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ABSTRACT

Many of the macroscopic and microscopic features of shearing granular
materials were observed during the course of this investigation.

The principal results were obtained from a computer simulation of the
flows in an inclined chute, and in a Couette shear cell. The simulation
followed the exact trajectories of two-dimensional discs through a control
volume. Properties of the flow were obtained from temporal averages ul the
instantaneous particle properties. Macroscopic flow characteristics such as
velocity and density profiles are presented. Because the simulation follows
the exact mechanics of the particles it was also possible to investigate the
statistical nature of granular flows. Towards this purpose velocity distri-
butions, collision angle distributions and pair correlation functions were
measured.

The results of the simulation draw a picture of a flowing granular ma-
terial as a self-excited gas. There appears to be a '"temperature” associated
with the random motions of the particles, that is a product of gradients in
ghe mean velocity field. An equation of state is proposed, involving this
temperature,to describe the behavior of the density within the flow. A
phenomenon reminscent of conductiﬁn is observed. The particle velocities
appear to obey a Maxwellian distribution based on this temperature.

Preliminary experiments were also performed to investigate the flow
of glass beads down inclined chutes. It is shown that the flows may be
classified as either supefcritical or subcritical depending on the local
value of the Froude number, and that the classification had a strong in-
fluence on the flow properties. In addition, wall friction coefficients

were determined.
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Chapter 1

INTRODUCTION

“"Granular Materials" is a name given to a packed dispersion of a
large number of solid particles. It is required, purely by geo-
metrical constraints,that a packing of arbitrarily shaped particles
cannot completely fill a given volume. The space between the particles
will be filled with an interstitial fluid, and the particle bulk

will be supported across particle contact points.

Many materials like cereal grains occur naturally in granular
form. Ores and coal excavated from the earth by large shovels, break
into granules as they are forced to conform to the shovel shape.

Bulk plastics are generally processed directly into granular form
for ease of handling. Large quantities of granular material are
moved, stored, and processed daily. It is small wonder that there is
a great deal of interest in improving the design of devices to
facilitate their transportation and storage.

A granular material has many fluid like properties. The bulk
material will conform to the shape of an arbitrary container with a
minimum radius of curvature much larger than a particle diameter.
Moreover, if a hole much larger than a particle diameter 1is opened
in the container bottom, the local structure in the material
next to the opening becomes unstable. The particles will fall or

flow out the hole under the influence of gravity.

But granular materials are not fluids and possess many non-fluid



properties. Most evident is that particle packings can withstand a shear
force and behave, in the bulk, like an elastic solid.

The differences can be attributed, in part, to the mode at particle
interaction. Particles interact directly by colliding or by frictional
sliding at points of contact. They may also interact indirectly, trans-—
porting momentum in the form of streases induced in the interstitial fluid.
A densely packed granular material; loaded from rest, will behave as a
solid until the loading overcomes the resisting frictional forces across
particle contact points. At the other extreme, a dilute suspension of
particles will retain the Newtonian behavior of the suspending fluid but
with an effective viscosity that depends on the particle concentration
(see Batchelor [7] page 246).

Other differences arise because of the finite size of the particles.
For example a bulk granular material will expand as it is deformed. This
was termed "dilatancy'" by its discoverer Reynolds [58, 59] who studied
gfanular materials as a macroscopic model of matter on molecular scales.
The deformation of a granular solid is accomplished by displacing its
constituent particles relative to one another. The material must expand,
or dilate in order to allow the particles freedom of motion.

Thus, granular materials exhibit deformation behavior similar to a
fluid but still retain many properties that are reflections of their partic-

ulate nature. The efficient design of material handling devices would be
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greatly improved by an understanding of the material's behavior as

a function of its mechanical characteristics.

1.1 Models of Granular Material

Recent concern about granular material flows was motivated by
diffefent interests from two different disciplines. The first is the
design of material handling devices, primarily hoppers, that must flow
without clogging, and are free of internal stagnant regions. (A review
may be found in Wieghart [84]). The second is motivated by soil
mechanics and a desire to understand the failure behavior of
foundations, slopes, and soil surrounding piles during driving.

The internal stresses in the former case are many orders of magnitude
smaller than in the latter, so it is a bit surprising that the
earliest approaches in both cases followed the same physical modeling.

The earliest modeling of a granular material was as a solid.
Deformation followed the laws of frictional behavior set down by
Coulomb [20]. The Mohr — Coulomb constitutive hypothesis takes

the form of a yield condition.

it | Seo+ |T | sin @
] n

where Ts_is the principal shear stress, Tn the mean of the principal
normal stresses,c, the cohesion and ¢,the internal friction angle for the
material. The law says that the material will maintain its structure

as long as the inequality is satisfied, and will yield at points in

the material when equality is reached. This expression defines a

yield surface. The theory of plasticity may then be applied.

As long as ¢ is constant this expression predicts that the stresses

inside the flowing material will be independent of the strain rate.



.

Several tﬁeories of the plastic flow of granular materials have
been proposed, including Shield [74], Jenike and Shield [30], and
Spencer et al. [77, 78].

The plasticity model is the most widely used of all the de-
scriptions of éranular material. Analytical studies of the flow
in hoppers have been performed by Jenike [31], Johanson [34], Savage
[66], Sullivan [79, 80}, Morrison and Richmond [42], Brennen and
Pearce [10], Nguyen [47], Nguyen, Brennen, and Sabersky [46] among
others. Reasonably good predictions have been obtained for the flow
rates from hoppers. with steeply inclined walls.

Plasticity models are unable to describe certain other phenomena.
The velocity profiles in inclined chute flows of granular materials,
such as those measured by Augenstéin and Hogg [1], Savage [68],
and Ishida and Shirai [27, 28, 29], may not be described by the
Mohr - Coulomb model unless the friction angle is allowed to vary.
(Another equation would then be required to describe the evolution
of the friction angle. The factors on which the friction angle would
depend, and the form of.such an equation are not obvious a priori).
Also no one has yet been successful in trying to adapt this model to
explain the formation and shape of the stagnant funnels that form
in hoppers  (Nguyen [471]).

Goodman and Cowin [25] have devised a continuum theory for
granular materials. The theory has been further refined by Cowin [17]
Cowin and Goodman [18], and in a section co-authored by Cowin in
Savage [68]. The dilation of the bulk is accounted for by a series
of fictitious "equilibrated" forces, that do not have a clear

physical interpretation. The theory leaves open the exact form of
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the dissipative or dynamic stress tensor. Analyses have beenmade
assuming both linear and non-linear dependence of the stress tensor

on the strain rate tensor. Static assemblies and simple flows of
gfanular materials have been solved using this theory by Goodman and
Cowin [26], Jenkins [32], Savage [68], Passman et al. [53], and

Nunziato et al. [48]. Passman [54] has extended the theory to mixtures
of granular materials.

Neither the Goodman and Cowin theory nor the Mohr - Coulomb theory
deals with a granular material as a collection of finite sized solid
particles. The constitutive nature is hidden within the internal
friction angle ¢, and the cohesion ¢, of the latter and within the
equilibrated forces and whatever is chosen as the dissipative stress
tensor of the former. The utility of the theories depends on how
well and how economically these assumptions model the physical proe-
esses occurring at the particle level.

A very simple kinematic theory, valid for extremely slow uni-
direction granular flows has been proposed and applied by Nedderman
et al. [44, 45], which is similar to those proposed by, Mullins [43]
and Litwiniszyn [38]. The theory assumes that a particle will move
whenever a space is vacated for it to move into. The flow rate is
determinéd by the rate at which voids are propagated through the
material. This model is motivated by the material's particulate
nature but as the flow is independent of the forces that drive the
motion, its wusefulness is extremely limited.

Several strain-rate dependent constitutive models that have been
proposed, are reviewed by Jenkins and Cowin [33].

The first model that was derived from first principle considera-
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tions of particle interactions was proposed by Bagnold {3, 4].

He considered the mementum transferred by collision between layers
of evenly spaced particles in a simple shear flow, assuming that
each particle takes on the mean velocity appropriate to its position
in the velocity field. He found:

2
2 du
T = Rfv——)
Py S )(dy

2
T T pp R2 fN (v)(%%»)
where Ty and T, are the shear and normal forces between the layers,
v =, bu1k/pp is a dimensionless density; called the "solid fraction',
(v is interpreted as the fraction of a unit volume occupied by solid
material), (du/dy) is the local velocity gradient and fS and fN are
undetermined functions. This model is supported by his experiments
on neutrally buoyant wax spheres suspended in a glycerine-alcohol-
water solution. More recently these experiments have been repeated,
without a suspending liquid by Savage et al. [67, 70, 72].

| A more careful calculation leading to the same conclusion was
performed by McTigue- [40] (motivated by Marble's [39] analysis
of fluidized particle interactions). He was able to determine that
fs,N(V) ~¥v2. It is clear, however, that these functions should
have a singular behavior, (similar to the packing correction found
in a Van der Waals equation of state) as the system approaches the
maximum possible packing. |

Granular materials regarded as an assembly of solid particles

are reminiscent of the molecular model of gases. Recently Savage

and Jeffrey [71] adapted Enskog's dense gas analysis (see Chapman
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and éowling [14] or Ferziger and Kaper [21]), toderive the complete
stress tensor in a simple shearing flow. They were able to include
velocity fluctuations in their analysis by assuming that the in-
stantaneous particle velocities obeyed a Maxwell-Boltzmann velocity
distribution about their mean values. The stresses were proportional
to the square magnitude of fluctuating velocities, and a function of
a dimensionless quantity S expressing the relative magnitude of the
shear rate to the rms fluctuating velocity:

2R
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2
where R 1is the particle radius. As <Ef o= 4R2 (%% /8", Savage

and Jeffrey were able to recover the (du/dy)2 dependence of Bagnold's
constitutive relation. No explicit method to determine S was given

although a possible procedure was suggested.

1.2 Interstitial Fluid Effects

In this study, a granular material flow will be defined as the flow of
a"fluid—particlg system in which the effects of the interstitial fluid are
negligible. This is the asymptotic state of particle-fluid flows where the
majority of momentum is transferred by particle-particle interactions rather
than particle-fluid interactions. Intuitively this implies that (1) the
fluid viscosity is small,minimizing the effect of viscous drag on the par-
ticles, (2) that the solid density, pp, is much larger than the fluid density
g, minimizing buoyancy and added mass effects, and (3) that there are no
significant pressure gradients in the interstitial fluid,minimizing fluid-
izing effects. This suggests that the relative importance of the intersti-
tial fluid will be characterized by three dimensionless quantities, of which

only one, pp/pf, is readily apparent.
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Bagnold [3] has suggested a parameter governing viscous fluid effects

which has been called the "Bagnold number" :

2 du
4R°p —
°pay

(CIS i

where n is the fluid viscosity. Bagnold's experiments suggest that the

Ba =

particle-fluid system behaves as a viscous fluid for Ba< 40, and as a
fluid free particle system for Ba>450. However it is clear that the
Bagnold number may not represent sufficient conditions for granular ma-
terial flow. 1In particular, it predicts viscous behavior whenever the
velocity gradient is sufficiently small, such as in the contact dominated
plug flows discussed in Section 3.1.7, which are clearly not in the viscous
dominated regime.

The regime of granular flow within which the interstitial fluid may
be neglected has not yet been clearly defined. Based on the albeit in-
complete Bagnoid number criterion discussed above it probably includes all
reésonably fast, non-fluidized, flows of large particles in air. The pre-
cise delineation of the granular flow regime will hopefully emerge from

further theoretical and experiment studies.

1.3 Topiecs of the Investigation

Chapter 2 describes a computer model to_examine the flow of
granular materials at the particle level. Two flow situations are
modelled: (1) the flow in an inclined chute and (2) the flow in a
Couette shear cell. The computer model, which resembles a molecular
dynamics model for gases, allows examination of details that are

unobtainable bypresent experimental methods.



Chapter 3 presents the results obtained from the computer model.
Velocity and density profiles are presented for a variety of material
properties, inclination angle, shear rates, flow depths, densities, etc.
An equation of state is suggested which relates the pressure to the
density and the mean-square fluctuating velocities of the particles.

The Bagnold/Savage constitutive law is evaluated. In addition the
program is used to determine the statistical properties of a granular
flow; wvelocity distribution functions, distributions of collision
angle and pair distribution functions are evaluated.

Chapter 4 presents the preliminary results of an experimental study of the
flow in inclined chutes. Flow in a chute may be classified as
either supercritical or subcritical. Descriptions of both flow
types and their effects on the mass flow rates are given. A simple
correlation is presented for determining the flow rate from a chute
as long as the flow remains supercritical. The coefficient of
wall friction for the flow is also determined, and plotted as a

function of flow velocity.
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Chapter 2

COMPUTER SIMULATION OF GRANULAR MATERIAL FLOWS

2.1 Instrumentation Problems

The greatest problem facing research into the flow of granular
materials is the lack of good experimental instrumentaion. There
appears to be no completely satisfactory way to measure velocity
or density profiles. Profile measurements have been made by four
methods: (1) X-ray techniques, (2) interpretation of the mass flow
profile, (3) measurement of velocity field at a boundary wall, (4)
measurement by probes inserted into the flow.

Lee, Cowin and Templeton [37], and Blair -Fish and Bransby
[9), used X-ray techniques to determine deformation patterns in
hoppers. Both clearly observed that the material deformation occurred
initially along low density rupture zones. No quantitative data was
reported although it seems possible to determine the density as a
function of the X-ray attenuation.

Ridgway and Rupp [60] and Augenstein and Hogg [1] measured the
mass flow rate profile over the depth of inclined chutes. Ridgway
and Rupp assumed that the velocity was constant over the depth
and determined the density profile. Augenstein and Hogg assumed,
that, except for the area right next to the chute bottom, the density

was constant across the depth and determined the velocity profile.
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It is not clear why both researchers did not derive profiles with
roughly the same shape.

Connelly [16] and Nguyen [47] determined velocity profiles in
two-dimensional hoppers from motion pictures of colored beads
taken through the hopper's front face.

Savage [68] determined the velocity profile next to the side

walls of an inclined chute by cross correlating the signals from

adjacent fiber optic probes. His profiles showed only a small velocity
gradient next to the chute bhottom, with the largest gradients occur-
ing near the flow center. Augenstein and Hogg (1] found that the ve-

locity gradient was greatest right next to the chute bottom. It is the
opinion of this author, based on observations made during the ex~

periments reported in Chapter 4, that this discrepancy is due to the
special conditions near the corner between the chute side wall and
bottom. Particles, forced to move along this corner, move noticeably
slower than the rest. The velocities measured there need not be
indicative of conditiong far from the side wall.

Ishida and Shirai [27, 28, 29] developed a velocity probe,
that may be directly inserted into the flow, utilizing a fiber optic
technique similar to Savage {68]. Their results show an almost
linear velocity profile. But again experience dictates that insertion
of such a probe will disturb the velocity field far upstream.
(The smallest disturbance generated by any probe would be of the
order of a particle diameter.)

A review of velocity measurement techniques may be found in
Oki, Walawender and Fan [52]. A non-intrusive method for measuring

velocity and density profiles independently and far from a boundary
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wall is urgently needed. Until this can be accomplished it will be

impossible to objectively evaluate theoretical models of granular flow.

2.2 Background

The flow of granular materials can be viewed as a many-body
problem much like the molecular picture of matter. In both cases
while the behavior of the entire system of particles ié hard to predict,
the mechanics of two particle interactions are very well understood.
Thus granular materials lend themselves to computer simulation by
models similar to those applied to gases and liquids. 1In these
models molecules are often approximated as hard spheres, so that
they are a better model for granular materials than fluids. If a
model can be gencrated that describes the complete state of the
granular system at all times, (the state is described by the
instantaneous positions and velocities of the particles), then
any information may be found by statistical averaging.

Molecular modeling of fluids is almost as old as the computer.
Tﬁe earliest work was probably done at Los Alamos and reported by
Metropolis et al. [41]. Names commonly associated with this work
ére W. W. Wood at Los Alamos, Alder and Wainwright at Lawrence
Livermore and A. H. Rahman at Argomnne National Laboratories.
Reviews can be found in Barker and Henderson [5], and Wood [86].
Most of these studies can be classified as employing either the
"Monte Carlo” or the "Molécular Dynamics'" approach.

A Monte Carlo method is one which uses probabilistic techniques
to solve a problem. When abplied to molecular systems, each state

of the system is chosen randomly according to a given probability
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distribution. In the method presented by Metropolis et al. [4l],
each state is chosen from its predecessor by randomly chosen movements
of its particles, and either accepted or rejected according to the
Maxwellian probability (~ exp (-E/kT)) that the system will have the
final energy E. This type of calculation produces equivalent ensembles
of the system and is generally used for calculations of steady,
equilibrium properties like the equation of state. A similar tech-
nique,used to model unsteady transport phenomena,is described in
Bird [8], and is referred to there as '"the direct simulation Monte
~ Carlo Method". 1In this case the particles have velocities which
change only at collisions. Whether or not a particle experiences a
collision at a given time is determined probabilistically according
to the local density. Only the direction and not the magnitude of
a particle velocity is changed by the collision. Thus energy is
conserved. The direction following a collision is chosen with uniform
probability. From this picture a given property is diffused by the
transport of particles into different regions of the system. No
properties can be transferred by collision because there is really
only one particle involved in each collision.

In molecular dynamics calculations, each particle trajectory is
determined by the laws of Newtonian mechanics. These trajectories
are followed exactly and a collision occurs when two particles touch.
This is a much more tedious procedure as each potential collision
must be evaluated, but it is more physically appealing because

it assumes only the collision mechanism.

CGranular materials do not lend themselves to Monte Carlo

modeling. At the densities common in granular flow there will
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bé almost no streaming transport of particle properties and

thus the exact collision mechanics will be important. But the

greatest difficulty would be the a priori determination of governing
statistical distributions. It is not even clear that granular materials
may be modelled according to the "Stosszahlansatz!' or "molecular

chaos assumption" whereby the particles can be considered to be
independently distributed in a purely statistical manner without

regard to history or other parameters.

2.3 Other Computer Studies of Granular Materials

There has been relatively little use of computer modeling as a
research tool for granular materials. Rogers and Gardner [64] used
a Monte-Carlo method to simulate the flow of powder through rotating
cylinders, but they did not directly consider particle interactions.
Yoshida, Masuda, and Inoya [87] modeled the flow of fluidized particles
in a turbulent carrier but congidered only the motion due to fluid
forces on the particles and not particle-particle collisions. Powell
[56] studied thg static packings of spheres in beds built by placing
spheres of randomly distributed size into randomly chosen
locations.

The-only computer model which considers in detail the particulate
nature of granular materials and the interactions of particles is
described in Cundall and Strack [19]. The model was designed with
s0il and rock mechanics problems in mind. The streases are large
and the bulk is allowed to deform only slightly. Under these
conditions the individual particles will deform. Cundall and

Strack assumed that for small deformations, the particles behaved
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like linear springs across the contact points. They solved the time
dependent problem over small time steps using a finite difference
tgchnique, attributed to Cundall and called the '"Discrete Element
Method". The program was used to predict the stress patterns developed
in two dimensional discs that were compressed and slightly sheared
between rigid boundary walls. Thc model could be equally well applied to
large deformations encountered in granular flow problems (provided that
enough computer time is available to follow the flow over a large number
of small time increments.) In an earlier report, Cundall [19] used a
similar simulation scheme to investigate large deformation gravity flows
such as rockfalls and hopper flows. This was one of the earliest attempts

to simulate granular material flows.

2.4 Description of the Model

The stresses encountered in material handling devices will be
much smaller than would be found in soil mechanics problems. Sig-
nificant particle deformations will be unlikely. Interstitial fluid
effects are assumed to be negligible. There are assumed to be no other
range forces between particles. Particle interactions will have a
éhort duration compared to the time between interactiomns, and may
he approximated as instantaneous collisions. Two collisions cannot
oceur simultaneously so only two-particle or binary collisions need
be considered. Between collisions the particles follow their
kinematic trajectories and their positions and velocities are simple
functions of time. Trajectories change only at collisions, Thus it
is practical to update time in the program from collision to collision.

The incremental time steps are as long as the interval between
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collisions (instead of being much smaller than the collision time as
required for Cundall and Strack's model). Large deformations of the
bulk may be observed at much reduced computational expense.

Ihe program therefore proceeds as follows:

(see the flow chart in Figure 2.1)

1) The next collision to occur is determined.

2) The particle positions and velocities are updated to the
time at which the collision is to occur.

3) The collision result is determined. (Note that only the
trajectories of the two particles involved in the collision
will be altered).

4) This procedure is repeated for a specified number of
collisions. At each collision after that time the prop-
erties of the flow are sampled and averaged.

5) After another specified number of collisions the simulation
is stopped and the results printed out.

There is nothing in‘the above description that limits the

situations that may be modelled or, for that matter, is particular
to flowing granular materials as opposed to a molécular model
of gases.
Essentially what differentiates a granular material from a gas is
that the collisions are inelastic. The system is continually losing energy.
The energy must be resupplied from an external source such as the accelera-—

tion,of the particles,due to gravity, or by collisions with a moving boundary.

A granular material subject to a shear flow will show continuous
bulk deformation. Suppose one were to cut a cubic slice out of the

flow, and follow the particles in that slice. The volume containing
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just those particles will soon lose its cubical shape.

Fgrthermore, the particles originally in the cube will be interacting

mostly with particles from outside the cube. For computational
efficiency it is desirable to keep the number of particles as small
as possible. One would like to consider only the particles inside
the cube, but still aliow them to undergo shearing motions. This is
accomplished by employing a "'periodic boundary condition" in the
direction of flow.
Consider a control volume filled with particles. Suppose that
an infinite region is built up by placing exact replicas of the control
volume side by side in the direction of flow. This is referred to
as a periodic boundary condition because the control volume, particle
positions, and velocities, are repeated every control volume width. 1In
effect, as a particle passes through a periodic boundary of the
control volume, it reenters the opposite boundary with exactly the
same position along the boundary and at the velocity with which it left.
The disadvantage of this set-up is that there can be no spatial
variations in the direction of flow. The flow may accelerate or
decelerate but this is experienced as a temporal change for the entire
flow region. In a sense it's as if one were following a Lagrangian
fluid element which experienced spatial variations in the flow
field as temporal changes.
The periodic boundary' condition 1limits the types of
flows that may be modelled. One could not for example model the flow
in the converging throat of a hopper using a periodic boundary

condition because there are essential changes in the direction of flow.



-18-

.Aiso one could not expect to see the effect of a "choked"chute,
discussed in Sections 4.4, 4.5, as choking is related to the flow
near the chute exit.

Although they are not the only class of applicable flows, uni-
directional flows seem to lend themselves to this type of modelling.
The two situations modelled are the flow in an inclined chute, and
the flow in a Couette flow shear cell. '"Snapshots" from both may
be seen in Figures 2.2, 2.3 .

In the chute program the control volume is bounded on the bottom
by a rigid wall, simulating the chute bottom, on the vertical sides
by periodic boundaries, and is unbounded on the top. The inclination
is simulated by inclining a body force vector at an angle, o, with

respect to the chute bottom. For the Couette flow program, the

body force is zero, and the top of the control volume is closed with

a solid wall in motion relative to the bottom, in the direction of

flow.

In both cases, only the flow of two-dimensional discs,
of equal size and mass, ﬁas examined. There is nothing inherent
in the model that prevents examination of three-dimensional spheres,
except that a much larger number of spheres would be required to fill
the third dimension. This would greatly increase the computer costs.
Direct quantitative comparison with real 3-D .flows is somewhat
difficult (some particular problems will be indicated later), and
a logical next step will be to extend the model to the flow of three-
dimensional spheres. Nevertheless, the two-dimensional model will exhibit
many of the features of dits three-dimensional counterparts, and will

yield insights into the nature of the particle mechanics.
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2.5 Convergence of the Simulation

The periodic boundary condition eliminates all spatial gradients
in the direction of flow. Even though a temporal change of properties
inside thc control volume may be interpreted as the effect of spatial
gradients on a Lagrangian element, the simulation. can, strictly
speaking, only model flows that likewise experience no changes in the
flow direction. This is satisfied a priori for Couette flows, but
implies that only uniform (constant depth, non-accelerating) chute
flows may be modelled. Such flows have no temporal or
spatial evolution. Consequently the simulation is an accurate
representation only if its properties do not change with time. A
system that has attained steady conditions is referred to as
"converged".

The total kinetic energy is chosen as an indicator of convergence
because it may be instantaneously determined. If the energy is
constant the flow is not accelerating or decelerating, and in all
pfobability most other properties are steady. Representative plots
of the total kinetic energy in converged state, for both chute and
Gouette flows are shown in Figure 2.4. 1In both cases the energy is
fluctuating within about 20% of its mean value but there is no
apparent change in the mean state.

Fluctua£ions of this nature are characteristic of small ther-
modynamic systems in equilibrium with large systems. These fluc-
tuations may be treated statistically, and are given an extensive
treatment in Landau and Lifshitz [36]. In the present case the

fluctuations are due to the fact that energy is not conserved in the
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simulation due to the inelasticity of collisions. Energy is added
to the system by the action of gravity, in the chute program or by
cpllisions with the moving wall, in the Couette flow program. A
steady state is achieved when the rate of energy added more or less
equals the rate of energy dissipated. Fluctuations occur when
there are imbalances in this energy flux over a short time period.
They make the judgment of convergence necessarily subjective.

The fluctuations will disappear only as the number of particles
goes to infinity. But if the averaging time is much longer than the
fluctuation time, the fluctuations should have very little effect

on the measured quantities.

2.6 Dimensional Analysis

The model describes the flow on the microscopic level of
individual particle mechanics, (as opposed to the macroscopic level
of a deforming continuum). It is appropriate then to scale the
parameters and variables of the problem by quantities characteristic
of the particles. The particle radius R, 1s chosen as a characteristic
length, and the particle mass m as the characteristic mass, (pro-

ducing as a characteristic density m/sz)

If gravity is present, as in the chute flow simulation, a convenient
time scale is /§7§ . This is derived from the non-dimensionalization of
the equations for the individual particle trajectories. Dimensionless
velocities will have the form of Froude numbers: u//gi; and dimension-

less stresses will have the form <t/ (%) .
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However, if gravity is not present, as in the Couette flow simula-
tion, the trajectory equations are linear and the time scale is imposed
through the boundary conditions. A time scale enters the problem only
from the upper wall velocity, UT. UT must be the velocity scale of

the problem making R/UT the corresponding time scale. Stresses are

then non dimensionalized in the form T/(mU%/Rz).

Even though quantities are non-dimensionalized in the above manner
for the computer simulation, it is clear that the basic problem of a
Couette flow of granular material does not scale with a characteristic
time R/UT' It will be shown in Section 3.2 that the appropriate time
scale is H/UT' This may be seen from simple heuristic considerations.
UT is an external quantity that only directly affects the particles
that collide with the moving boundary. The only velocity, that directly
affects every particle, is the relative velocity of its neighbors. On
the average, this is related to the product of the local velocity gradient
and some appropriate length scale. In terms of easily accessible

qﬁantities this may be approximated as RUT/H. The corresponding

characteristic time is then H/UT .

2.7 Structure of Program

The programs are built of a main program and many subprograms.
Five subprograms are integral parts of the model. The rest are used
in the data analysis. The individual programs are described below:

1) Main program coordinates the various subprograms and

performs the data sampling and analysis. After each
collision the state of the simulation is stored on a

magnetic tape for further analysis at a later time.
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2) Collup is the collision assessment routine. It computes
all possible collisions for a particle and stores them in
a collision 11ist using the routine Insrt.

3) Insrt - creates and maintains the collision list. (See Sectionm
2.10) It has three entry points.
i) Insrt - inserts a collision into the collision list.
ii)  Next - produces the next collision to occur from the

list.

iii) Init - Initializes the collision list.

4)  Remove ~ Removes all collisions for a given particle from
the collision list,

5) Partcl - Computes the result of a collision between two
particles.

6) Wallecl - Computes the result of a collision with a wall.

2.8 1Initial State

The initial positions and velocities of the particles are
eiternally generated and given to the program as initial data.
A typical configuration is shown in Figure 2.5. The number of
particles horizontally n,_, and vertically n_ as well as an average
particle spacing C are specified. The generating program places
the particles into positions slightly perturbed from an evenly spaced
square lattice. The width of the control volume is chosen to be
nyC and the height for the Couette flow simulation nC - The ayatem
then has a uniform initial density v = 1TR2/C2

Most of the simulations were started with a configuration

n, = 4 particles wide and n_ = 10 particles high with an initial
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spacing of 2.4 R, yielding a control volume 24 R high and 9.6 R wide with
initialsolid fraction v=0.55, This particular configuration

was arbitrarily chosen. Doubling the width of the control

volume (by doubling the number of particles horizontally) produced
insigﬁificant changes in the results, so while in some cases nv

was varied, n., = 4 was used for most of the computations.

H
In the chute flow program all the particles are initially given
roughly the same velocity. In the Couette flow program the velocities
are chosen to roughly fit into a wvelocity profile that wvaries
linearly from zero at the stationary wall, to Up at the moving
boundary. In both cases the velocities are randomly perturbed from
the mean by small amounts.
As the program runs, all traces of the initial state quickly
disappear. The system develops velocity and density profiles
that are quite different from the starting values and changing the

the initial state seems to have very little effect on the final

results.

2,9 Collision Assessment
| The position of a particle in the program is determined by
the position of its center. Hence a collision occurs whenever the
centers of two particles are a diameter apart.

Between collisions a particle moves along its kinematic tra-
jectory. Thus until it collides with another particle the position

X; of a particle that at t = o was at Xio is given, at time t, by

2

X,
~1

1
TR S
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where % is the gravity vector which may be zero. A collision between

t

two particles (i) and (j) occurs when: llzd - §j|¥ = 2R

or when:

This is a scalar quadratic equation to solve for the time at which
a collision is to occur. Note that this equation is independent of
gravity because both particles are accelerated at the same rate.
(Gravity does however appear in assessing collisions with solid
boundaries or pseudo collisions with the periodic boundaries.)

The collision assessment is further complicated by the periodic
boundary condition. Figure 2.6 shows the control volume from the
.Couette flow program and the periodic images immediately upstream
and downstream. Because a particle has a finite radius it is possible
for a particle whose center is in the main frame to collide with
another particle whose cénter is in the upstream or downstream frames.
In Figure 2.6 collisions of this type can be seen between particles
32, and 35, 15 and 21, 15 and 26, 7 and 5, 25 and 18, and 14 and 3.

To account for the periodic images collisions are not only
assessed between particles inside the control volume but also with
their images mapped into the upstream and downstream frames. The
upstream frame is denoted -1, the main frame O, and the downstream
frame +1, corresponding to the number of control volume widths added
to map it into its periodic image.

Then the four quantities that characterize a collision are the
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indexes of the two particles involved, the frame in which the
target particle will be during the collision, and the time at which

the collision is to occur.

2.10 Collision List

To find the next collision, The number of potential collisions

which need to be evaluated is of order Ng. Each evaluation

involves solving a quadratic equation for the collision time, and
comparing the roots. This is a formidable task and must be performed
after each collision. But, when a collision occurs, only the tra-
jectories and potential collisions of the two particles involved,
will change. Potential collisions for most of the particles will

be unchanged and most of the O(Ng) evaluations will be repetitive.

This redundancy can be eliminated by storing the future collisions
in a collision list. After each collision only the future collisions
of the two partlicles involved need be reevaluated and only O(NP)
equations need be solved.

It is not necessary to store all potential collisions in the list.
But it is not sufficient to store only the next collision for each
particle. This can be illustrated by the following example: Suppose
that the next collision of a particle i will be with particle j, but
J is scheduled to collide with another particle, k, first. After
j's collision, its trajectory has changed so that i's first collision
will be with some other pérticle. If only i's collision with j was
stored in the list, all i's collisions would need to be evaluated
along with j's. The same would be true for all particles that would

have collided first with j or k.
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This problem is solved by storing all collisions until a particle
hits either a solid wall or a periodic boundary. These collisions
will stay in the list regardless of what happens to other particles.
Experience has shown that three or four collisions will be stored on
the average for each particle. (This quantity will depend on the
control volume size, and the number of particles. and the flow

conditions.)

2.10.1 General Description

The routines which maintain the collision list are required
to perform two functions. The list must be sorted in order of
occurrence so that the next collision may be easily found and each
potential collision added to the list must be placed so as to keep
the list ordered. Secondly, after a collision between two particles
all potential collisions that involve either of the particles must
be removed from the list.

The simplest way to go about this would be to store the collision
iﬁformation physically in the computer memory, in the
order of occurrence. Thus if a collision needs to be added to the
center of the list all the information for potential collisions
that will occur later must be moved to make room for it, and when
the collision is removed from the list all that information must be
moved back again to fill the vacated space. 1In general the collision
list foer particles was3Né ~5N§ collisions long, implying that on
average every particle has 3 ~ 5 collisions stored in the list.
A great deal of computer time would be spent in just moving in-

formation about the memory, most of which would never be used.
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These computer costs can be avoided at the expense of some
memory storage. A collision may be placed anywhere in the physical
computer memory, as long as information about the collision order is
stored with it. This extra information is in the form of '"'pointers".
The pointers give the location in physical memory of the next
collision in the list. The information for the second collision may
be found in the list element at the location specified by the pointer
attached to the first collision, the third collision is specified by
the pointer attached to the second, and so on. The list may be
followed by stepping from one element to the next following the
pointers.

It is critical to maintain the structure of this type of
list. If a single pointer is misplaced the rest of the list is lost.
As described, this structure is inadequate for the simulation. There
is not enough information attached to each element to reconnect
the list after an element is added or removed from the center.

This difficulty is avoided by using a "double linked list".
Two pointers are associated with each element, one pointing to the
next element in the list (a "forward pointer") and the other pointing
to the previous element in ths list, (a "backward pointer"). An
element A may then be removed from the center of the 1list by placing
its backward pointer in the backward pointer of the element pointed
to hy A's forward pointer,. and by placing A'e forward pointer in the
forward pointer of the element pointed to by A's backward pointer.

A collision may be added to the list by following the reverse pro-

cedure. This is shown schematically in Figure 2.7.
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Three double linked lists are associated with each collision.
The first connects the collisions in the order in which they will
occur. The other lists contain all the collisions involving a single
particle. One list is needed for each particle involved in the
collision. That which is called the collision list will actually
contain many lists, one far each particle, and one to keep all the

collisions in the proper temporal sequence.

2.10.2 Details of the Data Structure

The data structure used in the program is shown in Figure
2.8. Most of the information is contained in a large integer array
called ICOLL. Each row of ICOLL is nine elements long and stores
the information for one potential collision. The first three elements
are the two particles involved in the collision and the frame in
which the target particle (j) is to be at the time of the collision.
The time at which the collision is to occur is in the same row of
a Double Precision array appropriately titled TIME.

The other six eléments in each row of the array are pointers
attaching the collision information to three lists: the 1list of
collisions, ordered as to the time of occurrence, and the two lists
of all collisions involving each of the particles.

The fourth and fifth elements in the row give the index of
the rows in which the information is stored for the collisions that
will occur directly before and after. These constitute the backward
and forward pointers in the collision time list. Two pointers
external to ICOLL: ISHORT, and ILONG, contain the indexes of the

rows containing the collision information for the collisions which
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in the order which they will occur, from the shortest to the longest,
starts with the first element indexed by ISHORT. The next entry in
the list is always found in the forward time pointer of the last
entry; In this way the list is followed along. At the end of the
chain (the largest time) there will be a zero in the forward pointer,
which indicates the end of the list. One can go the other way by
starting with ILONG. and following the backward pointers.

The proper location of a new collision, in the order of
occurrence list, is found by starting at ILONG and following
the chain until another collision is found that will occur in a
shorter time. The new collision is placed in the list just behind
the other.

The lists containing all collisions for the particles
i, j involved in the collision are linked by pointers in the sixth
through ninth columns. The main difference between these and the time
list is that order of thg elements 1is not important. These are
organized as LIFO (Last In First Out) lists which means essentially

that the first element appearing in each list was the last to be

th h

added to it. The list for the i~ particle is pointed to by the it
element in an integer array NPOINT. If the particle index appears
in the first column of ICOLL , the pointers to its list arc contained
in the sixth and seventh columns, and if its index appears in the
second column, the pointers are in the eighth and ninth columns.

A problem arises because, for a given particle, the pointers may be

found in different columns for different entries in the 1list.

That the list is to be continued in the eighth and ninth columns 1is
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indicated by édding two-hundred thousand to the value in the pointer.

A single linked LIFO list, pointed to by the pointer TIFREE, keeps
track of all rows in the ICOLL that are free to be filled with new
collisions. The pointer to each successive entry in the list can be
found in the ninth column of the present entry; all other colummns are
unimportant. There is no nced for forward and backward pointcrs in

this list because no entries will ever be removed from the list's center.

2.11 Collision Solutions

There are three types of collisions encountered in this program:
(1) particle-particle collisions, (2) particle-wall collisions, and
(3) "collisions" with the periodic boundaries.

A collision with a periodic boundary occurs when a particle’s center
crosses into the downstream periodic image of the control volume. This
must be accompanied by another particle entering from the upstream
periodic image with exactly the same velocity and relative position as
the one that left. The solution of a collision with a periodic boundary
is obtained by just moving the center of the particle one control volume
width upstream.

Particle-particle and particle-wall collisions are both assumed to
be inelastic. This is realized in the program by assuming that the ratio
of the approach to the recoil velocities in the center of mass frame is
given by a coefficient of restitution, ¢, which is specified as an input
parameter for the program. Different coefficients of restitution, Ep’
and, £, may be specified for particle and wall collisions respectively.

The particles are assumed to be fully rough in the sense that on

departure there is zero relative velocity in the direction tangential
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tb the particlé's surface. This assumption implies that the friction
at the particle surface is always large enough to bring the relative
velocity of the particles to a halt.

Both of these conditions result in energy dissipation. The energy
dissipated by the no-slip condition is equal to the work that friction
would do in bringing the relative tangential velocities of the particles

to a halt.

2.11.1 Particle-Wall Collisions

Consider the collision between a particle moving with horizontal
velocity Uo’ verticle velocity Vd and with rotation W and a solid
wall. The collision will impact the wall with an impulse per unit mass,
J that is applied at some angle y with respect to the vertical (see

Figure 2.9a,b). The governing equations are then:

U=U0—Js:Lnl,b

=V +
Vv V0 Jcosy

- Jsinvy

WEW o+ T

where R is the ratio of radius of gyration of the particle to the parti-
cle radius (B =.5, the value for a cylinder, is used in all our simula-
tions.) U, V, and w are the final velocities of the particle. The
negative sign is chosen for a lower wall collision and the positive

sign is chosen for a collision with the upper moving boundary.

The effects of the coefficient of restitution and the no-slip condi-

tione may be written respectively as:
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This vyields five equations for the five unknowns; U, V, w, J,

Then:
e U0 . UT * w,
(1+8) ~ (3+1/8)
and
o= =2 UVt ]

T+8 Yo ¥ 148

So for a collision with a stationary wall:

U w
j=lS -0
148 1+1/8
=-~g V
W o
U
w = BUJ - o
1+8 © 1+8

and for a collision with the upper, moving wall

U= Uo + UT""mo
1+8 (1+1/8)
V=—-¢ V
W o
g UO_UT
w= — W

2.11.2 Particle-Particle Collisions

and .

Consider now the collision between two particles A, and B, in

the center of mass coordinate system. The particles approach each other
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with velocity of magnitude Uo along the vector k connecting their

~

centers and Vo tangential to k. The collision results in an

r~~

impulse J inclined at an angle ¢ with respect to k (see Figure

2.9¢c). The equations governing the collision are:

o . - Jsiny
U—Uo Jcos ¢ 3 wA u.A + -—————B
o]
. J si
VeV -Jsiny 3 wpmup + sgnw .

The effect of the coefficient of restitution may be written as:

U=-e U
p o

and the no-slip condition as:

wA+mB—2V=O

The solution is:
U=-e U
P o

wA +u)B —ZVO
o) o

o 2(1+1/8)

w, +w, -2V

AD Bo o
“aTéa T T 24
N + wg = 2V0
O (o)

B B 2(1+B)
(o]
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2,12 Coefficients of Restitution

The coefficients of restitution, €’ for wall collisions, and EP,
for particle-particle collisions, are the only material properties that
are used in the program. They represent the energy balance in the
collision solution and reflect the degree to which energy is dissipated
in a collision. For most of the simulations they were taken to be
sw==0.8, sp==0.6. The coefficient of restitution for polystyrene beads
bounced off aluminum plates was observed experimentally and found to be
about 0.7. It was felt that the wall coefficient should be somewhat
larger due to the error introduced into the measurements by the non-
sphericity of the particles, hence the value 0.8 was chosen. As parti-
cles were much softer than the wall the particle-particle coefficient
of restitution would probably be somewhat less and was taken to be
ep=0.6.

Actually coefficients of restitution are not material constants
but vary with impact velocity as well as other parameters. Measurements
of coefficients of restitution are given by Goldsmith [23], Raman [57],
and Barnes [6].> Some aré shown in Figure 2.10, For almost all mate~-
rials the coefficient of restitution & seems to approach one (elastic
collisiop) as the impact velocity goes to zero. The coefficient of
restitution always decreases with impact velocity. The e's generally
decrease very rapidly from unity at small impact velocities; the decline
becomes less rapid and € appears to be approaching an asymptotic value
for extremely violent collisions.

This rapid decrease in the coefficent of restitution could pro-
duce a stabilizing effect on granular systems. The impact velocities

of the particles will always be of the order of the velocity gradient
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multiplied by a particle diameter and will generally be small. The
coefficient of restitution will then ordinarily be in this rapidly
décreasingregionand a small change in velocity will bring about a
large change in € and a subsequent change in the rate of energy dis-
sipation. If the flow slows the impact velocities will be smaller
yielding a smaller rate of energy dissipation which would tend to ac-
celerate the flow. Similarly an accelerating flow would tend to in-
crease the rate of energy dissipation, retarding the flow. For this
reason an exponentially decreasing coefficent of restitution was used to
aid the convergence of some chute simulations. (See Section 3.1)

As the coefficient of restitution reflects the energy dissipated
by the plastic deformation of the particles, one would expect that e
would depend on the deformation history of the particle, as well as
temperature and anything else that might affect the plastic properties
of the material. Raman [57] notes, fdr example, that the surfaces of
his test spheres had to be cleaned and highly polished before testing
to-assure consistent results. A constant coefficient of restitution
is then not the most realistic material property but is the most con-

venient to use in the format chosen for the simulation.

2.13 Averaging

Up to this point our simulation appears as a black box. It
describes the behavior of the system, but no useful information has been
obtained from it. The simulation describes the complete state of the
system at any time. But one is not really interested in the instan-
taneous state of the system, but in the time averages of its properties.

For example, to perform an experiment on a chute flow of glass beads,



_36#

say to measure the velocity profile, requires averaging the velocities
of many particles passing through a point.

As shown in Figure 2.11 , the control volume is divided into strips
and at each collision properties of the particles inside every strip are
averaged. The result is the distribution of properties in the direction
normal to the direction of flow. *The periodic boundary condition has
eliminated the possibility of time averaged spatial variations along
the flow direction.

A strip width of about one particle diameter was found to be op-
timum. A particle's diameter is a characteristic microscopic length
scale and significant variations in the velocity and density profiles
are observed between adjacent strips. The strips are narrow enough to
show detail, yet wide enough to contain several particle centers at each
sampling time.

While a particle center may be inside a given strip a large portion
of the particle may reside in an adjacent strip. Thus the percentage
of a property possessed by a particle that is attributed to a strip is
weighted by the percentage of theparticle's volume that is contained
within the strip. Let <fi> denote the average value of some property
f din . strip i . TFor the jth sample the particle k will have an
instantaneous value of f denoted by fjk . Let Aijk be the area of

particle k in strip i for sample j. (See Figure (2.11.) Then

b
Ng kzl Asaf sk
<fi>= z N
j=1 P
Zl Aijk
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where Np is the number of particles in the control volume, and NS
is the number of samples taken. Most properties are determined in this
way.

Ihe ideal samples would be taken from a set of equivalent "ensembles'.
The simulatibn is set up to provide the ensembles as time evolutions of
a converged system. The sampling period must be chosen with some care
to provide an accurate representation of the phenomena. Properties are
averaged over many thousands of collisions to avoid transients.
Unless otherwise stated, all the data presented here were derived from

converged systems.

2.14 Special Problems

Certain problems presented themselves in the creation of this
simulation that deserve special mention. These problems all arose from
expected physical phenomena that tested the limitations of the assumptions

upon which the model was built.

2.14.1 Roundoff errors

Computing the time at which a collision is to occur requires
solving a quadratic equation by: (l/2a)(-b:t(bz-—4ac)l/2)). Problems
arise when -b and (bz-4ac)l/2 have close to the same magnitude
if b2 >>|4ac|. When the difference is taken there may then be a signi-
ficant loss of precision in the answer. This would mean that the two
particles overlap slightly or are not yet in contact at the time speci-
fied for the collision. Greater error is introduced because the parti-
cle's position 1s updated, often several times, between the time a col-
lision is assessed and when it finally occurs; each updating becomes

another source of error.
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The final error in the particle positions, at the time a collision
occurs, is still probably several orders of magnitude less than a parti-
cle's radius, hardly noticeable except to the computer. The problems
arise only in certain seemingly unlikely chains of events; but even
unlikely events are likely to occur in a hundred thousand collisions.

Suppose that particle A collides with particle B, but due to the
roundoff error is overlapping it slightly at the collision time. A's
trajectory is altered so that while it is still overlapping B it
collides with a third particle C. The collision with C sends A
.back towards B. However, the collision assessment routine looks for
the time when A and B will be a particle diameter apart. As A and
B overlap already this will not occur until A has passed completely
through B. Occasionally particles would be found overlapping as much
as a particle radius.

The solution to this problem was rather heuristic, After a
collision the particles are moved so that their edges are a hundred-
thbusandtllofa.particle radius apart. The collision assessment routine
will always check for slight overlaps between particles and call an im-
mediate collision if one is found. 1In addition the collision assessment
is performed with double precision accuracy. This eliminated particle

overlaps.

2.14.2 Rolling Particles

If one were to throw a soccer ball down a street, it would bounce
a few times and eventually end up relling along the street. This common

event cannot be modeled by this simulation without a special provision.
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Consider a particle that collides with the lower wall with a very
small impact velocity. It will recoil only a short distance and will
very quickly collide with the wall again. Each successive collision
will decrease its recoill velocity further,(by the action of the coef-
ficient of restitution) until the time between collisions becomes
effectively zero. As the program time is updated at each collision,

time would cease to advance, particles would not move, and the simu-

lation would for all intents and purposes.stop as the computer assesses

an endless string of instantaneous collisions.

Like the soccer ball, the particle is trying to roll along the bottom
wall. However the simulation as so far described, doesnot allow that type of
interaction. The problem is solved by tagging the particles that are
rolling so that no further wall collisions will be assessed for it. The
particle ceases to roll when it collides with another particle.

When a particle is rolling it is no longer in the same inertial
frame as a free falling particle. The collision assessment equation
becomes quartic which further complicates the roundoff errér

problems.

2.14.3 Moving Couette Flow Boundaries

In the first géneration of the Couette flow program, the solid
boundaries between which the particles are trapped were kept a fixed
distance apart. With no gravity the particles eventually drifted
away from both walls and moved like a solid plug down the center of the
channel, with only occasional wall interactions. Energy is added to a
Couette flow by the moving boundary and must be dissipated by the

straining of the material. For a Couette flow of granular material,



—40-

energy is added to the system only by the few particles that collide
with the moving boundary. These particles pass the energy on by
collisions with the rest of the material. The subsequent collisions
drive the particles back to the moving boundary to gather further
energy. The rate at which energy is transferred to the system is
governed in part by the collision rate with thc moving boundary.

If the flow is N particles deep then there will be O(N)
particle-particle collisions for each wall collision. As each collision
dissipates energy, a delicate balance would be required to keep the
“energy of the system constant. If the energy of the bulk decreases,
the forcefulness with which particles are driven against the moving
boundary is diminished reducing the collision rate and the rate of
energy transfer to the bulk. Less and less contact will be made with
the walls until the material moves almost like a plug belween the walls.

Both Bagnold [3] and Savage et al. [67, 70, 72] have performed
rheological experiments with granular materials in Couette flow devices.
Bagnold studied wax spheres suspended in a glycerine-water-alcohol
mixture. The fiuid then acts as a carrier of shear forces between
the particles and the boundary making direct contact unnecessary.

The spacing between the walls was not fixed in Savage's shear cell.
Instead the spaéing adjusted itself until the pressure exerted on
the walls by the particles balanced an externally applied force.
Sufficient contact between the particles and the boundary was

thus insured.

IL was Savage's device that was finally used as the physical
model for the simulation. A normal force is specified as an input

parameter to the program. The force exerted on the walls by the
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particles, is compared to the inputted value every NP collisions
(where Npis the total number of particles in the control volume)

and the solid boundaries are set in motion in the direction normal
to the flow. Ihe velocities of the walls are assumed to be constant
in thé period between comparisons. This greatly enhances the
efficiency of the program as the complete collision list must be
recomputed each time the wall velocity is changed.

The density of the system cannot be explicity specified.

Instead it is determined implicitly as a function of the normal
force and the wall velocity.

The moving walls created another problem that was not immediately
apparent. If the applied normal force was large the particles would
be forced into a high density configuration. But if the width of
the control volume is kept constant while the solid walls are moving,
there will be densities, or at least, configurations of particles
corresponding to a given density that will be unrealizable. The first
simulation run at high density was very slow in converging. After
some time, it became appérent that the converging solid boundaries
were trying to force the particles into a configuration they
could not reach due to the fixed width of the control volume.

For example, consider the configuration used for the initial
state of the system, (see Figure 2.5). The particles are arranged
randomly inside a square lattice, The lattice spacing determines
the density of the configuration. For a density v the spacing would
be roughly ('rr/\))l/2 R. A lattice N spaces wide can only fit into a
control volume of width N(ﬁ/\));i R. If the density is to change

while the width remains fixed during the course of the simulation,
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then a square lattice configuration cannot be maintained.

One solution would be to choose a control volume that is wide
enough so that the error in the configuration imposed by a changing
density is small. This would entail using many more particles to
£ill the control volume and would greatly reduce the program's
efficiency.

Another solution 1is to simultaneouslf vary
the width so that the ratio of height to width remains constant.

The material ie then compressed at the same rate by the changing
control volume thickness as it is by the converging solid boundaries.
The particles in the upstream and downstream periodic images will
approach at the same speed as the boundaries, simulating the com-—
pression due to density changes in the upstream and downstream
periodic images.

Clearly the square lattice configuration will always fit into
this control volume, but one cannot be certain that other configurations
are not artificially excluded. This is therefore a somewhat less
appealing solution to the problem than using a very wide control
volume. However, it is used in this model because it does not require
additional particles and added computer expenses. (It will be
shown later that the square lattice is not a bad model for the local

particle configuration in a high density shear flow.)

2.15 Animation of the Simulation

An animated film has been made from the simulation. The
instantaneous state of the system, at each collision, is recorded

on magnetic tape. A program was written to interpolate the state of



-43—

the system, bétween collisions, to produce "frames" that are evenly
spaced in time. Each frame is drawn on a Tektronix graphics terminal
and photographed with a Bolex H16M motion picture camera.

The filmed sequences were derived from three different inclina-
tion angles of the chute flow simulation, and three different densities
of the Couette flow gimulation. With explanatory titles, the total

length of the film is about five minutes.

2.16 Summary of the Simulation

A computer simulation of the flow of granular materials
in inclined chutes, and in a Couette flow shear cell, has been de-
scribed. The simulation follows the exact trajectories of two-
dimensional discs through a control volume. The particles interact
by colliding with one another. The collisions are assumed to occur
instaneously. The interstitial fluid is assumed to have a negligible
effect on the particle motion; betwecen collisions the particles
follow their simple kinematic trajectories.

In the flow direction the control volume is bounded by
periodic boundaries. This isolates the specific particles in the
simulation, but has the unfortunate effect of eliminating all
gradients in the direction of flow and imposes the requirement that
the system must assume a steady (converged) state to be a valid model
for real flows.

In a converged state the energy of the system must be nearly
constant; the work performed by gravity or by the moving wall must
be dissipated inside the granular mass by inelastic collisions.

The inelasticity is represented in the simulation by a coefficient
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Of;restitqtion relating the approach to recoil velocities of the
particles in the center of mass and by making the surface of the
particles fully rough so that there will be no relative tangential
motion between. the particles after the collision. The coefficients
of restitution were assumed to be constants for most of the simula-
tions. In a few runs, that appcared to have convergence difficulties,
the coefficient of restitution was allowed to vary according to the
impact velocity.

Measurements are performed on the system by time averaging
- the properties of the particles that lie in strips parallel to the
flow. (The periodic boundary condition assures that there can be

no time averaged variation of properties in the flow direction).

Very few assumptions are made about the behavior of the

flow. Once started the particles behave purely mechanistically,

in their trajectories and collisions. By far the greatest restric-
tion is imposed by the periodic boundary condition, not because
it directly influences the flow dynamics but because it limits the
type of flows that may bé modeled.

The greatest asset of this model is its versatility. The
model describes the complete state of a granular system, and from
that information, everything about the flow may be derived, The. model

will provide insight into these flows that cannot be obtained from

experiments at the present time.
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Figure 2.1 Flowchart of the simulation structure.
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Chapter 3

SIMULATION RESULTS

3.1 Chute Velocity and Density Profiles

In Figure 3.1 is a typical velocity profile, taken from the chute
flow program. It is the converged state of 40 particles (originally
configured in a 10x 4 square lattice) for a channel inclination of 30°.

In this plot the velocities have been scaled by dividing by the
maximum velocity. The vertical coordinate has been scaled by dividing
by H, an approximation to the flow depth. When examined on the scale of
a particle diameter, the flow will have no distinct free surface. H is
chosen to be twice the mass mean height, or twice the most probable
vertical position of a particle. It can be seen in Figure 3.1 that
the density has fallen to a low value at Y/H = 1. Hence H is a reason-
able measure of the flow's depth.

From Figure 3.2 it‘can be seen that the main features of
normalized velocity profiles are similar for the three inclinations,
20°, 30°, and 40°. 1In all cases there is slip at the wall with a mag-
nitude of about 40% of the maximum velocity. The flow shears through
most of its depth, but the shear rate is greatest next to the wall
wall,

These velocity profiles agree qualitatively with those of
Augenstein and Hogg [1], and contradict those measured by Savage [68].
Comparing the results must be done with considerable care. Not only is

there the problem of comparing two-dimensional calculation with the
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real three-dimensional problem, but appropriate coefficients of resti-
tution and the proper interaction with the wall is unknown.

| Augenstein and Hogg's [1] measurements were made on thin (=210
particle diamefers thick) flows of sand on chutes with three differ-
ent surface properties. In addition to measuring the velocity profile
on a smooth stainless steel surface, they also investigated the flow
on walls roughened by glulng on particles of either the same sand used
for the test material, or a sand with a smaller size than the test
material. A profile for each surface condition is reproduced in Figure
3.3 along with one of the computer results that has a similar maximum
velocity and height. The flow of sand on the smooth

wall chute appears to be almost a plug flow, with only about a 20%
velocity variation over its depth. On the other hand, if the chute is
roughened with the same material used in the test, the velocity ap-
proaches zero at the chute wall, simulating a no-slip condition. In
this case the gaps between the particles glued to the surface will be

of roughly the same size as the flowing particles, forcing the flowing
particles next to the wall to become temporarily trapped, However, if
the wall is roughened with smaller particles, the gaps will be smaller

and the particles will be less likely to become trapped, allowing

slip at the wall. Presumably, as the roughening particles become
smaller, the profile will more closely approximate that on a smooth

surface.
It appears that the velocity profile in a chute depends, to a

large degree, on the surface characteristics of the chute bottom. The

wall condition used in the program seems to provide somewhat more drag
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on the flowing particles than a smooth wall, and somewhat less drag
than the wall roughened with small particles. In the simulation it

is assumed that the surface of the particle and the surface of the
chuté are "fully rough" in the sense that there will be no relative
tangential velocity between the two surfaces immediately following a
collision. (The coefficient of restitution, which affects only the
motion of the particle perpendicular to the wall, will only affect

the drag imposed on the flow indirectly by the way it affects the motion
of particles in the neighborhood of the wall.) The particle then
transforms its initial relative tangential motion into rotational
motion and will tend to roll down the wall and not halt its

forward motion. It is not clear how this would relate

to sand particles which have an irregular surface and are incapable of
rolling, but it appears to be one of many reasonable boundary condi-
tions.

Except for the finite slip at the wall, these velocity profiles
are similar to those one would measure in a shallow water channel.

On the . other hand, the density profile shown in Figure 3.1 is quite
surprising.

In the bulk, a granular material is compressible even if its con-
stituent particles are not, The bulk density is varied by changing
the number of particles per unit volume; thus it is convenient to
express the density dimensionlessly as the solid fraction V.

The two-dimensional v , measured by the simulation is aratio of the

area covered by a particle to the total area. In three dimensions
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v3_D is the ratio of the volume occupied by a particle to the total

volume. The numerical values of v and v3—D are quite different. How-

ever, for comparison purposes, corresponding two and three-dimensional
values of the solid fraction may be derived from the characteristic

particle spacing, C, associated with each.

1/2
m
c,, = &) R
2-D Voo
/3
3-D

Equating C2-D and C3—D’ we get the correspondence:

V3p T T 172

This relation may be used to obtain an approximate value of v for com—
parison with experimental results. In general, it will probably

predict values of v that are too small, because the 3-D flow has

3-D
greater freedom in packing configurations.

For purposes of discussion, the flow of granular materials may
be compared to that of other compressible fluids. The density of an

isothermal atmosphere, in a gravitational field, would be highest on

the planet's surface, and decrease to zero infinitely far away. But the
density profile in Figure 3.1 exhibits the highest density in the cen-
ter of the flow and a low density zone right next to the chute wall,
as well as the expected reduction on the free surface. This is the

same phenomenon observed experimentally by Ridgway and Rupp [60]
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and by Savage [69]. It 1is the opposite behavior to that predicted
by Nunziato et al. [48] based on the theory of Goodman and Cowin [25].
(The author has been informed, however, that an error existed in
Nunziato's calcﬁlations [491.)

Note that the low density region near the wall in Figure 3.1 cor-
responds closely with the high shear zone in the velocity profile.
This is the first step in understanding this phenomenon. The connec-

tion will be examined closely in the next sectiom.

©3.1.1 The Concept of Granular Temperature and the Equation of State

A flowing granular material has properties similar to a turbulent
fluid in the sense that it is unlikely that any particle will ever be
moving with exactly the time averaged mean velocity. A particle's
velocity may, in general, be decomposed into the sum of the local time
averaged mean velocity <u> and the unesteady instantaneous perturbation
E' P u = <w B" By definition, B' will have zero time average. The
uﬁsteady velocities are '3 byproduct of every collision. Consider, for
example, the collision (shown in Figure 3.4) between two particles
whose initial velocities were both in the‘same direction. The pertur-
bations to the initial velocities, Au, Av, produced by the collision

will have a total magnitude ((Au)z-l-(Av)z)l/2

and a relative magnitude
IAu/AQl that depend only on the initial relative velocity dU and on the
collision angle ©, One would expect that the largest magnitudes of

the perturbed velocities would occur in regions with the largest

velocity gradients in which the relative velocity at collision is

augmented by the differences in mean velocity within the flow field.



-61-

This is clearly shown in the temperature plot in Figure 3.1.

The perturbation velocities must, by definition, have a zero time
éverage, but their rms magnitude may be easily determined from the
simulation in ﬁuch the same way as one determines the magnitude of
turbulent fluctuating velocities. Taking the time average of the un-

steady velocities, one finds:

<E'2> is the mean square magnitude of the unsteady velocities. From a
kinetic theory point of view, the perturbation velocities would have
as their analog the random motions of the molecules that are governed
by the temperature of the gas. In both molecular gas dynamics and
granular material flows, pressure and other macroscopic forces are the
result of the impulses exerted by the impact of particles, which are
proportional to the magnitude of the random velocities.

From here on, the term "temperature'" will be used to reflect the
total energy contained in the random motion of a granular material:
G%nx((u'2> + <v’2> + B<w'2>) and the term "translational temperature”
to refer to that contained in the unsteady linear velocities:
6%n1(<u'2> + <v'2>). In this sense flowing granular materials
may be likened to self-excited gases. The "temperature" in a
granular material flow comes about as a result of the velocity
profile. (The analogy between the random particle motions and
the molecular temperature has been used previously by Ogawa[50,51]
and Kahatani [35]). In the flows+modeled, temperature is not added to

the system from an cxternal source. If there were no velocity
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gradients, there would be no temperature. Intuitively the generation
of granular temperature is similar to the generation of sensible tem-
ﬁerature by viscous dissipation. It is the change of energy carried by
the mean motioﬁ into energy contained in the random motion of par-
ticles or, alternatively, the change of kinetic energy into thermal

**>, then a significant

energy. When ZRVB is of the same order as <u
part of the particle velocities at impact may be attributed to the
differences in the mean velocities of the particles., There is a char-
acteristic quantity S = 2R(du/dy) // <u'?>  ywhich was originally defined
by Savage and Jeffrey [71], and will generally be of order 1. S is a
Mach number. Granular temperature is generated when S is significant.
Similarly, viscous dissipation is important in gas dynamics only for
significant Mach numbers.

Continuing with the ideal gas analogy, the density is low near
the wall despite the large pressure because the temperature is high.
(Note that the temperature profile in Figure 3.lc is almost a mirror
image of the density prdfile. Where the density is highest, the tem-

perature is lowest and vice versa.) The equation of state for an

ideal gas is
P = ORGT

Proceeding formally, the expected form of an equation of state for

granular materials is:

p=290 x(v)(<u'2> + <v'2>)
p

where X(v) is some function of the density. The standard ideal gas



63~

law (X(V) v V) applies only at low densities. X(V) represents a correc-
tion term, similar to that which appears in the Van der Waals equation
of state, and accounts for the reduction in the free volume due to the
presence of other molecules. The Van der Waals equation of state has
a singular behavior when the free volume goes to zero (v > 1). For
incompressible, two-~dimensional discs, it is impossible to have a den-
sity greater than v = .91 and a singular behavior is expected there.

The pressure may be assumed to be isotropic so that the pressure
at a point in steady state may be defined to be the weight of material
above it. In Figure 3.5 is shown a plot of X(v), calculated from
values of p, v, and (<u’2> + <v'2>). It exhibits the expected be-
havior: ¥ * 0 as v > 0 and the singular behavior at large Vv . This
gives strong support for a granular equation of state of the proposed
form.

3.1.2 Comparison with Ridgway and Rupp

Ridgway and Rupp {[60] present the only published density profiles
of granular flow in chufes. Some doubt must be cast upon their data
due to their assumption that the velocity was constant across the
depth (even though Augenstein and Hogg's [1] velocity profiles show
only a small variation for smooth channels).

Their raw data, the mass flow rate profiles, were reconstructed and
compared with the simulation results. In nondimensionalizing their
data, it is assumed that the specific gravity of the sand particles
was about 2.65. This value was characteristic for the sands used by
Pearce [55]. The density from the simulation was converted from 2-D

to 3-D by the formula described in Section 3.1.1. The resulting
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profiles, shown in Figure 3.6, show very good agreement. This demon-
strates that density variations,such as those obtained in the computer

simulation,do occur in practice.

3.1.3 Effect of Chute Angle

In Figure 3.4 are shown density distributions for three chute
inclinations and the corresponding velocity profiles. All the profiles
have the expected shape and exhibit the low density region near the
wall, but the maximum density decreases with angle, This is due to
large velocity gradients at higher angles, leading to correspondingly

higher temperatures and lower densitics through the depth.

3.1.4 Evolution of the Velocity and Density Profiles

Figures 3.7, 3.8, and 3.9 show the evolution of the velocity and
density profiles towards steady state for a = 20°, 30°, and 40°,
respectively., The initial state is the same for all three simulations.
Each case will respond so as to equalize the dissipation rate to the
work performed on the system by gravity.

Both the 20° and the 30° simulations immediately start to slow
down from the initial state and settle into more density packed states.
This indicates that the initial velocity was too great, and not that
the flow in a real chute would be expected to decelerate. After
having settled into what is presumably a more natural configuration,
the 30° simulation begins to accelerate again until it reaches a final
velocity that is close to the initial velocity. Note that the first

velocity profiles shown for both those angles show a region with a

constant plug flow velocity profile near the free surface. This
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is left over from the initial state and indicates that knowledge of the
chute bottom has not yet been conveyed to the free surface.

The 40° simulation has not converged by the final state shown,
and gives no iﬁdication that it ever will. The system has accelerated
continuously since its initial state. As it accelerates, the low den-
sity region near the chute bottom increases its thickness until there
are only a few particles that ever touch the wall (see the
snapshot in Figure 2.2c). In this region the "temperature” is so high
that these few particles can support the mass of particles above them.
The bulk glides along in a relatively undisturbed configuration. When
the flow has evolved to the final state shown here, it accelerates
with practically no resistance from the chute bottom. The low density
region acts as a sort of lubricating layer. It has been suggested
by Campbell [12] that such a mechanism may account for the small fric-
tion that is encountered 1n certain types of landslides.

The evolution of the 40° simulation is similar to that given by
Ridgway and Rupp (also for 40°). Direct comparison is difficult once
again. Not only are there the inherent problems in comparing 2-D flows
with 3-D but a real chute flow must become shallower as it accelerates

to satisfy the conservation of mass.

3.1.5 Effect of the Flow's Depth

Figure 3.10 shows the velocity and density distributions for

three depths of flow at a chute inclination of 30°. Flows of different
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depths were obtained by varying the number of particles in the control
volume. Initial configurations of 5, 10, and 13 rows of 4 particles
were examined. (They will be designated as 5x 4, 10x 4, and 13x 4,
respectively.)

As the flow hecomes deeper, the maximum density approaches a
limiting value which is first attained here in the 10x 4 configuration.
The 13x 4 simulation does not reach any significantly greater density
but instead the region of maximum density becomes thicker.

Exactly the same phenomenon was experimentally observed by
Ridgway and Rupp for a chute angle of 40°, although their flow is
somewhat shallower than ours. It is also interesting to note that the
maximum density they obtain corresponds in two dimensions to v =.62,
which is close to the maximum value obtained by the simulation.

The thickness of the low density zone near the wall is greater
for the 10x 4 simulation, where the limiting packing is first attained,
than for the 5x 4 case. But as the depth is further increased to the
13x 4 case, the zone beéomes thinner, compressed by the material above
it. Note also that the velocity profile in the 13x4 case appears to
be almost linear and dces not show the characteristic high shear

zone next to the chute bottom.

While the low density zone next to the chute bottom is clearly of
greater interest, it is useful here to examine the low density region
near the free surface. Almost all researchers who have examined the
flow of granular materials in chutes, including the author, have

noted the existence of a thin haze of ''saltated" particles above the
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free surface of the flow at large inclination angles. This makes the
exact determination of the flow depth difficult. Saltation is prob-
ably affected by aerodynamic forces on the particles which are absent
from our simulation. Note, however, that it would be extremely dif-
ficult to pinpoint the free surface of the 5x 4 flow, as it takes
about half its depth (12R) for the density to decay from its maximum
value to zero. By comparison, the 10x 4 simulation requires 6R, and
the 13x 4 simulation requires 2R. The saltated nature of the 5x 4
simulation is probably due to a high granular temperature near the
free surface which is dissipated within the mass of the deeper flows.
It is possible that this is a granular contribution to saltation.

It turned out to be very difficult to attain convergence in
flows of various depths. Originally,when the program was run with
constant coefficients of restitution, the 5x 4 simulation would con-
tinually accelerate and showed no sign of converging. Due to the
lower density that resulted from the small number of particles, col-
lisions would occur too infrequently to allow the coefficients of
restitution to dissipate the energy added to the system by gravity.
Attaining a steady state thus appears to be a function of the flow
depth, és well as the coefficient of restitution and the inclination
angle. To aid comvergence, an exponentially decaying coefficient of
restitution Ep =E€L,T exp(-—35v/\/—g—1;) was introduced where GV/J;;
was the impact velocity. This resulted in a value of about 0.6 for
the average impact velocity of the 10x 4 chute flow simulation for
e =10.8, € =0.6. So if the velocity of the simulated flow in-

w 1%

creased, increasing the violence of the particle collisions, the
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dissipation rate would increase, slowing the flow. Similarly, if the
flow slowed, the dissipation rate would decrease, speeding the flow.

In this way convergence was reached for all three flows.

3.1.6 Effect of Coefficients of Restitution

In Figures 3.11 and 3.12 are shown the velocity and density pro-
filés for various values of Ep and EW.

Varying the particle coefficient of restitution has very little
effect on the shape of the velocity profiles shown in Figure 3.11.
(The data for €p==0.8 are of questionable validity, since the simula-
tion never properly converged.)

Much more interesting are the corresponding density profiles in
Figure 3.11. As the coefficient of restitution is changed, the flow
becomes more tightly or loosely packed depending on the dissipation
rate of granular temperature. Thus, for ep = 0.1, the flow is very
tightly packed flow, while for EP = 0.8 the flow is very loose.

Varying the wall coefficient of restitution as shown in Figure
3.12 seems to have very little effect on the flow. The velocity is
slightly greater for the larger sw, but this is probably due to the
lower density in the vicinity of the wall. SW will only affect the
local dissipation rate of granular temperature., Reducing ;w will thus
bring about sliightly larger densities near the wall, but seems to have
only a small effect on the rest of the flow.

3.1.7 Plug Flows
Unlike the normal notion of a continuum, the local density of a

granular material will impose limitations on the velocity field. For
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incompressible discs, the largest attainable packing corresponds to
v = - .91. This will occur only when the particles are arranged
Y3
so that the local space is filled by equilateral triangles connecting
the particle centers, as shown in Figure 3.13a. Such a configuration
however, may not be deformed without decreasing its density. This
makes it impossible for the material to assume such a density and
maintain a local velocity gradient. Any region that attains this den-
sity must necessarily move as a solid plug.
The largest locally constant density which allows a shearing

motion would be vs =— = ,78, and this corresponds to the particle

o
4
centers arranged in a square (or a parallelogram) packing as shown in
Figure 3.13c. This allows particle layers to move freely over one
another.

It is possible to set up a shearing motion in the particles at
even higher density. The flow would look something 1ike that in
Figure 3.13b., Here the particles' paths exactly follow the contour
of the particles in thé layer below. The local packing is constantly
varying between the square and triangular configurations. The time
average of the density would be about v, = 7/ (/3 + 2n/3) = .822. This
could only occur if the shear rate were very small, since only par-
ticles with zero inertia (zero mass or zero velocity) could respond
instantly to follow the particle .contours.

These limits place an upper bound on the density at which a bulk
of two-dimensional incompressible particles may be sheared. (Note
that the limits will be different for 3-dimensional particles.) One

may wish to think of this transition as the condensation of the
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granular material from a '"liquid" (which may be sheared) to a '"solid."

In any case, these should be considered as very idealized limits
because it is possible for the material to pack itself into unshearable
configurations that correspond to smaller values of V than these. (An
example of an unshearable configuration with a lower v is the square
packing shown in Figure 3.13c rotated through 45°.)

This may be clearly seen in the converged state of our 20°
simulation, where the density does exceed this limit for a region in
the center of the flow (see Figure 3.14). The velocity
gradient drops to zero in this region, and in fact is zero for all
densities greater than v = 7/4. This region moves like a plug. In
the snapshot, taken from this flow in Figure 2.2a, one will see
instances where the local packing has assumed the high density tri-
angular structures.

It was argued earlier that granular temperature resulted from a
velocity gradient. Note that the temperature is nonzero in the region
where the velocity gradient vanishes. Note also that there is a
noticeable gradient of temperature into this region. This suggests
that temperature is not simply a product of the local velocity field
but may also be conducted. From the equation of state shown in
Figure 3.5, it can be seen that if the temperature becomes high enough,
it would reduce the density to the point where this zone may be sheared.

It is possible that exploring concepts like these may lead to an
understanding of the formation of the stagnant zones that characterize

funnel flows in hoppers, and occasionally form on chute bottoms.
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3.2 Couette Flow Velocity and Density Profiles

The Couette flow profiles in general are much less interesting
than those from the chute fléw simulations. Simulations were run with
two wall boundary conditions. The first was the same as that used in
the chute flow program, which assumes that there would be zero relative
tangential slip between the particle surface and wall upon departure.
The second assumed that the particle's center would adopt the velocity
of the wall after collision, modeling a 'mo-slip'" condition. The
latter case was studied for comparison to Savage and Sayed's [68,70,
72] studies of the rheological properties of a granular material sheared

in a Couette flow device with roughened walls.

Velocity and density profiles for the first or standard wall
conditions and for three different normal forces are shown in Figure
3.15. (The normal force is the quantity against which the total
normal force applied to the walls is periodically compared. The move-
ment of the walls is based on the result of this comparison.) In all
cases the wall velocity is the same and the spacing between the plates
is varied. For all profiles there is slip at either wall amounting
to about 20% of the upper wall's velocity. Thus the shear rate across
the particle ' bed is at most 60% of the ratio of wall velocity to
wall spacing. At the lower densities (lower normal forces) most of
the shearing occurs in a small region next to each wall. In Lhese
cases the bulk of the material moves down the center.as
a plug. It is not quite clear why these high shear zones come about
(especially in the light of the simulation with a "no-slip'" wall con-

dition), but it is probably peculiar to this wall condition. The
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moving wall has only a'tangential component of velocity relative to
the particle at all times. A large component of the energy added to
the particle in a collision with the wall is added as rotational energy.

In Figure 3.16 are shown profiles for-the second or '"no-slip"
boundary condition at three different normal forces. In all cases,
_the wall spacing is changed to keep the shear rate a constant. The
velocity profiles all vary linearly from zero at the bottom wall to
the upper wall's velocity. Furthermore, the density is practically
uniform across the flow.

In the absence of a gravitational field, thc pressure will be
constant across the depth of a Couette flow., From the equation of
state proposed in Section 3.1.1, a uniform density and pressure indi-
cates that the temperature should also be uniform. As expected, the
variation of temperature shown in Figure 3.16 is small across the
depth, compared to the chute flow profile shown in Figure 3.1.

The absolute magnitude of the temperature in Figure 3.16
decreases with density: It may be speculated that the large collision
rate at high densities results In a greater dissipation of the energy
contained in the random motioms.

Figure 3.17 illustrates the effect of shear rate (represented
dimensionlessly in the simulation's scaling by R/H) on the flow
properties. It was argued in section 2.6 that the natural time scaling
of a Couette flow was the inverse shear rate, H/UT. To test this
hypothesis the applied normal stress was varied accordingly as
o= (0.567)(R/H)2. It can be seen in Figure 3.17 that under these

conditions the density and scaled temperature are independent of the
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shear rate, indicating that the proposed scaling is correct.

Figure 3.17 indicates that the temperature is directly propor-
tional to the square of the veloéity'gradient.The proportionality may not be
valid for flows that do not have uniform temperature fields that may
experience the effects of conduction. Such an occurrence has already
been noted for the 20° chute simulation in Section 3.1.7.

Figures 3.18 and 3.19 illustrate the partition of the total tem-
perature into its three components for foqr densities.

At low densities the energy contained in the fluctuating veloc-
<u'2>
ity component in the direction of flow ¢( 5 )Y, is a few times greater

than that contained in the normal component GS%;;Z) or in the rota-
tional component B<w'2>/ U%. The latter two zomponents are of
roughly the same order of magnitude. As the density is increased,
the three components become roughly equal, until at the highest den-~
sity the rotational component has a large magnitude relative to the
linear component, even though the absolute magnitude is smaller here
than in the lower density plots. (Each plot has a different tempera-
ture scale.)

There is no clear explanation for the non-equipartition of
energy in the fluctuating velocities.‘

The large relative magnitude of the <u'2 > /U% component at low
may be due to convection of the mean velocity within the velocity gradient.
At low densities, a particle will travel a relatively long distance
between collisions, and carry with it the mean velocity corresponding
to its former position. In a time average, this mean velocity dif-

ference will appear as a fluctuating velocity. At high densities,
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this mechanism would be nullified as the particles can move only
slightly between collisions. This would explain why the two linear
fluctuating velocity components are of the same order of magnitude
in Figure 3.19b.

The linear fluctuating components will be dissipated by both the
coefficient of restitution and the interaction between the rough par-
ticle surfaces. The rotational component will only be dissipated
by the latter. The large relative magnitude of the rotational com-
ponents at high densities (high collision rates) may be accounted for

by this less efficient dissipation mechanism.

3.3 The Bagnold/Savage Constitutive Law

It was mentioned in the introduction that Bagnold [3] presented
the first constitutive law for a granular material that took into
account its particulate nature. Translated from Bagnold's notation
into the notation used in this paper, the proposed constitutive law

would have the form (for simple shearing flows)

T45 T 0 fijfv)Rg (%%)2
where fij(u) is some unspecified éimensionless tensor valued function
of the density, and du/dy is the local velocity gradient.

Clearly there are limits on the situations to which this law is
applicable. For example, it can give no insight into the stresses
inside a region of plug flow where du/dy = 0. A case where that

occurred and yet the stress was nonzero, was found in the 20° simula-

tion discussed earlier in Section 3.1.7. This suggests that the
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Bagnold/Savage law is‘applicable only to situations with moderate or
high shear rates.

The physical reasoning that Bagnold used to support this consti-
tutive law was as follows: Consider the collisions between two
planes of particles moving in a velocity gradient as shown in Figure
3.20. 1Ignore for now any perturbations to the structure or veloci-
ties. Let the spacing between the layers be 81 and the spacing

between particles in each layer be s Then the momentum transferred

9
in each collision in the normal direction is proportional to mdu,

where m is the particle mass and Su the velocity at collision.
du
n - ==
Tij méu m(dy) s

The frequency of collision is proportional to the velocity difference
divided by the particle spacing, Gu/S2 and further multiplied by the

square of the number of particles per unit area of each plane

(1/87)2. Hence the frequency of collision is proportional to
Su ng °1
3 dy® o3
52 )

Hence the stress tensor may be written as

2

)

SZ
: 1l ,du
Tij v om 3 Ca§
)

Now SI/R and SZ/R may be assumed to be functions of the density.
.Expressing the particle mass as m = p éﬂTR3 and absorbing all con-

p 3

stants into £, this may be written as
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2 .du,2
., = £f..(v) R°(—
Ty Dp 1J( ) (dy)

Some insight may be derived by comparing this derivation to that
for the viscosity of a gas as derived from simple kinetic theory argu-
ments. It is generally assumed that the random velocities due to the
gas temperature will be of much greater magnitude than the mean
velocity differences over a mean free path. Thus, the rate of
momentum transport is governed by the magnitude of the random velocity
which is proportional to the square root of temperature. In Bagnold's
model of granular material the rate of momentum transport is determined
by the collision rate, which in turn is proportional to the velocity
gradient. Hence the second factor of du/dy, which introduces the
nonlinearity into this constitutive law, essentially replaces the /T
found in the viscosity coefficient of a Newtonian fluid. This reasoning
is supported by Figure 3.17 which shows that the granular temperature
is proportional to the square of the velocity gradient. (In this
case the temperéture is constant everywhere in the velocity field,
eliminating conduction effects.) One may view a granular material as
a self-excited Newtonian fluid, where the transport rate is determined

by the velocity profile and not by the externally imposed temperature.

3.3.1 The Function f(v)

The functional dependence on density, f(v), in the Bagnold/
Savage constitutive relation is unknown. One might guess, especially
from the above remarks, that it may be related to the radial distribu-

tion function that fills a similar role in the statistical mechanics
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of dense géses and liquids. This analogy was used by Savage and
Jéffrey [71].

Asymptotic limits for f may be estimated.

For small v, collisions would be rare., Thus the stresses will
be zero no matter what the velocity field. Hence as v + 0, f(v) - 0.

It has been noted previously that the maximum density that can
allow a velocity gradient in a granular material composed of incom-
pressible particles is: Vv =7/(/3 + 21/3). TFor any greater density
it would require an infinite stress to impose a velocity gradient.
Thus one can assume that £(V) > ® as v > 1/ (/3 + 2n/3).

To determine f(v) from the computer simulation, the stresses
must first be determined. Using the basic form of the momentum equa-—
tion,

pu,, + V-1 = pg

~ ~

where T is the stress tensor and g is the gravity vector. The only

nonzero components of V.T will be é——T and é—-T as the periodic
~ dy xy 3y vy

boundary condition assures that = 0.

3x

The density dependence for the shear and normal components of
stress will be examined. The functions will be denoted fs(v) and

fN(v), respectively. The stresses are defined by
' H

pﬁvj (g sin 8-pu,t) dy + TS(H)

—
[
~
n

and

~
1
-
il

y
H

pﬁv J (g cous 0—‘V,t) dy + IN(H)
y

where u, and v, are determined by measuring the difference in total

t
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momentum in a strip at the beginning and end of the averaging period.
(This is genefally only a small correction.) The integration is per-
forméd numerically between the strips using the trapezoidal rule.
Velocity gradients were taken to be the derivatives of cubic spline
fits to the velocity profile.

Plote of £(v) versus v are given in Fig\;res 3.21 and 3.22. The
points were obtained from the chute flow simulations at three differ-
ent inclination angles and from several Couette flow simulatioms.

There is a lot of scatter in the data, but it is clear that the func-
tions agree with the asymptotic limits proposed above.

In Figures 3.22 and 3.23 is shown the comparison of our data
with the Couette flow experiments of Bagnold [3] and Savage and Sayed
[70]. (The data for both cases were taken from Savage and Jeffrey
[71].) Here again, the densities from the simulation have been con-
verted to their three-dimensional equivalents (as proposed in Section
3.1). |

The agreement between the data is fair. The simulation
generally predicts value; of f(v) 1larger than those measured
experimentally.

The main value of this comparison is to show that the predicted
values of the proper magnitude. There are just too many
apparent difficulties involved in making a direct comparison. First,
as noted previously in Section 3.1, the conversion from v to Va_p
predicts values that are probably too small. Proper coefficients of
restitution fér Savage and Bagnold's particles are unknown. Bagnold's

material was suspended in a fluid carrier which will exert an
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indeterminaté influeﬁce on the particle interactions. However,
Savage and Bagnold could not have known whether (1) there was slip at
the walls of their devices, or (2) their material was shearing com-
pletely. This latter objection was raised by Savage and Jeffrey [71]
with regard to Bagnold's data. Indeed it is uﬁlikely that Bagnold

could get material to shear at a density greater than Vv =7m/6 = .52,

3-D
which corresponds to the maximum cubical packing. Instead, the
material either slipped at the walls or sheared over only a small por-
tion of its depth. 1In either case the measured values of f(v) would
appear to be smaller than the actual values.

The Bagnold/Savage constitutive law seems to be on a firm foot-
ing. Although there is a great deal of scatter in our data, it
seems to behave in a consistent and coherent manner that is in accord
with the expected behavior. But this is the extent to which it can

be evaluated by the simulation,

The Bagnold/Savage constitutive law for normal stress

_ 2 ,du, 2
Ty = 0 () RO

may be considered as an alternative form of the equation of state
12 12
p = pp X)) (cu'™> + <v'™>)

that was proposed in Section 3.1.1. They are analogous as long as

P=T The comparison is especially appealing because the tempera-

N'
ture is in some way a product of trhe velocity gradient and in the

absence of conduction it has been shown (see Section 3.2) that
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(<u'2> + <v'>2) v (%3)2; However, there is a great deal more scatter
in- the data for fN(v) than for X(v). This indicates that the (du/dy)2
in the Bagnold/Savage law appears as a surrogate for the temperature.
Their model may only be applicable to flows such as the Couette flow
upon which their experiments were performed, that are free from the
effects of conduction.

A model based on temperature has the added appeal that it is
applicable to densities beyond which shearing is possible. It is

likely that such a model could have universal validity.

3.4 Statistical Properties of Granular Material Flows

The results presented so far indicate that flowing granular
materials possess many of the same features as the molecular models
of matter. A great body of work has been developed describing trans-
port phenomena on a molecular level from which macroscopic conserva-
tion laws such as the Navier-Stokes equations have been derived (see
[14,21]). Great progress would be made if this body of work could be
adapted to granular materials.

The fundamental assumption in molecular transport phenomena is
that the molecules are statistically distributed: independently.
Procedures have been established to derive the macroscopic conserva-
tion laws, once these probability distributions are known. The deter-
mination of these distributions is easily done by simulation, and
may not be accomplished by other means.

Savage and Jeffrey [71] were the first to try and adapt the

molecular theory of transport phenomena to the flow of granular



-81-

materials. As a basic stafistical theory of granular flows has not
beén developed, they were forced to assume that a granula; material
possessed many of the properties of gases. They assumed that the par-
ticles followed a Maxwell-Boltzmann velocity distribution, and used
the radial distribution function of Carnahan and Starling [13] to
describe the relative positions of particles.

While it is intuitively appealing to equate granular materials
considered on particle scales with fluids considered on molecular
scales, there are still many seemingly irreconcilable differences
between them. Generally the statistical analyses of gases occur at or
near equilibrium conditions, or conditions where the energy of the
system is locally constant. This requires that the velocity gradient
be small, so that no energy is added to the system by viscous dissipa-
tion, and that the particle interactions be elastic so that no energy
is lost in the collisions. Granular materials are quite the opposite.
The collisions are inelastic so that there must be a large velocity
gradient to supply the énergy lost in the collisions.

If there is to be equilibrium in a granular material flow, then
there must be a constant influx of energy in through the velocity
gradient and out into thermal energy, via the inelastic collisiomns.
The Couette flow simulation with the no-slip wall condition comes very

close to an equilibrium state, and will be used as a sample from which

most of the statistical information about granular flows is obtained.

3.4.1 Distribution of Particle Velocities

The velocities of molecules in a gas at equilibrium will be ar-

ranged in a Maxwellian probability distribution, i.e., the probability
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that a given molecule will have a velocity in the range du about u is:

l;(u—<u>)2

/FG§<u'2>)

”dgll 373 exp[-(g-<g>)2/% < 5]

where <u> is the average velocity and <u'2> is the rms value of the
fluctuating velocity u' = [E-<g>!. This was the velocity distribution
used by Savage and Jeffrey [71].

Because the computer model is based on the exact particle mech-
anics instead of on a Monte Carlo approach (in which one would have to
make judgments based on probability distributions that were determined
a priori), the simulation may be used to measure the distribution of
particle veloecitics.

At each collision, during the averaging period, the state of the
system is recorded on a magnetic tape. The tape is rewound after the
average values of the velocities and fluctuating velocities have been
determined. Then, the instantaneous state of the system is read from

the tape at each collision and the quantity:

is computed. Here ey is the instantaneous veloeity of particle i,

and <E>j and <1~1'2>j are the average velocity and mean square fluctuat-
ing vélocities, respectively, in the strip j in which particle i
resides. The number of particles with values of X between 0.1(I-1)
and 0.1I are counted in the Ith glot of a fifty-element array

(covering a range of X between 0 and 5). The total in each slot is
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normalized ﬁy dividing by the total number of particles counted. The
nuﬁber one would then find in the Ith slot is the probability that a
particle will have a value of X between 0.1(I-1) and 0.1I. In terms
of a probability distribution P(X) this quantity would correspond to
P(X)dX for X = 0.1(LI-0.5) and dX = 0,1. Hence it is further neces-
sary to divide the value in each slot by dX = 0.1 to obtain the prob-
ability distribution.

Distributions were measured for all three velocity components,
u, v, and w, as well as all the combinations of all components and
the combination of just the linear components u,v. The source of most
of the distributions will be the Couette flow program with the no-slip
wall condition.

The five sampled variables for the individual velocity components

are:
[u - <u>|
X, = -
<u'">
lv - <vs|
X2 =
2
<v' >
lo - <ws]|
X -
3 i
<w'>

For the combinations of the linear velocity components:

(u--<u'>)2 + (v--<v>)2 1/2
4 <u'2> + <v'2>

and for all the velocity components:
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(u--<u>)2 + (v-—<v>)2 + 8(w-—<m>)2 1/2

12,

<u'2> + <v'2> + B<w

The sampled variables each represent the ratio of the instantane—
ous energy contained in the fluctuating velocity, to its mean value.
Ihus, the rotational component must be scaled by f in X5 to convert it
into an equivalent kinetic energy.

The distributions are shown in Figures 3.25 through 3.29., Four
distributions of each type are shown compared to a Maxwell-Boltzmann
distribution.

All of the distributions have the basic shape of a Maxwellian. For

a single velocity component a Maxwellian has the form:
ai —aiXi
Pi(xi) = \/? e i=1,2,3

for two velocity components,

P4(X4) = 2a4X4 e

and for all three velocity components,

3 .
a
_ 5 2 55
PS(XS) = 4 3 XS

To be consistent, the average value of each square fluctuating velocity

<q'2> should be the average value of (q-<q>)2. X has the form

lq - <q>]

/<ar?
<q'"™>

X =

Therefore,
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q—<qﬂ =J<¢2>X

For consistency it is required that

<q'2> = <q'2> f X2 P(X) dX
0

or
2
1l = J X" P(X) dX
0
This requires
- - < 1
31 T % T 33 2
a, = 1
a, = =
5 2

These values would yield the standard Maxwellian velocity distributions.
Most of the distributioqs shown require a somewhat different value of
a;- The distributions for the individual, total and combined compon-
ents of linear velocity come very close to being Maxwellian, but the
distribution of rotational velocities exhibits a strong deviation from
Maxwellian.
The devi
of a; from the Maxwellian values a i given above. Then the consistency
conditions may no longer be satisfied. The corrected values for a;
could be determined by making curve fits to the measured distributions.
It appears that the magnitude of the deviation, ai/ami, depends strongly

on the characteristic quantity S, introduced in Savage and Jeffrey [71]:
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and is more or less independent of the coefficients of restitution and
all other flow properties. For small values of S the translational
velocity distributions are essentially Maxwellian, but they deviate
noticeably for larger values of S. Except for the rotational distribu-
tions, all the ai's increase with S. (The sole exception to this rule
is the u velocity distribution for v=.75, S=1.87 which shows a

large narrow peak just below X, =1, but otherwise exhibits this general-

1

ized Maxwellian behavior).

S may be looked upon as a scale of the system's deviation

from equilibrium, -For small values of Sﬂ/<U'2> >> 2R %g, and the
material will behave like a gas. In particular, the magnitude of the
impact velocity between particles will depend mostly on u' and will
not be enhanced by the gradient of mean velocities. TFor S >> 1
exactly the opposite is ‘true. Hence S is indicative of the relative
importance of the velocity gradient on the motion of particles at the
microscale. To determine the exact nature of the dependence of ai/ami
on S would require extensive analysis which would probably involve
deriving and solving an equation similar to the Boltzmann equation.

For less ideal circumstances than Couette flow with a no-slip

wall condition, the distributions will not be as well behaved. For com-
parison, several velocity distributions generated by the chute flow sim-
ulation are shown in Figure 3.30. Chute flows exhibit large variations

in S, density, and temperature within the control volume. Nevertheless,

the velocity distributions could be represented by a generalized
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Maxwellian form.
In summary, it appears that Savage and Jeffrey's [7/1] assumption

of aMaxwellian velocity distribution is a reasonable approximation.

3.4.2 Distribution of Collision Angle

There is an angle O that is characteristic of each collision
‘between two particles. The angle 6 shall be defined as shown in
Figure 3.31a. The range of 6 is then 0 < 6 < 180°. The datum, 6 = O,
is arbitrary and for convenience is chosen to be in the direclioun
of flow.

The angle 6 will affect the angle of the impulse applied by the
collision. These impulses, when averaged over a plane with time, will
determine the continuum stress tensor. Thus one would expect that ©
will affect the relative magnitude of the components of the stress
tensor. In particular, 6 will have some relationship to the friction
angle. Bagnold [3], in the derivation of his constitutive law,
assumed that all collisions would occur at the same angle, and found
that that anglé equalled the friction angle of his material. It is
thus important to know whether there is anisotropy in the collision
distribution which would result in preferred values for 6 .

The distribution of collisions must be isotropic in a low den-
sity uniform gas. However, if there is a velocity gradient imposed
on the gas, anisotropy will develop.

The collision angle distribution may be measured in much the same
way as we determined the velocity distribution. The region
0 < 8 < 180° is divided into 50 regions. The number of collisions that

occur in each region are counted and the result is stored in the



~88-

appropriate élement of an array. The totals in each region are nor-
malized by dividing by the total number of collisions and by the
region width.

The collision distributions for various values of the density,
with the shear rate held fixed, are shown in Figure 3.32. At low
densities (v=.35) they form a smooth curve indicating a preference for
values of 6 in the range 90° < 6 < 180°. With increasing density a
peak develops about 6 = 90°, The peak grows until, at highest densi-
ties (v = .75), the distribution becomes just two peaks, around 6 =90°
and 6=0° (180°).

In Figure 3.33 is shown a typical collision distribution from the
chute flow simulation. A great variation in demsity occurs in a chute
flow and the distribution is a mix of the distributions for many den-
sities.

Collisions occur when particle surfaces touch. This is only
possible if there is a component of their relative velocity drawing
the particles together.- If there is a mean velocity gradient in the
flow, the relative velocity of two particles will be augmented by the
mean velocity differences due to the position of their centers in the
velocity field. Consider a test particle at some position in the
velocity field, as shown in Figure 3.31b. Locally, the mean relative
velocity will create a preference for collisions in the second and
fourth quadrants of the disc. This corresponds to the preferred values
of the collision angle falling in the range 90° < 6 < 180°.

The. pair distribution function of Savage and Jeffrey [71] was

based on this idea. They assumed that the particles obeyed a



-89-

Maxwellian distribution of velocity about the local value of mean
velocity. Then, by integrating over all possible velocities, they
found the probability distribution for a collision to occur at 8 to

be (after converting their result to two dimensions and renormalizing)

P(8) =-% erfc[2—1/28 cos 8 sin 9]
where du
2R —
g - — dy
02
<v'"T>

and erfc is the complementary error function:

(] —'r]'2
erfc(n) = J e dn'
n

This should predict the collision distribution at low densities
before the peak at o= 90° develops. It is difficult to generate low
density flows with different values of S. It was possible to obtain two,
for S = .90 and S = ,45:by changing the coefficient of restitution.
These are shown in Figure 3.34.

Savage and Jeffrey predict the same. form of the collision dis-
tribution, but the predicted magnitude of the deviation from isotropy
is too low. The anisotropy is a function of the magnitude of S. The
deviation of the velocity distribution from Maxwellian would partially,
but not entirely, account for the discrepancy. By changing the length
scale in S from R to C (where C is the mean particle spacing:

/

C = R(ﬂ/\))1 2), good agreement with the measured curves is obtained.

This may be interpreted physically as indicating that a particle carries



-90-

its distribﬁtion with it from the point of its last collision. (The
1aét collision for each particle would have occurred at a distance of
about C. Thus the total separation of the particles at their last
collisions would be about 2C.) A similar idea was suggested in Section
3.2 to explain the large relative magnitude of‘the fluctuating com-
ponent in the flow direction at low densities. However, this would
cloud somewhat the interpretation of the velocity distribution.

In any case, Savage and Jeffrey's distribution is only appli-
cable to densities that are too low to be commonly found in granular
material flows.

At higher densities a peak develops in the collision angle dis-
tribution about 6 = 90°., When the particle packing becomes dense
enough, structures or preferred particle positions develop in the
flow. As the density becomes large, the distances that a particle may

move before colliding become extremely short. The only structure,that

allows shearing motion at high densities, involves layers oriented perpend-
dicular to the direction ;3f the velocity gradient (or along stream lines). All
the particles in a given layer have roughly the same velocity, but the mean
velocity of neighboring layers varies according to the velocity field.
The layers may only be seen in snapshots for very high densities, as

in Figure 2.3c. The development of the layers will be examined in
greater detail in the next section.

| The effect of the layering on the collision distribution will be
to exclude certain collision angles. Consider the test particle

shown in Figure 3.31c. The particles in the same layer will block

collisions with the test particle by particles from neighboring layers
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except in a small region about 6 = 90°., At the same time, the par-
ticles within each layer are free to collide with each other in a
small region about 8 = 0 {or 180°). This is the source of the
two peaks in the collision distribution at high density.

Savage et al. [67,70,72] tound that the friction angle, or the

ratio of shear to normal forces TS/T in their Couette shear cell,

N
decreased with density. It is likely that this is due to the forma-
tion of the & = 90° peak in the collision distribution. This is

indicated by Bagnold's [3] analysis which yields a zero friction angle

for 6 = /2.

3.4.,3 Structure in a2 Granular Shear Flow

Structure, in a statistical sense, may be described by a proba-
bility distribution p(flfo) which is the probability of finding a
particle at r given that there is a particle at -

Structure arises because of the influence of a particle on the
positions of others. At the simplest level, it is impossible to have
two equal sizea particles less than a particle diameter apart. Even
more complicated structural properties will appear if the particles
exert long range, such as gravitational and electromagnetic forces on
one another. Clearly a gas of point particles, which have zero size
and no long range force, will have no structure, and p(E]EO) =n =
const., where n is just the number of particles per unit volume.

Except for extremely ordered systems like crystals, one would
expect a particle's influence to be limited in range. Hence it can

be assumed that



-92-

m p(rir ) = n(x)
gz fl e~ ~° -

~ ~0
where n(E) is the local value at n about r.

In a gas at equilibrium, isotropy implies that the probability
distribution p(flfo) must be spherically symmetric about r_. The dis-
tribution could then be denoted p(r) where r = llf-fo” may be inter-
preted as the probability that two molecules will be separated by a
distance r.

Apply a velocity gradient to the material and the spherical sym-

metry breaks down. A particle that at time t was at a distance r will

rd V
r

be at (r + i dt) at t+dt. This would smear out the distribution,

because both points on the particle path must have the same probability.
In a shearing material there may be structure along stream lines.

Thus, given a particle, there is a probability of finding another at a
distance along or in the near vicinity of, say within a particle
diameter of, the same stream line. There may also be structure in the
direction normal to the stream lines, Given a particle on one stream
line, there may be preferred stream lines on which to find other par-
ticles, although there can be no preference as to the positions of the
particles along those other stream lines.

This does not imply the existence of layers for other than
granular flows, It only puts limitations on the information that can
be obtained from p(flfo)'

Structure is determined in much the same way as the velocity and
collision distributions. First, a test particle is chosen. To eliminate

as much as possible any influence of the flow boundaries, any particle
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whose centef lies witﬁin a diameter of the midpoint between the walls
is chosen as a test particle, The interval [0,8R] was broken into 50
slices, each of which is assigned to an array element. At each
sampling time the number of particles that fall into each slice is
counted, and the answer placed in the appropriate element of the array.
The totals are normalized by dividing by the number of samples taken
and the size of the sampling region, yielding the probability distri-
butions. The Couette flow simulation with the no-slip wall condition
is again chosen to provide samples. In all cases, the same material
properties (EW = 0.8, ep = 0,6) and the same shear rate were used.
Two distributions were assessed: The 'mormal distribution' is
the probability of finding any particle in the control volume with a
position in the direction normal to the flow direction, which is
a certain distance from the test particle. The '"parallel" dis-
tribution' is the probability of finding a particle, at a given dis-
tance from the test particle, in the direction parallel to the flow,
whose normal position did not differ by more than a particle diameter
from that of the test particle. (A particle diameter is a first
approximation to the thickness of a layer.)

The normal distribution will illustrate the formation of layers
within the flow, and the parallel distribution will illustrate the
development of structure within the layer.

Five examples of each distribution, covering the range
.35 £ v £ ,75, are shown in Figures 3.35 through 3.39. Note that, as
expected, all of the distributions for small densities asymptote to

the expected value at n = v/ﬂRz.
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There is a peak at a spacing of about 2R in all of the correla-
tidns. This represents the direct influence of the test particle.
The peak is formed by those particles that approach, collide with, and
recoil from the test particle. These particles pass through roughly
the same region twice, and are thus counted twice. The double count-

ing forms the peak.

Note that in many of the parallel distributions a large peak is
formed close to a spacing of 8R. This is the perilodic image of the
peak at 2R. The periodic boundary condition imposes an order on the
flow, in the sense that there is a 100% probability that there will be
another particle at the same position exactly one control volume width
on either side of the test particle.

As the density increases, more peaks develop. These are caused
by the particles that collide with those that formed the first peak.
The peaks grow with density until they are roughly equal in size, in-
dicating the existence of well formed layers.

Layers oriented parallel to the boundaries are probably pecu-
liar to unidirectional flows. The layers are required by kinematically
rcasoning that, to maintain a shear flow at high densities, the par-
ticles must align themselves in the direction parallel to the flow
direction. This idea may be generalized to more complicated flows,
and it may be supposed that similar structures will form along stream
lines.

In passing, it should be noted that
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can be interpreted as a kind of order parameter. 2R(du/dy) is indica-
tive of the relative velocity of neighboring léyers, and ¢<Hf2> is
~indicative of the particle velocity normal to the 1ayers.V<u'2>/(du/dy)

is then a scale of how far a particle may travel outside its layer

before a collision with a particle in the neighboring layer forces it
back. Flows with large S should have sharp well defined layers, and flows
with small S should have a more diffuse structure. In Figure 3.41 it is
shown that as the density increases, and the structure becomes more
distinct, S is also increasing. S may then assume different values for
the same shear fate at diffcrent densities, while S is roughly a con-

stant for a given material at a given density and any shear rate.

3.5 Conclusions

A great variety of data was obtained from the computer simulation.
Macroscopic phenomena such as velocity and density profiles and scaling
parameters were derived. On the other hand, the simulation was an
invaluable tool for examining microscopic behavior, such as velocity
distributions, collision distributions, and the pair correlation that in-
dicated the presence of considerable structure within the flow.

There is a strong similarity between the ¢hute flow velocity
profiles generated by the simulation and those measured experimentally
by Augenstein and Hogg [1]. Both shear completely across the depth

and exhibit a region of particularly high shear next to the chute
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bottom. The simulation profiles slip at the wall with about 40% of
thé maximum velocity. Comparison with Augenstein and Hogg's [1]
measurements suggest that the degree of slip and the character of the
velocity profile in the neighborhood of the wall are greatly affected
by the mechanism of particle wall interaction.

The Couette flow simulation was run with two different wall con-
ditions. The first is the same one as was used for the chute flow:
on departure, after a collision, the relative velocity between the
chute and the particle surface is zero. The second, or 'no-slip"
condition dictated that the particle center assume the same linear
velocity as tﬁe wall. Velocity profiles from the simulations employ-
ing the second condition were linear. With the first wall condition
there were zones of high shear next to each wall with almost a plug
flow between. Again, the wall condition has a strong effect on the
profile shape.

The chute density profiles agree with those measured by Ridgway
and Rupp [60]. Their ﬁost intriguing aspect is that the density
reaches a maximum in the center of flow with regions of low demsity
near the free surface and near the chute wall. The location of the
low density region at the wall corresponds almost exactly with the
high shear zone in the velocity profile. The density profile exhibited
the same type of behavior in the high shear zone next to the walls of
the Couette flow simulation with the first wall condition. However,
the density is comstant for the Couette flow with the second wall
condition, which has a constant velocity gradient.

These observations led to defining a "temperature' to govern the
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density of a granular flow. Drawing an analogy with the molecular
theory of gases, the temperature is defined as the mean square fluc-
tuating velocity of the particles <u'2>. Continuing the analogy with

a gas, an equation of state was heuristically proposed of the form
2
P =0, X(V) <u'™>

Measurements of X(V) from many flow situations indicate that it is a
well-defined function.

Temperature is generated as a byproduct of collisions between
particles, and will depend to some degree on the gradient in the
velocity field. There are indications that.the temperature may be
conducted and dissipated. Stagnant regions appear when the demsity
becomes too large to allow thie material to shear. It is possible that
understanding conductivity will lead to prediction of the formation
and shape of stagnant wedges in chuﬁes and hoppers. Attempts to
measure the conductivity by applying a balance on the fluctuating
energy within a strip Qere unsuccessful.

The fluctuating energy is not equipartitioned into its three
components <u'2>, <v'2>, and B<w'2>. How the energy is distributed
depends on the density. The effect of the non-equipartition on the
flow is unknown, but it is possible that it leads to normal stress
difference effects.

It was shown that the Couette flow simulation has an intrinsic
time-scale equal to the reciprocal of the velocity gradient. Tn par-
ticular, the temperature is proportional to the square of the

velocity gradient in the case where a uniform temperature eliminates
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all conduction effects.
The Bagnold/Savage constitutive law was examined and was shown
to have some validity. Values of the density dependence for the shear

and normal directions fS » were obtained and were found to behave as

,N
expected, although tliere was a great deal of scatter in the data.

. Favorable comparison was made with experimentally determined values
for £(v). Some doubt was thrown on the strict validity of this model,
by comparison with the previously proposed equation of state. It wase
suggested that the scatter in the data was a result of replacing the
temperature by the square of the velocity gradient, an approximation
that only appears to be valid in the absence of conduction.

The simulation allowed a unique opportunity to examine the
statistical properties of granular flow. The instantaneous particle
velocities were found to nearly obey a Maxwell-Boltzmann distribution
about their mean velocities. The deviation from the Maxwellian form
appeared to depend on the flow's departure from equilibrium as

measured by quantity

Distributions measured by the chute flow simulation showed a large
deviation from Maxwellian that is probably a result of conduction.

A strong anisotropy was found in the collision angle distribu-
tion. At low densities the anisotropy was of the form predicted by
Savage and Jeffrey [71]. At higher densities, peaks began to form in
the distribution about 6 = 0° and 90°, until the distribution

consisted of just these two peaks. This anisotropy explains the
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experimentalvresults df Savage et al. [67,70,72]: that the ratio of
shear to normal forces is a decreasing function of density.

The formation of the peaks in the collision distribution is a
result of the development of structure within the flow. The only con-
figuration that allows a shearing motion at a high density consists of
layers of particles oriented in the direction of flow. The develop-
ment of these layers and the development of structure within the layer
has been clearly demonstrated by the measured probabilities of finding
particles a given distance from a test particle in directions normal
and parallel to the flow.

These results indicate that a flowing granular material behaves
like a self-excited gas. The constituent particles undergo random,
temperature-like motions, but this temperature is a byproduct of the
velocity field. This suggests that in a future model of granular
flow there will be an energy equation describing the production, dis-
sipation, and conduction of temperature coupled with the equationé of
motion.

Adaptation of the molecular theory of transport phcnomcna appcars
to be a promising approach toward developing a mathematical theory of
granular flow. Preliminary calculétions of this type were performed
by Savage and Jeffrey [71] to derive a stress tensor. Unfortunately,
they had to heuristically adopt much of the statistical properties of
gases for granular flows. In particular, they could not include the
collision anisotropy that results from the formation of layers in the

flow. Once the statistical behavior of granular flow has been



-100-

established, it is a relatively simple matter to derive the complete

transport equations.
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Figure 3.3 Comparison of a simulation generated velocity profile @
(a = 40°, 5 x 4 particles, gy = 0.8, €, = 0.6) with
profiles measured by Augenstein and Hogg [1], A 35 x 48
mesh sand on stainless steel, V 35 x 48 sand on surface
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Figure 3.5 Density dependence of the equation at state.
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(c)

Figure 3.13 Limiting values of the solid fraction, (a) maximum packing

V= T/2V3 = 0.91, (b) maximum shearable packing,
v, = /(Y3 + 2n/3) = .822, (c) maximum square packing

v, = m/4=0.78.
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Figure 3.21 Shear stress density dependence of the Bagnold/Savage

constitutive law, fs(v), €y = 0.8, €p = 0.6.



=122~

'EQUIVALENT 3-D SOLID FRACTION, vy _p

0 0.10 0.30 0.50 0.75
28 I _ I 1
a | I
v 20 |
O 30° I
24__ O 40° | —
O | |
|
v
|
ol ) O | | |
v |
I
16} l | _
fN(v) -
|
12k lo |
O
|
8l ' O —
O 0o
DD
o B0
4} %)Q)O —
0 O OQ:'@
O ] o v v
o080l 0 4 4 el
0 0.2 0.4 0.6 0.8 1.0

SOLID FRACTION, v

Figure 3.22> Normal stress density dependence of the Bagnold/Savage
constitutive law, fN(v), €y = 0.8, €p = 0.6.
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(a)

N/

(b)

(c)

(b) collision
(¢) Collision

anisotropy induced by the formation of "layers" within
the flow.

Figure 3.31 (a) definition of the collision angle 6.
anisotropy induced by a bulk shear motion.
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Chapter 4

EXPERIMENTAL STUDY OF THE FLOW OF

GRANULAR MATERIALS IN AN INCLINED CHUTE

4.1 Introduction

In the course of the present work a set of experiments was per-
formed to determine some of the characteristics of granular flow in an
inclined chute. A considerable amount of information has been obtained.
The results do show a number of rather interesting features which may
eventually be useful in formulating appropriate constitutive relations
for such flows. Such coneclusions have not yet been reached and the work
is not considered complete. Nevertheless, it is hoped that it will form
the basis for future studies and it is for this reason that some of the

results available so far have been included here.

Hoppers and chutes are the two common gravity-driven devices used
for transporting granular materials. Hoppers are generally used as
a buffer to store materials as they arrive, and then deliver them to
processing equipment on demand. It is essential that the material be
able to discharge freely and, especially for perishable materiais,
that the material leave the hopper in more or less the same order in
which it arrived. This requires that no stagnant zones or funnels
should form inside the hopper, which may trap material until the hopper
is emptied completely. In some large hoppers this may not happen for
vears.

Chﬁtes are used to move material from one point, often a hopper's

discharge, to another. An industrial chute will generally resemble a
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circular pipe or duct, and not the rectangular open channel that will
be examined later. It was noted by Choda and Willis [15] that when the
duct fills completely with granular material, the flow will choke,
causing a transition from what they called "fast flow" to "slow flow,"
and a corresponding drop in mass flow rate. The fast flow regime is
clearly preferable. The material should not be allowed to fill the
chute. Thus, despite its enclosing container, a chute flow is gen-

erally a free surface flow,

The performance requirements for a chute are roughly the same as
for a hopper. It should allow free flow of material with no stagnant
zones. Except in a few cases (for example, Wolf and von Hohenleighten {85}),
these criteria present little difficulty to the chute designer. The
flow in a chute is almost a unidirectional simple shear flow, much
simpler than the converging flow inside a hopper. Consequently the
problems are easy to solve; the solution generally requires a steepen-
ing of the chute angle, flaring the chute ends, or some '"judicious
pounding at points where stoppages occur" (Wolf and von Hohenleiten
[85]).

The chute has not been an object of much pure engineering re-
search, but because of its simpie flow properties, it has been used as
a model for analytical studies of granular material flow [26,42,48,
62,63,68] as well as for experimental research into their basic prop-
erties [1,2,22,62,63,68,82,83].

Takahasi [83] studied the flow of various granular materials
down 150 em  long wooden chutes of various widths. The exit velocity

was estimated by the trajectory of the particles as they left the
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chute. He Jfound that pluts of exit velocity vs. chute angle showed a
discontinuity in slope at a well-defined point. He thus defined two
"modes" of granular flow which he likened to the laminar (for low
chute angles)and the turbulent (for large angles) flow of liquids.
(Choda and Willis [15] used the same analogy when describing their two
regimes of granular flow.) The transition point was a function of the
material and the chute width., In the laminar regime, the flow con-
sisted of a thin layer of particles flowing over a bed of stagnant
material, but the turbulent flow moved over the entire depth.

Roberts [62,63] developed a simple theory to explain the varia-
tions in depth and velocity along chutes and ducts of arbitrary shape.
He had to assume, however, that the flow maintained a constant and
uniform density, and that the friction could be accounted for by an
equivalent friction coefficient that depended linearly on the flow
depth. The theory compared well with his experiments on flowing millet
seed 1in perspex chutes, but fared less well when Savage [68] tried
to apply it to the flow.of polystyrene beads in a rough-walled chute.

Augenstein and Hogg [2] measured the friction coefficient
between thin layers of sand and both smooth and rough chute beds.

They measured the exit velocity from chutes of various lengths by the
same method as Takahasi. An acceleration was interpreted from the
velocity differences between the different chute lengths and
attributed to a balance of gravitational and frictional forces. The
friction coefficients they determined depended only on the material,
and were independent of chute angle, velocity, and depth.

Ridgway and Rupp [60] report a friction coefficient that varies

with the inclination angle of the chute. Both Fowler and Chodziesner
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[22] and 4Suzuki and. Tanaka [82] assumed that the shear strcsses on
the wall always adjust to exactly balance the gravity force, This
allows only uniform, non-accelerating flows, and assumes that the
friction coefficient equals the tangent of the chute's inclination
angle. This is not as poor an assumption as one might think. In the
present study, flows at all angles appear to approach a state of
uniform depth flow. This indicates that there is a dynamic component

to the friction coefficient that may not have been apparent in the

"thin" flows examined by Augenstein and Hogg [2].

4.2 Experimental Apparatus

The apparatus used in these experiments was modified from a
chute with variable inclination angle, built as a summer project by
John Pender, a senlor undergraduate. A drawing and photograph of the
modified chute are shown in Figures 4.1 and 4.2. The basic chute was
constructed of plexiglass and supported on a frame of steel angle iron.
It was 20 cm wide with 21.5 cm high walls, and a test section 2.9 m
long. A hopper fed material to the top of the chute and the flow
rate was controlled by a gate at the top of the test section. The
material was collected in a second bin below the chute exit. This
system had two major deficiencies. TFirst, a considerable length of
time was spent between runs to recycle the material from the collec-
tion bin to the upper hopper. Second, the data acquisition at the
largest flow rates was very limited, sometimes as short as 10 seconds.

For the present experiments, a second movable wall was clamped
on the chute to narrow the width. This reduced the mass flow rate,

allowing more time to procure data, and allowed examination of the
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effect of(chute width,

Three chute widths were studied: 5.0 cm, 8.9 cm, 12.7 cm. With
the movable wall in place, the length of the test section was reduced
to 2.4 m in length. The initial depth of the flow was controlled by
a second gate at the beginning of the test section. The upper gate
was used only to start and stop the flow.

In the early experiments it was difficult to obtain repeatable
results., This was due to an obvious accumulation of static charge on
the particles as they rubbed against the plexiglass wall. After a
run, particles could be seen sticking to the wall, or bouncing around
as they exchanged charge, and a large charge built up on the
collection bin. The problem was solved by first grounding all metal
parts of the chute including the upper and lower bins, and then cover-
ing the bottom with a grounded aluminum sheet. Between runs the lucite
walls were sprayed with an antistatic solution (MS-166 Enstat, Miller
Stephenson Chemical Co., Inc.). After these precautions were taken
it was possible to obtain repeatable results.

The basic quantities measured were the mass flow rate and the
depth profile. Velocities were determined from the mass flow by
assuming that the average density equals the measured critical density
P.- (Then E'=‘E/'pcbh). The system always exhibited a starting
transient. Data for a given runwere collected after a steady state
. was reached. The flow was assumed to be steady when the depth
profile stabilized.

The mass flow was determined by inserting a bucket into the flow
and meaéuring the time it took to fill. The bucket, usually con-

taining about 22 kgs of material, was then weighed on a scale with an
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accuracy of 0.1 kg.

The depth profile along the chute was measured by movable point
probes located for most of the experiments 0.75, 1.2, 1.65, and 2.1 m
from the top of the test secfion. The probes consisted of brass rods,
milled dowm to a point on one end, mounted on a vernier scale with
an accuracy of 0.3 mm (about one particle diameter). Figure 4.3 is
a photograph of one of the probes. In all of these experiments,
despite the presence of a low density saltated layer, a distinct free
surface was observed. TFor sufficiently small particles, a
wake is formed in the surface by even the slightest insertion of the
probe. The depth was determined as the point at which the wake dis-
appears. 3o sensiiive was the surface Lu the preseuce of the probe
that it is felt its position could be determined to within one particle
diameter.

To measure the surface velocity, a Bolex H16M movie camera with
a 25 mm lens was mounted above the channel. During each run, colored
beads were poqred onto .the free surface just above the frame area
and photographed as they passed through the frame. The film was
analyzed on a film reader to determine the surface velocity.

For most of the experiment the camera was placed so as to photo-
graph the area beginning at and extending about six inches downstream
of the second point probé from the top. When the chute was inclined
at 18°, the camera had to be mounted further downstream so as not
to interfere with a low false ceiling. Most of the films were
recorded at 69 frames/sec, except at 18° where the flow was slow

enough to allow exposure at 18 frames/sec.
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The beéds were colored with Kohinoor 3084~F Black Rapidraw Draft-
ing film ink. Many methods of coloring beads were tried, but this was
found to be best as it was a fast drying ink and did not leave a

cohesive f£ilm on the particles.

4.3 Experimental Materials

Two sizes of spherical glass beads were used. The beads were
manufactured under the brand name "Blast-O-Lite'" by the Flexolite
division of General Steel. They were originally intended for sand-
blasting purposes, but were found to have a greater uniformity of
size and shape than most blasting beads. They will be referred to
herein by Flexolite's designations, as BT4 and BT6, for the larger
and smaller beads respectively.

The minimum error in a depth measurement will be on the order
of a grain diameter. The apparent advantage of using small beads is
somewhat offset by their greater susceptibility to the effects of
static charge build-up.

Preliminary experiments were performed using sand and polysty-
rene beads. Both were found to be unacceptable materials. The sand
tended to pulverize, resulting in.an alteration of the material
properties from experiment to experiment. The polystyrene beads were
too large to give accurate depth measurements. Both materials were
of non-uniform shape, would flow only at high inclination angles, and
.tended to form stagnant wedges on the chute bottom (see Section 4.5).

The properties of the test materials are shown in Table I. All

properties were measured by the methods described in Pearce [55].
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TABLE 1
BT4 BT6

Mean Particle Diameter (mm) 0.48 0.262
Standard Deviation (mm) 0.101 0,037
Particle Specific Gravity 2.5 2.5
Critical Specific Gfavity 1.44 1.43
Critical Solid Fraction 0.58 0.57
Internal Friction Angle 25.8° 16.0°
Wall Friction Angle

Smooth Aluminum 13.2° 15.95°

Rough Aluminum 18.2° 17.35°

Plexiglass 15.73° 18.6°

Angle of Repose 26.5° 24.,0°
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4.4 The Mass Flow Rate from Granular Chute Flows

Like a hopper, a chute is required to be able to deliver material
at a given rate. Chutes are extremely efficient devices, and it is
not difficult to build a chute that will meet any need. A chute will
generally be fed from a hopper, and the flow rate from the chute-
hopper system will, in most cases, be controlled by the hopper. Still,
it is necessary for the designer to have some guidelines on how much
material will be transported by a chute as a function of geometry and
inclination angle, and to have some knowledge of the conditions under
which the chute will limit the flow rate.

The mass flow from the chute used for the present experiments is
controllable only by varying the gate opening and the inclination
angle. TFigure 4.4 shows the mass flow per unit width from the chute
set at an angle of 22° for the three chute widths. 1In all three cases
the mass flow follows a common curve until, at some opening peculiar
to the chute geometry, the mass flow becomes a constant, independent
of the gate opening. This point will be referred to hereafter as the
"independence point."

The effect of chute inclination on mass flow rate for a single
chute width is shown in Figure 4.5. Independence points can be ob-
served for all angles less than and including 25°. Up until this
point there is surprisingly little effect of the inclination angle on
the mass flow rate.

By comparing the two pieces of information presented above, it
may be concluded that the location of the independence point, which

places a limit on the mass flow obtainable from a given chute, is a
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function of chute geometry and inclination angle.
The independence point marks a transition in the flow conditions

downstream from the gate. At that point the flow changes from what

shall be called ''supercritical flow" to '"subcritical flow.'" More sug-
gestive titles might be "upstream dominated" or "downstream dominated"

flows. The flow type depends on the value of the Froude number:

u m
Fr = =

JE ep/an?

If the Froude number is greater than some critical value, the flow is
called supercritical and the flow rate is governed by upstream condi-
tions, in this case the upper gate opening. If the Froude number is
less than the critical value, the flow is called subcritical; the
Froude number will increase along the chute to reach a critical value
near the chute exit, and the flow rate will be governed by downstream
conditions. These flow types will be discussed in detail in Section
4.5, They have been introduced here because of their effect on the
mass flow rate. In the next two sections the flow rate in each

regime will be discussed independently.

4.4,1 Supercritical Regime

As long as the flow within the chute remains supercritical, the
mass flow rate will depend on the flow in the immediate vicinity of
the gate. A diagram of that area is shown in Figure 4.6. Two stag-
nant zones are generally visible, one (A) directly behind the gate
itself, and the other (B) on the chute bottom. The location of (B)

and the size of both zones will depend on the gate opening and the flow rate.
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Ignofing (B) for the moment, the flow pattern is reminiscent of
that near the mouth of a half—hoﬁper divided down the middle by the
chute bottom, with walls perpendicular to the flow direction. It
would be expected that the flow rate would be similar to that from a
hopper with some correction for the chute inclination.

The mass flow rate may be characterized dimensionlessly in the

form of a Froude number,

Fr =

3l

where £ is some length scale. The mass flow rate may then be deter-

mined by the relation:

m = pcbh Fr/g—SL

As the mass flow rate is expected to depend on the conditions at the
gate, h is assumed to be the gate opening, hg, and % will be some
length scale characteristic of gate conditions.

It was determined that the dependence of the Froude number on
gate geometry may be characterized by choosing £ to be the hydraulic
radius,

Hy =

o>

where A is the area, and P the perimeter of the gate opening. TFor the

rectangular openings

h b

R - T
Hy 2(hg +b)

The Froude number so defined at the gate, Frg, was found to fit the

correlation
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2K sin o

o]
]
fl
Il

where K is some constant characteristic of the material and has a
value close to unity. This correlation is illustrated in Figures

4,7 and 4.8. Those results indicate KBT6 ~ 1.0, KBT4 ~

large scatter in the data may be attributed to the position of stag-

0.9. The

nant zone B shown in Figure 4.6, which approaches the gate at large
openings (and may even extend through), effectively reducing the gate
opening.

One would expect that this correlation bears some relationship
to the flow in hoppers. Both Pearce [55] and Nguyen [47] have measured
the flow rate from two-dimensional hoppers with various wall angles.
They found that the Froude number, Frd, from a hopper with a 90° wall angle

was

where d is the width of the hopper opening. The flow near the gate is

reminiscent of that in a half-hopper, so it is logical to assume that
d = 2hg

A two-dimensional hopper has effectively an infinite breadth. The

appropriate value of the hydraulic radius is

kb h
= 8 -8
lim Hy lim 2(, D) 2

b > > b > o

-4
A

From the predicted correlation,
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Thisagreeswiththenmasuredresultsocharce[55]annguyen[&7],andcon—
firms that the flow through the gate does indeed determine the flow rateina

manner similar to that of a 90° hopper.

4.4.2 Subceritical Regime

In the suberitical regime the mass flow rate becomes effectively
constant. Increasing the gate opening no longer changes the flow
rate. The mass flow is determined by conditions downstream of the
gate. The effects of the chute bottom, side walls, and exit, control
the flow. The flow rate may only be altered by changing the chute
geometry. The maximum flow rate obtainable from a chute of fixed
geometry is effectively the flow rate at the independence point.

The maximum mass flow rates obfained in these experiments are
plotted in Figures 4.9, and 4.10 as a function of chute geometry'and
inclination angle.

The ratio of chute length to breadth (L/b) is chosen as an
appropriate dimensionless quantity characterizing the chute geometry.
Only the chute width was varied iﬂ these experiments, but the effect
of chute length has been noted elsewhere: Subcritical flows appear
at only extremely shallow angles in the short (0.9mlong, L/b=12)
chute used by Spelt [75,76]. Choda and Willis [15] noted that their
fast flow/slow flow transition (which by their description appears to
. be similar to that observed in the present results) could be induced

by attaching a length of straight chute to the end of their duct.
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In these experiments,.L/b was varied from 19 to 48. Takahasi
[83] used chutes with values as high as L/b = 500.

It should be noted that L/b is used here only for convenience.
It is not suggested that the maximum mass flow rate is a single-valued
function of L/b. Comparing Figures 4.9 and 4.10, the maximum mass flow
rate can be seen to be a function of the flowing material, and is
probably also a function of the chute material and surface character-
istics. More important, it is shown by Roberts [62,63] that the fric-
tion coefficient on the side walls is much smaller than that on the
chute bottom. One might then expect that a long wide chute would have
a smaller maximum mass flow than a short narrow chute with the same

L/b. This has yet to be confirmed experimentally.

4.5 Supercritical and Subceritical Flows

Supercritical and suberitical conditions represent conjugate
states of open channel flows of liquids. A given flow rate may have
either a supercritical o6r subcritical Froude number, and may transition
between the two. Such behavior in granular flow is evidenced in Figure
4.4, where for a small range of gate openings the flow rate can
assume either a supercritical (gate dependent) or a subcritical (down-
stream dependent) value.

Fluid systems change from supercritical to suberitical flow via a
hydraulic jump, and from subcritical to supercritical flow via an
expansion wave. Both phenomena were observed for granular material
flows during the present study. The profile of a granular hydraulic

jump is much smoother and better defined than its fluid counterpart.



~155-

Hydraulic jumps in granular chute flows have been studied and analyzed

by Brennen, Sieck, and Paslaski [11], Savage [68], and Morrison and
Richmond [42].

The critical Froude number, Fr., relative to which a flow is
classified as supercritical or subcritical, defines the propagation
speed of small disturbances through the material., Consider an in-
finitesimal depth change dh of zero extent (dx=0). Then the general

equation for open channel flow derived in Appendix A becomes:
2
(T cos o ~-v Fr')dh =0

This defines the critical Froude number:

T cos o 1/2
e =

which has a corresponding critical velocity

1/2
v, = Frfa = eyl gy

which is the propagatioﬁ speed of small disturbances. This must then

be the speed at which an expansion wave will move into flow of depth h.

4,5.1 Subcritical Flow Control

At the exit, the chute bottom disappears with a corresponding
dropoff in the surface of the flow. An expansion wave, propagating
with the critical velocity, would try to communicate this information
upstream. However, it cannot propagate into a flow moving with a veloc-
ity greater than or equal to the critical velocity. If the flow in a

chute is to be subcritical at a point, then somewhere downstream,
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before the chute exit, the flow must become critical. Generally this
will oceur slightly upstream of the chute exit.

In supercritical flows, critical conditions also occur at the
gate. Otherwise, an expansion wave would travel up through the open-
ing so that material will no longer be held behind it. Varying the
gate opening while maintaining critical conditions at the gate controls
the mass flow. From the correlation reported in Seclivu 4.4.1, the

critical Froude number at the gate is found to be:

u [ b [ ®
Fr = =Fr [s7—— = 2K sin [

g

It is expected that the downstream control of the mass flow rate
for suberitical flows is also evidenced by critical conditions near the
chute exit. Special experiments were performed to test this hypothesis.
For these experiments, a point probe was placed 2cm from the chute.
Knowing the mass flow and the depth at the exit, the Froude number is
determined. Three more’ point probes were placed at 25cm intervals
upstream of the exit so that the approach of quantities toward their

exit values could be determined.

Figure 4.4 is a plot of the exit Froude numbers as a function of
inclination angle and L/b. All of the flows represented were sub-
critical. These data were obtained from a wide range of gate openings.
The relatively small scatter indicates that the flow is assuming a

critical Froude number at the exit.
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Controlling the Froude number at the exit is not sufficient to
explain why the mass flow rate becomes independent of the gate open-

ing. It only predicts a relationship between the mass flow and the

exit depth or velocity:

m .3 h = 1/2y . 3/2 _ , p =3
b P uehe = Fre g ) he B 2) ue
g Fre

Either he or u must be fixed, as well as Fre.

Plots of exit depths and velocities for various angles and chute
geometries (again from suberitical flows) are shown in Figures 4.12
and 4.13. As expected, there is very little scatter in the individual
points, even though the gate openings change by a factor of 3. These
plots give an indication of just how complicated the exact flow
mechanics may be. Both ue//gg and he/b decrease with L/b for a=22°,
remain fairly constant for o=20°, and increase for aoa=18°,

An intriguing aspect of this phenomenon is that critical depths
and velocities, and the critical Froude numbers, are independent of
their values directly upstream of the exit. Figures 4.14 and 4.15 are
typical examples showing the approach of the depth and Froude numbers
toward their critical values. In all cases, the curves approach the
same limiting values but along unique paths.

At the moment, no explanation can be given for this phenomenon.
However, future investigators may find the equation derived in Appen-
dix A a helpful starting point:

T P

2 ] ]
(T cos o -vyFr')dh = (sin o - E;G;?;EE? dx
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at the chute exit. This expression may be used to determine back water
curves for depth or Froude number. By mcasufing the depth profile and
the friction term, a relationship between the profile parameters, T and
Y, could be determined which may in turn yield some insights into the

behavior of the flow.

4.5.2 CGeneral Features of Supercritical and Subcritical Flows

Supercritical flows are generally much faster and shallower than
their suberitical ecounterparts. The phenomenological differences be-
tween supercritical and suberitical flows are clearly shown for
a=22° by the depth profile in Figure 4.19. A small increase in gate
opening produces a four-fold increase in depth and the appearance of
"breaking'" (see Section 4.7). The free surface of a subcritical flow has
a distinct structure. Except in the area immediately adjacent to the side
walls (where the material shears in a direction parallel to the free sur-
face), particles on the surface maintain the same relative positions. The
material appears to move like a solid plug, sliding on a thin shearing
layer next to the chute bottom. Near the gate the solid plug structure
is also visible through the side walls. Further downstream the flow appears
to shear all the way across its depth, but the surface far from the walls
retains its distinct structure. On the basis of this last observation, the
author is convinced that the shearing visible thfough the side wall is a

peculiarity of the region next to the wall.
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No distinct structure can be observed on the surface of super-
critical flows. The surface always appcars blurred, due to violent

mixing in the interior.

4.5.3 Transition between the Flow Regimes

Immediately after the gate is opened, the [low is always super—
critical. The leading edge sees no material downstream and cannot have
any knowledge of the downstream conditions. The tramsition to sub-
ecritical flow is very gradual and may not even begin for as long as
thirty seconds after the gate is opened. During the transition the
depth of flow will oscillate as it approaches equilibrium, just as if
small hydraulic jumps and expansion waves were carrying the downstream
information to the rest of the flow. The distinct wavefront of a
hydraulic jump, that is generated by placing a downstream obstruction
in the chute was not observed although the expansion waves could be
seen clearly. When both conjugate states are very close to the critical
value, the system may experience relatively fast (" 10 second period)
oscillations between them.

The point of transition to suberitical flow was found to depend
strongly on envirommental conditions. Experiments performed in the
summer were repeatable within a few days, but could not be repeated
exactly in November, although similar phenomena were observed. Pre-
sumably this is the result of changes in humidity which indicate
different dissipation rates for static electric charges.

The "laminar-turbulent' transition reported by Takahasi [83], and
the "slow flow/ fast flow" transition reported by Choda and Willis [15]

for enclosed ducts are similar to the transition described here. None
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of the authors report Froudé number data, but their qualitative descrip-
tions of their flow regimes agree with the present observations.

A transition between the floﬁ types may be observed at any angle
by placing a blockage in the channel which generates a hydraulic jump.
The transition described earlier is found in unblocked chutes; the
equivalent downstream disturbance is generated by the chute geometry
(and was more likely in narrow chutes). Subecritical flows were not
observed in our chute for inclination angles greater than 25°, but
Takahasi observed transition in extremely narrow chutes at angles as
high as 45°. A plot of Takahasi's data for transition angle versus
chute geometry is included in Figure 4.16,

The flows in the present study had to be sufficiently deep before
transition occurred. This makes comparison with Takahasi difficult
because he made no attempt to control the depth of his flow. The
depth was determined naturally by the feed supply to his chute system.
He found a distinct inclination angle at which transition occurred for
each chute geometry, while the present results indicate that both
types of flow could be obtained at the same angle by varying the gate
opening. In this light, Takahasi's transition point may be interpreted
as the maximum inclination angle at which suberitical flows may be
observed. For comparison purposes, some of the present data, extracted
according to the above interpretation, is also plotted in Figure 4.16.
‘Unlike Takahasi's, the chute angle in the present work was not con-
tinuously varied. The data shown in Figure 4.16 must be read as the
llargest of the angles studied (18°, 20°, 22°, 25°, 30°, 38?) at which

subcritical flows were obtained. The transition for the glass beads
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used in this étudy occurred at much smaller angles than Takahasi's.
In fact, the transition occurred at angles where Takahasi's sand prob-
ably would not even flow.

The main difference between the present observations and Takahasi's
is that his "laminar" regime is associated with the appearance of a
stagnant wedge on the chute bottom. Stagnant wedges accompanying
subcritical flows were also observed in these studies, but only at
large gate openings., A stagnant wedge is essentially the continuation
of stagnant zone B out through the gate and into the chute (see Figure
4.6). A wedge extending far into the chute is shown in Figure 4.17.
The deeper the depth, the further down the chute the stagnant wedge
would extend. In no case was the wedge allowed to extend as far as
the first point probe location.

Subcritical flows occurred for a wide range of depths without any
stagnant wedges. This is one of the benefits of using size-sorted
glass beads as a test material as opposed to the various types of éand
used by Takahasi. Sandltends to pulveri;e. The smaller particles
fill the gaps between the larger, producing a bulk material that is
difficult to shear. Sand flows wedge much more readily than glass
beads.

The flow slows a great deal as it transitions to suberitical. The
shear rate and the granular temperature (see Section 3.1.1) of the
flow will proportionally drop. Thus stagnant regions and plug flows
will be much more likely to develop. Hence it is the transition to
subcritical flow that brings about the formation of the wedges, and not

the other way around.
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It is standard pfactiée to prevent blockage by flaring the ends
of industrial chutes (see Wolf and Van Hohenleighten [85]). This decreases
the depth of the flow far downstfeam, increasing the Froude number
above the critical value. Transition is thus avoided. Industry has

once again provided a solution for a problem that had not yet been

fully understood.

4.6 Depth Profiles

Figures 4,18 through 4.23 illustrate the variation in flow depth
along the chute for various values of the gate opening and chute incli-
nation. Almost all the profiles show the same general behavior. There
is always the sharpest decrease in depth as the flow accelerates out of
the gate. Even at large inclination angles, most of the depth change
occurs between the gate and the first point probe. Even though the flow
.appears to approach a state of constant depth (uniform) flow, this is just

the parabolic depth profile that characterizes a flow with more or less

constant acceleration..

The exception to this rule can be seen in the depth profiles that
correspond to subcritical flows. In many of these the flow appears to
approach a uniform value, but ﬁill then "break" and undergo further
aqceleration, suffering a large depth change over a relatively short
length of the chute. The break is visible through the chute side wall
and has a well defined location.

It is possible that the break contributes to the downstream flow
control. Subcritical flows are possible as long as the Froude number

assumes a critical value somewhere downstream; it need not necessarily
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be critical at the chute exit. The Froude number could be critical at
the break. However, the experimente that examined the details of the
flow near the chute exit (which were performed several months later)
indicate that critical behavior does occur at the exit. It appears
that the flow may assume critical behavior twice, once at the break
point and once at the exit. This would explain why, in Figure 4.20,
the flow depth after the break remains much deeper than the super-
critical flows shown with roughly the same mass flow rate.

For constant mass flow rate

u o«

=l

Fr = 1
h3/2
The Froude number must then have a different value at the break than
at the chute exit. However, the critical Froude number depends on the
profile parameters T and Yy, and can assume different values along the
chute. It is then possible for the flow to become critical at both
the break point and the exit. This implies that the ratio, I'/Y under-

goes relatively large changes.

4.7 Wall Friction Coefficients

The supercritical/subcritical flow transition, as well as the lack
of dependence of the mass flow on the gateopening, depends on how down-
stream conditions affect the flow upstream. In the general equation
for open channel flow derived in Appendix A, the downstream conditions

are repreéented by the term:
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TP
W

— dx
ppvcgbh,

This term looke much like a friction coefficient:

T T
p == = W
T p Vv ghcosa
Nl pc

The friction coefficient could be determined in much the same way
as Augenstein and Hogg [2]. TFor a constant acceleration, a, starting
from rest:

_1d?
a 2 x

where u is the velocity and x the position along the chute. Thus a is

half the elope of the curve of u2 versus x. By a simple force balance,

a = g(sinf -y cos 8)
s0
H a 2 gx

2
1 (u/gR)
tan 6 - 2 " x/R)

A plot of uZ/gR versus x/R is shown in Figure 4.24. Several points are
shown for each angle, corresponding to several gate openings. There is
é great deal of scatter in the data, but it is still possible to draw a
straight line that intersects most sets of points.

The friction coefficient corresponding to each line is also indi-
cated on the graph. Contrary to the evidence presented by Augenstein

and Hogg [2], there is clearly a large variation in u with inclination
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angle. (Augenstein and Hogg's results were for "thin" flows, although
théy do not state exactly what they mean.) The friction coefficient
should reflect the velocity and density profiles, and depend on chute
éngle only indirectly through the angle's effect on the flow. It is
likely that the scatter in the data is a result of depth and velocity
changes. A more accurate method that could determine [ locally is
needed to determine its functional dependence on depth and velocity.

After dividing by cos a, the general integral equation (A) becomes

TWP Fr2
cosu2

tan o + Eh—(y -

pp\)c gbh cos o = dx
If the side walls have a negligible contribution tu the total shear
stress, (if ?ﬁ P/b = TW) the left-hand side reduces to a friction
coefficient and this equation may be used to determine the local
value of u.

The effect of the side walls is contained in the integral
ﬁ;P'= J T, 4
P

In this simplest friction model the shear stress on a wall is propor-
tional to the normal force, which is itself roughly proportional to
the distance from the free surface. But due to the normal stress
differences, the normal force on the side walls will be smaller than
that which would be exerted at the same depth on a wall parallel to
the bottom. Roberts [62,63] accounts for side wall effects by defin-

ing an effective friction coefficient peff as if all the stress were

applied on the chute bottom:
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- h

where U is the actual friction coéfficient and k is twice the ratio of
the side wall pressure to an equivalent bottom pressure. Roberts [62]
measured k statically and found k = .3 for millet seed. Savage [68]
repeated Roberts' experiment and found k = .453 for glass beads in a
rough-walled chute. Savage and Jeffrey [71] found that the normal force
in the direction perpendicular to both the flow direction and the
velocity gradient was at most equal to the normal forces in the other
directions. They predict that k= 2 as S > 0, and decreases monotoni-
cally to k = 2/3 as § » =,

Unfortunately, it would be difficult to measure k from the data
taken during the present investigation. But for the 8.9 cm wide chute,
the maximum depths at the point of measurement were about 3 cm. For
k = .5 the correction due to side—wail effects would be about 16% of

the total.

Ignoring side-wall effects, the equation for the friction coeffi-

cient is then:

-1

where dh/dx is found from cubic spline fits through measured values of h.
The problem is now to approximate the profile parameters y and T.

T depends only on the density profile, which is not easily measured.

In the absence of better information, T is assumed to be unity. The

parameter Yy may be approximated by assuming a linear profile based on

the measured surface velocity ug and the mean velocity interpreted from
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the mass flow u = v bh Then,
pec
u_ 9 u
1 s 2 s 4
=2 (= -3 =) +5
Y =3 3 () +3

Typical computed values of U are shown plotted against an appro-
priate dimensionless velocity us//gﬁ is Figure 4.25. The dimensionless
quantity is based on the surface velocity rather than the mean velocity.
The velocity u_ was deemed more representative for shallow depths where
the density may be lower than the critical value, distorting the value
of u computed from the mass flow. It is expected that ik also varies
with h/R, but no clear trend was apparent.

It is difficult to have a great deal of confidence in these re-
sults. In all cases, the flow is close to uniform and dh/dx is small.
It would be expected from examination of the equation that K would then
vary as tan o with small velocity correction for large Frz. This is
indeed the behavior seen in the data in Figure 4.25. There is mno
gentle transition from one angle to another. The data from each angle
seems to follow its own curve. This would not be so troubling, except

for the questionable validity of the assumptions used in deriving and
using the equation, assumptions that are as yet unverified experiment-

ally.

4.8 Conclusion

It has been shown that granular material flows in chutes may be
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classified as supercritical or subcritical. The two flow types repre-
sent conjugate states of open channel flows. The classifiecation of a

flow depends on whether the Froude number Fr = u/vgh is greater or

T cos ay1/2
( » )

vy and T are profile parameters that reflect the shape of the local

smaller than some critical value FrC = . The quantities
velocity and density profiles. The type of flow has been shown to have
a strong effect on the mass flow rate.

The mass flow rate in a supercritical flow is choked at the
inlet to the chute and is determined by the conditions there (i.e.,
gale opening). In such a case the chulLe behaves much like a hopper,

and the mass flow follows the correlation:

Frg = 2K sin a

where Frg = u/\/gHy is the Froude number based on the velocity and

hydraulic radius:

h b
q <2__8
y P 2(hg+b)

at the gate. K 1is a material property and has a value close to one.
The mass flow rate in a subgritical flow is choked somewhere
downstream and is independent of gate opening. The Froude number,
velocity, and depth are all fixed at the chute exit, presumably at
critical values. The critical values, however, depend on the inclina-
tion angle and the chute geometry. This occurrence was only
phenomenologically described, and as yet no explanation presents

itself.
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An understanding of the supercritical/subcritical flow transi-
tion may have important engineering significance. Subcritical flows
are generally undesirable because they are accompanied by slowing of the
flow and the formation of stagnant wedges on the chute bottom. But
more important, the maximum mass flow rate obtainable from a chute of
fixed inclination angle is more or less limited to its tramsition value.

The depth profile in a supercritical granular chute flow follows
the parabolic shape characteristic of a constantly accelerating flow,
for all inclination angles. Subcritical flows may exhibit a phenomenon,

termed "breaking," where the flow approaches a uniform depth and then
breaks, accelerating for a short distance before approaching another uni-
form flow depth. It was hypothesized that the flow assumes critical
values at the break point as well as at the chute exit.

The key to the subcritical flow behavior appears to depend on the
frictional interaction between the material and the chute wall, Attempts
to measure the friction coefficient produced inconclusive results,vbut
indicated that the friction coefficient is not a constant material
property. To characterize properly the frictional behavior requires
direct measurement by load cells.

Finally, some mention should be made of the possible role of inter-
stitial air effects in the experiments. Rough estimates of the Bagnold number
(Sectionl.Z)yieldvaluesoftheorderof103,suggestingtbattheexperiments

do lie in the granular material flow regime. Nevertheless the interstitial air

may play a role in some parts of the flow, for example in the saltated layer.
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Tigure 4.3 Photograph of a point probe used for flow depth
‘measurements



-173~

oll =P ©esYy3peaIq °23nyd
SNOTIBA 103 Speaqssel8 9Ig JO YIpTa Jrun Iad MOTJ SSel vy 2andrg

(WO) ONINIJO F1V9

<
>
wm
w
! 1 i ° ﬂll
0@ O
e @ © o © © 5 o © @ 0 M ¥ =
B - mw .
2 M
Py
i . ov ¥ 11 C
v 44 v v M :Nla
v v v m -
j v 112 =
H S
2)°7] =

. woyzZl=q + -
B + o+ + woe'8=9q v - 8¢ mmw
" wo|°c=q ©° R/u,
i

| i L
G¢ Mw\



~174~

‘wdg'g = q

*SUOTJIBUTIOUL 33NYD

snoTaea 103 speaqsseTd #Idg 3JO yipTa 3Tun 1ad MOTF SSB €4 2in3Td
(W2) 9NINIdO H1V9
Gl <l Ol G ¢ c
L L 1 T { l
Q 0 ©
|
- v
v
- v v M v . +
\ 4 v _
+
¢
- + + +
+ 4 + 4+ o+ X
- X
A o8¢ ¥
% X
° v O ©
- % X @ +
% X % M + Omwmw X
o9 ocl *
" oOZ v
B o @ *
| 000 Om_ o
o ® v 0
..ﬁ L1t e Y ¥ | I I _

N

NETO)

O
(W-S/0%) HLAQIM  LINN ¥3d MO14 SSYIN

o
Q\

o O
YS!

OOl



-175-

. -g pue °y souoz jueudels oml 3yl 3upmoys 233
IemOT @yl jo KITUTOTA 2yl UT uxd3jed molF 9yl jo IIeI=2A 9% 2an3ta

Y




-176~

02

-speaq

~sse18 14 °smMmol3} {edF3fIdiadns 103 sisquni opnoij 2389 /4 2xn31d
q/P4* ONIN3JO 3LVO Q31VOS
| T I 0
i X Y Hs0
X
X w+
@ @ ¢ o o b XWVA y o ) M_WWX
® S x
+ 4 HO ° M ¢ o % » X W *Xmﬁ_. «++. .‘M.T |.H._
* ¥ $ ., ¥ *f.&+ Yo REXE @ «Qa
i MR " v ° 7R x Xy Y40l N
% X nW‘m w
¥ X ° -
* © )
o8 =0 ¥ X @ (@]
0 =D 9
B omN Nd X ..IA.W.—
o0 =D +
02 =0 V¥
o8l =0 @
_ ! : 02




-177-

o<

G" |

0|

*spEeaq
-sseT8 9Ig *sSMOTY [®oTiTaoiadns 103 siequnu 9pnoll 789

q/°%4 “ONINIJO ILVO T3ITIVIS
G0

gy 2and1g

o 8¢
0 0%
0G <2
0?2
002
o8l

(T I T
g oo oy

x
+e XX X

©
©
©
¢ t+%x
+o

+*°

© 4 + X © 4

6 X X
X % ®
o x¥

* X 5
‘.

o¢ X

*¥K o

*+ X

X

MR &
©x

*>

+¢ ©
X

X

4

+X 6 4

¥

wt

4 4
4+«

ot ¢
“ cuxte
+ 4 MNX

<+

4

®

4 ©d4¢ X

G0

(@
Puig/ Bag

Gl

0°¢



E 40
"
~N
o
=
T
= 30
o
=
=
>
D
o 20
Ll
o
<
e
il |
[T
10
wn
w
<
s
4
g
= 0

Figure 4.9

-178-

18°

0
O
v
A

L_zzlg l I I I

20 30 40 50
RATIO, L/b

Maximum mass flow rates for subcritical flows as a
function of chute geometry BT6 glassbeads.
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Figure 4.10 Maximum mass flow rates for subcritical flows as a function
of chute geometry BT4 glassbeads.
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Figure 4.12 Exit (critical) depths as a function of inclination angle
and chute geometry.
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Appendix A

A GENERAL EQUATION DESCRIBING OPEN CHANNEL FLOWS

Consider a force balance on a control volume of width dx in a
chute of breadth b, as shown in Figure A.1l. The total momentum change

within the control volume is

h

p._bx J vuz dy| - J Vu2 dy
P 2 1
0 0

. This must be the result of a balance between a body force

h

ppgb dx sin o I v dy,
0

~

a pressure difference on the control volume walls,

h b
Lol oo
0 1 9o 2

and the shear stress on the chute walls,
- J T df dx
w
P

where T . is the wall shear stress and is integrated around the wetted
w
perimeter P of the system.

For the purposes of this analysis, we will assume that:

h
p(y) = j P,V g cos a dy’
y
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It can be seen in Sundarum and Cowin [81] that the wall pressurc varics

in this manner near the free surface of static bins. Define

where

<
1

N u dy

=3
il
Ot

Note that vy, T, T -\;, h, and u are all functions of x. T and y are

characteristics of the profile shapes and probably change more slowly

with x.

Then the force balance becomes
o b d(Uthy) = p_ghbvh sinadx-p _gb lCOSOLd(-\thT) -T P dx
p P p° 2 W

Mass conservation implies

where Q is the wvolime flow rate and hence

d ~ - 1 — 2
- = i -z -t Pd
OPQ I (uy) ppgb\)h51n adx-3 ppgb cos o d(Vh“B) T P dx
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Up to this point the equation is exact. However, due to the lack
of good instrumentation, ;} Y, and I' cannot be determined experimentally.
It was shown by Ridgway and Rupp [60] and in our computer simulation
(see Section 3.1.1) that the density is constant over most of the depth
even for relatively shallow flows. Hence, it seems a reasonable first
approximation to assume that Vo= Vc = const. I' and ¥ are functions
only of the shape of the velocity and density profiles. It may be
assumed that the profile parameters are adiabatic invariants, that they
don't change very radically relative to other properties of the flow.
(The evolving velocity and density profiles generated by the computer
simulation appear to retain roughly the same shape. The profile
parameters would not then vary a great deal.)

In particular:

dh >> dT

and
du >> dy
While this assumption iqtuitively has physical validity, it is clearly
subject to reevaluation once it becomes possible to determine I' and 7y
experimentally.
The equation then may be written
2

Q
P by h
C

-p 5 vy dh = ppvc gbhsin o dx

- ppvc gbhT dh - TWP dx

or, dividing by pp gb \)Ch,

2 T Pdx
—————9————Y dh = sina dx - cosa T dh - ——xe
2 2 3 p v gbh

b Ve gh pcC
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Note that

2 gh

Q2 _u 2
b vz
c

where Fr = u/vYgh is the Froude number. Thus,

T P
2 . W
(T cosa- v Fr')dh = (sina Dpvcgbg dx

may be used to describe the flow in an open channel
Note that relative incompressibility is the only assumption made

in deriving this equation. Thus it applies equally well or better to
the flow of liquids. For liquid flow at high Reynolds number, it may
be generally assumed that T = y = 1. The inclination angles for
fluid channels are generally very shallow, and it may be assumed that
cos & ® 1, With these simplifications this equation takes on the
general form of the open channel equation at motion generally used in

hydraulic calculations (see, for example, Sabersky, Acosta, and

Hauptmann [65].
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Appendix B

LISTINGS OF THE MAIN PROGRAMS

B.1 COLOOl: Main Program for the Inclined Chute Simulation

cececeeececeecececeecececeecceeececceecceccececececececcccceccccecccceecceecccceccecce
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c
C
C
c
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c
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c
C
c
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C
c
C
C

[aNaXal

PR

TH
IN

TH
TH
IT
MA

RE

OO0 ON

[=]
o]

C
X

»x ¢ x

C

OGRAM COLOO1

IS PROGRAM IS A SIMULATION OF THE FLOW OF TWO-DIMENSIONAL DISCS
AN INCLINED CHUTE

IS PROGRAM BELONGS TO CHARLES CAMPBELL, THOMAS 03, X4153

IS PROGRAM USES THE OUTPUT FROM COLOO7 AS INITIAL DATA. .
SUBSQUENTALLY GENERATES ITS OWN DATA SC THAT THE SIMULATION

Y BE CONTINUED AFTER EXECUTION OF THIS RUN IS COMPLETE

QUIRED SUBPROGRAMS:

COoLLUP: THF COLLISION ASSESSMENT ROUTINE

PARTCL: SOLVES THE COLLISICN BETWEENR TWO PARTICLES

WALLCL:® SOLVES THE COLLISION BETWEEN A PARTICLE AND A WALL

INIT = 1S AN ENTRY INTO THE SUBPROGRAM INSRT THAT INITIALIZES
THE COLLISION LIST

NEXT @ IS AN ENTRY INTO THE SUBPROGRAM INSRY THAT YIELDS THE
NEXT COLLISION TO GCCUR

REMOVE : REMOVES FROM THE COLLISION LIST ALL COLLISIONS INVOLVING

A SPECIFIED PARTICLE
PICTRE: DRAWS A PICTURE OF THE CONTROL VOLUME
SPLNE 3 IS A CUBIC SPLINE FIT ROUTINE
LSQUAR: IS A LEAST-SQUARES FIT ROUTINE
GRPLAT: IS A PLAOTTING ROUTINE
READNFy WRTNF, ENDMF, AND REWFF ARE TAPE MANAGEMENT ROUTINES

cceceeceecececeececccecccecccececceeccccececcceccceeccecececcceeccecceccccececeeccecccc

DIMENSION X{1000},Y{1000),Ut1000),V(1000),W(1000),
MAL50) ,QM(50) +QUI50),QVI50),QUV(50),QRH{50) »Q53(50),
QD(50),QW{50) ,ON{50),IR{1000) +DIST(1000),QT3(50),
DATA(3,20)+DATA2(3,20)+AV(10),AD(10),QE(1000),VMAP{50),
AN(10),QDP(50),QD2(S0),DATAL(3,20),QUP(50),QVP{50),
MAP(80,84),DUY{50),DVY(50),DUY2(50),DVY2(50),DDY(50),
D2UY(50)4D2VY(50),DIS{50),Q56(50)4QR{50)4NCOL(50),
QT6(50),QNF{50), QUVP(50),FY(300) ,QRXX{50},CRNS{50},
QRSS{50)eQUDL (501 ,FNUI50),QMI(50) 4ONI(50) 4OFL(50},
QNUMIS50),FNCOL{50),Q54{50),Q74(50),QU2(50),QVv2{50),
QUV2{50),QM2(50),QN2(50),QK2(50) s QWP (50) ,QRU{50),
ORV(SNI LLOLNIS(501,0W1{50),0wW3(50) RIMPLS(2}+THETA(10001},
NAV(50) yIFG(50),CON(100)

NOT USE WITH MORE THAN 80 PARTICLES WITHOUT CHANGING MAP DIMFNSION

DOUBLE PRECISION STOR(10,23),QT1(50}),QS1(50),QT(50),Q5(501),
QT2(50),0521(50) y053+054+Q55+QT3+QT4,QTS5TIMyTIME,DT#TINEF
LOGICAL XTEST,YTEST,LASTP,POINT,LINE,AXIS,TITLE,DASH,ORIGIN

+PDOCySCXeSCY
COMMON/ A/ 1T 3XsY oUyVoWsSHEART,SHEARN, IR9AISS
COMMON/B/ITA, ITByITCoALS,ALCALT ALCT yWL,WLSMLCoATISNyAISC
COMMON/D/DIS,SToNCOL,RIMPLS
COMMON/E/MDIS
COMMON/PLOATA/ XOFF o YOFF ¢ XSZE+YSZEsNIXyNIY o XMINy SCX9SCY
XMAX YMINy YMAX o XLPOS o YLPOS, ISYM NDSH,ORIGIN,
XTESTYTESTyLASTPyPOINT LINELAXISTITLE,DASH,
FLOJXFMT(2)YFMT{2) NFX,NFY, PDOC
COMMON/EXTRA/CSIZE
COMMON/PARAMS/ EP,EW,NDOC1,NOCL,SLVE sUMAX,ITPL,HM,ALPH
DATA DFMTLY/®*(F7.'/,DFMT2/%) */,DFNT3/%1) /7,
DFMT4/°0) %/

C
c
C
C
c
C
c
C
C
C
C
c
C
c
C
C
c
C
C
C
c
C
C
C
C
C
C
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
INPUT VARIABLES:

(o
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c NOCD 3 IS THE NUMBER OF COLLISIONS TQ BE PERFORMED THIS RUN C
C NOCE : IS THE NUMBER OF COLLISIONS FOR THE AVERAGING VIME C
c ST $ IS THE AVERAGING STRIP WIDTH (IN PARTICLE RADII) c
C IPLT 2 IS A FLAG: IPLT= 0O NO PLOTS TO BE MADE THIS RUN C
C IPLT NON-ZERO PLCTS TO 8E MADE C
c ITAPE: IS A FLAG INDICATING WETHER [NTERMEDIATE SYSTEM STATES C
C ARF TO BE STGORED ON A MAGNETIC TAPE C
C ITAPE= O NO STATES TO BE STORED C
c ITAPE=N STATES 7O BE STORED AFTER Cc
C N COLLISIONS C
cceeecceccececcceeccceccececceecreecececceecceccceccceccceccececcceccccccececcccececcccecceee

2000 READ (5,502} NOCDyNOCE.ST4IPLT,ITAPE
502 FORMAT(215,F10.0,2110)
IF (NOCD.EQ.O) STOP
NOCl= NOCFE
NOCE= NOCD - NOCE
c NOCE 1S THE COLLISION AT WHICH AVERAGING IS TO BEGIN
IF (NOCE.EQ.0) NOCE= 1
cceeeecceeeceeccececcceececccecceceeccceceeecccccceccececeeccececcccccecceecceccccceccce
C INPUT VARIABLES: c

C TINE ¢ IS THE DIMENSIONLESS PROGRAM TIME AT THE STARY OF THE C
c CURRENT SIMULATION RUN c
C NOCI : IS THE NUMBER OF COLLISIONS ALREADY RUN AT THE BEGINNING c
C OF THE CURRENT SIMULATION RUN C
c LAV3 : IS THE NUMBER OF COLLISIONS ON THE TAPE THAT THE CURRENT o
c STATE OF THE SYSTEM IS TO BE ADDED TO THE END OF. C
c EW 2 IS THE CCEFFICENT OF RESTITUTION FOR WALL COLLISIONS C
C EP t IS THE COEFFICENT OF RESTITUTION FOR PARTICLE COLLISIONS C
C ALPH : IS THE CHUTE INCLINATICN IN DEGREES c
c 8 : 1S THE RATIO OF THE RADIUS OF GYRATION TQ THE PARTICLE C
c RADIUS C
C 17 2 IS THE NUMBER OF PARTICLES c
C WL : 1S THE CONTROL VOLUME WIDTH (IN PARYICLE RADII) c
ceeeceecececeececceecceececcccececeececeececeecccccecccececcccecccceeccccecceccececce

READ (5,635) TIME,NCC!,LAV3
READ (59633) EW.EP,ALPH,8B
READ (54634) IT, WL
NOCi= NOCD + NOCI
WRITE (6:600) EW EPGALPHBsWLo IToNOC1yNOCL,ST,
c ITAPE, IPLT
600 FORMAT ( 26H COEFF.BF RES.FOR WALL = 4F12.3/

C 26H COEFF.DF RES.FOR PART.= oF12.3/
c 26H ALPHA = 4F12.3/
o 26H B=K*%2/R*%2 = gF12e3/
c 26H WIDTH OF REGION = 4F12.3,/
c 26H NO. OF PARTICLES = 4154/
C 26H NC,0F COLLISIONS = 416/
c 26H SAMPLING TIME = LI9/
C 26H SAMPLE INTERVAL = 4F12.3/
C 26H NEW TAPE? v 19/
c 26H PLOTS THIS TIME? 19777}
C
c INITIALIZE VARIABLES
c -

ALF =0.0174532% ALPH
ALS= SIN{ALF)

ALC = COS{ALF)

1TPL= 1IY

ALT =ALS/ALC

ALCT = ALC/ALS

WLS =WL#*ALS

WLC = WL*ALC

1EN= O

1000 1F (NDA.EFQ.NDQ.AND.NDQ.GT.IT) GOTO 210



AISN= ALS/(1 + B)
AISS= AJISN*ALS
AISC= AISN*ALC
TORQUE= ALS/(1.0 + 1.0/8)
LAV= 0

LAV2= 0

TIME3= 0.0

STl= ST - 1.0

ITA = IT+1

118= IT42

ITC = IT+3

Im= 17T - 1

10L= 0

SHEARN= 0.0
SHEART= 0.0

QCAV= 0.0

DAV= 0.0

HM= 0.0

FLMASS= (0.0

M2= 20

APE=0.0

AUE= 0.0

AVE= 0.0

AWE= 0.0

ICROD= 7
WRITE (64637) TIME

UUAV= 0.0
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637 FORMAT(///24H DRIGINAL PARTICLE LISY

cceceeeeeccceeccreecccecceoccecccceececcecceeeccceccccLeccecceccececececceceececcce

INPUT THE INITIAL STATE OF THE
THE INITIAL STATE OF THE SYSTEM (S DETERMINED
POSTTIONS AND VELOCITIES OF THE PARTICLES.
STATE OF A PREVICUS RUN
AS AN INITIAL SYSTEM STATE

INPUT VARIABLES:

- <X
e o8 5 a4 &

c
Cc
C
c
c
c
c
c
C
c
C
c
c
C
C
C
c
C
c
C

IR :t IS A FLAG TO INDICATE

00 22 I= 1,17

READ- (5,632} IR(I), XUI)y YUID, ULID,y VIIDe ML)

DS=- X(I)*ALC - Y(I)*ALS
DN= X{I}*¢ALS ¢+ Y{I)sALC
US= U(I)*ALC - V(I)*ALS
UN= UCII*ALS + VIII*ALC
UUAV= UJUAYV + US

WRITE (6,638)

638 FORMATULZ277771)

UUAV= UUVAV/FLOAT(IT)
AVTM= 0.005*WL/UUAY
UUAV= 0.0

IF (ITAPE.NE.O) GOTO 21

SYSTEM.

NON-ZERO:
HORI ZONTAL . PARTICLE POSITION
VERTICAL PARTICLE POSITION
HORI ZONTAL PARTICLE VELOCITY

“ VERTICAL PARTICLE VELOCITY
ROTATICONAL PARTICLE VELOCITY

NOTEz  ALL PARTICLE POSITIONS AND VELOCITIES ARE REFERENCED WITH
THE GRAVITATIONAL BODY FORCE IN THE VERTICAL DIRECTION,

" ARE NOT REFERENCED WITH RESPECT TO THE CTHUTE BOTTOM.
ccceececececcecececceceecceeceeccececececcceccecceeccccccceeccccecceccceeececcccceccce

22 WRITE (64631) I40S,DNsUSsUNyWI{T)IR(T)

BY THE INSTANTANEOUS
THIS MAY BE THE TERMINAL
CR MAY BE GENERATED BY THE PROGRAM COLOO7

WETHER A PARTICLE 1S ROLLING
PARTICLE N IS NOT ROLLING
PARTICLE N IS ROLLING

c
C
C
c
c
c
v
c
C
C
c
c
c
c
c
C
C
AND c
C
C



c

c

OO O OO0
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READ (20) NOCIF,TIMEF EHF'EPF ALPHF 4BF , ITF,HWLF
FLAV3= FLOAT(LAV3)/]

NS= INT(FLAV3)
IF (FLAV3-FLOAT(NS).GT.9.0E-4) THEN NS= NS+l
READ(20+END=21)
21 CALL READNFL204NS)
CHECK TO SEE IF THIS IS THE PROPER TAPE
IF (EWF L EQuEW ANDEPF EQeEPLANDEWF.EQ.EW.AND.ALPHF.EQ.ALPH,
C ANDJBF ¢EQeB.AND.ITF.EQ.IT.AND.WLF.EQ.WL} GOTO 24
WRITE(696231) NOCIF,VIMEF,EPF4EWFoALPHEBFy ITFoWLF,
NOCIFyTIMEFEPF ¢EWF o ALPHFBF o ITF, WLF

C
6231 FORMATII15,5F15.542115/F15.5,5115,2F15.51}

WRITE (646003)

6003 FORMAT(® WRONG TAPE MOUNTED®)

sTopP
23 NOC9= NOCI+ITAPE
WRITE (20) NOCO,TIMELEW.EP,ALPH,B, ITy WL
CALL WRTNF {20}
LAV3= 0
COMPUTE INITIAL COLLISION LIST
24 CALL INIT
LAVS= LAV3
0o 87 1= 1,IT
LAT= I+]1
87 CALL COLLUPII.LAT,0,TIME)

BEGIN MOTION
NCA=0
NDA=0
NQA= 10
INITIALIZE ARRAYS THAT WILL CONTAIN AVERAGED QUANTITIES
DO 162 LA=1,50
QS{LA)= 0.0 °
QT{LA)= 0.0
QS2(LAI= 0.0
IFGILAY= O
NAV(LAY= O
QT2(LA)= 0.0
QNUM{LA}= 0.0
CCLOTIS{LA)= 0.0
162 MA(LA)= O
DO 302 L=1, NOCD
COLLISION ASSESSMFNTY

1100 NCA2= NCQ

NDA2= NDOQ

NQA2= INT(DNQA)

NCQ= NCA

NDQ= NDA

DNQA= FLOAT{NQA)

TAKE NEXT COLLISICN FROM CCLLISION LIST .

NCA, NDA ARE THE PARTICLES INVOLVED IN THE COLLISION
NQA 1S THE FRAME IN WHICH THE COLLISION IS TO OCCUR
TIM IS THE PROGRAM TIME AT WHICH THE COLLISION IS TGO OCCUR

CALL NEXT(NCA,NDA,NQA,TIM)

WRITE (64676} LyNCAJNDASNQA,TIM/NCQsNDG,DNQA,IT

676 FORMAT(®* COLLISION 2 *+417,F15.595X52154F10.5,15)

CHECK FOR CONTINUATION OF COLLISICN PATTERNS THAT MAY BE INHIBITING
TIME ADVANCE. HERE WE CHECK TO SEE IF THERE IS A PATTERN OF
COLLISION OCCURENCE THAT IS DOMINATING COMPUTER TIME. SUCH
A PATTERN IS INTERUPTED BY IGNORING A COLLISION
EVERY TEN PATTERN OCCURENCES TC ALLONW SOHETHING ELSE TD HAPPEN
IF {TIM.EQ.TIME) GOTO 201

1000 IF (NDA.EQ.NDQ.AND.NDQ.GT.IT) GOTO 210



(o}

(o]

IF (INCALNE.NCA2,0R,NDA.NE.NDA2
€ GCTC 210

201 IF {IDL.LT.10}) GOTO 205
IDL= O
10L2= 1
GCTC 1100
205 I0t= IDL + 1
GCTO 215
210 IDL= O
FIND TIME SINCE LAST COLLISICN
215 DT= TIM - TIME

~204-

) «ANDINCA.NEJNDA2.OR.NDANELNCA2))

TIME ADVANCE: UPDATE PARTICLE POSITIONS AND VELOCITIES

IF (L.EQ.NDCE) TIMEl= TIME
218 DTA= 0.5%07*DY

L5= LS + 1
DO 170 1I=1,IT
DD= ULT1*ALC - VII)*ALS
DS= U{I)*ALS + V{I)*ALC
COMPUTE INSTANTANEQUS ENERGY OF S

AUE= AUE + DD#**2

AVE= AVE ¢ DS»%2

AWE= AWE ¢ WII)*%2

APE= APE + Y(I1}

UUAY= UUAV ¢ DO

IFR= O

THIS SECTICN COMPUTES THF TIME AD
IF (IR(IV.EQ.0) GOTO 107
{FR= 1
UISN= ULI)*ALC - V(I)*ALS
DIST{I)= (X{I)#ALC - Y{I)*ALS)
X(I}= DISTCI)=*ALC + 1.0%ALS
Y{I}= 1.,0%ALC - DIST(I)#*ALS
UISN= UISN + AISN*DT
UII)= UISN*ALC
V(I1= —UISN*ALS
Wll)= ~UISN .
IF (L.LT.NOCE) GCTC 170
COMPUTE SHEAR STRESS APPLIED TO W
SHEART= SHEART = TORQUE*DTY
SHEARN= SHEARN ¢ DT*ALC
GOTO 170
UPDATE FOR NON-ROLLING PARTICLE
107 vt} = vi{i) ¢« DTsv{I) - DTA
X(I) = X(I) & DT=U(I)
vii) = vi1) - oYy
DIST(Il= (X(I)*ALC) - (Y(I)#*AL
170 CONTINUE
177 CONTINUE
PARVICLE-PARTICLE COLLISICN SOLUT
220 IF (NDA.GT.IT) GCTO 121
1STRT= L - NOCE
CALL PARTCLINCAJNDAJNCABEP,I
IRINCA)= O
IR(NDA)= O
GOTO 132
PARTICLE-WALL COLLISICN SOLUTION,
131 IF (NDA.GT.1TA) GOTO 133
ISTRT = L - NOCE
CALL WALICLUINCA,B,Eu,ISTRT)

YSTEM

VANCE OF A ROLLING PARTICLE

+ UISN®DY + AISN®DTA

ALL 8Y RCLLING PARTICLE

S)
10N

STRT)

INDICATED BY NDA= 1TA= [T+1
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GOT0 132
THIS SECTION REMOVES PARTICLES THAT HAVE PASSED THE UPPER OR
LOWER BOUNDARIES

aXaXalal

COLLISION WITH UPSTREAM PERIODIC BOUNDARY INDICATED BY NDA= ITB= 1T+2
133 IF (NDA.GY.ITB) GOTOD 134
YINCA)= Y{(NCA) - WLS
‘X(NCA)= X(NCA) + MLC
GOT0 132
COLLISION WITH DOWNSTREAM PEIODIC BOUNDARY INDICATED BY NDA= ITC= [T+3
134 YINCA)= Y(NCA) + WLS
XI{NCA)= XINCA) - WLC

(2

132 TIME= TIM
TIMEZ2= TIME - TIMEL
6335 MAPINCANDAI= MAP(NCANDA} + 1
MAP(NDAJNCA)= MAP{NDAJNCA) + 1

[a ¥ xRl

ASSESS NEW COLLISICNS FOR THE TWO PARTICLES INVOLVED

CALL CCLLUPINCA.L¢NDA,TIME)
IF (NDALLE.IT) CALL COLLUP(NDA+14NCA,TIME)}

REASSESS NEW COLLISICNS FOR PARTICLES INVCLVED IN RECURRING PATTERN

(e N Kl

IF CIDL2.NEL1) GOTO 280
CALL COLLUPINCQs140,TIME)
IF (NDC.LE.IT) CALL COLLUPINDQ,1.NCQ,TIME)
I0L2= 0
280 IFf (NDA.GT.ITA) GDTC 1100

WRITE STATE OF SYSTEN ONTC TAPE

[aNeNw]

IF (DT.EQ.0.0.0R.L.LY.ITAPE} GOTO 157
LAV3= LAV3+]
NOC2= NOCI+#L
WRITE (20) TIME,NOC2,NCA.NDA,NQA,
C (XD oY II) UL T VLT D WD)y I= 1,1IT)
IF ((FLCAT(LAV3)/1000.0 — AINT{FLOAT{LAV3)/1000.0}).LT.1E-5)
€ CALL WRTNF(20) .
c EVERY FIFTY COLLISIONS WRITE CUT THE SYSTEM ENERGY
157 IF {(FLOAT(L)/50.0 - AINT(FLOAT(L)}/50.0)).GT.0.00001) GOTO 142
6340 AUE= AUE/FLOAT(2*IT*LS)
AVE= AVE/FLOAT(2%1IT*L5)
AWE= B*AWE/FLOAT(2%1T*L5)
UUAV= UUAV/FLOATILS*IT)
AKE= AUE + AVE + AWE
APE= APE/FLOAT(IT*L5)
ATE= AKE + APE
AUE= AUE = 0.5%UUAV**2
uuAv= 0.0
1EN= IEN+1
QE(IEN)= ATE
L5= O
L2= L - 50
WRITE (646500 L24L,AKE,APE,ATE,TIME)AUE+AVE,ANE
650 FORMAT(S5X,I5,*~"415,° COLLISIONS, AVERAGE KINETIC®.
C ' POTENTIAL, AND TOYAL ENERGIES ARE: '43F15.5/
C 20Xy TIME,UyVeW,ENERGIES: *94F15.5)
AUE= 0.0
AVE= 0.0
AWE= 0,0
APE= 0.0
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gCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

C  AVERAGE THE PROPERTIES OF THE SYSTEM C

C C

cgecececeeceeececceeccccccececceececccccecceccecceeccccceccecececccccccecececceecceccec

142 IF (L.LT.NOCE) GOTO 300
IF (L.EQ.NOCE) LAV4= LAV3
DO 1470 I= 1,M2
1470 IFG(I)= O

IF (NDA.GT.IT) GOTG 147

C

C COLLISION ANGLE DISTRIBUTION ASSESSMENTs RESULYT STORED IN ARRAY COLDIS

c .
LAv2= LAV2+l
DNQA= FLDATINQA)
DISY= YI(NDA) - (Y(NCA) + WLS*DNQA)
DISX= XI(NDA) + WLC*DNQA - X{NCA]}
DISC= SQRY(DISX*DISX ¢ DISY®DISY)
BS= DISY*ALC + DISX*ALS
BC= DISX*®ALC - DISY*ALS
IF (BC.NE.0.0} GOTD 143
Na= 25
GOTO 144

143 NA= Y+INT(-(ATAN{BS/BC) - 1.570196)/7.06283186)
IF (NA.GT.50.0R.NA.LT.0} GOTO 147
144 COLDIS(NA)}= COLDIS(NA} ¢+ 1.0
147 IF (TIME-TIME3.LT.AVTM.AND.L.NE.NOCD) GOTO 300

TIME3= TIME
c
C DENSITY AND VELOCITY DISTRIBUTION ASSESSMENT
c

LAY= LAV+]

DO 500 I= 1,17
DC= Y(I)}*ALC + X{I)%*ALS
DD= U(1)*ALC - V(I)*ALS
DE= U(1}i*ALS + VIIi=*ALC
M= 1 ¢ INTIDC/ST)
IF (M,GT.50) GOTO 500
501 MI= MAXOIMZM)
HM= HM + DC
FLMASS= FLMASS + DO

DETERMINE STRIP IN WHICH PARTICLE CENTER LIES
AND STRIP IN WHICH REST OF PARTICLE LIES

2 ¥akalz)

S= . DC - FLOAT(M-1)*ST
A= 1,0
IF (S¢GEelas0O) GOTO 550
Ml= M-1
IF (ABS(S).GT.1.0) GOTO 237
GOT0- 560
550 IF (S.LE.ST1l) GOTO 570
§= ST - §
Ml= Mel
IF (ABS(S).GT.1.0) GOTO 237
c A AND A2 ARE THE PERCENTAGE OF EACH PARTICLE THAT LIE WITHIN EACH STRIP
560 A= 1.0 ¢ (S*SQRT(1.0 - S*S) - ARCOS{S))/3.14159
A2= 1.0 - A

CONMPUTE INSTANTANECUS AVERAGE NOF PROPERTIES WITHIN STRIP

(s XaXa)

570 QD2(M)= QD2{(M) + A
MA(M)= MA(M) + 1
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QN2 (M)= QM2(M} + A*DD
QN2(M)= QN2(M) + AXDE
AWI(MI= QWLIM) + A*WLI)
QW3 (M)= QW3 (M) + A®N(]}**2
QU2(MI= QU2(M) + A%DD**?2
QU2i{Mi= QV2{M) + A*DE**2

QUV2I(MI= QUV2({M) ¢+ A*DD*DE
IF {IFG(M).NE.O) GOTO 5700
NAVIM)= NAV(M)+1
IFGiM)= 1
5700 IF (L.NE.NOCE.AND.L.NE.NOCDY GDYOD 575

QS2{Ml= QS2(M) + A*DD
QT2(M)= QT2(M) + A*DE

575 IF (A.EQel.0}) GOTO 500

QD2(ML)i= QD2{M1) + A2
QM2(M1)= QM2(M1) + A2*DD
QN2(M1)= QN2(M1) + A2*DE

QW1 (M1)= QW1(M1) + A2%W(I)
OW3{M1)= QW3(M1) ¢ A*uW({[)==*2
QU2 (M1)= QU2{M1} & A2%DD¥*2

QV2{Ml)= QV2(M1) + A2*DE*#*2
QUV2(M1)= QUV2(ML) + A2*DD*DE
IF C(IFG(M1).NE.O) GOTD 5701
IFG{(ML)= 1
NAVIM1)= NAV(M1)el
5701 IF {(LNEJNOCE.ANC.L.NE.NCCD)} GOTO 500
C QS AND QT ARE USED TC COMPUTE THE SHEAR AND NDRMAL STRESSES RESPECTIVELY
QS2{M1)= QS2(M1) + A2#*DD
QT2(M1)= QT2{(N1}) + A2%DE
500 CONTINUE
00 580 I= 1,MZ
IF (QD2{1).EQ.0.0) GOTC 580
C AVERAGE INSTANTANECUS SYSTEM STATE
0D{1)= QD(I1} + QD2{(D)
QNP (I)= QNP{1) + QP21 [)*%2
QMIT)= QM(I) + QM2iT1})/002(1)
QNC{II= ON(T) an2(I)/QD2(l)
QUiIl= QUI(T) Qu2{ti/anz2(1l
Qviil= Qvil) Qva2(1)/QD2(1)
Qw(ll= Qu(I) QWwi{Il}/sQD2(1)
QwW2(I)= QW2(I) + Qw3lrd/QD2{l)
QUV(IY= Quv(l) & QuUv21{l1)/QD2(1)
QRSS(I)= QRSS(I) + Quva(I}
QANSI{I)= QRNS{I) + QV2(1)
QRXX{I)}= QRXX({I) + QU2(1)
QRU{I)= QRU(I) + QM2{ 1)
QRV(I)= QRV(I) + QN2(T)
Qp2(1)= 0.0
gM2(1)= 0
an2{(1i= o0
0
0

*r e

QU2(1)=
Qv2(1)=
QUV2(T)=
awi ()= 0.
Qw3il)= 0,0

IF (L.NE.NOCE.AND.L.NE.NCCD} GOTO 580
Qs(11= @s2(1) - QS{I)
QTLIN= QT2(1) - QT(I)
0s2(1)= 0.0
QT2(I)= 0.0

580 CONTINUE

299 CONTINUE

c
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g IS RUN OVER?

300
302
c

C

IF (LAVB.bE.ISOOOI GO0TO 301
CONTINUE

c IF SO WRITE RESULTS

301 Kl1= 1
K= MINCUITC,20)
572 WRITE (64603} (141= KleK)
603 FORMATL///77" COLLISICN MAP*//TX,42015 /)
DO 574 I= 1417
5T4 WRITE (64604) I,{MAPLL,12), 12= K1,4K)
604 FORMAT{(17,2015)
Kl=z K¢l
IF (K.EQ.ITC) GOTO 573
K= MINO{(K+201,17C)
GOTO 572
573 IF [LAV.EQ.0) GOTC 237
HM= HM/FLOATILAV*IT)
MZl= 1 4 INT(2.0%PM/ST)
IF (3.0%QD(MZ1).LT.QDIMZL-1)) MZl= #MZ1 -1
WRITE(6,691)
691 FORMAT(®1v//40H DENSITY AND VELOCITY CISTRIBUTICONS /
C /15X¢15HSOLID FRACTION 4 5XslHUgL4X9lHV 214X elHW,13X4HU**2,
C 11XeaHVEX2,12X,2HUV//)
FLAV= FLOAT(LAV)
UMAX= -1000.0
NC= ©
DO 130 M= 1,M1
IF {NAV(M).EQ.0) GCYO 130
FNAV= FLOAT(NAVIM))
QM{NM)}= QM{MI/FNAYV
IF (QM(M).GT.UMAX]) UMAX=CM(M)
CN(M)= QN(M)/FENAY
QWiMl= QW(M)/FNAY
QW2iM)= QW2(M)/FNAV
CUIMI= QU(M)/FNAYV
QViM)= QVIM)/FNAV
QUVIMI= QUVIM)/FNAV
QDIM)= 3.141592 * QD(MI/(ST*WL*FLAV)

130 WRITE (64690) M,MA{M),QDIM) ¢QM{M),QN(M) QW {M) ,QU(M) s QV (M), QUV(M)

C ¥
€30 FCRMAT{215,TE15.6415)

WRITE (64692)
692 FORMAT(//7/716X ' W*%29,16Xy*D**",9X, *MASSFLOW ¢,
C X U IHE20 10Xy VO ORE20, 10X, " WOT*X28 10X, 0UsIVIC0 /)

D0 231 I= 1,M2

COPl= (3,141593/(STH*WL} I**22QDP(I)/FLAV -~ QD(I }*x%x2
QUDLA(T)= QMITI)/UMAX

CMF{I)= QD(I)#QM(1I)

QUPII)= QUET) — QMLT)I*%2

QVP(I)= QVII) - ON(I)#**2

QWP {I)= QW2(I} - Qu(I)%#2

QFLII)= QUP(I) + CQVPII)

IF (QUPLII#QVP(I).GT.0.00 QQAV= QQAV + CD(L)*SQRT(QUP{I)+QVPIIT)})

DAV= DAV + QDI(I)
QUVPITI)= QUVII) - CM(I)*QN(I)
231 WRITE(64693) 1,0W2011,QDPLsQMFITI}4QUPIL)QVPIT)QWP(T),
c QUVPI(I,I
€92 FORMAT{15+5X+7E15.5+15)
161 CONTINUE
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C REYNOLDS STRESS CALCULATION
WRITE(64654

£94 FORMAT{®1r, ' FLUCTUATING QUANTITIESY///
C LoXy "NUSUSKR2? o BX o * NURVER2T ,9X, *NUFURV? 310Xy "NUSU?,
c llx'.Nu‘v"gx,lNUII‘U.".gx..“ul.*v.ll'
DO 232 I= 1,MZ
IF (NAV(I).EQ.Q)} GOTO 232
FNAV= FLOAT(NAV(I))
QRSS{I)= 3.141593*%QRSS{T}/{ST*WL*FNAV)
QRNS{I)= 3,141593%QRNS(1)/{ST*HLEFNAV)
QRXX{I)= 3,1415G3%QRXX{T}/(STH*WLAFNAV)
QRUT= 3,141593*QRUITI/(ST*WL*FNAV)
ORVT= 3,141593%QRVII)/{ST*nLEFNAV)
QRULI)= QRUT -~ QD{I1)*QM(1)
NC= NC + NCOL({I)
QRV{L)= QRVY = QDC(I)*CN(I)}
232 WRITE{64693) I+QRXXUI)+QRNSIT),QRSS(I)QRUTHQRVT,
c QRUCE)ZQRVII), 1
WRITE (6,695)
695 FORMAT(///735X«*REYNOLD**S STRESSES*//
C 26Xy V=NURUT P #2271 46Xy *=NURV T XK20 ,6X, "=NURYI YRy 121/ /}
DO 233 1= 1,M
QRSS{I)= ~{QRSS{I} - (QRUCII*QNII} + QRVII)*QMII))
C - QDUIIV=QMETI®QONLI))
ORXX{I)= —(QRXX(I) = 2%QRUCI)*QM(I) - QDII)*QM(I)*%2)
QRANS(I)= —{QRNS(TI) — 2*QRVII)*QN(I) - QD{I}*QN(1)*%2)
233 WRITE(69696) I,QRXX{T) QRNS(IN,CRSS(T),I
696 FORMAT{16X.1IS.' *,3E15.5,17)
C WALL STRESSES AND OTHER AVERAGE SYSTEM PROPERTIES
SHERN= SHEARN/(TIME2¥WL)
SHERT= SHEART/(TIME2%WL)
SHEARY= SHERN*ALC - SHERT*ALS
SHEARX= SHERN*ALS + SHERT*ALC
FRIC= ATAN{SHEART/SHEARN)/0.0174532
FLMASS= FLMASS/FLAV
QQAvV= QQAV/DAYV
DAV= DAV/MZ
AVVEL= FLMASS/FLOATUIT}
RIMPLS(1)= RIMPLS(1)/FLOAT(NC)
RIMPLS(2)= RIMPLS(2)/FLOATIND)
RIMANG® ATAN(RIMPLS(2)/RIMPLS(1))
WRITE (646400 SHERT,SHERN,SHEARYSHEARX ,FRIC FLMASS,AVVEL +HM,
C QQAV,DAV,RIMPLS(1)RIMPLS{2},RIMANG
€40 FORMAT(%17///7/35%X424HWALL STRESS DISTRIEUTION'//

C 25X¢1SHTANGENTIAL 2 21F15.5,47

C 25X+ 15HNORMAL 3 2F15.5,7

C 25Xy15HY-DIRECTION:S oF15.54/

C 25X, 1SHX-ODIRECTION: WF15,547/

C 25X ,15HFRICTION ANGLE LF15.5,/7/

C 15X 19HMASS FLOW :  #F15.547

C 15X419HAVERAGE VELCCITY: 4F15.54/

C 15X,19HMASS MEAN HEIGHT: Fl15.54/

C ISXI‘.gHAVo FLUC. VEL. H 'FlSos ’

C 15X,19HAV DENSITY 2 yF15.54/

C 15X,19HNORMAL IMPULSE 2 +F15.5,/

C 15X, 19HTANGENTIAL IMP. = +F15.5,/

€ 15X,19HIMPYLSE ANGLE t F15.5,/7/77)
C WRITE QUY THE FINAL STATE OF THE SYSTEM

237 WRITE(64620) TIME

620 FORMAT(*1*///19H NEW PARTICLE LIST vF15.5)
DO 145 I= 1,17
DS= X(I)®ALC - Y(I)#ALS
DN= X(I)#*ALS ¢ Y{I)*ALC:



c
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US= U(T)*ALC - VII)*ALS
UN= UCT)*ALS & VII)*ALC
145 WRITE (69631) I+DSyONyUSsUNyW(TI),IR(I)

631 FORMAY ({15,5F15.54151)

PUNCH STATE OF SYSTEM ONTO CARDS FOR LATER USE
WRITE{7+635) TIMEJNOCL,LAV3
WRITE(T¢633) EW,EP,ALPH,8B
WRITE(T7,634) 1T,WL
00 320 I=1,1T7
WRITE(12,632) IRCI), X{I)y Y(I)y ULI}y VII}, WLI)
320 WRITE(7,632) IRUI), X{I)}, Y(I)y ULI),e VII}, WD)
632 FORMAT(I5,5F10.5)
€33 FORMAT(4F10.4}
€34 FORMAT(I5,F10.4)
£3% FORMAT(F10.3,215)
DRAW PICTURE OF CONTROL VOLUME
HM2= 2,0%HM
CALL PICTRE(HM2)
MAKE LEAST SQUARES FITS TO VELCCITY AND DENSITY PROFILES
00 770 I= 1,M11
DATA(Ll,1)= FLCAT(I-1)%5T7 + ST/2.0
DATAL2,1)= QM(I)
DATA{3,11= 1.0
DATAL(L,10= FLOAT(I-1)#ST ¢ 5T7/2.0
DATAL1(241)= QN(I)
DATALI3,1)= 1.0
DATA2(1,1)= FLOAT(I-1)%ST + ST/2.0
DATAZ2(2,1)= QO{I1}
770 DATA2{3,1)= 1.0
CHISQ= 1.0
CALL LSQUAR(DATAMZ]1+I0RD,AV,CHISQ,5TOR)
CHISQ= 1.0
CALL LSQUAR(DATA1,MZ1,I0RD,ANsCHISG,STOR)
CHISQO= 1.0
CALL LSQUARIDATAZ,MZ1, IORD,AD,CHISQ,STOR)
WRITE (6+660) (AV{I)y I= L410RDI(AN{I)¢I= 1,I0RD)
660 FORMAT(///7/724H VELOCITY COEFFICENTS: //
€ 3Xs5HU: +TD15.7/
C 3Xs5HV: »7D15.7}
» WRITE (0646750 (AD(I)y I= 1,»IORD)
675 FORMAT(///24H DENSITY COEFFICENTS: 778X 7015.7/17777)
COMPUTE AND WRITE OUT STRESS DISTRIBUTION
QS6{MZLi+l)= O
QT6i{MZL#+L}= O
WRITE (64645)
645 FORMAT(//35X,19HSTRESS DISTRIBUTION - o//7X¢3(*TANGENTIALY,
C S5Xy *NORMAL' 49X} o FRICTICN ANGLE?)
DO 800 12= 1,M21
I= 1 + MZ1 - 12
QS3(1)= —QS(I)I/{TIME2*ST*KR( *3.141593)
OT3(I)= -QT{I)/(TIME2*ST*WL*3.141593)
QS4(I)= QS3(I) + QDU(I1)*ALS/3.141593
QF4(1)= QT3(I) — QD{II*ALC/3.141593
QS6(I)= QS6(I#1) + QS4UI)*ST
800 QT6{1)= QY6UI+1) + QT4(II%SY
DO 801 1= 1,M21
ANG= ATAN(OSb(()IQTb(I)I
BO1 WRITE (64647} 10053(1)90T3|l)vQS4(I!'0T6(l)|Q56(l)|
C QT6(I)¢ANG,I
647 FORMAT(15,7D15.6,17}
WRITE OUT PROFILE OF ENERGY DISSIPATION BY SYSTEM
WCI S= WDIS/TIME2
TDIS= WDIS
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WRITE (6,610) WOIS
610 FORMAT(///735X+*DISSIPATION DISTRIBUTION®/
C 25Xs*WALL OISSIPATION: '9E15.6/77)
DO 423 I= 1, MZ1
01S{I)= DISIIV/TIMEZ
I01S= TDIS + DISLI}
423 WRITE (696151 I,DISLI)
615 FORMAT{36X:1595XsE15.6)
WRITE (64618) TDIS
618 FORMAT{//725X,°*TOTAL DISSIPATION: *,E15.6)
WRITE (64648)
648 FORMAT(//7/77/)
c COLLISION FREQUENCY AS A FUNCTION OF OENSITY
WRITE (64652)
652 FORMAT(*1',35X,*COLLISICN FREQUENCY*//
C 25Xs ' LEVEL NUMBER PERCENTACE NU*//)
NC=0
DO 2499 I= 1.,MZ
3499 NC= NC + NCOL(I)
DO 3500 I= 1.MZ
FNCOL([)= FLOAT(NCOLUI))/FLDATINC)
3500 WRITE (64653) 1NCOL{ID}«FNCOLIID,QDLI)
653 FORMAT(25X+217,2F15.6)
C CCNCUCTIVITY EVALUATION, PRCDUCED ERRONEOUS RESULTS
WRITE (646472)
6472 FORMATL///77735% *CONDUCTIVITY?/
c 27X+ *LEVEL CONDUCTIVITY SOLID FRACTION'/)
DO 3510 I= 1.M2
TSM= QSétI-1t
TNM= QT6(1-1)
TEM= ABSIQFL(TI-1))
IF {l«NE.1) GOYU 3505

TSM= SHERT
TNM= SHERN
TEM= O
3505 CON(1)= QMUI)*(CS6CI#1)-TSM)+AN(II*(QT6(T+1)-TNN}
c + ULI)®ALS -~ V(I)*ALC -~ ABSIDIS(I))

IfF (I1.EQ.1) CON(I)= CON(1) - ABS(WDIS)
CON{I)= CON(I}/(2QFLIT)-(QFLII+1}¢TEN))
3510 WRITE(6+64T71) 1,CONCE)QDLE)
6471 FORMAT(2TX¢1542F15,.5)
c VELOCITY AND DENSITY GRADIENTS
WRITE (6+677)
67T FORMAT(*1°///25X,22+-DISTRIBUTION GRADIENTS 77
C 12Xo*DU/DY? 46Xy * (DU/DY)}*%29 48X, *'D2U/DY2",9X,*0V/DY?,
C 6X,*(DV/DY)*%2° ,8X, 'D2V/DY2",8X,*DNU/DY* /)
I0R1= I0RD - 1

[ Xa Nl

GRADIENTS ARE FOUND FROM A CUBIC SPLINE FIT TO THE DATA

CALL SPLNE(MZ1,ST,QC.DCY.D2VY)
CALL SPLNE(MZ1,57,0M,0UY,D2UY)
CALL SPLNE(MZ1,ST,CNsDVY,D2VY]}

D0 420 1= 1,M21

IF (INEJ1.AND.I.NE.MZ1) GOTO 401

CMLY THE GRADIENTS AT THE ENDPOINTS ARE CCMPUTED BY THE LEAST
SQUARES FIT

[aXeNulal

DO 400 2= 2,I0R]1
D2MM= FLOAT{I12*{12-1) )*(FLOAT(I-1)*ST + ST/2.0)**(]12-2)
D2UY(E)= D2UY(I) ¢+ AVI(I2+1)*D2MM

400 D2VY(I)= D2VY(I) + AN([2¢]1)%D2MM
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401 DUY2(I)= DUY( [)%%?
DVY2(1)= DVY(I1)*#*2
420 WRITE(64678) I1,0UY{I1,DUY201),D2UY(T),DVY{I),DVY2(I},
€ D2VYLI),0DY(I),1
678 FORMAT(IS,TE15.6,110)
c
C MAKE YHE APPROPRIATE PLOTS
c .
DO 3900 I= 1,MI1
3900 FY{I)= FLOAT(I)/FLDAT (MZ1)
MRITE (6.6001)
6001 FORMAT(*1%,% PLOTTED DATA'//
C 20Xs%FY? ,12X,*UNORM® 8X, *MASS FLOW' ,8X,"F(NUD T,
C 12X,'R%, 12X, *S*R/2%,8X,* TEMPERATURE" }
DO 5000 I= 1,MZ1
FNU({TI)= ABS(QS6{I))/DUY2(1)
QMFL{I)= QMF{1)/UMAX
QRUTI= 2%SQRT{DUY2(T)7{QUP(T}+QVPLI)})
QRH(I)= 0.5*QR(I}*SQRT{3.141593/QD(1})
5000 WRITE (64693} IsFY{T),QUDL{T}sOMFLI)oFNUCI)QRII}SQRHIT],
C QFLUI), !
CALL DFAULT
SLVL= QM(1)
CALL NEWPEN(3)

YMAX= 1.10
CALL GRPLOT(MZ1.QUDLsFY,"U/UNAX %36,°Y/H *,3,
c YU/UMAX ¥YS Y/H 1913, *0)
XMAX= 1.0
CALL GRPLOTIMZ1,QD,FY,°*SOLID FRACTION *,14,4°'Y/H *,3,
c *SOLID FRACTION °®,1l4,* VS Y/H 1,10}
XMAX= 0.6
CALL GRPLOTIMI1,CMF,FY, "NU*U/UMAX *9G94'Y/H *, 3,
c *DIMENSIONLESS *513,'MASS FLOW *99)
XMAX= 1.0
YSZE= 7.5
NIY= 8
YMAX= 2.0
CALL GRPLOT(MZ1,QD,QR,y*SOLID FRACTION *,14,
c T2R*DUDY/VY  7,10,'R VS NU *,7,° 0
YMAX= 5.0
CALL GRPLOT{MZ1,Q0D,QRH,*SOLID FRACTION *,14,
c *R®5/2 155,R%S VS NU *,9,° *e0)
YMAX= 4.0

CALL GRPLOT(MZ1,QD,FNU,*SOLID FRACTION °*,14,

c *SHEAR/{DU/DY)2Z2 ',414,
C SOENSITY DEPENDENCE *,18,'0Ff SHEAR',8)
YSZE= 5.0
XSZE= B.O
NIX= 9
Nlvy= 5§
YMAX= 1.1

LASTP= L FALSE.

DD "S5101 I= 1,M21
SHERT= ABS(QS6(1))
SHRN= ABS(QT6(I1))
SHERN= ABS(QRXX{I))
SHRS= ABS(QRSS(I)}
SHRT= ABS{QRNS(I)}

5101 XMAX= AMAX1{SHERT,SHERN,SHRT ,SHRN,SHRSXMAX}
XMIN= =XMAX
XFMT(1)= DFMT]
XFMT{2)= DFMT2
NFX= 7
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CALL GRPLOT(HZI,QS&.FY.'DIN"LESS SHEAR  *,14,°Y/H 7,3,
C "SHEAR VS Y/H*y12,°* +0)
TITLE= LFALSE.
PDOC= .FALSE.
AXIS= (FALSE.
ORIGIN= .FALSE.
‘ISYM= 10
CALL GRPLOT(MZ1,QT6,FY,? *+04* Y40, 40, 'Ol
1SYN= 2
CALL GRPLOTIMZ1,QRSS,FY,? *y0y* '+0,° Y90, ',0)
1SymM= 3 :
CALL GRPLOT(MZ1,QRNS,FY,® 900 Y40, Y40, '+0)
ISYM= 6
LASTP= ,TRUE,
CALL GRPLOT(MZI1,QRXX,FY,* 40, *40,° 904" *,0)
CALL ENDMF({20)
DO 6051 I= 1,10
6051 READ(20,END=6052)
6052 TIME3= -AVTM

NUMC= O
C
c REWIND TAPE TO COMPUTE VELOCITY DISTRIBUTIONS
c

IRT= INTIFLOATILAVS + LAV3 - LAV4)/1000.0 + 0.00001)
CALL READNF{20,IRT)
LAVE= LAV ~ LAVS
DO 6100 N= 1,LAVé
6004 READ(20+END=6005) TIME,NCC2,NCA,NDA,NQA,
C (X o Y(I o ULT ) oVIT ) oWl Ho1=1,4IT)
GOTD 6007
6005 CALL READNF({20)
GOTO 6004
6007 IF (TIME~-TIME3.LT.AVTM) GOTO 6100
TIME3= TIME
DO 6010 I= 1,IT
OM= (XU1}P*ALS + Y(I)*aLC) /ST
IF (DM.EQ.0.0) WRITE(6,656) 1+NOC2,IT,X(1),Y(I)
656 FORMAT{® UNDER *43[542F15.5)
M= 1 + INT(DM)
IF (QFL(M).LE.D0.0) GOTD 6010
DOD= U(II*ALC ~ V(I)*ALS
DE= ULT)1%ALS ¢ V(I)*ALC
MN= 1+INTUSQRTU{(DO-QMIM) )*22+{DE~QN(M) 1 %324B* (W{T)-QW (]} ) *%x2)
C /QFLIMIY/ 1)
1IF (MN.GT.50) GOTO 6010
NUMC= NUMC+1
CNUM(MNI= QNUM(MN]} + 1.0
6010 CONTINUE
6100 CONTINUE
c DISTRIBUTION OF COLLISICN ANGLE
WRITE (6+642)
642 FORMAT(*1*//15X,'COLLISIEN DISTRIBUTIONY,48X,
C *VELOCITY DISTRIBUTION*//
C 10X +*ANGLE® y10X+*NUMBER"',TX " PERCENTAGE",
C 25X+*RANGE® 10Xy *NUMBER", 7TX*PROBABILITY//)
00 3700 I= 1,50
0S= FLOAT{(I)*0.1
DD= FLOAT(1)#*0.06283186
PC= COLDIS{I)/(FLOAT(LAV2)%0,062831861}
NOC= INTI(COLDISI(I))
PV= 10.0%QNUMLT)/NUMC
NV= INTLQNUM(I))
3700 WRITE (6+4643) DD ¢NOC4PCoDSoNV,PV
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663 FORMAT(F15.5,115,F15.5,20X.F15.1,115.F15.5)
DO 6000 1= 1,50
EViI)= FLOAT(I)%0.1
6000 QNUM(T)= QNUM{TI/FLOAT(NUNC)
XMIN= 0.0
XMAX= 5.0
TITLE= .TRUE.
AXIS= .TRUE.
PDOC= .TRUE.
ORIGIN=,TRUE.

YMAX= 0.l

ISYM= 1
CALL GRPLOT{S50,FY,QNUM,* (C-UAV)/V'' *,10, *N/NTOT *,
c © 69 *NUMBER DISTRIBUTION *,19,° *,0}

D0 6200 I= 1,50
FY(I)= FLOAT{I}1#%0.0628318
6200 COLDIS(I)= COLDIS(I)/(FLOATILAV2)%0.,0628318)
YHAX= 1.0
XMIN= 0.0
XMAX= 3,141593
CALL GRPLOT{50,FY.COLNIS,*ANGLE 95, 'P{THETA) "4 8,
C 'COLLISION ANGLE #,15,'0ISTRIBUTION',12)

8003 DC 8004 I= 1,IEN
8004 FY{(1)= FLOAT(I)*50.0
CALL OFAULT
XSZE= 8,0
POINT= .FALSE .
SCY=.TRUE.
XFMT(1)= DFMT]
XFMT(2)= DFMT4
YFMT(1)= DFMT1
YFMT(2)= DFMT4
LINE= .TRUE.
C  WRITE OQUT ENERGY HISTORY
XMAX= FLDAT(IEN)%*50.0
SCY-"'-TRUEQ
ISYM= 1
CALL GRPLOT(IEN,FYQE,*CCLLISIONS “,410,
C ‘TOTAL ENERGY',12,"ENERGY HISTORY *414,° *,0)
STOP
END
€ THIS MARKS END OF MAIN PROGRAM
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B.Z COLO02: Main Program for the Couette Flow Simulation

ceeecceceececccceccececececceccceeccececcceceoeccccccececceeccecceccceeceeecceceecccce

OO0 0AaNO0OON

aan

PROGRAM COLDO2

THIS PROGRAM IS A SIMULATION OF THE FLOW OF TWO-DIMENSIONAL DISCS

IN

A COUETTE SHEAR CELL

THIS PROGRAM BELCNGS TO CHARLES CAMPBELLy THOMAS 03, X4153
THIS PROGRAM UYSES THE OUTPUT FROM COLO06 AS INITIAL DATA.

17

SUBSOUENTALLY GENERATES 1TS OWN DATA SO THAT THE SIMULATION

MAY BE CONTINUED AFTER EXECUTION OF THIS RUN IS COMPLETE

REQUIRED SUBPROGRAMS:

OO0

o
(=

C
X

X
X

X

coLLuP: THE COLLISION ASSESSMENT ROUTINE

PARTCL : SOLVES THE COLLISION BETWEEN TWO PARTICLES

WALLCL: SOLVES THE COLLISION BETWEEN A PARTICLE AND A wALL

INIT IS AN ENTRY INTD THE SUBPROGRAM INSRT THAT INITIALIZES
THE COLLISION LIST

NEXT = IS AN ENTRY INTO THF SUBPROGRAM INSRT THAT YIELDS THE
NEXT COLLISION TO OCCUR

REMOVE: REMOVES FROM THE COLLISION LIST ALL COLLISIONS INVOLVING

A SPECIFIED PARTICLE
PICTRE: DRAWS A PICTURE OF THE CCNTRCL VOLUME
SPLNE 3 IS A CUBIC SPLINE FIT ROUTINE
LSQUAR: IS A LEAST-SCUARES FIT ROUTINE
GRPLOT: IS A PLCYTING ROUTINE
READNF, WRTNF, ENDMF, AND REWFF ARE TAPE MANAGEMENT ROUTINES

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCC

DIMENSTON X{(1000),¥{1000),U{1000),V{1000),WIi1000),
MA(50).,QM(50) ,QU(501,QVI50),QUVIS50)+QRH{ 501,
QD(50),QW(50) ,QN(50), IR(1000),C01IST(1000),
DATA(2420)¢DATA2(3,20),AV(10)},ADI10).,QR(50},QDI{50),
AN{10),QDP(S0)+CD2(50),DATALL3,20},QUP{S50),4QVP(50),
MAP(50,54)DUY(50),0VY(50),0UY2(50),DVY2{(50),DDY{50),
D2UY(50),02VY{50) (MDIS{2),DIS{50),VMAP (40,2),Q56(50),
OT6(50) +QMF{50) ,QUVP(50),FY{400),QRXX(50),QRNS(50),QE(1000),
ORSS(S0) . QUNL IG0) FNULS0) ,CMI{50] ,CNI{SD},QFLIS5D),0NUMISOY,
QETM{1000),QDPP1{50) NCOLE50)},FNCOL(50)},COLDISI50),QU2(50),
QV2(50) ,QUV2{50),0M2(50),QN2{50),QW2(50),QWP(50),QRUI[SO),
QRVISO0) QW1 (50) yQW3(50) ¢GCOL(S50),RIMPLS(2})6GCY{50),GCX(50},
ONUMUL50) +ONUMVIS0) . ONUMNI50),FY2(50), IBN(50), VCOR(50),
UCOR({50) +QFL1150),QUPL(50),QVP1(50),QuP1{(50),QTMP(S0)},
ONUM1 {50) ,QFL 2( 50)

NCT USE WITH MORE THAN 50 PARTICLES WITHOUT CHANGING MAP DIMENSION

DOUBLE PRECISION STOR(10.,23),Q5(50),QY(50),Q52(50),QT2(50),
TIME,TIM,DT,TIMEF -
LOGECAL, XTEST YTESToLASTPoPCINToLINEJAXIS, TITLEDASH,ORIGIN
+PDOC, SCXySCY
COMMON/A/ITosXsYoUoVoWe SHEART,SHEARNSIRHAISS
COMMON/B/TITAITBy ITCoALSoALCoALT ALCT o WL yWLSyWLC,AISN,ATSC
COMMON/D/DIS ¢SLyNCCLoRINMPLS
COMMON/E/SHR Ty SHRNyNWOISVBOT,VTOP
COMMON/PLDATA/ XOFF 4 YOFF o XSZEYSZESNIXoNIYy XMIN, SCX, SCY,
XMAX s YMIN, YMAX ¢ XLPOS s YLPDSs I SYM,NDSH,ORIGIN,
XTEST o YTESToLASTP yPCINT LINELAXIS»TITLE,DASH,
FLD¢XFMT(2) YFMT (2) 4 NFX,NFY, PDOC
COMMON/EXTRA/CSIZE
COMMON/PARAMS/ EP EW NOC1o,NOCL yUNsUTOP s ITPLoHGT 4ALF

c
C
c
c
c
[
c
C
c
c
c
c
c
C
c
C
c
C
c
C
c
c
c
c
c
c
c
c
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DATA DFMT1/%(FT.'/,DFMY2/%4) /,DFMT3/'1) */,
C DFMT4/%0) */

639 FORMAT('1')
ceceeceeeceeececceccececeecceccecceeeecceccececececccccccceecceecccecececccecceececcccecce

C INPUT VAR
C NGCD
c NOCE
c ST

C U

C IPLT
C

C ITAPE
¢ .

c

C

C

C MOV
c

C TIME
C

c NOCI
C

C LAV3
c

C EW

C EP

C ALPH
C B

C

C utoe
C HGT
C GEE
C 17

C L

geeecececeoeeceeeoeooreereecreeoceccecceecececcecoccceccecccccecceccecccececcccccece

148

o ss oe

T TR T Yy

°s 8 04 as

LES:
IS THE NUMBER UOF COLLISIONS TO BE PERFORMED THIS RUN
1S THE NUMBER OF COLLISIONS FOR THE AVERAGING TIME
1S THE AVFRAGING STRIP WIDTH (IN PARTICLE RADII)
1S THE NORMAL STRESS APPLIED TO THE SOLID WALLS
IS A FLAG: [PLY= O NO PLOTYTS TO BE MADE THIS RUN
1PLT NON-ZERO PLCTS TO BE MADE
IS A FLAG INDICATING WETHER INTERMEDIATE SYSTEM STATES
ARE TO BE STORED ON A MAGNETIC TAPE
ITAPE= O NO STATES TO BE STORED
ITAPE=N STATES TO BE STORED AFTER
N COLLISIONS
A FLAG TO INDICATE WETHER THE SOLID WALLS BE ALLOWED YO
MOVE
IS THE DIMENSIONLESS PROGRAM TIME AT THE START OF THE
CURRENT SIMULAYION RUN
IS THE NUMBER DOF COLLISIONS ALREADY RUN AT THE BEGINNING
OF THF CURRFNY SIMULATION RUN
IS THE NUMBER OF COLLISIONS CN THE TAPE THAT THE CURRENT
STATE OF THE SYSTEM IS YO BE ADDED TO THE END OF.
1S THE COEFFICENT OF RESTITUTION FOR WALL COLLISIONS
IS THE COEFFICENT OF RESTITUTION FOR PARTICLE COLLISIONS
IS THE CHUTE DEGREES
IS THE RATIO OF THE RADIUS OF GYRATION TO THE PARTICLE
RACIUS
IS THE TCP WALL VELDCITY
IS THE SOLID WALL SPACING
IS THE GRAVITATIONAL ACCELERATION
1S THE NUMBER OF PARTICLES
1S THE CONTRCL VCLUME WIDTH {IN PARTICLE RADII)

2000 READ (5,502) NCCDyNCCESToUWsIPLT,ITAPE, IMOV
502 FORMAT(215,2F10.0+215)
READ (5,635) TIME,NCCI,LAV3
READ (596330 ENsEP4ALPH,B
READ (54633) UTOP.HGT,GEE
READ (5,634) IT, WL

NOC1=

NOC

D « NOCI

WRITE (64600) EW,EP,ALPH,UTOP,GEE,HGCT,UW,B,WL,IT,NOC1,NOCD,
: C NOCE,ST,.IMOV, ITAPE,IPLT
600 FORMAT('1',26H CCEFF.OF RES.FOR WALL = ,F12.3/

c 26H COEFF.OF RES.FOR PART.= 4F12.3/
C 26H ALPHA = JF12.3/7
c 26H WALL VELOCITY = 4F12.3/
C 26H GRAVITY = 2F12.3/
c 26H UPPER WALL HEIGHT = yFl2.3/
c 26H NORMAL STRESS = ¢Fl2.3/
C 26H BxK*%2/R¥%2 =  4F12.3/
c 264 WIDTH OF REGION = 4F12.3,/
C 26H NO. DF PARTICLES = 19/

C 26H NO,OF COLLISIONS = 19/

c 26H COLLISIONS THIS RUN = L1197/

C 26H SAMPLING TINME = 419/

c 26H SAMPLE INTERVAL = oF12.3/
c 26H  WALLS MOVING? v19/

c 26H NEW TAPE? 119/

c 26H PLOTS THIS TIME? 2197771}



C
C
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INITIALIZE VARIABLES

NOCL= NOCE

NCCE= NOCD - NOCE

IF (NOCE.EQ.0) NCCE= 1
ALF= 0.,0174532%ALPH
ALS= SIN(ALF)

~ ALC= COS(ALF)

IF (ALC.NE,.0,0) ALT= ALS/ALC
IF (ALS.NE.D.0) ALCT= ALC/ALS
AVHGT= 0.0

H6TO0= HGT

GR= UTOP/HGT

WLS= WL#ALS

WLC= WL*ALC

IwWb2= INT{WL/ST)
Wl2= AINTIWL)
WL3s WL2-2.0
SHAPE= MWL/HGT
TIMST= TIME

AISN= GEE®ALS/(1+8)
AISS= AISN#*ALS
AISC= ATSN*ALC
1TPL= IT

1EN= O

LT= 3%17

FIT= FLOAT(IT)
TORQUE= GEE*ALS/11.0 + 1.0/8B)
FND= 1,0

vVIOP= 0-0

VBROT= 0.0

VSIDE= 0,0
AVTOP= Q.0

BWSt= 0.0

STl= ST - 1.0

ITA = [T¢1

ITALl= IT+2

178 = I7T+3

ITC = IT+4

I0L= 0O

QOAV= 0.0

SHEARN= 0.0
SHEART= 0.0

HM= 0.0

FLMASS= 0.0

MZ= O

LAV= 0

LAV2= O

LAVS= LAV3

YIME3= -1000.0
AKE=0.0

APE=0,.0

AUE= 0.0

AVE= 0.0

ANE= 0.0

NUMC= O

I0RD= &4
WRITE (64637} TIME

637 FORMAT{//724H ORIGINAL PARTICLE LIST

+F15.5)

(28 o o o of o of of o o of o o o o o o8 of o o of o o o o o o o o of o o o of o o o o o o o o o o o€ o] of o o o o o ff o of of of o o of {5 o oo ] of o of o o of f 1

c
c
c

INPUT THE INITIAL STATE OF THE SYSTEM.
THE INITIAL STATE CF THE SYSTEM IS DETERMINED BY THE INSTANTANEOUS
PCSITIONS AND VELOCITIES OF THE PARTICLES. THIS MAY BE THE TERMINAL

c
C
c



c
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AS AN INITIAL SYSTEM STA

INPUT VARIABLES:S
IR : IS A FLAG TO INDICATE WETHER A PARTICLE IS ROLLING

IR(N)= 1

"

WALL
IR(N)= 2

WALL
HORI 2ONTAL PARTICLE PCSITION
VERTICAL PARTICLE POSITION
HCRIZONTAL PARTICLE VELOCITY
VERTICAL PARTICLE VELOCITY
ROTATICNAL PARTICLE VELOCITY

" 0 8

"

T €O <€ x

NOTE:s ALL PARTICLE PCSITIONS AND VELOCIVIES ARE REFERENCED WITH
ARE NOT REFERENCED WITH RESPECT TO THE CHUTE BOTTOM.
BOTH THE UPPFR AND LOWER SCLID WALLS ARE ALLOWED 7O MOVE

LOWER WALL POSITICN

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

UUAV= 0.0
00 22 I= 1,17
READ (5,632) IRIIV, X{1)}y YII)e UL1)y VII), WD)
DS= X{I)*ALC - Y{I)*ALS
DIST{I)= DS
DN= X({I)®ALS ¢ Y(I}*ALC
Us= UCI)®ALC - V(IVI#ALS
UN= UCT1)*ALS ¢ V{I)#*ALC
22 WRITE (6+631) 14DS+DNeUSUNWIT)IRLT)
WRITE (6,638)
638 FORMAT(//7/77777)
CHECK TAPE HEADER
I (ITAPE.NE.O) GOTC 23
READ (20) NOCIF,TIMEF,FWFsEPFyALPHF 4BF, ITF¢WLF,UTOPF GEEF UNWF
FLAV3= FLOAT(LAV3)/71000.0
NS= INT{FLAV3)
IF (FLAV3-FLOATINS).GT.9F-%4) THEN NS= NS+l
READ{20,END=21)
21 CALL READNF{20,N5)
IF (EWF.EQ.EW.ANDEPF,EQ.EP AND.EWF.EQ.EW.,AND.ALPHF.EQ.ALPH.
c AND eBF EQe B AND. ITF.EQeITL.ANDWLF.EQaWLAND . UTOPFLEQ.UTOP,
c AND.GEEF.EQ.GEE) GOTO 24
WRITE(6,6231) NCCIF, TIHEF'EPF'EHF.ALPHF'BF.ITF,HLF-
CNOCIF o TIMEF s EPFEWF JALPHF 4 BF o I TF ¢ WLF
6231 FanAT(l15.5F15.5.2115/F15.5.5115.2F15.5)
WRITE (646003}
&0032 FORMAT (¢ WRONG TAPE WMOUNTED?')
STOR
23 NOC9= NOCI+ITAPE
WRITE (20) NOCOyTIMEGEW(EPALPH,B, IT oWL,UTOP,GEE+UM
CALL WRTNF (20}
LAV3= 0O

c COMPUTE INITIAL COLLISICN LIST

24 CALL INLIT
LAVS= LAV3
00 87 I= 1.17
LAT= [+1
87 CALL COLLUP(!.LAT.O.T[HE.GEE,HGT.ITAI'VTOP VBDT.VSIDEI

STATE OF A PREVIQUS RUN OR MAY BE GENERATED BY THE PROGRAM COoL006

IR{(N)I= O H PARTICLE N IS NOY ROLLING
PARTICLE N IS ROLLING ON BOTTOM

PARTICLE N [S ROLLING ON UPPER

THE GRAVITATIONAL RONY FORCF IN THE VERTICAL DIRECTION, AND

ALL PARTICLE POSITIONS WItL BE REFERENCED WITH RESPECT TO THE



c

c

C
c

C

(g XgNaNse)

c
C

: BEGIN MOTION

NCA=0
NDA=0
NQA= 10

INITIALIZE AVERAGING ARRAYS

162

D0 162 LA=1,50
QGDP(LA)= 0.0
QUVILA)= 0.0
QW(LA)= 0.0
QD2(LA)= 0.0
eniLA)= 0.0
QviLA)=,0.0
QUILA)= 0.0
CM{LA)= 0.0
QNtL A= 0.0
QS{LA)= 0.0
QT(LA)= 0.0

COLDIS(LA)= 0.0
ONUM(LAD)= 0.0
QNUMUILA)= 0.0
QNUMV(LA)= 0.0
QNUMW (LA)= 0.0
GCOLILA)= 0.0
GCX(LA)= 0.0
GCVILA}= 0.0
VCOR(LA)= 0.0
UCOR(LA)= 0.0
IBNILA}= O
MA(LAY= O

DO 201 L=1, NOCD

CCLLISION ASSESSMENT

CHECK FOR CONTINUATION OF COLLEISICN PATTERNS THAT MAY BE INHIBITING

1100

. TAKE MEXT COLLISICON FROM CCLLISION LIST
NCA, NDA ARE THE PARTICLES INVOLVED IN THE COLLISION
NQA - IS THE FRAME IN WHICH THE COLLISION IS TO OCCUR
TIM 1S THE PROGRAM TIME AT WHICE THE COLLISION IS TO OCCUR
CALL NEXTUNCA,NDA,NQA,TIM}
IF (L.EQ.NOCE)} TIMEl= TIME
1000 IF (ITM.LTY.5) GOYO 1002

1002 IF (INCAJNE.NCA2.0R.NDANE.NDA2) .AND.{NCA.NE.NDA2.OR.NDA.NE.NCA2))
cGaoYo 210

205

210
FIND TIME SINCE LAST COLLISION

215

TIME ADVANCE
NCA2= NCO

NDA2= NDQ

NCA2= [INT{(DNQA)
NCQ= NCA
NOQ=NDA

DNQA= FLOATINGCA)

I0L2= 1
ITM= O
GOYD 1100

IF ¢IDL.LT.5) GOTO 205
IDL= 0O
1oL2= 1
GOTO0 1100
10L= IDL ¢+ 1
GOT0 215
IDL= 0

OT= TIM - TIME

WRITE (6,676) LyNCAJNDAINGCA,TIMJAKEL
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676 FORMAT(®* COLLISION 2 *4+417,4F15.5)
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AKEl= 0.0
1TM= [TMel

IF (DT.GT.0.0) ITM= O
TIME= TIM

C
c TIME ADVANCE: UPDATE PARTICLE POSITIONS AND VELOCITIES
C

IF (L.NE.NOCE) GCTO 218
TIMEL= TIME
MZ= INTIHGT/ST)
FND= FLOAT(MZ)
218 DTA= 0.5%DT*DY
c UPDATE SOLID WALL SPACING
HGT= HGT + VTOP*DT
c UPCATE PERIODIC WALL SPACING
Wi= WL ¢ VSIDE*QOT
WLS= WL®ALS
WLC= WL*ALC
c UPDATE UPPER WALL VELCCITY TO KEEP VELOCITY GRADIENT CONSTYANT
UTOP= GR®HGT
C CCMPUTE INSTANTANECUS ENERGY CF SYSTEM
DO 170 I=1,17
AKEL= AKEL+U{II*%2eV(I)*%2+B*N(])**2
0D= UCI)*#ALC - V(])}#*ALS
DS= ULTI*ALS + viI)#*aALC
AUE= AUE ¢ DD#*#2
AVE= AVE + DS**2
AWE= AWE + WlI)*%2
APE= APE ¢ Y{1)*GEE
yuav= UUAV ¢+ DD
IF (DT.LE.0.0} GCTO 170

c THIS SECTION COMPUTES THE TIME ADVANCE OF A ROLLING PARTICLE
IF (IR(I)-EQ.0) GOTO 107 -
ON= FLOAT(IR(I) - 1)
UISN= U(T)*ALC - VII)*ALS
DIST{I)= (X{I)*ALC - Y{1)*ALS) & UISN®DT ¢ AISN*DTA
X({I)= DISTL1)#ALC + ((HGT-2.00002)¢DN + 1.00001}*ALS
Y{I}= ((HGT - 2.000021%DN + 1,00001)%ALC - DIST{1)=*ALS
UISN= UISN + AISN%CT
ULl)= UISN*ALC
VII)= —UISNEALS
M{I)= (2%0ON - 1)*UISN - DN=UTOP
IF (L.LT.NOCE} GCTO 170
IF {DN.NE.0.0) GOTO 169
c COMPUTE WALL STRFSS CONTRIBUTION CF ROLLING PARTICLES
SHEART= SHEART - TORQUE*DY
SHEARN= SHEARN ¢+ DTSALC*GEE
GOTO 170
169 SFERT= SHERT + TORQUE®DT
GOT0 170
c UPCATE FREE FALLINC PARTICLE POSITIONS AND VELCCITIES
107 UISN= ULTI*ALC - VI1)#*ALS
VISN= U(I¥#ALS + V(I)*ALC
Ul= UISN*ALC ¢ (VISN-VBOT)*ALS
IF (ALC.NE.O0.D) VI= ({VISN - VBOT) ~ UI*ALS)I/ALC
IF (ALC.EQ.0.0} VI= ull)
Y{1) = Y{I] + DT*VI - DTA*GEE
X{1) = X{1}1 ¢+ DT*UI
V(1) = V{I) -~ DT*GEE
DIST(I)= X(I)#*ALC - Y{1)#%ALS
170 CONTINUE
1TT CONTINUE
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220 IF _(NDA.GT.IT) GOTO 131
ISTRT= L - NOCE

. SL= HGT/FND
c PARTICLE-PARTICLE COLLISION SOLUTION
CALL PARTCL (NCA,NDAJNGAB,EP,ISTRT)
_IRINCA)= O
IR(NDAY= O
GOTO 132
131 IF INDALGT,.1TA1) GDTO 133
DN= 0.0
IF INDA.EQ.ITA1l) DN= 1.0
ISTRY = L - NOCE
PARTICLE~WALL COLLISICN SOLUTION
LOWER WALL COLLISION INDICATED BY NDA= [TA= 1T+l
UPPER WALL COLLISION INDICATEC BY NOA= [TAl= [T+2
CALL WALLCLINCA(BsEWyISTRTyDN,UTOP sHGT ¢GEE yUWSH 4BWSH)
GOTO 132
C THIS SECTION REMOVES PARTICLES THAT HAVE PASSED THE UPPER OR
C LOWER BOUNDERIES
c
C

onon

CCLLISION WITH UPSTREAM PERIDDIC BOUNDARY INDICATED 8Y NDA= IT8= [T+2
133 IF (NDA.GT.ITB) GOTO 134
X(NCA)= X(NCA) + WLC
YINCA}= Y(NCA) -~ WLS
GOTO 132
C COLLISION WITH DOWNSTREAM PEIODIC BOUNDARY INDICATED BY NDA= ITC= IT+3
134 XU(NCA¥}= X(NCA} - WLC
Y(NCA)= Y(NCA) + WLS
132 TIME2= TIME - TIMEl
L o UPCATE COLLISICN MAP
MAP{NCAJNDA)= MAPINCAyNDA) + 1
MAP{NDANCA)= MAPINDA,NCA) ¢+ 1

ASSESS NEW COLLISICNS FOR THE TWO PARTICLES INVOLVED

[z XaXg}

CALL COLLUP{NCAy1 NCA,TIME,GEE,HGTITAL,.VTOP,VBCT,VSIDE])

IF (NDALLE.IT) CALL COLLUP{NDA, 1 NCA,TIME,GEE,HGT,ITAL,VTOP,
C VBOT,VSIDE)

IF CIDL2.NE.1) GCTC 280

[aXaKsl

REASSESS NEW COLLISICNS FOR PARTICLES INVOLVED IN RECURRING PATTERN

CALL COLLUPINCCs1+Co TIMEZGEEWHGTsITAL,VTOP,VBOT4VSIDE)
IF (NDQ.LE.IT) CALL COLLUP(NDQ,1,NCQ,TIME,GEEsHGT,ITAL,VTOP,
C VBOT,vSIDE}
ICL2= O .
280 IF (L.EQ.LT.OR.INMOV.EQ.O) GCTO 1220

WALL VELOCITY CHANGES? CHECK IMPULSE APPLIED TO WALL AGAINST
RECUIRED STRESS AND PUT WALLS INTO
APPRCPRIATE MCTICN

oMo

IF L(LLTLT)<AND.ABS(HGT~HGTO)LLT.0.1) GOTO 1220
WRITE (64666) LsVIOP4UWSH,VBOT BWSH,HGT
666 FORMAT (! COLLISICNy, TOP VELOCITY, STRESS, AND HEIGHT =z,
C I10¢5F12.6) :
HGTO= HGT
LT= L+3%]T
‘DT0= TIME - DTO
IF {(CTO.EQ.0.0) GOTC 1220
c URSH CONTAINS THE TOTAL IMPULSE APPLIED BY PARTICLES TO THE UPPER WALL
c BWSH CONTAINS THE TOTAL IMPULSE APPLIED BY PARTICLES TO THE LOWER WALL
BWSH= ABSIBWSH/(DTO*WL)?! - (UW ¢ GEE*FLOATUIT)*DTO/WL) :
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UWSH= ABS{UWSH/(DTC#*WL)} - UW
v80T2= VBOY
VBOT= 0.5%VBOT-SIGNIUN,BWSH)
IF {ABS(BWSH).LT.UW) VBOT= 0.5%VBOT2-BKWSH
vToP2= vTOP
VTOP= 0,5%(VTOP+VBCT2) + SIGN(UW,UWSH) ~ VBOT
IF (ABS{UWSH).LT.UW) VTOP= 0.5¢(VT0P2+VBOT2) + UWSH - VvBOT
VSIDE= SHAPE®VTCP
C
c IF VTOP OR VBOT MUST BE CHANGED RECOMPUTE THE ENTIRE COLLISION LIST
C
1208 1IF (VBDT.EQ.VBOT2.ANC.VTOP.EQ.VTOP2) GOTO 1210
CALL INIT
00 1200 I= §,IT
IR(IN= O
LAT= I+1
1200 CALL COLLUPCI,LAT,0,TIME,GFE+HGTITAL,VTOP,VBOT,VSIDE)
1210 DTO= TIME

UWSH= N.0
1220 IF (NDAL.GT.ITAl} GOTO 1100
L5= LS + 1
c
C WRITE STATE OF SYSTEM ONTO TAPE
C

IF (0T .EQ.040.0R LLLT.ITAPE) GOTO 1225
LAV3= LAV3+}
NGC2= NCCI+L
WRITE (20) TINE,NOC2.NCA,NDAsNJAHGT,
C (XCT) YOI Do UL TR VEI D oW (I)y 1= 141IT)oWL,VTOP,VBOT
IF ((FLOAT(LAV3)/1000.0 - AINT{FLOATI(LAV3)/1000.0)) .LT.1E-5)
C CALL WRYNF(20)
C EVERY 200 COLLISIONS WRITE OUT THE SYSTEM ENERGY
1225 IF ((FLOAT(L)/200.0 ~ AINT{FLOAT(L)/200.0)).GT.0.00001.0R.
C L5.EQ.0) GOTO 142
AUE= AUE/FLOAT(2*IT#*LS)
AVE= AVE/FLOAT(2¢1T*LS)
AWE= B*AWE/FLCAT(2#%1T*L5)
UUAVE UUAV/FLOAT(LS*]IT)
AKE= AUE # AVE ¢+ AWE
APE= APE/FLOAT(IT*L5)
ATE= AKE + APE +AWE
AUE= AUE — 0.5%UUAV*%¥2
UUAV= 0.0
IEN= JEN + 1
QE(IEN)I= ATE
L5= 0
t2=t - 200
WRITE (64650) L24LoAKEsAPELATE,TIME,AUE,AVE,ANE
650 FORMAT(5Xs15,9~*,15,¢ COLLISICNS, AVERAGE KINETIC?,
C * POTENTIAL, AND TOTAL ENERGIES ARE: ',3F15.5/
C 20X,*TIME, U,V W,ENERGEIES: *,4F15.5)

AUE= 0.0

AVE= 0.0

AWE= 0.0

APE= 0.0
cceeceeceeccceececcecceccccccceecccccceececcceccreccececceececcecececcecececcececececrcec
c c
c AVERAGE THE PROPERTIES OF THE SYSTEM C
c C

ceeceececccceccceeeccecccceccceecceccecceccecececccccecccececcecececceccccceccecccccce
142 IF (L.LT.NOCE) GOTO 299
IF (L.NE.NOCE! GOTO 1420
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Wih2= AINT(WL)
WL3= WL2 - 2.0

c AYTM IS THE AVERAGE TIME PASSED BETWEEN COLLISIONS BEFORE THE START
OF AVERAGING. IT WILL BE REQUIRED THAT THIS TIME BE PASSED
BETWEEN SAMPLINGS OF THE SYSTEM PROPERTIES
AVTM= S*(TIME-TIMST)I/NOCE
TIME3= TIME — l.1%AVIM
1420 IFLG= 0.
IF (NDA.GT.IT.OR.DT.EQ.0.0} GOTO 147
LAV2= LAV2¢+]
DNOA= FLOAT(NCA)
C COLLISION ANGLE DISTRIBUTION ASSESSMENT
DISY= YINDA) - (Y(NCA) ¢ WLS*DNCA)
DISX= X{NDA)}) + WLC*DNQA - X{INCA)}
DISC= SQRTIDISX*DISX # DISY*D1SY)
BS= DISY®ALC + DISX#*ALS
BC= DISX*ALC - DISY*ALS
IF (BC.NE.D.0) GOTD 143
NA= 25
GOTO 144
143 NAz= 1+INT{-{ATAN{BS/BC) - 1,570196)/.06283186)
IF (NA.GT.50.0R.NA.LT.0) GOTC 147
144 COLDIS{NA)= COLCISINA) + 1.0
147 IF (TIME~TIMED el Te AVTMeANDeLoaNESNOCD«ANDoLAY3«NEe15000)
C GOTo 300
TIME3= TIME
OENSITY AND VELOCITY DISTRIBUTICON ASSESMENT

[a Xl

OO

ADJUST STRIP WIDTH ACCORDING YO THE WALL SPACING
ST= HGT/FND
LAV= LAV ¢ 1
IF (L.NE.NCCE} AVHGY= AVHGT + ST
IF (L.GE.NOCE) AVTOP= AVTOP + (VTOP - VBOT?
DO 500 I= 1,17

DETERMINE STRIP IN WHICH PARTICLE CENTER LIES
AND STRIP IN WHICH REST OF PARTICLF LIES

2 XN eXa]

DC= Y(I)*ALC ¢ X(I)#*ALS
DD= U(II*ALC - V{I)#ALS
DE= U(T)*ALS + V(I)®ALC
M= 1 + INT(DC/ST)
IF (M. GT.50) GOATC 500
$S01 HM= HM + DC
FLMASS= FLMASS + DO
S= CC - FLOAT{M-1)#ST
A= 1.0
&Z=‘ G.0
IF {S.GEele0) GOTO 550
Mi= M-1
GOTO 560
550 IF- §S.LE.ST-1.0) GOTO 570
S=- ST ~ §
Ml= M+l
560 Ax 1,0 + (S*SQRT(1,0 - S*S) - ARCOS(S)})/3.14159
A2= 1.0 - A
A AND A2 ARE THE PERCENTAGE NF FACH PARTICLE THAT LIF WITHIN FACH STRIP

c
c .
c COMPUTE INSTANTANECUS AVERAGE OF PROPERTIES WITHIN STRIP
c
$70 QD2(M)= QD2(M)} + A

MA{M]= MA(M) & ]
QM2{M )= QM2(M)} + A*DD
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QN2(M)= QN2(M) + A*DE
QW1(M)= QW1(M) + A*W(])}
QW3 (M)= QW3(M} + A*W(])*%2
QU2(M)= QU2(M) + A%*DDx=x2

QV2(M)= QV2{M)} + ASDE®S2
QUV2(M)= QUV2(M) + A*DD*DE
IF (L.NE.NOCE.AND.L.NE.NOCD} GOTO 575
QS2(M)= QS2(M) + A%DD
QT2(M)= QT2(M) + A*DE
575 IF [A.EQ.1.0} GOTO 500

QD2(M1lb= QD2(M1) ¢ A2
QM2(M1)= QM2{M1) + A2*DC
QN2{M1)= QN2{(M1) ¢ A2*DE
QW1{MLl)= QWL(M1) + A2%W(I)}
QW3 (M1)= QW3(M1) + AxW(L)*#2
QU2(M1)= QU2(M1) ¢ A2#DD**?
QV2(M1l= QV2{N1) + A2*DE%**2

QUV2(Ml)= QUV2(M1) + A2*DD*DE
IF (L.NE.NOCE.ANC.L.NE.NOCD) GOTO 500
QS2(M1)= QS2(M1) + A2*DD
QT2(ML)= QT2(M1) + A2=*DE
500 CONTINUE

C AVERAGE INSTANTANEQUS SYSTEM STATE
D0 580 I= 1,MZ
If (QD2(I).EQ.0.0) GOYC 580
QrUe )= QDCI) & CD2(1)
QDP{1)= QDP(I) + QD2(1)**?
OM{I)= OM{I) + QM2([)/Q0D2(1)
QNCIY= QN(I) + CN2(I)/QD2(I}
QUCTII= OU(I) + Ccu2(1)/Q02(1)
Qvil)= Qvil) + GQva2iri/Qo2(l)
QWiId= QWII) + QwltI)/sQD2{1)
OW2{I)= QW2{1) + QW3(I)/QD2(1)
QUVII)= QUVII) + QUV2(T1)/QD2(I}
QRSS(I)= QRSS(I? + Quva(l)
QRNS(I)= QRNS(I) ¢ Qv2{( 1)
QRXX(1)= QRXX{I) + QU2(1)
QRU(I)= QRU(I) + QM2{I)
QRV(I)}= QRV{I) + ON2(I}

QD241}= 0.0
QM2(1l= 0.0
QN21(11= 0.0
Qu2tl)= 0.0
Qv2({l)= 0.0
Quv2tII= 0.0
owWll(1)= 0.0
QW3(I)= 0.0

IF (L.NEJNOCE.ANC.L.NEL.NOCD) GOTO 580
C QS AND QY ARE USED TO COMPUTE THE SHEAR AND NDRMAL STRESS RESPECTIVELY
QsStI)= Qs2(1) - QSiI)
QY{I¥= QT2{1) — QTII1}
Qs2({l)= 0.0
QT2(I)= 0.0
580 CONTINUE
299 CONYINUE
c
C IS RUN OVER?
C
300 IF (LAV3.GE.15000) GOTO 302
301 CONYINUE
c
c IF SO WRITE RESULTS
c



302

572
603

574
604

691

i30
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K1l =1

K= MINO(ITC,20}
WRITE (6,630}

WRITE (64603) (1,I= K1,K)
FORMAT (/777 COLLISICN MAPY//TX,2015 /)
DO 574 I= 1,17

WRITE (6,604) I,(MAP{1,12), [2= K1,K)
FORMATII7,2015)

Kl= K¢l

IF (K.EQ.ITC) GOTO 573

K= MINO({K+20),1TC)
GOYo 572

DAV= 0.0

UAv= 0.0

ST= AVHGY/FLOAT(LAV])

AVHGT= ST

NZl= NZ

WRITE(6,691)

FORMATY (* 1% //40H DENSITY AND VELOCITY DISTRIBUTIONS /

C 715X+ 15HSOLID FRACTION 4 5Xe1HUs14X s 1HV914Xs1HN, 13X 4HUR*2,
C 11X 4HV*%2,12X,2HUV//)

FLAV= FLOAT(LAV)

UMAX= -1000.0
DO 130 M= 1,MZ

QM{M)= QM(M)/FLAY

IF (QM{M}.GTLUMAX]) UMAX=QMIM)

ON(M)= ON(M}/FLAV

QWiM)= QWIMI/FLAV

QW2 {(M)= QW2{(M}/FLAV

QUIMY= QUIM)/FLAV

QVI(M)= QV(M)/FLAY

QUVI(MI= QUVIMI/FLAYV

QD(M)= 3,141593 * QD(M)/(ST*WL*FLAV)
MRITE (64690) MyMA(M)I,QDIM) ¢QM{MI,QON(M) o QWIM) ,QUIMIQVIM),QUVIN)

C oM

690 FORMAT(215,7E15.6,15)

692

IF (UTOP.NE.0.0) UMAX= UTQOP

NC= 0

WRITE (6,692}

FORMAT(///7 /716X ot WE%29 16X, "D ¢,9Xy *MASSFLOW *,

C TXyPUTO#E20 10X, VI 02227 10K 'O #£20 10X, PUTT VI 0//)

DC 231 I= 1,M2Z

QDP1= (3.141593/7({ST*ul ) 1**2%QCP{1)/FLAV - QDI )*%2
QUDL(I)= OQM{[)/UMAX

QHF{]¥= QDUI)*QM(])

NC= NC # NCOLI(I)

QUP(IN= QUIT) — QM(I)*x2

QVP(I)= QV(I} - QN{T)*%2

QWP({Id= QW2{1) - QW(I)*=%2

QFLII)= QUP(I) + QVPLL) « B*QWP(I}

IF (QUPIIN+QVP(T).GT.0.0) QQGAV= QQAV + QDII)*SORT(QUP(!’+QVP(I)i
DAV= DAV + QD(I)

QUVPLIY= QUVII) — QMUI)*ON(I}

231 WRITE(6,8693) I,QW2(1),QDP1,QMFIT),QUPLI}QVPIT)},QWP(I),

c QUVP{I1,1

693 FORMATUIS¢5X,7EL15.5,15)
161 CONT INUE
C REYNOLDS STRESS CALCULATION

WRITE(64694)

694 FORMAT{(*1',* FLUCTUATING QUANTITIES'///

c 14X *NUSUS %29, BX . *NUSVEX2° ,9X, "NU*USV? ,10X, *NU*U®,
c T1X) TNURV? 39X, TNUT RSS9 ,9)X, INy® taye e

DO 232 I= 1.,M2



c
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QRSS(I)= 3.141593#QRSS(1) /{STEULEFLAV)
QRNS{I)= 3.141553%4QRNSIT)/(ST*WLEFLAV)
QRXX{I)= 3.141593#QRXX(1)/(ST*WL*FLAV)
QRUT= 3,141593%QRULTI/(STHRLSFLAV)
QRVT= 3.141593%QRV(T)/({STEWLEFLAV)
QRU(I)= QRUT - QDUI)*QM(I)
QRV(I0= QRVT — QDUII®QN(I)
232 WRITE(6,693) I4QRXX(I),QRNS(1),QRSS{ 1), QRUT,QRVT,
€ QRULII,ORVIID,I
WRITE {64695)
695 FORMAT(////35X +"REYNOLD**S STRESSES*//
€ 26X, "~NUBUP Y #82% ,6X, '=NUSVT 14£20 ,6X, " =NUSU? 92y2 00/ /)
DO 233 I= 1,MZ
QRSS(I)= —(QRSS(I) = (QRUCII®QN(I) + QRV(I)¥QM(I))

C - ANIT Y RNMI T IKNNITY Y
~ Tae H

ww Ve ¢ - wivs & ¥

QRXX(T1)= ~(QRXX(I) -~ 2*QRU(T)I*QM(T) - QOUI}sQM(1)#%*2)
QRNSEI)= —lQRNS{I) — 2%QRVII)*QN(I)} - QD(I)}*QN{I)*%2)
233 WRITE{69696) T1,QRXX{ITI)sQRNS(I)4QRSSII},I
696 FORMAT(16X,15,% *43E15.5+17)
IF (TIME2.EQ.0.0) TIME2= TIME
WALL STRESSES AND OTHER AVERAGE SYSTEM PROPERTIES
QQAvV= QQAV/DAV
DAV= DAV/MZ
SHERN= SHEARN/{TIME2*WL1}
SHERT= SHEART/(TIME2%*uWL)
SHEARY= SHERN®*ALC - SHERT*ALS
SHEARX= SHERN#*ALS + SHERT*ALC
SHRT= SHRT/(VIME2%*nlL)
SHRN= SHRN/(TIME2#WL)
SHRX= SHRN%ALS + SHRT*ALC
SHRY= SHRN*ALC - SHRT*ALS
FRIC= ATAN(SHFART/SHEARN)}/0.0174532
FRIC1= ATAN(SHRT/SHRN}/0.0174532
HM= HM/FLOAT(LAV*IT)
FLMASS= FLMASS/FLCATILAV)
AVVEL= FLMASS/FLOAT(IT)
DTL= TIME2#*#AVVEL
AVTOP= AVTOP/{LAV)
RIMPLS(1)= RIMPLS(1}/FLCATINC)
RIMPLS(2)= RIMPLS(2)/FLOAT(NC)
RIMANG= ATAN{RIMPLS(2)}/RIMPLS(1))

WRITE (64640) SHERTySHRTsSHERNSHRN,SHEARY+SHRY, .
CSHEARX ¢y SHRXyFRIC,FRIC14FLMASSyAVVEL yHM, TIME2,0AV,DTL »QQAV,
CAVTOPyAVHG T HGT

640 FORMAT( 1% //////77/25X24HRALL STRESS DISTRIBUTION,/

C 46X+* LOWER WALL®*,0Xs* UPPER WALL'//

C 25X 15HTANGENTIAL = 12F15.5,4/

€ 25X, 1 SHNORMAL 3 v2F15.54/

C 25X+15HY-DIRECTION: v2F15.54/

C 25X+15HX-DIRECTION: 22F15.54/

C 25X,1SHFRICTION ANGLE #2F15.5+77/

€ 15X.2BHMASS FLOW 3 oF15.5,/
C 1SX,2BHAVERAGE VELUOCITY 3 4F15.5,/
€ 15X,28HMASS MEAN HEIGHTY 3 ¢F15.5./
C 15X ,2B8HAVERAGING TIME t ¢F15.5,/
€ 15X,2BHAVERAGE DENSITY t oF15.5,/
€ 15X,28HAVERAGE FLUC, VELOCITY t sF15.5 /
€ 15X,2BHAVERAGE DISTANCE TRAVELED : oF15.5 /
C 15X,28HAV. VERT, TCP VELOCITY t  oF15.5 ¢/
C 15X,28HAV. SAMPLING INTERVAL 3 oF15.5 /
C 15X,28HFINAL MEIGHY t sF15.5 1}

WRITE (64641) UTOP WL RIMPLS{1),RIMPLS{2),RIMANG
€41 FORMAT(15X,28HFINAL WALL VELOCITY 2 oF15.5 /
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c 15X,28HFINAL REGION WIDTH 3 oF15.5 /
Cc 15X+ 28HNORMAL IMPULSE 2 9Fl15.5 ¢/
c 15X¢28HTANGENTIAL IMPULSE 2 ¢F15.5 /
c 15X9 28HIMPUL SE ANGLE 2 sF15.5 )

237 WRITF(6,620) TIME
620 FORMAT(*Y*////19H NEW PARTICLE LIST 2Fl545)
DO 145 J= 1,IT
DS= X{1)®ALC — Y(I)#*ALS
DN= X(L)®ALS ¢ Y{I)*ALC
US= ULII®ALC - VII)=®ALS
UN= ULT)SALS + V(Ii®ALC
165 WRITE {(64631) L+DS.DNyUSsUNW(I)IRCI)
631 FORMAT (15,5F15,5,151)
RECDRD FINAL STATE OF SYSTEM ONTO CARDS SC SIMULATION MAY BE COMTINUED
WRITE (T7+625) TIME.NOC1,LAV3
WRITE (74633) EW,EP,ALPH,B
WRITE (7,633) UTCOP+HGT GEE
WRITE (7,634) IT,WL
DO 320 I=1,1T7
WRITE(12,632) IR(I}, XU(I), YUI)}, U(I), vil), WUI}
320 WRITE(74632) IR{IVy X(I)y YUI), ULI)y V(I), WL}
632 FORMAT({IS,5F10.5)
632 FORMAT(4F10.4)
634 FORMAT(I5,F10.4)
635 FORMAT(F10.3,215)
DRAW A PICTURE GF THE SYSTEM
CALL PICTREC(HGT)
UT0P= UMAX
MAKE L EAST-SQUARES FITS TO VELOCITY AND DENSITY PROFILES
DO 770 1= 1,M7
DATA(l41)= FLOATII-1)%*ST + ST/2.0
DATA(2,13= QM{1)
DATA(3,10= 1.0
DATALI{(l4I)= FLOAT(I-1)1%ST ¢ S$T7/2.0
DATAL(2410= QN{1)
DATAL({3,1)= 1,0
DATA2(1,I)= FLOAT(I-1)#*ST + ST/2.0
DATA2(2.10= QD{( 1)

TT0 DATAZ2{3,1)= 1.0

CALL LSQUAR(DATA,MZ,10RD,AV,CHISQ,STOR}
CHISQ= 1,0
CALL LSQUAR{DATALl,MZ,ICRD,AN,CHISQ,STOR)
CHISQ= 1.0
CALL LSQUAR(DATA2,MZ,1CRC,AD,CHISCsSTOR)
WRITE(6,638)
WRITE (64660) {AV(1}, I= 1,10RC)
660 FORMAT(///7/24H VELOCIYY COEFFICENTS: //
C 3X45HUs e7015.77)
WRITE (6+661) (AN(I),I= 1,10RD)
661 FORMAT( 3X,5HV: 2 TD15.7)
WRETE (64675) (AD(I), I= 1,I0RD)
675 FORMAT (///24H DENSITY COEFFICENTS: 778X, TD15.7/7777)
WRITE (6,677)
677 FORMAT("1%///73TX22FDISTRIBUTION GRADIENTS 44
c l“X"DU/DY"6X1'(DU/DY"*Z'9SXr'DZU’DY2'pQX|'DV’DY'
C 6Xy*iDV/DY) *%2°% ,8X,*D2V/DY2'¢8X*DNU/DY! /)
I0R1= IORD - 1

COMPUTE VELOCITY AND OENSITY GRADIENTS
GRADIENTS ARE FOUND FROM A CUBIC SPLINE FIT TO THE DATA

‘CALL SPLNE(MZ1,ST7,QD,D0Y,D2UY}
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CALL SPLNE(MZ1,ST.QM,DUY,D2UY])
CALL SPLNE(MZ1,S5T,QN,DVY,D2VY}

B0 420 I= 1.M21

IF (1 NEJl.AND.I.NE.MZL) GOTO 401

CNLY THE GRADIENYS AT TYHE ENDPOINTS ARE CCMPUTED BY THE LEASY
SQUARES FIT

A0

D0 400 12= 2,ICRI1
D2MM= FLOAT(I2%(12=-1) )*{FLOATUI-1)%5T + 5T/2.0)*%x{]2-2}
D2UY( 1)Y= D2UY{I) ¢ AV(I2+41)%D2MM
400 D2vYU(I}= D2VY{1) + AN{I2+1)*DZ2MM
401 DOUY2(I)= DUY(T)**2
DVY2{ 1)= DVY([)**2
420 WRITE(64+6T78) 1,DUY(IN,0UY2(1),02UY{LI),DVY(T},DVY2(I),
C 02vy(I1},DDY{1).1
678 FORMAT(IS5,TEL5.64110)
c COMPUTE INTERNAL STRESSES BY A MOMENTUM BALANCE
WRITE (6+645)
645 FORMAT(////7/7/35X,19HSTRESS DISTRIBUTION /710X,
€ 3{*TANGENTIALY ¢5X¢*NORMAL® 49X)*FRICTION ANGLE'/}
QS5= SHERT
QT5= SHERN
DO 800 1= 1,M1
QS3= QS(I)/7(TIME2*WL*ST*3,141593)
QT3= QT{I)}/{TINE2*WL%ST*3,141593)
QS4= QS32 -~ QD(I)*GEE*ALS/3.141593
QT4= QT3 + QD{I1)*ALC*GEE/3.141593
QS5= QSS + QS4*ST
QTS= QTS5 + QT4*S5T
ANG= ATANIQTS5/QS85)
QS6lI)= QS5
QT6(Il= QTS5
800 WRITE (6,+647) 1,053,Q73,054+0Q074,Q055,Q75,ANG
647 FORMAT(2Xe15+:7D15.6.17)
c COMPUTE DISTRIBUTION OF ENERGY DISTRIBUTION WITHIN SYSTEM
DO 432 I= 1,2
WOIS(I)= WDIS{T)/TIME2
432 TDIS= TNDIS + WDISCI)
: WRITE (6,610) WDIS(1),WDIS(2)
610 FORMAT(///7/35X%,'DISSIPATION DISTRIBUTICN®//
C 25X +"LOWER WALL: ',E15.6/
C 25X+'UPPER WALL: ',E15.6//1)
DD 433 = 1,MZ
NIS(I)= DIS(I}/TIMF2
TDIS= TDIS + DIS(I}
433 WRITE (64615) [,DIS(I)
615 FORMAT(33X,15,E156)
WRITE (64618) TDIS
618 FORMAT(///25X, 'TOTAL DISSIPATION: *4E15.6)
WRITE (6,648}
648 FORMATL////7)
c COLLISTON FREQUENCY AS A FUNCTION OF DENSITY
WRITE (64652)
652 FORMAT{*1?,35X,'COLLISION DISTRIBUTION®//
c 25Xe * LEVEL NUMBER PERCENTAGE NUt/Z/7)
DO 3500 I= 1,MZ
FNCOL{Il)= FLOATINCOL(1))/FLOAT(LAV2]
3500 WRITE (6,653) I,NCOL{I),FNCOL(I),QDLD)
€53 FORMAT{25X,217.,2F15.6)
c COLLISION ANGLE DISTRIBUTION
WRITE (6,6421)
6421 FORMAT({*1*//40X,'COLLISION ANGLE DISTRIBUTION'/
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c 35Xp'ANGLE"IOXv'NUMBER"7X"PR08ABILITY')
D0 3701 I= 1,50

DD= FLOAT(1)%0.06283186
PC= COLODISIT) 7(LAV2*D.062R83184])
NOC= INT(COLDISI(II)

3701 WRITE (646431) DD+NCCyPC

6431 FORMAT(30X¢F15.54115+F15.5)

c FAKE THE APPROPRIATE PLOTS
C
WRITE (6,6001)
6001 FORMAT(*1°',' PLCYTED DATA'//
C 20Xs"FY'412X,UNORM?! ,8X,*MASS FLOW® ¢8X,'FINU)®,
€ 12Xs"R"9 12Xy *S*R/2%48X," TEMPERATURE®)
QRAV= 0.0
GRZ= (HGT/UTOP)*32
DO S000 I= 1,.,M2Z
FNULT)= ABS(QS6(TI)I/0UY2(T)
FY(I)= (FLOAT{I)1-0.5)%ST/HGY
QMF{I)= QMFII)/UMAX
QFL2(I)= QUPL{TI)+QVP(I)
OR{I)= 2¢SQRT(DUY2( 1)/ (QUPLI}+QVP(I)))
QRAV= QRAV+QR (1)
OFLL1tL)= QFL(]I)%GR2/3
QUPL(1}= QUP(I)*GR2
QVP1{1)= QVP(I1)*CR2
QwP1{I)= B*QWP(I)*GR2
QTMPII)= (QUPIII+QVP(I))I*GR2
IF (QD(I1}.EQ.0.0) GOYO 5000
QRH(I)= O.5%*QR({I¥*SQRT{3.141593/QD(1))
5000 WRITE (6469301 I,FY(I),QUDLII) CMF{I)+FNUCTI QRIT)I4QRH(I),
C QFLII),!
QRAV= QRAV/MZ
HRITE (6,6933) QRAV
6933 FORMAT(///30X,' AVERAGE R= *,F15.5////77/
c 20X, *NORMALIZED TEMPERATURE DISTRIBUTION®//
c 10X, *LEVEL" 95X " TOTAL TEMP',*LINEAR TEMP ty
c TXp? UY? 1%%x2 YaTXe VIV ERQ TNy "BEN YRR LEVEL'}
D0 5001 I= 1.,M2Z
5001 WRITE(6,6934) [,QFL1C(T),QTHP(I),QUPLI(T)QVPL{I}+QWP1{I) 41
6934 FORMATY(10X¢1595F1545915)
IF (IPLT.EQ.O0) STOP
CALL DFAULT
CALL NEWPEN(3)
CALL GRPLOTU(MZ,QUOL,FY,*U/UTOP "46,4'Y/H 43,

C 'U/uUTOP VS Y/H Y913, ',0)
XMAX= 1.0
CALL GRPLOT(MZ,QD.FY4*SOLID FRACTION *¢149°*Y/H *,3,
c TSOLID FRACTION *,14,° VS Y/H *,10)
XMAX= 0.6 _
CAbb GRPLOT(MZ, OMF-FV"NU*UIUTO? Y39, 'Y/H 9,3,
c SDIMENSIONLESS '413,"MASS FLOW *+9)
XHAX= 3.0
LASTP’ .FALSE.
NIX= 4
CALL GRPLOT(MZ,QFLL,FY, " TEMP*HGY/UTOP *y134°Y/H *,3,
*TEMPERATURE 9411, *DISTRIBUTION'»12)
TITLE=.FALSE. -
AXIS=,FALSE.
ORIGIN=.FALSE.
1SYM= 2

CALL GRPLOT(MZ,QUPL FYy*TEMPERATURE "4114+4°Y/H * 3,
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C
ISYM= 3
CALL GRPLOT{MZ,QVP1,FY,'TEMPERATURE %411,°Y/H *,3,

C STEMPERATURE *y11,*DISTRIBUTION®,12)

1SYM= & )
CALL GRPLOTINZ,QWPL1,FY*TEMPERATURE %411,'Y/H ,3,

c *TEMPERATURE Y911, *OISTRIBUTION®,12)

15YM= 5
LASTP=,TRUE.
CALL GRPLOT(MZ,QTMP,FY,*TEMPERATURE *4114'Y/H *,3,

C 'TEMPERATURE *s11¢ "OISTRIBUTION' 412}

CALL OFAULT

XMAX= 1.0

YSZE= 7.5

NIY= 7

YMAX= 2.0

DO 5002 I= 1.MZ

FNULI)= ABS{QS&(I))/DUY2(T)

5002 QR{I)= 2%SQRT(DUY2(I}/(QUP(TLI+QVP(I}I)

CALL GRPLOT{MZ,QD,QR,*SOLID FRACTION *,14,

c P2R¥DUDY VY 9,104'R VS NU *,7,° *,0)
YMAX= 4,0
CALL GRPLOTIMZ,QD,FNU, SOLID FRACTION *,l4,
C ¢ SHEAR®(UTOP/DU/DY)2 *,19,
c DENSITY DEPENDENCE *,18,'0F SHEAR',8)
YSZE= 5.0
XSZE= 8.0
NiXx= 9
NiY= 5§
YMAX= 1.0
XMAX= 0,0

LASTP= .FALSE.

00 5101 [= 1yMZl
SHERT= ABS(QS6(1))
SHRN= ABS(QT6(I))
SHERN= ABS(QRXX(I)}
SHRS= ABS{QRSStI))
SHRY= ABS{QRNS(I})

'S101  XMAX=  AMAXI(SHERT,SHERN,SHRT,SHRNsSHRS +XMAX)

XMIN= -XMAX
XEMT{1)= DFMT)
XFAT(2)= DFMT2
NFX= 7 »

CALL GRPLOTIMZ,Q56+FY,*DIM**LESS SHEAR *y14,°Y/H ',3,

C 'SHEAR VS Y/H',12,¢ *,0)
TITLE= oFALSE.
PDOC= «FALSE.
AXIS= .FALSE.
ORIGIN= FALSE.
1SYM= 10
CALL GRPLOT(MZ,QT6sFY,?* LY PR 900" *90,°*
I1SYM= 2 :
CALL- GRPLOT({MZ QRSSoFY,* *90y* t90,°* *90,°
ISYM= 3 . :
CALL GRPLOT(MZ,QRNS,FY,* 1,0, Y90, 40,°?
[SyN= 6
LASTP= LTRUE. :
CALL GARAPLOT{(MZ,QRXX,FY,? 2,0,"* ",0," * .0,
CALL DFAULT :
XSZE= B.0

*TEMPERATURE *el1,*DISTRIBUTION'412)

.0
*90)

901}

*,0)

cccececceeececececcceccccececcececceecceeccerceeececeeeceececccececececececeeeeccecccececce
cC . ' ol

C

VELOCITY DISTRIBUTION ASSESSMENT

c
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C
c REWIND TAPE AND CCMPARE INSTANTANEOUS VELOCITIES TO THE AVERAGE VALUES E
C c
{ O OF o1 % 0 68 o 7 01 % 4 0% O o 8 o8 X of of 5t o o o 0% o o o ot L o o o 4 0% o o o o o o o o o o 0 L o o o o o o8 o O ok o o o o o of o o o o o o8
: CALL ENDNF120)
DO 6051 = 1,10
6051 READ(204+END=6052)
6052  TIME3= —AVYTM
NUMC= O
NUMU= 0,0
NUMy= 0.0
MUMH= 0.0
c IRT= INT(FLOAT{LAVS + LAV3 - (AV4]}/1000.0 ¢+ 0.0001)-1
C IF {IRT.LT.0) IRT=0
CALL READNF(20)
LAV= O
LAV6= LAV3-1
LAV1= O
DO 6100 N= I-LAVG
6004 READ(2D.END=6005) TIME,NOC2,NCAsNDA,NQA,HGT,
C (XTI YLD ULT) o VLI DeW(1)el=1,IT)
GOT0O 6006
6005 CALL READNF(20} ’
GOTO 6004
6006 LAYV= LAVSs]
HGY9= HGT/2
N0 6010 I= 1,17
DM= (X{I)*ALS + Y{I}*ALC)
IF {DM.EQ.0.0) GOTO 5101
= 1 + INTIDM/ST)
GOTO 5010
IF (ABS(CM-HGTS).LT.ST) GOTO 5010

PAIR CORRELATION FUNCTION ASSESSMENT

SO0

DO 503 12= 1,IT
1IF (12.€EQ.1) GOTO 503
c RADIAL CORRELATION
M2= 141INT(50. O*ISQRTl(X(I)-X(IZl)**ZtlY(I)-Y(IZ)l'*Z) 2. 03
C /WL3)
IF [M2.LE.50) GCOL(M2)= GCOL{M2)+1.0
M2= 1+INT(50.0%(SQRT((X(I}I-X(I2)-WLCI*#2+(Y(I)-Y{I2)+WLS)%%2)
C ~2.0) /WL3}
IF (M2.LE.50) GCOL{M2)= GCOL(M2)+1.0
M2= 1+4INT(5C.0*{SQRTULIX(I})~ XlIZlOHLCl*‘2+(Y(I)—Y(IZ)-HLS)‘*Z)
c ~2.0} /vWL3)
{F (M2.LE.50) GCOLIM2)= GCOL(M2)+1.0
c NORMAL CORRELATION
M2= 1+#INT(50.0%ABSC(X(1)- l(l2l"ALS*(Y(l)—Y(IZ))*ALC)/HLZ)
IF (MZ.LE.50) GCY{MZ)= GCYIMZ)*1.0
c PARALLEL CORRELATICN AND VELOCITY CORRELATIONS
IF TCINTUABSUXUI2)I®ALS+Y(12)#ALC-DM) ) .LT.ST) GOTOD 503 -
M2=" 1+INT(50.0%*ABS{{X{])~ X(lZlI'ALC~(Y(I)-Y(IZ)D#ALSDIHLZJ
IF tM2.GT-350) GOTO 3030
GCX(M2Z2)= GCX{M2)¢+1.0
UCORIM2)= UCOR{N2) + (UCII-QM{T NI *(U(T12)-QM(12})
VCOR(M2)= VCOR(M2) + (VII)-ON(I))*(VII2)-QN(I2}}
IBN(M2)= IBN(M2)+1
S030 M2= 1#INT(S50.0%ABSI(XTIDN-X(I2}+WLCI*ALC~(Y(I}-Y(I2)-WLS)*ALS}
c /9L 2)
IF (M2,GT7.50) GATO 5031
GCX(M2)= GCX{(M2)+1.0
UCOR(M2)= UCOR(M2) + (ULDI-QMIT))*(UIT2)-QMLI2})
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VCOR(N2 )= VCOR(HZI + (VII)-ON(I)DI*=IVITI2)-QN(I2))
IBN(M2)= [BN(M2

5031 M2= lleT(SO‘O*ABS((X(Il XET2)-HLC) *ALC—UYUI)-Y{I2)+WLS)*ALS)
c /WL 2)

IF {(M2.GT.50) GOTO 503
GCX(M2)= GCX{(N2)+1.0
UCOR(M2)= UCOR(M2) + {U(II-QM{I))*(U(I2)-QMLI2))
VCOR{M2)= VCOR{M2) + (VII)-ON{I})*(VII2)-QNCUI2))
IBN{M2)= IBN(M2)+]1

503 CONTINUE
LAVI= LAVI+l

C
C VELOCITY DISTRIBUTIIONS
c N

5010 IF (TIME-TIME3.LT.AVTM) GOTO 6100
TIME3= TIME
IF (QFLIM]).LE.0.0) GOTO 6010
OD= ULI)*ALC - V(I}*ALS
DE= U{I)*®ALS + V(I)*ALL
IF (QFL(M).NE.0.0)
C MN~ 1+INT(SQRY({{DD-QM(M))I*¥2+{DE-QNI(M}I*+2+B+%(HI1)}-QW(I})}*+2)
c /QFL{M})/0.1) .
IF (QFL2(M}.NE.O.O)
C MN1z 1+INT{SQRT (((DD-QM({M))}**2+(DE-QNI{M) ) **%2)/QFL2(M))/0,1}
IF (QUPIM) .NE.O.D)
C MNU= 1+INT{SQRT{{DOD-QM{M)}}**2/QUP(M)}/0.1)
IF (QVPIM) .NE.0.0)
C MNV= 1+INT{SQRT{(DE-QN{M))1*%x2/CVP(N}}/0.1)
IF (QWP({ M)} .NE.D.O)
C MNW= 1+INT{SQRTY[(W(I)}-QW(M))**2/QuWP(M))/0.1)
IF (MN.GT.50) GOTO 6007
NUMC= NUMC + 1
QNUMIMN)= QNUM(MN) + 1.0
6007 IF (MNU.GT.50) GOTO 6069
NUMU= NUMU ¢+ 1
QNUMU{MNU)= QNUMUIMNU) + 1.0
6069 IF (MN1.GT.50) GOYO 6008
QNUMY (MNL )= QNUM1{MN1)+}
NUMLI= NUMi+l
6008 IF (MNV.GT.50) GCTQO 6009
NUMV= NUMV + 1
QNUMV{MNV)= QNUMVIMNYV) + 1.0
6005 IF (MNW.GT.S50) GOTO 6010
NUMW= NUMW + 1
QNUNW(MNW) = QNUMWI{MNW)} + 1.0
6010 CONTINUE
6100 CONTINUE
6101 WRITE (64642)
642 FORMAT{*1'//,* VELOCITY DISTRIBUTION*//
C 17X,*TOTAL DISTIBUTION®,42X,'U DISTRIBUTION'/
C * SLOT? 410X ,*RANGE® 910X+ *NUMBER?®, TX, *PROBABILITY®,
C 10Xs*RANGE®* 410X, "NUMBER® 4 TX,*PROBABILITY?//)
DO 3700 I= 1.50
DS= FLOAT{I)®*O0.)
NOT= INT(QNUM{(T)})
NCU= INT{(QNUMULT)}
IF (NUMC.NE.O) QNUNM(I)= 10%QNUM(I}/FLOATINUNC) -
IF (NUMU,NE.0O) QNUMUCI)= 1C2QNUMUCT)/FLOAT(NUMU)
3700 WRITE {64643) 1,DS,NOT,QNUM{I).NOU,QNUMULT)
643 FORMAT(I5,F15.59115,F15.5920X¢1154F15.5)
WRITE (646423)
6423 FORMAT(*1%//,* VELOCIYY DISTRIBUTION'//
C 18X,°V DISTRIBUTION?® 43X,*W DISTRIBUTION*/
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C * SLOT®,]OXy*RANGE" 410X, *NUMBER", TX, *PROBA
€ 10X,"RANGE® ,10X " NUMBER®,TX,*PROBABILITY"?
D0 3711 I= 1,50
DS= FLOAT{I)*0.1
NCv= INTUQNUMV(I))
NOW= INT{QNUMW(I}) )
IF (NUMV.NE.O) QNUMV(I)= 10.0%QNUMV(1)/FLOATINUNY)
IF (NUMW.NE.O) CNUMNW{I)= 10.0%*CNUMW(I1)}/FLOAT(NUMNKW)
3711 WRITE (646431 I+sDS,NOV,QNUMVI]) ¢NOWsQNUNWIT)
WRITE (646424)
6424 FORMAT(®*1%//,* VELOCIYY DISTRIBUTION'//
C 16Xy "LINEAR DISTRIBUTION®'/
C * SLOV!,10X,"RANGE®,10X,*NUMBER?, 7X,*PROBABILITY?*//)
DO 3712 I= 1,50
DS= FLOAT{I)*0.1
NOl= INT(QNUML{I))
IF (NUM1.NE.D) QNUMI{I)= 10%QNUM1(I)/NUM]
3712 WRITE {6+643) 1,DSyNO1,QNUM1(])
DG 6000 I= 1,50
6000 FY(Il= FLOAT(I)*0.1
XMIN= 0.0
XMAX= 5.0
TITLE= .TRUE.
AXTIS= L TRUF.
PDOC= «TRUE.
ORIGIN=.TRUE.
NiY= 6
YMAX= 1,2
ISYM= 1
CALL GRPLOTI(S0,FY,QNUM, *{C-UAV)/V®® ,10,°PROBI(CY *,
c T+ *NUMBER DISTRIBUTION *,19,°* *40)
CALL GRPLOT(S50,FY,QNUM1,*{C~UAV)/V'* *,10,°PROBIC) °*,
C T+ *LINEAR DISTRIBUTION *¢19,°* 'y0)
c

BILITYY,
71

CALL GRPLOT(S50,FY,QNUMU,"{C~-UAVI/V®" ¢,10,'PROBIC) *,
Te*U DISTRIBUTION *ol4,°* *40)
CALL GRPLOT(50,FY QNUMV,*{C~UAV)I/V'Y 9,10,"PROBIC) *,
C Te®V DISTRIBUTION ®*914," "0}
CALL GRPLOTI(SO,FY,QNUMN, *(C-UAV)I/V®® ¢,10,*PROBI(C) ¢,
c Te®W DISTRIBUTION *,14,°* *40)
CO 6200 I= 1,50
. FY{I)= FLOAT(1)#0.0628316
6200 COLDIS(I)= COLDIS(IV/(LAV2#%0.0628316)
CALL DFAULTY
YMAX= 2,0
XS2E= 8.0
XMIN= 0.0
XMAX= 3,141593
CALL GRPLOT(50,FY,COLDIS,*ANGLE *e59'N/NCOL  * 464
C °*COLLISION ANGLE ®415,°*DISTRIBUTION',12)
SCy=,TRUE.

00 6300 I= 1,50
FY21I)= FLOAT{I)*kL 2/50.0
6300 FY(Il= 2.0+FLOAT(I)*WL3/50.0
WRITE(6,46610)
6€10 FORMAT(*1°%,35X,*PAIR CCRRELATION FUNCTICN®*//
10X,*SLOTY,9%, *DISTANCE? . 5X, NUM. COUNTED?, X,
SDISTANCE®,6X,
"PERCENTAGE® ¢ 2X+* VERTICAL NUM® 41Xy *PERCENTAGE"®,
1Xe "HORIZCNTAL NUM® ,PERCENTAGE'//)
DO 6630 I= 1.50
NAB= GCOL(I)

(g XaRalal
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DIS2= 2.0 & FLOAT(I)I*WL3/50.0
D1S3= FLOAT{I)*wWL2/50.0
GLOL{12= 25.0%GCOL(1)%*3.141393/7(LAVO*DISZ*WLI*DAV*32)
NAY= GCY(I) .
GCY{I)= 25.0%GCY(I)/(LAVESRL2¥ML)
NAX= GCX(1) -
IF (LAV1eNE.D.O) GCXU1)= 25,0¢GUX(I}/{LAVI®*KHL2*5T)
6630 WRITE(696620) 1,0IS2¢NAB+GCOL(T) ¢DISI¢yNAY.GCYE])sNAXLGLX(T)
6620 FORMAT (10X 915,F15.6,110+F15.69F15.69110,F15.64110,F15.6}
WRITEL646625)
6625 FORMAT(*]1/* VELOCTIY CORRELATIONS'//
€ 10X," SLOT®,6X,'DISTANCE *,10X,*U~ CORRELATION®,
C 10X,'V- CORRELATION®')
DO 6626 I= 1,50
DIS3= FLOATU(I)*WL2/50.0
IF (IBN(1).EQ.0) GOTOD 6626
UCORLII= 50.0%UCOR(II/Z{IBNITI®*QUIIWL2)*WL2)
VCORII)= 50.0¢VCOR{I)/(IBN(I)*QVIINLZ)*WL2)
6626 WRITE(6.6627) 1.015S2,UCOR(1)+VCOR(I)
6627 FORMAT{10X+154F15.5¢10X4E15.5,10X4EL5.5)

XMIN= 2.0

XMAX= WL2

SCYy=,TRUE.

CALL GRPLOY{SO,FYGCOL,*SEPARATION *,10,'G FUNCTION *,10,
Cc *PAIR CORRELATION' ¢16,° *v0)

XMIN= 0.0

CALL GRPLOTI(SO,FY2+GCY.*SEPARATION °*,10,*PROBABILITY *,11,
C *VERT CORRELATION'¢164° '40)

CALL GRPLOT(S0,FY2,GCX,*SEPARATICN ¢,10,*PROBABILITY *y1l,
C *HORZ CORRELATION®416+°* ‘4 0)

CALL GRPLOT(50,FY2,UCOR, *SEPARATION ',10,"CORRELATION *,11,
C SU=VELUCILTY " 218y "CURRELATION *9111

CALL GRPLOT{SO+FY2,VCOR,*"SEPARATION *,10,°CCRRELATION %411,
*W-VELOCITY *¢,16,*CORRELATION *»11)
C SYSTEM ENERGY HISTCRY
8003 DO 8004 I= 1,1EN
8004 FY({I)= FLOAT{I)*50.0
CALL DFAULT
XSZE= 8.0
XMAX= FLOAT{NOCD)
SCY=.TRUE.
L INE= .TRUE.
POINT= LFALSE,
XFMTLL1)= DFMT1
XFMT{2)= DFMT4
CALL GRPLOT(IEN,FY,QE,*CCLLISIGNS *,10,
C CTOTAL ENERGY®,12,*ENERGY HISTORY ',14,
C *COLLISION OLCTY f,14)
XFMT(2)= DFMT3
XMIN= TIMST
XMAX= TIME
sToe
END-
C THIS MARKS END OF MAIN PROGRAM

[N alNal
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Appendix C

LISTING OF THE INITIAL STATE CREATION ROUTINES

C.1 COLOO7: 1Initial State Creation for the Inclined Chute Simulation
geeeeeecececeeccceceeceeccccecccceccececccceececcecccceecceccecceeeccecccececcccceccece

PRCGRAM COLOO7?

THIS PROGRAM GENERATES INITIAL SYSTEM CONFIGURATIONS FOR THE
INCLINED CHUTE SIMULATION

THIS PRUGRAM BELONGS TO CHARLES CAMPBELLes THCMAS 03, X4153

C
C
c
o
C
C
C
C
c RECUIRES SUBPRCGRAM NRAND, INTEGER RANDOM NUMBER GENERATOR
C

c

c
C
C
c
C
c
C
C
C
; c
(A dadddddddddddadadddedoddddddddddadddiddddiddadddacdddudaddadadagddddadedsdddds
DIMENSION X11000),¥(1000),U(1000},V(1000),4{1000),D(5),
€ IR(1000}

C  GENERATE INITIAL VELOCITY ACCORDING TO SEVENTH ORDER LEAST SQUARES
c FIT TO A VELOCITY PROFILE

FUZ)= AB¥Z¥¥T+ATHI**6+ALFIFI54 A5 %%44+
c AL*7Xx34A3¥227+A2%1+A1

DATA A1/0.2018029/+A2/3.5299215/¢A3/-154,2262754/4A4/74T.4364204/,

c A5/-8B.1786499/.A6/93.5828B476/.A7/-51.8336868/,48711.4877520/
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c
c INPUT VARIABLES C
C En @ MWALL CCEFFICENY OF RESTITUTION C
c EP ¢ PARTICLE COEFFICENY OF RESTITUTION C
c ALPH 3 CHUTE INCLINATION ANGLE (IN DEGREES! : C
C 8 : RATIQO OF THE RADIUS OF GYRATICN TO THE PARTICLE RADIUS C
C NPL : NUMBER OF PARTICLES VERTICALLY : c
c NPH ¢ NUMBER OF PARTICLES HORIZONTALLY <
C SPI 2 HALF MEAN PARTICLE SPACING C
c UMAX = MAXIMUM VELOCITY C
C CPI 2 SCALF OF ALLOWED RANDCMNESS C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

READ (54633) EW.EP,ALPH,.8B

READ (5,501) NPL NPH,SPI,sUMAX,QPI
"501 FORMAT(215,4F10.0}

WRITE (6+600) EWLEPHALPHyBsNPL«NPH,SPI ,UMAX
600 FORMAY { 26H COEFF.OF RES.FOR WALL = 4F12.3/

C 26K COEFF.OF RES.FOR PARYT.= ,F12.3/

C 26H ALPHA = 4Fl2.3/

C 26H B=K*$2/R%¥¥2 = $F12.3/

C . 26H NC.VERTICALLY = 15/

C 26H NC.HORIZONTALLY = 415/

c 26H SPACING - = SFl12.%

C 26H MAXIMUM VELDCITY = »F12.3/7)

c INITIALIZE VARIABLES

ALF =0,0174532% ALPK
ALS= SIN(ALF}

ALC = COSUALF)

ALY =ALS/ALC

ALET = ALC/ALS
DO 25 I= 1,IT

25 IR{I)= O

WL = 2.0%SPI*FLCAT(NPH)
WLS =WlLeALS

WLC = WL¥ALC

WH = 2,0%SPIxFLCATINPL)-SPI
IT = NPL®NPH

NOCO= O

WRITE (64601) QPI, WL, WH
601 FORMAT [ 26H - INIT]AL DSC.VEL.Z = 4Fl2.3/ -
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Cc 26H LENGTH = oF
c . 26H HEIGHT = oF

Cc INITIAL RANDOM X.YoUsVeW SETUP
NRAN = 12345
-DC 200 J= 14NPL
DO 200 K= 1,NPH
DO 201 L= 1.4
NRAN = NRANDUNRAN)
201 DHL) = 2.0 * FLOATINRAN]} / 0.214748B4E10 -1.0
N= K+ NPHX(J-1)
DS= SPI + 2,0*SPI*FLOAT(K-1) ¢+ D{1)*(SPI-1.0}
DN= 2.,0%SPI*FLOAT(J)} - SPI+D{2}*{SPI-1.0)
Uy= FIDN/WH)EUMAX
X{N}= DS*ALC + DN*ALS
Y{N)= DN®ALC - DS#*ALS
UIN)= UYXRALC + D(3)*QPI*UY
YIN}= —UY*ALS + D(4)*QPI*UY
200 MWiNI= 0.0
c WRITE CUT CRIGINAL SETUP
TIME = 0.0
WRITE (6,637) TIME
637 FORMAT(///24H ORIGINAL PARTICLE LIST +F15.5)
D0 22 I= 1,17

DS= X{I)*ALC - YUI)}*ALS
ON= X{I)*ALS ¢ Y({I)*ALC "
US= U(J)#ALC - V(I)*ALS

UN= U{TI)#ALS ¢ V{1)#ALC
22 WRITE (64631) 1,DSsDNoUSsUNW{I),IR(I)
631 FORMATIIS,5F15.5,151)
C MRITE INITIAL RESULTS ONTC CARDS
WRITE(7,635) TIME,NOCD
WRITE(74633)EW,EP,ALPH,B
WRITE(T7,634)IT,WL
DD 320 I=1,IT7
320 WRITE(T7,632) IR(I1, X{I)e Y(I}s UCI), V(1), MWD}
632 FORMAT(1IS,5F10.5) .
633 FORMAT(4F10.4])
634 FORMAT(1IS5,F10.4)
635 FORMAT(F10.3,I5)
sToP
END
C THIS MARKS END OF MAIN PROGRAM
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Tnitial State Creation for the Couette Flow Simulation

geeeccecccceccrececccceccececcccceecceecceeececccceeecececcceceeecceecceeeceecee

c
C
c
c
c
c
C
C
c
C
c

THIS PROGRAM BELONGS YO CHARLES CAMPBELLs THOMAS

RECQUIRES SUBPROGRAM NRAND,

c

PROGRAM COLOOS

THIS PROGRAM GENERATES INITIAL SYSTEM hONFIGURATIONS FOR THE
COUETTE SHEAR CELL SIMULATION

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCC

o3,

INTEGER RANDOM NUMBER GENERATOR

c
C
o
c
C
X4153 C
o
Cc
C
c

DIMENSION X{1000),Y{1000),U{1000},Y¥{100C),N{1000),D15),

1R{1000)}

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c
c
C
C
C
C
c
c
C
C
c
C
c

INPUT VARIABLES

EwW T WALL COEFFICENT OF RESTITUTION

EP 2 PARTICLE COEFFICENT OF RESTITUTION

ALPH 2 CHUTF INCLINATION ANGLE (IN DEGREES)

B ¢ RATIO OF THE RADIUS OF GYRATICN TC THE PART[CLE RADIUS
NPL 2 NUMBER DF PARTICLES VERTICALLY

NPH 3 NUNBER OF PARTICLES HORIZONTALLY

SPI ¢ HALF MEAN PARTICLE SPACING

UTCOP : UPPER WALL VELOCITY

QPI ¢ SCALE OF ALLOWED RANDCMNESS

cceeceeccceececccecccececceecccceccecccececcececccecececccecceecceecccececccececcecce

READ (54633} EW,EP,ALPH,B,GEE
READ (5,501} NPLyNPHsSPL,UTOP,QPI

501 FORMAT(215,3F10.5)

WRITE (6+600) EWLEPLALPHB¢NPLyNPH,SPILGEE,UTDP

600 FORMAT ( 26H COEFF.OF RES.FOR WALL = ,F12.3/

c 26H COEFF.OF RES.FOR PART .= 4F12.,3/
c 26H ALPHA =  4Fl2.3/
o 26H B=K*32/R*%2 = 4Fl2.3/
c 26H NOJVERTICALLY = S112/
c 26H NC.HORIZONTALLY = 112/
Cc 26H SPACING = 4Fl2.3/
C 26H GRAVITY =  yFl12.37
C 26H TOP PLATE VELOCITY = $F12.37)
ALF =0,0174532% ALPH
ALS= SIN{ALF)
ALC= COS{ALF)
ALT= ALS/ALC
ALCT= ALC/ALS
DO 25 1= 1,17
25 IR(I)})= O
WL = 2,0%SPI*FLOATINPH)
WLS =Wl *ALS
WLE = WL*ALC
WH = 2, O*SP!*FLCAT(NPLD
1T = NPL®NPH
NOCD= 0O
WRITE (6,601) QPI,WLoWH
601 FORMAT ( 26H INITIAL OSC.VEL.Z = GJF12.3/
Cc 26H LENGTH = JF12.3/
c 26H HEIGHT = 4Fl2.37)

C INITIAL RANDOM XoY,UeVyit SETUP

NRAN = 12345
DO 200 J=1, NPL

C
c
Cc
C
c
C
C
C
C
c
C
o
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DD 200 X=1, NPH
DO 201 L= 1.4
NRAN = NRANDINRAN]}
201 DIL) = 2.0 * FLOAT{NRAN) / 0.21474B4E10 ~-1.0
N = K& NPHx{J-1)
DS = SPI & 2,0%SPISFLOAT(K-1) ¢ D(1)*(SPI-1.0)
DN = 2.,0¢SPI*FLOAT(J)=-SPI+D{2)*{(SPI-1.0)
X{N} = DS*ALC + DN=*xALS
Y(N) = DN*ALC-~ DS*ALS
UIN)= (ALC+D{3)*QPI1)*{0.240.6%0N) *UTUP /WH
VIN)={=ALS+D{4)*QPI }*{0.2+0.6%DN) *UTOP/WH
200 WI(N) =0.0
(4 #WRITE OUT INITIAL STATE OF SYSTEM
TIME = 0.0
WNRITE (6,627) TINME
637 FORMAT(///724% ORIGINAL PARTICLE LISY +F15.5)
DO 22 I= 1,17
DS= X(I)*ALC - YUI)*ALS
DN= X(I)*%ALS ¢ Y({I)}#ALC
US= UCI)®ALC - V{I)#*ALS
UN= U(T1)*ALS + V(I)}*ALC
22 WRITE (6,6310 T,08,DN,USGINMWITIIRIT)
631 FORMAT{I5,5F15.5415)
C RECORD INITIAL STATE ON CARDS
WRITE{7,635) TIME,NGCD
WRITE17.633)EW.EP,ALPH,B
WRITE(74633)UTOP+4WHsGEE
WRITE(7:632)1ITMWL
DO 320 1=1.IT
320 WRITE(7+632) IR(IN, X(I), YU(I), ULLDy VIID, W(I)
632 FORMAT(1IS5,5F10.5)
633 FORMAT(5F10.4)
634 FORMAT(1I5,F10.4)
635 FORMAT{(F10.3,15)

sToP
END
C THIS MARKS END OF MAIN PROGRAM



-239-

Appendix D

LISTINGS OF THE COLLISION ASSESSMENT ROUTINES: COLLUP

D.1 Collision Assessmenl for the Inclined Chute Simulation

SUBROUTINE COLLUPIN.LAT,JA,TIME)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE COLLUP
COLLISION ASSESSMENT ROUTINE FOR THE INCLINED CHUTE SIMULATION

ASSESSES ALL CCLLISICN LIST ENTRIES FOR THE PARTICLE N. THE TARGET
PARTICLE AND THE TIME DF THE COLLISION IS STORED IN THE COLLISION
LIST VIA THE ROUTINE INSRT

A TARGET NEX= ITA DENCTES A LCWER WALL COLLISION
’ NEX= ITAL DENDTES AN UPPER WALL COLLISION
NEX = IT8 DENODTES A NISAPPEARANCE UPSTREAM
NEX = ITC A DISAPPEARANCE DCWNSTREAM.

1S ADVISABLE IF N HAS JUST CONPLETED A COLLISON WITH JA AND THEY ARE
PRESENTLY TOUCHING

LAT IS THE FIRST PARTICLE IN NUMERICAL SECUENCE THAT IS TO BE CONSIDERED
AS A TARGET PARTICLE

OCCASIONALLY A PARTICLE IN THE MAIN FIELD OF VIEW MAY HAVE ITS PRIMARY
COLLISON WITH A PARTICLE IN THE REPEATED FRAME EITHER UPSTREAM OR
DOWNSTREAM OF THE MAIN FRAME . THE CASE IN wHICH THE N PARTICLE COLLIDESC
WITH A PARTICLE IN THE UPSTREAM REPEATED FRAME IS DENOTED BY NQA=-1 3 C
FOR A COLLISIUN WITH THE DOWNSTREAM REPEATED FRAME NQA=¢l., OTHERWISE c
NQA=0 C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
DIMENSION X(lOOO'vY(lOOO)vU(1000)-V|1000}vU(1000'9
C IR(1000}
REAL 1IL,J4L
DOUBLE PRECISICN TIME,TIM,DA,DBDC+0TA,DTB4DTN,DX,DY,DU,DV,DD,
C DEoA1,A24A3,A44A5,H FA,FB,H2,DTB3,FD,DTB2,
c CH,.,F,EPRI,R
COMMON/AZIT XY 4UgVyWeSHEART,SHEARN, TR, AISS
COMMON/B/ITAyITEITCoALSALCoALToALCT WL 4WNLSWLCyAISN, AISC
F(R)= R*%4 » AL¥RE®23 + A2%R*R ¢ A3%R ¢+ A4
FPRI(R)= 4,000%R$%3 ¢+ 3,0%A1%R*R + 2,0%A2%R + A3
DIN = 1.0D¢6
1F {IRIN}.EQ.1) GOTO 930
C ASSESS SOLID WALL COLLISION

DB = DBLE(-VI(N))}—- DBLE(ALT*U{N))

DC = -2,0%({DBLE(Y(N}) ¢+ DBLE(X(N)*ALT} - 1.0D0/ALC)
c CHECK FOR OVERLAP

1F (DC.LE.0.0.0R.DB.LT.0.0) GOTO 920

CALL INSRTIN.10,1TA,TIME,IT)

RETURN

920 DD= DB*#2 - DC

IF.{00.LT.0.0) OD= 0.0

DD= DSQRT{DD)

OIN= (-DB} - 0D

If (CTN.LT.0.0) DIN= -(DB) + DD

NEX= ITA

NQA= 10
c ASSESS UPSTREAM PERIODIC BOUNDARY COLLISICN

930 DB8= DBLE{UINI®ALCT) — DBLE(VIN}}

IF (IRIN).EQ.1) DB= DB#ALS/AISN

DC= 2.0%{DBLE(XIN)I*ALCT) - DBLE(Y(N)))

IF {IR(N).EQ.1) DC= DCEALS/AISN

IF {JA.EQ.ITC) GOTO 940
C CHECK FOR OVERLAP

OO0 MNOO0O0O0N00O00D

C
C
C
C
C
C
C
c
c
c
C
C
c
c
c CNE PARTICLE CAN BE EXCLUDED AS A TARGET BY INCLUDING IT AS JA. THIS
C
c
c
C
c
C
C
C
C
C
C
C
C
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IF (DC.GE+0.0.0R.,DB.GT,0,0} GOTO 935
CALL INSRT(Ne49ITByTIME,ITY

RETURN :
935 DD= DB*DB - DC
IF (DD.LT.0.0) GOTC 940
OD= DSQRT(DD)
DTB= -{DB + DD)
IFf (DTB.LE.0.0) DTB= (-DB) ¢ DD
IF (DYB.LT.0.,0.CR.CTB,GT.DTN) GOTO 940
NEX= ITB
NQA= &
c ASSESS DOWNSTREAM PERIODIC BOUNDARY COLLISION
940 UOC= DC - 2.0%«DBLE(WL/ALS)
IF (IR(N).EQ.l) OC= DC + 2,0®WL*{1.0/ALS - 1.0/A1SN)
Cc CHECX FOR OVERLAP
IF (DCalV40.0.0RDBolLT.0.0.0R.JA.EQ.ITB) GOTD 945
CALL INSRT(N6,ITC,TIME,IT)
RETURN
S45 U0UD= 0DB*DB - DC
IF (DD.LT.0.0) DD= 0.0
DD= DSQRT{DD}
D18= (-DBY - DD
IF (DTB.LT.0.0) DTB= (~0B) + DO
IF (CTB.GY.DTN} GOTQ 950
DTN= DTB
NEX= ITC
NQA= &
950 TIM= TIME + DTN
IF (CTN.GT.100.0) STOP
CALL INSRT(N,NQAJNEX.TIM,IT)
c ASSESS PARTICLE-PARTICLE CCLLISICNS
IF {LAT.GT.IT) RETURN
b0 100 1=1,3
DO 100 J= LAY, IT
If (J.EQ.N) GOTO 100
DX = DBLE(X{J)) -~ DBLE(X(N}) + DBLE{(WLC*FLOAT(1-2)})
DY = DBLE(Y(J)) - DBLE(Y(N)) - DBLE{WLS*FLOAT(I[-2))
DU = DBLE(U(J)) - DBLE(U(N)}
Ov = DBLE(V(J)) - DBLE(VIN))
DA = DV#%2 & QU*%2
DB = DV#DY+ DU*DX
DC = DX*%2 & OY*%2-4,000
IF (J.EQ.JA) GOTC 200
o CHECK FOR QOVERLAPS
1F (CC.6E.0.0) GOTO 200
NEX= J
NCA=s [-2
CALL INSRTINeNQA,JoTIME,IT)
RETURN
200 IF ((DUY*DU + DV*DV).LT.0.00001) GOTO 100
IF {CIR(N) ¢ IR{J)II.EQ.1) GOTO 300
IF-tJ.EQ.JA) GOTC 100
DD-= DB*x2 - DA*DC
IF (DD.LT.0.0) GOTO 100
DE = DSQRT(DD)
DTA = (DE-DB) /DA
DTA = ~-{DB¢DE)/DA
IF (DTB.LT.0,.,0) DTB= DTA
iIF (DT8.LT.0.0) GOTC 100
IF (0TB.GT.DTN)} GOTC 100
NEX = J
NQA=[-2
TIN= TIME ¢+ DTB
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CALL INSRTUNJNCANEX,TIM,IT)
GOTO 100

€ COLLISTON ASSESSMENT BETWEEN A ROLLING ANC A NON-ROLLING PARTICLE
300 DG= FLOAT({IRIN} - IR(J))
A5= 0.25%(DBLE{AISN®*AISN} - DBLE(2.0#%AISS) + 1.0D+0)
A4= DC/AS5
A3= 2.0%DB/AS
A2= (DA ¢ DG*({AISS - 1.0)%DY — AISC*DX))/AS
Al= DG*{DV#(AISS - 1.0) - DU*AISC)/AS
C CHECK IF SOLUTION TO QUARTIC EXISTS
H= A2 - Al%Al
IL= A4 - 4.0%A1%A3 + 3,0%A2%A2
G= A3 - 3.0%A1%A2 ¢ 2.0%A1%%3
Jis HXIL - G*G - 4,0%H*%3
DD1= [L*%3 - 27,0%JL*JL
DN2= 3.0%JL - 2.0%H*IL
IF (DD1.GTeDe0.AND.{(HoGT.0.0).0R.(DD2.LT.0.0))} GOTO 100
C NARROW DOWN THE LOCATION OF THE TIME BY A BISECTION METHOD
NPATH= 1
DY8= 0,000
Hz =0.25%DSORT(CC#4.0)/08
IF (H.LT.0.0) H= .0675
EA= A4
IF  (DABS(FA).LT.1.0E-25) GOTO S10
900 FB= F{DTBH)
IF (FAXFB) 907, 905, 905
905 DTB= DTB+H
S06 IF {DTB.GT.DTN) GOTC 100
FA= FB
GOTO (900,907), NPATH
$07 H2= H
H= H/2.0
IF (F.LT.1.00-8) GOTO 910
NPATH= 2
IF (KH.GT.0.01) GCTO 900
C  WHEN CLOSE ENOUGH USE A NEWTONS METHOD TO FIND COLLISION TIME
1CON= O
DTB2= DTB
FD= FA
DYB2= DTB
$09 1CON= ICON+1
CH= FD/FPRI(DTB2)
IF(DABS(CH).LT.1.00-8) GCTO 908
DTB2= DTB2 - CH
IF (DABS{DTB2-DTB3).GT.H2.0R.ICON.GT.200) GOTO 500
FD= F(DTB2}
IF (DABS{FD).G6T.1.0E-25) GOTO 909
%08 DTB= DTB2
910 NEX = J
NQA= [~-2
TIM= TIME + DTB
CALL !NSRT(N.NOA.NEX.Y!H.IT!
100 CONTINUE

110 RETURN
END
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D.2 Collision Assessment for the Couette Flow Simulation

C
C
C
c
C
C
c
C
C
c
c
c
[
c
c
c
c
c
c
C
c
c
c
C
c
c
c
c
c
c

c

c

teceeceecceceeeeceeccecececeecececccceceececcceccccecececceeceeeeceeccceecceeccececcecece

SUBROUTINE COLLUP(N,LAT,JA,TIME,GEE,HGT,1TAl,VTOP,VBOT,VSIDE)

SUBROUTINE COLLUP
COLLISION ASSESSMENY ROUTINE FOR THE COUETTE FLOW SIMULATION

ASSESSES ALL COLLISION LIST ENTRIES FOR THE PARTICLE N. THE TARGEY
IS STORED IN THE COLLISION LIST VIA THE ROUTINE INSRT.
A TARGET NEX= ITA DENOYES A LOWER WALL COLLISION
NEX= I1ITAl DENOTES AN UPPER WALL COLLISION
NEX = ITB DENOTES A DISAPPEARANCE UPSTREAM
NEX = ITC A DISAPPEARANCE DOWNSTREAM.

VY0P, VBOT, ANC VSIDE ARF THF VFLLOCITES 0OF THE UPPER, LOWER AND
PERIODIC BOUNDARIES RESPECTIVELY

ONE PARTICLE CAN BE EXCLUDED AS A TARGET BY INCLUDING IT AS JA. THIS
IS ADVISABLE IF N MAS JUST COMPLETED A CCLLISON WITH JA AND THEY ARE
PRESENTLY TOUCHING

LAT IS THE FIRST PARTICLE IN NUMERICAL SEQUENCE THAY IS TO BE CONSIDERED
AS A TARGET PARTICLE

OCCASIONALLY A PARTICLE IN THE MAIN FIELD OF VIEW MAY HAVE ITS PRIMARY
COLLISON WITH A PARTICLE IN THE REPEATED FRAME EITHER UPSTREAM OR
DOWNSTREAM OF THE MAIN FRAME . THE CASE IN WHICH THE N PARTICLE COLLIDESC
WITH A PARTICLE IN THE UPSTREAM REPEATED FRAME IS DENOTED BY NQA=-1 3 c
FOR A COLLISION WITH THE DOWNSTREAM REPEATED FRAME NQA=+1. OTVHERWISE C
NQA= O. c

c

s XaksiaksizinlaiakakalalaXaNalaNaNaNa e N an el

cecceececeeecceceecceceeceececceceecceececcccececeecceccecececcceccecececccceccecccecc

DIMENSION X{1000),Y(1000},U(1000},V{1000),W{1000),

€ I[R(1000)

REAL IL.JL

DOUBLE PRECISION TIME,TIM,DA,DB,DC,DTA,DTB,DYN,DX,DY,0U,0V,DD,
< DEeAloA2 yA34A%AS5HyFA,FB,H2,DTB3,FD,DTB2,
[ CHoF 4FPRI,RyDHGT,OVT,CVB,OVSC,DVSS

COMMON/AZIT X 4YoUyVeWrSHEART SHEARN, IR, ATSS
COHHGN/BIITAvITB'ITQ'ALS'ALC.ALT.ALCT'HL.HLS-HLC.AISN.AISC
F(R)= R*%& + AL#R*%3 ¢ A2*%R¥R + A3*R + A4
FPRI(R)= 4 .0%R®%3 + 3, 0%AL%R*R + 2.0%A2%R + A3
DHGT= DBLE(HGT)
pDVT= DBLEIVTOPY
pvs= DBLE(VBOT)
pvS= DBLE{VSIDE)
ovSC= DVS*ALC
DVSS= DVS%ALS
DTN = 1.0D+6
NQA= 0
IF “THERE IS NO GRAVITY OR THE SYSTEM 1S VERTICAL THE
EOQUATIDONS ARE LINEAR
IF (GEE.NE.0.0.AND.ALC.NE.O.0) GOTO 1000
IF (IR(N1.NE.O) GOTO 1030
LOWER WALL COLLISIONS .
De= DBLE(UIN)*ALS) + DBLE(VIN)*ALC) —~ DVB
DC= OBLE(X(N)*ALS) ¢ DBLE(Y(N)*ALC) - 1.000
IF (DCeGE+0.0.0RJA.EQ.ITA.OR.DB.GT.0.0) GOTO 1010
CALL INSRTI(N,O,ITA,TIME,IT) .
RE TURN

1010 IF (DB.EQ.0.0) GOTO 1015

DT8= ~DC/DB
IF (DTB.LT.0.0) GOTO 1015
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DTN= DOTB
NEX= ITA
c UPPER WALL COLLISIONS
1015 DC= DC + 2.0D0 - DHGT
08= DB - DVT
IF (DC.LE.D.0.0R.JAL,EQ.1TA1.OR.DB.LT.0.0) GOTO 1020
CALL INSRT{(NyO+ITAl,TIME,IT)
RETURN
1020 IF (DB.EQ.0.0) GOTO 1030
DT8= -DC/D8
IF (DTB.LT.0.0.0R.DTB.GT.DTN) GOTO 1030
DIN= DYB
. NEX= ITAl
C UPPER BOUNDARY COLLISIONS FOR ZERO G OR ZERO ANGLE
1030 IF (GEE.NE.O.0.ANDJALS.NE.0.0}) GOTO 930
1035 0B8= DBLE{UINI*ALC) -~ DBLE(V{N)*ALS)
1f (DB.EQ.0.0} GCTO 950
DC= DBLE{X(N)*ALC)} - DBLE(Y(N}*ALS)
IF (JA.EQ.ITCY GCTO 1040
IF (DCoGEeDs0sCR.DB.GT.0.0) GOTO 1038
CALL INSRT(N,O,1T8,TIME,IT)
RETURN
1038 DT78= ~DC/DB
IF (DTB.LT.0.0.0R.DTB.GT.DTN) GOTO 1040
DTN= DTB
NEX= ITB
c LOWER BODUNDARY COLLISIONS
1040 IF (JA.EQ.ITB)} GOTO 950
DC= DC ~ DBLE(WL)
DB= DB - DVS
IF (DC.LY,0.0.0R.0B.LT.0.0) GOTO 1045
CALL INSRT(NsOJITCHTIME,IT)
RETURN
1045 DTB= -DC/DB
IF (DTBelLT.0.0.0R.DTB.GT.OTN} GOTO 950

DTN= DTB
NEX= I7C
6010 950

C QUADRATIC EQUATION SOLTICN FOR NON-ZERD G
1000 IF (IR(N).NE.O) GOTO 930
DB = -{DBLE(VIN)} + DBLE{ALT*UIN}))
DC = =2,0%(DBLE(Y(N)) + OBLE(X{(N)#*ALT) - 1.000/ALC}
1F (DC.LE.0.0) GOTO 920
CALL INSRTIN,O,ITA,TIME,IT)
RETURN
520 DD= DB*%x2 - DC
IF (DD.LT.0.0) DD= 0.0
DD= DSORTION])
DIN= -D8 + OD
NEX= [TA
0C= DC ¢+ (2.0D0/ALC - DHGT/ALC}
08= DB - DVY
IF {DC.LE.0.0) GOTQO 925
CALL INSRT(N+O+ITAL,TINE,IT)
RETURN
$25 DD= DB*D8 - DC :
iF {DD.LT.0.0) GCTC 930
DD= DSQRT(DD)
DYB= -{D8B & DD)
IF (DTB.LT.0.0) DTB= ~DB + DD
IF {(DTBelLT.0.0.0R.DTB.GTOTN) GUTU 930
DTN= DTB
NEX= IVAl
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WALL AND PERIODIC BOUNDARY COLLISIONS IF GRAVITY IS PRESENT
NOTE:

SIMULATIONS OF THIS TYPE WERE NEVER RUN AND THE ACCURACY
OF THIS SECTION IS UNKNOWN

930 IF (ALS.EQ.0.0) GOYC 1035

08= DBLE{UINI*ALCT) — DBLE(VIN))

IF (IR(N).NE.O) CB=DB*ALS/AISN

DC= 2.0#{DBLE(XIN)*ALLCT) - OBLE(Y(N)))
IF UIR{(N)NE.O} DC= DC#*ALS/AISN

IF {(JA.EQ.ITC) GOTO 940

IF {0CeGEs0.0.0R.DB.GT.0.0) GOTO 935
CALL INSRTIN+O+1TB,TIMESIT)

RETURN
$35 0O0= DB*DB -~ DC
IF (DD.LT,0.0) GOTO 940
DO= DSQRT(DD)
NTB= ~-(CB ¢+ DD)
IF (DTB.LT.0.0) DTB= (-DB} + OD
iF (DTB.LT.0.0.0R.DTB.GT.0TN} GOTO 940
NEX= IT8
940 DC= DC - 2.0D0*WL/ALS
0B= DB - 2.0%DVS/ALS
IF LIRIN}.NE.O) OC= DC + 2.0*wWL*(1.000/ALS - 1.0DO/AISN?
IF (DCLT740,0.0R.DB.LT.0.0.0R.JALEQ.ITB) GOTO 945
CALL INSRT{N,D.ITC,TIME,IT)
RETURN
S45 DD= DA*DB - DC
IF (DD.LT.0.0) DD= 0.0
DD= DSQRTI(DD)
018= {-DB} - 0D
If (0TB.LT.0.0) DTB= (-DB) + DD
IF (DTB.GT.DTN) GOYC 950
DTN= DT8
NEX= ITC
STQRE SHORTESY SULID BOUNDARY COLLISION IN COLLISION LISY
950 TYiM= TIME ¢ DTN
CALL INSRTUIN,ONEXsTIM,IT)
. PARTICLE~-PARTICLE COLLISIONS

200

IF (LAT.GT.IT) RETURN
DO 100 1=1,3

1FR= 1-2

DC 100 J= LAT, IT

IF (J.EQ.N} GOTO 100

DX = DBLE{(X{J))} - DBLE{XIN)) + DBLE(WLCI*IFR
DY = DRALE(Y(J4)) - DBLE(Y(N)) - DBLE(WLS)*IFR
DU = DBLE(U(J)Y ~ DBLE(U{N]}) ¢ DVSC#IFR

DV = DBLE(V(J)) - DBLEIVIN)) - DVSS*IFR

DA = DV¥%2 + DU*2

DB = DV*DY+ DU*DX

DC = DX*%2 + DY#*32 - 4,000

IF (DC.GE.0.0.0R.J.EQ.JA) GCTOD 200

NQA= [FR
CALL TINSRT(NsNQA»J,TIME,IT)

RETURN

IF ({DU*DU + DV*DV).tT.1.00-06) GOTO 100
1IF ((UIR(N).EQ.0.AND.IR{J)NE.O).ORL{IRIN) NE.O.AND.IR(J)

«EQ.D)) .AND.GEE.NE.0.0) GOTO 3200

IF{J.EQ.JAIGOTO 100
DC = DB®x2 -~ DA*DC
If (DD.LT.0.0) GOTC 100
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DE = DSQRT{DD)
OTA = (DE-DB)/DA

DYB = (~DB-DE)/DA

IF (DT8.LT.0.0) DYB= DTA
IF (DT78.LT.0.0) GOTO 100
IF (CTB.GT.DYN) GOTO 100
NQA=I-2.

TIM= TIME ¢ DTB

CALL INSRTINsNQAgJoTIM,IT)
G010 100

C COLLISION ASSESMENT BETWEEN A ROLLING AND A NON-ROLLING PARTICLE
c NOTE: THE EQUATIONS ARF ONLY DIFFERENT FROM THE FREE FALLING PARTICLE
C CASE IF GRAVITY IS PRESENT. AGAIN THIS SECTION HAS NEVER
c BEEN TESTED.
300 OG= FLOAT(ISIGN(1,IR{(N) - IR(J)))

C CHECK THESE TWO STATEMENTS IF YOU RUN INTC TROUBLE

DU = DBLE(U(J)) - DBLE(UIN)) - DG*{1-DN)*DVB*ALS

DV = DBLEIVIJIY) — DBLE(VIN)) - DG*{1-DNI*DVB*ALC

DA = DV%%2 ¢ DU*%2

DB = DV*DY+ DU*DX

A5= 0.25%(DBLECAISN*AISN) - 2,0D0*AISS + DBLE(GEE*GEE)}

A4= DC/AS5 )

A3= 24DR/ A5

A2= (DA + DG*U{(AISS — GEE)*DY - AISC*DX))/AS

Al= DG*{DV*(AISS - GEE) - DU®AISC1/AS

H= A2 - Al#*Al
Il= A4 - 4.0%A1%A3 + 3,0%A2%A2
G= A3 - 3,0%A1%A2 + 2,0%A1%%3
JLz HE¥IL - G*G - 4,0%H*x%3
DDl= IL*%3 - 27,.0%JLl%xJL
DD2= 3,0%JL - 2.0%H*]L
IF (DD1eGTe0e0.AND{(HeGTu0.0).0R.(DD2.LT.0.0))) GOTO 100
NPATH= 1 :
DTB= 0.0
H= 0.75%DSQORT(DC+4.0} /DB
IF (HolT.0.0) H= H/3.0
FA= A4
IF  (DABS(FA).LT.1.0E-25) GOTQ 910
900 FB= F{(DTB+H)
iF (FA*FB) 907, 905, 905
905 DTB= DTVB+H
906 IF (CTB.GT.DTN) GOYC 100
FA= FB :
GOTO (900,907), NPATH
907 H2= H '
H= H/2.0 . -
IF (H.LT.1.0D-8) GOTO 910
NPATH= 2
IF (H.GY.0.01) GOQTO 900
ICON= 0
0T83= 078
FD= FA
DTB2= DT8
909 ICON= ICON+1
CH= FD/FPRI(DTB2)
IF(DABSICH).LT.1.0D0-8) GOTO 908
- DYB2= DTB2 - CH
IF (DABS(DTB2-DTB3).GT.H2.0R.ICON.GT.200) GOTO 900
FD= F(DTB2)
IF (DABS(FD).GT.1.0E-25) GOYOD 909
908 D7TB= DTB2



910 NFX = J
©" NOA= 1=-2
TIM= TIME + DTHB
CALL INSRT(N,NQA,NEX.TIM,IT)
100 CONTINUE

110 RETURN
END

=246~



LISTING OF THE PARTICLE COLLISION SOLUTION ROUTINE:

=247 -

Appendix E

PARTCL

SUBROUTINE PARTCLUINAJNB NQA+B,EP,IST)
ECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

SUBROUTINE PARTCL

THIS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SURFACE RELATIVE

GYRATION RATIO OF B AND A COEFFICIENT OF RESTITUTION DF EP,

c
C
C
C VELOCITY COLLISION BETWEEN PARTICLES NA AND NB WITH A RAUIUS OF
C
c
C

gcccecceccrceccceccccceccececceeecceeeeccecceeeececceceeccecececececeecceecccecececece

DIMENSION X{1000),¥{1000),U{10001,V(1000),W{1000},
C IR{10D00),QS{50),QON(50)+DIS{50)NCOLI50),RIMPLS(2)
COMMON/A/IT X oY oUs VoW SHEART, SHEARN, IR, ALISS
COMMON/B/ITAy ITBe ITCoALS+ALCoALTo ALCT o WL ¢ WL SsWLCoAISN,AISC
COMMON/D/DIS,STY NCOL,RIMPLS
BB = 1.0+ 1.0/8
C INSURE THAT PARTICLES DO NOT OVERLAP
DNQA= FLOATI(NQA)
DISY= Y{NB) =~ (YINA) &+ WLSEHDNQA)
DISX= X{(NB] + WLC*DNQA -~ X{NA)

D1SC= SQRT(DISX*DISX ¢ DISY*DISY)

IF (DISC.GT.2.1) RETURN

BS = DISY/DISC
BC= DISX/DISC
XI{NB)= X{NA)

(@]

+ 2.00001%BC — DNQA*WLC
Y(NB)= YINA) + 2.00001*BS + DNCA*WLS

COMPUTE INITIAL ENERGY OF PARTICLES

ENER= O S5%{UINAI®%2 + UINBI**2 + VINA)*%2 + V(NB)**Z
C + B*IWINAIX®2 + WINBI%*2))

C COMPUTE COLLISION IMPULSE AND USE TO UPDATE PARTICLE VELOCITIES
DA = U(NB] - U(NA)
DB = V(NB] - V(NA)
IF (DISX#DA + DISY*DB.GT.0.0) RETURN
DC= 0.5%(DA%BS - DB*BC + WINA) +W{NB})/BB
DF=0.5%{1.0+EP) *{-DA*BC~-DB*8S)
DG = DC/B

DH = DF#BC - BS#*DC

01 = BS*DF + 8C*DC

WINB) =
WiNA) =
U(NB) =
UINA) =
VI(NB) =
YINA) =

WING)
WiNA)
UINB)
UINA}
VINB)
VINA)

- DG
- DG
+ DH
~ DH
+ DI
- D1

C AVERAGE MAGNITUDE AND DIRECTION OF IMPULSE

IF t1ST.LT.0.0) GOTO 100

IC= IOINT(((X(NAI+XINB))*ALS*IV(NA}OY(NBI)‘ALCII(Z 0%ST7))
RIMPLSIL)= RIMPLS(1) + ABSI(DF)
RIMPLS(2)= RIMPLS(2) + ABS(DC}

a o

COMPUTE COLLISION FREQUENCY
NCOLUIC)= NCOL(IC) + 1
COMPUTE ENERGY DISSIPATED

IN COLLISION

DIS(IC)= DIS{IC) ¢ ENER - O.5%(UINA)*%2 + U(NB)**2 »+
C VINAY®%2 4+ VINBI#*$2 + BR(W(NA)I#**2 + WINB)**2))

100 RETURN
END

c
o
C
c
c
c
C
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Appendix F

LISTINGS OF THE WALL COLLISION SOLUTION ROUTINES: WALLCL

F.1 Wall Collision Solution for the Inclined Chute Simulation

SUBROUTINE WALLCL( NA,B,EW,IST)
ceceeeceeccceccecccceccceccceceeeeceececccecceccceccceeccceccceececccccececceccccccecce

SUBRCUTINE wWALLCL

C C
[ C
c c
c THIS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SURFACE RELATIVE C
C VELOCITY COLLISICN BETWEEN THE PARTICLE NA AND THE WALL WITH A C
C RADIUS OF GYRATION RATIO OF B AND A CCEFFICIENT OF RESTITUTION OF Ew C
c FOR THE CHUTE FLOW SIMULATION. C
C C
C c

cceeeeeeececececeececeeecccececccceccecceceecceccececcecccecccccccececoececcccccceccec
DIMENSION X(1000), Y(1000), U{1000), V(1000), W(1000),
C IR(1000)
COMMON/AZIT X oY oUeVsWeSHEART ¢ SHEARNSIR,AISS
COMMON/B/1TA ITByITCyALS, ALCoALTALCT WL WLSoWLC,)AISN,ALISC
CCMMON/E/WDIS
Bg= 1.0 ¢1.0/8
c COMPUTE NORMAL AND TANGENTIAL COLLISICON IMPULSES
DA = (VINA)I*®ALS-U(NA}*ALC~-W(NA)}/BB
DD=={1.0+ERI*(UINAISALS+VINA)*ALC)
Ul= UINA)
vi= VINA)
Wi= W{NA)
c UPDATE PARTICLE VELOCITIES
UINA} = UINA) + DA*ALC + DD*ALS
V(NA) = VINA) + DD*ALC-DASALS
WINA) = W(NA]) ¢ DA/B
¢ INSURE THAT PARTICLE DOES NOT OVERLAP WALL
DIST= XINA)SALC - Y{(NA)®ALS
X(NA)= DIST#ALC + 1.00001%ALS
Y{NA)= 1,00001%ALC ~ DIST*ALS
C IF SYSTEM IS BFING AVERAGED COMPUTE IMPULSE APPLIED TO WALL
IF (IST.LT.O0) GOTO 100
SHEART= SHEART + DA
SHEARN= SHEARN + DD
WDIS= WDIS = D.5*%{UINAI**2 — Ul*%2 + VINA)*%$2 - V[**2
C + Bx(W(NA)**2 — WI**2))
100 VISN= UINAI®ALS+VINA)#ALC
IF THE VELOCITY NORMAL TO MWALL 1S SMALL ENDOUGH, LABEL PARTICLE
AS ROLLING
IF (ABS{VISN).GT.0.0001) GOTO 1000
UISN= UINA)*ALC - VINAI*ALS
UINA)= UISN#=ALC
VINA}= —-UISN#*ALS
IRINAY= ]
c WRITE (65,6000 NA
600 FORMAT{/1S5H PARTICLE +15, lOH ROLL ING/)
1000 RETURN
END

o0
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F.2 Wall Collision Solution for the Couette Flow Simulation with

the Rough Particle/Wall Surface Condition

SUBRDUTINE WALLULUNAyBITEW 91D sUNyUIUP gHL] g LEE e UNDHy BUSH]

geeeceecececcceeccceccecccceccecceeeccccccecccececccecccceccccccecccecccececceccee

C
C
c
c
C
C
C
c
(o
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCtCCCCCCCCCCCCCCCCCCCCCC

C

C

o

c

c

SUBROUTINE WALLCL

c

THIS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SURFACE RELATIVE
VELOCITY COLLISION BETWEEN THE PARTICLE NA AND THE WALL WITH A
RADIUS OF GYRATION RATIO OF B8 AND A CCEFFICIENT OF RESTITUTION OF EwW

FOR THE COUETTE FLOW SIMULATION.
DN=0 INDICATES A LOWER WALL COLLISION
DN= 1 INDICATES AN UPPER WALL COLLISION

DIMENSION X{1000),Y{1000},U(1000},Vv{1000),W(1000},
IR{1000}),WDIS(2)
COMMON/A/IT oXeY oUysVeWySHEART SHEARN,IR,AISS

COMMON/B/ITAs ITEB, ITCyALS ALC,ALT,ALCT WL, WL S, WLC,AISN,ALISC

CONMON/E/ SHRY s SHRN,WD1IS,VBOT,VTOP

88= 1.0 +1.0/8

DN2= 1.0 - DN

ON3= 1.0 - 2.02*CN

VB= DNZ2#*VBOT - ON&{VTOP+VBOTI}

DA = (VINAY*ALS+UTOPXNN-({U{NA)*ALC+DN3*W(NA))} /BB
VISN= U{NAI*ALS + VINA}*ALC

¥w= ABS{DN2%VBOT ¢ DN&(VIGP+VBCT))

INSURE THAT PARTICLE DOES NOT OVERLAP WALL

C

DIST= X{NA)®ALL - Y{NA)*ALS

X{NA)= DIST*ALC ¢ {((HGT - 2,00002)%DN ¢ 1.00001)#%ALS
Y(NA)= ((HGT - 2,00002)*DN ¢ 1.00001)*ALC - DISY*ALS
UI= UINA)

VIi= V{NA)

Wi= WINA)

IF (ABS{VISN}-VW.LT.0.0001.AND.VB.GT.0.0) GOTD 100

IF (DN3®VISN.GT.0.0) GOTO 290

CLLISICN SOLUTICN

DO=~{1.0+4EWI*(VISN+VW)

UINA) = UINA) # DA®ALC + DC*ALS

VINA) = V(NA) + DD*ALC - DA®ALS

WINA) = WINA} « DN3*DA/B

6070 300

100 UISK= UINAY*ALC - VINAI*ALS

UINAI= UISN=®ALL

VINA)= —UISN®ALS

WINA)= —(DN3*%UISN + DN*UTQP}
DA= Be(W{NA)-WI}*DN3

IF (GEE*DN.NE.O.0) GOTO 290
IR(NA)= 1 & INT(DN)

290 DD= DN3*ABS{VISNI
CCMPUTE WALL SHEAR STRESS FOR NORMAL STRESS COMPARISOM
300 UWSH= UWSH ¢ DN#*DD .

BRSH= BWSH ¢ DN2#DD
IF (IST.LY.0) 6OT0 1000

COMPUTE DISSIPATION AT WALL

C

WDISIDN+1)= WDIS(DN+1} = D.SS{UINAIR$2 ~ UT%%2.4 VINA)*%2

- VI®%2 ¢+ BR(W{NA}®*2 — WI**2))
IF (CN.NE.0.0) GOTO 90

COMPUTE WALL STRESSES

90

SHEART= SHEART ¢+ DA
SHEARN= SHEARN * DD
GOTO 1000

SHRT= SHRT ¢ DA
SHRN= SHRN + DD

1000 RETURN

END

c
C
c
C
C
c
C
9
c
c
c
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F.3 Wall Collsion Solution for the Couette Flow Simulation with

the No-8lip Wall Condition

SUBROUTINE WALLCLUNA,ByEW,IST4DN,UTOP ¢y HGT yGEF ¢ UWSHyBWSH)
ceececeeeceececeeeecececcceccecccecccccccceeccecccecccecceccccecceccecceecececececcccecce

SUBROUTINE wALLCL

C
c c
c c
C THIS ROUTINE SOLVES THE ZERO DEPARTURE RELATIVE (NO-SLIP) c
c VELOCITY COLLISICN BETWEEN THE PARTICLE NA AND THE WALL WITH A c
C RADIUS OF GYRATION RATIO OF B AND A& CCEFFICIENT OF RESTITUTION OF Ew C
c FOR THE COUETTE FLOW SIMULATION. c
C DN=0 INDICATES A LOWER WALL COLLISION o
c DN= 1 INDICATES AN UPPER WALL CCLLISICN c
C c
c C

geeeeececeeecccececceecececccececcccccccecceceeccccccccecceccececcceccecececcccceccceccc

DIMENSION X{1000),Y(1000},U{1000),V(1000),W{1000),

€ IR(1000),WDIS{2)
COMMON/A/IT X oY sUsVeWsSHEART ¢ SHEARN, IR,AISS
COMMON/B/ITAyITBeITCoALSALCoALT)ALCT WL WLS4WLC)AISN,AISC
COMMON/E/SHRT 3 SHRN,WOD1S,VBOT, VTCP
BB= 1.0 +1.0/8B
DNZ= 1.0 = DN
DON3= 1.0 - 2.0*CN
VB= DN2#*VBOT - ONx(VTOP+VBOT)
DA = UTOP*DN - (ULIV*ALC - VII)*ALS)
VISN= UINAY*ALS + VINA)*ALC
VW= ABS(DN2#VBOT + DN*(VYCP+VBOT)) + 0.0001

c INSURE THAY PARTICLE DCES NOT OVERLAP WALL

DIST= X{INAY*ALC - Y{NA}*ALS
X{NA)= DIST®ALC + ((HGY - 2.00002)%DN + 1.00001)1%ALS
Y(NA)= ((HGYT - 2.00002)*%DN ¢ 1.00001)%ALC - DIST#ALS

Ul= U(NA)
Vi= VINA)
Wi= WiNA)

IF (ABS(VISN).LT.VW.AND.VB.GT.0.0) GOTC 100
IF (DN3*%VISN.GT.0.0} GCTO 290
WALL COLLISION SCLUTICN
DD=-(1.0+EW)*VISN
UINA) = DN*UTOP
VINA) = —-EW*V{NA)
GOTO 300
C IS PARTICLE TO BE TAGGED AS RCOLLING?
100 U{NA)= UTOP*ON
VINA)= 0.0
W(NA)= 0.0
DA= B*{WINA)-WII*DN3 + UINA)~-UI
IF (GEE*DN.NE.D.0) GOTO 290
IR{NA)= ) ¢ INT(ON]}
290 OD= DN3®ABSIVISN)
CCMPUTE INSTANTANECUS STRESS AT WALL
300 UNWSH= UNWSH ¢ DN*DD
BWSH= BWSH ¢ DN2*DD
COMPUTE DISIPATION AT WALL
IF. (IST.LT.0) GOTO 1000
WOIS(DN+l )= WDISI(ON®1) — O S*{UINAI¥*2 — UJ*+2 &+ VINA)EX2
c - VI®#$2 ¢ BX{W(NA)YE*2 — Wis*2)}
C COMPUTE WALL SHEAR STRESS
IF (DN.NE.O.0) GOTO 90
SHEART= SHEART + DA
SHE ARN= SHEARN ¢+ DD
GOT0 1000
90 SHRT= SHRT # DA
SHRN= SHRN + 0N
1000 RETURN
END

(o]

(o]

(o]
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Appendix G

LISTINGS OF THE COLLISION LIST MANAGEMENT ROUTINES

G.1 INSRT: General Collision List Manager

SUBROUTINE INSRT(N,NQANEX:TIM,IT)
ccceecccceceeccecceoeccceccccecccecccecccececceccceeeccecccececeecccccecceccecece

c
c SUBROUTINE INSRT c
c C
C THIS SUBPROGRAM MAINTAINS A COLLISION LIST c
c c
c ENTRY INSRT INSERTS COLLISIONS INTO THE LIST c
c INIT INITIALIZES THE COLLISION LIST C
c NEXT TAKES NEXT COLLISICN FROM THE COLLISION LISY c
c c
C THIS SUBPROGRAM REUIRES TrHE AUXILLARY SUBRDGRAM REMOVE WHICH C
c REMOVES ALL COLLISIONS INVOLVING A GIVEN PARTICLE FROM c
c THE LIST c
c c
< THE COLLISION INFORMAYION IS STORED IN THE ARRAY 1COLL c
c c
C IFREE POINTS TO THE NEXT FREE LINE IN ICOLL IN WHICH A COLLISION c
c MAY BE INSERTED c
[4 THE LIST IS CONTINUED IN COLUMN ¢ OF ICOLL [ ol
C  ISHORT POINTS TO THE LINE IN ICOLL WHICH CONTAINS THE NEXT COLLISION c
C ILONG POINTS TO THE LAST COLLISION IN ICCLL c
€ NPOINTIN) POINTS TO A LIFO LIST CONTAINED IN [COLL COLUMNS 6,7,8,9 c
c CONNECTING ALL THE COLLISIONS FOR THE PARTICLE N. c
c IF NPCINT(N)= I THEN THE NEXT ELEMENT IN THE LEIST CAN BE FOUND c
c IN COLUMNS 6,7 OF LINE I IN ICOLL c
c 1F NPOINT(N) HAS THE FORMAT NPCINT{N)= 200000+1 THEN THE NEXT c
c ELEMENT IN THE LIST CAN BE FOUND IN COLUMNS 8,9 IN ICOLL LINE I c
C TIME(T) 1S THE REAL VALUED ARRAY CONTAINING THE TIME AT WHICH THE c
c COLLISIONS DESCRIBED IN ICCLL LEINE I WILL OCCUR c
c c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

INTEGER ICOLL{1000,9),NPCINT{1000)
DOUBLE PRECISION TIME(10001,TIM
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c ICOLL IS ORGANIZED AS FOLLOWS: c
C ICOLLUIs1) CCNTAINS A PARTICLE NUMBER C
c ICOLL(I,2) CONTAINS ITS TARGET NUMBER c
C ICOLL(I,3) CONTAINS NQA, THE COLLISION FRAME IN WHICH THE C
C COLLISION WILL OCCUR C
C ICOLL(E94%) POINTS TO THE COLLISION LINE THAT lS TO OCCUR JUST BEFORE C
c THIS ONE C
C ICCLL{1.5) PCINYS YO THE NEXT COLLISICN TO OCCUR, C
C ICOLLC(T,6) IS A BACKWARD POINTER IN THE LIFO LIST OF ALL THE C
c COLLISICONS FOR THE PARTICLE ICOLLUI,1) c
C ICOLL(TI,7} 1S THE FORWARD POINTER IN THE LIFOD LIST FOR PARTICLE C
C ICOLLtT,.1) C
C ICOLL(1,8) IS THE BACKWARD POINTER IN THE LIFO LIST FUR PARTICLE c
c ICOLLIT,2) C
c ICCLLUI,9) IS THE FORWARD POINTER IN THE LIST FOR PARTICLE ICOLL(I,2)C
C -- . C
C A ZERD IN A POINTER PCSITION INDICATES THE END OF THE LISY C
C

c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
COMMON/C/TIME, NPOINT o ICOLL » IFREE s 1SHORT , ILONG
NT= TFREE
TIMEINT)= TIM
ICOLLUNT,1)= N
ICOLL(NT.2)= NEX
ICOLLINT,3)= KQA
ICOLLINT,T7)= NPCINT{N)
ICOLL (NT46)= 0
ICOLLINT,8)= O
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IFREE= ICOLLINT,9)
IF (IFRFE.EQ.O0) STYOP
IF (NPDINT(N}.NE.O) GOTO BO
NPOINT(N)= NT
6070 90
80 NP2= NPCINTIN)/100000
NP= NPOINTIN)} - NP2%¥100000
NPOINT(N)= NT
ICOLLINP,6¢NP2)= NT
S0 IF (NEX.LE.IT) GOTO 97
ICOLLINT,9)= O
6070 100
97 IF (NPOINT(NEX).NE.O) GOTO 95
NPOINTINEX}= NT + 200000
ICOLLINT«9)= O
60TO 100
95 NP2= NPOINT(NEX)/100000
NP= NPOINT(NEX) - NP2%100000
TICOLL (NP46sNP2)= NT + 200000
ICOLL(NT,9)= NPCINTUINEX)
NPOINT(NEX)= NT & 200000
SORT FOR POSITION IN ORDER OF OCCURENCE LIST

[a NaNal

IS THIS COLLISION TO BE THE FIRST [N THE LISY
100 1F (TINE(NT).GT.TIME(ISHCRT)}) GOTQ 110
ICOLLUISHORT.4)= NT
ICOLL(NTv4)= O
ICOLLINT,5)= ISKORT
1SHORT= NT
RE TURN

C IS THIS COLLISION TO BE THE LASY IN THE LIST
110 IF (TIME(NT) LT, TIME(ILONG)) GOTC 120
ICOLLINTs4)= ILCNG
TCOLL(ILONG,5)= NT
ICOLL(INT,51= 0O
ILONG= NT
RE TURN

c START THE SEARCH FOR THE POSITION IN THE COLLISION QUEUE WITH THE
c LAST ENTRY IN THE LIST
120 ILAST= ILONG
130 IF(TIMEINT ) GE.TIMECICOLLCILAST +4)).0R.ILAST, EQ 0} GOTD 140
TLAST= ICOLL{ILAST.4)
GOTD 130

140 1COLLINT,4)= ICOLLIILAST,4)
ICOLL{ECOLLUILAST, ,4),5)= NT
ICOLLINT,S5)= ILASY
[COLLUILAST4)= NT

RE TURN

ENTRY INIT
c .
Cc THIS ENTRY INITIALIZES THE COLLISICN LISY
C - .

00 25 1= 1,1000
D0 20 [2= 1,8
20 ICOLL(I,I2)= O
ICOLLUI,9)= I+l
TIME(I)= 0.0
25 NPOINTIDI= 0
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ICOLL(100049)=0
IFREE= 1

ISHORTY= 1

TLONG= ]

TIME(1}= 1000000000.0
RETURN

ENTRY NEXTINJNEXINQA,TIM)
o THIS ENTRY POINT YIELDS THE NEXT COLLISION IN THE LIST

N= ICOLLUISHDRT,1)

NEX= ICOLL{ISHORT,2)

NOA= ICOLLUISHORT43)

TIM= TIME(1ISHURT)

ISHORT= ICOLL(ISHORT,5)
ICOLL{ISHORT.4)= O
CALL REMOVE(N)

IF INEX.LE.IT) CALL REMCVE(NEX)
RETURN
END
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G.2 REMOVE: Routine to Remove All Collisions from the List Involving

a Given Particle

SUBROUTINE REMOVE(N)
CCCCLCCCCCLCCCLCCCCLCeCiiCCCCtelCCCLeeCCCeCeCClCtecCCeeCCetcCCCtoceceececece

SUBROUTINE REMOVE

c
C
c
c THIS SUBROUTINE REMOVES ALL THE ENTRIES IN THE COLLISION LIST ICOLL
c INVOLVING PARTICLE N.

c

c

ONOOO0

ceeeeeeecceceececcccceccceeeccececececcecccceeeccececcecccceccceecccccccecccece
INTEGER ICOLL{1000,9)y NPOINT(1000}
DQUBLE PRECISION TIME(1000)
COMMON/C/ TIME,NPOINTY,ICOLL,IFREE, ISHORT ILONG
c START WITH FIRST PARTICLE IN LIST
NP2= NPCINT(N}/100000
NP= NPCINT(N) - NP2¥100000
NPOINTI(N)= O

c END OF LIST?
1000 IF (NP.EQ.O0} RETURN
r RECONNECT UNAFFECTED LISTS
NEXT= ICOLLINP,G-NP2)
LAST= JCOLL(NP,8-~NP2)
IF (NEXT,.EQ.O0) GCTO 100
NEX2= NEXT/100000
NEX= NEXT — NEX2#*100000
ICOLL(NEX,6¢NEX2)= LAST
100 IF (LAST.EQ.D0) GCTO 105
LAS2= LAST/100000
LAS= LAST - LAS2%100000
TCOLL{LAS,7+LAS2)= NEXT
6010 110
105 NPOINTUICOLLINP,2-NP2/2))= NEXT
110 NT= ICOLLINP,T#NP2)
ICOLL{ICOLLINP,5),4)= ICOLLINP,4)
ICOLL{ICOLL(NP.4)¢5)= 1COLLINP,5)
c ATTACH FREED ELEMENT YO LIST OF FREE SPACES
ICOLLINP,9)= IFREE
IFREE= NP
IF (NP.NE.ILONG} GOTO 200
ILONG= ICOLL(NP.4)
ICOLLUILONG,5)= O
200 IF (NP.NE.ISHORT) GOYO 250
ISHORT= ICOLL (NP,5)
. ICOLL{ISHORT,4)= 0O -
250 NP2= NT/100000 ' -
NP= NT ~ 100000*NP2
6070 1000
END
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