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ABSTRACT 

The investigation of fracture of polymeric materials  in 

hydrostatic tensile fields constitutes an avenue of approach to the 

study of f racture  in more  general three-dimensional environments. 

The advantages created by the symmetry of the s t r e s s  field a r e  

considerable and, in one of the cases  studied, facilitates a theo- 

retical treatment that includes large  deformations, which a r e  

characterist ic  of this c lass  of materials .  

The analysis i s  developed through the concept of fracture 

originating from a flaw, which in this instance i s  taken to be a 

spherical cavity. Through the application of energy principles, 

a theoretical prediction of ultimate strength i s  made for  hydro- 

static tensile fields. 

Experiments were conducted to demonstrate the existence 

of such flaws and to evaluate the theory. Results of the tes ts  on 

specimens containing both residual flaws and artificially inserted 

ones indicate a fundamental difference in behavior a s  contrasted 

with cracks.  

An explanation is given linking experimental r e  sult s and 

theoretical predictions. It i s  based on the concept that a flaw 

"grows" in the material under load using the cavity as a nucleating 

point. Upon this hypothesis i s  built a theory of rupture in which 

planar cracks  grow radially from the center of the cavity in f i e  

form of Saturn-ring cracks.  
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C I I A P T E R  I 

I N T R O D ~ J c T I O N  

PROMINENCE O F  I I Y D R O S T A T I C  FIF=Z,DS 

Hydrosta t ic  tension ( F I T )  and hydros ta t ic  c o r r ~ j r r c s ~ j o n  (TIC) 

consti tute s t r e s s  s t a t e s  of a  v e r y  specia l  c l a s s ,  possess ing  unique 

c h a r a c t e r i s t i c s  of symmet ry .  Probably  the  g r e a t e s t  arnorint of 

effor t ,  and cer ta in ly  the g r e a t e s t  number  of resr i l t s ,  have come  

f r o m  investigations with HC,  a s  opposed to K T ,  where  the o~ l t s t and -  

ing work of Rridgman (1,7,) h a s  rece ived  wide attention.  Although 

h i s  work  h a s  cer ta in ly  gone wel l  beyond s imple  ESC, he  h a s  done 

cons iderab le  tes t ing d i rec t ly  with it. 

The re la t ionship of I iT and F-TG to t he  gene ra l  th ree-d imens iona l  

s t r e s s  s t a t e  i s  conveni tnt ly  djsplaycd through a  plot in pr incipal  

s t r e s s  space  a s  shown in F i g u r e  1. ficrc. the effects  of the s y m -  

m e t r y  a r e  c l ea r ly  borne  out with the  location of H T ,  o r  equal t r i -  

ax ia l  tension,  being along a linc that  b i s ec t s  the solid angle fo rmed  

by the t h r e e  pr incipal  a x e s  and extending infinitely in t l i t .  posit ive 

direct ion.  The ETC colln:erpart i s  the extension of  thj,  locus  in the 

negative direct ion.  

To f u r t l ~ e r  i l l l ~ s t r a t f ~  t l ~ e  ro le  of s y ~ n r n e t r y  in f r a c t u r e  i t  

i s  possible  to cons t r \ l c t  a  fniltlre s l ~ r f ~ r c e  in ~srincip;il s t r e s s  space ,  

defined by 

which i s  a locus  of poi111 s forming a  l imit ing si lrface of rup ture ;  

i. e . ,  points whose pr incip  11  . ; tress coordinates  l i e  within the 



HYDROSTATIC 

Figure 1 .  Locus of Hydrostatic Tension and Hydrostatic 
Compression in Principal Stress Space. 



surface will not fail and those lying on o r  above the surface will 

produce failure. Blatz ( 3 )  has shown that in general failure, either 

from actual rupture or  excessive deformation, can be broken down 

into a dilatational contribution and a distortional contribution. He 

has plotted the pure failure modes of dilatation and distortion in 

principal s t r e s s  space in Figure 2.  The s t r e s s  quality in a l l  octants 

may be denoted a s  follows: 

Number of 
Octant u l  "3 Positive Stresses  - - - 

By virtue of equivalence of the three principal axes,  it i s  noted 

that there a r e  only four categories of sctants characterized by the 

number of s t resses  of the same sign. Thus octants 11, III and Q 

a r e  s imi lar ,  and octants IV, QI, and VII a r e  similar.  This means 

that, for an isotropic material ,  only four octants need to be tested. 

It also means that since the axes of principal s t r e s s  must be invariant 



Figure 2. Fail-Safe Surface Based on the Strain-Energy Criterion 
in Normal Stress Space, 
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to the group of rotations in the body, the hydrostatic line becomes an 

axis of symmetry and consequently f rac tu re  in HT and HC become ex- 

t r e m u m ~ ;  i .e. ,  they a r e  l imit  points on the fai lure surface. 

Now although there  a r e  many obvious similari t ies  between 

HT and HC, there  i s  a grea t  deal of difference i n  the manner in which 

mater ia ls  respond to these two environments fracturewise. The 

theory cannot demonstrate that there  will be a difference in the actual 

configuration of the fai lure surface; however i t  h a s  been found 

through experiment that there  a r e  significant differences. Bridgman 

( I )  has  shown that in combined s t r e s s  s tates  involving high levels of 

hydrostatic, p r e s su re ,  none of the standard fai lure c r i t e r i a  of maxi- 

mum principal s t r e s s ,  maximum principal s t ra in ,  etc. postulated 

f rom tensile resul ts  a r e  accurate,  He has  investigated many s t r e s s  

s tates  that cover severa l  of the sctants  in principal s t r e s s  space 

and has  found l a rge  alterations in the Bevels of ultimate s trains and 

ultimate s t r e s s e s  in these other octants when compared to the ttt 

octant. He has  a lso  discussed (2) the fact that i t  i s  necessary  before 

rupture can occur to have what he t e r m s  an  energy re lease  mechanism, 

o r  more  simply, a place for  the mater ia l  to go so that energy can be 

used to crea te  new surface. Reflection upon this point leads to the 

conclusion that in pure hydrostatic compression f rac ture  could never 

occur and the ultimate strength would be infinite. However, slight 

perturbations from this field would provide enough anti- s ymrnetry 

to allow f rac ture  to occur a t  real is t ic  levels,  Therefore in hydro- 

static compression the fai lure surface possesses  a cusp a t  infinity, 

which would be in strong contrast  to the same  situation in tension 
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where thcre  i s  an eilergy r c l case  mccIin~?ism, and f r ac tu re  can occur  

a t  finite values.  It then follows that IIT anci E!C produce quite a dif- 

ferent  effect upon mater ial  5 ,  ant1 t h e  r c s ~ ~ l t i n g  hcliavior i n  < . , I $  ( n s e  

i s  not the inverse  of tlic otlicr. 

One additional point that needs fur ther  emphas is  i s  the mathe-  

matical simplicity that a r i s e s  a s  a consequence of the symmet ry  in 

the problem. The number of existing solutions to three-dimensional  

elasticity problems i s  l imited,  but in this  instance the theoret ical  

analysis  accompanying - the experiment  i s  not only possible  hiit reason-  

ably simple,even in the case  of f ini t t  deformatiorl thi.ory. (4)  It makes 

a solution possible where i t  otherwise m a y  be intractable.  All of 

these fac tors  combine to make H T  a n d  HC, fields of con.iiderable 

in t e res t ,  a s  well a s  of cons jdera l~ lc  vn111c. 

13ydrostatic Tension in IAiquids 

Although HG lends i t  self well to expcrimentat ion, s ta tes  of H T  

a r e  not so readi ly generated in the laboratory.  Onc extrpt ion to this 

is in the c a s e  of liquids HT can  readi ly bc c rca ted ,  and a s  a 

consequence, f r ac tu re  of scve ra l  l i q ~ ~ j d s  has  heen invcstigatecl. (5)  

Studies of this typc not o l~ ly  contribilte to lhe fundamental knowledge 

of physics,  but a r e  of considcrable engineering in teres t  ; i . i  they re la te  

to the phenomena of cavitation. F i s h c r  (6) has  applied a n  r n t r q y  

balance to the growth of a spllerical cavity in a l ir~~licf,  and from this 

has  been able to der ive an expression defining the c r i t ica l  p r e s s u r e  

a t  which the bubble will grow. 



where p = cri t ical  p r e s s u r e  
C 

y = surface tension 

r = radius  of cavity 

pv 
= vapor p r e s s u r e  (usually neglected) 

Irwin ( 7 )  has  extended the analysis  of F i s h e r  a n d  favol-ably compared 

h is  theory with da ta  on the f r ac tu re  of 3iquids obtained f rom severa l  

other investigators.  A l a r g e  number of experimental  uncertaint ies ,  

ve ry  difficult to control ,  made the cor re la t ion  somewhat fortuitous,  

and thus led Irwin to conclude that the theore t ica l  s t rength calcula- 

tions for  pure  liquids were  of doubtful prac t ica l  utility. Nevertheless , 

a s  he  s t a t e s ,  the degree  of completeness  permi t ted  in the theoret ical  

considerat ions,  p r imar i ly  due to  the symmet ry  involved, make the 

pure  liquid tensi le  strength analysis  of importance. F u r t h e r m o r e ,  

i t  can  a c t  a s  a l imi t  c a s e  fo r  the m o r e  genera l  viscoelast ic  ma te r i a l ,  

which we will r e fe r  to in a l a t e r  chapter .  

Hydrostatic Tension in Metals 

F r a c t u r e  studies for  genera l  combined s t r e s s  s ta tes  have been 

pursued for  meta ls  quite arduously. (8) With complex testing equip- 

ment  capable of applying flllid p r e s s u r e  a s  well a s  tensile shea r  and 

bending loads ,  i t  has  been possible to study metal l ic  f r ac tu re  under 

a wide range of loading condjtions, but not HT. Nadai ( 9 )  has  t r aced  

some of the at tempts  to  c rea te  HT in metals .  Two of the methods 

employed, which a r e  of a s imi l a r  na ture ,  a r e  thermal  s t r e s s e s  and 
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gra in  t ransform<? l ions .  Here  at tempts  a r e  made to produc-e ,i state  

in the body such that one portion pulls on another portion, putting it 

in H T ,  e i ther  by thermal  gradient o r  by volume change due to phase 

t ransforma tion. Aitholrgh some success  has  been rea l ized  in p ro -  

ducing the des i r ed  condition, i t  h a s  never  been possible to obtain 

any quantitative measuremen t s  f rom such tests .  Another popular 

method has  been the use  of a c i rcumferent ia l  notch on a c i r cu la r  

cylindrical bar .  It was believed that the s t r e s s  s ta te  a t  the base of 

a s h a r p  hyperbolic notch was hydrostatic when the ba r  was  under 

axial  tension. However,  Neuber (1  0) in h is  t r ea t i se  on notch s t r e s s e s  

demonstrated that  this  was not the c a s e  and that nea r  the surface of 

the notch the s t r e s s  ra t ios  were  nrtually 1: 1:3, with the l a rges t  being 

in the axial  direction. Unfortunately the t e s t  has  not been useful for  

other  combined tensi le  s t r e s s  s ta tes  in the +ti- octant due to  the 

l a rge  gradients  of s t r e s s  in the neighborhood of the notch, which i s  

the region of in te res t .  Still another attempt was made by L e h r e r  

and Schwalzbart  (11) a s  they bonded a thin sheet of b r a s s  between 

two plates of s tee l  and p~i l led  the plates in tension perpendicular to 

the l a r g e ,  f la t  face.  This t e s t  h a s  p romise  btlt p r imar i ly  for  m a t e r  - 

ia ls  that a r e  near ly  incompressible .  This  will be demonstrated in  

a l a t e r  analysis .  

So in meta ls  i t  s t i l l  r ema ins  to find a good hydrostat ic  tensile 

tes t ;  although a lmos t  any other  combination of s t r e s s  can be imposed. 

I t  i s  interest ing that in spite of this miss ing  piece of information 

McAdam, (12) f rom other  exper iments ,  postulated that H T  would be 

a n  extremum point on a -. convex -- f r a c t u r ~  surface;  i .e. ,  this s t r e s s  
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s ta te  would r ep rescn t  the maximum in ult imate s t rength that could be 

enjoyed by a br i t t le  meta l  in tension, It i s  a l s o  interest ing to note 

that this  h a s  subsequently turned out to be the c a s e  in ot-her engineer - 

ing ma te r i a l s ,  such a s  polymers ,  whcre  i t  i s  possible to produce HT 

in the laboratory.  

Hydrostatic Tension in Po lymers  

Polymer ic  ma te r i a l s  a r e  fundamentally different  in the i r  basic  

s t ruc ture  and in their  behavior,  (1 3 ,14 ,15)  Thei r  difference i s  s o  

pronounced that special  methods of s t r e s s  ana lys is ,  upon which f r a c -  

tu re  analysis  i s  built ,  have had to be developed. The s ta te  of this 

a r t  has  recent ly been reviewed by Williams. (16) Differences in the 

basic  s t ruc ture  produce differences in the i r  f r ac tu re  behavior,  which 

has  been reviewed f i r s t  by Bueche and B e r r y ,  (17)  and subsequently 

by Williams, (18) Widespread in t e res t  in the f r ac tu re  proper t ies  of 

these ma te r i a l s  has  a r i s e n  through a vast ly  expanding usage of poly- 

m e r s  in engineering applications where  s t ruc tura l  integrity i s  an 

i tem of concern. One p r i m a r y  example,  which a t t r ac t s  the in te res t  

of Aeronautical Engineers ,  is the s t ruc tura l  integrity of solid p r o -  

pellant rocket  grains .  (19)  Bn this instance,  the solid propellant fuel 

consti tutes an  integral p a r t  of the s t ruc ture ;  thereby requir ing analy- 

s i s  of i t s  ma te r i a l  integrity l ike any other  s t ruc tura l  component. 

However, the constitution of these ma te r i a l s  i s  ve ry  complex. It 

consis ts  of a binder ma te r i a l ,  which is an  amorphous e l a s tomer ,  

impregnated with a high volume percentage of solid oxidizer par t i -  

c l e s  such a s  ammonium perchlorate .  This  sys tem is neither 
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homogeneous nor isotropic ,  and i t  i s  innately ve ry  complicated in i t s  

mechanical behavior. It therefore i s  reasol-rable to  seek a simplified 

approach to the p r o h l ~ m  wit11 th r  a im of cliscovering some of thc 

fundamentals of the behavior of the separa te  componrnts ;  i . ~ .  , to 

investigate the f r ac tu re  proper t ies  of the amorphous rubber  binder 

a s  a f i r s t  approach to an  investigation of the fi l led sys tem,  An 

examination of f r ac tu re  in amorphous rubber  a l so  h a s  i ts  own in-  

herent  in te res t  a s  i t  would apply to other  engineering applications 

where there  i s  no f i l ler  involved; thus the incentive fo r  the investiga- 

tion of f r ac tu re  i s  two-fold: ( j )  the attempt to  study fai lure  in solid 

propellant ma te r i a l s  for  the i r  own sake ,  and (ii) to discover  general  

principles that can be applied direct ly  to the f r ac tu re  analysis  of 

engineering components where the amorphous polymer alone i s  the 

s t ruc tura l  mater ia l .  

Related Work. In o r d e r  to place the HT work in proper  

perspect ive,  re ference  will be made to related work in other s t r e s s  

s ta tes .  Most of the effort expended on unfilled e l a s tomers  has  thus 

f a r  been applied to  the c a s e  of uniaxial tension. Certainly this  i s  the 

logical s tar t ing point, for  i t  keeps complication to a minimum, so 

that experimental  r e su l t s  a r e  not obscured by extraneous influences. 

However,  even in this  s imple c a s e  much work has  been required to 

uncover and define basic  brhavior in t e r m s  of mechanical propert ies .  

A comprehensive review of the uniaxial work has  cur rent ly  been 

given by Landel and F e d o r s ,  ( 2 0 )  which devotes some attention to 

the elusive problem of f r ac tu re  proper t ies  uncles genera l  loading 



-11 - 

conditions. This  i s  the a r e a  in which there  is s t i l l  much to be done 

even in the uniaxial s t a t e ,  fo r  the concepts of fatigue and cumulative 

damage a r e  not only unsettled, but investigations a r e  s t i l l  in their  

infancy even though pre l iminary  information i s  now coming for th  a s  

evidenced by the work of Knauss and Betz.  (21 ) 

Concurrent ly there  has  been a s imi l a r ,  but sma l l e r ,  co rps  

of invest igators  working with multiaxial  polymer f r ac tu re .  Two 

biaxial t e s t s  have been used,  one r e f e r r e d  to a s  the s t r ip  biaxial 

which h a s  probably received the m o s t  attention is shown in F igure  3 

and the other  i s  that of the equal biaxial t e s t ,  which can  be conducted 

by inflating a membrane  (Figure  4) o r  in some instances special  

f ixtures  have been successful .  (See KO ( 2 2 ) .  ) These  t e s t s  a r e  quite 

tedious.  F u r t h e r m o r e  i t  i s  difficult to force  f r ac tu re  to occur away 

f rom the g r ips ,  and they r equ i re  considerable c a r e  in  the p repa ra -  

tion of the specimen to yield a c ross-sec t ion  that will  produce the 

des i r ed  s t r e s s  field; consequently a l imited amount of r e su l t s  i s  

available for  these  geometr ies .  One extensive work using seve ra l  

s t r e s s  fields in uniaxial, biaxial ,  and t r iaxial  tension to construct 

fa i lure  sur faces  has  been completed by KO. (22) 

Previous  Work i n  Hydrostatic Tension. There  has  been even 

l e s s  work done in the a r e a  of t r iax ia l  f rac ture .  One of the f i r s t  

efforts in this  direction was made by Gent and Lindley, (23,24)  who 

per formed t e s t s  in HT and HG.  They were  a t t rac ted  to a n  unusual 

t e s t  by which they produced these fields following work repor ted  by 

Yerzley (25)  on the bond integrity between rubbery mater ia l s .  In 



F i g u r e  3 .  Strip-Biaxial Tension. 



SOLIVHANE 113 
SHEET - ( INFLATED 1 

Figure 4. Equal Biaxial Membrane Test. 



-1 4- 

Yerzley ' s  s e a r c h  fo r  an  ASTM standard,  he  glued a single thin r e c -  

tangular block of rubber  between two s imi l a r  me ta l  blocks and pulled 

them a p a r t  to  t e s t  the strength of the interface bonds. In the course  

of the experiments ,  he  noted a r a the r  peculiar type of f r ac tu re  in the 

rubbery specimen and discussed it briefly.  Twenty y e a r s  l a t e r  Gent 

and Lindley pursued this t e s t  by manufacturing some smal l  c i rcu lar  

disks f rom a carbon black filled, natural  rubber  and pulled them by 

m e a n s  of two, r igid,  s teel  plates.  With the thin disk of soft specimen 

ma te r i a l  glued and sandwiched between the s t i f fer  g r i p s ,  i t  will be 

res t ra ined  f rom contracting la te ra l ly  a s  the en t i re  assembly  i s  ex-  

tended along i t s  ax is  perpendicular to the face of the disk.  This 

c r e a t e s  the t r iax ia l  s t r e s s  field. The amount of r e s t r a in t  i s  a func- 

tion of the aspec t  ra t io  (diameter  to thickness) of the specimen,  but 

an  elementary analysis  can be made by assuming the disk to  be 

infinitely thin such that the external  radius  is sufficiently f a r  f rom 

the center  to a s sume  that the only non-zero displacement ,  - w,  i s  in  

the x direction. With this configuration the boundary conditions 3 

become u = v = 0 f rom which E = EO = 0. r The s t r e s s  field then 

becomes 

where  use  has  been made sf the axial  s t ra in  

so  that the apparent  axial  modulus becomes 



where it may be noted that for rubbery ma te r i a l s  which a r e  cha rac -  

ter is t ical ly  incompressible ,  i. e .  , v = 1 / 2 ,  the t r iax ja l  trrlsile s t r e s s  

s ta te  approaches hydrostatic with the consequent infinite apparent  

axial  st iffness.  Gent and Lindley's initial experimental  work demon- 

s t ra ted  an internal  f r ac tu re  in the rubber  which var ied  with thickness ,  

modulus and tensi le  s t rength,  and they devoted the i r  attention to 

documenting and explaining this variation. After completing a p re -  

l iminary  probe into this interest ing mode of f r ac tu re ,  they extended 

their  work to compress ion  using carbon black fi l led rubber  specimens.  

Emphasis  was placed on defining the load -deflection relat ion and 

obtaining a definition of the s t r e s s  field in the specimen. 

FAETHOD OF APPROACI-1 

The work of Gent and Lindley will be used a s  a point of de-  

par ture  fo r  the work to be reported.  The f i r s t  i tem to receive 

attention will be a detailed s t r e s s  analysis  of the t e s t  specimen to 

provide a means  of local examination of the experimental resu l t s .  

This  will be coupled with experimental work made on a modified t e s t  

appara tus ,  which permi ts  a m o r e  detailed study of the f r ac tu re  p ro -  

c e s s .  Interpretation of these r e su l t s  and analytical. extensions 

thereof will then be made on the bas i s  of a flaw hypothesis. A word 

of justification fo r  this  assumption i s  in o rde r .  

Many analytical and experimental techniques current ly 

applied to polymers  were  c a r r i e d  over  f rom metal f r ac tu re .  
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Although severa l  have been founcl to apply direct ly ,  a s  yet no univer- 

s a l  approach has  been discovered.  Fiowever, in specific instances,  

par t icular  approaches have been fruitful.  F o r  ins tance ,  t l~rough 

laboratory experience it h a s  hccn fotlnd that many polynirss a r e  very  

notch sensit ive; i. e .  , their  proper t ies  a r e  strongly controlled by 

imperfections on the surface a s  well  a s  in the in te r ior  of the body. 

Such behavior suggests that an investigation of the f r ac tu re  phenorn - 

enon in these ma te r i a l s  may  appropriately be made by means  of a 

flaw hypothesis.  This  method can be employed on e i ther  the molecu- 

l a r  o r  the continuum level.  Physical  chemis ts  have studied the 

effects of flaws in the chain s t ruc tu re  i tself ,  and worked up by 

s tat is t ical  means ,  through groups of chains ,  to the continuous 

specimen,  where  cor re la t ions  can  he made hetwcen specimen load 

and localized s t r e s s  a t  the molecular  flaw. A consideration of the 

bond energ ies  then leads  to a prediction of f r ac tu re .  Ea r ly  ideas 

of this  type were  put forth by Houwink (26) and l a t e r  expanded by 

invest igators  such a s  F l o r y ,  (27) who was an  advocate of molecular 

flaws due to dangling chain ends. Current ly  this approach i s  yield- 

ing r e su l t s  due to improved mathematical  techniques, including the 

recent  work of Blatz (28 )  and Knauss (29 ) .  

An a l te rna te  approach i s  to consider  the mater ia l  initially 

a s  a continuum and then represent  the flaws a s  discontinuities in 

that continuum. Through an  analysis  of a typical flaw, which in one 

instance i s  a spherical  cavity taken to be independent of a l l  other 

flaws in the ma te r i a l ,  the local conditjons of s t r e s s ,  s t r a in ,  and 

energy,  can  be computed a n d  f rac ture  prerlicted through the 
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application of an energy criterion. (30) This will be done for  two 

different modes of propagation of the f racture  surface, and subse- 

quently a comparison of the two leads to new i n ~ i g h t  into the behavior 

of holes and cavities. One further point should be noted before pro- 

ceeding. Amorphous elastomers characteristically a r e  viscoelastic 

(31 ) and exhibit large deformations i x l  f racture.  (32)  These charac- 

ter is t ics  complicate the analysis considerably, especially ae the 

theory of finite viscoelasticity has  not yet progressed to tihe point 

* 
that it  is a practical tool for  analysis. F o r  this reason the work 

referred to herein,as well as this entire effort, i s  predominantly 

performed with the classical tools of infinitesimal elasticity (and 

in  some cases  infinitesimal viacoelasticity) and should be inter-  

preted a s  an  exploration of the broad concept s of polymeric f racture  

in HT ra ther  than a final definitive t rea t ise  of the subject. 

* 
Schapery ( 3 3 )  has  just  completed a report  that promises to help 
rectify this situation and make finite vdecoelasticity a bit more  
manageable for  engineering analyeis. 
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CHAPTER TI 

THEORETICAL ANALYSIS OF THE POKER - CFiTP SF7ECIMEN 

The mathematical rnorlcl of the poker -ch  i p  configitration, 

shown in Figure  5 ,  leads to a mixed boundary value problem that 

is  a lmost  analytically intractable  f rom the standpoint of c l a s s i ca l  

e last ic  theory. Like many elast ic  problems involving finite bodies 

with discontinuous boundary conditions, the poker -chip configuration 

presents  many mathematical  diff ic t~l t ies  if an exact ,  c losed-form 

solution i s  sought. However,  for  such problems s e r i e s  solutions 

a r e  possible and several  have been used. 

RELATED SOLUTIONS 

One of the f i r s t  theoret ical  analyses  relating to this problem 

was  published by Pickett .  (34) In h is  analysis  of cy l inders ,  he  

employed a F o u r i e r  s e r i e s  expansion, which resul ted in the final 

solution being expressed  in t e r m s  of a doubly infinite s e r i e s .  

This fo rm i s  awkward fo r  ou r  purpose,  where  the r e su l t s  a r e  in -  

volved in a subsequent ana lys is  of f r ac tu re ,  especially where  

convergence of the solution i s  slow. This  i s  emphasized near  the 

c o r n e r s ,  where i t  should be noted that the problem of convergence 

i s  bas ic  due to the peculiar geometr ical  effects present  the re .  

There  i s  a discontinuity in ma te r i a l ,  a s  well a s  discontinuities 

f rom s t r e s s  to displacement boundary conditions, and this  may  

lead to mathematically infinite s t r e s s e s .  (35)  When the s t r e s s  

singularity does occur ,  anrl such singular behavior has  not been 

explicitly built into the form of the formal  representat ion of the 
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solution, convergence and r a t c  of convergence difficulties a r e  to be 

expected. 

Gent and Lindley ( 2 3 )  began by solving an analogous problem 

of an  infinite s l ab ,  using intuitive assuinptjons based on incompres-  

sible ma te r i a l  behavior and proposed a s t r e s s  ana lys is ,  which can 

be shvwn equivalcnt to  minimizing the potential energy.  They then 

extended this  line of reasoning to the c i r cu la r  d isk ,  and the apparent 

4. ,I- 

modulus deduced f rom this analysis  was compared to a l a rge  amount 

of experimental data. Qualitatively the re  was good agreement , a1 - 

though quantitative predictions with the theory were  good only for  a 

ve ry  smal l  range of aspec t  ra t ios .  F u r t h e r m o r e ,  since the apparent: 

modulus i s  essent ial ly  an average property,  the corresponding 

internal s t r e s s e s  needed for fai lure  analysis  could be significantly 

different than the average  v a l ~ i e .  

Energy methods have a lso  been used. One of the f i r s t  was 

a complementary energy formulation in t e r m s  of the s t r e s s e s  used 

by Williams, Blatz ,  and Schapery. (1 9 )  In cylindrical coordinates 

the proposed s t r e s s  representat ions were  

.o, -,* 

Following Gent: and T,inrll~y, the apparent  modulus i s  defined a s  the 
average  axial  st rr.ss t i ~ v l c l c ~ r l  by tile a~,plic~rl a u ~ a l  st rain.  



where the four constants cr p ,  n ,  and A were  t o  ~ J C  dctc.rmined by 
o ' 

minimizing the cornplerrlentary energy. On the otllcr hand, a poten- 

tial en r rgy  formulat ion in t e r m s  of displacements  h a s  been proposed 

by F r a n c i s  and Cantey (36) in which the r ad ia l  and axial  displace-  
.,. 'D. 

ments ,  minimizing the energy ,  were  found to be of the form 

In both of these c a s e s ,  however ,  the algebraic  complexities involved 

in the computation were  found to be r a the r  formidable,  par t icular ly 

when pa ramet r i c  var iat ions of aspec t  ra t io  and ma te r i a l  constants 

were  desired.  F u r t h e r m o r e ,  a s  i s  fundamental with these part icular  

energy solutions, the complementary principle for  s t r e s s  approxima- 

tion usually yields poor displacements  and,  vice v e r s a ,  the potential 

energy principle fo r  displacements  does not sat isfy s t r e s s  equilib- 

r ium.  It will  be shown l a t e r  however that a combinatinn of these 

methods can yield good engineering accuracy .  

Still another solution came  a s  a resul t  of a pre l iminary  study 

f o r  the poker-chip specimen in t h ~  form of a potential energy solution 

for  a two-dimensional slab. (37) It made use  of the careful edge 

displacement measuremen t s  of Gent (38) in which h e  determined the 

::: 
Note that w = 0 a t  z = h .  This s o l ~ ~ t i o n  i s  to be superimposed with 
the constant s t ra in  s o l t ~ t  ic>rl.  
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t r a n s v e r s e  displacements to he mainly parabolic functions of the 

longitudinal (axial)  coordinate.  Results of the s lab  analysis  furnished 

an  increased  understanding of the complete s t r e s s  d i s t r i b ~ ~ t i o n ,  

including the extent of the boundary influence on the internal  s t r e s s e s  

and the fact that the axial  displacement of the s lab  was virtually 

constant throughout. Building upon this  foundation i t  was possible 

to compute two approximate solutions for  the disk.  The f i r s t  in-  

volves a technique of averaging the s t r e s s e s  through the thickness 

of the specimen and satisfying the equilibrium equations on an  

average bas is .  The other  employs the variat ional  approach fo r  

the  minimization of the potential energy. Both use  a s sumed  func- 

tional f o r m s  for  the displacements ,  which a r e  guided by the s lab  

ana lys is ,  and the two methods bear  a strong s imi lar i ty  throughout. 

This  will be demonstrated in detail. l a t e r  a s  both solutjons a r e  d is -  

cussed.  

Final ly ,  numerical solutions to the problem have been 

obtained by M e s s n e r ,  (39)  and Rrisbane.  (40) In Messner '  s  solu- 

tion, for  instance,  a finite difference technjquc has  been used,  

and the gr id  s ize has  been progressively reduced unt i l  two sub- 

sequent s izes  produce no appreciable  change in the s t r e s s  s ta te .  

The calculated s t r e s s  distribiltion will be prcsented graphically 

l a t e r  to a c t  on a basis  of comparison for  the accuracy  of the ap -  

proximate analytical solution. The convergence a t  the co rne r s  

has  been found to be extremely slow, and this is again due to the 

presence  of s t r e s s  singularit ies a t  these points. This type of 

computer program offers  great pract ical  advantages,  since a 
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solution can be obtained to any des i red  accuracy  jn a shor t  t ime.  

However i t  has  the disadvantage that in o r d e r  to per form a pa ra -  

me t r i c  study, a separate  calculation has  to be per formed for  each 

configuration. 

APPROXIMATE SOLUTION 

This section descr ibes  an approximate method fo r  analyzing 

a thin, c i r cu la r  disk developed by Lindsey, Schapery , Williams 

and Zak. (41 ) As mentioned previously i t  u s e s  a n  extension of the 

solution for  a s lab in plane s t ra in .  (37) One of the p r imary  advan- 

tages of this solution i s  that the incompressibi l i ty  assumption 

made  by Gent and Lindley ( 2 3 )  does not have to be invoked so  that 

the resulting solution i s  applicable over  a range of ma te r i a l  prop- 

e r t i e s .  F igure  5 shows a c i r cu la r  disk of radius  a - with i t s  ax is  

in  the z-direct ion,  and the faces  z = 51 bonded to rigid plates.  W e  

a s sume  that the disk i s  loaded by increasing the thickness by 2E 

and proceed to  select  two displacement functions,  which satisfy 

the boundary conditions on that par t  of the boundary where d is -  

placements a r e  prescr ibed.  Note that the third (circumferent ial)  

displacement ,  v ,  i s  identically zero  by r easons  of symmetry.  

Such functions would a lso  be admissible  functions for use in the 

Theorem of Minimum Potential Energy,  although i t  should be 

recal led that the resul tant  minimization yields a r e su l t ,  in this 

c a s e  i t  will tu rn  out to be the function g ( r ) ,  such that the equations 

of equilibrium a r e  not satisfied unless the soltation i s  actually 

exact.  The radial  displacement function i s  known to be essentially 



parabolic f rom the edge measurements  by Gent. ( 3 8 )  The longitudinal 

displacement was found by Schapery and W i l l i a m s  ( 3 7 )  to he directly 

proportional to i t s  distance f rom the horizontal p l a n e  of symmetry  

over  mos t  of the d i sk ,  Consequently the displacement ftanctions take 

the form 

in the radial  and thickness directions respectively.  Note that the d is -  

placement boundary conditions a r e  satisfied a t  the sur faces  z = il, 

and that g ( r )  i s  present ly an unprescr ibed function of the radius .  The 

s t r a ins  corresponding to these dj splacements  a r e  easi ly  found to be 

f rom which the z-averaged s t r e s s e s  a r e  found as  



where g' E dg/dr. 

The function g i s  found from the condition that the z-integrated 

equilibrium equation for  the rad:al direction i s  to vanish, i. e . , 

Also, note that because of symmetry the integrated equilibrium equa- 

tion for  the z -direction i s  satisfied identically, 

Substitution of s t r e s s e s  (2.9)  into equation (2. 10) yields t he  

differential equation for g ,  thus 

where Mi i s  a constant made up of a compssite s f  mater ia l  properties.  

Equation (2. 12) i s  a form of BesseP' s Equation and yields modified 

Bessel  functions a s  solutions. 



where I ( r G )  and K ( r m )  a r c  modified F3essc.l f u n r t j o n s  of the  
1 1 

f i r s t  a n d  second lcind r ~ s p c c t i v c l y .  Since K l ( 0 )  is  infinite, and we 

requi re  the deformation to  be finite a t  the or igin,  B = 0 .  The con- 

stant A i s  found by using the boundary condition that ; ( a )  = 0 f rom 
r 

which i t  follows that 

Substitution of the solutions (2. 14) into s t r e s s e s  ( 2 . 9 )  using 

( 2 .  15) yields the following s t r e s s e s :  



which, it may be found, approaches a s ta te  of t r i ax ia l ,  hydrostat ic  

tension a t  the center  in the c a s e  of an  incompressible  ma te r i a l .  We 

expect the s t r e s s e s  (2.16) to be good approximations fo r  0 .L-( v S 1/2 

except for  the singular s t r e s s e s  nea r  the f ree-edge  r = a .  

Simplification of the S t r e s s  Expression.  With this restr ic t ion 

on the rad ius ,  equations (2 .16 )  can  be v e r y  well  approximated by the 

expressions:  

I t  i s  to be noted that a l l  of the normal  s t r e s s e s  a r e  essent ial ly  equal 

when Po i s son ' s  ra t io  i s  close to one-half. These  expressions a r e  

plotted in F igures  6 and 7 where the s t rong dependency upon Po i s -  

son ' s  ra t io  is quite evident. To show this  m o r e  c l ea r ly ,  and because 

i t  i s  a ve ry  useful tool for  l a t e r  discussions of experimental r e su l t s ,  



Figure 6 .  P-NormalL Stregla inn Diek vhr/,r: o = 20. 



F i g u r e  7. Shear Staeer i.n Diek ve, ria: c rn 1, or rrs 28. 



Figure 8. z-Normal Stress in Disk vs.  Poisson's Ratio 
at r s: 0, a.= 20. 
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a cross-p lo t  of F igure  6 i s  given in F jgurc  8 ,  w h c r e  tlre rrlatjonship 

of local s t r e s s  to applied s t ra in  i s  shown for  r = 0. 

Str ic t ly  speaking the only point of trllc XiT i s  at the n~iclplane 

z = 0; however a s  seen in Figtire 7 the shea r  s t r r s s  a t  t h e  rigid 

bountlary, which i s  the region of maximum s h e a r ,  is  only a smal l  

percentage of the normal  s t r e s s e s .  Consequently for  a l l  pract ical  

purposes the s t r e s s  field can be considered HT a s  f a r  out a s  r = 0.5a 

with ve ry  l i t t le e r r o r .  F u r t h e r m o r e  fo r  ma te r i a l s  with Poisson ' s  

Ratio down to 0.4975 o r  below, the re  i s  an  appreciable  cent ra l  region 

of virtually constant hydrostatic s t r e s s ,  which contributes to the c a s e  

and accuracy  with which data  can be reduced. La rge  s t r e s s  g r a -  

dients make i t  difficult to  know with precis ion what the local  f r ac tu re  

levels  actually a r e .  

Displacement Express ion  

In addition to  the s t r e s s e s  ( 2  . I  7 ) ,  the radial  displacement ,  

i s  of importance since i t s  midplane value a t  the boundary, r = a ,  

can be measured  experimentally,  and possibly used to dedrlce the 

bulk modulus in view of the sensitivity to Po i s son ' s  ra t io  shown in 

F igure  9. Fur theymore ,  as  shown in F i g r ~ r e  9 ,  this  displacement 
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m a y  be v e r y  l a rge  for  near ly  incompressible  m a t e r i a l s ,  even when 

the nominal s t r a i n ,  € , i s  smal l .  In the neighborhood of the rad i i  for  

which the radial  displacement is not smal l  re lat ive to the  disk thick- 

n e s s e s ,  some e r r o r  due to l a rge  s t ra ins  will hc introduced i n  the 

r e su l t s  of the p resen t  l inear  analysis .  

Limit-Check of the Solution 

In the incompressible  l imit  c a s e  (v = 1/2) solutions a r e  

readily found f rom equations (2.16) and (2.1.8) to be 

where  i t  m a y  be noted that for  a l a r g e  aspect  ra t io ,  the condition 

(r  = 0)  of t r iaxial  hydrostat ic  tension is achieved. F ~ l r t h e r ,  

Apparent Modulus 

Another quantity of experimental i n t e re s t  i s  the apparpnt 

uniaxial modulus E defined a s  the rat io  of the average s t r e s s  A '  

over  the bonded sur face  cr 
zA ' requi red  to produce the axial  dis  - 

placement w ,  to the nominal axial s t r a in  E , viz,  
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Upon substitution of c r z ,  equation (2.1 he),  into ( 2 . 2 0 )  we find 

This  apparent  modulus can  he conveniently employed fo r  

determining the bulk modulus of near ly  incompressible  mater ia l s .  

Namely, given an aspec t  ra t io  - a ,  and experimentally measured  

modulus EA,  the rnoduliis ra t io  E/K can he deduced f rom a graph 

of equation (2.21 ) ,  such a s  shown in F igure  10. It i s  observed 

that EA/Ea2 depends on only the pa ramete r  a J m  for a 5 30. 

The accuracy  of expression (2.21) i s  expected to be: good, even 

f o r  small  aspec t  ra t ios .  This follows f rom the fac t  that the appa r -  

ent modulus i s  an average  proper ty ,  and therefore should not be 

sensit ive to e r r o r  in s t r e s s  nea r  the periphery. F u r t h e r m o r e ,  

E has  the c o r r e c t  limiting value of F: for  a - 0. 
A 

End Effect P a r a m e t e r  

By forming a ra t io  of expression (2.21) and (2.17b) a m e a s u r e  

of the multiplicity of the local  hydrostat ic  s t r e s s  over  the average  

applied s t r e s s  can be obtained. 
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By evaluating this  quantity a t  a given location in  the specimen, .  the 

effect of aspec t  ra t io  can be plotted v e r s u s  m a t e r i a l  p a r a m e t e r s .  

F igure  I1 is the r e su l t  fo r  the center  of the poker-chip and is quite 

useful a s  an a id  fo r  acquiring a n  intuitive feel  of the geometr ical  

effects. The absc i s sa  i s  plotted f o r  values of a g r e a t e r  than o r  - 
equal to about fifteen. In other  words the l imi t  conditions f o r  

aJE/K -0 would r ep resen t  an  incompressible  m a t e r i a l ,  not a 

uniaxial tens i le  specimen. F o r  m o s t  e l a s tomers  the ra t io  of max- 

imum normal  s t r e s s  to the average  applied s t r e s s  will  be in  the 

range of 1 .8  to 2.0. 

The Effect of Corne r  S t r e s s  Singularit ies 

The  methods of solution just  presented fo r  the s t r e s s e s  in 

the poker-chip a r e  not able to predict  the conditions at the bound- 

a r i e s  where  the cha rac te r  of the boundary conditions change, the 

r eason  being the presence  of s t r e s s  s ingular i t ies ,  which give r i s e  

to  l a rge  gradients  of s t r e s s  that become averaged  out by the global 

methods used. Therefore this region h a s  to be investigated by a 

different method capable of describing the loca l  cha rac te r  s f  the 

field var iables .  Such a method was  employed by Williams (42,43) 

in studies of plates  with angular c o r n e r s ,  and then extended by him 

to include b imater ia l  sys t ems ,  (44) Zak (45) showed that when the 

methods employed by Williams a r e  extended to bodies of revolution 

the same  re su l t s  a r e  obtained a s  in the c a s e  of plane s t rain.  T h e r e -  

fore  Lindsey and Zak (46) obtained the solution to the poker -chip 

problem through the use  of the plane s t r a in  configuration of F igure  12. 
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This represents the condition existing a t  the junction of the f ree  

and rigid boundaries, a s  shown in Figure 5. Material 1 represents 

the grips to which the poker -chip specimen i s  bonded and Material 

2 represents a portion of the specimen near the edge. Material 1 

extends over 180° and Material 2 over 90O. This situation cor -  

responds to the case where the grips have a l a rger  diameter than 

the specimen. A complete analysis of the eigenvalues that produce 

the s t ress  singularities i s  given in Reference (41), including a 

matching of the localized singular s t resses  to the field s t r e s se s  

obtained by the approximate solution. 

COMPARISON OF RESULTS WITH OTHER SOLUTIONS 

Finite Difference 

It  has been interesting to see how closely the s t r e s s  distr i-  

butions obtained from the approximate solution of this section have 

been verified by the numerical results  subsequently obtained in 

Reference ( 3 9 ) .  Using equations ( 2 .  27) the three average normal 

s t resses  and the shear s t r e s s  have been computed for the case 

a = 10 and v = 8.4 and 0.5,  which a r e  configurations analyzed in 

Reference (39). The results  of this calculation for the axial s t r e s s  

u a r e  shown in Figure 13, where the s t resses  obtained from the 
Z 

two methods of solution a r e  compared. It can be seen from these 

results  that,  although the analytical method predicts only the aver -  

age normal s t r e s s  ; the two methods agree very closely except z ' 
at  the edge of the poker chip. At the edges both methods a r e  not 

accurate because of the presence sf the singularity. The agreement 
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fo r  the other  three  s t r e s s e s  i s  equal~ly good. 

Potential Energy Analysis 

In a previous section, an analysis  was prestnt tc l  which sa t i s -  

fied the displacement boundary canditians,  and the z-averaged 

equilibrium equations and s t r e s s  boundary conditions. As such the 

solution was expected to be a judicious compromise  between a best  

deformation (minimum potential energy) and best  s t r e s s  (minimum 

complementary energy) approximation. It i s  informative to inquire 

a t  this  point what type solution would resu l t  if the potential energy 

were  minimized,  par t icular ly a s  the deformation functions chosen 

e a r l i e r ,  i .e .  (2.7),  a r e  admissible  functions for  application of this 

theorem. It will be convenient fo r  l a t e r  purposes to use  the  dimen- 

s ionless  f o r m s ,  viz.  

where  h i s  the half-thickness of the specimen. 
V 

In the absence of body forces  and with ze ro  applied s t r e s s  

on the s t r e s s  prescr ibed boundary r = a ,  the M j n i r n ~ ~ m  Potential 

Energy Theorem (47) r equ i re s  that the potential energy 

be a minimum with respec t  to the variation of functionals involved 

in the double integral.  Using the expressions f o r  s t ra ins  (2 .8 )  in 
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(2.24) and performing the variation by s tandard techniques,  one finds 

the governing differential equation to be 

1 g ( )  t ( r )  - -- f M g(~) = 0 
[rlz VI 

where 

The boundary condition turns  out to  be 

The appropriate  solution of ( 2 . 2 5 )  i s  for  finite displacements  

a t  the center  of the specimen,  r = 0 ,  

where to sat isfy (2.26) 

The basic  s imi lar i ty  with (2.12),  the z-averaged method, is 

ve ry  evident. F o r  hv = I , a 5:6 rat io  fo r  M :A4 is obtained in the 
v 

governing equation and near ly  the s a m e  rat io  is found for  A :A. In v 

the la t te r  the rat io  i s  not precisely 5 :h  because A i s  a function of 

M. Nevertheless a qnalitatjve idea of the difference in the two and 

indirectly a bound on the average e r r o r  can be obtained by observing 

f rom the differential equation that 



such that if h = d5/0 0.912 thc.n the governing equations for  a mini- 

mum energy solution of h = 0,932 ,  o r  av = 1.088 cor responds  to a v 

z-averaged s t r e s s  solution in a specimen of thickness  h = 1 and a s -  
\ 

pect ra t io ,  - a.  Of cour se ,  if values of Mv and Av f rom (2.25) and 

( 2 . 2 7 )  a r e  used in the basic  solution instead of M and A from (2.13) 

and (2.15), then the r e su l t s  f o r  the minimum potential energy solution 

can be immediately reproduced, 

Because one i s  generally interested in the s t r e s s  s ta te  a t  

f a i lu re ,  and hence s t r e s s e s  that satisfy equilibrium of s t r e s s  a t  

l eas t  in  some sense - h e r e  taken a s  the z average  - i t  i s  r ecom-  

mended that the r e su l t s  f rom the previous section be used for  f r a c -  

t u r e  analysis .  

POKER -CHIP SPECTMEN S U A J E G T E D  'TO COMRINED TRTAX'TAL 
LOADS 

Having obtained a solution fo r  the hydrostatic tensile field,  

i t  i s  of in te res t  to inquire into the possibility of creat ing a m o r e  

general  three-dimensional tes t  specimen. One such method has  

been suggested by Lindsey (48) which employs an adaptation of the 

poker-chip t e s t  to a state of combined loading, wherein a shear  

producing torque,  a s  well a s  axial tension, i s  applied to the disk 

through the rigid plates. Such a tes t  is theoretjcally feasible and 

has  the capability of producing a general tr iaxial  f ield,  but it has  

never  actually been attempted in the laboratory. The solution i s  

given h e r e  for  co rnp le t~ness .  
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The idea i s  to superpose upon the axial  extension of the poker- 

chip a torque about i ts  longitudinal axis that will produce a shift in 

the magnitude and direction of the principal s t r e s s e s .  The resu l t  

will  be a genera l  t r iax ia l  s t r e s s  s ta te  with which fai lure  sur faces  

can be m o r e  definitely descr ibed and with which the actual  fa i lure  

mechanisms can he studied. With this  modification of the poker-  

chip t e s t ,  a wide range of s t r e s s  f ie lds  can be obtained by varying 

t h e  rat io  of angle of twist  to axial extension. Consequently, a study 

can be made  of the change, o r  constancy, in the appearance,  loca-  

tion, orientation and initiatjr>n level of the initial f r ac tu re  point. 

Torsion of a Ci rcular  Cylinder (49) 

The definition of the s t r e s s  field r e su l t s  f rom combining 

the s t r e s s  fields of pure  extension and that of tors ion  of a c i r cu la r  

cylinder.  I t  will be recal led f rom classical  theory of e last ic i ty  

that for  a c i r cu la r  cylinder (and only a cjrclrlar cyl inder)  a solution 

to the tors ion  problem can he obtained which leaves the l a t e ra l  

sur faces  f r e e  of s t r e s s  and does not warp  the c ross-sec t ion .  The 

amount of rotation of a point in a c r o s s -  section depends upon i t s  

distance f rom a base  of re ference  which we will take to be z = tl 

f rom Fig .  5. 

where a i s  the twist  p e r  unit length. F o r  a pure torque,  the only 

displacem ent i s  



The resulting s t r a ins  a r e  

= r a  - 
E = E e - - E Z  - - ye z  - %a - 

Yr 7, 
= Q r 

The corresponding system o f  s t r e s s e s  i s  

' 8  
= Gra C T ~  = = o - ~  = r r 8  = rT2 = 0 

This  solution will now be used in conjunction with the approximate 

analytical solution f o r  the poker chip in extension. 

S t r e s s  Analysis of Combined Torsion and Extension 

Following a  procedure v e r y  s imi l a r  to the one used previously 

on the regular  poker chip,  the displacement functions a r e  a s sumed  

to be ,  

In (2.  3 3 )  the displacement bounda,ry condi t ions  a r e  sati  sfied 

a t  sur faces  z = i.l and g ( r )  i s  present ly an unprescr ihed function of 

the radius .  The s t r a ins  corresponding to these d i sp la r tmen t s  a r e  

found to be 



frorn which the z averaged normal  s t r e s s e s  a r e  found as  

As  will hf- seen f rom the eqc~ilibriurr~ equation, it is  not necessary  

to average the shea r  s t r e s s e s  f rom the equilibrium equation, 

The radial  equilibrium equation i s  satisfied on the average a s  before 

with the tangential expression becoming, 

- 1 

However, T = Gra and i s  not dependent upon 7,. The t h i r d  equi- 0 2  

l ibrium equation i s  satisficd identically due to the symmetry  of the 
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specimen and applied load about the midplane,  z = 0 .  Thus the dif-  

ferent ial  equation for  g ( r )  remains  unchanged 

where  

Now it can be seen that thc v displacernrnt a r i s ing  from the tors ion  0 

portion of the load produccs no effect upon any of the field quantities 

f rom the approximate solntion f o r  the  regular  poker-chip.  Therefore  
I / 

the two loads a r e  superposable just  a s  they would be for exact solu- 

tion of infinitesimal theory. The normal  s t r e s s e s  for  the combined 

loading, valid everywhere except nea r  the edges ,  become the same 

a s  before for  a regular  poker-chip,  equation (2.17),  and the shea r  

s t r e s s e s  become,  

7 - I ,  (rg) . I z  
E & l t v  

10'a& ' 

Pr inc ipa l  S t r e s s e s  

By seeking for  an orientation of s t r e s s  such that the surface 

t ract ion i s  perpendicular to the sur face  and no shearing s t r e s s  ex i s t s ,  

one obtains an  equation of the f o r m ,  
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where  a- r ep resen t s  the principal s t r e s s e s .  Expanding the  de termi-  

nant ,  

Simplii'ying to the situation a t  hand and nondimensjonalizi.ng- the 

o 
principal s t r e s s e s  S = - 

E& 

Substituting equations (2 ,17)  and (2.38) into this  expression and 

solving the cubic equation for  S, we obtain the plots of F igs .  14 

to 18. 

Observations 

There  a r e  severa l  things to be noted f rom this solution, one 

of which i s  the fact that for  angles of twist  that can be classif ied a s  

being in the range of infinitesimal displacements ,  the hydrostatic 

condition can be a l te red  considerably.  F o r  ~ x a m p l e  a  typical m a t e r -  

ia l  with E = 500 ps i  subjected to  E = . C)05 a n d  (I = 0 .1  r a d ,  S = 10 
1 

ps i ,  S 2  = 9 2  ps i ,  S = 177 ps i  a t  r = 10. Thus a  l a rge  variety of 
3 

s t r e s s  fields can be readi ly obtained; however ,  fo r  f a i l u r e  studies 

Fig.  16 shows that p > 2 must  be used in o r d e r  to obtain s t r e s s e s  

l a r g e r  than the hydrostatic f i e ld  in the center .  Ln other words ,  if 



Figure 14. First  Principal Stress  at Midplane for ModifiGd Poker Chip. 
( b a n g l e  of 'twist per unit length/axial strain). 



Figure 15. second Principal Stress at ~ i h ~ l a n e  and Interface 
for Modified Poker Chip. 
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Figure 16; Third Principal Stress at Midplane fbr Modified Poker Ghip. 

(+angle of twist per unit length/axial strain), 



Figure  17. F i r s t  Principal  S t r e s s  a t  Interface for  Modified Poker Chip. 
( +angle of twist per  unit length/axial strain).  



Figure  18. Third Principal  S t r e s s  a t  Interface for  Modified Poker Chip. 
( b a n g l e  of twist per  unit length/axial strain). 
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p < 2 the l a rges t  s t r e s s e s  occur  a t  the center  of the specimen where  

there  i s  always hydrostatic tension, so in o r d e r  to produce f r ac tu res  

under other  conditions p mus t  be g r e a t e r  than 2. 

As can be seen from Fig. 17,  one component of thr  t r iax ia l  

f ield can be made compress ive .  This  will provide f o r  fa i lure  studies 

in the f t - quadrant of the fai lure  surface.  Li t t le ,  i f  any, work has  

been done in this quadrant because of experimental  difficulties, but 

now bar r ing  unforeseen labora tory  difficulties this fa i lure  sur face  

can  be constructed. 

One l a s t  observation i s  made f rom comparing F igs .  15 and 

17 and Figs .  16 and 18. F o r  p > 2 the s t r e s s  distribution a t  the rnid- 

plane i s  identical to  that a t  the interface of the specimen and the 

luci te  gr ips .  The s t r e s s  field i s  vir tual ly  constant through the thick- 

ness  in  the cen t ra l  regions a thickness distance in f rom the edge. 

SUMMARY 

In summary  it m a y  be s tated that  t hese  analyses  have served  

to  demonstrate  the feasibil i ty of producing a s ta te  of hydrostatic 

tension in soft near ly  incompressible  mater ia l s .  They have a l so  

opened the possibility of creat ing a r a t h e r  genera l  s ta te  of th ree -  

dimensional tensi le  s t r e s s ,  useful in the study of fai lure  surfaces.  

F u r t h e r m o r e  a detailed definition of the field var iab les  has  been 

obtained, suitable for  use  in the reduction and evaluation of exper - 
imental data. As a s ide benefit, a means  fo r  measur ing  bulk 

proper t ies  in tension h a s  been developed. This  is not only a con- 

venient method of obtaining such information, but correlat ion can  
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now be made with compressive values, obtained from the more  

classical  t e s t s ,  for  bet ter  definition of material behavior. 
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CHAPTER I11 

EXPERIMENTAL ANALYSIS IN HYDROSTATIC TENSION 

MATERLAL DESCRIPTION 

The selection, procurement and characterization of an 

appropriate material  areprerequisite to experimental investigation. 

This always involves a compromise a s  one t r i es  to find typical 

materials  that a r e  readily available and yet stil l  possessing mater-  

ial  properties that a r e  amenable to standard laboratory testing. 

There i s  currently in progress a program (50) to find one o r  more  

rubber materials  suitable a s  standards for al l  interested investi- 

gators to use a s  a basis for interchange of information. One of 

the candidates under study i s  a polyurethane elastomer of a type 

employed a s  propellant binders. It i s  commercially produced by 

the Thiokol Chemical Corporation under the trade name of Solithane 

113 (S- 113). Chemically, urethane polymers a r e  the product of a 

reaction between an isocyanate and a hydroxyl radical. Normally 

the process consists of three steps: prepolymer formation, 

chain extension, and curing. Although the specific formulation 

of S-113 i s  company proprietary, some general statements can 

be made about it. Quoting extensively from "Polyurethanes: 

Chemistry and Technology, " (5  1) with occasional annotations, we 

will discuss the three steps. 

Prepolymer Formation 

The reaction of a diisocyanate with a hydroxyl- 
terminated polyester , polyester amide, o r  polyether 
to form an isocyanate-terminated prepolymer can 
be represented schematically a s  follows: 



OCN-R-NCB t 140-014 - 
diisocyanate polyester  o r  polyether 

ocN-R-NH- e -4.0- c! -NH--R-Nco 

prepolymer 

F o r  S-  11 3 the diisocyanate radical  R was  Tolilene, TDI. After the 

basic  l inks a r e  formed,  they a r e  used a s  building blocks to fo rm 

extended chains. 

Chain Extension 

Chain extension of the prepolymer with act ive hydrogen- 
containing compounds, usually difunctional, such a s  wa te r ,  
glycols,  diamines,  o r  aminoalcohols,  proceeds to give a 
higher  molecular  weight, soluble polymer.  Chain extension 
with glycols takes  place with the formation of urethane 
groups a s  shown below: 

i l  I I 
20CN-R-NH4-0-O-C-NH-R-NCO t HO-R '--OH - 

glycol 

0 0 r-- 
II e I 

OC N-R-NH-44-& 

0 E 1 I OCN-R-NF3- --0- 0-C-NH-R 
L,,,,,-l 

F o r  S-  11 3 the extension agent R '  i s  Polypropylene glycol, PPG.  

Thus f a r  chain extension h a s  been shown wherein an 
excess  of isocyanate was  used,  giving an NCO-terminated 
polymer.  These  polymers  a r e  actually high molecular  
weight polyisocyanates,  and a s  such a r e  react ive with 
many chemicals  , hence a r e  not indefinitely stable.  Solu- 
ble  polymers  of bet ter  stability may be prepared ,  if 
des i r ed ,  by using a slight excess  of the active hydrogen 



component, r a the r  than an  excess  of isocyanate.  F o r  
example,  an excess  of glycol would l e a d  to  a polyure- 
thane terminating in hydroxyl groups,  and would hence 
be much m o r e  s table .  

Other active hydrogen compounds could be used s imi l a r ly ,  
but hydroxyl compounds usually s e r v e  a s  the best  chain 
t e rmina to r s ,  f r e e  f r o m  other  complicating s ide reactions.  

Curing o r  Crosslinking 

The curing o r  crosslinking of the e l a s tomer  may be 
accomplished by react ing a n  added curing agent with 
the intermediate  molecular  weight e l a s tomer ,  o r  by 
formulating the e las tomer  so  that it contains f r e e  i so -  
cyanate groups and curing by heating. 

A convenient means  of introducing crossl inking in 
the urethane polymer chain i s  the u s e  of t r io l s ,  e i ther  
in fo rm of monomeric  polyols such a s  t r imetholylpro-  
pane o r  by employing poly(oxypropy1ene) glycol der iva-  
t ives  of t r io ls  such a s  trimethylolpropane, glycerol ,  
and o thers .  In this  c a s e ,  crosslinking occur s  through 
the formation of urethane l inks as shown below: 

e c! OCN-R-NH- --0-0- -NH-R-NCO + HO 
t r io l  

C I 

0 
-0- urethane cross l ink  

$ 0  

The catalytic t r io l  used in S- 113 was  Thiokol catalyst  C 113-300 and 

0 
curing was p resc r ibed  a t  150 C. 

S-113 can  be made  with widely different mechanical proper-  

t i e s  by varying the relat ive amounts of the prepolymer and catalyst .  
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A study by Knauss (50) shows the degree of sensitivity, which i s  

graphically displayed in Figure 19. The ratio used in this program 

was one to one by volume, which was found by testing other pro- 

portions to be the most suitable for  this investigation. 

MATERLAL FABRICATION 

A very detailed account of material  fabrication along with 

descriptive photographs and schematics of the equipment has been 

given by Zak. (51) Briefly the process may be described by stating 

that the two separate components, prepolymer and catalyst, were 

preheated to 6 0 ' ~  while they were in an inert  atmosphere of nitro- 

gen. They were  then carefully measured by volume and mixed 

together, still under nitrogen, and raised to 1 0 0 ~ ~ .  The mix was 

degassed for five minutes, which acted to reduce virtually to zero 

the number of visible bubbles produced in the casting, and further-  

more  i t  tended to make the finished product more  nearly colorless. 

A mold of polished aluminum was preheated in the oven to 1 2 5 O ~ ,  

and i t  should be emphasized that no mold release was ever used in 

the fabrication process. It was found impossible to remove com- 

pletely the residue left by the re lease  regardless of the solvent 

used, and the contamination of the surface prevented the formation 

of a good bond. A polished mold face was found very acceptable 

for  releasing the specimen. Polished b ra s s ,  steel and aluminum 

a s  well a s  Pyrex glass,  and Micarta were  used, but polished alumi- 

num was found to be the most desirable when a l l  of the factors of 

cost,  weight, etc. were considered. The surface quality of the 



PERCENT OF PREPOLYMER 

Figure 19a.Complex Modulu~ at ZO'C a. a Function of 
Brspolymer~Catdyut CompoeiUon, 



PERCENT PREPOLYMER 

Figure l9b. Uniaxial Tensile Strength as a Functiongf 
Prepolymer-Catalyot Compooitioa at 20 C. 



cast  sheet i s  directly related to the surface quality of the mold, but 

a s  will be discussed la ter  when the material  i s  bonded to the lucite 

grips,  the wetting properties of the bonding agent eradicate surface 

imperfections in the cas t  sheet. Therefore the mold surface need 

be polished only to the degree necessary to allow the rubber to be 

removed from the mold. 

With the mix up to temperature and degassed, the molds 

were  filled through tubular arrangements while they were  in the 

oven, so that the material  was never exposed to the atmosphere. 

The reason for the great  c a r e  wastoprevent side reactions that can 

be produced by water. 

Chain extension with water leads to the formation of 
substituted urea linkages and the evolution of carbon 
dioxide a s  follows: 

0 0 

2 OCN-R-NH 1! -0-0- 4 -NH-R-NCO t H z  0 -+ 

0 0 e e r---- I 
OCN-R-NH- --0-0- --NH-R&NH 

I I )  I 

E E ;c=o; t GOz 
I ' I  I 

OCN-R-NH- --0-0- -NH-RtNH I subst. urea 
L,--J 

chain- extended polymer 

Since such a reaction would cause undesirable by-products like 

variations in the basic structure and entrapped gases,  i t  i s  avoided 

if a t  al l  possible. However only small  t races  of HZO can produce 

the reaction, making it  ve ry  difficult to control. After filling, the 

ovens were then ra ised to 150°c, and the material  was cured for  

two hours , 
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Every effort was made to closely control each step of the 

process;  however due to the fact that several  very  complex chemical 

reactions a r e  taking place simultaneously, i t  i s  difficult to produce 

polyurethane with low batch to batch variability. This problem has 

been alleviated somewhat with a correlation between modulus and 

percentage of prepolymer in the mix,  (See Figure 19. ) By cutting 

a tes t  s t r ip  from each casting, the material  can be quickly evaluated 

by means of i t s  modulus. Thus a uniform se t  of specimens can be 

gathered and variations due to slight modifications in the basic mix 

can be quickly detected. Scatter ranges a r e  discussed under Mater- 

ial Characterization. 

After curing was completeithe mater ia l  was removed from 

the mold and placed in a dry  box for  two weeks o r  until used. The 

final product was a large round sheet 13 inches in diameter and 

O.lOll thick. When ready the smaller  poker-chips were then cut 

into disks of approximately 2- 1/21 ' in diameter. The resulting 

material  specimen was virtually c lear ,  which i s  one of the primary 

reasons for selection of S-113. It allows the possibility of either 

viewing directly, o r  photographing, the internal fracture process -- 

a s  it  happens. This i s  a great  advantage, for  it i s  normally very 

difficult to surmise  accurately what has happened during fracture 

solely from looking a t  the surface after the fact. Furthermore the 

material  i s  optically very sensitive, and ideally suited for bire-  

fringence work. This property has been characterized and i s  alluded 

to in the discussion of material  characterization. 
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MATERIAL CHARACTERIZATION 

The characterization of S- 11 3 has received the attention of 

several  investigators including Williams, Ferguson,  and Arenz (52) 

a s  well a s  Knauss, (53) and Zak. (54) These include various me-  

chanical property definitions under infinitesimal s t ra ins ,  including 

a rather complete description of viscoelastic properties which even 

encompasses the optical properties of birefringence. Figures 20 

to 22 give information relating to the constitutive properties of 

S- 113 in the form of the Relaxation Modulus, the Master S t ress -  

Strain curve and the accompanying shift factor for them. The data 

was obtained using standard techniques primari ly based on the 

constant s train ra te  test.  The relationship between the constant 

s t ra in  ra te  response and the relaxation modulus i s  straightforward 

and can be derived a s  follows. F o r  a linear viscoelastic material 

the s t ress-s t ra in  law can be written in an integral form 

where u i s  the s t r e s s ,  E( t )  i s  the relaxation modulus, E the strain 

and t the time. F o r  constant s train ra te  conditions 

where R i s  the strain rate.  Making an independent variable substi- 

tution under the integral sign of equation (3.1) 

x = t - 7  

we have 









From equation (3.4) it  follows that 

1 do-(t) - -  - - 
R dt - E(t)  

Equation 3.5 shows that the relaxation modulus for a linear visco- 

elastic material  i s  equal to the time ra te  of change of s t r e s s  divided 

by the strain ra te  in a constant s train ra te  test.  This relationship 

i s  used to evaluate the relaxation modulus from the data of the con- 

stant s train ra te  tests .  The tes ts  were performed for a wide range 

of ra tes  and temperatures and then shifted (55) by the aT  factor de- 

scribed in Figure 22 to give the composite master  curves of Figures 

20 and 21. The mechanics of data representation, interconver sion, 

etc. i s  involved, but now reduced to standard practice a s  described 

in detail by Arenz, Eerguson, Kunio, Williams. (56) The curves 

indicate something of the nature of the material ;  however, the par-  

ticular quantity to be noted a t  this time i s  the rubbery modulus of 

approximately 500 psi ,  which will be used in data reduction for the 

elastic analysis. Zak, (54) using an experimental technique sug - 

gested by Smith, (57) demonstrated that constant-strain ra te  tests  

a t  0.02 in/min. and T = 2 5 O ~ ,  were in the rubbery regions for S-113. 

This i s  the tes t  condition used in the experiments to be described 

subsequently; consequently E = 500 ps i  i s  the pertinent material  

parameter .  
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Bulk Propert ies 

A side benefit of the poker-chip tes t  i s  the measurement of 

the bulk mechanical properties that i t  provides through a knowledge 

of the apparent modulus. It will be recalled from equation (2.21) 

that if the normal s t r e s s  in the axial direction irz i s  integrated over 

the face of the poker chip, the apparent modulus can be computed 

from the approximate s t r e s s  analysis. This turns out to be ex- 

pressed in t e rms  of not only Young's modulus, but also the bulk 

modulus, which establishes a relationship between the three  prop- 

ert ies.  This demonstrates that EA i s  an  independent piece of in- 

formation which can be used with the regular tensile modulus to 

define the two independent mechanical properties of an isotropic 

material.  Figure 10 taken from Reference 41 graphically demon- 

s t ra tes  this relationship and i s  a convenient tool for  determining 

the bulk properties of materials.  Thus armed with E and EA, which 

turns out to be 15,400 psi ,  Bulk Modulus and Poisson's  ratio can 

be determined for  the material  from Figure 10. Fo r  S-113, K = 

47,000 and v = 0.4978. This value of Bulk Modulus may be some- 

what surprising since it  i s  actually of the order  of one thousand 

times smaller  than that of steel. It i s  only because the ratio of 

shear modulus to bulk modulus i s  so low that the incompressible 

assumption i s  justified. Of course,  this ratio i s  also the reason 

f o r  Poisson' s Ratio being very nearly one half. 

Finite Strain Characterization 

Finite strain fields a r e  commor*~lace in elastomers and 
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requi re  a special  character izat ion f o r  the ma te r i a l  subjected to 

them. (4) Both uniaxial and biaxial t e s t s  have been conducted by 

Beckwith and Lindsey (58) to determine the form of the s t r a in  

energy function, W .  I t  is cus tomary  to e x p r e s s  W a s  a function 

of the three  s t r a in  invariants  

where X's a r e  s t re tch  rat ios .  When the ma te r i a l  i s  incompressible  

I 1 ,  and 3 

F o r  the case  of uniaxial tension XI = A. and X2 = X 3  = h 
-1 /2 

9 

and the corresponding tensi le  s t r e s s  is  (4) 

By dividing out the f i r s t  factor  and plotting i t  v e r s u s  1/X and using 

experimental  data f rom a uniaxial s t r i p ,  we obtain Figrire 2 3. (The 

two se t s  of data points demonstrate  maximum batch to hatch va r i a -  

bility. ) F r o m  the t rend of the data it can  be jnferred that  the in te r  - 

cept ,  a w / 8 1 ~ ,  i s  constant and the slope, a w / 8 1 ~ ,  i s  zero .  The 

s t r a in  energy function mus t  then be of the  form 



UNIAXIAL TEST 

85 .90 1.00 

Figure 23. Dependence of Deformation State on Invariants I1 
and 12. 



where the factor three makes the function vanish in the unloaded 

state; i. e . ,  Xi = 1. This classifies the finite s t ra in  behavior of 

S-113 a s  Neo-Hookean, which i s  the simplest representation and 

a mark in its favor. Simplicity in analysis i s  a big asse t  in large 

deformation problems. 

Now to see exactly how close S-113 follows Neo-Hookean 

behavior in uniaxial tension, Figure 24 has been plotted. Only in 

the larger  values of stretch ratio near fracture i s  there any per-  

ceptible deviation. Also the value of the material  constants agree 

well with the infinitesimal limit case ,  which defines C1 = ~ / 6 .  

Corroboration of the Neo-Hookean result  based on uniaxial 

tes t  was made from equal biaxial tes ts  on the tes t  r ig pictured in 

- 2 
Figure 4. In this case X1 = X2 = X and X3 = X from the incom- 

pre s sibility condition. The corresponding in-plane s t r e s s  turns 

out to be (4) 

where p = internal applied pressure  

R = radius of curvature 

t = sheet thickness 

Proceeding upon the assumption that S-113 i s  Neo-Hookean, equa- 

tion (3.9) becomes 

Assuming a circular  a r c  deflection curve, the radius of curvature 

for  a sheet of original radius - a and pole height h (see Figure 4) is 



Figure 24. Correlation of Neo-Hookean Representation 
with Uniaxial Experimental Tests. 



Giving 

By measuring p,  h and X it was  possible to construct  F igure  25 for  

an  init ial  sheet  rad ius  of five inches.  The  plot indicates a l inear  

relat ion except in the init ial  s tages  of deformation. It was definitely 

established that the nonlinearity w a s  due to slippage of the sheet  

underneath the clamping ring making the measured  value of h too 

la rge .  The ring i s  not fastened down too tightly since premature  

f r ac tu re  a t  the g r ip  will ru in  the tes t .  After the init ial  slippage the 

curve  then becomes l inear  to establ ish Neo-Hookean behavior. 

EXPERIMENTAL APPARATUS FOR THE POKER -CHIP TEST 

As the equations and f igures  of Chapter  I1 demonst ra te ,  the 

poker-chip t e s t  consti tutes a vehicle by which a hydrostat ic  tensile 

field can be applied to a local  region of a body whose actual dimen- 

sion i s  dictated by experimental  practicali ty.  The theoret ical  

ana lys is  shows that an a spec t  ra t io  of fifteen to one js the lower 

l imi t  requi red  to produce this  s t r e s s  field and twenty to one is 

m o r e  desirable .  A two-inch d iameter  with 0.10 inch thickness 

was  selected to be a reasonable compromise  between what could 

be effectively bonded and pulled and what was des i r ed  in the way 

of observation. Although Gent and Lindley or iginal ly  performed 

the poker-chip t e s t  by pulling o r  squeezing rubber  blocks between 



Figure 25. Correlation of Neo -Kookean Representation 
with Biaxial Experimental Tests. 
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s teel  plates,  i t  was decided f o r  the experimental work on S-113 

that the apparatus would be al tered considerably to facilitate a 

more  thorough study of the actual. mechanisms of the f rac ture  pro- 

cess .  This was accomplished by using transparent  lucite gr ips  

in place of steel. Lucite has  a modulus in the neighborhood of 

500,000 psi  (59) and this provides approximately a 1 ,000 to 1 ratio 

between modulus of gr ip  and specimen, which closely duplicates 

the theoretical assumption of rigid boundaxies made in the s t r e s s  

analysis.  Coupled with the c lea r  gr ip  and c lea r  specimen a 

t ransparent  bonding agent was found in the form of Eastman 910, 

which happily acted a s  a wetting agent for  both the rubber speci- 

men and the lucite grip. When the assembly was complete, a 

window was produced through which the observer  could view the 

internal regions of the mater ia l  and study the f rac ture  process.  

A schematic drawing of the ent ire  assembly i s  shown in Figure 

2 6  where the a r rows  indicate the attachment of a testing machine 

through which the specimen was loaded. 

Bonding Procedure 

A very  cr i t ica l  facet of the experimental technique of 

the poker-chip t e s t  i s  the bonding procedure. Being somewhat 

of an a r t ,  i t  i s  demanding upon the technician to produce a bond 

with sufficient strength that the specimen will not tear  away from 

the grip before an internal f rac ture  i s  produced. The specimen 

i s  prepared by roughly cutting i t  to s ize and then cleaning it thor- 

oughly with a cloth slightly dampened in methyl alcohol. If used 

sparingly this procedure will not produce noticeable swelling in 
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F i g u r e  26. Schematic of Poker  -Chip Tes t  Apparatus.  



the rubber. The lucite grips must be lightly roughened and thor- 

oughly cleaned; furthermore i t  was found advisable to avoid silicon 

compound abrasives, and aluminum oxide paper was found to work 

nicely. A bonding accelerator (number GA - 1A 1,) supplied by Eastman 

was then applied to the specimen and the Eastman 910 to the grip. 

The two pieces a re  brought together under hand pressure and al-  

lowed to set. The process i s  repeated for the other grip; however 

a V-block i s  used to insure perfect alignment. Absolutely no mis- 

alignment can be tolerated due t s  the bending imposed in the test. 

The same i s  true of taper in the specimen; once beading i s  present, 

the local s t ress  conditions become unknown and the test  is of little 

use. 

Optics 

With the specimen bonded to the lucite, the grips were 

screwed into special fixtures depicted in Figure 26. Front sur- 

face mir rors  were mounted a t  45' to the horizontal in these 

heads, providing a periscope arrangement for  viewing the spec- 

imen. Through one mir ror  the specimen was illuminated by 

means of a Peck model 11 0 Mercury vapor point source and view- 

ing or photographing took place through the other. With this 

powerful light source, i t  i s  possible to take high speed motion 

pictures of the fracture process to document a detailed history 

of it. 

This method has also been succesafully used even on 

quite opaque and translucent materials. These a r e  :nat a s  desirable 
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a s  the clear  materials ,  nor a r e  they a s  readily photographable, but 

fracture initiation i s  easily detected along with rather gross  details 

of the propagation phase, depending upon the degree of opaqueness 

of the material.  Fur thermore ,  if  the material  being tested lends 

itself a t  all  to the transmission of light, the f racture  point can be 

detected, for  there a r e  instances recorded where i t  has  been found 

difficult to ascertain the point a t  which the specimen actually failed 

because no direct manifestation of it  was made on the load his-  

tory. (60) 

Strain Measurements 

One of the many interesting aspects of this test  i s  the fact 

that the overall specimen strain based upon the initial thickness i s  

small; i. e . ,  S-113, which evinces 35 percent to 40 percent ultimate 

strain in uniaxial tension, exhibits only two percent to three percent 

ultimate s t ra in  in hydrostatic tension. This was another reason 

for putting faith in the results  of the approximate s t r e s s  analysis 

which employed tools of infinitesimal elasticity. It should be pointed 

out that this configuration i s  one of the few wherein infinitesimal 

theory can be applied to f racture  analysis of rubbery materials  with 

confidence in the accuracy of the solution. Such a statc of affairs 

i s  certainly welcome since use of finite elastic techniques for 

analysis i s  very limited and virtually never used in fracture studies; 

however, Eevinson and Rlatz (61) have employed a variational scheme 

to solve the poker-chip problem for large deformations, so that 

materials  demonstrating strain levels out of the range of the linear 



theory o r  on the border  of l inear  theory can sti l l  be analyzed fo r  the 

poker-chip test .  

Because the displacements  were  sma l l ,  for instance in the 

tests to  be discussed total  displiacement a t  the g r ip  was in the neigh- 

borhood of 0.002 inches ,  ex tensometers  were  used to m e a s u r e  the 

axial  separat ion of the luci te  gr ips .  (See F igure  2 6. ) They incor-  

pora ted  l inear ,  var iable  ,differential t r a n s f o r m e r s ,  LVDT , in con- 

junction with Schaevitz LVDT exc i t e r ,  demodulator,  type DMPS-3.  

These  operated into a Moseley Autograf,  X-Y Recorde r ,  Model 

2FR -A(S), made  in Pasadena ,  California,  where the displacements  

were  magnified 2000 t imes .  A photograph of the actual  specimen 

with the LVDT's mounted in place is shown in  F igure  27. The com- 

plete assembly  was  placed in a Universal Testing Machine, Model 

Number TTC,  manufactured by Instron Engineering Corporation of 

Canton, Massachuset ts .  A photograph of the apparatus  ready fo r  

t e s t  i s  given in  F igure  28. 

EXPERIMENTAL RESULTS 

With a knowledge of the two independent mechanical proper-  

t i e s  v and E ,  F igure  can  be used to  find the relationship between 

the internal  field s t r e s s  in the poker -chip and the externa1l.y applied 

s t r a i n  E l ,  which of cour se  can in  turn be re la ted  through the apparent  

modulus to the applied load. The load was cor re la ted  with the d is -  

placement through a n  apparent  s t r e s s - s t r a i n  curve .  This  was  

computed by considering the specimen to be a uniaxial tensi le  b a r  

where  the s t r e s s  is obtained by dividing the applied load by the 



Figure  27. Arrangement  of the  Triaxial  Test .  



Figure 28. 
General  View of the Triaxial  Tes t  Showing the Specimens in  
the Instron Testing Machine and the Recording Equipment. 
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cross-sect ional  a r e a  of a la rge  face,  P/A, while the s t ra in  i s  com- 

puted like a tensile bar  on the basis  of specimen t h i c h e s s .  The 

descriptive parameter  for  this pseudo s t r e s s - s t r a i n  curve i s  the 

apparent modulus, E computed in the obvious way by dividing the A '  

equivalent uniaxial s t r e s s  by the equivalent uniaxial s train.  A plot 

of severa l  typical apparent s t r e s s  - s t ra in  curves obtained a t  a s t ra in  

ra te  of 0.02 in/min, i s  given in Figure  29,  showing the rubbery, 

elastic response of S - 1 1 3  in HT. This gives some indication of the 

scat ter  in the apparent modulus due to the batch to batch variability 

of the material .  Both the mode and the average come out to be 

approximately 1 5 , 4 0 0  ps i  with a maximum variation of * 8 percent. 

As can be seen,  the apparent s t r e s s - s t r a i n  relation i s  l inear 

well above one percent s t ra in ,  and then it bends over a s  it proceeds 

to f rac ture  a t  s trains of 2-1/2 percent to 3  percent.  The actual 

f rac ture  s t r e s s  levels involved a r e  considerably higher than their 

uniaxial counterparts;  however as was discussed previously, the 

ultimate s t ra in  i s  greatly reduced. F rom Figure  8 f i s z / ~ ~  = 48, 

which gives a local HT of 625 psi. S - 1 1 3  possesses  an  ultimate 

strength in  uniaxial tension of approximately 1 6 0 - 2 0 0  ps i ,  (62 )  

while local s t r e s s  values in the hydrostatic configuration range 

approximately three t imes  this value in the neighborhood of 500-  650 

psi. These values quoted represent  the range of a la rge  number of 

tes ts  conducted a t  room temperature.  

S t ress  -Axis Theorem 

It i s  interesting to abstraxt  from this  and other work (22)  



Figure 29. Apparent Stress-Strain Curve for Poker 
Chip Test, 
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a theorem on f racture ,  which can be conceived to provide a guide 

for  engineering intuition. It can be staked roughly that a s  the number 

of axes of s t r e s s  increase the ultimate s t r e s s  i s  increased and the 

ultimate strain is decreased; furthermore,  a s  the degree of axiality 

of s t r e s s  i s  al tered toward the hydrostatic this same trend will be 

emphasized. In other words, a s  an additional axis of s t r e s s  i s  

added to a body in uniaxial tension, the ultimate s t r e s s  and strain 

increase  and decrease respectively from the uniaxial value a s  the 

new s t r e s s  component grows from zero to become equal to the orig- 

inal one producing a state of equal biaxial tension. Adding another 

axis of s t r e s s  to the biaxial case further a l t e r s  the ultimate proper- 

t ies  in the same direction a s  i t  grows from zero to become equal to 

the original two and produce a state of three -dimensional hydrostatic 

tension. Consequently the state of hydrostatic tension i s  a limit 

case  in that i t  provides the maximum in s t r e s s  that a given material 

can withstand, a s  well a s  a minimum in strain a t  which f racture  can 

be produced, In essence the material  performs a t  i ts  best in this 

geometrical configuration if  dilatation i s  the criterion; however if 

s train i s  the cri terion,  pure distortion states a r e  by f a r  superior.  

Description of Frac ture  

The actual physics of the fracture process a r e  quite unusual 

and produce a unique mode of rupture. As the load i s  applied, the 

field remains seemingly undisturbed even while observing the speci- 

men through crossed polaroids. S-113 i s  a very sensitive bi re-  

fringent material ;  in fact this i s  one of i ts  most outstanding 



properties, and yet no fringes a r e  seen to appear in  the field until 

the fracture process begins. (This constitutes additional evidence 

>k 
to the condition of HT alluded to previously. ) Then a t  an average 

applied s t r e s s  of approximately 300-350 psi  or  a local field s t r e s s  

of 500-650 psi,  what appears to be a bubble catastrophically bursts 

into the field somewhere in the vicinity of the center of the speci- 

men. It rapidly grows in a spherically radial fashion resembling 

an ablating cavity until i t  fills the entire thickness of the specimen 

and interacts with the boundary. Figure 30 i s  a composite photo- 

graph depicting this growth which requires about 0.01 6 seconds. 

The data was obtained with a 16 m m ,  Beckman and Whitley, Magni- 

fax High Speed Camera (63 mm,  f /2  lens)  a t  a framing ra te  of 2000 

f rames per second. Next, two of the extremities of the cavity tail 

off into a sharp crack that appears to propagate perpendicular to 

the plane of maximum principal s t ress .  Subsequently one and 

occasionally two such nuclei manifest themselves and the specimen 

appears much like the sketch in Figure 31 below. 

Fig. 31. Axial view of poker-chip fracture field. 
- - - - - - -  
>g 

The number of fringes i s  proportional to the difference in principal 
s t r e s s ,  n=  ('1 -O2* 



Figure 30: Internal  Fracture Growth History 
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Frac tu re  Surface 

If the specimen i s  further  loaded beyond the initiation point 

until i t  i s  actually pulled completely apar t  into two pieces,  the r e -  

sulting mating surfaces a r e  completely riddled with crevices  and 

f i s su res  and appear badly mottled. Figure 32 i s  a photograph of 

a typical poker-chip f rac ture  where the points of initiation can be 

readily discerned with some experience. One of the facets  of f r a c -  

tu re  in this geometry that makes it unique i s  the location of the 

point of initiation of fracture.  In al l  other tes t  specimens the f rac  - 

ture  initiates a t  a manufactured boundary, and in some degree the 

ultimate propert ies  a r e  actually a measure  of how well that surface 

i s  prepared. In this case ,  however, the f rac ture  originates wholely 

within the material .  It i s  a t rue  tes t  of the mate r ia l  strength, which 

i s  determined by the structure of the mater ia l  and by the existence 

of internal flaws. By focussing in c loser  on the origin of f rac ture ,  

a nucleus i s  discovered a s  photographed in Figure  33, where the 

magnification i s  100X. The surface a s  seen he r e  i s  inclined a t  an 

0 0 
angle of approximately 20 to 30 and i s  consequently distorted 

slightly, but the f loral  pattern emanating from the nucleus shows 

the ra ther  regular manner in which the c rack  propagates radially 

away from the original nucleus o r  cavity. The surface in focus he r e  

i s  virtually planar and consequently what had appeared to be a bubble 

growing in the field while the f rac ture  was being observed i s  be- 

lieved to have actually been a c i rcular ,  planar,  Saturn-ring c rack  

that was enlarging in a radial  direction, but due to the hydrostatic 

s t r e s s  field, i ts  mating surfaces were  pulled apar t  and made to 



F i g u r e  32: F r a c t u r e  S u r f a c e  of Poker Chip Specimen 

F i g u r e  33: Nucleus of F r a c t u r e  l O O X  



Figure 34: Nucleus of Fracture 200X 

Figure 35: Nucleus of Fracture 800X 
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resemble a spherical bubble that was ablating. This  interpretation 

i s  further  substantiated by unloading the specimen and watching the 

collapse of the bubbles back into the flat  planar cracks .  The crack 

surface i s  not perfectly planar but does possess a slight curvature 

which seems t o  become more  pronounced a s  the nucleus moves 

c loser  to one of the boundaries. The orientation of this pseudo- 

plane seems to be reasbnably random, but if there  i s  any bias,  bit  

i s  toward planes tending to the vert ical .  

A more  highly magnified view of the origin of f rac ture  shows 

a very  rough and cobbled a r ea  a s  seen in Figures  34 and 35 which 

was,  in these specimens, consistently found to be of the o rder  of 

inches in diameter.  The region outside of the dark center  

c i rc le  i s  a glassy,  mi r ro r - l ike  surface characteris t ic  of the high 

velocity phase of propagation. Since the pattern and dimension of 

the striations radiating from the nucleus were  so reproducible, they 

must  be evidence of some fundamental mechanism transpiring in 

f rac ture .  Knauss (63) has  discussed the notable difference in ap-  

pearance in f rac tu re  surfaces of an "H. C. " rubber,  (64) and has  

been able to draw quantitative correlations between velocity of prop- 

agation and roughness of surface. The two mater ia ls  bear  enough 

similari ty that i t  should be possible to make inferences about ra te  

of propagation in S-113. Based on Knauss' observations, the cobbled 

surface around the nucleus would have been formed from a very  

slowly moving crack-  -almost of zero  velocity. F rac tu re  then would 

resemble severing bonds almost  individually like rubber bands. 

The glassy surface on the other hand i s  a sign of very high velocity 
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motion, which would correspond with the short t imes noted from the 

high-speed films. The change in surface i s  quite abrupt, indicating 

a very rapid change from the slow to the fast  mode. These obser-  

vations wo~lld then support the hypothesis that fracture begins from 

a nucleus that i s  formed very slowly in the material .  It might even 

be considered a s  a flaw that i s  "grown" in the material  under load, 

which, upon reaching a certain critical s ize,  t r iggers a catastrophic 

rupture a t  high velocities. 

F rac ture  Propagation 

High speed motion pictures (1000 to 3000 f rames  per second) 

of the fracture process taken through the periscopic m i r r o r s  have 

documented portions of the propagation behavior. Unfortunately they 

did not shed light on the initiation mechanisms, but the character  of 

propagation in the high velocity mode i s  documented. Figure 36 

shows the short period of acceleration f rom the zero  velocity region 

to some critical velocity which remains essentially constant with 

some evidence of a stick-slip behavior. The data for these curves 

were obtained by photographing the growth of the fracture surface 

that was mentioned previously a s  having the appearance of a bubble, 

but which i s  actually a planar crack that has been pulled apart  by 

the HT. The test  was conducted a t  room temperature a t  a s train 

rate of 0.20 in/min. The films were subsequently projected and 

measurements made of the diameter of the circular  crack a s  a func- 

tion of time obtained through a knowledge of the framing speed, 

which was calculated through timing blips made on the film. Due 

to the limitations se t  by the grain of the film and the magnification 



F i g u r e  36. Growth Rate  of Saturn Ring Crack 
Stra in  Rate  0. 20 in/min. 
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under which the actual filming was performed,  the ent ire  propagation 

history could not be recorded; especially the short- t ime regime. 

This i s  indicated in the figure by a dotted line a s  an  extrapolation 

back to the original flaw size.  

It appears  then in retrospect  from evidence studiecl a posteri- 

o r i  and coupled with other evidence acquired before and during f rac-  

ture  that: 

1) Frac tu re  nucleates probably f rom a point of weakness in 

the material .  

2) The early phase of f rac ture  i s  a static one that can be 

approximated a s  crack propagation a t  virtually ze ro  velocity, where 

bonds a r e  broken slowly. 

3)  After reaching a cr i t ica l  s ize the c rack  will rapidly accel- 

e ra te  and the remaining surface changes from a rough and coarse  

one to a mi r ro r - l ike  o r  glassy one. 

4) This  cr i t ica l  s t r e s s  i s  almost  three  t imes  the uniaxial 

strength. 

5) The acceleration period i s  ve ry  short  and i s  followed by 

a steady state  situation where the f rac ture  surface propagates a t  a 

constant velocity untj.1 it intersects  the boundaries. 

6) It then propagates a s  a ve ry  blunt c rack  along a trajectory 

that takes i t  perpendicular to the plane of the maximum principal 

s t r e s s  of the distorted field. 
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GI-IAPT ER IV 

FLAW ANALYSIS 

FLAW DESCRIPTION 

In the description of materia.1 fabrication covered in Chapter 

111, it was mentioned that the mix was degassed under vacuum to pull 

out entrapped gases  dissolved in the components. Fur the rmore  if 

t he re  were  any t race  of water present ,  a side reaction would resul t ,  

and carbon dioxide would be given off, continuing a s  long a s  any 

water was available. Consequently the probability i s  quite high that 

miniature flaws a r e  produced in the mater ia l  in the form of entrapped 

gaseous bubbles. Although a large  volume of gas i s  removed by 

vacuum, the re  seems  to be a l imit  to the s ize of bubbles that can 

be drawn out of such a viscous liquid. Visual inspection of a cas t  

sample will not detect any indication of bubble -type flaws; however 

microscopic observation a t  200X has  proved their  existence, a s  

shown in the photograph of Figure  37 .  

In fact such flaws have been found in quantity. Samplings 

taken a t  random throughout the castings, which in our part icular  

specimens a r e  in the form of c i rcular  sheets 13" in diameter  and 

0.10" thick, show uniformity f rom section to section both in s ize 

and distribution of the voids. By and large  the voids ranged from 

-4  
3 to 5 t imes 10 inches in diameter with the l a rge r  o r  smal ler  

voids occurring only in exceptional cases .  F igure  38 shows a typ- 

ical  mapping of a section of a sheet with a typical rat io of void 

volume to mater ia l  volume. A representative figure for  this rat io 



Figure  37: Photograph of Res idua l  C a v i t i e s  T ~ k e n  a t  200X. 
(Each s m a l l  d i v i s i o n  corresponds  t o  0 .01  mm.)  



Figure  38. Typical Map of Distribution of Spherical Flaws 
Taken at Random Locations throughout the 
Specimens (1 50X). 



i s  approximately 7 .  6 x lo-'. This  i s  admittedly quite a sma l l  volume 

fract ion,  but a t  the same  time the re  is supplied a l a r g e  number of 

4 
possible f r a c t u r e  nucleation points; viz.  30 x 10 voids pe r  cubic 

inch. Although this  number sounds l a rge  the cavities a r e  usually 50 

to 100 d iamete r s  o r  m o r e  apa r t ,  This  makes  it reasonable to assul-):e 

that each flaw a c t s  independently and that attention can be focused 

on a single cavity in  making the f r ac tu re  analysis .  In other  words ,  

i t  will be hypothesized that f r ac tu re  will initiate f rom one of these 

cavities and attention will only need to be given i t .  F u r t h e r m o r e  the 

HT environment produced on the flaw in the poker chip will closely 

resemble  that  of F i g u r e  39. The local field s t r e s s  p i s  determined 

F i g u r e  39. Schematic of Flaw in  the Hydrostatic 
Tensi le  F ie ld  in the Poker  Chip. 
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from the applied load P o r  boundary displacement 6 through Figure  8, 

Then since the cavity i s  small  compared to the specimen thickness, 

an analysis can be made considering the flaw to be alone in an  infinite 

hydrostatic field, and the test: will closely duplicate the theoretical 

assumptions and boundary conditions. 

The approach to be followed will be  to consider the t ransfer  

of energy for  the cavity region during the f rac ture  process.  F r o m  

this a cr i t ical  value of the hydrostatic p ressure  will he predicted in 

t e rms  of pertinent mater ia l  and geometric pa ramete r s ,  indicating 

the point of rupture of the spherical flaw. However this will require 

some extensions of the classical  concepts in o rder  to deal with this 

particular geometry, s t r e s s  field, etc. , and a general  discussion of 

the energetics of f rac ture  i s  in order .  

ENERGY CRITERIA FOR ELASTIC FRACTURE 

To a novice in  the field i t  appears  t32at there i s  grea t  need 

for  elucidation of the basic principles upon which f rac ture  energetics 

a r e  built; so that extensions to other geometries ,  other  s t r e s s  

fields,  and other mater ia ls  will be clear .  Since this will have to be 

done in the instance of the spherical cavity, l e t  us review x few fun- 

damentals. 

Conservation of Energy 

Beginning with the Fir s t  Law of Thermodynamics a s  applied 

to a general  f rac ture  process  (65) it i s  possible to a r r i ve  a t  Grif- 

fith' s classical  results,  (66) which were  originally obtained in quite 

a different manner.  The recoverable s t ra in  energy U , representing 1 
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the s t ra in  energy before f rac ture ,  plus the work done by the surface 

tractions during f rac tu re ,  6W, must ,  f rom the Conservation Law, 

equal the s t ra in  energy after  f rac ture  U , plus the enc rgy dissipated 2 

in forming new surface 6s. 

o r  forming an incremental equation 

Differential Fo rm 

It i s  convenient for  computation and for l a t e r  comparisons 

to cas t  the energy equation into a differential form. This will be 

accomplished by dividing the equation by an  increment of c rack  

length and taking the limit a s  the change in c r ack  length approaches 

zero. Implicit within this operation i s  the assumption that each 

t e rm  in the equation can be written a s  a continuous function of crack 

length, which can only be done if  the flaw hypothesis i s  made. 

This resul ts  f rom the fact that the f rac ture  point of a specimen 

with a residual c rack  i s  actually the point of initiation of the prop- 

agation phase, and the energy t e rms  can be r e p r e s e n t ~ d  a s  contin- 

uous functions of crack length. On the other hand, if there i s  no 

microscopic flaw and f rac ture  originates a t  a sub-continuum level, 

then the energy t e rms  a r e  not continuous functions of crack length, 

and the incremental equations must  be used, The differential form 

of the conservation law for  a fixed force  boundary condition be- 

comes,  



where F =Applied force  a t  the boundary 

6 = Displacement of the boundary 

y = Surface energy density 

A = New surface created during f rac tures  

ENERGY FUNCTIONALS 

Consider now certain energy functionals which have been used 

in fracture, analysis.  The Potential Energy Functional can be con- 

s idered a s  a starting point for  Griffith's (66) discussion of fracture.  

In attempting to t ranslate  his  discussion into mathematical t e r m s  

we obtain, 

where U = Strain energy 

P = Potential of the boundary load computed 
while the load i s  held constant 

S = Surface energy 

By a careful comparison of expression (4.2) and (4.5) and the physi- 

ca l  processes  which they describe,  (30) i t  can be shown that 6P = 

6W. This i s  the c rux  of an argument that can be used to establish 

what Griffith assumed fo r  the f rac ture  cr i te r ion ,  i. e. , 
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By a comparison with the energy equation (4. 3 ) ,  it i s  apparent that 

they a r e  identical. This i s  a significant result ,  for i t  establishes 
:# 

that fracture predictions f ~ r  - fixed grip l o a d i .  -- made on this basis 

of the adjusted potential energy being a minimum, are  the same a s  

obtained from energy conservation. At this point i t  i s  difficult to 

ascertain just why a minimization of 7 should predict f rac ture ,  but 

a la ter  examination of the stability aspects of the problem will 

clarify this point. 

Extended Complementary Energy. If a s imilar  comparison 

i s  made between the extended potential energy of equation (4.4) for 

fixed grip loading and the energy balance made for the same condi- 

tions, it can be demonstrated that the two -- do not coincide and that 

the two conditions a r e  not the same, It i s  therefore concluded that 

the extended potential energy i s  not the correct  functional for fixed 

grip loading. However an analogy can be made between the types of 

loading and the correct  functional, for in the case  of fixed force 

loading, where the force i s  held constant and the displacements 

a r e  varied,  it was found that the potential energy was the proper 

functional; therefore i t  would appear appropriate that for the fixed 

grip condition where the displacements a r e  held constant and the 

forces a r e  varying that complementary energy (49) should be con- 

sidered. 

It turns out that this i s  true. A direct  comparison can be 

:# 
Griffith did not specify the boundary conditions with which he 
worked, but it can be deduced that it  had t c l  be fixed force. 



-101 - 

made and a minimization of an  a l tered  form of the complementary 

energy functional. 

where Q = j z6~ i6 idv  

X6 = Portion of the surface where displacements 
a r e  specified 

dv = Differential surface element 

coincides with the energy equation (4.3). At this point the physical 
- ::: 

reason why 6V = 0 predicts f rac ture  i s  obscure,  but it will be ex- 

plained by considering the stability of the crack.  

STABILITY 

By means of the conservation law of energy, i t  has  been pos- 

sible to establish a necessary  condition for  f rac ture ,  since i t  i s  

necessary  that energy be conserved for  the phenomenon to occur. 

Now i t  is  of in teres t  to inquire into the stability of the crack; whether 

i t  be in stable,  neutral ,  o r  unstable equilibrium. Classically i t  i s  

the second variation that provides information on stability, but this 

i s  not necessari ly always the case .  Sometimes the very  nature of 

the problem will cause the f i r s t  o r  possibly the f i r s t  and second 

variations to vanish identically. (67) In fact ,  there i s  no l imit  to 

the number of variations that can vanish and consequently i t  i s  not 

a se t  principle a s  to which variation controls stability. This turns 

out to be the case  in the general  f r ac tu re  problem that we a r e  cur -  

rently investigating. In o rder  to see  this ,  l e t  us take a closer  look 



a t  the physics, which reveals  that the only "resis tance" to be over-  

come i s  the surface energy, and until the other "driving" energy 

t e r m s  build up to i t ,  a c rack  i s  perfectly stable. At the point of 

equality anything can happen and the crack a t  this cr i t ica l  s t r e s s  

i s  i n  neutral equilibrium. Anything above the equality point resul ts  

in an  unstable state for the c rack ,  and i t  s t a r t s  to propagate. Con- 

sequently in this case  i t  i s  the f i r s t  variation of the extended potential 

energy being se t  equal to zero  that gives the stability cr i te r ion  for  

the point of neutral equilibrium. 

Buckling Analogy 

The problem of elastic buckling theory f o r  columns i s  a 

good analogy to f rac ture  initiation and i s  helpful in clarifying this 

point of which variation i s  related to stability. By thinking of the 

potential energy of the column a s  a continuous function of the var ia-  

tion parameter ,  a qualitative plot can be made a s  shown in Figure 

40, and the potential energy can be expanded in  a Taylor ' s  se r i es  

with the variation parameter  acting a s  the independent variable.  (67) 

This  method gives a better physical insight into the problem and 

will make i t  eas ie r  to understand the analogous f rac ture  problem. 

Figure  40. Arbi t rary  Plot of Potential Energy 
vs. the Variation Paramete r ,  
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A Taylor 's  se r ies  expansion i s  readily written a s  

However, by definition of the variation operator (68) 

Thus if we a r e  a t  an equilibrium point, the f i r s t  variation vanishes 

and the sign of, AV i s  determined by the second variation, o r  in other 

words, the second variation gives information about stability. The 

one additional facet that affects the column buckling i s  that AV i s  

computed around a loading position when buckling i s  imminent; 

therefore AV becomes a second order incremental change on top 

of the AV generated by loading from the natural state to the point 

of buckling. Consequently, if the potential energy i s  used, the f i r s t  

variation about the loaded state corresponds to a second variation 

about the initial state, so that the f i r s t  variation for  column buckling 

actually becomes equivalent to a second variation and gives the 

point of instability. 

A similar  se t  of circumstances prevails in the instance of 

imminent f racture ,  where we a r e  using the extended potential 

energy. F o r ,  a s  in the case of buckling, the f i r s t  variation about 

the point where fracture i s  imminent corresponds to a second va r -  

iation about the natural state, and it  i s  therefore the f i r  s t  variation 

that gives the information about crack stability. This can also be 

seen f rom the fact that the cri t ical  point using the extended potential 

energy was actually based upon the f i r s t  law of thermodynamics, 
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which implies that a state of equilibrium prevails.  Interpreted in 

the light of a s e r i e s  expansion fo r  V, this would mean that the f i r s t  

variation, which i s  concerned with equilibrium, i s  automatically 

satisfied. Thus in the expansion the f i r s t  t e rm that appears  i s  

actually the second variation and i s  the one that i s  of in teres t  when 

seeking information about stability. F rom this  i t  i s  seen that for 

f rac ture  prediction we a r e  not dealing with equilibrium principles 

a s  Griffith discussed but stability, and now i t  is c lea r  why the 

vanishing of the f i r s t  derivative of the adjusted potential energy 

i s  the appropriate f rac ture  condition. 

In summary i t  may be stated that the conservation of energy 

provides a necessary  condition for  f rac ture  a s  well a s  a basis  upon 

which the potential energy can be extended; fur thermore ,  the value 

a t  which the f i r s t  variation of the new functional vanishes i s  the 

point of neutral equilibrium, demonstrating that the c rack  will run 

a t  this point, and this constitutes a type of sufficiency condition for  

f rac ture .  Therefore the cr i t ical  values predicted by this  analysis 

a r e  necessary  and sufficient conditions for f rac ture  within the limit 

of the degree to which the physics a r e  modeled by the mathematics. 

E N E R G Y  FRACTURE A N A L Y S I S  - INFINITESIMAJ..,  'TIIKORY 

W e  return now to consider the growth and eventual rupture 

of a spherical  cavity in an infinite medium subjected to HT a t  infin- 

ity. Based upon the findings described previously in relation to the 

existence, location and distribution of spherical flaws, a boundary 

value problem formulated for this geometry would be expected to 
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yield a solution that will accurately describe the physics. A math- 

ematical model i s  depicted in Figure  41. The s t r e s s  analysis (49) 

where the outer boundary i s  taken a s  spherical and of radius - b yields 

Figure  41. Idealized Model of Spherical Flaw in a Hydrostatic Field. 

The corresponding s t ra ins  for  an incompressible mater ia l  become, 

Forming a s t ra in  energy density function and integrating over the 

body we have 

Cri t ical  P r e s s u r e  

In o rder  to obtain the cr i t ical  rupture p ressure ,  the energy 

cr i te r ion  of equation (4.6) i s  invoked 



a - ( U - S )  = 0 a a 

where for a l inearly elast ic  mater ia l  P - -ZU. ( 6 9 )  S represents  the 

energy required to crea te  unit surface ,  and - a i s  a measure  of the 

flaw growth. In this instance when b >> a, equation (4,12) becomes 

which yields a cr i t ica l  p ressure  of 

Flaw Size Dependency 

This gives the typical inverse square root dependency of 

cr i t ica l  rupture s t r e s s  on initial flaw radius. In fact,  the defining 

equation of (4.13) var ies  only slightly for  the ent ire  spectrum of 

flaw geometries.  Sneddon (70) and Sack (71) obtained the inverse 

square root dependency for  "penny-shaped" c racks  in hydrostatic 

fields,  which i s  ve ry  s imi lar  to the Griffith (66,72) resul t  for  the 

line c rack  in a two-dimensional sheet. 

A summary table shows the quantitative s imilari ty for  rep-  

resentative geometries  (73) 

Geometry Sheet with Cylindrical. Penny-shaped Spherical 
line crack cavity crack cavity 
(Griffith) (Sneddon) 

Cri t ical  
S t r e s s  

Williams (73) has  discussed this s imilari ty and uses  i t  tb investigate 

the more  complicated phenomenon of viscoelastic fracture.  
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Mode of Propagation 

It should be noted that the analysis inherently assumes a 

radial mode of propagation for the fracture surface; i. e. , that the 

flaw grows spherically in a manner similar to ablation. This may 

place a limitation on the information gained, but a similar situation 

a r i s e s  for  the "penny-shaped1' crack,  which also i s  confined to 

propagate radially in a planar mode. Only experimentation can 

provide the means for evaluating these assumptions and determining 

what portion o r  portions of the fracture process can be analyzed 

by them. 

ENERGY FRACTURE ANALYSIS - EFFECT OF FINITE DEFORMA- 
TION 

The spherical symmetry in this problem makes it  possible 

to extend the infinitesimal deformation fracture analysis to include 

effects of finite deformations. This i s  seldom possible, although 

Gent and Lindley (24 )  did use the model of a spherical cavity in an 

infinite medium and investigated the strains at the cavity using a 

maximum st ra in  criterion. Schapery and Williams (74) used a non- 

linear theory for  the same problem and coupled it  with an  energy 

cri terion to predict fracture. This i s  a particularly interesting 

approach for  polymeric materials  where large strains a r e  the rule; 

furthermore,  i t  provides an  opportunity to see how large strains 

affect the inverse square root dependency of initial flaw size. 

Finite Strain Effects 

The presence of deformations exceeding the limits of infini- 

tesimal theory produces many ramifications in the mechanics of the 



energy analysis: F i rs t ,  the matter of loading requires a more care- 

ful definition to fit the actual conditions both experimentally and 

theoretically, for with finite strains the change in area of the bound- 

ing surfaces is accounted for and there becomes a distinction between 

fixed force and fixed s t ress  conditiana. This difference will manifest 

itself in almost every quantity previously calculated and will affect 

the outcome of the conclusions drawn on the baais of the infinitesimal 

theory, 

Second, this same matter of the differences between the de- 

formed and the undeforrned area produces questions about the manner 

in which surface energy i s  handled in the governing expressions. 

Normally in these computations, a surface energy i s  computed a s  if 

i t  were a variable of state; i. e. , as  i f tihe existing surface possessed 

a given surface energy a s  opposed to only speaking of changes in the 

surface, or  energy required to create surface. The actual compu- 

tation i s  then made by differentiating this quantity with respect to 

the crack length. However additional conaideratian must be given 

when the surface of interest is significantly altered by deformation 

before fracture occurs, i. e. , the original surface changes in area 

but does not rupture, This deformation i s  accounted for in the s t ress  

analysis of the body and in the energy expressions, but the correct 

manner in which i t  influences the surface energy may be debatable. 

Third, the classical potential energy theorem has been 

shown to apply regardless of the magnitude of strain, For  example, 

Green and Zerna (75) derived the theorem for large strains, and 

the form af the emression i a  found to be identical with the linear 



theory if proper attention i s  given to the definition of s t r e s s  and 

strain. By examining Figure 42, which depicts a loading history 

and subsequent fracture under fixed force conditions for a general 

non-linear body, it  i s  seen that 6P of the potential energy expres- 

sion (4.6) i s  stil l  equal to 6W of the conservation equation (4.2). 

As a result ,  the f i r s t  variation of the extended potential energy, 

Figure 42. Force-Deflection Curve. 

with proper s t r e s s  and strain definition,still remains a s  a valid 

stability cri terion for  large strains also. 

Fourth,  the complementary energy functional for finite 

strains has just been formulated by Levinson (76) in t e rms  of the 

Lagrange s t r e s s  and strain tensor. The Lagrange s t ress  tensor 

i s  an unsymmetric tensor associated with base vectors in the 

undeformed body, whose intensity i s  measured in t e rms  of the 

undeformed area .  The Lagrange strain tensor i s  simply the dis- 

placement gradient. Levinson was able to obtain a complementary 

energy principle, which differs in form from the infinitesimal 

functional only by a change in sign. With regard to this he states,  

"This i s  because it i s  customary to give the infinitesimal theorem 



a s  a minimum principle, (for stable equilibrium) whereas i t s  deriva- 

tion by the Legendre transformation would lead to a maximum 

principle whose function would agree in sign. ' I  Thus the f i r s t  var-  
4- - *,. 

iation of V set  equal to zero applies for finite s t ra ins  also,  since 

it  checks energy conservation laws if  proper ca r e  i s  given to s t r e s s  

and strain definition. 

Fifth, the fracture s t r e s s  for the different loading conditions 

i s  no longer the same when non-linearities a r e  considered, whether 

they be finite o r  infinitesimal. This can be shown through a com- 

parison of the energy equations for  the limit cases  of fixed force 

and fixed grip. (See Figure 43. ) For  purposes of illustration, 

Figure 43. Comparisonof Failure under Fixed- 
Force  and Fixed Displacement Boundary Conditions 

assume the force deflection equation to be 

The strain energy i s  stil l  equal to the work done on the body 



U = F $$ = Fh(6)  (4.16b) 

The energy express ions  f rom equation (4.2)  become 

( )  F )  + y ( g ) F / F = F 2 =  0 (Fixed F o r c e )  

(4. 17) 

(Fixed Grip) 

Since 

Then 

= 1 - g ( 6 )  df But 3 - 
f2(6)  d6  

Substituting (4. 15) and (4.19) into (4.18) 

Returning to  the equivalent constitutive law,  equation (4.15) ,  a r e l a -  

d6 dk 
tionship between - and - can be found dc dc 

which, when substituted in  (4.20) and simplified,  gives 



The conclusion which fnllows i s  that i n  general fo r  non-linear 

sys tems,  the fracture s t r e s s  depends upon the form of the s t r e s s -  

s t ra in  law a s  well a s  the boundary loads, and the specific cases  must  

be analyzed. F o r  instance, i f  f(6) = &'In the cri t ical  s t r e s s e s  coin- 

cide,  but the nature of the system must  always be examined to make 

certain,  This could possibly explain some discrepancies in  poly- 

mer ic  f rac ture  data,  fo r  in the instance of typical mater ia l  r ep r e -  

sentations such a s  Neo-Hookean o r  Mooney-Rivlin, the cr i t ical  loads 

will not coincide because of the form of the constitutive law. (77) 

CRITICAL FRACTURE POINT 

The cri t ical  fracture s t r e s s  will now be computed for  both a 

Neo-Hookean (NH) and a Mooney-Rivlin (MR) mater ia l  to provide 

not only a comparison between the two non-linear s t r e s s - s t r a i n  

laws,  but also with the infinitesimal theory. The s t ra in  energy 

function for  both can be represented by 

where f = 1 gives NH, and 0 Q f < I i s  MR. Following Tdcvinson (78) 

the relation between the hydrostatic tensile p ressure ,  p ,  applied a t  

infinity and the stretch rat ios of the inner boundary - a and outer 

boundary - b i s  
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From incompressibility 

where a b denote undeformed measures  of the radii. 0' 0 

This can be rewritten a s  

However for an infinite medium ao/bo < <1; furthermore,  ao/bo = 
h a 
a O ) << 1. From the binomial expansion 

3 
ri 3 = 1 +$(?) (,-1) + ... (4.27) 

Substituting (4.27) into (4.23) the pressure  relation simplifies to 

Strain Energy. As was previously discussed, the altered or  

extended form of the potential energy functional can also be used for 

finite deformations. Of course the boundary conditions remain a s  

constant pressure  during fracture and the potential of the surface 

forces  i s  no longer twice the strain energy a s  in  the linear theory. 

All three energy te rms  must  now be individually computed and in- 

serted into the governing energy equation (4.6) 



where U = Strain Energy 

P = Potential of Surface Fo rce s  

S = Surface Energy 

The s t ra in  energy i s  computed through the defining integral 

Using (4.27) to express  the integral in t e rms  of the extension ratio 

a t  the flaw cavity, (4.30) becomes 

where the fact that ao/bo<< 1 has  been used to simplify the expres-  

sion. Substituting the expression for  p, equation (4.28), and inte- 

grating 

U = -S7raoE [ (1-f) 2 6 a a 

Potential of Surface Forces .  This  is a much simpler  t e rm 

to compute due to the fact  that p i s  now held constant. 

Using (4.27) once again 

Surface Energy. One of the new facets  of the problem alluded 

to previously i s  encountered a t  this point. Before rupturing, the 
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cavity surface may undergo a large  change in surface a r e a ,  which 

would be considered a s  a stretching of the molecular s t ructure ,  with 

a l l  input energy remaining recoverable. At the cr i t ical  point, energy 

will be dissipated by the formation of new surface,  and although the 

cavity i s  deformed considerably, the surface energy density should 

be re fe r red  to the cavity surface before deformation. The reason 

being that y, the  surface energy density, is an  art i f ice that relates  

molecular activity to continuum activity. Consequently i t  i s  the 

number of molecules present  on the surface that i s  of concern in 

computing f rac ture  energies.  This remains constant during the 

deformation and therefore 

CRITICALITY EQUATION 

Substituting equations (4.32), (4.34) and (4.35) into the 

energy equation of (4.29) and performing the differ entiation, with 

p held constant, we obtain 

This  expresses  the cr i t ical  condition fo r  f rac ture  in t e rms  of the 

h stretch rat io a t  the cavity and a mate r ia l  parameter  k = Ea . 
The simplest  case  i s  for  the NH mater ia l  when f = I ,  then the cr i t i -  

ca l  condition i s  (41) 

A check of this polynomial reveals  that there  i s  only one 



positive, rea l  root greater  than one, so no complicated interpreta- 

tions ar ise .  Of course once the cri t ical  extension ratio i s  known, 

the critical p ressure  can be computed from equation (4.28), and for 

completeness, the expression for the tangential hoop s t r e s s  i s  

given. 

Comparative Results. All of these quantities have been 

plotted c~ l lec t ive ly  for comparison in Figures 44 - 46. There is 

a noticeable variation in almost every quantity, a s  for instance 

the ultimate extension of the cavity surface for  NH bodies i s  in- 

6T creased considerably over MR bodies for  log - greater  than 
Eao 

0.50, while the reverse  relation holds for the hydrostatic field 

s t r e s s  p. In this case ,  p for the NH body approaches an asymptote 

5E 
of - 6E 

while MR exhibits behavior characterist ic  of the infinitesi- 

mal  theory and a s  a result  these two curves diverge rapidly. How- 

ever for both NH and MR the inverse square root dependency on 

"0 
i s  reduced by considering finite strains.  In spite of this reduc- 

tion, there still  remains a strong influence of a0  on pc. 

The validity of these predicted fracture levels c a n  only be 

ascertained by experiment. In this connection, a method was 

conceived for inserting artificial flaws of varying sizes into the 

poker-chip specimen and subjecting them to HT. Details of these 

resul ts ,  to be described subsequently, shed light on the fracture 

behavior of spherical cavities and provide further information for 

evaluating the flaw analysi s . 
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Figure  44. Critical Extension Ratio a t  the Surface fo r  Instability 
of a spher ica l  Cavity. 
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Figure  45. Critical Hydrostatic P r e s s u r e  Condition for  
Instability of a Spherical Cavity. 
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F i g u r e  46. Cr i t ica l  Hoop S t r e s s  for  Instabil i ty of a 
Spherical  Cavity. 



CHAPTER V 

ARTIFICIAL FLAWS 

As a means of further assessing the theoretical treatment, 

a s  well a s  serving a s  a vehicle for the study of flaw behavior, a 

number of poker-chip specimens were prepared with a dominant 

central flaw in the form of an a i r  bubble. In order for  experiments 

for  such a specimen to be meaningful, the cavities must be inserted 

without disturbing the normal manufacturing operations of the 

standard material.  It will be recalled that the standard manufac- 

turing operation consisted of mixing together the two components, 

pre-polymer and catalyst,  under an inert  atmosphere of nitrogen. 

The mix i s  then t ransferred to a preheated mold through piping that 

enables the mold to be filled while in the oven. The specimen i s  

then cured a t  150°C for two hours. The bubbles were  inserted into 

the material  without interrupting this operation by constructing a 

mold with a glass front a s  shown in Figure 47. 

Figure 47. Mold Assembly 



The spacer ring was fitted with a hole to admit a long hypo- 

dermic needle, which was of sufficient length to reach from a syringe 

outside of the oven to the inner par ts  of the mold. In the apparatus 

used, the needle was two feet long. The two components were mixed 

and preheated a s  before, and the preheated glass front mold was 

filled while in the oven in the usual manner. The polymerization 

and c ross  -linking process begin to take place immediately upon 

mixing of the two components; however, there i s  a pot life during 

which the material  will flow even though it  i s  becoming more  viscous 

with time. It is while the polymer i s  stil l  in this liquid state that 

the hypodermic needle i s  inserted into the mold and a bubble blown 

f rom outside the oven. The needle i s  withdrawn before the liquid 

has  become solid enough to retain any memory of i t s  presence. 

The mold was mounted on a shaft capable of rotation by an electric 

motor controlled from the outside of the oven. In this way, the 

location of the bubble in the mold could be controlled, a s  it  had a 

tendency to r i s e  during the early stages before the polymer became 

solid. The complete arrangement i s  shown in Figure 48. 

Figure 48. Schematic of Apparatus used for  Inserting Artificial Flaws 
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Following this operation, the specimen was cured in the standard 

manner a t  1 . 5 0 ~ ~  for  two hours ,  and then removed from the mold 

and stored in a d ry  box until used. 

OBSERVATTBNS 

The specimen was mounted between lucite gr ips  a s  before 

with the dominant flaw located in the center .  Direct  visual obser-  

vation of the growth of the flaw under load was made by means of 

a portable microscope from which several  interesting things were  

learned: 1) Deformations a t  the surface of the cavity were  defi- 

nitely finite, with s t ra ins  ranging up to 150 percent. This i s  quite 

unusual since the maximum s t ra in  in uniaxial tension attains values 

of only 35 to 40 percent,  but i t  appears  that the necessary  energy 

condition for f rac ture  i s  not met  in this configuration until a sig- 

nificantly l a rge r  s train.  It should be emphasized, in light of the 

s t r e s s  axis theorem discussed previously, that these a r e  the local 

s trains around the cavity and not the global s t ra ins  measured a t  

the boundaries, which were  st i l l  small  in  this test .  2) F rac tu re  

levels were  not affected by the presence of the dominant flaw but 

were  unchanged from those of the regular  specimens. 3 )  Frac tu re  

did not occur a t  the artificial flaw but elsewhere in the specimen, 

sometimes close and sometimes distant from the bubble, Even in 

the few cases  where multiple artificial flaws were  inserted in the 

same specimen, f rac ture  sti l l  occurred in the field ra ther  than on 

the surface of one of these cavities. 4) None of the cracks  af ter  

nucleating elsewhere ever  propagated into o r  through a bubble; al l  
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bubbles remained intact and could be seen unruptured af ter  the spec- 

imen was completely severed into two pieces. This led  to the exam- 

ination of f rac ture  of the mater ia l  in other geometries  to determine 

if the c racks  had propagated through any of t-he, residual bubbles 

regardless  of the initial s ize ,  but no evidence could be found. A 

behavior of this nature was noted by Schwarzl and Staverman (79) 

in Plexiglas but in this instance i t  was concluded that the bubbles 

a r e  not a mechanism of propagation; in fact ,  a lmost  the opposite i s  

t rue.  The propagating surface seems to either stop o r  go around 

such a discontinuity in the material .  

It should be noted in the interpretation of these resul ts  that 

the dominant flaw was st i l l  surrounded by a matr ix  of the residual 

flaws, since the mater ia l  was produced in a standard way. The 

l a rge  cavity was not alone in the field, and it i s  felt that a signif- 

icant difference in behavior would have been noted had it been alone. 

Since there s t i l l  remained the distribution of tiny bubbles , invisible 

to the naked eye, the experiments a r e  taken a s  evidence of the 

validity of a so-called Saturn-ring theory of c rack  propagation. 

SATURN-RING CRACK 

Assuming a s  before that the flaws a r e  dispersed widely 

enough not to interfere with each other o r  cause disturbances in 

the hydrostatic s t r e s s  field, we wil.1 focus our attention on a single 

cavity in an infinite field that will eventually t r igger  the f rac ture ,  

Let  us visualize a reasonable physical mechanism by which f rac ture  

can occur by picturing the cavity a s  i t  grows under the action of 

the hydrostatic tension. As the p ressure  i s  increased,  the cavity 



will grow symmetrically until virtually a l l  points on the surface a r e  

brought to imminent rupture. It has  been well documented in almost 

every experimental tes t  made on rubber that the plane of fracture 

occurs perpendicular to the plane of the maximum principal s t r e s se s  

which, for  a cavity in a symmetric field, i s  the tangential hoop 

s t r e s s  at  the surface. In order  for  the f rac ture  to take place per -  

pendicular to the maximum tensile s t r e s s ,  the fracture plane must 

be oriented so  a s  to pass through the center of the cavity, and thus 

i t  will be located on a great  c i rc le  of the sphere,  presumably 

starting a t  some locally weak point on this great  circle.  It can 

then be imagined that the crack will t ravel  around the sphere in 

the  form of a Saturn-ring, (see  Figure 49), quickly opening the 

sphere and propagating in a planar,  radial direction away from the 

Figure 49. saturn-s in^ Crack 

spherical surface. We will t e rm  this "the Saturn-ring mode of 

propagation, " This obviously i s  an approximation to the rea l  pro-  

c e s s  for i t  would never occur in such a symmetric fashion but would 

be much more  complicated; however, it appears to be a reasonable 

model upon which to build a mathematical formulation and from which 

the salient features of the problem can be studied. 
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Strain Energy Function 

The boundary value problem of a spherical hole with a Saturn- 

ring, planar crack has  not been solved even for infinitesimal defor- 

mations. It will therefore be necessary to slightly extend, in an ad 

hoc manner,  the results  of other similar  elasticity problems that 

have been solved in order  to obtain an estimate of the s t r e s s  field 

for the geometry of Figure 46. This will be done by examining the 

interrelationship among three known solutions: (i) a body in plane 

strain possessing an internal crack similar  to that used by Griffith, 

(ii) a body in plane strain with a cylindrical hole and two cracks 

extending radially from the hole a s  shown in Figure 50, and (iii) the 

three-dimensional penny-shaped crack. 

Figure 50. Two -Dimensional Saturn-Ring Crack 



In both instances the'two-dimensional sheets are taken to be loaded 

in equal biaxial tension o r  what may be roughly referred to as a two- 

dimensional hydrostatic tension, Griff i th,  (66) using the Inglis (80) 

solution for the line crack in a two-dimensional sheet, integrated 

the stresses  and strains for a f ixed force loading condition and gave 

as the strain energy of the body in plane strain the following: 

, 
Let us compare the form of this expression with one obtained from 

an approximate solution faund by Bowie (8 1) for the two-dimensional 

L i s  the half crack length a s  specified in Figure 50,  and k(L) can 

be given an analytic representation in three separate regions of the 

variable crack length L, by fitting Bowie's tabular data as is shown 

in Figure 51. 

small L k(L) - 2 

intermediate L 2 1 k(L) = - - - 1 
- 2  2 ( l t z )  

large L k(L) = 1 

From this k(L) can be sketched over the entire range of L, and  wil l  

appear as in Figure 52, L 



F i g u r e  51. P lo t  of ~ o w i e ' s ' ~ ' )  Tabular  Data Showing Regimes of 
Representat ion fo r  f(L). 



Figure  52. Crack Length Factor  

2 2 
The inflection point, d k / d ~  = 0, occurs  a t  L = 7.5. F r o m  this i t  

i s  readily seen that there  i s  not a la rge  variation even when the entire 

range of L i s  considered. F o r  the investigation of f rac ture  initiation, 

the range for smal l  L i s  the one desired,  and therefore k(L) = 2 will 

be selected. 

Having made the extension f rom the two-dimensional l ine 

c rack  to the two -dimensional Saturn-ring crack,  we a r e  now in a 

position to make a s imilar  extension f rom a three-dimensional planar 

c rack  to a three-dimensional Saturn-ring crack.  The planar crack,  

o r  so-called penny-shaped crack,  shows almost  no change from the 

line crack except in the dimensionality 

line crack planar  crack 

Using the previous example a s  a guide, i t  i s  conjectured that the 

s t ra in  energy of the three-dimensional Saturn-ring crack could be 

approximated a s  



where k(L) will be taken by analogy to be two for  smal l  c rack  

lengths, and in order  to l imit  check the penny-shaped crack solu- 

tion for  l a rge  L ,  where the spherical  cavity should no longer have 

any effect, k(L)  must  be equal to  unity. 

We have now closed a loop and have internal consistency 

in the ad hoc representation of the s t ra in  energy function. A 

schematic representation of this i s  given in  Figure  53. 

Figure 53 

The extended potential energy for  the three  -dimensional Saturn-ring 
::: 

crack  can now be formulated 

- - - - - - -  :: 
The dependency on (c-a)  must  be a s  given in Eq. (5.4) in order  to 

describe the planar mode of propagation, for a dependency of (c3-a3) 
describes a volumetric change much the same a s  an  ablating cavity 
ra ther  than a propagating crack.  



where  c r ep resen t s  the instantaneo1.1~ 1 ocation of the Saturn-r ing 

c rack  measured  f rom the center  of the spherical  ca.vity, and - a is 

the radius  of the cavity a s  shown in F igure  49. 

Crit ical i ty  Condition 

Previously the poi.nt of instabili ty,  which located the c r i t i ca l  

s t r e s s  a t  which the c r a c k  would run ,  has  been found by sett ing the 

first var iat ion of the extended potential energy equal to  zero .  T h e r e  

was a l so  an a l te rna te  method discussed in Chapter IV on energy 

methods taken f rom Langhaar ,  (67) wherein the energy function was  

expanded in a Taylor  s e r i e s  in t e r m s  of the var iat ion pa ramete r .  

In this  c a s e  the extended potential energy would be expanded in 

Lerms of the c r a c k  length c around an  a r b i t r a r y  point, say 6". a t  ci, 

where  c" i s  the r ad ia l  length of some res idual  Saturn-r ing crack .  

(See F i g u r e  49.) The advantage of th is  method is that  it provides 

be t te r  physical insight into the behavior during the variation process .  

Making such an expansion we obtain, 

This  equation can be qualitatively plotted to  obtain a bet ter  picture  of 
r*r J, 

the interaction between applied load p and cr i t ica l  flaw s i ze  6.'. o r  c'. 



Figure 54. Adjusted Potential Energy vs. Crack Length 

It was previously shown that AT was actually related to the slope; 

i. e. , the f i r s t  variation around this loaded state corresponded to a 

second variation around the unloaded state,  and the point of interest 

i s  where the slope changes signs, o r  where the function AT crosses  

the horizontal axis. The actual point a t  which it  c rosses  the axis 
J.  

i s  a function of the parameter  P, and the point of crossing i s  6'". 

I£ we investigate the function for values of crack length very near 
::: 

6 , the f i r s t  t e rm i s  dominant, and the point a t  which the derivative 

changes sign can be closely approximated by setting the f i r s t  term 

of equation (5.5) equal to zero. 



Physical  Interpretation 

The physical interpreta.tion of this  var iat ion o r  m o r e  specifi-  

cally c", i s  not absolutely f ixed,  but i t  can be adapted to  the physical 

p rocesses  involved in the f r ac tu re  of S- 1 13. It i s  c l ea r  f rom F igure  
.L 

54 that a s  p inc reases ,  the res idual  Saturn-r ing flaw c ' '  mus t  de-  
::c 

c r e a s e ;  however,  in  the l imi t  a s  c approaches z e r o ,  o r  in other 

words ,  in the l imi t  of f r ac tu re  of the spher ica l  cavity alone without 

a Saturn-r ing c r a c k ,  the c r i t i ca l  s t r e s s  approaches infinity, a s  seen  

f rom (5.7) in the s a m e  manner  a s  the or iginal  Gsiffith resul t .  This  

i s  not actually t r u e ,  for  i f  one examines the atomic leve l ,  t he re  i s  

always a Saturn-r ing flaw of the o r d e r  of a tomic dimensions,  but 

this  goes beyond the applicability of the continuum theory,  and so  

it is appropriate  to  seek  another interpretation of ce. 

By visual  inspection of virgin S- 11 3 under microscopic 

powers of 600X to 800X, the continuum around the flaw appeared 

to  be intact ,  and the re  was  certainly no Saturn-r ing flaw initially. 

However,  i t  i s  believed f rom observing the exper iments ,  that the 

actual  f r ac tu re  occur s  in this  Saturn-r ing mode,  f rom which i t  may 

be  concluded that the ma te r i a l ,  a f te r  a fashion, grows i t s  own flaw. 

To elaborate  on this  point, imagine that a s  a n  observer- w r  a,re 

allowed to go inside the spher ica l  cavity and watch the i r ac tu re  

a s  i t  init iates a t  that surface.  As  the load i s  applied a t  infinity, 

we would notice bonds beginning to brealc a t  var ious  points on the 

sur face  where the s t r e s s  i s  the highest;  however a f te r  the firs?, bond 

has  broken,  the ma te r i a l  would s t i l l  r ema in  intact and f r ac tu re  of 

the specimen would not occur .  This  bond breakage would not be 
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discerned by an outside observer ,  for  he would have no way of de- 

tecting i t  so we a r r i ve  a t  the tedious point of defining where f rac ture  

actually s tar ts .  If i t  i s  not defined to occur a t  the rupture of the 

f i r s t  bond, i s  i t  at. the poixlt of the seventh bond, o r  at the one- 

hundredth bond, o r  where i s  i t ?  

Knauss (82 )  has  devoted some attention to this problem a s  

he has  studied the propagation of cracks  in sheet geometries  a t  

various velocities,  and has  ar r ived a t  this same conclusion - that 

a body will grow i ts  own flaw. He bas shown that for  an H-C rubber,  

which i s  s imi lar  in many respects  to S- 11 3, the f rac ture  surface 

characteris t ics  change dramatically a s  the velocity changes, and 

that there a r e  three distinct regions a s  he classified them. The 

f i r s t  o r  slowest velocity regime i s  characterized by a very  rough, 

cobbled surface where the f rac ture  appears  a s  i f  s t rands resembling 

rubber bands were  pulled apar t  individually. This regime i s  for  

ve ry  low velocity c rack  propagation. The second regime,  which 

h e  t e r m s  the transition region, i s  more  smooth in appearance and 

much l e s s  cobbled. In the high velocity region, the f rac ture  surface 

appears  glassy and mirror- l ike .  A plot of the c rack  propagation 

speed versus  the gross  s t r e s s  applied to a sheet genrnetry i s  ex- 

cerpted from this work (82 )  and shown in Figure  55. Irk t l ~ ; ~ t  figure 

i s  contained the evidence of a very rapid change in velocity versus  

applied s t r e s s  for  certain ranges; in fact ,  in the slowly propagating 

regime,  evidenced by a very rough surface,  the velocity to a good 

approximation could be taken to be zero. It i s  this mechanism that 

i s  employed here  to define r' and  to interpret  the manner in which 
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Figure  55. Crack Propagation Speed a s  a Function of 
Gross  Stress  in Strip Specimen. 



a body grows i t s  own flaw. 

Le t  us  now re tu rn  to the spherical. cavity problem. A s  the 

s t r e s s  inc reases  to some l imit  point, a few bonds a r e  broken and 

eventually a s  the s t r e s s  i s  ir-rcrcasecl, enough broken bonds will occur  

in  a localized region to c r e a t e  a microscopic c r a c k ,  and this  m i c r o -  

scopic c rack  is propagating a t  a lmost  zero  velocity,  a s  shown in 

F igure  55. But given enough t ime,  the specimen will eventua.11~ 

rupture.  Str ic t ly  speaking, the c r a c k  i s  unstable and the c r i t i ca l  

s t r e s s  has  been reached,  but it goes undetected and may continue 

moving slowly fo r  a long indefinite period. In th is  application the 

in te res t  i s  in elast ic  f r ac tu re ,  and the r a t e  effects can be ignored - 
by assuming that the velocity of propagation i s  ze ro  and that the 

1% 

body, a s  a r e su l t  of the applied load,  h a s  c rea ted  a microscope flaw, 

which i s  perfectly stable and which will not run. As  the load i s  in-  

c r e a s e d  fu r the r ,  the flaw will  be made l a r g e r ,  but it will r ema in  

stable.  Referr ing back to F igure  54, i t  i s  seen that t h e  allowable 

flaw s i ze  i s  becoming sma l l e r  a s  the load i s  increased;  thus the 

two variable  pa ramete r s  a r e  approaching each other .  As the applied 

hydrostat ic  p r e s s u r e  i s  increased ,  the cr i t ical  flaw s ize  that the body 

can withstand i s  dec reased ,  but the actual flaw s i ze  i s  increasing a t  

virtually ze ro  velocity. Finally,  the point will be reached where 

the  flaw grown by the ma te r i a l  becomes cr i t ical  fo r  the applied 

load and a t  that instant the flaw will become unstable,  producing 

f r ac tu re  of the en t i re  specimen. Interpreted in light of the velocity 

r e su l t s  of Knauss,  a t  that point the velocity will change f rom z e r o  

to  the high velocity propagation level.  It i s  a t  this  point that 
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fracture i s  defined by the observer on the outside of the specimen, 

f o r ,  by virtue of the energy released,  a manifestation appears at  the 

loading device of the testing machine, or  by visual observation, 

the crack has become large enough that it  can be observed a s  it 

propagates. It i s  this interpretation that i s  given to c". It i s  the 

size of a cri t ical  flaw grown during the loading process,  emanating 

from the surface of the residual spherical cavity, and acting a s  a 

s t r e s s  r i s e r  to produce fracture nucleation. 

Limit Cases. It i s  convenient to cas t  equation (5.7) in t e rms  

of non-dimensional variables. Let  us define 5 = c:k/a, then equation 

(5.7) become s 

In the limit of 5 becoming large ,  o r  where the parameter  c': i s  large 

compared to the bubble radius - a ,  

which i s  a constant independent of the initial flaw size - a. (It should 

be noted that it  i s  not independent of the existence of a cavity - only 

i t s  s ize . )  Thus a s  the flaws become small  compared to the fracture 

parameter  c", they have no influence on the f racture  and cause no 

damage to the material.  They act  only a s  nucleation points. 

On the other hand, the limit of 5 becoming small ,  where the 

cavity i s  the dominant factor 
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and the l a rge  cavity causes an  increase  in the f rac ture  strength over 

smal ler  cavities - -  not over the perfect material .  It behaves in  

much the same way that a l a rge  fil let  radius does, causing a reduc- 

tion in  the s t r e s s  concentration in a body and a consequent increase  

in strength. In the intermediate values, there  i s  a n  interplay of the 

var ious  parameters  that can be qualitatively plotted a s  shown in  

Figure  56. 

0 , S 
Figure  56. Cri t ical  P r e s s u r e  vs.  Flaw Size 

This  ra ther  unusual resul t  ar is ing from the diameter  t e r m  of equa- 

tion (5 .7)  which indicates that the l a rge r  bubble will sustain more  

load before f rac ture  was in keeping with the observed behavior. The 

theory predicts that for  a fixed c", f rac ture  would initiate a t  the 

smallest  bubble in the matr ix;  however, in the poker-chip tes t  there  

would be a t rade -off between the size of the flaw and the location 

in  the field due to the s t r e s s  decreasing radially from the center.  

Consequently the actual pinpoint location would involve an  interplay 

between the field s t r e s s  and the size of the flaw. As a resul t ,  we 

have employed the average flaw s ize  to compute the theoretical 



-138- 

strength of the mater ia l ,  since this s ize flaw would have the highest 

probability of occurring a t  the point of maximum s t ress .  However, 

statistical variations in cavity s ize and location would be partially 

responsible for  strength variations. It would be predicted from 

equation (5.10) that i f  the l a rge r  artificially inserted bubble had 

been alone in the field, an  appropriately l a rge r  f rac ture  s t r e s s  

would have resulted; however the presence of the smal ler  cavities 

caused the f rac ture  to nucleate from them and the f rac ture  levels 

to remain unchanged, even with the presence of the large  flaw. 

Numerical Correlation. In o rder  to demonstrate this theory 

fur ther ,  a theoretical computation of strength will be made based 

on measurements of a flaw size - a and 6'", taken f rom a typical 

- 4  
specimen, F r o m  Figure  34, 6':' i s  measured a s  3.7 x 10 in. 

Assuming that the f rac ture  resulted f rom a typical cavity of radius 

, - 4  a = 2 x 10 , c ' ~  i s  computed to be 1.7 x in. With these 

f igures,  a l l  that i s  required to compute the cr i t ical  s t r e s s  i s  the 

surface energy density. This was measured in a separate exper- 

iment on a different configuration entirely. A two-dimensional 

sheet containing a crack was extended in  plane s t ress .  The con- 

figuration was adjusted to approximate a sheet of infinite extent 

with a semi-infinite crack,  a s  shown in Figure  57. 

Figure  57. Sheet Configuration Used for  Measuring Surface Energy 



By plotting the propagation velocity of the c r a c k  vs .  the applied 

s t ra in  a t  the boundary, a n  approximate m e a s u r e  of the  s t r a i n  a t  

which the c r a c k  propagates a t  virtually zero  velocity can be ob- 

tained. At this  point it i s  a s sumed  that kinetic energy and d i s -  

sipation a r e  minimal;  therefore  the s t r a i n  energy is direct ly  

converted to sur face  energy a s  the c r a c k  moves  ahead. Equat- 

2 
ing the two, y comes  out to  be 0.05 in lb/in . The actual  value 

for  Y i s  taken to be a ma te r i a l  proper ty  independent of geometry 

and thus applicable in  this  analysis  f o r  HT. 

Putting these  values into equation (5 .7)  and using E = 

1 500 p s i  and v = - 
2 

pcr = 580 ps i  

This  i s  v e r y  near  the recorded  f r ac tu re  value of 625 p s i  for  the 

specimen f rom which these  measurements  were  taken. F igure  

29 i s  the apparent  s t r e s s - s t r a i n  curve for this specimen,  which 

exhibits an apparent  f r ac tu re  s t r a i n  of . 0 2 6  in/in. F r o m  F igure  

8 ,  o- / E E  = 43, w h e r e o  - 
- P c r r  and the measured  value of the 

z 7, 

local  hydrostat ic  p r e s s u r e  i s  625 psi. Such good agreerricnt may 

be a bit for tui tous,  but i t  lends support to  the validity t h e  

theory and calculations. 

Thus the Saturn-r ing concept,  with the accompanying 

calculations,  i s  able  to predict  experimental  r e su l t s  a s  well 

a s  provide a plausible explanation fo r  the observations made 

with the l a rge ,  ar t i f ic ial  flaws. The r e su l t s  forthcoming f rom 

the analysis  a r e  of considerable in te res t  when discussing the 
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difference between cavities and cracks.  The energy formulations 

show that they enter the problem in a fundamentally different way, 

a s  seen by comparing equation (5 .7 )  to Sneddon's resul t ,  for  in- 

stance. It i s  t rue  that for a c rack  the l a rge r  i t s  s i ze ,  the l e s s  i t s  

endurable load; however cavities do not act  this  way. The compara-  

tive resul ts  between the two continues to behave a s  intuitively ex- 

pected; i. e. , a body possessing a cavity, for  a hole, of the same 

dimension a s  a crack would be expected to withstand more  s t r e s s ,  

o r  would bear  more  load than the cracked body and this i s  exactly 

what the energy expressions predict. The exact manner in which 

the cavity radius enters  i s  extremely interesting. It shows that in 

some regimes the cavity is not important a t  al l  except in acting a s  

a nucleation point and lends a new concept about the effect o r  res id-  

ual cavities in rubbery mate r ia l s ,  o r  other mater ia ls  for  that mat-  

t e r ,  and their  effect upon the malfunctioning of that body. Heretofore 

it has  been the intuitive feeling that has  motivated quality control 

techniques, which accepts a s tructure that has  flaws under a speci- 

fied size and discards a s  inacceptable bodies containing flaws that 

would exceed this randomly selected size. This resul t  wi l l  have 

significant meaning for  people engaged in such work, f o r  it demon- 

s t ra tes  that another piece of information, c:::, must be known before 

a decision can be made. It must  be emphasized in conclusion that 

this  application i s  for  hydrostatic tension only and may be much 

different in another geometry; in fact ,  it will be demonstrated that 

this actually i s  the case in the next section. 
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RELATED GEOMETRIES 

Although the purpose of this  stlicly was  to investigate hydro- 

s ta t ic  f r ac tu re ,  the unusual nature of the cavity s ize  dependency 

makes  i t  intriguing to know what other geometr ies  will yield. A 

brief look a t  the two-dimensional analogy, consisting of a cylin- 

dr ica l ,  hole in  equal bjaxial tension, provides additional under - 

standing of the ro le  of cavities a s  opposed to c racks .  Returning 

again to the Bowie (81) solution, the express ion  f o r  the extended 

potential energy becomes 

- 2 
v = u  - -  

0 
2np ( c  - a )2  t 47 ( c -a )  E (5. 11) 

where  a = radius  of the original cylindrica.1 hole 

c = length of the c r a c k  measured  f rom the per iphery  of 

the hole 
% 

The cr i t ica l  condition obtained by expanding in a Tay lo r s  Se r i e s  
J. 

about a given c r a c k  s i ze  c"' is 

when c':' is again taken a s  the craclc dimension "grown" i n  the m a -  

t e r i a l  by the loading a t  z e r o  velocity before the f r a  c-ture process  

becomes unstable,  

This  i s  an interest ing turn  of events ,  because the initial 

hole s i ze ,  - a ,  does not appear  explicitly. It does influence the ex- 

press ion  for  s t r a in  energy (5. l o ) ,  since this  i s  dependent upon 

geometry;  however the influence i s  the s a m e  rega rd le s s  of the 

s ize  of the hole. This  s ta tement  should be tempered  with the fac t  
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that the hole mus t  be sma l l  compared to specimen dimension. F u r -  

the rmore  the theory a s sumes  that f r ac tu re  occur s  simultaneously 

over  the en t i re  thickness of the specimen. Although this  assumption 

i s  s tandard fo r  the r eason  that the thickness effect is  a sepa ra t e  

study in  and of i tself ,  (83) it i s  exceptionally c ruc ia l  in this  instance. 

It direct ly  affects the form of the sur face  energy express ion ,  which 

i s  the t e r m  that gives r i s e  to  the appearance of the init ial  cavity 

s i z e  in the cr i t ical i ty  condition. Within these  l imitations the f r a c  - 
t u re  s t r e s s  shol-rld be independent of initial hole,  o r  cavity,  size.  

Experimental  Resul ts  

A few pre l iminary  t e s t s  have been r u n  to evaluate this  p r e -  

diction. Only a sma l l  number of runs  were  made  for  equal,  biaxial 

tension, but a significant number of specjrnens were  tes ted  in uni- 

axial  tension. F o r  the biaxial t e s t s ,  specimens w e r e  preparpd by 

casting l a r g e ,  c i r cu la r  shee ts  13 inches in  d iameter  and 0. 10 inches 

thick i n  the  s tandard way. After curing,  the cen t ra l  portion of the 

shee t  was  f rozen  with liquid nitrogen, which made i t  possible to 

d r i l l  holes  with smooth sur faces  f r e e  of s t r e s s  concentrations.  The 

equal biaxial s t r e s s  field was produced by inflating this membrane  

with the  cent ra l  cylindrical hole by a p r e s s u r e  apparatlis s imi lar  to 

that of F igure  4. Loading the sheets  to fai lure  f o r  a s e r i e s  of holes 

of 1/16, 1/8 and 1/4 inches in d i amete r ,  f r ac tu re  s t r e s s e s  of 109 

p s i ,  123 ps i ,  and 11 6 p s i  respect ively w e r e  recorded.  F o r  a l l  

intents and purposes this  can be considered constant. These  exper-  

iments  a r e  by no means  conclusive, but they do display the t r end  



predicted by equation (5.12),  and one statement that can. be made i s  

that the dependency of ho1.e s ize does not appear to be inverse square -.."---- 

root a s  i s  the case  for  cracks.  

Of course ,  the saxme geon) etry lo;idt-?d by a one-dimensional 

s t r e s s  field does not possess fundamentally different energy expres - 
sions f rom the two-dimensional case;  consequently, the cr i t ical  

p ressure  possesses  the same form except for  the magnitude of 

constants. A s e r i e s  of tes ts  was run fo r  uniaxial specimens con- 

taining cylindrical holes,  ranging in s ize from 0. 03 to 0.525 in., 

o r  over approximately a one decade spread. The specimens were  

3" x 4' x 0. 10' '  giving a specimen width to cavity rat io of the 
% 

orders  of 10 to 100. Results of the tes t  a r e  plotted in Figure  58, 

where a remarkable demonstration of the predicted resul t  of equa- 

tion (5.12) i s  manifested. The f rac ture  level i s  constant except 

f o r  a smal l  transition region where the cavity sees  a change f rom 

the plane s t r e s s  environment to plane strain. In other words,  when 

the hole size i s  la rge  compared to the thickness i t  sees  a plane 

s t r e s s  field, but a s  the hole s ize i s  reduced, i t  finally becomes 

approximately the same magnitude a s  the specimen thiclcness. 

F rom this point on, the hole sees  a plane strain f i e l d  2nd  the energy 

enters  the p rocess ,  a s  well a s  the f rac ture  equation (5.1 a ) ,  in a 

slightly different way. The strain energy i s  al tered by a factor 

of 1/ l-vC and the cr i t ical  s t r e s s  i s  increased by the square root of 

this quantity. F o r  purposes of a nearly incompressible material  

such a s  S- 113, the factor becomes 1.15. Thi,s is almost  exactly 

the increase that i s  observed experimentally in Figure  58 a s  the 
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f r ac tu re  leve l  changes f rom 31.5 to 36.0 on the average.  

This  brief side excursion f rom hydrostat ic  f r ac tu re  suggests 

additional corroborat ion of the concept of a flaw "grown" by the 

loading, which concept appea r s  to predict  r a the r  accura te ly  the 

experimental  r e su l t s .  It fu r the r  suggests some a l te ra t ions  in  one ' s  

intuition with r ega rds  to the effects of the dimensionality of the 

s t r e s s  field and the influence of cavity s i ze  on f r a c t u r e  level.  The 

genera l  t r ends  noted h e r e  can  be nicely f i t  into the s t r e s s - a x i s  

theorem on f r a c t u r e ,  alluded to previously,  to provide guidelines 

f o r  engineering analysis  and design. 

Charac ter  of c'" 

One additional item of in t e res t  i s  the cor re la t ion  of the con- 

cept of an  actual numerical  value of c:k in the var ious  s t r e s s  fields.  

At th is  point i t  i s  not possible to deduce a dependency of c:g on 

geometry  o r  ma te r i a l  proper t ies ;  i. e. , whether it is predominantly 

determined by the geometry of a s t r e s s  field o r  whether the re  i s  a 

fundamental mechanism tied up with thc chain s t ruc tu re  that dictates  

the magnitude of the flaw that mus t  be grown before it becomes un- 

stable and propagates a t  high velocity. Additional experimental 

work  will have to  be conceived and c a r r i e d  out to define the exact 

proper t ies  of c::. Along this s a m e  line i s  the product of the m a t e r -  

ia l  proper t ies  EY which always a r i s e  in any f r ac tu re  ana lys is ,  

indicating that a wide range of materia,ls possessing a diversi ty  of 

mechanical proper t ies  could s t i l l  f r ac tu re  a t  the same  point if the 

Ey product remained the same.  In other  words a m o r e  g lassy  



polymer possessing a high modulus may a t  the same t ime have a 

low surface energy density and, still fracture at the same point a s  

a rubbery polymer with a low modulus and a high surface energy 

density, providing c'iC is  the same. This reasoning attributes addi- 

tional importance to the fundamental nature of c:k a s  describing 

the difference in character of the fracture between two materials  

of this type--if there i s  a difference. 

SUMMARY 

In summary it i s  felt that the results  of the poker-chip ex- 

periments on both the standard material and the material  with the 

artificial flaws have amply demonstrated that the mechanism of poly- 

mer  fracture through a Saturn-ring crack,  whereby the material 

generates its own flaw,is a reasonable one. Furthermore the pre -  

liminary results  of the one and two-dimensional tests  seem to attest 

the conclusion reached in the three-dimensional analysis that the 

hole, o r  cavity, size affects fracture properties in a manner com- 

pletely different than a crack. Having touched al l  of the bases,  so 

to speak, i t  appears that a consistent story has been generated 

that has been verified experimentally, from which extensions can 

now be made to the more general case where holes and cavities 

a r e  analyzed in the viscoelastic range. 



-147- 

CHAPTER VI  

CONCLUSION 

At this point i t  is appropriate to assemble in brief form the 

main contributions of this study in an effort to integrate the several 

par ts  into a whole, and to better delineate what progress has been 

made. A lot of groundwork has been laid in the form of experimental 

tes t  development, specimen s t r e s s  analysis,  etc. that will continue 

to be useful in further tr iaxial  fracture studies. Results of exper- 

imental tes ts  employing these tools have provided quantitative 

definition of ultimate strengths in hydrostatic tension, which pro - 

vides the limit point for  the topological fracture surface in principal 

s t r e s s  space. 

The discovery, measurement and distribution analysis of 

spherical cavities in the material  has  given better insight to guide 

the theoretical treatment of flaws. Fur thermore  it  has  identified 

a type of material  that can be used for  extensive investigation of 

cavity flaw behavior. It may also lead to the identification of other 

materials  of a similar  classification, which possess inherent flaws 

due to manufacturing and processing. These steps forward a.11 have 

applications beyond the scope of this particular study and may be 

readily employed in extensions of this work. 

The application of energy methods of fracture analysis to 

spherical cavities has  led to predictions of ultimate strengths, 

both for  finite and infinitesimal deformations, which compare 

favorably with experiment in some regimes; however many of the 

same problems that plagued Griffith in his initial work with energy 
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analysis s t i l l  plague us today. By this i t  i s  meant that from the 

standpoint of fundamental physical processes  involved, a grea t  deal 

s t i l l  remains to be learned. F o r  instance Griffith (66) performed 

experiments on g lass  that he  used a s  evidence of his  theoretical 

predictions. In many respects  they did not duplicate the conditions 

imposed in  the mathematical t reatment ,  and this continues to be, 

and promises  to remain ,  a challenge to the experimentor.  To 

accurately duplicate the ideal boundary conditions i s  a tedious and 

difficult task. In addition, he  required the surface energy of the 

glass  a s  a parameter  in the expression for cr i t ical  s t r ess .  Since 

he  could not measure  this quantity in the solid s tate ,  he used the 

liquid value a s  an  approximation. In the intervening forty years  

since Griffith published his  work, the colloidal chemists  have been 

studying surfaces ,  o r  more  accurately,  interfaces, and have 

learned a grea t  deal about them, Most of this knowledge, however, 

has  pointed to the fact that i t  i s  a much more  complicated phenome- 

non than had been originally appreciated, and the concept of surface 

energy in solids i s  s t i l l  quite nebulous. So that just exactly what 

surface energy i s  in solids and the mechanisms involved in creating 

a surface during f rac ture  s t i l l  remain  a s  missing pieces in the 

puzzle. Such key pieces a r e  worthy of study and constitute a logical 

avenue of fur ther  research.  

Another finding of this study re la tes  to the difference in 

effect on the strength of a body c o n  t a i n  i n  g cracks  and cavities. 

Once again the confidence level in  the resul ts  i s  limited by the lack 

of understanding of the basic processes.  The energy approach used 
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seems to be sound and well motivated mathematically; however 

the separate t e rms  in the analytical expressions strongly depend 

upon the physical mechanisms and how accurately they can be 

described mathematically. In cracks this i s  a li t t le better defined 

than in cavities, since propagation details can be formulated more  

readily on an  intuitive basis. The manner in which a spherical 

cavity opens up into a crack i s  not a t  al l  obvious. As a result  of 

this study, which has concentrated on discovering some of the 

fundamental mechanisms, additional insight into the behavior of 

cavities a s  fracture nucleation points has  been obtained. How- 

ever most  of this information has been gleaned from evidence left 

on the fracture surface; consequently the hypothesis of the Saturn- 

ring propagation mode i s  predominantly inference and, although 

it  seems to explain al l  of the phenomena, the evidence is  stil l  not 

conclusive. In other words, from almost any standpoint there i s  

a need for extensive fundamental studies on elastic f racture  pro- 

ces  ses. These items will also constitute a valuable contribution 

when dissipative effects of viscoelastic materials  a r e  included, 

o r  when dealing with the more  complicated filled material.  
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