , K 1 ) sums need be carried out only over 
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positive K 0 terms, since negative K 0 terms are simply related to them. (K0 = 0 

must be accounted for separately.) The 3-j symbols restrict K 1 to K 0 or K 0 ±1, 

so the above restriction on K 0 yields a time savings of about 50%. 

Finally, quantities which appear repeatedly in the course of PRC calculation 

have been evaluated once in advance and stored in memory for recall. The (K0 , 

K 1 ) sums, which each depend on only one of the two excited states, provide 

one example in which repetitive calculations are avoided in this manner. Values 

from a single storage array are called by both prhm:<l 1:1.n<l unprimed versions uf 

the sum, with a sign change when needed. An even larger economy has been 

realized by calculating all of the very small number of distinct q2 sums before 

beginning the ground state manifold summation in Eq. (3.15). 
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Figure Captions 

1. Classical motion of a rigid symmetric top. The top is shown at two times 

separated by half a nutation period. The total angular momentum vector 

J and its component K along the figure a..-..cis are indicated. w1 and w2 are 

the angular frequencies of nutation and of rotation about the figure ax.is, 

respectively. 

2. Level diagram illustrating the quantum mechanical origin of purely rotational 

coherence in a symmetric top molecule. The particular pathways shown are 

those appropriate to the case of parallel excitation and detection transition 

dipoles and detection polarization ( i 2 ) parallel to excitation polarization 

( i 1 ). (This figure is reprinted from Ref. 1.) 

3. Purely rotational coherence signal for parallel detection (111 ) associated with 

a single ground state rotational energy level of a t-stilbene-like symmetric 

top. The scheme of excitation and detection is shown explicitly in the upper 

righthand corner of the figure. Summation over all equally weighted A10 

states has already been carried out. Thus this signal is that to be expected 

for excitation of an isotropic sample of molecules, and not of molecules in 

a single quantum state. The calculated signal is strictly periodic with a 

period of 1.95 ns, corresponding to the fundamental nutation period. 

4. Geometric relations and angles in the lab-fixed frame used in the derivation 

of Eq. (2.8). 

5. Euler angles specifying the orientation of the molecule-fixed reference frame 

(:v,y,z) relative to the space-fixed frame (X,Y,Z). For our purposes, Z is 

always chosen to coincide with the angular momentum of the molecule, and 

z with the molecular figure axis. 

6. a) Classical time-resolved parallel fluorescence intensity for an isotropic distri­

bution of symmetric top molecules with angular momentum 6h and 0 = 71' /3. 

The intensity is calculated from Equations (2.17) and (2.11 ). It is strictly 

periodic at the nutation frequency w 1 = 6 · 2B' where 1/{2B') = 1.95 ns. 
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b) Time-resolved parallel fluorescence intensity based on Eq. (2.17) with 

() = 1r /3, but with the two classical frequencies replaced by the three 

quantum mechanical frequencies associated with the ground state level 

j = 6. See text for details. 

7. Geometry of the dissociation problem M1 - M2 + A. The pump pulse, with 

polarization e1 , excites the dipole d~ of M 1 at left. After dissociation, the 

dipole~ of fragment M2 is probed with probe polarization e2 (right). 
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Figure 2 

Purely Rotational Coherence: Single Molecule 

( Symmetric Top) 

IJ0+1K0 M0)---~ 

I Jo Ko Mo) 

I J0- 1 K0 M0 ) -+--+--+-+-

I J0 +2 K0 M0 ) 

I J0+1 K0 M0 ) 

I JoKoMo) 

I J0 -1 K0 M0 ) 

I J0 -2K 0 M0 ) 



(/) 

C 
(1) 

-+'-

c 
!-I 

'Single Molecule' 

Stilbene 

63 

Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Chapter 3 

Experimental 

Portions of this chapter are taken from the following published articles: 

"Purely Rotational Coherence Effect and Time-resolved Sub-Doppler Spec­

troscopy of Large Molecules. II. Experimental," by J. S. Baskin, P. M. Felker, 

and A. H. Zewail. 

Reprinted with permission from The Journal of Chemical PhysicsJ Volume 

86, p. 2483. Copyright 1987 American Institute of Physics. 

a.nd 

"Determination of Excited-State Rotational Constants and Structures by 

Doppler-Free Picosecond Spectroscopy," by J. S. Ila.skin and A. H. Zewail. 

Reprinted with permission from The Journal of Physical Chemistry, Volume 

93, p. 5701. Copyright 1989 American Chemical Society. 
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I. General Apparatus 

Measurements of time-resolved and polarization-n.nnlyzed fluorescence of 

jet-cooled molecules, to be presented in Chapter 5, form the experimental basis 

of this thesis. The experimental a.pparatus employed for these measurements 

is described in the four subdivisions of this section. In Fig. 1 are represented 

schematicly all components of the experimental system, except for those re­

lated to polarization selection and analysis. Reference is made to this figure 

throughout Sections A, B, a.nd C. Details concerning polarization aspects of the 

experiments are considered in Section D. 

A. Ultraviolet Excitation Source - Laser system and Second Har­

monic Generation 

The first requirement of our experiments was the generation of picosecond 

pulses of tunable ultraviolet light. A Spectra Physics Model 171 argon ion laser 

in mode-locked operation served as the primary energy source in the generation 

scheme. Mode-locking refers to the creation of a regime in which a single short 

light pulse circulates in the laser cavity. 112 If such a regime can be established, 

at each reflection of the circulating pulse from the partially transmissive front 

mirror, or output coupler, a fraction of its energy is transmitted, resulting in a 

periodic train of output pulses. The temporal separation of these pulses is equal 

to the time required for the circulating light pulse to make one round trip in 

the laser cavity. This time is given by 2L / c, where L is the effective (optical) 

length of the laser cavity. For the 1.8 meter length of the 171 laser, the round 

trip time was approximately 12 ns. 

The mode-locking element used in our laboratory was a prism located near 

one end of the laser cavity (ML, for mode-locker, in Fig. 1). A radio frequency 

transducer attached to one side of the prism was driven at a resonant frequency 

of the prism to set up an acoustic standing wave across the path of the laser 

beam. The result was a diffraction grating of temporally periodic diffraction 

efficiency. Mode•locking was accomplished by precisely synchronizing the cavity 
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round trip time (by adjustment of the cavity length) with the periodicity of 

the low-diffraction or high-transmittance windows of this grating. Since there 

are two of these windows for each full cycle of the acoustic wave, the required 

driving frequeµcy was around ½(12ns)- 1 41 MHz. 

The duration of mode-locked pulses depends not only on the characteristics 

of the mode-locking clement hnt also on the characteristil".s of the gain medium. 

Pulsed operation at a period of 2L / c requires lasing at not one, but a series 

of frequencies at a frequency spacing of c/(2L ). The infinite sinusoidal waves 

associated with each of these longitudinal cavity modes are "locked" together 

(hence the name mode-locking) to produce pulses in the time domain. By 

the Fourier relation between the frequency and time domains, the sharper the 

temporal pulse, the more modes required to produce it. Thus the spectral 

breadth o:f a region o:f positive gain sets a lower limit on the pulse width that 

may be obtained for lasing in that region. The optimal combination of power 

and short pulse duration among argon ion lasing transitions is :found in the 514.5 

nm line. In our laboratory, 150 to 200 ps pulses and average powers of .5 to .8 

W were typically attained for operation at this wavelength. Mode-locking was 

also achieved at the strong 488 nm transition, but due to the narrowness of the 

gain profile, pulse widths less than 1 ns FWHM could not be produced. 

The argon ion output described above was used to synchronously pump a 

Spectra Physics Model 375 tunable dye laser with Spectra Physics Model 344 

cavity dumper (DL and CD in Fig. 1). The dyes Rhodamine 590 and DCM 

provided coverage of the wavelength range 597 nm to 722 nm needed for these 

experiments. The dye was dissolved in a solvent of sufficient viscosity to produce 

a stable laminar sheet when forced into air from a thin metal nozzle. When the 

pump beam was focused into this sheet, the dye absorbed the 514 nm light; 

lasing at longer wavelengths could then occur to any one of the unpopulated 

higher-lying ground state levels of the dye. Tuning was accomplished with a 

three-plate birefringent filter, alone or in combination with an ultra-fine tuning 
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etalon. Synchronous pumping, achieved by matching the pulse round-trip time 

in the dye laser cavity to that of the pump laser, served to mode-lock the dye 

laser. The slow build-up and rapid depletion of the gain of the dye, coupled 

with the broad. bandwidth of the dye gain, resulted in dye laser pulses that were 

much shorter than the pump pulses. Pulse widths were not directly measured 

in the course of these experiments, but typical values for a system of this type 

are about 15 ps FvVHM.3 

In the dye laser configuration shown in Fig. 1, the four mirrors forming 

the doubly folded cavity, including the two end mirrors, were full reflectors. 

Light pulses could only be extracted from the cavity by the cavity dumper, at 

a repetition rate selectable from single shot to 4 MHz. The active element of 

the cavity dumper was an acousto-optic cell, located at the focus of the second 

confocal arrangement of mirrors in the dye laser cavity (as shown). The light 

pulse circulating in the cavity traversed this cell twice in each round trip. At 

intervals determined by the selected repetition rate, an acoustic wave train was 

sent across the cell, diffracting energy from the cavity into the exit path of the 

laser. Interference of the light diffracted on the two passes through the crystal 

helped to produce efficient dumping into the primary dumped output pulse and 

to suppress dumping of adjacent secondary pulses. Secondary pulses were always 

present, but their intensities relative to the primary pulse was usually less than 

1:200. Reduction of the laser repetition rate by cavity dumping was indispensible 

when working with molecules having fluorescence lifetimes of the order of or 

longer than the inherent mode-locked pulse separation. Cavity dumping also 

signi.fi.cantly increased the energy of individual output pulses, which was of great 

value in increasing the efficiency of second harmonic generation (see below). The 

cavity dumper was normally operated at a repetition rate of 4 MHz, with output 

pulses in the five to ten nanojoule range. 

Ultraviolet pulses were produced from the visible pulses which exited the 

cavity dumper by second harmonic generation 1 •4 •5 in a lithium iodate (LiIO 3 ) 
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crystal (SHG in Fig. 1 ). The generation of harmonics of a monochromatic signal 

by transmission through a nonlinear medium is a general phenomenon. Thus 

passage of light through a crystal of nonlinear susceptibility results in an output 

containing harmonics of the driving frequency. Even harmonics are produced 

only when the response is anisotropic. This means that ultraviolet light is gener­

ated as visible light propagates through a noncentrosymmetric nonlinear crystal. 

Because of dispersion within the crystal, the propagtion velocities of the visible 

and ultraviolet light are generally different, and infinitesimal contributions to 

the ultraviolet are created with continuously varying relative phase. Interference 

between these contributions is typically constructive for very short path lengths 

only, and the effectiveness of the conversion process is severely limited. However, 

for certain birefringent crystals the directions of propagation and polarization 

may be chosen to make the two propagation velocities equal. This process 

is referred to as phase-matching.1 All ultraviolet contributions then have zero 

relative phase and add constructively to produce a greatly enhanced resultant. 

For all excitation wavelengths needed in our experiments (298 nm to 361 nm), 

phase-matching could be achieved by angle tuning onP. of two appropriately cut 

1 cm thick Lil0 3 crystals. Conversion efficiencies of several percent were typical 

· and depended quadratically on the intensity of the visible light. The bandwidth 

of the ultraviolet pulses was determined to be no greater than 5 cm-1 without 

and 2 cm-1 with the etalon in place, based on spectrometer scans of scattered 

laser light. 

The second doubling crystal was designed to permit generation of second 

harmonic light down to the shortest wavelength for which phase-matching in 

LiIO3 is possible. This blue doubling limit is reached when the propagation 

direction of the incident beam is perpendicular to the optic axis. Since the 

dependence of phase-matched wavelength on angle in this wavelength region was 

not accurately known to the crystal supplier (Cleveland Crystals), measurements 

were performed in our laboratory to determine the optimum angle of cut for such 
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a crystal. In these measurements, the blue limit for phase-matching in LiIO3 at 

room temperature was found to be 293 nm. Since the range of the first crystal 

ended at 315 nm, a tuning range for the second crystal of 293 to ~ 320 nm was 

desired. The measured (internal) phase matching angles at these wavelengths 

differed by ~ 26°. This range corresponds to a range of external angles of 

incidence of ±25°, which could be reasonably accommodated by choosing a wide­

angle mounting cell. It was therefore specified that the crystal be cut so that the 

normal to its optical faces and its optic axis form an angle of 90 26/2 77°. 

Although the doubling range is centered at ~ 305 nm, the wavelength that is 

phase-matched at normal incidence for this design is 298.3 nm. 

B. Samples, molecular beam apparatus, and expansions 

Samples of tranJ-stilbene and anthracene with stated purities ~ 96% were 

obtained from commercial sources (Aldrich, MCB, Pfaltz and Bauer). Extensive 

earlier work on these molecules carried out in this laboratory3 •6 •7 •8 •9 demon­

strated that further purification had no effect on observed characteristics of the 

samples in the spectral region of interest. Fluorene was purchased from Aldrich 

with purity ~ 98%. Residual impurities in the sample were of no concern, since 

_only the strong S1 +- S0 ogtransitions of fluorene and the fluorene-Ar 1 van der 

Waals complex10 were investigated. 

These samples were studied in the form of cold isolated molecules prepared 

by expansion in a continuous supersonic jet. The apparatus consisted of a sample 

reservoir and nozzle mounted horizontally within a translatable, heated metal 

jacket on the axis of a cylindrical vacuum chamber. The expansion of the seeded 

carrier gas occurred through a pinhole in the nozzle. For expansions under low 

backing pressures, the reservoir and nozzle were formed of Pyrex tubing, and the 

carrier gas was introduced via a simple double o-ring compression :fitting. The 

thick-walled capillary tube forming the nozzle was drawn out and sealed, then 

sanded down to reopen a pinhole in its tip. Pinhole diameters were measured 

by optical microscope and ranged from 60 to 80 microns. For backing pressures 
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exceeding 100 psig, a stainless steel sample reservoir was used. The nozzle on 

this reservoir was formed by a screw cap designed to hold commercially available 

drilled metal disks with a metal to metal seal. Pinhole diameters from 12½ to 

50 microns were used. 

Experiments on bare (i.e., uncomplexed) molecules were generally con­

ducted using neon at a pressure of npproximately six atmospheres. The choice 

of backing gas and pressure were dictated by the need to a.chieve maximum 

cooling of rotations.11
•
12 Helium complexes with t-stilbene were formed using 

backing pressures of pure helium up to 45 atm, For the formation of van der 

Waals complexes with argon, neon was again used as the principle carrier gas 

with low concentrations of argon mixed in. The mixing was regulated by means 

of a supersonic needle valve which allowed continuous variation of the argon 

concentration. The advantage of this arrangement was the ease with which 

observed complex signals could be optimized and checked for their dependence 

on argon concentration, an important clue to stoichiometry. It must be noted, 

however, that due to mechanical instabilities a constant mixing ratio over the 

course of lengthy experiments was often difficult to maintain by this method. 

The temperature of the nozzle assembly was controlled by two independent 

coils of heating wire: one extending over the full length of the sample reservoir 

and one in the immediate vicinity of the nozzle only. Thermocouples were 

attached to the metal jacket surrounding the sample tube both at its front 

edge, to monitor the nozzle temperature, a.nd near the center, where the bulk 

of the sample is located. Cited sample temperatures refer to readings of this 

second thermocouple and ranged from 120 C to 180 C for the solid sample 

compounds discussed in Chapter 5. Heater settings were chosen to maintain the 

temperature reading at the nozzle approximately 50 C higher than that of the 

reservoir. If this was not done, clogging of the nozzle tip by solidified sample 

became a problem. 

The vacuum chamber in which the nozzle assembly was mounted was 12 in. 
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in diameter and 36 in. long. An Edwards 18B4A 12 in. oil vapor booster pump, 

backed by a Kinney KTJ.50 single stage mechanical pump, was connected to a 

right angle pneumatic valve mounted on the end of the chamber, downstream 

from the molecular beam. With this pumping arra.ngement, the background 

pressure was maintained below a few millitorr under normal operating condi­

tions, and always less than 20 millitorr. 

After leaving the Lil03 crystal, the remaining visible and newly created 

ultraviolet laser beams reached a mirror of high reflectance at the ultraviolet 

wavelength. This mirror directed the ultraviolet beam upward through a Brew­

ster angle quartz window into the vacuum chamber (see Fig. 1), while permitting 

a major part of the visible beam to pass on undeflected. A final quartz lens in 

the vacuum chamber focused the ultraviolet excitation beam tightly into the 

expanding free jet. The distance X of t,he laser from t,he nozzle was ('.ontinuously 

adjustable with a value of two or three mm used for the typical experiment. 

Pertinent expansion conditions, including X, the nozzle diameter (D ), the reser­

voir temperature, carrier gas, and backing pressure were routinely recorded and 

will often be cited in Chapter 5 as specific results are presented. In many cases 

checks for collisions or hot band formation were made by studying the effects of 

changing backing pressure or X/D. 

C. Fluorescence detection 

Fluorescence from the interaction region of the crossed molecular and laser 

beams was collected at right angles to both beams by an f /2 collimating lens 

and focused by a second lens onto the entrance slit of a microprocessor controlled 

0.5 meter Spex spectrometer (see Fig. 1). In order to trace the time evolution 

of fluorescence intensity the technique of time-correlated single photon counting 

(TCSPC)13 was implemented as follows. At the exit slit of the spectrometer, 

single photons were detected by a Hammamatsu 1564U microchannel plate pho­

tomultiplier. The photomultiplier output pulses were amplified, discriminated, 

and used to trigger the start channel of an Ortec Model 457 biased time to 
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pulse height (amplitude) converter (TAC). The stop channel was supplied by 

the similarly processed output of a fast photodiode detecting the visible laser 

pulses (PD in Fig. 1). For each valid sequence of start/stop pulses received, the 

TAC, as its name implies, gives an output pulse of amplitude proportional to tbe 

time between the two input pulses. The amplitude of the TAC output following 

detection of a fluorescence photon in our experiments was therefore a. measure, 

on a time scale with an offset fixed by various optical and electronic delays, 

of the time which elapsed between the pnssa.ge of the excitation pulse and the 

emission of the photon. By feeding the TAC output pulses to a Tracor Northern 

Model TN-1706 multichannel analyzer (MCA) in pulse height analysis mode, the 

desired histogram of photon emission times was produced. After accumulation 

of a sufficient number of counts per channel, the data were transferred to a DEC 

PDP 11/23 computer for storage and analysis. 

The time base for our measurements was calibrated by detecting visible 

dye laser pulses at the full 82 MHz repetition rate of the argon laser. This 

procedure and other observations bearing on the accuracy of absolute time 

interval measurements will be described later in this chapter. Biasing of photon 

detection to early times (pulse pile-up) can occur in TCSPC when there is a 

significant probability for collection of two or more photons for a single excitation 

pulse. This could be avoided simply by maintaining detection count rates below 

40 KHz. In practice, saturation of the microchannel plate imposed a more 

stringent upper limit to detection rates of several kilohertz only. The flow of 

emitting molecules out of the field of view of the collection optics could also 

cause a gradual loss of signal at times exceeding 10 ns. These transit time 

effects could produce at most slight, systematic distortions of detected signal on 

the time scale of rotational coherence measurements. These were generally of 

no concern. 

The temporal instrument response for the system was measured by ad­

vancing the tip of the nozzle into the path of the laser beam and detecting 
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the scattered laser light. In our efforts to minimize the response width, it was 

observed that the disparity in optical path lengths for different paths through the 

spectrometer could contribute significantly to the response time. For example, 

rays of 300 nm wavelength light which traverse opposite edges of our 76,800 

groove grating have transit times differing by 77 ps in first spectral order. There­

fore, during these experiments, a mask was placed immeruate]y in front of the 

grating to reduce by more than two-thirds the width accessible to illumination. 

Figure 2 i:;huwi:; the optimum rei:;puur:;e uf 40 pr:; FWHM obLuineu fur the detection 

system described above, with the grating mask in place. Response widths were 

more typically around 60 ps. Since the measured response was observed at 

times to be very sensitive to certain variables of the measurement procedure 

(spectrometer slit widths and grating position, and exact scattering geometry) 

and these factors were, in general, necessarily different for response and decay 

measurements, the measured response may be expected in some cases to differ 

from the one actually operative for the decay collection. Broadening due to long 

term instabilities is an additional impediment to precise determination of the 

effective response width for lengthy experiments. For accurate characterization 

of decays, the response of the system was measured both before and after the 

· transient measurement. 

D. Polarization measurements 

Our basic objective in experiments discussed in this thesis was to separately 

detect cumpuuent:s uf fluorescence having polarizations oriented at selected an­

gles with respect to the excitation polarization. The high degree of linear polar­

ization required of the excitation source resulted naturally from the process by 

which the ultraviolet pulses were generated. A soleil compensator was used to 

orient the excitation polarization perpendicular to the direction of fluorescence 

collection, as shown in Fig. 3. Analysis of the fluorescence into components was 

provided by a Glan-air prism polarizer placed before the entrance slit of the 

spectrometer. This device is formed by cutting a rectangular parallelepiped of 
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the birefringeant mineral calcite into two right triangular prisms, then mounting 

the two hR.lves wit.h a thin air gap between the faces of the cut.4 Light entering 

along the normal to an uncut face of the polarizer crosses a triangular wedge 

of calcite to the air gap. For a proper angle of cut, the angle of incidence 

of the light on the calcite-air interface lies between the critical angles of the 

ordinary and extraordinary rays, as determined by their respective indices of 

refraction, n
0 

and ne. The ordinary ray is then totally internally reflected while 

the extraordinary ray is transmitted across the gap and continues across the 

second wedge to exit the prism undeviated. This mechanism of polarization 

selection has a very high extinction ratio and relatively high transmittance, but 

it also has the disadvantage of a limited acceptance angle. If light falls on the 

gap at too large an angle, both components are reflected while if the angle is too 

small, both are transmitted. The cut-off angle, which depends on n 6 , and the 

leakage angle, which depends on n
0

, change with wavelength, but the acceptance 

angle, which is the difference between them, is about nine degrees throughout 

the ultraviolet. Since this angle surpassed slightly the acceptance angle of the 

f /7 spectrometer, no unanalyzed light could reach the detector when the prism 

was correctly positioned. At the upper end of the wavelength range, this entailed 

biasing the prism normal slightly from the optical axis of the collection system 

in order to maintain a field of view symmetric about that axis. 

The effect of the finite angle of :fluorescence collection on mixing of polariza­

tion components was shown empirically to be minor by measuring decays with 

both our standard two lens f /2 collection optics and a single lens arrangement 

off /7 with no apparent effect on results obtained. An indication of the polar­

ization selectivity of the complete excitation/ detection system was provided by 

measurements of scattered laser light. These tests showed the system adequate 

to provide a detection bias toward the selected polarization of no worse than 30 

to 1. 

An alternative but equivalent arrangement has also been employed for the 
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detection of perpendicular fluorescence in which the compensator is removed, 

leaving the excitation polarization parallel to the direction of fluorescence col­

lection. Both polarization components propagating along the collection a.xis are 

then perdendicular to the excitation, and the prism analyzer may be removed. 

Not only is twice as much light available in this configuration, but transmission 

losses in the prism of about 40% are eliminated, resulting in a significant increas,e 

in signal at the detector. 
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II. Time base calibration 

One major application of rotational coherence spectroscopy developed in 

our laboratory is the measurement of rotational constants of molecules in excited 

electronic states. The accuracy of rotational constants so measured depends 

fundamentally on the accurate determination of the time scale of our experimen­

tal apparatus. Many calibration methods of varying degrees of accuracy have 

been developed and applied to time measurement systems of this type.14 In this 

section we describe in detail a calibration procedure suited to the equipment and 

accuracy demands of our experiments. Tests undertaken to verify the accuracy 

of the established time base are also discussed. 

The full time range of the TAC-MCA combination during all experiments 

described in this thesis was 16 ns or less. To calibrate the detection system, 

an easily reproducible phenomenon with a time dependence on this time scale 

was needed. The pulse trains from either of the two synchronously mode-locked 

lasers used in our experiments provided just such a calibration standard. The 

repetition rate of the argon ion laser was locked to twice the frequency of the 

acoustic wave in the mode-locker crystal as described in Section I of this chapter. 

The driving signal for the mode-locker was derived from a stabilized frequency 

source which also governed the dye laser cavity dumper. The accuracy of the 

displayed mode-locker frequency was confirmed by its agreement to better than 

10 ppm with the dye laser repetition rate measured by a Hewlett-Packard Model 

5340A frequency counter (accounting for reduction of the latter rate by cavity 

dumping). These considerations show that the average separation oflaser pulses 

produced by the system could be determined to 5 digit accuracy. 

To perform a calibration of the 16 ns time range, scattered laser light was 

collected and recorded in a calibration file showing two well defined laser pulses. 

The separation in channels of the recorded pulses was then equated to the true 

separation calculated from the mode-locker frequency. Under the assumption of 

strict periodicity of the laser pulses and both stability and linearity of the TAC-
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MCA combination, uncertainty in the measured channel separation became the 

limiting uncertainty in the time base calibration. Repeated calibrations showed 

that the estimation of pulse positions by eye was sufficient to give an upper 

limit of half a channel width uncertainty in the typical measurement of an 800 

channel separation, equaling a relative uncertainty ofless than 0.07%. When two 

recorded pulses were regular in shape and extended over several data channels, 

their separation could be more precisely established by determining the shift in 

channels required to bring one pulse into congruence with the other. In such 

cases, a clear degradation of the overlap of the pulses occurs for changes of less 

than 1/5 channel in the shift. 

The most convenient choice of pulses to use in the calibration were visible 

dye laser pulses. In particular, the dumped primary and following secondary 

pulse could be measured by simply !>cat tering laser light through the normal 

fluorescence detection optics. (Visible instead of ultraviolet light was detected 

because secondary pulses are virtually eliminated from the ultraviolet by the 

quadratic power dependence of second harmonic generation.) Detecting dye 

laser pulses instead of argon ion pulses for the calibration offered the advantages 

of minimum pulse widths as well as simplicity ofimplementation. Disadvantages 

included the difference in detected pulse intensity and possible distortion of 

the suppressed pulse. This latter is due to the inequivalent positions occupied 

by the primary and secondary pulses within the cavity-dumped pulse train 

and raises the possibility that their average separation ( as measured in data 

accumulated over hundreds of millions of pulse pairs) is shifted from the average 

separation of all mode-locked pulses. However, if a variation in separation of 

pulse maxima were induced by interaction with the cavity dumper acoustic wave, 

the observed separation should change with changes in the phase and timing 

of the cavity-dumping rf signal relative to the circulating cavity pulses. The 

negative outcome of attempts to observe such an effect was taken as evidence 

that any deviations from constant pulse separation is not detectable within the 
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current precision of our measurements. Cavity dumped pulses were therefore 

used for all calibrations. The large difference in intensities of the pulses was 

typically reduced by detuning the phase and timing of the cavity dumper. 

The validity of the a,ssumptions of stability and linearity mentioned above 

has also been investigated. Both the short- and long-term stability of the time 

base were tested by frequent calibration. The results showed that variations 

over spans of days and months often did not exceed the uncertainty in a single 

calibration. Periods of fluctuation and abrupt changes of the order of one percent 

have been observed, however. Therefore, for measurements requiring the highest 

degree of accuracy the time-base was calibrated before and after the experiment. 

If either the TAC or MCA has a nonlinear response, a calibration of the 

system establishes only an average time scale, while the true local time scale 

will vary from position to position. Since the time interval over which PRC 

recurrences were measured was often much different from that of the calibration 

standard, recurrence periods derived on the assumption of linearity may be 

subject to systematic error. Preliminary linearity tests were performed by 

measuring at different positions in the calibration range the delay associated 

with a short cable. These showed no nonlinearity to the .5% level. 

After measurements of recurrence periods on a number of molecules were 

completed, it became clear that measurement errors due to other sources could 

be limited to about 0.1 %. It was therefore desirable to ascertain the linearity 

of the time base to a similar degree of precision. A standard test of linearity 

consists of measuring the arrival times of randomly distributed photons.15 Since 

these events occur with equal probability in each time division of equal length, 

the number of counts accumulated in each channel is a measure of the duration 

to which that channel corresponds. In order to clearly demonstrate deviations 

from linearity of the order of 0.1 %, count totals of approximately 106 would be 

required. Since the typical window of observation in our experiments ( ~ 16 ns 

per laser pulse) recorded only about 1/15 of all events (see below), a count total 
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of 106 in each of the 1000 observed channels would entail detection of 1.5 x 1010 

random pulses, assuming no loss of events due to electronic dead time. At the 

maximum count rate of the TAC of 140 kHz, as determined by the 7 µs duration 

of the reset sequence, this signal would require a collection time of 30 hours. 

Even if our interest is restricted to trends on a scale of hundreds of picoseconds 

( tens of channels), collection times of several hours are needed. Moreover, a. 

large percentage of start pulses are lost at the maximum count rate, leading to 

severe pulse pile-up distortion. These circumstances rendered it impractical to 

carry out extensive linearity studies. For a limited investigation of long range 

nonlinearity, we used a high gain photomultiplier as the random pulse generator 

at count rates of~ 30 kHz. Even at these rates, the influence of pulse pile-up is 

not negligible at the 0.1 % sensitivity level. Pulse pile-up effects must, therefore, 

be considered in the analysis of our linearity measurements. The calculation of 

these effects is described next. 

In the TCSPC technique, events are timed relative to the periodic stop pulse 

( of period T) from the laser; therefore, the measurement system time coordinate 

(t') is limited to the interval (0, T). Only a segment of this interval, between 

t1 and t2 , is actually observed. The probability density over t1 for the arrival 

· of a photon from a source uncorrelated with the laser is a constant Pa = 1/T. 

If f is the expected number of photons per laser cycle, the number of photons 

arriving in any real time interval At has a Poisson probability distribution with 

expectation f t:.t/T, 

p(N; At)= exp(-/ At/T) (f Air)N (2.1) 

The probability that no photons arrive is then p(O; At) = exp(- f t:.t/T). The 

probability density Pr(t) for a photon that arrives in a given cycle to successfully 

trigger the start channel of the TAC at time t' is the product of Pa and the 

probability that the electronics are not "dead" at that time. The latter is the 

probability that no other photon has arrived since the last stop pulse (t' = 0) or 

the last resetting of the electronics (t1 - td), whichever is more recent. Because 
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the reset process, which lasts many complete laser cycles, begins with a stop 

pulse, td is expected to have a fairly constant value. When td is not in ( ti, t 2 ), 

the same one of the two times, either O or td, is more recent for each t' in the 

observation window. Calling this time t 0 , we have 

(2.2) 

for t 1 < t' < t 2 • The probability for a recorded event is thus not constant but 

falls monotonically at a rate determined by the photon arrival rate f /T. The 

fractional change in Pr from t1 to t2 is 

[Pr] I!: 
Pr 

(2.3) 

This expression, being independent of t0 , applies to the cumulative distribution 

of recorded events, even if t0 varies from photon to photon, as lung ai:s it does 

not fall between t1 and t2 • For small f, the exponential may be expanded to 

give 

[Pr] 1:~ ~- -f(t2 )/T t1 . 
Pr 

(2.4) 

Two independent linearity tests as described above were carried out on our 

. detection system for one of the time ranges used in our experiments. These 

showed no deviations of the local time scale from the average scale exceeding 

.25%. However, a least squares fit to a straight line of the test of highest signal­

to-noise, corrected for the influence of pulse pile-up by equation (2.4), showed 

a trend of deviations above and below the mean channel count that was about 

equal to the standard deviation of the measured values (.18%). If such a trend 

were present during a recurrence measurement made over the first half of the 

calibration range, the derived period would be about 0.1 % too long. This error 

is greatly reduced when the measurement spans the full range of the calibration. 

Results of many of the measurements discussed in Chapter 5 appear to support 

the presence of such a bias. The linearity tests described here confirm that 

errors introduced by this effect are not outside the uncertainties estimated from 
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all other sources, but also indicate that a fuller characterization of the system 

linearity is essential to push the accuracy of the technique beyond the current 

level. 

When the time range was shorter than the laser 12 ns pulse separation, 

an indirect method of calibration was required. The most convenient was the 

insertion of a calibrated cable in the pulse circuit to delay the measured position 

of the scattered laser pulse by a known length of time. The cable delay was 

measured on a longer time scale which was itself calibrated against the laser 

repetition rate. The accuracy of the average time scale established by this 

simple and rapid method was estimated at .25%. Alternatively, when the MCA 

conversion ga.in was set at 2048 channels, a time range between 6 and 12 ns 

could be calibrated by using the MCA digital offset to shift the observed time 

"window" from the fundamental to the secondary pulse, thereby permitting the 

total channel separation of the two pulses to be determined. The fact that the 

two pulses were not recorded simultaneously reduced the accuracy with which 

the absolute separation could be determined, but the larger number of channels 

between the pulses resulted in a relative error comparable to that achieved by 

the direct calibration. 

From comparison of calibrations at different settings on the MCA, it also 

appears that the MCA conversion gain results in a precise scaling of the time 

range, suggesting that experiments on at a conversion gain setting of 2048 may 

be calibrated in the usual manner by decreasing the conversion gain to 1024 for 

the calibration. This procedure was not used here, however. By contrast, the 

time range settings of the TAC are very approximate and a calibration of one 

range may be in error by up to 5% if applied to another range based on the 

nominal scaling. 

We note here one other novel calibration technique which has already been 

employed in our laboratory on a time range of 4 ns. This is the utilization of 

rotational coherence recurrences themselves as the time standard. The recur-
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rence period of t-stilbene has been used to calibrate measurements of short time 

phenomena in the fluorescence of t-stilbene or its van der Waals complexes.16 

An accuracy of 1 % or better is easily and conveniently obtained. This accuracy 

is more than adequate for characterizing fast fluorescence rises and decays. The 

potential for the use of recurrences of other molecules in this manner is great. A 

molecule like I2 , for example, whose recurrences have now been observed/ 7 dis­

plays time markers at a separation of approximately 600 ps, or 300 ps when the 

out-of-phase recurrence is included. This separation is well-known (to at least 

6 digit accuracy, if centrifugal distortion is neglected) and is discretely variable 

as a function of the excited vibration. Smaller molecules have correspondingly 

shorter recurrence spacings and could be used to calibrate even shorter time 

ranges. 



87 

References 

1. A. Yariv, Quantum Electronic., (John Wiley and Sons, New York, 1975). 

2. A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 

1986). 

3. W. R. Lambert, P. M. Felker, and A. H. Zewail, J. Chem. Phys. ibid. 81, 

2217 (1984). 

4. E. Hecht and A. Zajac, Optics ( Addison-Wesley, Reading, Massachusetts, 

1974). 

5. N. Bloembergen, Nonlinear Optics (W. A. Benjamin Inc., New York, 1965). 

6. J. A. Syage, W. R. Lambert, P. M. Felker, A. H. Zewail, and R. M. 

Hochstrasser, Chem. Phys. Lett. 88, 266 (1982); J. A. Syage, P. M. Felker, 

and A.H. Zewail, J. Chem. Phys. 81, 4685 (1984). 

7. W.R. Lambert, P. M. Felker, J. A. Syage, and A.H. Zewail, J. Chem. Phys. 

81, 2195 (1984). 

8. P. M. Felker and A.H. Zewail, J. Phys. Chem. 88, 6106 (1984); P. M. Felker, 

W. R. Lambert, and A. H. Zewail, .l. Chem. Phys. 82, 3003 (1985). 

9. W. R. Lambert, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 75, 5958 

(1981); ibid. 81, 2209 (1984); P. M. Felker and A.H. Zewail, J. Chem. Phys. 

82, 2975 (1985); ibid. 82, 2994 (1985). 

10. W. L. Meerts, W. A. Majewski, and W. M. van Herpen, Can. J. Phys. 62, 

1293 (1984). 

11. B. W. Keelan and A. H. Zewail, J. Phys. Chem. 89, 4939 (1985). 

12. B. vV. Keelan and A. H. Zewail, J. Chem. Phys. 82, 3011 (1985). 

13. C. C. Lo, B. Leskover, P. R. Harteg, and K. Sauer, Rev. Sci. Instrum. 47, 

1113 (1976); D. V. O'Connor and D. Phillips, Time-correlated Jingle-photon 

counting (Academic Press, London, 1984). 

14. For example, see: H. E.Taylor, Nucl. Instr. Methods 68 (1969); Z. H. Cho 

and C. Bohm, Nucl. Instr. Methods 84 (1970). 

15. Ortec product informat.ion, Model 457 Biased Time to Pulse Height 



88 

Converter Operating and Service Manual #2924 0lC 0778, Ortec Incorpo­

rated, Oak Ridge, Tennessee. 

16. D. H. Semmes, .J. S. Baskin, and A. H. Zewail, J. Am. Chem. Soc. 109, 

4104 (1987); D. H. Semmes, J. S. Baskin, and A. H. Zewail, submitted for 

publication. 

17. M. Dantus, R. M. Bowman, A. H. Zewail, to be submitted for publication. 



89 

Figure Captions 

1. Overview of the experimental arrangement for the measurement of time­

resolved fluorescence of jet-cooled molecules. Key to symbols: ML mode­

locker; DL dye laser; CD cavity dumperj SHG second harmonic 

generation; PD photodiode; MCP microchannel plate; TAC time 

to a1nplitu<le converter; and MCA - multichannel analyzer. 

2. Temporal response of the fluorescence detection system to scattered laser 

pulses. The spectral resolution is '.'.::: 2 cm-1 • A mask restricts the width 

of the spectrometer diffraction grating accessible to illumination. The long 

trailing edge is typical of the microchannel plate detector. 

3. Detailed sketch of the experimental arrangement for polarization selective 

excitation and detection of fluorescence of jet-cooled molecules. e1 is the 

polarization vector of the excitation pulse. e2 is the polarization compo­

nent of the collected fluorescence that is selected by the prism analyzer 

for detection. Two possible orientations of e2 are shown. MCP is a mi-­

crochannel plate photomultiplier. Pulse processing and timing electronics 

are incorporated in the "photon counter" black box. 
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Chapter 4 

Data Analysis 

Portions of this chapter are taken from the following published articles: 

"Purely Rotational Coherence Effect and Time-resolved Sub-Doppler Spec­

troscopy of Large Molecules. II. Experimental," by J. S. Baskin, P. M. Felker, 

and A. H. Zewail. 

Reprinted with permission from The Journal of Chemical Physics, Volume 

86, p. 2483. Copyright 1987 American Institute of Physics. 

and 

"Determination of Excited-State Rotational Constants and Structures by 

Doppler-Free Picosecond Spectroscopy," by J. S. Baskin and A. H. Zewail. 

Reprinted with permission from The Journal of Physical Chemistry, Volume 

93, p. 5701. Copyright 1989 American Chemical Society. 
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In this chapter we give a detailed account of the various procedures employed 

in the interpretation of our measurements. Methods applied to extract excited­

state parameters from measurements of polarization-analyzed fluorescence are 

described first. Details pertinent to the calculation of the van der Waals molecule 

potential energy surfaces discussed in Section II B of Chapter 5 are then given. 

The nature of purely rotational coherence lends itself to two semi-indepen­

dent types of analysis. The first is the determination of recurrence periods 

and the second is the fitting of data to numerical simulations. For the first, the 

optimal time range for data collection indudes many recurrence periods. For the 

second, resolution of details of recurrence shapes and amplitudes is of primary 

importance and a shorter time scale is usually preferable. A full description of 

the procedure employed for each of these methods of analysis follows. 

Rotational recurrence periods and associated error bars were determined in 

the following manner. Recurrence positions in a measured decay were located by 

inspection, and uncertainties corresponding roughly to 90% confidence intervals 

were estimated for each one. Short fluorescence lifetimes were first removed 

to prevent biasing of the positions. This was accomplished by multiplying the 

data by et/1' where Twas the measured lifetime. A weighted least squares fit to 

the estimated positions yielded the recurrence period. The quoted uncertainties 

were found conservatively by considering the maximum and minimum periods 

consistent with the error bars on the extreme recurrences. For the values 

reported here, these conservative error estimates have been reduced only when 

warranted by the good agreement between a series of independent measurements. 

Fig. 1 presents an example of a rotational coherence measurement used to 

determine the recurrence of t-stilbene. The decaying curve is the measured signal 

with the polarization analyzer set to select parallel fluorescence. Also shown at 

the top of the figure is the same data after elimination of the decay. In this, 

the regularly spaced in-phase recurrences may be located and their positions 

accurately measured. On the basis of a single measurement of this type, the 
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PRC recurrence period of t-stilbene could be determined with an uncertainty as 

low as~ 4 ps. 

As seen in Section III of Chapter 2, precise values for the rotational con­

s Lants of asymmetric tups are nut given directly by PRC recurrence periods 

as in the symmetric top case. Even the approximate expressions derived in 

that section do not permit the determination of independent B'and 0 1 values 

without some additional constraint (such as the assumption of planarity). To 

extract as much potential information as possible from the experimental data 

therefore requires comparison with numerical simulations designed to accurately 

reproduce the conditions of the measurement. 

The fundamental component of these simulations is the expression derived 

by Felker and Zewail1 and discussed at length in Chapter 2. There are three 

important assumptions involved in each PRC simulation in this thesis, which 

are: 1) The initial ground state population distribution is assumed Boltzmann. 

2) A rigid-rotor rotational Hamiltonian is assumed. 3) The possibility of axis 

switching in excitation is neglected. By this last, we mean that the equilib­

rium principle axes of inertia of the ground and excited states are assumed to 

coincide. 2 It should be kept in mind that any of these assumptions may lead to 

inaccuracies since they need not be justified in all cases. Further limitations are 

placed on the accuracy of the c.alculations by the finite temporal and frequency 

resolution, frequency bandwidth, and range of ground-state rotational levels 

included. However, checks were made to ensure that the choice of these param­

eters had no significant influence on the results. Typical values used for final 

calculations were 4 ps and 1 MHz for temporal and frequency resolutions and 50 

GHz for the frequency bandwidth. The temporal resolution used during fitting 

was that of the measured data, either 8 or 16 ps. The frequency bandwidth 

was also set at 35 GHz during preliminary fitting. This lower value had no 

noticeable effect after convolution with our ~ 50 ps response. An energy cutoff 

was set for the inclusion of ground-state rotational levels. This was preferable to 
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a simple limit on J0 since the overlap of J manifolds is very pronounced in many 

of the molecules studied. It was found that simulated intensities reached their 

asymptotic values when ground-state levels with J0 up to 25 - 35 ( depending on 

temperature and molecule) were included in the summation. Again, preliminary 

fitting was done with somewhat lower ground state limits, chosen to give about 

99% of the asymptotic intensity. 

The contributions of minor isotopic species due to the natural abundance of 

13 C have also been considered and will be discussed in relation to the t-stilbene 

results in Chapter 5. These contributions can be important but were negligible 

for the purposes of the present work. 

The calculations of PRC intensities requires, in principle, the specification 

of 11 parameters: the rotational temperature, six rotational constants (A", 

B", C", A', B', C'), and the directions of the absorption and emission dipoles 

( 81 , </>1 , 82 , </>2 ). The ground-state structure exerts an influence on PRC in two 

ways: the ground-state energies determine the initial state distribution, and the 

eigenstates govern the transition strengths to each upper state. However, it has 

been found that results of simulations are quite insensitive to the exact values 

of the ground-state constants, as might be expected since the beat frequencies 

responsible for the appearance of recurrences depend only on the excited-state 

energies. Thus, it is sufficient in practice to specify a single set of rotational 

constants. In addition, in the cases considered in Chapter 5, a single electronic 

transition is involved in both absorption and emission, implying a single tran­

sition moment. This reduces the effective number of simulation parameters to 

six. The computer fitting routines that have been employed in the data analysis 

for this thesis treat only four of these six as variables, leaving the transition 

moment fixed. 

To perform the least~squares fitting, calculated intensities were convoluted 

with an instrument response function and compared to the experimental data. 

This comparison entailed the introduction of two additional fitting parameters: a. 
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scaling factor to adjust the simulation amplitude and a time shift to synchronize 

the temporal evolution of the two files. 

The experimental data could be fit either in the form of parallel fluores­

cence or of polarization anisotropy. As discussed in Chapter 2, the fluorescence 

polarization anisotropy is defined as 

r( t) 
I 11 (t) - I1.(t) 

111 ( t) + 211. ( t) 
(1) 

where I 11 (t) and 11.(t) arc the fluorescence intensities with polarizations parallel 

and perpendicular, respectively, to that of the excitation. The anisotropies 

presented have been calculated by the formula 

(2) 

where F11 (t) and F1.(t) are the measured decays, BL 11 and BL.1 are their respec­

tive dark current imposed baselines, and a and t' are two adjustable parameters. 

Here the upper case R is employed (following the notation adopted by Negus 

et al.3 ) to emphasize that the effects of limited temporal response are directly 

incorporated into R(t) and must be accounted for when comparing results with 

theory. The value of a was chosen to reproduce the theoretically expected1 

asymptotic value of the anisotropy, and t' was adjusted by consideration of 

the decay rises and very early behavior of R(t). The need for these parameters 

arises from unavoidable changes in detection efficiency and time origin which are 

coincident with the change of detection polarization (i.e., the physical rotation of 

the analyzer). They may also, of course, be used to compensate for systematic 

detection bias (particularly the polarization dependence of the spectrometer 

grating efficiency) and drifts in the detection system or the excitation power. 

Because R( t) near t = 0 ( taken as the instant that the decay amplitudes 

depart their baseline values) is very sensitive to small changes in t' as well as 

suffering from very low signal to noise, precise early time anisotropy values could 

not be derived. In Fig. 2 is shown, for example, the effect of small variations 
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in the value oft' on R(O) in a measurement of the polarization anisotropy of 

t-stilbene fluorescence. Note, however that values of R(t) at longer times are 

relatively insensitive to the choice oft', so that, in particular, the positions and 

amplitudes of recurrences are well determined. Similarly, apparent R(O) values 

are strongly affected by even small response drifts, which again have negligible 

impact on R(t) at other times. 

Methods employed to find the best-fit PRC parameters to a given set of 

data included a simple grid search of likely regions of the parameter space and 

optimization routines either without constraint or constrained by the condition 

of planarity. In choosing initial values for the rotational constants, two generally 

applicable relations were useful. The first is 

A-1 ~ 0-1 B-1 (3) 

which holds (to very good approximation) for any set of rotational constants. 

(This relation is not rigorons for effective rotational constants; i.e., A - 1 may be 

slightly smaller than c-1 - B-1 as a result of averaging over the vibrational 

state.) The second depends on the measured nutation recurrence period ( 7 1 ) 

and is by now well known: 

(4a) 

if the molecule is prolate or 

A'+ B' ~ 1/71 ( 4b) 

if it is oblate. The rotational constants of the ground state could either be held 

fixed at predetermined values or be equated to the excited-state values. A x2 

test was used to judge the goodness of fit. Poisson statistics apply to decays 

collected by single photon counting. For R(t), approximate expressions4 based 

on Eq. (2) were used to characterize the distribution, which is not Poisson. The 

standard deviation of each anisotropy value was given by 
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When parallel fluorescence was fitted, the decay lifetime was eliminated 

from the :fitting process by multiplying the data by etf r, with a corresponding 

adjustment of weights used in the x2 calculation. The measured response with 

which the simulation was convoluted wa.s also multiplied by etfr. The rational 

for this was as follows. We may write the fluorescence intensity as a product 

I(t) = A(t)e-t/r, where all evolution within the excited state is represented in 

the function A(t) and e-t;,- accounts for the excited-state population decay. If 

the temporal response of the detection system is S( t), the measured signal is 

then the convolution F(t) = I(t) o S(t), or 

+oo +oo 

F(t) J I(t - t')S(t1) dt' e-tj,- j A(t - t')et' fr S(t') dt' . (6) 
-oo -oo 

Thus the function F(t)etfr that we wish to fit is equal to the convolution of 

A(t) with et/,. S(t). The precision of the lifetime measurement is not critical 

to this process. Since the PRC signal is known to vary around a constant DC 

level, it is only necessary that no long range trends appear in the residual of the 

exponential fit to the data. 

The Fortran program ATFIT2 in Appendix III is the most general fitting 

routine employed in the analysis of experimental data discussed in this thesis. 

In ATFIT2, all three excited state constants are varied independently, along 

with the rotational temperature and the parameter TO that fixes the temporal 

synchronization of the data and the simulation. The amplitude scaling can also 

be optimized, but it was found that no significant improvement in x1 could 

be obtained by varying the scale from that determined by normalization of 

the two files. The ground state rotational constants are held at predetermined 

values in this program. The gradient of the x2 function in the parameter space 

of the five remaining adjustable parameters was determined analytically by 

calculations in which each parameter was displaced above and below its current 

value. For efficiency, the dependence of x2 on TO was determined by shifting 

a single simulated data set plus and minus one channel. This is generally a 
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very gross adjustment, and a finer step may be worth the extra computation 

time involved. Since the temperature enters only in the final step of the PRC 

frequency spectrum calculation, spectra for three different temperatures were 

obtained at essentially the price of one computation. 

The minimization algorithm used in ATFIT is not completely effective 

when parameters are correlated. A particular problem was presented by the 

correlation between TO and the absolute magnitude of the rotational constants 

as a set. To see this, note that PRC frequencies, even for the asymmetric top, 

are linearly proportional to the rotational constants. Thus, multiplication of 

all constants by a scaling factor I results in a scaling of the PRC time domain 

signal by ,-1 . Since the experimental data cover a fixed time range which is 

positioned relative to the simulation by the parameter TO, TO must be adjusted 

when the simulation time scale is expanded or contracted. For a given TO, the 

program AT FIT was found effective at optimizing the shape of the PRC pattern; 

that is, the correct ratios of rotational constants was determined. However, 

to find the optimum scaling factor and the corresponding TO, the program 

ATGRID1 was used. In this program, the simulation time iscale and TO were 

varied simultaneously in such a manner as to maintain the center of the data at 

a fixed position in the simulation. The plot numbered 1 in Fig. 22 of Chapter 

5 is an example of such an optimization. The value of TO was decreased by 

37 ps, or about 2½ channels, over the range of the plot to compensate for the 

contraction of the simulation time scale. 

For many of the most time-consuming calculations of asymmetric top PRC 

intensities, a near-symmetric treatment was used. This treatment is based on 

the fact that the asymmetric top eigenfunctions IJrlVI) must transform smoothly 

into symmetric top eigenfunctions as B and C ( or A and B) converge. Thus, 

only a single coefficient in the expansion of each eigenfunction, 

J 

IJrM) L a(JrK)IJKM), (7) 
K=-J 
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can have appreciable amplitude for small asymmetries. In the near-symmetric 

treatment, all other coefficients are assumed negligible in the evaluation of 

Eq. (3.15) of Chapter 2. This has much the same result as applying the approx­

imate se]ectio11 rules AKaym = O, ±1 where K 11 ym stands for Kpr or K 0 b, the 

designation of the closest symmetric top limit. In this approximation, the only 

consequence of asymmetry is the shift in rotational energies that causes changes 

in PRC beat frequencies. This treatment was used regularly for preliminary 

:fitting and o:ff-a.xifi dipolP- ,•.alculations and was found to give satisfactory results 

even for moderately large degrees of asymmetry while providing a substantial 

(> 50%) savings in computer time. Near-symmetric and full asymmetric cal­

culation options are provided in the program ATFIT, to be selected at each 

execution. 

The evaluation of Eq. (3.14) of Chapter 2 (disregarding the exponential 

decay factor) is essentially a Fourier transformation from the frequency to the 

time domain. Recalling that f(J0 ,Ji,Ji,-r0 ,r1 ,-r{) = f(J0 ,Ji,J1 ,-r0 ,ri,r1 ), the 

direct calculation requires the sum over all distinct frequencies w of A cos( wt) 

at each temporal data point. The amplitude A is either f or 2f, depending on 

whether J1 and 'T1 are different from J~ and 'T; or not. In practice the frequencies 

are recorded in an array of finite resolution so that the calculated frequencies 

must be rounded to the nearest value in the periodic grid. (For symmetric tops 

this actually need not introduce any limitations in accuracy, since all frequencies 

fall exactly on a grid of spacing 2B'.) If the number of distinct frequencies of 

significant amplitude is called INU, and the number of time points NPTS, the 

nnmher of cosine evalua.tions is INU,NPTS. 

Since values of either INU or NPTS or both may be in the thousands, 

it is natural to consider alternative implementation of this transformation by 

a fast Fourier transform (FFT) algorithm. In an FFT the calculation time is 

proportional to N log(N) where N is the number of equally spaced points in either 

the time or frequency domain, since both must be equal. When the frequency 
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and time resolutions are designated by vres and CT respectively, the total time 

range involved in the FFT calculation (:::: N,CT) is equal to 1/vres, and the 

calculated temporal function is periodic with this period. Since this periodicity 

is a necessary consequence of the chosen frequency resolution and the associated 

rounding of frequencies, the calculated function near the end of the time range 

may be completly unrelated to the true function. Since signal differences of less 

than 1 % are important in PRC analyses (see Chapter 5), the useful part of the 

calculated time range will, in fact, be quite small. Consider, for example, a 

modulation term of true frequency v. If this frequency falls midway between 

two grid values, it will be recorded as v' such that jv v'I = ½vres• The true 

and calculated intensities will be I A cos( IP) and I' = A cos( P 1
), where the 

phase q. = 21rvt or the phase difference is 

(8) 

The maximum intensity difference for a given (small) AP is equal to A· .AP. An 

upper limit on .AP of .02 will insure that the calculated intensity does not differ 

from the true intensity by more than 1 % of the tot al amplitude of the modulation 

2A). Since the unmodulated intensity is typically from 1.5 to 3 times greater 

. than the sum of all modulation amplitudes, and the average frequency defect 

Iv- v' I is, in general, smaller than ½ vres, calculations with the above limit placed 

on .Ac» can be expected to accurately reproduce features of 1 % amplitude. From 

Eq. (8), tis equal to LI.IP /(1rvres), We find then that data from an FFT calculation 

may be expected to be reliable fort$ .02/(1rvres), or less than 1% of the entire 

calculated time range. Comparison of actual calculations at different frequency 

resolutions showed that limited resolution introduced errors of about ½ % of the 

signal at 5% of the time range, and$ .1% at 1½% of the range. 

As the preceeding considerations demonstrate, the time range of the FFT 

calculation must be a factor of 20 or more longer than the time range of interest. 

This determines an upper limit for the value of vres)· For detailed comparisons 

with experimental results, the temporal resolution must be a multiple of the 
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experimental va.lue. This establishes a minimum frequency range of 1/CT. A 

further restriction is the limitation of N to integral powers of 2. In contrast, 

each para.meter can be set independently at an appropriate value for the direct 

calculation. Thus the direct calculation gains a factor of at least 20 by the fact 

that the time range can he set as needed. Similarly, 1/CT is typically much 

higher than the range of freqnenr.ies that need otherwise be included. Another 

factor that reduces the advantage of the FFT is the sparseness of the frequency 

array. In the din:ct calculation, the time loop is not executed for frequencies 

with amplitudes below a minimum threshold. Depending on the resolution 

and span of frequencies, this may reduce the time for the direct calculation 

by another order of magnitude relative to the FFT. From a comparison in which 

only 2% of the FFT time range was considered useful and 388 temporal data 

points were required, the FFT transformation was found to be about 30% slower 

than the direct method. For larger NPTS, the FFT computation time scales as 

NPTS log(NPTS). Assuming that the frequency array is already sparse, as it is 

in our calculations, direct calculation for larger NPTS scales as NPTS, since the 

smaller vres that is required does not significantly affect the value of INU. An 

improved FFT algorithm or a higher error tolerance would change the balance 

in favor of the FFT, but the advantage is not expected to be significant for 

calculations of high accuracy. On the other hand, direct transformation has 

the general advantage that PRC signals for various time ranges, resolutions, 

and starting times can be calculated from a single frequency spectrum, without 

regard for the values of the frequency domain parameters. Note also that 

calculation of the frequency spectrum itself consumes more than half of the 

computation time, so further gains in transformation speed have diminishing 

returns. 

Because the PRC calculation begins with the calculation of a Fourier spec­

trum, comparison of experimental data and simulation in the frequency domain 

could greatly improve the efficiency of PRC fitting. This procedure has not 
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been investigated. Problems to be addressed include proper weighting of the 

least square sum and the effect of temporal shifts between the data and the 

measured response. 

In some cases, the influence of noise on our measurements has been tested 

hy the addition of random noise to simulated data. Poisson statistics were 

assumed for this purpose. An algorithm due to Knuth5 was used to generate 

Poisson distributed data for low count totals. A more efficient algorithm was 

used to calculate Gaussian noise for count totals above 15, since for such values 

the Poisson distribution differs negligibly from a Gaussian distribution with 

standard deviation equal to the square root of the expectation value. 

Another technique of assessing the polarization dependence of our data 

was applied to certain decays measured at high excess vibrational energy whose 

temporal evolution was quasi-biexponential in nature. In such cases, individual 

decays were fit to a biexponential decay law using a nonlinear least squares 

fitting algorithm and accounting for convolution with the measured response 

function6 • The behavior at early time of these decays is well characterized by 

the fast lifetime and fast-to-slow amplitude ratio obtained as parameters from 

such a fit. Measurements of fiuorescencepolarized parallel, perpendicular, and 

at 54.7° (magic angle) to the excitation polarization were compared on the basis 

of their respective fit parameters to determine the effect, if any, of polarization 

anisotropy transients on this early time evolution. 

In Sect.ion II B nf Cha.pt.er 5, we discuss calcnla.tions of the binding potentials 

of t-stilbene-rare gas van der Waals complexes. These calculations consisted of 

summing simple isotropic atom-atom potentials representing the interaction of 

each rare gas atom with all other atoms of the complex, including other rare 

gas atoms in the higher complexes. The structure of the parent molecule was 

assumed fixed. The two-body potentials were of the form 

ll ( r) = -A [ r
1
6 - ~ ;: ] (9) 

where r is the separation of the two atoms. This potential has a minimum 
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energy e = -A/(2u6
) at separation u. The para.meters A and u are functions of 

the species of the two atoms. Values of A and u for homoatomic interactions of 

carbon, hydrogen and rare gas atoms have been derived from experimental data 

of various types. 7•8 •9 •10 Those values whkh are pertinent to our calculations are 

given in Table I, along with the corresponding well depths. 

The combining rules proposed in Ref. 8 

and (J'll + (J' JJ 

O'IJ = 2 (10) 

may be applied to the data of Table I to obtain parameters for C-RG and H-RG 

interactions. C-RG parameters derived in this manner from the data of Ref. 7 

were used in the calculation of tetracene-rare gas van der Waals potentials by 

Ondrechen et al. 11 These derived parameters, and H-RG parameters used in 

the same calculations, are given at the top of Table II. Our initial potential 

calculations were based on these parameters, as explained in Chapter 5. Also 

given in Table II are parameters used in later calculations which arc based on 

Eq. (10), the C-C and H-H values of Ref. 10, and the rare gas data of References 

7 and 9. Since these latter two references are reasonably consistent on the neon 

and argon data, the values of Ref. 7 were used throughout. We note that the 

upper and lower sets of H-RG parameters differ substantially. Data from Ref. 8 

were cited in Ref. 11 as the basis for the upper values, but these data could 

not be found. In any case, the results of our calculations were not qualitatively 

affected by the choice of H-RG parameters. 
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. Table I. Homoatomic 6--12 potential parameters 

A (J' 1€1 
(Kcal A 6 /mol) (A) ( cm-1 ) 

Ref. 7 

C-C 344.0 3.81 19.6 

Ne-Ne 143.9 3.16 25.2 

Ar-Ar 1598 3.87 83.2 

Ref. 9 
--·-·· ·------

He-He 28.6 2.97 7.31 

Ne-Ne 153.6 3.11 29.7 

Ar-Ar 1580.6 3.76 97.8 

Ref. 10 
-·~-~-------

C-C (Aliphatic) 370.4 4.12 13.3 

C-C (Aromatic) 509.4 3.70 34.6 

H-H 45.5 2.93 12.6 
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Table II. Heteroatomic potential parameters derived from homo-

atomic parameters by the combining rules of Eq. (10) 

A (J' lei 
(Kcal A 8 /mol) (A) ( cm-1 ) 

Parameters used by 

Ondrechen et al. (Ref. 11) 
" _,. 

C-Ne 222 3.49 21.7 

C-Ar 741 3.84 40.4 

H-Ne 168 3.24 25.4 

H-Ar 560 3.60 45.0 

Alternate parameters 

C( Aliphatic )-He 102.9 3.54 9.1 

C(Aromatic)-He 120.7 3.34 15.3 

C( Aliphatic )-Ne 230.9 3.64 17.4 

C(Aromatic)-Ne 270.8 3.43 29.1 

C( Aliphatic )-Ar 769.1 4.00 33.1 

C(Aromatic)-Ar 901.9 3.78 53.6 

H-He 36.1 2.95 9.6 

H-Ne 80.9 3.04 17.8 

H-Ar 269.6 3.40 30.6 
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Figure Captions 

1. Example of a parallel :fluorescence measurement used in the determination of 

the PRC recurrence period of t-stilbene. The data are shown as measured 

and after suppression of the fluorescence decay. (Deviations from exponen­

tial decay at long times, due presumably to ion feedback in the microchannel 

plate detector, have also been compensated for in the flattened data.) 

2. Experimental fluorescence anisotropies ( R( t)) as a function of the temporal 

alignment parameter t' described in the text. Temporal resolution for 

the measured decays was 8 ps per data point. Fluorescence intensities at 

times intermediate to the measured data values are approximated by linear 

interpolation. t = 0 marks the position of the initial rise of fluorescence 

intensities above background level. The maximum value of R(t) is indicated 

at left for each curve. 
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Chapter 5 

Rotational Coherence Measurements 

and Comparisons with Theory 

Portions of this chapter are taken from the following published articles: 

"Purely Rotational Coherence Effect and Time-resolved Sub-Doppler Spec­

troscopy of Large Molecules. II. Experimental," by J. S. Baskin, P. M. Felker, 

and A. H. Zewail. 

Reprinted with permission from The Journal of Chemical Physics, Volume 

86, p. 2483. Copyright 1987 American Institute of Physics. 

and 

"Determination of Excited-State Rotational Constants and Structures by 

Doppler-Free Pico:second Spectroscopy," by J. S. Baskin and A. H. Zewail. 

Reprinted with permission from The Journal of Physical Chemistry, Volume 

93, p. 5701. Copyright 1989 American Chemical Society. 
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I. Introduction 

In this chapter are presented experimental observations of the manifesta­

tions of rotational coherence in a variety of molecules and under a variety of 

conditions. The apparatus and procedures employed in the measurement and 

analysis of all data presented in Sections II, III, and IV A were fully described 

in Chapters 3 and 4 of this thesis. All measurements in these sections were on 

samples cooled by supersonic expansion. In Section IV B, measurements from 

another laboratory are compared with predictions of the theory developed in 

Chapter 2. 

The goal of Section II is to demonstrate the practical capabilities of pi­

cosecond time-resolved fluorescence measurement for the extraction of precise 

molecular parameters of excited electronic states of polyatomic molecules. In 

each of subsections A through D, we present detailed analyses of purely rota­

tional coherence (PRC) measurements on a different molecule ( or related group 

of molecules). Special features of each case permit us to explore many different 

aspects of the PRC phenomenon, such as the influence of molecular asymmetry 

and arbitrary transition dipole directions. New information is derived about 

the rotational constants and structures of six of the eight molecules studied. In 

figures accompanying these discussions, the characteristic decay of :fluorescence 

intensities will in some cases be suppressed (by multiplying the data by et/T, 

where 7" is the measured lifetime) in order to facilitate the visual comparison of 

those features relevant to PRC. 

Section III explores the interaction of vibrational motion and rotational 

coherence in t-stilbene and anthracene. Polarization-analyzed measurements 

permit contributions to the time-dependence of :fluorescence due to intramolec­

ular vibrational energy redistribution to be separated from those due to evolving 

ensemble orientation. Experimental results are compared with a model in which 

strict separability of vibrational and rotational motion is assumed, relying on 

the knowledge of PRC in these two molecules that was gained in the studies of 
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Section II. 

Observations of rotational coherence in t-stilbene following the photodis­

sociation of the jet-cooled van der Waals complex t-stilbene-He are discussed 

and analyzed in Section IV. Again, the PRC studies of both t-stilbene and t­

stilbene-He in Section II provide a point of reference for the interpretation of 

our data. 
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II. Determination of Rotational Constants and Structures 

A. t-Stilbene 0°0 

The experiments presented in this subsection were carried out exciting t­

stilbene to its S 1 vibrationless level1 at 3101.4A (32234 cm- 1). Stilbene is a 

highly favorable choice for the study of purely rotational coherence due to its 

intermediate size, its geometry (near-symmetric top), and the direction of the 

transition dipole involved (approximately parallel to the long axis2•3). These 

factors lead to polarization anisotropies that are readily observable, as we first 

illustrate by a selection of measured fluorescence decays and simulations in 

Figures 1 through 7. Experimental conditions and simulation parameters are 

given in the accompanying captions. 

The results displayed in Figures 1, 3, and 4 were obtained detecting 

polarization-analyzed fluorescence to the S0 vibrational ground state. The 

noteworthy feature of all these decays is the presence of periodic transients, or 

recurrences, which are detection polarization dependent. As can be seen in 

Fig, 1, these recurrences have opposite phase in the parallel and perpendicular 

decays while they are absent entirely for magic angle detection. This last fact 

indicates that the transients for parallel detection have twice the absolute 

amplitude of those for perpendicular detection (since 154_7 ex la + 2!1., as 

discussed in chapter 2). For this reason only parallel decays are shown in the 

following Figures. 

In Fig. 2 are displayed simulations employing parameters chosen to 

closely reproduce measurements under our standard expansion conditions (see 

below). A detailed comparison of experiment and simulation in order to derive 

accurate parameters for the t-stilbene S 1 state will be undertaken later in this 

section. For now, we need only note that the qualitative agreement of these 



116 

decays with those experimentally observed at the t-stilbene origin (Fig. 1) is 

excellent. 

Figure 3 attests to the persistence of polarization-dependent recurrences 

in t-stilbene fluorescence out to times of at least 14 nanoseconds (greater than 

five fluorescence lifetimes). Here also the strict periodicity of the transients (to 

within experimental uncertainties) and their alternating pattern is clearly 

observed. In order to achieve the signal-to-noise needed to reveal the later 

recurrences, several independently measured decays were added to produce 

the data in this figure. 

An example of the influence of carrier gas pressure on our observations is 

shown next in Fig. 4. Two atmospheres and six atmospheres were the backing 

pressures employed for the top and bottom decays, respectively. The carrier 

gas was neon in both instances. All other conditions were identical. As the 

comparison reveals, the higher backing pressure produced a significant 

enhancement of the recurrence amplitudes. At a given pressure, the use of 

neon rather than helium as carrier gas also appeared to provide a noticeable 

though lesser enhi:in,cement of the recurrences. Based on these observations, 

six atmospheres of neon was established as the expansion regime employed 

whenever possible for the experiments described in this chapter. 

Measurements at yet higher backing pressures of both neon and helium have 

been carried out, but the results have not differed substantially from those 

produced at six atmospheres. 

For the simulations of Fig. 2, a rotational temperature of 2K was 

assumed. In Fig. 5 an expanded view of the TRoT = 2 K simulation is compared 

to one for which TRoT = 10 K, all else remaining unchanged. The effect of 

increasing temperature is in good agreement with the trend in F'ig. 4, in which 

lower backing pressure, which is known to provide less effective rotational 
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cooling,4 was seen to produce less prominent recurrences. This effect is easily 

understood within the framework of rotational coherence.5 As higher ground 

state rotational levels are populated, more beat patterns with higher 

modulation frequencies contribute to the thermal average. The result is 

increasingly fast dephasing of the recurrences.5 Convolution of these sharper 

recurrences with the detection response leads in turn to smaller apparent 

amplitudes, as observed here in both experiment and simulation. 

Figure 6 presents a selection of decays recorded once more for o0 
0 

excitation, but now detecting other than resonance fluorescence. The first and 

second decays result from detection of spectrally resolved emission bands at 

-204 and -218 cm-1, respectively; for the third, spectral resolution is low and 

a number of bands contribute. Details of the detection conditions are given in 

the caption. In all cases the basic character of the polarization anisotropy 

remains unaltered from that displayed for resonance detection. Similar 

recurrences have also been seen in the region of totally unresolved 

fluorescence 10000 cm- 1 below the excitation energy. There is at most a slight 

loss in recurrence amplitude in decays measured for detection of broad band 

fluorescence to distinguish them from spectrally resolved decays. Even this 

difference has not been conclusively established, in light of the many variables 

which may contribute to such an effect. 

Rotational coherence depends on the transition dipole direction but is 

otherwise independent of vibronic transition as long as the separation of 

rotational and vibronic wavefunctions is valid. This separation is assumed for 

all simulations presented in this thesis and. in particular. dictates that 

simulations for all parallel transitions in the o0 
0 dispersed fluorescence 

spectrum of t-stilbene would be identical to those of Fig. 2. That no detection 

wavelength dependence is seen experimentally is therefore consistent with 
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(and lends strong support for) both separability of rotational and vibrational 

motion at the energies in question and the assignment of all detected bands 

. as essentially parallel-type. Note, however, that since the frequencies of 

rotational beat components are determined solely by the rotational energy 

levels in S1' the period of recurrences is always rigorously independent of 

detection band in the symmetric top limit. (For asymmetric tops, changes in 

recurrence period as a function of detection could conceivably arise through a 

modification of the averaging that determines the asymmetry correction, as 

discussed in section 2. ID. Such changes are expected by their nature to be 

exceedingly small.) 

To complete the qualitative comparison of theory and experiment, we 

present in Fig. 7 polarization anisotropies formed (as described in Chapter 4) 

from the data of Fig. 1 and the simulations of Fig. 2, respectively. Several 

noteworthy features of rotational coherence, which are not apparent upon 

examination of the decays themselves, may be readily observed in this figure. 

An example is the prominent early time anisotropy which is largely concealed 

in the rise of the fluorescence intensities. For a perfect symmetric top 

undergoing parallel transitions, our considerations have shown that the 

manifestations of rotational coherence are strictly periodic with period 1/(2B'). 

The full calculation indicates that the true molecular anisotropy due to 

rotational coherence is equal to 0.4 at times n/(2B'), n = 0,1,2, .... The R(t) 

values seen at early times in Fig. 7 are close to this value. That subsequent 

peaks are much smaller is due both to limited temporal response and 

asymmetry. Even when r(t) is strictly periodic, returning to 0.4 at regular 

intervals, R(t) away from t = 0 will not return to its initial value. This is a 

consequence of the existence of a discontinuity in the probability of emission at 

the instant of excitation which is not found at the recurrences. Asymmetry 
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results in a further reduction of recurrence amplitudes, as discussed in Section 

III of Chapter 2. In Fig. 7 this damping is most evident for the out-of-phase 

recurrences and, as seen, is well accounted for by the simulation. 

Also evident in Fig. 7 is the non-zero baseline value of R(t). (The time 

axis defines R = 0 for the experimental anisotropy.) This is equal to the 

steady state branch-averaged anisotropy as discussed further in Chapter 2. 

Values of the residual anisotropy have been calculated elsewhere6 for both 

symmetric and asymmetric tops. From the rotational coherence simulation in 

Fig. 7, we find a residual anisotropy of 0.075. This is identical to the value 

derived from Fig. 1 of ref. Sa for a symmetric top with a ratio of rotational 

constants of 10.4, corresponding to the assumed A' / t (B' + C') of our 

simulation. An independent determination of the residual anisotropy was not 

made experimentally. 

The preceeding comparisons have firmly established the correspondence 

between our experimental observations and the theoretically predicted 

manifestations of purely rotational coherence.5 The basic structure of the 

observed transients and their polarization and temperature dependence are 

seen· to be in good accord with theory. Our purpose now is to use the 

information contained in these measurements to improve our knowledge of the 

t-stilbene S1 electronic state to the fullest extent possible. Specifically, we 1) 

account for the influence of asymmetry and possible nonlinearity of the 

measurement system time base in deriving a value of B' + C', and 2) fit 

measurements to PRC simulations in an effort to establish values for all three 

excited state rotational constants. Since the results of these fits are found to be 

inconsistent with any reasonable t-stilbene structure when an a-axis polarized 

transition is assumed, the consequence of varying the direction of the 

transition moment in the simulations is investigated. 
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For the precise determination of the recurrence period t1 of the S10° level 

of t-stilbene, we consider only fluorescence decays following S10°0 excitation 

that were measured on a directly calibrated time scale and also display four or 

more distinct recurrences. Eleven such experiments were carried out over the 

course of a year. Calibration of the time scale, as described in Section II of 

Chapter 3, was performed the same day for the majority of these 

measurements, and within five days for all others. A daily calibration was not 

deemed necessary for the latter since no variation in the time base was 

detected between successive calibrations over an extended period. A weighted 

average of data from all 11 decays served as the basis for the recurrence period 

of 1948.4 ps reported in ref. 7. 

Although an uncertainty (90% confidence limit) of from around 4 to 11 ps 

is estimated for the period derived from each single decay considered above, 

including the uncertainty associated with the time calibration, all 11 values 

lie between 1942 and 1952 ps, and only three are outside the range 1947.7 ± 
1.6 ps. The small scatter of these values demonstrates the precision of the 

measurement procedure and suggests that the unavoidably subjective 

uncertainty estimates are in most cases conservative, as intended. Additional 

evidence of this precision is found in seven decays of comparable quality to 

those above, but which were measured on a time scale that could not be 

directly calibrated. The recurrence periods derived from them (now ignoring 

the substantial uncertainty in the absolute calibration) also fall within a ± 5 

ps range, with the scatter about the mean again typically less than half of the 

estimated uncertainties. These observations appear to amply justify the 90% 

confidence limit of2.5 ps quoted in ref. 7 for the t-stilbene recurrence period. 

The value of i:1 given above was derived with no consideration ·given to 

possible nonlinearity of the measurement time base. In fact, our data do 
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suggest a correlation between measurement range and measured period which 

is consistent with other indications of a slight systematic nonlinearity as 

discussed in Section II of Chapter 3; that is, measurements over earlier 

portions of the .calibration range tend to yield longer periods. Even if this 

trend is real, its effect is at the limits of our measurement precision and can 

therefore introduce no great error. Nevertheless, it is preferable in general to 

minimize any possible bias that such a nonlinearity might produce by ignoring 

measurements centered far from the center of the full calibration range. When 

this is done in the present case, the derived recurrence period is shortened by 

about 1 ps, the exact amount depending on the particular restricted set of 

measurements used. The weighted averaged of one such set results in a value 

of t 1 of 194 7. 7 ± 2.5 ps, which we take as the final experimental recurrence 

period of t-stilbene. As before, the quoted uncertainty is justified by the small 

variation among many measurements, including those over only part of the 

calibration range. 

To derive an accurate value of B' + C' from this period, the effect of 

asymmetry must be considered. This was not taken into account in earlier 

treatments.7 As the following discussion will indicate, 2.6 GHz and -0.0054 

may be taken as reasonable values for A' and b. Based on these values, both 

application of Eq. (3.13) of Chapter 2 (with a =3) and analysis of PRC 

simulations show that the asymmetry correction combined with the above 

value of-q results in a B' + C' near 0.5132 GHz. The additional uncertainty in 

B' + C' arising from the uncertainty in this correction is no more than 0.0001 

GHz, giving a final value of B' + C' of 0.5132 ± 0.0008 GHz. This value 

applies to 12C14H12 and is uneffected by the presence of 13C isotopes (see below). 

The preliminary values of the individual rotational constants of S1 
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t-stilbene used in the simulations of Figs. 2 through 7 were deduced by visual 

comparisons of the widths and amplitudes of recurrences. In this process the 

transition dipoles were held fixed along the a inertial axis. Note that A' was 

left fixed for these simulations at a value (2.676 GHz) calculated from an 

experimental ground state structure,8 while the geometric constraint, 
(2.1) 

actually requires that A' be less than 2 GHz to be consistent with the proposed 

B' and C' of 0.273 GHz and 0.240 GHz. Or, from the opposite perspective, the 

proposed B' and C' are too widely separated for the assumed A'. 

Fits of data to PRC simulations assuming an a axis dipole have now 

been carried out and are in basic accord with the above values, i.e., a relatively 

large separation of B' and C' is needed to reproduce the measurements. For 

example, we show in Fig. 8 a measurement of the first out-of-phase and first in­

phase recurrence in the parallel component of stilbene fluorescence (with the 

fluorescence decay suppressed) and the corresponding best fit, planar 

molecule, a axis polarized PRC simulation. The weighted residual is shown 

above the data; the reduced chi-square value of 1.04 indicates the generally 

sati~factory quality of the fit. The resulting parameters are T = 2.8 K, A' = 

2.182 GHz, B' = 0.2716 GHz, and C' = 0.2416 GHz. (The short time-scale of 

this experiment was not calibrated directly but determined by setting B' + C' 

= 0.5132 GHz.) When the constants were not constrained by planarity, a 

slightly better fit was found by further separation of B' and C' to 0.2730 GHz 

and 0.2402 GHz without reducing A'. This latter is again a physically 

unrealizable set of constants, as seen from relation (2.1). 

The fit of Fig. 8, as others in this thesis, was carried out using the 

constants for a single isotopic species, in this case 12CuH12• Since the seven 

distinct species of 12C1313CH12 comprise 13.3% of the total sample, have 
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recurrence periods ranging up to ~ 22 ps longer than that of the principal 

isotope, and may have small enough spectral shifts to contribuate to the 

observed signal, their effect must be considered. (Multiply substituted isotopes 

make up only 1 % of the total and can be ignored.) At long times, accumulated 

phase differences will disperse the recurrences of the minor isotopes and the 

observed recurrences should have amplitudes approaching ~ 86% of those of a 

single species. Simulations confirm that this limit is reached after five or six 

periods but also show that the isotope effect on the fluorescence intensity over 

the time range shown in Fig. 8 is negligible. This justifies the fitting 

procedure used. The shifts in recurrence peaks ( < 2 ps at all times) induced by 

the inclusion of minor isotope fluorescence in the simulations results in an 

inconsequential change ( < 0.1 ps) in the apparent recurrence period from that 

of 12C14H12. 

Despite reasonable success in reproducing the measurements with 

simulations based on the assumption of an a axis transition moment, one 

serious deficiency becomes evident upon closer scrutiny: the derived rotational 

constants are incompatible with the basic chemical structure of stilbene (a,P­

diphenyl-ethylene). This fact is most easily appreciated through consideration 

of Fig. 9, which shows the general structure of t-stilbene. (Figure 9 is 

specifically the planar geometry ofS1 t-stilbene as calculated by Warshel 9 but 

with regular hexagons substituted for slightly distorted phenyl rings.) The in­

plane inertial axes are indicated. It should be clear that, regardless of the 

particular bond angles chosen, the a axis must pass approximately through the 

centers of mass of the phenyl rings. This is true because the rings constitute 

the bulk of the molecule's mass, and the parallel axis theorem indicates that 

the rings' contribution to the moment of inertia is minimum for such an axis. 

In consequence, as long as the molecule is planar (see below), the A rotational 
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constant will be determined principally by a single quantity, the lateral 

dimension of the rings, represented by Lin the figure. (The ethylene carbons 

can never be far enough from this axis to make a large contribution to la,) For 

the pictured structure, with ring carbon bond lengths of 1.419.A., A' is 

approximately 2.6 GHz. Values in the literature for phenyl C-C bonds10 do not 

vary by. more than 2% from the given value for either ground or excited 

electronic states. Thus to produce an A' from a planar structure that is more 

than 5% smaller than 2.6 GHz requires increases in either bond lengths or 

bond angles which are completely unreasonable. Therefore, A' cannot 

reasonably be smaller than -2.5 GHz and, from relation (2.1), B' and C' cannot 

differ as much as suggested by the a axis fits of PRC data. (A' will also be 

reduced by a non planar geometry which results in an angle between the a axis 

and the plane of one or both rings, but this will generally reduce the difference 

in B' and C' rather than increase it as required. Also, recent spectroscopic 

studies11•12 strongly support a planar structure of t-stilbene in both So and S1). 

From the detailed analysis of PRC measurements, coupled with 

geometric constraints on the rotational constants of t-stilbene, we have 

concluded that the experimental results are not adequately reproduced by the 

a axis treatment so far attempted. The problem. simply stated. is that 

measurements of t-stilbene PRC recurrences are consistently smaller, at a 

given width, than can be produced by simulations based on a reasonable 

stilbene structure. From measurements such as that of Fig. 3, it may be seen 

that there is no substantial decrease in recurrence amplitude over at least four 

or five recurrence periods. This suggests that the inconsistency is due not to 

the action of some unforeseen damping of recurrences with time but to an 

effect which contributes more or less uniformly at all times. 
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Further support for this conclusion may be found in the behavior of the 

stilbene PRC signal at early times. No potential causes of recurrence damping 

(such as asymmetry or collisions) will have any effect on the initial anisotropy 

decay so that anomalous behavior at this time must be attributed to the 

influence of other factors. For experiments with a measured response of 40 ps, 

the manifestations of the initial decay in stilbene are sufficiently apparent to 

be used for this purpose. Since it is found that, even at early time, the a axis 

dipole simulations predict a more prominent PRC effect than actually 

observed, the discrepancy cannot be totally accounted for by any damping 

mechanism. (Ionization experiments with improved temporal response13 

permit an even better comparison of early time behavior. The large 

discrepancy between the observed and simulated initial decays in those 

experiments appears to strengthen the conclusions reached above; however, 

the fact that the excitation and probe transitions are different introduces 

additional degrees of freedom that make a direct comparison impossible.) 

Two possible experimental causes of an apparent uniform reduction in 

recurrence amplitudes are incomplete polarization analysis and an unstable or 

inaccurately characterized response. Since each will necessarily play some 

role, a perfect agreement with the simulations should not be expected. 

However, attempts to determine the magnitudes of these effects have led us to 

conclude that they are not large enough to totally account for the differences 

between experiment and simulation in t-stilbene. The fact that no similar 

discrepancies have been encountered in fitting fluorene-argon and anthracene 

measurements provides additional evidence for this conclusion. 

Since the a axis is not a symmetry axis of stilbene, another possible cause 

of the observed discrepancy is a transition dipole with a significant component 

perpendicular to that axis. The dipole is at most restricted to the ab plane in 
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the likely case that the c inertial axis is a C2 axis.12 Even if the transition is 

very nearly a axis polarized in zeroth order, a hybrid band could result from 

mixing of the S1 state with another low lying excited state, of which there are 

many.3 It is pertinent, therefore, to consider the effect of an off-axis dipole on 

the simulations and determine if such a dipole may succeed in reconciling 

theory with experiment. 

An obvious consequence of an off-axis dipole is a transfer of intensity 

from the parallel-type recurrence pattern associated with the a axis to a 

perpendicular-type pattern which consists, in general, of low amplitude 

features, as will be seen in the case of anthracene. In addition, beat patterns 

unique to the off- axis dipole case will result from interference between levels 

reached via transitions induced by different dipole components. In any case, 

the relative amplitudes of the nutation recurrences will surely be reduced and, 

importantly, this effect will be felt fairly uniformly in time beginning at t = 
o+, in qualitative agreement with the experimental indications. 

To determine :if this qualitative agreement with the experimental 

evidence will translate into quantitative agreement as well, simulations were 

carried out using rotational constants A' = 2.6 GHz, B' = 0.269 GHz, and C' 

= 0.244 GHz, which were derived from the structure of Fig. 9. This structure 

serves as our best estimate of the structure of stilbene in its S1 state for the 

following reasons: 1) it differs only slightly from the theoretical structure of 

Ref. 9; 2) it comes quite close to reproducing the measured B' + C' (which the 

exact S1 structure of Ref. 9 does not); and 3) its asymmetry is close to the 

maximum reasonable value, which the fits of PRC recurrence lineshapes 

strongly favor. This last point, which requires the choice of a planar structure, 

conforms with the spectroscopic evidence of planarity11 •12 and is supported by 

PRC measurements on the stilbene-N e1 van der Waals complex (see Section I. 
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B.ii of this· chapter). The simulations based on this structure confirm the 

expected reduction in recurrence amplitude as the angle 0 between the 

transition dipole and a axis is increased. Even ate = 30°, at which value the 

nutation recurrences retain little more than half of their original amplitudes, 

the new polarization dependent structure which appears remains far too small 

to be observed at the signal-to-noise of the present experiments. Furthermore, 

at temperatures of 2 to 3K, the ratio of amplitudes of the first in-phase 

recurrence to the first out-of-phase recurrence varies only slightly as 0 ranges 

from O to 30°. Thus parameters which reproduce the experimentally 

determined amplitudes of both of these recurrences may easily be found by the 

following procedure: first, the temperature corresponding to the measured 

recurrence ratio is found; then 0 is adjusted to yield the desired absolute 

recurrence amplitudes. 

When this procedure is applied to the stilbene PRC measurement of Fig. 

8, a temperature of 2.3K and a value of 0 = 21 ° are obtained. In Fig.IO, a 

simulation produced using these parameters is compared with the data of 

Fig. 8. Though optimization of all degrees of freedom has not been carried out 

due to the time intensive nature of the computations, the satisfactory 

agreement is evident. To appreciate the improvement which this simulation 

represents over that of Fig. 8, it must be recalled that the rotational constants 

used for ·the latter are not compatible with the structure of stilbene. Even 

then, the simulation overshoots the positive recurrence peak by an amount 

(3.6 cr) that is expected to occur in random noise only once in about 6300 data 

points. By contrast, the largest residual of the 300 point fit in Fig. 10 ( -2.63 

cr) is expected once in 233 points. 

By applying the above procedure to other sets of data, both larger and 

considerably smaller values than 21 ° are indicated for the angle 0. These 
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results may be explained in part by noise, but it is also likely that variable 

experimental factors at times play a significant role in reducing recurrence 

amplitudes. Therefore, the value of 21 ° derived in the example above should be 

considered an upper limit rather than an accurate estimate of e. 
One question which remains to be answered is whether the hypothesis 

that the stilbene dipole deviates significantly from the a axis is compatible 

with other experimental evidence. The polarization of the S1 -So transition of 

stilbene in dilute mixed crystal has been studied.2 In these experiments, high 

resolution absorption and fluorescence spectra were recorded for stilbene in a 

crystalline solution of dibenzyl, whose crystal structure is known.14 Stilbene 

absorption was detected for a single direction of polarization in the ac plane of 

the dibenzyl crystal, parallel to the long axis of the dibenzyl molecules. 

Without knowing both the sensitivity of these experiments and the exact 

orientation of the stilbene molecules in the dibenzyl crystal, the bounds that 

this result places on the dipole direction cannot be determined. However, by 

assuming the same orientation of the phenyl rings for both s":ilbene and 

diphenyl in the diphenyl crystal, an estimate can be made of the sensitivity 

required to detect ab inertial axis component of a given magnitude. Using the 

data from Ref. 14 and the stilbene structure of Fig. 9, the projections of the 

stilbene molecule and its inertial axes on the ac crystal plane can be found. 

With the foreshortening of the b axis in projection, the sensitivity in 

absorption to a dipole component along that axis is reduced by about a factor of 

four. Thus a dipole at an angle of 11 ° to a in the ab inertial plane (not to be 

confused with the ab crystal plane) would show a 100 to 1 absorption ratio for 

polarizations parallel and perpendicular to the a axis projection. For an angle 

of 21 ° the ratio drops to 25 t.o 1. It seems reasonable to assume then, that these 

experiments are not incompatible with a value for theta of the order of 10°. 
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In summary, the small amplitudes of PRC recurrences observed in the 

polarization-analyzed fluorescence of t-stilbene cannot be reproduced by 

simulations based on both a reasonable excited state molecular structure and 

an a axis polarized S1 ..-So transition. In addition, it has been shown that, at 

least qualitatively, the observations may be accounted for within the 

limitations of the present treatment by an off-axis direction for the transition 

dipole. However, considering the variability among measurements and 

recognizing that experimental factors will in general cause an overestimation 

of e, these results make it possible only to set an upper limit on the actual 

value of 0 and do not exclude the possibility that all or part of the amplitude 

reduction is due to other causes. For example, deviations from the conditions 

underlying any or all of the assumptions listed in Chapter 4 have not been 

considered here at all and remain possible contributors. Also, evidence 

obtained recently through high resolution fluorescence excitation studies oft­

stilbene 15 does not appear to support the hypothesis of a hybrid band, but does 

show anomalies coU:sistent with our own observations. In particular, the 

investigators report that they are unable to assign a series of lines seen in the 

partially resolved rotational structure of these spectra to a normal 

perpendicular transition. This was interpreted as evidence for the operation of 

unusual rotational selection rules. On the other hand, theoretical treatments 

indicate that a weak perpendicular band is expected to lie very close to the S1 

+-So transition,3 and this could be the source of the observed anomalous lines. 

Whatever the origin, the additional intensity associated with those lines 

provides a possible explanation for the reduced amplitudes of PRC recurrences. 

PRC measurements with improved signal-to-noise and more precise 

characterization of experimental influences may be important for 

distinguishing such possibilities. A precise measurement of the steady-state 
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fluorescence anisotropy could also help to resolve the question of dipole 

direction, since the ratio of parallel to perpendicular fluorescence intensity 

changes by six % as 8 varies from O to 20° for the assumed rotational constants. 

In concluding the discussion of PRC measurements on stilbene, it is 

appropriate to comment on one aspect of the PRC technique which is 

highlighted by the high resolution stilbene spectra of Ref. 15. Despite a 

resolution far greater than the natural linewidth of stilbene, these spectra 

could not be assigned due to their complex structure and congestion. How 

then, can PRC measurements permit a precise determination of B' + C'? Two 

separate factors may be cited as important contributors to this result. First, 

PRC probes only the excited state level structure, while spectra show transition 

frequencies which depend on both ground and excited state rotational 

constants and may be greatly complicated when the two differ. Secondly, as 

argued in Section III of Chapter 2, and confirmed by simulations, PRC 

recurrences in asymmetric tops are largely immune to interference from the K 

= 0 and K = 1 manifolds, which are strongly perturbed by asymmetry. This is 

by no means true for spectra of cold prolate top molecules, for which a large 

fraction of the signal originates from molecules in these manifolds in the 

ground state ( ~ 23% for stilbene at 2K). Thus PRC provides a Doppler-free 

view, not simply of the frequency domain spectrum, but of a simplified 

spectrum from which ground state interference and the most irregular lines 

have been effectively eliminated. Moreover, through the coherent excitation 

process, PRC automatically associates or "assigns" sets of lines on the basis of 

ground state of provenance. In this way a simple pattern of commensurate 

frequencies which is present but hidden in the frequency domain stilbene 

spectra is revealed in the PRC measurements. Of course, if the spectra can be 
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analyzed, they will necessarily provide more information than can be obtained 

from PRC. 

B. t-Stilbene-rare gas van der Waals complexes 

Van der Wa.als complexes, as prototypical weakly bound systems, have 

been the subject of studies in many areas of chemical dynamics in the past 

decade. Rare gas atoms bound to aromatic molecules form one such group of 

complexes. Interest in the structures of these complexes has prompted efforts 

to resolve the rotational structure of electronic transitions of a number of 

different systems. This has been accomplished for smaller aromatics such as 

benzene16 ands -tetrazene, 17 using conventional supersonic expansions, and for 

fluorene-h1018 and -d1019 using a strongly collimated expansion to lower the 

Doppler width to 15 MHz. Previously reported observations of PRC 

recurrences in the polarization-analyzed fluorescence of stilbene-argon20 and 

stilbene-helium21 have shown that structural information about the excited 

states of large complexes may readily be obtained from time domain 

measurements. In the following, the application of this alternative technique 

to elucidate the structure of these and other stilbene-rare gas complexes will 

be discussed. 

In keeping with the relatively small masses of the added rare gas atoms. 

PRC in each of the stilbene complexes is expected to closely resemble that in 

stilbene. Measurements confirm this expectation, revealing periodic nutation­

like recurrences in each case. Thus B' + C' for each complex is given to very 

good approximation by the reciprocal of its measured recurrence period. 

To establish the structure of a complex. the measured B' + C' is 

compared to B' + C' values calculated for possible configurations of rare gas 

atoms around stilbene. For this purpose, it is assumed that the structure of 

stilbene within the complex is that of Fig. 9, which was shown to be a good 
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approximation for the bare molecule. The choice of possible positions for the 

rare gas atoms is guided by consideration of previous experimental results. 

From each of the spectral studies of aromatic-rare gas complexes cited above, 

as well as from partially resolved spectra of several aniline-rare gas 

complexes,22 positions of the rare gas atoms relative to the aromatic molecule 

have been determined. In all cases the atoms were found to be above the plane 

of the rings, at a distance of from 3.2 to 3.65 A. The variation of heights was 

much smaller among the argon complexes, falling between 3.4 and 3.44 A. 

Also, laser excitation studies of jet-cooled stilbene under varying helium 

stagnation pressures23 suggest that, for helium at least, there are four and only 

four equivalent rare gas bonding sites on stilbene. These findings lead us to 

assume as tentative complex structures ones in which the rare gas atoms are 

situated above or below the phenyl rings at heights falling within the ranges 

indicated above. 

The criterion imposed by the measured B' + C' value, when coupled with 

the restrictions described above, is alone very effective in pointing the way to a 

probable complex structure. Further information about the rotational 

constants, and hence structure, of the complex is afforded by the analysis of 

recurrence lineshapes. Comparisons of measured recurrences with PRC 

simulations are particularly helpful in assessing the degree of asymmetry of 

the molecule. 

Calculations have also been carried out using Lennard-Jones two-body 

potentials to model the interaction of the rare gas atoms with each atom of the 

stilbene molecule as described in Chapter 4. Calculations of this type have 

been used frequently to assist in the interpretation of the spectroscopy of van 

der Waals molecules, providing information about structures, binding 

energies, and numbers of stable isomers.24•25•17 In the present case, the 
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experimentally derived stilbene complex structures, which reflect the 

vibrationally averaged positions of the rare gas atoms, provide a means to 

critically assess the accuracy of the calculated potentials. For meaningful 

comparison of calculation and experiment, it must be taken into account that 

large amplitude zero point motions of the weakly bound rare gas atoms may 

cause equilibrium and average structures to differ substantially. 

PRC recurrence periods have been measured for five different complex 

absorptions to the red of the stilbene origin. These are listed in Table I with 

the stilbene value for comparison. Also listed in Table I are values of B' + C' 

based on Eq.(3.13) of Chapter 2. The approximate asymmetry corrections were 

calculated using rotational constants indicated by the analyses to follow and 

were in all cases much smaller than the quoted uncertainties. The 

measurements at each complex absorption are discussed below, under separate 

headings for each rare gas species. 

i. Argon. Two absorption bands have been studied which appear to the 

red of the stilbene 0°0 excitation energy only when low concentrations of argon 

are mixed into the backing gas. These absorptions, at -40 cm- 1 and 

-63 cm - 1 relative to the stilbene origin, 23•15 have been attributed to the 

stilbene-Ar1 complex by means of mass-resolved two-photon ionization26 and 

earlier measurements of PRC recurrence periods.20 The greatly improved 

values given in Table I were derived from new measurements. These not only 

support the assignment of both absorptions to a single stoichiometry but also 

place strict limits on the difference in vibrationally averaged molecular 

structures. This has an important bearing on the determination of the nature 

of the 23 cm - 1 vibration, since a long axis van der Waals bend may change the 

effective constants considerably. Finally, we note that the value of B' + C' 

derived from the PRC measurements has recently been corroborated by 
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analysis of the high resolution spectrum of the -63 cm- 1 band15 from which a . 
valueof0.413 ± 0.002GHzwasobtained. 

Our goal now is to use the information gained from these measurements 

and the t-stilbene analysis in the previous section to deduce the structure of 

the complex. To begin, we tentatively assume the validity of the classical 

picture of molecule + localized atom and consider the consequence of the 

placement of a single argon atom at 3.4 A above and on the axis of a stilbene 

phenyl ring. The resulting structure has rotational constants Band C whose 

sum is approximately 5% smaller than the value derived from the PRC 

recurrence period of the -40 or -63 cm- 1 bands. To produce a calculated 

B' + C' consistent with the measured value while keeping the argon on the 

ring axis, one must reduce the separation of the argon atom and the ring plane 

to about 2.5 A. On the other hand, a structure having the required B' +C' 

may also be obtained by maintaining the argon atom at ~ 3.4 A. above the ring 

and displacing it ~ 0.5 A parallel to the molecular plane in the direction of the 

ethylene. The consistent nature of the derived argon-aromatic separations in 

other van der Waals complexes strongly favors this latter alternative, which is 

shown in Fig. 11. Though the height of the argon atom may deviate 

somewhat from the characteristic value, because repulsion between the argon 

and carbon atoms makes a substantially smaller separation energetically 

untenable, the measured recurrence period is sufficient to establish that the 

argon is on average closer to the center of the molecule then the ring axis. 

(This same conclusion would also be reached starting from any other 

reasonable stilbene structure that is planar.) 

From the preceeding considerations, we conclude that the argon position 

in Fig. 11 is the average position of the argon atom for both of the studied 

stilbene-Ar1 excitations. This position, proposed on the basis of experimental 
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evidence, also seems quite plausible when considered on physical grounds 

alone. The location of a binding site for rare gas atoms on the axis of an 

isolated aromatic ring is well established.16.17 A rare gas atom above a phenyl 

ring of stilbene will feel not only the potential of the adjacent ring but also the 

long range attraction of the remainder of the molecule. These two 

contributions give rise to a resultant potential whose minimum is displaced 

from the ring axis toward the ethylene and opposite phenyl ring, consistent 

with the argon displacement in the proposed structure. The size of the 

displacement provides an indication of the relative strengths of the short and 

long range forces. 

The probable average position of the argon atom established above can 

now be used to evaluate the accuracy of potential surface calculations using 

the 6-12 atom-atom potential function described in Ref. 24. Potential 

parameters also taken from Ref. 24 and based on earlier work27 were used 

initially, with all carbons treated equally. In Fig. 12 a portion of the resulting 

potential is represented by a plot of the minima of energy with respect to 

height above each point of the molecular plane. Grid lines are at 0.5 A 

separations. The heights at which the plotted energy values occur vary from 

near 3.4 A directly over the molecule to near zero (i.e., the energy minima are 

located in the molecular plane) at the edges of the plot, The energies in the 

figure range from -475 to -102 cm-1 • 

The global energy minimum of -475 cm- 1 is reached when the argon is 

situated 3.4A above point A, or at one of three other equivalent, symmetrically 

placed points in the plane bisecting the ethylene bond. This minimum energy 

configuration is immediately disqualified as a candidate for the correct 

complex structure, however, by a resulting rotational constant sum which is 

more than 10% higher than the measured B' + C'. Interestingly, the 
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calculated potential also has a local minimum above point B at almost 

precisely the position of the argon deduced from the PRC measurement. The 

height of the argon at this minimum is 3.46 A., the energy is -454 cm - 1, and 

the corresponding B' + C' is 0.414 GHz. The energy barrier between this 

minimum and the global minimum is less than 1 cm - 1, however, so 

localization of the argon at this position is not consistent with the model 

calculation. Indeed, due to its flatness, it is unclear whether the ground state 

of the calculated potential would even be localized above point A, or would 

instead correspond to a large amplitude motion extending across both rings of 

the molecule. This is illustrated by Fig. 13 which shows the cross sections of 

the potential surface of Fig. 12 which pass parallel to the long axis of the 

molecule through the two local minima (above points A and B). The total zero 

point energy associated with the three degrees of freedom of the van der Waals 

bond is typically 30 to 40 cm- 1, with about 20 cm- 1 of that due to the out-of­

plane stretch.28•29 The extent of the ground state wave function along the long 

axis of the molecule is certainly limited by this energy. One can see that the 

classical turning points of motion on the potential surface lie near the centers 

of the two rings (whose positions at ± 3.3A are indicated on the axis in the 

figure) for an energy of 30 cm - 1• 

In the approximation of separability of the potential in principal axis 

coordinates, only the estimated 5 to 10 cm- 1 of zero point energy associated 

with the long axis motion itself would be pertinent to the problem of 

determining the localization of the ground state along that axis. 

Calculations28 for pentacene-R (R = Ne, Ar and Kr) suggest that the one 

dimensional treatment is a satisfactory approximation to the three 

dimensional problem near the bottom of a deep well. In that case the argon 
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atom would be very well localized near A, and the corresponding rotational 

constants would be completely incompatible with the measurements. 

On the other hand, to determine if a large amplitude zero point motion 

which would result from a higher zero point energy in this potential is 

consistent with the experimental observations, an estimate is required of the 

average rotational constants to be expected from it. As a simple 

approximation, we take a classical particle traveling at constant velocity and 

constant height between the two 30 cm- 1 turning points above the a inertial 

axis of stilbene. The average ofB' + C' calculated relative to axes parallel to 

the stilbene inertial axes is found to be about 7% higher than measured. This 

value decreases by only about 0.7% for each 10 cm-1 of additional energy in the 

van der Waals bond. Since the probability amplitude of any ground 

vibrational state is, in fact, concentrated toward the center of the potential 

well rather than uniformly distributed as presumed above, an improved 

estimate would yield still larger rotational constants. This comparison leads 

us to conclude that tl?,e potential surface of Fig. 12 is a very poor approximation 

to the actual stilbene-Ar1 potential. 

Using data from other sources30 and combining rules relating the 6-12 

parameters of hetero-atomic and homo-atomic interactions,31 alternative 

parameters may be derived to describe the carbon-argon and hydrogen-argon 

interactions. Calculations of the stilbene-argon potential using these variants 

also give long flat potential valleys with global minima on the ethylene, as 

long as the same parameters are applied for all carbon atoms. 

One possible cause for the failure of the above calculations is the 

equivalent treatment of the ethylene and phenyl carbons. A distinction is 

_ drawn in Ref. 30 between the potential parameters of aromatic and tetrahedral 

aliphatic carbons; consequently, the derived carbon-argon paramters may also 
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be so distinguished. The stilbene-argon potential surface calculated applying 

the aromatic and aliphatic parameters to the phenyl and ethylene carbons, 

respectively, is qualitatively different from those of the previous calculations. 

Now minima a:re found only above (and below) the rings, separated by a 

substantial barrier over the ethylene. The minimum energy is -458 cm- 1 for 

an argon located at a height of 3.45A and displaced 0.3A inward from a ring 

axis. Cross sections of this surface are shown in Fig. 14 for comparison with 

those of Fig. 13. Again, the energies are minimized with respect to height 

above the molecular plane and the abscissa represents distance along the 

stilbene a axis. 

While the equilibria of this potential are situated closer to the ring axes 

than is the argon position derived from the measured B' + C', it is clear from 

the figure that vibrational averaging will result in an effective argon position 

displaced from the equilibrium toward the center of the molecule. In fact, the 

average B' + C' estimated using the 30 cm- 1 turning points for this potential, 

in the same approximation as that employed for the potential of Fig. 13 (but 

with appropriately rotated inertial axes), agrees very well with the measured 

B' + C'. The difference between this rough estimate and a precise calculation 

should also be relatively minor in the present situation since the argon atom 

does not approach any of the inertial axes. Without attributing undue 

importance to this quantitative agreement, it remains evident that this 

potential is much more satisfactory than those in which no distinction between 

carbon atoms was made. Nevertheless, because the justification for the 

particular choice of potential parameters is strictly empirical, this potential, 

and any quantities derived from it (well depth, barrier height, etc.) must be 

accepted with a great deal of caution. It will be shown below that the well 
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depths derived from similar treatments of other stilbene complexes are, in fact, 

fairly inaccurate. 

ii. Neon. The absorption lying 16 cm- 1 to the red of the stilbene origin 

appears only in the presence of neon and has been assigned as the origin of the 

stilbene-Ne1 complex.32 The measured PRC recurrence period, midway 

between those of stilbene and stilbene-Ari, is supportive of this assignment 

when the neon atom is assumed to sit on one of the phenyl rings. As in the case 

of the argon 1:1 complex, to achieve precise agreement of the measured and 

calculated values ofB' + C', the rare gas atom must be either displaced off the 

ring axis toward the center of the molecule or lowered to a height of, again, 

about 2.5 A from the ring plane. Though a consistent behavior of neon in rare 

gas-aromatic complexes has not been established, all available data support a 

distance of the neon atom from the ring plane of at least 3A. Thus the PRC 

measurement again implies an off-center position of the rare gas atom on the 

phenyl ring. The required displacement of the neon from the ring axis 

depends, of course, on its distance from the ring plane. With a van der Waals 

radius ~ 0.3A smaller than that of argon, 27•31 neon can be expected to be situated 

near 3.lA above the ring, leading to a displacement toward the ethylene of 

about0.25A. 

One noteworthy aspect of the stilbene-N e1 PRC measurements is the 

clear indication that the asymmetry of the complex is much smaller than that 

of bare stilbene. The most obvious consequence of reduced asymmetry is an 

enhancement of recurrence amplitudes, and the recurrences in stilbene-Ne1 

have been the largest seen in any of the molecules studied to date. Further 

evidence of the low asymmetry of the complex is provided by the exceptional 

prominence of the later out-of-phase recurrences which would be strongly 

damped if the asymmetry were larger. Based on the neon position deduced 
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from an assumed neon-ring separation of 3.1.A, the following rotational 

constants may be calculated for stilbene-Ne1: A' = 1.43 GHz, B' = 0.228 GHz, 

and C' = 0.225 GHz. The value of b which these constants yield is about one 

quarter that of bare stilbene. By contrast, b for the derived stilbene-Ar 

structure is slightly larger than that of stilbene and the recurrences seen in 

the two molecules are comparable in appearance. 

A quantitative assessement of the proposed stilbene-Ne rotational 

constants is provided by comparison of the measured recurrence lineshapes 

with the results of PRC simulations. Simulations for both stilbene-Ne and 

stilbene were carried out assuming transition moments along the stilbene a 

axis in each case. (This assumption leads to a small dipole component in the 

stilbene-Ne c axis since its a inertial axis is rotated slightly (5.2°) out of the 

stilbene plane). While the absolute recurrence amplitudes in these 

simulations are larger than the measured amplitudes for both molecules, the 

enhancement of recurrences in stilbene-Ne relative to those in stilbene ( ~ 40%) 

is in rough agreement in simulation and experiment. The reduction in 

recurrence widths of 15 to 20 ps in the complex is also reproduced very well by 

the simulations. These comparisons provide strong evidence of a large 

difference in the asymmetries of stilbene and stilbene-N e, and in so doing 

strongly corroborate not only the position of the neon atom in the complex, but 

also the underlying stilbene structure. For example, electron diffraction data8 

and early spectroscopic analysis1 suggested a non-planar stilbene structure in 

which the phenyl rings are rotated~ 30° in opposite sense. Such a structure 

would decrease the asymmetry of stilbene while increasing that of stilbene-N e, 

thereby quickly reducing the difference between them. For a twist of the 

phenyls of30° or more, stilbene-Ne would be more asymmetric than stilbene, a 

clear contradiction to the observations. 
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Results of potential calculations for the t-stilbene-Ne1 complex are very 

similar to those obtained for the argon 1:1 complex when all carbon atoms are 

treated equally. Thus two types of minima are found, with the ethylene 

minima slightly deeper than those on the phenyl rings. Using the potential 

parameters of Ref. 24, the minima are at - 231 cm - 1 and - 222 cm -1, 

respectively, and are separated by a barrier of less than 8 cm- 1• Though the 

phenyl minima again coincide with the experi.mentally determined rare gas 

position, the form of the potential is inconsistent with the measurements, just 

as it was in the argon case. 

Separate parameters for ethylene carbon and ring carbon interactions 

with neon may also be derived, as described for argon. These again provide 

better agreement with the PRC measurements than a single set of carbon 

parameters, for the resulting potential has global minima, of - 235 cm - 1 , 

situated above and below the phenyl rings. Although the ethylene minima do 

not disappear entirely in this case, surviving as very shallow secondary 

minima 25 cm- 1 up the sides of the phenyl ring potential wells, the wells over 

different rings are distinctly separated by a 56 cm - 1 barrier, insuring 

localization of the neon atom on one half of the molecule. 

While the above potential qualitatively satisfies the criterion of the PRC 

measurements, it fails to meet a quantitative test of the stilbene-Ne potential 

provided by dissociation studies.33 These show an upper limit to the 

dissociation energy of 150 cm- 1, so that a well depth of more than 190 cm- 1 is 

very unlikely. The error of 20% or more in the calculated well depth may be 

taken as an indication of the approximate nature of the calculations. 

iii. Helium. The assignment of the four helium complex absorptions to 

the red of the stilbene origin has been made on the basis of order of appearance 

with increasing stagnation pressure and spectral shift.23 Results of PRC 



142 

measurements on the assigned stilbene-He1 band are summarized in Table I. 

These are consistent with one helium atom positioned above a phenyl ring. 

Because of the low mass of helium, displacements of the helium atom of up to 

an nngstrom are needed to change the rotational constants significantly on the 

scale of the PRC measurement uncertainty. This fact, coupled with the 

relatively wide range of reported helium-aromatic vdW bond lengths, 16a,i 7,22 

makes it possible to establish only fairly wide bounds on the actual location of 

the helium atom. Thus while the most probable value ofB' + C' would require 

an off-axis position for the helium atom at any height above 2.8 A, the lower 

bound on B' + C' is reproduced by an on-axis helium 3.3A above the ring 

plane. 

Potential parameters for stilbene-He potential calculations were derived 

using combining rules and He-He parameters (well depth and equilibrium 

separation) based on differential elastic scattering measurements.34 Potential 

calculations for helium show results similar to those for the other rare gases. 

Again the use of separate ethylene/phenyl parameters is needed to localize the 

helium above a single ring, but the depth of the calculated potential well (122 

cm- 1) is much higher than the probable value of 80 to 90 cm - 1, based on the 

measured Do of s 4 7 cm - 1• 3a,21 

The recurrence period measured for stilbene-He2 is also consistent with 

helium positions on the phenyl rings. In this case, however, a displacement of 

the atoms off the ring axis toward the center of the molecule is strongly 

indicated. By assuming that the two heliums in the 1:2 complex and the single 

helium in the 1:1 complex occupy equivalent positions, more stringent bounds 

could be derived for the coordinates of that position. These bounds would still 

be relatively loose, however, so any further efforts to refine the structure of the 

helium complexes should begin with more precise recurrence measurementso 
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Three different isomers are expected to exist for stilbene-He2, assuming 

negligible interaction of the two helium atoms. Calculations show that the 

recurrence periods of these isomers would differ by less than four picoseconds, 

making them indistinguishable at the resolution of the present experiments. 

Lineshapes of the first few recurrences would also be minimally affected by the 

superposition of signals from the different isomers, which is consistent with 

the prominent recurrences observed. 

C. Fluorene and fluorene-argon. 

The PRC spectra of fluorene (C 13H10) and fluorene-argon, exciting their 

81 origins18 at 2959.9 A and 2963.7 A, respectively, have also been measured 

in our laboratory. Though no new structural information about these 

molecules is obtained, the analysis of this data provides an excellent 

demonstration of the PRC technique for two reasons. The first is that the 

values of all So and S1 rotational constants of the two molecules have been 

determined from completely resolved rotational spectra of their S1 +- So o0 
0 

transitions.18 The availability of these values offers the opportunity to test the 

accuracy of both experimental and theoretical aspects of the technique. The 

second reason that these molecules are of particular interest is their 

moderately large degree of asymmetry, with b for fluorene-Ar about 16 times 

the value for t-stilbene. The discussion of this section will emphasize the 

effects of asymmetry on PRC and the results will show that near-symmetry is 

not a requirement for practical application of the PRC technique. 

The excited state rotational constants of fluorene and fluorene-Ar, as 

given in Ref. 18, are shown in Table II along with the corresponding value of 

the asymmetry parameter b. Both molecules are nearest the prolate case in 

the symmetric top limit. Since the transitions are a axis polarized in both 

molecules, they may be considered as parallel transitions in first 



144 

approximation. The dipole directions are rigorous since the a axis is 

perpendicular to a plane of symmetry in each case.18 

Time-resolved measurements of the parallel fluorescence of both 

fluorene and fluorene-argon display simple patterns of regular in-phase 

recurrences. Recurrence periods were determined as described previously 

from two carefully calibrated experiments for each molecule. These are 943.2 

± 3.8 ps for fluorene and 1138 ± 3 ps for fluorene-Ar1. The reciprocals of the 

measured periods, which are found in column 6 of Table II, represent first 

approximations to B' + C', in accord with the nature of the transitions and the 

discussion of Section III of Chapter 2. Of course, the observation of distinct, 

periodic recurrences alone also leaves open the possibility that the molecules 

are oblate, in which ease lh: == A' + B' instead. The value of the third 

rotational constant can only be inferred from the recurrence lineshapes. 

The asymmetry corrections to the first approximations of B' + C' may be 

estimated by application of Eq.(3.13) of Chapter 2. However, because the 

corrections so calculated are large (of the order of one percent), they are 

subject to uncertainties which are larger than the measurement uncertainties. 

Therefore, in this case, more accurate determinations of the asymmetry 

corrections are warranted. These are provided by PRC simulations using the 

rotational constants of Ref. 18. By careful measurement of the positions of 

recurrence peaks in the simulated fluorescence (over the range which provided 

the experimental t1), asymmetry corrections of -0.49% for fluorene"Ar and -

0.44% for fluorene are found. The uncertainty in each of these corrections is~ 

0.05%. Application of these corrections results in the final experimental B' -r 

C' values given in the last column of Table II. Their agreement with the values 

in column 4 is a reassuring confirmation of the PRC experiments, calibration, 

and analysis. In determining these values no provision was made for the 



145 

suspected nonlinearity of our measurement system. The small displacement 

to lower frequency of our results from those of Ref. 18 is consistent with the 

effect which such a nonlinearity would. produce. Because the asymmetry 

correction, and thus the derived B' + C', depends on the parameters used in 

the simulation, the error bars on the experimental value would be somewhat 

larger if the rotational constants were not well-known in advance. By 

contrast, the correction appears quite insensitive to changes in temperature so 

that uncertainty in the sample temperature entails no additional uncertainty 

in the derived B' + C' 

The rotational coherence of fluorene has also been observed in picosecond 

fluorescence depletion measurements in a rotationally warm (20-25 K) 

molecular beam.35 Characteristic recurrence behavior was seen for excitation 

of several different vibronic bands in S1• For excitation at an excess 

vibrational energy of 927 cm - 1, the interval between the time zero peak and 

the first in-phase recurrence was measured and reported to be 928 ps. This 

value differs by almost 2% from the high resolution value of (B' + C')-l = 946 

ps at the origin. While no error bar is given for the interval measurement, the 

authors indicate that the discrepancy is significant and suggest centrifugal 

distortion as the cause. We now know that at least part of the discrepancy can 

be attributed simply to asymmetry. For example, in a fluorene PRC 

simulation at 8 K, the interval preceeding the first recurrence was found to be 

0.85%shorterthan (B' + C')- 1• 

Neither centrifugal distortion nor vibrational effects in this relatively 

rigid molecule appear likely causes of an actual change in rotational constants 

of the size and direction needed to account for the remaining difference of 1 % or 

10 pa. In particular, if centrifugal distortion did occur at the low angular 

momenta of the sample molecules, it would be expected to increase the 
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recurrence period rather than decrease it. However, the short interval could 

very reasonably be explained by a substantial increase in the asymmetry 

correction with temperature. This possibility is suggested by the dependence 

of a in Eq. (3.13) of Chapter 2 on J2, coupled with the strong thermal bias 

toward low K. An accurate PRC simulation at 25 K could settle this question. 

The use of PRC measurements to obtain more than the value of B' + C' 

requires a detailed analysis of recurrence lineshapes and comparison with 

simulations. With the dipole directions fixed by symmetry for the case at 

hand, there remain four parameters to specify for the simulations: A 1
• B', C', 

and T. In the following paragraphs the influence of these parameters is 

described and illustrated by means of simulations for the case of fluorene­

argon. Best-fit parameters are also determined for a specific set of 

experimental data. The response used in the simulations of this sub-section 

has a full-width at half maximum of approximately 57 ps, while those of 

responses measured with the data ranged from 56 to 60 ps. Since fluorene­

argon has no symmetry axis, its rotational symmetry species all have equal 

nuclear statistical weights. 

The first parameter to consider is T, the rotational temperature of the 

sample. In Fig. 15 simulations of the first positive recurrence of fluorene­

argon at two different temperatures are compared with experimental data. All 

three rotational constants were set equal to 0.4393 GHz for these calculation::s, 

which would be a reasonable starting point if the only available information 

about the structure of the molecule were the measured recurrence period. 

While both recurrence amplitudes and widths vary in the simulations, it is the 

widths which provide the most effective gauge of temperature, since they are 

less sensitive to other parameters. Therefore, in Fig. 15 the three recurrence 

peaks are shown with equal amplitudes rather than in true relative scale, 
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permitting a direct comparison of their widths. From this comparison) the 

measured recurrence is seen to be broader than the 5K simulation and 

narrower than that at lK. This yields a first estimate of the temperature 

characteristic of the experimental data of (3 ± l)K, a value typical of such 

supersonic expansions. While further refinement of a preliminary 

temperature estimate of this sort may in general be required after other 

simulation parameters are adjusted, in the present case the recurrence widths 

will be seen to depend almost exclusively on temperature within the range of 

parameters considered. 

With the rotational temperature obtained, the effect of the choice of 

rotational constants on recurrence amplitudes may be examined. An example 

of this dependence is shown in Fig. 16, in which three simulations with fixed A' 

and increasing separation ofB' and C' are each compared with the same set of 

experimental data. The temperature is fixed at 3K, A' is set equal to 0.8097 

GHz, and b = - 0.04, -0.0855, and -0.13 for the three simulations. The 

corresponding values of B' and C' are given in the caption. The vertical scale 

is graduated in units of percent deviation from the baseline fluorescence 

intensity of the simulations. The measured data appear to be in closest 

agreement with the second of the three simulations, which is based on the 

rotational constants from Ref. 18. The distinctions must be drawn mainly from 

the systematic nature of the deviations at the recurrences and are admittedly 

subtle. What should be clear from the simulations in the figure, however, is 

that PRC does depend markedly on the degree of asymmetry of the molecule 

and thus can serve as a useful probe of that asymmetry given measurements of 

sufficient signal-to-noise. 

Several additional points about Fig. 16 are worth noting. One eoncerns 

the damping of recurrence amplitudes with time. Both the first and second 
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positive recurrences are shown to illustrate this damping in simulation and 

experiment. Similarly, increasing asymmetry can be seen to result in the 

virtual disappearance of the out-of-phase recurrences which were seen clearly 

in stilbene and are still quite evident in the top simulation of Fig. 16. Both 

characteristics offer positive evidence of asymmetry and are therefore useful 

for distinguishing between asymmetry-induced amplitude changes and those 

resulting from changes in A' or T alone. Also evident in Fig. 16 is the 

difference in recurrence separations among the three simulations, although 

the same value of B' + C' was used for each. This illustrates graphically the 

importance of the asymmetry correction in Eq.(3.13) of Chapter 2, reiterating 

the fact that the precise determination of B' + C' from a PRC recurrence 

period is possible only when at least rough approximations of the individual 

rotational constants are available. 

The value of A' was held fixed for the simulations of Fig. 16. If, instead, 

A' were varied and B' and C' held fixed, similar changes in recurrence 

amplitudes would r~sult. Thus a different estimate of A' would shift the value 

of B' - C' at which the most satisfactory agreement with experiment was 

produced. Similarly, a change in the temperature estimate of even lK would 

alter the simulated recurrence amplitudes enough to substantially influence 

values derived for other parameters. For these reasons, error bars on the 

experimental value of B' - C' cannot be estimated from simulations like those 

in Fig. 16 alone. 

When all simulation parameters are simultaneously optimized to 

reproduce the fluorene-Ar data of Fig. 16, best fit parameters of A' = 0.76 

GHz, B' = 0.471 GHZ, C' = 0.402 GHz, and "(; = 2.6 K are obtained. The 

simulation calculated from these parameters is shown in Fig. 1 7. The 

differences between this simulation and the middle simulation in Fig. 16 
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appear very minor and, indeed, the reduced chi-square values indicate that 

both simulations are very acceptable approximations to the data. 

Based on the statistics of the fit of the entire data set, only rather broad 

bounds may be placed on the rotational constants. Uncertainties are difficult 

to determine due to the interaction of the parameters, but 90% confidence 

limits of the order of three percent are estimated for B' and C' separately. The 

value of A' is much less precisely determined. Even when B' and C' are not 

optimized as A' is varied, no value of A' from 0.62 GHz up to the upper limit 

imposed by relation (2.1) of~ 2.8 GHz can be rejected at a 90% confidence level 

based on the chi-square test. Excellent fits are obtained for all values between 

0.65 GHz and 1.0 GHz. 

One factor contributing to the breadth of the chi-square minimum and 

the consequent poor discrimination in the values of the rotational constants is 

the choice of the data set. The nature of PRC for a parallel transition is such 

that the readily accessible information is highly concentrated in the 

recurrences. Thus the great majority of data points in the range of Fig. 16 are 

equally well fit by all three of the simulations shown, and many others as well. 

The low contributions of these background points to the chi-square sum tend to 

dilute the significant information supplied by the fit of the recurrences and can 

lead to acceptable chi-square values for simulations which clearly fail to 

reproduce the recurrence behavior. A fit in which were included only the 

points in the immediate vicinity of a recurrence, such as the range shown in 

Fig. 15 would therefore help to establish tighter limits on the rotational 

constants. A fit of a single recurrence is not of itself sufficient to distinguish 

differences in asymmetry, however, and should be used only in conjunction 

with fits of other recurrences or of a wider range of data. 
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D. Anthracene 

The preceding has shown the manner in which temperature and 

molecular structure interact to determine the characteristics of PRC for a 

parallel-type transition. For a transition polarized perpendicular to the near 

symmetry axis of the molecule, the appearance of a second recurrence period 

introduces some additional features to the analysis. An example is the S1 +-So 

0°0 transition of anthracene (aex = 3610.8 A). In Ref. 7 it was shown that in 

this case the manifestations of PRC are expected to be very subtle. (See also 

Section ID of this chapter for discussion of this point.) No polarization­

dependent structure was observed in the fluorescence measurements reported 

there, so no information about S1 molecular parameters was obtained. 

Experiments have now been performed at lower rotational temperatures 

(achieved via increased laser-to-nozzle distance) and improved signal-to-noise. 

In these, reproducible, polarization-dependent transients characteristic of 

PRC have been detected. These transients are in evidence in the data of Fig. 

18 which is displayed in the form of R(t), the experimental polarization 

anisotropy, formed from measurements of each of the two principal orthogonal 

polarization components of fluorescence as described in Chapter 4. The use of 

R(t) is advantageous because it reveals much more clearly the early time 

effects associated with PRC, and largely eliminates the influence of the 

polarization-independent fluorescence decay, even when it is non-exponential. 7 

By comparison with the standard deviation (a) of the R(t) values (shown 

in the figure), it can be seen that many of the features have amplitudes well 

above the level of noise. Note, however, that the corresponding features in the 

fluorescence decays are of very low amplitude,with typical modulations depths 

of about 1 %. For this reason, and because the fluorescence lifetime is 

moderately long ( ~ 21 ns), the level of noise remains fairly constant for all data 
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points in Fig. 18. Most of the initial decay of R(t) falls outside the scale of the 

figure, which was chosen to show the later transients in greater relief. 

To begin to appreciate the behavior of the measured anthracene R(t), it is 

useful to consider first the anisotropy resulting from PRC in the near 

equivalent symmetric top. This is shown in Fig. 19. The parameters used for 

this simulation were chosen for illustrative purposes only. In this symmetric 

top anisotropy, it is an easy matter to distinguish the existence of the two 

separate recurrence periods despite their strong interaction at times. These 

periods are given exactly by the relations ,:2 = 1/[ 4(A' -B' )] = 139 ps and 

i:1 = 1 / (2 B' ) = 1.22 ns. Bearing in mind that asymmetry will reduce 

recurrence amplitudes and introduce further irregularities, one may recognize 

in the R(t) of Fig. 18 features analogous to those of Fig. 19. In particular, the 

first, third, and fourth positive nutation recurrences are distinctly visible and 

it is from these that a value of 1.220 ± 0.013 ns has been derived for i:1• The 

first out-of-phase nutation recurrence is also clearly distinguished. No 

prominent feature is visible at the expected position of the second positive 

recurrence in Fig. 18 but, as the simulation of Fig. 19 illustrates, such a 

"missing" recurrence may easily result when the two types of recurrence 

interfere. As was the case for a parallel transition, 1/i:1 serves as a good first 

estimate to the sum B' + C'. An accurate value for i:2 is much more difficult to 

obtain, however, since the smaller amplitudes of the rotation recurrences are 

strongly perturbed by asymmetry and easily distorted by noise. A period of 

anywhere from 110 ps to 145 psis suggested by the behavior of R(t) between 

the first out-of-phase and first in-phase nutation recurrence. Simulations will 

confirm that the spacing of rotation recurrences becomes very irregular in the 

asymmetric top, making a practical measurement oh2 very difficult. 
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Though an accurate value of 't2 is difficult to determine in general, it is 

worth noting at this point the utility of this second period in fixing the values 

of all three rotational constants. Specifically, as one can see from the near­

symmetric top relations, equations (3.1) and (3.2) of Chapter 2, the 

(approximate) value of A' (or C' in the oblate case) is uniquely determined by 

a knowledge of both periods. Thus the constant whose precise value is most 

difficult to establish for a near parallel transition could potentially be found for 

a perpendicular transition without even fitting the data. Furthermore, since 

the three constants are constrained by relation (2.1), a knowledge of A' places 

an upper limit on the difference between B' and C' which may be useful in the 

determination of their values. In fact, if the molecule is known to be planar, 

relation (2.1) becomes an equality (neglecting contributions from out-of-plane 

vibrational motion) and the values of A', B', and C' are completely specified by 

the following equations in -c1 and 't2 (subject to corrections for the influence of 

asymmetry) : 
1 1 A, ::;;; +-

21\ 4,;2 

B'=(-¾+ 1 1 y 1 --+ 
16,: - 4•2 2,;1 4•2•1 

1 
C' = -B'. 

•1 
(2.2) 

Guided by the above relationships, the measured periods, and rotational 

constants calculated from data on the ground state structure of anthracene36 a 

range of possible values for each of the excited state rotational constants was 

determined. A fit of the data over the central 5.5 ns of the time range shown in 

Fig. 18 was then carried out . The nuclear statistical weights used for the four 
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rotational symmetry species of anthracene were37 288, 240, 240, and 256 for 

+ +, + - , - +, and - - , respectively. No substantial differences were seen 

using these correct weights vs. using equal weights for the four species, 

however. 

The detailed structure of the PRC signal was found to change 

substantially with changes ofB' or C' ofless than 0.5 MHz. The fast alteration 

of the total PRC pattern with changing constants due to interference between 

nutation and rotation beats makes it very important to start the fitting process 

close to the correct values. This increased difficulty of the fit entails with it, of 

course, the ample compensation of producing more precise values for the 

rotational constants. 

In Fig. 20 is presented the simulated R(t) resulting from the best fit 

parameters. The excited state rotational constants determined from the fit are 

given in Table m, along with ground state constants calculated from the 

crystal structure of Ref. 36a. Uncertainties for the values in Table III will be 

explained below. The derived excited state constants do not satisfy relation 

(2.1) but the discrepancy, or inertial defect, amounts to only ~ 1.1 amu• A.2 , 

while the uncertainty in this value is about 2.2 amu- A 2, as calculated from the 

correlated uncertainties in the constants. The rotational temperature was 

determined to be 1.6 K for these measurements in which laser excitation 

occured 5 mm from the 60 µ nozzle ( x/D == 80). 

All features of the experimental R(t) are satisfactorily reproduced by the 

simulation. Note in particular the missing second and the shapes and widths 

of the third and fourth nutation recurrences, all of which are quite sensitive to 

the simulation constants. Figure 21 shows a detailed comparison of 

simulation and data over a portion of the time range of Figs. 18 and 20, 

including the third and fourth recurrence peaks just mentioned. Despite 
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transients of up to 7o in amplitude, deviations exceed 2o at only 2 points. It 

may be seen in Figs. 20 and 21 that no well defined succession of rotation 

recurrences appears in the simulated R(t). This suggests that the period t2 

will be clearly seen only if the asymmetry is much smaller than that of 

anthracene for which b :::::: -0.02. 

The simulations also reveal a much greater irregularity in the apparent 

separation of nutation recurrences in this case than in the parallel dipole case. 

This is presumably due to the interference of the rotation structure which is 

absent for a parallel transition. The wide variation in recurrence shapes and 

widths seen in the figures offers a clear indication of this interference. As a 

result it is found that values of B' + C' derived using measured values oh1 are 

less accurate in the perpendicular than in the parallel transition case. 

The uncertainties given in Table ill for the excited state rotational 

constants were established on the basis of the 90% confidence level of 1.1 for 

the value of the reduced chi-square statistic (x2) when fitting 342 data points 

with six adjustable para.meters. This process is illustrated graphically in Fig. 

22 where x2 is plotted against changes in the rotational constants around the 

best fit values. In plots numbered 2, 3, and 4, the individual rotational 

constants B', A', and C', respectively, are varied. The remaining plot (number 

1) was obtained by changing all three constants simultaneously. This last is 

equivalent to a change in the time scale only, so that the PRC signal is 

stretched or compressed but remains unchanged in appearance. The 

temperature was optimized for each point on this curve, falling in all instances 

between 1.5 and 1. 7 K. Of course, the conclusions drawn from these plots are 

valid only in the absence of systematic errors. For example, fitting without 

using the complete distribution of natural isotopic abundances could have a 

small effect on the results. 
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The plots show that the PRC interference pattern is sensitive to changes 

of the individual constants of about 0.2% at the signal-to-noise of these 

experiments. The error bars of 0.6% given in Table m reflect not only the 

larger changes which are possible when all three constants change 

simultaneously, but also the uncertainty in the time scale of the experiments, 

which is rather large (0.25%) due to the indirect calibration needed at this 

short time range. Since these factors may raise or lower the values of the 

constants only in a correlated fashion, the ratios of pairs of constants may be 

given with considerably greater accuracy ( ~ ± 0.2%) than can the constants 

individually. 

The measured S1 rotational constants may be compared with calculated 

ground state constants given in Table m to draw some conclusions about the 

effect of electronic excitation on the structure of anthracene. The uncertain­

ties in the ground state constants are based on the quoted standard deviations 

of the seven structural parameters of ref. 35a. It is found that the rotational 

constants have a roughly linear, equal, and additive dependence on variations 

in each parameter when those variations are scaled to the standard deviations. 

Thus, for example, if the change in rotational constant B caused by the 

variation of any parameter by one standard deviation is llB, the amplitude of 

the maximum change in B which may be produced by simultaneously varying 

all parameters by one standard deviation is ABmax ;;:: 7·1 AB I . If it is 

assumed that measurement errors in the seven parameters are independent 

and normally distributed, the standard deviation of the derived constant B is 

then 

( 
7 )112 AB 

OB= I AB2 = = . 
i=l CT) 

The values given in Table mare 90% confidence limits of 1.645 o, or 0.622 
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~Bmax under the same assumptions. A more sophisticated error analysis 

would have to account for any correlation of the measured parameter values 

resulting from the fact that they were derived from the same x-ray data. At 

worst the errors could be a factor of(7)112 larger than given, but they could also 

be reduced by the correlations. 

Comparing the constants for the two electronic states, one finds changes 

upon excitation are of the order of ( + 0.3 ± 1)% for A and ( - 2 ± 1)% for B 

and C. This may be compared with an estimate of a change of -1 % for all 

three constants derived from rotational band contour measurements and 

simulations.37 The decrease in B indicates a 0.5 to 1.5 % stretch of the 

molecule in the direction of its long axis. The uncertainty in the change in A 

leaves open a wide range of possible changes in the short axis of anthracene. It 

could also expand, or it could contract enough to partially compensate for the 

stretch of the long axis, resulting in minimal changes in C-C bond lengths. 

Anthracene bond length changes from S0 to S1 were calculated in a recent 

theoretical treatment by Zerbetto and Zgierski.38 These are inconsistent with 

the above experimental results. They correspond to changes in both Band C of 

-0.5% only, when it is assumed that bond angles, which were not reported, do 

not change significantly. If instead one considers only the absolute values of 

the S1 constants, one finds that the theoretical B' and C' are in reasonable 

agreement with the PRC results. while the theoretical A' is a full 2½% lower 

than its experimental value. 
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III. Excess vibrational energy dependence of rotational 

coherence in t-stilbene and anthracene 

. A. Results 

i. t-Stilbene 

The characteristics of purely rotational coherence in t-stilbene were clearly 

established by the experiments discusseri in Section II A. We now turn to 

an examination of rotational coherence in the vibrationally excited molecule. 

The time evolution of fluorescence in t-stilbene at excitation energies below 

S1 + 1300 crn- 1 has been extensively investigated in previous picosecond studies. 39 

The manifestations of intrarnolecular vibrational energy redistribution (IVR) in 

the form of both periodic energy transfer (vibrational quantum beats), and dis­

sipative redistribution are observed. Our objective in carrying out polarization­

analyzed fluorescence measurements on these vibrationally-evolving states was 

two-fold: 1) to determine if the observed rotational coherence depends in any 

fashion on the excess vibrational energy, and 2) to distinguish between the 

influence of rotational coherence and that of vibrational dynamics, for those 

cases in which both may contribute significantly to the time evolution of flu­

orescence. Results are presented below for excitations in each of the energy 

regimes classified by Felker et al. 39 on the basis of the type of IVR exhibited: no 

IVR (below 752 cm-1 ), restricted IVR (789 ~ 1170 cm-1 ) and dissipative IVR 

(above 1230 cm-1 ). 

Measurements at three different excitations in the low energy region pro­

duced the three parallel decays of Fig. 23. These a.re virtually identical to those 

observed for excitation of the S1 origin, with the familiar pattern of recurrences 

clearly in evidence. Variations in the decay rates may be discerned, but these 

are very slight (a few percent at most). Various detection wavelengths and band­

widths were employed for these measurements; again no apparent dependence on 

detection band is observed. Expansion conditions for these decays differed from 

the standard, as described in the caption. Measured recurrence periods remain 
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within measurement uncertainties ( ~ 10 ps) of the origin ( zero excess energy) 

value of 1948 ps. (The possibility of a slight change is suggested, however, by a 

measured recurrence period of 1942 ± 6 ps at 83 cm-1 .) 

Contrasting sharply with the low energy behavior arc the results presented 

in Figures 24 and 25, obtained for excitation to intermediate (789 cm-1 ) and 

high (1249 cm-1 ) e:c.cess vibrational energy, respectively. Parallel and perpen­

dicular fluorescence for the same excitation and otherwise identical detection are 

compared in each figure. The spectrally resolved fluorescence band detected is in 

each case assignable as emission from the optically prepared superposition state. 4 

The nature of the temporal evolution observed substantiates this assignment.39 

The decays displayed in Fig. 24 for 789 cm -l excitation are strongly domi­

nated by a polarization-independent modulation. This modulation is attributa­

ble to a cyclic transfer of energy between two coupled zeroth-order vibratiom; 

(restricted IVR). In the presence of such strong modulations, the manifestations 

of rotational coherence may easily go unnoticed. Only at very high signal-to­

noise may recurrences be seen, most prominently in the third trough and on the 

sixth peak of the vibrational oscillation. A detailed comparison of these recur­

rences with those observed at the stilbene origin is presented in the discussion 

section. 

In the decays of Fig. 25 (1249 cm-1 excitation) the influence of detection 

polarization is much more visible than in the preceding figure. The polariza­

tion anisotropy makes itself most evident here at a time-immediately after 

excitation-when it is scarcely detectible in the decays previously considered. As 

we will show in the discussion, such an effect is expected as a consequence of the 

relation of our temporal response to the different time scales of evolution involved 

and is not necessarily an indication of a change in the nature of the rotational 

dynamics. The very fast initial decay seen here represents the irreversible flow of 

vibrational energy out of the initially excited mode into the many equi-energetic 

bath modes of the molecule (dissipative IVR). 39 It is important to emphasize 
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that detection for these decays was not at the la.ser wavelength and that careful 

checks were made to ensure that the observed fast components were completely 

free of scattered light. 

In addition to the unrclaxed emission represented in Fig. 25, polarization­

analyzed fluorescence in the vibrationally relaxed emission region for 1249 cm-1 

excitation was also detected (Fig. 26). As for the preceding figures, both parallel 

and perpendicular fluorescence is shown. These decays resume the form observed 

for low energy excitations of a single exponential with the regular structure of 

polarization-dependent recurrences superimposed. That the recurrences appear 

less well-defined in these decays than in others presented cannot be considered 

significant. The measured recurrence period is unchanged (1943 ± 15 ps). The 

only discernible difference between the decays of Fig. 26 and those obtained at 

low energy excitation is their shorter lifetime. (2 ns vs. 2.7 ns at low energies. 

A very short rise-time may also be present but is unnoticeable here.) 

ii. Anthracene 

Time-resolved fluorescence studies40 on the S1 i- S0 electronic transition of 

anthracene have revealed each of the three quasi-distinct categories of temporal 

. evolution already described in reference to stilbene. Once again, each is found to 

occur at excitations within a particular range of excess vibrational energy in the 

S1 sti:i.t,e. To invest,igate the possibility of rotational coherence contribution to the 

observed fluorescence evolution, polarization-analyzed experiments analogous 

to, though less extensive than, those on stilbene were carried out on anthracene 

at excitations in these energy ranges. 

Under experimental conditions comparable to those of Ref. 40, no polar­

ization dependence of anthracene fluorescence was detected at any of the bands 

studied (252, 1380, 1409, 1420, and 1792 cm-1 ). It should be noted that the 

signal-to-noise achfoved in these measurements was in no case comparable to 

that of the data of Section II D which revealed purely rotational coherence at 

the anthracene origin. However, experiments at two excitations [in the regions 
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of restricted (1409 cm-_1 ) and dissipative (1792 cm- 1 ) IVR] demonstrated the 

absence of distinct polarization dependence even when the signal-to-noise and 

conditions were such that polarization effects are easily seen in stilbene. A 

particularly interesting example of the effective polarization independence of 

anthracene fluorescence is seen in the data collected for high energy excitation 

(1792 cm-1 ), shown in Fig. 27. The fluorescence hand detected to produce 

these decays is spectrally resolved despite the very wide detection bandwidth 

employed. Measurements under identical conditions, but in the absence of 

anthracene, confirmed that laser scatter gave no contribution to the observed 

fast component. This data will be considered more closely in the discussion 

section. 

On the basis of our measurements, it may be concluded that rotational 

coherence has a negligible effect on the evolution of anthracene fluorescence as 

observed under experimental conditions similar to those employed here, regard­

less of the polarization properties of the light involved in excitation or detection. 

The evolution that iJ observed, such as the transients of Fig. 27 and other 

quantum coherence effects reported in Ref. 40, may therefore be attributed 

exclusively to true intramolecular energy redistribution without contribution 

from the evolving ensemble-averaged orientation of the excited molecules that 

purely rotational coherence reflects. 

B. Discussion 

When strict separl'\tion of rot.A.t-iom1.l and vihrat.i.onal motion is assumed, 

rotational coherence is independent of the vibrational levels reached either in 

absorption or emission.5 In this case, the intensity of polarization-analyzed fluo­

rescence evolves as the product of a polarization independent envelope reflecting 

vibronic evolution, which we shall call V(t), and the purely rotational coherence 

function appropriate to the given detection polarization (Ca(t) where a identifies 

the direction of detection polarization). That is, 

(2.3) 



161 

In the following, experi~ental results are compared with simulations which have 

been based on this approximation and the C 11 (t) and C .1_(t) used to produce 

Fig. 2, 5, and 7 of Section II A. The fact that these functions give a satisfactory 

reproduction of the observed purely rotational coherence at the t-stilbene origin 

makes them wholly adequate for this purpose. 

It follows immediately from Eq. (2.3) above that the molecular anisotropy 

is independent of V(t): 

r(t) 
I 11 (t) - I.1_(t) 

111 ( t) + 21 .L ( t) 
(2.4) 

For comparison of simulations with anisotropies calculated ( as described in 

Chapter 4) from mea.sured signals, however, one must account for convolution 

with the detection response S(t): 

+oo +oo 
f I 11 (t')S(t t1

) dt' f I.1_(t1)S(t-t1)dt' 
R(t) = _-_oo ________ -_oo ______ _ 

+= += 
j I 11 (t1)S(t-t')dt 1 + 2 j 11.(t')S(t t')dt' 

-oo -oo 

+oo 
f [ C11 (t') - C 1-(t')] V(t')S(t - t') dt' 

-oo ----------------
+l)[C11(t') + 2C .L(t')] V(t')S(t - t') dt' 
-oo 

(2.5) 

Thus the vibronic component does not simply divide out and R(t) will depend on 

the form of V(t), even when, as we shall assume here, r(t) does not. In practice, 

this dependence is very slight unless V ( t) shows significant variation on the 

timescale of S(t). The possibility that differences in R(t) may be traceable to 

differences in V(t) only should be kept in mind, however. Simulated anisotropies 

will prove useful in sepa.rating such convolution effects from the effect of real 

variations in r(t). 

R(t) provides an effective means to evaluate the contribution of rotational 

coherence to measured decays displaying complicated and diverse temporal evo­

lution, such as those in Fig. 24 and Fig. 25. The procedure will be to calculate 



162 

the experimental R(t) from the data and compare this with R(t) derived from 

Eq. (2.5) with an appropriate choice of V(t). 

i. t-Stilbene 

a. Low energy e:ecitation 

Polarization-analyzed measurements for low energy excitations have shown 

no significant difference from those for og excitation. For a closer comparison of 

the data, we present in Fig. 28 anisotropies for 83 cm- 1 and O cm-1 excitation. 

The very close agreement of these traces is apparent. Thus rotational coherenc·e 

is essentially unaffected by vibrational excitation in the low energy regime. The 

match of recurrence periods also imposes a limit on the changes in rotational 

constants which may result as a consequence of vibrational motion. One may 

conclude therefore that the assumption of separability of vibration and rotation 

is well satisfied at these energies. 

b. Intermediate energy 

In the case of 789 cm-1 excitation and -610 cm-1 detection (Fig. 24), 

V(t) can be very well approximated by V(t) ex: (1 + ae--r't cos(wt))e-,t, with 

appropriate choices of a, ,', and 1 . In Fig. 29 are presented a simulated parallel 

. decay and simulated R(t) using this V(t), and the experimental R(t) calculated 

from the 789 cm-1 decays of Fig. 24. In the experimental R(t) of Fig. 29, the 

basic features seen in previous R(t)'s are again present. The recurrence period 

is also the same (1948±15 ps). However, there appears to be a new feature here, 

as well, in the form of a weak periodic ondulation of the normally flat baseline 

or residual value. This feature has been reproduced several times; we feel it is 

therefore unlikely that undetected changes in experimental conditions between 

parallel and perpendicular decay collection are responsible. In particular, a shift 

of the time origin does not account for this effect, as shown by variation of the 

parameter t1 in the R(t) calculation (see Chapter 4). 

Since the period of the observed ondulation is, at least approximately, that 

of the vibrational envelope, another possible cause which must be considered is 
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the convolution effect alluded to earlier. The considerable disparity between 

the vibrational period a.nd the measured response width (790 ps vs. 55 to 

65 ps for the experiments in question) precludes this as the source of any 

change in R(t) as large as that observed. This is confirmed by the simulated 

R(t) of Fig. 29 which shows no comparable influence of V(t). Comparing this 

simulation with others reveals that, in fact, the oscillations in this V'(t) have 

no visible effect on R(t) at all. Anisotropies have also been calculated from 

measurements of fluorescence from the out-of-phase vibrational state (vd = 
-700 cm-1 ). 39 Although these anisotropies are of lower signal-to-noise than 

that of Fig. 29, they also appear modulated, and the apparent modulation is 

of opposite phase from that for -600 cm-1 detection. These results strongly 

suggest that there are contributions to the fluorescence anisotropy other than 

those from purely rotational coherence, and that these contributions reflect 

a dependence of rotational motion on the nature of the vibrational motion 

being executed by the molecule. The mechanism of this dependence is open 

to speculation, but changes in vibrationally averaged rotational constants and 

Coriolis coupling are two possible factors to be considered. 

c. High energy 

For 1249 cm-1 excitation two different forms of decay were observed. For 

relaxed emission V(t) is again single exponential. Though the lifetime is some­

what shorter than at the origin, this difference has negligible effect on R(t) due 

to the vastly different timescale of S(t). Thus R(t) measured at the origin and 

R(t) constructed from the decays of Fig. 26 should differ only if the vibrational 

evolution of the molecules significantly disrupts their rotational motion. The 

agreement of the traces of Fig. 30 indicates that rotation remains very regular. 

Furthermore, an absence of significant vibrational influence on B' + 0 1 is once 

again revealed by the measured recurrence period of 1943 ± 13 ps. 

The V(t) which corresponds to the unrelaxed emission of Fig. 25 is, on 

the other hand, a highly complicated function. A direct measurement of this 
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function, subject to the Umita,tion of our detection response, may be carried 

out by detection of magic angle fluorescence. (This is possible since C54 _7 o (t) is 

simply a constant for t > O, as di~cussed in Chapter 2.) In Fig. 31 is presented 

the result of such a measurement. The structure is roughly biexponential, with 

irregular partial recurrences at long times, as observed before39 • Since it must 

in general be true that l,54.7o(t) ex J 11 (t) + 21.L(t), parameters for V(t) may 

also be obtained from a complete knowledge of I 11 (t) and I1_(t), including their 

relative intensities. This relation is purely geometric and independent of the 

source of observed anisotropy. In practice this has been used to check the 

self-consistency of our data, which depends upon the theoretically determined 

normalization of parallel and perpendicular decays and the maintenance of 

uniform experimental conditions throughout a series of polarization-analyzed 

measurements (see below). 

In order to simulate decays for comparison with those of Fig. 25, we shall 

adopt as a simple though useful approximation a biexponential V(t). Parameters 

for the description of V(t) in this approximation were determined by biexpo­

nential fits of magic angle decays. An example is plotted against the data of 

Fig. 31. The fit is seen to reproduce the early time behavior very satisfactorily. 

· For V(t) given by 

(2.6) 

the parameters obtained are r1 44 ps, r 2 = 2.1 ns, and f = 10 with 

uncertainties of about 10%. A biexponential flt of 111 (t) + 211-(t) formed from 

the decays of Fig. 25 yields parameters in good agreement with these. It must 

be noted that these parameters are quite sensitive to the response used in the 

fitting procedure; the large relative uncertainties directly reflect the uncertainty 

in the response. 

With the parameters for V(t) in hand, the simulations of Fig. 32 are readily 

calculated. A single measured response ( 55 ps FWHM) has been used in these 

simulations and in fitting all biexponential decays. One sees that rotational 
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coherence does significaptly influence the amplitude of the initial fluorescence 

spike, producing a polarization dependence similar to, though less pronounced 

. than that displayed in Fig. 25. The quantitative agreement with experiment 

can be tested by comparison of parameters obtained from biexponential fits of 

corresponding sets of data. The results are given in Table IV. In addition to 

fit parameters for the simulations of Fig. 32, for which the assumed rotational 

temperature was 2 K, parameters are also given for simulations assuming a 

temperature of ½ K. 

It is seen from these values that rotational temperature strongly affects the 

apparent decay parameters and that TnoT= ½ K gives much better agreement 

with the measured parameters than TRoT= 2 K. This despite the fact that 

our measurements of recurrences for 0~ excitation under identical expansion 

conditions point stronsly to a temperature of 2 K or greater. Thus the data 

again appear to contradict the assumption that rotational motion is adequately 

described by PRC in the vibrationally excited molecule. This contradiction 

is somewhat magnified by the evidence of Section II A, which indicates that 

simulations for which an a axis polarized transition is assumed, such as those 

of Fig. 32, predict more prominent transients at early time than are actually 

present in stilbene PRC. Further consideration is given to possible reasons for 

this discrepancy later in this section. 

It is clear from the differences between parameters describing parallel, per­

pendicular, and magic angle data, whether measured or simulated, that the evo­

lution of fluorescence may be significantly affected by rotational coherence. This 

fact should be borne in mind in the design and interpretation of time-resolved 

fluorescence experiments. In particular, in the study of vibrational dynamics, 

where V(t) is sought, detection of other than magic angle fluorescence has the 

potential, at least, to be misleading. The importance of t.he effect, however, 

will depend not only on the particular molecule and excitation and detection 

arrangement, but also on the sample temperature. Thus previously reported 
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parameters for V(t) of t}e emission band currently under discussion39 differ from 

those reported here in part because perpendicular fluorescence was detected. 

They also differ from the experimental perpendicular detection parameters in 

Table IV due to the lower rotational temperature obtained under the expansion 

conditions employed in the present study. 

In addition to the highly vhdhlc .anisotropy of the initial fluorescence spike, 

unrelaxed emission is found to display rotational coherence recurrences as well. 

To demonstrate this, the calculation of R(t) from the decays of Fig. 25 is shown 

in Fig. 33, along with R(t) derived from the simulations of Fig. 32. Despite the 

low signal-to-noise of the experimental <la.ta, the positive recurrence is clearly 

observed. The measured period is 1932 ± 21 ps, still not conclusively different 

from the origin value. Note that the recurrence amplitudes and widths of the 

experimental R(t) match quite well those of the simulation. 

Careful examination of the simulated R(t) of Fig. 33 at early time reveals 

certain irregularities not seen in the simulations of Fig. 7 or Fig. 29. This 

is further highlighted in Fig. 34. The upper trace is an expanded view of 

the simulation of Fig. 33, calculated using Eq. (2.5) and the V(t) appropriate 

. to 1249 cm-1 unrelaxed emission. The lower trace resulted from an identical 

calculation, changing only the form of V(t). We see from this comparison that 

the biexponcntial V ( t) evolves sufficiently fast to exercise distinct influence on 

the form of R(t) over a duration of 200 ps. An effect of this size would be very 

noticeable in measurements at a signal-to-noise ratio as high as that of Fig. 18, 

for example. 

We may now consider in some detail the source of the evident difference 

between the data of Fig. 25 and the simulations of Fig. 32. It is reasonable 

to suspect that this discrepancy, like the evidence already seen at intermediate 

vibrational energies, indicates a breakdown of the assumed separability of vi­

brational and rotational motion underlying the simulations. The likelihood of 

such a breakdown is certainly greater at higher energies. There are, however, 
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other possible contribut}ng factors which should be borne in mind. For example, 

an exceptionally limited coherence width in excitation, associated with the use 

of an ultra-fine tuning etalon to spectrally resolve the 1249 cm-1 band, could 

account for the observations by favoring low J transitions, just as would a 

lower rotational temperature. Arguing against this possibility is the fact that 

the etalon has also been used for measurements at the origin and other low 

vibrational energies, and no changes in recurrence behavior related to the laser 

bandwidth have been detected at those excitations, 

Another factor in the simulations which cannot be ruled out as the cause 

of the apparent discrepancy is the assumption of a biexponential V(t). Use of 

a more realistic model for the vibrational envelope might substantially alter the 

form of the simulated decays. If this is the cause of the apparent differences at 

early time, recurrence behavior would not be affected. The signal-to-noise of the 

data in Fig. 33 is too low to permit a judgement on this point. However, the 

evidence supplied by Fig. 30 of very regular rotational motion of vibrationally 

relaxed molecules suggests that any disruption of rotational motion at early time 

cannot be severe. 

ii. Anthracene 

As seen in Section I D, PRC in anthracene is much different than in t­

stilbcnc. The reasons for this arc apparent from the theoretical description 

developed in Chapter 2. It was shown there, as in Ref. 5, that the observable 

characteristics of rotational coherence are determined by the transition dipole di­

rection in the molecule and its rotational constants. The excited state rotational 

constants of anthracene determined from PRC experiments at the S1 origin are 

A' = 2.159 GHz, B' = 0.444 GHz, and 0 1 = 0.368 GHz. Two differences 

between these values and those for stilbene have a significant bearing on the 

expected nature of rotational coherence. First, the asymmetry of anthracene is 

considerably more pronounced than that of stilbene (b '.'.::::'. -0.02 vs. -0.005). 

This has the following effects: 1) the applica.bility of symmetric top selection 
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rules is reduced so that the number of interfering channels significantly involved 

in the fluorescence increases, and 2) the energy levels are more strongly per­

turbed from the regular symmetric top spacing. Both of these effects diminish 

the commensurability of beat frequencies which is the source of macroscopic. 

recurrences. Secondly, B' and C' are substantially larger for anthracene than 

for stilbene (reflecting its more compa.ct structure). The modulation frequencies 

related to the nutation of individual molecules are thus proportionately higher 

as well, entailing faster dephasing of nutation recurrences. (The increase in 

ground state constants will result in fewer initial levels being populated, but 

higher frequencies will still be involved, despite the lower J's.) 

Also greatly affecting the form taken by rotational coherence are the direc­

tions of the dipole moments for the transitions involved, both in absorption and 

emission. The relative amplitudes of beat components are highly dependent on 

these. In anthracene the S1 +- S0 transition is b axis polarized, thus constituting 

a perpendicular transition in the symmetric top limit. In this case, even for a 

symmetric top, many additional high frequency beat components are possible. 

In particular, when the emission dipole is perpendicular as well, full recurrences 

are not expected and initial dephasing occurs on a much shorter timescale. 

These considerations account for the subtlety of anthracene PRC, as dis­

played in the data of Section I. The absence of obvious rotational coherence 

effects in the vibrationally excited molecule is, for the most part, similarly 

explained. Note, however, that certain bands in the anthracene excitation 

spectrum are due to b19 vibrations and gain their strength through vibronic 

coupling to a low-lying B 3u. excited electronic state.37 The transition dipole 

moment is then parallel to the a axis as in stilbene, and the manifestations 

of PRC are expected to change accordingly. The identification of these bands 

from their rotational band contours is sometimes problematic. The 1409 cm-1 

band is a case in point, having been previously identified as a probable a axis 

transition. 41 That the present PRC measurements showed no sign of nutation 
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recurrences in fluorescen,cc at this excitation supports its subsequent assignment 

as the first overtone of an ag vibration.:n 

To compare our experimental results at high energy against the assumption 

of separable vibrational and rotat.ional motion, we have prmhtf".ed simulated par­

allel and perpendicular fluorescence decays corresponding to this case. These are 

displayed in Fig. 35. A rotational temperature of 2 K and rotational constants 

as given in the caption were used to produce the PRC functions. A biexpo­

nential V(t) was assumed. The parameters for V(t) were determined from the 

experimental 1792 cm- 1 decays and are indicated in the figure. The calculated 

intensities were convoluted with a response of 57 ps FWHM, corresponding to 

those measured in connection with the decays of Fig. 27. 

Surprisingly, the early time behavior in Fig. 35 deviates noticeably from that 

observed experimentally. As in stilbene, the very fast initial IVR decay interacts 

with the rotational dephasing to amplify its effect. However, based on the 

measurements reported here, the possibility of a difference between polarization 

components of the 1792 cm-1 band of the magnitude displayed in Fig. 35 may 

be conclusively rejected. The hypothesis of separable motions again appears to 

fail the test of experiment. Of course, comments made in regard to the deviation 

of measurement and simulation for the high energy measurements in t-stilbene 

are also appropriate here. However, since the deviations in the two cases are 

of opposite sense, it seems unlikely that a.n artifact of the simulation procedure 

could be responsible for both. 

The preceeding results in both stilbene and anthracene have suggested that 

effects of vibration-rotation coupling may be inferred from polarization-analyzed 

fluorescence measurements. To more fully characterize these systems, further 

experiments, possibly with improved time resolution, are clearly needed. 
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IV. Rotational C,_oherence and Alignment in Dissociation 

Reactions 

The S1 dissociation dynamics of t-stilbene-X (X=He, Ar, Ne) van der 

Waals complexes at low e:xce:ss vibrational energies have bet:n studied in our 

laboratory by picosecond time-resolved fluorescence detection.42 •33 We focus 

here on the complex stilbene-He1 (S-He). The binding energy D0 of S-He 

is found to be less than 49 cm-1 in the excited state. Since calculations based 

on the pair-wise additive 6-12 potential model discussed in Section II B yield 

well depths of around 120 cm-1 , it appears reasonable to assume that D 0 is 

not substantially lower than this experimental upper limit. The rise of stilbene 

product fluorescence reveals that the complex dissociates to form vibrationless 

stilbene in about 40 ps at excitation energies of 84 cm- 1 and 96 cm-1 above 

the S1 origin. (These vibrations in the complex arc at slightly higher energies 

than the corresponding bare molecule vibrations of 83 cm-1 and 95 cm-1 .) The 

assignment of the product vibrational states has been made by comparison of 

the spectra of dispersed fluorescence following dissociation with the spectrum 

obtained for og excitation of bare stilbene. This comparison is demonstrated for 

the 84 cm-1 band by plots (A) and (B) at the top of Fig. 36. In (C) is shown 

the dispersed fluorescence arising on excitation of the stilbene vibrational state 

at 83 cm-1 . Since this vibration is homologous to the 84 cm-1 vibration in 

S-He, emission prior to dissociation of the 84 cm-1 complex should look much 

like (C). That such emission is weak or absent in (A) is attributable to the very 

short dissociation lifetime relative to the excited electronic state lifetime of 2.67 

ns. 

The energies E' which must appear as kinetic energy in the products, either 

in the form of stilbene rotation or of relative translation of stilbene and helium, 

is equal to the excess excitation energy (i.e., in excess of the 0~ energy) minus 

D 0 • Thus E 1 is greater than 35 cm-1 and greater than 47 cm- 1 , respectively, 

for these two dissociation reactions. Since D 0 is expected to be close to its upper 
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limit, E' is pro ha bly nc!.t much higher tha.n the above values. 

At an excitation energy of 198 cm-1, a dissociation lifetime of 160 ps 

is measured. The vibrational energy of the stilbene product is not known 

since the vibrational state is not accessible from the ground state by one­

photon absorption. Thus E' cannot be determined and may reasonably have 

any value from O to ~ 80 cm- 1 • The mode selectivity displayed in these rates 

has been interpreted in terms of energetics, mode character and momentum gap 

propensity rules. In the present discussion, we are concerned rather with the 

effect of dissociation on the dynamics of product rotation. 

To investigate this effect, stilbene product emission at each of the above 

excitations was polarization-analyzed. The result for 84 cm-1 excitation is 

shown in the lower half of Fig. 36 in the form of the experimental polarization 

anisotropy R( t). Shown also in the figure for comparison are anisotropies of 

parent stilbene for two excitation energies and of S-He excited to its S1 origin. 

The recurrence behavior displayed by the three lower anisotropies have been 

discussed in Sections II and III of this chapter. Fig. 36 reiterates the fact that 

the recurrence period reflects the fundamental nutation period of the molecules 

and can therefore serve to identify the fluorescing species. Accordingly, the 

periods for the two excitations of stilbene agree very closely, while that of S­

He fluorescence is distinctly longer. The average of B 1 + C' derived from t.he 

recurrence period is shown for each of the three measurements. 

With the three lower data sets serving as reference, we now examine the 

anisotropy of the dissociation product in (A') of Fig. 36. Recurrences are clearly 

present, though they are distinctly weaker than in the three other cases. The 

reduction in amplitude appears particularly severe for the out-of-phase recur­

rences. The period of these recurrences is seen to match the stilbene nutation 

period rather than that of the initially excited complex, thereby confirming the 

indication of spectra (A) and (B) that the emitter is stilbene. Rotational co­

herence must then be preserved, to some degree, in the dissociation process. As 
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an experimental verific~tion that the emission, and particularly the recurrences, 

observed are due to stilbene produced by dissociation of the S-He complex and 

not to an underlying parent absorption, the pressure dependence of the signal 

was carefully checked. No variation in recurrence amplitudes were observed over 

a range of pressures which was shown to change the ratio of complex to parent 

populations in the beam by more than a factor of two. 

Recurrences similar to those at 84 cm-1 were observed in fluorescence from 

the vibrationless stilbene product of the 96 cm-1 S-He excitation. Recurrences 

were also seen at 198 cm- 1 , but these were much weaker than for the lower two 

energies. Due to their weakness and to the spectral congestion at the energy 

of the S-He 198 cm-1 band, the assignment of these recurrences to dissociation 

products cannot be made with the confidence possible in the other two cases. 

Having observed the transfer of coherence from excited S-He to stilbene 

product, we must now ask ourselves what aspects of the dissociation process 

govern that transfer and what can be learned from such measurements. A 

natural first attempt at interpreting the observed behavior is to compare it with 

the expectations of a classical treatment. Due to its simplicity, the prompt, 

. impulsive model developed in Chapter 2 is an attractive alternative for such 

a comparison if it can be used. The validity of the assumption of impulsive 

separation can only be assessed on the basis of a particular dynamic model. This 

we will do below. However, given our knowledge of the dissociation lifetime and 

the rotational temperature of the molecular beam, we can immediately judge 

how well the condition of promptness is met. At a rotational temperature of 2.5 

K typical of our experimental conditions, the most probable value of J in the 

S-He population is 10. The fundamental nutation period of S-He is 2.01 ns, as 

given in Table I. Thus the nutation period of a typical molecule in the sample 

is ~ 200 ps, or about five times as long as the dissociation lifetime. Nutation is 

the only motion with which we need be concerned because the dipole directions 

are both essentially parallel. The typical excited S-He molecule sweeps out a 
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72° arc of its cone of nu}ation before dissociating. Furthermore, many molecules 

have higher J's and/or survive more than a single lifetime before dissociating. 

Application of the prompt model under these circumstances must be regarded 

as a rough approximation only. With this caveat in mind, in the absence of a 

treatment accounting fully for nonzero td, it is still instructive to compare the 

classical predictions with the observed behavior. 

To carry out this comparison, calculations employing Equations (2.12), 

(2.43) and (2.35) of Chapter 2 have been performed. The exact quantum 

frequencies are used for integral values of J. The equilibrium geometry of the 

complex and principal axis coordinate system used in these calculations are as 

shown in Fig. 37. The heli11m a.tom ii- known to be located above the phenyl 

ring from the PRC analysis and spectral evidence (see Section II B), but its 

coordinates are not well <letenuine<l. The values used in the calculation are the 

minimum energy coordinates of the 6-12 potential energy surface with helium 

interaction parameters given in Table II of Chapter 4. These coordinates are 

x ~ 0, y = 3.0A, and z = 3.15A. The potential surface about this minimum 

is reasonably symmetric, as it is dominated by the phenyl ring. Thus, in the 

absence of vibrational or rotational effects, the helium will remain in the yz 

inertial plane of stilbene as the dissociation proceeds. In this case the torque 

applied to the molecule, and therefore the angular momentum imparted to the 

nascent stilbene, is directed solely along the x axis. 

We first perform the calculation for dissociation from the single equilibrium 

geometry. A rotational temperature of 2.5 K, E' of 50 cm-1 , and a 60 ps FWHM 

system response are assumed. The product stilbene is assumed to undergo 

symmetric top motion following dissociation. In Fig. 38a are displayed the out­

of-phase and in-phase recurrences of the polarization anisotropy resulting from 

this calcula.tion. Because symmetric top mot.ion is assumed, all such recurrences 

are equal. For comparison, the signal expected under comparable experimental 

conditions for direct excitation of stilbene is shown in Fig. 38b, plotted on the 
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same vertical scale. Thus t.he dissociation does result in a reduction of the re-·~ 
currence amplitude. When calculated for the in-phase recurrence in the parallel 

. fluorescence decay, the reduction is about 30%, while that observed in the first 

in-phase recurrence of the experimental data was typically about 40%. In the 

simulation, the effect results from the fact that the impulse adds an angular 

momentum of 1.~I ~ 10 to each molecule. Although the addition is vectorial 

and therefore reduces the total angular momentum of some molecules while 

increasing that of others, the increases dominate and the effective rotational 

temperature of the sample is raised. The influence on the recurrences is similar 

to that displayed in Figures 4 and 6 and discussed in Section II A of this chapter. 

For the assumed geometry a.nd energetics, one may also calculate the du­

ration of the interaction of helium and stilbene after the complex has made the 

transition from a bound to a. repulsive potential surface. Again relying on the 

6-12 model, one finds that the potential has climbed to < ½% of the well depth 

by the time the helium atom is lOA from the ring plane. At the asymptotic 

velocity, the time required to reach that separation is about 1 ps. This time is 

short enough that even molecules of the highest significantly occupied J states of 

the sample undergo no significant displacement along their nutation trajectories. 

However, one must also consider rotation about the figure axis in order to see 

if the separation can truly be considered repulsive. This is true because any 

relative change in orientaion will affect the interaction geometry, and hence the 

torque, whether the dipole moves or not. For S--He, the fundamental rotation 

frequency of 2( A' - B') is about eight times its fundamental nutation frequency. 

The pertinent rotation frequency for a given state is the fundamental frequency 

multiplied by K. The most probable value of K is much lower than J for a 

prolate top. Thus rotation about the figure axis is also sufficiently slow compared 

to the duration of interaction after dissociation that the impulsive assumption 

appears reasonable. 

Although the comparison of Figures 36A' and B' and 38a and b show that 
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the experimental reduction of the in-phase recurrence is similar to that predicted 

by the model calculation, the out-of-phase recurrences seem to be more severely 

damped in the measured anisotropies. A simple extension of the model to 

include a distribution of initial geometries was made to investigate the role 

of vibrational averaging and see if this might account for the above difference. 

A long axis displacement of the helium (i.e., an average over a distribution of 

z A) has no great effect on the calcula.ted anisotropy. A stretch of the van der 

Waals bond has no effect at all since the impulsive force is normal to the stilbene 

plane. If the force remains normal to the plane as the helium executes a lateral 

displacement or perpendicular bend, however, there will clearly be a qualitative 

change. The torque then has a z component and will produce a z a.xis, or k, 

component of angular momentum. Since we have assumed that stilbene is a 

symmetric top, this lateral displacement can be treated within the reference 

frame conventions established in Chapter 2, particularly with regard to the 

form of the unitary transformation matrix, by rotating the :v and y axes as the 

helium moves. Fig. 38c shows the anisotropy for a Gaussian perpendicular bend 

dh,tribution with a half width at 1/e of 1.2.A (about equal tu the lateral extent 

of the carbon ring). The contributions from off-axis geometries do produce 

-noticeably smaller out-of-phase recurrences, and this is reflected in the average. 

On the other hand, the in-phase recurrence is in this case only 25% smaller than 

that of directly excited stilbene. 

The above simulations suggest the manner in which information about dis­

sociation dynamics may be obtained from polarization anisotropy measurements. 

However, it is clear that. the roles of a great many fa.ct.ors must. be examined 

closely before any solid conclusions can be drawn in the case of stilbene-helium 

dissociation discussed here. 
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TABLE I. PRC measurements oft-stilbene van der Waals 

complexes. 

Enerf( 
(cm·) -c

1 
(ns) B' +C' (GHz} 

t-stilbene 0 1.9477(25) 0.5132(8) 
( =32234 cm·1

) 

t-stilbene-He1 -6 2.0084(76) 0.4978(19) 

-He2 -12 2.0529(140) 0.4870(33) 

-Ne1 -16 2.2085(35) 0.4528(8) 

-Ar1 -40 2.4124(160) 0.4144(27) 

-63 2.4140(120) 0.4141(20) 



TABLE II. Rotational constants of fluorene and fluorene-argon. 

From Reference 18 

A' B' C' B'+C' 
(GHz) (GHz) (GHz) (GHz) 

Fluorene 2.1098(33) 0.5932(1} 0.4640(1) 1.0572(1) 

Fluorene-Ar 0.8097(29) 0.4700(1) 0.4065(1) 0.8766{3) 

b 

-0.0409 

-0.0855 

This work 

1/,;exp B'+C' 
(GHz) (GHz) 

1.0602(43) 1.0556(46) 

0.8787(23) 0.8745(27) 

• 

.... 
00 
0 
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Table III. Anthracene rotational constants (GHz). 

A B C 

Ground state* 2.151(13) 0.4538(23) 0,3747(18) 

Excited state 2.159(13) 0.4445(26) 0.3683(22) 

*based on x-ray crystal structure of Ref. 36a. 
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Table IV. Biexponential flt parameters for measured and simulated 

decays of t-stilbene S1 + 1249 cm-1unrelaxed fluorescence. 

Detection 

polarization 

TJ. (ps) 

T2 (ns) 

f 

T1 (ps) 

,2 (ns) 

f 

Measured 

33 

2.1 
17 

56 

2.2 
7.0 

Simulated 

2K lK 
2 

37 33 

2.1 2.1 
13 16 

47 53 

2.1 2.1 
8.7 7.3 
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Figure .Captions 

1. Time-resolved and polarization-analyzed fluorescence for 0~ excitation and 

detection of jet-cooled t-stilbene. The orientation of the detection polar­

ization relative to that of excitation is indicated for each decay. Detection 

bandwidth (6v): 12 cm-1 • Measured response: 40 ps FWHM. Supersonic 

beam conditions for these aIJd following measurements (unless otherwise 

noted): 6 atmospheres Ne, nozzle aperture diameter (D) '.'.:::'. 65 µ, laser to 

nozzle distance (X) = 3 mm, reservoir temperature (T) '.'.:::'. 160 C. 

2. Numerically simulated time-resolved and polarization-analyzed fluorescence 

accounting for purely rotational coherence. The following parameters were 

m1ed in the rotational coherence calculation. Transition dipole moment di­

rections: {II ,II); ground state rotational temperature (TRoT): 2 K; rotational 

constants: A' = 2.075 GHz, B' = 0.240 GHz, C' = 0.273 GHz. A single 

exponential population decay of lifetime 2. 7 ns is assumed. The calculated 

intensity has been convoluted with a measured temporal system response 

of 50 ps FWHM. 

3 .. Experimental polarization-analyzed fluorescence decay for og excitation and 

detection of jet-cooled t-stilbene. Excitation and detection polarization vec­

tors are parallel in this and following :figures when not explicitly indicated. 

The results of several separate experimental runs have been aligned and 

added together to produce this decay. Detection bandwidths: < 4 cm-1 • 

The last 4.5 ns of the data have been expanded in the inset with vertical 

solid and dashed lines indicating the expected positions of in-phase and 

out-of-phase recurrences, respectively. 

4. Backing pressure dependence of jet-cooled t-stilbene polarization-analyzed 

fluorescence decays. The carrier gas is neon at the pressures indicated. All 

other conditions are as for Fig. 1. 

5. Simulated time-resolved and polarization-analyzed fluorescence accounting 

for purely rotational coherence; temperature dependence. The value of 
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TROT used in the calculation is indicated. All other parameters are as given 
" 

in the caption of Fig. 2. 

6. Polarization-analyzed fluorescence decays for og excitation of jet-cooled 

t-stilhene. Shifts from the excitation energy of the centers of spectral 

detection (vd) are given in the figure. 8v: (from left to right) 4 cm-1, 

3 cm-1 , 64 cm-1 . A single :fluorescence collection lens was used for the 

-1650 cm- 1 decay. 

7. Fluorescence pola.rization anisotropies formed from the decays of Fig. 1 

(bottom) and Fig. 2 (top). The normalization of the experimental decays 

for the calculation of R(t) for this figure was chosen to give a 'residual' R(t) 

value of 0.075 to match that of the simulation. 

8. Fit of the experimentally measured first out-of-phase and first in-phase 

recurrences of t-stilbene PRC using an a a.xis transition dipole ( 6 0°). 

An instrument response of 52 ps FWHM was measured with the data and 

used in the fit. The rotational constants found are given in the text and 

are not compatible with any reasonable t-stilbene structure. The weighted 

residual is plotted above the data. 

9. The structure of t-stilbene in S1 based on calculations of Ref. 9. See text 

for details. The in-plane jnertial axes are shown. 

10. An example of the use of an off-axis dipole to simulate t-stilbene PRC. 

The angle() is the angle between the dipole and the a axis, with the dipole 

remaining in the molecular plane. The rotational constants are those of the 

structure in Fig. 9 (adjusted slightly to give B' + C' = 0.5132 GHz). The 

weighted residual is plotted above the data. 

11. Proposed vibrationally-averaged structure of t-stilbene-Ar1 in S1 • The 

position of the argon atom is based on PRC measurements and an assumed 

height above the stilbene molecular plane of 3.42.A.. The stilbene structure 

is that of Fig. 9. 

12. Potential energy of the stilhene-Ar1 van der Waals bond a.ts a function 
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of the projection ~f the argon atom in the stilbene plane. The energies 

are minimized with respect to the height of the argon above the plane. 

Potential parameters of Ref. 24, given in Table II of Chapter 4, are used in 

the calculation. Minima in the potential are located above points A and B. 

13. Cross-sections of the potential surface of Fig. 12 running parallel to the a 

axis uf stilbeue and pas~dng through the two potenLial minima. The dotte<l 

line indicates an energy of 30 cm·- 1 above the deepest minimum. The carets 

on the horizontal axis mark the positions of the phenyl ring centers. 

14. Cross-sections of a stilbene-Ar1 potential energy surface calculated using 

different potential parameters for the ethylene carbons and ring carbons. 

These parameters are described in Chapter 4 and given in Table II of that 

chapter. The cross-sections are taken in the same direction and positions 

relative to the stilbene molecule as thm,e of Fig. 13, though in this case 

there is only one set of equivalent minima. Again, the dotted line indicates 

an energy of 30 cm-1 above the potential minimum, and the carets on the 

horizontal axis mark the positions of the phenyl ring centers. 

15. Temperature dependence of the first positive recurrence of fluorene-Ar 1 

parallel fluorescence. Experimental data (circles) are compared with two 

simulations of different widths. The simulations are for a spherical top, 

B' .;...;. 0.4393 GHZ, at T = 1 K and T = 5 K. The vertical scales differ for 

the three sets of data. 

16. Dependence of fl.uorene-Ar 1 PRC on asymmetry. One set of experimental 

data is compared with three simulations. The vertical scale is graduated 

in units of percent mo modulation relative to the baseline intensity. For 

all simulations T = 3 K, A' = 0.8097 GHz. Top: B' = 0.4531 GHz, 

C' = 0.4234 GHz. Middle: B' = 0.4700 GHz, C' = 0.4065 GHz. Bottom: 

B' = 0.4865 GHz, C' = 0.3900 GHz. The asymmetry parameter bis given 

in the figure for each simulation. 

17. Comparison of a fluorene-Ar1 parallel fluorescence measurement with its 
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best~fi.t PRC simulation {solid line). The data are the same as in Fig. 16 . .. 
The simulation parameters are given in the text. 

18. Experimental R(t) of anthra.cene fluorescence for S1 og excitation and 

detection. The vertical error bar corresponds to roughly one standard 

deviation of the data values. The measured instrument response was 68 

ps FWHM. 

19. Simulated R(t) for an "anthra.cene-like" symmetric top. A' 2.2027 GHz, 

B' = 0.4098 GHz, T = 1.6 K. 

20. Simulated asymmetric top R(t) using the parameters yielding a best fit to 

the experimental anthracene R(t) of Fig. 18. The rotational constants are 

given in Table III, and the temperature is 1.6 K. 

21. Detailed comparison of data from Fig. 18 ( dashed line and circles) and 

simulation from Fig. 20 (solid line) over a restricted time range. 

22. Variation of the reduced chi-square statistic as a function of fit parameters 

for the anthracene PRC fit. For the plot labeled 1, the rotational constants 

are varied simultaneously, maintaining fixed ratios. For ea.ch of the three 

remaining plots, a single rotational constant is varied. These are B' in 2, 

A' in 3, and C' in 4. The dotted line represents the 90% confidence limit on 

the value of x2 for a chi-square distribution with 337 degrees of freedom. 

23. Polarization-analyzed fluorescence decays of jet-cooled t-stilbene. Excitation 

energies above the S1 origin are indicated. Detection energy shifts from 

the excitation (iid) and detection bandwidths {6v) : {from left to right) 

-278 cm-1 and 24 cm-1 , -260 cm-1 and 9 cm-1 , -620 cm-1 and 3 cm-1 . 

Approximate backing pressures of helium: (from left to right) 38 atm., 22 

atm., and 30 atm. For a.11 three: D = 25 µ, X 1.5 mm and T '.:::::: 170 C. 

24. Polarization-analyzed fluorescence decays for S1 + 789 cm-1 excitation of 

jet-cooled t-stilbene. vd= -610 cm-1 , 6ii= 12 cm-1 • Manifestations of 

both vibrational and rotational coherence are present. 

25. Polarization-analyzed fluorescence decays for S 1 +1249 cm-1 excitation of 



187 

jet-cooled t-stilher:,e, Pa -205 cm-1 , Aii= 32 cm-1 • The -205 cm-1 

band is isolated and spectrally resolved at this bandwidth (Ref. 39). 

26. Polarization-analyzed fluorescence decays for S1 +1249 cm-1 excitation of 

jet-cooled t-stilbene. iid= -1640 cm-1 , Afi= 24 cm-1 . Fluorescence in this 

spectral region is totally unresolved (Ref. 39). 

27. Polarization-analyzed fluoresrence decays for .5'1 +1792 cm-1 excitation of 

jet-cooled anthracene. Pa= -390 cm-1 , Liv= 160 cm-1 , X = 2 mm, T = 
175 C. The detected band is spectrally resolved at this bandwidth (Ref. 40). 

28. Experimental fluorescence polarization anisotropies for 0~ excitation (lower) 

and 83 cm-1 excitation (upper) of jet-cooled t-stilbene. For the origin 

measurement: vd= 0 cm-1 , Ll.v= 2 cm- 1 . Conditions for the 83 cm-1 

measurement are as given for the leftmost decay of Fig. 23. Response widths 

were in each case 60 ps FWHM. 

29. Comparison of experimental and simulated fluorescence polarization aniso­

tropies for S 1 +789 cm- 1 excitation of jet-cooled t-stilbene. The lower R(t) 

was formed from the decays of Fig. 24; the upper from parallel and perpen­

dicular fluorescence simulations, the first of which is shown in the figure. 

Simulation parameters for the calculation of purely rotational coherence 

(C0 (t)) are as given in the caption of Fig. 2. The assumed vibrational enve­

lope is given by V(t) = [1+0.6exp(-t/2.9ns) cos(21rt/0.79ns)] exp(-t/2.7ns). 

30. Experimental fluorescence polarization anisotropies for og excitation (lower) 

and 1249 cm-1 excitation (upper) of jet-cooled t-stilbene. The lower trace 

is a more detailed view of the lower R(t) of Fig. 28. The 1249 cm-1 R(t) 

was formed from the decays of Fig. 26. Response widths were in each case 

~ 60 ps FWHM. 

31. Polarization-analyzed fluorescence decay for S1 +1249 cm-1 excitation: 

magic angle detection. vd= -205 cm-1 , Av= 32 cm-1 • The solid trace 

is the best fit biexponential accounting for convolution with a measured 

response of 55 ps FWHM. 
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32. Simulated time-resolved and polariza.tion-analyzed fluorescence accounting 

for purely rotational coherence. Parameters for Ca(t) are as for Fig. 2. V(t) 

is given in the figure. Calculated intensities are convoluted with a 55 ps 

response. 

33. Comparison of experimental and simulated fluorescence polarization aniso­

tropies for S1 +1249 c111-· 1 excitation of jet-cooled t-stilbene. The experi­

mental R(t) was formed from the decays of Fig. 25; the simulated R(t) from 

those of Fig. 32. 

34. Simulated fluorescence polarization anisotropies showing the dependence on 

V(t). The upper trace is an expanded view of the simulated R(t) of Fig. 33. 

V(t) used in the calculation of each R(t) is indicated. Other aspects of the 

two calculations were identical. 

35. Simulated time-resolved and polarization-analyzed fluorescence accounting 

for purely rotational coherence. The following parameters were used in 

the calculation of C0 lt). Transition dipole moment directions: (_l_B,..LB); 

TR0 T: 2 K; rotational constants: A' = 2.134 GHz, B' = 0.446 GHz, C' 

= 0.371 GHz. V(t) is given in the figure, and approximates the decays of 

Fig. 27 for 1789 cm-1 excitation of anthro.cenc. Calculated intensities are 

convoluted with a 57 ps response. 

36. Time- and frequency-resolved spectra of stilbene and stilbene-He1 complex. 

Excitation energies relative to the respective ( complex or parent molecule) 

og transition energies are given at left. Excitation frequencies are marked 

by an asterisk in the upper spectra. Spectral resolutions for (A), (B), and 

(C) are 4, 1, and 5 cm-1 , respectively. The time-resolved data is presented 

in the form of polarization anisotropies. Temporal resolution was about 60 

ps FWHM for all measurements. Bis ½(B' + C') of the complex or parent 

stilbene. Typical beam conditions are 500 psig for the complex, X / D ~ 60, 

and sample reservoir temperature ~ 150°0. [Reprinted from J. S. Baskin, 

D. Semmes, and A. H. Zewail, J. Chem. Phys. 85, 7488 (1986).] 



180 

37. Assumed equilibrium geometry of stilbene-helium in stilbene principal axis 

frame. 

38. Classical polarization anisotopies of stilbene calculated for discretely dis­

tributed j and correct quantum mechanical frequencies. Stilbene is approx­

imated as a symmetric top with B' = .2566, A' = 2.6. All three signals 

arc calculated for an initial rotational temperature of 2.5 K and account 

for convolution with a system response of 60 ps FWHM. The full range of 

the vertical scale is in each case O to 0.174. In b ), stilbene is dirctly excited 

( = PRC). In a) and c), stilbene is the product of dissociation of stilbene­

helium. The dissociation impulse is normal to the stilbene plane in both 

cases. In a), the complex is fixed at the equilibium structure of Fig. 37. In 

c), the signal is averaged over a broad perpendicular bending trajectory as 

described in the text. 
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Figure 12 
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Figure 16 
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Figure 23 
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Figure 30 
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Figure 36 
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Figure 37 
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Doppler-free time-resolved polarization spectroscopy of large molecules: 
Measurement of excited state rotational constants 

J. S. Baskin,•> P. M. Felker,b> and A.H. Zewail 
Arthur Amos Noyes Laboratory of Chemical Physics,•> California lnstituteo/Technology, 
Pasadena. California 9Jl25 

(Received 7 January 1986; accepted 6 February 1986) 

Measurement of the rot.itional spectr11 and constants of 
molecule!i can be a powerful probe of excited state geome­
tries and intramolecular dynamics. The conventional ap­
proach for obtaining rotl!tionally resolved spectra is to use 
high-resolution (frequency domain, time-integrated) laser 
excitation. For medium-sized molecules, recent advances in 
these high-resolution techniques have made it possible to 
obtain Doppler-free spectra ofbenzene1 (using two-photon 
excitation}, and jet-cooled spectra of tetrazines, 2 pyrazine, 3 

and othe!'!l.4 Thes!! results 011 medi1Jm-sized molecules have 
provided valuable information on geometries, 1•

2 and on the 
dynamics of intramolecular singlet-triplet coupJing3·5 and 
the "channel 3" decay in benzene. 1 For large molecules, to 
obtain rotationally resolved spectra one needs stable, ultra­
narrow bandwidth lasers together with a scheme to reduce 
Doppler broademng to I~ than several megahertz. 

In this Communication we report the first application of 
a time-resolved polarization technique to the study of the ro­
tational constants and geometries of large molecules. The 
technique ( 1) is Doppler-free, or, more accurately, Doppler 
insensitive (one-photon excitation), (2) allows one to mea­
sure excited state rotational constants directly, ( 3 l ClUl pro­
vide information pertaining to absorption and emission tran­
sition dipole directions, and ( 4) can be readily applied to 
large molecules. Results are reported here for t-stilbene, 
t-stilbene-d,,, and t-stjlbene-argon complexes. For each of 
these molecules (isolated by jet cooling7

} we report values of 
the rotational constants~ (B + C} and compare these values 
with calculated ones. The results amply demonstrate the 
power of this probe of excited state rotational level struc­
tures. 

The principle of the technique is as follows. A polarized 
picosecond pulse coherently prepares excited state S1 rota­
tional l!:vels of individual molecules in the sample. This 
creates an imtial alignment of excited molecules. By viewing 
the fluorescence with an analyzer one is 11ble to time .resolve 
the dephasing and rephasing of this alignment. Because the 

energy spacings of the coherently prepared rotational levels 
arc ~mmensurate [ e.g., for parallel-type absorption in a 
symmetric top molecule, the spacings are 2BJ, 2B(J + I), 
and 2B(2J + I)}, the rephasing, which results in a decrease 
or increase in the fluorescence intensity depending on the 
relative polarization of excitation and ftuorescence detec­
tion, is manifested as transients at times determined by the 
rotational constants of the molecule. For parallel-type tran• 
sitions in a symmetric top the recurrences occur at time in­
tervals of l/(2B). For parallel transitions in near prolate 
asymmetric tops, such as t-stilbene, they occur at intervals of 
1/(B + C}. Thus from these recurrences one can directly 
obtain rotational constants. The transients associated with 
the rotational motion can be suppressed by usina ma&ic an­
gle (54.7") detection.just as is done in liquids.8 

0.6 

~ 0.4 

~ 
~ 0.2 

't' 
'2 00 

0,0 

0 3 4 
T,me(ns) 

FIG. I. Fluorescence anisotropy r(r) ... [/
11 
(r) -1, (t) II 

[/ 11 (r) + U, (t)) forthe«l absorptionandftuorescencetransitionoft-stil• 
bene. TO)l-eltpenmental r(t): expu!Sion ortllce 70µm, 75 psig Ne backing 
pressure, laser-to-noule distance 3 mm, nozzle T = l 50 'C. &ttom-iim• 
ulated r(t) calculated (Ref. 9) assuming rotational con.stants 
A -0.089 267, B - 0.008 767, and C= 0.008 333 cm-', fluorescence life­
time of 2.6 ns, [ Ref. 7 (a) J jct T- 5 K, and accountins forthc finite tempo­
n,1 detection response. Tl'lllllicnts ""'-'llr at times when tho alignment of the 
emission dipoles of molecules in the sample is "eclipsed" (i.e., along the 
direction of the excitation polarization) or when the alignment is "stq• 
gered" (bWled toward 90' relative to the excitation polariz.ation). 

4708 J. Chem. Phys. 84 (8), 15 April 1986 0021·9606/86/084708·03$02.10 © 1986 American Institute of Physics 
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TABLE I. Recurrmce timcg and rotatiDll&l COM\U\U mlM\Ued by tnc Dopp\tf-free ucl:miqut. 

Energy RC!CUrnuce time 
Molecule ccm-'l (11$) Calculated 

1-stilbc:m:·h" 0(""32 234 cm- 'l 1.951 ± 0.010 0.008 54 ± 0.000 04 
0.008 53 :.t: 0.000 09 
0.007 79 ± 0.000 OS 

0.008 42 

0.(:o770 
i-stilbene•h,, !vib) + 83 I. 954 ± 0.020 
1-stilbene-o',, + 93 2.140± 0012 
l•St~bene-Ar 

I) -40 2.384 ± 0.064 0.006 99 ± 0.000 20 
0.006 91 j: 0.000 12 

0.006 67' 
2) -63 2.-410±0,(M() 

'The pnncipal A uis of inena is very close to that of t•stilbaie ( -10'). 

There arc two unique features of the above achC111c:. 
First, the picoseoond temporal resolution allows forobserva• 
tion of the transients, which can have widths on the order of 
10 ps or less. Second, thermal effects ( arising from the initial 
population of J, K levels in S0 ) do not wash out these recur­
rences. This is because of the commensurability of beat fre­
quencies for a symmetric top or near commensurability for 
an asymmetric top. 9

•
10 

Our experimental apparatus has been described in detail 
elsewhere. I I Briefly, we measure the decay of spectrally re• 
solved, polarization-analyzed fluorescence that emanates 
from a jet-cooled sample upon excitation with the linearly 
polarized, frequency-doubled output of a picosecond dye la­
ser (synchronously pumped, cavity dumped). Decays and 
recurrences are measured using time-correlated single-pho­
ton counting. For this work the temporal response of the 
detection system was typically 45 ps. 

Figure I shows experimental results corresponding to 
the excitation of the Si--«l band7••l of t•stilbene at 32 234 
cm - 1 and detection of the same fluorescence band. [ Note 
that rotational structure12 is not resolved by the excitation 
laser (bandwidth~ 5 cm - 1

) nor by the detection monochro­
mator.) The data are presented as the polarization anisotro­
py, r(I), calculated directly from observed decays (1

11 
and 

/, ) without deconvolution of the detection response function. 
Also included in the figure is a simulation of the data calcu­
lated using known parameters for t-stilbene12. 13 and expres­
sions for li1 and / 1 •

9
•
10 In the figure one can see clearly the 

recurrences associated with thermally averaged rotational 
coherence. The spacings between recurrences in the experi­
mental traces determine directly the average of the rota• 
tional constants B and C. The value so obtained for the (fl 
level of t•stilbene is given in Table I. It agrees well with the 
vll.!ue calculated using the geometry of Ref. 14. 

We have also made measurements on t•stilbeneS1 vibra­
tional level at 83 cm- 1 ,' t-stilbene-d 12 Sr-(/' level, 1<•1 and 
on the t-stilbenc-argon van der Waals complex bands'C•l 
occurring 111 - 40 an_d - 63 cm I shifts with respect to the 
t-stilbene og band. The rotational constants derived from 
these measurements appear in Table I, and compare well 
with calculated values. The calculated value for the argon 
complue6 was obtained by 8.51iuming the same r-stilbene ge­
ometry as above, with one araon atom placed 3.45 A 15 above 
one of the phenyl groups and on the inner side of that moiety 
( the phenyl groups are tilted about 30" out of the plane de-

liuc:d by the ethylene: group'"). No\ab1y, calculatiom bllKd 
on the uaumption of two argon atoms yield significantly 
lower (B + C)/2 values ( -0.0052 cm- 1

) than those ob­
tained from experiment. 

In oonc:luaion, we have pn:aenttd retult& that demon• 
strate the usefulness oftimc-miolved, Doppler-free polariza­
tion techniques in studying the rotational level structures of 
larae molecules. This technique should be applicable to a 
wide variety of problems llll800iated with the spectra and 
dynamics of the excited states of large molecules. 
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The following program evaluates the theoretical expression for purely ro­

tational coherence in asymmetric top molecules derived in "Purely rotational 

. coherence effect and time-resolved sub.Doppler spectroscopy of large molecules. 

I. Theoretical," P. M. Felker and A.H. Zewail, J. Chem. Phys. 86, 2460 (1987). 

The directions of the transition dipole moments in the molecular principal axis 

frame are unrestricted. This program is based on the program AT7 which is 

limited to calculations in which the transition dipoles lie along principal inertial 

axes. The initial asymmetric top PRC programs, including ATHALF, from 

which AT7 was developed, were written by Peter Felker. See Chapter 2, Section 

III for a discussion of the algorithm. 

The program commonly used for off-axis dipole calculations was an alter­

nate version of ATDPl incorporating the near-symmetric treatment described in 

Chapter 4. An example of the implementation of this approximation is provided 

in the program ATFIT2 in Appendix III. 



PlOGUH ATDP1 
C ---------- FOR AJUIITURY DIPOLE DIRECTIDIIS 
C TO C.lLCIJL.lTE BE1TIIG DECJ.TS lRISIIG FROM THE COHEllEIT 
C PlEPllU.TIDI OF ROTATIOIJ.L LEVELS IX AN ASTIIMITRIC TOP 
C JIOLECULE - mm TEHPERATUllE, DIE FREQUEICY ll.ESDLUTIOI. 
C DIE TEMPOl.&L RESOLUIIOI, P111LLEL lBD 
C PII.PEIDICULlR DETECTIOI PDLARIZlTIOIS. 
C 
C IllPlJT FILES: 
C lTDPII.DAT - IMll IS Mil VALUE OF GROUI]) STATE TOTlL 
C ROTATIOllL AIGULAR MO!IEITUJI Q. I. (IG). 
C (LllGEST on IS ctJRRENTJ.l 45) 
C ISIIP IS IG IICJl.EMEII'. 
C IPTS IS JllJKBER OF DECAY POIITS TO BE 
C ClLCULlTED 
C IUIES IS THE BEAT FREQUENCY lESOLlJTIOI 
C 
C lSTJI/G/E.DlT - COITAII lSTMMETlIC TOP ROTATlOllL EIElGIES 
C 11D El&EIFUJlCTIOIS, ARBJ.IGED BT I 
C 11D STMMETlT SPECIES 
C (G: GIOUID STATE, E: EXCITED STlTE) 
C 

C 

UAL IG,NI,IJ,KG,KIP,KJ,W,IJFAC,ITIP1, IIUtSUHS 
lllL IDPl, IDPB, IF1, ltriES, iUMiX, IFF, IISJ, IKSI 
111L RQ2S1JMLE2(-2:2), IQ2S11MLE2{-2:2), IFTPL, IFTPR, IF7 
DIMEISIOI BF(3,3,24), IFF(3,3,24), IKMAX(0:48,4) 
DIMEISIOI F8JPL(3,3,0:2), FSJPl(3,3,0:2) 
DIMEISIOI EG(0:48,24,4), ElYECG(0:45,24,-48:48,4) 
DIMEISIOI E(0:48,24,4), EIVEC(0:48,24,-48:48,4) 
DIMEISIOI IJSYM(3,7,4), ISYMIJ(3), IKSYK(O:j,4) 
DIHEISIDI KMAIG(4),IMAIJ(4),KK1II(4},KFAC(3),DPSYM{3) 
DIMEISIOI RDPA(3), IDPA(3), IDPB(3), IDPB(3) 
DIMEISIOI DECAYPL(5000), DECATP1{5000), ISTill(0:1,4) 
DIMEISIOI FMDPL(50000) 
DIHEISIOI STATVT(4) 
DIMEISIDN T3J11(0:2, -1:1, -1:1, -2:2) 
COMMON /B.JMS/ BI, IJ, LL, JG 

OPEl(UIIT=21, FILE='ATDPII.DAT', STATUS='OLD') 
I.EAD(21,9011) JlKAI, ISIIP, BPTS, IrollES, :tltJMAl 
READ(21, 903) T 
I.EAD{21,902) (STATWI(J), J=l,4) 
11AD(21, 902) Al 
11AD(21, 902) B1 
111D{21, 902} Cl 
111D(21,902} THETA!, Pill 
111D(21,902} THETAB, PHIB 
ll.EAD(21, 902) CT 
C1DSE(UJ'IT=21, DISP=•SAYE•) 

9011 FD1llUT(I3,2I,I3,2I,I4,2I,F8.8,2I,F8.2} 
902 FORMAT( 4110.5) 
903 FDRMAT(F6.1) 

C 
l'llOPI = 8.28318 
IUDCOI = TWOPI/380. 
THETAA = TJIETAl•IUDCOI 
PHIA = PHIA•liDCOI 
THETAB = THETAB•liDCOI 
PHIB = PHIB•RJ.DCOI 

C WITEC13,8878) iUMil 
C8876 FOBM.lT( • IUM.ll = '• F12.6) 

IrroHJ.I = 0 
C 

C 

SQ2=SQRT(2.) 
DSQ2•1./SQ2 
111=(2.*B1-A1-C1)/(11+C1) 

C SET EICITED STATE STimETUES FOR EJ.CH A-T:U.ISITIOI HOMil'T 
C COHPOBEJIT HD GROlJID STATE SYMMEDY USING THE AlllT 
C IJSTJl(I,II,JJ} VHEIE I IS THE COHPOIEIT Di THE HOKUT 
C (1=A,2'=B,3=C), II IS l CODE 10 IIDICATE VBICR COMPOIEITS 
C ARE IOIZERO ( 1=1 only, 2=B only, 3=A an.dB, 4=C only, 
C 5 = A and C, 8=B and C, T=A,B, and C) • lllD JJ IS THE GllDUliD 
C STATE SYMMETRY (1=++, 2=-+, 3=--, 4'-+- II THE C,A iOTATIOI) 

DATA IJSYH/2,0,0, 0,3,0, 2,3,0, 0,0,4, 2,0,4, 0,3,4, 2,3 1 4, 
2 1.0.0. o.4.o, 1,4,0. o,o,3, 1,0,3, o,4,a, 1,4,3, 
3 4,0,0, 0,1,0, 4,1,0, 0,0.2, 4,0,2, 0.1,2, 4,1,2, 
4 3,0,0, 0,2,0, 3,2,0, 0,0,1, 31 0,1, 0,2,l, 3,2,1/ 

C 
IF(lll.GT.O.) GO TD 10 

C 
C SET THE PROLATE COlllELATIOIS BET.lEEJ' BASIS SET (KGIOUP) AND 
C ROilTIOIAL SYMMETRY lJSIIG T1IE 1lllliY IXSYM(II,JJ), WJIEB.E II IS 
C THE INTEGER PARITY OF THE TOTAL AJiGULA1l HOHEITIJll QUilTTlJK IUMBER 
C (II=O STANDS FOR EYEI IITEGEl, II=1 STAIDS FOi ODD) 110 JJ GIVES 
C THE BASIS SET "KGIOUP" lllJMBEJ. (1=EVEI K AID STH!ETlIC 
C COKBIIATIDN, 2=0DD I AID .lliTISYMHETRIC CDHBillTIOI, 
C 3=0DD K .lliD SYMH. COHB., 4=EVEI AID ilTISYM.) 

C 

JIKSYH(0,1)=1 
IKSYM(l,1)=2 
llTKSYH(0,2}=4 
IKSYM(1,2)=3 
IKSYM(0,3}=3 
IKSYMU ,3)=4 
IKSTK(0,4}=2 
HSTK(1,4)=1 

C SE? THE VALllES FOi PlOLATE SYMMETRY TO "KGIOllP" CDJliER5IOIT 
C USIIG THE ARB.AT NSTMl(II,JJ), WHEB.E II IS TIE IITEGE& PARITY 
C (EVEI OR ODD) OF THE TOTAL ANGULAR MOMENTUM Q,I. AND JJ IS 

t'3 
c:.:, 
.J:s. 



C 

C 

THE SYHMETB.Y IUMBEl (SD ABOVE). 
ISYMl(0.1)=1 
ISYMI (1, 1 )-4 
ISYMl(O ,2)=4 
ISYB(1,2)=1 
ISYMl(0,3)=3 
ISYM1(1,3)=2 
151111(0,4)=2 
ISYB(1,4)=3 
GD TD 11 

10 CDITIIUE 
C OBLATE CDJlRBLJ.TIOIS BETiEEI "ltGIWUP" AID STIUmTllY 

C 

C 

HSYH(0,1)=1 
RSYM(1,1)=4 
IISYM(0,2}=2 
HSDl(1,2)=3 
HSDl(0,3)=3 
RSYM(1,3}=2 
HSYM(0,4}=4 
llSDICl ,4}=1 

ISYMl(0,:1)•1 
ISYMJt(1,1)=4 
ISYMl(0,2)=2 
ISnnt(l ,2)=3 
ISYMlt(0,3}=3 
ISYMl(1,3)=2 
ISYMl(0,4)=4 
ISYMl(1,4)=1 

11 COITIIUE 
C 
C SET DIPOLE VALUES FOl THE TlAISITIOI DIIECTIOI. 
C THE "IUB." TOP llIS IS ilV.lYS JUDE THE 2 ilIS, HD THE 
C IITEIIJIEDIATE AIIS (B AXIS) IS ALWAYS I. 
C 

IF(lltA} 1, 1 ,5 
C PllOLlTE ROTORS 
C ABSOB.PTIDI MOHEITS FIRST 
1 SD= Sil(TBETJA) 
C Z-lIIS IS THE A-AXIS 

IDP1(2) = 0. 
1DPA(2) = CDS(TIIETAA) 

C I-AXIS IS THE B-ilIS 
1DPA(1) = -DSQ2•STH•COS(PHIA) 
1DPA(3) = -1DPA{1) 

C Y-AXIS IS THE C-AIIS 
IDPA(1) = -DSQ2•STH•Sil(PHIA} 
IDPA(3) = IDPA(1) 

C 

C 

D'AC(1) ,. 0 
D'AC(2) = 1 
D'AC(3) = 1 
DPSYH(1) = 1. 
DPSYH(2) "' -1. 
DPSYH(3) = 1, 
Intl= 0 
IF( ABS( IDPA(2)) 
IF( ABS( ILDPA(1)) 
IF( ABS( IDPA{1)) 

.GT •• 00001 ) 

.GT. .00001 ) 

.GT. ,00001 ) 

C PlOLlTE EJIISSIDI ffllMEITS 
5TB = Sll(TlfETAB) 
IDPB(2)=0. 

C 

B.DPB(2) = COS{THETAB) 
1DPB(1) = -DSQ2•STB•CDS(PHIB} 
JlDPB(3) = -1DPB(1} 
IDPB(1) = -DSQ2•STB•SIR(PBIB) 
IDPB(3) = IDPB(1) 
GD TD 99 

ITMi = 1 
ITHi = ITHA + 2 
ITiiA. • ITHA + 4 

C OBLlTE lOTDl - THE SYHHETB.Y JIIS OF TD BASIS SET VECTORS IS C 
6 CDITilllE 

STH = Sil(THETll) 
C Y-U:IS IS T1IE A-AXIS 

IDPA(1) = -DSQ2•STB•Sil(PHIA) 
IDPA(3) = IDPA(1) 

C I-UIS IS THE B-AIIS 
JlDPA(1} = -DSQ2•STB•CDS(PHIA) 
JlDPA(3) • -B.DPA(1) 

C Z-U:IS IS THE C-AIIS 

C 

IDP.l(2} = O. 
JlDP.l(2) = COS(THETAA) 
IFAC(1) = 1 
IFAC(2)., 1 
ltF.AC(3) = 0 
DPSYH(1) = 1. 
DPS1H(2) = -1. 
DPSJM(3) ,.. 1. 
Intl= 0 
IF( ABS( B.DPA(2)) ,GT •• 00001) Intl= 4 
IF( ABS( B.DPA(1)} .GT •• 00001) ITIU. =ITH.A+ 2 
IF( ABS( IDP1(1} ) .GT •• 00001) ITIU. = ITHA + 1 

C OBLATE EMISSIOI MOMEJIT 
STH = Sil(TBETAB) 
IDPB(1) = -DSQ2•STB•Sil(PHIB) 
IDPB(3) = IDPB(1) 
1DPB(1) = -DSQ2•STH•COS(PHIB) 
B.DPB(3)., -1DPB(1) 
IDPB(2)=0. 
1DPB(2) = COS(THETAB) 

ts) 
c., 
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C 
H 
C 
C 
C 

5611 
C 
C 
C 
C 

C 
C 
C 

C 

18 

17 

u 
12 

C 

COITIIIUE 

CALCULATE THE IUMBEB. OF RDTiTIDilL STATES F01 
ill (l,IGBP} PAI1 

DO 6611 I• O, IHiX + 1 
IKMll(l,1) = IIT(FLOiT(l)/2.) + 1 
IKMll(l,2) = IIT(FLOAT(l+l)/2.) 
IKMAI(l,3} • IDU.1(1,2) 
IKMll(l,4) = IDU.I(l,l) - l 

CDBTIIUE . 

IIPDT EIGEIYALtlES llD EIGUYECTOIS OF THE !SYJUIETRIC TOP 

GROUID STATE 
OPEl(mrIT=22,FILE= 11SYMG.DAT';ACCESS='SEQUEITI1L', 

l IECORDTYPE= 1 SEGMEITED 1 ,EITEIDSIZE=200,FORK='lJBFORMJ.TTED 1 , 

1 TYPE•'DLD') 
DD 12 I= 0, DJ.I+ 1 
IGHI-4 
D=N 
IF(I.EQ.O) IGJII=l 
IF(I.EQ.1) IGHI=3 
DD 12 IGBP=l,KGJa: 
IIM=IKMll(l,KGBP) 
JlEiD(22) IKGRP, (EG(ll,ITAU,U:GRP), ITAlJ=l,IIH), 

1 ((EIYECG(D,ITAU,II,KKGBP), 11=1,IIM), ITAU=l,IIM) 
PH=-1. 
IF(KGRP.EQ.1.DR.KGIP.EQ.3) PH=l. 

GET SYMMETRIC TOP COEFYICIEITS FROM+ llD - COHBiliTIOIS 
ll'D CDIVERT THE II[ IIDEI TO SYHl!ETB.IC TOP K Y lllJES 

DO 18 IUU"'1,IKR 
EIYECG(NN,ITAU,0,4)=0. 
WB.ITE(18,41) EG(ll,ITAU,KGBP) 
DO 1e IIK=1,IKH 
Il=IKH+1-III 
1=2•11-1 
IF{KGRP.EQ.1) 1=2•(11-1) 
IF(KGRP.EQ.4) Ix2•Il 
IF(KGRP.EQ.1.AID.II.EQ.1) GO TO 18 
GO TO 17 
EIYECG(Nl,ITAU,0,1)= EIYECG(Nl,ITAU,1,1) 
EIYECG(NN,ITAU,1,1)=0. 
GO TO 16 
EIYECG(NN,ITAU,-K,KGRP)=PX•DSQ2•EIYECG(IN,ITAU,IK,KGRP) 
EIYECG(NN,ITAU,K,IGllP)=DSQ2•EIYECG(NN,ITAU,IK,KGRP) 
COllTIIUE 
CONTI:rmE 
CLOSE{UNIT=22, DISP='SAYE') 

C 

C 
C 
C 

C 

28 

27 

28 
22 

C 
C 

36 
C 

620 

EXCITED STATE 
DPEl(lJIIT=23,FILE•'lSYME.DAT•,ACCESS= 1 SEQUEITill', 

1 llEC011.DTIPE= 1 SEGHEITED',EITENDSIZE=200,FOIH='lJD'0UlTTED', 
1 TIPE••OLD•) 

DO 22 l=O,DAI+1 
KGHI=4 
11=1 
IF(J.EQ.O} KGHI=1 
IF(J.EQ.1) IGMI=3 
DO 22 IGBP=l,IGJII 
IKM=IJ.UUI(l,KGRP) 
llEAD(23) KKGRP, (E(ll,ITiU,KKGRP), ITAU=1,IKH), 

1 ((EIYEC(ll,ITllJ,Il,KKGRP), IK=l,IIH}, ITAU=l,IKM} 
PM=-1. 
IF(KGRP.EQ.1.0R.lGRP.EQ.3) PH=1. 

GEt SYJUIETRIC TOP COEFFICIEITS FROM+ AID - COMBillATIOIS 
1Bll COlilERT THE IK IIIDEI TO SYMMETRIC TOP K VALUES 

DO 26 IT1U=1,IKH 
EIYEC(JJ,IT1U,O,l)=O. 
VRITE(1f,41) EG(NN,ITAU,KGBP) 
DO 26 II1=1,IKM 
IK=IKR+1-II1 
K=2•IK-1 
IF(KGRP.EQ.1} K=2•(IK-1) 
IF(KGRP.EQ.4} 1=2•IK 
IF(IGRP.EQ.1.11D.II.EQ.1) GD TO 28 
GO TO 27 
EIYEC(ll,ITAU,0,1}= EIVEC(ll,ITAU,1,1) 
EIYEC(li,ITlU,1,1)=0. 
GO TD 2d 
EIYEC(ll,ITAU,-l,KGRP)=PM•DSQ2•EIVEC(ll,IT11J,IK,KGIP) 
EIYEC(B'J,ITAU,K,lGBP)=DSQ2+EIVEC(NN,ITlU,IK,lGIP) 
COITIRUE 
COITIRUE 
CLOSE(lJIIT=23, DISP='SiYE') 

ZEBO ELEMEITS OF UllDEFINED KGROllPS (NECESSARY?) 
DO 35 IT1U = 1, IMAI/2 + 1 
DO 35 K = -1•(IDUI + 1), mill+ 1 
EIVECG(O,ITAU,K,2}=0. 
EIYECG(O,ITiU,K,3)=0. 
EIVECG(O,ITAU,K,l)=O. 
EIYECG(1,ITAU,K,i)=O. 
EIVEC(O,ITAU,1,2)=0. 
EIYEC(O,ITAU,1,3)=0. 
EIHC(O,ITAU,1,4)=0. 
EIYEC(1,ITAU,K,4)~o. 

DO 820 1=1,50000 
FMDPL(I)=O. 

FMDPR1 = 0. 

~ 
~ 
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C 

,22 
C 

C 

e6& 
C 

3611 

30! 
C 

C 
C8876 
C 
C 
C 

C 

1 

1 
2 

1 
2 

DO 822 I=0,2,2 
DD 822 J = -1, 1 
DO 822 II• -1 1 1 
DO 822 JJ=-2,2 

T3J11(I,J,II,JJ) = O. 

DSQ3 • 1./SQIT(3.) 
DISQ10 s -1./SQIT(10.) 
DSQSO = 1./SQIT(30.) 
TS.111(0,0 1 0,0)• -DSQ3 
TS.111(0,1,-1,0)= DSQ3 
TS.111(0,-1,1,0)= DSQ3 
TS.111(2,0,0,0) = DSQ30 + DSQ30 
TS.111(2,1,-1,0)• DSQ30 
T3J11(2,-1,1,0}• DSQ30 
T3J11(2,-1,0,1) = DISQ10 
T3J11(2,0,-1,1) = DISQ10 
T3J11(2,1,0,-1) = DISQ10 
T3J11(2,0,1,-1) • DISQ10 
T3J11{2,-1,-1,2}= 1./SQRT(6.) 
T3J11(2,1,1,-2) = 1./SQRT(6.) 

Q2S'OIILEO = 0. 
DD 866 HHP = -1, 1 

Q2stJMLEO = Q2S1JKLEO + ( BDPB(2-HHP)•BDPB(2+HHP) 
- IDPB(2-MMP)•IDPB(2+MMP) )•T3J11(0,KMP,-MMP,O} 

CDITIIUE 

DO 304 IIIU = -2 1 2 
RQ2S'OIILE2(IIIU) = O. 
IQ2stJMLE2(IIIU) a O. 
DD 304 MMP = -1, 1 

IITIP = MMP + IIIU 
IF( ABS(IIP) .GT. 1) GO TD 304 
RQ2SUMLE2(IMIJ) = 1Q2SUMLE2(IIIU) + ( BDPB(2-MMP) 

•BDPB(2+1BP) - IDPB(2-HHP)•IDPB{2+11P) ) 
•T3J11(2,HHP,-lllP,IIIU) 

IQ2S1JMLE2(IIIU) = IQ2SUMLE2(IMU) + ( BDPB{2-MMP) 
•IDPB(2+1BP)+ IDPB(2-MMP)•lDPB(2+11P) ) 

•T3J11(2,MMP,-IIP,IHIJ) 
CDITIIUE 

EJU.X = EG(liJIAI+1,1,1) 
VIITB(18,8876) IJlll 
FOIUU.T( • IJlll = •, F12.8) 

CYCLB THROUGH ALL GllOUiD STATE LEVELS AID THEIR TUISITIOIS 

DD 306 ING=O,lfK.lI,ISIIP 
WRITK(18,8879) IWG 

C8879 FOllJU.T( 'DG = ', 14) 
IHilJ=llfG-1 
IF(lJIG.EQ.O) 11111=1 
IG=FLO.lT(IIG) 
IGED = JHDD(JIG,2) 

C 
C SET HIGHEST l II SIHHETRIC ~OP EIPllSIOI OF GRDUiD 
C STATE EIGEIFUICTIOIS 

C 

lDUIG{l): 2•IlllI(IIG,4) 
IJU.IG(2)• 2•{IlKll(DG,2)) - 1 
DAIG(3)= lllIG(2) 
DIAIG(4)= lllIG(1) 
Il.DIAI•4 
IF(IJG.EQ.1) KKKll1I=3 
IF(DG.EQ.O) KIIJUI=1 

C DEFIR .lLL COIST.llTS DEPEIDDG DI l!IG OILY 
TVDIG =JG+ IG 
DEKF1Cl = 1. / 

1 SQlT( (TVONG + 3.)•( TlfDIG + 2.)•( TWDNG + 1.)) 
TSJOOA = SQ2•( JG+ 1.)•DEHFACl 
T3J011 • SQlT( (JG+ 2.)•( IG * 1.) )•DEHF1C1 
IF( JIG .EQ. 0) GO TO 391 
DEHF1C2 = 1. / SQRT( (NG+ 1.)•C TI101G + 1.)•IG ) 
DEKFAC3 = 1. / SQRT( ( TWDIG + 1.)•IG•( TilDIG - 1.)} 
T3JOOB = IG•DEKF!C3 
T3J01B = 1. / SQRT( 4.•RG + 2.) 
T3J01C = DSQ2•SQ1T( NG•( IG - 1.) )•DEHFAC3 

C 
391 DD 306 IGlPG=1,IIDIAI 
C GET THE STil!ETRI OF THE GRDUIID STATE LEVEL 

ISYHG• llSYH{IGEO,IGI.PG) 
C 
C GET THE STIIJIETIUES OF THE THBEE POSSIBLE TUISITIOI RO:NEJlT­
C .ALLOiED llCITED snn: LEVELS. 
C ( 0 DAIS TlllSITIDB IS DIPOLE FDllllIDDEI) 

DO 60 I = 1, 3 
ISYHIJ{I} = IJSYH(I,ITHA.,ISYHG) 

50 CDITIJroE 
EIPF1C1 = (-1)••(.ltKlIG(KGllPG)) 

C 
DD 308 IT1UG=1,II1UI(IIG,KGB.PG) 

C 
DRGY = EG(IIG,IT.lUG,KGB.PG) 

C i1lITE(18,8878) EIRGI 
C8878 FORM.AT( 'GlDUID STATE EDRGY: ', F12.6) 

IF( EIRGY .GT. KllAI) GD TO 308 
BOLT= ST1TIIT(ISTHG)•EIP(-1.•ENRGY/(20.84•T)) 

l *{-1.)••NGED•(2.•IG+1.) 
C 

N) 
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C FILL TIIE FU, lF, J.ID IFF lllUS FOB. TBE C1JU.EIT GB.omm STATE 
DO 3040 IIJ = IHII, IIG + 1 
IIDEI = DJ - IJIG + 2 
IJ = FL01T(IJIJ) 

C 
C TBE FIRST IIDEI OF FIJ IS ll.VlYS >OB.= IO TD SECOID. 

DO 3333 111 • IIJ, IIG + 1 
III = FLOJ.T(III) 
IIDEI2 = III - IIG + 2 
IJIII = 0 
IF( III .D. IIJ) LHII = 2 
DO 3333 LL= Lilli, 2, 2 

F2 = (2.•FLOJ.T(LL)+1.)• T3J11(LL,O,O,O)•SIIJ(DDD) 
FIJPL(IIDEI2,IIDEI,LL) = F2•T3J11(LL,O,O,O) 
FIJPB.(IIDEI2,IJDEI,LL) = F2•-1.•T3J11(LL,1,-1,0) 

3333 CDIIIIUE 
C 

C 

F1C11=1. 
IF(IIJ.EQ.IIG) F1C11=-1. 
EIFAC1=(-1.)••(IIJ+ll.lIG(IGIPG)+1) 

C IS DJ EVEI OB. ODD! 
IJEO = JHDD(IIJ,2) 

C 
C CYCLE THROUGH IGB.OUPS COUESPOIDJNG TO J.LLOVED IJ SJDETB.IES 
C llD TllE Y ll.lJE FOB. JIIJ. 

C 

C 

C 

C 

C 

C 

DD 3040 I= 1, 3 
IF( ISJHIJ(I) .EQ, 0) GO TD 3040 
IGB.PJ ~ ISJHI( IJEO,ISYHIJ(I) ) 
IF(IIHll(BIJ,IGB.PJ) ,EQ. 0) GO TO 3040 

IKFJ.C = KFJ.C(I) 

EIFJ.C2=(-1.)••CIIG+nl!IG(lGB.PG)+IKFAC) 
EIFJ.C3=(-1,)•EIFJ.C2 

DO 3030 ITAUJ = 1, IIHAX(IIJ,IGRPJ) 

BF1 = O. 
IF1 = O. 

DO 303 IIG = DIJ.IG(ICB.PG), 1, -2 

DD 303 IIJ = 1KG - IXFJ.C, KIG + IKFJ.C, 2 
IF( ABS(lKJ) - IIJ) 710, 710, 303 

710 lJ = FLOAT(IKJ) 
IG =- FLOAI(IKG) 
IQ= IKJ - 1KG 
FAC1=1, 

C 
IF(IQ) 720,727,723 

720 

C 
C 
723 
C 
724 

C 
725 

C 
728 

C 
C 
727 
C 
728 

C 
729 

C 
730 
C 
750 

303 

751 
C 
7611 

C 
752 

C 
753 
C 
C 

C 
3010 
C 
3011 

C 
3012 

KJ = -IJ 
KG= -KG 
FJ.Cl=FJ.CU 

KJ = IG + 1 
IF( IIG - IIJ) 724,726,721 
IJ > IG 
T3JIG = EIF1C3•SQRT( (IG+KJ)•(IG+IJ+1) )•DEHF1C1 
GO TO 750 
IJ = IG 
T3JIG = FJ.Cl• EX1AC3•SQB.T( (IJ-KG)•(BJ+KG+1) )•DSQ2•DEJIFAC2 
GO TD 750 
IJ < IG 
T3JIG = EIFAC1•SQB.T( (IJ-KG)•(IJ-IG+1) )•DSQ2•DEHFAC3 
GD TD 760 

FOi IJ = KG i.e. Q = 0 (ABSOIPTIDI ALDIG Z} 
IF( BIG - IIJ} 728, 729, 730 
IJ > IG 
T3JIG = EIF1C3•SQRT( (IG-KJ+1)•(1G+ltJ+1)•2.)•DEMFAC1 
GO TO 760 
IJ = JIG 
T3JIG = EIFJ.C2•1G•DEJIFAC2 
GO TO 760 
IJ < IG 
T3JIG = EIFAC1•SQIT( (IJ+lG+1)•(1J-IG+1) )•DBMFAC3 

Fl= T3JIG• 
1 EIVECG(IIG,ITAUG,llG,KGRPG)• EIJEC(DJ,ITAUJ,KIJ,KGRPJ) 

IF1 = IDPJ.(2-IQ)•Fl + IF1 
BF1 = B.DPJ.(2-IQ)•F1 + B.F1 
CDBTIHUE 
IF( I-2) 761, 762, 751 
IF( IKFAC) 9999, 752, 7511 

IF1 = IF1 + IF1 
llF1 = O. 
GO TD 763 

B.F1 = llFl + llF1 
IF1 = 0. 

IF( IGiPG .ll. 1) GO TO 3020 

KGB.PG IS 1: ADD APPB.OPlUATE IG = 0 TEBJIS 
IF(IKFJ.C) 9999, 3010, 3016 

KFAC ISO, IDPl = 0 ---> ADD KJ =KG= 0 IERM. 
IF( IIG - IIJ) 3011, 3020, 3012 
NJ> JIG 
T3JIG = EXF1C3•T3JOOA 
GO TO 3013 
IJ < JIG 
T3JIG = EXFAC2•T3JOOB 

t., 
(.-) 
00 



3013 

C 
C 
3016 
C 
3018 

C 
3017 

C 
3018 
C 
3019 

764 

C 
7fi6 
C 
3020 

3030 
3040 
C 
C 

C 

C 

C 

IF1 = IFl + ll.l)P1(2)•T3JIG•EIYECG(IIG,ITAUG,0,1)• 
1 EIYEC(DJ,ITlUJ,O,IGllPJ) 

GO TO 3020 

IFIC IS 1 ---> lDD IJ = 1, IG = O TEllH 
IF( IIG - IIJ) 3018, 3017, 3018 
IJ > IG . 
T3JIG = EIF1C3•T33011 
GO TO 30111 
IJ = JG 
T3JIG = EIF1C3•T3J01B 
GO TO 30111 
IJ < JG 
T3JIG = EIF1C3•T3J01C 

Fl= T3JIG•EIVECG(IIG,IT1UG,0,1)•EIHC(IIJ,ITAUJ,1,KGIPJ) 
IF( I-2) 754, 756, 754 
IF1 = IF1 + 2.•IDP1(1)•Fl 
GO TO 3020 

IFl = IF1 + 2.•llDP1(1)•F1 

IF(I,IIDEI,ITlUJ) = BF1 
IFF(I,IIDEI,ITlUJ) = IF1 
COITIIUE 
COITIIUE 

STlRT EXCITED STATE SUMS 
DO 302 IIJ=lllll,IIG+1 
IDGJ = IIJ - IIG + 2 
IJ = FLOlT(DJ) 

IJUIJ(1) = 2•IIM1l(DJ,4) 
IJUIJ(2) = 2•( IlOlll(INJ,2) ) - 1 
IJUIJ(3) s 1111IJ(2) 
IJUIJ(4) = DU.IJ(1) 

IS IIJ Elli OR ODD 
I.JED= JKOD{IIJ,2) 

ITIP1 = IJ•( IJ + 1.) 
Til'OIJ = IJ + IJ 
TVOIJFlC = (TVOIJ+4.)•(TVOIJ+3.)•(Til'OIJ+2.)•(TVOIJ+1.) 
DEJIF1C4 = l./( (TllOIJ+6.)•TVOIJF1C ) 
IF( IIJ .EQ. 0) GD TO 3112 
DEJIF1Ci = 1./( Til'DIJ•TWOIJFlC) 
DEXFAC8 = SQRT( (Til'OIJ+4.)•DEHFAC5 / (TVDIJ-1.) ) 

C 
C CYCLE TIIROUGH !GROUPS CDRBESPOIDIIG TO THE AI.LOVED SYMHETiIES 
C AID THE VALUE FDR INJ. 

392 DO 302 I= 1, 3 

C 

IF( ISTIIIJ(I) .RQ. 0) GO TO 302 
KGllPJ = ISYHK( IJEO, ISTIIIJ(I) ) 
IF(Inu.I(IIJ,IGIPJ) .EQ. 0) GO TO 302 
EIFIC7 = (-1)••{ IIJ + IMAU(KGUJ) ) 
IJFIC = Q2SUMLEO•EIFAC7 / SQRT( Til'OIJ + 1.) 
F7LEOPL = F8JPL{IDGJ,IDCJ,O)•IJFJC 
F7LEOPI = FIIJPl{IDGJ,IDGJ,O)•JJFJC 

DD 301 III=DJ,IIIG+1 
C WITE(18,8877) IIJ, III 
C8877 FOllKlT( • IIJ = '• 14, •DI••, 14) 

IDGI = DI - JIG+ 2 
II=FLOAI(III) 

C KMJ.XI(1) = 2•IKl1I(III,4) 
KM1II(2) = 2•( IIM.ll(III,2) ) - 1 
KMJ.XI(3) = KMJ.XI(2) 
KMJ.XI(4) = KMJ.II{1) 

C 
FAC3Sc1. 
IF(III.KQ.IIJ+1} FAC33=-i. 

C 
Fl= FlC33•(2.•II+1.)•(TllOIJ+1.) 

C 
C IS III EVEI OR ODD! 

IIEO • JHOD{III,2) 
C CYCLE THROUGH KGROUPS CORIESPOQIIG TO THE lLLO'WED 
C IJ SYMMETRIES AID THE YlUIE FOR III. 

C 

C 

IIHII = 1 
IF{ III .EQ. DJ} IDIII = I 
DO 300 II= IDIII, 3 
IF( ISYMIJ(II) .EQ. 0) GO TO 300 
KGRPI = ISYMK( IIEO, ISYMIJ(II) ) 
IF(IKMJ.X(III,KGJU>I) .EQ. 0) GO TD 300 
EIF1C8 = (-1)••( DJ+ IHAII(KGUI) ) 
~n2=1 
IF( KFAC(II) .EQ. KPlC(I) ) MPHI2 = 2 

DO 307 ITAUJ=1,IKMJ.l(IIJ,IGIPJ) 
ITAUIMIN=1 
IF(III .EQ. DJ .!ID. KGllPI .EQ. IGIPJ) ITAUIHII = ITAUJ 

DO 307 ITIUI=ITJUDIIl,Il!lll(III,IGIPI) 
1U = ABS( E{Dl,ITAUI,XGllPI) - E(DJ,ITAUJ,KGRPJ) ) 

C WB.ITE(lB,8880) lllJ 
C8880 FDRM1T( 'IU = '• F12.6) 

IF( JIU .GT. IIUMlI) GO TO 307 
C 

I',) 
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846 

C 

C 

IF7 = 0. 
IF7 .. o. 
IFTPL-= O. 
IFTPL = O. 
IFTPI = O. 
IFTPI = O. 
FlC = 2. 

IF( IIJ + 1 - III) 780, 770, Teo 

C TJIIS SEGIIEIT IS FOil II= IJ 
780 IF( IGIPI .n. KGBPJ .01. IT.l'DI .n. ITlUJ) GD TD 150 
C 
C DI.lGOl1L TEIK 1PPEilS OICE II SUJ!lllTIOI 

F.lC = 1. 
C L = 0 

IF7PL = F7LEOPL 
IFTPI = FTLEOPI 

C 
C L = 2 
656 IF(III+IIJ-2) 804, T93, 793 
793 DO 404 IIJ=-ltHAIJ(IGBPJ), D11.IJ(KGB.PJ), 2 
C 
406 DO 604 IIIP= IIJ - IPMI2, IV+ MPMX2, 2 

IF(ABS(IIIP)-III) 406,406,604 
406 IIP=FL01T(IIIP) 

IKIJ" = IIIP - U.:J 
C 

IF( IIIU) 764, 766, 766 
714 KIP= -IIP 
716 IF( lBS(DlU) .EQ. 1) GO TO 7666 
C KIP-= 1J + 2 

T3JIJ = EIF1C7• SQRT( 6•(1J+IIP-1)•(1J+IIP)• 
1 (IJ-IIP+1)•(NJ-KIP+2) )•DEHFACI 

GO TO 790 
C KIP= IJ + 1 
7888 T3JIJ = EIF1C8•(1.-2.•KIP)• 

C 
718 
C 
790 

604 
404 

C 
C 
770 
7931 

1 SQRT( 6•(1J-IIP+1.)•(IJ+KIP) }•DEHF1C8 
GO TO 790 

KIP• IJ 
T3JIJ= EIFAC7•2.•( 3.•IIP•IIP - ITRP1 )•DEMFAC8 

IF7 = IF7 + RQ2Smu.E2(IIIU)•T3JIJ•EIYEC{III,ITAUI,IIIP,IGBPI) 
1 •EIVEC(IVlll'J,ITAUJ,llU,KGRPJ) 

IF7 = IF7 + IQ251JMLE2(IIIU)•T3JIJ•EIYEC(III,ITJUI,IKIP,IGRPI) 
1 •EIVEC(IIJ,ITAUJ,KKJ,IGBPJ) 

CDITIJIUE 
COITIIUE 
GO TO 800 

TJIIS SEGIIEIT IS FDR II= IJ + 1 
IF(III+DJ-2) 301, 7931, 7931 
DO 4041 IIJ=-KMAIJ{KGIPJ}, IKAIJ(KGRPJ}, 2 

C 

40&1 

C 

7141 

C 
7861 
C 

C 
7867 

C 
7861 

C 
7901 

1 

1 

1 

1 

DO 5041 Kl[IP• UJ-HPHX2, KKJ+HPMI2, 2 
IF(ABS(KIIP)-III) 4061,4061,6041 
IIP=FLD1I{KIIP) 
IMU = KKIP - HJ 
F1C3=1. 

IF( IMU} 7441, Tff1, 7651 
FAC3-= -1. 
KIP=-KIP 

IF( ABS(DIU) .EQ, 1) GO TO 7667 
KIP=lL142 

T3JIJ=FAC3•2.•EIFAC8• SQRT( (IJ+KIP-1)• 
(IJ+IIP)•(IJ+lIP+1)• (IJ-IIP+2)•DEHF1C6 

GO TD 7801 
IIP • KJ + 1 

T3JIJ = FAC3•(-2.)•EIF1C7•(1J-2.*KIP+2.)• 
SQRT( (l'i'J+KIP+1. )•(IIJ+KIP)•DUF.lC6 ) 

GO TD 7901 
KIP= 1L1 

T3JIJ= EIF1C8•(-2.)•KIP• 
SQB.T( tJ,1,(IJ-KIP+l)<1c(IJ+KIP+l)•DUF.lC6 ) 

IF7 = RF7 + RQ2S1JHLE2{IIIU)•T3JIJ•EIVEC{DI,ITAUI,KKIP,KGIPI) 
•EIYEC(DJ,ITAll'J,IIJ,IGIPJ) 

IF7 = IF7 + IQ2S1JHLE2{IMU)•T3JIJ•EIVEC(INI,ITAUI,KKIP,KGRPI) 
1 •EIYEC(DJ,ITAll'J,IIJ,IGIPJ) 

6041 CONTINUE 
4041 CDITilrnE 

GO TO 800 
C 
C THIS SEGMElll' IS FOi II= IJ + 2 
780 DO 4042 IKJ=-KHAIJ(IGIPJ), KMAXJ(KGB.PJ), 2 
C 

C 

7842 
7552 
C 

C 
7688 

C 
7862 

1 

1 

DO 5042 ltKIP • 11J-JIPlll2, KKJ+HPHI2, 2 
KIP=FLOAT(KKIP) 
IMU = KKIP - U.:J 

IF( IMU) 7642, 7682, 
KIP= -KIP 
IF( ABS(IMU) .EQ. 1) 

KIP=XJ+2 
T3JIJ = EIFACS•SQIT( 

GO TO 7902 
KIP=lU+l 

7852 

GD TD 7668 

(IJ+KIP-l)•(NJ+KIP)•(BJ+IIP+l)• 
(IJ+IIP+2)•DEHFAC4 ) 

TSJIJ = 2.•EIFAC8•SQB.T( (IJ-KIP+2.)•(IJ+KIP+2.)*{IJ+KIP+1.) 
•(IJ+IIP}•DE!F1C4) 

GO TO 7902 
IIP = lU 

T3JIJ= EIFACB• SijBT( 8•(NJ-KIP+2)• 
1 (JJ-KIP+1)•(lllJ+KIP+2)•(NJ+UP+1)*DEMFAC4 ) 

t'-' 
~ 
0 



C 
7D02 RF7 = RF7 + RQ2Smn.E2(IJro)•T3JIJ•EIVIC(DI,IT1UI.IIIP,IGBPI) 

1 •EIYEC(IIJ.IT1UJ,KlJ,KGBPJ) 
IF7 = IF7 + IQ2StJKI.E2(IIIU)•T3JIJ•EIVIC(III,IT1UI,llIP,IGIPI) 

1 •EIYEC(DJ ,ITlUJ ,llJ ,KGRPJ) 
5042 CDl'lTIIIUE 
4042 COITIIllm 
C 
800 RF7PL = llFTPL + F8JPL(IDGI ,IIDGJ • 2) • IF7 

IF7PL = IFTPL + F8JPL(IDGI,11DGJ,2) • IF7 
IF7PR • IFTPR + F6JPR{IDGI,IDGJ,2) • IF7 
IF7PR = IFTPR + F8JPR(IDGI.IDGJ,2) • IF7 

104 CDl'lTIBUE 
C 

C 

C 

RISJ = DPSYM(I)•IF(I,IDGJ,IT1UJ} 
IKSJ = IFF(I,IDGJ,I?AUJ) 
RISI= llF(II,IDGI,ITAUI) 
IKSI = IFF(II,IDGI,ITAUI) 
RIKSUMS = lltSJ•RKSI - IKSJ•IISI 
IKKSUMS = lltSJ•IISI + RKSI•IKSJ 

IltJ = IIIT{ llJ/IIUltES) + 1 
IF(IInJ .GT. IliUMAI} IIUMAI = IIU 
ll11R = EIPF1C1•F1•BDLT•FAC 
FlIDPL(IIU)= F!IDPL{IllU) + 

1 RRR•( lltKSUMS•IF7PL - IKKSUHS•IF7PL 
IF( IB1J .IE. 1) GD TD 307 
FMDPRl = FKDPR1 + RllB.•( RKIS1111S•RF7Pl - IlKSU!IS•IF7PR ) 

307 CONTINUE 
300 CDl'lTirrol 
301 CDITINUE 
302 CDITINUE 
308 CONTINUE 
305 CDlfTIWE 
C 
C VE USE A FUQUEICY ltESDLUTIDN DF (llURES) GHZ 
C AID A MAIIKUJf OF (NUH!X) GHZ 

COISTAIT= TVDPI•CT•O.OOl•NUllES 
C 
C CALCULATE PARAlLEL AND PERPENDICULAR DEClYS 

DD 821 I=l, IPTS 
821 DECAYPL(I)=O. 

C 

C 
C8881 
105 
802 
C 

708 

C 

707 
C 

C 
DH 

C 

C 
C 
9999 

C 
C 

THAI= 0. 
DD 802 J = 2, I:tmMAI 
IF( FHDPL(J) .EQ. O. ) GD TD 802 
OMEGl = FLOAT( J - 1 ,~co1sr11r 
DO 805 I= 1, IPTS 
WB.ITE(18,8881) DREG!, I 
FORMAT( 'OMEGA='• F10.4, 'AT DBCAY PT. '• 14) 
DECAYPL{I) = DECAYPL(I) + FMDPL(J)•COS( DMEGA•FLOAT(I-1) 
COITIBUE 

DO 708 I= 1, IPTS 
DECAYPR(I) = -0.5•DECAYPL(I) + FHDPR1 
DECAYPL(I) • DECAYPL(I) + FlIDPL(l) 
IF{DECAYPL(I).GT.YMll) YH1I = DECAYPL(I) 

IF(DEC1YPR(I).GT,YJU.X) Til1I = DECAYPR(I) 
SCALE=5000./YHAI 

DO 707 I=l,IPTS 
DECAYPL(I)= DECAYPL(I)•SCALE 
DECAYPR(I)= DECAYPl(I)•SClLE 

OPEN(UIIT=22, FILE= 1AT1PL.D1T', 1CCESS='SEQUEITI1L', 
1 RECORDTYPE=•SEGHEITED'• FOllH='ffllFOllMATTED', STATUS='RV') 

llRITE(22) NMAI,T,A1,B1,C1,ITJU,It1!B,O,IPTS,CT,SCALE, 
1 (DEC1YPL(I), I=1 0 1PTS) 

CLDSE(UJIT=22, DISP='SAVE') 

OPEl(UNIT=22, FILE='AT1PR.DAT', ACCESS='SEQUEIITIAL', 
1 RECDRDTYPE='SEGKEITED', FORM='U11FDBH1Tl'ED', STATUS='IEV') 

VRITE(22) IIM11,t,A1,Bl,C1,ITHA,It1!B,1,IPTS,CT,SCll.E, 
1 (DEC1YPR(I), I=1,IPTS) 

CLDSE(UJIIT=22, DISP=•SilE') 

STOP 

THIS SEGHEIT IS NOT REACHED IJILESS SOHETRIIG ISl'T WORKING. 
IMAX= l 
GD TO 999 
END 

FUNCTION SIIJ(DDD) 
[See the end of Appendix III for a copy of this aubroutine.] 

r:-., 
.J:>. ..... 
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Appendix III 

Fortran program ATFIT2 
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ATFIT2 is a general :fitting program for purely rotational coherence in 

asymmetric top molecules. It sea,rches the parameter space of A', B', C', 
TROT' and t0 for the best fit of a simulated, principal-axis dipole PRC signal 

to a given input data, file. The subroutine ATT3 calcula.tes the simulation file 

for each trial set of rotational constants for up to three temperatures per call. 

ATEIG solves for the asymmetric, top rotational energies and eigenfunctions by 

calling the IMSL Library routine EIGRS. CONVOL convolutes the calculated 

intensities with the given system response function. The parameter IPOL is set 

to O or 2 to indicate that the data to be fit is in the form of parallel fluorescence 

(with the decay due to the excited state lifetime removed) or of fluorescence 

anisotropy. The near-symmetric treatment may be chosen by setting the flag 

INEAR. Further details of the fitting procedure are discussed in Chapter 4. 



PIDGliM ATFIT2 
C TD DETEUIIE TIE ROTATIDIAL COUIEICE PAlllHETEJlS 
C IESULTIIG IN TIE BEST FIT·TD THl INPUT FILE ATFITD.DAT. 
C TJll! GIO'IJID STATE STimCTOll IS BILD FIIED AS Gl1EI II 
C THE FILE lSTHG.DAT. THE CALCULATED BEiTIIG DECAYS ARISE 
C FB.DK TU CDUI.DTT PllEPAUTIOI DI lOTATIDIAL LEVELS II Al 
C 11 lSYIUIETIIC TOP MOLECULE. 0.11 .FB.EQUEllCY B.ESDLtlTIO:W 
C AID DIE l'EXPOIUL BESOLUIIOI ABE USED. DIPOLES 1LOIG 
C PRIICIPAL lIES OILY. 
C GJ.OUID snn:s HlVIHG ERi.GT GRE.iTEJ. TH.lli THE LOWEST 
C IIEB.GJ OF THE I~ IMAX+ 1 IUIJFOLD ARE IDT COISIDERED. 
C 
C IIPUT FILES: 
C ATFITII.DAT - IMAX IS IUI YJLUE OF GROmJD ST1TE TOTAL 
C ROTATIONAL AIGDI.AR MOMENTUM Q, I. (IG). 
C (LARGEST IJ!AI IS ClJRR.RlfILY 41i) 
C ISKIP IS IG IICIE!IEIT. 
C NPTSD IS THE IUMBEI OF DATA PDIITS TD COISIDEI 
C liURES IS T1IE BEAT FJ.EQlJEJlCY RESOLUTIOI 
C TMII IS THE IIITIAL TEMPERATUBE 
C DELT IS THE TEJIPEll.iTUll STEP 
C AO, etc. ARE IIITIAL GUESSES AID 11 - 12, e~c. 
C ARE THE IU.IGES OF ROTATIOIAL COISTAITS 
C IPOL I:IDICATES THE TYPE OF DATA TO BE FIT 
C IlVEAR IS 101-ZEIO FOB. lmAR-SY!DmTRIC TREATIIEBT 
C TO IS TIME ZERO OF THE DATA 
C DELCOIST(I) IS THE STEP SIZE USED FOB. 
C THE Ith ROTATIONAL COISTllT 
C II THE GB.ADIEDT ESTIMATE 
C 
C ASTIIG.DAT - GROUND STATE EIERGIES AID EIGEIVlLUES 
C 
C ATFITDII.DAT - DATA FILE TO BE FIT 
C 
C ATFITB.II.DAT - IESPOISE FILE TO BE CODVOLUTED WITH 
C THE SIMUUTIOI. FIRST ClillEL 
C DETERMINES SIMUI.lTIOI T = O. 
C 
C SIGII.DlT - FILE OF DEIDMIIATORS USED IB 
C CHI-SQUARE CALCULlTIOI 
C 
C OUTPUT FILES: 
C FOl018,DiT 
C 
C 
C SUBlOUTIIES : 
C 

- LISTS SETS OF PAlAMETERS AID 
CORRESPOIDIIG CBI-SQUARED 

ATT3( IT, A, B, C, f, TMIX, CHIMIN, ISDII) 
- ATEIG, COlfYOL 

C 

C 

9011 
901 
1102 
1103 
1104 
C 
C 

C 

44 
C 

li5 

UAL IDP.A., IDPB, IUB.ES, ll1JH.U 
DIMEISIOI CIISQ11(4), SI'EP(3), 1(3), B8(3) 
DilmlfSIOI il(3), DI1(3), DELCOIST(3) 
COMMOI T3J11(0:2,-1:1,-1:1,-2:2), IFlC, DPSTII, IM1I, ISIIP, 

1 IRP1, IIHAI(0:44,4), Q2SUMLE2(-2:2), Q2SUMLEO, CT001, 
2 TO, llWIDTB, smm, IPfSD, AIIPIIJ, IPOL, ITMA, IJSYM(3,4), 
3 IKSY!f(0:1,4), ISJJIK(0:1,4), IDPA(3), IDP1(3), II.DPB(3), 
4 IDPB(3), IUJES, IIUHAI, HPHJI, HPMI, HPlll2, ST1IWT(4}, 
6 IDE1(4,4), JG(0:4i,24,4), EIVECG(0:46,24,-4i:4S,4) 

COMMDI /COIVOL/ 11, B.(600) 
COHMDI /CHI/ D(6000), SIGDEM(liOOO) 

DPEl(mTIT=21, FJLE~•ATFITII.DAT', STATUS='OLD•) 
lEAD(21,9011) IIJIJI, ISKIP, IIPTSD, IURES, IUMAI 
READ(21,903) 11111, DELT 
UAD{21,904) {STATWT(J), J=1,4) 
B.EAD(21,D02) 10 
READ(21,D02) A1 
B.EAD(21,902) 12 
ll.AD(21,902) BO 
ll.1D(21,D02) B1 
lEAD(21,D02) B2 
BEAD(21,902) co 
lEAD(21,902) C1 
READ(21,902) C2 
BEAD(21,901) I111.l 
READ(21,901) ITHB 
RE.lD(21,D01) IPOL 
lEAD(21,D01) IIEAl 
READ(21,902) TO 
READ(21,904} DELCOIST 
CLOSE(UUIT=21, DISP='SAYE') 
FORMAT(I3,2I,I3,2I,I4,2I,F8.a,21,rs.2) 
FOllMAT(I3) 
FORMAT(F10.5) 
FORMAT( 2(21, Fli,2) ) 
FOl1MAT(4F10.6) 

READ II RESPONSE AID 1011.HALIZE 
OPEl(UIIT=22, FILE='ATFI!III.DAT', ACCESS='SEQtlEITilL', 

l B.ECOlWTYPE='SEGMEBTED', FDllM='lfflFOIUU.TTED', STATDS='OLD') 
IEAD(22} IMAII,TX,.AI,BI,Cl,ITHA.l,ITiiBI,IPDLI,IJl,CT, 

1 (R(I), I=l,IB.) 
CLDSE(1JIIT=22, DISP='SAYE') 

CT001 = CT•.001 
St!M=O. 
DO 44 I= 1, Ii 

SUH = SUH + l(I) 

DO 66 I= 1, IR 
l(I)=R(I) /SUM 

1" 
~ 
~ 



C 
C UID II DITI TD BE FIT 

C 

200 

C 
H 

201 

C 
67 

il7e7 
C 

DPEB(UII?a22, FILl= 11TFITDII.DIT', ICCISS=•SEQUEITIAL•, 
1 UCOJlDTYPE=•SEGHEITED• • FOU='UIFOIM!TTED• • STITUS='OLD') 

UlD(22) IIUll,ll,il,BI,CI,ITJLlI,ITIIBI,IPOLI,IPTS,CT1, 
1 ( D(I), I= 1, IPTSD) 

1 

1 

CLOSE(UIIT~22, DISP=•SIYE') 

IF( CT1 .EQ. CT) GO TOH 
VI.ITE(18,200) 
FOBHlT( • ne time reaolutiona do not agree. •) 
STOP 

OPEB(UIIT=27, 11JIE= 1 SIGil.dat', ICCESS=•SEQUEITIIL'• 
IECOJlDTYPE= • SEGHEITED ' , FDU• '1JIFOIM!TTED • , ST I TUS= •OLD•) 

read.(27) IIUII, TI. ll, BI, CI, ITMAI, I'DIBI, IPDLI, 
IPTSI. CTI, ( SIGDElf(I), I= 1, IPTSI) 

CLOSE(UIIT=27, DISP='SIYE') 
IF( IPTSI .EQ. IPTSD) GD TD 87 
VI.ITE(18,20:I) 
FDBHlT{ • Vrong time range tor sigma file. •) 
STOP 

SUHD = 0. 
DO 8787 I= 1, IPTSD 

SDHD = S1JJI]) + D(I) 

IF( IPOL .llE. 2) GD TD 77 
UIFII = SUMD/IPTSD 
IIIFIB = ( 1 + 2.•B.IIFII )/( 1. - RINFII) 

C 
77 SQ2•SQIT(2.) 

DSQ2=1./SQ2 
C lLL PIBAHETER SETS WILL BE TREATED II THE S.lJIE BASIS 
C ( PI.DLlTE OR DBL.Ill ) 

RIA={ 2.•BO - 10 - CO)/( 10 +CO) 
C SET EXCITED STlTE SYHMETllIES FOB. GIRi A-TUISITIDI 
C MOMEII DIIECTIOI IID GiOUID STATE SYMMETRY USIIG 
C THE lllllY IJSYM(II,JJ), WHERE II IS THE MOMEIT 
C DIIECTIOI (1=A,2=B,3=C) AID JJ IS THE SYHMETRY 
C {1=++, 2=-+, !•--, 4=+- II THE C,1 BDTITIOI) 

C 

DATA IJSYII / 2,3,4, 
2 1,4,3, 
3 4,1,2, 
4 3,2,1/ 

C UHESTB.ICTIYE LIMITS J.U SET DI DELTA TAU FOB. THE GEIElllL CASE 
DITA IDEL / 30,30,30,30, 

2 30,30,30,30, 
3 30,30,30,30, 
4 30,30,30,30/ 

IF(llltl.GT.O.} GD TD 10 

C 
IF( IJIEll .EQ. 0) GD TO 22 
lmITE(18 ,33) 

33 FOU.lT(• ne near-sJl!llll8tric approxilllation will be applied.•) 
C SET IEAI-SYMDTB.IC TOP PROLATE LIMITS 01 DELTA TIU 
C AS 1 FOJICTIOI OF GB.ll'OID !ID El.CITED IGlOUP USING 
C THE J.llAY IDEL(lGB.PG,lGllPJ). 

C 

IDEL(1,1) = 0 
IDEL(1,2) = 1 
IDEL(1,3) = 1 
IDELC1,4) = 1 
IDEL{2,1) = 1 
IDEL(2,2) = 0 
IDEL(2,3) = 0 
IDEL(2,4) = 1 
IDEL(3,1) = 1 
IDEL(3 ,2) = 0 
IDEL(3,3) = 0 
IDEL(3,4) = 1 
IDEL(4,1) = 1 
IDEL(4,2) = 1 
IDEL(4,3) = 1 
IDEL(4,4) = 0 

C SET rHE PROLJ'IE COB.UUTIOIS BEnmEN B!SIS SET AID ROTATIONAL 
C SYMMETRY USIIG THE lllAY lltSYM{II,JJ), 'll'HEII.E II IS THE INTEGER 
C PARITY OF T1IE TOTiL AIGUL.IR HIJMEITUM QVllTim IIIOMBEI (II=O 
C STAll>S FOR EVEI IITEGll, II=1 STAIDS FDR ODD) AJID JJ GIVES T11E 
C BASIS SET "lGB.DllP" IDlfflEll (1=EVEJl I AID snumnrc COMBIIATIDI, 
C 2=0DD KAID !ITISYHMETUC COMllIIATIDI, 3=DDD I llD snm. COMB., 
C 4=EVD AID AITISYII.) 
22 IIKSYM(0,1)=1 

C 

H.SYH(1,1)=2 
IIKSYH(0,2)=4 
HSYM(1,2)=3 
IKSYH(0,3)=3 
IKSYH(l,3)=4 
HSYll(0,4)=2 
IKSTI!:(1,4)=1 

C SET ID VALUES FOB. PJUlLl'IE STI!HETJlY TD "IGllOUP" CDBVEllSIOfl 
C USIIG THE JlllY ISYMK(II,JJ), VHEU II IS THE INTEGER 
C PAllff (E'iEI OR ODD) OF THE TOTAL AIGULAR MDHElfTUM Q.I. 
C .Ul> JJ IS 'IIE STIOIE'!'JlY InmBEll (SEE .HOVE). 

IISYMK(0,1)=1 
IISYMK(1,1)=4 
IISYMl{0,2)=4 
ISYHK(1,2)=1 
ISYH!t(0,3)=3 
ISYHK(1,3)=2 
ISYMK(0,4)=2 
lfSYMK(1,4)=3 
GD TD 11 

1.-.) 
,.i:,.. 
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C 
1 o cDnIJJOE 

IF( IBEAa .IQ. 0) GD TD 212 
C OBLATE LIHITS 01 DELT1 TlV 

IDlt(1.1) = 1 
IDIL(1 0 2) = 1 
IDEt(1.3) = 1 
ID1t(1 0 4) = 1 
IDlt(2,1) = 1 
IDEt(2.2) = 1 
IDEt(2.3) = 1 
IDILC2,4) • 1 
IDEL(3,1) = 1 
IDEt(3,2) .. 1 
IDIL(3,3) = 1 
IDEt(3,4) = 1 
IDEt(4 0 1) = 1 
IDEt(4,2) = 1 
IDEt{4,3) = :I. 
IDEt(4,4) = :1 

C 
C DBL.I.TE COJI.B.ELATIOIS BITWEEI "IGB.OUP" AND STIDIETl.l 
212 IISYK(0,1)=1 

C 

C 

IISYK(1,1)-4 
IISYM(0,2)=2 
HSYK(l,2)=3 
IKSYM(0,3)=3 
JIKSYll(1,3)=2 
HSYll(0,4)=4 
HSYll(1,4)=1 

J5YM1[{0,1)=1 
ISYM1[(1,1)=4 
ISTIU:(0,2)=2 
1Sllll(1,2)=3 
ISYJII(0,3)=3 
JSYJII(1,3)=2 
ISllll(0,4)=4 
ISYM1(1,4)=1 

11 CDITIJJIIE 
C 
C SET DIPOLE VALUES FOi THE POSSIBLE Tlll1l'SITIOI DIIECTIOIS. 
C THE "IEll" TOP ilIS IS 1LV1YS MADE THE Z AXIS, AID THE 
C llTEJUmDIATE llIS (B 111S) IS ALWAYS X. 
C 

IF(llA) 1,1,li 
C PIOLATE lOTOIS 
C ABSOlPTIOI MOMENTS FIRST 
1 IF(ITIU..EQ.2) GD TD 3 

IF(ITMJ..EQ.3) GO TO 4 

C 

C 
3 

C 
4 

C 

Z-AIIS IS THE A-1115 
IDP1(2)=CJ. 
!DPA(2)=:I. 
KFJ.C=O 
DPSTII = 1. 
GO TO 9 
I-J.IIS IS THE B-AIIS 
IDPJ.(1)=Cl. 
IDP1(3)=Cl. 
!DP1(1) = -DSQ2 
!DP1(3) = DSQ2 
IF'AC=l 
DPSTII = -1. 
GD TO 9 
T-ilIS IS THE C-AIIS 
IDPA(1)=-DSQ2 
IDPJ.(3)=-DSQ2 
!DPA(i)=0. 
!DP1(3)=0. 
KFAC=l 
DPSTII = l. 

C PROLATE EHISSIDI MOMEITS 
9 IF(ITHB.EQ.2) GO ro 102 

IF(ITHB.EQ.3) GO ro 103 
!DPB(2) = 1. 
IDPB(2) = 0. 
IPMJl=O 
IPMX=O 
GO TO 99 

102 11.DPB(l) = -1.•DSQ2 
11.DPB(3) = 1.•DSQ2 
IPD=-1 
IPMX=l 
GD TO 99 

103 IDPB(l) = -1.•DSQ2 
IDPB(3) = -1.•DSQ2 
IPMJl=-1 
IPHJ:=1 
GD TO 99 

C 
C OBLATE ROTOR 
S COITIIUE 

IF(ITIU.EQ.2) GO TD 7 
IF(ITIU..EQ.3) GO TO 8 

C Y-AXIS IS TIE A-AIIS 
IDPA(1)=-0SQ2 
IDP.A.(3)=-DSQ2 
1DPA(1)=0. 
RDPA(3)=0. 
KFAC=1 
DPSYM = 1. 
GO TO 109 

t-., 
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C I-J.IIS IS THE B-111S 
7 IDP1(1)=0. 

IDH(3)=0. 
1DP1(1) = -DSQ2 
1DP1(3) = DSQ2 
IFJ.C=1 
DPSTM = -1. 
GO TO 109 

C Z-J.IIS IS TD C-lIIS 
8 IDP1(2)..0. 

C 

1DP1C2)•1. 
IFJ.C=O 
DPSTM = 1. 

C OBLlTE EIIISSIOI MOJIEIT 
109 IF(ITRB.EQ.2) GO TO 202 

IF(ITHB.EQ.3) GO TO 203 
IDPB(1) = -1.•DSQ2 
IDPB(3) = -1.•DSQ2 
IP:l!l=-1 
IPJII=1 
GO TOH 

202 IDPB(1) = -1.•DSQ2 
1DPB(3) = 1.•DSQ2 
IP:1!1 .. -1 
IIPJII=l 
GO TO 99 

203 IDPB{2) • 1. 
IDPB(2) = O. 
IPMl=O 
IPlll=O 

H COITIIUE 
C 
C C1LCUUTE THE ltlHllll OF lOTATIOIAL STATES FOR 11T (l,IGllP) 

DO 5511 B = O, DJ.I+ 1 
IKJIAI(l,1) = IIT(FLOlT(l)/2.) + 1 
IKJIAI(l,2) = IIT(FLOlT(l+l)/2.) 
IIM1I(l,3) • IIMJ.I(l,2) 
IIM1I(l,4) = IIHJ.I{l,1) - 1 

5511 COITIIUE 
C 
C IIPUT EIGEIIVALUES AID EIGEIYECTORS OF THE 
C 1STIIHETBIC TOP GROUID STlTE 
C 

DPEl(lJJIIT:22,FILE='ASIMG.DAT',ACCESS='SEQUEITiil', 
1 llECDB.DTYPE='SEGMEITED',EITEIDSIZE=200,FORJl='UllFOIUIATTED', 
1 TYPE='OLD') 

C E{IIM1I+1) IS IEEDED TO FII HJ.IIHUH EIEllGY 
DO 12 I= O, IMAI+ 1 

C 

KGMI=4 
D=I 
IF(I.EQ.O) IGMJ:=1 
IF(I.EQ.1) KGMI=3 
DD 12 KGRP=1,IGJU 
IKM=IKMAl(l,KGllP) 
JI.EAD(22) IKGlP, (EG(ll,ITiU,Kli'.GRP), IT11J=1,IU), 

1 ((EIYECG(ll,ITlU,Il,IIGll.P), IK=1,IU}, ITAU=1,IU) 
PH=-1. 
IF(KGRP.EQ.1.0R.KGRP.EQ.3) PH=l. 

C GET SYMMETRIC TOP COEFFICIENTS FRDH + ilD - CIIHBil1TIOIS 
C ilD COnERT THE II IIDEI TO Snm:ETRIC TOP I YALURS 

DO 18 ITAU=l,1111 
EIYECG(lli,ITAU,0,4)=0. 

C VRITE(18,41) EG(ll,ITAU,lGRP} 
DO 16 IIK•1 ,ID 
IK=IKH+l-IIK 
K=2•IK-1 
IF(KGRP.EQ.1) l=2•(IK-1) 
IF(KGRP.EQ.4) 1=2•IK 
IF(KGRP.IQ.1.11D.IK.EQ.1) GO TO 18 
GO TO 17 

18 EIVECG(IB,ITiU,0,1)= EIVECG(ll,ITAV,1,1) 
EIVECG(Nl,ITAU,1,1)=0. 
GO TO 18 

17 EIVECG(H,ITAU,-I,KGJlP)=PH*DSQ2•EIYECG(NB,ITAU.IK,KGRP) 
EIVECG(ll,ITAU,l,!GRP)=DSQ2•EIVECG(ll,ITAU,IK,KGRP) 

18 CONTIWUE 
12 CONTIIiUE 

CLOSE(UNIT=22, DISP=•SAVE') 
C 
C ZERO ELEMENTS OF 1JllDEFIIED KGRDUPS (IECESSART!) 

DD 35 ITAU = 1, (1Hll+1)/2 + 1 
DO 35 K = -1•(1KAI), NMAX 
EIVECG(O,ITAU,1,2)=0. 
EIVECG(O,ITAU,I,3)=0. 
EIVECG(O,ITAU,K,4)=0. 

35 EIVECG(l,ITAU,K,4)=0. 
C 

DO 622 I=0,2,2 
DO 822 J = -1, 1 
DD 622 II= -1, 1 
DO 1122 JJ=-2,2 

822 I3J11(I,J,II,JJ) = O. 
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C 

C 

8ifi 
C 
C 

350 

DSQ3 = 1./SQllT(3.) 
DSQ30 = 1./SQllT(30.) 
t3J11co,o.o.o>= -1.•DSQ3 
T3J11(0,1,-1,0)= DSQ3 
T3J11{0,-1,1,0)= DSQ3 
T3J11(2,0,0,0) = 2.•DSQ30 
T3J11(2,1,-1,0)= DSQ30 
T3J11(2,-1,1.0): DSQ30 
T3J11(2,-1,-1,2)= 1./SQllT(5.) 
T3J11(2,1,1,-2) = 1./SQllT(6.) 
JIPllX2'"2*HPl!l 

Q25mll.EO = O. 
DO 866 HJIP=!IPD,JIPKI,2 

Q2SUIILEO • Q2SUJII.EO + ( llDPJ{2-HHP)•BDPB(2+HJIP) -
1 IDPB(2-MMP)•IDPB(2+HJIP) )•T3J11(0,MMP,-MMP,O) 

co1n11JE 

OILY KYEI Dro IEEDED WllEI EXCIIED STATES lJlE OF SAME KGROUP 
DO 304 Dro = -2, 2, 2 
Q25m1LE2(D!U) = o. 
DO 304 HJIP=JIPD,IIPKI,2 

BliP = RMP + nm 
IF(lBS(IIP)-!IPKI) 350,360,304 
Q2SUMLE2(IMU) • Q2SUMLE2(IMIJ) + ( llDPB (2-MIIP)•llDPB(2+DP) 

1 - IDPB{2-IMP)•IDPB(2+1NP) l•T3J11(2,IIJIP,-IIP,Dm) 
304 COITIIUE 
C 
C SET IIITill PlBlJIETElS 

IVIDTH = FL01T(lll+1)•CT001 
lllP1 = D + 1 
IT = 3 
TT!UI = 0.3 
SDPMII = .8•DELCDIST(2) 
BB(1) = AO 
BB(2) = BO 
BB(3) = CO 
IFLAG = 0 
ITKll = 0 
IF( THIJi .LT. TTIIII ) THIN = TTMIJ' 
DO 8188 I• -1, 1 

8188 T(I+2) = TMII + F10AT(I)•DELT 
C IIITIALIZE CHI-SQUAJlED 

CALL ATT3( 3, BB(1), BB(2), BB(3), T, TMII, CHIMII, ISH) 
C 
C FITTIIG LOOP STlllTS BEU. SET TEMPElllTIJRES AID 
C nY IEV DIUCTIOI UILESS ITEi TDD BIG. 
80181 CHIOLD = CHDIII 

TO= TO+ FLOlT( ISH) • CTOOl 
VllITE(18,8060) BB, THII, AIBFII, ISE, CHIMII 

80177 IF( TMII .LT. TTMII) THIN= TTKII 
DO 80188 I= -1, 1 

60188 
C 
60166 

8018 

C 

T(I+2) = TMII + FLDAT(I)•DELT 

ITEJl. = ITEll + 1 
IF( IYER .LT. 10) GO TO 6017 
VllITE(18,8016) ITER 
FOllllT( • Iteration limit of•• I2, • reached. •) 
STOP 

6017 IFLAG2 = 0 
STEPSIZE = e.•DELCDIST(2) 
VllITE(22,88tl) 

8881 FOUAT( / • LOOIIIG FOR A IEV DillECTIDI.• 
DO 8018 I= 1, 3 

8018 li(I) = BBCI) 
III = 0 
CHIHil1 = 100000000. 
DO 8022 I= 1, 3 
DO 6022 II: -1, 1, 2 
il(I) = 1A(I) + FLOAT(II)•DELCDIST(I) 
TTE!IP = T(1) 
T(1) = T(2) 
CALL 1TT3( 1, 11(1), 11(2}, i1(3}, T, TDUM, CHIHII, !DUH) 
T{1) = TTEHP 
III = III + 1 
CHISQll1(III) = CIIHII 
IF( CHDIII .LT. CHDIIl1 } CHIMil1 = CHIMII 
IF( CHIHII .LT. CHIDLD) IFLAG = 1 
A.&(I) = BB(I} 

6022 COITIIUE 
STEP(1} = CHISQll1(1) - CHISQll1(2} 
STEP(2) = CHISQR1(3) - CHISQll1(4) 
STEP(3) = CHISQl1(5) - CHISQll1(6) 
STEPIORH = O. 
DO 1024 I= 1, 3 

6024 STEPIDJ.M = STEPIOIH + STEP(I}*STEP(I) 
IF( STEPIOIIJI .EQ. 0.) GD TO 7070 
STEPIOI.M = SQRT(STEPIDBH} 
DD 8025 I= 1, 3 
DIR(I) = STEP(I}/STEPBORM 

6026 STEP(I) = DIR(I) • STEPSIZE 
RITE(18,8040) ITEi, DIR 

8040 FOUAT(•[•.12,•]•,• nv DillECTIDI TO MDI: '• 3(F7.5, 11)) 
C 

IF( IFLlG .!IE. 0} GO TD 7020 
C CHI-SQUtRED IS HIGHEl ALL AROIDlD THE CURREIT POSITIOI. 
C CHECK FOR OPfnmM TEHPEB..ATUllE, TREI fi.Y GliDIDT 
C AGAII IF IKCESSARY 

TTE!IP = r<2> 
T(2) = T{3) 
CALL 1TT3( 2, BB(1), BB{2), BB(3), T, THIN, CHIHII, IDUll) 
IF( CHIHII .LT. CHIOLD) GO TO 7080 
T(2) = TI'EMP 

1999 VRITE(18,7000) CHIOLD, BB, T(2) 
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7000 FDIIHlT(• Th• center point, with chi-aquared •• F8.3, 
1 • ie the beet fit.•/ • Fi:aal. values: •• 3( F10.5, 11 }, 
2 •• T = ', F5.2, '• lint:iD. = '• F8.4) 

STOP 
C 
7070 IF( IFLJ.G .IQ. 0 ) GO TO 499' 

illTB(18,7071) 
7071 FDBMIT 

1 ( • The gradiot ie zero, but chi-squared is not minimum. •) 
STOP 

C 
C GO 1JJDI1IE1l STEP II TEHPBUTUJlE IF IDT TOO LOW .\I.READY. 
7080 CBIDLD = CIIMII 
83131 IF( THIR .GE. TTIIII) GO TO 81111 

WJlII'E(lS,82121) CBIOLD, TMill, TTHII 
82121 FDIIIAT( 'Chi-squared='• F15.8, • tor t8lllpe~ature •, 

1 F4.2, •• belov Tmin = •, F4.2) 
STOP 

C 
81111 T(l) = 2.•TMII - TTEIIP 

TTEIIP = TMII 
CALL ATT3( 1, BB(1), BB(2), BB{3), T, TDUM, CIIMII, IDUM) 

C COITIIIUE TO STEP IS LOIG AS CHI-SQUAB.ED IMPllOVES; 
C OTHElWISE LOOI FOil IEV DIBECTIDI 

C 
C 
7020 
7021 
7022 
C 
C 

C 

IF( CHIMII .GT. CHIOLD ) GO TO 80177 
CBIDLD = CIIMII 
THII = T(1) 
GO TO 83131 

TIEB.E IS A0011 FOil IMPllOVEMEBT II CBI-SQUlllED; THE A STEP. 
IFLAG = 0 
DO 7022 I= 1, 3 
BB(I) = BB(l) + SI'EP(I) 

CIECI Di.DER OF lOTlTIOllL CONSTAITS 
IF( BB(l) .GT. BB(2) .AID. BB(2) .GT. BB(3)) GO TO 8000 

C COISTAITS OUT or OlDD. BEOIDER TEMPOR!lILT AID CHECK 
C CHI-SQUAB.ED. IF LOWER, LOOI FOR IEV DIB.ECTIOI FADX THAT POINT. 

DO 7222 I= 1, 3 
ll(I) • BBCI) 

7222 COITUlllE 
CMII = 10000. 
CJIII"' 0. 
DO 7322 I= 1, 3 

IF( A!(I) .GT. CMII) GD TO 7322 
CMIIf = U(I) 
IIMII = 1 
IF( ll(I) .LT. CHAI) GO TO 7322 
CHAI = U(I} 
IIHAI = I 

7322 COITillJE 
DO 7422 I= 1, 3 

IF( I .EQ. IDIII .DR. I .EQ. IIMAI) GD TO 7422 
U(2) "' il(I) 

7422 COITIIUE 
ll(1) = CJlAI 
11(3) = CHII 
CALL 1TT3( 3, 11(1), 11(2), 11(3), T, TMII, CIIMII, ISi) 
IF{ CIIMII .GE. CHIOLD) GO TO 4001 

C 
C UEP TIE IEV PDIRT IF IN RlllGE; OTIERVISE STOP 

DO 8002 I= 1, 3 
BB(I) = U(I) 8002 

C 
C 

IF( 1./BB(l) .GT. 1./BB(3) - 1./BB{2} ) GO TO 5432 
WII'E(18,10001) 

C STOP 
C 
5432 IF{ BB(l) .LT. 11 

IF{ BB(2) .LT. Bl 
IF{ BB(3) .LT. Cl 
GO TO 60116 

.OR. BB(l) .Gt. 12) GO TO 7023 

.Oil. BB(2) .GT. B2) GO TO 7023 

.OR. BB(3) .GT. C2) GO TO 7023 

C 
C LODI CAUP'ULLJ FOR MIIIHIJM OILY 1l11EI SURE TO BE DAR COllERGEICl 
6201 IF( SI'EPSIZE .LT. SI'EPMII) GO TO 4011 
C BJlCllJP AID llY SKlLLER STEP 
8301 DO 6005 I= 1, 3 

BB(I) = BB(I) - 0.8 • STEP(I) 
8006 SI'EP(I); SI'EP(I)/6. 

STEPSIZE • SI'EPSIZE/5. 
C 
C C1LCUI.1I'E CHI-SQUAIIED AFTER A STEP HAS BEEN T1KE11I 
eooo c.tLL ATT3{ 3, BB(l), BB(2), BB(3), T, TMII, CHIMII, ISi) 

IF( CIIXII .LT. CHIOLD) GO TO 6015 
C 
C IEV POSITIOI IS VORSE THAI PIXYIOUS DIE; 
C lCTIOI TO TllE DEPEIDS 01 STEPSIZE AID IFLAG2 
8001 IF( IFLlG2 .EQ. 0) GO TD 8201 
C IDT AT PDSITIOI OF LAST GB..ADIE.lfT SEARCH 50 DOl'T NEED 
C STEPSIZE TOO SKA.LL 

C 
C 
C 
8011 
eooe 

IF( SI'EPSIZE .LT. 4.•DELCOIST(2) ) GO TO 8011 
GD TO 6301 

Cll'T FIID LOVEl CHI-SQUAB.ED. IF l 1ID1 DIRECTIOI IS BEIIG 
llIED, STOP. OTHERVISE, Tll 1 IEY DIRECTIOI. 
»o eooe r = 1, 3 

BB(I) = BB(I) - SI'EP(I) 
IF( IFLAG2 .IE. 0) GO TD 80156 

C IFLAG2 = 0 DAIS THIS IS l IEV DIB.ECTIOI. 
WITE(18,1012) CHIMil1, STEPSIZE, BB 

8012 FOBJUT( 'Chi llill ia •, F10.4,' ~ithin ',F5.4,' of'• 
1 3{F8.4, 21) ) 

STOP 
C 
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C CBI-SQUilED IS LOVER; KllP DI TBlS PiTH UILESS DOT OF lilGI. 
6016 CBIDLD • ClllHII 

6050 

C 

1 
2 

C 
C60001 
C 
C 
80077 

67177 

80266 

C 

TO= TO+ FLD1T( ISH) * CT001 
VJ.IrE(18,8060) BB, THII, JIIFII, ISB, CBIHII 
FDIU!.lT( • Chi-aquare4 ia illlpzoved for conatanta : •, 

3( F7.6, 21 )/ • T = •, 16.2, • linfin = •• F8.4, 
•, Shift=•, I2, '• chi-aquared = •• F12.8 /) 

IF( 1./BB(1) .Gt. 1./BB(3) - 1./BB{2) ) GO TO 80077 
WirE(18,80001) 
FDIU!.lT( ' -- but the coutlUlta do not f0:,:!11 a valid set.• ) 
STOP 

IF( BB(1) .LT. 11 .oa. BB(l) .GT. 12) GO TD 7023 
IF( BB(2) .LT. Bl .oa. BB(2) .GT. B2) GO TD 7023 
IF( BB(3) .LT. C1 .OR. BB(3) .GT. C2) GD TD 7023 
IFLiG2 = 1 
DD 87177 I= -1, 1 
IF( THII • LT. TTHII ) THII "' TTHII 
T(I+2) = THII + FLDAT(I)•DELT 
STEPSIZE = 2.•STEPSIZI 
DD 80265 I= 1, 3 
STEP(I) • STEPSIZl•Dll(I) 
Go ro 1021 

C ITEllJnDI BlS LED BEYDID IIDICATED lilGE. 
7023 VJ.IrE(18,7024) 
7024 FDIU!.lT(• -- but the point is out of range. •) 

EID 
C 
C 
C 

C 

C 

SUBlOUTID .ITT! { IT, A1 , B1, Cl , T, TIIII, CHIMilf, ISBMI:rl ) 

UAL IG,II,IJ,KG,IIP,IJ,W,IJFAC,KKSOMS,IITIIP1 
REAL IDPA, IDPB, IF1, IUBES, lllJMJ.I, IFF 
DDlilSIDI IF(3,24), IFF(3,24), F8JPL(3,3,0:2) 
DDlilSIDI BlUIG(4), l.UU.IJ(4), F8JP1(3,3,0:2) 
DnraJSIOI DECAYPL(5000), DECAYPl(SOOO), lOFT(5000), T(3) 
DDlilSIOI FHDPL(3,50000),FMDPB1(3),F110DPL(3),Fl!ODP1(3) 
DDIEISIOI BOLT{3), CBISQl(-1:1) 
COHJIOI T3J11{0:2,-1:1,-1:1,-2:2), IF!C, DPSYH, DAI, JSKIP, 

1 llP1, IBJUl(0:48,4), Q2StJKI.E2(-2:2), Q2SUMLEO, CT001, 
2 TO, lVIDTl[, smm, Jfl>TSD, AIIFII, IPOL, :mu., IJSYM(3,4), 
3 IKSYM(0:1,4), ISYHK(0:1,4), &DPA(3), IDPA(3), llDPB(3), 
4 IDPBC3), IUDS, JTDMAI, MPIOI, MPHI, MPHI2, SUTWT{4), 
6 IDEL(4,4), EG(0:48,24,4), EIYECG(0:46,24,-46:46,4) 

COHJIOI /1.JHS/ II, IJ, LL, BG 
CDHJIOI /EIG/ E(0:48,24,4), EIVEC(0:48,24,-48:48,4} 
COHJIOI /FILL/ F, G, H 

Il1JJUI = 0 
SQ2=SQn.t(2.) 
DSQ2=1./SQ2 

C 
C CALCIJ'LJ.TE TIIE llJ.IGES 
C THE COMPUTED TIMI MOST ST!llT DIE B.ESPOISE VIDTB 
C BEFOB.E T -0 (PLUS 1 ClWHlEL ilD EITEID 1 CBllll!L 
C PAST THE DATA TO JLLOV FOR SIIFT.} 

C 

IF( TO .IE. O.) GO TO 67 
TOCCI= O. 
10 = 0 
GO TO 77 

87 IF( TO .LT. lWIDTH ) GD TO eB 
lJO "' llP1 

C 

TOCCI= ( TO - Rl,IIDTH }/ CT001 
GO TO 77 

68 TOCH = ( TO + .0001 )/CT001 
10 = UIT(TOCH) 
TOCCI= TOCH - FLOAT(IO} 

C 
77 IPTS = DTSD +BO+ 1 
C 
C CALCIJ'LJ.TE EIGEIYALUES llD EIGEIYECTDllS OF THE iSYHHETllC TOP 
C 

lKJ=( 2.•B1 - 11 - C1 )/( 11 - C1) 
IF{lKJ) 310,310,320 

C llA<O IMPLIES THE MOLECULE IS IElB.Ell A PROLATE TOP 
C - A PROLATE TOP EIGEIBASIS IS USED FOR THE EIPAISIOI 
310 F=(llA-1.)/2. 

C 

G=1. 
B=(ll1+1.)/2. 
GO TO 330 

C 111>0 IMPLIES THE MOLECULE IS IEJ.B.Ell ll OBLATE TOP 
C - 11 OBLATE TDPEIGUBASIS IS USED FOR THE EIPAISIOI 
320 F=(ll1+1.)/2. 

Gc-1. 
H=(llA-1.)/2. 

330 COITIIUE 
C 

C 

CALL ATEIG(NMAX,Al,B1,C1) 
DO 22 l=O,IHAX+1 
KGHI=4 
H=I 
IF{I.EQ.O) KGHls1 
IF(I.EQ.1) KGHJ:=3 
DO 22 KGRP=l,KGHI 
IKH=Il.UU.l{l,KGRP) 
PH=-1. 
IF(KGRP.EQ.1.DR.KGRP.EQ.3) PH=1. 

C GET SYMMETRIC TOP COEFFICIEITS FROK ➔ AND - CDl!BIIATIOBS 

~ 
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C A1ID CDIYEIT THE Il IIDEI TD STIUIETIIC TOP l VALUES 
DD 28 ITlU•1,IIH 
EI11C(D,IT1V,0,4)=0. 
DD 28 IIl"'1,IIJI 
Il,..IIJl+1-II1 
1=2•11-1 
IF(lGRP.EQ.1) 1=2•(11-1) 
IF(lGRP.EQ.4) l"'2•Il 
IF(lGBP.EQ.1.llD.Il.EQ.1) GD TD 28 
GD TD 27 

28 EI11C(ll,IT1V,0,1)= IIYEC(D,ITlU,1,1} 
EIYEC(D,ITiV,1,1)=0. 
GD TD 28 

27 TEMP= DSQ2•EIYEC(lil,IT1U,Il,XGRP) 
EI11C(D,IT.lV,-l,lGU) = PH•TEJIP 
EIYEC(ll,ITAV,l,IGIP) = TEMP 

28 C0ITIIUE 
TMI = IIJllI(JJ,lGRP) 

22 C0ITIIUE 
C 
C ZEJlD ELEKIITS OF UllDEFIIED IGIUJUPS (IECISSAB.T?) 

DO 36 ITiU • 1, (011+1)/2 + 1 
DO 36 I= -1•(D1I + 1), mill+ 1 
EIYEC(0,ITAU,1,2}=0. 
EIVEC(0,ITAU,1,3)=0. 
EIVEC(0,ITiU,1,4)=0. 

36 EIVEC(1,ITAU,l,4)=0. 
C 

520 
5201 
C 

C 
C 
C 

C 
C 
C 

C 

DD 8201 JT = 1, IT 
DD 520 1=1,60000 

FKDPL(JT,I)=0. 
l11DP11(JT)=0. 

E!U.l = EG(Dll+1,1,1) 

CYCLE THIOUGI ILL GIOUND STATE LEVELS 11D THEIi TRARSITI0IS 

DD 306 DG=O,DAI,ISKIP 
IMil=IIG-1 
IF(IIG.EQ.0) Dil=1 
IG=FL0lT(IIG) 
IGE0 = JH0D(IIG,2) 

SET HIGHEST I II SYMMETRIC TOP EIPAISI0I OF 
GRDUID STATE KIGEJIFUITCTIDIS 

lt!!AlG(1}= 2•IIJIAl(IIG,4) 
IJlllG(2)= 2•(IIH1I(IJIG,2)) - 1 
IJlllG(3}= IMJ.IG(2) 
IJIAIG(4)= l1UIG(1} 
11K!!ll=4 
IF(IIG.EQ.1) lllJIAI=3 
IF(DG.EQ.0) lllHAX=1 

C DEFID ILL COISTUTS DEPEIDIJG 01 IG OILY 

C 

TVOJG = IG + IG 
DEKF1C1 = 1. / SQRT( (TVDIG + 3.) 

1 •( TIJ0IG + 2.)•( TVOIG + 1.)) 
T3J00l = SQ2•( NG+ 1.}•DEHFAC1 
T3J01A = SQRT( ( IG + 2.)•( IG + 1.) )•DEHF1C1 
IF( IIG .EQ. 0) GD TO 391 
DEMF1C2 ~ 1. / SQRT( ( IG + 1.)•( TVOIG + 1.)•IG ) 
DEMF1C3 = 1. / SQRT( ( T'iOJG + 1.)•IG•( TllOIG - 1.)) 
T3J00B = IG•DEMFAC3 
T3J01B = 1. / SQRT( 4.•IG + 2.) 
T3J01C c DSQ2•SQRT( NG•( IG - 1.) )•DEMFiC3 

391 DO 306 lGIPG=1,KlDll 
C GET TD STDETRY OF THE GIOUJlD STATi LEVEL 

ISYMG= l[SYM(IGEO,KGRPG) 
C 
C GET TD STIIMl!.TRY OF TUISITIOI H0HEIT ALLOYED 
C 
C 
C8887 

ElCITID STlTI LEVELS 
VRITE(20,8857) ITHA, ISY!G 
FDIIJ!lT( ' II'Hi = '• 12, 1 ISYHG = ', I2) 
ISTllIJ= IJSYM(ITMA,ISYMG) 

C 

C 

C 

556 
C 
C 

C 
C 

3333 
C 
C 

C 

llPFAC1 = (-1)••(1HAIG(KGIPG)) 

DD 308 IrlUG=1,IKMil:(IIG,KGIPG) 

EIRGY = EG(IIG,ITiUG,lGIPG) 
IF( EIRGY .GT. EMAI) GD TO 308 

STIGFAC = STAillT(ISYMG)•(-1.)••NGED •C2.•RG+1.) 
DO 565 Jr= 1, IT 
BDLT(JT) = STIGFAC•EXP( -1.•EIRGf / ( 20.84•T(JT) ) ) 

FILL THE F6J, RF, AID IFF ARJUYS F0l THE CURRKIT GIOUJlD STATE 
DD 3040 IIJ = IIMII, RIG+ 1 
IIDEl = IRJ - ING+ 2 
IJ = FLOlT(IIJ) 

THE FilST IXDEl OF F6J IS ALVAYS >OR= TO THE SECORD. 
DO 3333 III= IIJ, RIG+ 1 

II= FLOAT(III) 
IIDEl2 = IHI - RIG+ 2 
LMII = 0 
IF( III .BE. IKJ} LHII = 2 
DD 3333 LL"' IJIIN, 2, 2 

F2 = (2.•FLOAT(LL)+l.)• T3J11(LL,0,O,0)•SIIJ(DDD) 
F6JPL(IIDEI2,IIDEX,LL) = F2•T3J11(LL,0,0,0) 
F5JPR(IIDEI2,IIDEI,LL) = F2•-1.•T3J11(LL,1,-1,0) 

C0ITilllE 

IS IIJ EYEI OR ODD! 
IJE0 = JHOD(IIJ,2) 
GET THE KGROUP CORIESPOBDIIG TD THE ALL0'IIED IJ SYMMETRY AND 

t..:, 
C)1 ..... 



C 
C 
C88t8 

C 

C 

C 

C 

C 

C 

710 

C 

720 

C 
C 
725 
C 
72! 

C 
T21i 

C 
721 

C 
C 
727 
C 
728 

C 
721t 

C 

THE ULUE FOB IIJ 
WI.ITE{20,88e8) IJEO, ISYKIJ 
FDIMAT( 'I.JED='• 12, 'ISYMIJ = '• 110) 
IGIPJ • ISYKl(IJED,ISTJIIJ) 
IF(IDll(IJIJ,IGIPJ) .EQ. 0) GD TD 3040 

F1C11=1. 
IF(DJ.EQ.IIG) FJCU=-1. 

EIFJC1=(-1.)••CDJ+IDllIG(KGB.PG)+1) 
EIFJ<::za:(-1.)••(DG+IDllIG(lGB.PG)+lFlC) 
EIF1C3=(-1.)•EIFAC2 

DO 3030 ITlUJ = 1, IIJU.I(IIJ,IGBPJ) 

RF1 = o. 
IF1 = O. 

DO 303 llG a IJlllG(IGIPG), 1, -2 

DD 303 DJ= llG - IFAC, 1KG + lFAC, 2 
IF( lBS(llJ) - IIJ) 710, 710, 303 
IJ = FLOJT(UJ) 
KG• FLDAT(llG) 
IQ .. lIIJ - llG 
F1C1=1. 

IF(IQ) 720,727,723 
IJ = -IJ 
IG = -IG 
FAC1=FJC11 

IJ = IG + 1 
IF( IIG - IIJ) 724,726,725 
IJ > IG 
T3JIG = IIFAC3•SQRT( (IG+IJ)•(IG+IJ+1) )•DENFAC1 
GO TO 760 
IJ = IG 
T3JIG = F1C1• EIFAC3•SQRT( (IJ-IG)•(IJ+IG+1) l•DSQ2•DEIIFAC2 
GO TO 750 
IJ < IG 
TSJIG = EIF1C1•SQRT( (IJ-IG)•(IJ-KG+1) )•DSQ2•DENF1C3 
GO TO 750 

FDR IJ ~ IG i.e. Q = 0 (1BSOBPTIOI ALDIG Z) 
IF( IDIG - IIJ) 728, 729, 730 
IJ > IG 
T3JIG = EIF1C3•SQRT( (IG-KJ+1)•(BG+IJ+1)•2.)•DEMFAC1 
GO TD 750 
NJ= IG 
T3JIG = EIF1C2•KG•DED'1C2 
GO TD 750 
IJ < BG 

730 T3JIG = EIF1C1•SQB.T( {IJ+KG+1)•(JJ-KG+1) )•DEMF1C3 
C 
750 F1 = T3JIG• 

1 EIYECC:(IIIG,ITAUG,lIIG,KGIPG)• EIVEC(IIJ,ITIUJ,llJ,KGBPJ) 
IF1 • IDPA(2-IQ)•F1 + IF1 
IF1 = RDP1(2-IQ)•F1 + IF1 

303 CDITIIUE 

C 
C 

C 
3010 
C 
3011 

C 
3012 
3013 

C 
C 
3015 
C 
3016 

C 
3017 

C 
3018 
C 
3019 

C 
3020 

3030 
3040 
C 
C 

C 

C 

1 

IF1 = IF1 + IF1 
B.F1 = IF1 + IF1 
IF( KGIPG .IE. 1) GD TD 3020 

KGllPG IS 1: lDD iPPB.OPB.llTE KG= 0 TEIHS 
IF(KFAC) 9999, 3010, 3011 

lfAC IS 0, IDPA = 0 ---> ADD KJ s KG= 0 !EU 
IF( IIG - IIJ) 3011, 3020, 3012 
JIJ > IG 
TJJIG = EIFAC3•T3J001 
GO TO 3013 
JIJ < IG 
TJJIG s EIFAC2•T3JOOB 
RF1 = llF1 + llDPA(2)•T3JIG•EIYECG(IIG,ITAUG,0,1)• 

XIJEC(IIJ,ITAUJ,O,KGBPJ) 
GD TD 3020 

KFIC IS 1 ---> ADD IJ = 1, KG= 0 l'ERM 
IF( IIG - IIJ) 3018, 3017, 3018 
IJ > IG 
T3JIG = EIF1C3•T3J01A 
GO TD 30111 
IJ =- IG 
T3JIG = EIFAC3•T3J01B 
GO TO 3019 
IJ < IG 
T3JIG =- EIFAC3•T3J01C 

F1 = T3JIG•EIVECG(DG,ITAUG,0,1)•EIVEC{IJJ,ITAUJ,1,KGJ1PJ) 
IF1 = IF1 + 2.•IDP1(1}•F1 
B.F1 = iFl + 2.•RDP1(1)•F1 

IF(IIDEX,ITAUJ) = RF1 
IFF(IIDEI,ITAUJ) ~ IF1 
CDITIIUE 
COITIIUE 

START EXCITED STATE SUMS 
DD 302 IIJ=Dil,IIG+1 

IS IIJ EVEI DR ODD 
IJEO = .TIIOD(HJ,2) 

GET TIE KGIOUP COllB.ESPDIDIIG TD THE ALLD1'ED 

I'..) 
0'f 
a:,..:, 



C STIIRETllI .DD THE YlLlJE FOi DJ 

C 

KGIPJ= ISTIII(IJEO,ISY!IIJ) 
IF( IIJUI(DJ,KGBPJ) .EQ. 0) GO TO 302 
IDELJ = IDEL(IGBPG,KGBPJ) 
IDGJ • DJ - DG + 2 
IJ • FLOU(JJ.J) 

IJUIJ(1) = 2•IIJUI(DJ,4) 
IJUIJ(2) = 2•( IIJUI(DJ,2) ) - 1 
IJUIJ{3) • DU.IJ(2) 
IJUIJ(4} = IJl1IJ(1) 
TWOIJ = IJ + IJ 
TWOIJF1C • {TWDIJ+4.)•(TWOIJ+3.}•(TWONJ+2.)•(TWOIJ+1.) 
DB1!F1C4 = 1,/( (TilOIJ+6.)•TWOIJF1C ) 
IF( IIJ .EQ. 0) GO TO 392 
DB1!F1C6 = 1./( TWORJ•TWOIJFIC ) 
DDF1CII "' SQIT( (TWOIJ+4.)•DIHF1C6 / (TWDIJ-1.) ) 

C 
C ElF1C8 SHOULD BE (-1)••( IIJ + XM1II(KGBPI) ) B1JT FOi 
C DIPOLES ALOIG PIIICIPLE AXES DllIJ(KGBPJ) = IJUII(IGRPI) SO: 
312 llllCT = (-1)••< IRJ + IJUIJ{lGRPJ) ) 

Ell1C8 = EIF1C7 

C 

IJFJ.C = Q2SllJILIO•EIFlCT / SQB.T( TWOIJ + 1.) 
F7LEOPL = FSJPL(llDGJ,NDGJ,O}•IJFJ.C 
F7LEOPI = FSJPl(llDGJ,llDGJ,O)•IJFlC 

DO 301 lll=DJ,IIG+1 
C IS III EYEI 01 ODD! 

IIIO = JXOD(III,2) 
C GET TD KGIOlJP COJlRBSPOIDIIG ro THE lLLO'IIED IJ snumnI AID 
C TD YAL'IJE FOi DI 

C 

C 

C 

C 

C 

IGBPI= ISTIU:(IIEO,ISDllJ) 
IF(IIJUl(III,KGllPI) .EQ. 0) &OTO 301 
IDILI • IDEL(IGRPG,IGRPI) 
IDGI = III - IIG + 2 
II=FLDJ.T(III) 
IITIIP1 = II•( II+ 1.) 

F1C33=1. 
IF(DI.EQ.IIJ+1) FAC33=-1. 

F1 = FAC33 •(2.•11+1.)•( TWOIJ+1.) 

DO 3070 ITJ.UJ=1,IIMAI(BNJ,KGJIPJ) 
IF{ 1BS{ ITlUJ - IT11JG) .GT. IDELJ) GO TO 3070 
IT11JIHil•1 
IF(III.EQ.IIJ) IT1UIMil=IT1UJ 

DO 307 ITJ.UI=ITllJIHll,IIM.lI(III,KGRPI) 
IF( ABS( It!UI - ITAIJG) .Gt. IDELi) GD TO 307 
lftJ = 1BS(E(lll,ITAUI,IGRPI) - E(IIJ,IT1UJ,IGBPJ)) 
IF( JIU .GT. IUMAI) GO TD 307 

3080 IISUMS = B1'(1DGI.I1AUI)•DPSTil•IF(IDGJ,ITADJ) -
1 IFF(IDGI.ITAUI)•IFF(IDGJ,ITJ.UJ} 

C 
IF( llSlJMS) 846.307,846 

C 
845 F7PL=O. 

C 

C 

F7Pl.=O. 
FlC = 2. 

IF( IIJ + 1 - III) 780, 770• 760 

C THIS SEGMElf IS FOi II= IJ 
780 IF( ITAUI .IE. ITAUJ) &O 10 656 
C 
C DIAGOIIL TERM APPE115 OILY OICE II SIJMHATIOI 

FAC = 1. 
C l = 0 

C 

F7PL = F7LEOPL 
F7Pll = F7LEOPR 

C L = 2 
868 IF(III+IBJ-2) 804, 713, 793 
793 FT= 0. 

DO 404 KKJ=-IMALl(KGRPJ). DllIJ(K;RPJ), 2 
C 
406 DD 604 KKIP= KKJ-:MPXI2, XKJ+HPH12, 2 

IF(1BS(IIIP)-DI) 406,406,504 
406 IIP=FLOAT(KKIP) 

KJ=FLOlT(IKJ) 
IHU = KKIP - KKJ 

C 
IF( nm) 784, 786, 786 

764 KIP•-KIP 
KJ~-U 

C KIP= KJ + 2 
785 T3JIJ = EIF1C7• SQRT( 6•(1I-KJ-1)+(1I-KJ)• 

1 (II+XJ+1}•(1I+KJ+2} )+DEMFAC8 
GO TO 790 

C 
C KIP= lU 
788 T3JIJ= EIFAC7•2.•( 3.•KJ•U - II11IP1 )• DEMFAC6 
C 
790 F7 =FT+ Q2SUMLE2(IHIJ)•l3JIJ•EIVEC(III,ITAUI,KKIP,KGRPI)• 

1 EIVEC(NIJ,ITAUJ,lKJ,KGRPJ) 
604 COITIJroE 
404 CDITIJIUE 

C 
C 
770 
7931 

GO TO 800 

THIS SEGMENT IS FOi II= IJ + 1 
IF(llll+NIJ-2) 301, 7931, 7931 
FT= O. 
DO 4041 itlU=-KMAIJ(KGRPJ), IJUIJ(XGRPJ), 2 

~ 

°' I:,) 



C 

4081 

C 

7841 

C 
C 
7651 

C 
7681 

C 
7901 

5041 
4041 

C 
C 
780 

C 

C 

7842 

C 
7652 

C 
C 
7882 

C 
7902 

5042 
4042 
C 

DO 5041 llIP= ltl.J-MPII2, 11J+MPMI2, 2 
IF(ABS(llIP)-III) 4081,4011,5041 
lIP=FLO.lT(llIP) 
1J=n01T(llJ) 
IMIJ = llIP - llJ 
FJ.C3=1. 

IF( IKU) 7841, 7881, 7861 
FJ.C3 = -1. 
IIP=-lIP 
lJ=-lJ 

lIP = IJ + 2 
T3JIJ=FJ.C3•2.•EXFJ.C8* SQIT( (IJ+lIP-1)• 

1 (IJ+IIP)•(IJ+IIP+1h (IJ-1IP+2)•DEKFAC6 ) 
GO TO 7901 

IIP = IJ 
T3JIJ'= EXFACS•(-2.)•KIP•SQRT( 8•(1J-IIP+1) 

1 •CIJ+IIP+1}•DEKFJ.C5 ) 

F7 =FT+ Q2SUMLE2(IHU)•T3JIJ•EIVEC(lllI,ITJ.UI,IIIP,1GllP[}• 
1 EIYEC(DJ,ITAUJ,llJ,lGBPJ} 

CDITIIIUE 
CDITilllE 
GO TO 800 

THIS SEG!IEJ'T IS FDR II= IJ + 2 
F7 • 0. 
DO 4042 llJ=-IMJ.IJ(IGRPJ), lMiIJ(lGRPJ), 2 

DO 1042 IIIP= IIJ-MPIII2, 11J+!IPMI2, 2 
lIP=FLOJ.T(lUP) 
lJ•FLD1T(llJ) 
IMIJ = llIP - IKJ 

IF( IMIJ) 7842, 7682, 7852 
lIP=-lIP 
lJ=-lJ 

KIP=IJ+2 
T3JIJ = EIFJ.C8* SQRT( (NJ+lIP-1)• 

1 {IJ+KIP)•(lfJ+IIP+1)•(1J+lUP+2hDEMFAC4 ) 
GD TO 7902 

lIP • lJ 
T3JIJ'= EXFACB• SQRT( 8•(1J-KIP+2)• 

1 (IJ-KIP+1)•(JJ+KIP+2)•{IJ+IIP+1)+DEKFAC4 ) 

F7 =FT+ Q2SUMLE2(IMD)•T3JIJ•EIYEC(III,ITAUI,KlIP,KGllP[)• 
1 EIYEC(IIJ,ITAUJ,KIJ,KGB.PJ) 

COBTIIUE 
COliTIIIUE 

800 

C 
C 
C 
C8883 
804 

C 
HO 

810 
C 
307 
3070 
301 
302 
308 
305 
C 

F7PL = F'fPL + FeJPL(BDGI,IDG.J,2) * F7 
F'fPI = FTPR + F8JPR(IDGI,IDG.J,2) * F7 
WRITE(15,8883) DG, IGRPG, ITAUG 
WRITE(15,8883) DI, IGIPI, ITAUI 
WRITE(15,8883) DJ, IGRPJ, ITAUJ, 2, FTPL, F'fPR 
FOIHAT( 11, 414, 2F10.5) 
COllTilllE 
IF{FTPL) 680,307,580 

IIU=lfllT(IU/lfD'BES) +1 
IF(IIU .GT. IIUHJI) IIUHJ.I = IW 
DO 810 JT = 1, RT 

IUUl = EIPFAC1•KKSUMS•Fl•BOLT(JT)•FiC 
FHDPL(JT,IIU) = FHDPL(JT,Il'lU) + Bllll•FTPL 
IF( IIU .EQ. 1} FJ!DP11(JT) = FHDPl1(JT) 

COIITIJUE 
COIITIJUE 
COIITIIUE 
COITIJUE 
COITIIIUE 
COJiTIIIUE 

+ IB.R*F7PB. 

C 
C 

VE USE 1 FREQUEICY Rl!SOLUTIOI OF (RlillES) GHZ AID 
A MAXIMUM OF {NIDUI) GHZ 

COIISTAIT= 8.283185•CT001•11J1lES 
C 

llRITE(22,8882) TO, 11, Bi, C1 
8882 FOIHAT( • For T_O = '• F7.3, • and constants : •• 

1 3( F7.5, 21 )) 
C 
C 
C 

C 

821 
C 

f05 

802 
C 
C 

TUNSFOiH TD TIME DDMAII AID GET CHI-SQUARED FOi E.J.CH 
TEMPERJ.TIJB.I ( AND THREE SHI?'T VALUES ( -1, O, 1} IF IT• 3) 

CHIHII = 10000000000. 
DO 823 JT = 1, NT 

DO 821 I=1, l'IPTS 
DECJ.TPL(I)=O. 

YJtU: = o. 
DD 802 J = 2, I:rroMAI 
IF( FMDPL(JT,J) .EQ. 0. ) GO TD G02 
OMEGA= FLOJ.T( J - 1 )•CDiSTAIT 
DD 805 I~ 1, IPTS 

DECJ.YPL(I) = DECAYPL(Il + FMDPL(JT,J}• 
1 CDS( OMEGA•( TOCCH + FL01T(I-1) ) ) 

COITilllJE 

CALCULATE DECAYS AND CONVOLUTE 
DD 2708 I= 1, NPTS 
DECAYPl(I) = -0.5•DECAYPL(I) + FHDPR1(JT) 

h) 
tit 
IP-



2708 

C 
C8814 
C 
C 

C 

DEClYPL(I) E DECJTPL(I) + FMDPL(JT,1) 
CJLL CDIVOL( DECJIPB., IPTS) 
CJLL CDITDL( DECJTPL, JIPTS) 
DITE(20,88M) 
FDIW.T( //) 
nITE(20,8885) ( DECJTPL(I), I= 1, IPTS) 

IF( IPDL - 1) 2101, 2201, 2001 

C IPOL = 2 -- CALCDLJTE l(T) 
C DETEIHID IOIJULIZATIDI TO KlTCI DATA 
2001 stJHSIH = O. 

DO 2002 I= 1 + 10, IPTSD + 10 
2002 SllHSIM = S1DISIM + ( )ECATPL(I) - DECJTPR(I))/ 

1 ( DECAYPL(I) + 2.•DECAYPl(I) ) 
B.IIFII = SUMSIM/IPTSD 
AIIFIISIM = ( 1 + 2.•B.IIFII )/( 1. - lIIFII) 
SCALEFAC = AIIFIISIM/JIIFII 
III= 0 
IF{ IT .EQ. 3) III= 1 
DO 1234 IA• -III, III 
SCALE= SCALEFAC•FLOAT(1000 + IA)/1000. 
DO T08 I= 1, IPTSD + 2 

C 10 HtJST ALWAYS BE GB.EATEl THJI 1 
IAB.G = 10 + I - 1 

708 B.DFT(I) = (DECAYPL{IilG) - SClLE•DECAlPR(IAB.G)}/ 
1 (DECATPL(IllG) + 2.•SCil.E•DECAYPR{IAB.G)) 

C DITE(20,8885) ( B.OFT(I), I= 1, BPTSD + 2) 
C 

7007 

8883 

1234 

C 

1 

1 

DO 7007 ISH = -III, III 
CIISQl(ISH) = FCBI{ISH,B.OFT,11TSD) 
IF( CHISQR(ISB) .GT. CHIMII) GD TD 
CHIJIII = CBISQR(ISH) 
ISHJIII = ISB 
TMII = T(JT) 
COITIIUE 
DITE(22,8883) T(JT), IA, 

7007 

FOIW.T( • 
3(' 

COITIIDE 
GO TO 823 

( ISH, CHISQl(ISH), ISH = -III, III) 
T = •, 16.2, '• Scale index=•• 12 / 
Shift=•, I2, •, chi-squared=•, F12.8 /)) 

C PIEPJIE TO CALCDI.ATE CHI-SQUAB.ED BASED DI PAULLEL DECAYS 
C BT IOJIJULIZIIG THE SIJIULATIDI. 
2101 COITillJE 

stJHSIM = 0. 
DO 2111 I= 1 + 10, IPTSD + 10 

2111 SUHSIM = SUMSIH + DECAYPL(I) 
SCALEFAC = StJMD/SlDISIK 

C nITE(21,8869) 10, IPTSD, NPTS, smm, SlDISIH, SCALE 
C8859 FOJU!AT( • NO, IPTSD, IPTS: ', I2, 214 / 

C 

2121 
C 
C8866 
C 

1 • D1TA, SDI, IUTIO •• 2F16.3, F12.4) 
III = 0 
IF( IT .EQ. 3) III= 1 
DO 2345 11 = -III, III 
SCALE• SCALEFJC•FLOJT(1000 + IA)/1000. 
DECAYPR(1) = O. 
II :z 2 
IF( 10 .GE. 1) II= 1 
DD 2121 I= II, IPTSD + 2 

DECAYPl(I) = D!CAYPL(IO+I-1)•SCALE 
VJlITE(20,8865) ( DECAIPl(I), I= 1, IPTSD + 2 
FORMAT( 8( 11, F9.2 )/) 

III = 0 
IF( IT .EQ. 3) III= 1 
DO 707 ISH = -III, III 
CHISQR(ISH) = FCHI(ISH,DEC!YPB.,l.lll'TSD) 
IF( CHISQl(ISH) .Gt. CHillll) GD IO TOT 
CBIHII = CHISQR(ISH) 
ISHMII = ISH 
TMII = T{JT) 

707 CDITIJIUE 
'llll.ITE(22,8883} T(JT), IA, 

1 ( ISH, CBISQR(ISH), ISH = -III, III) 
2346 CDITIIUE 

GO TO 823 
C 
2201 'llll.ITE(18,2202) 
2202 FORMAT( 'lo perpendicular 1it segment vritten. •) 

STOP 
C 
823 CDBTIIIUE 

IETUlUl 
C THIS SEGMEIT IS IDT BEACHED lJliLESS SIJHETHIIG ISl'T YOlllllfG. 
9999 VRITE{18,999) 
999 FOB.MAT( 'I1l11EGUI.Jl TEBHIN!TION AT LIIE 9999.' ) 

STOP 
EID 

C 
C 

SUBROUTID COIVOL(Y,IPTS) 
C CONVOLUTES THE C1LCULATED FILES AID IIPUI BESPOISE, YITB 10 
C DECAY. CONVOLUTED DATA IS RETURNED II Y AllAT. 
C 

DIMEISIOI Y(6000),YI(6000) 
COMMON /COIVOL/ Ii, 1.(600) 

C 

C 

DD 10 I= 1, IPTS 
TI(I)=O. 

IF( I .LT. 11) GO TO 8 
DD 7 J = 1, 11 

I:'-' 
01 
01 



7 II(I) = a(J}•I(I-J+1) + YI(I} 
GO TD 10 

C 
8 DO 9 J = 1, I 

TI(I)=l(J)•Y(I-J+1) + TI(I) 
9 allTIIUE 
10 COITIIUE 

DO 15 I= 1, IPTS 
16 Y(I) • Tl(I) 
C 

C 
C 

ltETllllJf 
EID 

FtmCTIOR FCII(ISH,T,I) 
C CALCULATES CHI-SQUAB.ED lJSIBG WIGHTS Fl.OK THE FILE SIGDEK 

DIMEIISIOI T(6000) 
COMHOI /CHI/ D(6000), SIGDE!(6000) 
CHITEMP = 0. 
DO 707 I = 1, I 

707 CllI'IEHP = CHITEHP + { Y(I~ISH+l) - D(I) >••2 / SIGDEM(I) 

C 
C 

C 

FCHI = CHITENP 
ltETllll 
EID 

SUBJWUTIIIE JTEIG(IJUI,A1,B1,C1) 
DIHEJISIOI 1(4,29,29}, ASYH(600), ALPH!(29,29), ESTATE(2D), 

1 VK:(600), Il!1I(4) 
COHlllll /EIG/ E(0:48,24,4), EIVEC(0:48,24,-48:48,4) 

DO 10 R = 0, IJUI + 1 
C WRITE(25,443} I 
C443 FOIK!T( /' I=', 21, 14) 

FAC2=0.5•(A1-C1) 

C 

C 

FAC1=0.5*(A1+C1) * FLOAT(l•(J+l}) 
IJIAI(4)=IIT(noAT(l)/2.) 
IKlI(2)=INT(FLOAT(l+1)/2.) 
IMJ.I(3)=IMA1(2) 
IHll(1)=IMAI(4)+1 

IKKMAX=4 
IF(I.EQ.O) KK111.ll=1 
IF(I.EQ.1) IIIJU.1=3 

C ZEiO ALL ELEMEITS OF .l 
DO 11 IKGRP = 1, 111111 
IMX=IMAI(IKGIP) 
DO 1 I=l,IMX 
DD 1 J=l,IHI 

1 A(IIGIP,I,J)=O. 
11 CORTINUE 
C 

C GET IIITI1L JUTIII ELEMENTS 
ll=N 
CALL FILIJllT(ll,A) 

C 
C DIAGDIALIZE EACH OF THE FOUi. SUBKATB.ICES JlEPUSEJITIIG TD Fou:I 
C ASnmTRIC TOP STIIHETI.Y CLASSIP'ICATIOBS. 

DO 3, IIGIP=l,IIKMll 
C WRITE(26,444) IKGIP 
C444 FOILHAT{ /' IIGIP = ', 12) 

IMX=IJIAI(IIGIP) 

C 
C 
C 

6 
C 

5 
C 
C 

C 
C 
C 
C445 
C 
C 
C 
C 

7 
C 
C467 
C 
3 
10 

C 
C 
C 

IJ=O 

PUT THE KATlII FOi THE PARTICULAJl IKGIP AID I II STIIMETIIC 
STORAGE MODE 

DD 6 I=l,IMX 
DO 5 J=l,I 
IJ=IJ+1 
ASYM(IJ)=l(IIGBP,I,J) 
ZERO THE EIGEIVlLIJES llD EIGDVECTORS 
DO e 1=1, Illl. 
ESTATE(I)=O. 
DO 8 J=1,IMI 
ALPHl(I,J)=O. 

DIAGDliLIZE TIE MlTRII 
CALL EIGlS{ASYH,I!I,2,ESTlTE,ALPHi,2g,y1,IE1) 

TIil!: EIGEIYECTOllS AllE IORMALIZED (THEY All II CDLtool FOD) 

WJlllE(26,446) '111(1), IER 
FORMAT( F10.6, 21, 16) 

CONVERT TIE EIGEIYALIJES TD ACTUAL EIERGIES BY MULTIPLYIIG BY 
(A-C)/2 AID lDDIIG .5•(A+C}•l•(l+1)C AID STDIE THE CALCULATED 
VALUES IN TD E AID EIVEC AllJ.YS. 

DO 7 I= 1, Ill 
E(l,I,IKGIP} = ESrATE(I)•FAC2 + FAC1 
DD 7 J = 1, IHI 
EIYEC(B,I,J,IIGIP) = ALPHA(J,I) 
COITIJrol! 
WITE(26,457) ( E(l,I,IKGIP), I= 1, IHI) 
FORMAT( 8F13.6) 

COITiliUE 
COITiliUE 
RETUU 
END 

SUBROUTIIE FILLJIAf{J,A) 
C 
C ONLY THE LOiER TRIANGULAR ELENENTS NEED TO BE FILLED. ELEMENTS 

t,,) 
C)t 
C) 



C OF IIGllP 1 S 4 AID 2 JBE DllIYED FlUJH 1 AIJD 2, iESPECTIYELT. 

C 

C 

DIMEISIOI A(4,29,29) . 
CODDI /FILL/ F, G, I 

llJJP1 = FLOAT( J•(J+1) ) 
DO 10 IIGllP•l,2 
ISTllT=1 
IF(IlGIP.EQ.1} ISTAlT=O 
JD=O 

C I IS THE I QlJ'JJflDJI lfUllBEl OF COllllBllTIIG 
C SYMHETllC TOP BASIS FUJCTIOIS 

IF(IST11T.GT.J) GO TO 10 
DO 6 I=ISTlRT,J,2 

IJ)c:ID+l 
l(IXGRP,ID,ID)= F•llJJP1 + (G-F)•FLOAT(I•I) 
Jl=ID+l 

C CALCDLATE TD OFF-DIAGOIAJ. ELEJIEIT IF IB llAIGE 
IF(I+2.GT.J) GO TO 20 
l(IXGRP,Jl,ID)=O.fi•H• SQlT( FLOAT(J•(J+l) - (1+1)•(I+2))• 

1 FLOAT(J•(J+l) - {I+l)•I) ) 
6 COIURUE 
C 
20 IF(IKGRP .EQ. 1) GD TD 30 
C 
C COPY A(IlGRP=2) TO A{IKGIP=3) AID ADJUST FIRST EI.EJIEIT OF BOTH 

DO 25 ID= 1, (J-1)/2 
JI = ID + 1 
1(3,Jl,Jl) = 1(2,JK,Jl) 

26 1(3,Jl,ID) = 1(2,JK,ID) 

C 

FAC = (0.5•H•llJJP1) 
1(3,1,1) = 1(2,1,1) + FlC 
1(2,1,1)= 1(2,1,1) - FAC 
GO TO 10 

C CllllGE 1(1,2,1) AID FILL A(IKGRP=4) 

30 1(1,2,1)= l(IlGRP,2,1)•SQBT{2.) 
DO 35 ID= 1, J/2 - 1 

JK =JD+ 1 
1(4,J!,JI) = A(1,Jl+1,JK+1) 

36 1(4,Jl,ID} = 1(1,Jl+l,Jl) 
l(4,1,1) = 1(1,2,2) 

10 COITIRUE 

C 

II.ETIJU 
DD 

FDICTIOI SIIJ(DDD) 
REAL IJ,II,IG 
COHMDR /UHS/ II, IJ, LL, IG 
IF( LL-2) 102,2,2 

2 S=II+IJ+2. 
l=II 
B=llJ 
C=2. 
D=IG 
GO TO 103 

102 S=II+llG+1. 
A=II 
B=JIG 
C=1. 
D=IIJ 

103 IF(B-D) 201,202,203 
C 
202 SIXJ=((-1)••CIIT(S)))•SQRT( (S+1)•(S-2•A)•(S-2•B)•(S-2•C+1) 

1 / C B•(2•B+1)•C2•B+2)•(2•C-1)•2•C•(2•C+1) ) ) 
BETURI 

C 
203 SIXJ=((-1}••(IIT{S)))•SQRT( S•(S+1)*(S-2•A-1}•(S-2•!) 

1 / ((2•B-1)•2•B•(2•B+1)•(2•C-l)•2•C•C2•C+1)) ) 
B.ETURI 

C 
201 SIIJ=((-j)••(IIT(S)))•SQRT( (S-2•B-l)•(S-2•B)•CS-2•C+1)• 

1 (S-2•C+2)/((2•B+1)•C2•B+2)•{2•B+3)•C2•C-l)•2•C•(2•C+1)) 
llETURI 
END 

ts, 
01 
-.;J 




