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ABSTRACT

An experimental investigation was conducted in the GAICIT
Hypersonic Wind Tunnel, Leg No. 1, to determine the static pressure
distribution on a cone with 5° semivertex angle at a nominal Mach
nunber of 5.8 |

This investigation was concerned with the effect of hypersonic
boundary layereshock wave interaction on the pressure at fhe cone
surface, Pressure distributions were measured for three values of
Reynolds numbers per inch and a comparison was made with theoretically
calculated pressure distributions. | |

The influence of viscosity in hypersonic flow was demonstrated by
an induced pressure rise of approximately L5% above theoretical inviscid

pressure for the lowest Reynolds number tested.
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LIST OF SYMBOLS

The subscript "1" refers to conditions in the free stream ahead
of the conical shock, and the subscript "2% refers to local conditions
on the cone surface, Stagnation values are denoted by the subscript “0Y,
A second subscript "i" refers to inviscid flow values, |

C constant of proportionality in viscosity-temperature relation
£/ 4 =0 (T/T,)

c:p,cv specific heats at constant pressure and volume
K hypersonic similarity parameter, My 6,

k coefficient of thermal conductivity

M Mach nurber

P presshre

Pr Prandtl number, ¢ I/f/lc

Re Reynolds number based on distance x, u x/

T absolute temperature

u,v velocity components paraliel and normal to cone surface, respectively

X,y coordinates parallel and nomal to cone surface with origin at apex
Y ratio of specific heats °p/°v

5@(- boundary layer displacement thickness

2] flow deflection angle
e c cone semi-vertex angle
A coefficient of viscosity
yd mass density
A ratio defined by Eq. (i)
M 3
X induced pressure field parameter, )C_ 2
c c
) X2

vi



I. INTRODUCTION

With the advent of hypersonic flight, attention is quite
naturally directed to the complicated problems associated with such high
speeds. One aspect of hypersonic flight is the complex "interaction"
between the viscous and inviscid properties of the {luid, The boundary
layer is considerably thicker at hypersenic speeds, and in addition,
~ the shock wave lies much closer to the edge of the boundarj layeres The
deflection of the streamlines induced by the boundary layer amounts to a
significant change in the shape of the body, and this in turn affects
the shape of t.h\e shock wave, Because of the interaction, the actual
pressure distribution over a body in hypersonic flight may vary con-
siderably from that predicted by inviscid theory,

The problem of the effect of the interaction between shock wave
and boundary layer has been the subject of a number of theoretical and
experimental investigations (Cf. Refs, 1 to L), Since only linited data
on pressure distributions in the hypersonic speed range are available,
an investigation to determine the static pressure distribution over an
unyawed cone was undertaken, No attempt was made to formulate new
theorye It was desired to obtain the infomation so that it would be
available for further studies,

This investigation was conducted at a nominal Mach number of 5.8
in Leg No. 1 of the GALCIT Hypersonic Wind Tunnel, ﬁe design and
materials of the model were chosen so that it might later be used in

Leg Noe 2, at a Mach number of 10,



IT. EQUIPMENT AND PROCEDUHE

Ae. Wind Tunnel Description

The experimental program was conducted in the GALCIT 5" x Su
Hypersonic Wind Tunnel, Leg Noe le This is a continuously operating,
closed return type tumnel with the required compression supplied by
five stages made up from thirteen Fuller Rotary Compressors. When
necessary an additional compressor stage consisting of Ingersoll Recipro-
cating Compressors may be utiliged. The compressors and valving in the
system were operated from a }emote control panel adjacent td the test
section,

The air heating system consisted of a multiple-pass heat exchanger
and used superheated sieam as a heating mediume |

Drying of the air was accomplished by use of a 2200 pound bed of
silica gel. This was reactivated by an integral blower heater condenser
system, The maximum water content was kept below 100 ppm (parts per
million) by weight,. .

0il removal was accomplished by use of cyclone separators follow-
ing each compression stage and by finely divided carbon canistors,
porous carbon filter blocks and a fiber glass filter. The presence of
0il in the air was due to the lubrication system required by the rotary
compressors. Air used during the tests contained approximately 2,5 ppm
of oil by weighte

The nozzle blocks were designed by the Foelsch method and
corrected for an estimated boundary layer displacement thickness,

Static pressure orifices were installed at one inch intervals along the

top and bottom nozzle blockse A comparison of the actual pressure in the



test rhombus was made with calibration data from tunnel-empty pressure
SUrveys,

A séhematic diagram of the plant is shown in Fig. l.

B. Instrumentation

All static pressures were measured by a 32-tube vacuum-referenced
manometer using DC-200 silicone fluid, A Tate-Emery nitrogen balanced
gage mevasured tumel stagnation pressure; this pressure was controlled
within 2,04 psi by a Mimneapolis Honeywell Brown controller.

Stagnation temperature was measured by a themmocouple probe located
one inch upstream of the no.zz"le throat and controlled by a Brown Controller,
Other temperatures necessary for plant operation were recorded by a 20
point Leeds and Northrup recorder,

A schlieren system using a BH-6 steady source was used for the

schlieren photographs,

Ce Model Description

The basic model was a slender cone with semivertex angle of 5°,
Two separate models were made; both were constructed in the same mamner,
although the orifice locations were different. Tests were made on both
modelss however, all the data presented in this report were taken fmm
rmms made on the second model,

The model was consitructed in two parts, as shown in Figs. 2 and 3,
The conical frustrum was L4,72" long, with large base diameter of 1 inch
and small base diameter of ,175 inches, Into the small base could be

fitted the separate conical tips which were 1 inch in length, The



b

over-all length of the assembled cone was 5.7l inches.

A set of five cone tips were made, four of which had a single
pressure oﬁfice located at various distances from the apex. The fifth
tip had two orifices, The orifice locations, measured along a ray of

the cone with origin at the vertex, were as follows:

Orifice Location

«0981
+128"
1Tt
. 250!:
3924
.696n
1.570"
2. 780"
L0004

O o~ OVLET W N

Additional orifices were installed at 90° intervals around the circum-
ference as shown in Fig. 2, A thermocouple was located L.5" from the
apex, |

Orifice dlameters for the cone tips were of necessity very small,
ranging from ,O0L" for the first to .013" for the fifth, Orifices
installed on the conme Ervstrum were ,02 “. Specifications are listed :m
Fige 2.

The model was machined from stainless steel, and polished, The
cone tips were surface finished after assembly, so that the joint was
quite smooth, The model was supported by a hollow sting approximately
" long and " in diameter, Tubing was led out through the sting. One
orifice was installed in the sting very near the bagse of the cone to
determine the base pressure,

The model installed in the tunnel is shown in Fig, hs The sting



was fitted into a collar, secured by set screws, and suspended from a
pair of vertical actuators which could be positioned by controls outside
the 'bunnei. This pemitlbed the model angle of atiack to be adjusted.
In addition a small adjustment in yaw was possible,

leak tests were conducted before each run, Time responses of the

small orifices were quite longe

D¢ Tumel Calibration

Static pressures in the tunnel were measured by orifices installed
along the top and bottom nozzle blocks, Thesé were compare_d with original
nozzle calibration data for each rune Also static pressure surveys were
made over the test rhombus* to determine axial static pressure variations;
measurement of tummel stagnation pressure with the assumption of isen-
tropic flow pemitted determination of free stream Mach number,

A plot of tunnel empty static pressure over the region occupied

by the model is shown in Fig. 12

E. Test Procedure

1. Static Pressure Distribution

The model was installed on the tumel centerline as shown in Fige
e The distance between the base of the cone and the support collar was
3.5"e The orifices located about the circumference were used to position

the model at zero angle of attacke Tests were conducted as follows:



To(°F) P (psig) Re/in
225 80 23.2 x 10*
225 3246 12,1
225 10 646

A schlieren photograph taken during the test is shown in Fige 5.

2+ Additional Tesis

Tests were also conducted with the model located off the center-
line and at different axial positions. The distance between the base of
the cone and the collar was at first set at 1l.5%"; the colla_i' then
installed was 1" in diameter, At this posi'bion'a pressure rise was
noted over the last two orifices, A new support collar 3/L* in diameter
was installed and the distance from base to collar was increased' in
increments, Beyond 3,5" there seemed to be no effect on the last two
orifices so the cone location was fixed at this point.

Tests at 4" above and below the centerline showed no appreciable
change in the pressures sensed at the orifices. '

At P, = 80 psig the angle of attack was varied over a small range
of three degrees in one degree increments to determine the effect of yaw

on pressure distribution,



ITI. DISCUSSION OF RESULTS

Ae Surface Pressure Distribution Data

The pressure distributions are presented in Figs. 7 to 10e The
data ware plotted in the following manner: first, as the ratio of measured
pressure to stagnation pressure versus the linear distance along a ray
of the cone; and second, as the per cent pressure rise above the theo~
retical inviscid pressure versus the parameter 1/ )’E{; o Reynolds num-
ber was based on the local conditions on the cone and on the distance
from the apexe The theoretical inviscid surface pressure to stagnation
pressure ratio was computed by taking the tunnel empty survey data
corresponding to a point on the cone and calculating the conditions
behind the conical shock, This gave the inviscid pressures shown in
Figse 7, 8, and 9

 The plot of induced pressure increment shows a maximum induced
pressure rise of approximately LS% for the lowest Reynolds number tested,
The scatter at the higher values of stagnation pressureé was rather
small, but was considerably larger at the lowest pressure, Response
times were quite long for the tip orifices, requiring approximately one
hour for each pointe

The plot against 1/ )@?{2 seemed to bring the data at the various
stagnation pressures into good agreement, However, when extrapolé;ted to
infinite Reynolds number, the plot passed slightly below the inviscid
pressure, 7The initial tests at different axial positions indicated that
the model support was influencing the surface pressure near the base,
but modification of the support collar and increasing the distance

from the cone base to support at least decreased this effect. Although



Harkins (Ref. 8) indicated that the support interference could possibly
be felt for string lengths less than seven inches, the physical limit-
ations and lother considerations prevented the location of the modellwith
this length of sting. Base pressures measured during the tests were
considerably lower than the surface pressures at the orifices nearest
the base, Hamitt and Bogdonoff (Ref. 5) noted a similar effect on
pressures near the base of a cone during tests in helium at Mach number
13; it was attributed to trailing edge disturbances propagating forward
through the boundary layer,

The thiclkmess of the leading edge of a flat plate has. been shown
to exert some influence on the induced pressure, Since the effect of
the radius at the apex of the cone is probably similar, a microscopic
examination of the cone tips was made which showed some inaccuraciese
Some microphotographs of the tips are shoun in Fige 6 The diameter at
the apex of three of the tips was approximately ,001"; one had a diameter
of approximately o0015" and the last had a diameter of .0003", These
distances were ten to twelve times the mean free path of the flow at
P, = 10 psig, except the latter which was about four times mean free
path, In addition the angles were not exact very near the tips It is
consideﬁ::‘d probable that these inaccuracies account for some of the
scatter, especially at the lowest value for P 0®

The effect of yaw on the cone was least minimized by adjusting the
position of the cone so that the pressures at the diametrical locations
were equalizeds 'However, a tunnel survéy showed that small variations in

flow direction existed in the test rhombus.



B. Comparison with Theory

A number of attempts have been made to treat theoretically the
problem of hypersonic boundary layer--shock wave interactions ILin,
Schaaf, and Sheman (Ref. 1) developed a simple relation for the induced
pressure distribution by using the linearized solution given by Laitone
(Ref, 11) for flow over an infinite slender body of revolution, and
applying the tangent cone approximation to the composite bédy of cone
plus the boundary layer displacement thickness, Talbot (Ref. 6) com-
pared their results with data obtained for low density flow over a 5°
cone at a nominal Mach number of 4.0, The limitations of tuis theory
were quite severe however, and it was not considered applicable %o this
expelf'iment.

The theoretical work of Lees and Probstein seemed to offer a
better basis for comparison, Probstein (Ref. 9) considered the problem
of the steady hypersonic viscous flow over an unyawed cone,. “The case of
"weak" interaction was treated, where it was assumed that the shock
exerted only a small influence and the induced pressure gradients were
considered to be perturbations on a uniform flows It was pointed out
that, in general, a rotational characteristics computation wowld be
required to compute the inviscid pressure field, However, the tangent
cone approximation ﬁas adopted, and the pressure was written as a

' Taylor's series expansion in powers of ds#/dx as follows:

i d(& * ' sz Jé,,.z

[~2X-%
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The change of displacement thickness, dé§%/dx, for zero pressure
gradient was then calculated as the first step in an iteration process,
dg*/ dx was .obtained for a body of revolution by using the Mangler
transfomation and was given by

g

487 o e

dy 13 C‘%:— (2)

where the quantities dc and Gc were the boundary layer parameter defined
as a function of the gas properties, and the proportionality constant
in the assuned viscosity-~temperature relation, respectively. For air,
C, Was approximately equal to unity (Ref. 10). Also for an insulated

body with Pr = 725, d, was given by the approximate relation

It was also pointed out that the coefficients of dé#/dx in Eqe (1)
could be evaluated numerically from the inviscid Taylor-Maccoll solutions,
However, for values of the hypersonic similarity parameter K =M 6, > 1,
algebraic relations were obtained fof the coefficients as functions of K

and Y « Eqe (1) was then written as follows:

P2/P21 = 1 + Fl(K) dci c + F2(K) d02 i;cz (3)

where )’( o Was the induced pressure field parameter defined by

M 3
XC = Yd; )’R'e;;_z .

The functions FI(K) and F2(K) were computed and plotted for
K> 0453 howéver, the approximation was not considered satisfactory for

K< 2.
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The accuracy of the tangent cone approximation was examined by
lLees in Ref, 12, By comparing the tangent cone approximation with
characteristics solutions a first order "correction factor" s A 5 Was
evaluated for various values of Ke A was defined by
)

de | exect

)
de “Tangent

Cone”

For purposes of comparison with this experiment, Eq. (i) was

(L)

applied to Eqe (1), giving (dropping higher order tems)

S {d(%)] (d:‘)
B, B/r) | 45 le-a\dr (5)

or in terms of the parameter Xe'

A
B 3(7;')]
R~ +£%ﬁ){de

o:

de M X
el ”=}X‘ (5a)

In this experinent K = 0.5; in view of the fact that the functions
F,(K) and F,(K) did not hold for K £ 1 the coefficients of dgw/dx in
Eq. (1) were calculated numerically by Ref. 7. M, and E‘.ex2 were based on
local conditions "far" downstream from the cone apexe A , obtained
from Ref. 12, was 1,19, Egs. (5a) and (1) (first order tems) are
compared with the experimental data in Fige 1l, In general the data
are somewhat higher than theoretical predictions, As mentioned previously
the cone tips were not perfectly sharp; all had finite radii at the apex
which were greater than the mean free pathe Hammitt and Bogdonoff in
Ref, 5 state’tha'b the experimental realization of a sharp leading edge

might be obtained if the leading edge radius were a small percentage of
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the mean free path. Since the theoi'y does not consider the effect of a
finite radius at the cone apex or the effect of a radical change in the
shape of the shock wave in the vicinity of the apex, this result is not

wnexpected,
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IV. CONCLUSIONS

The results of the investigation of pressure distribution on a
5° cone at a nominal Mach number of 5.8 indicate the followings

(1) The induced pressure was approximately 45% greater than
theoretical inviseid pressure for the lowest Reynolds number testeds

(2) The use of the paramster 1/ )@ex“; correlated the data taken
at various stagnation pressures quite well,

(3) The measured pressures nearest the apex were somewhat higher
than theoretically predicted pressures, The unknown influence of the
region in the immediate vicinity of the apex points to the need for

further tests to determine this effects
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APPENDIX A

ACCURACY ANALISIS

Magnitudes of random errors were estimated by considering
reproducibility of observations, sensitivity of the scale, and associated
reading errors., For the experimentally measured quantities these errors

were as follows:

Measurement ~ Estimated Msximum Error
Surface pressure, p, £0,ls mm Silicone
Stagnation pressure, p, less than 0.5%
Tunnel static pressure, p, %0.2 mm Silicone

The accuracy of the computed values based on estimated errors in

individual measurements is as follows:

Quantity Maximam Error
Pressure ratio, p,/p, *2,5%
Pressure ratio, p;.‘,i{/po 2 ¢
Reynolds number, Re g

Xo 2 3
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Fig. 3 STATIC PRESSURE MODEL

STATIC PRESSURE MODEL IN HYPERSONIC TUNNEL
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Fig. 5 SCHLIEREN PHOTOGRAPH OF CONE
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Fig. 6(a) Fig. 6(b)
Tip No. #1 Tip No. #2
T T

0 d 2 3 4 D mm

Magnification 160x

Fig. 6(b) Fig. 6(d)
Tip No. #3 Tip No. #5

Fig. 6 MICROPHOTOGRAPHS OF CONE TIPS
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