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ABSTRACT 

Many of the macroscopic and microscopic features of shearing granular 

materials were observed during the course of this investigation. 

Th€ principal results were obtained from a computer simulation of the 

flows in an inclined chute, and in a Couette shear cell. The simulation 

followed the exact trajectories of two-dimensional discs through a control 

volume. Properties of the flow were obtained from temporal averages uf th~ 

instantaneous particle properties. Macroscopic flow characteristics such as 

velocity and density profiles are presented. Because the simulation follows 

thP. Px;:iC'.t mi:>.ch;:inies of the partiel@s it was also possible to investigate the 

statistical nature of granular flows. Towards this purpose velocity distri

butions, collision angle distributions and pair correlation functions were 

measured. 

The results of the simulation draw a picture of a flowing granular ma

terial as a self-excited gas. There appears to be a "temperature" associated 

with the random motions of the particles, that is a product of gradients in 

the mean velocity field; An equation of state is proposed, involving this 

temperature,to describe the behavior of the density within the flow. A 

phenomenon reminscent of conduction is observed. The particle velocities 

appear to obey a Maxwellian distribution based on this temperature. 

Preliminary experiments were also performed to investigate the flow 

of glass beads down inclined chutes. It is shown that the flows may be 

classified as either supercritical or subcritical depending on the local 

value of the Froude number, and that the classification had a strong in

fluence on the flow properties. In addition, wall friction coefficients 

were determined. 



-vi-

TABLE OF CONTENTS 

ACKNOWLEDGMENTS 

ABSTRACT 

TABLE OF CONTENTS 

LIST OF FIGURES 

NOMENCLATURE 

CHAPTER 1: 

CHAPTER 2: 

INTRODUCTION 

1.1 Models of Granular Materials 

1.2 Interstitial Fluid Effects 

1.3 Topics of the Investigation 

COMPUTER SIMULATION OF GRANULAR MATERIAL FLOWS 

2.1 Instrumentation Problems 

2.2 Background 

2.3 Other Computer Studies of Granular Material 
Flows 

2.4 Description of the Model 

2.5 Convergence of the Simulation 

2.6 Dimensional Analysis 

2.7 Structure of the Program 

2.8 Initial State 

2.9 Collision Assessment 

2.10 Collision List 

2.10.1 General Description 

2.10.2 Details of the Data Structure 

2.11 Collision Solutions 

2. ll. l Particle-Wall Collisions 

Page 

iii 

v 

vi 

xi 

xv 

1 

3 

7 

8 

10 

10 

12 

14 

15 

18 

20 

21 

22 

23 

25 

26 

28 

30 

31 



CHAPTER 3: 

-vii-

TABLE OF CONTENTS (continued) 

2.11.2 Particle-Particle Collisions 

2.12 Coefficients of Restitution 

2.13 Averaging 

2.14 Special Problems 

2.14.1 .Roundoff Errors 

2.14.2 Rolling Particles 

2.14.3 Moving Couette Flow Boundaries 

2.15 Animation of the Simulation 

2.16 Sunnnary of the Simulation 

Figures for Chapter 2 

SIMULATION RESULTS 

3.1 Chute Velocity and Density Profiles 

3.1.1 

3 .l.2 

3.1.3 

3.1.4 

3.1.5 

3.1.6 

3.1. 7 

The Concept of Granular Temperature 
and the Equation of State 

Comparison with Ridgway and Rupp 

Effect of the Chute Angle 

Evolution of the Velocity and 
Density Profiles 

Effect of the Flaw's Depth 

Effect of the Coefficients of 
Restitution 

Plug Flows 

Page 

32 

34 

35 

37 

37 

38 

39 

42 

43 

45 

56 

56 

60 

63 

64 

64 

65 

68 

68 

3.2 Couette Flow Velocity and Density Profiles 71 

3.3 The Bagnold/Savage Constitutive Law 74 

3.3.1 The Function f(v) 76 



CHAPTER 4: 

-viii-

TABLE OF CONTENTS (contim1ed) 

3.4 Statistical Properties of Granular 
Material Flows 

Page 

80 

3.4.1 Distribution of Particle Velocities 81 

3.4.2 Distribution of Collision Angle 87 

3.4.3 Structure in a Granular Shear Flow 91 

3.5 Conclusions 

Figures for Chapter 3 

EXPERIMENTAL STUDY OF THE FLOW OF GRANULAR 

MATERIALS IN AN INCLINED CHUTE 

4.1 Introduction 

4.2 Experimental Apparatus 

4.3 Experimental Materials 

4.4 The Mass Flow Rate from Granular Chute 
Flows 

4.4.1 Supercritical Regime 

4.4.2 Subcritical Regime 

4.5 Supercritical and Subcritical Flows 

4.5.1 

4.5.2 

4.5.3 

Subcritical Flow Control 

General Features of Supercritical 
and Subcritical Flows 

Transition between the Flow Regimes 

4.6 Depth Profiles 

4.7 Wall Friction Coefficients 

4.8 Conclusions 

Figures for Chapter 4 

95 

101 

141 

g1. 

144 

147 

149 

150 

153 

D4 

155 

158 

159 

162 

163 

167 

170 



-ix-

TABLE OF CONTENTS (Continued) 

APPENDIX A: A GENERAL EQUATION DESCRIBING DPEN 
CHANNEL FLOW 

Figure for Appendix A 

APPENDIX B: LISTINGS OF THE MAIN PROGRAMS 

B.l COLOOl: Main Program for the Inclined 
Chute Simulation 

B.2 COL002: Main Program for the Couette 
Flow Simulation 

APPENDIX C: LISTINGS OF THE INITIAL STATE 
CREATION ROUTINES 

C.l COL007: Initial State Creation for the 
Inclined Chute Simulation 

C.2 COL006: Initial State Creation for the 
Couette Flow Simulation 

APPENDIX D: LISTINGS OF THE COLLISION ASSESSMENT 
ROUTINES: COLL UP 

D.l Collision Assessment for the Inclined 
Chute Simulation 

D.2 Collision Assessment for the Couette 
Flow Simulation 

APPENDIX E: LISTINGS OF THE PARTICLE COLLISION SOLUTION 
ROUTINE: PARTCL 

APPENDIX F: LISTINGS OF THE WALL COLLISION SOLUTION 
ROUTINES: WALLCL 

F.l Wall Collision Solution for the Inclined 

Page 

195 

199 

200 

200 

215 

235 

235 

237 

239 

239 

242 

247 

248 

Chute Simulation 248 

F.2 Wall Collision Solution for the Couette 
Flow Simulation with the Rough 
Particle/Wall Surface Condition 

F.3 Wall Collision Solution for the Couette 
Flow Simulation with the No-Slip Wall 
Condition 

249 

250 



-x-

TABLE OF CONTENTS (Continued) 

APPENDIX G: LISTINGS OF T.tlE COLLISION LIST MANAGEMENT 
ROUTINES 

REFERENCES 

G .1 INSRT: General Cullh;iuu Ll::s L 

Manager 

G.2 REMOVE: Routine to Remove all 
Collisions from the List Involving 
a Given Particle 

Page 

251 

251 

254 

255 



-xi-

LIST OF FIGURES 

Figure 2.1 Flowchart of the simulation structure. 

Figure 2.2 Snapshots from the inclined chute simulation. (a) a= 20°, 
(b) a= 30° • and (c) a= 40° (angle measured relative to horizontal) • 

Figure 2.3 Snapshots from the Couette flow simulation. (a) v = .56, 
(b) \) = • 6 3 ' ( c) \) = • 7 6 • 

Figure 2.4 Dimensionless kinetic energy history (per particle) of converged 
simulations top: chute flow (a= 30°)bottom: Couette flow (R/H"'O. l). 

Figure 2.5 Typical initial configuration of 40 particles, con
figured 10 x 4. 

Figure 2.6 The principal control volume (o) and its upstream 
(-J), and downi:::tri:>am (+1),p@rincli<' imi:ig@r::. 

Figure 2.7 Insertion (a), and removal (b), of an element from a 
double-linked list. 

Figure 2.8 Structure of the collision list. t backward pointer, 
+ forward pointer. 

Figure 2.9 Collision diagrams. 
(a) Stationary lower boundary collision. (b) Moving 
upper bound~ry collision, (c) Part.icle-part.icle collision. 

Figure 2.10 Variation of the coefficient of restitution with impact 
velocity for collisions between spheres of various 
materials •. Tli:ese data were taken from Rahman [57], and 
Goldsmith [23]. 

Figure 2.11 (a) Division of the control volume into strips for 
averaging. (b) Division of a particle between adjacent 
strips, 

Figure 3.1 Typical velocity, density, and temperature profiles for 
inclined chute flow. a= 30°, Ew = 0.8, EP = 0.6, 
10 x 4 particles. 

Figure 3.2 Velocity and density protiles for chutes inclined at 
a= 20°, 30°, and 40°. Ew = 0.8, Ep = 0.6, 10 x 4 
particles. 



Figure 3.3 

Figure 3.4 

-xii-

Comparison of a simulation generated velocity profile tt 
(a = 40°, 5 x 4 particles, £w = 0.8, £p = 0.6) with 
profiles measured by Augenstein and Hogg [l], .l::i.. 35 x 48 
mesh sand on stainless steel, 'V 35 x 48 sand on surface 
roughened wit:h 35 x 48 sand, 0 28 x 35 sand on 65 xlOO sand surface. 

Generation of perturbation velocities .6u and .6v by a 
collision. 

Figure 3.5 Density dependence of the equation at state. 

Figure 3.6 Comparison of simulation generated equivalent 3-D 

Figure 3.7 

Figure 3.8 

Figure 3.9 

mass flow profile, (4 x 4 particles, a= 40°, variable 
coefficients of restitution) with the measurements of 
Ridgway and Rupp [60). 

Evolution of the 20° chute simulation. 10 x 4 particles, 
SW = 0.8, Ep = 0.6. 

Evolution of the 30° chute simulation. 10 x 4 particles 
Ew = 0.8, Sp = 0.6. 

Evolution of the 40° chute simulation. 10 x 4 particles, 
i:;w '"' 0.8, i:;p - 0.6. 

Figure 3.10 Effect of the flow depth on the chute flow profiles. 
variable ~oefficients of restitution. 

Figure 3.11 Effect of the particle coefficient of restitution on 
chute flow profiles. a= 30°, 10 x 4 particles. 
Ew = 0.8. 

Figure 3.12 Effect of the wall coefficient of restitution on chute 
flow profiles. a= 30°, 10 x 4 particles, e:p = 0.6. 

Figure 3.13 Limiting values of the solid fraction, (a) maximum packing 

vM= n/2/3 = 0.91, (b) maximum shearable packing, 

v =n/(/3 + 2rr/3) = .822, (c) maximum square packing 
m 

v =rr/4=0.78. 
s 

Figure 3.14 Velocity density, and temperature profiles for the 
a= 20°, chute simulation showing a plug flow region and 
conduction of temperature 10 x 4 particles, 8w = 0.8, 

Ep = 0.6. 

Figure 3.15 Velocity and density profiles for the Couette simulation 
with the first (rough particle and wall surfaces) wall 
collision condition. 10 x 4 particles, 8w = 0.8, 
e:p = 0.6. 



xii :i 

Figure 3.16 Velocity, density, and temperature distributions for the 
Couette simulation with the second (no-slip) wall 
collision condition. 10 x 4 particles, t::w = 0.8, 

Figure 3.17 

Figure 3.18 

Figure 3.19 

Figure 3.20 

Ep = 0.6. 

Effect of shear rate on the velocity, density, and 
temp:rature distributions, ou = .567(R/H) 2 , 10 x 4 
particles, Ew = 0.8, Ep = O.o. 

Partition of the temperature into its three components, 
from the Couette simulation with t:he no-!'11 ip wall condition. 

left:v= .45, right: v = .55, 10x4 particles, £ =0.8, 
tp = o. 6. w 

Partition of the temperature into its three components, 
from the Couette simulation with the no-slip wall con<lition. 

left: V= .65, right: V= .75, 10x4 particle!'!,£ =0.8, 
£ =0.6. w 

p 

Illustration for the derivation of the Bagnold/Savage 
constitutive law. 

Figure 3.21 Shear stress density dependence of the Bagnold/Savage 
constitutive law, fs(v), Ew ~ 0.8, cp ~ 0.6. 

Figure 3.22 Normal stress density dependence of the Bagnold/Savage 
constitutive law, fN(v), ~w = 0.8, ~p = 0.6. 

Figure 3.23 Comparison of experimentally determined values of 
fs(v), the shear stress dependence of the Bagnold/Savage 
constitutive law, with computed values, Ew = 0.8, 
Ep = 0.6. 

Figure 3.24 Comparison ~f experimentally determined values of 
fN(v), the normal stress dependence of the Bagnold/Savage 
constitutive law, with computed values, (Ew = 0.8, 
Ep = 0 .6). 

Figure 3.25 Total velocity distribution functions derived from the Couette 
tlow simulation with the no-slip wall condition. Lines repre
sent mean values of data points which are scattered within ±10%. 

Figure 3.26 Translational velocity distribution functions derived from the 
Couette flow simulation with the no-slip wall condition. Lines 
represent mean values of data points which are scattered within ±10%. 

Figure 3.27 u - velocity distribution functions derived from the Couette 
flow simulation with the no-slip wall condition. Lines repre
sent mean values of data points which are scattered within ±10%. 

Figure 3.28 v - velocity distribution functions derived from the Couette 
flow simulation with the no-slip wall condition. Lines repre
sent mean values of data points which are scattered within ±10%. 



-xiv-

Figure 3. 29 Rotational velocity distribution functions derived from the 
Couette flow simulation with the no-slip wall condition. Lines 
represent mean values of data points which are scattered within ±10%. 

Figure 3. 30 Representative total velocity distribution functions from the chute 
flow simulation. Lines represent mean values of data points which 
are scattered within ±10%. 

Figure 3.31 (a) definition of the collision angle 8. (b) collision 
anisotropy induced by a bulk ohcar motion. (c) collision 
anisotropy induced by the formation of "layers" within 
the flow. 

Figure 3.32 Collision angle distributions for various densities 
from the Couette flow program with the no-slip wall 
condition. 

Figure 3.33 

Figure 3.34 

Figure 3.35 

Figure 3.36 

Figure 3.37 

Figure 3.38 

Figure 3.39 

Figure 3.40 

Representative collision angle distribution from the 
chute flow simulation. a= 40°, 10 x 4 particles, 
£W = 0.8, Ep = 0.6. 

Low density collision angle distributions. (a) predicted 
curve of Savage and Jeffrey [71), (b) corrected length 
scale. Top S = 0.40, v = 0.45, Ew = 1.0, Ep = 1.0. 
Bottom S = 0.91, v = 0.35, £w = 0.8 Ep = 0.6. 

Structure within the Couette flow simulation with the 
no-slip wall condition. v = 0.35, S = 0.91, Ew = 0.8, 
8P = 0.6. (a) normal distribution, (b) parallel dis
tribution. 

Structure within the Couette flow simulation with the 
no-slip wall condition. v = 0.45, S = 1.10, £w = 0.8, 
£P = 0.6. (a) normal distribution, (b) parallel distribu
tion. 

Structure within the Gouette flow simulation with the 
no-slip wall condition. v = 0.55, S = 1.33, £ = 0.8, 
EP = 0.6, (a) normal distribution, (b) paralleY distribu
tion. 

Structure within the Couette flow simulation with the 
no-slip wall condition. v = 0.65, S = 1.30, Ew = 0.8, 
£ = 0.6. (a) normal distribution, (b) parallel dis
t~ibution. 

Structure within the Couette flow simulation with the 
no-slip wall condition. v = 0.75, S = 1.70, Ew = 0.8, 
s = 0.6. (a) normal distribution, (b) parallel dis
t~ibution. 

Variation of S with density in the Couette flow simulation 
with the no-slip wall condition. Ew = 0.8, sp = 0.6. 



Figure 4.1 

Figure 4.2 

Figure 4.3 

Figure 4.4 

Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 4.8 

-xv-

Diagram of the inclined chute apparatus. 

Photograph of the inclined chute app.aratus. 

Photograph of a point probe used for flot.r <'IPpth mP:H:::11rP

ments. 

Mass flow per unit width of BT6 glassbeads for various 
chute breadths. a = 22° 

Mass flow per unit width of BT4 glassbeads for various 
chute inclinations. b = 8.9cm. 

Detail of the flow pattern in the vicinity of the lower 
gate showing the two stagnant zones A, and B. 

Gate Froude numbers for supercritical flows. BT4 glass
beads. 

Gate Froude numbers for supercritical flows. BT6 glass
beads. 

Figure 4.9 Maximum mass flow rates for subcritical flows as a 
function of chute geometry BT6 glassbeads. 

Figure 4.10 Maximum mass flow rates for subcritical flows as a function 
of chute geometry BT4 glassbeads. 

Figure 4.11 Exit (critical) Froude numbers, as a function of inclina
tion angle and chute geometry. 

Figure 4.12 Exit (critical) depths as a function of inclination angle 
and chute geometry. 

Figure 4.13 Exit (critical) velocities as a function of inclination 
angle and chute geometry. 

Figure 4.14 Approach at the flow depth toward its exit value. BT6 
glassbeads, a = 22°, b = 8. 9 cm. 

Figure 4.15 Approach of the Froude number toward its exit value. 
BT6 glassbeads. a= 22°, b = 8.9cm. 

Figure 4.16 Transition angle as a function of chute geometry, 
showing the present data for glassbeads and Takahasi's 
data for sand. 

Figure 4.17 Diagram of subcritical chute flow showing, a stagnant 
wedge and 11breaking" phenomena. 

Figure 4.18 Depth profiles along the chute. BT6 glassbeads, a 18°, 
b = 8.9cm. 



xvi 

Figure 4.19 Depth profiles along the chute. BT6 glassbeads, a 20°, 
b = 8.9cm. 

Figure 4.20 Depth profiles along the chute. BT6 glassbeads, a 22°, 
b = 8.9cm. 

Figure 4.21 Depth profiles along the chute. BT6 glassbeads, a = 25° 
b = 8.9cm. 

Figure 4.22 Depth profiles along the chute. BT6 glassbeads, a 30°, 
b = 8.9cm. 

Figure 4.23 Depth profiles along the chute. BT6 glassbeads, a 38°, 
b = 8.9cm. 

Figure 4.24 Acceleration of the flow along the chute showing the 
corresponding friction coefficient. 

Figure 4.25 Friction coefficient as a function of velocity and 
inclination angle. 

Figure Al Diagram for the derivation of the open channel flow 
equation. 



-xvii-

Nomenclature 

a 
m Maxwellian exponcntinl constant 

al constant for u - velocity distribution 

a2 constant for v - velocity distribution 

a3 constant for rotational velocity distribution 

a4 constant for translational velocity distribution 

as constant for total velocity distribution 

b channel breadth 

c cohesion 

c instantaneous particle velocity 

d hopper opening 

f (v). f ij ( \)) density dependence of Bagnold/Savage constitutive law 

g magnitude of gravity vector 

g ,..., gravity vector 

h flow depth 

k vector connecting the center of particles at collision 

£ general length scale 

m particle mass 

m mass flow 

n number of particles per unit length/area/volume 

p pressure 

p ( ) probability distribution 

q general quantity 

r ro ,...,, ,... position vectors 



u 

u 

v 

x 

y 

A 

c 

Fr 

H 

Hy 

K 

L 

R 

R 
g 

T 

-xviii-

particle spacings 

velocity in flow direction 

vector velocity 

velocity normal to flow direction 

coordinate in flow direction 

coordinate normal lu flow uirection 

flow cross section area 

mean particle spacing 

mean particle spacing in rwo dimensions. 

Cz-n= ('TT/v)12R 
1 

4 -
mean particle spacing c3

_D = c3 'TT/v) 3 R 

Froude number: Fr = ii I Jgfi. 

gate Froude number, Fr g = u/ ,;gHy 

Froude number based on hopper opening Frd = U/ Jgd 

twice the most probable vertical coordinate for a 
particle 

hydraulic radius: Hy = A/P 

material constant for the supercritical gate Froude 
number 

chute length 

number of particles 

number of sampling periods 

wetted perimeter 

particle radius 

ideal gas constant 

sensible temperature 

principal shear stress 

principal normal stress 



s 

u 

l\. 
v 

x 

xl 

x2 

X3 

X4 

XS 

ex 

s 

y 

ou, ov 

E: 

£ w 

E:p 

\) 

VM 

vm 

vs 

µ 

µeff 

'"C 

ON 

-xix-

characteristic velocity scale S -- 2R(~.~) 

normal collision velocity 

upp@r tJa]l vP.loriry for Conette f1otJ!'l 

tangential collision velocity 

velocity distribution variable 

u - velocity distribution variable 

v - velocity distribution variable 

rotational velocity distribution variable 

translational velocity distribution variable 

total velocity distribution variable 

chute inclination angle 

is the ratio of the radius of gyration of a particle to 
the particle radius 

profile parameter y = L(~c) (~ )
2 

d * 
velocity differences 

coefficient of restitution 

wall coefficient of restitution 

particle coefficient of restitution 

solid fraction v P/p 
p 

maximum packing 

maximum shearable packing 

maximum square packing 

wall friction coefficient 

effective wall friction coefficient 

shear stress 

normal stress applied to upper plate 



-xx-

w particle rotational speed 

angle through which collision impulse is exerted 

p bulk density 

density of solid material 

collision angle 1.. 

r r { ( ~c) d ( t) d ( f;) 
0 0 

prufile parameter; r ~ 

internal friction angle 

x(v) density dependence of the equation of state 

Superscripts and Subscripts 

( J' 
(-) 

< > 

i. j. k 

)N 

( ) 0 

( ) p 

( )s 

( )w 

) 3-D 

fluctuating quantity 

average value derived from mass flow rate 

average as defined for computer simul~tion 

critical value 

value at gate 

indexes 

action in normal direction 

initial value 

value for particle 

action in shear direction 

value at wall 

equivalent three dimensional value 



-1-

Chapter 1 

INTRODUCTION 

"Granular Materials" is a name given to a packed dispersion of a 

large number of solid particles. It is required, purely by geo

metrical constraints,that a packing of arbitrarily shaped particles 

cannot completely fill a given volume. The space between the particles 

will be tilled with an interstitial fluid, and the particle bulk 

will be supported across particle contact points. 

Many materials like cereal grains occur naturally in granular 

form. Ores and coal excavated from the earth by large shovels, break 

into granules as they are forced to conform to the shovel shape. 

Bulk plastics are generally processed directly into granular form 

for ease of handling. Large quantities of granular material are 

moved, stored, and processed daily. It is small wonder that there is 

a· great deal of interest. in improving the design of devices to 

facilitate their transportation and storage. 

A granular material has many fluid like properties. The bulk 

material will conform to the shape of an arbitrary container with a 

minimum radius of curvature much larger than a particle diameter. 

Moreover, if a hole much larger than a particle diameter is opened 

in the container bottom, the local structure jn thP mRreri~l 

next to the opening becomes unstable. The particles will fall or 

flow out the hole under the influence of gravity. 

But granular materials are not fluids and possess many non-fluid 
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properties. Most evident is that particle packings can withstand a shear 

force and behave, in the bulk, like an elastic solid. 

The differences can be attributed, in part, to the mode at particle 

interaction. Particles interact directly by colliding or by frictional 

sliding at points of contact. They may also interact indirectly, trans

porting mnm@_ntnm in the fnrm of stre!'l!'le!'l induC'ed in the interHtitial fluid. 

A densely packed granular material; loaded from rest, will behave as a 

solid until the loading overcomes the resisting frictional forces across 

particle contact points. At the other extreme, a dilute suspension of 

particles will retain the Newtonian behavior of the suspending fluid but 

with an effective viscosity that depends on the particle concentration 

(see Batchelor [7] page 246). 

Other differences arise because of the finite size of the particles. 

For example a bulk granular material will expand as it is deformed. This 

was termed "dilatancy" by its discoverer Reynolds [58, 59] who studied 

granular materials as a macroscopic model of matter on molecular scales. 

The deformation of a granular solid is accomplished by displacing its 

constituent particles relative to one another. The material must expand, 

or dilate in order to allow the particles freedom of motion. 

Thus, granular materials exhibit deformation behavior similar to a 

fluid but still retain many properties that are reflections of their partic

ulate nature. The efficient design of material handling devices would be 
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greatly improved by an understanding of the material's behavior as 

a function of its mechanicnl chorocteristics. 

1.1 Models of Granular Material 

Recent concern about granular material flows was motivated by 

different interests from two different disciplines. The first is the 

design of material handling devices, primarily hoppers, that must flow 

without clogging, and are free of internal stagnant regions. (A review 

may be found in Wieghart [84]). The second is motivated by soil 

mechanics and a desire to understand the failure behavior of 

foundations, slopes, and soil surrounding piles during driving. 

The internal stresses in the former case are many ordt:rs uf magnitude 

smaller than in the latter, so it is a bit surprising that the 

earliest approaches in both cases followed the same physical modeling. 

The earliest modeling of a granular material was as a solid. 

Deformation followed the laws of frictional behavior set down by 

Coulomb [20]. The Mohr - Coulomb constitutive hypothesis takes 

the form of a yieln cnnrlition. 

where T is the principal shear stress, T the mean of the principal 
s n 

normal stresses,. .c, the cohesion and cl>, the internal friction angle for the 

material. The law says that the material will maintain its structure 

as long as the inequality is satisfied, and will yield at points in 

the material when equality is reached. This expression defines a 

yield surface. The theory of plasticity may then bt: applieu. 

As long as cl> is constant this expression predicts that the stresses 

inside the flowing material will be independent of the strain rate. 
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Several theories of the plastic flow cf granular materials have 

been proposed, including Shield [74],Jenike and Shield [30], and 

Spenr.er ~&· [77. 78]. 

The plasticity model is the most widely used of all the de

scriptions of granular material. Analytical studies of the flow 

in hoppers have been performed by Jenike [31], Johanson [34], Savage 

[661, Sullivan [79, 80], Morrison and Richmond [42], Brennen and 

Pearce [10], Nguyen [47), Nguyen, Brennen, and Sabersky [46] amung 

others. Reasonably good predictions have been obtained for the flow 

rates from hoppers with steeply inclined walls. 

Plasticity models are unable to describe ci:>rtain othi:>.r phi=!nnmenA. 

The velocity profiles in inclined chute flows of granular materials, 

such as those measured by Augenstein and Hogg [l], Savage [68], 

and Ishida and Shirai [27, 28, 29], may not be described by the 

Mohr - Coulomb model unless the friction angle is allowed to vary. 

(Another equation would then be required to describe the evolution 

of the friction angle. The factors on which the friction angle would 

depend, and the form of such an equation are not obvious a priori). 

Also no one has yet been successful in trying to adapt this model to 

explain the formation and shape of the stagnant funnels that form 

in hoppers (Nguyen [47]). 

Goodman and Cowin [25] have devised a continuum theory for 

granular materials. The theory has been further refined by Cowin [17J 

Cowin and Goodman [18], and in a section co-authored by Cowin in 

Savage [68). The dilation of the bulk is accounted for by a series 

of fictitious "equilibrated" forces, that do not have a clear 

physical interpretation. The theory leaves open the exact form of 
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the dissipative or dynamic stress tensor. Analyses have beenmade 

assuming both linear and non-linear dependence of the stress tensor 

on the strain rate tensor. Static assemblies and simple flows of 

granular materials have been solved using this theory by Goodman and 

Cowin [26), Jenkins [32), Savage [68], Passman ~ ~· [53), and 

Nunziato ~t al. [48]. Passman [54] has extended the theory to mixtures 

of granular materials. 

Neither the Goodman and Cowin theory nor the Mohr - Coulomb theory 

deals with a granular material as a collection of finite sized solid 

particles. The constitutive nature is hidden within the internal 

fr:lL:Lluu augle <Ii, and the cohesion c, of the latter and within the 

equilibrated forces and whatever is chosen as the dissipative stress 

tensor of the former. The utility of the theories depends on how 

well and how economica]Jy these assumptions model the physical proc

esses occurring at the particle level. 

A very simple kinematic theory, valid for extremely slow uni

direction granular flows has been proposed and applied by Nedderman 

~ al. [ 44, 45], which i's similar to those proposed by, Mullins [ 43] 

and Litwiniszyn [38). The theory assumes that a particle will move 

whenever a space is vacated for it to move into. The flow rate is 

determined by the rate at which voids are propagated through the 

material. This model is motivated by the material's particulate 

nature but as the flow is independent of the forces that drive the 

motion, its usefulness is extremely limited. 

Several 'strain-rate dependent constitutive models that· have been 

proposed, are reviewed by Jenkins and Cowin [33]. 

The first model that was derived from first principle considera-
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tions of particle interactions was proposed by Bagnold [3. 4]. 

He considered the mt'mentum transferred by collision between layers 

of evenly spaced particles in a simple shear flow, assuming that 

each particle takes on the mean velocity appropriate to its position 

in the velocity field. He found: 

T 
s 

T R2 f (v)( du ) 
n Pp N ,dy 

2 

where T , and T are the shear and normal forces between the layers, s n 

\J = p hulk/p is a dimensionless density; called the "solid fraction", 
p 

(v is interpreted as the fraction of a unit volume occupied by solid 

material), (du/dy) is the local velocity gradient and fs and fN are 

undetermined functions. This model is supported by his experiments 

on neutrally buoyant wax spheres suspended in a glycerine-alcohol-

water solution. More recently these experiments have been repeated, 

without a suspending liquid by Savage et al. [67, 70, 72]. 

A more careful calculation leading to the same conclusion was 

performed by Mc Tigue" [ 40] (motivated by Marble's [ 39] analysis 

of fluidized particle interactions). He was able to determine that 

f N(v) ,._, v2
• It is clear, however, that these functions should s, 

have a singular behavior, (similar to the packing correction found 

in a Van der Waals equation of state) as the system approaches the 

maximum possible packing. 

Granular materials regarded as an assembly of solid particles 

are reminiscent of the molecular model of gases. R~cently Savage 

and Jeffrey [71] adapted Enskog's dense gas analysis (see Chapman 
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and Cowling [14) or Ferziger and Kaper [21]), to derive the complete 

stress tensor in a simple shearing flow. They were able to include 

velocity fluctuations in their analysis by assuming that the in-

stantaneous particle velocities obeyed a Maxwell-Boltzmann velocity 

distribution about their mean values. The stresses were proportional 

to the square magnitude of fluctuating velocities, and a function of 

a dimensionless quantity S expressing the relative magnitude of the 

shear rate to the rms fluctuating velocity: 

2 
du 

S = R dx_ 

{;2> 
,..., ,2 ( ) 2 

where R is the particle radius. As < u .>.:: 4R
2 du /s2 

Savage ,.... dy ' 

and Jeffrey were able to recover the (du/dy) 2 dependence of Bagnold's 

constitutive relation. No explicit method to determine S was given 

although a possible procedure was suggested. 

1.2 Interstitial Fluid Effects 

In this study, a granular material flow will be defined as the flow of 

a 'fluid-particle system in which the effects of the interstitial fluid are 

negligible. This is the asymptotic state of particle-fluid flows where the 

majority of momentum is transferred by particle-particle interactions rather 

than particle-fluid interactions. Intuitively this implies that (1) the 

fluid viscosity is small,minimizing the effect of viscous drag on the par-

ticles, (2) that the solid density, pp, is much larger than the fluid density 

pf, minimizing hunyancy and added mass effects, and (3) that there are no 

significant pressure gradients in the interstitial fluidJminimizing fluid-

izing effects. This suggests that the relative importance of the intersti-

tial fluid will be characterized by three dimensionless quantities, of which 

only one, pp/pf' is readily apparent. 
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Bagnold [3] has suggested a parameter governing viscous fluid effects 

which has been called the ''Bagnold number": 

Ba= ( (":)1'3- lr2 '' 
where n is the fluid viscosity. Bagnold's experiments suggest that the 

particle-fluid system behaves as a viscous fluid for Ba< 40, and as a 

fluid free particle system for Ba> 450. However it is clear that the 

Bagnold number may not represent sufficient conditions for granular ma-

terial flow. In particular, it predicts viscous behavior whenever the 

velocity gradient is sufficiently small, such as in the contact dominated 

plug flows discussed in Section 3.1.7, which are clearly not in the viscous 

dominated regime. 

The regime of granular flow within which the interstitial fluid may 

be neglected has not yet been clearly defined. Based on the albeit in 

complete Bagnold number criterion discussed above it probably includes all 

reasonably fast, non-fluidized, flows of large particles in air. The pre-

l"-isP rlPlinf'.'::it-inn nf the gr::inul::ir flow regime will hopefully emerge from 

further theoretical and experiment studies. 

1.3 Topics of the Investigation 

Chapter 2 describes a computer model to examine the flow of 

granular materials at the particle level. Two flow situations are 

modelled: (1) the flow in an inclined chute and (2) the flow in a 

Couette shear cell. The computer model, which resembles a molecular 

dynamics model for gases, allows examination of details that are 

unobtainable bypresent experimental methods. 
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Chapter 3 presents the results obtained from the computer model. 

Velocity and density profiles are presented for a variety of material 

properties, inclination angle, shear rates, flow depths,densities, etc. 

An equation of state is suggested which relates the pressure to the 

density and the mean-square fluctuating velocities of the particles. 

The Bagnold/Savage constitutive law is evaluated. In addition the 

program is used to determine the statistical properties of a granular 

flow; velocity distribution functions, d1str1but1ons of colli8ion 

angle and pair distribution functions are evaluated. 

Chapter 4 presents the preliminary results of an experimental study of the 

flow in inclined chutes. Flow in a chute may be classified as 

either supercritical or subcritical. Descriptions of both flow 

types and their effects on the mass flow rates are given. A simple 

corrPJ~tinn i~ prP~PntPd for determining the flow rate from a chute 

as long as the flow remains supercritical. The coefficient of 

wall friction for the flpw is also determined, and plotted as a 

function of flow velocity. 
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Chapter 2 

COMPUTER SIMULATION OF GRANULAR MATERIAL FLOWS 

2.1 Instrumentation Problems 

The greatest problem facing research into the flow of granular 

materials is the lack of good experimental instrumentaion. There 

appears to be no completely satisfactory way to measure velocity 

or d@nsity profiles. Profile measurements have been made by four 

methods: (1) X-ray techniques, (2) interpretation of the mass flow 

profile, (3) measurement of velocity field at a boundary wall, (4) 

measurement by probes inserted into the flow. 

Lee, Cowin and Templeton [37], and Blair -Fish and Branspy 

[9], used X-ray techniques to determine deformation patterns in 

hoppers. Both clearly observed that the material deformation occurred 

initially along low density rupture zones. No quantitative data was 

reported although it see~s possible to determine the density as a 

function of the X-ray attenuation. 

Ridgway and Rupp [60] and Augenstein and Hogg [l] measured the 

mass flow rate profile over the depth of inclined chutes. Ridgway 

and Rupp assumed that the velocity was constant over the depth 

and determined the density profile. Augenste±n and Hogg assumed, 

that, except for the area right next to the chute bottom, the density 

was constant across the depth and determined the velocity profile. 
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It is not clear why both researchers did not derive profiles with 

roughly the same shape. 

Connelly [16] and Nguyen [47] determined velocity profiles in 

two-dimensional hoppers from motion pictures of colored beads 

taken through the hopper's front face. 

Savage [68] determined the velocity profile next to the side 

walls of an inclined chute by cross correlating the signals from 

adjacent fiber optic probes. His profiles showed only a small velocity 

gr::1.dient next to the r.httte hottom, with the largest gradients occur-

ing near the flow center. Augenstein and Hogg [1] found that the ve

locity gradient was greatest right next to the chute bottom. It is the 

opinion of this author, based on observations made during the ex

periments reported in Chapter 4, that this discrepancy is due to the 

special conditions near the corner between the chute side wall and 

bottom. Particles, forced to move along this corner, move noticeably 

slower than the rest. The velocities measured there need not be 

indicative of conditiona far from the side wall. 

Ishida and Shirai [27, 28, 29] developed a velocity probe, 

that may be directly inserted into the flow, utilizing a fiber optic 

technique similar to Savage [68]. Their results show an almost 

linear velocity profile. But again experience dictates that insertion 

of such a probe will disturb the velocity field far upstream. 

(The smallest disturbance generated 

order of a particle diameter.) 

by any probe would be of the 

A review of velocity measurement techniques may be found in 

Oki, Walawender and Fan (52]. A non-intrusive method for measuring 

velocity and density profiles independently and far from a boundary 
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wall is urgently needed. Until this can be accomplished it will be 

impossible to objectively evaluate theoretical models of granular flow. 

2.2 Background 

The flow of granular materials can be viewed as a many-body 

problem much like the molecular picture of matter. In both cases 

while the behavior of the entire system of particles is hard to predict, 

the mechanics of two particle interactions are very well understood. 

Thus granular materials lend themselves to computer simulation by 

models similar to those applied to gases and liquids. In these 

models molecules are often approximated as hard spheres, so that 

they are a better model for granular materials than fluids. If a 

model can be generated that dcocribco the complete state of the 

granular system at all times, (the state is described by the 

instantaneous positions and velocities of the particles)j then 

any information may be found by statistical averaging. 

Molecular modeling of fluids is almost as old as the computer. 

The earliest work was probably done at Los Alamos and reported by 

Metropolis~ al. [41]. Names commonly associated with this work 

are W. W. Wood at Los Alamos, Alder and Wainwright at Lawrence 

Livermore and A. H. Rahinan at Argonne National Laboratories. 

Reviews can be found in Barker and Henderson [5], and Wood [86]. 

Most of these studies can be classified as employing either the 

"Monte C~rlo" or the "Molecular Dynamics" approach. 

A Monte Carlo method is one which uses probabilistic techniques 

to solve a problem. When applied to molecular systems, each state 

of the system is chosen randomly according to a given probability 
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distribution. In the method presented by Metropolis et al. [41], 

each state is chosen from its predecessor by randomly chosen movements 

at its particles, and either accepted or rejected according to the 

lfaxwellian probability (,..., exp (-E/kT)) that the system will have the 

final energy E. This type of calculation produces equivalent ensembles 

of the system and is generally used for calculations of steady. 

equilibrium properties like the equation of state. A similar tech

nique, used to model unsteady transport phenomena, is described in 

Bird [8], and is referred to there as "the direct simulation Monte 

Carlo Method". In this case the particles have velocities which 

change only at collisions. Whether or not a particle experienc~~ a 

collision at a given time is determined probabilistically according 

to the local density. Only the direction and not the magnitude of 

a particle velocity is changed by the collision. Thlls energy is 

conserved. The direction following a collision is chosen with uniform 

probability. From this picture a given property is diffused by the 

transport of particles into different regions of the system. ~o 

properties can be transferred by collision because there is really 

only one particle involved in each collision. 

In molecular dynamics calculations, each particle trajectory is 

determined by the laws of Newtonian mechanics. These trajectories 

are followed exactly and a collision occurs when two particles touch. 

This is a much more tedious procedure as each potential collision 

must be evaluated, but it is more physically appealing because 

it assumes only the collision mechanism. 

Granular materials do not lend themselves to Monte Carlo 

modeling. At the densities common in granular flow there will 
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be almost no streaming transport of particle properties and 

thus the exact collision mechanics will be important. But the 

greatest difficulty would be the a priori determination of governing 

statistical distributions. It is not even clear that granular materials 

may be modelled according to the "Stosszahlansatz" or "molecular 

chaos assumption" whereby the partir.1Rs c.::in he considered to be 

independently distributed in a purely statistical manner without 

regard to history or other parameters. 

2.3 Other Computer Studies of Granular Materials 

There has been relatively little use of computer modeling as a 

research tool for granular materials. Rogers and Gardner [64] used 

a Monte-Carlo method to simulate the flow of powder through rotating 

cylinders, but they did not directly consider particle interactions. 

Yoshida, Masuda, and Inoya [87] modeled the flow of fluidized particles 

in a turbulent carrier but considered only the motion due to fluid 

forces on the particles and not particle-particle collisions. Powell 

[56] studied the static packings of spheres in beds built by placing 

spheres of randomly distributed size into randomly chosen 

locations. 

The only computer model which considers in detail the particulate 

nature of granular materials and the interactions of particles is 

described in Cundall and Strack [19]. The model was designed with 

~ull and rock mechanics problems in mind. The stresses are large 

and the bulk is allowed to deform only slightly. Under these 

conditions the individual particles will deform. Cundall and 

Strack assumed that for small deformations, the particles behaved 
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like linear springs across the contact points. They solved the time 

dependent problem over small time steps using a finite difference 

technique, attributed to Cundall and called the "Discrete Element 

Method". The program was used to predict the stress patterns developed 

in two dimensional discs that were compressed and slightly sheared 

between rigid boundary walls. The model could be equally well applied to 

large deformations encountered in granular flow problems (provided that 

enough computer time is available to follow the flow over a large number 

of small time increments.) In an earlier report, Cundall [19) used a 

similar simulation scheme to investigate large deformation gravity flows 

such as rockfalls and hopper flows. This was one of the earliest attempts 

to simulate granular material flows. 

2.4 Description of the Model 

The stresses encountered in material handling devices will be 

much smaller than would be found in soil mechanl1.:i:; vrul>lems. Sig

nificant particle deformations will be unlikely. Interstitial fluid 

effects are assumed to b.e negligible. There are assumed to be no other 

range forces between particles. Particle interactions will have a 

short duration compared to the time between interactions, and may 

he approximated as instantaneous collisions. Two collisions cannot 

occur simultaneousJy so only two-particle or binary collisions need 

be considered. Between collisions the particles follow their 

kinematic trajectories and their positions and velocities are simple 

functions of time. Trajectories change only at collisions, Thus it 

is practical to update time in the program from collision to collision. 

The incremental time steps are as long as the interval between 



-16-

collisions (instead of being much smaller than the collision time as 

required for Cundall and Strack's model). Large deformations of the 

bulk may be observed at much reduced computational expense. 

The program therefore proceeds as follows: 

(see the flow chart in Figure 2.1) 

1) The next collision to occur is determined. 

2) The particle positions and velocities are updated to the 

time at which the collision is to occur. 

3) The collision result is determined. (Note that only the 

trajectories of the two particles involved in the collision 

will be altered). 

4) This procedure is repeated for a specified number of 

collisions. At each collision after that time the prop

erties of the flow are sampled and averaged. 

5) After another specified number of collisions the simulation 

is stopped and the results printed out. 

There is nothing in the above description that limits the 

situations that may be modelled or, for that matter, is particular 

to flowing granular materials as opposed to a molecular model 

of gases_. 

Essentially what differentfates a granular material from a gas is 

that the collisions are inelastic. The system is continually losing ener~y. 

The energy must be resupplied from an external source such as the accelera

tion, of the par'ticles,due to gravity, or by collisions with a moving boundary. 

A granular material subject to a shear flow will show continuous 

bulk deformation. Suppose one were to cut a cubic slice out of the 

flow, and follow the particles in that slice. The volume containing 
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just those particles will soon lose its cubica1 RhapP. 

F~rthermore, the particles originally in the cube will be interacting 

mostly with particles from outside the cube. For computational 

efficiency it is desirable to keep the number of particles as small 

as possible. One would like to consider only the particles inside 

the cube, but still allow them to undergo shearing motions. This is 

accomplished by employing a "periodic boundary condition" in the 

direction of flow. 

Consider a control volume filled with particles. Suppose that 

an infinite region is built up by placing exact replicas of the control 

volume side by side in the direction of flow. This is referred to 

as a periodic boundary condition because the control vulum~, J..1arLl~l1: 

positions, and velocities, are repeated every control volume width. In 

effect, as a particle passes through a periodic boundary of the 

control volume, it reenters the opposite boundary with exactly the 

same position along the boundary and at the velocity with which it left. 

The disadvantage of this set-up is that there can be no spatial 

variations in the direction of flow. The flow may accelerate or 

decelerate but this is experienced as a temporal change for the entire 

flow region. In a sense it's as if one were following a Lagrangian 

fluid element which experienced spatial variations in the flow 

field as temporal changes, 

The periodic boundary condition limits the types of 

flows that maybe modelled. One could not for example model the flow 

in the converging throat of a hopper using a periodic boundary 

condition because there are essential changes in the direction of flow. 
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Also one could not expect to see the effect of a 11 choked 11 chute, 

discussed in Sections 4.4, 4.5, as choking is related to the flow 

near the chute exit. 

Although they are not the only class of applicable flows, uni-

directional flows seem to lend themselves to this type of modelling. 

The two situations modelled are the flow in an inclined chute, and 

the flow in a Couette flow shear cell. "Snapshots" from both may 

be seen in Figures 2.2, 2.3 . 

In the chute program the control volume is bounded on the bottom 

by a rigid wall, simulating the chute bottom, on the vertical sides 

by periodic boundaries, and is unbounded on the Lup. The lncllnaLluu 

is simulated by inclining a body force vector at an angle, a, with 

respect to the chute bottom. For the Couette flow program, the 

body force l::; :Geru, an<l Lhe tup uf the control volume is closed with 

a solid wall in motion relative to the bottom, in the direction of 

flow. 

In both cases, only the flow of two-dimensional discs, 

of equal size and mass, was examined. There is nothing inherent 

in the model that prevents examination of three-dimensional spheres, 

except that a much larger number of spheres would be required to fill 

the third dimension. This would greatly increase the computer costs. 

Direct quantitative comparison with real 3-D flows is somewhat 

difficult (some particular problems will be indicated later), and 

a logical next step will be to extend the model to the flow of three

nimensional spheres. Nevertheless. the two-dimensional model will exhibit 

many of the features of its three-dimensional counterparts, and will 

yield insights into the nature of the particle mechanics. 
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2.5 Convergence of the Simulation 

The periodic boundary condition eliminates all spatial gradients 

in the direction of flow. Even though a temporal change of properties 

inside the control volume mo.y be interpreted as the effect of spatial 

gradients on a Lagrangian element, the simulation_ can, strictly 

speaking, only model flows that likewise experience no changes in the 

flow direction. This is satisfied a priori for Couette flows, but 

implies that only uniform (constant depth, non-accelerating) chute 

flows may be modelled. Such flows have no temporal or 

spatial evolution. Consequently the simulation is an accurate 

representation only if its properties do not change with time. A 

system that has attained steady conditions is referred to as 

"converged". 

The total kinetic energy is chosen as an indicator of convergence 

because it may be instantaneously determined. If the energy is 

constant the flow is not accelerating or decelerating, and in all 

probability most other properties are steady. Representative plots 

of the total kinetic energy in converged state, for both chute and 

couette flows are shown in Figure 2.4. In both cases the energy is 

fluctuating within about 20% of its mean value but there is no 

apparent change in the mean state. 

Fluctuations of this nature are characteristic of small ther-

modynamic syste.ms in equilibrium with large systems. These flue-

tuations may be treated statistically, and are given an extensive 

treatment in Landau and Lifshitz [36). In the present case the 

fluctuations are due to the fact that energy is not conserved in the 
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simulation due to the inelasticity of collisions. Energy is added 

to the system by the action of gravity, in the chute program or by 

collisions with the moving wall, in the Couette flow program. A 

steady state is achieved when the rate of energy added more or less 

equals the rate of energy dissipated. Fluctuations occur when 

there are imbalances in this energy flux over a short time period. 

They make the judgment of convergence necessarily subjective. 

The fluctuations will disappear only as the number of particles 

goes to infinity. But if the averaging time is much longer than the 

fluctuation time, the fluctuations should have very little effect 

on Lht: meo.sured quantities. 

2.6 Dimensional Analysis 

The model describes the flow on the microscopic level of 

individual particle mechanics, (as opposed to the macroscopic level 

of a deforming continuum). It is appropriate then to scale the 

parameters and variables of the problem by quantities characteristic 

of the particles. The particle radius R, is chosen ao a. c110.racteri:stic 

length, and the particle mass m as the characteristic mass, (pro

ducing as a characteristic density m/irR2) 

lf gravity is present, as in the chute flow simulation, a convenient 

time scale is IR/g . This is derived from the non-dimensionalization of 

the equations for the individual particle trajectories. Dimensionless 

velocities will have the form of Froude numbers: u//iR, and dimension-

less stresses will have the form -r/ (~). 
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However, if gravity is not present, as in the Couette flow simula-

tion, the trajectory equations are linear and the time scale is imposed 

through the boundary conditions. A time scale enters the problem only 

from the upper wall velocity, UT. UT must be the velocity scale of 

the problem making R/UT the corresponding time scale. Stresses are 

then non dimensionalized in the form 

Even though quantities are non-dimensionalized in the above manner 

for the computer simulation, it is clear that the basic problem of a 

Couette flow of granular material does not scale with a characteristic 

time R/UT. It will be shown in Section 3.2 that the appropriate time 

scale is H/UT. This may be seen from simple heuristic considerations. 

UT is an external quantity that only directly affects the particles 

that collide with the moving boundary. The only velocity, that directly 

affects every particle, is the relative velocity of its neighbors. On 

the average, this is related to the product of the local velocity gradient 

and some appropriate length scale. In terms of easily accessible 

quantities this may be approximated as RUT/H. The corresponding 

characteristic time is then H/UT • 

2.7 Structure of Program 

The programs are built of a main program and many subprograms. 

Five subprograms are integral parts of the model. The rest are used 

in the data analysis. The individual programs are described below: 

1) Main program coordinates the various subprograms and 

performs the data sampling and analysis. After each 

collision the state of the simulation is stored on a 

magnetic tape for further analysis at a later time. 
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2) Collup is the collision assessment routine. It computes 

all possible collisions for a particle and stores them in 

a collision lisr using rhe rourine Insrr. 

3) Insrt - creates and maintains the collision list. (See Section 

2.10) It has three entry points. 

i) Insrt ~ inserts a collision into the collision list. 

ii) Next - produces the next collision to occur from the 

list. 

iii) Init - Initializes the collision list. 

4) Remove - Removes all collisions for a given particle from 

the collision list. 

5) Partcl - Computes the result of a collision between two 

particles. 

6) Wollcl - Computes the result of a collision with a wall. 

2.8 Tniti~l St~t~ 

The initial positions and velocities of the particles are 

externally generated and· given to the program as initial data. 

A typical configuration is shown in Figure 2.5. The number of 

particles horizontally nH, and vertically n as well as an average 
v 

particle spacing C are specified. The generating program places 

the particles into positions slightly perturbed from an evenly spaced 

square lattice. The width of the control volume is chosen to be 

and the height for the Couette flow simulation n C 
v 

then has a uniform initial density v = TIR
2/c 2 

Most of the simulations were started with a configuration 

= 4 particles wide and n = 10 particles high with an initial 
v 
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spacing of 2.4 R, yielding a control volume 24 R high and 9.6 R wide with 

initial solid fraction v::;, 0. 55. This particular configuration 

was arbitrarily chosen. Doubling the width of the control 

volume (by doubling the number of particles horizontally) produced 

insignificant changes in the results, so while in some cases n 
v 

was varied, nH = 4 was used for most of the computation8. 

In the chute flow program all the particles are initially given 

roughly the same velocity. in the Couette flow program the velocities 

ore chosen to roughly fit into a velocity profile that varies 

linearly from zero at the stationary wall, to UT at the moving 

boundary. In both cases the velocities are randomly perturbed from 

the mean by small amounts. 

As the program runs, all traces of the initial state quickly 

disappear. The system develops velocity and density profiles 

that are quite different from the starting values and changing the 

the initial state seems to have very little effect on the final 

results. 

2.9 Collision Assessment 

The position of a particle in the program is determined by 

the position of its center. Hence a collision occurs whenever the 

centers of two pRrti~1P.R Rre a diameter apart. 

Between collisions a particle moves along its kinematic tra-

jectory. Thus until it collides with another particle the position 

?8.. of a particle that at t = o was at ~0 is given, at time t, by 

x. 
""l. 

x. + 
"'"1.Q. 

1 2 
~t + ~t 



-24-

where z is the gravity vector which may be zero. A collision between 

two particles (i) and (j) occurs when: I I~ - ~Ii = 2R 

or when: 

/x. -x.\2 
+ 2 (x. - x.)·(u. -~)t y-10 rw J uj ...... ..L ....... ] '"'"'l. - J 

( 
· \2 2 

+ ~- ~J t 

This is a scalar quadratic equation to solve for the time at which 

a collision is to occur. Note that this equation is independent of 

gravity because both particles are accelerated at the same rate. 

(Gravity does however appear in assessing collisions with solid 

boundaries or pseudo collisions with the periodic boundaries.) 

The collision assessment is further complicated by the periodic 

bnnndi:iry conditinn. Fig11rP ~.6 shm.JR thP cnntrnl vo111mf' from thf' 

Couette flow program and the periodic images immediately upstream 

and downstream. Because a particle has a finite radius it is possible 

for a particle whose center is in the main frame to collide with 

another particle whose center is in the upstream or downstream frames. 

In Figure 2.6 collisions of this type can be seen between particles 

32, and 35, 15 and 21, 15 and 26, 7 and 5, 25 and 18, and 14 and 3. 

To account for the periodic images collisions are not only 

assessed bt::Lwt::eu pa1Ll1.:les insitle the control volume but also with 

their images mapped into the upstream and downstream frames. The 

upstream frame is denoted -1, the main frame 0, and the downstream 

frame +l, corresponding to the numbi:>r nf contro1 unlumP t.Jidths Rdded 

to map it into its periodic image. 

Then the four quantities that characterize a collision are the 
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indexes of the two particl@~ involved, the frame in which the 

target particle will be during the collision, and the time at which 

the collision is to occur. 

2.10 Collision List 

To find the next collision, The number of potential collisions 

2 which need to be evaluated is of order Np. Each evaluation 

involves solving a quadratic equation for the collision time, and 

comparing the roots. This is a formidable task and must be performed 

after each collision. But, when a collision occurs, only the tra-

jectories and potential collisions of the two particles involved. 

will change. Potential collisions for most of the particles will 

2 be unchanged and most of the O(Np) evaluations will be repetitive. 

This redundancy can be eliminated by storing the future collisions 

in a collision list. After each collision only the future collisions 

uf the Lwu partlcles involved need be reevalua~ed and only O(Np) 

equations need be solved. 

It is not necessary to store all potential collisions in the list. 

But it is not sufficient to store only the next collision for each 

particle. This can be illustrated by the following example: Suppose 

that the next collision of a particle i will be with particle j, but 

j is scheduled to collide with another particle, k, first. After 

j's collision, its trajectory has changed so that i's first collision 

will be with some other particle. lf only i's collision with j was 

stored in the list, all i's collisionswouldneed to be evaluated 

along with j's. The same would be true for all particles that would 

have collided first with j or k. 
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This problem is solved by storing all collisions until a particle 

hits either a solid wall or a periodic boundary. These collisions 

will stay in the list regardless of what happt:rns to other }JC:LrLicl~1:1. 

Experience has shown that three or four collisions will be stored on 

the average for each particle. (This quantity will depend on the 

control volume size. and the number of particles. and the flow 

conditions.) 

2.10.1 General Description 

The routines which maintain the collision list are required 

to perform two functions. The list must be sorted in order of 

occurrence so that the next collision may be easily found and each 

potential collision added to the list must be placed so as to keep 

the list ordered. Secondly, after a collision between two particles 

all potential collisions that involve either of the particles must 

be removed from the list. 

The simplest way to go about this would be to store the collision 

information physically in the computer memory, in the 

order of occurrence. Thus if a collision needs to be added to the 

center of the list all the information for potential collisions 

that will occur later must be moved to make room for it, and when 

the collision is removed from the list all that information must be 

moved back again to fill the vacated space. In general the collision 

list for N particles was 3N - 5N . collisions long, implying that on p p p 

average every particle has 3 - 5 collisions stored in the list. 

A great deal of computer time would be spent in just moving in-

formation about the memory, most of which would never be used. 
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'!'hese computer costs can be avoided at the expense of some 

memory storage. A collision may be placed anywhere in the physical 

computer memory, as long as information about the collision order is 

stored with it. This extra information is in the form of "pointers". 

The pointers give the location in physical memory of the next 

collision in the list. The information for the second collision may 

be found in the list element at the location specified by the pointer 

attached to the first collision, the third collision is specified by 

the pointer attached to the second, and so on. The list may be 

followed by stepping from one element to the next following the 

pointers. 

It is critical to maintain the structure of this type of 

list. If a single pointer is misplaced the rest of the list is lost. 

As described, this structure is inadequate for the simulation. There 

is not enough information attached to each element to reconnect 

the list after an element is added or removed from the center. 

This difficulty 'is avoided by using a "double linked list". 

Two pointers are associated with each element, one pointing to the 

next element in the list (a "forward pointer") and the other pointing 

to the previous element in ths list, (a "backward pointer"). An 

element A may then be removed from the center of the list by placing 

its backward pointer in the backward pointer of the element pointed 

to hy A's forward pointer, and by placing A's forward pointer in the 

forward pointer of the element pointed to by A's backward pointer. 

A collision may be added to the list by following the reverse pro

cedure. This is shown schematically in Figure 2.7. 
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Three double linked lists are associated with each collision. 

The first connects the collisions in the order in which they will 

occur. The other lists contain all the collisions involving a single 

particle. One list is needed for each particle involved in the 

collision. That which is called the collision list will actually 

cont;:iin m;:my lists, oni:>. for i:>.::irh p;:irtif'li:>., and one to keep ;:ill thi:>. 

collisions in the proper temporal sequence. 

2.10.2 Details of the Data Structure 

The data structure used in the program is shown in Figure 

2.8. Most of the information is contained in a large integer array 

called ICOLL. Each row of ICOLL is nine elements long and stores 

the information for one potential collision. The first three elements 

are the two particles involved in the collision and the frame in 

which the target particle (j) is to be at the time of the collision. 

The time at which the collision is to occur is in the same row of 

a Double Precision array appropriately titled TIME. 

The other six elements in each row of the array are pointers 

attaching the collision information to three lists: the list of 

collisions, ordered as to the time of occurrence, and the two lists 

of all collisions involving each of the particles. 

The fourth and fifth elements in the row give the index of 

the rows in which the information is stored for the collisions that 

will occur directly before and after. These constitute the backward 

and forward pointers in the collision time list. Two pointers 

external to ICOLL: ISHORT, and ILONG, contain the indexes of the 

rows containing the collision information for the collisions which 
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will occur at the shortest and longest time. The list of collisions, 

in the order which they will occur, from the shortest to the longest, 

starts with the first element indexed by ISHORT. The next entry in 

the list is always found in the forward time pointer of the last 

entry. In this way the list is followed along. At the end of the 

chain (the largest time) there will be a zero in the forward pointer, 

which indicates the end of the list. One can go the other way by 

starting with ILONG~ and following the backward pointers. 

The proper location of a new colli~ion, in the order of 

occurrence list, is found by starting at ILONG' and following 

the chain until another collision is found that will occur in a 

shorter time. The new collision is placed in the list just behind 

the other. 

The li5ts containing all collisions for the particle15 

i, j involved in the collision are linked by pointers in the sixth 

through ninth columns. The main difference between these and the time 

list is that order of the elements is not important. These are 

organized as LIFO (Last In First Out) lists which means essentially 

that the first element appearing in each list was the last to be 

added to it. The list for the ith particle is pointed to by the ith 

element in an integer array NPOINT.. If the particle index appears 

in the first column of IC.OLL:,. the pointers to its list arc contained 

in the sixth and seventh columns, and if its index appears in the 

second column, the pointers are in the eighth and ninth columns. 

A problem arises because, for a given particle,the pointers may be 

found in different columns for different entries in the list. 

That the list is to be continued in the eighth and ninth columns is 
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indicated by adding two-hundred thousand to the value in the pointer. 

A single linked LIFO list, pointed to by the pointer IFREE,· keeps 

track of all rows in the ICOLL that are free to be filled with new 

collisions. The pointer to each successive entry in the list can be 

found in the ninth column of the present entry; all other columns are 

unimportant. There io no need for forward and backward pointers in 

this list because no entries will ever be removed from the list's center. 

2.11 Collision Solutions 

There are three types of collisions encountered in this program: 

(1) particle-particle collisions, (2) particle-wall collisions, and 

(3) "collisions" with the periodic boundaries. 

A collision with a periodic boundary occurs when a particle's center 

crosses into the downstream periodic image of the control volume. This 

must be accompanied by another particle entering from the upstream 

periodic image with exactly the same velocity and relative position as 

the one that left. The solution of a collision with a periodic boundary 

is obtained by just moving the center of the particle one control volume 

width upstream. 

Particle-particle and particle-wall collisions are both assumed to 

be inelastic. This is realized in the program by assuming that the ratio 

of the approach to the recoil velocities in the center of mass frame is 

given by a coefficient of restitution, £,which is specified as an input 

parameter for the program. Different coefficients of restitution, 
£ ' p 

and, £ , may be specified for particle and wall collisions respectively. 
w 

The particles are assumed to be fully rough in the sense that on 

departure there is zero relative velocity in the direction tangential 
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to the particle's surface. This assumption implies that the friction 

at the particle surface is always large enough to bring the relative 

velocity of the particles to a halt. 

Both of these conditions result in energy dissipation. The energy 

dissipated by the no-slip condition is equal to the work that friction 

would do in bringing the relative tangential velocities of the particles 

to a halt. 

2.11.1 Particle-Wall Collisions 

Consider the collision between a particle moving with horizontal 

velocity U , verticle velocity 
0 

V , and with rotation 
0 

and a solid 

wall. The collision will impact the wall with an impulse per unit mass, 

J that is applied at some angle y with respect to the vertical (see 

Figure 2.9a,b). The governing equations are then: 

U = U - J sin ijJ 
0 

v = v + J cos ijJ 
0 

J sin l/J 
. W =WO+ S 

where S is the ratio of radius of gyration of the particle to the parti-

cle radius (S= .5, the value for a cylinder, is used in all our simula-

tions.) U, V, and w are the final velocities of the particle. The 

negative sign is chosen for a lower wall collision and the positive 

sign is chosen for a collision with the upper moving boundary. 

The effects of the coefficient of restitution and the no-slip condi-

tions may be written respectively as: 
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v = -E: v 
w 0 

U - U +IL\= 0 
T 

This yields five equat.ions for the five unknuwu:s; U, V, w, J, and y. 

Then: 

and 

Uo UT± WO 

U = (l+S) + (1+1/B) 

w= 
u -u o T 

l+S 

So for a collision with a stationary wall: 

u w 
U=-o- _ o 

l+S 1+1/6 

v = -E: v 
w 0 

u 
w = _B_w o 

l+B 0 - 1+8 

and for a collision with the upper, moving wall 

v = -i;: v w 0 

w= s 
l+S 

2.11.2 Particle-Particle Collisions 

Consider now the collision between two particles A, and B, in 

the center of mass coordinate system. The particles approach each other 
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with velocity of magnitude U along the vector k connecting their 
0 

centers and V tangential to k. The collision results in an 
0 

impulse J inclined at an angle 1/.1 with respect to k (see Figure 

2.9c). The equations governing the collision are: 

u = u - J cos¢ 
0 

V = V - J sin iJi 
0 

+ 
J sin i)J 

w = w B A A 
0 

w = w + B B 
0 

J sin 1jJ 
B 

The effect of the coefficient of restitution may be written as: 

and the no-slip condition as: 

w + w - 2V = 0 A B 

The solution is: 

U=-e:: U 
p 0 

2 (l+B) 

2 (l+S) 
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2.12 Coefficients of Restitution 

The coefficients of restitution, £ , for wall collisions, and £ , w p 

for particle-particle collisions, are the only material properties that 

are used in the program. They represent the energy balance in the 

collision solution and reflect the degree to which energy is dissipated 

in a collision. For most of the simulations they were taken to be 

e: =0.8, c: =0.6. The coefficient of restitution for polystyrene beads 
w p 

bounced off aluminum plates was observed experimentally and found to be 

about 0.7. It was felt that the wall coefficient should be somewhat 

larger due to the error introduced into the measurements by the non-

spher1c1ty of the particles, hence the value 0.8 was chosen. A8 parti-

cles were much softer than the wall the particle-particle coefficient 

of restitution would probably be somewhat less and was taken to be 

e: = 0.6. 
p 

Actually coefficients of restitution are not material constants 

but vary with impact velocity as well as other parameters. Measurements 

of coefficients of restitution are given by Goldsmith [23), Raman [57), 

and Barnes [6]. Some are shown in Figure 2.10'. For almost all mate-

rials the coefficient of restitution e: seems to approach one (elastic 

collision) as the impact velocity goes to zero. The coefficient of 

restitution always decreases with impact velocity. The c:'s generally 

decrease very rapidly from unity at small impact velocities; the decline 

becomes less rapid and c: appears to be approaching an asymptotic value 

for extremely violent collisions. 

This rapid decrease in Lhe coefficent of restitution could pro

duce a stabilizing effect on granular systems. The impact velocities 

of the particles will always be of the order of the velocity gradient 
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multiplied by a particle diameter and will generally be small. The 

coefficient of restitution will then ordinarily be in this rapidly 

decreasingregionand a small change in velocity will bring about a 

large change in E and a subsequent change in the rate of energy dis

sipation. If the flow slows the impact velocities will be smaller 

yielding a smaller rate of energy dissipation which would tend to ac-

cclcratc the flow. Similarly an accelerating flow would tend to in-

crease the rate of energy dissipation, retarding the flow. For this 

reason an exponentially decreasing coefficent of restitution was used to 

aid the convergence of some chute simulation~- (S@P S@ction 3.1) 

As the coefficient of restitution reflects the energy dissipated 

by the plastic deformation of the particles, one would expect that E 

would depend on the deformation history of the particle, as well as 

temperature and anything else that might affect the plastic properties 

of the material. Raman [57] notes, for example, that the surfaces of 

his test spheres had to be cleaned and highly polished before testing 

to assure consistent results. A constant coefficient of restitution 

is then not the most realistic materialpropertybut is the most con

venient to use in the format chosen for the simulation. 

2.13 Averaging 

Up to this point our simulation appears as a black box. It 

describes the behavior of the system, but no useful information has been 

obtained from it. The simulation describes the complete state of the 

system at any time. But one is not really interested in the instan

taneous state of the system, but in the time averages of its properties. 

For example, to perform an experiment on a chute flow of glass beads, 
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say to measure the velocity profi 1 P. ri:>q1drPR avi:>r::1ging the ve1 oC"itiei': 

of many particles passing through a point. 

As shown in Figure 2.11 , the control volume is divided into strips 

and at each collision properties of the particles inside every strip are 

averaged. The result is the distribution of properties in the direction 

normal to the direction of flow. The periodic boundary condition has 

eliminated the possibility of time averaged spatial variations along 

the flow direction. 

A strip width of about one particle diameter was found to be op-

timum. A particle's diameter is a characteristic microscopic length 

scale and significant variations in the velocity and density profiles 

are observed between adjacent strips. The strips are narrow enough to 

show detail, yet wide enough to contain several particle centers at each 

sampling time. 

While a particle center may be inside a given strip a large portion 

of the particle may reside in an adjacent strip. Thus the percentage 

of a property possessed by a particle that is attributed to a strip is 

weighted by the percentage of the particle's volume that is contained 

within the strip. Let <fi> denote the average value of some property 

f in strip i . For the sample the particle k wi 1] havP an 

instantaneous value of 

particle k in strip i 

f denoted by fjk . Let Aijk be the area of 

for sample j. (See Figure (2.11.) Then 

NP 

NS I Aijkfjk 
<f > = I k=l 

i j=l Np 

I Aijk 
k=l 



where N 
p 
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is the number of particles in the control volume, and N 
5 

is the number of samples taken. Most properties are determined in this 

way. 

The ideal samples would be taken from a set of equivalent "ensembles 11
• 

The simulation is set up to provide the ensembles as time evolutions of 

a converged system, The sampling period must be chosen with some care 

to provide an accurate representation of the phenomena. Properties are 

averaged over many thousands of collisions to avoid transients. 

Unless otherwise stated. all the data presented here were derived from 

converged systems. 

2.14 Special Problems 

Certain problems presented themselves in the creation of this 

simulation that deserve special mention. These problems all arose from 

expected physical phenomena that tested the limitations of the assumptions 

upon which the model was built. 

2.14.1 Roundoff errors 

Computing the time at which a collision is to occur requires 

solving a quadratic equation by: (l/2a)(-b ± (b2 - 4ac) 1/ 2)). Problems 

arise when -b and (b2 - 4ac) l/2 have close to the same magnitude 

if b 2 » \ 4ac \ • When the difference is taken there may then be a 

ficant loss of precision in the answer. This would mean that the two 

particles overlap slightly or are not yet in contact at the time speci

fied for the collision. Greater error is introduced because the parti-

cle's position is updated, often i:;everal Llmei:;, beLween the time a col-

lision is assessed and when it finally occurs; each updating becomes 

another source of error. 
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The final error in the particle positions, at the time a collision 

occurs, is still probably several orders of magnitude less than a parti

cle's radius, hardly noticeable except to the computer. The problems 

arise only in certain seemingly unlikely chains of events; but even 

unlikely events are likely to occur in a hundred thousand collisions. 

Suppose that particle A collides with particle B, but due to the 

roundoff error is overlapping it slightly at the collision time. A's 

trajectory is altered so that while it is still overlapping B it 

collides with a third particle C. The collision with C sends A 

back towards B. However, the collision assessment routine looks for 

the time when A and B will be a particle diameter apart. As A and 

B overlap already this will not occur until A has passed completely 

through B. Occasionally particles would be found overlapping as much 

as a particle radius. 

The solution to this problem was rather heuristic, After a 

collision the particles are moved so that their edges are a hundred

thousandth of a particle radius apart. The collision assessment routine 

will always check for slight overlaps between particles and call an im

mediate collision if one is found. In addition the collision assessment 

is performed with double precision accuracy. This eliminated particle 

overlaps. 

2.14.2 Rolling Particles 

If one were to throw a soccer ball down a street, it would bounce 

a few time::; aml t:vt:nlually em.1 up rolling along the street. This common 

event cannot be modeled by this simulation without a special provision. 
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Consider a particle that collides with the lower wall with a very 

small impact velocity. It will recoil only a short distance and will 

very quickly collide with the wall again. Each successive collision 

will decrease its recoil velocity further,(by the action of Lhe coef

ficient of restitution) until the time between collisions becomes 

effectively zero. As the program time is updated at each collision, 

time would cease to advance, particles would not move 1 and the simu-

lation would for all intents and purposes. stop as the computer assesses 

an endless string of instantaneous collisions. 

Like the soccer ball, the particle is trying to roll along the bottom 

wall. However the simulation as so far described, does not allow that type of 

interaction. The problem is solved by tagging the particles that are 

rolling so that no further wall collisions will be assessed for it. The 

particle ceases to roll when it collides with another particle. 

When a particle is rolling it is no longer in the same inertial 

frame as a free falling particle. The collision assessment equation 

becomes quartic which further complicates the roundoff error 

problems. 

2.14.3 Moving Couette Flow Boundaries 

In the first generation of the Couette flow program, the solid 

boundaries between which the particles are trapped were kept a fixed 

distance apart. With no gravity the particles eventually drifted 

away from both walls and moved like a solid plug down the center of the 

channel, with only occasional wall interactions. Energy is added to a 

Couette flow by the moving boundary and must be dissipated by the 

straining of the material. For a Couette flow of granular material, 
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energy is added to the system only by the few particles that collide 

with the moving boundary. These particles pass the energy on by 

collisions with the rest of the material. The subsequent collisions 

drive the particles back to the moving boundary to gather further 

energy. The rate at which energy is transferred to the system is 

governed in part by the collision rate with the moving boundary. 

If the flow is N particles deep then there will be O(N) 

particle-particle collisions for each wall collision. As each collision 

dissipates energy. a delicate balance would be required to keep the 

·energy of the system constant. If the energy of the bulk decreases, 

the forcefulness with which particles are driven against the moving 

boundary is diminished reducing the collision rate and the rate of 

energy transfer to the bulk. Less and less contact will be made with 

the walls until the material moves almost like a plug beLween Lhe walls. 

Both Bagnold [3] and Savage et al. [67, 70, 72] have performed 

rheological experiments with granular materials in Couette flow devices. 

Bagnold studied wax spheres suspended in a glycerine-water-alcohol 

mixture. The fluid then acts as a carrier of shear forces between 

the particles and the boundary making direct contact unnecessary. 

The spacing between the walls was not fixed in Savage's shear cell. 

Instead the spacing adjusted itself until the pressure exerted on 

the walls by the particles balanced an externally applied force. 

Sufficient contact between the particles and the boundary was 

thus insured. 

IL wa~ Savage's device that was finally used as the phycical 

model for the simulation. A normal force is specified as an input 

parameter to the program. The force exerted on the walls by the 
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particles, is compared to the inputted value every Np collisions 

(where Np is the total number of particles in the control volume) 

and the solid boundarico arc set in motion in the direction normal 

to the flow. The velocities of the walls are assumed to be constant 

in the period between comparisons. This greatly enhances the 

efficiency of the program as the complete collision list must be 

recomputed each time the wall velocity is changed. 

The density of the system cannot be explicity specified. 

Instead it is determined implicitly as a function of the normal 

force and the wall velocity. 

The moving walls created another problem that was not immediately 

apparent. If the applied normal force was large the particles would 

be forced into a high density configuration. But if the width of 

the control volume is kept constant while the solid walls are moving, 

there will be densities, or at least, configurations of particles 

corresponding to a given density that will be unrealizable. The first 

simulation run at high density was very slow in converging. After 

some time, it became apparent that the converging solid boundaries 

were trying to force the particles into a configuration they 

could not reach due to the fixed width of the control volume. 

For example, consider the configuration used for the initial 

state of the system, (see Figure 2.5). The particles are arranged 

randomly inside a square lattice. The lattice spacing determines 

the density of the configuration. For a density v the spacing would 

~ 
be roughly (TI/V) 2 R. A lattice N spaces wide can only fit into a 

I 12 control volume of width N(Ti v) R. If the density is to change 

while the width remains fixed during the course of the simulation, 
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then a square lattice configuration cannot be maintained. 

One solution would be to choose a control volume that is wide 

enough so that the error in the configuration imposed by a changing 

density is small. This would entail using many more particles to 

fill the control volume and would greatly reduce the program's 

efficiency. 

Another solution is to simultaneously vary 

the width so that the ratio of height to width remains constant. 

The material is then compressed at the same rate by the changing 

control volume thickness as it is by the converging solid boundaries. 

The particles in the upstream and downstream periodic images will 

approach at the same speed as the boundaries, simulating the com

pression due to density changes in the upstream and downstream 

periodic images. 

Clearly the square lattice configuration will always fit into 

this control volume, but one cannot be certain that other configurations 

are not artificially excluded. This is therefore a somewhat less 

appealing solution to the problem than using a very wide control 

volume. However, it is used in this model because it does not require 

additional p~rtirle~ and added ~omputer expenses. (It will be 

shown later that the square lattice is not a bad model for the local 

particle configuration in a high density shear flow.) 

2.15 Animation of the Simulation 

An animated film has been made from the simulation. The 

instantaneous state of the system, at each collision, i.; recorded 

on magnetic tape. A program was written to interpolate the state of 
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the system, between collisions, to produce "frames" that are evenly 

spaced in time. Each frame is drawn on a Tektronix graphics terminal 

and photographed wlLh a Bule.x. Hl6M motion picture camera. 

The filmed sequences were derived from three different inclina

tion angles of the chute flow simulation, and three different densities 

of the Couette flow simulation. With exp1~n~tnry titles, the total 

length of the film is about five minutes. 

2.16 Summary of the Simulation 

A computer simulation of the flow of granular materials 

in inclined chutes, and in a Couette flow shear cell, has been de

scribed. The simulation follows the exact trajectories of two

dimensional discs through a control volume. The particles interact 

by colliding with one another. The collisions are assumed to occur 

instaneously. The interstitial fluid is assumed to have a negligible 

effect on the particle motion; between collisions the particles 

follow their simple kinematic trajectories. 

In the flow direction the control volume is bounded by 

periodic boundaries. This isolates the specific particles in the 

simulation, but has the unfortunate effect of eliminating all 

gradients in the direction of flow and imposes the requirement that 

the system must assume a steady (converged) state to be a valid model 

for real flows. 

In a converged state the energy of the system must be nearly 

constant; the work performed by gravity or by the moving wall must 

be dissipated inside the granular mass by inelastic collisions. 

The inelasticity is represented in the simulation by a coefficient 
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of restitution relating the approach to recoil velocities of the 

particles in the center of mass and by making the surface of the 

particles fully rough so that there will be no relative tangential 

motion between. the particles after the collision. The coefficients 

of restitution were assumed to be constants for most of the simula-

tions. In a few runs, that appeared to have convergence difficulties, 

the coefficient of restitution was allowed to vary according to the 

impact velocity. 

Measurements are performed on the system by time averaging 

the properties of the particles that lie in strips parallel to the 

flow. (The periodic boundary condition assures that there can be 

no time averaged variation of properties in the flow direction). 

Very few assumptions are made about the behavior of the 

flow. Once started the particles behave purely mechanistically, 

in their trajectories and collisions. By far the greatest restric

tion is imposed by the periodic boundary condition, not because 

it directly influences the flow dynamics but because it limits the 

type of flows that may be modeled. 

The greatest asset of this model is its versatility. The 

model describes the complete state of a granular system, and from 

that information, everything about the flow may be derived. The.model 

will provide insight into these flow::; LhaL cannot be obtaine.d from 

experiments at the present time. 
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Figure 2.1 Flowchart of the simulation structure. 
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Figure 2.4 Dimensionless kinetic energy history (per particle) of converged 
simulations top: chute flow (a= 30°)bottom: Couette flow (R/H=O.l). 
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Figure 2.5 Typical initial configuration of 40 particles, con
figured 10 x 4. 
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Figure 2.6 The principle control volume {o) and its upstream 
(-1), and downstream (+1),periodic images. 
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Figure 2.7 Insertion (a), and removal (b), of an element from a 
double-linked list. 
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Figure 2.9 Collision diagrams. 
(a) Stationary lower boundary collision. (b) Moving 
upper boundary collision, (c) Partic.le-particle collision. 
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Figure 2.10 Variation of the coefficient of restitution with impact 
velocity for collisions between spheres of various 
materials. ,Tli:ese data were taken from Rahman [ 5 7] , and 
Goldsmith [23]. 
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Figure 2.11 (a) Division of the control volume into strips for 
averaging. (b) Division of a particle between adjacent 
strips. 
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Chapter 3 

SIMULATION RESULTS 

3.1 Chute Velocity and Density Profiles 

In Figure 3.1 is a typical velocity profile, taken from the chute 

flow program. It is the converged state of 40 particles (originally 

configured in a lOx 4 square lattice) for a channel inclination of 30°. 

In this plot the velocities have been scaled by dividing by the 

maximum velocity. The vertical coordinate has been scaled by dividing 

by H, an approximation to the flow depth. When examined on the scale of 

a particle diameter, the flow will have no distinct free surface. H is 

chosen to be twice the mass mean height, or twice the most probable 

vertical position of a particle. It can be seen in Figure 3.1 that 

the density has fallen to a low value at Y/H = 1. Hence H is a reason

able measure of the flaw's depth. 

From Figure 3.2 it can be seen that the main features of 

normalized velocity profiles are similar for the three inclinations, 

20°, 30°, and 40°. In all cases there is slip at the wall with a mag

nitude of about 40% of the maximum velocity. The flow shears through 

most of its depth, but the shear rate is greatest next to the wall 

wall. 

These velocity profiles agree qualitatively with those of 

Augenstein and Hogg [l], and contradict those measured by Savage [68]. 

Comparing the results must be done with considerable care. Not only is 

there the problem of comparing two-dimensional calculation with the 



-57-

real three-dimensional problem, but appropriate coefficients of resti

tution and the proper interaction with the wall is unknown. 

Augenstein and Hogg' s [ 1] measurements were made on thin ( ~ 10 

particle diameters thick) flows of sand on chutes with three differ-

ent surface properties. In addition to measuring the velocity profile 

on a smooth stainless steel surface, they also investigated the flow 

on walll::l r:uught:mt!tl by glulug un particles of either the same sand used 

for the test material, or a sand with a smaller size than the test 

material. A profile for each surface condition is reproduced in Figure 

3.3 along with one of the computer resnlts thar hR!'l ;:i !'limil::ir m::iximnm 

velocity and height. The flow of sand on the smooth 

wall chute appears to be almost a plug flow, with only about a 20% 

velocity variation over its depth. On the other hand, if the chute is 

roughened with the same material used in the test, the velocity ap

proaches zero at the chute wall, simulating a no-slip condition. In 

this case the gaps between the particles glued to the surface will be 

of roughly the same size as the flowing particles, forcing the flowing 

particles next to the wall to become temporarily trapped, However, if 

the wall is roughened with smaller particles, the gaps will be smaller 

and the particles will be less likely to become trapped, allowing 

slip at the wall. Presumably, as the roughening particles become 

smaller, the profile will more closely approximate that on a smooth 

surface. 

It appears that the velocity profile in a chute depends, to a 

large degree, on the surface characteristics of the chute bottom. The 

wall condition used in the program seems to provide somewhat more drag 



on the flowing particles than a smooth wall, and somewhat less drag 

than the wall roughened with small particles. In the simulation it 

is assumed that the surface of the particle and the surface of the 

chute are "fully rough" in the sense that there will be no relative 

tangential velocity between the two surfaces immediately following a 

collision. (The coefficient of restitution, which affects only the 

motion of the particle perpendicular to the wall, will only affect 

the drag imposed on the flow indirectly by the way it affects the motion 

of particles in the neighborhood of the wall.) The particle then 

transforms its initial relative tangential motion into rotational 

motion and will tend to roll down the wall and not halt its 

forward motion. It is not clear how this would relate 

to sand particles which have an irregular surf ace and are incapable of 

rolling, but it appears to be one of many reasonable boundary condi

tions. 

Except for the finite slip at the wall. these velocity profiles 

are similar to those one would measure in a shallow water channel. 

On the other hand, the density profile shown in Figure 3.1 is quite 

surprising. 

In the bulk, a granular material is compressible even if its con

stituent parLlclel:! are uuL. Tl1e Lulk rlensity is varied by changing 

the number of particles per unit voltnne; thus it is convenient to 

express the density dimensionlessly as the solid fraction V • 

The two-dimensional V , measured by the simulation is a ratio of the 

area covered by a particle to the total area. In three dimensions 



-59-

v
3

_D is the ratio of the volume occupied by a particle to the total 

volume. The numerical values of v and v
3

_D are quite different. How

ever, for comparison purposes, corresponding two and three-dimensional 

values of the soli<l fracLluu may be <lt:!rlvt:tl from the c11anu.:teristic 

particle spacing, C, associated with each. 

7T 1/2 
(--) R 
V2-D 

(4/3 1T) 1/3 R 

v3-D 

Equating c2_D and c3_D' we get the correspondence: 

4 \)3/2 
3111/2 

This relation may be used to obtain an approximate value of V for com-

parison with experimental results. In general, it will probably 

predict values of v
3

_D that are too small, because the 3-D flow has 

greater freedom in packing configurations. 

For purposes of discussion, the flow of granular materials may 

be compared to that of other compressible fluids. The density of an 

isothermal atmosphere, in a gravitational field, would be highest on 

the planet's surface, and decrease to zero infinitely far away. But the 

density profile in Figure 3.1 exhibits the highest density in the cen-

ter of the flow and a low density zone right next to the chute wall, 

as well as the expected reduction on the free .surface. This is the 

same phenomenon observed experimentally by Ridgway and Rupp [60] 
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and by Savage [69). It is the opposite behavior to that predicted 

by Nunziato et al. [48] based on the theory of Goodman and Cowin [25]. 

(The author has been informed, however, that an error existed in 

Nunziato's calculations [49].) 

Note that the low density region near the wall in Figure 3.1 cor

responds closely with the high shear zone in the velocity profile. 

This is the first step in understanding this phenomenon. The connec

tion will be examined closely in the next section. 

3.1.1 The Concept of Granular Temperature and the Equation of State 

A flowing granular material has properties similar to a turbulent 

fluid in the sense that it is unlikely that any particle will ever be 

moving with exactly the time averaged mean velocity. A particle's 

velocity may, in general, be decomposed into the sum of the local time 

averaged mean velocity <u> and the unsteady instantaneous perturbation 

u' : u = <u> + u'. By definition, u' will have zero time average. The 

unsteady velocities are ·a byproduct of every collision. Consider, for 

example, the collision (shown in Figure 3.4) between two particles 

whose initial velocities were both in the same direction. The pertur

bations to the initial velocities, ~u, 6v, produced by the collision 

will have a total magnitude ((6u) 2 + (6v) 2)l/Z and a relative magnitude 

l6u/~vl that depend only on the initial relative velocity dU and on the 

collision angle e. One would expect that the largest magnitudes of 

the perturbed velocities would occur in regions with the largest 

velocity gradients in which the relative velocity at collision is 

augmented by the differences in mean velocity within the flow field. 
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This is clearly shown in the temperature plot in Figure 3.1. 

The perturbation velocities must, by definition. have a zero time 

average, but their rms magnitude may be easily determined from the 

simulation in much the same way as one determines the magnitude of 

turbulent fluctuating velocities. Taking the time average of the un-

steady velocities, one finds: 

2 2 
<u' > = <u > 

2 
<u> 

<u'
2
> is the mean square magnitude of the unsteady velocities. From a 

kinetic theory point of view, the perturbation velocities would have 

as their analog the random motions of the molecules that are governed 

by the temperature of the gas. In both molecular gas dynamics and 

granular material flows, pressure and other macroscopic forces are the 

result of the impulses exerted by the impact of particles, which are 

proportional to the magnitude of the random velocities. 

From here on, the term "temperature" will be used to reflect the 

total energy contained in the random motion of a granular material: 

1 2 2 2 
(2m (<u' > + <v' > + S<w' >) and the term "translational temperature11 

to refer to that contained in the unsteady linear velocities: 

(1 ( ,2 ,2 ) . -zm <u > + <V > • In this sense flowing granular materials 

may be likened to self-excited gases. The "temperature" in a 

granular material flow comes about as a result of the velocity 

profile. (The analogy between the random particle motions and 

the molecular temperature has been used previously by Ogawa[50,51] 

and Kahatani [ 35]) • In the flows•·modeled, tenperature is not added to 

the syctcm from an external source. If there were no velocity 
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gradients, there would be no temperature. Intuitively the generation 

of granular temperature is similar to the generation of sensible tern-

perature by viscous dissipation. It is the change of energy carried by 

the mean motion into energy contained in the random motion of par-

ticles or, alternatively, the change of kinetic energy into thermal 

energy. When 2RV'u is of the same order as J <~' 2>, then a significant 

part of the particle velocities at impact may be attributed to the 

differences in the mean velocities of the particles. There is a char

acteristic quantity S = 2R(du/dy) !)<u; 2> which was originally defined 
,..., 

by Savage and Jeffrey [71], and will generally be of order 1. S is a 

Mach number. Granular temperature is generated when S is significant. 

Similarly, viscous dissipation is important in gas dynamics only for 

significant Mach numbers. 

Continuing with the ideal gas analogy, the density is low near 

the wall despite the large pressure because the temperature is high. 

(Note that the temperature profile in Figure 3.lc is almost a mirror 

image of the density profile. Where the density is highest, the tern-

perature is lowest and vice versa.) The equation of state for an 

ideal gas is 

Proceeding formally, the expected form of an equation of state for 

granular materials is: 

2 2 
p x(v)(<u' > + <v' >) 
p 

where X(v) is some function of the density. The standard ideal gas 



law (X(v) ~ v) applies only at low densities. X(V) represents a correc-

tion term, similar to that which appears in the Van der Waals equation 

of state, and accounts for the reduction in the free volume due to the 

presence of other molecules. The Van der Waals equation of state has 

a singular behavior when the free volume goes to zero (V + 1). For 

incompressible, two-dimensional discs, it is impossible to have a den-

sity greater than v = .91 and a singular behavior is expected there. 

The pressure may be assumed to be isotropic so that the pressure 

at a point in steady state may be defined to be the weight of material 

above it. In Figure 3.5 is shown a plot of X(v), calculated from 

2 2 
values of p, y, and (<u' > + <v' >). It exhibits the expected be-

havior: X + 0 as V + 0 and the singular behavior at large v . This 

gives strong support for a granular equation of state of the proposed 

form. 

3.1.2 Comparison with Ridgway and Rupp 

Ridgway and Rupp {60] present the only published density profiles 

of granular flow in chutes. Some doubt must be cast upon their data 

due to their assumption that the velocity was constant across the 

depth (even though Augenstein and Hogg's [l] velocity profiles show 

only a small variation for smooth channels). 

Their raw data, the mass flow rate profiles, were reconstructed and 

compared with the simulation results. In nondimensionalizing their 

data, it is assumed that the specific gravity of the sand particles 

was about 2.65. This value was characteristic for the sands used by 

Pearce [55]. The density from the simulation was converted from 2-D 

to 3-D by the fonnula described in Section 3.1.1. The resulting 
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profiles, shown in Figure 3.6, show very good agreement. This demon

strates that density variations,such as those obtained in the computer 

simulation,do occur in practice. 

3.1.3 Effect of Chute Angle 

In Figure 3.4 are shown density distributions for three chute 

inclinations and the corresponding velocity profiles. All the profiles 

have the expected shape and exhibit the low density region near the 

wall, but the maximum density decreases with angle, This is due to 

large velocity gradients at higher angles, leading to correspondingly 

higher tcmpernturco nnd lower denoitieo through the depth. 

3.1.4 Evolution of the Velocity and Density Profiles 

Figures 3.7, 3.8, and 3.9 show the evolution of the velocity and 

density profiles towards steady state for a= 20°, 30°, and 40°, 

respectively. The initial state is the same for all three simulations. 

Each case will respond so as to equalize the dissipation rate to the 

work performed on the system by gravity. 

Both the 20° and the 30° simulations immediately start to slow 

down from the initial state and settle into more density packed states. 

This indicates that the initial velocity was too great, and not that 

the flow in a real chute would be expected to decelerate. After 

having settled into what is presumably a more natural configuration, 

the 30° simulation begins to accelerate again until it reaches a final 

velocity that is close to the initial velocity. Note that the first 

velocity profiles shown for both those angles show a region with a 

constant plug flow velocity profile near the free surface. This 



~65-

is left over from the initial state and indicates that knowledge of the 

chute bottom has not yet been conveyed to the free surface. 

The 40° simulation has not converged by the final state shown, 

and gives no indication that it ever will. The system has accelerated 

continuously since its initial state. As it accelerates, the low den

sity region near the chute bottom increases its thickness until there 

are only a few particles that ever touch the wall (see the 

snapshot in Figure 2.2c). In this region the "temperature" is so high 

that these few particles can support the mass of particles above them. 

The bulk glides along in a relatively undisturbed configuration. When 

the flow has evolved to the final state shown here, it accelerates 

with practically no resistance from the chute bottom. The low density 

region acts as a sort of lubricating layer. It has been suggested 

by Campbell [12] that such a mechanism may account for the small fric

tion that is encountered in certain types of lan<l~ll<le~. 

The evolution of the 40° simulation is similar to that given by 

Ridgway and Rupp (also for 40°), Direct comparison is difficult once 

again. Not only are there the inherent problems in compa~ing ?-D flo~~ 

with 3-D but a real chute flow must become shallower as it accelerates 

to satisfy the conservation of mass. 

3.1.5 Effect of the Flaw's Depth 

Figure 3.10 shows the velocity and density distributions for 

three depths of flow at a chute inclination of 30°. Flows of different 
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depths were obtained by varying the number of particles in the control 

volume. Initial configurations of 5, 10, and 13 rows of 4 particles 

were examined. (They will be designated as 5 x 4, 10 x 4, and 13 x 4, 

respectively.) 

As the flnw he~nmes deeper, the maximum density approaches a 

limiting value which is first attained here in the 10 x 4 configuration. 

The 13x4 simulation does not reach any significantly greater density 

but instead the region of maximum density becomes thicker. 

Exactly the same phenomenon was experimentally observed by 

Ridgway and Rupp for a chute angle of 40°, although their flow is 

somewhat shallower than ours. It is also interesting to note that the 

maximum density they obtain corresponds in two dimensions to v ~.62, 

which is close to the maximum value obtained by the simulation. 

The thickness of the low density zone near the wall is greater 

for the lOx 4 simulation, where the limiting packing is first attained, 

than fnr rhe ') x 4 ~::ise. But as the depth is further increased to the 

13 x 4 case, the zone becomes thinner, compressed by the material above 

it. Note also that the velocity profile in the 13x4 case appears to 

be almost linear and d0cs not show the characteristic high shear 

zone next to the chute bottom. 

While the low density zone next to the chute bottom is clearly of 

greater interest
1 

it is useful here to examine the low density region 

near the free surface. Almost all researchers who have examined the 

flow of granular materials in chutes, including the author, have 

noted the existence of a thin haze of "saltated" particles above the 
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free surface of the flow at large inclination angles. This makes the 

exact determination 0£ the £low depth difficult. Saltation i5 prob-

ably affected by aerodynamic forces on the particles which are absent 

from our simulation. Note, however, that it would be extremely dif-

ficult to pinpoint the free surface of the 5 x 4 flow. as it takes 

about half its depth (12R) for the density to decay from its maximum 

value to zero. By comparison, the 10 x 4 simulation requires 6R, and 

the 13 x 4 simulation requires ZR. The saltated nature of the 5 x 4 

simulation is probably due to a high granular temperature near the 

free surface which is dissipated within the mass of the deeper flows. 

It is possible that this is a granular contribution to saltation. 

It turned out to be very difficult to attain convergence in 

flows of various depths. Originally,when the program was run with 

constant coefficients of restitution, the 5x4 simulation would con-

tinually accelerate and showed no sign of converging. Due to the 

lower density that resulted from the small number of particles, col-

lisions would occur too infrequently to allow the coefficients of 

restitution to dissipate the energy added to the system by gravity. 

Attaining a steady state thus appears to be a function of the flow 

depth, as well as the coefficient of restitution and the inclination 

angle. To aid convergence, an exponentially decaying coefficient of 

restitution £ = £ exp(-3ov//;;J was introduced where ov/J;;.. 
p w 

was the impact velocity. This resulted in a value of about 0.6 for 

the average impact velocity of the 10 x 4 chute flow simulation for 

£ = 0.8, £ = 0.6. So if the velocity of the simulated flow in-
w p 

creased, increasing the violence of the particle collisions, the 
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dissipation rate would increase, slowing the flow. Similarly, if the 

flow slowed, the dissipation rate would decrease, speeding the flow. 

In this way convergence was reached for all three flows. 

3.1.6 Effect of Coefficients of Restitution 

In Figures 3.11 and 3.12 are shown the velocity and density pro-

files for various values of E and E • 
p w 

Varying the particle coefficient of restitution has very little 

effect on the shape of the velocity profiles shown in Figure 3.11. 

(The data for£ =0.8 are of questionable validity, since the simula
p 

tion never properly converged.) 

Much more interesting are the corresponding density profiles in 

Figure 3.11. As the coefficient of restitution is changed, the flow 

becomes more tightly or loosely packed depending on the dissipation 

rate of granular temperature. Thus, for £ = 0.1, the flow is very 
p 

tightly packed flow, while for E = 0.8 the flow is very loose. 
p 

Varying the wall c~efficient of restitution as shown in Figure 

3.12 seems to have very little effect on the flow. The velocity is 

slightly greater for the larger £ , but this is probably due to the 
w 

lower density in the vicinity of the wall. E will only affect the 
w 

local dissipation rate of granular temperature. Reducing E will thus 
w 

bring about slightly larger densities near the wall, but seems to have 

only a small effect on the rest of the flow. 

3.1.7 Plug Flows 

Unlike the normal notion of a continuum, the local density of a 

granular material will impose limitations on the velocity field. For 
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incompressible discs, the largest attainable packing corresponds to 

v 
m 

= .91. This will occur only when the particles are arranged 

so that the local space is filled by equilateral triangles connecting 

the particle centers, as shown in Figure 3.13a. Such a configuration 

however, may not be deformed without decreasing its density. This 

makes it impossible for the material to assume such a density and 

maintain a local velocity gradient. Any region that attains this den-

sity must necessarily move as a solid plug. 

The largest locally constant density which allows a shearing 

'1T 
motion would be Vs= 4 ~ .78, and this corresponds to the particle 

centers arranged in a square (or a parallelogram) packing as shown in 

Figure 3.13c. This allows particle layers to move freely over one 

another. 

It is possible to set up a shearing motion in the particles at 

even higher density. The flow would look something like that in 

Figure J.13b. Here the particles' paths exactly follow the contour 

of the particles in the layer below. The local packing is constantly 

varying between the square and triangular configurations. The time 

average of the density would be about v = n/(/3 + 2n/3) ~ .822. This 
m 

could only occur if the shear rate were very small, since only par-

ticles with zero inertia (zero mass or zero velocity) could respond 

instantly to follow the particle.contours. 

These limits place an upper bound on the density at which a bulk 

of two-dimensional incompressible particles may be sheared. (Note 

that the limits will be different for 3-dimensional particles.) One 

may wish to think of this transition as the condensation of the 
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granular material from a "liquid" (which may be sheared) to a "solid." 

In any case, these should be considered as very idealized limits 

because it is possible for the material to pack itself into unshearable 

configurations that correspond to smaller values of v than these. (An 

example of an unshearable configuration with a lower V is the square 

packing shown in Figure 3.13c rotated through 45°.) 

This may be clearly seen in the converged state of our 20° 

simulation, where the density does exceed this limit for a region in 

the center of the flow (see Figure 3.14). The velocity 

gradient drops to zero in this region, and in fact is zero tor all 

densities greater than v = rr/4. This region moves like a plug. In 

the snapshot, taken from this flow in Figure 2.2a, one will see 

instances where the local packing has assumed the high density tri

angular structures. 

It was argued earlier that granular temperature resulted from a 

velocity gradient. Note that the temperature is nonzero in the r~g:inn 

where the velocity gradient vanishes. Note also that there is a 

noticeable gradient of temperature into this region. This suggests 

that temperature is not simply a product of the local velocity field 

but may also be conducted. From the equation of state shown in 

Figure 3.5, it can be seen that if the temperature becomes high enough, 

it would reduce the density to the point where this zone may be sheared. 

It is possible that exploring concepts like these may lead to an 

understanding of the formation of the stagnant zones that characterize 

funnel flows in hoppers, and occasionally form on chute bottoms. 



-71-

3.2 Couette Flow Velocity and Density Profiles 

The Couette flow profiles in general are much less interesting 

than those from the chute flow simulations. Simulations were run with 

two wall boundary conditions. The first was the same as that used in 

the chute flow program, which assumes that there would be zero relative 

tangential slip between the particle surface and wall upon departure. 

The second assumed that the particle's center would adopt the velocity 

of the wall after collision, modeling a "no-slip" condition. The 

latter case was studied for comparison to Savage and Sayed's [68,70, 

72] studies of the rheological properties of a granular material sheared 

in a Couette flow device with roughened walls. 

Velocity and density profiles for the first or standard wall 

conditions and for three different normal forces are shown in Figure 

3.15. (The normal force is the quantity against which the total 

normal force applied to the walls is periodically compared. The move-

ment of the walls is based on the result of this comparison.) In all 

cases the wall velocity is the same and the spacing between the plates 

is varied. For all profiles there is slip at either wall amounting 

to about 20% of the upper wall's velocity. Thus the shear rate across 

the particle bed is at most 60% of the ratio of wall velocity to 

wall spacing. At the lower densities (lower normal forces) most of 

the shearing occurs in a small regluu uexl Lu ead1 wall. In Lht!oe 

cases the bulk of the material moves down the center~as 

a plug. It is not quite clear why these high shear zones come about 

(especially in the light of the simulation with a "no-slip" wall con

dition), but it is probably peculiar to this wall condition. The 
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moving wall has only a tangential component of velocity relative to 

the.particle at all times. A large component of the energy added to 

the particle in a collision with the wall is added as rotational energy. 

In Figure 3 .16 are shown profiles for-the second or "no-slip" 

boundary condition at three different normal forces. In all cases, 

the wall spacing is changed to keep the shear rate a constant. The 

velocity profiles all vary linearly from zero at the bottom wall to 

the upper wall's velocity. Furthermore, the density is practically 

uniform across the flow. 

In the absence of a gravitational field, the pressure will be 

constant across the depth of a Couette flow. From the equation of 

state proposed in Section 3.1.1, a uniform density and pressure indi-

cates that the temperature should also be uniform. As expected. the 

variation of temperature shown in Figure 3.16 is small across the 

depth, compared to the chute flow profile shown in Figure 3.1. 

The absolute magnitude of the temperature in Figure 3.16 

decreases with density. It may be speculated that the large collision 

rate at high densities results in a greater dissipation of tht! t!Ut!rgy 

contained in the random motions. 

Figure 3.17 illustrates the effect of shear rate (represented 

dimensionlessly in the simulation's scaling by R/H) on the flow 

properties. It was argued in section 2.6 that the natural time scaling 

of a Couette flow was the inverse shear rate, H/UT. To test this 

hypothesis the applied normal stress was varied accordingly as 

a= (0.567)(R/H) 2 . It can be seen in Figure 3.17 that under these 
n 

conditions the density and scaled temperature are independent of the 
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shear rate~ indicating that the proposed scaling is correct. 

Figure 3.17 indicates that the temperature is directly propor-

tional to the square of the velocity gradient. The proportionality may not be 

valid for flows that do not have uniform temperature fields that may 

experience the effects of conduction. Such an occurrence has already 

been noted for the 20° chute simulation in Section 3.1.7. 

Figures 3.18 and 3.19 illustrate the partition of the total tem-

perature into its three components for four densities. 

At low densities the energy contained in the fluctuating veloc

ity component in the direction of 
<u' 2> 

flow ( 2 ). is a few times greater 
u 2 

T <v' > 
component ( u2 ) or in the rota-

T 
than that contained in the normal 

tional component The latter two components are of 

roughly the same order of magnitude. As the density is increased, 

the three components become roughly equal, until at the highest den-

sity the rotational component has a large magnitude relative to the 

linear component, even though the absolute magnitude is smaller here 

than in the lower density plots. (Each plot has a different tempera-

ture scale,) 

There is no clear explanation for the non-equipartition of 

energy in the fluctuating velocities. 

The large relative magnitude of the < u' 
2 > /Ui component at low 

may be due to convection of the mean velocity within the velocity gradient. 

At low densities, a particle will travel a relatively long distance 

between collisions, and carry with it the mean velocity corresponding 

to its former position. In a time average, this mean velocity dif-

ference will appear as a fluctuating velocity. At high densities, 



-74-

this mechanism would be nullified as the particles can move only 

slightly between collisions. This would explain why the two linear 

fluctuating velocity components are of the same order of magnitude 

in Figure 3.19b. 

The linear fluctuating components will be dissipated by both the 

coefficient of restitution and the interaction between the rough par-

ticle surfaces. The rotational component will only be dissipated 

by the latter. The large relative magnitude of the rotational com-

ponents at high densities (high collision rates) may be accounted for 

by this less efficient dissipation mechanism. 

3.3 The Bagnold/Savage Constitutive Lau 

It was mentioned in the introduction that Bagnold [3] presented 

the first constitutive law for a granular material that took into 

account its particulate nature. Translated from Bagnold's notation 

into the notation used in this paper, the proposed constitutive law 

would have the form (for simple shearing flows) 

where f
1
j(u) is some unspecified dimensionless tensor valued function 

of the density, and du/dy ii:; the ]oC'!::il velocity gradient. 

Clearly there are limits on the situations to which this law is 

applicable. For example, it can give no insight into the stresses 

inside a region of plug flow where du/dy = O. A case where that 

occurred and yet the stress was nonzero, was found in the 20° simula-

tion discussed earlier in section 3.1.7. This suggests that the 
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Bagnold/Savage law is applicable only to situations with moderate or 

high shear rates. 

The physical reasoning that Bagnold used to support this consti-

tutive law was as follows: Consider the collisions between two 

planes of particles moving in a velocity gradient as shown in Figure 

3.20. Ignore for now any perturbations to the structure or veloci-

ties. Let the spacing between the layers be s 1 and the spacing 

between particles in each layer be s
2 • Then the momentum transferred 

in each collision in the normal direction is proportional to mou, 

where m is the particle mass and ou the velocity at collision. 

T n. m~u = m(du) 81 ij v u dy 

The frequency of collision is proportional to the velocity difference 

divided by the particle spacing, ou/s2 and further multiplied by the 

square of the number of particles per unit area of each plane 

2 
(l/s 2) • Hence the frequency of collision is proportional to 

OU 
3 

82 

Hence the stress tensor may be written as 

(du)2 
dy 

Now s 1 /R and s 2/R may be assumed to be functions of the density. 

4 3 
Expressing the particle mass as m = p -TIR and absorbing all con

p 3 

stants into f, this may be written as 
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= f ( ) R2(du)2 
pp ij v dy 

Some insight may be derived by comparing this derivation to that 

for the viscosity of a gas as derived from simple kinetic theory argu-

ments. It is generally assumed that the random velocities due to the 

gas temperature will be of much greater magnitude than the mean 

velocity differences over a mean free path. Thus, the rate of 

momentum transport is governed by the magnitude of the random velocity 

which is proportional to the square root of temperature. In Bagnold's 

model of granular material the rate of momentum transport is determined 

by the collision rate, which in turn is proportional to the velocity 

gradient. Hence the second factor of du/dy, which introduces the 

nonlinearity into this constitutive law, essentially replaces the fr 

found in the viscosity coefficient of a Newtonian fluid. This reasoning 

is supported by Figure 3.17 which shows that the granular temperature 

is proportional to the square of the velocity gradient. (In this 

case the temperature is constant everywhere in the velocity field, 

eliminating conduction effects.) One may view a granular material as 

a self-excited Newtonian fluid, where the transport rate is determined 

by the velocity profile and not by the externally imposed temperature. 

3.3.1 The Function f (v) 

The functional dependence on density, f(v), in the Bagnold/ 

Savage constitutive relation is unknown. One might guess, especially 

from the above remarks, that it may be related to the radial distribu-

tion function that fills a similar role in the statistical mechanics 
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of dense gases and liquids. This analogy was used by Savage and 

Jerrrt!y [ 111. 

Asymptotic limits for f may be estimated. 

For small v, collisions would be rare. Thus the stresses will 

be zero no matter what the velncity field. HP.nee a!'l \J + 0, f(\J) -+ 0. 

It has been noted previously that the maximum density that can 

allow a velocity gradient in a granular material composed of incom-

pressible particles is: v = TI/(/3 + 2n/3). For any greater density 

it would require an infinite stress to impose a velocity gradient. 

Thus one can assume t:hat: f(v) -+ 00 as v -+ TI I (/3 + Zrr/3). 

To determine f(v) from the computer simulation, the stresses 

must first be determined. Using the basic form of the momenttnn equa-

pu, + 'iJ•T == pg 
t - -

where T is the stress tensor and g is the gravity vector. The only 

nonzero components of V·T will be~ T 
- oy xy 

. d 
and -;::;-- T as the periodic 

oy YY 

boundary condition assures that ~x = 0. 

The density dependence for the shear and normal components of 

stress will be examined. The functions will be denoted f (v) and 
s 

fN(v), respectively. The stresses are defined by 

H 

T = T ppv J (g sin 8 - pu, t) dy + T 
8 

(H) s xy 
y 

and 
H 

"t .. "t p \} I (g ~ut1 0 - v, ) dy + 'l (R) N yy p t N 
y 

where u,t and v,t are determined by measuring the difference in total 
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momentum in a strip at the beginning and end of the averaging period. 

(This is generally only a small correction.) The integration is per

formed numerically between the strips using the trapezoidal rule. 

Velocity gradients were taken to be the derivatives of cubic spline 

fits to the velocity profile. 

Plots of f(v) versus v are given in Figures 3.21 and 3.22. The 

points were obtained from the chute flow simulations at three differ

ent inclination angles and from several Couette flow simulations. 

There is a lot of scatter in the data, but it is clear that the func

tions agree with the asymptotic limits proposed above. 

In Figures 3.22 and 3.23 is shown the comparison of our data 

with the Couette flow experiments of Bagnold [3] and Savage and Sayed 

[70]. (The data for both cases were taken from Savage and Jeffrey 

[71].) Here again, the densities from the simulation have been con

verted to their three-dimensional equivalents (as proposed in Section 

3.1). 

The agreement between the data is fair. The simulation 

generally predicts values of 

experimentally. 

f(v) larger than those measured 

The main value of this comparison is to show that the predicted 

values of the proper magnitude. There are just too many 

apparent difficulties involved in making a direct comparison. First, 

as noted previously in Section 3.1, the conversion from v to 

predicts values that are probably too small. Proper coefficients of 

restitution for Savage and Bagnold's particles are unknown. Bagnold's 

material was suspended in a fluid carrier which will exert an 
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indeterminate influence on the particle interactions. However, 

Savage and Bagnold could not have known whether (1) there was slip at 

the walls of their devices, or (2) their material was shearing com-

pletely. This latter objection was raised by Savage and Jeffrey [71] 

with regard to Bagnold's data. Indeed it is unlikely that Bagnold 

could get material to shear at a density greater than v
3
_D=rr/6 ~ .52, 

which corresponds to the maximmn cubical packing. Instead, the 

material either slipped at the walls or sheared over only a small por-

tion of its depth. In either case the measured values of f(v) would 

appear to be smaller than the actual values. 

The Bagnold/Savage constitutive law seems to be on a firm foot-

ing. Although there is a great deal of scatter in our data, it 

seemstobehave in a consistent and coherent manner that is in accord 

with the expected behavior. But this is the extent to which it can 

be evaluated by the simulation« 

The Bagnold/Savage constitutive law for normal stress 

m~y be considered as an alternative form of the equation of state 

p 
2 2 

p X(v)(<u' > + <v' >) 
p 

that was proposed in Section 3.1.1. They are analogous as long as 

P ~ TN' The comparison is especially appealing because the tempera-

ture is in some way a product of the velocity gradient and in the 

absence of conduction it has been shown (see Section 3.2) that 
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2 2 du 2 
(<u' > + <v'> ) ~ (dy) • However, there is a great deal more scatter 

in the data for fN(V) than for X(V). This indicates that the (du/dy)
2 

in the Bagnold/Savage law appears as a surrogate for the temperature. 

Their model may only be applicable to flows such as the Couette flow 

upon which their experiments were performed, that are free from the 

effects of conduction. 

A model based on temperature has the added appeal that it is 

applicable to densities beyond which shearing is possible. It is 

likely that such a model could have universal validity. 

3.4 Statistical Properties of Granular Material Flows 

The results presented so far indicate that £lowing granular 

materials possess many of the same features as the molecular models 

of matter. A great body of work has been developed describing trans-

port phenomena on a molecular level from which macroscopic conserva-

tion laws such as the Navier-Stokes equations have been derived (see 

[14,21]). Great progress would be made if this body of work could be 

adapted to granular materials. 

The fundamental assumption in molecular transport phenomena is 

that the molecules are statistically distributed• independently. 

Procedures have been established to derive the macroscopic conserva-

tion laws, once these probability distributions are known. The deter-

mination of these distributions is easily done by simulation, and 

may not be accomplished by other means. 

Savage and Jeffrey [71] were the first to try and adapt the 

molecular theory of transport phenomena to the flow of granular 
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materials. As a basic statistical theory of granular flows has not 

been developed, they were forced to assume that a granular material 

possessed many of the properties of gases. They assumed that the par

ticles followed a Maxwell-Boltzmann velocity distribution, and used 

the radial distribution function of Carnahan and Starling [13] to 

describe the relative positions of particles. 

Whlle lL lo lnLultlvely appealing to equate granular rnaleriah; 

considered on particle scales with fluids considered on molecular 

scales, there are still many seemingly irreconcilable differences 

between them. Generally the !'ltatistical analyseA of gaAes occur at or 

near equilibri1.ll"!l conditions, or conditions where the energy of the 

system is locally constant. This requires that the velocity gradient 

be small, so that no energy is added to the system by viscous dissipa

tion, and that the particle interactions be elastic so that no energy 

is lost in the collisions. Granular materials are quite the opposite. 

The collisions are inelastic so that there must be a large velocity 

gradient to supply the energy lost in the collisions. 

If there is to be equilibrium in a granular material flow, then 

there must be a constant influx of energy in through the velocity 

gradient and out into thermal energy, via the inelastic collisions. 

The Couette flow simulation with the no-slip wall condition comes very 

close to an equilibrium state, and will be used as a sample from which 

most of the statistical information about granular flows is obtained. 

3.4.1 Distribution of Particle Velocities 

The velocities of molecules in a gas at equilibrium will be ar

ranged in a Maxwellian probability distribution, i.e., the probability 
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that a given molecule will have a velocity in the range du about u is: 

2 4(u- <u>) 
exp[-(u - <u>) 2 I l <u' 

2>] 
r-(2 ,2)3/2 - - 3 vrr 3 <u > 

where <~> is the average velocity and <u' 2> is therms value of the 

fluctuating velocity u' = I~ - <~->I. This was the velocity distribution 

used by Savage and Jeffrey r71]. 

Because the computer model is based on the exact particle mech-

anics instead of on a Monte Carlo approach (in which one would have to 

make judgments based on probability distributions that were determined 

a priori), the simulation may be used to measure the distribution of 

particle velocities. 

At each collision, during the averaging period, the state of the 

system is recorded on a magnetic tape. The tape is rewound after the 

average values of the velocities and fluctuating velocities have been 

determined. Then, the instantaneous state of the system is read from 

the tape at each collision and the quantity: 

is computed. 

x 
Qi - <U> • 
- - J 

2 <u' >. 
.... J 

Here e. is the instantaneous velocity of particle i, 
-1 

and <u>. and <u'
2
>j are the average velocity and mean square fluctuat":"' J 

ing v~locities, respectively, in the strip j in which particle i 

resides. The number of particles with values of X between O.l(I-1) 

and O.ll are counted in the 1th slot of a fitty-element array 

(covering a range of X between 0 and 5). The total in each slot is 
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normalized by dividing by the total number of particles counted. The 

number one would then find in the rth slot is the probability that a 

particle will have a value of X between O.l(I-1) and 0.11. In terms 

of a probability distribution P(X) this quantity would correspond to 

P(X) dX for X = 0.1(1- 0.5) and dX = 0.1. Hence it is further neces-

sary to divide the value in each slot by dX = 0.1 to obtain the prob-

ability distribution. 

Distributions were me:isurPn fnr a11 threp velocity components, 

u, v, and w, as well as all the combinations of all components and 

the combination of just the linear components u,v. The source of most 

of the distributions will be the Couette flow program with the no-slip 

wall condition. 

The five sampled variables for the individual velocity components 

are: 

lu - <u>I 

Iv - <v>I 

l(JJ - <W>I 

For the combinations of the linear velocity components: 

and for all the velocity components: 
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_ (u-<u>) + (v-<v>) + 

( 

2 2 

XS - 2 2 2 
<u' > + <V' > + S<w 1 > 

2) 1/2 8(W - <W>) 

Tht: samplt!d varlablt!S each represeut the ratio of the in:stantane-

ous energy contained in the fluctuating velocity, to its mean value. 

Thus, the rotational component must be scaled by S in x
5 

to convert it 

intn an equivalent kinetic energy. 

The distributions are shown in Figures 3.25 through 3.29. Four 

distributions of each type are shown compared to a Maxwell-Boltzmann 

distribution. 

All of the distributions have the basic shape of a Maxwellian. For 

a single velocity component a Maxwellian has the form: 

e 

for two velocity components, 

2 -a.X. 
l.. l.. 

and for all three velocity components, 

fi 2 

4 arr5 x52 e-a5X5 
PS (XS) 

i= 1,2,3 

To be consistent, the average value of each square fluctuating velocity 

2 2 
<q' > should be the average value of (q - <q>) . X has the form 

Jq - <q>I 
x 

Therefore, 
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\q-<q>] = )<q'2> x 

For consistency it is required that 

00 

2 2 
f x2 

P(X) dX <q' > = <q' > 

0 

or 

1 = f x
2 

P (X) dX 

0 

This requires 

1 
al az = a3 = 2 

a4 = 1 

3 
a5 2 

These values would yield the standard Maxwellian velocity distributions. 

Most of the distributions shown require a somewhat different value of 

ai. The distributions for the individual, total and combined compon

ents of linear velocity come very close to being Maxwellian, but the 

distribution of rotational velocities exhibits a strong deviation from 

Maxwellian. 

The deviations can almost be accounted for by changing the value 

of a. from the Maxwellian values a ., given above. Then the consistency 
1 mi 

conditions may no longer be satisfied. The corrected values for ai 

could be determined by making curve fits to the measured distributions. 

It appears that the magnitude of the deviation, a.la i' depends strongly 
l. m 

on the characteristic quantity S, introduced in Savage and Jeffrey [71]: 
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2R Cl.u 
dy 

and is more or less independent of the coefficients of restitution and 

all other flow properties. For small values of S the translational 

velocity distributions are essentially Maxwellian, but they deviate 

noticeably for larger values of S. Except for the rotational distribu-

tions, all the a 's increase with S. (The sole exception to this rule 
i 

is t:he u velocit:y dist:ribucion for v = • 75, S = 1. 87 whlch !:>how::; a 

large narrow peak just below x
1

=1, but otherwise exhibits this general

ized Maxwellian behavior). 

S may be looked upon as a scale of the system's deviation 

from equilibrium. -For small values of s,;;;;:r; >> 2R ddu' and the 
........ x 

material will behave like a gas. In particular, the magnitude of the 

impact velocity between particles will depend mostly on u 1 and will 

not be enhanced by the gradient of mean velocities. For S >> 1 

exactly the opposite is 'true. Hence S is indicative of the relative 

importance of the velocity gradient on the motion of particles at the 

microscale. To determine the exact nature of the dependence of a./a . 
1 mi 

on S would require extensive analysis which would probably involve 

deriving and solving an equation similar to the Boltzmann equation. 

For less ideal circumstances than Couette flow with a no-slip 

wall condition, the distributions will not be as well behaved. For com-

parison, several velocity distributions generated by the chute flow sim-

ulation are shown in Figure 3.30. Chute flows exhibit large variations 

in S, density, and temperature within the control volume. Nevertheless, 

the velocity distributions could be represented by a generalized 
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Maxwellian form. 

In summary, it appears that Savage and Jeffrey's [71] assumption 

of a Maxwellian velocity distribution is a reasonable approximation. 

3.4.2 Distribution of Collision Angle 

There is an angle e that is characteristic of each collision 

between two particles. The angle 8 shall be defined as shown in 

Figure 3.3la. The range of 8 is then 0.:5,.8.:5,.180°. The datum, 8 0, 

is arbitrary and for convenience is chosen to be in the dir~~Liuu 

of flow. 

The angle e will affect the angle of the impulse applied by the 

collision. These impulses, when averaged over a plane with time, will 

determine the continuum stress tensor. Thus one would expect that e 

will affect the relative magnitude of the components of the stress 

tensor. In particular, 8 will have some relationship to the friction 

angle. Bagnold [3], in the derivation of his constitutive law, 

assumed that all collisions would occur at the same angle, and found 

that that angle equalled the friction angle of his material. It is 

thus important to know whether there is anisotropy in the collision 

distribution which would result in preferred values for e . 

The distribution of collisions must be isotropic in a low den

sity uniform gas. However, if there is a velocity gradient imposed 

on the gas, anisotropy will develop. 

The collision angle distribution may be measured in much the same 

way as we determined the velocity distribution. The region 

0 .S. 8 .:5,. 180° is divided into 50 regions. The number of collisions that 

occur in each region are counted and the result is stored in the 
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appropriate element of an array. The totals in each region are nor

malized by dividing by the total nmnber of collisions and by the 

region width. 

The collision distributions for various values of the density, 

~ith the shear rate held fixed, are shown in Figure 3.32. At low 

densities (\J = • 35) they form a smooth curve indicating a preference for 

values of 8 in the range 90°~8~180°. With increasing density a 

peak develops about e = 90°. The peak grows until, at highest densi

ties (V :::: • 75), the distribution becomes just two peaks, around 6 = 90° 

and e = 0° (180°). 

In Figure 3.33 is shown a typical collision distribution from the 

chute flow simulation. A great variation in density occurs in a chute 

flow and the distribution is a mix of the distributions for many den

sities. 

Collisions occur when particle surfaces touch. This is only 

possible if there is a component of their relative velocity drawing 

the particles together. If there is a mean velocity gradient in the 

flow, the relative velocity of two particles will be augmented by the 

mean velocity differences due to the position of their centers in the 

velocity field. Consider a test particle at some position in the 

velocity field, as shown in Figure 3.31b. Locally, the mean relative 

velocity will create a preference for collisions in the second and 

fourth quadrants of the disc. This corresponds to the preferred values 

of the collision angle falling in the range 90° ~ 8 ~ 180°. 

The pair distribution function of Savage and Jeffrey [71] was 

based on this idea. They assumed that the particles obeyed a 
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Maxwellian distribution of velocity about the local value of mean 

velocity. Then, by integrating over all possible velocities, they 

found the probability distribution for a collision to occur at 8 to 

be (after converting their result to two dimensions and renormalizing) 

where 

P(8) = _! erfc[2-l/ 2 S cos 8 sin 8] 
TI 

s 
2R du 

dy 

2 <v' > 

and erfc is the complementary error function: 

erfc(n) 

00 , 2 

J 
e
-n 

dn' 

n 

This should predict the collision distribution at low densities 

before the peak at e = 90° develops. It is difficult to generate low 

density flows with different values of S. It was possible to obtain two, 

for S ~ .90 and S ~ ,45;by changing the coefficient of restitution. 

These are shown in Figure 3.34. 

Savage and Jeffrey predict the same form of the collision dis-

tribution, but the predicted magnitude of the deviation from isotropy 

is too low. The anisotropy is a function of the magnitude of S. The 

deviation of ~he velocity distribution from Maxwellian would partially, 

but not entirely, account for the discrepancy. By changing the length 

scale in S from R to C (where C is the mean particle spacing: 

C = R(TI/v)
112), good agreement with the measured curves is obtained. 

This may be interpreted physically as im.licating that a particle carrico 
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its distribution with it from the point of its last collision. (The 

last collision for each particle .would have occurred at a distance of 

about C. Thus the total separation of the particles at their last 

collisions would be about 2C.) A similar idea was suggested in Section 

3.2 to explain the large relative magnitude of the fluctuating com

ponent in the flow direction at low densities. However, this would 

cloud somewhat the interpretation of the velocity distribution. 

In any case~ Savage and Jeffrey's distribution is only appli

cable to densities that are too low to be commonly found in granular 

material flows. 

At higher densities a peak develops in the collision angle dis

tribution about e = 90°. When the particle packing becomes dense 

enough, structures or preferred particle positions develop in the 

flow. As the density becomes large, the distances that a particle may 

move before colliding become extremely short. The only structure,that 

allows shearing motion at high densities, involves layers oriented perpend

dicular to the direction of the velocity gradient (or along stream lines). All 

the particles in a given layer have roughly the same velocity, but the mean 

velocity of neighboring layers varies according to the velocity field. 

The layers may only be seen in snapshots for very high densities, as 

in Figure 2.3c. The development of the layers will be examined in 

greater detail in the next section. 

The effect of the layering on the collision distribution will be 

to exclude certain collision angles. Consider the test particle 

shown in Figure 3.3lc. The particles in the same layer will block 

collisions with the test particle by particles from neighboring layers 
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except in a small-region about e = 90°. At the same time, the par-

ticles within each layer are free to collide with each other in a 

small region about 8 = 0 (or 180°). This is the source of the 

two peaks in the collision distribution at high density. 

Savage et al. [67,70,7Z) found that the friction angle, or the 

ratio of shear to nonnal forces T
8

/TN in their Couette shear cell, 

decreased with density. It is likely that this is due to the forma-

tion of the e - 90° peak in the collioion distribution. This is 

indicated by Bagnold's [3] analysis which yields a zero friction angle 

for 8 = TI /2. 

3.4.3 Structure in a Granular Shear Flow 

Structure, in a statistical sense, may be described by a proba-

bility distribution p(rjr ) which is the probability of finding a 
- -0 

particle at !. given that there is a particle at r • 
-- -o 

Structure arises because of the influence of a particle on the 

positions of others. At the simplest level, it is impossible to have 

two equal sized particles less than a particle diameter apart. Even 

more complicated structural properties will appear if the particles 

exert long range, such as gravitational and electromagnetic forces on 

one another. Clearly a gas of point particles, which have zero size 

and no long range force, will have no structure, and p(r)r ) = n 
- -o 

const., where n is just the number of particles per unit volume. 

Except for extremely ordered systems like crystals, one would 

expect a particle's influence to be limited in range. Hence it can 

be assumed that 
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lim p(rlr ) n(r) 
II r-r II +ao - -o 

- -o 

where n(r) is the local value at n about r. 
"' 

In a gas at equilibrium, isotropy implies that the probability 

distribution p(rlr ) must be spherically symmetric about r • The dis-
- -o -0 

tribution could then be denoted p(r) where r 11 r-r JI may be inter-
- -o 

preted as the probability that two molecules will be separated by a 

distance r. 

Apply a velocity gradient to the material and the spherical sym-

metry breaks down. A particle that at time t was at a distance r will 
rd V 

r be at (r + dr dt) at t+dt. This would smear out the distribution, 

because both points on the particle path must have the same probability. 

In a shearing material there may be structure along stream lines. 

Thus, given a particle, there is a probability of finding another at a 

distance along or in the near vicinity of, say within a particle 

diameter of, the same stream line. There may also be structure in the 

direction normal to the stream lines, Given a particle on one stream 

line, there may be pref erred stream lines on which to find other par-

ticles, although there can be no preference as to the positions of the 

particles along those other stream lines, 

This does not imply the existence of layers for other than 

granular flows. It only puts limitations on the information that can 

be obtained from p(rlr ). 
- -o 

Structure is determined in much the same way as the velocity and 

collision distributions. First, a test particle is chosen. To eliminate 

as much as possible any influence of the flow boundaries, any particle 
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whose center lies within a diameter of the midpoint between the walls 

is chosen as a test particle. The interval [0,8R] was broken into 50 

slices, each of which is assigned to an array element. At each 

sampling time the number of particles that fall into each slice is 

counted, and the answer placed in the appropriate element of the array. 

The totals are normalized by dividing by the number of samples taken 

and the size of the sampling region, yielding the probability distri-

butions. The Couette flow simulation with the no-slip wall condition 

is again chosen to provide samples. In all cases, the same material 

properties (£ = 0.8, £ = 0.6) and the same shear rate were used. 
w p 

Two distributions were assessed: The "normal distribution" is 

the probability of finding any particle in the control volrnne with a 

position in the direction normal to the flow direction, which is 

a certain distance from the test particle. The "parallel" dis-

tribution" is the probability of finding a particle, at a given dis-

tance from the test particle, in the direction parallel to the flow, 

whose normal position did not differ by more than a particle diameter 

from that of the test particle. (A particle diameter is a first 

approximation to the thickness of a layer.) 

The nonnal distribution will illustrate the formation of layers 

within the flow, and the parallel distribution will illustrate the 

development of structure within the layer. 

Five examples of each distribution, covering the range 

.35 < v ~ .75, are shown in Figures 3.35 through 3.39. Note that, no 

expected~ all of the distributions for small densities asymptote to 

2 the expected value at n = V/TIR • 
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There is a peak at a spacing of about 2R in all of the correla

tions. This represents the direct influence of the test particle. 

The peak is formed by those particles that approach, collide with, and 

recoil from the test particle. These particles pass through roughly 

the same region twice, and are thus counted twice. The double count

ing forms the peak. 

Note that in many of the parallel distributions a large peak is 

formed close to a spacing of 8R. This is the periodil.: imetgt:! uf Ll1e 

peak at 2R. The periodic boundary condition imposes an order on the 

flow, in the sense that there is a 100% probability that there will be 

another particle at the same position exactly one control volume width 

on either side of the test particle. 

As the density increases, more peaks develop. These are caused 

by the particles that collide with those that formed the first peak. 

The peaks grow with density until they are roughly equal in size, in

dicating the existence of well formed layers. 

Layers oriented parallel to the boundaries are probably pecu-

liar to unidirectional flows. The layers are required by kinematically 

reasoning that, to maintain a shear flow at high densities, thP p~r-

ticles must align themselves in the direction parallel to the flow 

direction. This idea may be generalized to more complicated flows, 

and it may be supposed that similar structures will form along stream 

lines. 

In passing, it should be noted that 
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can be interpreted as a kind of order parameter. 2R(du/dy) is indica

tive of the relative velocity of neighboring layers. and /<u' 2
> is ,,...., 

indicative of the particle velocity normal to the layers./<."}.,' 2> /(du/ dy) 

is then a scale of how far a particle may travel outside its layer 

before a collision with a particle in the neighboring layer forces it 

back. Flows with large S should have sharp well defined layers, and flows 

with ::;1uall S i:;huultl have a mu.r:I::! tllffuse structure. In Figure J.41 it is 

shown that as the density increases, and the structure becomes more 

distinct, S is also increasing. S may then assume different values for 

the same shear rate at different densitico, while S io roughly a con-

stant for a given material at a given density and any shear rate. 

3.5 Conclusions 

A great variety of· data was obtained from the computer simulation. 

Macroscopic phenomena such as velocity and density profiles and scaling 

parameters were derived. On the other hand, the simulation was an 

invaluable tool for examining microscopic behavior, such as velocity 

distributions, collision distributions, and the pair correlation that in-

dicated the presence of considerable structure within the flow. 

There is a strong similarity between the chute flow velocity 

profiles generated by the simulation and those measured experimentally 

by Augenstein and Hogg [l]. Both shear completely across the depth 

and exhibit a region of particularly high shear next to the chute 
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bottom. The simulation profiles slip at the wall with about 40% of 

the maximum velocity. Comparison with Augenstein and Hogg's [1] 

measurements suggest that the degree of slip and the character of the 

velocity profile in the neighborhood of the wall are greatly affected 

by the mechanism of particle wall interaction. 

The Couette flow simulation was run with two different wall con

ditions. The first is the same one as was used for the chute flow: 

on departure, after a collision, the relative velocity between the 

chute and the particle surface is zero. The second, or "no-slip" 

condition dictated that the particle center assume the same linear 

velocity as the wall. Velocity profiles from the simulations employ

ing the second condition were linear. With the first wall condition 

there were zones of high shear next to each wall with almost a plug 

flow between. Again, the wall condition has a strong effect on the 

profile shape. 

The chute density profiles agree with those measured by Ridgway 

and Rupp [60]. Their most intriguing aspect is that the density 

reaches a maxim.um in the center of flow with regions of low density 

near the free surface and near the chute wall. The location of the 

low density region at the wall corresponds almost exactly with the 

high shear zone in the velocity profile. The density profile exhibited 

the same type of behavior in the high shear zone next to the walls of 

the Couette flow simulation with the first wall condition. However, 

the density is constant for the Couette flow with the second wall 

condition, which has a constant velocity gradient. 

These observat:ions led t:o def:1.ning a "tt:!mpt:!rctlure" to govern the 
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density of a granular flow. Drawing an analogy with the molecular 

theory of gases, the temperature is defined as the mean square fluc-

2 
tuating velocity of the particles <U' >· Continuing the analogy with 

a gas, an equation of state was heuristically proposed of the form 

p = p X(v) 
p 

2 
<u' > 

Measurements of X(V) from many flow situations indicate that it is a 

well-defined function. 

Temperature is generated as a byproduct of collisions between 

particles, and will depend to some degree on the gradient in the 

velocity field. There are indications that the temperature may be 

conducted and dissipated. Stagnant regions appear when the density 

becomes too large to allow t.he mat.t:!r:lal tu :,;hear:. It is possible that 

understanding conductivity will lead to prediction of the formation 

and shape of stagnant wedges in chutes and hoppers. Attempts to 

measure the conductivity by applying a balance on the fluctuating 

energy within a strip were unsuccessful. 

The fluctuating energy is not equipartitioned into its three 

< '
2> 1 2 D 1 2 components u , <v >, and µ<W >. How the energy is distributed 

depends on the density. The effect of the non-equipartition on the 

flow is unknown, but it is possible thar ir leads ro normal stress 

difference effects. 

It was shown that the Couette flow simulation has an intrinsic 

time-scale equal to the reciprocal of the velocity gradient. Tn par-

ticular, the temperature is proportional to the square of the 

velocity gradient in the case where a uniform temperature eliminates 
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all conduction effects. 

The Bagnold/Savage constitutive law was examined and was shown 

to have some validity. Values of the density dependence for the shear 

and normal directions f N' were obtained and were found to behave as s, 

expected, although there wa::; a g.n~C:lt deal of scatter in the data. 

Favorable comparison was made with experimentally determined values 

for f(v). Some doubt was thrown on the strict validity of this model, 

hy ~omp~rison with the previously proposed equation of state. It was 

suggested that the scatter in the data was a result of replacing the 

temperature by the square of the velocity gradient, an approximation 

that only appears to be valid in the absence of conduction. 

The simulation allowed a unique opportunity to examine the 

statistical properties of granular flow. The instantaneous particle 

velocities were found to nearly obey a Maxwell-Boltzmann distribution 

about their mean velocities. The deviation from the Maxwellian form 

appeared to depend on Lhe fluw'::; tlt!parLure from equlllbriurn as 

measured by quantity 

s 
2R du 

dy 

Distributions measured by the chute flow simulation showed a large 

deviation from Maxwellian that is probably a result of conduction. 

A strong anisotropy was found in the collision angle distribu-

tion. At low densities the anisotropy was of the form predicted by 

Savage and Jeffrey [71]. At higher densities, peaks began to form in 

the distribution about e = 0° and 90° ' until the distribution 

consisted of just these two peaks. This anisotropy explains the 



-99-

experimental results of Savage et al. [67,70,72]: that the ratio of 

shear to normal forces is a decreasing function of density. 

The formation of the peaks in the collision distribution is a 

result of the development of structure within the flow. The only con

figuration that allows a shearing motion at a high density consists of 

layers of particles oriented in the direction of flow. The develop

ment of these layers and the development of structure within the layer 

has been clearly demonstrated by the measured probabilities of finding 

particles a given distance from a test particle in directions normal 

and parallel to the flow. 

These results indicate that a flowing granular material behaves 

like a self-excited gas. The constituent particles undergo random, 

temperature-like motions, but this temperature is a byproduct of the 

velocity field. This suggests that in a future model of granular 

flow there will be an energy equation describing the production, dis

sipation, and conduction of temperature coupled with the equations of 

motion. 

Adaptation of the molecular theory of transport phenomena appears 

to be a promising approach toward developing a mathematical theory of 

granular flow. Preliminary calculations of this type were performed 

by Savage and Jeffrey [71] to derive a stress tensor. Unfortunately. 

they had to heuristically adopt much of the statistical properties of 

gases for granular flows. In particular, they could not include the 

collision anisotropy that results from the formation of layers in the 

flow. Once the statistical behavior of granular flow has been 
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established, it is a relatively simple matter to derive the complete 

transport equations. 
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(a) 

( b) 

(c) 

Figure 3.13 Limiting values of the solid fraction, (a) maximum packing 

\JM= rr/2/3 = 0.91, (b) maximum shearable packing, 

v ='T1/(/3 + 2TT/3) = .822, (c) maximum square packing m 
v =rr/4=0.78. s 
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EQUIVALENT 3-D SOLID FRACTION, 113 _0 
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Figure 3.21 Shear stress density dependence of the Bagnold/Savage 
constitutive law, fs(v), ew = 0.8, €p = 0.6. 
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'EQUIVALENT 3-D SOLID FRACTION, 213-D 
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Figure 3.22 Normal stress density dependence of the Bagnold/Savage 
constitutive law, fN(v), Ew = 0.8, £p = 0.6. 
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Figure 3.23 Comparison of experimentally determined values of 
f 8 (v), the shear stress dependence of the Bagnold/Savage 
constitutive law, with computed values, Ew = 0.8, 
e:p z::: 0. 6. 
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Figure 3.25 Total velocity distribution functions derived from the Couette 
flow simulation with the no-slip wall condition. Lines repre
sent mean values of data points which are scattered within ±10%. 
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Figure 3.26 Translational velocity distribution functions derived from the 
Couette flow simulation with the no-slip wall condition. Lines 
represent mean values of data points which are scattered within ±10%. 
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flow simulation with the no-slip wall condition. Lines repre
sent me;:in vAlnP-R of data points which are scattered within ±10%. 
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(a) 

( b) 

(c) 

Figure 3.31 (a) definition of the collision angle e. (b) collision 

anisotropy induced by a bulk shear motion. (c) Collision 

anisotropy induced by the formation of "layers" within 
the flow. 
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Chapter 4 

EXPERIMENTAL STUDY OF THE FLOW OF 

GRANULAR MATERIALS IN AN INCLINED CHUTE 

4.1 Introduction 

In the course of the present work a set of experiments was per

formed to determine some of the characteristics of granular flow in an 

inclined chute. A 1..:uu::;ldenibl~ a.muuut uf lufui::matlun has been obtained. 

The results do show a number of rather interesting features which may 

eventually be useful in formulating appropriate constitutive relations 

for such flows. Such conclusions have not yet been reached and the work 

is not considered complete. Nevertheless, it is hoped that it will form 

the basis for future studies and it is for this reason that some of the 

results available so far have been included here. 

Hoppers and chutes are the two conunon gravity-driven devices used 

for transporting granular materials. Hoppers are generally used as 

a buffer to store materials as they arrive, and then deliver them to 

processing equipment on demand. It is essential that the material be 

able to discharge freely and, especially for perishable materials, 

that the material leave the hopper in more or less the same order in 

which it arrived. This requires that no stagnant zones or funnels 

should form inside the hopper, which may trap material until the hopper 

is emptied completely. In some large hoppers this may not happen for 

years. 

Chnte~ are u~ed to move material from one point. often a hopper's 

discharge, to another. An industrial chute will generally resemble a 
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circular pipe or duct, and not the rectangular open channel that will 

be examined later. It was noted by Choda and Willis [15) that when the 

duct fills completely with granular material, the flow will choke, 

causing a transition from what they called "fast flow" to "slow flow," 

and a corresponding drop in mass flow rate. The fast flow regime is 

clearly preferable. The material should not be allowed to fill the 

chute. Thus, despite its enclosing container, a chute flow is gen

erally a free surface flow. 

The performance requirements for a chute are roughly the same as 

for a hopper. It should allow free flow of material with no stagnant 

zones. Except in a few cases (for example, Wolf and von :iiohenleighten [ 85]) , 

these criteria present little difficulty to the chute designer. The 

flow in a chute is almost a unidirectional simple shear flow, much 

simpler than the converging flow inside a hopper. Consequently the 

problems are easy to solve; the solution generally requires a steepen

ing of the chute angle, flaring the chute ends, or some "judicious 

pounding at points where stoppages occur" (Wolf and von Hohenleiten 

[ 85]). 

The chute has not been an object of much pure engineering re

search, but because of its simple flow properties, it has been used as 

a model for analytical studies of granular material flow [26,42,48, 

62,63,68] as well as for experimental research into their basic prop

erties {1,2,22,62,63,68,82,83]. 

Takahasi [83] studied the flow of various granular materials 

down 150 cm long wooden chutes of various widths. The exit velocity 

was estimated by the trajectory of the particles as they left the 
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chute. He found that plotti of exit velocity vs. chute angle 5howed a 

discontinuity in slope at a well-defined point. He thus defined two 

"modes" of granular flow which he likened to the laminar (for low 

chute angles)and the turbulent (for large angles) flow of liquids. 

(Choda and Willis [15] used the same analogy when describing their two 

regimes of granular flow.) The transition point was a function of the 

material and the chute width. In the laminar regime, the flow con

sisted of a thin layer of particles flowing over a bed of stagnant 

material, but the turbulent flow moved over the entire depth. 

Roberts [62,63] developed a simple theory to explain the varia

tions in depth and velocity along chutes and ducts of arbitrary shape. 

He had to assume, however, that the flow maintained a constant and 

unifonn density, and that the friction could be accounted for by an 

equivalent friction coefficient that depended linearly on the flow 

depth. The theory compared well with his experiments on flowing millet 

seed in perspex chutes, but fared less well when Savage [68] tried 

to apply it to the flow.of polystyrene beads in a rough-walled chute. 

Augenstein and Hogg [2] measured the friction coefficient 

between thin layers of sand and both smooth and rough chute beds. 

They measured the exit velocity from chutes of various lengths by the 

same method as Takahasi. An acceleration was interpreted from the 

velocity differences between the different chute lengths and 

attributed to a balance of gravitational and frictional forces. The 

friction coefficients they detennined depended only on the material, 

and were independent of chute angle, velocity, and depth. 

Ridgway and Rupp [60] report a friction coefficient that varies 

with the inclination angle of the chute. Both Fowler and Chodziesner 
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[22] and Suzuki and Tanaka [82] assumed that the shear stresses on 

the wall always adjust to exactly balance the gravity force. This 

allows only uniform, non-accelerating flows, and assumes that the 

friction coefficient equals the tangent of the chute's inclination 

angle. This is not as poor an assmnption as one might think. In the 

present study, flows at all angles appear to approach a state of 

uniform depth flow. This indicates that there is a dynamic component 

to the friction coefficient that may not have been apparent in the 

' 1thlu" flows examined by Augenstein and Hogg [2]. 

4.2 Experimental Apparatus 

The apparatus used in these experiments was modified from a 

chute with variable inclination angle, built as a summer project by 

John Pender, a senior undergraduate. A drawing and photograph of the 

modified chute are shown in Figures 4.1 and 4.2. The basic chute was 

constructed of plexiglass and supported on a frame of steel angle. iron. 

It was 20 cm wide with. 21.5 cm high walls, and a test section 2.9 m 

long. A hopper fed material to the top of the chute and the flow 

rate was controlled by a gate at the top of the test section. The 

material was collected in a second bin below the chute exit. This 

system had two major deficiencies. First, a considerable length of 

time was spent between runs to recycle the material from the collec

tion bin to the upper hopper. Second, the data acquisition at the 

largest flow rates was very limited, sometimes as short as 10 seconds. 

For the present exper lmeuLi:;, i::l l:l1:t:uwl 111uv<::1Lle wc.11 we:u::> clampe<l 

on the chute to narrow the width. This reduced the mass flow rate, 

allowing more time to procure data, and allowed examination of the 
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effect of chute width. 

Three chute widths were studied: 5.0 cm, 8.9 cm, 12.7 cm. With 

the movable wall in place, the length of the test section was reduced 

to 2.4 m in length. The 1nit1al depth of thi= Iluw was controlled by 

a second gate at the beginning of the test section. The upper gate 

was used only to start and stop the flow. 

In the early experiments it was difficult tn nht~in repeatable 

results. This was due to an obvious accumulation of static charge on 

the particles as they rubbed against the plexiglass wall. After a 

run, particles could be seen sticking to the wall, or bouncing around 

as they exchanged charge, and a large charge built up on the 

collection bin. The problem was solved by first grounding all metal 

parts of the chute including the upper and lower bins, and then cover-

ing the bottom with a grounded aluminum sheet. Between runs the lucite 

walls were sprayed with an antistatic solution (MS-166 Enstat, Miller 

Stephenson Chemical Co., Inc.). After these precautions were taken 

it was possible to obtain repeatable results. 

The basic quantities measured were the mass flow rate and the 

depth profile. Velocities were determined from the mass flow by 

assuming that the average density equals the measured critical density 

p . (Then ~ = ; Ip bh). The system always exhibited a starting 
c c 

transient. Data for a given run were collected after a steady state 

was reached. The flow was assumed to be steady when the depth 

profile stabilized. 

The mass flow was determined by inserting a bucket into the flow 

and measuring the time it took to fill. The bucket, usually con-

taining about 22 kgs of material, was then weighed on a scale with an 
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accuracy of ± 0. 1 kg. 

The depth profile along the chute was measured by movable point 

probes located for most of the experiments 0.75, 1.2, 1.65, and 2.1 m 

from the top of the test section. The probes consisted of brass rods, 

milled down to a point on one end, mounted on a vernier scale with 

an accuracy of 0.3 mm (about one particle diameter). Figure 4.3 is 

a photograph of one of the probes. In all of these experiments, 

despite the presence of a low density saltated layer, a distinct free 

surface was observed. For sufficiently small particles, a 

wake is formed in the surf ace by even the slightest insertion of the 

probe. The depth was determined as the point at which the wake dis-

appears. So sem;itive wai:; the surface to the presence of the probe 

that it is felt its position could be determined to within one particle 

diameter. 

To measure the surface velocity, a Bolex Hl6M movie camera with 

a 25 mm lens was mounted above the channel. During each run, colored 

beads were poured onto .the free surface just above the frame area 

and photographed as they passed through the frame. The film was 

analyzed on a film reader to determine the surface velocity. 

For most of the experiment the camera was placed so as to photo

graph the area beginning at and extending about six inches downstream 

of the second point probe from the top. When the chute was inclined 

at 18°, the camera had to be mounted further downstream so as not 

to interfere with a low false ceiling. Most of the films were 

recorded at 69 frames/sec, except at 18° where the flow was slow 

enough to allow exposure at 18 frames/sec. 
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The beads were colored with Kohinoor 3084-F Black Rapidraw Draft

ing film ink. Many methods of coloring beads were tried, but this was 

found to be best as it was a fast drying ink and did not leave a 

cohesive film on the particles. 

4.3 Experimental Materials 

Two sizes of spherical glass beads were used. The beads were 

manufactured under the brand name "Blast-0-Lite" by the Flexolite 

division of General Steel. They were originally intended for sand

blasting purposes, but were found to have a greater uniformity of 

size and shape than most blasting beads. They will be referred to 

herein by Flexolite's designations, as BT4 and BT6, for the larger 

and smaller beads respectively. 

The minimum error in a depth measurement will be on the order 

of a grain diameter. The apparent advantage of using small beads is 

somewhat off set by their greater susceptibility to the effects of 

static charge build-up. 

Preliminary experiments were performed using sand and polysty

rene beads. Both were found to be unacceptable materials. The sand 

tended to pulverize, resulting in an alteration of the material 

properties from experiment to experiment. The polystyrene beads were 

too large to give accurate depth measurements. Both materials were 

of non-uniform shape, would flow only at high inclination angles, and 

tended to form stagnant wedges on the chute bottom (see Section 4.5). 

The properties of the test materials are shown in Table I. All 

properties were measured by the methods described in Pearce [55]. 
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TABLE I 

BT4 BT6 

Mean Particle Diameter (mm) 0.48 0.262 

Stann,<:trn nevi a ti on (mm) 0.101 0.037 

Particle Specific Gravity 2.5 2.5 

Critical Specific Gravity 1.44 1.43 

Critical Solid Fraction 0.58 0.57 

Internal Friction Angle 25.8° 16.0" 

Wall Friction Angle 

Smooth Alumim.nn 13. 2° 15.95° 

Rough Aluminum 18.2° 17.35° 

Plexiglass 15.73° 18.6° 

Angle of Repose 26.5° 24.0° 
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4.4 The Mass Flow Rate from Granular Chute Flows 

Like a hopper, a chute is required to be able to deliver material 

at a given rate. Chutes are extremely efficient devices, and it is 

not difficult to build a chute that will meet any need. A chute will 

generally be fed from a hopper, and the flow rate from the chute

hopper system will, in most cases, be controlled by the hopper. Still, 

it is necessary for the designer to have some guidelines on how much 

material will be transported by a chute as a function of geumeLry and 

inclination angle, and to have some knowledge of the conditions under 

which the chute will limit the flow rate. 

The mass flow from the chute used for the present experiments is 

controllable only by varying the gate opening and the inclination 

angle. Figure 4.4 shows the mass flow per unit width from the chute 

set at an angle of 22° for the three chute widths. In all three cases 

the mass flow follows a common curve until, at some opening pecuiiar 

to the chute geometry, ~he mass flow becomes a constant, independent 

of the gate opening. This point will be referred to hereafter as the 

"independence point." 

The effect of chute inclination on mass flow rate for u single 

chute width is shown in Figure 4.5. Independence points can be ob

served for all angles less than and including 25°. Up until this 

point there is surprisingly little effect of the inclination angle on 

the mass flow rate. 

By comparing the two pieces of information presented above, it 

may be concluded that the location of the independence point, which 

places a limit on the mass flow obtainable from a given chute, is a 
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function of chute geometry and inclination angle. 

The independence point marks a transition in the flow conditions 

downstream from the gate. At that point the flow changes from what 

shall be called "supercritical flow" to "subcritical flow." More sug-

gestive titles might be "upstream dominated" or "downstream dominated" 

flows. The flow type depends on the value of the Froude number: 

. 
Fr = __.!:!__ m 

/gh 

If the Froude number is greater than some critical value, the flow is 

called supercritical and the flow rate is governed by upstream condi-

tions, in this case the upper gate opening. If the Froude number is 

less than the critical value, the flow is called subcritical; the 

Froude number will increase along the chute to reach a critical value 

near the chute exit, and the flow rate will be governed by downstream 

conditions. These flow types will be discussed in detail in Section 

4.5. They have been introduced here because of their effect on the 

mass flow rate. In the next two sections the flow rate in each 

regime will be discussed independently. 

4.4.1 Supercritical Regime 

As long as the flow within the chute remains supercritical, the 

mass flow rate will depend on the flow in the innnediate vicinity of 

the gate. A diagram of that area is shown in Figure 4.6. Two stag-

nant zones are generally visible, one (A) directly behind the gate 

itself, and the other (B) on the chute bottom. The location of (B) 

and the size of both zones will depend on the gate opening and the flow rate. 
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Ignoring (B) for the moment, the flow pattern is reminiscent of 

that near the mouth of a half-hopper divided down the middle by the 

chute bottom, with walls perpendicular to the flow direction. It 

would be expected that the flow rate would be similar to that from a 

hopper with some correction for the chute inclination. 

The mass flow rate may be characterized dimensionlessly in the 

form of a Froude number, 

Fr=~ 
;gr 

where 9. is some length scale. The mass flow rate may then be deter-

mined by the relation: 

As the mass flow rate 

gate, h is asstnned to 

m = p b h Fr/gI 
c 

is expected to depend on 

be the gate opening, hg, 

length scale character~stic of gate conditions. 

It was 

gate geometry 

radius, 

determined that the dependence of 

may be characterized by choosing 

Hy 
A 
p 

the conditions at the 

and 9, will be some 

the Froude number on 

9, to be the hydraulic 

where A is the area, and P the perimeter of the gate opening. For the 

rectangular openings 

h b 
Hy = __,_g_-.,,-

2 (h g + b) 

The Froude number so defined at the gate, Frg, was found to fit the 

correlation 
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u =--= 2K sin a 

~here K is some constant characteristic of the material and has a 

value close to unity. This correlation is illustrated in Figures 

4.7 and 4.8. Those results indicate K8T6 ~ 1.0, K8T4 ~ 0.9. The 

large scatter in the data may be attributed to the position of stag-

nant zone B shown in Figure 4.6, which approaches the gate at large 

openings (and may even extend through), effectively reducing the gate 

opening. 

One would expect that this correlation bears some relationship 

to the flow in hoppers. Both Pearce [55] and Nguyen [47] have measured 

the flow rate from two-dimensional hoppers with various wall angles. 

They found that the Froude number, Fr d, from a hopper with a 90° wall angle 

was 

u =-- l 

where d is the width of the hopper opening. The flow near the gate is 

reminiscent of that in a half-hopper, so it is logical to assume that 

d ~ 2hg 

A two-dimensional hopper has effectively an infinite breadth. The 

appropriate value of the hydraulic radius is 

lim Hy 
b + 00 

h b h d 
lim g = __& = -

b + 00 2 (hg + b) 2 4 

From the predicted correlation, 
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u 1 
= -- = -,.....-_ -_:-_ -- = 2 Frg 

/gd v'g 4 Hy 

2K sina. 
2 a.=90° 

This agrees with the measured results of Pearce [55) s.nd Nguyen [47], and con-

firms that the flow through the gate does indeed determine the flow rate in a 

manner similar to that of a 90° hopper. 

4.4.2 Subcritical Regime 

In the subcritical regime the mass flow rate becomes effectively 

constant. Increasing the gate opening no longer changes the flow 

rate. The mass flow is determined by conditions downstream of the 

gate. The effects of the chute bottom, side walls, and exit, control 

the flow. The flow rate may only be altered by changing the chute 

geometry. The maximum flow rate obtainable from a chute of fixed 

geometry is effectively the flow rate at the independence point. 

The maximum mass flow rates obtained in these experiments are 

plotted in Figures 4.9, and 4.10 as a function of chute geometry and 

inclination angle. 

The ratio of chute length to brt:!atlLh (L/u) l:::; chosen as an 

appropriate dimensionless quantity characterizing the chute geometry. 

Only the chute width was varied in these experiments, but the effect 

of chute length has been noted elsewhere: Subcritical flows appear 

at only extremely shallow angles in the short (0.9mlong, L/b=l2) 

chute used by Spelt [75,76]. Choda and Willis [15] noted that their 

fast flow/slow flow transition (which by their description appears to 

be similar to that observed in the present results) could be induced 

by attaching a length of straight chute to the end of their duct. 
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In these experiments, L/b was varied from 19 to 48. Takahasi 

[83] used chutes with values as high as L/b = 500. 

It should be noted that L/b is used here only for convenience. 

It is not suggested that the maximum mass flow rate is a single-valued 

function of L/b. Comparing Figures 4.9 and 4.10, the maximum mass flow 

rate can be seen to be a function of the flowing material, and is 

probably also a function of the chute material and surf ace character

istics. More important, it is shown by Roberts [62,63] that the fric

tion coefficient on the side walls is much smaller than that on the 

chute bottom. One might then expect that a long wide chute W"ould h:;ivP 

a smaller maximum mass flow than a short narrow chute with the same 

L/b. This has yet to be confirmed experimentally. 

4.5 Supercritical and Subcritical Flows 

Supercritical and subcritical conditions represPnt cnnjug2te 

states of open channel flows of liquids. A given flow rate may have 

either a supercritical or subcritical Froude number, and may transition 

between the two. Such behavior in granular flow is evidenced in Figure 

4.4, where for a small range of gate openings the flow rate can 

assume either a supercritical (gate dependent) or a subcritical (down

stream dependent) value. 

Fluid systems change from supercritical to subcritical flow via a 

hydraulic jump, and from subcritical to supercritical flow via an 

expansion wave. Both phenomena were observed for granular material 

flows during the present study. The profile of a granular hydraulic 

jump is much smoother and better defined than its fluid counterpart. 
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Hydraulic jumps in granular chute flows have been studied and analyzed 

by Brennen, Sieck, and Paslaski [11], Savage [68], and Morrison and 

Richmond [42]. 

The critical Froude number, Frc, relative to which a flow is 

classified as supercritical or subcritical, defines the propagation 

speed of small disturbances through the material. Consider an in-

finitesimal depth change dh of zero extent (dx = O). Then the general 

equation for open channel flow derived in Appendix A becomes: 

2 (r cos a - y Fr ) dh = o 

This defines the critical Froude number: 

which has a corresponding critical velocity 

which is the propagation speed of small disturbances. This must then 

be the i:speeu uL whld1 au expam;luu wave wlll move into flow of depth h. 

4.5.1 Subcritical Flow Control 

At the exit, the chute bottom disappears with a corresponding 

dropoff in the surface of the flow. An expansion wave, propagating 

with the critical velocity, would try to communicate this information 

upstream. However, it cannot propagate into a flow moving with a veloc-

ity greater than or equal to the critical velocity. If the flow in a 

chute is to be subcritical at a point, then somewhere downstream, 
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before the chute exit, the flow must become critical. Generally this 

will occur slightly upstream of the chute exit. 

In supercritical flows, critical conditions also occur at the 

gate. Otherwise, an expansion wave would travel up through the open-

ing so that material will no longer be held behind it. Varying the 

gate opening while maintaining critical conditions at the gate controls 

the ma.oo flow. From the correlation reporL:;eu iu Sel.:Lluu 4.4.1, the 

critical Froude number at the gate is found to be: 

Frc = u 

lgh g 
Fr J2(h: + b) = 2K sin a.J 2 (hb +b) 

g 

It is expected that the downstream control of the mass flow rate 

for subcritical flows is also evidenced by critical conditions near the 

chute exit. Special experiments were performed to test this hypothesis. 

For these experiments, a point probe was placed 2cm from the chute. 

Knowing the mass flow and the depth at the exit, the Froude number is 

determined. Three more· point probes were placed at 25cm intervals 

upstream of the exit so that the approach of quantities toward their 

exit values could be determined. 

Figure 4.4 is a plot of the exit Froude numbers as a function of 

inclination angle and L/b. All of the flows represented were sub-

critical. These data were obtained from a wide range of gate openings. 

The relatively small scatter indicates that the flow is assuming a 

critical Froude number at the exit. 
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Controlling the Froude number at the exit is not sufficient to 

explain why the mass flow rate becomes independent of the gate open-

ing. It only predicts a relationship between the mass flow and the 

exit depth or velocity: 

( p ) ;:;3 
Fr2 e 

g e 

Either he or ue must be fixed, as well as Fre. 

Plots of exit depths and velocities for various angles and chute 

geometries (again from subcritical flows) are shown in Figures 4.1? 

and 4.13. As expected, there is very little scatter in the individual 

points, even though the gate openings change by a factor of 3. These 

plots give an indication of just how complicated the exact flow 

mechanics may be. Both u l/ib and h /b decrease with L/b for a= 22°, 
e e 

remain fairly constant for a= 20", and increase for a= 18°. 

An intriguing aspect of this phenomenon is that critical depths 

and velocities, and the· critical Froude numbers, are independent of 

their values directly upstream of the exit. Figures 4.14 and 4.15 are 

typical examples showing the approach of the depth and Froude numbers 

toward their critical values. In all cases, the curves approach the 

same limiting values but along unique paths. 

At the moment, no explanation can be given for this phenomenon. 

However, future investigators may find the equation derived in Appen-

dix A a helpful starting point: 

2 T p 
(f cos a - yFr ) dh = (sin a - p V w g bh) dx 

p c 
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2 r cos a. Fr = 
e 'Y 

at the chute exit. This expression may be used to determine back water 

curves for depth or Froude number. By measuring the depth profile and 

the friction term, a relationship between the profile parameters, r and 

y, could be determined which may in turn yield some insights into the 

behavior of the flow. 

4.5.2 General Features of Supercritical and Subcritical Flows 

Supercritical flows are generally much faster and shallower than 

their subcritica.l ('mtnf"Prp::irts. Theo phenomenological differences be-

tween supercritical and subcritical flows are clearly shown for 

a= 22° by the depth profile in Figure 4 .19. A small increase in gate 

opening produces a four-fold increase in depth and the appearance of 

"breaking" (see Section 4.7). The free surface of a subcritical flow has 

a distinct structure. Except in the area immediately adjacent to the side 

walls (where the material shears in a direction parallel to the free sur-

face), particles on the surface maintain the same relative positions. The 

material appears to move like a solid plug, sliding on a thin shearing 

layer next to the chute bottom. Near the gate the solid plug structure 

is also visible through the side walls. Further downstream the flow appears 

to shear all the way across its depth, but the surface far from the walls 

retains its distinct structure. On the basis of this last observation, the 

author is convinced that the shearing visible through the side wall is a 

peculiarity of the region next to the wall. 
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No distinct structure can be observed on the surface of super

critical flows. The surface always appears blurred, due to violent 

mixing in the interior. 

4.5.3 Transition between the Flow Regimes 

Immediately after the gate is open~d, Lht:! Iluw is alwayi:; super

critical. The leading edge sees no material downstream and cannot have 

any knowledge of the downstream conditions. The transition to sub

critical flow is very gradual and may not even begin for as long as 

thirty seconds after the gate is opened. During the transition the 

depth of flow will oscillate as it approaches equilibrium, just as if 

small hydraulic jumps and expansion waves were carrying the downstream 

information to the rest of the flow. The distinct wavefront of a 

hydraulic jump, that is generated by placing a downstream obstruction 

in the chute was not observed although the expansion waves could be 

seen clearly. When both conjugate states are very close to the critical 

value, the system may e~perience relatively fast (~ 10 second period) 

oscillations between them. 

The point of transition to subcritical flow was found to depend 

strongly on environmental conditions. Experiments performed in the 

summer were repeatable within a few days, but could not be repeated 

exactly in November, although similar phenomena were observed. Pre

sumably this is the result of changes in humidity which indicate 

different dissipation rates for static electric charges. 

The "laminar-turbulent" transition reported by Takahasi [83], and 

the "slow flow I fast flow" transition reported by Choda and Willis [15] 

for enclosed ducts are similar to the transition described here. None 
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of the authors report Froude number data, but their qualitative descrip

tio'ns of their flow· regimes agree with the present observations. 

A transition between the. flow types may be observed at any angle 

by placing a blockage in the channel which generates a hydraulic jump. 

The transition described earlier is found in unblocked chutes; the 

equivalent downstream disturbance is generated by the chute geometry 

(and was more likely in narrow chutes)• Subcritical flows were not 

observed in our chute for inclination angles greater than 25°, but 

Takahasi observed transition in extremely narrow chutes at angles as 

high as 45°. A plot of Takahasi's data for transition angle versus 

chute geometry is included in Figure 4.16. 

The flows in the present study had to be sufficiently deep before 

transition occurred. This makes comparison with Takahasi difficult 

because he made no attempt to control the depth of his flow. The 

depth was determined naturally by tht=> f Ped supply to his chute system. 

He. found a distinct inclination angle at which transition occurred for 

each chute geometry, while the present results indicate that both 

types of flow could be obtained at the same angle by varying the gate 

opening. In this light, Takahasi's transition point may be interpreted 

as the maximum inclination angle at which subcritical flows may be 

observed. For comparison purposes, some of the present data, extracted 

according to the above interpretation, is also plotted in Figure 4.16. 

Unlike Takahasi 1 s, the chute angle in the present work was not con-

tinuously varied. The data shown in Figure 4.16 must be read as the 

largest of the angles studied (18°, 20°, 22°, 25°, 30°, 38°) at which 

subcritical flows were obtained. The transition for the glass beads 
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used in this study occurred at much smaller angles than Takahasi's. 

In fact, the transition occurred at angles where Takahasi's sand prob-

ably would not even flow. 

The main difference between the present observations and Takahasi's 

is that his "laminar" regime is associated with the appearance of a 

stagnant wedge on the chute bottom. Stagnant wedges accompanying 

subcritical flows were also observed in these studies, but only at 

large gate openings. A stagnant wedge is essentially the continuation 

of stagnant zone B out through the gate and into the chute (see Figure 

4.6). A wedge extending far into the chute is shown in Figure 4.17. 

The deeper the depth, the further down the chute the stagnant wedge 

would extend. In no case was the wedge allowed to extend as far as 

the first point probe location. 

Subcritical flows occurred for a wide range of depths without any 

stagnant wedges. This is one of the benefits of using size-sorted 

glass beads as a test material as opposed to the various types of sand 

used by Takahasi. Sand tends to pulverize. The smaller particles 

fill the gaps between the larger, producing a bulk material that is 

difficult to shear. Sand flows wedge much more readily than glass 

beads. 

The flow slows a great deal as it transitions to subcritical. The 

shear rate and the granular temperature (see Section 3.1.1) of the 

flow will proportionally drop. Thus stagnant regions and plug flows 

will be much more likely to develop. Hence it is the transition to 

subcritical flow that brings about the formation of the wedges, and not 

the other way around. 
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It is standard practice to prevent blockage by flaring the ends 

of industrial chutes (see Wolf and Van Hohenleighten [85]). This decreases 

the depth of the flow far downstream, increasing the Froude number 

above the critical value. Transition is thus avoided. Industry has 

once again provided a solution for a problem that had not yet been 

fully understood. 

4.6 Depth Profiles 

Figures 4.18 through 4,23 illustrate th~ varlatlon in flow depth 

along the chute for various values of the gate opening and chute incli

nation. Almost all the profiles show the same general behavior. There 

is alwayR the sh~rpest decrease in depth as the flow accelerates out of 

the gate. Even at large inclination angles, most of the depth change 

occurs between the gate and the first point probe. Even though the flow 

appears to approach a state of constant depth (uniform) flow, this is just 

the parabolic depth profile that characterizes a flow with more or less 

constant acceleration •. 

The exception to this rule can be seen in the depth profiles that 

correspond to subcritical flows. In many of these the flow appears to 

approach a uniform value, but will then "break" and undergo further 

acceleration, suffering a large depth change over a relatively short 

length of the chute. The break is visible through the chute side wall 

and has a well defined location. 

It is possible that the break contributes to the downstream flow 

control. Subcritical flows are possible as long as the Froude number 

assumes a critical value somewhere downstream; it need not necessarily 
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be critical at the chute exit. The Froude number could be critical at 

the break. However, the experiments that examined the details of the 

flow near the chute exit (which were performed several months later) 

indicate that critical behavior does occur at the exit. It appears 

that the flow may assume critical behavior twice, once at the break 

point and once at the exit. This would explain why, in Figure 4.20, 

the flow depth after the break remains much deeper than the super-

critical flows shown with roughly the same mass flow rate. 

For constant mass flow rate 

u 0:: 

Fr 0:: 

1 
h 

1 
h3/2 

The Froude number must then have a different value at the break than 

at the chute exit. However, the critical Froude number depends on the 

profile parameters r and y, and can assume different values along the 

chute. It is then possible for the flow to become critical at both 

the break point and the exit. This implies that the ratio, f /y under-

goes relatively large changes. 

4.7 Wall Friction Coefficients 

The supercritical/subcritical flow transition, as well as the lack 

of dependence of the mass flow on the gate opening, depends on how down-

stream conditions affect the flow upstream. In the general equation 

for open channel flow derived in Appendix A, the downstream conditions 

are represented by the term: 
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T p 
w dx 

p \) gb h 
p c 

This term looks much like a friction coefficient: 

µ = :s1 
NW 

:::: 
T w 

The friction coefficient could be determined in much the same way 

as Augenstein and Rogg {2]. For a constant acceleration, a, !'ltart:ing 

from rest: 

a = 

where u is the velocity and x the position along the chute. Thus a is 

half the slope of the curve of u 2 versus :3C. By a simple fnr~e balance. 

so 

a = g (sin 8 - 11 cos e) 

2 
. 8 1 u 

µ = tan - -2 gx 

2 
= tan 8 - _! (u /gR) 

2 (x/R) 

2 
A plot of u /gR versus x/R is shown in Figure 4.24. Several points are 

shown for each angle, corresponding to several gate openings. There is 

a great deal of scatter in the data, but it is still possible to draw a 

straight line that intersects most sets of points. 

The friction coefficient corresponding to each line is also indi-

cated on the graph. Contrary to the evidence presented by Augenstein 

and Hogg [2], there is clearly a large variation inµ with inclination 
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angle. (Augenstein and Hogg's results were for "thin" flows, although 

they do not state exactly what they mean.) The friction coefficient 

should reflect the velocity and density profiles, and depend on chute 

angle only indirectly through the angle's effect on the flow. It is 

likely that the scatter in the data is a result of depth and velocity 

changes. A more accurate method that could detennine µ locally is 

needed to detennine its functional dependence on depth and velocity. 

After dividing by cos a, the general integral equation (A) becomes 

T p 
w + dh Fr

2 
= tan Cl dx (y coset2 - r) 

If the side walls have a negl1g1ble contribution Lu Lhe t.utal shear 

stress, (if 1w P/b ~ Tw) the left-hand side reduces to a friction 

coefficient and this equation may be used to determine the local 

value of µ. 

The effect of the side walls is contained in the integral 

In this simplest friction model the shear stress on a wall is propor-

tional to the normal force, which is itself roughly proportional to 

the distance from the free surface. But due to the normal stress 

differences, the nonnal force on the side walls will be smaller than 

that which would be exerted at the same depth on a wall parallel to 

the bottom. Roberts [62,63] accounts for side wall effects by defin-

ing an effective friction coefficient µeff as if all the stress were 

applied on the chute bottom: 
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µeff = µ(l + k ~) 

where µ is the actual friction coefficient and k is twice the ratio of 

the side wall pressure to an equivalent bottom pressure. Roberts [62] 

measured k statically and found k = .3 for millet seed. Savage [68] 

repeated Roberts' experiment and found k = .453 for glass beads in a 

rough-walled chute. Savage and Jeffrey [71] found that the normal force 

in the direction perpendicular to both the flow direction and the 

velocity gradient was at most equal to the normal forces in the other 

directions. They predict that k ~ 2 as S > O, and decreases monotoni-

cally to k = 2/3 as S + oo. 

Unfortunately, it would be difficult to measure k from the data 

taken during the present investigation. But for the 8.9 cm wide chute, 

the maximum depths at the point of measurement were about 3 cm. For 

k = .5 the correction due to side-wall effects would be about 16% of 

the total. 

Ignoring side-wali effects, the equation for the friction coeffi-

cient is then: 

T 
w 

µ =-----pgh cos Cl 

+ dh Fr
2 

tan a dx (y cos a - r) 

where dh/dx is found from cubic spline fits through measured values of h. 

The problem is now to approximate the profile parameters y and r. 

r depends only on the density profile, which is not easily measured. 

In the absence of better information, r is assumed to be unity. The 

parameter y may be approximated by assuming a linear profile based on 

the measured surface velocity u and the mean velocity interpreted from 
s 
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the mass flow Then, 

1 u ? 2 u 4 
( 5) ( 5) + -

3 u -3 u 3 

Typical computed values of µ are shown plotted against an appro

priate dimensionless velocity u //gP.. is Figure 4.25. The dimensionless 
s 

quantity is based on the surface velocity rather than the mean velocity. 

The velocity u was deemed more representative for shallow depths where 
s 

the density may be lower than the critical value, distorting the value 

of u computed from the mass flow. It is expected that µ also varies 

with h/R, but no clear trend was apparent. 

It is difficult to have a great deal of confidence in these re-

sults. In all cases, the flow is close to uniform and dh/dx is small. 

It would be expected from examination of the equation that µ would then 

2 
vary as tan a with small velocity correction for large Fr This is 

indeed the behavior seen in the data in Figure 4.25. There is no 

gentle transition from one angle to another. The data from each angle 

seems to follow its own curve. This would not be so troubling, except 

for the questionable validity of the assumptions used in deriving and 

using the equation, assumptions that are as yet unverified experiment-

ally. 

4.8 Conclusion 

It has been shown that granular material flows in chutes may be 
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classified as supercritical or subcritical. The two flow types repre-

sent ennjngatP ~tates nf opPn ehannel flnws. The elassifieation of a 

flow depends on whether the Froude number Fr = u//gh is greater or 

smaller than some critical value Fr = (r cos a)l/Z The quantities c y • 

y and r are profile parameters that reflect the shape of the local 

velocity and density profiles. The type of flow has been shown to have 

a strong effect on the mass flow rate. 

The mass flow rate in a supercritical flow is choked at the 

inlet to the chute and is determined by the conditions there (i.e., 

gale openlng). In such a caise the chuLe l.idtoveis much llke a hopper, 

and the mass flow follows the correlation: 

Frg = 2K sin a 

where Fr = u/fijf"" is the Froude number based on the velocity and 
g y 

hydraulic radius: 

at the gate. K is a material property and has a value close to one. 

The mass flow rate in a subcritical flow is choked somewhere 

downstream and is independent of gate opening. The Froude number, 

velocity, and depth are all fixed at the chute exit, presumably at 

critical values. The critical values. however. depend on the inclina-

tion angle and the chute geometry. This occurrence was only 

phenomenologically described, and as yet no explanation presents 

itself. 
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An understanding of the supercritical/subcritical flow transi

tion may have important engineering significance. Subcritical flows 

are generally undesirable because they are accompanied by slowing of the 

flow and the formation of stagnant wedges on the chute bottom. But 

more important~ Lhe maximum mass flow rate obtainable from a chute of 

fixed inclination angle is more or less limited to its transition value. 

The depth profile in a supercritical granular chute flow follows 

the parabolic shape characteristic of a constantly accelerating flow, 

for all inclination angles. Subcritical flows may exhibit a phenomenon, 

termed "breaking," where the flow approaches a uniform depth and then 

breaks, accelerating for a short distance before approaching another uni

form flow depth. It was hypothesized that the flow assumes critical 

values at the break point as well as at the chute exit. 

The key to the subcritical flow behavior appears to depend on the 

frictional interaction between the material and the chute wall. Attemµts 

to measure the friction coefficient produced inconclusive results, but 

indicated that the friction coefficient is not a constant material 

property. To characterize properly the frictional behavior requires 

direct measurement by load cells. 

Finally, some mention should be made of the possible role of inter

stitial air effects in the experiments. Rough estimates of the Bagnold number 

(Section 1. 2) yield values of the order of 103, suggesting that the experiments 

do lie in the granular material flow regime. Nevertheless the inters ti ti al air 

may play a role in some parts of the flow, for example in the saltated layer. 



0 

U
P

P
E

R
 

B
IN

 

U
P

P
E

R
 

G
A

TE
 

1 
W

ED
G

E l LO
W

E
R

 
G

A
TE

 i 

/C
A

W
E

.R
A

 

o
o

o
o

o
o

o
o

o
o

o
o

:>
o

o
o

o
o

o
o

o
o

o
o

o
o

l•
lo

o
o

o
o

o
o

o
o

 

F
ig

u
re

 4
.1

 

fl
 

C
A

M
E

R
A

/ 
LI

G
H

T 

D
ia

gr
am

 o
f 

th
e
 
in

c
li

n
e
d

 c
h

u
te

 a
p

p
a
ra

tu
s.

 

M
O

V
A

B
LE

 
W

AL
L 

I I'-
' 

.....
. 

0 I 



F
ig

u
re

 
4

.2
 

P
h

o
to

g
ra

p
h

 
o

f 
th

e
 

in
c
li

n
e
d

 
c
h

u
te

 
a
p

p
a
ra

tu
s
. 

la
nt

rt
lll

\ll
lfl

ll'
 "

t'n
lP

 
,,

,_
 
~f
t'
. 

?
''
 1

,i 
_

. _
_

 lllM
IM

llrt
ll'lt

llill
f\ .
.
 ..
.-

~ ..
 ·

~-
i-
:-
~ 

3
,-

('
!_

j _
 

I I-
' 

.....
., 

I-
' I 



Figure 11 .3 

-172-

.2--=-· A ., . 

• 

. 6-= 

Photograph of a point probi:> mH'!d for flow depth 

measurements 
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Figure 4.9 Maximum mass flow rates for subcritical flows as a 
function of chute geometry BT6 glassbeads. 
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Figure 4.10 Maximum mass flow rates for subcritical flows as a function 
of chute geometry BT4 glassbeads. 
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Figure 4.16 Transition angle as a function of chute geometry, 
showing the present data for glassbeads and Takahasi's 
data for sand. 
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Appendix A 

A GENERAL EQUATION DESCRIBING OPEN CHANNEL FLOWS 

Consider a force balance on a control volume of width dx in a 

chute of breadth b, as shown in Figure A.l. The total momentum change 

within the control volume is 

rh h l ppbll 2 -I 2 
\)U dy vu dy 

~ 2 
0 

This must be the result of a balance between a body force 

h 

p gb dx sin a. J \) dy, 
p 

0 

a pressure difference on the control volume walls, 

h b 

f p dyl - f p dyl 
0 1 0 2 

and the shear stress on the chute walls, 

J Tw d.Q, dx 
p 

where T is the wall shear stress and is integrated around the wetted 
w 

perimeter P of the system. 

For the purposes of this analysis, we will assume that~ 

h 

p(y) f ppvgcosa dy' 

y 
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It can be seen in Sundarum and Cowin [81) that the wall pressure varies 

in this manner near the free surface of static bins. Define 

where 

1 

y f ~ (~ / iY 
v u h 

0 
1 1 

r 2 I I 
~QL_Ex_ 
v 

0 y/h 

h 

.. , = ~ I \) dy 

0 

h 

u = ~ f u dy 
0 

h h 

NotP th;:it y, r. T • v. h, and u are all functions of x. r and y are 
w 

characteristics of the profile shapes and probably change more slowly 

with x. 

Then the force balance becomes 

- 1 - 2 -
p gb\J h sin a dx - p gb -

2 
cosa d(Vh f) - T P dx p p w 

Mass conservation implies 

vh ub Q const. 

where Q is th@ volnme flohl rate and hence 
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Up to this point the equation is exact. However, due to the lack 

of good instrumentation, v, y, and r cannot be determined experimentally. 

It was shown by Ridgway and Rupp [60] and in our computer simulation 

(see Section 3.1.1) that the density is constant over most of the depth 

even for relatively shallow flows. Hence, it seems a reasonable first 

approximation to assume that V = V = canst. 
c 

r and y are functions 

only of the shape of the velocity and density profiles. It may be 

assumed that the profile parameters are adiabatic invariants, that they 

don't change very radically relatlve to other propertlei:; of Llte flow. 

(The evolving velocity and density profiles generated by the computer 

simulation appear to retain roughly the same shape. The profile 

parameters would not then vary a great deal.) 

In particular: 

dh » dr 
and 

du Y> dy 

While this assumption intuitively has physical validity, it is clearly 

subject to reevaluation once it becomes possible to determine r and y 

experimentally. 

The equation then may be written 

Q2 
- p y dh 

P bv h2 
c 

p v gb h sin a dx 
p c 

- p V gb h f dh - T P dx 
p c w 

or, dividing by p gb v h, 
p c 

Q2 
2 2 3 y dh 

b v gh 
c 

T P dx 
= sin a dx - cos a r dh - __ w_..,.......,.. 

p v gb h 
p c 
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Note that 

where Fr = u / /gh is the Froude number. Thus, 

2 
(r cos a - y Fr ) dh 

TP 
(sin a - w -) dx 

p \) gbh' 
p c 

may be used to describe the flow in an open channel 

Note that relative incompressibility is the only assumption made 

in deriving this equation. Thus it applies equally well or better to 

the flow of liquids. For liquid flow at high Reynolds number, it may 

bt: gt:nt:rally assumed that r :: y ::: 1. The inclination angles fur 

fluid channels are generally very shallow, and it may be assumed that 

cos a ~ 1. With these simplifications this equation takes on the 

genf'.rA1 form of t"hP opi:>n l'.'hi=mni:i1 PC}n~rion ::it motion geni:ir:::i11y m::ed in 

hydraulic calculations (see, for example, Sabersky, Acosta, and 

Hauptmann [65]. 
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Appendix B 

LISTINGS OF THE MAIN PROGRAMS 

B.l COLOOl: Main Program for the Inclined Chute Simulation 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C PROGRAM COLOOl C 
c c 
C THIS PROGRAM IS A SIMULATION OF THE FLOW OF TWO-DIMENSIONAL DISCS C 
C IN AN INCL INEO CHUTE C 
c c 
C T~IS PROGRAM BELONGS TO CHARLES CAMPBELL, THOM\S 03, X~153 C 
C THIS PROGRA~ USES T~E OUTPUT FRO~ COL007 AS INITIAL DATA. C 
C [T SUBSQUENTALLY GENERATES ITS OWN DATA SO THAT THE SIMULATION C 
c HAV Bf CONTINUED AFTER EXECUTION OF THIS RUN rs COHPLETE c 
c r: 
C REQUIRED SUBPROGRAMS: C 
C COLLUP: THF COLLISION ASSESSMENT ROUTINE C 
C PARTCL: SOLVES THE COLLJSICN BETWEEN TWO PARTICLES C 
C WALLCL: SOLVES THE COLLISION BETWEEN A PARTICLE ANO A WALL C 
C INIT IS AN ENTRY INTO THE SUBPROGR~~ INSRT THAT INITIALIZES C 
C THE COLLISION LIST C 
C NEXT IS AN ENTRY INTO THE SUBPROGRAM INSRT THAT YIELDS THE C 
C NEXT COLLISION TO OCCUR C 
C REMOVE: REMOVES FROM THE COLLISION LIST All COLLISIONS INVOLVING C 
C A SPECIFIED PARTICLE C 
C PICTRE: DRAWS A PICTURE OF THE CONTROL VOLUME C 
C SPLNE : IS A CUBIC SPLINE FIT ROUTINE C 
C LSQUAR: IS A LEAST-SQU4RF.S FIT ROUTINE C 
C GRPLOT: IS A PLOTTING ROUTINE C 
C READNF, WRTNF, ENDMF, ANO REWFF ARE TAPE MANAGEMENT ROUTINES C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

DIMENSION xt10001,v110001,u110001,v110001,wt10001, 
C MAl50),QHl50),QUl50),QV(50J,QUVl50),QRH(50J,QS3150J, 
C ODl50J,QW(501,QNl50J,IR(lOOOJ,OISTll0001 1 QT31501, 
C DATA(3,201tOATA2l3e20),AVllOl,ADllOl,QEl1000l,VM4Pl50J, 
C AN(lOJ,QOPl501,C02l50J,DATA1(3,201,QUP(50),QVPl501, 
C HAP(80,84J,OUY(50),0VY(501,0UY2(50110VY21501 1 00Yf501 1 

C 02UYl50J,02VYl50J,OISC501,QS6(50J,QR(5011NCOLl50), 
C QT6(501,Q~F(50J,QUVPC50J,FYl3001,QRXX(50t,~RNS(501t 
C QRSSl50)wQUOl(50J,FNUl50),QM1(50t,ONIC50),QFLC50J, 
C QNUMf50J,FNCOL(50J,QS4(50),QT4C50),QU2(50JtCV2(50lt 
C QUV2(50).QH2l50),QN2t50),QWZl501tOWP(501,QRUC50), 
c QRV(~n1.catOf~l501.0Wlf50l.OW3f50).RlMPLSfZloTHET4llOOOlt 
C NAV(50J,IFGl50J,CONC100) 

C DO NOT USE WITH MORE THAN 80 PARTICLES WITHOUT CHANGING MAP OIMFNSION 
c 

DOUBLE PRECISION STOR(10,23,,QTll50),QSlf50J,QT(501,QS(50J, 
C QT2(501,QS2C50),QS3,QS4,QS5tOT3,QT4,QT5,TIMtTIME,OT,TIMEF 

LOGICAL XTEST,YTEST,LASTP,POINT,LINEtAXIS,TITLE,OASH,ORIGIN 
)( ,PDOC' sex, StY 

COHHON/A/tT,x,v,u,v,w,sHEART,SHEARNtlRtAlSS 
COMJl40N/B/ITA,JTB.1TCtALS,ALCtALTtALCT,wL,WlS,wLC,AISN,AISC 
COHMON/O/DIS,ST,NCOL,RIMPLS 
COMMON/E/WDIS 
COH~DNIPLOAlAIXOFF,YOfftXSZEtYSZEtNIX,NIYtX~lNtSCx,scv, 

X XHAX,YHIN,YHAX,XLPOS,YLPOS,ISYM,NOSH,ORIGINt 
X XTEST,YTEST,LASTP,PO(NT,LIHE,4XCS,TlTLE,~ASH, 

X FLO,XFMTl2J,YfMTC2J,NFX,NfY,POOC 
COMMONIEXTRA/CSIZE 
COHMON/PARAHS/ EP,EW,NOCl,NOCl,SLVL1UMAX,ITPL,HM,ALPH 
DATA DFHT1/*(F7.•/,0FHT2/ 1 4t •t.DFMT3/ 1 ll 1 /, 

t OFMT4/'0J 'I 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C INPUT VARIABLES: C 
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C NOCO IS THE NUMBER Of COLLlSIONS TO BE PERFORMED THIS RUN C 
C NOCE : IS THE NUMBER OF COLLISIONS FOR THE AVERAGING TIME C 
C ST IS THE AVERAGING STRIP WIDTH llN PARTICLE RADlll C 
C IPLT IS A FL4G: IPLT"' 0 NO PLOTS TO BE "tAOE THIS RUN C 
C IPLT NON-ZERO PLCTS TO BE MADE C 
C ITAPE: IS A FLAG INDICATING WETHER INTERMEDIATE SYSTEM STATES C 
C ARF TO BE STORED ON A MAGNETIC TAPE C 
C ITAPE• 0 NO STATES TO BE STORED C 
C IT4PE=N STlTES TO BE STORED AFTER C 
C N COLLISIONS C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

2000 RE40 (5,502) NOCO,NOCEtST,IPLT,IT4PE 
502 FOR"'ATl215,Fl0.0,2110l 

IF (NOCD.EQ.Ol STOP 
NOCL• NOC!= 
NOCE• NOCO - NOCE 

NOCE IS THE COLLISION AT WHICH AVERAGING IS TO BEGIN 
IF fNOCE.EQ.OI NOCE• 1 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C INPUT VARIABLES: C 
C TIME IS THE DI~ENSIONLESS PROGRAM TI~E AT THE START OF THE C 
C CURRENT SIMULATION RUN C 
C NOCI IS THE NU~6ER Of COLLISIONS ALREADY RUN AT THE BEGINNING C 
C. Of THE CURRENT SI "IULATION RUN t 

C lAV3 IS THE NU~BER OF COLLISlO~S ON THE TAPE THAT THE CURRENT C 
C STATE OF THE SYSTEM IS TO BE ADnEO TO THE END OF. C 
c ew IS THE CCEFFlCENT Of RESTITUTION FOR WALL COLLISIONS c 
C EP IS THE COEfflCENT Of RESTITUTION FOR PARTICLE COLLISIONS C 
C ALPH IS THE CHUTE INCLINATICN IN DEGREES C 
C 8 IS THE RATIO OF THE RADIUS OF GYRATION TO THE P-AIHICLE C 

C RADIUS C 
C IT IS THE NU~BER OF P'RTICLES C 
C WL IS THE CONTROL VOLU~E WIDTH (IN PARTICLE RADII) C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

READ (5,6351 Tl~E,NCCl,LAV3 
READ 15,6331 EW,EPrALPH,B 
READ 15,634) IT, WL 
NOCl~ NOCD + NOCI 

WRITE C6r600) EW,EP1ALPH,BrWLrlT,NOCl,NOCL1ST, 
C ITA?E, tPLT 

600 FOR~AT C 26H COEFF.CF RES.FOR WALL = 1Fl2.3/ 
C 26H COEFF.OF RES.FOR PART.= ,Fl2.3/ 
C 26H ALPHA • ,FlZ.3/ 
C ?6H R=K*•21R**2 • 1fl2.3/ 
C 26H WIDTH OF REGION • tfl2.3,/ 
C 26H NO. OF PARTICLES • 115,/ 
C 26H NO.Of COLLISIONS * ,16/ 
C 26H SAMPLING TIME • tl91 
C Z6H SlMPLE INTERVAL = ,Fl2.3/ 
C 26H NEW TAPE? t 19/ 
C Z6H PLOTS THIS TIME? ,[9///t 

C INITJAU ZE VARIABLES 
c 

ALF •0.017~532* lLPH 
ALS• SINULFI 
ALC = COSULF I 
ITPL• IT 
ALT =llS/ALC 
ALCT • ALC/Al S 
WLS alfL*ALS 
WLC • Wl•ALC 
IEN• 0 

1000 IF INOA.fO.NDO.A~O.NOQ.GT.ITI GOTO 210 



AISN= ALS/fl +BJ 
AISS• AJSN•ALS 
AISC• AISN*ALC 
TORQUE= ALS/fl.O + 1.0/Bl 
LAV• 0 
LlV2= 0 
TIME3= O.O 
STl• ST - 1.0 
tTA • IT+l 
ITB• IT+2 
ITC • IT+3 
lTl• IT - l 
IOL= 0 
SHEARN= o.o 
SHEART= O.O 
QQAV• O.O 
DAV• O.O 
HM= O.O 
FLMASS• O.O 
Ml= 20 
APf=O.O 
AUE• O.O 
AVE• O.O 
AWE= O.O 
!ORO= 7 

W~ITE (6,6371 TIME 
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637 FORMATC///24H ORIGINAL PARTICLE LIST ,Fl5.5J 
UUAV• O.O 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C INPUT THE INITIAL STATE OF THE SYSTE~. C 
c T~E INITIAL STATE OF THE SYSTEM IS OETERMINEO ev THE INSTANTANEOUS c 
C POSITIONS ANO VELOCITIES Of THE PARTICLES. THIS ~AY BE THE TER~INAL C 
C STATE OF A PREVICUS RUN CR MAY BE GENERATED BY THE PROGRA~ COL007 C 
C AS AN INITIAL SYSTEM STATE C 
c c 
C INPUT VARIABLES: C 
C IR IS A FLAG TO INDICATE WETHER A PARTICLE IS ROLLING C 
C IR(N)• 0 PARTICLE N IS NOT ROLLING C 
C lR(Nl NON-ZERO: PARTICLE N IS ROLLING C 
C X HORIZONTAL.PARTICLE POSITION C 
C Y VERTICAL PARTICLE POSITION C 
C U : HORIZONTAL PARTICLE VELOCITY C 
C V : ~ VFRTIC4L PARTICLE VELOCITY C 
C W ROTATIONAL PARTICLE VELOCITY C 
c c 
C NOTE: ALL PARTICLE POSITIONS ANO VELOCITIES ARE REFERENCED WITH C 
C THE GRAVITATIONAL BODY FORCE IN THE VERTICAL DIRECTION, AND C 
C . ARE NOT REFERENCED ~ITH RESPECT TO THE CHUTE BOTTOM. C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DO 22 I• 1,IT 
REA0-(5,6321 IR( IJ, Xlllt Y(It, UIIJ, VII It Wll) 

DS=-XIIl•4LC - Y(ll*ALS 
DNs Xfll•ALS + Ylll•ALC 
US= UllJ*ALC - Vllt*ALS 
UNs Ulll•ALS + Vllt•ALC 
UUAV- UUAV ~ US 

22 WRITE 16,6311 1,os,oN,us,uN,W(f),JRCIJ 
WRITE (6,638) 

638 fORMAT(///////J 
UUAV• UU4Vl~LOATCIT) 
AVTM~ 0.005•WL/UUAV 
UUAV= O.O 

IF (JT4PE.NE.OI GOTO 23 
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READ C20l NOCIF,TIMEF,EWf 1 EPF,ALPHF,Bf,(Tf 1 WLf 
FLAV3~ FLOATCLAVJJ/1000.0 
NS= I NT CF LA V3 ) 

IF CFLAV3-FLOATCNSl.GT.9.0E-4) THEN NS= NS+l 
i:tEADCZOtEN0•21) 

21 CALL REAONFl20,NSI 
C CHECK TO SEE IF THIS IS THE PROPER TAPE 

IF CEWF.fQ.EW.ANO.EPF.EQ.EP.AND.EWF.EQ.EW.ANO.ALPHf.EQ.ALPH. 
C ANO.BF.EQ.8.ANO.tTF.EQ.tT.ANO.WLF.EQ.WL) GOTO 24 

WRITEC6,6231) NOCJF,TIMEF,EPF,EhF,ALPHf,BF,ITF,WLF, 
C NOCJF,TIMEF,EPF,EWF,ALPHF,BF,tTF,WLF 

6231 fORMATlll5,5F15.St2115/flS.5,5115,2Fl5.5) 
WRITE (6160031 

6003 FOi:tMATC' WRONG TAPE MOUNTED'! 
STOP 

23 NOC9= NDCl•ITAPE 
WRITE 1201 NQC9,TIME1EWrEP,ALPH,BrIT1WL 
CALL WRTNF (201 
lAV3• 0 

C COMPUTE INITIAL COLLISION LIST 
24 CALL INIT 

LAV5• LAV3 
00 87 I• l, IT 

LAT• I+l 
87 CALL COLLUPlI,LAT,O,TIMEl 

C BEGIN MOTION 
NCA=O 
NOA•O 
NOA= 10 

C INITIALIZE ARRAYS THAT MILL CONTAIN AVERAGED QUA~TITIES 
00 162 lA=lt50 

QS(LAI= O.O' 
QTlLA)s O.O 
QS2(LAI"' O.O 
IFGlLAI= 0 
NAVCLA>• 0 
QT2CLA>• 0,.0 
ONUMCLAI• O.O 
(;CL01Sll4J• O.O 

162 MACLAI• 0 
00 302 l=lt NOCO 

C COLlISIDN ASSESSMFNT 
1100 NCA2s NCO 

NOA2= NOO 
NQA2:: INTCONQAl 
NCO• NCA 
NOQ"' NOi. 
DNQA= FLOnlNQA) 

C TAKE NEXT COLLISION FRO~ CCLLISION LIST 
C NCA, NOA ARE THE PARTICLES INVOLVED IN THE COLLISION 
C NOA lS THE FRAME IN WHICH T~E COLLISION IS TO OCCUR 
C Tl~ IS THE PROGRAM TIME AT WHICH THE COLLISION IS TO OCCUR 

CALL NEXTlNCA,NOA,NQA,Tl"J 
C WRITE (6,676> L,~CA,NOA,NQA,Tl~tNCQ,NOQ,ONQA,JT 

676 FORMAT(' COLLISION : 1 t417,fl5.5,5X,215,fl0.5,151 
C CHECK FOR CONTINUATION OF COLLISION PATTERNS THAT HAY BE INHIBITING 
C TIME ADVANCE. HERE WE CHECK TO SEE IF THERE IS A ~ATTERN Of 
C COLLISION OCCURENCE THAT IS DOMINATING COMPUTER TIME. SUCH 
C A PATTERN IS lNTERUPTEO BY IGNORING A COLLISION 
C EVERY TEN PATTERN OCCURENCES TC ALLOW SOMETHING ELSE TO HAPPEN 

IF tTIM.£0.TlMEJ GOTO 201 
1000 IF INDA.EQ.NDQ.A~D.NOQ.GT.IT> GOTO 210 
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IF CINCA.NE.NCA2.0R.NDA.NE.NOAZl.ANO.INCA.NE.ND~2.0R.NOA.NE.NCA21J 
C CCTO 210 

201 IF tlDL.LT.lO) GOTO 205 
IDls 0 
IOL2= l 

GOTO 1100 
205 IOLs IOL + l 

GCTO 215 
210 IDL• 0 

C FIND TIME SINCE LAST COLLISICN 
215 OT= TIM - TI~E 

c 
c 
c 

TIME ADVANCE: UPDATE PARTICLE POSITIONS ANO VELOCITIES 

IF ll.EQ.NOCEI TIMEl• TIME 
218 OTA• 0.5*DT*DT 

l5= l5 • 1 
DO 170 Jsl ,IT 

DD= Ulll*ALC - VII,*ALS 
OS• UCll*ALS • Vll)*ALC 

C COMPUTE INSTANTANEOUS ENERGY OF SYSTEM 
AUE., AUE + 00**2 
AVE• AVE + DS**2 
AWE= AWE• WII1**2 
APE= APE +YI Tt 
UUAV= UUAV + DD 
IFRs O 

C THIS SECTION COMPUTES THf TIME ADVANCE OF A ROLLING PARTICLE 
IF flRCll.EQ.0) GOTO 107 

IFR= 1 
UISN= Ull)*ALC - Vlll•AlS 
OISTCll= CXlll*ALC - YCll*AlSl + UISN•OT • AISN•OT4 
~(lJ• OISTlll•ALC + l.O•ALS 
Y(l)s 1.0*ALC - DISTCil*ALS 
UISN= UISN + 4ISN*OT 
UllJ= UlSN*AlC 
VU>= -UISN*ALS 
WCI, .. -UISN 

If CL.LToNOCEI GCTC 110 
C COMPUTE SHEAR STRESS APPLIED TO WAtt BY ROLLING PARTICLE 

S~EART• SHEART - TORQUE•OT 
SHEARN= SHEARN t OT*ALC 

GOTO 170 
C UPDATE fOR NON-ROLLING PARTICLE 

107 YClt • YCIJ • DT•VllJ - OTA 
Xlll a XIII • OT•UCI) 
VCll ~ VCll - OT 
DISTiii• CXCll*ALC> - CYll)*ALSI 

no CON.T JNUE 
177 CONT-INUE 

t PARTICLE-PARTICLE COLLISION SOLUTION 
220 IF CNDA.GT.ITI GCTO 131 

1 STP:'t~ l - ..OCE 
CALL PARTCLlNCA,NDAtNCA,B,EP,lSTRTt 
lfHNCAJ• 0 
HHNDAI• 0 
COTO 132 

C PARTICLE-WALL COLLISICN SOLUTION, INOIC~TEO BY ND4• llA= IT+l 
131 IF CNDA.GT.tTAI GOTO 133 

ISTRT .. l - NOCE 
CALL WAllClfNCA.R.ew.JSTRTS 
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GOTO 132 
C THIS SECTION REMOVES PARTICLES THAT HAVE PASSED T~E UPPER OR 
C LOWER BOUNDARIES 
c 
C COLLISION WITH UPSTREAM PERIODIC BOUNDARY INDICATED BY NOA• ITB= tT+2 

133 IF INOA.GT.ITBI GOTO 134 
YCNCA)= YCNCA) - WLS 
XCNCA>= XCNCA) + WLC 

GOTO 132 
C COLLISION WITH DOWNSTREAM PEIODIC BOUNDARY INDICATED BY NOA= ITC• IT+3 

134 YINC~I• VCNC~I + WLS 

c 

XCNCAl= X(NCAI - WLC 

1'32 TIME= TIM 
TIME2• TIME - Tl~El 

6335 ~APlNCAtN041• MAPlNCAeNDAI • 1 
MAPINOAtNCAt• MAPCNOAtNCAI + 1 

C ASSESS NEW COLLISIONS FOR THE TWO PARTICLES INVOLVED 
c 

CALL CCLLUP(NCA,l,NOA,Tl~EI 
IF (NO~.LE.ITI CALL COLLUP(NOA,1,NCA,TIMEI 

c 
C ~EASSESS NfW tOLLtSIC~S FO~ PARTICLES INVOLVED IN RECURRINC PATTERN 
c 

lf llDL2.NE.11 GOTO 280 
CALL COLLUP(NCQ,1,0,TIME> 
IF (NOQ.LE.ITI CALL COlLUP(NDQ,l.NtQ,TIME) 
IOL2= 0 

280 IF (NOA.GT.ITAi GOTC 1100 
c 
C ~RITE STATE Of SVSTE~ ONTC TAPE 
c 

If (OT.EQ.O.O.OR.L.LT.ITAPEI GOTO 157 
L AV3= L llV3+ l 
NOC 2"' NOC I .. l 

WRITE 1201 TIME,NOC21NCA,NOA,NQA, 
C (Xfit.YIIl,U(l),V(lJtWCilt J:s ltlTJ 

IF CCFLOAT(LAV31/1000.0 - AINTlFLOAT(LAV31/lOOO.O,l.LT.lE-5) 
C CALL WRTNFC201 

C EVERY FIFTY COLLISIONS WRJTF CUT T~E SYSTEM ENERGY" 
157 IF (IFLOATIL)/50.0 -·AINTCFLOAT(Ll/50.0)J.GT.0.000011 GOTO 142 

6340 AUE• AUE/Fl0ATl2•IT•L51 
AVE• AVE/FLOATl2*IT•L5) 
AWE= B*AWE/fLOATC2•IT*L51 
UUAV= UUAVfFLOATCLS*ITI 
AKE= AUE + AVE + AWE 
APE• APE/FLOATIIT*L51 
ATE= AKE + APE 
AUEz AUE - O.S•UUAV**Z 
UUA..V"' O.O 
IEN.= IEN+l 
QEI IENI= ATE 
LS• 0 
L2= l - 50 

WRITE 16 9 6501 LZ,L,AKE,APE,ATE,Tl~E,AUE,AVE,AWE 
650 FOPMATC5X,J5,•-•,15,• COLLISIONS, AVERAGE KINETIC'. 

C ' POTENTIAL, A~D TOTAL ENERGIES ARE: •,3fl5.5f 
c 2ox,•TIME,u,v,w,ENERGIES: ·,~Fl5.5) 

AUE= O.O 
l\VE= O.O 
AWE• O.O 
APE• O.O 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C AVERAGE THE PROPERTIES OF THE SYSTEM C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

142 IF IL.LT.NOCE) GOTO 300 
If (L.EQ.NOCE) LAV~= LAV3 
DO l't70 I= l1MZ 

1470 JFGI l)c 0 
IF <NOA.GT.IT) GOTO 147 

t; 

C COLLISION ANGLE DISTRIBUTION ASSESSMENT, RESULT STORED IN ARRAY COLDIS 
c 

LAV2a lAV2•1 
ONQA• FLD4T(1'10A) 
OISY= YCNDAt - CYCNCA) • WLS•ONQA) 
OISX= XCNDAI + WLC•DNQA - XfNCAJ 
DISC• SORllDISX•OISX + OISY•OISVJ 
es- OISV•lLC + DlSX•lLS 
BC= DISX•ALC - OISY*ALS 

IF fBC.NE.O.OJ GOTO 143 
NA= 25 

COTO 144 
143 NA= l•INTl-IATANIBS/BCl - 1.5701961/.06283186) 

IF (NA.GT.SO.OR.NA.LT.OJ GOTO 147 
144 COLDISCNAI= COLOIS(NAI • 1.0 
147 IF (TJME-Tl~E3.LT.AVTM.ANO.L.NE.NOCOJ GOTO 300 

TIME3= THIE 
c 
C DENSITY ANO VELOCITY DISTRIBUTION ASSESSMENT 
c 

c 

LAV= LAVH 
DO 500 I= lt IT 

DC= Yll)*ALC • Xll)*ALS 
DD= Ulll*~LC - Vtl)*ALS 
DE• U(t)•ALS • Vlll•ALC 
M= 1 • INTIDC/STI 

IF IM.GT.50) GOTO 500 
501 MZ• MAXOIMZ,MI 

Hlol= HM • DC 
FlMASS= FLMASS + 00 

C DETEPMINE STRIP JN WHICH PARTICLE CENTER LIES 
.C AND STRIP IN WHICH RESl Of PARTlCLt LIES 
c 

S• DC - FLDATCM-ll•ST 
A= 1.0 

IF lS.GE.l.01 GOTO 550 
Ml= M-1 

IF IABSCS).GT.1.0) GOTO 237 
GOT.0... 560 

550 IF C~.LE.STl) GOTO 570 
S= ST - S 
fill= M+l 

IF CABSCSl.GT.l.01 GOTO 237 
C A AND A2 APE THE PERCENTAGE OF EACH PARTICLE THAT LIE WITHIN EACH STRIP 

560 A= 1.0 + CS•SQRTCl.O - S•SI - ARCOSISJ)/3.14159 
42= 1.0 - A 

c 
C COMPUTE INSTANTANEOUS AVERAGF nF PROPERTIES WITHIN STRIP 
c 

570 Q02(MI= OOZ(M) • A 
MA (fl!)= Ml( M) + l 



Q~ZCM,= QMZCMI + A•OD 
QNZCMJ= QN2CMJ + A•OE 
QWlCMI= OWllMI + A•Wlll 
QW3lMI= QW3lMI + A•WCll**2 
OU2CMJ• QU2CM1 + A•DD**2 
QV2tMI= QVZIM) + A*DE**2 
OUVZCMI• QUVZCMl • A•DO•DE 

IF CIFGlMl.NE.O> GOTO 5700 
NAVCMJ= NAVCMJ+l 
IFGOO= 1 
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5700 IF (L-NE.NOCE.ANO.l.NE.NCC01 GOTO 57~ 

OS2CMI• QS21M) + A*DD 
QT2CMI= QT2CMI + A*DE 

575 IF (A.EQ.t.Ot GOTO 500 
Q02CM11• Q02lMll + A2 
QM2(Mllm QM2(Mll + A2*DD 
QN2(Mll• QN2lMll + A2*DE 
QWlCMll= QWl(Ml) + A2•Wlll 
QW31~11• QW3(Mll + A*Wlll**2 
QU2CM1J 2 OU2(Mll + A2*DD**2 
QV2CM11• QV2CM11 + 42*DE**2 
OUV2(Ml)• QUV2C~ll + AZ•DO*OE 

IF CIFGCMl).NE.OI GOTO 5701 
IFGOH J= l 
NAVCMll= NAVCMll+l 

5701 IF ll.NE.NOCE.ANC.L.NE.NCCDJ GOTO 500 
C QS AND QT ARE USED TC CO~PUTE THE SHEAR AND NORMAL STRESSES RESPECTIVELY 

QS2CMll• QS2CM11 + 42*00 
QT2(Ml)• QT2(Mll + A2*DE 

500 CONTINUE 
00 580 I• l tMZ 
IF llJD21lf.E!;l.O.O) GOTO 580 

C AVERAGE INSTANTANEOUS SYSTEM STATE 

c 

00111: ODfll + QD211l 
Ql)P(IJ::z QDPfIJ + 0021 (102 
QM(ll"' QMlII.., Q"IZtltlQOZIIt 
QNtll• ONlll + QN211)/0021ll 
QUCIJ• QUCI> + QU2111/Q02111 
OVCll= QVCtJ + QV21ll/QD2CIJ 
QW(ll= QW(ll + QW1CI>/Q02(1> 
Q~2CI1= QW21ll + QW3CJl/QD2Cll 
OUVCII= QUV(ll + QU~2(1J/QD21ll 
QRSSlll• QRSSIJ) + QUV2lll 
Q llN S C I J "' QR NS ( I J + QV 2 ( t ) 
QRXXCll• QRXXll) + QU2(1) 
QRUCI >,. QRUCll + QM21 II 
QRVCl1= QRV(II + QN2ll1 
002 (l ,. o.o 
QM2CII= O.O 
QN2Cll= o.o 
OU.2J IJs o.o 
QV2J II• O.O 
QUV2(11= O.O 
QWlllJ= O.O 
QW3C 11= O.o 

IF (L.NE.NOCE.AND.L.NE.NCCDI GOTO 580 
QSCll• QS2(1) - QSlll 
QTlII~ QT211J - QTlll 
QS2Clts o.o 
QT2( l l::o o.o 

580 CONTINUE 
299 CONTINUE 
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C IS RUN OVER? c 

c 
300 IF (LAV3.GE.15000t GOTO 301 
30 2 CONT I NUE 

C IF SO WRITE RESULTS 
c 

301 Kl= l 
K• MINO( nc .20> 

572 WRITE 16t603t Citl= Kl,KJ 
603 FORMAT(////' COLLISION MAP'//7X 1 2015 /) 

OQ 57't I• lt IT 
574 WRITE f61604l I1CMAPCl,J2Jt 12= Kl,KI 
604 FORMAT(I7,2015l 

Kl= K+l 
IF (K.EQolTC> GOTO 573 

K• MINOl(K+201,lTCl 
GOTO 572 

573 IF CLAV.EQ.O) GOTC 237 
HM• HH/FLOATCLAV+lTI 
MZl• 1 + INT(Z.O•~M/STJ 

IF 13.0•QO(MZll.LT.QOIMZl-lll MZl• MZl - 1 
WR IT El 616911 

6Ql ~OPMAT( 1 1 1 //40~ OENSITV ANO VELOCITY CISTRIBUTIONS I 
C /15X115HSOLID FRACTION , 5X,lHU,l4XtlHV,l4X,lHWtl3X,4HU**2t 
C 11X,4HV**2tl2X,2HUV//I 

FlAV= FLO ATC LAV I 
UllllAX:: -1000.0 
NC= 0 

00 130 M: l,MZ 
If INAV(Ml.E0.01 GCTO 130 
fNAV: Fl06TfNAV(Mla 
QMCMI= Q~(Mt/FNAV 

IF IQMIMl.GT.U~AXJ UMAX:CMIMI 
Q~(M)a QNCMl/fNAV 
QW(M): QW(M)/FNAV 
QW21MI= QW21Ml/FNAV 
QUl~I= QUIMl/FNAV 
QVll')= QV(M)/FNAV 
OUVIMI= QUVIMl/FNAV 
QOIM): 3.1415q3 • QDlMl/CST•WL*FLAVt 

130 WRITE (6,690) M,MA(~f,QDlMl,QM(~J,QN(M),QWIM),QU(MJ,QVIMlrOUVIMI 
c ',, 

t90 FORMATl215,7E15.6,15J 

WR IT E ( 6, 6 9 2 ) 
692 FOR~AT(////l6X,•w••2•.16x,•o•••,9x,·~ASSFLOW '• 

c 1x,•u•• .. 2•,1ox,•v••••2•,1ox,•w• 1 ••2•,1ox,•u••v•••111 
00 231 f:a lt Ml 

COPl= C3.l~l593/(ST*Wlll•*2*00Plll/FLAV - QOCIJ**2 
OUOLCll= QMIIl/UMAX 
CMF-tlt• QO(IJ•QMll) 
QU~lll= QUiii - QM(ll**2 
CVPlIJ .. ovtu - ONCI1••2 
QWPllJ"' QW2lll - QWCil••2 
QFL(I)• OUP([t + CVPlI) 

IF IQUP(ll•QVP(IJ.GT.o.ot OQAV= QQAV + ~Dlll•SQRTCQUP(l)•QVP([)J 
DAV= DAV• 00111 
OUVPCII• OUV(IJ - CMlll•ONCll 

231 WRITE(6,693J r,ow211t.ODPltOMFtit,QUP(IJ,QVPlll,QWP(J), 
C QUVPllt,I 

69~ FORMATll5,5X,7El5.S,15J 
161 CONTINUE 



C REYNOLDS STRESS CALCULATION 
WRJTE(6,6941 
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694 FO~MATf'l'•' FLUCTU~TING OU&NTITIES•/// 
c l4X,•Nu•U*•2•,ax, 1 Nu•v••2•,9x,•Nu•u•v•,1ox,•NU•u•, 
c i1x,•Nu•v•,9x,•Nu•••u•••,9x,•Nu•••v•••t 

DO 232 I• ltMZ 
IF fNAVCIJ•EQ.01 GOTO 232 

FNAV• FLOATCNAVCllJ 
QRSSttJ• J.141593*QRSSfl)/(ST*WL•FNAV) 
QRNSCll• 3.141593•QRNSCil/lST•Wl*FNAVI 
QRXXflt• 3.141593*0RXXllJ/(ST•WL*fNAVJ 
QRUTz 3.1•1593*QRUllJ/(ST*WL*FNAVJ 
ORVT= ~.141593*~VCl)/(ST*~L*fNAVI 
ORUtll• QRUT - QOlIJ•QMllt 
NC= NC + NCOLCI) 
QRV(lJ• QRYT - QO(ll•QN(lt 

232 WRITEC6,6931 ItORXXClltORNSlt),QRSSIIltORUT,QRVT, 
C QRUCil,QRV(IJ1l 

WRITE (6,695t 
695 FO~HAT(////35Xw'REYNOLO""S STRESSCS"// 

c 26x,•-Nu•u••••2•,6X, 1 -NU•V 11 ••2 1 ,6X,'-NU*U''*V'''//t 
DO 233 I• l,~z 

QRSSCll• -CQRSSCI) - CQRUlll*QNIII + QRVIIl*QMCIJI 
C - QO(l)*QM!lJ*ON(l)t 

QRXX(I)= -CQRXX(l) - 2*QRUCll*Q~(() - QOCll•QM(ll**21 
QRNSCI)• -tQRNSllJ - 2•0RVC IJ•QN(ll - QOlll•QNlll**21 

233 WRITEC6,696J l1QRXXlIJ,QRNSCil,QRSSCil 1 1 
6Q6 FnRMAT(l6x.1s.• •.3E15.5.t7l 

C WALL STRESSES ANO OTHER AVERAGE SYSTEM PROPERTIES 
SHERN= SHEARN/CTIMEZ*WLJ 
S~ERT= SHEART/CTl~E2•WLl 

SHEARY~ SHERN*ALC - SHERT*ALS 
SHEARX• SHERN*ALS + SHERT•ALC 
FRIC= ATANf SHEART/SHE,RN)/0.0174532 
fl~ASS• FLMASS/fLAV 
QOAV= QQAV/DAV 
DAV= OAV/MZ 
AVVEL• FLMASS/FLOATllTJ 
RIMPLSCll= RtMPLSCll/FLOATINCt 
RtMPLS(2J= RIMPLSl2l/FLOAT(NC) 
Kl~ANG• ATANf~IMPLS~Zt/RIMPLStlt) 

WRITE (6,6401 SHERT1SHERN,SHEARY,SHEARX1FRICtFLMASS1AVVEltHM, 
C QQAV,OAV,~l~PLSl1J,RIMPLSC2J,RIMANG 

640 FORMATC'l'////35X,24HWALL STRESS DISTRIBUTION 1 // 

C 25X,15HTANGENTIAL : tf15.51/ 
C 25X,15HNORMAL tflS.5,/ 
C 25X,15HY-DIRECTION: tfl5.5,/ 
C 25X115HX-OIRECTIO~: 1Fl5.51/ 
C 25X,15H~~ICTION ANCLE .Fl5.5,// 
C 15Xe19HMASS FLOW efl5.5,/ 
C 15X,19HAVERAGE VELCCITY: tfl5.5,/ 
C l5X,19H~ASS MEAN HEIGHT: 1F15.5,/ 
C 15X,19HAV. FLUC. YEL. tF15.5 I 
C l5X,19HAV DENSITY ,Fl5.5,/ 
C 15X,19HNORMAL IMPULSE tf15.5,/ 
C 15X,l9HTANGENTIAL IMP. ,fl5.S,/ 
C 15X,19HIMDULSE ANGLE • tfl5.5,///I 

C WRITE OUT THE FINAL STATE Of THE SYSTEM 
237 WRITEC6,6201 TIME 
620 FO~~Al('l'///19H NEW PARTICLE LIST ,f15.51 

00 145 I• lelT 
os~ XCil•ALC - Y(Il•ALS 
ON= XCll•ALS + VCll•ALC 



US= UCll•ALC - Vlll*ALS 
UN= U(lt•ALS • VCit•ALC 
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145 WRITE (6.6311 1,oS,ON,us.uN.WCtl.IR(ll 
631 FORMAT 115,5Fl5.5,f5) 

C PUNCH STATE DF SYSTEM ONTO C•ROS FOR LATER USE 
WRITEC7,6351 TlMEeNOCl,LAV3 
wRITE(7,633) ew.eP,ALPH,B 
WRITEC7,6341 IT,WL 
DO 320 l•l,IT 
WIHTEl12eb321 IRUJ, XIIlt YCll, Utll. VIII, WCU 

320 WRITEl7,632J IRCll, xc11, YCII, U(I), VllJ, W(I) 
632 FORMATll5,5Fl0.51 
i33 FOR~ATC4Fl0.41 
634 FORMATCIS,Fl0.41 
b~5 FORMATCFl0.~.2(~} 

C DRAW PICTURE OF CO~TROL VOLUME 
HM2• 2.0•HM 

CALL PICTRElttMZJ 
C MAKE LEAST SQUARES FITS TO VELOCITY AND DENSITY PROFILES 

DO 770 I• ltMZl 
OATACl,JI• FLCAT(l-ll*ST + ST/2.0 
DATAl2tll• QM(ll 
OATA(3,ll• 1.0 
OATAlCl,JJ= FLOATCI-ll*ST • ST/2.0 
DATA112tlt• QN(I) 
OATA113,l>• 1.0 
DATAZlltll= FLOATCl-l)•ST + ST/2.0 
OATA2(2,IJ= QDCI) 

110 OATA2(3,J)z 1.0 
CHISQ= 1.0 

CALL LSQUARlDATA,MZl,IORO,AV,CHISQ,STOR) 
CHlSQ= 1.0 

CALL LSQUAR(OATAltMZl,IORO,AN,CHISQ,STORJ 
CHISO= 1.0 

CALL LSQUc\RfDAU2,Mll, IORO,AO,CtlISQ,STQfq 
WRITE (6,660t (AVllJ, I= l1lORUl,lANllt1l= ltlORD) 

660 FORMATC/////24~ VELOCITY COEFFICENTS: II 
C 3Xt5HU: ,7015.7/ 
C 3X,5HV: rl015.7l 

WRITE Cbt67~1 (ADii), l= ltlORDI 
615 FOR~AT(///24H OENStrv CCEfFICENTS: //SX,7015.7/////J 

t COMPUTE ANO WRITE OUT STRESS DISTRIBUTION 
OS6("4Zl+ll• 0 
QTbl'°'ll•l J= 0 

WRITE (6,645) 
645 FO~MAT(//35X,19HSTRF.SS DISTRIBUTION· ,!/7X,Jl'T4NGENTIAL'• 

C 5X,•NORMAL 1 ,9Xlt'FRICTICN ANGLE') 
DO 800 12= l ,Mll 

I= 1 + HZl - IZ 
QS3(1J~ -CSCil/CTIME2•ST•WL•3.141593J 
QT3CIJz -CTll)/(TIME2*ST*WL•3.141593J 
QS4Clt• OS3CI) + QOCll*ALS/3.141593 
Ol4tl)s OT3CI) - QDCll*ALC/3.141593 
056(11• QS6CI+lt + QS4Cil•ST 

BOO QT6Cll• QT6(1+1J + QT4lil•ST 
DO 801 I• l1MZl 

ANG• ATANlQS6Clt/QT61111 
801 WRITE (6,6471 t,QS3CIJ,QT3CIJ,QS4CIJ,QT41Il,QS6Cl>r 

C QT61IJ,ANG,I 
647 FOPMATtlS.7Dt5.69t7) 

t WRITE OUT PROFILE OF ENERGY DISSIPATION BY SYSTEM 
WCIS= WOIS/TIME2 
TOIS• WOIS 
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WRITE C6t6101 WDIS 
610 FO~MATC////35X, 1 DISSIPATION DISTRIBUTION'/ 

C Z5~t 0 WALL DISSIPATION; 'tfl,.6//1 
DO lt23 Js 11 Mzt 
OJSfl)• DISIIl/TIME2 
TOJSe TOIS + DISlll 

~Z3 WRITE (616151 leOtSCll 
615 FORMAT(36X1IS15X,El5.61 

WRITE (6,6181 TDIS 
618 FORMATC//25X,'TDTAL DISSIPATION: 1 rE15.6) 

WR lTE (o,6481 
648 FORMAT(/////) 

C COLLISION FREQUENCY AS A FUNCTION OF DENSITY 
WRITE (6,6521 

652 FORMATl'l 1 e35X,•COLLISICN FREQUENCY'// 
C Z5X, ' LEVEL NUMBER PERCENTAGE 

NC=O 
DO 3499 I= 1 rMZ 

3499 NC• NC + NCOLlll 
DO 3500 I= l ,MZ 

FNCOLCll= FLOATCNCOLlltt/FLOATlNCI 
3500 WRITE (6,6531 ltNCOL(JJ,FNCOLlIJ,QOlII 

653 FORMATC25X,2I7,2f15.61 
C CCNCUCTIVITY EV41-UATION, PRODUCED ERRONEOUS RESULTS 

WRITE (6,6472) 
6472 FORMAT(//////35X, 1 CONOUCTIVJTY 1 / 

NU' II J 

C 27X,'LEVEL CONDUCTIVITY SOLID FRACT10N 1 /) 

DO 3510 I• ltMZ 
TSM= QS6l 1-11 
TNl!ll= QT6l 1-1) 
TEM• ABSfQFL(l-111 

IF (1.NE.11 GOTO 3~0~ 
TS"!~ SHF~T 
TNM,. SHERN 
TEM= 0 

3505 CON(lt= Q~lit•lCS6ll+lt-TS"!l+QNIIt•IQT61I+lt-TNHt 
C + Ulll•ALS - VCIJ•ALC - ABSlDISllll 

If (l.EQ.lJ CONlII= CO~(l) - ABSlWOISJ 
CONlIJ= CONllJ/CZ•QFLIIl-{QfllI+ll+TE~IJ 

3510 WRITE(6,6471J l1CON((J,QD(IJ 
6471 FORMATl27X,I5.2Fl5.5) 

C VELOCITY AND DENSITY GRADIENTS 
WRITE 16,6711 

c 

677 FOPMATC"l"///25K,22~01STRtBUTlCN CRAOIENTS II 
c 12x,•ou1ov•,6x,•cou1ov1••2•,ax,•02u1ov2•,9x,•ov1ov•, 
c 6X, 1 IOV/DYl••2•,ex,•02v1ov2•,ex.•0NU/OY'/I 

IORl= lORO - 1 

C GRADIENTS ARE FOUND FROM A CUBIC SPLINE FIT TO THE DATA 
c 

c 

CALL SPLNEl"'Zl,ST,QC,DCY,D2UYJ 
CJll SPLNEIMZl.ST.OM,OUYa02UYl 
CALL SPLNE(MZ1,st,Q~,ovv.02vvt 
DO 420 I• 11Mll 
IF Cl.NE.1.AND.l.NE.MZlJ GOTO 401 

C C~LY THE GRADIENTS AT THE ENDPOINTS ARE COMPUTED BY THE LEAST 
C SQUARES FIT 
c 

DO 400 IZ= 2,IORl 
D2MH: FLOATCI2*fl2-lll•lFLOlTlI-lJ*ST + ST/2.0J•*l12-21 
D2UYIII= 02UYCll + AVl12+ll*D2MM 

400 02VYIII= 02VVlll + ANlI2+ll*D2MM 



401 DUY2Ctl= DUYC tl••Z 
DVYZllJ• OVYCIJ**2 
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420 WRITE(6,678J 1.ouvc11,ouvz<IJ,DZUYIIJ,DVYIIJ,OVYZCilt 
C D2VY(IJ,OOYCIJ,I 

678 FORMATCI5,7E15.6,1101 
c 
C MAK~ T~~ APP•OP~IATE PLOTS 
c 

DO 3900 I• ltHZl 
3900 FY(JJ• FLOATll)/fLOATC"llJ 

WRITE ""' .t.oo 1) 

6001 FORMATC'l'•' PLOTTED DATA*// 
c 2ox.•Fv•,12x,•uNORM 1 18X,*MASS fLOw•,ax,•FCNU)•, 
c 12x,•R•,1zx,•s•Rt2•,ax,•TEMPERATURE 1 J 

DO 5000 I• ltHZl 
FNUCIJ• A8SCQS6ll)J/OUY2CIJ 
QMFCIJ= QMFllJ/UMAX 
QR(ll= 2•SQRTIOUY2(1Jf(QUPllJ+OVPIIJJJ 
ORH(IJ• 0.5•0RllJ•SQRTC3.141593/QDClJI 

5000 WRITE (6,693) J,FYIIltOUDLllltDMFllJ1FNUCIJ10RlIJ,QRHCIJt 
C OFLCI J ,J 

CALL DFAut T 
SLVL• QM( 11 

CALL Nfl!IPEN( 3) 
Yfl!AX• 1.10 

CALL GRPLOTCMZ1.CUOL,FY, 1 UIUMAX 1 ,6,•Y/H •,3, 
C 1 U/UMAX VS Y/H •,13,• •,OI 

XMAX= 1.0 
CALL GRPLOTlMZl,QO,FYt'SOLID FRACTION '114,'Y/H 1

1 3, 
C 'SOLID FRACTION 1 ,14,• VS Y/H •,10) 

XMAX= 0.6 
CAll GRPLOTCMZl,QMf,FY,'NU*U/U~AX •,9,'Y/H •,3, 

C 'DIMENSIONLESS •,11,•MASS FLOW •,9> 
XMAX= 1.0 
YSZEr. 7.5 
NIV• 8 
YMAX= 2.0 

CALL GRDLQTC~Zl,QD,QR, 1 SOLIO FRACTION •,14, 
C 'ZR•OUOY/V" •,10,•p VS NU 1 ,1,• 1 ,0l 

YMAX= 5.0 
CALL GRPLOTCMZ1,QO,QRH, 1 SOLIO FRACTION •,14, 

C 1 R•S/2 •,5,•R•S VS NU •,q,• •,OJ 
YMAX= 4 .O 

CALL GRPLOTCMZJ,QO,FNU,•SOLID FRACTION 1 ,14, 
C 'SHEAR/CDUIOVlZ 1 ,14, 
c 'DENSITY DEPENDENCE •,1s,•of SHEAR•,a1 

YSZE= 5.0 
xsze .... e.o 
NIX= 9 
NJYs 5 
YMAX• 1.1 
tl"STP= .FALSE. 

DO "5101 I= l tMZl 
SHERT= A8SCQS6Clll 
SHRN= ABSCOT6(1JJ 
SHERN= ABSCQRXXCill 
SHRSa: ABSCQRSSI 11 l 
SHRT= ABSlQRNSCIH 

5101 XMAX• AMAlClCSHERT,SHERN,SHRT,SHRN,SHRS,XMAXI 
XMIN-= -XMU 
XFMTI 11• DFMTl 
XFMTC 21• OFMT2 
NFX• 7 
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CALL GRPLOTfMZ1,QS6,FY. 1 DJM 11 LESS 
t 'S~E4R VS Y/H'tlZt' 1 t01 

SHEAR '114,'Y/H •,3, 
TITLE= .FALSE. 
PDOC ... FALSE. 
4XI S= .FALSE. 
ORIGIN= .FALSE. 
I SYM= 10 

C4LL GRPLOT<MZ1,QT6,FY,• • ,o,. •,o,• • ,o, ' 
I SYM= 2 

CALL GRPLOTIHZl,QRSS,FY, 1 • ,o, f •,o,• •,o,• 
I Sl'M"" 3 

CALL GRPLDTCMZl,QRNS,FY, 1 I 10 If • ,o'. •,o,• 
I SYM: 6 
LASTP• .TRUE. 

CALL GRPLOT(Mll,QRXX,FV,' t t0 t I I t0 t t •.o,• 
CALL ENDJll!FfZO) 
00 6051 I= 1110 

6051 READC201EN0•6052) 
6052 TIME3= -4VTM 

NU14C"" 0 
c 
C REWIND TAPE TO COMPUTE VELOCITY DISTRIBUTIONS 
c 

IRT= INTlflOATlLAV5 + LAV3 - LAV4)/1000.0 + 0.00001) 
CALL REAONFl20,JRT) 
LAV6~ LAVJ - lAV4 

00 6100 N= ltLAV6 
600~ READf20tEND•6005J TIME,NOC2,NC4,NOl,~Q~, 

C (X(IJ,Y(ll,Uf(),V(l t,WCIJ,1=1,ITI 
GOTO 6007 

6005 CALL READNFl20) 
GOTO 6004 

6001 If lTlME-TIME3.LT.AVTMI GOTO 6100 
TtME3= Tl"'F. 

DO 6010 I• I.IT 
OM= C Xl U •ALS + YI lt•4LC: UST 

IF (O~.Ec.0.01 WRITE(6,o56) ltNDC2.IT,X(l),Y(I) 
656 FORMAT(' UNDER •,315,2Fl5.51 

pi!• 1 + INTCDMJ 
If (Qfl(~J.LE.0.0) GOTO 6010 

DO= U(Il•ALC - VCil•ALS 
DE= U(ll•ALS + VCil•ALC 

1 .01 

• ,o) 

• ,o) 

', O I 

HNr. l+lNT(SCRTCl(DO-QM(HJ)••2+lOE-CNlMll••2•B*lWlll-QW(ll)**21 
C /QfllMJl/.11 

IF (MN.GT.Sot GOTO 6010 
NUMC• NUMC+l 
CNUMIMNI= QNUMlMNI + 1.0 

6010 CONTINUE 
6100 CONTINUE 

C DISTRIBUTION OF COLLISION ANGLE 
WR TTE (6,642 t 

642 FOltt4AT<•t•//15X.•COLLISltN DJSTRIBUTION•.48X, 
t •VELOCITY OISTRIBUTlON'// 
c 1ox,•ANGLE•,1ox,•NUMBER'17X, 1 PERCENTAGE•, 
c zsx,•RANGE•,1ox,•NUMBER•,1x, 1 PROBABILITV'//) 

DO 3700 I• 1150 
OS= FlOAT<t>•0.1 
DD= FLOATIIJ•0.06283186 
PC• COLOISll)/lFLOATlLAVZl•0.062831861 
NOC• lNTICOLDISllll 
PV= 10.0•QNUM([l/NUMC 
NV= INTCQNUMC 11 J 

3100 WRITE (6,6431 00,NOC,PC,OS,NV,PV 
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64] FORMAT(FJS.5.T15oF15.5o20X.Fl5.l.Il5.Fl5.5J 
DO 6000 I .. l tSO 

FYI It• FLOATCil•O.l 
6000 QNUM(J)= QNUHttt/FlOATINU~CJ 

XMIN= O.O 
XMAX: 5.0 
TITLE= .TRUE. 
AXIS= • TRUE. 
PDOC= • TRUE. 
ORIGIN=oTRUfo 
YMAX• O.l 
I SYM• 1 

CALL GRPLOT(50,FY,QNUM.•CC-UAVl/V'' •,10,•N/NTOT '• 
c 6t'NUMBtR OJSTRIBUTION •,19,• •,oa 

oo 6200 t• 1.so 
fV(I)= FLOATCit•0.0628318 

6200 COLDISlJ)• COLDISCll/IFLOATILAV2)•0.06Z831Bt 
Yfol.liX"' 1.0 
XP'ltN== O.O 
XMAX= 3,141593 

CALL GRPLOTC50,FY,COLOtS.•ANGLE •.s,•P(THETAJ•,e, 
C •COLLISION ANGLE 1 rl5, 1 01STRIBUTION',12t 

8003 DC 8004 I= lrlF.N 
8004 FY CI t= FLOAT lI 1•50. 0 

CALL OFAUL T 
XSZE"' e.o 
POI NT• .F Al SE• 
SCY=.TRUE. 
XFMT< 1) = Of"4Tl 
XFMT( 2)= OFMT4 
YFMT I lJ • OFMTl 
VFMTl21* DFMT4 
LINE• .TRUE. 

C WRITE OUT ENERGY HlSlURY 
XMAX= fl04TllENl•50~0 
SCY=.TRUE. 
I SYM= 1 

CALL GRPLOT(IEN,FYrQE,'CCLLISIO~S •,10, 
C 'TOTAL ENERGY 1 ,12, 1 ENERGY HISTORY 1 tl4t 1 •,OJ 

STOP 
END 

c THIS HARKS ENO or HA(N PROGRAM 
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B.l COL002: Main Program for the Couette Flow Simulation 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C PROGAA~ COL002 C 
c c 
C THIS PROGRA~ IS A SIMULATION OF THE FLOW OF TWO-Dl~ENSIONAL DISCS C 
C JN A COUETTE SHEAR CELL C 
c c 
C THIS PROGRAM BELCNGS TO C~ARLES CAMPBELL, THO~AS 03, X4153 C 
C THIS PROGRA~ USES THE OUTPUT FROM COL006 AS INITIAL DATA. C 
C IT SUBSOUENTALLY GE~ERATES ITS OWN DATA SO THAT THE SIMULATION C 
C MAY BE CONTINUED AFTER EXECUTION OF THIS RUN IS CO~PLETE C 
c c 
C REQUIRED SUBPROGRAMS: C 
C COLLUP: THE COLLISION ASSESSMENT ROUTINE C 
C PARTCL: SOLVES THE COLLISION BETWEEN TWO PARTICLES C 
C WALLCL: SOLVES THE COLLISION BETWEEN A PARTICLE AND A WALL C 
C INIT IS AN ENTRY INTO THE SUBPROGRAM INSRT THAT INITIALIZES C 
C THE COLLISION LIST C 
C NEXT IS AN ENTRY INTO THf SUBPROGRA~ INSRT THAT YIELDS THE C 
C NEXT COLLISION TO OCCUR C 
C REMOVE: REMOVES FROM THE COLLISION LIST ALL COLLISIONS INVOLVING C 
C A SPECIFIED PARTICLE C 
C PICTRE: DRAWS A PICTURE OF THE CCNTROl VOLUME C 
C SPlNE : IS A tUBIC SPLINE FIT ROUTINE C 
C LSQUAR: IS A LEAST-SCUARES FIT ROUTINE C 
C GRPLOT: IS A PLCTTING ROUTINE C 
C REAONF, WRTN~, ENO~F, ANO REWFF ARE TAPE MANAGEMENT ROUTINES C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c 

c 

DIMENSION XClOOOt,YllOOOJ,U(lOOOl,~110001,WllOOOt, 
C MA(50),QMC50),QUl50l,OVC50l,QUVl501,QRH(501, 
C QDC50J,QWl50),Q~l5011IRClOOOJ,CISTtlOOOI, 
C OATA(3,20),0ATA2(3,20),AV(lOl,AOltOl,QR(50J,Q01(50l, 
C ANllOJ,QOP(50J,QD2(501,0ATAlt3,20J,QUP150),QVP150), 
C MAPC50,54J,OUY(50),0VVl50J,OUY2(50f,OVY2(50J,DOY(50J, 
C 02UYl50J,02VYl501,WDISl2J,DISl501tVMAP(40,21,QS6150J, 
C OT6150),Q~Fl501,QUVPC501,FY(400),QRXXl50),QRNSl50l,QE(l0001, 
C ORS S ( 5M • C!UOL I 50 J , FNU I 50) •CM I ( 50 I •ON JI '50 l • OFl I 50 t • ONll"I l 50 I • 
C QETMtlOOOt,QOPI1501,NCOLC50J,FNCOLC501,COLDISl50J,QU21501, 
C QV2C50J,QUV2(50),Q~2C50t,QN2C501,QW2150J,QWPl50t,QRUl501, 
C QRVC50J,QWll50t,QW3C50J,GCOLC50),RlMPLSC2JtGCY(501tGCXC50l, 
C ClNUM.U 150) ,CNUMV I 50 I. ClNUMW I 50 J • FY2C 50) 1 IBNI 50 I• VCOR ( 50 l , 
C UCOR(50),Qfllt50J,QUPlC501tOVPlC50),QWPlC50),QlMPl50), 
C ONUM1C50),QFL2l501 

C DO NCT USE WITH MORE THAN 50 PARTICLES WITHOUT CHANGING MAP Dl~ENSION 
c 

DOUBLE PRECIStO~ STORCl0,231,QSC50J,QTl50J,QS2l50J,QT2l50), 
C .t.JME,TIM,OT,TlMEF 

LOGICAL, XTEST,YTEST,LASTP,PCINTtllNE,AXJS,TITLE,DASH,ORJGIN 
x ,Pooc, sex, scv 
COMMON/A/IT.x,v,u,v,w.SHEART,S~EARN,IR,AISS 
COMMON/B/ITA,JTB,ITC,ALStALC1ALT,ALCTtWL,WLS,WLC,AISN,AISC 
COM~ON/D/DIS,SL,NCCL,RIMPLS 
CO~MON/EISHRTtSHRNt~OIStV80TtVTOP 

COMMON/PLDATA/XOFF,YOFF,XSZE,YSZE,NIX,NJY,XMIN,SCX1SCY1 
X XMAX,YMl~tYMAX,XLPOS,YLPOS,ISYM,NDSH,ORIGIN, 
X XTEST,YTEST,LASTP,POlNT,LINE,AXIS,TJTLE,OASHt 
X FL0 1 XFMTC2J,YFMTC2J,NFX,NFY,PDOC 

COMMON/EXTRA/CSIZE 
COMMON/PARAHS/ EP,EW 1 NOCl,NOCL,UN,UTOP,ITPLtHGT,Alf 
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DATA OF~Tl/ 1 (f7. 1 / 1 0FMT2/ 1 4t 1 / 10FMT3/ 1 1J 1 /, 

C OFMT4/ 1 0t 1 / 

639 FOR14ATC'l 1 ) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C INPUT VARIABLES: C 
C NOCO : IS THE NUMBER OF COLLISIONS TO 6E PE~FO~MED THIS RUN C 
C NOCE IS THE NUMBER OF COLLISIONS FOR THE AVERAGING TIME C 
C ST IS T~E AVERAGING STRIP WIDTH llN PARTICLE RAOill C 
C UW IS THE NORMAL STRESS APPLIED TD THE SOLID WALLS t 
C lPLT IS A PLAG• IPLT• 0 NO PLOTS TO BE HAOE THIS RUN C 
C JPLT NON-ZERO PLCTS TO BE MADE C 
t !TAPE: IS A FLAG INDICATING WETHER INTERMEDIATE SYSTEM STATES C 
C ARE TD BE STORED ON A MAGNETIC TAPE C 
C tTAPC• 0 NO STATES TO 8E STORED C 
C ITAPE=N STATES TO BE STORED AFTER C 
C N COLLISIONS C 
C lMOV A FLAG TD INDICATE WETHER THE SOLID WALLS BE ALLOWED TO C 
t MOVE C 

C TIME IS THE OIMENSIONLFSS PROGR4M TIME AT THE START OF THE C 
C CURRENT SIMULATION RUN C 
C NOCl IS THE NUMBER OF COLLISIONS ALREADY RUN AT THE BEGINNING C 
C OF THF CURRFNT Sl"ULATION RUN C 
C LAV3 IS THE NU~BER OF COLLISIONS C~ THE TAPE THAT THE CURRENT C 
C STATE OF THE SYSTEM IS TD BE ADDED TO THE ENO Of. C 
C EW IS THE COEFFtCENT OF RESTITUTION FOR WALL COLLISIONS C 
C EP IS THE COEFFICENT OF RESTITUTION FOR PARTICLE COLLISIONS C 
C ALPH IS Tt'E Cl-'UTE DEGREES C 
C B IS THE RATIO OF THE RADIUS OF GYRATION TO THE PARTICLE C 
C RADIUS C 
C UTOP IS THE TCP WALL VELOCITY C 
C HGT IS THE SOLID WALL SPACING C 
C GEE IS THE GPAVITATIONAL ACCELERATION C 
C IT IS T~E NUMBER OF PARTICLES C 
C WL IS THE CONTRCl VCLUME WIDTH (IN PARTICLE RAOill C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c 

2000 READ 15,5021 NCCD1NCCE,st,uw,IPLT1ITAPE,t~OV 
502 FORMATl2[5,2Fl0.0,315) 

REAO t5,6351 TIME,NCCltlAV3 
~fAO C't6331 EWtEPtALPH,e 
READ (516331 UTOP,HGTtGEE 
REAO (5,6341 IT, WL 

NOCl• NOCD • NOCI 
WRITE 16,600) EW,EP,ALPH,UTOP,CEE,HCT,UW,8,WL,IT.NOCl,NOCD, 

C NOCE,ST,IMOV,ITAPE,1PLT 
600 FOR~ATl 1 1 1 ,26H CCEFF.OF RES.FOR WALL= 

C 26H COEFF.OF RES.fOR PART.= 
C 26H ALPHA = 
C 26H WALL VELOCITY • 
C 26H GRAVITY = 
C 26H UPPER WALL HEIGHT • 
C 26H NOR~AL STRESS • 
C 26H B•K••ZIR••2 • 
C 26H WIDTH OF REGION = 
C 26H NO. OF PARTICLES 
C 26H NO.OF COLLISIONS 
C 26H COLLISIONS THIS RUN s 

C 26H SAMPLING TIME 
C 26H SAMPLE INTERVAL 
C 26H WALLS MOVING? 
C 26H NEW TAPE? 
C 26H PLOTS THIS TIME? 

tfl2.3/ 
tfl2.3/ 
,F12a~/ 

,fl2.31 
,Fl2.3/ 
tfl2.31 
'Fl2.3/ 
,F 12.31 
,Fl2.3,I 
,19/ 
, I 91 
,19/ 
,19/ 
,fl2.3/ 
,19/ 
tl9/ 
,19///I 



C INITIALIZE VARIABLES 
c 

NOCL• NOCE 
NOCE• NOCD - NOCE 

IF (NOCE.EQ.OJ NOCE• l 
ALF• O.Ol7~532*ALPH 
ALS• SINULFI 
ALC• CDS( fllft 

IF CALC.NE.o.ot ALT• ALS/ALC 
If CALS.NE.O.OI ALCT• ALCIALS 

4YHGT• OeO 
HGTO,. HGT 
GR• UTOP/HGT 
WLS•.WL•ALS 
WLCz WL*ALC 

IWL2"' INTIWL/STI 
WL2= A INTI WLI 
WL3• WL2-2.0 
S1'1APE• WL/HGT 
TI~ST= Tl .. E 
AISN• GEE•ALS/(l+BI 
AISS• A tSN•ALS 
AJSC= US~tALC 
ITPL= IT 
IEN= 0 
LT= 3*IT 
f IT• FLOATC IT> 
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TORQUE= GEE•ALS/11.0 + l.OfBI 
FNO• 1.0 
VTOP= O.O 
Vl!OT• O.O 
VSIDE~ O.O 
AVTOP= 0.0 
BWS .. = O.O 
Sll• ST - 1.0 
ITA = ITH 
IT'12 IT+2 
ITB • IT+3 
ITC = IT+4 
IOL= 0 
QQAV= O.O 
Sl-IEARN= O.O 
SHEART= O.O 
HM= O.O 
FLMASS= O.O 
MZ= 0 
LAV• 0 
lAV2= 0 
LAV5• LAV3 
TIME3= -1000.0 
AKE•O.O 
AP!•O.O 
AUE• O.O 
AVE= O.O 
AWE• O.O 
NUMC• 0 
IORO= 4 

WRITE (6,6371 TIME 
637 FORMAT(f//24H ORIGINAL PARTICLE LIST tfl5.5t 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C INPUT THE INITIAL STATE OF THE SYSTEM. C 
C T~E INITI4L STATE Cf THE SYSTEM IS DETERMINED BY THf INSTANT4NEOUS C 
t PCSITIONS AND VELOCITIES Of THE PA~TICLES. THIS HAY BE THE TER~IN4L C 
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C STATE OF A PREVIOUS RUN OR MAY BE GENERATED BY THE PROGRAM COLOOb C 
C AS AN INITIAL SYSTEM STATE ~ 

c c 
C INPUT VARIABLES: C 
C JR IS A FLAG TO INDICATE ~ET~eR A PARTICLE IS ROLLING C 
C IR(NJ= 0 PARTICLE N IS NOT ROLLING C 
C IRINJ= l PARTICLF N IS ROLLING ON BOTTOM C 
C WALL C 
C IPCNI= 2 PARTICLE N IS ROLLING ON UPPER C 
C WALL C 
C X HORIZONTAL PARTICLE POSITION C 
C Y VERTICAL PARTICLE POSITION C 
C U HORIZO~TAL PARTICLE VELOCITY C 
C V VERTICAL PARTICLE VELOCITY C 
C W : ROTATIONAL PARTICLE VELOCITY C 
c c 
C NOTE: All PARTICLE PCSITIONS ANO VELOCITIES ARE REFERENCED WITH C 
c THE CRAVITATIONAl sonv FORr.F IN TMF VFRTICAL DIRECTION. ANO c 
C ARE NOT REFERENCED WITH RESPECT TO THE CHUTE BOTTOM. C 
c c 
C BOTH THE UPPFR ANO LOWFR SCLID WALLS ARE ALLOWED TO MOVE C 
C ALL PARTICLE POSITIONS WILL BE REFERENCED WITH RESPECT TO THE C 
C LOWER WALL POSITICN C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

UUAV= O.O 
DO 22 I= l, IT 
READ 15,6321 IIUI>, Xfl), 'YII>, UfIJ, Vfl), WI!> 

OS= XClt*ALC - V(IJ•ALS 
DIST( I J= OS 
ON= Xlll*ALS + YCll*ALt 
US= Ullt•ALC - V(lt•ALS 
UN= Ulll*ALS t V(ll*ALC 

22 WRITE (6,631) 1,os,oN,US,UN,W(I),JR(lt 
WRITE (6,6381 

638 FORMAT(/////1/1 
C CHECK TAPE HEADER 

If tlTAPE.NE.OI GOTO 23 
READ 120) NOC!FrTIMEF,EWFrEPF,~LPHF,8F,ITF,wLF,UTOPF,GEEFtUWF 

FLAV3= FLOAT(LAV3t/1000e0 
NS"' INTIFLAV3t 

IF ffLAV3-f.LOATlNSl.Gl.9E•4l THEN NS= NS+l 
REA0(20tEND•2ZJ 

Zl 'All REAONftZO,NS) 
IF lEWF.EQ.EW.ANO.EPF.EQ.EP.AND.EWF.EQ.Ew.ANO.ALPHF.EQ.ALPH. 

C ANO.BF.EQ.B.AND.ITF.EQ.IT.ANO.wLF.EQ.WL.AND.UTOPF.EQ.UTOP. 
C ANO.GEEF.EQ.GEE) GOTO 24 

WRllEl6,62311 NCCJf,Tl~EF,EPF,EWF,ALPHF,BF,ITFtWLF, 
CNOClf,TlMEf,EPF,Ewf,ALPHftSF,ITF,Wlf 

6231 FORMATtll5,5Fl5.5,2115/F15.5,5115t2Fl5.5) 
WRITE (6,6003t 

6001 FO~MATC• W~ONC TAPE ~OUNTE0 1 t 

SHiil 
23 NOC9= NOCt+ITAPE 

WRITE (20) NOC9,TIME,EWeEP,ALPH,B1IT,WL,UTOP,GEE,UW 
CALL WRTNF f 201 
LAV3• 0 

C COMPUTE INITIAL COLLISION LIST 
24 CALL INIT 

LAV5= LAV3 
00 87 I• 1. IT 

LAT• I+l 
87 CALL COLLUPll,LAT,O,TIME,GEE,HGT,ITAltVTOP,VBOT,VSIDEt 
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C BEGIN MOTION 
NCA•O 
NOA=O 
NQA• 10 

C INITIALIZE AVERAGING ARRAYS 

c 
c. 
c 

c 
c 
c 
c 

c 
c 

DO 162 LA= l. 50 
CIDPCLAI• o;.o 
QUV(LU!S O.O 
OWCLAI• O.O 
OD2CLAI• O.O 
OnCLAJ .. O.O 
QVILAl•.O.O 
oucut• ·o.o 
CfHlAI• O.O 
QNll Al• 0.0 
OS(LAI• O.O 
QlCLAI• O.O 
COLOISHAI• O.O 
ONUto!CLA) .. o.o 
QNUMUILAI= O.O 
ClNUMV(LAI= O.O 
QNUMW(LA)= O.O 
GCOll ll1 2 0 .o 
GCXllA I• O.O 
GCYlLU= O.O 
VCORIUJ= O.O 
UCOftCLAI= o.o 
IBNlLAI= 0 

162 MAC LA t= 0 
DO 301 L=l1 NOCO 

CCLLISION ASSESSMENT 
Cl1fCic; FOR CONTINUATION Of COLLtSICN .PATTE'RNS TH.Ill MAY flE INHIBITING 

1100 
TIME ADVANCE 
NCl2= NCO 
NOU• NOQ 
NC:AZ'" INTlONQAI 
NCC• NCA 
NDQ•NOA 
ONQA-= FLOATCNC:A I 

TAKE NEXT COLLISION FROM COLLISION LIST 
NCA, NOA ARE THE ~ARTICLES INVOLVED IN THE COLLISION 
NQA lS T~E FRAME IN WHICH THE COLLISION IS TO OCCUR 
TIM IS T~E PROGRAM TIME AT WHIC~ THE COLLISION IS TO OCCUR 

CALL NEXTCNCA,NOA,NQA,TIM) 
IF ll.EQ.NOCEI TIMEl= TIME 

1000 IF IITM.LT.51 GOTO 1002 
1Dl2s 1 
ITM= 0 

GOTO 1100 
1002 IF llNCA.NE.NCAZ.OR.NDA.NE.NDA2J.ANO.lNCA.NE.NDA2.0R.NOA.NE.NCA2tl 

CGOTO 210 
IF tlOL.LT.51 GOTO 205 

IDL• 0 
ICL2= 1 

GOTO 1100 
205 IOL• IDL + 1 

GOTO 215 
210 IDL• 0 

FIND Tl~E SINCE LAST COLLISION 
215 OT• TIM - TIME 

W~ITE (616T6) L1NCA1NDA1N;~,TIM,AKEl 

676 FO~~ATl 1 COLLISION : 1 14I1,4F1S.51 



c 
c 
c 

AKfl= O.O 
ITM• 11'4•1 

IF (OT.GT.o.o, ITM• 0 
TJ14E= TIM 
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TIME ADVANCE: UPDATE PARTICLE POSITIONS AND VELOCITIES 

IF CL.NE.NOCEJ GOTO 218 
't IMEl"' Tl14E 
Ml• I NTC HGT /ST> 
F ND• Fl on c MZ I 

218 OTA• 0.5•DT•DT 
C UPDATE SOLID WALL SPACING 

HGT= HGT + VTOP•OT 
C UPDATE PERIODIC WALL SPACING 

WL= Wl • VSIOE•DT 
WLS• WL•ALS 
WLC= WL•UC 

C UPDATE UPPER WALL VELCCITY TO KEEP VELOCITY GRADIENT CONSTANT 
UTOP• GR•HG T 

C CCMPUTE tNSTANTANECUS ENERGY Cf SYSTEM 
DO 170 Ia:l ,IT 

AKEl= AKEl+UIIl••2+V(l)••2+s•wtIJ••z 
ODs Ulll*ALC - Vfl)•ALS 
OS= UCtl•ALS + VCil•ALC 
AUE• AUE + 00••2 
AVE= AVE + DS••2 
AWE= AWE+ WCil**2 
APE= APE+ VCI)•GEE 
UUAV= UUAV + 00 

IF lCT.LE.0.01 GCTO 170 

C THIS SECTION CO~PUTES T~E TI~E ADVANCE OF A ROLLING PARTICLE 
I~ CIRCIJ.EQ.Ol GOTO 107 

ON= FLOATIIR(ll - 1) 
UISN= U(t)•Alt - VCll*ALS 
DISTCII= CXCil•ALC - Ylll*ALSI + UISN•DT + AISN•DTA 
Xlll= DISTCl)*4lC + ((HGT-2.0D002)•0N + l.000011*ALS 
YCI)= tlHGT - 2.00002l*ON + l.OOOOll*ALC - DIST(ll•ALS 
UISN= UISN + AISN*CT 
Uf I>= UISN*ALC 
'IU>.- -UISN•ALS 
WCI)• C2•0N - lt•UISN - DN•UTOP 

If CL.LT.NOCf) GCTO 170 
IF fON.NE.0.0) GOTO 169 

C COMPUTf WALL STRF.SS CONTRIBUTION OF ROLLING PARTICLES 
SHEART= SHf ART - TORQUE•DT 
SHEARN• SHEARN + OT•ALC•GEE 

GOTO 170 
16~ S~FRT• SHERT + TORCUE•OT 

GOTO l 70 · 
C UPCATE FREE FALLING PARTICLE POSITIONS 4NO VELOCITIES 

107 UtSN= UCll*ALC - Vlll*ALS 
VISN= Ufll•ALS + Vlll*ALC 
Ut• UlSN*ALC • IVISN-VBOTl•ALS 
JF fALC.NE.0.0) VJ= lfVJSN - VBOT) - Ul•ALS)/ALC 
IF CALt.eo.0.01 VI= UCll 
Yft) = Yfl) + OT•Vt - OTA•GEE 
Xllt • XCIJ + DT*UI 
VClt = Vf I) - DT•GEE 
OtSTCt)s XCil•ALC - Yll)•ALS 

170 CONTINUE 
177 CONTINUE 



220 IF (NOA.GT.Ill GOTO 131 
ISTRT= L - NOCE 
SL= HGT/FND 
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C PARTICLE-PARTICLE COLLISION SOLUTION 
CALL PARTCL tNCA,NOA,NQA,8,EP 1 1STRTJ 

IRfNCA•= 0 
IRCNOAt• 0 

GOTO 132 
131 IF IN04.GT.JTA1) GOTO 133 

ON- O.O 
IF INOA.EQ.ITAl) ON• 1.0 

ISTRT = L - NOCE 
C PARTICLE-WALL COlllSICN SOLUTION 
C LOWEQ WALL COLLISION INOIC4TEO BV NOA~ IT~~ lT•l 
C UPPER WALL COLLISION INOICATEt BY NOA= ITAl= JT+2 

CALL WALLCL(NCA.s,ew,JSTRT,ON,UTOP,HGT,GEE,UWSH,BWSH) 
GOTO 132 

C THIS SECTION REMOVES PARTICLES THAT HAVE PASSED THE UPPER nR 
C LOWE~ BOUNOERIES 
c 
C CQLLISION WITH UPSTREAM PERIODIC 80UNDARY INDICATED BY NOA= ITS= IT+Z 

133 IF tNDA.GT.ITB) GOTO 134 
XCNC4t• X(NCAl + WLC 
VfNCAJ• YINCA) - WLS 

GOTO 132 
t COLLISION WITH DOWNSTREAM PEIOOIC BOUNDARY INDICATED BY NOA= ITCz IT+3 

13~ XCNCAI• X(NCAJ - WLC 
Y<NCA)s Y(NCAI + WLS 

132 TIME2= TIME - lIMEl 
t UPDATE COLLISICN MAP 

MAPtNC4,NOAt~ ~APC~CA,NOAI • l 
MAP(NOA,NCAJ= MAPCNOA,NCA> • 1 

t 
C ASSESS NEW COLLISICNS FOR THE TWO PARTICLES INVOLVED 
c 

t 

CALL COLLUPCNCA,1,NOA,Tl~E,GEE1HGT,ITAltVTOP,V8CT,VSIOEI 
lF lNDA.LE.ITI CALL COLLUPCNOA,l,NCA,TIHE,GEE,HGT,ITAl,VTOP, 

C VBCTtYSIOEI 
IF (f0L2-NE-1) GCTC 2ao 

C REASSESS NEW COLLISICNS FOR PARTICLES INVOLVED IN RECURRING PATTERN 
t 

c 
c 
c 
c 

' 

c 
c 

CALL COLLUP(NCC.1,o.TIME1GEE.HGT1ITAltVTQP,VBOT,VSIDEJ 
IF (NOQ.LE.ITJ CALL COLLUPINOQ,l,NCQ,TIME,GEE,HGT,ITAl,VTOP, 

t YBOT,VSIDEI 
ICL2= 0 

280 IF fL.EQ.LT.OR.tMOV.EQ.0) GOTO 1220 

WALL VELOCITY CHANGES? CHECK IMPULSE 4PPLIED TO ~ALL AGAINST 
RECUIRED STRESS ANO PUT WALLS INTO 
APPRCPRIATE MOTION 

If. f(L.Ll.LTt.AND.ABSCHGl-HGTOJ.LT.0.11 GOTO 1220 
WRITE (6,666) L1VTOP,UWSH,VBOT,ews~.HGT 

666 fORMATI' COLLISION, TOP VELOCITY, STRESS, ANO HEIGHT :•, 
C ll0o5F12.6) 

~GTO= HGT 
LT• L+J•IT 
OTO• TIME - OTO 

IF CCTO.EQ.0.0) COTO 1220 
UWSH CONTAINS THE TOTAL IMPULSE APPLIED BY PARTICLES TO THE UPPER WALL 
BWSH CONTAINS THE TOTAL IMPULSE APPLIED BY PARTICLES TO THE LOWER WALL 

BWSH= ABSCBWSH/CDTO•Wl)) - lUW • GEE•FLOATCITl•DTO/WLI 



c 
c 
c 

c 

UWSH= ABS(UWSH/(OTO•WLJJ - UW 
VBOT2= VBOT 
VBOT• 0.5•VBOT-SIG~CUW,8WSH) 

-zzz-

IF IABSfBWSHJ.LT.UWI VROT= 0.5•VBOT2-BWSH 
VTOP2= VTOP 
VTQPt 0.5•(VTOP+VBCT2) + SIGNCUW,UWSHI - VBOT 

IF tABS(UWSHl.LT.UWI VTOP= 0.5•CVTOP2+VBOTZJ + UWSH - VBOT 
YSIDE= SHAPE*VTOP 

IF VTOP OR YBOT MUST BE CHANGED RfCOMPUTE THE ENTIRE COLLISION LIST 

1208 

1200 
1210 

1220 

IF CVBOT.EQ.VBOT2.A~O.VTOP.EQ.VTOP21 GOTO 1210 
CAll INIT 
oa 1200 I• 1,rr 

IRCIJ• 0 
LAT= l+l 

CALL COLLUP(t,LAT,O,TIME,GfftHGT,tTAl,VTOP,VBOT,VSIOEI 
OTO= Tl~E 
UWSH• 0.0 
BwS~= O.O 

IF CNOA.GT.ITAll GOTO 1100 
L5= LS + l 

C WRITE STATE OF SYSTEM ONTO TAPE 
c 

IF CDT.EC.o.o.oR.L.LT.ITAPE) GOTO 1225 
LAV3= LAV3+1 
NOC2= NCCl+L 

WRITE CZOI TIHE,NOCZ,NCA,NOA,NQA,HGT, 
C CXltJ,VIIJ,UCIJ,VClt,wftt, I= ltll),WL,VTOP,VBOT 

IF (CFLOAT(LAV31/1000.0 - AINTlflOATILAV3)/lOOO.O>t.LT.lE-5l 
C CALL WRTNFl201 

C EVERY 200 COLLISIONS WRITE OUT THE SYSTEM ENERGY 
1225 IF ((FLOAT(l)/200.0 - AINTCFLOAT(L)/200.0)).GT.o.00001.aR. 

C L5.EQ.OJ GOTO 142 
AUE= AUE/FLOAT(2*1T•LSJ 
AVE= AVE/FLOATt2•IT•L5) 
AWE= B*AWE/FLCATt2•IT*L5l 
UUAV• UUAV/FLOATIL5•1Tt 
AKE= AUE + AVE + AWf 
APE~ APE/FLOATCIT*L5t 
ATE• AKE + APE +AWE 
AUE= AUE - 0.5•UUAV**2 
UUAV- 0.0 
IEN• JEN + 1 
QECIENI• ATE 
L5= 0 
l2• l - 200 

WRITE 16t650) lZtltAKE,APE,ATE,TIHE,~UE,AVEtAWE 
650 FORMAT(5X,JS,•-•,t5, 1 COLLISICNS, AVERAGE KINEllC't 

C 1 POTENTIAL, ANO TOTAL ENERGIES ARE: '13F15.5/ 
c 2ox.•T1~e.u.v.w.ENERGIES: •,4Fl5.5) 

AUE• O.O 
AVE• O.O 
AWE• O.O 
APE• O.O 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C JVERAGE THE PROPERTIES OF THE SYSTEM C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

142 IF (L.LT.NOCEJ GOTO 299 
IF CL.NE.NOCEI GOTO 1420 



Wl2• AINTIWLI 
WL3• WL2 - 2.0 
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C AVTM IS THE 4VER4Gc TIME P4SSEO 8ET•ffN COLLISIONS 8EFORE THE ST4RT 
C OF AVERAGING. IT Wlll BE REQUIRED THAT THIS TIME BE PASSED 
C BETWEEN SAMPLINGS OF THE SYSTEM PROPERTIES 

AVTM= 5•lTI~E-TIMSTl/NOCE 
Tl~E3• Tl~E - l.l•AVTM 

llt20 l FLG= 0 · 
IF (NOA.GT.IT.OR.DT.EQ.O.O) GOTO 147 
LAV2: LAV2•1 
DNOA• FLDATCNCA I 

C COLLISION ANGLE DISTRIBUTION ASSESS~ENT 
DISV• YINOA) - lYCNCAJ • WLS•ONCAI 
OISX• X(NOAJ • WLC*DNQA - X(NCAJ 
DISC• SORTCDISX*DISX • OISY•DISYI 
BS• DJSY•ALC + DISX*ALS 
sc~ DISX•4LC - CISY•ALS 

IF IBC.NE.O.OI GOTO 143 
NA• 25 

GOTO 144 
143 NA• l+INTl-lATANlBS/BCI - 1.57019611.062831861 

IF CNA.GT.50.0R.NA.LT.OI GOTO 147 
144 COLDISIN4)n COLClSlNAl + 1.0 
1~1 If CTIME-TIMEl•LT.AVTM.ANDoloNE.NOCO.ANO.LAV3.NE.150001 

C GOTO 300 
T H4E3.,, Tl ME 

C DENSITY AND VELOCITY DISTRIBUTICN ASSESMENT 
c 
C ADJUST STRIP WIDTH ACCORDl~G TO THE WALL SPACING 

ST• HGT /FNO 

c 

LAV= LAV + l 
IF IL.NE.NOCEl lV~CT: AV~GT • ST 
IF CL.GE.NOCEI AVTOP• AVTOP + CVTOP - VBOTJ 
DO 500 l= l t IT 

C DETERMINE STRIP IN WHICH PARTICLE CENTER LIES 
t ANO STRIP IN WHICH REST Of PARTICLF LIES 
c 

DC• YCil•ALC • XCil*ALS 
00- Ull)•ALC - Vfll*ALS 
OE• Ull)*ALS + VCil~ALC 
M: l + lNT(DC/STI 

IF IM.GT.50J GOTC 500 
501 H"• HM + DC 

FLMASS~ FLMASS + DO 
S• CC - FLOAT(M-ll•ST 
A• 1.0 
A2• o.O 

If cl.GE.1.ot GOTO 550 
Ml• M-l 

GOTO 560 
550 IF·iS.LE.ST-1.01 GOTO 570 

S:s· ST - S 
Ml"' MH 

560 A• l.O + CS•SQRT(l.O - S•SI - ARCOSCSJl/3.14159 
A2• 1.0 - A 

C A ANO A2 ARE THE PERCENTAGE OF EAC~ PARTICLE THAT Ltf WlTMIN FACH ~TRTP 

c 
C COMPUTE INSTANTANECUS AVERAGE OF PPOPERTIES WITHIN STRIP 
c 

570 Q02(MI• an2cM• + A 
MA(M)= MACH> • 1 
QM21MI= QH2CMI • A•DD 



QN2C~)• QN2(~) • A•DE 
QW1CM)• QWl(M) • A•WCII 
QW3(M)• QW3CMt + A•wc11••2 
QU2(~)= QU2(~t + A•OD••Z 
QV2CM)• OV2(MJ + A•OE••2 
QUV21MJ• QUV21M) + A*DO•OE 

-224-

JF CL.NE.NOCE.AND.L.NE.NOCD) GOTO 575 
QS2CMJa OS2CMI + A•OD 
QT2CMI• OTZCMI + A•OE 

575 IF IA.eo.1.01 GOTO 500 
QDZCMlt= ODZCMlJ + A2 
QM2(Mll• QM2CM11 + A2•0C 
QNZCMll• ON2tMl) + AZ*DE 
OWlCMll= OWlCMll + A2*Wlll 
OW3CM11= QW31Mll + A*Wll>**Z 
QU2CMl)a QUZCMll + A2•DD**2 
QV21Mll= OV21Mll + A2•DE**2 
QUV2CM1J= QUV2CM11 + AZ*DD•OE 

If IL.NE.NOCE.ANC.L.NE.NOCOI GOTO 500 
QSZIMll= QSZCMll + A2•DD 
QTZIMll= QT2(Mll + A2•DE 

500 CONTllllUE 
C AVERAGE INSTANTANEOUS SYSTEM STATE 

DO 5 80 I• 1 , MZ 
If (Q02CIJ.eo.o.01 GOTO 580 
QClll"' QOlll • CD2lil 
QOP!l)• QDPCll + Q02Cll**2 
QMtll= OMCll + Q~2111/QD2111 
QNCJI= ONtll + CNZCl)/00211) 
QU<I>• OUfll + CU211l/0021II 
QVl11= QVll) + QV21l)/0021lt 
Qk{II= QW{l) + QW1Cl)/QD2Cll 
OW2 (I)= QW2 CI I + QW3 C I) /002 Cl I 
QUVIII= QUVIIt + QUV2111/Q021II 
QRSSll)= QRSSCI) + QUV2(11 
QRNS(l)= QRNS(II + OV21tl 
QRXXIII• QRXXCll + QU21TI 
QRUIIJ= QRUIII + Q~211J 
ORVIi!= ORVIi) + ON21[) 
QD2fil= O.O 
Qfil2' 11= o.o 
QN2 Cl>= O.O 
QU211>= O.O 
QV2111= O.O 
QUV21 IJ• O.O 
OWllll= O.O 
QW3CIJ= O.O 

IF (L.NE.NOCE.ANC.L.NE.NOCOJ GOTO 580 
C OS AND QT ARE USED TO CO~PUTE THE SHEAR AND NORMAL STRESS RESPECTIVELY 

c 

QSlll: OS2CI) - QSlll 
QTIII• QT2Ctt - QTlt» 
QS2 ll I• o.o 
OTZ(l)o: O.O 

580 CONTINUf 
299 CONTil\IUE 

C IS RUN OVER? 
c 

c 
~00 IF ILAV3.GE.150001 GOTO 302 
301 CONT I NUE 

C IF SO WRITE RESULTS 
c 



302 Kl ,.. l 
K• fll[NOUTc,2oa 

wR ne (6,.6341 
572 WRITE (6,6031 fl,J• Kl,K) 
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603 FORMAT(////' COLLISICN MAP•//7X,20I5 /J 
DO 574 I= 1, IT 

574 WRITE (6,6041 ltCMAP(lel2lo 12• KloKJ 
604 FORMAT(I7,2015J 

tel .. K+l 
IF tK.EO.ITCJ GOTO 573 
K• MINOCfK+ZOJ,JTCJ 

GOTO 572 
573 DAV• o.o 

UAVs O.O 
ST• AVHGT/fLOATCLAVI 
AVHGT= ST 
MZl= MZ 

WR IT E l 6 , 691 I 
691 FORMATl'l'l/40H DENSITY AND VELOCITY DISTRIBUTIONS I 

C 115Xtl5HSOLIO FRACTION t 5X,lHUtl4XrlHV,14XtlHWrl3X,4HU**2t 
c llX,~HV••z,12x,2HUV//J 

FUV= fLO/\T Cl AV I 
UMAX= -1000 .o 

00 1~0 1'1• 1,MZ 
Q~(~J= QM(MJ/FLAV 

IF (Q~(~t.GT.UMAX) UMAX~QMfMJ 

QNC~t= ONlMl/flAV 
OW<~>= QW(Mt/FL4V 
QW2(HI= QW2(~1/flAV 
CUCMJ= OUlMJ/FlAV 
QVIMJ• QV(MJ/Fl4V 
OUV(MJ• OUV(Ml/FLAV 
QDIM)• 3.141593 * QO(MJ/CST*WL*FLAVI 

130 WRITE (6,690) M,~AIMl,QOIMl,Q~(M),QN(MJ,QWl~J,QUCMt,QVC~l,QUV(~J 
C tM 

690 FORM•Tl2I5,7E1,.6tl5) 
IF (UTOP.NE.0.01 U~AX: UTOP 

NC= 0 
WRITE ( 6 ,692 I 

692 FORMATl////l6Xt'W**Z'tl6X,•o•••,9x,•MASSFLOW '• 
t 1x,•u•• .. z•,1ox,•v••••2•,1ox,•w••••2•,1ox,•u••v•••111 

DC 231 t• lt n 
QOPl= l3.l4l593/IST*Wl11**2*QCPIIl/FLAV - QOtl)**2 
QUDLCtl= QM(ll/UMAX 
QHFIII= QOCll*OMIIJ 
NC= NC + NCOL( I 1 
OUPCil= QU((J - QMCll**Z 
QVPCll= OVCIJ - QNCll**2 
QWPCII= QW21ll - QWCll**Z 
QFLCIJ= QUPCll + QVPlll + B*OWPflf 

IF (QUPll)+QVP(tt.GT.0.01 QQAVa QQAV + QOIIJ•SORTlQUPltt+QVPlltl 
DAV.• DAV + QO 111 
QU~Ptl9• QUVll) - QHC[l•ON((J 

231 WRITE(6,693J J,QW2tlJ,QOPl1Q~Flll10UPllJ,QVPCtJ,QWPCIJ, 
C QUVPII),I 

693 FORMATCI5,5X,7E15.5,151 
161 CONTINUE 

C REYNOLDS STRESS CALCULATION 
WRITEl6,694J 

694 FORMAT( 1 l'•' FLUCTUATING QUANTITIES'/// 
c 14X.•Nu•ll*•2•.ax.•Nu•v••2•.9x,•Nu•u•v•.1ox,•Nu•u•, 
c i1x,•Nu•v•,9x, 1 Nu•••u•••,9x,•Nu•••v• 11 J 

DO 2 32 I • 1 t MZ 
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QR5Stl'• 3.l41593•QRSSCl>ICST•~L•Fl'Vl 
QRNStl)• 3.l41593•QRNSlll/CST*WL•FLAV> 
QRXX(I)• 3.l41593•QRXXCl)/(ST•WL*FLAV> 
QRUT= 3.141593•0RUCil/CST•Wl•FLAVI 
QRVT= 3.1~1593•QRV(t)/IST•WL*FLAVl 
QRU(l)a QRUT - QDCil*OHCIJ 
QMVllt• QKVT - QOII)•QN(IJ 

232 WRITEC6,693) f9QRXXCI),QRNSCl),QRSSCI),QRUT,QRVTt 
t QRUll.,QRVllltl 

WRITE f6t695) 
6'5 FORMATll/l/35Xt•REYNOLD••s STRESSES•// 

c 26x,•-~u*lJ••••z•,6x, 1-Nu•v••••2 1 ,6x,•-Nu•u•••v•••11> 
DO 23'3 I= h Ml 

QRSSCll• -(QRSSCII - CQRUCl>•ONCll • QRVCil•QHCIJI 
C - QDCl>*OMflJ*ONfl)) 

QRXXltlm -CQRXXCll - Z*CRU(tl•QM(ll - QOlll•QM(Il••ZI 
QRNStt)a -lQRNSCIJ - 2*QRVCIJ*QNCIJ - QDCIJ•QNlll**Zl 

233 WRITf(6,696) J,QRXXllJ 1QRNSIIJ,QRSSIIJ,I 
696 FORMATfl6X,15,• 1 13El5.5117) 

IF ITIME2.eo.o.01 TIME2= TIME 
C WALL STRESSES ANO OTHER AVERAGE SYSTEM PROPERTIES 

QQAV• QQAV/OAV 
DAV= DAV/HZ 
SHERN= SHEARN/(TIME2*WL1 
SHERT= SHEART/ITIMEZ*WLI 
SHEARY= SHERN•ALC - SHERT*ALS 
SHEARX= SHERN•ALS + SHERT•ALC 
SHRl= SHRT/CTJME2*WL) 
SHRN= SHRN/(TIMEZ*Wl) 
SHRX= SHRN*ALS + SHRT*ALC 
SHRV= SHRN•Alt - SHRT•ALS 
FRIC= ATAN(SHFART/SHEARN)/0.0174532 
fRICl= ATAN<SHRT/SHRNl/0.0174532 
HM: HM/FLOATILAV•IT) 
FlMASS= Fl~ASS/flOATlLAVt 
AVVEL• FLMASS/FLOATCITt 
DTL= TIMEZ*AVVEL 
AVTOP= AVTOP/(LAVI 
RIMPLS(lts RIMPLS(l)/fLCATINCl 
RIMPLS(21• RIHPLSIZl/FLOATINCI 
RIMANG= ATAN(Rl~PLSl21/RtMPLSlllJ 

WRITE (6.6401 SHERT,SHRT,SHERN,SHRN,SHEARY,SHRY, 
CSHEARX,SHRX,FR1C1fRICl,flHASS.AVVEL,HM,lIME2,0AV1DTL1QQAV, 
CAVTOP1AVHGT,HGT 

640 FORMATC 1 11 //////l//35X,24HWALL STRESS DISTRIBUTION,/ 
C 46X1' LOWER WALL•,4x,• UPPER WALL'// 
C 25X,15HTANGENTIAL : ,2F15.51/ 
C 25X,15HNORMAL ,2Fl5.5,/ 
C Z5X, 15HY-OI RECTION: ,2f 15. 5 ti 
C 25X,15HX-OIRECT10N: t2f15.51/ 
C 25X,15HFRICTION ANGLE ,2F15.51//I 
C 15X.28HMASS FLOW .F15.5t/ 
C 15X,28HAVERAGE VELOCITY ,F15.5,/ 
C 15X,2BHMASS MEAN HEIGHT : ,F15.5t/ 
C 15X,2BHAVERAGING TIME tfl5.5t/ 
C 15X,28HAVERAGE DENSITY 1F15.5,/ 
C 15X,28HAVE~AGE flUC. VELOCITY : tfl5.5 I 
C t5X,28HAVERAGE DISTANCE TRAVELED ,Fl5.5 I 
C 15X,28HAV. VERT. TCP VELOCITY tfl5.5 I 
C 15X,28HAV. SAMPLING INTERVAL ,F15.5 I 
C 15X,28HFINAL HEIGHT tfl5.5 1 

WRITE 16,641) UTOPtWL,RIMPLSll),RIMPLSIZJ,RIMA~G 
f:41 FOPMAT(l5Xt28HflNAl .. All VELOCITY : tf15.5 I 
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C 15X128HFINAL REGION WIDTH ,F15.5 I 
C 15XtZ8HNORMlL IMPULSE t~l'·' I 
C 15X,28HTANGENTIAl IMPULSE ,Fl5.5 I 
C 15X,28HIMPULSE ANGLE ,Fl5.5 J 

237 WRITf(6,6201 TIME 
620 FORMAT(•t•////19H NEW PARTICLE LIST rF15.5) 

DO 145 I• 1,IT 
DS• XIIJ•ALC - Y(IJ•ALS 
ON= X(()*ALS • YCl)*ALC 
US• Utll*ALC - Y(IJ*ALS 
UN• Ulll•ALS + Vllt•ALC 

145 WRITE (6,631) 1,os,oN,us.uN,WCIJ,[R(ll 
631 FORMAT ft5,5F15.5tl51 

C RECORD FINAL STATE OF SYSTEM ONTO CARCS SC SIMULATION MAV BE CONTINUED 
WRITE (7,6~5J TlMErNOCltlAV3 
WRITE 17,633) ew,eP,AlPH,B 
WRITE (7,633) UTCP,HGT,GEE 
WRITE 17e634J ITeWl 
DO 320 l'"'ltll 
WRITE112,632J lRlllt X(lt, Y(IJ, UII), VflJ, Wiil 

320 WRITEC7t632t IRIU, X(I), YCI), Ulllt vcn. wen 
632 FORMATCI5t5f l0.51 
633 FORMATC4F10.4) 
634 FORMATCl5,Fl0.4) 
635 FORMATCFl0.3,2!5J 

C DRAW A PICTURE OF THE SYSTEM 
CUL PICTRECHGTt 

UlOP• UMAX 
C MAKE LEAST-SQUARES FITS TO VELOCITY AND DENSITY PROFILES 

DO 770 I• l,'41 
DATA(l,II= FLOAT(l-ll•ST + s112.o 
OATAt2,U• QM(ll 
OATAI 3, Ila 1.0 
DATAl(l,IJ= FLOATCI-lJ•ST + ST/2.0 
o•TAl(Z,JJa QN(JI 
OATA1(3,JI: 1.0 
DATA2(1,II= FLOATCl-lJ•ST + ST/2.0 
OATA212,IJ• ODii) 

770 OATAZ(3,IJ~ 1.0 
CHISQ= 1.0 

CALL LSQUAR(OATA,MZ,)ORO,AV,CHISQ,STOR) 
CHISQ= 1.0 

CALL LSQUARCOATAl,MZ,IORD,AN,CHISQ,STORI 
CHISQ= 1.0 

CALL LSQUARCOATA2,HZ,ICRC,AO,CHIS~,STORJ 
WR ITEi 6, 638) 
WRITf (6,6601 tAVClJ, I= ltIORC) 

660 FOR~ATC////24H VELOCITY COEFFICENTS: // 
C 3X,5HU: ,7015.7/J 

WRITE (6,6611 CANCIJ,I= l,IORDJ 
661 FOR~ATC 3X,5HV; 17015.71 

WRIT-£ 16,6751 UO( IJ, I• l,IORDI 
675 FOR*AT(///24H DENSITY COEFFICENTS: //SX,7015.7/////t 

WRITE (6,6771 
677 FORMATl'l'l//37X,22~DISTRI8UTION GRADIENTS II 

c t4x,•ou1ov•,6x,•1ou1ov1••2•,ax,•D2u1ov2•,9x,•ov1ov•, 
C 6X, 1 fDV/DVl•*2',8Xe'D2V/DY2't8Xt'DNUIOY'/J 

I OR l "' I ORD - 1 
c 
C COMPUTE VELOCITY AND DENSITY GRADIENTS 
C GRADIENTS ARE FOUND FROM A CUBIC SPLINE FIT TO THE DATA 
c 

~ALL SPLNECHZ1,ST,QD,OOY,02UY) 



c 

CALL SPLNEl~ZltST,QM,OUY,02UYJ 
CALL SPLNEIMZ1,ST,QN,OVY,02VV) 
00 420 I= 11MZl 
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IF Cl.NE.l.AND.I.NE.MZl» GOTO 401 

C CNLY THE GRADIENTS AT THE ENOPOINTS ARE CClllPUTEO BY THE LEAST 
C SQUARES FIT 
t 

DO 400 12• 2,ICRl 
02~M= FLOATII2*112-ltl*lFLOATCI-ll*ST + ST/2.0l**CI2-2J 
02UYlll= DZUYlll + AVll2+l)*D2MM 

400 02YYfl): OZVYfl) + ANU2+lt•D2M.111 
401 DUY2Cll• OUY(ll**2 

DVY211)= OVVI 11**2 
420 WRlTEl6t678J J,OUVllt,OUY2ll),02UYlll,OVY(lltDVY2(1J, 

C 02VV(It,OOYlf l,J 
618 FORMATCJ5,7E15.6tl101 

C COMPUTE INTERNAL STRESSES BY A MOMENTUM BALANCE 
WRITE l6t6lt5t 

645 FORMAT(//////35X,19HSTRESS DISTRIBUTION ,//lOX, 
C 3( 1 TANGENTIAL 1 ,5X, 0 NORMAL't9XJ, 1 FRICTION ANGLE 1 /I 

QS5== SHERT 
QT5~ St< ER.N 

DO 800 l• l1MZ 
QS3= QSCll/ITIME2*WL*ST•3.1415931 
QT3= QTlll/ITl~E2•WL*ST•3.1415931 
QS4= QS3 - QDlil•GEE*AlS/3.141593 
QT4~ QT3 + QOlil*ALC*GEE/3.141593 
QS5= QS5 + QS4*ST 
QT5: QT5 + OT4*ST 
~NCs ATANIOT5/0S5) 
CS61J )• QS5 
QT6(llc QT5 

800 WRITE 16.6471 J,QS3,QT3,QS4,QT4,QS5,QT5,ANG 
647 FORMATl2Xo15o7D15.6.17) 

C COMPUTE DISTRIBUTION OF ENERGY DISTRIBUTION WITHIN SYSTEM 
DO 432 I= 1,2 
WDlSlll= WDISCt)/Tl~E2 

432 TOISz TOIS + WDISCJI 
~RITE (6.6101 WDISClJ,WOJSl2J 

610 FORMATC/////35X,•OISS1PATION DISTRI8UTICN 1 // 

C 25X,'LOWE~ WALL: •,El5.6/ 
C 25X,'UPPER WALL: •,E15.6//I 

DO 433 I• l 1HZ 
OISlll= OlSCll/TIMF2 
TDIS• TOIS + DISCII 

433 WPITE (616151 I,OJSCI) 
615 FOP~ATl33X,I5,El5•6J 

WRITE (6,6181 TOIS 
618 FORMATC///25X, 1 TOTAL DISSIPATION: •,E15.6) 

WRITE (6,6it8J 
648 FDR~AT(/////I 

t COLLISION FREQUENCY AS A FUNCTION Of DENSITY 
WRITE (61652) 

652 FORMATt•1•,35x,•coLLISION DISTRIBUTION'// 
C 25Xt • LEVEL NUMBER PEPCENTACE NU 1 //I 

DO 3500 I• l ,MZ 
FNCOL(IJ• FlOATINCOL(J))/FLOATCLAV21 

3500 WRITE l616531 J,NCOLCtleFNCOL(Il,QDll) 
653 FORHATC25X,217.2F15.6J 

C COLLISION ANGLE DISTRIBUTION 
WRITE l6,6421l 

6~21 FORMAT( 1 11 //40X,•COLLISION ANGLE DISTRIBUTION'! 



c 
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c 35X, 1 ANGLE 1 ,1ox,•NU"BER 1 t7X,•PRDBABILITY 1 I 
00 3701 l• lt50 

OD• FLOATIIl•0.06283186 
PC• COlDISlll/ClAV1•n.nh2A31Bhl 
Not= INTICOLDIS(l)) 

3101 WRITE 16,6431) no,Nct,PC 
6431 fOR"AT(30X,FlS.S,Il5,fl5.SJ 

C 'AKE THE APPROPRIATE PLOTS 
c 

WIUTE 16,60011 
6001 f0RMATl'l'e 1 PLCTTED DATA'// 

c 2ox,•FY'1lZX1'UNORM•,9x,·~ASS FLOk 1 t8X, 1 FINUl 1 , 

c i2x.•R•.12x,•S•RIZ'18X1 1 TEMPERATURE'> 
QRA\i= O.O 
GRZ• CHGT/UTOP)••Z 

DO 5000 I• l 1MZ 
FNUII>= A8SfOS6(IJl/OUY2Cll 
FYCil= CFLOATlll-0.51*ST/HGT 
Q~F(lt• QMFIJ)/UMAX 
Qfl2lll= QUPIJl+QVP(JI 
ORlll• 2•SORTCOUY21ll/ICUP(J)+QVPll)IJ 
QRAV• QRAV+QR (I l 
OFLlCtl~ OFLCll*CR2/~ 

QUPlfll= QUP1Il*GR2 
OVPl(JJ• QVPII!*GR2 
QWPl(II• B•QWP(ll*GR2 
CTMPllJ= (QUPlll+QVPllll•GRZ 

IF IODCIJ.EQ.0.01 GOTO 5000 
QRH(I)• O.S•QR(lt•SQRTl3.141593/QDlIJJ 

5000 WRITE (6,693) l1FY(IJ,QUOL(IJ1~~F<ll,FNUCll,QRIIl,QRHIIJ, 

C QfLI I>, I 
ORA\I= QRAV/fli!Z 

WRITe (6,69331 QRAV 
6933 FOP~ATC///30X, 1 AVERAGE R~ •,Fl5.5/////// 

c zox,•NORMALIZED TEMPERATURE DISTRIBUTION'// 
C lOX1'LEVEL'15X1 1 TOTAL TEMP 1 , 1LINEAR TEMP '• 
c 7x,•u••••2 •,1x,•v 1 •••2 •,6X1 1 8*W''**2 LEVEL'I 

DO 5001 I= l tMZ 
5001 WRlTfC6,69341 f,QFLlCJJ,QTMPCI),QUPllil,QVPlClltQWPlClltl 
6'3~ FOR~ATllOX11515Fl5.51l51 

IF I IPL T .eo.01 STOP . 
CALL OF AULT 
CALL NEWPENl 31 
CALL GRPLOTCMZ,OUOL,FY,•U/UTOP 1 161'Y/H •,3, 

C 1 U/UTOP VS Y/H •,13, 1 1 101 
XMAX• t.O 

CALL GRPLOTCMZ,QO,FY1'SOLID FRACTION 1 t141'Y/H 1 131 

C 'SOLID FRACTION •,14,1 VS Y/H •,101 
KMAX= 0.6 

CAL~- GRPLOTCMZ,QlllF1fY1 1NU•U/UTOP •,9,•Y/H •,3, 
C 'DIMENSIONLESS 1

9 13, 1 MASS FLOW •,qJ 
XMAX• 3.0 
LASTP"" .FALSE. 
NIX• 4 

CALL GRPLOTCMZ,QFll1FY1'TEMP*HGT/UTOP '1llt'Y/H •,3, 
C 'TEMPERATURE 1 1ll1 1 DISTRIBUT10N',121 

TITLE•.FALSE. 
AXIS•.FALSE. 
ORIGfNz.FALSE. 
I SYlll• 2 

CALL GRPLOTtMZ,QUPl1fY1 1 TEMPERATURE '1ll1 1 Y/H '13t 
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c 'TEMPEfUTURE 
ISYM= 3 

CALL GRPLOTCMZ,QVPl,FY,•TEMPERATURE •,11,•Y/H •,3, 
C 'TEMPERATURE •,11,•01STRIBUTION'tl2) 

I SYM= 4 
CALL GRPLOTl~Z,QWP1,FY, 1 TEMPERATURE 1 tllt 1 Y/H 1 ,3, 

C 'TEMPERATURE 1 ,11,'DISTRIBUTION',121 
ISYM= 5 
LASTP=.TRUE. 

CALL GRPLOTlMZ,QTMP,FY1 1TEMPERATURE '111,•Y/H 1 ,3, 
C 'TEMPERATURE •,11, 1DISTRIBUTION 1 1121 

CALL OFAULT 
XMAX .. 1.0 
YSZE= 7 .5 
N[Y:: 7 
VMAX• 2.0 

DO 5002 I= ltllfZ 
FNUIII• ABSCQS6CllJ/DUY21II 

5002 QR(tl• 2*SORTlOUV21IJ/(QUPClJ+QVP(fJIJ 
CALL GRPLOTCMZ,~D,QR, 1 SOLIO FRACTlON •,14, 

C 1 2R•OUDY/V 11 1 ,10,•R VS NU •,7,1 •,O) 
Yfl!AX• 4.0 

CALL GRPlOTf~z.oo.FNU,•SOLID FRACTION •,14, 
C 1 SHEAR*CUTOP/CU/OYl2 1 ,19, 
C 1 0ENSITY DEPENDENCE 1 ,18, 1 0F SHEAR',81 

YSZE= 5.0 
XSZE= e.o 
NIX• 9 
NIY• 5 
YMAX•. t .O 
XMAX= O.O 
LAS TP• .FALSE. 

CO '101 I• h"'Zl 
SHE~T• ABSCQS61IJI 
SHRN• ABSCQT6llll 
SHERN~ ABS(QRXXIIll 
SHRS= ABSCQRSStlJI 
SHRT• ABS(QRNS(IJJ 

.5101 XMAX• Afll4Xl(SHERT,SHEPN,SHRT,SHRN,SHRS,XMAX) 
X"IIN= -XMAX 
XFMTflt: OFMTl 
XfHl( 2) • DffllT 2 
NFX• 7 

CALL GRPLOTlHZtOS6,FY,•OtH••LESS SHEAR •,14,•Y/H 1 ,3, 
C 1 SHEAR VS Y/H 1 ol2,• 1 101 

TITLE• .FALSE~ 
POOC= .FALSE. 
AX l S• .FALSE. 
ORIGIN• .FALSE. 
ISYfll= 10 

CALL GRPLOT(MZ,QT6.FY,• •,o,• •,o,• •,o,• 1 ,01 
I SY-M= 2 

CAL~ GRPLOTCHZ,QRSS,FY,• •,o,• •,o,• •,o,• •,01 
I SY"'"' '3 

CALL GRPLOTCMZ,QRNS1FY, 1 •,o,• •,o,• •,o,• 1,01 
1sv.-.. 6 
LlSTP= .T~UE. 

CALL GAPLOT(HZ,Q~xx,Fv.• •.o,• •,o.• •.o.• 1 ,01 
CALL OUUl...T 
xsze .. a.o 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc [. . c 
C VELOCITY DISTRIBUTION ASSESS~ENT C 
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c c 
C REWIND TAPE AND CC~PARE INSTANTANEOUS VELOCITIES TO THE AVERAGE VALUES C 
c c 
CCCCCCCtttCtCCCCCCCCCCCtttCtCCCCCCCCCCtttCtCCCCCCtttttCCCttccccccccccccccccccc 

CALL EN0'4Fl201 
00 6051 I= 1,10 

6051 REAOC20,END~60521 
6052 TIME3a -AYTM 

NUMC• 0 
NUMU"' O.O 
NUlllV= O.O 
NUMW-"' 0.0 

C JRT• lNTlFlOATCLAV5 + LAV3 - lAV41/lOOO.O + 0.00011-1 
c IF flRT.LT.01 nn .. o 

CALL REAONFI 201 
LAV• 0 
LAV6• LAV3-l 
LAVl= 0 

00 6100 N- l,LAV6 
6004 READf20tEND•60051 TIME,NOC2,NCA,NOA,NQA,HGT, 

c (Xlll,Y((),U(Jt,vc11.wclltI;l,[Tl 
GOTO 6006 

6005 CALL REAONFl201 
GOTO 6004 

6006 LA\I'" LAVH 
HGT9a HGT/2 

00 6010 I• l, IT 
OM• CXfll*ALS + YCit•ALCJ 

IF lOM.EO.O.Ol GOTO 6101 
M= 1 + IN11CM/STI 

GOTO 5010 
IF CABSCOH-HGT91.LT.STI GOTO 5010 

c 
C PAIR CORRELATION FUNCTION ASSESSMENT 
c 

00 503 I 2- 1. tT 
IF (12.EQ.tl COTO 503 

C RACIAL CORRELATION 
Mz; l+lNTC50.0*CSQRTICXlil-XII21>**2+CYCI,-YCl21t••2,-2.0I 

C /WL3) 
If IH2.LE.501 GCCLCM2l= GCOLlM2)+1.0 
M2= l+INTl50.0•CSQRTICXl1t-Xll2l-WLC1••2+CY(ll-YC12l+WLSl••21 

C -2.0l/WL3J 
IF lM2.LE.50l GCOLCM2J= GCOLIM21+1.0 
~Z= l+INTC50.0*ISQRTllX(IJ-XCI2J+WLCJ••2+(Yflt-YCI2J-WLSl**21 

C -2.0l/WL31 
IF (M2.LE.50t GCOLCM2t= GCOLIM2t+l.O 

C NORMAL CORRELATION 
Ml= l+INTl50.0*ABSCIXIIl-XllZll*ALS+(YClt-YCI21l•ALCl/WL21 

IF CMZ.LE.501 GCYfMZJ= GCYCMZJ+l.O 
C PARALLEL CORRELATICN AND VELOCITY tORRELATIONS 

If 1iNTU8SC Xl 12 l*ALS+Y( 12l*U.C-OMJ I.LT .STI GOTO 503 
M2~ l+INT(50.0*ABS(CXCll-XllZll*ALC-IYCll-YCl2)t•ALSt/WL2) 

IF CMZ.GT.50t GOTO 5030 
GCXCMZI• GCXCH21+1.0 
UCORC~21• UCORCM2t + CUCil-QM(l11*CUC12l-QMll2tl 
VCOR042 I= VCOIH M2 I + CV 111-QN I I> I* l Vll2 J-QN ( 1211 
IBNIM2)• IBNIM2)•1 

5030 M2= l+INTC50.0*ABSCCXll1-XCl2t+WLCl•AlC-CYllt-YC12t-WLSl*ALSJ 
C /Wl2J 

If CM2.GT.50) GOTO 5031 
GCX<M21• GCX(M2)•1.0 
UCORl~2)= UCOR(M21 + CUltt-QM(l)l*lUCl21-QM(I211 
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VCOR(~2J= VCOR(M2J + CVCIJ-QN(lll*lVl12)-QNII2)) 
IBNIM2J= IBNIM21+1 

5031 M2= l+INTl50.0•48S((X(l)-X(J2J-WLCJ•ALC-lY(IJ-Y(I21+WLSl•ALSI 
C /Wl2) 

IF fMZ.GT.501 GOTO 503 
GCXCM21= GCXCMZJ+l.O 
UCOR(M2)z UCORCH2J + (UCil-QM(Jll*(U(l2J-QMCI2JJ 
VCOR(M2J• VCORlHZI + CVCIJ-QNCill*1Vll21-QNU2)} 
IBNCMZ)z IBNCM2J+l 

503 CONTINUE 
LAVl= LAVl+l 

C VELOCITY OlSTKlBUTllUNS 
c 

5010 IF (TtME-TIME3.LT.AVTM) GOTO 6100 
T IME3== TIME 

[F (QFLIMl.LE.o.o> GOTO 6010 
DD• U[ll•ALC - V(lJ*ALS 
DE= UlIJ*ALS + VCIJ•ALC 

IF (QFLIMJ.NE.0.01 
c MN- l+INTISQATl(IOD-Q~(Mll••2+(0E-QNCHlt••2+B•twc1t-QW(llt••2> 

C /QFLtMll/O.tJ 
IF CQFL21Hl.NE.O.OJ 

C MNl• l+INTCSQRT(((00-QM(Mll**2+1DE-QNCMll••21/QFL2(MJJ/0.1J 
IF (QUPCMl.NE.0.01 

C MNU= l+INTtSQRTCIOD-QMl~ll**2/QUP(M))/0.lJ 

IF (QVPtMJ.NE.0.01 
C MNV= l+INTISQRTCIOE-ONCMll**2/QVP(MJl/0.1J 

IF (QWP(Ml.NE.O.OJ 
C MNWz l+INTISQRTl(W(IJ-QWIMll**2/QWPIMll/0.l) 

IF IMN.GT.501 GOTO 6007 
NUMC= NU:l4C + 1 
QNUM(~N)= QNUHCMNI + 1.0 

6007 IF fMNU.GT.501 GOTO 6069 
NUMU= NUMU + 1 
QNUMUIMNUI= QNUHU(MNUl + 1.0 

6069 IF CMNl.GT.501 GOTO 6008 
QNUMl(MNl)• QNUMlCMNll+l 
NUMl• NUMl+l 

6008 IF CMNV.GT.50) GOTO 6009 
NUMVa Nu-ii V + 1 
QNUMV{MNVJ• QNU~VlMNVJ + 1.0 

600~ IF (MNW.GT.50) GOTO 6010 
NU~W• NUMW + 1 
QNUMW(MNW)• QNUMW(MNWJ + 1.0 

6010 COl'(T INUE 
6100 CONTINUE 
6101 "RITE (6,642) 

642 FORMAlt'l'l/1' VELOCITY DISTRIBUTION'// 
C 17X, 0 TOTAL DISTISUTION 1 ,42X. 1 U DISTRIBUTION•/ 
c • SLOT•,1ox,•RANGE 1 ,1ox,•NUMSER'17X1 1 PROBA81LITY 1 , 

C 10.X...' RANGE'-, lOX, 1 NUMBER 1 , TX,' PROBAB ll ITY' I/) 
DO 3100 I= 1150 
os~ FLOATClt•o.1 
NOT• INTCQNUH(IJJ 
NCU= tNTCQNUMUCilt 
IF INUMC.NE.01 QNUMCIJc lO•QNUHll)/FLOATCNUMC)
IF (NUMU.NE.OJ QNUMUCl1= lr,~QNUMUlll/FLOAT<NUMU) 

3700 WRITE (6,6431 1,os,NOT,QNUMlll1NOU,QNUMU(IJ 
643 FOR~AT(l5 1 Fl5.5 1 115,Fl5.5 1 20X,Jl5,Fl5.5) 

WRITE (6,6423) 
6~23 FOR~ATC'l'//,• VELOCITY DISTRIBUTION'// 

c lax,•v DISTRIBUTION•,43x,•w DISTRIBUTION'/ 
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c • SLOT•.1ox, 1 RANGE•.1ox,•NU~BER•,1x,•PROBABILITY 1 , 
c 1ox, 1 RANGE•,1ox.•NUMBER 1 ,1x,•PROBABILITY'//t 

DO 3711 I• 1150 
OS= FLOAT (I >•0.1 
NCV• INTCONUMVCltt 
NOW= INTlQNUMW(IJJ 
IF CNUMV.NE.OJ QNUMVllJ• 10.0•QNU~VCIJ/FLOATCNUHVt 
IF INUMW.NE.OJ QNUMWCIJ• 10.0*CNUMWllJ/FLOATCNUMWJ 

3711 WRITE (6,6431 lrDS,NOV,QNUMV(IJ1NOW,ONU~WllJ 
WRITE 16,64241 

6424 FORMATl 1 11 1/t 1 VELOCITY OISTRIBUTION 1 // 

C 16X,•LINEAR DISTRIBUTION'/ 
c • SLOT•,1ox,•RANGE•,1ox, 1 NuMBER 1 ,1x, 1 PROBABILITY•//J 

DO 3712 I• 1150 
OS= FLOATIIJ*O.l 
NOl 2 INTCONU~l(111 
IF INUMl.NE.OJ ONUMllII= lO•ONU~llIJ/NUMl 

3712 WRITf l6t643J 1,os,NOl,QNUMllII 
DO 6000 I= 1 ,so 

6000 FYllJ= FLOATfil•0.1 
XMJN"' O.O 
XMAX= 5.0 
TITLE• .TRUE. 
AlCf I\• .TRUF. 
PDOC• •TRUE. 
ORIGIN=. TRUE. 
NIY• 6 
YMAX• 1.2 
I SYM• l 

CUL GRPLOTl50,FY,QNU"11 1 (C-UAVJ/V" 1 ,10, 1 Pl\0Brtt •, 
C 7,•NU~BER OIST~IBUTION •,19,1 •,ot 

CALL GRPLOH so, FY, QNUM lt •' c-u4v11v" • .10, •PROB cc 1 •, 
C T,•LtNEAR OISTRIBUTION 1 ,19,• •,OJ 

CALL GRPLOTC50,FY,QNUHU, 1 CC-UAV)/V'' 1 1l01 1 PROBICI •, 
C 71 1 U DISTRIBUTION 1 ,14, 1 •,OJ 

CALL GRPLOTCSO,fY,QNUMV1 1 lC-UAVl/V 11 1 1l01 1 PROBCCI '• 
C 7t 1 V DISTRIBUTION •,1~,• •,OJ 

C4LL GRPLOTl50,FY,QNUMW, 1 (C-U4VJ/V 11 •,10,•PROBICJ •, 
t 7,•w DISTRIBUTION 1 11~,• •,OJ 

CO 6200 I• 1,50 
fY(ll= FLOAT(l)•0.0628316 

6200 COLDIS(JJs COLOISCl1/CLAV2•0.06283161 
CALL DFAUI.. T 
Y~AX• 2.0 
XSZE= 8 .O 
XMIN• O.O 
OIAX• 3.141593 

CALL GRPLOTC50 1 FY,COLDISt 1 ANGLE 1 ,5, 1 N/NCOL 1 ,6, 
C 'COLLISION ANGLE 1 ,151'DlSTRIBUTION'1121 

SCY•. TRUE. 

oo 6300 '"" 1,so 
FV2111• FLOATfll•WL2/50.0 

6300 FYlll• 2.0+FLOATCil*WL3/50.0 
WRITE(6,66l01 

6tl0 FOPMATC 1 11 ,35X,'PAIR CCRRELATION FUNCTICN'I/ 
c 1ox.•SlOT•,9x.•DlSTANCE•.sx,•Nu~. COUNTEO•.J~. 

C '01STANCE 1 ,6X, 
C 'PERCENTAGE 1 ,2X, 1 VERTICAL NUM 1 1lX1 1 PERCF.NTAGE 1 1 

C lX1 1 HORIZCNTAL NU~ 1 , 1 PERCENTAGE 1 1/) 
DO 6630 I• 1.50 

NAB• GCOU It 



DIS2• 2.0 • FlOAT(ll•Wl3150.0 
DIS3• FLOATCl>•~l2/50.0 
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GCOLlll= Z5.o•GCOLIIl•3.1~1593/CLAV6*DISZ•~L3*DAV••ZI 
NAY• GCYC II 
GCYflJ• 25.0*GCYCll/ClAV6•~l2•Wl) 
NAX., GCXC II 

IF ClAVl.N£.O.O> GC~Clt- 25.0•GCXClllCL~Yl•Wl2•STI 

6630 WPITE(6,6620t I,OIS21NAB1GCOLCll1DISl,NAY1GCYClt1N4X,GCXCIJ 
6620 FORMATllOX115,Fl5.61110,fl5.61fl5.6,ll0 1Fl5.6tll01Fl5.6J 

WR ITEC 6, 6625 J 
6625 FORMATC•l'/ 1 VELOCTIY CORRELATIONS 1 // 

c lOX,• SLOT'16X, 1 DISTANCE •,1ox.•u- CORRELATION•, 
c tox.•v- CORRELATION') 

00 6626 Jc 1150 
DJS3= FLOATCil*WL2/50.0 

If CIBNCIJ.EQ.OJ GOTO 6626 
UCORIIJ: 50.0*UCOP(l)/CIBNlt1•QU(IWL2J*Wl21 
VCORIIJs 50.0•VCORCIJ/(IBN<IJ•QVCIWL2t•WL2J 

6626 WRITEC6166271 I.OIS31UCORIIl1VCORCIJ 
6627 FOR~ATClOX115,Fl5.51lOX1El5.5,lOX,E15.51 

XMIN= 2.0 
Xfo!AX• WL2 
SCY=.TRUE. 

CALL GRPLOTCSO,FY1GCOL1 1 SEPARATION •,10,•G FUNCTION 1 ,10, 
C 'PAIR CORRELATION'1l61 1 •,OJ 

XMIN= O.O 
CALL GRPLOTl50 1 FY2tGCY, 1 SEPARATION 1,10,•PROBABillTY •,11, 

C 'VERT CORRElATION 1 ,161' •,OJ 
CALL GRPLOTl50,FY2,GCXr 1 SEPARATICN •,10, 1 PR08ABILCTY '1111 

t 1HORZ CORRElATION'r16r* 1 ,01 
CALL GRPLOTISO,FY2,UCOR1'SEPARATlON •,10,•CORRELATION •,11, 

t "U-VELOCllY "tl61•CORRELATION 'tll> 
CALL GRPLOT(SO,FY2,VCOR, 1 SEPARATJON •,10,•coRRELATION •,11, 

t 'V-VELOCITY •,16, 1 CORRELATION '1llJ 
C SYSTEM ENERGY HISTCRY 

8003 DO 8004 I= l1lEN 
8004 FY(I)= FLOAT(IJ•5o.o 

CALL OFAUL T 
XSZE= a.o 
XMAX= FLOATtNOCDI 
SCY=.TRUE. 
LINE= .TRUE. 
POI NTz .FALSE. 
XFMTtU- DFl1Tl 
XfMTC 2 l= DfMT4 

t CALL GRPLOTCIEN1fY,QE, 1 CCLLISIGNS 1 110, 
C C 1 TOTAL ENERGY*112t 1 EN~RGY HISTORY 1 ,14, 
C C •COLLISION DLCT •,141 

XFMTl21• OFMT3 
XMtN= lIMST 
X'4AX= TIME 
STOP 
ENO-

t THIS HARKS END OF MAIN PROGRAM 
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Appendix C 

LISTING OF THE INITIAL STATE CREATION ROUTINES 

C.l COL007: Initial State Creation for the Inclined Chute Simulation 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C PRCG~lM CDL007 C 
c c 
C THIS PROG~AM GENERATES INITIAL SYSTEM CONFIGURATIONS FDR THE C 
C tNCllNEO CHUTE SIMULATION C 
c c 
C THIS P~OGRAM UfLONGS TO CHA~LfS CAMPBELL, THC~AS 031 X~l53 C 
t c 
C RECUIRES SUBPROGRAM NAANO, INTEGER RANDOM NUMBER GENERATOR C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION XllOOOt,YflOOO>,UllOOOJ,VllOOOl,Wll000>,015), 
C IR(10001 

C GENER~TE INITIAL VELOCITY ACCORDING TO SEVENTH ORDER LEAST SQUA~ES 
C FIT TO A VELOCITV PROFJL£ 

f(ZJ= As•z••7+A7•Z••6+A6•Z••5+A5•Z••4+ 
C A4*Z**3+A3*Z*Z+A2*Z+Al 

DATA Al/0.2018029/,A2/3.5299215/,A3/-15.2262754/,A4/47.4364204/, 
~ A5/-88.17864qq/.A6/q].58284761.A7/-51.8336868/.A8/ll.4877520/ 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C INPUT VARIABLES C 
c ew WALL CCEFFICENT Of RESTITUTION c 
C EP : PARTICLE COEFFICENT OF RESTITUTION C 
C ALPH : CHUTE INCLINATION ANGLE t IN OfGREESI C 
C 8 RATIO OF THE RADIUS OF GYRATlCN TO THE PARTICLE RADIUS C 
C NPL : NUMBER OF PARTICLES VERTICALLY C 
C NPH NUMBER OF PARTICLES HORIZONT4LLY C 
C SPI HALF MEAN PARTICLE SPACING C 
C UMAX : MAXHWp.i VELOCITY C 
C QPI SCALF. OF ALLOWED RANDO~NESS C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

READ (5,6331 EW,EP,ALPH,6 
RE~D C5,50lJ NPL,NPH,SPltUMAX,QPI 

501 FOR~~T(Zt5,~Fl0.0t 
WRITE (6,6001 EW,EPtALPH,8,NPLtNPH,SPI,UMAX 

600 FORMAT t 26H COEFF.OF RES.FOR WALL • tfl2.3/ 
C Z6H COEFF.OF RES.FOR PART.= ,Fl2.3/ 
C 26H ALPHA • ,Fl2.3/ 
C 26H B=K••2/R**2 ,fl2.3/ 
C Z6H NC.VERTICALLY = t15/ 
C 26H NC.HORIZONTALLY • 115/ 
C 26H SPACING • ,fl2.3/ 
C 26H ~AXl~U~ VELOCITY = ,flZ.3/1 

C lNlTIALIZE VARIABLES 
ALF •0.0174532* ALPH 
ALS .. SINfllft 
ALC • COSULF) 
All • ALS/ ALC 
ALCT = ALC/ALS 

DO 25 I• l,IT 
Z'.!l IR( IJ• D 

WL = 2.0•SPl*FlCATCNPH) 
WLS •WL*ALS 
WLC * Wl•UC 
WH = 2.0•SPI•flCAl(NPl)-SPI 
IT • NPL*N'H 
NOCOc 0 

~RITE (6.6011 QPl,WL,WH 
601 FO~MAT t 26H ·INITIAL CSC.VEL.I c ,FU.3/ -



c 
c 

26H LENGTH 
26H HEIGHT 

C INITIAL RANDOM x,v,u,v,w SETUP 
NRAN • 123.45 
DC 200 Jz l ,NPL 
00 200 K• l ,NPH 
DO 201 L= 1,4 
NRAN = NRAND(NRANI 
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= ,Fl2.31 
• ,f12.311 

201 DCLJ = 2.0 * FlCATINRANJ I 0.2147484El0 -1.0 
N= K+ NPH• IJ-1) 
DS= SPI + 2.0•SPl•FLOATlK-11 + Dlll•CSPl-1.01 
ON= 2.0•SPI•FLOAT(J) - SPI+D(2J•CSPI-l.OI 
UY• FION/WHl•UMAX 
XINJ= DS•ALC + DN•ALS 
VINI= ON•ALC - OS*ALS 
UCNI= UY*ALC + 0131•QPl*UY 
VCN>- -uv•ALS • OC•>•QPJ•uv 

200 WIN I= o. 0 
C •RITE CUT ORIGINAL SETUP 

TIME • O.O 
WRITE C6,637t TIME 

637 FOR~ATl///24H ORIGINAL PARTICLE LIST ,FlS.51 
OD 22 I• ltIT 

OS= Xlll*ALC - Ylll*4LS 
ON= XClJ*ALS + Ylll*ALC. 
US• UCll•ALC - VCil*ALS 
UN• U(l)*4LS + Vlll*ALC 

22 WRITE (6,63ll 1,os,oN,uS,UN,WllltlRIII 
631 FORMAT(l5 0 5F15*5 0 151 

C WRITE INITIAL RESULTS ONTO CARDS 
WRITEl7,635) TIME,NOCD 
WRITEl7,6331EW,EP,ALPH,B 
WRITEl7o634IIT.Wl 
DO 320 I•l t IT 

320 WRITEl7,6321 IRlil, XII), Ylll, U(JI, Viti, WCI1 
632 FOR~ATCI5,5Fl0.51 

633 FORMAT(4Fl0.41 
634 fORM4TCJ5,Fl0.4J 

635 FOR~ATCF10.3115t 
STOP 
ENO 

C THIS ~ARKS END OF MAIN PROGRAM 
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c.2 COL006: Initial State Creation for the Couette Flow Simulation 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C PROGRA~ COL006 C 
c l c 
C THIS PROGRAM GENERATES INITIAL SYSTEM tONFIGURATIONS FOR THE C 
C COUETTE SHEAR CELL SIMULATION C 
c c 
C THIS P~OGRAM BELONGS TO C~6RLES CAMPBELL, THOMAS OJ, X4153 C 
c c 
C AECUIRES SUBPROGRAM NRANDt INTEGER RANDOM NUMBER GENERATOR C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION XflOOOt,YflOOOJ,U(lOOOl,VflOOOJ,Wfl000),0(5J, 
C IRC1000) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C INPUT VARIABLES C 
t EW WALL COEFFICENT Of RESTITUTION C 
C EP PARTICLE COEFflCENT OF RESTITUTION C 
C: Al PM CMUTF INCL tl\IAT ION ANG.LE f IN DEGREES, C 
C B RATIO OF THE RADIUS Of GYRATJCN TO THE PARTICLE RADIUS C 
C NPL NUMBER OF PARTICLES VERTIClLLV C 
C NPH NU~BER OF PARTICLES HORIZONTALLY C 
C SPJ HALF MEAN PARTICLE SPACING C 
C UTOP UP PER WALL VELOC tTY C 
C OPI SCALE OF ALLOWED RANOCMNESS C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

READ (5,633) EW,EP,ALPH,8,GEE 
READ 15,501) NPL,NPH,SPl,UTOP,QPI 

501 FORMAT(215t3Fl0.5t 
WRITE 16,600) Ew,EP,AlPH,B,NPL,NPH,SPI,GEE,UTOP 

600 FORMAT C 26H COEFF.OF RfS.FOR WALL : ,Fl2.3/ 
C 26H CCEFF.OF RES.FOR PART.= ,f12.3/ 
C Z6H ALPHA = ,FlZ.3/ 
C 26H 8=K••21R••2 • rF12.3/ 
C Z6H NO. VERTICALLY , 1121 
c 26H NC.HO•IZONTALLY • 1112/ 
C 26H SPACING = 1Fl2.3/ 
C 26H GRAVITY ,Fl2.3/ 
C 26H TOP PLATE VELOCITY tF12.3/t 

ALF •0.1174532• ALPH 
ALS• SINC ALFI 
Alt:• COSI .ltFl 
ALT• ALSHLC 
ALCT• AlC/ALS 

DO 25 I= l t IT 
2S IR(IJ•O 

WL • 2.0•SPl*FLOATCNPHI 
WLS •WUALS 
WL£ • WL*ALC 
WH • 2.0•SPl*fLCATCNPLt 
IT "" NPL•NPH 
NOCD,,. 0 

WRITE (6,6011 QPltWLrWH 
601 FORMAT C 26H INITIAL OSC.VEL.t 

C 26H LENGTH 
C 26H HEIGHT 

C INITIAL RANDOM x,v,u,v,w S~TUP 
NR4.N • 1?34'.i 

DO 200 J•l, NPL 

"" ,Fl2.31 
= tf12.3/ 

,F 12 .3/1 



DO 200 Kalt NPH 
DO 201 L= lt4 

NRAN • NRANOlNRANI 
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201 OIL) = 2.0 • FLOAT(NRAN) I 0.2147484E10 -1.0 
N • K+ NPH•CJ-1) 
OS• SPI + 2.0•SPI•FLOAT(K-1) + OCll•CSPJ-1.0I 
ON • 2.0•SPl•FLOATIJl-SPJ+Ol21*1SPI-1.0) 
X(NI = DS*ALC + DN•ALS 
YlNJ • DN*ALC- DS•ALS 
UCNI• CALC+Ol31•QPIJ*I0.2+0.6*0Nl•UTOPIWH 
VCN1=1-ALS+0(41•QPl)*C0.2+0.6•0Nl•UTDP/WH 

200 WINI •O.O 
C ~RITE OUT INITIAL STATE OF SYSTEM 

TJ~f a o.o 
WRITE 1616371 TIME 

637 FORMATC///24~ ORIGINAL PARTICLE LIST tf15.51 
DO 22 I• 11IT 

OS• XCIJ•ALC YCIJ+ALS 
ON= X(l)*ALS + Yllt•ALC 
US= UCll•ALC - Vtll*ALS 
UN= UII)•ALS + Vll)*ALC 

22 w~ITE <6.6~1• r.os.o~.us.uN.wttt.tRltl 

631 FOR~AT(l5,5Fl5.5,l5) 
C RECORO INITIAL STATE ON CARO~ 

WRITEl7,6351 TIME,NOCO 
WRIT~l7.63~1EW.EP.ALPH,8 

WRITE17,6331UTOP,WH,GEE 
WRITEl7,634llT,WL 
DO 320 l•l,IT 

320 WRITEl7,6321 IR(tl, XIII, YCI), uc11, Vfllt WCll 
632 FOPMATlI5,5Fl0.51 
633 FOPMATC5Fl0.4) 
634 FOR~ATCIS,Fl0.41 
635 FOPM•T(Fl0.3,151 

STOP 
ENO 

C THIS MA~KS END OF MAIN PROGRAM 



-239-

Appendix D 

LISTINGS OF THE COLLISION ASSESSMENT ROUTINES: COLLUP 

D.l Collision Assessment for Lhe Inclined Chute Simulation 

SUBROUTINE COLLUPCN,LAT,JA,TIME) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBROUTINE CDLLUP C 
c c 
C COLLISION ASSESSMENT ROUTINE FOR THE INCLINED CHUTE SIMULATION C 
t c 
C ASSESSES ALL CCLLISIC~ LIST ENTRIES FOR THE PARTICLf N. THE lARCET C 
C PARTICLE AND THE TIME OF THE COLLISION IS STORED IN THE COLLISION C 
C LIST VIA THE RQUTlNE lNSRT C 
c c 
C A TARGET NEX• ITA DE~CTES A LOWER WALL COLLISION C 
C NEX= tTAl DENOTES AN UPPER WALL COLLISION C 
C NEX • ITB DENOTES A OISAPPEAPANCE UPSTREAM C 
C NEX • ITC l DISAPPEARANCE OC~NSTRFAN. C 

c c 
C C~E PARTICLE C~ BE EXCLUDED AS A TARGET BY INCLUDING IT AS JA. THIS C 
C IS ADVISABLE IF N HAS JUST COMPLETED A COLLISON WITH JA ANO THEY ARE C 
C PRESENTLY TOUCHING C 
c c 
C LAT IS THE FIRST PARTICLE IN NUMERICAL SECUENCE T~Al IS TO BE CONSIDERED C 
C AS A TARGET PARTICLE t 
c c 
C OCCASIONALLY A PARTICLE I~ THE MAIN FJELD OF VIEW HAY HAVE ITS PRIMARY C 
C COLLISON WITH A PARTICLE IN THE REPEATED FRA~E EITHER UPSTREAM OR C 
C OOWNSTRF.AM OF T~E ~Al~ FRAME • THE CASE tN ~HJCH THE N PARTICLE COLLIOESC 
C •ITH A PARTICLE IN THE UPSTREAM REPEATED FRAME IS DENOTED BY NQA•-1 ; C 
C fOR A COLLISION WITH THE DUWNSTRE4~ REPEATED FR~HE NQA~•l. OTHERWISE C 
C NQA•O C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION X(l0001,vc10001,u110001,v11000J,W(lOOOI, 
C IRllOOOl 

REAL IL,JL 
OOU8lE PRECISION TIHE.TJM,OA,oe,oc.oTA,OTB,OTN,OX,DYtOUtDVtDD, 

C DE,AltA2,A3,A4,A5rHtfA,FB,H210TB3,FO,OT62, 
C CH,f.FPRl,R 
COHMON/l/IT,x,v,u,v9w,S~E4RT1SHElRN.IRtAISS 

CDMMONfB/ITA1ITe,ITC1ALS,ALC1AlT1ALCT,Wl1WLS,WLC1AISN,AISC 
F(RI= R••4 + Al*R**3 + A2*R*R + A3*R + A4 
FPRl(RJ• 4.000•R••3 • 3.0•Al•R•R + z.o•A2•R + A3 
OTN • 1.00+6 

IF llRINl.EQ.l) GOTO 930 
C ASSESS SOLID WALL COLLISION 

08 • DBLEC-VlNJJ- OBLECALT*U(Ntl 
DC• -2.0•COBLElYINll + DBLElXCNt•ALTJ - 1.000/AlCt 

C t~ECK FOR OVERLAP 
IF tDC.LE.o.o.oR.08.LT.O.OI GOTO 920 
CALL INSRTIN,lOtlTA,TIME,ITJ 
RETURN 

920 DD• 08••2 - DC 
IF-CDD.LT.O.OI 00• o.o 
DD• OSQRTCODI 
CTN• C-DSI - DD 

IF CCTN.LT.O.Ot CTN• -108) +DD 
NEX• ITA 
NQA• 10 

C ASSESS UPSTREAM PERIODIC BOUNDARY COLLISICN 
930 DB• DBLECUINl•ALCTI - DBLECVCNJI 

IF llRlNl.EQ.11 oe~ OB•ALS/AISN 
DC• 2.0•CDBLECXINl•ALCTJ - DBLEIY(N)J) 

IF CIR(N).EQ-1) cc~ OC*ALSIAISN 
If CJA.EQ.ITCJ GOTO 940 

C C~ECK FOR OVERLAP 
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IF coc.Ge.o.o.oR.DB.GT.0.01 GOTO 935 
CALL INSRT(Nt4tlTBtTIME,ITt 
RHURN 

935 DD• DB•OB - DC 
IF CDD.lT.o.o, GOTO 940 

OD .. OSQRT(DD) 
OTB• -I DB + 00) 

IF IOTB~LE.O.O> OTB= I-DBI + DO 
IF IDTB.LT.o.o.cR.OTB.GT.OTN) GOTO 940 
NEX• ITB 
NOA• 4 

C ASSESS OOWNSTAEAM PERIODIC BOUNDARY COLLISION 
940 DC= DC - 2.0•0BLEIWL/AlSJ 

IF llRINJ.EQ.l) DC= DC+ 2.0•Wl*ll.OIALS - l.OIAlSNJ 
C t~ECK FOR OVERLAP 

IF IDC.LT.o.o.oR.08.LT.o.o.oR.JA.EO.ITB) GOTO 945 
CALL INSRTIN,6,ITC,TIHE,ITI 
RETURN 

9~5 ODs OB•OB - D~ 

If COD.LT.O.Ol DO= O.O 
DD= DSQRT I ODJ 
OTB• (-06 a - DD 

If CDT6.LT.0.0) OT6• t-OBt t DD 
IF ICTB.GT.DTN) GOTO 950 
DTN• OTB 
NEX• ITC 
NOA• 6 

950 TIM• TIME + OTN 
IF ICTN.GT.100.0l STOP 
CALL INSRTCN,NQA,NEX,TIM,IT) 

C ASSESS PARTICLE-PARTICLE CCLLISICNS 
IF (LAT.GT.IT) RETURN 
DO 100 1=1,3 
DO 100 J= LAT, IT 
IF IJ.EQ.NJ GOTO 100 

DX OBLE(X(JJl - DBLEIXCN)I + DBLE(WLC•FLOATCl-211 
DY = DBLECY(JJ) - DBLECYINI I - DBLEIWLS•FLOAH 1-21) 
OU • DBLECUCJJ) - OBLECUCNI) 
DV • OBLECVCJJ) - DBLEIVCNll 
DA .. OV**2 • ou••2 
oe • ov•ov+ ou•ox 
DC • ox••2 • DY••2-4.000 

IF (J.EO.JA) GOTO 200 
C CHECK FO~ OVERLAPS 

If CCC.GE.O.OJ GOTO 200 
NEX• J 
NQA"' 1-2 

CALL INSRT(N,NQA,J,TIME,ITt 
RETURN 

200 IF CCDU•DU + DV•DVl.LT.0.00001) GOTO 100 
If CCIRCN) + IRlJll.EQ.11 GOTO 300 
IF·1J.EQ.JAI GOTO 100 
oo·· DB••2 - DA•OC 

IF CDO.LT.0.0) GOTO 100 
DE = OSQRTIDOJ 
OTA s COE-DBI/DA 
OTB = -IOB+DEl/DA 

If CDTB.LT.D.Ol OTB= OTA 
IF IDTB.LT.0.0) GOTO 100 
IF CDTB.GT.OTN) GOTC 100 

NEX = J 
NOA=l-2 
TIMz TIME + OTB 



CALL INSRTlN1NCA,NEX1TIM,ITI 
GOTO 100 
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C. COLLISION ASSESSMEH BETWEEN A ROLLING ANC A NON-ROLLING PARTICLE 
300 DG• FLOATCIRINI - IR(J)I 

A5= 0.25*1DBLEl41SN•AISNI - DBLEC2.0•AISSI + 1.00+01 
A4• DC/A5 
A3= 2.0•DB/A5 
A2• (OA • DG•CtAISS - 1.D>•DY - AISC•DXll/A5 
Al• DG•CDV*(AISS - 1.0) - DU*AISC)/A5 

C t~ECK IF SOLUTION TO QUARTIC EXISTS 
H• A2 - Al•Al 
IL• A4 - 4.0*Al•A3 + 3.0•A2*A2 
G• A3 - 3.0•Al•A2 + 2.0•Al••3 
Jl• H*IL - G•G - 4.0*H**3 
001• [l**3 - 27.0•Jl•Jl 
002• 3.0•Jl - 2.0*H*IL 

IF IDDl.GT.O.O.ANO.CIH.GT.O.OJ.OR.(002.LT.O.O)l) GOTO 100 
t NARROW DOWN THE LOCATION OF THE TIME BY A BISECTION METHOD 

NP4TH• 1 
OTB• 0.000 
H= -0.25*DSQRTlCC+4.0l/OB 
IF IH.LT.0.01 H~ .Ob75 
FA.,. 44 

IF COABS(FAf.LT.l.OE-251 GOTO 910 
900 FB= FIOTB+HJ 

IF CFA*FBJ 907, 905, 905 
905 OTB= DTB+H 
906 IF fOTB.GT.DTNJ GOTC 100 

FA: f8 
GOTO (900,907), NPATH 

907 H2= H 
H11: H/2.0 

If (~.LT.l.00-8) GOTO 910 
NPAlH= Z 

If CH.GT.0.011 GCTO 900 
C WHEN CLOSE F.NOUGH USE A NEWTONS METHOD TO FIND COLLISION TIME 

ICON= 0 
DTB3= OTB 
FD" f4 
DTB2= OTB 

909 ICON= ICON•l 
CH= f0/FPRJIDT82J 

IFIDABSlCHJ.LT.l.OD-81 GCTO 908 
0182= DTBZ - CH 

IF (0ABSCOTB2-DTB3J.GT.H2.0R.ICON.GT.ZOOJ GOTO qoo 
FD• F C DT82 l 

IF CDABSCFO).GT.l.OE-251 GOTO 909 
908 OTB~ OTB2 

CJlO NEX "' J 
NOA= 1-2 
TIM:r:: Tl fll!E + OTB 

CALL INSRTCN,NQA,NEX,TIM,ITI 
100 CONTINUE 

110 RETURN 
END 
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D.2 Collision Assessment for the Couette Flow Simulation 

SUBROUTINE COlLUPCN,LAT,JA,TIME,GEE,HGT,tTAl,VTOP,VBOT,VStDEJ 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBROUTINE COLLUP C 
c c 
C COLLISION ASSESSMENT ROUTINE FOR THE COUETTE FLOW SIMULATION C 
~ c 
C ASSESSES ALL CCLllSIO~ LIST ENTRIES FOR THE PARTICLE N. THE TARGET C 
C IS STORED IN THE COLLISION LIST VIA THE ROUTINE INSRT. C 
C A TARGET NEX= JTA DENOTES A LO~ER WALL COLLISION C 
C NEX• ITAl DENOTES AN UPPER WALL COLLISION C 

C NEX • ITB DENOTES A DISAPPEARANCE UPSTREAM C 
C NEX • ITC A DISAPPEARANCE DOWNSTREAM. C 
c c 
C VTOP, VBOT, ANC VSIOE ARE THE VFLLOCITES OF THE UPPER, LOWER AND C 

C PERIODIC BOUNDARIES RESPECTIVELY C 
c c 
C ONE PARTICLE CAN BE EXCLUDED AS A TA~GET BY INCLUDING IT AS JA. THIS C 
C IS ADVISABLE IF N HAS JUST COMPLETED A COLLISON WITH JA AND THEY ARE C 

C PRESENTLY TOUCHING C 
c c 
C LAT lS THE FIRST PARTICLE IN NUMERICAL SECUENCE THAT IS TO BE CONSIOEREO C 
C AS A TARGET PARTICLE C 
c c 
C DCCASIONALLY A PARTICLE IN THE MAIN FIELD OF VIEW ~AY HAVE ITS PRIMARY C 
t COLLISON WITH A PARTICLE IN THE REPEATED FRAME EITHER UPSTREA~ OR C 
C DOWNSTREAM OF THE MAIN FRAME • THE CASE IN WHICH THE N PARTICLE COLLIOESC 
C ~ITH A PARTICLE I~ THE UPSTREA~ REPEATED FRA~E IS DENOTED BY NOA=-1 ; C 
C FOR A COLLISION WITH THE OO"NSTREAM REPEATED FRAME NQA••l. OTHERWISE C 
C NQA• O. C 

c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

OIMENStON xt10001,vc10001,u110001,v<10001,wc10001, 
C IRUOOOJ 

REAL IL,JL 
OOU8Le PRECISION TIME,TIM,OA,oe,oc,oT~,OTB.OTN,Ox,ov,ou,ov.oo. 

t DE,Al,A2,A3,A41A5,H,FA,FB,H2,DTB3,FO,OTB21 
t CH,F,FPRI,R,OHGT,OVT,CVB,OVSC,DVSS 

CO~MON/A/IT,x.v,u,v,w.SHEART,SHEARNtlR.AISS 

COMMON/B/lTA,ITB,ITC,ALS,ALC,ALT,ALCT,~L.WLS,WLC.AISN.AISC 

FCR,= R••4 + Al•R••3 + AZ*R*R + A3•R + A4 
FPRl(RJ= 4.0•R••3 + 3.0•Al•R•R + 2.0•A2•R + A3 

DHGT• DBLE CHGTI 
OVl.. DBl.E«VTOPt 
DVB= DBLECVBOT> 
OVS= DBLECVSIDEI 
DVSts DVS*ALC. 
OVSS= OVS*ALS 
DTN • 1. 00•6 
NQA• 0 

C IF "THERE IS NO GRAVITY OR THE SYSTEM IS VERTICAL THE 
t EQUATIONS ARE LINEAR 

IF (GEE.NE.O.O.ANO.ALC.NE.0.01 GOTO 1000 
IF IIRCNl.NE.0) GOTO 1030 

t LOWER WALL COLLISIONS 
OB= OBLEIUINJ•ALSI + DBLECVCNJ•ALCI - DVB 
DC• DBLEIXINJ•ALS) + DBLECYINl*ALCJ - 1.000 

IF CDC.GE.O.O.OR.JA.EQ.ITA.OR.OB.GT.0.01 GOTO 1010 
CALL INSRTCN,O,ITA,Tl~E,JTJ 

RETURN 
io10 IF coa.ec.0.01 GOTO io15 

DlB= -DC/DB 
IF COTB.LT.O.OJ GOTO 1015 



OTN= OTB 
NEJ<: ITA 

C UPPER WALL COLLISIONS 
1015 DC= DC • 2.000 - DHGT 

DB• DB - OVT 
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IF COC.LE.o.o.OR.JA.EQ.ITAt.OR.OB.LT.O.OJ GOTO 1020 
CALL tNSRTCN,O,ITAl,TIMEwIT} 
RETURN 

lOZo IF coa.ec.o.o> GOTO 1030 
OTB• -DC/DB 

IF (0TB.LT.O.O.OA.DT8.GT.DTN) GOTO 1030 
DTN• OTB 
NfX= ITAl 

C U~PER BOUNDARY COLLISIONS FOR ZERO G OR ZERO ANGLE 
1030 [f CGEE.NE.o.O.ANO.ALS.NE.o.ot GOTO 930 
1035 OB= OBLftUINl*ALC) - OBLE(V(N)*ALSI 

IF (DB.EQ.o.ot GCTO 950 
DC= OBLECJ<CNJ•ALC) - DBLECYCNl*ALSJ 

lf (JA.EQ.ITCI GOTO 1040 
If COC.GE.o.o.oR.OB.GT.O.OI GOTO 1038 
CALL INSRTCN,OtlTB,TIME,ITJ 
RETURN 

1038 OTB= -DC/DB 
IF CDTB.LT.o.o.oR.DTB.GT.OTNJ GOTO 1040 
OTN= OTB 
NEX .. ITB 

C LOWER BOUNDARY COLLISIONS 
1040 IF CJA.EQ.ITBJ GOTO 950 

DC• DC - DBLEIWll 
0811: 08 - DVS 

IF (OC.LT.o.o.oR.OB.LT.0.01 GOTO 1045 
~All lN5RT(N,O,ITC,TIME,lTI 
RETURN 

1045 OTB• -DC/DB 
IF tOTB.LT.o.o.oR.OTB.GT.OTNl GOTO ~50 

OTN• OTB 
NE>e= ITC 

GOTO 950 
t QUADRATIC EQUATION SOLTtON FOR NON-ZERO G 

1000 IF (IRCNl.NE.01 GOTO 930 
OB"' -(08LEIVIN)I + 08LECALT*UINtlJ 
OC • -2.0*CDBLECVCNil + OBLECKINJ*ALTI - 1.000/ALCt 

IF fOC.LE.O.Ol GOTO 920 
CALL tNSRTIN,O,ITh,TIME,ITt 
RETURN 

~20 OD= 08**2 - DC 
IF COO.LT.0.01 DO= O.O 

DO• OSORTlOOI 
DTN• -oe + DD 
NEX• ITA 
OCs DC • (2.000/ALC - OHGT/ALCI 
OB= DB - DVT 

IF-tCC.LE.0.01 GOTO 925 
CALL INSRTCNwOtITAl,TIME.ITI 
RETURN 

~25 OD• OB•DB - DC 
IF tOO.LT.O.Ol GCTO 930 

DD= OSQRT C DOI 
OTB• -COB • DOJ 

IF IOTB.LT.O.O) OTB= -08 + OD 
IF tDTB.LT.o.o.oR.DTB.GT.OTNt GOTU 930 
DTN• OTB 
NEX• ITAl 



c 
c 
c 
c 
c 

c 

c 
c 
c 
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WALL ANO PERIODIC BOUNDARY COLLISIONS IF GRAVITY IS PRESENT 
NOTE: SIMULATIONS OF THIS TYPE WfRE NEVER RUN 4ND THE 4CCUR4CY 

Of THIS SECTION IS UNKNOWN 

930 IF tALS.EQ.O.OI GOTO 1035 
OB- OBLECUINI •.ucn - OBl.ECVCNt, 

IF ClRCNJ.NE.OJ CB=DB•ALS/AISN 
DC• 2.0•IOBLElXCN)•ALCTI - DBLECYCNJIJ 

IF CIRCNl.NE.0) DC• DC•ALS/AISN 
IF (JA.EO.JTCI GOTO 940 
IF fOC.GE.o.o.oR.OB.GT.O.OJ GOTO 935 
CALL INSRTINtOtlTB,Tl~E.ITJ 
RETURN 

935 DO= DB•OB - DC 
If CDD.LT.O.OJ GOTO 940 

DO= DSQRT I DOI 
OTB• -COB + DD) 

IF lDTB.LT.0.01 OTB= C-DBJ + DO 
IF lOT8.LT.o.o.oR.DT8.GT.OTNJ GOTO 940 
NEX= ne 

9~0 DC• DC - 2.ooo•WL/ALS 
OB= DB - 2.0•DVS/ALS 

IF llRlNJ.NE.OJ DC= DC+ 2.o•wl•Cl.OOO/ALS - 1.0DO/AISN1 
IF roc.LT.o.o.oR.OB.LT.o.o.oR.JA.EQ.ITBI GOTO 945 
CALL INSRTCN,O,ITC,TlME,tT> 
RETURN 

945 DO• DB•DB - DC 
If CDO.LT.O.O) DO- O.O 

DD"' DSQRT C DOI 
OTB• l-DB l - DD 

If lOT~eLT.O.OJ OTB= (-OB) ~ 00 
tF IDTB.GT.DTNI GOTO 950 

DTN= OTB 
NEX= ITC 

STORE SHORTEST SOLID 80UNO•RV COLLISION IN COLLISION l.IST 
950 TIM• TIME + DTN 

CALL INSRTCN,O,NEX,TIM,ITJ 

.PARTICLE-PARTICLE COLLISIONS 

If ILAT.GT.ITI RETURN 
DO 100 1=1,3 
IF~~ l-2 

DO 100 J= L4T. IT 
IF CJ.EQ.N) GOTO 100 
DX• DBLECX(J)) - OBLECXCNll • DBLECWLCl*IFR 
DY• DRLEIYIJll - DBLE(YINll - DBLE(WLSJ•IFR 
DU• DBLElUlJll - DBLECUCNl) + DVSC•IFR 
DY• OBLECV(Jll - OSLFCVfNll - DVSS•IFR 
DA • ov••z + DU••Z 
DB • ov•ov+ ou•ox 
DC • ox••z + OY**Z - 4.000 

IF IDC.Ge.o.o.oR.J.eO.JAI GOTO 200 
NQA• IFR 

CALL INSRTCN,NQ4,J,TIME,ITI 
91ETURN 

200 If ((DU•DU + ov•ovl.LT.l.00-061 GOTO 100 
IF ICCIRCNJ.EQ.O.AND.IRIJl.NE.Ol.OR.IIRINJ.NE.O.AND.IRCJ) 

C .EQ.011.ANO.GEE.NE.O.OI GOTO 300 
IFIJ.EQ.JAJGOTO 100 

OD • DB••z - DA•DC 
IF 100.LT.O.OJ GOTO 100 



DE • DSQRTfOO) 
OTA= COE-08)/DA 
OTB .. c-oB-OE)/OA 

IF COTS.LT .O.O J DTBs OTA 
IF CDTB.LT.o.oJ GOTO 100 
IF (CTB.GT.DTNI GOTO 100 
NQ4•1-Z 
TIM• TIME • OTB 

CALL INSRTlN1NQA,J,TIM,ITI 
GOTO 100 
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C COLLISION ASSESMENT BETWEEN A ROLLING AND A NON-ROLLING PARTICLE 
't NOTE: THE EQUATIONS ARF ONLY DIFFERENT FRO~ THE FREE FALLING PARTICLE 
C CASE IF GRAVITY IS PRESENT. AGAIN THIS SECTION HAS NEVER 
C BEEN TESTED. 

300 DG• FLOATIJSIGNfl,tRCNI - JR(J)J) 
C CHECK THESE TWO STATEMENTS IF YOU RUN INTC TROUBLE 

OU= DBLE(UCJIJ - DBLECUCNI) - OG*ll-DNl*DVB*ALS 
~V • 08l~fV(~)l - OBLECVCNI) - OC*Cl-0Nt*DV8*ALC 
DA • ov••z • DU••Z 
OB • DV•OY+ ou•ox 
A5• o.25•CDBLE(AISN•AISNI - z.ooo•AISS + DBLECGEE•GEEll 
A4= OC/A5 
U• Z•DB/45 
AZ= IOA • OG•CCAISS - GEEl•DY - AISC•DXJJ/A5 
Al= OG•COV•(AISS - GEE) - ou•AISCl/A5 

He AZ - Al*Al 
IL• A4 - 4.0•Al•A3 + 3.0•A2•A2 
G= A3 - 3.0•Al*42 + 2.0•41**3 
JL• H*IL - G*G - 4.0*H**3 
001= IL**3 - 27.0•Jl*Jl 
002• 3.0•JL - 2.0•H•Il 

If coo1.GT.o.o.ANO.((H.GT.o.01.0R.(DOZ.LT.O.O)J) GOTO 100 
NPATH: 1 
OTB= O.O 
He 0.75•0SQRTCOC+4.0)/DB 
IF (H.LT.O.OJ H• H/3.0 
FAz A4 

IF C-OABSCFAJ.LT.l.OE-251 GOTO 910 
900 fB• FCDTB+H) 

IF CFA•FBI 907, 905, 905 
'905 OTB,. DTB+H 
~06 tr ICTO.GT.OTN) GOTO 100 

FA• FB 
GOTO (900,907), NPATH 

907 H2= H 
He H/2.0 

IF CH.LT.l.OO-et GOTO 910 
NPATH= 2 

IF CH.GT.0.011 GOTO 900 
!"CON= 0 . 
OTil3= OTB 
FD= FA 
OTB2= OTB 

909 ICON= ICON+l 
CH• FO/FPRl(OTBZ) 

IF(OABSICHl.LT.l.OD-8J GOTO 908 
DTB2z DTB2 - CH 

IF COABSlDTB2-DTB3J.GT.H2.0R.ItON.GT.2001 GOTO 900 
FD= FCOTBZI 

IF (OABSCFOl.GT.1.0E-25) GOTO 909 
908 OTB= OT82 



910 NFX = J 
NQA• 1-2 
TIM• TIME • OTB 

CALL INSRT(N 9 NQA,NEX.TIM 9 ITJ 
100 CONTINUE 

110 RETURN 
END 
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Appendix E 

LISTING OF THE PARTICLE COLLISION SOLUTION ROUTINE: PARTCL 

SUBROUTINE PARTCLCNA,NB,NQA,8,EP,JST) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBROUTINE PARTCL C 
c c 
C T~IS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SU~FACE RELATIVE C 
C VELOCITY COLLISION BETWEEN PARTICLES NA A~D N8 WllH A RADIUS OF C 
C GYRATION RATIO OF B AND A COEFFICIENT OF RESTITUTION OF EP. C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION x110001,vc10001,ur1ooot,vc10001,w11000>, 
C IRf1000),QS(50t,QN(50),0ISf50t,NCOL(50),RINPLSf21 

COMMON/A/IT,x,y,u,v,w,SHEART,SHEARN,JR,AISS 
COMMON/8/ITA,ITB1ITC1ALStALC1AlTtAlCT,~ltWLS1WLC,AISN,AISC 
COMHONIO/Dts.sT,NCOL,RI~PLS 

BB • 1.0+ 1.0/B 
C INSURF. THAT PARTICLES 00 NOT OVERLAP 

ONQA= FLOATCNQAJ 
OISV: V(NBI - IVINh) + WLS*DNOAJ 
OISX• XCNBI + WLC*ONQA - XCNAI 
DISC= SQRTIDISX•OISX + DISY•DISY> 

IF IOISC.GT.2.11 RETURN 
BS = DISY/OISC 
BC= DISX/DISC 
XINBJ• X(NAI + 2.00001•ec - DNCA*WLC 
YINBI• Y(NA) + 2.0000l*BS + DNCA*WLS 

C COMPUTE INITIAL ENERGY OF PARTICLES 
ENE~= 0.5•CUCN~l**2 + UINBl**2 + V(NAt••2 + VINBl**Z 

C + B•IW(NAl**2 + WfNBl••211 
C COMPUTE COLLISION IMPULSE AND USE TO UPDATE PARTICLE VELOCITIES 

OA • UfNBI - UCNAI 
DB = VINBI - VCNAI 

IF COISX*DA + OISY*DB.GT.0.01 ~ETURN 
DC= 0.5•(0A•BS - DB*BC + WfNAI +WtNBll/BB 
DF=0.5*11.0+EPl*C-OA•BC-DB•BS> 
DG = DC/B 
OH • DF•BC - BS•OC 
DI = BS*DF + BC•OC 
WCNSI • WINS> - OG 
WlN4J • WIN~J - DG 
UCNBI • UtNBt + DH 
UINAI • UINAI - CH 
VCNBI z V(NB) + DI 
VCNA) • VINAi - DI 

C AVERAGE MAGNITUDE AND DIRECTION OF IMPULSE 
IF CIST.LT.0.01 GOTO 100 
IC= l+INTl((XCNAJ+XfNB)J*AlS+lY(NA)+Y(NBll*ALCl/C2.0*STll 
RtMPLS(l)• RIMPLSILI + ABSCOFI 
RIMPLSt21• RIMPLSIZt + ABSCCCI 

C COMPUTE COLLISION FREQUENCY 
NCOLIICI• NCOLCICI + 1 

C COM•t1TE ENERGY DISSIPATED IN COLLISION 
DISCICI• DIS< IC) + ENER - 0.5•CUCNA•••2 + UCNB>**2 + 

C VlNAl**2 + VCNBl**Z + B•CWfNA>••2 + WCNB>**Zll 
100 RETURN 

~Nn 
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Appendix F 

L:STINGS OF THE WALL COLLISION SOLUTION ROUTINES: WALLCL 

F .. 1 Wall Collision Solution for the Inclined Chute Simulation 

SUBROUTINE WALLCL( NA,B,EW,tST) 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBRCUTINE WALLCL C 
c c 
C THIS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SURFACE RELATIVE C 
C VELOCITY COLLISION BETWEEN THE PARTICLE NA ANO THE WALL WITH A C 
C RADIUS OF GYRATION RATIO OF B AND A CCEFFICIENT OF RESTITUTION OF EW C 
C FOR THE CHUTE FLOW SIMULATION. C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION xc10001, Y(lOOOlt UllOOOJ, v110001, WClOOOlt 
C IRC1000t 

COMMON/A/IT,x,v,u,v,w.SHEART,SHEARN,JR,AISS 
COMMON/BflTA,tTB,ITC,ALS,lLC,ALT,ALCT,WL,WLS,WLCtAISN,AISC 
CCJMMON/EIWOIS 
BB: 1.0 •l.018 

C COMPUTE NOR~Al ANO TANGENTIAL COLLISION IMPULSES 
DA• CVCNAl•ALS-UCNAl*ALC-W(NAll/BB 
00=-c1.o+EWJ•(UlNAl*ALS•V(NAl•ALCI 
UI= UCNAI 
VI• V(NU 
WI• W(NAI 

C UPDATE PARTICLE VELOCITIES 
UCNAI = UCNAI + OA*ALC + OO•ALS 
V(NAI = VCNAI + OO•ALC-OA*ALS 
W(NA) • W(NAI + OAIB 

C INSURE THAT PARTICLE DOES NOT OVERLAP WALL 
DIST~ XCNA)*ALC - V(NA••Al~ 

XCNAI• OIST•ALC + l.OOOOl*ALS 
YlNAI• 1.0000l*ALC - DIST•ALS 

C IF SYSTEM IS BEING 4VER4GED COMPUTE IMPULSE AP~LIEO TO WAll 
IF CIST.LT.01 GOTO 100 

SHEART• SHEART + DA 
St4EARN• SHEARN + co· 
WOIS= WDIS - 0.5*lUCNAl**2 - Ul••2 + VCNAl**2 - V1**2 

C + B*IWCNA)**2 - Wl**21l 
100 VlSN= U(NAl*AlS+V(~41•ALC 

C IF THE VELOCITY NORMAL TO WALL IS SMALL ENOUGH, LABEL PARTICLE 
C AS ROLL ING 

If CABSCVISNl.GT.0.00011 GOTO 1000 
UISN= UfNAl*ALC - VlNAl*ALS 
UINAI= UISN*ALC 
VINA)~ -UISN•ALS 
IIHNU= 1 

C WRITE (6,6001 NA 
600 FORMATC/l5H PARTICLE ,15, lOH ROLLING/) 

1000 RETURN 
ENO 
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F.2 Wall Collision Solution for the Couette Flow Simulation with 

the Rough Particle/Wall Surf ace Condition 

S~BROUTINE WALL~LtNAtDtCWt1~1,un,u1u~.~blt~CCtUW~HtHW~HJ 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBROUTINE WALLCL C 
c c 
C THIS ROUTINE SOLVES THE ZERO DEPARTURE CONTACT SURFACE RELATIVE C 
C VELOCITY COLLISION BETWEEN THE PARTICLE NA ANO THE WALL WITH A C 
C RADIUS OF GYRATION RATIO OF B AND A CCEFFIClENT OF RESTITUTION OF EW C 
L FOR THE ~OUETTE FLOW SI"ULATION. C 
C DN=O INDICATES A LOWER WALL COLLISION C 
C DH• 1 INDICATES AN UPPER ~ALL COLLISION C 
c c 
cccccccctccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION x110001,v110001.uc10001,vc10001.wllOOOJ, 
C IRflOOOt,WOlSCZI 

COMMON/A/IT,x,v,u,v,w,SHEART,SHEARN,JR,AISS 
COMMON/B/ITA,ITB,ITC,ALS,ALC,ALT,ALCT,WL,WLS,WLC,~ISN,~ISC 

CO~MON/E/SHRT,SHRN,WDIS,VBOT,VTOP 

BB= 1.0 +l.O/B 
ON2• 1.0 - ON 
0N3~ 1.0 - 2.0*CN 
VB= DNZ•VBOT - ON•tVTOP•VBOTI 
DA= CVCNAt•ALS+UTOP•ON-IU(NAl•ALC+DN3•WCNAlll/BB 
VISN= U(NAl*ALS + V(NA!*ALC 
V~= ABSCDN2•VBOT + DN*CVTGP+VBCTJI 

C INSURE THAT PARTJCLE DOES NOT OVERLAP WALL 
OIST= X(NAl•ALC - YCNAl*ALS 
XCNA)= OIST*ALC + CCHGT - 2.000021*DN + l.OOOOll*ALS 
YCNAl= fCHGT - 2.00002l*ON + 1.0000l)*ALC - OtST•ALS 
UI• UlNAI 
VJ= VCNAI 
WI= WINAI 

If CABSCVISNl-VW.LT.0.0001.ANO.VS.GT.O.OI GOTO 100 
IF IDN3•VISN.GT.o.oJ GOTO 290 

C COLLISION SOLUTJCN 
00=-Cl.O+EWl•CVISN+VWJ 
UCNAI = UCNAI + OA*ALC + OC*ALS 
VCNA1 • V(NA) + OD*ALC - OA*ALS 
WINA) • WlNAl + DN3•DA/8 

GOTO 300 
100 UlSN• UINAl•ALC - VCNAl*ALS 

UINAI• UISN*ALC: 
VINAi• -UISN•ALS 
WCNAI• -IDN3•UISN + ON•UTOPI 
DA= B*CWCNAl-Wil•ON3 

IF CGEE•DN.NE.O.OJ GOTO Z90 
IRINAI• 1 + INTCDNI 

290 DO= DN3*ABSIVISNI 
C COMPUTE WALL S~EAR STRESS FOR NORMAL STRESS COMPARISO~ 

300 UWSH• UWSH • nN•OO 
B•SH• BWSH + ON2*0D 

IF"CIST.LT.01 GOTO 1000 
C COMPUTE DISSIPATION AT WALL 

WDJSIDN+lt• WDISIDN+lt - O.§•(U(N'l**2 - Ul**2-+ VINAl**2 
C - Vl**2 • B•C~CNAJ••2 - Wt••Zlt 

IF tCN.NE.0.01 GOTO 90 
C COMPUTE WALL STRESSES 

S~EART• SMEART + OA 
SHEARN• SHEARN t OD 

GOTO 1000 
90 SHRT• SHRT + DA 

SHRN= SHRN + DD 
1000 RETURN 

ENO 
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F,3 Wall Collsion Solution for the Couette Flow Simulation with 

the No-Slip Wall Condition 

SUBROUTINE WAllCLINA,e,ew,1s1,oN,UTOP1HGT,GFF,UWSH,BWSHt 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBROUTINE W4llCl C 
c c 
C THIS ROUTINE SOLVES THE ZERO DEPARTURE RELATIVE CNO-SLIPJ C 
C VFLOCITY COLLISION BETWEF.N THE PARTICLE NA ~NO THE W4LL WITH A C 
C RADIUS OF GYRATION RATIO OF 8 ANO A CCEFFICIENT Of RESTITUTION OF EW C 
C FOR THE COUETTE FLOW SIMULATION. C 
C ON•O INDICATES A LOWER WALL COLLISION t 
C DN= l INDICATES AN UPPER WALL COLLISION C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

DIMENSION xc10001,vc10001,u110001,v110001,w110001, 
C IR(l0001,W01St21 
CO~MON/A/IT1XtYtUtV1WtSHEART,SHEARN,lR1AISS 
COM~ON/8/lTA,ITB1ITC,ALS,AlC1ALT1ALCT1WL,WLS1WLCtAISN,AISC 
COMMON/E/SHRT1SHRN,WOIS,VBOT,VTCP 
BB= 1.0 +1.0/8 
ONZ= 1.0 - ON 
ON3= 1.0 - 2.0*CN 
VB= DN2•VBOT - ON*(VTOP+VBOTI 
DA= UTOP*ON - (Ulll*ALC - VIIJ*ALS) 
VISN~ U(NA)•4LS • VCNA)•ALC 
VM= ASSCDN2*VBOT + ON*(VTCP+VBOTJJ + 0.0001 

t INSURF THAT PARTICLE DCES NOT OVERLAP W4Ll 
DIST= XfNAl*ALC - YINAJ•ALS 
X(NAl~ OIST•ALC + llHCT - 2.00002J*ON + l.OOOOlJ*AlS 
VINA)= ((HGT - 2.00002J•DN + l.000011*4LC - O[ST•AlS 
Ut= Uf NAI 
VI= VINAi 
Wl= W(NAl 

IF (•BSCVISNJ.LT.VW.4NO.VB.GT.O.O) GOTO 100 
JF (0N3*VISN.GT.O.OI GOTO 290 

C WALL COLLISION SOLUTION 
00=-(l.O+EWl•VISN 
UtNAJ • ON•UTOP 
VCNAJ • -EW*VINAI 

GOTO 300 
C IS PARTICLE TO BE TAGGED AS ROLLING? 

100 U(NAJs UTOP*DN 
VCNAJ= O.O 
WINAI= O.O 
DA= B*IWCNAJ-Wll*ON3 + UINAJ-UI 

IF CGEE•ON.NE.0.01 GOTO 290 
l~CNAI= l + INTtDNJ 

290 DO= ON3•ABSIVISNI 
C CCMPUTE INSTANTANEOUS STRESS Al WALL 

300 u~sH: UNSH ~ ON•DO 
BWSH: BWSH + DN2*DO 

C COMPUTE DISIPATION AT WALL 
IF.CIST.LT.O) GOTO 1000 
WDlSCON•lJ~ WDISCON•lt - o.5•CUCNAl••2 - u1••2 + VCNAl••2 

C - Vl•*2 • B*CWCNA>••2 - ~1••2>J 
C COMPUTE WALL SHEAR STRESS 

IF lDN.NE.O.O) GOTO 90 
SHEART• SHEART + DA 
SHEARN= SHEARN + OD 

GOTO 1000 
90 SHRT• SHRT + DA 

SMRN• SHRN • on 
1000 RETURN 

END 
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Appendix G 

LISTINGS OF THE COLLISION LIST MANAGEMENT ROUTINES 

G.l INSRT: General Collision List Manager 

SUBROUTINE thSRTfN,NQA,NEX,TJM,ITI 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
C SUBRCUTl~E INSRT C 
c c 
C THIS SUBPROGRA~ "AINTAINS A COLLISION LIST C 
c c 
C ENTRY INSRT INSERTS COLLISIONS INTO TH~ LIST C 
C INIT INITIALIZES THE COLLISION LIST C 
C NEXT TAKES NEXT COLLISICN FROM THE COLLISION LIST C 
c c 
C THIS SU6PROGRA~ RfUIRES T~f AUXILLARY SU8ROGRAM Rf~OVf MHICH C 
C REMOVES All COLLISIONS INVOLVING A GIVEN·PARTICLE FROM C 
C THE LIST C 
c c 
C THE COLLISION INFOPMATION IS STOPEO IN THE ARRAY lCOll C 
c c 
C IFREF POINTS TO THE NEXT FREE LINE IN ICOLL IN WHICH A COLLISION C 
C MAY BE INSERTED C 
C THE LIST IS CONTINUED IN COLUMN 9 OF ICOLl C 
C ISHORT POINTS TO THE LINE JN ICOLL WHICH CONTAINS THE NEXT COLLISION C 
C ILONG POINTS TO THE LAST COLLISION IN ICCLL C 
C NPOINTINI POINTS TO A llfO LIST CONTAINED IN ICOLL COLUMNS 6.1,8,9 C 
C CONNECTING ALL THE COLLISIONS FOR THE PARTICLE N. C 
C IF NPCINTINlc J THEN THE NEXT ELEMENT [N THE LIST CAN BE FOUND C 
C IN COLUMNS 617 OF LINE ! IN ICOLL C 
C lf NPOINTINI HAS THE FORMAT NPOINT(N)= 200000+1 THEN THE NEXT C 
C ELEMENT IN THE LIST CAN BE FOUND IN COLUMNS 8,9 IN ICOLL LINE C 
C TIMEftJ IS THE REAL VALUED ARRAY CONTAINING THE TI~E AT WHICH THE C 
C COLLISIONS DESCRIBED IN ICCLL LINE I WILL OCCUR C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

INTEGER ICOLLll000,9J,NPOINTl10001 
DOUBLE PRECISION TlMEtlOOOt.TIM 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
C ICOLL IS ORGA~IZEO AS FOLLOWS: C 
C ICGLL(ltlJ CCNTAIN5 A PARllCLE NU"BtR C 
C ICOLLCl121 CONTAINS ITS TARGET NUMBER C 
C ICOLLll13) CONTAINS NQA, lHE COLLISION FRAME IN WHICH THE C 
C COLLISION WILL OCCUR C 
C ICOLLllt~) POINTS TO THE COLLISION LINE THAT IS TO OCCUR JUST 8EFORE C 
C THIS ONE C 
C ICCLLClt51 PCINTS TO THE NEXT COLLISlCN TO OCCUR. C 
C ICOLLllt6t IS A BACKWARD POINTER IN THE lifO LIST OF All THE C 
C COLLISIONS FO~ THE PARTICLE ltOLLtl,l) C 
C ICOLL(l,7t IS THE FORWARD POINTER IN THE LIFO llST FOR PARTICLE C 
C ICOLLCl,ll C 
C ICOLlfl,St IS THE BACKWARD POINTER IN THE LIFO llST FOR PARTICLE C 
C ICOLLll,2J C 
C ICCLLflt91 IS THE FORWARD POINTER IN THE LIST FOR PARTICLE ICOLLlt,21C 
c c 
C A ZERO IN A POINTER POSITION INDICATES THE END OF THE LIST C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

COM~ON/C/TIME1NPOINT,ICOLL,JFREE1ISHORT,ILONG 
NT= I FR EE 
TIMEf NTl:o: TIM 
ICOLLINT1U= N 
ICOLUNTe21= NEX 
ICOLUNTt31= t.:QA 
ICOLLCNT,11• NPCINTINI 
ICOll (NT,61= 0 
ICOLLINT, 8)• 0 



!FREE= ICOLllNT,9) 
JF CIFR~E.EQ.01 STOP 

IF (NPDINTCNl.NE.01 GOTO BO 
NPOINTCN)• NT 

GOTO 90 
80 NP2• NPOINTINl/100000 

NP"' NPCINTINI - Nt>Z*lOOOOO 
NPOINTl Nia NT 
ICOLLINPe6+NP21• NT 

90 IF (NEX.LE.ITJ GOTO 97 
ICOlltNT,91"' 0 

GOTO 100 
97 IF (NPOJNTCNEXJ.NE.01 GOTO 95 

NPOINTINEXI= NT + 200000 
IC.OLUNT19J• 0 

GOTO 100 
95 NPZs NPOINTlNEXl/100000 

NP= NPOINT(NEXa - NP2•100000 
ICOlL(NP,6•NPl)~ NT + 200000 
ICOLL(NT,91• NPCINT(NEX1 
NPOINTfNEXI= NT • 200000 
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C SORT FOR POSITION IN ORDER OF OCCURENCE LIST 
c 
C IS THIS COLLISION TO BE THE FIRST IN THE LIST 

100 IF (ll~E(NTl.GT.TIMEllSHCRTll GOTO 110 
lCOLl(ISHORT,41~ NT 
1 cm tr NT. 4,.. o 
ICOLLCNT,51~ tSHORT 
l SHORT .. NT 

RETURN 

C IS THIS COLLISION TO BE THE LAST IN THE LIST 
110 IF CTIMECNT).LT.TIME(ILONGIJ GOTO 120 

lCOLL(NT,41= llCNG 
1COLLC1LONG,5Ja NT 
ICOLUNT,51= 0 
ILONG., NT 

RETURN 

C START THE SEA~CH fO~ THE POSITIO~ IN THE COLLISIO~ QUEUE WITH THE 
C LAST ENTRY IN THE LIST 

c 

120 ILAST• ILONG 
130 IffTIHElNTt.GE.T1HECICOlllllASTt4l1.0R.ILAST.EQ.Ol GOTO 140 

ILAST= ICOLL(tLAST,41 
GOTO 130 

140 ICOlllNT,41= ICOLLllLAST,4) 
ICOLLllCOLLClLASJ,4),5)= NT 
ICOLL(NT,51• ll~ST 

ICOll(ILAST,41• NT 
RETURN 

ENTRY INIT 

C THIS ENTRY INITIALIZES THE COLLISION LIST 
c 

00 25 I= ltlODO 
DO 20 12• 1t8 

20 ICOllfI,121• D 
ICOLLI I , 1H• I H 
TIMECll• O.O 

25 NPOINTttl• 0 



ItDLl nooo, 9l •O 
IFREE= 1 
I SHORT:: 1. 
llONG• 1 
TIMEClt= 1000000000.0 

RETURN 

ENTRY NEXTIN,NEX,NQA.TIMI 

-253-

C THIS ENTRY POINT YIELDS THE NEXT COLLISIO~ IN THE LIST 

N• JCOLLCISHORT,ll 
NEX• ICOLLCISHORT,ZI 
NCAa ICOLLCISHORT,31 
Tl~= Tl"EllSHORT• 
ISHORT= JCOLLCISHORT,51 
ICOLLllSHORT,4)• 0 

CALL RE"40VEC NI 
IF INEXaLEalT) CALL ~eMOVECNEXl 
RETURN 
END 
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G.2 REMOVE: Routine to Remove All Collisions from the List Involving 

a Given Particle 

SUBROUTINE REMOVECNa 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
c sueROUTINE REMOVE c 
c c 
C THlS SUBROUTINE REMOVES All THE ENT~IES IN THE COLLISION LIST ICOLL C 
C INVOLVING PARTICLE N. C 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

INTEGER ICOLLll000,9,, NPOINTllOOOI 
DOUBLE PRECISION TIMEtlOOOI , 
COMMON/Cl TIME,NPOINT,ICOLL,IFREE,ISHORT,ILONC 

C START ~ITH FIRST PARTICLE IN LIST 
NP2• NPOJNT(Nt/100000 
NP= NPOINTCNt - NP2•100000 
NPOINT(NJ= 0 

C END Of LIST? 
1000 IF CNP.EQ.Ol RETURN 

r. RECONNECT UNAFFECTED LISTS 
NEXT= ICOLLCNP.9-NP2t 
LAST= ICOLL(NP,8-NP2J 

IF INEXT.ec.o• GOTO 100 
NEX2= NEXT/100000 
NEX= NEXT - NEX2•100000 
ICOLLCNEX,b•NEXZI= LAST 

100 IF ILAST.EQ.O) GCTO 105 
LAS2= LAST/100000 
LAS= LAST - LAS2*100000 
ICOLLCLAS,7•L4S2•= NEXT 

GOTO 110 
105 NPOINTCICOLL(NP,2-NP2/2•1= NEXT 
110 NT~ tCOLLCNP,7+NP2J 

ICOLLCICOLLtNP,51,41= ICOLLINP,41 
ICOLLIICOLLCNP,4),5)= ICOLLINP,51 

C ATTACH FREED ELEME~T TO LIST OF FREE SPACES 
ICOLLCNP,9•• IFREE 
IFREE= NP 

IF (NP.NE.ILONGt GOTO 200 
ILONG= ICOLLINP,41 
ICOLLCILONG,5•• 0 

200 IF CNP.NE.tSHORT> GOTO 250 
ISHORTz ICOLLCNP,5t 
ICOLL(ISHORT,41= 0 

250 NP2• Nl/100000 
NP= NT - lOOOOO•NP2 

GOTO 1000 
END 
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