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Abstract

Numerical solutions for the creeping motion of a spherical particle in a linear
axisymmetric straining flow normal to a deformable interface are presented for a
range of viscosity ratios, capillary numbers and Bond numbers. The parameter
ranges investigated have applications in areas of flotation (small interface de-
formation) and material processing (large interface deformation). The accuracy
of previous solutions for flotation problems, which neglect interface deforma-
tion is considered, along with the magnitude and form of interface deformation
“defects” that may appear in material processing applications involving fluids

containing bubbles or small particles.

Numerical solutions for the equilibrium particle-interface configuration for a
neutrally buoyant spherical particle contacting a deformable fluid/gas interface
in a linear axisymmetric straining flow at low Reynolds number are presented
for a range of contact angles and capillary numbers. These solutions may have
applications both in flotation separation processes and in contact angle and
surface tension measurement. In addition, the accuracy of simply combining
previous results for particle detachment due to particle buoyancy with the results
for particle detachment due to viscous forces is considered. The equilibrium
configuration is especially sensitive to the inclusion of a small amount of flow
for small contact angles and for capillary numbers near the critical capillary

number.

Trajectories of small spherical particles around a spherical drop (bubble
and solid) are calculated from an approximate solution employing a matched
asymptotic expansion. Viscous interaction is seen to have a large effect on the
trajectory around a solid collector and a small effect on the trajectory around
a bubble. Previous solutions are found to be in error in their prediction of an
increase in the capture efficiency because of viscous interactions; the capture

efficiency decreases significantly in this case.

Finally, the trajectories of particles around bubbles and the capture of par-

ticles by bubbles is investigated experimentally.
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1. Introductiont

Many industrial processes produce liquid waste products containing véry
small particles. Because of the small size of these particles, often less than 50
microns in diameter, separation by sedimentation is very slow and separation by
filtration is not economically feasible. Increasing concern over water pollution
has prompted the application of flotation technology to this problem. Flotation
consists of adsorption of these particles onto significantly larger, although still
small, bubbles which transport the particles to the solution surface where they

can be mechanically removed.

Mineral or froth flotation has been used for many years as a method of
concentrating and separating valuable minerals. From the first true flotation
process, used in 1877 to concentrate graphite ore, flotation has evolved into a
substantial industry which in 1962 accounted for over 1 million tons of minerals
processed per day in the United States, Sutherland and Wark (1955), Fuerstenau
and Healy (1972). Froth flotation, named for the bubbles or froth produced on
the liquid surface, is characterized by: fairly high concentration of particles, up
to 25 % by weight; bubbles generally between 0.5 and 2 millimeters in diameter
and particles generally larger than 100 microns in diameter. Also, froth flota-
tion is a selective separation which utilizes the selective adsorption of additives,
termed collectors, to render the desired mineral hydrophobic and thus attracted
to the bubble-liquid interface. Other additives, termed activators and depres-
sants, are used to further improve the selectivity of this adsorption. In fact, it
has been observed that very clean mineral surfaces will not stick to the bubble
surface, although trace contaminants always present in real processes reduce
the practicality of this observation, Sutherland and Wark (1955). Suspensions
treated by froth flotation are generally stirred to prevent the sedimentation of

larger mineral particles, which would reduce the efficiency of the process. Fi-

t The references for this section may be found with the references for Chapter

4, starting on page 237.
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nally, in froth flotation a frother or surfactant, if not already present, is added to

solution to prevent the bubbles from rupturing upon reaching the liquid surface

and consequently losing captured minerals back into solution.

On the other hand, waste treatment or efluent flotation is generally con-
cerned with removal of all the suspended particles and is not a selective sepa-
ration. Some other differentiating characteristics of efluent flotation are: much
lower particle concentrations, as low as 20 parts per million; significantly smaller
bubbles, less than 0.1 millimeters in diameter; and smaller particles, generally
less than 20 microns in diameter. Because these small particles are often very
close to neutrally buoyant, efluent flotation solutions are generally not stirred

and often no frother is required.

There are three principal techniques for producing flotation bubbles. In
the first and simplest method, a "dispersed air” process, bubbles are formed
by forcing gas through spargers. The second method, a "dissolved air” process,
utilizes a pressure drop to nucleate bubbles directly on the particles from a
solution saturated with a gas. The final method, which consists of electrolytically
generating the bubbles, has the advantage of producing much smaller bubbles
with a more uniform size distribution. Fukui and Yuu (1980) report that initial
problems with electrode scumming have been solved and Elwood (1968) indicates

that "electro-flotation” has been used effectively.

The utility of many of the previous studies on flotation has been limited
by the empirical nature of these studies. In this thesis, a fundamental study
of efluent flotation is undertaken to determine the relative contributions of the
many process variables to the process efficiency. As most of the earlier work has
concentrated on the effects of the "chemical” variables, i.e. on the relative effects
of the various additives, we will concentrate on the hydrodynamic effects in the
process, however nonhydrodynamic effects will be considered briefly in Chapters
4 and 5. Generally the effects of the mechanical variables, e.g., particle and

bubble size, charge and concentration have been studied by assuming the rate
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of removal of particles follows a first order chemical reaction type of behavior,
—— = ke, (1)

where ¢ is the number density of particles of a given diameter and k is the rate
constant incorporating the effects of all the other mechanical and chemical vari-
ables. However results from initial experiments on the effects of the particle
radius, a, on k& have produced a variety of results including: k independent of
a, k o lna, k o a and, k « a?, Morris (1952), Bushell (1962), Tominson and
Fleming (1963), Gaudin et al. (1942). More recent studies by Reay and Ratcliff
(1973, 1975) and Collins and Jameson (1976, 1977) have found agreement with
k « a¥ for glass beads. However, their results for polystyrene particles are in
disagreement, giving k o a? and k « a3, respectively. These discepancies are
not surprising, considering the large number of variables which must be con-
trolled in a flotation experiment. Clearly, a fundamental theoretical analysis of
flotation is needed, both to predict the effects of the multiple operating variables
on the process efficiency and as a guide to the key variables which must be con-
trolled in flotation experiments. The need for this study also becomes evident
when examining the relatively well developed literature for the similar problem
of particulate capture by solid collectors, the filtration problem Spielman (1977).

Because of the complexity of the flotation process, initial theoretical treat-
ments of the process hydrodynamics have necessarily been very simplified. Gen-
erally, the solution is assumed so dilute that only one particle and bubble need
be considered. The first studies treated the particles as fluid points and con-
sidered gravity and inertia as the only forces causing the particles to deviate
from the fluid streamlines, Reay and Ratcliff (1973) and Flint and Howarth
(19;71). Effects that were neglected include: hydrodynamic interactions between
the particle and bubble, electroviscous forces due to particle and bubble charges
and resulting double-layers, bubble deformation, bubble-bubble hydrodynamic
interactions, Brownian motion of the particles, and the effects of viscous drag

of the fluid on the stability of captured particles attached to the rear of the
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bubble. Rulev, Deryagin and Dukhin have attempted to consider some of these
effects in a series of papers published in the Soviet Union, by Deryagin, Dukhin
and Rulev (1971, 1976, 1977). Also, hydrodynamic interactions between two
solid spheres and between two drops have been investigated by a number of
researchers, see Chapter 3., however these investigations have failed to take ad-
vantage of the limiting solutions suggested by the characteristics of the flotation
problem. Furthermore, although small bubbles tend to rise with terminal veloc-
ities of equivalent solid spheres, Garner and Hammerton (1954), the observed
mobility of captured particles on the surfaces of bubbles and the deformation
of bubble surfaces accompanying the interaction of a bubble with a nearby par-
ticle (or other bubble) demonstrates that caution is required in describing the
bubbles as ”solid”. Although these previous investigations represent a signifi-
cant contribution, they rely on a number of ad-hoc approximations which are

difficult, (if not impossible in some cases), to justify.

In the following chapters we investigate some of the above problems, specif-
ically as they apply to flotation applications, but in all cases trying to maintain
generality so that these investigations can also be applied to relevent problems
in other areas. The investigations which have the most general applications to
other areas are considered first and those more specific to flotation are con-
sidered last. Thus, in Chapter 1, the eflects of interface deformation will be
investigated both for applications to flotation operations and for applications
to ploymer processing operations by studying the approach of a solid spherical
particle towards a deformable fluid interface in an extensional flow. In Chapter
2, the effects of viscous drag of the fluid on the stability of captured particles at-
tached to the rear of a bubble is investigated. This applies both to the flotation
problem and to the effects of drainage flow on surface tension measurements
in tensiometers. In Chapter 3, trajectories of spherical particles near spherical
droplets are calculated using methods which are specifically applicable to the

flotation problem, although these methods also can be applied to liquid-solid
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extraction processes. Apologies are made for the amount of detail included in
Chapter 3, however in order to obtain these solutions, an extreme amount of
manipulation was necessary. Thus, although we have attempted to simplify the
discusion of this analysis as much as possible, we did not want to simply give
the solution without demoﬁstrating how it was obtained, and thus that it is a
valid solution. Finally in Chapter 4, an experimental study measuring both the
trajectories of model spherical particles near bubbles and the capture of these

particles by bubbles is discussed.



Chapter I

The creeping motion of a spherical particle in a linear

axisymmetric straining flow normal to a deformable interface.



Abstract

Numerical solutions for the creeping motion of a spherical particle in a linear
axisymmetric straining flow normal to a deformable interface are presented for
a range of viscosity ratios, capillary numbers and Bond numbers. The param-
eter ranges investigated have applications in areas of flotation (small interface
deformation) and material processing (large interface deformation). The accu-
racy of previous solutions for flotation problems that neglect interface deforma-
tion is considered, along with the magnitude and form of interface deformation
“defects” that may appear in material processing applications involving fluids

containing bubbles or small particles.



1. Introduction

Many processes of great practical interest involve small particles in flowing
fluids near interfaces. In a polymer processing operation these particles may be
dust contaminants or an intentionally added composite reinforcing material or
even very small bubbles (which behave essentially as solid particles), which are
formed in the processing itself. An important problem in this general area is that
the processing operation, which may involve a polymer melt or blend in pipe
flow, extrusion, mold filling or coating operations, can lead to surface defects in
the finished product as the particles interact with the flow and the interface to
produce bumps on the surface (Fritch 1979, Hoffman 1985). In separation pro-
cesses, the particles may be mineral fines, efluent waste or biological products
that one wishes to remove either by flotation, or by capturing the particles on a
condensed film of a fibrous mat collector. The final step of removing a particle
in these separation processes involves capturing the particle on the fluid/fluid
interface. Hydrodynamic interactions between the particle and interface, as well
as the resulting interface deformation, may greatly affect the separation between
the surface of the particle and the interface, and thus ultimately the efficiency
of capture.

In spite of the large number of applications where it is important to un-
derstand the flow-driven motion of a particle near a deformable interface, the
problem has received little attention in the literature, as already observed by
Hoffman. This is most likely because the full nonlinear problem of a particle
moving in a complicated flow near a deforming interface is difficult or impossible
to solve analytically and is, in fact, of little general interest since the nonlin-
earity prohibits superposition of solutions. Thus, the solution is restricted to
the particular flow and geometry being investigated. However, when the par-

ticle size is small compared to the radius of curvature of the interface, a first
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approximation of the basic flow that forces the particle towards the interface,
for both flotation (Stoos 1987) and mold-filling operations (Hoffman 1985), is a
linear axisymmetric straining flow. Also, in coating flows it is easy to visualize
from the geometries of typical coating devices (Ruschak 1985) how extensional
flow components might arise. Thus, to understand the complicated interactions
between the particle, the flow field, and the interface deformation, we investi-
gate the basic problem of a spherical particle moving towards a deforming fluid
interface under the action of a linear axisymmetric straining flow. Specifically,
for separation processes, we would like to know how the interface deformation
affects the rate of change of the minimum gap between the particle and interface,
and thus how the deformation affects the capture process. For polymer process-
ing applications, we are primarily interested in the degree and character of the
interface deformation, which gives an indication of the magnitude of possible
surface defects.

The related problems of a sphere approaching a deforming fluid interface
under the action of an external force (gravity) or at a constant velocity have
been extensively studied, and comprehensive reviews are given by Jeffreys and
Davies (1971) and Geller, Lee and Leal (1986). To summarize, the majority of
these investigations have studied the film drainage configuration as the limiting
step in a breakthrough orboalescence process; see for example, Princen (1963);
Hartland (1969a & b); Jones and Wilson (1978); Smith and Van de Ven (1984);
and Shah, Wasan and Kintner (1971). However, Geller, Lee and Leal (1986),
Leal and Lee (1981), Lee and Leal (1982) and Maru, Wasan and Kintner (1971)
have shown, that in certain cases the final breakthrough process may not occur
by a film-thinning mechanism, and it is generally necessary to consider the
complete process of particle motion toward the interface rather than a single

isolated step.
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In comparison, the problem of sphere motion driven by a flow field has
received little attention. For instance, applications in flotation have relied on
the assumption that interface deformation is negligible because of the small
capillary numbers associated with the small bubble sizes (Jameson, Nam and
Young 1977). However, allowing even slight deformation would relax the phys-
ically unrealistic singular resistance to approach experienced by spheres in the
no-deformation case (which is usually compensated for by the faster singular
growth of molecular attractive forces). Also, interface deformation may not be
small on the scale of these small particles and certainly should not be small
on the length scale of molecular attractive forces. This interface deformation
may lead to larger separation distances when the particle approach velocity is
at a minimum and therefore to much larger approach and film thinning times.
For the cases where interface deformation is neglected, bipolar coordinate so-
lutions have been used for spheres near gas/fluid interfaces (Dukhin and Rulev
1977) and asymptotic solutions for large separations have been developed for
spheres and slender bodies near interfaces of arbitrary viscosity ratios (Yang
and Leal 1984, Stoos 1987). In the one case where interface deformation was
included, Hoffman (1985) studied the flow-driven approach of a sphere toward a
deformable free interface (A = 0 ) both theoretically and experimentally. How-
ever, his theoretical analysis involves a number of ad hoc assumptions and is
based upon the presumed existance of a rate-limiting step, or quasi-equilibrium
configuration so that the full evolutionary problem of interface shape and sphere
position is not solved. It is, of course, well-known that the interface shape and
other features of the flow at any instant depend upon the configuration and
flow at earlier times. Thus, in general, we must investigate the entire process of
sphere motion normal to the interface, starting from an initial state in which the

sphere is far from the interface, which exists in its undisturbed state. Indeed,
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this may be especially important in the present problem because the driving
force for particle motion varies with particle position and will be sensitive to
any assumed configuration.

2. Problem Statement

We consider a spherical particle of radius a approaching normal to a de-
formable interface along the axis of symmetry of a linear biaxial extensional
flow, starting with the sphere far from the undeformed interface. In terms of
cylindrical coordinates (r,z) centered at the intersection of the axis of symmme-
try and the plane of the undeformed interface, the sphere center is located at
(0,!) and the undisturbed extensional flow has the form uy, = G(ri, — 2zi;) in
both fluids, where G is the strain rate. The nomenclature and particle/interface
configuration is shown in Figure 1. The spherical particle is entirely immersed
in the lower fluid (fluid 2), which has viscosity po and density p;. The upper
fluid is characterized by viscosity x; and density p;. The interface is character-
ized by a constant surface tension 0. The particle is assumed to be neutrally
buoyant with density p,, although nonneutrally buoyant particles could easily
be considered.

The small velocities resulting from the small size of “collection” bubbles in
effluent flotation and the high viscosities characteristic of polymer processing
operations often allow the fluid and particle inertia to be neglected. Thus, we
assume

_ Ga’py

Re = < 1. (1)
K2

Furthermore, the particle-interface separation is restricted to moderate values,
i.e., less than 5 particle radii. In part, this is because the approximations of a
planar interface and an axisymmetric extensional undisturbed flow break down
at large separations in the “applications” that motivate our work. However, the

particle-interface interaction also becomes increasingly unimportant for large
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separations. Since the particle is force-free, the slowest decaying singularity
that characterizes the disturbance flow is a “stresslet” (Chwang and Wu 1975;
Yang and Leal 1984), for which the velocity decays like (llz) Even though
the particle velocity increases like (!), the resulting disturbance velocity is thus
O(%) or smaller at the interface and is unimportant for large separations. The
relative insignificance of the disturbance flow at large separations is seen in both
the asymptotic and bipolar analytic solutions for a flat interface. Later we will
discuss the effects of the initial position of the sphere in more detail.

Although the governing flow equations are linear, the problem is nonlinear
in the boundary conditions because of the unknown interface shape and the
influence of this shape on the flow. An excellent method of solution for this type
of free boundary problem is the boundary integral method used by Youngren
and Acrivos (1975, 1976); Geller, Lee and Leal (1986); Lee and Leal (1982); and
Chi and Leal (1987), among others. We refer the reader to these papers for
many of the details.

Nondimensionalizing with characteristic velocity Ga, length a and stress

1:G, the governing flow and continuity equations for the two fluids become

0=-V AV?2
0 p1V+u ul} in fluid 1 (2)
= ° 1
0=-V V2
O"PV2+u u2} in fluid 2 (3)
= ° 2
Uy, Uz — Ue as |X| — oo (4)

and the boundary conditions at the interface are
u; = U2 (5)

1 1
An-Tl—n~T2=—6—;(V-n)n+afn (6)
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(n-uy)n = (n-uz)n = (%i:—)iz + (%;-)i,. (7)

Boundary conditions (5), (6) and (7) are continuity of velocity, the stress balance
and the kinematic condition for the interface motion, ;espectively. Here, as in
Lee and Leal (1982), the interface shape is represented by z = f(r,t) and the
outward pointing normal at the interface is n = l—g_fﬂ’ where H = z - f(r,t).
Since the driving force for sphere motion diminishes and may even change sign
as the sphere approaches and crosses the plane of the undeformed interface, the
interface deformation is expected to be moderate and the multiple coordinate
representation of Geller, Lee and Leal (1986) should not be required.

The relevant independent dimensionless parameters are the viscosity ratio
A= ﬁ—, the capillary number Ca = &;G—a, and Cg = E'Z’—gg(%%‘{j’ which is the
ratio of capillary to bond numbers. Ca is the ratio of characteristic viscous
disturbance forces in the lower fluid to capillary forces that resist deformation.
The parameter, Cg is the ratio of characteristic viscous forces in the lower fluid
to forces arising from the dehsity difference between the fluids, which also tend
to resist interface deformation.

The final conditions are the no-slip boundary condition on the sphere and
the force balance on the sphere. The no-slip condition on the sphere surface can

be expressed in the form

ug = upi, at z€S5p, (8)

\

where u, is the unknown particle velocity. The force balance on the sphere after

performing an azimuthal integration yields

/ TP ,sinfdfd = 0, (9)
0

where TP, is the stress component on the particle surface in the z direction; i.e.,

iy« (n-TP).
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The boundary integral method for an unbounded domain requires that the
flow variables decay to zerc at infinity. Therefore, the velocity and stress are
written in terms of disturbance variables as in Rallison and Acrivos (1978),
where u’ = u — u® is the disturbance velocity and T/ = T — T®° is the distur-
bance stress. Ladyzhenskaya’s general solution for the disturbance velocity and

disturbance pressure at any point x is

u'(x) = 8_171:,/_; (% + (x - nl)?,(; ~ 7))) -T'(n) - ndS,

_4%/5 (x—n)(xl-z—sﬂ)(x"?) -u'(n) - ndS, (10)
+$ SE%l.T'(n)-ndsn. (11)

For a finite closed boundary the above equations can be conveniently represented
in terms of the actual velocity and stress, u, T, by analytically integrating out
the contribution from the flow at infinity, as in Rallison and Acrivos (1978).
However, for the unbounded problem considered here this is not possible because
the interface extends to infinity, where the flow strength becomes singular. Nev-
ertheless, it is convenient to express the contributions over the particle surface
in terms of the actual velocity and stress and the velocity and stress arising from
the undisturbed flow field, rather than in terms of the disturbance variables.
The details of applying the boundary conditions to (10) to derive a system
of integral equations for the unknown velocity and stress components at the
interface and the particle surface is similar to the constant velocity case of Lee
and Leal (1982), with additional terms in the equations from the flow at infinity.
After applying the double-layer jump condition, the velocity on the interface in

the limit as x — Sy from fluid 2 is given by



— 15 -

1 v _ 3 Irr 1 "o
S U (x) = 4#/;1 [(R5) -ndS + / [R R3 Tz] nds
1 I rr P 3 rrr
+§/SP [(§+ )T ] nas + - | [(—Rg)-uoo] .ndS
1 I rr
~ar [(R + R3) T”} -ndS. (12)

The velocity on the sphere surface including the double-layer jump condition is

given by
uf(x) = 3 [(}.—1}—') I'] ndS + — [(}— + rr) TI} -ndS
R5 87 S1 R R3

e s, BT R
3 f IIT 1 I rr P
+4—7r/s,, [(R5) »uooJ ndS—S—W_/SP [(§+ 7%—3) -TOOJ ndS. (13)

Following the example of Lee and Leal, the stress jump (6) is incorporated by
combining (12) with the similar expression for the velocity on the interface as

x — S from fluid 1 multiplied by A, and applying boundary conditions (5) and

(6) to obtain

(A + Dul’( )=—4%(1—A)/SI [(;—r;) uf’] nds
L[]
~% “2 %) F’(f)] nds
5 Jy, [Gg) ] mes
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1 I Irr
“% /. [(R+R3) TP}-ndS. (14)

The disturbance stress difference F' is given by
F'=(n-T{-n-T)) - (An-T{,-n-Ti,), (15)

where in cylindrical coordinates (r,0,z), the stress associated with the undis-

turbed flow and the flat interface is

2 0 O

T =-pI+ |0 0 0 |,
0 0 —4
2 0 O

T =—-piI+|0 0 0 }, (16)
0 0 —4

and pssc Piloo are constants that must satisfy the normal stress balance on a

flat interface with the velocity field uoo; i.e.,
n-(An-Tio —n- T ) = preo — AP1oo + 4(1 — ) = 0. (17)

A solution of (17) is p2co = P1co = —4. The dynamic pressure from the undis-
turbed flow is negative (the hydrostatic pressure jump across a flat interface
is identically zero) and balances the viscous stress, which would tend to move
the interface from a nonequilibrium position in a situation with unequal fluid

viscosities. Thus, the known weighting functions in the integral equations are

F'(f) = - — (’“af+ 82f>n+——-—fn+6(/\—1)(n-i,)ir, (18)

" Ca \ror or? C
To = 6(n -i,)i,, (19)
Uoo = (ri, — 22i;). (20)

The last term in Equation (18), which depends on A, is the stress difference

arising from the undisturbed flow at infinity and is zero for a flat interface or for
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two fluids of equal viscosity. The surface integrals in Equations (12), (13) and
(14) are reduced to line integrals by integrating out the azimuthal dependence for
this axisymmetric problem. Then Equations (9), (12), (13) and (14) are solved
simultaneously to determine the unknown velocity and stress components on the
interface and particle surface u’, TI, TP, and the particle velocity u,.
3. Numerical Algorithm
The method of solution is a numerical collocation scheme, similar to that
used by Geller, Lee and Leal (1986). The infinite interface boundary is truncated
at some large but finite radius, R,, and is subdivided, along with the particle
surface, into Ny and Np small segments, respectively. The number of segments
used varied between 25 - 35 unequal sized segments for N;, with the highest
concentration of segments near the particle where the interface deformation is
largest and 15 - 25 evenly spaced segments for Np. The unknown basis func-
tions for the velocity and stress are assumed to vary linearly over these small
segments. Alternatively, high accuracy could be maintained by increasing the
number of boundary elements and assuming that the basis functions are con-
stant over the elements. However, the use of linear basis functions is numerically
faster than increasing the number of boundary elements. First of all, the inte-
grands (in terms of elliptic integrals after the axisymmetric integration) for the
additional integrals that arise with linear basis functions must be evaluated any-
way for the terms with constant weighting functions; i.e., the integrand for the
b term in the representation u, = m r + b, once evaluated, can also be used
with the corresponding mr term. Second, the size of the matrix that must be
inverted is not increased by assuming a linear variation in the unknown velocity
and stress, as it would be for an increase in the number of boundary elements.
Vector Equations (12) and (14) are evaluated at the N interface interval cen-

ters, and vector Equation (13) is evaluated at the Np particle interval centers
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thus generating a system of 4N; + 2Np linear algebraic equations (Kantorovich
and Krylov 1958). Including the force balance on the particle, Equation (9),
we have 4N; 4+ 2Np + 1 equations to solve for the 4N; + 2Np + 1 unknowns:
wl(N1), wl(N1), Tf o, (N1), TS o (N1), TE(Np), TE,(Np) and u,.

The normal vector to the interface and the local interface curvature, which
appear in the integrands of (12) - (14), are evaluated using a cubic spline to
represent the interface shape in terms of a function f(r). For cases with large
interface deformation, the f(r) representation is replaced by a parameterization
in terms of arc length s, and cubic splines are fit to both f(s) and r(s); however,
this method is somewhat slower and thus is not used if the deformation is not
large; i.e. % < 10. The azimuthal integration reduces the surface integrals to
line integrals with integrands in terms of elliptic integrals (Lee and Leal (1982)).
These final line integrals are evaluated numerically using a 7 point Gaussian
quadrature and the accuracy is checked by occasionally comparing to an 11
point Gaussian quadrature. In performing this integration, a small line element
is cut out around the singular point and evaluated analytically. In addition,
the accuracy is improved by further subdividing the main element into smaller
elements near the singular points. Once the interface and sphere velocities have
been evaluated, the interface shape is allowed to evolve by explicitly stepping
the position of each of the node points on the interface with the normal velocity
at that node point. Since the actual node point position is important only as it
relates to the description of the interface shape, convection of the node points
tangent to the interface is not of interest. Furthermore, restriction of nodes to
normal motion reduces the depletion of node points near the particle. Neverthe-
less, some spreading of node points does still occur and thus, periodically, the
points are redistributed using the cubic spline to maintain the initial spacing.

Similarly, the sphere position is changed by u, - At.
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A sufficiently small time step is used so that relative changes in velocity at
each time step are small. If the change in velocity is relatively large (greater
than 5%) either at a node point on the interface, or for the particle, the evolu-
tion is stopped and restarted from a previous point in time, using a smaller time
step. The initial nondimensional time step used was 0.01, (nondimensionalized
with characteristic time G~!), which is somewhat smaller than in Geller,Lee and
Leal (1986), since the initial sphere velocity is larger, thus producing larger rel-
ative changes in the particle-interface configuration. Adjusting the time step to
maintain small changes in velocities results in smaller time steps for smaller par-
ticle/interface separations, since at this point small changes in position produce
large relative changes in particle/interface separation and thus large relative
changes in particle velocity. The smallest time step used was 0.0001. If smooth
changes in velocity were not achieved with this time step, the calculation was
stopped.

The effects of the interface truncation are shown in Figure 2. Because the
flow disturbance due to the particle is convected radially by the undisturbed
flow, the interface truncation distance must be substantially larger than in the
constant force case of Geller, Lee and Leal (1986). Similarly to the latter case,
however, the truncation distance must be increased as the particle/interface
separation becomes larger. However, for separation distances of 3.0 (from the
particle center), the sphere velocity in the present case is insensitive to truncation
distances for R, of 30.0 or more. In addition, the disturbance velocity and stress
on the interface at B, = 30 are both less than 5-10~4.

The effect of the initial starting position is shown in Figure 3, where in-
terface shapes are plotted for Ca = Cg = A = 1, with starting positions of 3
and 5 and an initially flat interface. Initially the starting position can affect

the interface shape and the sphere velocity, but since the interaction is small
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at large separations, the interface remains nearly flat in either case. As we will
show later, the sphere velocity for large separations, is very close to the results
for a flat (but deforming) interface, so the effect of this small change in interface
shape on the sphere velocity is small. As the separation decreases, the interface
shapes and sphere velocities agree more closely for the two cases. Thus, the
major characteristics of the solutions for identical Ca, Cg and A are insensitive
to the initial starting position as long as it is not too small. An initial separa-
tion of 3 is found to be sufficiently large and this is used in all the subsequent
calculations.

4. Results

In this section, we present results from our calculations for various com-
binations of the dimensionless parameters. The results divide nicely into two
quite distinct groupings. In the first set, we briefly consider cases involving a
large viscosity ratio, or very small values of Ca or Cg, in which the interface
deformation is small. The solutions in this case are presented, in part, as an
indication of the accuracy and reliability of the numerical technique. However,
the results are also of some direct interest in the context of particle capture in
flotation processes, where Ca and Cg are typically very small, and the interface
deformation is also small. Following this, we consider a second set of results for
0.1 < Ca,Cg <10.0, and 0.0 < A < 10.0, where interface deformation is large.
These results are of more direct interest in materials processing applications,
as discussed earlier, where an understanding of the deformation process and
the factors that control it is important in controlling the magnitude of surface
bumps or defects in products produced using particle- or bubble-filled molten
materials. In the latter case, we compare the results from our computations
with experimental observations from the study of Hoffman (1985).

A. Limiting Cases of Small Deformation



We begin by considering cases involving a large viscosity ratio (A > 1) or
weak viscous forces (i.e., Ca,Cg < 1), where interface deformation is small.
The lIimiting cases of small capillary number or large viscosity ratios are of
special interest in the context of particle capture in the flotation process, where
the corresponding approximation of a flat nondeforming interface, (u-n = 0),
has formed the basis of existing theoretical models and predictions of capture
efficiency. However, it seems evident that the occurrence of even a small amount
of interface deformation accompanying the approach of a small particle toward
the bubble surface may be an important factor in the capture process, which
relies on nonhydrodynamic, but extremely short-range attractive forces, in its
final stages. It is particularly interesting, in this regard, to compare results
from the present numerical scheme, with the limiting, flat-interface analytical
results. The two most important points for comparison are the minimum gap
width between the particle and the interface as a function of time, and the
position of the particle relative to the plane of the undeformed interface (the
latter controls the magnitude of the tangentsal velocity of a particle as it passes
around the bubble, and thus also controls the time (sliding time) available for
thinning of the minimum gap between the particle and the interface to a point
where capture is possible, c.f., Dobby and Finch (1985), where sliding times for
the intermediate Reynolds number case are considered).

The related problem of small deformation accompanying the approach of
a sphere towards an interface at constant velocity was investigated by Berdan
and Leal (1982), using a domain perturbation technique. However, this type of
analytic approach has limited value for analysis of the effect of interface defor-
mation on particle capture, because tractable analytic forms for the velocity and
pressure fields are possible only in the limit of a large separation between the

sphere and the interface, where the method of reflections can be employed along
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with “simple” solutions based upon a superposition of fundamental singularities
at the sphere center. Theories for the opposite limit of “lubrication-like” film
drainage rely upon either input of an initial “shape” for the film from experi-
mental (or other) evidence, or “ad hoc” approximations.

In the present section, we consider numerical results for two cases: first,
A = 0 and small Ca = Cg = 0.01, which is “representative” of conditions for
flotation processes, and second, Ca = Cg = 1 with A = 100, which provides a
comparison in which interface deformation is very small because of dominant
viscous effects.

Results showing the interface shape for these two cases are presented in
Figures 4 and 5, where for clarity of presentation, we adopt a frame of reference
in which the particle appears to be fixed, with the interface approaching it,
starting from an initial configuration in which the interface is flat and located
three radii away from the center of the sphere. The interface in these figures
is pictured at equal time intervals, (0.25 nondimensional time units), so that
the contours become closer together as the sphere slows down because of the
combined effects of hydrodynamic interaction with the interface, and a decrease
in the undisturbed fluid velocity for positions that are closer to the interface.

The most striking feature of the results shown in Figures 4 and 5 is that
the degree of interface deformation is almost imperceptible with the scale of
resolution that is inherent in these figures, until the sphere is extremely close
to the plane of the undeformed interface. Indeed, in order to provide a useful
view of the actual shape of the thin fluid region for the last few time-steps in
Figures 4 and 5, we reproduce an expanded local view of both of these thin films
in Figure 6 at times 1.25 and 1.0, respectively.

The very small deformation in the present case for Ca=Cg=0.01 and A = 0.0

may be contrasted with the earlier predictions of Geller et al. (1986) for a
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sphere approaching an interface through a quiescent fluid under the action of a
constant force. In the latter case, considerable deformation occurred for Ca, Cg
= O(1072). Indeed, to restrict the interface to a nearly flat shape, comparable
qualitatively with that shown in Figures 4 and 5, it was necessary to reduce
Ca and/or Cg by another order of magnitude. We shall see that the degree of
deformation in the present case is always considerably smaller for equal values
of the dimensionless parameters, A, Ca, and Cg than that predicted by Geller
et al. (1986) for motion under the action of a constant force.

There are at least three reasons for this fact. First, the magnitude of the
undisturbed velocity, in the present case, decreases linearly with distance from
the plane of the undeformed interface. Hence, the velocity of the particle will de-
crease as the interface is approached (and would do so in the complete absence of
any hydrodynamic interactions with the interface - e.g., in an unbounded fluid
that undérgoes uniaxial extensional flow as the particle approaches the stag-
nation point of the flow), and the magnitude of viscous deforming forces will
likewise decrease. It is noteworthy in this regard, that the characteristic veloc-
ity inherent in Ca and Cg is the velocity of the undisturbed flow at a distance of
one sphere radius from the interface, whereas the characteristic velocity used by
Geller et al. was the Stokes velocity for a sphere moving at very large distances
from the interface under the action of the applied force. The second factor in
the present case is that the disturbance flow produced by the sphere is much
“weaker.” In particular, since the particle is force- and torque-free, the distur-
bance velocity produced by the particle decays like a force-dipole (in particular,
a “stresslet”) proportional to liz, rather than a point force (or “stokeslet”) pro-
portional to % as in the earlier studies. This results in smaller disturbance effects
and less deviation of the particle velocity from the undisturbed fluid velocity for

large particle/interface separations. Third, and finally, the undisturbed flow field
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tends to maintain the interface in a flat configuration. This effect is inherent in
both the form of the undisturbed flow field (which is added to the disturbance
velocity in calculating the net velocity of the interface) and in the last term of
the normal stress difference given by Equation (18), which act together as a
“restoring” force that will cause an initially deformed interface to return to a
flat configuration even in the absence of interfacial tension or a density jump
across the interface (i.e., for Ca=Cg=00). An explicit computational demon-
stration of this latter fact will be given in the next section, where we consider
large amplitude deformations.

As indicated in the introduction to this section, the most important char-
acteristic for the small deformation problems considered here are not the overall
interface shape, but rather the time—depeﬁdent thickness of the thin film that
eventually appears between the sphere and the interface, and the position of
the sphere relative to the plane of the undeformed interface. These factors are
explored in Figure 7 for the “flotation” parameters (i.e., Ca = Cg = 0.01, A = 0).
For the present “exact” numerical solution, we plot both the minimum distance
of the surface of the sphere from the plane z=0, and the minimum thickness of
the thin liquid film. Also shown, for comparison, are predictions of the mini-
mum film thickness for a flat interface via the asymptotic (far-field) solution of
Yang and Leal (1984), and the bipolar coordinate solution of Dukhin and Rulev
(1977). Superficially, the various curves in Figure 7 look very similar, and, in-
deed, the importance of the differences depends on the critical film thickness for
capture (i.e., the gap width at which nonhydrodynamic forces of attraction be-
come sufficiently strong to cause the thin film to rupture, Deryagin and Dukhin
(1979) ). For example, the time for the sphere/interface gap to decrease below
0.01 of the particle radius is almost twice that predicted by the far-field result

of Yang and Leal (1984). The bipolar solution of Dukhin and Rulev is much
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closer to the exact solution for these particular values of Ca and Cg, but still
slightly underestimates the minimum film thickness at any instant in time. The
bipolar solution also overestimates slightly the position of the sphere relative to
the plane z=0. Although both errors are relatively small in absolute terms, they
may cause significant errors in the full flotation capture calculations. The error
in the position of the particle relative to the plane z=0 will significantly affect
the tangential velocity of the particle, Stoos (1987), and this in turn may affect
whether or not the particle has sufficient time in the extenbsional flow near the
interface to reach a critical film thickness for capture.

Another, more sensitive comparison between the present numerical results
and previous analytic theories for a flat interface is shown in Figure 8. Here,
we plot the ratio of the particle velocity to the velocity of the undisturbed flow
field at the particle center - we shall refer to this as the “relative” velocity. The
results from our present solution for Ca=Cg=0.01 and A = O are plotted both
as a function of particle position relative to the plane z=0 and as a function of
particle position relative to the interface. Results are also shown for the far-field
asymptotic and bipolar coordinate solutions for a flat, nondeforming interface
and for a flat but deforming interface via a supplemental boundary integral cal-
culation. The particle velocity as a function of particle position relative to the
plane z=0 is significantly larger for the deformed interface than the particle ve-
locity given for a flat, nondeforming interface by the bipolar coordinate solution,
since the allowance of even a small amount of interface deformation reduces the
resistance to the particle approach. However the particle velocity as a function
of particle position relative to the interface agrees quite well with the bipolar
coordinate solution for no deformation. From this, we conclude that interface
deformation affects the particle velocity principally by changing the minimum

separation between the particle and the interface, rather than as a consequence
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of changes in the interface shape directly. The velocity for a sphere approaching
a deformable interface with A = 100, Ca = Cg =1 is also shown as a function
of the particle position relative to the plane z=0, and is seen to be quite close
to the result for A = 0.0 and Ca = Cg = 0.01. At first, this agreement between
results for low and high viscosity ratios appears to be quite surprising. However,
it can be understood by extrapolating the far-field analytical results of Yang and
Leal (1984) to the case of a sphere near a flat interface. In particular, Yang and
Leal show that the ratio of the drag on a stationary sphere near a flat interface

to Stokes’ drag for an unbounded fluid is

Drag Ratlo—1+2[ (2+3’\)}n_ (1+4))

1 3
8l (1+ ) 8(1+A)(7)

o,
(with a small algebraic error corrected). This drag ratio is plotted in Figure 9
for A = 0 and A = 100, and it can be seen that the result is very sensitive to
A, especially for | = —1. On the other hand, the component of the resistance

tensor K., for motion normal towards a flat, fluid interface is given by Lee,

Chadwick and Leal (1979) and Yang and Leal (1984) as

Kgz = 67 [1+ > {81 2113/\’\ ] Sf:i;(%)‘*] +o (7%, (22

and the relative velocity for a flat interface is given by the ratio of these two

values, multiplied by the appropriate scales used in this study. Because the
two expressions (21) and (22) exhibit very similar dependence on A, the ratio
becomes relatively insensitive to A. In particular, we can see from Figure 9 that
the asymptotic solution shows essentially the same sphere velocities for large and
small A\. The boundary integral calculations for Figures 4 and 5 exhibit a similar

insensitivity of sphere velocity to A. Although the far-field asymptotic solution of
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Yang and Leal agrees well with the bipolar coordinate solution for the drag near
a flat interface (c.f. Yang and Leal (1984)) it does not give good agreement for
the particle velocities, as we can see from Figure 8. The point is that an accurate
representation of the drag force is captured by the asymptotic solutions since
the drag does not become singular at small separations. However, the resistance
tensor, both with and without interface deformation, grows much more rapidly
than the asymptotic representation as the particle/interface separation becomes
small. It may also be noted from Figure 8 that particle velocities based on a flat
but deforming interface are much larger than the actual particle velocities for a
deformed interface.

B. Large Deformation Problems

Let us now turn to a more general range of ‘values for A, Ca and Cg, where
interface deformation does not necessarily remain small. As we have already
noted, such problems find important application in evaluating surface rough-
ness/defects in products manufactured from multi-phase fluids.

The only published experimental results, so far as we know, are contained
in the work of Hoffman (1985), who studied the approach of a sphere toward the
free surface between two immiscible fluids that were being pumped through a
circular tube. At the end of this section, we will compare the solutions obtained
here with Hoffman’s experimental observations. First, however, we attempt to
understand the interface deformation problem from a more fundamental point of
view, based upon comparisons of solutions obtained with a systematic variation
of the three dimensionless parameters, X, Ca and Cg.

a. The Effect of Viscosity Ratio

We begin by considering the effects of variations in the viscosity ratio, A,
for fixed values of Ca=Cg=1. Results for the interface shapes and relative

sphere/interface position are plotted in Figures 10, 11 and 12, at equal time
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intervals of 0.25 for A = 0, 1 and 10. The most obvious distinction from the
preceding section is that the deformation is no longer small.

Perhaps the most surprising feature of the solutions for the interface shape
is that they are qualitatively insensitive to A over the whole range 0 < A < 10.
To be sure, there is a quantitative difference in the degree of deformation, with
the largest deformation for the free surface A = 0, and smaller amounts for
the larger viscosity ratios. However, it is not until A = 100, considered in
the preceding section, that an increase of the viscosity ratio produces a large
reduction in the maximum degree of interface deformation. In contrast, the
solutions obtained earlier by Geller et al. (1986), for motion of a sphere toward
an interface under the action of a constant applied force, showed a very strong
dependence of deformation on A. What is more, the degree of deformation for
equivalent values of A, Ca and Cg was, in every case, much larger than what
is found here, both in the magnitude of the maximum displacement from z=0
and in the breadth of the region of the interface over which the displacement
occurred.

We have already noted three fundamental reasons for these differences in
the preceding section: (1) the undisturbed velocity, and thus the driving force
for particle motion, goes to zero as | — 0; (2) the net force and torque on
the sphere are zero and thus the disturbance flow produced is of shorter range
(“weaker”); and (3) the undisturbed flow field tends to maintain the interface
in a flat configuration. It is worthwhile to pursue the manifestation of these
differences between the present problem, and the constant force problem of
Geller et al. (1986) in some detail, based upon the solutions that we have
obtained.

First, we may examine the strength of the disturbance produced by the

sphere on the interface, and vice versa. For this purpose, we can examine the
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particle velocity and the maximum normal interface velocity (u, on the axis
of symmetry), for the initial configuration where the interface is flat and [ =
-3. These are 6.19 and (0.99), respectively, for A = 0; 6.00 (0.52) for A = 1,
and 5.84 (0.098) for A = 10. The corresponding values for the constant force
problem (with the force scaled so that the particle velocity is 6.0 for A=1and
| = -3) are 8.13 (5.60) for A = 0, 6.00 (2.90) for A = 1, and 4.23 (0.54) for
A = 10. Thus, the disturbance velocity at the interface is much larger in the
constant force problem, suggesting that interface deformation will be smaller for
the particle motion driven by an extensional flow. Furthermore, the influence
of the interface on the sphere velocity is much weaker in the present case: to a
first approximation, for { = -3, the sphere translates with the undisturbed fluid
velocity for all values of A, whereas a strong hydrodynamic interaction is evident
in the constant force results.

We may also examine in more detail the tendency, claimed above, for the
undisturbed flow to maintain the interface in its undeformed state. The in-
terface shape evolves with a net velocity, which is the sum of the disturbance
veloeity and the undisturbed velocity. The undisturbed velocity, uo, always
acts to restore the interface to flat. This tendency is also reflected in the term
[6(A — 1)(n - 1i,)i,] which appears in the expression (18) for the stress difference
at the interface, and plays the role of a third “restoring” mechanism, along with
the usual mechanisms associated with interfacial tension and the density differ-
ence across the interface. The main distinction is that this contribution to the
disturbance stress difference on the interface is proportional to the slope, %rt, as
it appears in the determination of the normal to the interface, rather than the
curvature, g—i-zi, for the capillary force, or the relative displacement, f, for the

body force effect.

Useful insight into the restoring effect associated with the undisturbed flow
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can be obtained by considering the hypothetical problem of a deformed interface
with zero surface tension and equal fluid densities relaxing back toward a flat
configuration under the action of an extensional flow. The initial deformed
interface shape for this calculation is chosen as the final interface shape in Figure
11. An interface with this initial shape is allowed to relax back to flat with no
particle present (remove the integral over the particle surface from Equations
(12)-(14) and neglect Equation (9)), and with Ca=Cg=o0 (no interfacial tension
and equal densities). Since the contribution to the stress difference from the flow
at infinity is geometry-dependent, deformations both above and below the plane
of the undeformed interface are considered. For A = 1 Equation (14) reduces to
ul = 0, and the disturbance velocity is zero. The interface simply “convects”
back to flat with the local flow as showﬂ in Figure 13 for deformations both
above and below the plane z=0. The deformations above and below the plane
z=0 relax back at the same rate, and this relaxation slows as the interface
becomes less deformed (longer time steps are used at the end for clarity).

The cases A = 0 and 10 (Ca=Cg=o0) are shown in Figures 14 and 15,
respectively. The last term in Equation (18) changes sign for deformations
above and below the interface and also for small and large A. From a qualitative
physical point of view, it is obvious that the case A = ¢ with deformation above
the plane, z=0, say, should be precisely equivalent to A = % with the same
deformation below z=0. Thus, Figure 15 for A = 10 is very similar to Figure
14 inverted. This is because A = 10 is not too different from A = oo, insofar as
this effect is concerned. For positive values of 6(A — 1)(n - i,), this term in the
stress balance tends to reduce the slope of the interface deformation by forcing
the deformed part of the interface towards r=0, as in the bottom part of Figure

14 and the top part of Figure 15. For negative values of 6(A — 1)(n - i,), this

term in the stress balance tends to reduce the slope of the interface deformation
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by pushing the deformed part of the interface out towards r=cc, as in the top
part of Figure 14 and the bottom part of Figure 15. The z component of the
relaxation velocities is initially larger for deformations above z=0 for small A and
for deformations below z=0 for large A, although as the deformation flattens out
and the contribution of the flow to the stress balance diminishes, this trend is
reversed (as can be seen from the figures).

It appears that for the particle approach problems (Figures 10-12), a prin-
cipal effect of the 6(A—1)(n-i,) term in the stress balance will be to concentrate
the deformation near r=0 for large A, which may account in part for the pinching
of the interface on the shoulder of the particle as seen in Figure 12. Because
of the additional restoring forces, the decrease of the particle driving force as
the particle approaches the interface, and the weaker disturbance produced by
the particle, there is no large-scale deformation even in the A = O case as found
earlier in the constant velocity and constant force problems.

In the preceding several paragraphs we have concentrated almost entirely
upon the magnitude of the interface deformation and its qualitative shape.
Equally important, however, is the rate of deformation and its dependence upon
A. To examine this point, it is convenient to begin by investigating the particle
velocities as a function of position and A.

The calculated particle velocities relative to the velocity of the undisturbed
flow field at the particle center (—-) are shown in Figure 16 as a function of
particle position (Figure 17 shows actual particle velocities for Ca=1, Cg and A
between 0.1 and 10.0). Also shown in Figure 16 are the relative particle velocities
that would occur for the same fluid if the interface were flat but deforming (i.e.,
u-n # 0) and the bipolar coordinate predictions of Dukhin and Rulev for a flat
nondeforming interface (i.e., u-n = 0) with A = 0. The most surprising result

from Figure 16 is that the relative particle velocities for the deformed interface
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solutions are matched almost perfectly by the predictions for a flat but deforming
interface all the way up to [ & —1, in spite of the fact that the interface becomes
quite deformed before that point. So far as we can tell, there is no simple
explanation for this observation. In all three cases, the interface deforms prior
to l = —1, and one would expect interfacial tension and the density difference
to begin to play a role, which could not be duplicated by the results for a flat
interface. The fact that the particle velocity does not deviate significantly from
the results for a flat but deforming interface, as it does for Ca=Cg=0.01, A =0
in Figure 8, must reflect the presence of other compensating factors. Among
these is the fact that the deformed interface lies farther from the sphere, thus
reducing the importance of direct hydrodynamic interactions (“wall effects”).
Another is the fact that the driving force for motion of the sphere is increased
for A = 0 and decreased for A = 10 via the modification in the flow field that
is necessary to accommodate interface deformation. Another puzzling feature
of the results in Figure 16 is that the predictions from the bipolar coordinate
solution for a flat interface that is not deforming (i.e., u-n = 0) with A = 0, give
particle velocities that actually agree most closely with the numerical predictions
for A = 10! This latter behavior is most likely related to the agreement we saw
earlier between particle velocities for A = 0 and 10 for the small deformation
case, since in the “large” deformation case, the deformation is not really large
for A = 10 until [ > —1. This is a result of the effect of the flow field itself
restoring the interface to flat for large A.

Finally, it is interesting to note that the particle velocity, for A = 0, is larger
than if the particle simply convected along with the undisturbed flow. This is
further evidence (along with the increase in drag) of the modification of the
flow field resulting from the interface deformation; i.e., both the particle and

fluid velocities are increased in the presence of the deformed interface from the
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values they would have in an unbounded fluid. The velocity of a sphere near
a flat but deforming interface, for A = 0, is also increased over the value the
undisturbed velocity would have at the particle center. This behavior is similar,
in some respects, to that found by Lee and Leal (1982), where in the presence
of a particle moving.at a constant velocity, the velocity on a flat but deforming
interface with A = 0 exceeds the velocity which would be found at the same point
in an unbounded fluid. This increase in interface velocity in Lee and Leal would
no doubt lead to an increase in sphere velocity if the sphere were moving under
the action of a constant force. Thus, as in Lee and Leal (1982), the velocity
field can be modified by the interface deformation and this in turn modifies the
sphere velocity.

It is important to note that it is only the relative velocity of the sphere that
may increase as the distance from the interface gets smaller for A <« 1. Looking
ahead to Figure 26, it can be seen that the actual particle velocity decreases
monotonically as the sphere approaches the interface for all values of A! We
shall return to discuss the results of these two figures in more detail.

Two quantitative measures of the degree and rate of deformation are the
minimum gap width between the sphere and the interface, and the maximum
displacement (or penetration) of the interface from the plane z=0. These two
quantities are plotted in Figure 17 as a function of the position of the sphere,
and in Figure 18 as a function of time. It can be seen from Figure 17 that
the minimum gap width is always smallest at a given sphere position for the
largest value of A. More noticeable, in Figure 18, is the fact that the interface
for A = 10 is displaced very little until the sphere is very close to the plane
of the undeformed interface - essentially, this lack of significant deformation is
the reason why the minimum gap width is smaller for A = 10. In a practical

context, either in terms of the potential to produce a significant bump on the
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interface, or in terms of capture efficiencies in separation processes, it is more
interesting to examine the minimum gap and the penetration depth as a function
of time (recall that the motion toward the interface due to the axisymmetric
stagnation component of a bulk flow is usually only one component of the particle
trajectory, which also carries the particle parallel to the plane of the undeformed
interface, and thus allows only a finite time for interface deformation, Stoos
(1987)). Examining Figure 18, we see that neither the rate of thinning of the
gap nor the rate of increase in the displacement of the interface is a very strong
function of A, at least in the range 0 < A < 10 that is considered in this section.
This is especially true at large times where the dynamics of “film-drainage”
takes over and the rate of thinning of the film becomes surprisingly invariant to
changes in A.

Finally, there is one additional comparison with earlier work, which is of
some interest, and this is the fact that the shape of the thin film appears to be
qualitatively different from the predictions of Lee et al. for motion of a solid
sphere toward the interface, and of Chi and Leal (1987), who considered the
closely related problem of the motion of a drop of fluid A toward an interface
separating the suspending fluid B from a large additional “body” of fluid A. In
the latter case, Chi and Leal found that the shape of the thin film depended
strongly on the viscosity ratio, A, i.e., ﬁ'ﬁ" In particular, in the present problem,
the smallest particle-interface separation occurs on the axis of symmetry for both
A = 0 and 1, suggesting that if breakthrough ultimately occurs in these cases,
it would occur initially at this point. In contrast, all of the previous studies had
shown that the minimum film thickness occurred away from the axis (as in the
present problem for A = 10) if either the particle was solid, or the viscosity ratio
was large, and the previous authors had tentatively concluded that the film on

a solid sphere would always have a minimum thickness at an off-axis position.
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Clearly, however, the present results show that this is not the case, and the film
geometry is a more subtle function of the undisturbed flow and the material
parameters.

b. The Effect of Surface Tension and Gravity Forces

Let us now turn to the effects of surface tension forces, i.e., Ca, and/or the
density difference, as measured by Cg, in determining the nature and magnitude
of interface deformation. For this purpose, we have considered Ca=0.1, 1 and
10 with Cg=1 for A = 0, 1 and 10, as well as Cg=0.1, 1 and 10 with Ca=1 and
A =0, 1 and 10. The majority of the particle/interface configurations for these
solutions are similar to those already presented in Figures 10-12, and are not
reproduced here. The reader interested in detailed interface shapes for cases that
are not given here may refer to Stoos (1987). Specifically, we find that interface
shapes for Ca =10, Cg = A = 1 and Cg = 10, Ca = X\ = 1 are virtually identical
with the case Ca = Cg = A = 1 that was presented earlier. This is not surprising
insofar as the magnitude of deformation is concerned - when Ca > Cg and A
deformation is dominated by the latter factors, and vice versa for Cg > Ca, A.
Since the two dominant parameters are not changed in comparison with the case
Ca = Cg = XA =1, it is not surprising that the degree of deformation is essentially
fixed. What is surprising, however, is that the interface shape does not change
significantly, since Ca and Cg represent mechanisms that act in a qualitatively
different way - one limiting deformation by restricting interface curvature, and
the other acting directly to limit displacement above the plane z=0. The only
viable explanation is that, for Ca = Cg = A = 1, the dominant limitation on
interface deformation must be due to viscous effects. When compared with the
previous results of Geller et- al. for motion due to a coﬁsta.nt force, this conclusion
is surprising, since interfacial tension and body force effects were found to be

dominant in the latter case for Ca, Cg, A ~ O(1).
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Not surprisingly, in view of the above results for A = 1, the deformation for
A = 10 is even less sensitive to Ca and Cg than for A = 1. Here, the interface
configuration was found to be very similar to the case Ca = Cg = 1, A = 10 that
was shown in Figure 12, for all values of Ca and Cg down to and including 0.1.
Again, in view of the similarity to Figure 12, the detailed results are not given
here.

Only for Ca or Cg = 0.1 is a significant change in the interface shape ob-
served for A = 1. Results corresponding to the two cases Ca = 0.1, Cg = A =
1 and Cg = 0.1, Ca = A = 1 are shown in Figures 19 and 20, respectively. In
these cases, it is evident that the degree of deformation is significantly reduced
relative to Ca = Cg = A = 1 (Figure 11). Furthermore, the active roles of
interfacial tension and the density diﬁ'ereﬁce across the interface in determining
the interface shape is reflected in the differences in the details of the interface
shapes between Figures 19 and 20. The interface shape in the latter case is
similar to the shapes seen earlier, with the minimum film thickness occurring at
the symmetry axis, and the interface contour following the particle shape quite
closely until a relatively sharp break occurs in the transition to the undeformed
flat interface. On the other hand, the deformation is more restricted in magni-
tude in Figure 19 and there is a smoother, broader shape with no regions of high
interface curvature in the transition to the undeformed shape. One consequence
of the restriction on curvature is that the minimum film thickness no longer
occurs at the symmetry axis. Indeed, the interface shapes in Figure 19 more
closely resemble the interface shapes in Figure 12, which correspond to A = 10,
Ca = Cg = 1, pointing up again the complicated form of the dependence of the
film geometry on the flow and material parameters.

Results for A = 0, with various values of Ca and Cg, are shown in Figures

21 - 24. Several of the interface/sphere configurations for 0.1 < Ca < 10 and
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0.1 < Cg < 10 are extremely similar and thus only the interface shapes which
vary significantly with changes in Ca or Cg are shown (the interested reader can
again find the interface shapes that have been omitted in Stoos (1987)).

In Figure 21 we have plotted the interface shapes for Ca = Cg = 0.1, A =
0, which represent an intermediate case between “small” and “large” interface
deformations. For this intermediate case, the interface deformation is less than
for O(1) values of Ca and Cg; however, the deformation is larger than what
occurs for very small values of Ca and Cg. Thus, for A = O, it appears the
transition between moderate and very small interface deformation occurs for
Ca, Cg between 0.1 and 0.01. Therefore, in a polymer processing operation,
comparison of Figures 4 and 21 may give an indication of the relative decrease
in the defect size that may be expected for a change in the operating conditions
(slower processing speed), which results in a decrease of Ca and Cg from 0.1 to
0.01. Also, in comparing Figures 4, 10 and 21 it is clear that the effectiveness
of the flow field at maintaining the interface flat does not dominate the effects
of changes in Ca and Cg for A = 0 as it does for’)\ = 1 and 10; i.e., the interface
shapes are significantly different for different values of Ca and Cg for A = 0.

In order to isolate the effects of high surface tension and large density
differences, the results in Figures 22 and 23 show solutions where either Ca
or Cg is small whilerthe other is large (while still maintaining A = 0). Thus,
Figure 22 shows results for Ca = 0.1, Cg = 10 and A = 0, and Figure 23 shows
results for Ca = 10, Cg = 0.1 and A = 0. The interface shapes with capillary
forces dominating (Ca=0.1, Cg=10 and A =0) are considerably different from
the interface shapes with gravity effects dominating (Ca=10, Cg=0.1 and A=0)
as shown in Figures 22 and 23, respectively, and both show more deformation
than for Ca = Cg = 0.1 (Figure 21). With surface tension dominant, there is

again a smooth interface shape with no region of high interface curvature in
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the transition region. The interface deformation for A = O is somewhat larger
than what we find for A = 1 in Figure 19, and the occurrence of the minimum
separation point off the axis is accentuated for A = 0. Indeed, the separation
between the sphere and the interface on the axis is still quite large for A = 0, at
the point where the minimum separation becomes so small that the calculation
must be stopped. On the other hand, for a dominant restoring force of gravity,
i.e., for Ca = 10, Cg = 0.1 and A = 0, as shown in Figure 23, the interface
has large localized curvature in the transition region to a flat interface. At the
point of this large curvature, the interface height actually dips slightly below
the plane z=0. Thus, although the amplitude of the “bump” produced relative
to the undeformed interface is the same magnitude as in the case Ca = 0.1,
Cg = 10, the appearance is of a larger distortion of the interface shape. This
slight interface depression seems to result from the larger downward tangential
velocity that occurs when the heavy lower fluid, which has been forced above the
plane z=0, drains from the top of the sphere. This interface depression occurs
only after the sphere velocity has decreased to near zero, (< 0.05 from an initial
velocity of 6.2), and thus the velocity field in this region is dominated by the
drainage flow rather than by the flow resulting from the motion of the sphere.
It should also be noted that this interface depression does not occur for A =
1, or 10. Most likely, a depression does not occur in these cases because the
viscous effects of the flow field force this small depression back to flat. Finally,
the minimum separation distance between the interface and the sphere occurs
on the axis of symmetry in Figure 23, although the separation is quite small
over the entire top of the sphere as the heavy fluid trapped there drains away.
Although the interface shépes are relatively insensitive to variations in the
nondominant parameter (i.e., we found virtually identical shapes for Ca=10,

Cg=XA=1 and Cg=10, Ca=A=1 and Ca=Cg=A=1), the particle velocity is sen-
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sitive to changes in this parameter, as is seen in Figures 24 and 25 where the
relative particle velocities for Ca=1 and 0.1 < Cg < 10 and the absolute par-
ticle velocities for Cg=1 and 0.1 < Ca < 10 are plotted, respectively. The
corresponding plots for relative particle velocities with Cg=1 and absolute par-
ticle velocities with Ca=1 show qualitatively similar behavior (with Cg and Ca
switched) and thus are not shown. From Figure 24, it is clear the relative par-
ticle velocity is sensitive to changes in Ca and Cg except when A=10, in which
case viscous effects dominate and the particle velocity is insensitive to varia-
tions in Ca and Cg. Small values of Ca and Cg are less dominant in controlling
the particle velocity; e.g., there is still considerable variation in particle velocity
with A for Cg=0.1 (and also Ca=0.1). One noticeable feature of Figure 24 is the
rapid increase in the particle relative velocity for A=0, Cg=10 as the particle
center approaches the plane z=0. This behavior is merely a consequence of the
particle’s having a finite velocity as it passes this plane and % blows up. The
actual particle velocity decreases monotonically as the particle approaches the
interface, as can be seen in Figure 25.

c. The Magnitude of Surface Bumps

One of the primary motivations for interest in the motion of particles car-
ried by a mean flow toward a fluid interface is the problem of surface bumps or
imperfections that may be a consequence of the deformation produced by small
particles during a manufacturing process that involves a flow (mold-filling, for
example). This aspect was studied earlier by Hoffman (1985), as indicated in
the introduction, and we use this final section of “results” for a brief comparison
with his work, as well as for a summation of our predictions of the magnitude of
interface deformation versus the dimensionless parameters A, Ca and Cg. The
problem considered experimentally by Hoffman corresponds to the final remain-

ing case of interest, Ca and Cg both large with A = 0. To compare with the
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experimental results from Figure 12(c) in Hoffman (1985), calculations are per-
formed for a particle approaching a deformable interface in an extensional flow
with Ca=22.07, Cg=24.34 and A = 0. This figure from Hoffman is chosen be-
cause the particle appears to be near the axis of the tube, and thus the variation
of the extensional flow strength with the position in the tube can be neglected;
i.e., if the position in the tube is specified by the angle 8, defined by Hoff-
man, it is assumed 8 = 0. The shape of the interface calculated numerically,
which is shown in Figure 26, is quite similar to that obtained experimentally by
Hoffman, although the numerics predict a somewhat larger maximum interface
deformation. It should be kept in mind, however, that Figure 12 is just a rep-
resentative sample of the bumps produced and is not claimed by Hoffman to be
at a maximum deformation magnitude. The maximum heights of the deformed
interface above the plane z=0 are given for all the systems considered by Hoff-
man in his Figure 11. The maximum deformation in the numerical solution in
Figure 24 is approximately 0.75 (based on particle diameter) compared to 0.67
(based on particle diameter) from Figure 11 of Hoffman. The fact that there
is some disagreement between the maximum deformation given by the numer-
ics and by the experiments may be due to the finite curvature present in the
experimental fluid front, which will affect both the flow field and the tendency
of the interface to deform. Also, the asymmetry inherent in the experiments
for particles that are off the tube axis may account for some of the scatter in
the results in Hoffman’s Figure 11. Other detailed comparisons are not possible
because experimental difficulties make it impossible to determine the particle
position in Hoffman’s experirﬁents. However, in a general sense, the agreement
with Hoffman’s experimental results appears to be good.

The final flow characteristic investigated is the maximum interface defor-

mation for viscosity ratios of 0.0, 1.0, and 10.0, Capillary numbers of 0.1, 1.0 and
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10.0, and Cg of 0.1, 1.0 and 10.0. Also, for completeness, the maximum interface
deformation for the limiting cases of small deformation, i.e., Ca=Cg=0.01, A=0
and Ca=Cg=1, A=100, are considered also. In the interest of conserving space
the interface shapes have not been presented for several of these parameter val-
ues, but the interested reader may find figures for these cases in Stoos (1987).
However, the general trends of interface deformation are shown in Figure 27,
where the maximum interface deformation (maximum distance of the interface
from the plane z=0) is plotted for the above parameters. The most noticeable
feature of this plot is the drastically decreased sensitivity of the deformation
magnitude on Ca and Cg for increasing viscosity ratios. Viscous effects, from
the undisturbed flow, control the deformation magnitude for large A, and the ef-
fects of variations in Ca and Cg on the deformation are small. Thus, to maintain
a bump size of 0.6 particle radii or less for small viscosity ratios, the operating
conditions (processing speed) must correspond to Ca and Cg = 0.1 or less. On
the other hand, for viscosity ratios A > O(10), Ca and Cg can be much larger
without leading to larger deformations. In order to limit the deformation to
a small percentage of the sphere size (< 10%), however, Ca and Cg must be
0(0.01) or smaller, or A must be O(100) or larger. In attempting to partially
control the degree of deformation, it would be useful to note that the variation
in the deformation magnitude is much larger when decreasing Ca or Cg from
1.0 to 0.1 than when decreasing Ca or Cg from 10.0 to 1.0. Indeed, for many
cases it appears that values of Ca or Cg of O(1) behave like Ca and Cg > 1.
Also, it appears that surface tension is somewhat more effective in decreasing
the maximum deformation than are density differences. Specifically, the smallest
deformations are found for the smallest values of Ca (Ca=0.1, Cg=1.0 always
has smaller deformation than Cg=0.1, Ca=1.0).

Conclusions



Many characteristics of the interface deformation and particle velocity pro-
files for a sphere driven towards a deformable interface by a biaxial extensional
flow are qualitatively similar to what has been observed for spheres and drops
approaching a deformable interface at a constant velocity or under the action
of a constant external force, e.g., gravity. For example, this is true of the quali-
tative changes associated with variations in A, Ca and Cg. However, interfacial
tension and/or the density difference across the interface play a dominant role
only in determining the degree and nature of interface deformations for Ca, Cg
< 0(0.01), and thus the viscosity ratio remains as the dominant factor even for
Ca, Cg = O(1). This may be contrasted with the results of earlier studies where
the interfacial tension and density difference play a dominant role for Ca, Cg
= O(1). It may also be noted, in the présent case, that the size and shape of
the interface deformations agree reasonably well with the experimental results
of Hoffman for large values of Ca and Cg, and the sphere velocities are in good
agreement with bipolar coordinate solutions for very small deformations.

In addition, many detailed characteristics of the interface deformation are
different from the previous cases and yield surprising results for some particular
applications. In general, interface shapes in the presence of the flow field are
flatter, with the deformation more localized near the sphere when compared to
the constant velocity or constant force cases. This because the undisturbed flow
field itself tends to maintain the interface flat. Hence, through the interaction of
the viscosity ratio with the flow field, the "viscous” effects play a role in addition
to controlling the rate of thinning of the fluid in the gap as in the constant force
problem. Consequently, variations in A have a larger effect on interface defor-
mation and sphere velocity. Since the flow itself tends to keep the interface flat,
broad, small-scale deformations are not seen for small Ca (the flow damps these

out quickly) as was characteristic of the small Ca behavior for particle motion



— 43 —

at a constant velocity or because of a constant force. Rather, Ca influences the
total amount of deformation primarily by controlling the curvature in the tran-
sition region between the sphere and the undeformed interface. Also, since the
disturbance caused by the sphere is more rapidly decaying than the point force
disturbances associated with the constant velocity and constant force cases, the
variation of the sphere velocity resulting from hydrodynamic interaction with
the interface is weaker.

Finally, the effect of interface deformation may be important in polymer
processing operations. To aid in estimating the size of possible interface de-
formations, Figure 27 summarizes the dependence of the maximum interface

deformation on the operating parameters Ca, Cg and A.
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