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ABSTRACT

This thesis presents a method for the solution of the supersonic
flutter prdblem for elastic delta wings with supersonic leesding edges,
In Part I, the necessary aerodynsmic equations are developed,
first in integral form, and then in a power series expansion in order

to obtain a practical expression for the pressure at a point on the
wing due to the motion of the wing surface in a supersonic. air stresam,

Part II gives a method for computing the 1lifts on a partitioned
wing, and sets up cell division criteria, These methods are then
applied to a specific wing form,

Parts III end IV present the electrical analogs for the aerody-
namie 1lifts, and for the elastic wihg structure respectively, These
analogs are then applied to the example of part II,

Part V presents the results of the actual flutter study performed
on the above wing on the Celifornis Institute of Technology Electric
Anslog Computer, |

Part VI contains the conclusions of the study, and recommendations

and suggestions for further research,
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I THE AERODYNAMIC PROBIEM

A, Introduction

In high-speed-aircraft design, s knowledge of the air forces that
act on various types of oscillating-wing plan forms is often desired,
Such information is used in the solution of general instability problems
such as wing flutter and low-frequency instability of aireraft iﬁvolving
control-surface deflections. The usual line of approach lies in the
solution of the linearized partial differential equation fof tha
disturbance velocity potential for compressible flow,

The solution of the compressible flow equation for a purely
Ysupersonic wing", namely one in vhich the upper and lower sﬁrfééeé of
the wing can be assumed to act independently of one another (Refs, 1,2),
is usually given in terms of a Green’s function type solution, the
potential of a point being represented by an integral equation (Abells
Equation) integrated over a wing surface,

This thesis is concerned with developing an integrated férm of
this solution in such a manner that the resulting air forces can be
represented electrically on an analog computer, thus meking possible a
supersonic flutﬁer analysis of an arrowhead type wing.

 The treatment used for the purely supersonic case, involving
source and sink distributions to account for the motion of the bedy,
is believed to be exmct within the framework of the linearized theory.
'The problem is analogous'to that of sound in a moving medium generated
by the motion of pistons imbedded in an infinite plane, For a
treatment of the aerodynamic equations in a mixed supersonic case the

reader is referred to Stewartls work (ref. 3).
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It should be recognized at the start that the small-disturbance
linearized theory being much less complicated than a more rigorous
nonlinear theory, is to be regarded as an expedient which allows an
initial theoretical solution., This theory permits the occurrence of
weak shocks and thus the baslc effects and trends can be studieds In
view of the restriction on the theory that only smaell dlsturbances
in an ideal fluid can be allowed, only thin, nearly flat wings at a
smell angle of attack situated in a nonviscous flow, free of strong
shocks, can be analyzed, In view of the above restrictions and
assumptions in the anslysis, important modifications may be rquired
in certain cases for thick finite airfoils, but even here, the simple

theory for thin wings may serve as a basis,

B, The Wave Equation
In the linearized theory based on small disturbances, the equation
satisfied by the velocity potential for the propogation of sound waves
of small amplitude is the wave equation:

_ 2 2 2 2
1 3°P_ 9 p) d
ei- = At i i

the fluid being at rest at infinity, For completeness, the deriva-
tion of this equation as given by Beker and Copson (Ref, 4) is

' presented in Appendix 4,

Fundamental solutions of equation (1) are of the form of spheri-

eal waves

B, =2 2ot - L) + & g(er + I (2)



where

rt = \/(x'- §:)2 + (y'- 72')2 + (zt= C')z

the source béing at the point ( E's 17 (:'), the source strength being
A 51,777, THE(EY), |

The outward moving wave of equation (2) represents a "retardé&“
potential, while the incoming wave 1s known as an “advanced" potential,

The following problem will now be analyzed: consider a thin
lifting surface of small curvature moving forward at a constant
supersonic velocity v, which may be performing small oscillations
normal to the direction of v (Ref, 1), |

Lifting
element

Foil moving in & negative x direction
with a constant supersonic veloecity v

FIGURE 1



4

If a new coordinate system x, y, z is attached to the foil, then the

equations of transformation between coordinates are:

x=x'+ v !

y=y
-(3)
z =gt
t = 4t
under this transformation, equation (1) becomes:
TR RER R R
dxdts 3P 5y2 3z o

Now Kiissner (Ref. 5) shows that a solution of (1) can be transformed
to a solution of (L) by the following combination of Lorentz transe

formations and Galilesn transformations:

=X
*! 1M
y
(5)
Z
212
tr =t + M
e(l - M)

where M = v/c is the Mach rumber, With the aid of equations (5), the
solution of equetion (2) may be written in the form:

4(5,7,5 ) ]
=ty d [f‘(t-"tfz) + £t = T))

r

%

where



et [ gP - F-D G-t G-CP]
T oM EmE T
2 (4] B!z-l+c
=§ x-";:.___g-
tl c a1l ¢

&t this point it should be noted that equation (6) is valid in a
conical region called a "Mach Cone" opening aft of the moving source,
Outside of this region (r = 0) the flow is undisturbed, It should
elso be noted that the line r = 0 is a singularity,

Physical meaning msy be attributed to the "Mach Cone" in the
following menner, Consider a spherical source moving at a constan'&
supersonic veloecity v. The radius vector R of a point x, y, 2 with

respect to the center is

-R=/[x- (g+v&)]§+ (v =77)* + (a.-l;)‘?"

The time the spherical wave passes the field point x, y, 2 is given

as
t = E‘
c
eliminating R gives
P = (x-g-vt)2+(y-'»z)z-(z-g)2=o (7)

This quadratic in t has two real roots (v >¢), the Ty end X 5 Of
equation (6), This indicates that two waves pass the point x, y, 2
at time t, namely the ones originating at times T, and T, earlier

(Figure 2).
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MACH COME FIELD OF INFLUENCE
FIGURE 2

The next obvious step in the development of the problem is'to
superimpose solutions of the type of equation (6) and to evaluate
A by using the boundary condition of tangential flow over the air
foil surface., This is quite adequately carried out in reference 1
and will not be repeated here, The result of such & development

gives for y = 0 (surface of the foil)

' 2
Pornat) = = e J‘ J W(E,5) [ult - 1) + wit -"cz)] atas

2mp /(5=T)(T, =T )
o %, (8)

where Mz -g) /(C-T))(T2 )

T, =

1 egz cp

_ Mx -5) /(r; T (T, =)
2 ¢ 8? ch
o=z~ T,



o«r\'
fl

"
z+ U o
X=x
B
g = VMol |
W(x,z) space function part of vertical velocity

wit) time function part of vertical velocity

w(x,z,t) = W(x,z)w(t) vertical velocity

Equation (8) is Abel's Equation, Herbert Nelson (Ref, 6) has expanded
this equation in a power series of a5 (for low frequency flutter) and
was thus able to obtain closed expressions for section force and
moment coeffiecients for any arrowheed wing, His a:pgessions were
however quite involved and laborious, hence a slightly different
approach was atiempted here, |

In order to simplify the coordinate system, a new cqordinate o
was introduced

6 = ocos™ [1;- zﬁ] (9)
x-K

The convenience of sueh a coordinate system is apparent from inspec-
tion of figure (3).



v
\, j 152 G -/
LAY
£2
o= 6=07 /=0
4 0 = coe™t [B tan Xl]
T>0>0
Xy3

M&CH LINE COORDINATES
FIGURE 3

Using equations (8) and (9) the following equation is obtained

x T
e ff w(s, T(e)} [w(t -1y) + w(t-7,)] @0 ag  (10)
0" 0 |
vhere
v, = 228
1 = epz (M-Sin G)
- X=8
T, = o2 (M + sin @)

Now considering the motion of the strip bounded by 6 2020 and
%’ 1> > Z o 8s uniform, an assumption about the nature of
W(E,T(6)] mey be made. Since the ultimate objective is to analyze
a delta wing on the electric analog computer, i1t is seen that a
reasonable assumption would be to suppose that the wing is composed
of cells, each one moving with a uniform motion, Hence for a strip

in a given cell
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w[&, C@)] = constant

and mey be removed from inside the integral signs in equation (10).

Now the vertical velocity w(x,z,t) is given by

W(x,2,t) = VEEE """B"‘Z""m - (1)
dx ¢

where Zm is the vertical motion of a point on the wing, For the
present problem of a wing performing small harmonic torsional oscilla-
tions of amplitude @, about some spanwise axis S small harmonic
vertical trenslations of emplitude h,, Z, is given by

zm=[ho+(x"xo)“o o | _(12)

then

Joots (13)

Wstripw(t) = [.'10) hy + v g, + (x - xo)jm T

(note - this neglects spanwise motion), Now using w(t) = e;mt

and the fact that W = constent, equation (10) gives the

trip
expression for the potential at a point (x42) due to a radially cut

strip source as

‘ 3 JoM (=)
Joot 2 & .
H(x,8,t) = = f—-—-—-éffﬂg J‘dg f e °© B cos [;%(x—g)sin G] de
T
gy 0

(14)

Now for simplicity the following substitubion is made

6

1
b
»
~
H
|
umn
—

aé

3!
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Equation (14) then becomes

strip o

6, ©

Jost 1o

plx,0,t) = 2;- W £ ‘( f e 0 cos [ 6 sin e] ae asé (4a)
| 5, 0 '

Tt can at this point be noted that the integral over @ is an
"incomplete Bessel function integral of zero order," since for 81 =T
this integration produces a Bessel functlon of zero order, However,
such integrals are not talulated, and it becomes necessary to resort

to other methods in order to integrate equation (148),

C. The Integrated Solution

An exsmination of equation (14a) discloses the inherent difficulty
involved in the further sclution of the velocity potential problem,
Namely, an in‘begrétion of the above equation with an arbitrary @
limit is quite involved if not impossible to perform in closeci form,
The integrand can however be expanded in a power series .’m powers of
8, and then integrated term by term, Thls technique is not new and
is often used when other methods of integration fail, The only
drewback to such & method is the limitation that is imposed on the

final answer if only & few terms in the series are used, namely

=-c-59§(x-§)<<1 (15)

For practical systemé in low frequency flutter, equation (15) will
be satisfied with ease., Expanding the integrand of (14a) gives
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6 9
B(5,0,t) = (1-506 - -—-----)(1 --(1-eos 20) 4 )d6d5
6. ©
. (168)
now keeping only powers of 8 up to 62, equation (16e) becomes
B 2 &
g(6,0,t) = I I [1 - - —(2142+1-cos 29)] dedd
1 0
carrying out the integration first with respect to @ gives
5 L
ooty 2
L8 Vs of 2 2 sin 2
#6,0,t) = I Lo, (2 - 95 - & (a4} W .Q..(—-—-ﬂ)] ab
T @ 1 4 4 2
61

Now integrating this once more, this time with respect to & gives:

oIty |
& [(6 "52)9 '32 1(6 22)

ﬂ(ﬁ,@,t) = -

3 3
6,7 =8,

1 sin 291
-~ {(21*12+1)9l -

H

(16b)

For convenience in numerieal evaluation of equation (16b), the followring

parameters will be defined:

sin
2

2
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then equation (16b) is given in its final form as 3

& 6

5
#(0,0,t) = = [a6,8,) - 3 Mhio 28.2)-

(2142A+D)]
T

(1‘7)
Equetion (17) will be the starting equation for the work to-

follow,

D, THE DETERMINATION OF FRESSURE AT A POIRT

Now that 2 workable expression in closed form has been derived
for the velocity potential at a point of a wing due to the iﬁﬂugnce
of a radial segment inside the Mach Cone, the next logical step in
the solu'bion is to determine the pressure at that point due to the
segment,.

Bernoulli's equation for pressure in & stream is
- 'l 2] VT

where VT is the total velocity.
Now since the velocity potential of equation (17) is a distur-
bance potential, the total veloeity mey be written as;
Vp=v+ gﬁ
dx

~and the square of this velocity may be written as:

VR = v2+2v§é+zat

If it is recognized that v >>%, namely the velocity in the mam

gstream is much larger than the disturbance velocity, then the
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disturbance pressure (local static pressure minus the pressure in the

undisturbed stresm) is given by:

P=-P-ﬁ=op[§£+v§él
at At A

while the total pressure difference (positive in the downward dii;éction)
is just twice the pressure on one side of the foil and isz.
PT=-2p[§-f+v%£] - as)
It is now apparent that by a combination of equations (18) and (17)
the pressure at a point may be computed, Before this is done. however,
e physical interpretation of the par§1a1 derivative with respect to x
in equation (18) must be given,
The definition of %g 1s obviously the usual one

Y4 -  1im ﬂ(x*ﬁx)sgatl“ﬁ[x!g,ﬂ‘ _
0 x>0 - '

The difficulty that arises however, is best seen by examination
of the following geometrical figure (Figure 4):

!§1

PHYSICAL INTERPRETATION CF of

ox
FIGUEE 4
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It is thus seen from figure 4 that a slightly different geo-
metricel area causes the @ at (x + &x) than thé one that causes
the g at the point (x)s It is this physical fact that places a
singulerity at the lins @ = 0, However, if it is assumed (as is
physically reasonable), that the wing is continucus and that the.
region between @ =0 and @' = 0 moves in the ssme way as thé sector
in questlon, the singularity along the mach line is removed, Thus
in evaluating equation (18) only partisl derivatives with fespect
to Gl(x), 6q(x), and 85(x) will be teken, The singularity was
automatically removed when the 6 limits in equa'bion (14) were chosen
fram 0 <8 <8y and not 8, <8< 63+ This procedure does not 1im:!.t
the resulting equét:lon in eany waey because a solution for the region
92 <e< 6, is eesily obtained by subtracting the solution for
0 <6 <8, from that of 0 <0< 8qe

Now evaluating equation (18) with the aid of eguation (17), the
following relation is obtained: | |
PT__“[M;_,,MCMBG:L ve 8202 4 M-i] (192)

561 ox 362 dx

Putting in the values of the partial derivatives gives:

2Pe'1wtw cﬁ

6.3.5.3
Bp =« [{JA(51-5 » --(51 22)-:! (224+4D) —3‘-—1—;2-}

+--{ JMA(5,-5,,) (2142A+D) 2 }] 2PMoT— :gf;el

b



collecting terms gives:

Jot 2.2 3.5.3
_ 2o oMgM) 6,505 g, (07-87) g2
Pp= - — [ ——-(-28-D)-3 {(51'62)1’4 = ~ (a@un)}
g -
- 2 PMe -&.-f % (19b)
Now since el is given by the relation
gl P cos-l [ﬂ 5—!:.:: ]
X - §l
the partisl of 91 with respect to x is:
331'.—.-{-—-—‘1-——-— cos"l[ﬁ S-z] $ 5o
o |4 50 %= &y (x -5)?
_ x= 84 _
6, 1 { 5 Gy -2 }
% T \/ 1 - PRy (x -5,
X= §1

— T.~2 1___; |
%%’[ﬁ xigl]{xfgl] fl-f}z (_5_;:5__)2

-which may be recognized to bes

bel 1 1 @ cot 8y (20)
°x = °F k! x- 5y \/ 1 cos::?'el ¢ B 61
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With the use of equation (20), the last term in equation (19b) then

becomea:
: Jsts 2
3 30, _ 2 Pliciigo 521 aigs. . 52
- 2 PMe %, ox e (cot 87) [(1 - Tﬁ)' 35(61 - gi'—)
152 5%
--i-z(ﬁl - 61)(2}3-"1'_'003291)]
where T>6,> 0 | (20a)

Using equation (202) and (19b) and collecting terms, gives the final
desired expression for the total pressure at a point (x) due to the

influence of a radially cut strip of width (61 - 62), moving with a

sinusoidal uniform motion W_e¥® | (6 = 0 to 6 = &;)

ot . 2
2 PMoW 6,257 2
B, =~ :;e [ 172 (~24-D)-3 {(51.52) 44 ..L.__ (BM) (21~PA+D)}
- cot {(1 - EZ) - 546, - 15.23) - 16,2 - -6-33-)(23-!24-1-005 2 )}
where T >él> 0 | (21)

It esn be noted that for one half of a complete strip enclosed
by the mach lines the 5%? terms do not contribute any pressure terms

as

cot O =0
8 =1/2
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The pressure due to & complete segment by symmetry then is simply
equal to twice the pressure contributed by the segment contained in
0 <8< T/2 namely

533

» Joot
2PMeW g 2 2
Paogmnts ™ Fo, 1 = [1(61 -, )+;1{--4-—g ¥

('K') (21 )l]

(22)
Equation (22) is of particular interest as it may be used to
derive the pressure at a point x due to its own motion, This pressure
will be called the self pressure termn, The derivation is carried out
as follows: consider the triangular area bounded by the mach lines
=0, 8="T, 5, and 6, =0, Figure 5,

Pressure (x) = P + Self Pressure
segmen'bl
5220

SELF PRESSURE DETERMINATION
FIGURE 5

The pressure of the trisngular segment, not inecluding the self

pressure term, is given by evaluating equation (22) with 65 = O namely



138
P ZDMchejwﬁ
segment . 8

[3- 5 +j{-l + ke (Q-) (2M2+1)}]
5 =0 4 12
2 A (23)
To find the total pressure at the point x the potential F must
be evaluated at 65 = O, thus from equation (17) for 8, =0 & =

WMy o

@0

R RTINS

then using equation (18), to find the total pressure

ZPMGW ot 5 3 Y .
- 2 °r g2 - .
Fp = - [3. 5.2 + 5{ - &) (zw?ﬂ)] - 1] (24)
The self pressure Ps P then is equal to

P N Pse@nent

or subtracting equation (23) from equation (24) gives for the self

pressure

17
ZPMque-Jm

e = (25)

_ An examination of equation (25) shows that this is just the result
of the Ackeret theory for wings of infinite span and zero sweep, It
states that the pressure at a point is proportional to the angle of
attack at that xﬁoint. Thus for example for a wing having identical

motion in every chordwise section, in the steady case w =

Wg=vV % (localengle of atiack)
and _ vy
P—ZP(B) = (252)

vhich is exactly the Ackeret result,
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IY AERODYNAMIC LIFTS
A, Cell Division Criteria

The prineipal results of the aerodynamic esnalysis of Part I of
this thesis are contained in equations (21), (22) and (25) which
give the pressure at & point (x) due to the motion of = segment, of
a strip, and of the point itself respectively, These results aré
not an end in themselves, but are a stepping stone to the next step
in ‘the procedure, namely that of calculating the 1lifts on an
oscillating elastic airfoil. Since the ultimate objective of this
work is to analyze a delta wing in sulﬁersonic flutter on an eleetric
analog computer, the serodynamic 1lifts on sections of the wing wi;lll
have to be determined, o

The important factor that must be recognized at this point is
that the electrical analogy for a triangular plate or delta wing is
obtained by dividing this plate into & number of cells each of which is
moving with a wuniform motion, If sueh an analogy is used, the problem
of 1ifts is one of finding the 1ift on & cell due to itself and adding
to it the 1ift due to the motion of the other cells which lie within
the mach lines, It should be noted that different cells can contribute
15.:&“13 torms to the 1ift on one cell as the Mach number is varied.

The first thing that must be done before the lifts are computed,
1s to subdivide the wing to be analyzed into a number of cells, each
'moving as a rigid body and possessing its own vertical (h), chordwise
pitehing (o), and spanwise pitching (F) motions, In order to have the
area of the cells equal the actual area of the wing, the criteria for
cell division as given in a report at Republic Aircraft by Pines, will

be used (Ref. 7).
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1. The cells should be rectangles of equel size, except at the
trailing edge where the cell width should be half size, (So that
exactly the srea of the wing is covered.)

2. The cell size should be the same for all Mach mumbers for
which the edges are supersonic, and all Mach cones should produce .
essentially the same types of cuts, |

3, The triangular part of the cell cut out by the leading edge
(or trailing edge) should be equal to the adjacent triangle within
the wing not covered by a cell, Thus the area covered by cells will
equal the area of the wing,

4e The dimensions of the cell should be such that the appréici.
mations used in evaluating the integrals will be valid for all Mach
numbers for which the leading edges are supersonic and for the proper
range of values of the frequency-distance parameter &,

Applying these criteria to a wing with a straight trailing edge

(Figure 6), the cell dimensions are given as

d=Ctan\ ? (26)
where |

d = chordwise dimension of full cell

¢ = spanwise dimension of full cell

A= sweep angle of leading edge
‘and §=ne ' (2m)
where § = semi-span

n = number of cells along trailing edge
of semi-span
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CELL DIVISION OF DELTA WING

FIGURE 6

B, Determination of Cell Lifts

Once the wing of Figure 6 is divided into a number of cells, it
becones neceésary to determine the serodynamlic 1ift per cell in order
to perform a flutter analysis on the electric analog computer, Strictly
speaking, it is necessary to actually integrate equation (21) for the
pressure at a point over the entire cell, Such an integratiori is not
feasible at this point, hence an approximete numerical method will be
used., It will be assumed that the pressure at the centroid of a cell
is approximately equal to the average pressure on the cell, The 1lift
will then be given as the product of this preasure and the cell area,
As the number of ecells in the wing increases this epproximation
becomes inereasingly better, Based on this assumption, a set of rules
for the determination of cell lifts can be formulated:

1, Divide the wing into a number of cells such that the cell area

is equal to the wing area,
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2, Compute the pressure at the centroid of each cell with the
use of equations (21), (22) and (25), Then the 1ift per cell will
be given az the product of this pressure multiplied by the area of
the cell,

3. In computing the pressure at the centroid, angular segments
of influencing cells, such as shown in figure 3, will be use&, each
possessing the h and a motion of the centroid of the appropriate cell,

Le In the construction of these segments, the area of. the seg-
ments should equal the area of the wing inside the mach lines which
are centered at the centroid of the cell at which the 1lift is being
computed,

5, For practical flutter analyses, symmetrical and anti-symmetri-
cal flutter will be considered one st a time, Hence, only one half of
the wing has to be represented electrically since full advantage can
be teken of symmetry,

Using the above set of computing rules the precedure can'be
outlined as follows:

1., Draw a planform of the wing to a convenient scalé, and divide
it into cells, |

2. Construct graphically the anguler segments affecting each
cell (this has to be done for each mach number of interest).

3, From the asbove construction, values of &, 69, and 65 cen

' be determined, (87 and 5, will be functions of w). |

4e Using equations (21), (22) and (25), the pressure at the
ecentroid can be conputed as & function of (w,

5, The 1lifts are then given as the product of the cell area by

the centroid pressure,
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Co & Six Cell Wing Analysis
In order to clearly illustrete the procedure outlined in the
sbove section, and to get an idea of the order of magnitude of the
terms involved, a specific planform will be considered (see Figure 7).
This plenform is the same one as considered by Nelson (Ref, 6) and

by Pines (Ref. 7)e The followlng paremeter values will be useds

M = 1,75
b =1/2 ft,
)\ = 300

The cell dimensions as given by equations (27) and (26) are.

-_s._13. |
c—‘g.—'_Bi-.576 ftl.

d =7 tan \ = 333 ft.

Tt will now be formulated that in the study to follow, only
symmétrical flutter will be analyzed. & study of the anti-symmetrical
motion is quite similar and will not be performed at this timé as no
new information would be obtained from such an analysis, - The motion
of the "Meft cells" marked with an L in figure 7 will thus be'identical
with that of the corresponding cells on the right side, Figure 7
represents the first step in the procedure for calculating the desired
cell lifts,

Tt should be pointed out, that the ultimate number of cells per
helf wing is primarily determined by the capacity of the computer that
is available, Six cells were chosen for this study due to the limita-
tions on the number of operational esmplifiers that were available, It

js firmly believed by the author that such a six cell structure, crude
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as it may appear to be, will still give a satisfactory first order
engineering result,

The second step of the procedure for the determination of 1lifts
calls for a graphical determination of the influencing angular seg-
ments, Such a construction for all six cells is presented in figures'
(8) - (10).

Now,v placing the available numerical values into equations (21),
(22) and (25) so as to get them to be functions of X - §4, x - &5,
0, %= %’% only, the following equations with mmerical co-

efficients are obtained (neglecting terms in 63),

Joot
2PMeW o X=- § 2 ,
By = - — ; [(x_ 5? - 1) cot & + & { «14285(244D) [(x.gz)z-_(x-ﬁl)z]

(x=55)°
+ [(x - gl)z - —:-:E—ZI—] cot 89 [.211.28 - 047616 cos 2 91]}

\ |
+ 51 { o5 cot 8 [(x=5,) - (e-%2) ] - ST s [(x-gl)-(x.gz)]}]

=

(211)

and the pressure due to a triangular segment plus the self pressure is
giveh by:

Jost
20MeM
Pp= - — ;e [{. T+ 1348 T (x-5)°] + § 17951 Blx- gl)]

(24*)

while the pressure dus to a complete strip is given by

ZPMchejwt

Fovgnent = ~ TP

[ 13463 & {(x—§1)2-(x-§2)2}+ J17951 &

{xt0) - -5} ] )
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SCALE: 4"=1' IR

CELL INFLUENGES M*®=175
FIGURE 10 |
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Now with the ald of the above equatlions, and with the scale

drawings (Figures 8.10), the calculation of the lifts on each cell

is carried out (See teble 1B, Appendix B), The pressures as come

puted in Table 1B of Appendix B are summarized below:

':;I'p%'é%; Contributing Cells Numerical Value

Py la <+ 7P L006956 + § B W47
Py, Ib + 1o 5009 + & J1652 + § B 43692
Py | le+lf+lg-lg | JSELL+& L2245 + 3B 0472

Py 5 14 oli884 + TF (0586 + 5 B 42278
P, 28 -+ @ 02789 + B 42998

Py 2b + 20 02296 + T 1935 + § B 43486
P, 3a + 3b “29V47 + a0 0137 + 3B J326
P o 24 ~ed239 + T 05806 + § B 42136
'94_3 4e —a2133 + B0 42200 + ] B #3361
Py la T+ T 006956 + § B SJLA9TL
s | 40+ 4o - det S919 + T 1021 4§ B 272
Ps_g 54 «JT159 + T° 10658 + § B 43569
Ps s 5 + 5b + 5¢ 3.0610 + T 04338 + § B 30846
Pe_g 6a + 6b 38439 + T L0248 + § B 43391

TABIE 1
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Now it should be noted that in the computation of the centroid
pressures given in Table 1, the assumption of 6 << 1l was used,
This in effect places an upper limit on w, The maximum velue of

(x - §1) that was used was ,770 ft, hence if Gﬁmx is taken as .1,

(X =51 Jmax _
6mx =yl = ” = (475591)(,770) Bax
or
m < oS4 for validity of equations,

Now an exemination of Table 1 shows that as a first approximation,
the real part of the pressurs ratio may be considered = conat;ant*.
In most cases the @° term contributes a negligible error, The largest
deviation comes in the 1-"4__3 term where at amax the error is approxi-
mately 25%, However this is & "mutual® pressure and is not as
significant as a self pressure, If desired, the effect of the mz
térm'may be partially ineluded by adding to the constant real .term 8

'c62 ‘evaluated at approximately the expected flutter frequency,

term in
for example @ = ¢35 This correction was not used in the analysis
to follow, | |
Before computing the lifts on each eell, it is desireble to
evaluate the Wy that appeers in the pressure relationship, Equation

(13) gives Wy as
waej“"'-_- [3mh°+vao+(x-xo)jaom] ejwt (13)

where spanwise motion has been neglected, Now for a smell cell size,
the a(x - X,) term or the pitching about the centroid will be

neglected in comparison to the other terms and
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wg e Bamea (13)

will be used, Equation (13') states that the 1ift is proportional to

the vertical velocity and to the angle of attack of the wing, 4&n

examination of the pressures of Table 1 then indicates that the lift
on a cell (i) with area 44 is of the form

e

pody fau, 2k |
+_Tn_—'i[s ﬁj"' B aj] k+jmm]+ooo

' (28)
where the coefficients e, g, k, m are determined from Table 1, Now

evaluating the coefficients of hy and a4 gives

a _ ,
T = 3,05
@‘:i = 4A45.5

while the unit of area (erea of small cell like ecell 1) is Ai = (09622 ft.z.
If the symbol {7 is now introduced as

" =  &rea of Small Cell f,‘rf = 4080115

‘and the conversion is made from ® to o,the results of Table 1 may be

used to obtain the cell lifts, If p = -f-t_- the following expressions

are obtained:
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Lift

Numerieal Valve

Lo
o

In.5

5=5

= (P)(m) (34055 By + 444545 a7) (1 - p &76413 x 1074)

(")(+5009) (3,055 B, + 44455 a}(1 + p 11,82 x 107%)
(0)(5611) (3055 iy + 4445.5 a3) (L + p 1349 x 1074)
= (M)(e4884) (34055 fi5 + 44455 a5) (L - B 7479 x 107)

- (M) f2r)(3.055 ﬁZ + L4h5 65 qz) (1 - p 15302 x 10"T4-)

- (M)(5.9494)(3.055 By + 4445.5 az)(1 - p 1.253 x 107%)

-()(04239)(3.055 iy + 44455 ap) (1 - p 8,080 x 107%)
- (()(.2233)(3.055 By + 44455 a3) (1 = p 25041 x 10°4)
- (M)(@)(3,055 hy + 4445.5 a,)(L - p o764 x 1074)

(1) (+5919)(34055 By + 4445.5 ag) (1 + p 5.884 x 207%)

- (M) (La4318)3.055 By + 4445.5 0} (1 = B 7,995 x 10™)
- (")(641220)(3.055 B + 4445.5 a5)(1 - p 1.6159 = 1074

- (M)(3.8439)(3.055 fig + 444545 a ) (L - p L4146 x 10™%)

TABIE 2

Table 2 serves to illustrate the fact that mll 1lifts on each cell

are given by equations of the form of equation (28), Some cells like

cells one and four have as many as four contributing cells, however

the contribution of each cell takes one of two possible forms, namely

a time 1sg (e = J g ) or a time lead (k + j m w)e The next obvious

step in the solution of the supersonic flutter problem is to derive
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an electric analog for equations of the form of equation (28). The

desired circuit is one vwhich will produce a current which has the
form of equation (28), namely an analogy between current and 1lift

will be used,
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III EIECTRICAL ANALOGY FOR AERODYNAMIC LIFTS

A, Operational Amplifiers and Computing Circuits

In order to represent the lifts on an oscillating airfoll

electrically it is necessary to generate a current of the form of

equation (28) namely:

. - Pec & - T |
I, = - .pch:_ [%M hy + g_M_;_g “i] [e_jg}:} + ‘:r b [%:I h. +§§‘—= aj][k-l—jm]

The desired electrieal circuit should operate on the available
wing coordinates namely 1.1 and ;L, and by a system of operational
amplifiers and passive computing networks, generate a 1lift c’urrént.
For the sake of completeness, the following derivations for operational
elements are presented below (Ref. 8). |

1, The Integrator

i
i— i
f R “ j
i a * o
ei e _ ; - 1
1 1 Lo W
FIGURE 11

The amplifier used in the above eircuit was a Model 3 CeI.Te
Analysis laboratory chopper-stabilized Direct Current Amplifier,
Such an amplifier has low drift (less then 5 x 10~ v/hour), and
a wide frequency response (from d-c to about 70 ke for a gain of

100), The gain & can be adjusted by choice of internal feedback
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" network,
for an adder a higher gain, 20,000,was used,

The governing eguations for an integrator are

e
- a - _ 2o
e = & - Ri T -
i
e - eo 52 oo
Cip
solving for the transfer function
o _ A
e +13Y5
1 Ri Ci(A 1)ptl
nm«rforA:-loo A+ 1=4
€. e
o* _ 1 _ 1
4 RgF 1T
2+ The Sumer
i=—= R,
et 20 % 2 e
S 1
—— -

{

R
b}
<‘
<l
)

8

ll}— OQ —

FIGURE 12

For an integrator, it was set to approximately 100, while

(29)
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The amplifier used for the above circuit was a Model 4 C,I.T.
Lnalysis Laboratory amplifier with a gain of about 20,000, The
negetive gain smplifier is followed by an emplifier with a gain of
+1 so that an additional sign reversal is available if necessary,

The governing equations for a summer are:

. e e
;: +-—g -;— + +-—g —]-‘- + see = \= ;- -'o' "'J'-"
(&g A)R]_ (e, A)ag (- e, A)Ro
or
e &+l 1 1
-9("+—+—~+ 000)=" (’e'l""'e'g'" eve )
A R, Ry B Ry
N S A+ *
now if §, -ﬁ'i<< R, (use & = 20,000) then
. e ;
d o142
eo = - RO (Rl + Rz + ooc) (30)
" 3. The Current Generator
1 NT o ] ‘' E
e i= —ﬁ—o
e
i

1 \:A
ino 1

FIGURE 13

The emplifier used for this purpose was a Model 1 C.I.T. Anelysisg
Leboratory negative gaein amplifier with a separate power supply so

that the amplifier chassis could be floated above ground,
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The governing equatiocns for & current generator are:

-Ae (Z +"t)i

or
-4 e

(A1)R, + Zp,

for a high gain where (&41) R, > zL A - 2000
i = -2

4e Passive Computing Circuits

a, The Lag Function
ei . cl

owpand
———

k)

FIGURE 14

.:1.‘1.’--1(11 (Rl-l-Ru)( 2p+1)

where - 3131311

2 7 RytRyy

e

=2

! (ngil)(l - %)

ite

e

6D

(32)
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Pe The Lead Function

Ry
AAAN
L
ei 1 ‘ O. Ko
8o
FIGURE 15
o+l
e, (3(E5)
ey o 'Cl ’szl
R’l_
where T,'l = Rlcl T’z = E’I‘% Cl
5 -2k
EytR,
now if 1>>'U2w2 and T. T, <« 1
2 12
S (T2 |
==k, \Tl“l-rp[’t ’tz']) (33)

An exsmination of equations (29) through (33) shows that equations of
the form of equation (28) can now be analyzed,

The complete circuit for the aerodynamic lifts on the six cell
wing for M = 1,75 is presented in figure 16, As an example of the
process involved in the derivation of this circuit, the equation for the

output current (1ift) of cell two will now be presented:
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The equation for the output current of current generator (2)

using equations (29)-(33) is

M RaR02 Kzszg - B’h Ko
I [RZBRh oy T e TR TR

e 1 - - R, K |
- (34)

where "(;‘5 =

RytBap 2

e e

Now, making sure that all of the above approximations are observed,
an analogy, with the aid of artfully chosen scale factors, cen be
made between equations (28) and (34).

Before this analogy is made however, a few words of explanation
should be written about the Rg=Cy=Ry feedback circuit from the
output of the current generator to the input of the first adder.,
The capacitor Cd is so chosen as to trap all but the very low
frequencies, hence the overall transfer function of the circuit is
unchanged, This feedback does however tend to eliminate drift at

‘very low frequencies. The practical values for these elements are

Cq=2uf Rd=1.8 meg

or
X 1= R4Cq = 3.6 seconds
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Be The Introduction of Scale Factors
The following snalogy will be made between the electrical quanti-
ties of figure (16) and the physical quantities of the wing being

studied:
= k8 n
ph = NEh
Ka
po = - f2 5,
Plu
p=E
N
_K
Lify =g 4

Now using equation (35) and equation (28) the following expression for

the 1ift ecurrent is obtzined:

= .2 2P _g% . N Me
==L D [Aie(l £5) (e, Plpmai)

+ a1+ B )(E’hj XE )] (36)

comparing equation (36) with equation (34) for i, » the 1ift on cell 2

(foi' example), the following correspondences can be seen:

't5 = -e-g-l‘i (Té —'t‘6) =-k15-N
ZaZPcMAg 6 = _l. RaROz K2 f%g
T Re RygRy %% R, + By, (37)
") Ro Tyt
2a%pcMisk _ 1 Fafop 6
Tup R Bt D Tg
M . X
Pp  BRgTy
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Equations (37) therefore give a complete set of relationships
between the parameters of the electrical eircuit representing the
aerodynamic 1ifts, and the actual 1lifts as given in Table 2 and as

characterized in equation (28),

C., HNumerical Determination of Circuit
Parameters for Iifts on a Six Cell Wing
Valuss for the ecircuit peremeters shown on the circuit .diagrmn
for the aerodynamic 1ifts on a six cell wing (figure 16) will now be
determined, The lifts are those given in Table 2,
Where:

P = 1,75 P = 2,378 x 10 1b-rt 4-sec?

e=1ldzx 10° f‘b—sec‘l

M= ,080115

for these equations, the following selection of scale factors was made:

Scale Factor Value
N 4
Pl o576
a2 +002
Table 3

Now for the sske of convenience, all potentiometers indicated
on figure 16 will be 10,000 ohm helipots, The time constants of the

integrators 'Ei will be set to

Tj = oOlsec, with Ry = 1meg. Gy = <01 pf
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so that the approximation of equation (29) is walid, The resistance
Re of thé ‘current generators will be 500.0 (a standard analysis-lab,
value) while the ratio of

oMl | ogmer for k=1
B B %

Also, the feedback resistors R, - R

resistors being within 4+ 1% of nominal value,) Summarizing these

will be set to 10 meg, (A1l

values in table form gives:

Paremeter Value
Ri 1M

Gi 01 uf

&1] helipots 10 K
Rh oM

Ru ol M

Ry 500 .

Rd 1.8 M

C a 2 uf

R°1 through R, 6 2 M
K° 1,00

Ra 5 M

Tahle 4

Once the above elements have been selected, the remaining part of
the calculation is to determine the values of the elements in the lag

(1lead) functions from equations of the form of equation (37) and %o
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. evaluate the gains of the second summers so as to give the correct

overall gain.

The first step in this procedure is to rewrite the equations of

Table 2 in a slightly different form, namely in terms of the voltages,

thus, making use of the scale factor equations (35), the following

expressions are obtained:

TABLE 5

Lift ‘ Value

1| -ea0d (1,2585) (7675 By - '-’-%i‘Eﬁl) (15 .191203x1074)
1,1'_.;2 - 41073 (,2007) (76375 Ey, - 7—71;;.?9-%) (145 2.955x10™%)
A 421073 (,2248) (76375 By, - T’Ll::%) (145 .33725x1074)
Li_5 - 4x1073 (,1957) (76375 Ens = Z'—7-1-_]%;-];-:-"@-3)(1-¥> 1,86975%10™%)
L, - 4x1073 (2,517) (76375 En, -@) (17 .38255x10™4)
L?i_s .4x10‘3(.18396)(.§6375 Eny - %)(u}? 6.08'75::10"")
1.3'_3 -.4x1073(2,3833) (76375 En, - '-?-7-;-—%2)(1-5 .31325x107%)
L, - 4x1073 (,1698) (76375 Ep, - 1%'5“-2)(1-5 2.020x10™4)
L;P_B ~o4x1073 (,08545) (276375 Epg = '-73%9-33) (1P 6.3525x107%)
L, o 4x1073 (1,2585) (76375 By, 5" 17-_11)-95‘%)(1-‘;3 «19103x107%)
Lz:.s 4x1073 (,2371) (76375 Bhg = @—;%)(16 1.471x107%)
L -o4x1073 (,5736) (76375 Epg - W—E%E-%) (1 1.9988x107%)
L} ~o4x1073 (24452 (J76375 Bng - Egm;#ﬁ)(l-'ﬁ <40398x1074)
L ¢ e x1073 (1,5399) (76375 Eng -77__—??-“-6) (1P +35365x1074)
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These 1lifts are analogous to the 1ift currents of equations of the
type of equation (34). As an example of the computations involved,
the relations for the 1ift LZ;.-l will be carried cut in details

7710Eq,

L = ~o4x10°3 (1,2585) (76375 By, = = 1)(15 .19103x10~4)

now Ty = 19103 x 1072 = RyCy from the above expression

set Gl = 405 uf (available in 1% tolerance polystyrene
plug-in capacitors)

then Ry = 39742 QL

The overall "h" gein is

. 1 By Rg\Roy
4x10 3(1.2585)(.76375) = g 3114'Rl Kll(g)-ﬁg—z

but Re = 500 o Ra/Rh =1/2 Ryy =2Ma Ry =397.2.n

then
L6118 _
U8 = 9618 Ky (3) 2

thus select B]A = 5MQ

then Kll =

Using a procedure similar to the one outlined above, the following
parameter values, in addition to the ones presented in Table 4, were

computed:s See Table 6,
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D, Computer Aero Cell Test Procedure

Oncexa circuit of the form of figure 16 is physically set up
on an electric analog computer (like the computer in the Anslysis
laboratory at the California Institute of Technology), and the
paramsters are computed (see Tables 4 and 5), the next obvious step
is to devise a test procedure in order to insure the proper performance
of the equipment beiﬁg used, With such an objeet in mind, the follow-
ing procedure is established:

l. Check the gains of each individuél emplifier for numerical
gain, and fof phase shifts at 10 ke, If phase shift exists on
summers, compensate for it by placing capacitors in parallel with
channel adding resistors (capacitors will usually be of the order of
magnitude Luuf - 250 puf). Ten ke square wave testing is to be used,

Thus for example:

. b " A e
2M M
M | —
—!-/\M/\—! -4
it '
L....: :._..--l .
5uf 1

Compensation of Summers

FIGURE 17

2, In order to check the overall performance of the aerodynamic
circuit, the 1ift currents should be measured for a specific frequency,
with wnit voltage inputs on each h and a input terminal in turn, Thus,
it is necessary to compute the expected magnitude and phase of the

1ift currents from the equations of Table 5 at a fixed frequency (say
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100. eps)e These then are the desired 1ifts, They differ from the
expected 1lifts by the approximations made in the lag functions,
namely by assuming that

...].-._......... =1 + -
Tl 1+p(T; -T,) (33)
and
1 . -
'Cz’ﬁ +1-1-P (32)

Thus, for example, for the 1lift current ihl due to 5 volts (100

eps) impressed on the h, terminal namely i , the desired current

LA

from Table 5 is given by:

b, * o4x1073 (,2007) [ 76375 * (5voltsi 1+5 2r(200)(2.955x1074)]
24

10,5°
= o313 a

while the expected 1lift current is:

(Gain)(Phase Shift)

h

e

-t 10.4°
1+3(27 x 100)3.955x10 .
13066 j(2r x 100)3 - 3% /1

1+j(2r x 100) 1074

which shows that the appoximation to the lag (lead) function at such
frequencies (m = 1,6035 x 107 %:: «25) is quite good, Using such a

ealculating procedure, the mumerical test table (7) was computed,
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TEST PROCEDURE FOR AERODYNAMIG CELLS

a? = ,002

M =175 N=4 Py = 576 £ = 100 cps
Input Volts | Volts | Expected Lift Current | Desired Lift Current| Cell
(Fe) iy
By 5| Loz 680 | igm Lm68° | g
B, 5 3234 2L 3434 22 1
By 5 - 1260 47647 - 1376 =57 1
B, 5 3.845 L1438 ERITR
By 10 .3021 42048 3007 {20495 2
Eb3 5 =3 4640 [2e065 =34640 {14065 3
=7 o25 .
B, 10 - 2565 &% - 2605 &7 4
B, 10 - 1212 £=21.8 - 06 L7218 L
B, 10 36404228 3623 £33 4
En, 5 - 8698 L7416 - J8820 £=7+16 5
By 5 2,352 {212 2,352 L2177 6
TABIE 7

In order to check the a channel, it can be noted that the ratio of

11if% current due to an MY voltage to that due to an "h" voltage is:

3
g

)
hy,

= 16,08 J

(a constant for all channels)
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IV THE ELASTIC WING ANALOGY
A, The Analogy for an Elastic Beam in Bending
The equation for the vibration of & beam with moment of inertia

I and distributed mass @i per unit length is given as

52 Bzh _ %
é—y-z- (81 _5';5) +m3—t-5 = 0 (38)

The electrical analogy for this equation was derived by Dr, Ge. De

MeCann and is fully outlined in Reference 9, The circuit is given

below:
by
(Eg)p1 B (8 L
2 Q/ntl/2
nl/2 e L
-?rl v !uu B N -10
— YOO~ 2 4111 % (1) TR
g == C =Ry pend e

THE ELECTRICAL ANALOGY FOR THE
BENDING OF A BEAM

FIGURE 18
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Be The Analogy for the Plate Equation
The differential e.qué’c.ion for the dynamic deflection of & cone
stant thickness elastic plate can be written in the following form

(Ref. 10):.
v¢h = a/b,

or
. 2 2
3[ 2 2.2 2.2 ]2}: i
X [E? W] 3= L3R ¥R oy Vb, (39)
whera q is a load per unit area and D, is the stiffness constant for the
plate

° 12(1 VR

vhere t,1s plate thickness, and 7" is Poisson's ratio,

In deriving an analogy for equation (39), it was pointed out in
reference 10 that equation (38) is similar in form to the first temm
on the left side of equation (39). Thus it may be deduced that an
analogy for the first term of equation (39) will be similar to .the
eircuit of flgure 18, with stiffness inductors going in both (x) and
(y) directions,

Consider the following network:

0%0, 6118 28, 26§

. CEmmms gy SN

xR (49)* ()R (ay)?
= &x q/D.,

DERIVATION OF PLATE CIRCUIT
FIGURE 19



now if ' hn - hn-l o
Dx x

then the following egquation is obtained

S ' - o/
Bx{-;? a }g bx D, (393)

Thus the following eircuit for equation (392) may be deduced:

0%~ ,335\ 8y~

ny A "y
ZX
W x y
h . b ahliis h
q/Do /qf/Do 7f:/Do

DYNAMIC ANALOG FOR EQUATION (3%a)

FIGURE 20

Obviously, a similar circuit can be derived for the second term
of equation (39), Hence a circuit for the complete equation is best

represented by three planar diagrams,

Cs The Elastic Wing

& wing such as the elastic wing of Part III is composed of
intersecting besms covered with thin plates on both the top and
bottom surfsces, Thus using the theory outlined above, the structure
can be represented electricslly by the circuits of figures 21, 22,
and 23,
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Now if the following definitions are made:

° P

()

(]

h cireuit/o circuit transformer
h circuit/f eircuit transformer
¢ inductor

5 inductor

o inductors in y direction

mass capacitors

—p1=3 e
2

where wing cross section may be represented as:

V L L L Ll Ll

|t

/77//////T

L Ll L lLr st

NN
-

LLLLLL L L

WING CROSS SECTION

FIGURE 20(a)

The equations for the circuit parameters then are:

Transformerss

P, 576

= 05/085

Bending Inductors;

o))

76 _
57 = 1.0

+3
il
g 'y
o

= 1,0/1,0

o
n
ol

)

2

4
gl&
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The leading edge cireuit however requires special attention.
Consider the following diagram:

MOMENT EQUILIBRIUM IN LEADTHG EDGE CIRCUT
FIGURE 24

M& =My sin 8
M, =M, cos &
Now if the following scale faetors are introduced:
Mg = K/b'Ig
eRa L KRR

while Elz-_EllP - &
pa Eq, 1
E, P,

then using the scale factor equations and figure 2/:
=& a
Iy =3 I, sin ©
I, =2,Iscos ®

then let the scale factor (b} be:
b=ga sin ©



. then

]'7 I
I, = Ig/tan @

The turns ratio of the B/a transformers in the leading edge is:

B/o = —2— = -d = 222 (41)

While the bending inductors in the leading edge are given by:
6 P21
Iy = :o-' a® gin® @ E (42)
where As is 1/2 length of leading edge = (667! and w'is an equivalent
width of the leading edge besm chosen as 15 feet,

The h/a transformers in the leading edge are given by

E, O4s sin @
Tedlo—— = =2 (43)
a Py *

Using equations (40)-(43), the following parameter values can be

tabulated:

Element - Quantity Primary Secondary Pri, Tap
Ts1 h/a Ty o35 1.0 15
Te2 leading edge 1,0 1.0 2
'1‘63 leading edge 5 1,0
T64 leading edge .5 1.0
T¢s a/f coupling 95 55
T91 h/ai Tx .5 085 .25
Tgl h/ﬁ' Tx .35’ 1,0 15
Tsz h/ﬂ T‘x 05 985 .25
Tgs h/A Ty 1.0 1.0
T94 Ty 1.0 1.0
Tas T 1.0 1.0
Tg, 1§g 1,0 1,0
'El ; caup. 93  #55

ELASTIC WING TRANSFORMER VALUES
TABLE 8



39

The mess capaclitors of figure 21 are given by:
a2 - M
G=-ﬁ2—M=1.25x10‘4M (44)

where M is the mass per cell which 1z the mass of the beams and plates

per cell, In computing the inductors, the following expéessions will
be used (see figure 20a)

D

Q

2
= . g
2

where
E = 1,05 x 10 1b/in?

The vaglues for the L!s: and C's will be determined in part V,
In order to compute the values for the capacitors in the a cir-

cuit, the following egquation may be used

+-¥ - p22 (45)

where I, is the radius of gyration,

D, Test Procedure for Elastie Wing Circuit
Once the circuits of figures (21)-(23) are set up on the electric
analog computer, a test procedure for the validity of the circuit
should be formulated,
1, First, measure the currents &t a1l nodes in the cir:cuito Then
@&, Kilrchhoff's Law should be satisfied, nemely, the sum of
the currents at a node should be zero,
b, Ampere turns on each side of a transformer should be
equal,
2, Second, measure the h eircult voltages at mode frequencies,

This gives the mode shapes of the wing which should check with physical
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intuition, The sum of 2:!. civi in the h eircuit (the total charge)
must be zero - this is equivalent to the conservetion of linear
momentum, & mode frequency is one at which the driving current is

2 minimum (meximum circuit impedence).
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Vv THE ELECTRIC ANALOG COMPUTER STUDY
4, Equipment

In order to complete the analysis of the last four sections, an
actual computer study was performed on the planform of figure 7
using the circuits of figures (16, (21), (22), (23)s The elastic
structure was set up on the California Institute of Technology Eiectric
Analog computer, a picture of which is presented in figure 25, Thus
all of the passive elements, with the exception of T and Té, indicated
in figures 21 -~ 23 were computer elements with tolerances of # 1%.

(Ti and T, also had similar tolerances.)

The principal equipment problem lay in the construction of the
six aero cells represented in figure 16, Three different types of
amplifiers had to be used in this circuit, This fact was dictated not
by circuit needs, but by existing equipment in the Analysis Laboratory
and the Servomechanisms Laboratory at the California Institute of
Technology. Plctuvres of these amplifiers are presented in figures
(26) - (28), The plug-in units for these operational amplifiers are
shown in figure (29), while a complete assembled view of iwo out of
the six serodynamic cells is shown in figures (30) and (31),.

Tt should be mentioned at this point that all resistors and
capacitors used in the plug-in units were precision elements (+ 1%
tolerances), The specifications of the amplifiers were already pre-

sented in Section III under & discussion of operational amplifiers,



CONTROL DESK OF CIT ELECTRIC ANALOG

COMPUTER

FIGURE 25

SUMMER WITH NEGATIVE AND POSITIVE OUTPUTS
(WITH PLUG-IN UNIT IN PLACE) SERVOMECHANISMS
LABORATORY

FIGURE 26 ‘
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INTEGRATOR AMPLIFIER NEGATIVE GAIN WITH
INTEGRATOR PLUG-IN UNIT IN PLACE ANALYSIS
LABORATORY

FIGURE 27



CURRENT GENERATOR AMPLIFIER (WITH POWER
SUPPLY) ANALYSIS LABORATORY

FIGURE 28

SUMMER INTEGRATOR LAG (LEAD) FUNCTION
PLUG-IN UNITS

FIGURE 29
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By &nslysis of Three Wings

In order to perform a thorough flutter analysis at a fixed Mach
nunmbsr (Ix't2 = 1,75), it was decided to analyze three wings of identical
planform but with different msss distributions and stiffnesses, By
such a procedure, 2 range of flutter frequencies could be obtain_e_d,
thus covering the allowable values of @ in the merodynamic 1ift
equations,

For each wing three cases were investigated, These were:

1. Wing and complete aerodynamic 1lift circuit (basic case).

2, Wing and serocdynemic 1ift circuit with lag (lead) function
capacitors removed, This illustrates the effects of phase shift as
compared to magnitude of the liftts on supersonic flutter in the
allowable frequency renge, |

3. Wing and aerodynsmic 1ifts due to "self-cell motion" only,
Namely, in figure 16 set Roa, R3a, Ry, Byps Rops Bgps Bspy Byp to
infinity, This illustrates the effect of the mutusl terms on super-
sonic flutter,

. Tables 9 and 10 present the values of the capacitors and stiff=
ness inductors used for the three basic wing cases respectively., It
should be noted that the effects of a fuselage were included by dise
tributing its mass near the centerline of the wing at stations 1, 2,
end 3, The effects of rotary inertia were included by having an "g"
‘mass at cell (3), the assumed center of gravity of the i«ing and
fuselage, In order to obtain desirable flutter mode shapes and
frequencies, a tip mass was included at eell (6) with an appropriate
rotary inertia C, included at “ag% coordinates
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CAPACTTOR VALUES FOR WIIGS 1, 2, 3

Capacitors Wing 1 Wing 2 Wing 3

Cl + C83 + C91 2 uf 5 uf 8 uf
C64 + C82 + €92 4 uf 8 ufr 12 uf
C81 + Col2 L2 ug 2 uf 42 pf
C84 + C94 2 ufr L pf 7 uf
C65 + C85 + 095 4 uff 8 uf 2 uf
C6l1 + C62 3 uf 4 pf 7 uf
céb b uft 69 uf 1,06 uf
Coll 80 pf 80 pf 80 uf

TABIE 9
INDUCTOR VALUES FOR WING1

Inductor I% $707 Sg’% _12§r I,I'"o 850 g:ﬁg?_:;r %5—3*00 g:%xgg;zr
191 «034h 0-2-10 +041h 0=3=5 +048h 0=-4-0

- 193 511 827 o613 10~-1-1 o720 12-0-0
194 511 Bm2a? +613 10=1-1 « 720 12-0-0
195 YA 10-3-8 o773 1245 «910 15-0-0
196 213 3=2-17 255 413 300 5=0=0
197 <051 Owli3 +061 O=5-1 072 0-6-0
182 213 3=2-7 255 b=l 300 5=0=0
L83 0213 3-2 -7 .25 5 4"‘3 -3 o3 00 5«0-0
L8. 384 6-2-0 460 T3l 540 900
135 298 bi=4=10 o357 5=4=9 o420 7=0-0
186 298 Lwl=10 o357 S5wl=9 420 7«00
187 511 8-2.7 613 10-1-1 o720 1200
138 468 =0 0361 9-.1-9 «660 11-0-0
1161 0770 ]2"4"2 0925 15-2—1 1.09 15-15"0
162 770 12-4=2 0925 15-2-1 1,09 15-15-0

T&BLE 108
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INDUCTOR VALUES FOR WINGS 2 and 3

Inductor: ﬁ;.SO g:“tlguint;r %;= o0 Se i ter .II:=1 2 gg’gﬁntgr
1ol «038 0-3-2 <048 O=le0 «058 O=4=10
193 728 12-0-8 «910 15<0-0 1,09 15-15-0
194 «728 12.0-8 «910 1500 1,09 15=15-0
L95’ 0728 ]2"0—8 0910 15—0-0 1;09 15"-15—0
196 o240 4=0=0 300 5=0=0 +360 6=-0-0
97 +058 0-4~10 o072 0~6-0 +086 Ou7a2
132 240 4=0=0 «300 5-0=0 «360 6-0-0
133 0240 4=0=0 «300 5«00 #360 6-0-0
L84 o432 7=1-0 0540 9=0-0 <649 10-4=1
185 192 3=1-0 240 4=0-0 «288 bymldy0
186 «192 3-1-0 240 4=~0=0 288 b=b=0
187 +288 b=ld=( 360 6-0-0 o432 _ T=l=0
188 o240 4=0=0 «300 5=0«0 +360 6-0-0
1161 [ 8‘7 0 1‘?‘2-6 l. 09 15-15-0 1.10 15-15-10
163 - - - - «210 3e2-6
162 «870 14~2-6 1.09 15-15-0 | 1.,10. 15-15=10
164 - - - - o210 | 3-2-6

TABLE 10b

It 1s to be noted that the only difference between wings 2 and 3
lies in the mass distribution, Wing 3 1s a heavier wing and thus
has a lower flutter frequency.

\ The first three mode shapes for each of the three wings, nemely -
first bending, first torsion, and second bending as found by measuring
the th" voltages of figure 21 at a frequency where the driving current
is & minimm (maximm input impedance), are presented in figures 32,
.33 and 34, The individual wings are numbered in order of mode
frequencies, that is wing 1 has the highest frequencies while wing 3
has the lowest mode frequencies. Frequencies indicated on figures 32 -
3/, are mechani¢al frequencies obtained by dividing messured computer

frequencies by N = 4.
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NORMAL MODES SYSTEM I. (g-07)

-1.08

— Y% =+

DRIVING POINT. C61 FREQUENCY: 31.25 C.P.S.

DRIVING POINT. C83 FREQUENCY. 117.3 C.P.S.
FIGURE 32
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NORMAL MODES SYSTEM 2. (£.=1.0)

DRIVING POINT. C6! FREQUENCY: 22.88 C.P.S.

DRIVING POINT. C66  FREQUENCY: 47.25 C.P.S.

DRIVING POINT:. C83 FREQUENCY: 87.0 C.PS.
FIGURE 33
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NORMAL MODES SYSTEM 3. (f:to)

DRIVING POINT: C6! FREQUENCY. 18.5 C.P.S.

“6-1Q+___ “‘2_-_§{___ +IO._O+

DRIVING POINT. C83 FREQUENCY. 75.75 C.P.S.

FIGURE 34
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Ce Flutter Results

The experimental work covered a period of five weeks, The first
one and one-half weeks were spent in testing and wiring electronic
equipment, while the remaining three and one-half weeks were spent
working on the computer, Of this time, about 75% was used for .
testing, checking and actual eircuit hookup, while the remainder of
the timé was used for taking data,

The computer flutter resulis are presented for the three wings
(3 basic cases per wing, See section V, B) as follows:

1, Original data are presented (Polaroid camera records of
voltage wave shapes and mode shapes),

2. Conmputed curves using above photographs are presentéd of
frequency and damping parsmeter "g" (defined below) vs, stiffness
for all cases,

The damping parameter #g" for a damped sine wave is defined as

followss 1if the envelope of the damped wave is given by:

1
+ t _
& < él"‘g%‘lt"’o L ) (46)

or if the increase (decrease) is given as
per unit/eycle = zn'.;g. =Tg
then

g = BT un:.-t/cycle )

‘Thus for example if a wave decreases 3% per cycle

g = "'1‘:3 = = (00955

negative g representing s stable system, Figures 35 - 46 present these

results, Table 1l serves as a key for interpreting the photographic

records,
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KEY FOR PHOTOGRAFPHIC DATA

Element System 1 System 2 Systen 3
Voltage %‘L Picture | Case %':5 Picture| Case 'If; Picture| Case
195 «707 1-1 1l 8 1-1 1l 81 1-1 1
195 «85 1-2 1|10 1-2 1| 0| 12 1
195 1.0 1.2 l|1l2 1-3 1] 1l.,2] 1-3 1l
195 707 2-1 2 o8 2-1 2 81 2-1 2
195 «85 2=2 2 | 1.0 2-2 2| 1l.0| 22 2
195 1.0 2-3 2 | 1l.2 2~3 2| 1.2 2-3 2
195 | oor| 32 | 31 .8 34 3| o8| 34 3
195 | 85| 3.2 | 3|10 3-2 3| 10| 32 3
195 1.0 3=3 3 |12 3=3 3 1.2} 3-3 3
csl 85 1.1 1 |1.2 1-1 1] 1.0 1.1 1
ce2 85 2-1 1 |1l2 2-1 1| 10| 21 1
e | W85 | 31 | 1(|12]| 34 1| 10 34 1
c84 85 | 32 1 (12 | 3-2 1| 10| 3-2 1
c85 i 22 1 112 22 1| 1.0 22 1
cé1 85 3=3 1 |12 3-3 1| 1,00 3-3 1

200 ‘cps-‘ |
timing L=l 4=l el

wave:
TABIE 11
where Cagse 1 - Complete @erodynamic circuit
Case 2 = Complete aerodynamic eireuit but without phase

shifts (no capacitors)
Cese 3 - Aerodynamic cirenit without mutual terms
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SYSTEM 2 MODE SHAPE

1-1

' ,ANVV\M__ FIGURE 42
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SYSTEM 3 MODE SHAPE

1-1

FIGURE 496
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The actual steps in the experimental flutier analysis may be
outlined as follows: |

1, Set up and test aerodynamic lift cells as outlined in Section
111,

2. Set up and test (including normal mode shapes) the elastic |
wing structure as outlined in Section IV, | ‘

3« Test the operation of the synchronous switches - these are
used to clamp the wing ecircuit until the desired aerodynamic 1ift
(transient) is applied (see figure 16),

4o Set up a disturbing function (to be applied to cells 4, 5, 6
at summer 1 inputs), Such a funetion is to be a damped sine wave §f
frequency close to the actual flutter frequency so as to exéitglonly
one'root at a time (see figure 47).

5, Set up a timing wave (200 eps) as a reference (see figure 47).

/
Q T
Q_~R 167
Timing
. —— m{'  oen
B ::'_F' 163 ‘ R67
- R6/
1 ngs Foreing
-I-063 R68 Funetion
; |
Timing: ilé = of = 4m° = (4 x 10%) £ = 200 eps

seb. C 63 =1uf
163 = ,632h or 10-2-8 computer setting

TIMING AND FORCING FUNCTION CIRCUIT

FIGURE A7
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&n analysis of the computer results shows the following:
ls An aerodynamic ecircuit of the form of figure 16 can be made
tO‘fhnction properly (without parasitic oscillation difficulties),
2+ The effect of the mutual terms in the 1lift eguations is one
that contributes to the instability of the wing as illustrated by.

the results of figures 36, 40, and 44, It is thus felt by the author,
that in future studies with greater numbers of cells, that such mutual
terms should definitely be included in the aerodynemic circuits;

3+ The effect of the capacitors in the lag (lead) functions
is negligible, hence it can be deduced that low frequency flutte; is
largely caused by the magnitude of the 1ift snd not by its pﬁase:} |
The lag (lead) function capacitors may thus be omitted from the aero-
dynemic 1lift elrecuit, Such an omission not only produces a large
saving of capacifors (espeeially for wings with large numbers of cells),
but also simplifies both the associated wiring in the eircuit, and the

computations of the lag (lead) function parsmeters,
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VI CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The results of the electric analog computer study of the flutter
of delta wings at supersonic speeds (the speed MR = 1,75 being
analyzed) may again be briefly summarized as follows:

1. Circuits of the form of figure 16 can be made to produce the
desired 1lift currents without parasitic and high frequencyIOSciliations.

2.' The mutual 1ift terms are significant and tend to destabilize
the wing.

3., The effect of capacitors (lag or lesd) in all aerodynamie
circuits for the allowable frequency renge is negligible,

In conclusion it should be noted that the structures analyzed were
extremely crude and were so chosen as to test the performancé of the
aerodynamic circuit in as simple a manner as possible, Now it ié |
fairly obvious that in order to analyze an actual wing on an eleétric
anelog computer like the one located in‘the &nelysis Iaboratory at
the California Institute of Technology, a more complete wing analogy
must be used, This will require more cells, and in turn, the condition
of more cells will require more amplifiers (four amplifiérs per cell),
The practical difficulty with having more smplifiers, aside from the
additional computations that must be performed, is the complicated
wiring scheme that must be used, The author hed only twehtyafbur
amplifiers and fourteen lag (lead) functions mounted in four Analysis
' Laboratory racks, yet the physical wiring was quite involved with
wires going off in all directions,

4s a solution to the above problem,a rack of a new design
(figure 47) is suggested. Such a rack will not only contain power
supplies and emplifiers, but will also contain trays of potentiometers

and places for plug-in elements, The advantages of such a rack are:
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l, Only three leads per cell will have to go from the rack to
the main computer plug board (one "h" lead, one "g" lead and the
output lead of the current generator), A4ll other connections will be
between amplifiers and the potentiometer board,

2. By having the potentiometers mounted separately, the summer
plug-in unit can be simplified, and it will be possible to Eave iaany
more summer inputs on one plug-in unit, (This will be necessary when
the number of aerodynamic cells will be incresased,) |

3¢ Such a rack cen be physically moved to a desirsd position
with relative ease (one such position is illustrated in figure 48),

4e Such a rack (2 will be required) is relatively ineicpeh;ive
and easy to build,
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APPENDIX A
DERIVATION OF THE WAVE EQUATION
& derivation of equation (1) is given briefly at this point, The

condition for irrotational flow

Curl ¥V = 0 (A1)
implies a velocity potential | | ‘

V= -grad g (42)
then if the density in the streesm P is defined as o

P = Po(1 + s) : (&3)

where 8 is a variable %condensate¥,

The continuity equation gives
p+r Ve (pv)=0 ()
while Newtonts law for the pressure P gives
VP=pv + (PY°*V)¥V - (85)

Sinee P is only a function of P, equation (45) gives

Po v = - (gg)ova (86)

where (g‘-g)o is the valve in the undisturbed stream, and from acoustics
ei;uals o? , the locel variable speed of sound,

Using (86) and (A2)

. | . 2 ‘ (A'%)

4lso from (&4)and (82) |
28 - gRf - (48)
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Differentiating (A7) with respect to time and equating to (A8) gives
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