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Abstract 

Molecular recognition of DNA has important applications for gene regulation, 

molecular biology, and DNA nanotechnology. Pyrrole-Imidazole polyamides are a 

unique class of molecules with the ability to bind to DNA in a programmable manner. 

These small molecule analogues of distamycin A can be programmed to target virtually 

any DNA sequence with high affinity and specificity. Originally characterized for their 

ability to bind to B-form DNA, polyamides are also able to target DNA in architectures 

such as the nucleosome core particle (NCP) and two-dimensional DNA nanostructures 

including DX-arrays and DNA origami. In addressing DNA nanostructures, polyamide-

biotin conjugates can be used to create nanoscale molecular assemblies in a bottom-up 

approach to self-assembly. The ability to address unique sequences on a DNA 

nanostructure with different polyamides makes it possible to create unique arrangements 

of protein on a single 2-dimensional DNA template. Polyamides targeted to the NCP can 

be used for a variety of exciting applications including NCP-templated ligation reactions, 

gene regulation, and as tools for X-ray crystallography. The programmability of 

polyamides makes them an ideal tool for addressing a variety of DNA architectures for 

varying applications. 
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