A THEORY OF STALL PROPAGATION IN AXTAL

COMPRESSORS ON THE BASIS OF AIRFOIL CHARACTERISTICS

Thesis by

Odus Roy Burggraf

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1955



LACKIOWLEDGEMENTS

My deep personal thanks are given o Professor F. E. uarble
for his continuing aid during the course of this work. Thanks are
also owing to Professor H. S. Tsien, who suggested the model for the
blade characteristic, and to rrofessor W. D. Rannie, who first
suggested the importance of considering the influence of drag on
propagating stall. FPFinally credit must go to ifiss Janet Chandler
for her invaluable assistance with the computations and preparation

of figures, and to ilrs. Burggraf for her freguent encouragement.



ABSTRACT

The process of stall propagation in an axial flow compressor is
represented by non-linear airfoill 1ift and dra;; characteristics, with
a time lag associated with the stalling mechanism. A pair of non=-
linear integro-differential equations express the 1ift and drag as a
function of time for a given airfoil in an isolated plane cascade
representing an annulus with only a finite number of bvlades.
Lpproximate solutiohs of these integro-differential equations are
obtained by considering only the fundamental [requency in the Fourier
series representing the blade loadings. (ualitative results are
obtained for three cases: (a) only blade circulation is considered to
be of importance in the mechanism of propagating stall, (b) blade
drag is of predominant importance, and (c) combined effects of 1ift
and drag are considered. Comparisons are made of the propagating
speeds calculated for a finite number of blades with the values
obtained by the approximation of an infinite number of blades. The
magnitudes of the fluctuations.in 1ift and drag are calculated as well

as limiting angles of attack for wiilch stall propagation can occur.
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I, INTRODUCTIOHN ,
There are certain general characteristics of stall propagation
in axial compressors which appear to be relatively straightforward.
“hen a compressor blade row operates under highly loaded conditions
one or more blades may stall; the resulting strong reduction in air-
flow through the corresponding blade passages induces inflow conditions
that tend to stall neighboring blades (fig. 1). Thus the stalled state
propagates from one blade to another. Analytical models exhibiting
stall propagation are not difficult to construct. V. R. Sears
(reference 1) assumes that the blades may be treated as airfoils and
that the stalling characteristic may be approximated by linear varia-
tion in 1ift and drag coefficients and a fixed angular phase lag in
the response of the blade to a change in angle of attack. This
approach has the difficulty, owing to the linearity, that it is not
possible to obtain any idea of the amplitudes of the stall fluctuations
involved; furthermore, the presence of & constant phase lag in relation
to airfoil performance is not at all clear. The concept of reduced
flow through a given dlade channel at stall led H. W. Emmons (ref-
erence 2) to formulate a theory based on a semi-empirical change of

flow area in the blade channel between stalled and unstalled states.
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These ideas, although capable of rather complete development, were not
carried out in all of their ramifications. The same difficulties
associated with the linearized treatment that appeared in Sears' theory
were also present in the theory of bmmons. In an effort to make some
progress with the non-linear theory as well as to employ a different
stalling characteristic, . L. karble developed a theory usimg the
turning angle and the static pressure rise across the blade row to
define the blade row characteristics. The condition of stall was
given by a discontinuity in the static pressure rise at a given flow
angle into the blade row. In this manner the treatment was able to
give the amplitude and extent of the stalled region in addition to
the rate of stall propagation and the inflow conditions under which
stall propagation may be observed.

These various analyses differ in the nature of the physical models,
that is whether the blade row shall be treated from the airfoil or
channel viewpoint, and in the details of the aerodynamic considerations.
dxperimental resulis, such as those of T. Tura and %. D. Rannie
(reference L), H. W. Zmmons, C. BE. Pearson and Ii. P. Grant (reference
5), and ii. C. Huppert and W. A. Benser (reference 6) have become
available for comparison of the results deduced from these models.

The detailed physical process is still not particularly clear and
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indeed,‘as more experimental information is collected, simple ideas
of the stalling mechanism appear to be less adeguate. It is difficult
to claim that the available experimental evidence supports one pro-
posed stalling mechanism in preference to any other. Comparisons of
measured and calculated propagation speeds does not constitute a
very sensitive check of any theory and the experiments do not cover a
sufficiently wide range of blade configurations to carry out a thorough
CoOmparison.

Thus at the present time it appears advisable to extend the
theoretical treatment toward a more rational treatment of the process
rather than to elaborate the models already suggested to the analysis
of multiple blade rows and axially symmetric cascades. In particular
the treatments which have employed the airfoil viewpoint have not
introduced all of the information available on the behavior of isolated
airfoils under non-steady operating conditions near the stall.
Furthermore the previous analyses have been restricted to an "actuating
line" rather than to a grid of discrefe airfoils. The latter restriction
may be removed by undertaking a more detailed treatment; no additional
physical ideas need be introduced. However, ‘o make a more adequate
description of a non-stationary airfoil near stall requires the

introduction of a non~linear 1ift characteristic that depends not only
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on the angle of attack but also on the rate of change of angle of
attack, ‘A relativély simple description of this stalling behavior
was suggested by Professor H. 5. Tsien and the present analysis
employs this relation.

The introduction of the non-linear characteristic complicates
the analysis considerably over that required with a linear character-
istic. PFurthermore, as is common in the treatment of non-linear
problems, certain analytical approximations must be made, the validity
of wiich cannot always be justified rigorously. The additional infor-
mation obtained in this manner seems to merit the effort.

The effect of other airfoils in the cascade is accounted for by
approximating these airfoils by vortices whose circulations vary
pericdically with time, their phase being determined by the time
required for the stall pattern to propagate between them. The relation
between this circulation and the local angle of attack is given by
Tsien's relation in which the stalling angle increases with increased
rate of change in angle of attack. TFrequencies and stall amplitudes
are calculated first on the assumption that airfoil drag nmay be
neglected and only 1ift variations and the resulting vortex wakes are
important. Actually, of course, there is strong experimental evidence
that the drag variations are not only significant, but perhaps of

dominating importance. Therefore, usiag a corresponding non-linear
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relation vetween drag coefficient and angle of attack, the frequencies
of stall propagation and the amplitudes of stall are calculated
assuming only the drag variations to be important. Finally the
analysis 1s carried through assuming both 1lift and drag characteristics
to be non-linear and tc depend on the time rate of change of the

angle of attack,
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IT. THE BLADE CHLRACTERISTIC

To consider the detailed flow about & cascade of airfoils it is
appropriate to consider any blade as an isolated airfoil operating in
the flow field generated by all of the other blades. Usually three
d;mensional effects are neglected and the flow through an annulus of
a compressor blade row is represented by the flow past an infinite
plane cascade of airfoils. The resulting problem may be simplified
further by considering the velocity induced by other airfoils in- the
cascade as that induced by point vortices of equal circulation (fig.
2} Then if at a particular blade the flow consisting of the main
flow and that induced by the other blade circulations be computed, the
performance of this particular blade may be estimated accurately from
the flow angle thus calculated and the empirically determinedvperfor—
mance of the blade treated as an isolated airfoil. This process may
be extended over to non-steady flow fields by utilizing the empirically
determined non-steady blade characteristic and the velocity induced
by trailing vortex wakes as well as time variable circulations of the
other airfoils. The weaknesses of this cascade theory based upon
interference velocity computed from point vortices are easily seen.
The induced angle of attack is probably not calculated with extreme

sccuracy, but more important, the deviation of the blade characteristic
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ffom that of an isolated airfoil caused by curvature of the local
induced stream cannot be accounted for properly. While neither of
these discrepancies is large for values of solidity normally present
in axial compressors, the non-uniformity of the induced flow may cause
significant deviations near the stall. This conclusion follows from
the fact that the pressure distribution is affected by the presence
of the other blades, thereby altering separation conditions. Hence
it is inadvisable to take directly the stalling characteristics of an
isolated airfoil; the stalling angle and its dependence upon the rate
of increase of angle of attack may require some modification to fit
the conditions in a compressor.

The characteristiecs of the 1lift coefficient-angle of attack
relationship that must be reproduced by the approximate representation
are:

1) the 1lift coefficient has a maximum value for some

angle of attack, and
2) this maximum 1ift coefficient increases as the rate
of growth of angle of attack increases.
To satisfy these conditions in the simplest menner, Tsien has suggested

the form

C, = a,u~é/04~1‘°")6 ‘ (1)
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Yhen 4 =20 the resulting form represents the usual linear 1ift
curve with slope 2 , valid for small angles of attack; this term is
the dominating behavior of equation (1) for small « ., TFor steady

operation at large angles of attack the 1ift coefficient is {, - zw-4a?

aZ

and hence has a maximum value C, = £ 2 /= at the
e x 3 Fb
angle of attack /3—‘% « dow if the operation were not

steady but the angle of attack were increasing at the rate o s
the value of the non-linear term would be decreased to ( & - "0.‘)3 s
where ¢ 13 a time constant associated with the non-steady stalling
characteristic of the airfoil. The angle of attack at which stalling
occurs then is given by ro 4 347,— and hence increases
linearly with & , a result which is in agreement with experiment.
The value of the maximum 1ift coefficient then becomes ["max=§e/?:4;+¢r&
so that it too increases linearly with the time derivative of the angle
of attack + The value of (,  is shown in figure 3 for steady
operation and for a particular case in which the angle of attack is
fluctuating sinusoidally around the value for maximum 1ift coefficient.
The resulting lift curve exhibits the hysteresis loop characteristic
of an airfoil operating near the stalled condition. The physical

gituation is that,as the angle of attack is increased at arapid r ate,

a high 1ift coefficient is obtained before the boundary layer can
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develop -into a stalled condition. However, as the fluctuating angle
approaches its maximum valus, sufficient time is available for the
boundary layer to separate and consequently the stall takes place and
the 1ift falls rapidly.

Of equel or perhaps greater importance in determining the perfor-
mance of a blade row is the variation in drag near the stall. The
drag of each airfoil in the cascade increases very abruptly and by
an enormous factor when the angle of attack exceeds either the positive
or the negative stalling angle. During transient operation the same
time delay in establishing the high drag may be expected to occur as
for the 1ift coefficient since the same mechanism acts for both airfoil
characteristics. The variation of drag coefficient with angle of

attack may be approximated then by the form

2.
G = Gt dfa - & - t&) (2)

Dorir
where (, . 1s the minimum drag coefficient for the blade in question
and & is a dimensionless constant indicative of the rate at which
the drag coefficient increases as the angle of attack varies from the
angle & which produces the minimum drag. A symmetric blade would have
& equal to zero while & would generally be positive for cambered

airfoils. This drag approximation is shown in figure L for steady flow
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conditions as well as for & simusoidally varying angle of attack. 4s
for the 1ift charaéteristics, the osclillating angle of attack produces
a hysteresis loop. It is to be noted that the mean value of the drag
taken around this loop is considerably larger than the drag correspond—
ing_to the mean angle of attack. Cleérly the relative importance of
the 1ift and drag variations upon the stalling performance of the
compressor will be determined by the relative magnitudes of the
constants 4 and & as well as the angle of attack at which the

blade row is operating.
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ITI. FORMULATION OF TH: PROBLEM
OF STALL PROP:GATION

From a row of » blades develop an annulus of radius A into a
plane cascade and represent the blades by such point singularities as
are required to produce the desired characteristics. Let the mean
undisturbed axial velocity approaching the blade row be ¢/ and the
angle of approach flow relative to the blade be ¢ (figure 2). Then
the total approach velocity is W = Usee ¥ o+ It will be assumed
that the fluid is ideal and incompressible and that the blade row is
lightly loaded so that the deflection of the fluid in passing through
the blade row is small and the usual linearizations may be effected.

For any inlet flow angle there exists an operating state in which
all blades are operating under identical conditions, whether stalled or
unstalled. This state will be designated the uniform operatiﬁg
cordition or the uniform state. Under certain inflow conditions and
for appropriate characteristics of the blades, there exists also a
non~uniform state of periodic variations which is self-sustaining
and corresponds to stall propagation as was discussed previously.

The problem then is one of finding those combinations of inflow
conditions and blade characteristics that lead to periodic non-uniform
solutions and to describe the state of stall propagation which is

produced.
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The conditioms required for such a self-sustained state are quite
clear. The fluctuations of 1ift and drag on the individual vlades
generate an induced velocity field which in turm produces changes in
the local angles of attack at the blades. Thus, with an appropriate
time lag and distortion due to the non-linearity of the blade
characteristics, fluctuations of 1ift and drag are produced by these
changes of angle of attack. The possibility exists that for scme
particular fluctuation the cycle will be closed and self-sustaining;
that is the fluctuations generate induced angles of attack which,
through the blade characteristics, produce the same fluctuations.
This is the process of stall propagation.

" In the analytical formulation of the problem it is necessary to:

1) determine the induced angle of attack corresponding

to an arvitrary variation of 1lift and drag for a typical
blade of tne blade row,

2) calculate the 1ift and drag corresponding to this induced

angle of attack by use of the empirical relations for
1ift and drag coefficients, equations (1) and (2), and

3) equate this result to the initial arbitrary veriation

of 1ift and drag to determine the unicue self-sustaining

variztion.
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The result is & pair of intégro-differential equations for the
fluctuations in 1ift and drag on a typicsel blade. These equablons
.include both the uniform flow condition and the propagating stall
solution. Because it is homogeneous, it is possible to solve for
a unique propagating speed.

Under conditions of stall propagation the circulation is
denoted ST (72, ) 3 » 1is the blade number counted from the
origin where » = ¢ . This circulation is periodic in time with
angular velocity « at a given blade and also is periodic about the
blade rdw containing » blades so that each blade is out of phase with
the previous one by the phase angle 2% - %? « Therefore, the
circulation of a given blade may be written as a function of a
single variable /7 fw?- %ﬁ?}. Neglecting the influence of apparent

mass, the 1lift coefficient of the #»™ blade is related to the

circulation about that blade as

27

7 (3)

C, (n4) =

according to tne linearized theory; ¢ denotes the blade chord.
The velocity field associated with 1ift may be divided into
that generated by the blades themselves and that induced by the

trailing vorticity arising from the time variation of blade 1lif't.
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Consiger first the trailing vorticity. In a short time ¥  the

27

circulation of a blade chenges by the amount dJ7/7-= =

-d¢ . In
order that the angular momentum of the complete body of fluid be
conserved, vorticity with total circulation (-§/7) must appear in the
wake. According to the linearized analysis the trailing vorticity

is carried along streamlines of the undisturbed flow with the uniform
velocity W. If 7 denotes the strength of the vorticity shed into
the wake, the total circulation of the vorticity shed in a short time

&t is 7 - Wt which must be equal and opposite to 4§77 , the change

of blade circulatione.

v g Lt 5) (w)

The vorticity appearing in the wake at a distance s down-stream of
the blade row at the time ¢ was shed from the blade at the time
[t ~ ny) ; consequently, the wake vorticity distribution

associated with the »?” blade is given by

Y(ms ) = i Erfuce g0 - 22) (5)

;¥
This vorticity appears at the complex point J¢ +e¢mg = 7 * (7g .

in element of length «¢ of the wake from the »% Ylade constitutes

a circulation ¥(7;5 5, ) s so that such a wverticel section cutl
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through each of the blade wakes, as shown in figure 5, fomé a vortex
row whose elements héve strengths varying both in time and in blade
nurber,

Since the flow is periodic it wilil suffice to calculate the
induced velocity at only one blade location; choose the blade » =2
situated at the origin of the plane 2 - 2 » .y « In evaluating
the induced velocity all the blades and their wakes are to be
considered except that of the one at which the induced velocity is
being computed. The self induction of that blade and its wake is
accounted for in the empirical blade coefficient of equation (1).

Let vortices of circulation /7(72,¢) be situated at the points

O+ (mg, 77=0,2/,22, ... Where ¢ - gp 4 « The induced

complex velcocity == 2 »¢2¢2 at any point is then

- 7 U m E)
= zﬂ j = WHlz,2,¢) (6)

Z - (6"+ Eng)
H=-an 7

where the prime derotes exclusion of the term =0 « The velocity
induced oy the fluctuating circulation of the airfoils themselves is
obtained from equation (&) by setting ¢ = & . Since the wake
vorticity is related to the blade circulation through e quation (5)

the velocity induced by & vortex row made up of elements of length

s cut from each wake can be obtained from equation (6) by
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replacing ‘/7?@£) by the proper circulation of the element of wakes
that is, replace /7(7,¢) by vWds = ~d§»; F/w/f~/,—f-,)—'z—7—@”—” ds .
Hence the velocity induced by such a vortex row is merely
'Zg £z, é’~2§, r) ds « The total induced velocity of the
blade wakes is then obtained by integrating over the wake length from
S0 to S = oo « The complete velocity induced at the

blade =2 due to the fluctuating circulation is then

7 . t,0)-L ) Hpp 2o 2 4
h—/--f/ﬂ; » 0/ W/ 7 (0, W ¢)ds (7)
In the linearized theory the induced angle of attack is obtained
from the component of the induced velocity normal to the undisturbed
fiow. This velocity component can be found conveniently by rotating
the velocity vector through an angle (¢¢) and taking the vertical
component; that is, by multiplying the induced complex velocity
. 4
2w = 2 - v by @ and selecting the negative of the
imaginary part. Thus, the induced angle of attack is given by
w (Y
& = -Jwm | — 2 (8)
/7 /
The angle of attack variation induced by lifting forces of the blades

then follows from equation (7) as

a, (¢) = -Jm/e’7//4f,o)_#/;;f[a,f-;,o)ﬁ/f) (9)
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For the ﬁsuai design or operating values of the 1lift cdefficient,
the bladévdrag is %efy‘small, so that its effect can be neglected in
compressor éesign‘without incurring serious effects. However, as the
flow angle increases toward the stall, the drag coefficient increases
enqrmously and the velocities associated with the separated wakes can
no longef be neglected, especially when the flow is unsteady.

Although the wake generated by the drag of a lifting airfoil is
of complex shape, to the accuracy of the linearization employed for
the wake due to 1ift, it may be approximated by a wake of vortex pairs
placed along the undisturbed streamlines. (See figure 6). The
strength of the vortex pairs is to vary appropriately along the wake
length.

The relationship between blade drag and the strength of the shed
vortex pairs is found most easily by assuming the wake velocity to be
distributed uniformly over a small distance 24 normal tc the direction
of the undisturbed flow (figure 6}. If Az is the velocity decrement
of the wake, the vortex sheetsvbounding the wake have a circulation of

* a2  per unit length, the sign depending upon whether the upper
or lower sheet is being considered. The drag is merely the momentum

decrement of the wake, so that o = (/OW c2f) - Aw v
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Consequently, the circulation per unit length of the wake 1s

0

Zo WS (10)

+ A =
It is convenient to allow these two vortex sheets to approach
each other and thereby create a wake of vortex doublets. The velocity
induced by an element s of the doublet wake can be obtained by
adding together the contributions of each of the indlvidual vortices
forming the doublet and then allowing the distance between them to

approach zero, Thus, the combined induced velocity at the point 2

of the doublet element located at the point ¢ + c»g is

’ /
firm L L2 L / — = § s
§ >0 2m pH f E-(o+eng » (d¢ “%) Z-(¢ + Lng _idet?)

o /
£ e s
Z/Z“/Oﬂ/ [2—-(0"+ [779)/2

The drag can be eliminated from this expression by use of the drag
coefficient, defined by tme relation O = ¢, - £ oW’ .
Hence the velocity induced by a doublet oriented normal to the undisturbed

streamlines is given by

Y s
= ~ 'L: ”/C e ¢ - __{- ( \
o - 11)
2 Pard [2 T . ‘”y)jz
The quantity 2—9 we, = 4 will be designated the

strength or moment of the wake doublets generated by the drag force.

The velocity induced by a row of doublet elements of length o=



extracted from each of the blade wakes, excepting that of the

zeroth blade, 1s then

PR 5, 2
w - Lo A58 (12)
i /.?—(ﬂ'-ft“?)y)_/

= can

The drag coefficient, and hence also the doublet moment « ,
is & periédic function of both time and blade number so that, as with
the 1ift ccefficient, the drag coefficient can be expressed as a
periodic function of the single variable (w? - 27”&’ )
FPurthermore since the vorticity generated at the blade by the drag
force is carried downstream with a velocity W/

, the distribution of

doublet moment in the wake may be written
s, 2) = ufwtt-g) - 2] (13)

The complete induced velocity associated with drag is now cbtained

by integrating over the wake length; the resulti is

3 2w ©
LAY 5 /‘/"’{“’ )~ 2 g, 20 0)ds (1h)
W 3 - (o< zny)/

o

X

The angle of attack associated with blade drag is then found as it was

for tne case of lift:s

ay = -jm/fe‘wif?): fm/g ’7;/;,f-”§,r)ds (15)
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The complete induced angle of attack is the sun (e, » «,)

where @, and «, are given by equations (9) and (15) respectively.
In terms of the induced angles of attack the expressions for

the 1ift and drag coefficients become

3
FL e ala ey ) bl - L) (16)
2

) _ . . 40
Cg/’f):;: = 607;7/' *[(a’"-'_a/*ad-m)—?/af/*‘xe’.)/ (17)

where, from the foregoing analysis
3 ] & S

LA~ éZ.’_Z’) R ® = P 277
(a7 )=—Jm/-e——/[’”f"’t’ = L) 2 T rleteig)- ST
é =4 427?’}1/ L 7)‘? W 7 dS

o » 7
> D= .7

—/Z’ sl i) F (18)
Ay (/ﬂ'-f 1'7)_7)2

Tmus, equations (16) and (17) constitute twe non-linear integro-

differential equations for the circulation and moment functions
/74 and «¢¢) . They are homogeneous equations and veriodic

solutions are required. As will appear more clearly later, they

allow non-trivial sclutions only for certain values of the angular

velocity « + The solution of theseeguations therefore, will determine
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the propagating speed of the stall pattern as well as the detailed

behavior of blade 1ift and drag forces during stalled operation.
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IV.  APPROXIMATE SOLUTIOK BY THE
METHOD OF FOURLER SERI®S
Since the circulation and drag are periodic functions of period

27z in wf , it is appropriate to expand each of these in a Fourier

series as

[(wt - EZZ)
£w

1}

A f 4, cosfd(wt - ZZ) - £ ] (19)
A=s

and

2z =
/W__’_:,_”’.—) 50 > 5{2 3[77[,2(4)2’—- :g,;f_’_’) - Z_/ (20)
v
A=y
where the #, and the £, are unknown coefficients and the 2% %

are unknown phase angles. Since the time origin is of no importance,
one of the phase angles may be chosen arbitrarily; select 2 = 2 .

Using these expressions it is possible to evaluate the induced angle

of attack (a2, + «,) , equation (18), in terms of the undetermined
constants #, and 4, , the undetermined phase angles #% and A
and the unknown propagating speed # . Since only linear operations
are involved, the coefficients in the trigonometric series fox=/%?7tq?)

will be merely combinations of the coefficients of the Fourier series

above., Thus, the induced angle of attack can be written in the form
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' = pz @ .
/Q/e,‘a"{}:@’ﬁf- ? ,41//, J)ms/,;(,,f,%g) *4'23‘"/’7“""”3%
A=/

74
* E ﬁ(?/y/ cos(dw? - ¢; ) +j‘,{i)u'»[r?m‘—¢z'y (21)

l?:/
The coefficient 4, does not appear in equation (21) because the

constant blade circulation represented by 4, cannot induce an angle

of attack at the blade in cuestion. The coefficients ]ga), /Z )

2, @ , yzw are to be evaluated by the use of equation (18).
Thus, the two integro-di:iferential relations, equations (16) and
(17), have been reduced to two ncn-linear algebraic relations in the

unknovmn coefficients and phase angles. Hewriting these equations in

terms of the series expressions, gives:

oo

A, * Ayeos(Awt - ) = d/dfo * o9,

=7

= @ @ '
r§ ,41/./,' (‘Zas/p?wf- %) +7§aj‘z'w/1wt'-2$)/+ 2 51/7, cos/,?wl‘—a;) * 9, Sin(dwl- Z,‘)
2=, A=s

@2 ) } ’
- wr E A4, g/icos(z?wz‘—%} -jf,’ﬁﬂ;y/,?wzz _7;?)/

A=/
- wrf,?@/yz é:)-os (Aew? -2,’5) - 9//1{,/;7/24’2‘ - V,'i)_]/
L=/
-5/ too B+ )l ostut ) - it 8]
A=s a2
* f &/1 (ig'osfﬂ’wzt-?f\,‘)* z,/’@mﬁm‘- z) - or 27{; /£ ﬁ)as/zwz‘-g) -f (?/n/iwl‘ -Z/ﬁ/
A=/ A=y

(2= 7
i - (&) @) .
- wr / /?@,/z cos (@t-%) - 5 J/»//mz‘~;{)/

A=s

(22)
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and,

50 + é .6;5/’77/14/2‘—%') = (’o»”,” f//do_&'-fgo%
L=r

. | 2
* [,f?/}{ﬂjos/izyz‘—;g) + ]f;{ij(??//a)z‘~3‘gy

A=s

? @) @) .
4 ﬁi/f, Jc'os/,?wz‘ -%) * g sew (Fai - .Z‘Z/
A=/

f ) )
- w7 ,7,??/4 icO-S/itdf'Zg) - ;6' 517?/1:02‘- &f,/

=7

Zp

&) .
- é ,?E’?/Z, icas&iwf~;§) -zﬁ)ﬂ??//wf—g)/ ' (23)

J:/
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fquating coefficients of each harmonic produces an equation for each
of the coefficients 4, , &, and for each of the phase angles Z% »

%? . However, owing to tne fact that one of the phese angles could
be chosen arbitrarily, there is an extra equation which will determine
the propagating speed uniquely. Thus, the problem is indeed a character-
istic value problem.

The non-linearity of the 1ift and drag expressions causes each
of the equations to have an infinite number of terms; that is for
each harmonic, new terms are created by the powsrs and cross-products
of the various trigonometric terms in both higher and lower harmonics.

< 2z < 7 / .
For example, the verm & cos?wt = # /% + £ coszwt/ yields
terms in both the zeroth and second harmonics. Hence, due to these
practical considerations, it is not possible to arrive at an exact
solution in this manner. It 1s practical, however, to obtain an
approximate solution up to the first few terms of each Fourier series;
but clearly these coefficients will not be determined exactly.

- . . C s ) 2 ()

It remains only to determine the quantities £/ , ,5( , 7

) . . I C e .

2 assoclated with the Fourier coefficients of the induced angles
of attack.

- %4 1 . . . > .

If only the 7 harmonic of the circulation is considered, then

. . zh . N
because the operations are linear, only the ~#  harmonic of the
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function A=, 7, o)  will appear. Denote this term by a super-

script. Then from equations (&) and (19)

20

' cos [d(wt - S <27 _ 2
7/ /zz‘a“)rz—zlj,[ 5/

Z - (¢ +ing)

77z -0

By reindexing the sum so that it runs from / to e , the function

o)

P can be written as
@) ;e cos/[f?zdz‘ La)'i —.;,:,—- cos/-(,{wz‘— 4)+ 7 Z_;);Z_?/
£ ) s g E - .
Kt & "' A :?—(r—nyf - ¢+ iy
2=y
=, 2red
- Z £ _ acos ”/ )
e @/ (7 =) eos(RE 8] et

oo

These series have been summed {for example, see reference 7) and

thelr values are

cos n/zm?) cosh n( %! 2:0)) 22/ y o=
(; 0‘-)[(‘2 0’) z" ‘Zf/ S(ﬂﬁﬂ(’}a) /2,%”7 > ¢ ! ' (2

a0

? 77;5'177”(2”'2/’ s 31'775”/3?__[)//"7?7!} , 0= Z<m (25)
& (z-0)° +779 2y 5/7’4”/’?7;?)

The fact that these formulas are limited to values of 72 =< 7»

is no restriction in itself since it is apparent that nigher harmonics
would not be correct even though this limitation were accounted for,
owing to the nature of the physical approximations. Thus, 7 will

always be taken less than 77 .
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Substitution of the formulas (24} and (25) into the expression

o :
for /()(z,z‘, ¢) then gives

e sl 9021 clrsen). costrat-n) :
P -£ L, 7 e (26)
fot0) =g 9 A Sk 7?/3——_7’ 7) rr/z_y—_!y

The contribution of the blades themselves is found conveniently by

allowing ¢ and £ to agproach zero in equation (26),

//4’)[0,2‘,0} = - éf@//—,—f—fjw};/r?wz‘ -4,) (27)

which is the first term in equation (7}, the expression for the
induced velocity due to 1lift. The integrand in the second term of

equation (7) is found by straight-forward differentiation of equation

Smh "E—q{/—%/f “"%j“s' f‘/i“‘f’%;e/

[+4
7 sinp T

sz (Feot - £ - %‘/—05/
/_g_a' (28)
7

The induced velocity of the wakes is now obtained by integration of
this function over the wake length. The evaluation of this integral

is carried out in the appendix; the result is

ao @ P 27 L ) ]
#) Loz, a)ds - 2 22 i 2807 E )+ B fwt - £ )f
' 4 7 (ot W Z- _;:r

. ‘ _ﬂ'v/,?wf—pg - %—'—’}/ s
wr
Z7)
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J i 1L (1 ) st )t Tl e

-2 /n/iw’?/ﬂn/f?wt ﬂ/ zﬂ'cas/?wz‘ &e/ (29)

wheze B = s itang and  P(z) - f: 2o /7)) 5 the logarithmic
derivative of the Gamma function.
Equation (9) is the expression for the induced angle of attack
for fluctuating 1ift, so that by use of equations (27) and (29),
Y4

/e = cos f 3

and noting that —
8 I3

P
jﬁ/f’;//~;%?}€ szn/,?w/—g/

_ Ao 7 wF . Ay
_4_4;‘_';7_ 7&03%’]757/2&%// 5 (7 /50 Y stz (Rl - LZ/

. —¢ef Al &4}
- 'f;_;_/f P 5/ s (At - )

- (ar cos (Awt - z{%./ (30)

But equation (21} gives

c_z! (f) = /4/[ cos (AT - &%/*)ﬁﬁ)..f’/'ﬁ //?a/z‘_zg,/

* 77 el ”—ﬂ;i;(/

so that by comparison of the coefficients of the trigonometric terms

7
the quantities ;f' and é’ @ are readily obtained.

7 A Y .
zf'i=-g,ﬁglg/fcasffm/cfﬂ%//—%/—é (31)



- 29 -

@ AP
7£ =7;£%ﬁcas¢ﬂ/f@‘v (/' ) L /tg[/

2 Z)1-R - FElr-Z) s s (32)

dow turn to the function g (z, Z, s/) .« Equation (1) defines
this function as
7 w/
/e (W
_?/z’ z‘ r)= o W /. _ 2

while the Fourier series for the doublet moment is

“- 42

wlwt-Z0)=5pw) 4 + { gsenfalwt - 57~ o /)

A=/
Hence the f? * Fourier conponent of f& Z r/ can be written as

@ By ] et - L) - g ]
7 A?’Z‘)V)=—Zﬂ‘? - z
7z -co [2*(7'-*(79_7)/

B o 02 \ 2 sin[itwt-Z27) -/
ez F

b £3%. 2

2 (T~ ('77‘7)

8 g
¢ Ry dw Fr Ft 5757)

i

where the phase angle ;{7 is substituted for the phase angle Z@

But eguation (1l requires f/;, #,7) to be evaluated at the time
/{ - -— , 50 that s must be considered as a variable independent

of ¢ , for the purposes of the above operation. ¥ith this procedure

in mind it is permissiole to write:



&L 2
fﬁ)“/}:f_i’r)z—‘ﬁ%io%éf (z’f-y—‘;—,q-) (33)
7
and
o0 o
v @
(@ = R A4 2 t-Z.0)
/ {f;in/fo‘) thﬂzw /d"ﬂ {J )) s

. 7 23
_Aws | J 5‘”/"_//~’7—n“)
=/ =z Awt - W)= 7
//c“/ W )ﬁ«'/ sinb (%)
”' _2d
.. Aws cosh - ) ws /
= stnfdwt -9 - 57 )/0, 5177/) e /us/n/r?an‘ ) (,M)//ds

However, since ¢ = se s differentiating by ¢ is equivalent
o . . 14
to differentiating oy s and multiplying by e « Integrating by

parts then yields

- 2 c[/ sink BN 2)+ i G5 - ilawt - )
7 7

g /‘9’1"_ 7jds = = Stk ”r

st Tt % - in) Zw (eosé/ffl?(/ Z/?) /ws //J(o‘z‘— Vi}
7 P o ﬂ“r
(7/ (7 7

(7505
cos( *‘”;; )/ s (34)
(%7)

Using the identities

) . <
{ coshz - - sinh (7-0F)

i

it

cos 2 51‘77(;?1'—2(?.)
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it is seen that the integral is the same {with opposite sign) as
. . . 7
the one appearing in equation (29) with a phase angle of /ijja)
in time and with z¢ replaced by %‘ . However, the first term in
/:7) s . . .
the above expression for P o, z/-ﬁ;, d’)a’s is an indeterminate

form and must be eva_uu&ted accordingly. If this term is re-written

in the form

cos(Fwt-4) smfi/ﬂr(/ *”7} (5 - Csin(dart - W)cosb[ff(/- 51?}, ¢ "’/

a9
. A ]
| sontiat-9peos i) —costaut o) sin G
”—
%z
oo

it is easily seen that the term approaches zero at the upper limit.

By replacing each quantity by terms up to the first order in its series
expansion, the expression can easily be evaluated at the lower limit
and its value is found to be ~(7- 7,7) cos (Awt - %‘) .
dence equation (3L} becomes

a 15
7 {i)fo; f'[;:) 7)ds - f‘f?:f?ﬂ_ - (7~ -’—) cos (At - Y; %)

.smb/y //~——- é‘%;—l./iwf'% Z’@//
/ S¢ 725 ﬂT
Lsin (Al - -~ G s
/W) = /afs (35)
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Since the integral occurring in equation (35) differs from the
one in equation (29} only by a phase angle the integrated value may

be used upon interchange of these phase angles. Hence

(274

) 15,34
_7 /a,z‘—W,o'/a/s = -

/ ‘;,‘)dos/r?wf 7/'/

zld/? ~1./f751/2‘“74)

__f'fij%j ?/ ;// MW? cos(Awt-; ) -wetn 777//

The angle of attack induced by the drag wakes is given in terms of
the function /ﬁ, £ - , ¢ ) by equation (15). iiore explicitly then

)
o) = &

- 7; /7~ -;‘:;’—?) cos(dwt ~ %)

AR

+ 52;’_7_/?;7 %’?cas¢[m/22f‘//—%,?7//- %}/cos[gaj_%}

2

ﬂrf za)/f) ‘/’Zz}f—%{-)

~ 7 cln =

2.7 7;/‘%’2 ) cos (Awt - ¢,)

+ 1 ST (/?wf - %}/ (37)

. . ) s @) (@)
By comparison with equation (2L) the quantities g, s and g, are

readily determined,
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Va
'Z%//"’L’?ﬂ'%ﬂ/ +Z’?{/-;€,§)coszﬁ (38)
) w V4
-Z’Hszf-’?;’g—ufaosgﬂf//ez‘wm(hlw)/ (39)

It is yet necessary to evaluate ¢, , the term arising from the

velocity induced by the constant drag wakes. Equation (li) gives the

velocity field for the constant wakes as

w_ ol A / ¢ / 2(z-7)
W—_Z@Zﬂ/ Jdr[z - /¢+1777) 4s = - Bzﬂ'/ /2? f)+777 ds
o 750

1
AN
&R

Bla
Q'\
\‘%
Sl
Y
=
&ul’? -~
2

£

N

3

3
—~.

\N.\

Q
b

fy

/ ¢ / Z-r = . 14
Zﬁ;?/;’(—%_—j} - coth ﬂ“/?)/ , = 5S€

5=0

Setting =2 = 0 in this expression results in the velocity induced at
the zeroth blade. Loting that ;,!i,’” coth z - 3 ] the
value of the velocity induced at the zeroth blade by the constant drag
wakes 1is merely ( ;/ 3, j—" j ,» and consequently the corresponding

induced angle of attack is (— é G, ;C sén ¢) « Thus, the



parameter ¢, is given by g9, = - 4—/ ? s¢c7 F (LO)
It is of interest to consider the case of an infinite number of

blades (i.e., an actuating line}. By taking the liwit as 77 = <

in equations (31), (32), (38), and (39) the following limiting forms

are obtained:

! wl
e e gt —tr) e (8o #
f/ 49 U cos ¥ 777/_ zﬁ/ 739 /+/f4ngﬂ-iz‘./f)z (ha)
YR
/ tand- .ﬂ_)_./sm ¢—cos¢)
f=l£5£ﬂ¢*l£—‘iﬁaos¢ﬂf - =—/~£SZC¢ 1/, (b,2)
¢ g 74 H% 49 /+/z‘a77¢—%'f)2
g eesd o (13)
2= ko7 gt ()

It is interesting to note that these limiting forms are independent

of 7 , the index of the particular Fourier component being considered.
This fact implies that for an infinite number of blades, one of the
components of the wave form of the induced angle of attack will be
merely attenuated, but not distorted from the wave form of the blade
circulation; the other component of the wave form of the induced

angle of attack, of course, arose from the unsteady nature of the
problem. For a finite number of blades, both wave forms will be

distorted.
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, . (2 )
With the determination of the quantities f/w, £ s 9 s and

@
4, an approximete solution for a few terms of the Fourier series

is now possible by use of equations (22) and (23). In particular, the

fundamental frequency will be investigated in the following section.
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V. APPROXTMATE SCOLUTION FOR
THE FUNDAMENTAL FREQUENCY

By considering only the fundamental freguency in the Fourier
series for the circulation and mement, it is possible to obtain an
adequate qualitative description of the behavior of stall propagation
with respect to the cascade parameters and the blade characteristics.
The quantities to be determined are the propagating speed, the
amplitude of the fluctuations in 1ift and drag, and the mean value of
the 1ift and drag for given operating conditions. Iquating coefficients
of the constant terms and of the terms in the fundamental frequency
in equations (22) and (23) results in six equations in the six un-
known quantities w,#,,8., 4, 5, and y , the phase angle 2
having been arbitrarily set equal to zero since the time origin is of
no importance. The phase angle y@ s however, cannot also be arbitrarily
chosen because the airfoil has a different phase lag in its response
to 1ift than in that to drag. These phase lags, of course, are
dependent on the frequency involved for a given time lag.

In order to proceed in the following analysis, it is necessary to
choose the exponent o in the blade drag characteristic. Because a

parabola is the simplest form of & characteristic exhibiting non-linear
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properties, » is chosen equal to one. rowever, it is not necessary to
think of this parabola as being the blade characteristic over the
whole range of angle of attack but merely as a local non-linear
approximation near the blade operating angle of attack, and as

having no physical significance for angles of attack far removed from
the operating point. Thus, a different parabola would be chosen for
each operating point. It is used in this manner in the numerical
calculations presented later.

The blade characteristics are given by

C, - A, + Heosul = aa -bla-7d) (15)

0]

Cp

i

B, + B sin(wt-¥) = Cp, .+ dla-z -ro't)z (46)

while the induced angle of attack is given by egquation (21) as
o) 0]
dj t o, = 5‘,70 * ﬁ,/l: cos wl + fz s177 w{/
@ o .
* 53/?, cos(wl-y)+ g, S/n(wf-rf)/ (47)

To the induced angle of attack must be added the angle of attack of

the flow far upstream, a, , so that the total angle of attack is

€t = a, + @ + dy (L8)
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In the following, the superscripts on the quantities 7(/' w s fzm s
9, “ R 9 @ wiil be omitted, but it is to be held in mind that
they do not, in general, refer to the values for an infinite mumber
of blades.

The term (« -7¢) may now be written
(2-74) = (% + Grg,) + A JUF, - wth) cos wt + (f, +w7f,) sim wt ]
+ B, //7, - wrq,) cos(wt -y)+(g, +wrg,) sin (wt—ztr)/
= (a,+8,9,) f//i, (4, -wtf )+ Bg-wtg, Joos¥-B (g, w13,) sin W/"“ wt
+/,4/ (, +wtf,) + B, (g, -wrg,) stm ¥ +B,(q,»wry,)cos yr/s[n wt

By defining the new quantity

4 F-wthy ) + B,(3,-w79,)cos o - B(q, +wTq,) Sin g (L9)

tand = -
A (f, rwtt ) + B, (5, -wrg, ) sint + B,(g, rwrg,) cos ¥

the term (d~’t‘o'¢) may be written more sinply as
[ -ra) = (0‘97*50?,)*/(3[77/001‘ +2) (50)

where
z . Z
K =/ﬁ7, //,' -wr;g) + 5,/7, -wrq)cos ¥ - B, (g, +wry,) sin ;r/

+/4,{7[, +wr/’z) + B, /9, ~wtg; | sim V‘+5’,/qz+wry,}cos Wz
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After some rearrangement, this expression can be written in the

simpler form

v =/4'2//,l+£z) - B9 )

+Zﬂ,5,//f,g, rha)eosy (g, -£4,)s(n yx/ {1+ %) (51)
Expansion of the cubic term in equation (L5) yields
3 ] 3
i) = (o +B0.) + K sim (wh = 0)]
= (a, +/3’97,,)3+ e, + B, o}z i’ sinilwt + 2)
+ 3, »Bogy )4 sinTwt+d) + klsinilwt +3)
Using the identities
sin‘(wt+3) < 4 -4 cosz(wt+2)
sin’(wt+d) = 2 sin(wt+d) -  sin F(wt+ ?)
the cubic term becomes
. .3 El
(e -7a) = /[a(,, +3.q,) + f Ki(a, + B, 9,,2/
r 3#//01,, +B:,5ao)z+z’ K'e/!t'ﬁ/wz‘ + 2)
(52)

- ;3 (a, +5270)ch05 z/whd)-://— /(35‘/7)3/a)f+d)
Similarly the quadratic term in equation (L6) becomes
-9 2
(o -& 13)"< [(a, -5 + Bog )+ i sin(wt+d)]
2 .
z//“o -& + B ) +Z~I /('74—Z/f/af°—07 +3‘,%)34 nlwt+2)

- fweos2(uts) (53)
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Consequently, equating coefficients of temms in [wZ+2)  up to

the fundamental frequency in equations (L5) and (46) results in the

following relations:

A, = afdo+527o)~é//%+5:yo}3r2’3/(2/%1*507‘,)/ (5L)
Aeos? = a//A’,/,’ + Bg cosy-5,9,stn ) cos J
~(Af + B g stn 7/+B,7z cos ;’f)sz'nﬂ/ (55)
A, stnv-= a/(ﬁ,ﬂ + B,g,cos Y —5‘,7251'77 ¥) sinp
+ (A f+B89 300V + 3,9, ¢05Y) cos ?)/
- 35K//a,+5°y,)z+;,’—x‘7 (56)
2
B, =Co v df(a, ~& + Bogs) 5 4°] (57)
B, (cos ¢ 3ind + sz'nzﬂcosz)) = 0 (58)
8, (cos wcosz)—s/nzﬁ'sz'nﬂ) = 2du(eo ~-& + B,q,) (59)
In addition to these relations, there is the definition of 2
This set

given by equation (L9), while A is given by equation (51).
of simultaneous non~linear equations contains the trivial solution

as well as the solution representing stall propagation.

A, =5,=0
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The simp}est metho& of solution appears to be a straight-forward

trial and error proéedure. However, it is possible to obtain explicit
éolutions for two important cases, that of negligible drag and that of

negligible variation in 1lift.

Sta}l Propagation Associated with Lift Variation: If a bvlade row is
operating in a range of angle of attack for which the drag is negligible
in comparison with the variations of 1ift, then approximately

B, =56 =0 and equations (54), (55) and (56) describe the

operation. For these conditions the term

toen 2 = _/L.:_“ié‘
e,

and

2 2 2 F
w? = GRS e Wi
Substitution of these relations into equation (55) and stipulating

that 4, #¢ results in an equation for the propagating speed.

wr - / (60)

2
ah(ie5e) - %

Similarly equation (56) combined with equation (60) determines the

amplitude of the fluctuating circulation;

z 4 / - crz
2 2 ' ’l ’
(5 1w e?) [sbrtilie ]

while equation (5hL) determines the mean value of the 1ift coefficient

A

(61)

in terms of the amplitude of the varying 1lift

A N T A I
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The quantities 7, .';md f, are given by equations (31) and (32) for
7 blades with A ’= / 4 while for an infinite number of blades,
they are given by equations (41) and (42). Since £ and £, are
complicated functions of 5?7/'—9 s & straightforward determination of
the_propagating speed for a given time lag is not possible, It is
necessary to assume values of %/—'P for a given ¢ , compute the
a f,

corresponding values of ,€ an , and then from eguation (40)

determine the time lag as a function of whk e« In conjunction wiin

U

equation (60), it is convenient to use the identity

@wr =. @R Ur. o, zr
V7 c 2 7

At this point it may be noted from equation (61) that there is a
maximum angle of attack for which stall propagation can occur, since
any larger values of @, vresult in &n imaginary value for the
coefficient /, « On the other hand, smaller values of g,
produce increasing values of the amplitude 4.

Calculations were performed for this case for the following
cascade parameters: ("/y) = / m = 30 , and with

& ranging from 30° to 60°. The parameters of the blade character-
istics were taken as in figure a=2m, b=52.4 » Theresults for
the propagating speed as a function of & for Yr 2! s /s 3, 5

<

are shown in figure 7.
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They indicate that the propagating speed 1s not a very sensitive
function of the stagger angle but is somewhat more influenced by

the time lag 7 » The insensitivity to stagger angle does, at
least, not contradict the experimental observation that the propagation
speed remains fixed over a wide range of inlet angles. The correspond-
ing results for propagation speed, calculated on the basis of the
actuating line theory =»=< are shown as broken lines in the same
figure, The small differences between results for m-32and » =@
confirm the assumption made by previous investigators that, for the
axial compressor stages employed in usual Jet propulsion devices, the
calculation of stall propagation can proceed on the basis of an
actuating disc or actuating line theory.

Calculation of the amplitude of fluctuating circulation and the
mean values of the circulation indicate that, for any configuration,
there exists a maximum angle of attack zz; above which stall propagation
due to 1ift alone cannot be observed. A4s the angle of attack decreases
below agf the amplitude of stall increases considerably. The
dependence of this critical angle of attack upon the stagger angle and
the dimensionless time lag, %g_ s 1s shown in figure 8. The constant

circulation 4, and the amplitude of the fluctuating circulation

Aa -are shown in figures 9 through 12, for the various values of
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time lag considered. In &ll cases the amplitude of stall fluctuation
increases rapidly as the angle of attack is decreased below the
appropriate value of az* . This may be interpreted physically in
the following manner. To cause stall propagation it 1s necessary that
the blade, during pari of its cycle, operate in the region where slope
of the lift curve becomes zero or negative., UWhen the steady operating
angle lies in a region, or very close to a region, of negative slope
stall propagation nay be observed with correspondingly small amplitudes
of fluctuation. When, however, the steady operating angle is
considerably below that for which the 1ift curve slope becomes zero
or negative, the amplitude of fluctuation must be correspondingly
great in order that the stall, or reversal in circulation variation,
take place at some portion of the cycle. TFor angles above the value

%: which will support steady stall propagation at arbitrarily small
amplitudes, it is probable that stall propagation exists but is
divergent rather than steady. Clearly the very large stall amplitudes
which occur at low values of the angle of attack are not likely to
be observed physically. In the first place the theory is not strictly
valid for fluctuations.of this magnitude. ilore fundamentally, however,
such large fluctuations would be damped by losses that would exist in

a real system. This restriction will be clarified somewhat when the



drag variations are considered. The loss of mean 1ift coefficient
A, , corresponding to the decrsase of stage performance, becomes
of considerable magnitude as the stall amplitude increases.

3tall Propagation Associated with Drag Variation. Now consider the

1imiting case in which the blade row is operating in a range of angle
of attack for which the variations in drag are much greater than the
variations in lift. These conditions may be true for very high angles
of attack, since the slope of the drag characteristic becomes very
steep as « increases beyond the stall point. Hence consider only

(57), (58) and (59). Since 4 1is assumed to be zero (in comparison
with A )} the phase angle % now can be arbitrarily set equal to zero .
Thus, by equation (49)

Lan o = w
231&(017,

and
Kz - 5,2/51+ Z’z)//+wzrz/

For a non-trivial solution, eguation (58) requires that fe» 2 - 2

thereby determining the propagating speed.

wr = 2 (63}
Fe
By use of this relation, equation (59) can be written
. g 40,
cifn 5 B)e e - (4) @
/ 9/ ~7,Z+.722 Ao )



= L6 -
. , _ |
where ((ééfz/) denotes the derivative of (¢, with respect to « R
-4
evaluated at «’ = «, + 8,9, 5 the local operating angle of attack

for stall propagation. Similarily defining C}' tc be the drag coefficient

at «’ , equation (57) can be written as

p4
%Y g
=2 (7)o </ (65)

It is apparent that for é§z>»0 the mean value of the blade drag is
larger than the vaiue given by the steady state drag characiteristic
at the local angle of attack. uwowever, this effect is compensated
somewhat by the fact that the local angle of attack is less than that
measured from the flow conditions far upstream.

A convenient method of solution of the drag predominant case then
would be

1) determine the propagating speed by numerical solution of

equation (63) along with the identity

wR Y e, 2m .
[/ c j 7

Qo7

V4
2) from equation (6l) find the value of / Z_’% ) and thence the
value of a = x, + 5,4, from the blade drag

characteristic}
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3) compute £, = %/‘ ‘-@,) and B, versus a, from
equation (65).
This procedure was followed for the numerical results presented in
figures 13 through 18.

By eliminating &, from equation (65), it is possible to find an
expression for the minimum angle of attack (/éiz Z 6’) for which
propagating stall can occur in the drag predominant case. Thus,
denoting this limiting value by @,

y) /7
&, = @ - 4 % (66)
where a’ is determined as in step 2 above and ¢, is given by
equation (40). In terms of the parameters of the parabolic drag

characteristic the result is

* o _ / 4.
/ (3

bquation (63} for the propagating speed leads to a very simple

formila for a particular limiting case. If & cascade of airfoils having
a drag characteristic with a zero time lag is postulated, then equation
(63) requires ¢ = ¢ ; further if the blade gap is allowed to
approach zero, then ¢, is given by equation (L3) so that the propaget~-

ing speed equation becomes
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wh )
;%4'605%/ '/* /1// = 0

(z‘{anf.. fff 2
-or d
“E < e 2y (68)

This equation was derivéd in reference 3 with the assumption of a
discontinuity in pressure rise at the stall. Thus, it does not appear
to be restricted to a particular type of blade characteristic.

In trying to determine a reasonable drag characteristic, it was
found that values of » ©<4 are necessary to represent the drag over a
wide range of angle of attack. However, such a high order non-
linearity complicates the analysis to a great extent. It was then
decided to approximate a given drag characteristic by the parabolic
variation around the local blade operating point (ﬂx’== &, + é%_z,) s
since o =/ is tne simplest characteristic providing the reguired
non-linearity. ©Several airfoil drag characteristics were investigated

and the sixth degree polynomial
g ]

2
C, = 0.0000+ 0.0067(%) + 0.0/94(%)°+ 0.002/6(%)° (69)

was chosen as being representative over the range of angle of attack
for which information was available. This equation was used for all
calculations based on drag, with a parabolic approximation at the
local operating angle of attack o« . Equation (69) is shown in

figure l.
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Using the same cascade parameﬁers as in the previous case,
calculations were performed for the case of dray dominated propagating
stall. Figure 13 gives the propagating speed for both 30 blades in
the blade row and for an infinite number of blades, holding the ratioc

ﬁ%@) constant. it is to be noted that the maximum speed of propaga-
tion is for %éf = J (eguation 68 is given by the dashed curve).
Although the stall propagation speeds vary with inlet flow angle and
differ from those obtained where the stall is dominated by 1ift
variation, the differences are not great enough to prefer one mechanism
over the other. In view of the considerable approximation already
made in comparing the results of multistage compressor tests with
calculations on a plane cascade, it appears that the propagating
speed is not an adequate criterion for the accuracy of a theory.

Stall propagation on the basis of drag variation alone is
possible only when the angle of attack has attained a certain value

«) , shom in figure 1. At the angle of attack «, , propagating
stall of infinitesimally small amplitude may be obtained; as the
angle of attack exceeds a@f s the amplitude of steady stall
increases rapidly until after a few degrees, the limitations of the

linearized theory are exceeded. Apparently all oscillations are

damped for low angles of attack; when the amplitude of oscillation
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is large enough so that a portion of the cycle lies in the region of

enougn to suppress the oscillation. The fact that aa? is larger, in

F 3
general, than «, 1is merely due to the choice of individual 1lift and
drag characteristics and need not reflect any fundamental physical fact.
The amplitudes of oscillation and the mean values of drag are shown in
figures 15 through 18, for various cascade angles and the values of
dimensionless time lag employed previously. The mean value of blade
drag increases as the amplitude of oscillation increases, indicating
a loss in stage performance assccilated with the stall propagation over
that which would occur for steady operation at the same inlet angle.

Stall Fropagation with Combined Variation of Lift ana Drag. Finally,

teke up the case of combined effects of 1ift and drag. The equations
(54) through (59) can be rearranged somewhat, soas to give slightly
more amenable forms. By multiplying equation (55) by #7 and then

adding to equation (56), the following relation is obtained, with the

use of the definitions of 2 and A @
A (wreosp + sind) = K/a —Jb/ato+5‘,yo)_z/—;é/<{3

P
- a2, ) _ 2
= K ZZ) 2 bk (70)
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Also equation (58) yields #an 2 = -Z2an ¥ so that equation (59)

can be written

8, cos ¥’ de/f/ﬂ-a,« 5070/ /‘{c") (71)

cos Y

low equation (58) together with the definition of 7 gives

s - g U ~wrh)eos + (£ - wh)siny
7 - Ty
/7/ _wr%/

while equation (55) reduces to

/-alt + z‘anzi)

ag,6 sec zi

B, = A, (72)

For a non-trivial solution of the last two equations, it is required

that

Zan V‘ - (%ﬁ “7672) "i,_/aj?‘(y/ - wryz)

(73)
(ﬁy/ * 7‘.’2?1)

Furthermore equations (70}, (71) and (72) yield the following relation

for

N l+ L) pam o -t 2wt (£g, +
S+ 2% ) ttar )70 i f (71)
z/“ wt/dé[/+£ /

L suggested method of solution is as follows:

1)} Choose the operating angle of attack «’ and a2 propagating

speed /U ) and solve for Za» % frome quation (73)
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as a function of /%-T) . Since (QUE) is fixed, so also
are the quanﬁities £os b 95 9 .
2) Solve for A as a function of (Z—e/f) by use of equation (7L).
3} Also svc‘)lve for £ by use of the definition, equation (51).
Note that this step involves the intermediate determination
of A, s £, by use of equation (70) and (71).
i} solve for A, , 8, and a, = a’ - 5, 9o from
equétions (5h) and (57).
A solution of course, requires the results of steps 2 and 3 to be
identical. An iteration type of solution is not practicalbecause a
small change in the result of step 2 can produce a very large change
in the result of step 3. The sign of the ratio (COS Y/ cos v)
can be determined from the following consideration. Since the time
oi‘igin was chosen so that the circulation is a maximum at time ¢ = 2
the angle of attack must be increasing, Thus, 7¢ >0 at ¢ =0
and in equation (50) thé quantity K sind < O . Thus, if
K is chosen greater than zero, 2 must be chosen in the third
or fourth guadrant, depending on ‘the sign of fe» ? fromequation (73)e
Calculations were performed on the above basis for the local
ac, Y

operating angle of attack a’chosen such that Ta/ " Oliaa’=0z rad. )
o

for the same blade characteristiecs and cascade parameters as in the
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previous cases., The solution is presented in Table I along with

results for the limiting cases of 1ift only and drag only for the

same value of %,r .
TABLE T

COMBINED EFFECTS

OF LIFT & DRAG LIFT ONLY DRAG ORLY
a, = 12.9° <, < 120° a, =>222°
w” - M - M = 95

(L)< 100 U/‘ LO7 ((/) )
/ao = ﬂ.‘r7¢
4, = 0397
o T o777

V‘ = 2/0. 50

COMPARTSON OF RESULTS FOR COMBINED LIFT & DRAG

WITH RESULTS ¥FOR LIFT ONLY & DRAG ONLY

Airfoil Characteristics:

b= 524 , C,qiven by f}m/é?/) %f: L6S

a=Z2mr,

Cascade Parasmeters:
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As indicated ioreviously, the propagation speed is very 'nearly
the same for all tﬁree cases. The angle of attack «, , for which
the particular calculation was carried out, lies outside the range
covered by either 1lift variation or drag variation alone., This is in
agreement with the ides mentioned earlier, that az; gives the upper
limit of steady oscillations. Above that angle it would appear that
the oscillations diverge. When cowbined with drag variations, however,
the damping effect of drag permits steady stall propagation at angles
of attack above a’j# , while the exciting effect of the 1lift variations
permits steady stall operation at angles below a'; where the motion

would be damped if drag variations alone were present.

Finally, the effect of the angle of attack on the speed of

propagation was d etermined by selecting « = &./7% radian and
solving for %—r for “——Z—? = / . This value of ' produced
a change in the time lag %’f of only 1/2%, so that again the propagating

speed seems Lo be independent of the blade loading.
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V. COHCLUSION

The analysis demonstrates rather conclusively that for the
number of blades normally present in the stages of compressors employed
in thermal jet propulsion systems, the approximation of infinite
blade number is completely valid. The specific influences of 1lift and
drag variations associated with stall have been clarified by carrying
along some of the essential non-linearity of the problem. From the
results, it may be conjectured that both lift and drag variations
must be accounted for in order to produce a realistic description of
stall propagation. It appears quite certain that, using both 1lift
and drag variations as indicated, the observed phenomenon of negative
stalling may be accounted for also. These computations should be made,
however, for characteristics representing those of an inlet guide vane
in order for the situation to be completely clear.

Three other questions, which can be answered through application
of the techniques developed herein, merit detailed study. The first
of these is the question of stability. Since a non-linear system
is involved, the problems arise, a) whether the steady solutions for
stall propagation are stable or will degenerate if slightly perturbed,
and, b) whether regions in which solutions have not been obtained will

support solutions with growing amplitude that, in turn, might approacn
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a steady solution. Conversely, it seems quite probable that, for
some steady uniform operating conditions, the corresponding state of
.stall propagation can be reached only through a disturbance of
sufficient magnitude to involve the non-~linearity of the systbemn.

The second questicn involves the influence of blade number.
Although the results show that a row of thirty blades behaves
essentially like an actuator disc, there certainly exists a lower limit
to the numbér of blades that can support stzll propagation at all,
Professor W. D. Rannie has pointed out that water pumps do not seem
to exhibit stall propagation. The features that differentiate a water
purmp from a compressor stage are high solidity and low blade number.
Although the high solidity is certainly of some ilumportance, it would
appear that the fact that only three or four blades are involved would
be of prime importance in suppressing stall propagation.

Finally, the question of the influence of high harmonics in the
various Fourier series must be considered. Sufficient work has been
done on this problem in indicate that, for one of the cases of stall
propagation due to 1lift variations, the second harmonic did not exert
a large influence upen the solution. It also appeared clear, however,
that there did exist angles of attack wnich the second harmonics would

be of dominating importance, for example, where the present calculations
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indicate that the fundemental oscillation must be arbitrarily small.
It is tempting to conjecture that & mechanism of this Sort might be
.the origin of multiple cell formation which has been typical of
experimental results on multistage compressors. HReasonable answers
to these questions will involwve an appreciable amount of calculations

but may be undertaken on the basis of the resulis here presented.
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APPENDIX. ®VALUATION 07 THE WAKE IHTEGRAL%
The integral to be evaluated here is that one appearing in

equation (29)}. Denote it by./. Then

/ /mﬁ/ﬂ//_zj)wi@é (lwt -8)] | singaat- - GF) »
+ {

T ner
Sinh 7 7

where ¢ = se . It is possible to reformulate this integral

in terms of standard forms.

First rewrite the integrand in terms of exponential functions.

pe [;rrr// 22), c,?wsd (qwl -2 _/ [ 7y -E4), -‘;,f—/a—js—z'/iwz‘ -#)/
I= i - mr

: dws
{fAwt -2, - T2F) ~e(Awt-2 - Ty )
+ £ - ¢ s

(%)

Now split / into two separate integrals so that J = /J, » 7

2
where
. A . Alos
daat-5) [ grde, 422
5, = ¢ ~(227) - gzﬂr s
A /-e 7 ( T)
. /(DS
z/Zwt ) [ ”m/ S/ W
L, = 4 ds

—(Zﬂ(f‘ - Z-f‘r-g'
/ (27

*This manner of expressing the wake integral in terms of tabulated
functions was kindly suggested by Professor A. Erdelyi.
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Consider./. lieplace / éfif—") by € and note then that
9¢ ¢ 4 _ :
.3=Zﬂ—_e '(z”,’;/&“c;ﬂ)‘é’ where g = / o+ clan f .

Then / , can be written as

95¢c4” (Al -2 /2 4”06,0/9‘ efé
]/ B 2 B ¢ 44

« dwg -&
&77
- 4
/ / e/

Kach of these integrals is now in a standard form. The first one is

given by (reference 8)

-2;
70 - //5 Ny

where Zf‘ (%) = d“{ Sog | 12 , the logarithmic derivative

of the Gamma function, while for the second one (reference 9)

Log 2 =[7ﬁfg—z—j—7dz

where the path of integration has been distorted in a simple manner.

Thus, the value of /, can be written in terms of tabulated functions.

seeq -i(Awl-2) »
7 - - 9Zﬂ/6$0 wt [/m Zf? 9/ —/oy/ é/)

Similarly for J,

: fselagé” [(Aw? - /Z// 2 ,?w ]joy(zzr?wy)

AN
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Using the relation g = 2-4  the quantity 2 - 22 X;f/
becomes 7% [ /-c 5—5 « Also from the familiar relation for the

Gamma function

TR (-2) =

is derived the relation
W{}) = f{/-;?) -7 eln e

Thus,

- ,7402‘7}1 ; . wR
[/ _ j:j;zﬂ 7t /f// /-7 5}/—frcz‘n%€/—42%)

_,Za_y (quﬂ) + L Zf
see ¥ [//?wf— .2 . WF A .
-5 e V)14 0-i55)) 2 () iE

Recombination of these two integrals to form I =

results in:

I = Z{:;cqﬂ 2 zf/ m[/ ' ) sinf jw? - %)
+ ety 22 £/ - A,U)e ot~ LQZz /oj/%jsm/fwz‘-bf}
- (7 cos (Al -3, )
Wultiplying J by 2@ ;1 /{/ i‘f),) znk results in
see f) g

equation (29},



O~

£l
7 5%

o292 %

- 51 -

NOTATION

Foufier coefficients of 1ift coefficient
Fourier coefficients of drag coefficient
Blade 1ift coefficient

Blade drag coefficient

Blade drag

Radius of annular blade row

Axial component of mean velocity

Mean velocity magnitude

Constant associated with 1lift characteristic
Constant associated with 1ift characteristic
Blade chord

Constant associated with drag characteristic
Defined by equation (6

Defined by equations {L1), (L2)

Blade gap

Defined by equations (L0), (L3), (L)

Number of blades

Number of a specific blade

Exponent in drag characteristic

Distance from blade row measured along wake
Time

Induced velocity

Complex coordinate in physical plane
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Blade circulation

Angle of attack

Time rate of change of angle of attack

= /) ¢ tar f

Vorticity

1/2 wake width

Fourier phase angle

Defined by equation (51)

Fourier summation index

Doublet moment of drag wake

Defined by equation (L9)

Density

= 5¢z¢ s complex coordinate of points along wake
Time lag associated with stalling of blade
Flow angle

Fourier phase angle

Angular velocity of stall pattern
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FIGURE 2. CASCADE OF AIRFOILS REPRESENTED BY
POINT VORTICES OF CIRCULATION I"
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