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ABSTRACT

The investigation of fracture of polymeric materials in
hydrostatic tensile fields constitutes an avenue of approach to the
study of fracture in more general three-dimensional environments,
The advantages created by the symmetry of the stress field are
considerable and, in one of the cases studied, facilitates a theo-
retical treatment that includes large deformations, which are
characteristic of this class of rﬁaterials,

The analysis is developed through the concept of fracture
originating from a flaw, which in this instance is taken to be a
spherical cavity. Through the application of energy principles,

a theoretical prediction of ultimate strength is made for hydro-
static tensile fields.

Experiments were conducted to demonstrate the existence
of such flaws and to evaluate the theory. Results of the tests on
specimens containing both residual flaws and artificially inserted
ones indicate a fundamental difference in behavior as contrasted
with cracks.

An explanation is given linking experimental results and
theoretical predictions. It is based on the concept that a flaw
""grows'' in the material under locad using the cavity as a nucleating
point. Upon this hypothesis is built a theory of rupture in which
planar cracks grow radially from the center of the cavity in the

form of Saturn-ring cracks.
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CHAPTER I
INTRODUCTION
PROMINENCE OF HYDROSTATIC FIELDS

Hydrostatic tensjon (HT) and hydrostatic compression (HC)
constitute stress states of a very special class, possessing unique
characteristics of symmetry. Probably the greatest amount of
effort, and certainly the greatest number of results, have come
from investigations with HC, as opposed to HT, where the outstand-
ing work of Bridgman (1,2) has received wide attention. Although
his work has certainly gone well beyond simple HC, he has done
considerable testing directly with it,

The relationship of HT and HC to the general three-dimensional
stress state is conveniently displayed through a plot in principal
stress space as shown in Figure 1. Here the effects of the sym-
metry are clearly borne out with the location of HT, or equal tri-
axial tension, being along a line that bisects the solid angle formed
by the three principal axes and extending infinitely in the positive
direction. The HC counterpart is the extension of this locus in the
negative direction,

To further illustrate the role of symmetry in fracture it
is possible to construct a failure surface in principal stress space,

defined by

f(o-l’ 0-27 o ) = 0 (1-1)

3

which is a locus of points forming a limiting surface of rupture;

i.e., points whose principal stress coordinates lie within the
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Figure 1. Locus of Hydrostatic Tension and Hydrostatic
Compression in Principal Stress Space.
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surface will not fail and those lying on or above the surface will
produce failure. Blatz (3) has shown that in general failure, either
from actual rupture or excessive deformation, can be broken down
into a dilatational contribution and a distortional contribution. He
has plotted the pure failure modes of dilatation and distortion in

principal stress space in Figure 2., The stress quality in all octants

may be denoted as follows:

Number of

Octant Ty o5 T Positive Stresses
I + + + 3
I + + - 2
11 + - + 2
v + - - 1
\'% - + - 2
VI - + - 1
VII - - + 1
VIII - - - | 0

By virtue of equivalence of the three principal axes, it is noted
that there are only four categories of octants characterized by the
number of stresses of the same sign. Thus octants II, IIl and V
are similar, and octants IV, VI, and VII are similar. This means
that, for an isotropic material, only four octants need to be tested.

It also means that since the axes of principal stress must be invariant
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Figure 2. Fail-Safe Surface Based on the Strain-Energy Criterion
in Normal Stress Space.
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to the group of rotations in the body, the hydrostatic line becomes an
axis of symmetry and consequently fracture in HT and HC become ex-
tremums; i.e., they are limit points on the failure surface,

Now although there are many obvious similarities between
HT and HC, there is a great deal of difference in the manner in which
materials respond to these two environments fracturewise, The
theory cannot demonstrate that there will be a difference in the actual
configuration of the failure surface; however it has been found
through experiment that there are significant differences, Bridgman
(1) has shown that in combined stress states involving high levels of
hydrostatic pressure, none of the standard failure criteria of maxi-
mum principal stress, maximum principal strain, etc. postulated
from tensile results are accurate. He has investigated many stress
states that cover several of the octants in principal stress space
and has found large alterations in the levels of ultimate strains and
ultimate stresses in these other octants when compared to the +++
octant. He has also discussed (2) the fact that it is necessary before
rupture can occur to have what he terms an energy release mechanism,
or more simply, a place for the material to go so that energy can be
used to create new surface. Reflection upon this point leads to the
conclusion that in pure hydrostatic compression fracture could never
occur and the ultimate strength would bé infinite. However, slight
perturbations from this field would provide enough anti-symmetry
to allow fracture to occur at realistic levels. Therefore in hydro-
static compression the failure surface possesses a cusp at infinity,

which would be in strong contrast to the same situation in tension
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where there is an energy release mechanism, and fracture can occur
at finite values. It then follows that HT and HC produce quite a dif-
ferent effect upon materials, and the resulting behavior in cacn case
is not the inverse of the other,

One additional point that needs further emphasis is the mathe-
matical simplicity that arises as a consequence of the symmetry in
the problem. The number of existing solutions to three-dimensional
elasticity problems is limited, but in this instance the theoretical
analysis accompanying the experiment is not only possible but reason-
ably simple,even in the case of finite deformation theory. (4) It makes
a solution possible where it otherwise may be intractable, All of
these factors combine to make HT and HC fields of considerable

interest, as well as of considerable value.

Hydrostatic Tension in Liiquids

Although HC lends itself well to experimentation, states of HT
are not so readily generated in the laboratory, One exception to this
is in the case of liquids where H'T can readily be created, and as a
consequence, fracture of several liquids has been investigated. (5)
Studies of this type not only contribute to the fundamental knowledge
of physics, but are of considerable engineering interest as they relate
to the phenomena of cavitation, Fisher (6) has applied an energy
balance to the growth of a spherical cavity in a liquid, and from this
has been able to derive an expression defining the critical pressure

at which the bubble will grow,
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S+ -p (1.2)

v

t

where P, = critical pressure

vy = surface tension
r = radius of cavity
p,, = vapor pressure (usually neglected)

Irwin (7) has extended the analysis of Fisher and {avorably compared
his theory with data on the fracture of liquids obtained from several
other investigators. A large number of experimental uncertainties,
very difficult to control, made the correlation somewhat fortuitous,
and thus led Irwin to conclude that the theoretical strength calcula-
tions for pure liquids were of doubtful practical utility. Nevertheless,
as he states, the degree of completeness permitted in the theoretical
considerations, primarily due to the symmetry involved, make the
pure liquid tensile strength analysis of importance. Furthermore,

it can act as a limit case for the more general viscoelastic material,

which we will refer to in a later chapter.

Hydrostatic Tension in Metals

Fracture studies for general combined stress states have been
pursued for metals quite arduously. (8) With complex testing equip-
ment capable of applying fluid pressure as well as tensile shear and
bending loads, it has been possible to study metallic fracture under
a wide range of loading conditions, but not HT. Nadai (9) has traced
some of the attempts to create HT in metals. Two of the methods

employed, which are of a similar nature, are thermal stresses and
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grain transformations. Here attempts are made to produce a state
in the body such that one portion pulls on another portion, putting it
in HT, either by thermal gradient or by volume change due to phase
transformation. Although some success has been realized in pro-
ducing the desired condition, it has never been possible to obtain
any quantitative measurements from such tests. Another popular
method has been the use of a circumferential notch on a circular
cylindrical bar. It was believed that the stress state at the base of
a sharp hyperbolic notch was hydrostatic when the bar was under
axial tension. However, Neuber (10) in his treatise on notch stresses
demonstrated that this was not the case and that near the surface of
the notch the stress ratios were actually 1:1:3, with the largest being
in the axial direction. Unfortunately the test has not been useful for
other combined tensile stress states in the +++ octant due to the
large gradients of stress in the neighborhood of the notch, which is
the region of interest. Still another attempt was made by Lehrer
and Schwalzbart (11) as they bonded a thin sheet of brass between
two plates of steel and pulled the plates in tension perpendicular to
the large, flat face, This test has promise but primarily for mater-
ials that are nearly incompressible, This will be demonstrated in

a later analysis.

So in metals it still remains to find a good hydrostatic tensile
test; although almost any other combination of stress can be imposed.
It is interesting that in spite of this missing piece of information
McAdam, (12) from other experiments, postulated that HT would be

an extremum point on a convex fracture surface; i.e., this stress
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state would represent the maximum in ultimate strength that could be
enjoyed by a brittle metal in tension. It is also interesting to note
that this has subsequently turned out to be the case in other engineer-

ing materials, such as polymers, where it is possible to produce HT

in the laboratory.

Hydrostatic Tension in Polymers

Polymeric materials are fundamentally different in their basic
structure and in their behavior., (13,14,15) Their difference is so
pronounced that special methods of stress analysis, upon which frac-
ture analysis is built, have had to be developed. The state of this
art has recently been reviewed by Williams, (16) Differences in the
basic structure produce differences in their fracture behavior, which
has been reviewed first by Bueche and Berry, (17) and subsequently
by Williams. (18) Widespread interest in the fracture properties of
these materials has arisen through a vastly expanding usage of poly-
mers in engineering applications where structural integrity is an
item of concern., One primary example, which attracts the interest
of Aeronautical Engineers, is the structural integrity of solid pro-
pellant rocket grains. (19) In this instance, the solid propellant fuel
constitutes an integral part of the structure; thereby requiring analy-
sis of its material integrity like any other structural component.
However, the constitution of these materials is very complex. It
consists of a binder material, which is an amorphous elastomer,
impregnated with a high volume percentage of solid oxidizer parti-

cles such as ammonium perchlorate, This system is neither
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homogeneous nor isotropic, and it is innately very complicated in its
mechanical behavior. It therefore is reasonable to seek a simplified
approach to the problem with the aim of discovering some of the
fundamentals of the behavior of the separate components; i.e., to
investigate the fracture properties of the amorphous rubber binder
as a first approach to an investigation of the filled system. An
examination of fracture in amorphous rubber also has its own in-
herent interest as it would apply to other engineering applications
where there is no filler involved; thus the incentive for the investiga-
tion of fracture is two-fold: (i) the attempt to study failure in solid
propellant materials for their own sake, and (ii) to discover general
principles that can be applied directly to the fracture analysis of
engineering components where the amorphous polymer alone is the

structural material.

Related Work. In order to place the HT work in proper

perspective, reference will be made to related work in other stress
states. Most of the effort expended on unfilled elastomers has thus
far been applied to the case of uniaxial tension. Certainly this is the
logical starting point, for it keeps complication to a minimum, so
that experimental results are not obscured by extraneous influences.
However, even in this simple case much work has been required to
uncover and define basic behavior in terms of mechanical properties.
A comprehensive review of the uniaxial work has currently been
given by Landel and Fedors, (20) which devotes some attention to

the elusive problem of fracture properties under general loading
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conditions. This is the area in which there is still much to be done
even in the uniaxial state, for the concepts of fatigue and cumulative
damage are not only unsettled, but investigations are still in their
infancy even though preliminary information is now coming forth as
evidenced by the work of Knauss and Betz. (21)

Concurrently there has been a similar, but smaller, corps
of investigators working with multiaxial polymer fracture. Two
biaxial tests have been used, one referred to as the strip biaxial
which has probably received the most attention is shown in Figure 3
and the other is that of the equal biaxial test, which can be conducted
by inflating a membrane (Figure 4) or in some instances special
fixtures have been successful. (See Ko (22).) These tests are quite
tedious. Furthe’rmore it is difficult to force fracture to occur away
from the grips, and they require considerable care in the prepara-
tion of the specimen to yield a cross-section that will produce the
desired stress field; consequently a limited amount of results is
available for these geometries., One extensive work using several
stress fields in uniaxial, biaxial, and triaxial tension to construct

failure surfaces has been completed by Ko. (22)

Previous Work in Hydrostatic Tension. There has been even

less work done in the area of triaxial fracture. One of the first
efforts in this direction was made by Gent and Lindley, (23,24) who
performed tests in HT and HC. They were attracted to an unusual
test by which they produced these fields following work reported by

Yerzley (25) on the bond integrity between rubbery materials. In
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Figure 3. Strip-Biaxial Tension.
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Yerzley's search for an ASTM standard, he glued a single thin rec-
tangular block of rubber between two similar metal blocks and pulled
them apart to test the strength of the interface bonds. In the course
of the experiments, he noted a rather peculiar type of fracture in the
rubbery specimen and discussed it briefly. Twenty years later Gent
and Lindley pursued this test by manufacturing some small circular
disks from a carbon black filled, natural rubber and pulled them by
means of two, rigid, steel plates. With the thin disk of soft specimen
material glued and sandwiched between the stiffer grips, it will be
restrained from contracting laterally as the entire assembly is ex-
tended along its axis perpendicular to the face of the disk. This
creates the triaxial stress field. The amount of restraint is a func-
tion of the aspect ratio (diameter to thickness) of the specimen, but
an elementary analysis can be made by assuming the disk to be
infinitely thin such that the external radius is sufficiently far from
the center to assume that the only non-zero displacement, w, is in

the X3 direction. With this configuration the boundary conditions

become u = v = 0 from which Er = EG = 0. The stress field then
becomes
_ v
T % T T3 % (L.3)

where use has been made of the axial strain

%2 1-2v)(1tv)
EZ——E— '——(—l‘_—v—)— . (1.4)

so that the apparent axial modulus becomes
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1-v

where it may be noted that for rubbery materials which are charac-
teristically incompressible, i.e., v = 1/2, the triaxial tensile stress
state approaches hydrostatic with the consequent infinite apparent
axial stiffness. Gent and Lindley's initial experimental work demon-
strated an internal fracture in the rubber which varied with thickness,
modulus and tensile strength, and they devoted their attention to
documenting and explaining this variation. After completing a pre-
liminary probe into this interesting mode of fracture, they extended
their work to compression using carbon black filled rubber specimens.
Emphasis was placed on defining the load-deflection relation and

obtaining a definition of the stress field in the specimen.

METHOD OF APPROACH

The work of Gent and Lindley will be used as a point of de-
parture for the work to be reported. The first item to receive
attention will be a detailed stress analysis of the test specimen to
provide a means of local examination of the experimental results,
This will be coupled with experimental work made on a modified test
apparatus, which permits a more detailed study of the fracture pro-
cess. Interpretation of these results and analytical extensions
thereof will then be made on the basis of a flaw hypothesis. A word
of justification for this assumption is in order.

Many analytical and experimental techniques currently

applied to polymers were carried over from metal fracture.
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Although several have been found to apply directly, as yet no univer-
sal approach has been discovered. However, in specific instances,
particular approaches have been fruitful. For instance, through
laboratory experience it has been found that many polymers are very
notch sensitive; i.e., their properties are strongly controlled by
imperfections on the surface as well as in the interior of the body.
Such behavior suggests that an investigation of the fracture phenom-
enon in these materials may appropriately be made by means of a
flaw hypothesis. This method can be employed on either the molecu-
lar or the continuum level. Physical chemists have studied the
effects of flaws in the chain structure itself, and worked up by
statistical means, through groups of chains, to the continuous
specimen, where correlations can be made between specimen load
and localized stress at the molecular flaw, A consideration of the
bond energies then leads to a prediction of fracture. FEarly ideas
of this type were put forth by Houwink (26) and later expanded by
investigators such as Flory, (27) who was an advocate of molecular
flaws due to dangling chain ends. Currently this approach is yield-
ing results due to improved mathematical techniques, including the
recent work of Blatz (28) and Knauss (29).

An alternate approach is to consider the material initially
as a continuum and then represent the flaws as discontinuities in
that continuum. Through an analysis of a typical flaw, which in one
instance is a spherical cavity taken to be independent of all other
flaws in the material, the local conditions of stress, strain, and

energy, can be computed and fracture predicted through the
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application of an energy criterion. (30) This will be done for two
different modes of propagation of the fracture surface, and subse-
quently a comparison of the two leads to new insight into the behavior
of holes and cavities. One further point should be noted before pro-
ceeding. Amorphous elastomers characteristically are viscoelastic
(31) and exhibit large deformations in fracture. (32) These charac-
teristics complicate the analysis considerably, especially as the
theory of finite viscoelasticity has not yet progressed to the point
that it is a practical tool for analysis. ¥ For this reason the work
referred to herein,as well as this entire effort,is predominantly
performed with the classical tools of infinitesimal elasticity (and

in some cases infinitesimal viscoelasticity) and should be inter-
preted as an exploration of the broad concepts of polymeric fracture

in HT rather than a final definitive treatise of the subject.

% .
Schapery (33) has just completed a report that promises to help
rectify this situation and make finite viscoelasticity a bit more
manageable for engineering analysis.
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CHAPTER 11
THEORETICAL ANALYSIS OF THE POKER-CHIP SPECIMEN
The mathematical model of the poker-chip configuration,

shown in Figure 5, leads toy a mixed boundary value problem that
is almost analytically intractable from the standpoint of classical
elastic theory. Like many elastic problems involving finite bodies
with discontinuous boundary conditions, the poker-chip configuration
presents many mathematical difficulties if an exact, closed-form
solution is sought. However, for such problems series solutions

are possible and several have been used.

RELATED SOLUTIONS

One of the first theoretical analyses relating to this problem
was published by Pickett. (34) In his analysis of cylinders, he
employed a Fourier series expansion, which resulted in the final
solution being expressed in terms of a doubly infinite series.
This form is awkward for our purpose, where the results are in-
volved in a subsequent analysis of fracture, especially where
convergence of the solution is slow. This is emphasized near the
corners, where it should be noted that the problem of convergence
is basic due to the peculiar geometrical effects present there.
There is a discontinuity in material, as well as discontinuities
from stress to displacement boundary conditions, and this may
lead to mathematically infinite stresses. (35) When the stress
singularity does occur, and such singular behavior has not been

explicitly built into the form of the formal representation of the
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Figure 5. Triaxial "Poker-Chip' Test and the Coordinate
System Used in the Stress Analysis.
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solution, convergence and rate of convergence difficulties are to be
expected.

Gent and Lindley (23) began by solving an analogous problem
of an infinite slab, using intuitive assumptions based on incompres-
sible material behavior and proposed a stress analysis, which can
be shown equivalent to minimizing the potential energy. They then
extended this line of reasoning to the circular disk, and the apparent
modulus* deduced from this analysis was compared to a large amount
of experimental data. Qualitatively there was good agreement, al-
though quantitative predictions with the theory were good only for a
very small range of aspect ratios. Furthermore, since the apparent
modulus is essentially an average property, the corresponding
internal stresses needed for failure analysis could be significantly
different than the average value.

Energy methods have also been used. One of the first was
a complementary energy formulation in terms of the stresses used
by Williams, Blatz, and Schapery. (19) In cylindrical coordinates

the proposed stress representations were

_2v n 2v
L A{l-r7) cosh Ty 2 (2.1)
Ty = 12-vv A [1 —:(n+l)rn+rp—1—r2] cosh V—fg-_—vl—) z (2.2)
c =o +1|1 - prl r}?*l:] [ZA cosh 2v z -0 ] {2.3)
z o 2 L-v o

< Following Gent and Lindley, the apparent modulus is defined as the
average axial stress divided by the applied axial strain.



2v . 2v
TI‘Z = A [r—rp] i sinh v z (2.4)

where the four constants L LY and A were to be determined by
minimizing the complementary energy. On the other hand, a poten-
tial energy formulation in terms of displacements has been proposed
by Francis and Cantey (36) in which the radial and axial displace-

ments, minimizing the energy, were found to be of the form

2
u=[1 -1 [kyTy (vy, 7l (2.5)
z Z 2

In both of these cases, however, the algebraic complexities involved
in the computation were found to be rather formidable, particularly
when parametric variations of aspect ratio and material constants
were desired. Furthermore, as is fundamental with these particular
energy solutions, the complementary principle for stress approxima-
tion usually yields poor displacements and, vice versa, the potential
energy principle for displacements does not satisfy stress equilib-
rium. It will be shown later however that a combination of these
methods can yield good engineering accuracy.

Still another solution came as a result of a preliminary study
for the poker-chip specimen in the form of a potential energy solution
for a two-dimensional slab. (37) It made use of the careful edge

displacement measurements of Gent (38) in which he determined the

" Note that w = 0 at z = h. This solution is to be superimposed with
the constant strain solution,
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transverse displacements to be mainly parabolic functions of the
longitudinal (axial) coordinate. Results of the slab analysis furnished
an increased understanding of the complete stress distribution,
including the extent of the boundary influence on the internal stresses
and the fact that the axial displacement of the slab was virtually
constant throughout. Building upon this foundation it was possible

to compute two approximate solutions for the disk. The first in-
volves a technique of averaging the stresses through the thickness

of the specimen and satisfying the equilibrium equations on an
average basis. The other employs the variational approach for

the minimization of the potential energy. Both use assumed func-
tional forms for the displacements, which are guided by the slab
analysis, and the two methods bear a strong similarity throughout.
This will be demonstrated in detail later as both solutions are dis-
cussed.

Finally, numerical solutions to the problem have been
obtained by Messner, (39) and Brisbane. (40) In Messner's solu-
tion, for instance, a finite difference technique has been used,
and the grid size has been progressively reduced until two sub-
sequent sizes produce no appreciable change in the stress state.
The calculated stress distribution will be presented graphically
later to act on a basis of comparison for the accuracy of the ap-
proximate analytical solution. The convergence at the corners
has been found to be extremely slow, and this is again due to the
presence of stress singularities at these points, This type of

computer program offers great practical advantages, since a
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solution can be obtained to any desired accuracy in a short time,
However it has the disadvantage that in order to perform a para-
metric study, a separate calculation has to be performed for each

configuration,

APPROXIMATE SOLUTION

This section describes an approximate method for analyzing
a thin, circular disk developed by L.indsey, Schapery, Williams
and Zak, (41) As mentioned previously it uses an extension of the
solution for a slab in plane strain., (37) One of the primary advan-
tages of this solution is that the incompressibility assumption
made by Gent and Lindley (23) does not have to be invoked so that
the resulting solution is applicable over a range of material prop-
erties. Figure 5 shows a circular disk of radius a with its axis
in the z-direction, and the faces z = *1 bonded to rigid plates. We
assume that the disk is loaded by increasing the thickness by 2¢€
and proceed to select two displacement functions, which satisfy
the boundary conditions on that part of the boundary where dis-
placements are prescribed. Note that the third (circumferential)
displacement, v, is identically zero by reasons of symmetry.
Such functions would also be admissible functions for use in the
Theorem of Minimum Potential Energy, although it should be
recalled that the resultant minimization yields a result, in this
case it will turn out to be the function g(r), such that the equations
of equilibrium are not satisfied unless the solution is actually

exact. The radial displacement function is known to be essentially
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parabolic from the edge measurements by Gent. (38) The longitudinal
displacement was found by Schapery and Williams (37) to be directly
proportional to its distance from the horizontal plane of symmetry

over most of the disk. Consequently the displacement functions take

the form
2
u= -(1-27)g(r) (2.7a)
w = €z (2.7b)

in the radial and thickness directions respectively, Note that the dis-
placement boundary conditions are satisfied at the surfaces z = %1,
and that g(r) is presently an unprescribed function of the radius. The

strains corresponding to these displacements are easily found to be

ou 2

= oee— = - ! -
Er = 57 g'(1-27) (2.8a)
e =%- 8152 (2. 8b)
0 r r v :
_ Ow _
EZ__8_£_€ (2.8C)
_ou , 0w _

Ve =7z By - 287 (2.89)

from which the z-averaged stresses are found as

1

o ::1 — - E ! _..g-g. -:L- y!

o= —Z—S‘ crrdz = Ale - 38 3 r) 5 HE (2.9a)
-1
]1

= _1 2.0 _2g 4.8

o—e.——z—v” O‘Odz-ME-ag _3r) 3 M3 (2.9Db)
-1
1

= _1 c e C 28

Ty __ZS‘ v, dz = A€ - 38 73 Vr) to2pe (2.9¢)



-25-

T., = 2ngz (2.94d)

where g' = dg/dr.

The function g is found from the condition that the z-integrated

equilibrium equation for the radial direction is to vanish, i.e.,

1 : aUr aTrz "r"fe
_2_5 [Br * oz * r :I dz = 0 (2.10a)
or
d&_r z_r-r-?e
" Tr e t—— =0 (2.10b)

Also, note that because of symmetry the integrated equilibrium equa-

tion for the z-direction is satisfied identically,

rer e, T
g{ar ¥ ¥ }dz:o (2.11)

9z T
-1
Substitution of stresses (2.9) into equation (2. 10) yields the

differential equation for g, thus

i .&i _1_ -
g +r-<2+M>g—0 (2.12)

r

where M is a constant made up of a composite of material properties.

(2.13)

M= o _ 3 (1-2v)
At+2u 2

Equation (2.12) is a form of Bessel's Equation and yields modified

Bessel functions as solutions,
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g(r) = AL, (rVM) + BK, (rvVM) (2.14)

where Il(rM) and Kl(r\ﬁ\—/l—) are modified Bessel functions of the

first and second kind respectively. Since K](O) is infinite, and we
require the deformation to be finite at the origin, B = 0. The con-
stant A is found by using the boundary condition that c—r-r(a) = 0 from

which it follows that

vE
A =

ool W

(2.15)
Il(a\/M)
(1-v) VM I_(a VM)-(1-2v) ——

Substitution of the solutions (2.14) into stresses (2.9) using

(2.15) yields the following stresses:

I (+VM)41 - 2 M L (/M)
3 0" 3 VM I_(rvM)
Lo By K o
Ee” T E |! v (2.16a)
I (avM) 1 - £ M L (M) |
° > aVM 1_(aVM) §
ZIl(r«/_I\T)
;6 _ 6—:r 1 Io(ﬁ[ﬁ) ) rvVM
T~ E T Ty T T TaviD (2.16D)
T (aVM )+ 1 (a\/ﬁ)_M}
O 14 (6] a\/-m—
Il(rM)
= = 1 Io(r\/—l\Z_) -——\/M———
o alh il L - . INETYY
I (aVM)+ (= "){Iomﬁm - ————}
avM

(2.16¢)
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"rz _ , 3v, K VM Il(rm)
2= (29 B |z (2.164d)
- 5 I, (avM) I(.)(a,m)
Vi

| avM Io(am)

which, it may be found, approaches a state of triaxial, hydrostatic
tension at the center in the case of an incompressible material. We
expect the stresses (2.16) to be good approximations for 0 < v < 1/2

except for the singular stresses near the free-edge r = a.

Simplification of the Stress Expression. With this restriction

on the radius, equations (2.16) can be very well approximated by the

expressions:

- = £

.78 o 3v K 1_10(r B (2.172)

Ee ™ E€E T TI+v ‘E F - Lfa

B E

o IA(r ) I.(r ¢=)

z ~ 3v Kl 0'TVK 1 1 0" VK

g2 =2 @ Sl (2.17b)
I (a =) I (a s}-f%
0 K 0 K

T I.(r @)

rz o 3v KT VED (2.17¢)

E "~ 1+tv VE — z e
I.(ae) =)
PV R

It is to be noted that all of the normal stresses are essentially equal
when Poisson's ratio is close to one-half., These expressions are
plotted in Figures 6 and 7 where the strong dependency upon Pois-
son's ratio is quite evident. To show this more clearly, and because

it is a very useful tool for later discussions of experimental results,
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a cross-plot of Figure 6 is given in Figure 8, where the relationship
of local stress to applied strain is shown for r = 0,

Strictly speaking the only point of true HT is at the midplane
z = 0; however as seen in Figure 7 the shear stress at the rigid
boundary, which is the region of maximum shear, is only a small
percentage of the normal stresses. Consequently for all practical
purposes the stress field can be considered HT as far out as r=0,5a
with very little error. Furthermore for materials with Poisson's
Ratio down to 0.4975 or below, there is an appreciable central region
of virtually constant hydrostatic stress, which contributes to the %ase
and accuracy with which data can be reduced. Large stress gra-
dients make it difficult to know with precision what the local fracture

levels actually are,

Displacement Expression

In addition to the stresses (2.17), the radial displacement,

9 3ve K VM Il(r\/,lr/l—)(l—zz)

u=-g{l-z")=-
I; (avM
E|1,(aVM) %Miﬁfﬂ
avM

(2.18)

E
(Y= )
~ veyE LVED 2

E
IO(W/—Ri)

is of importance since its midplane value at the boundary, r = a,
can be measured experimentally, and possibly used to deduce the
bulk modulus in view of the sensitivity to Poisson's ratio shown in

Figure 9. Furthermore, as shown in Figure 9, this displacement
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may be very large for nearly incompressible materials, even when
the nominal strain, €, is small. In the neighborhood of the radii for
which the radial displacement is not small relative to the disk thick-
nesses, some error due to large strains will be introduced in the

results of the present linear analysis.

Limit-Check of the Solution

In the incompressible limit case (v = 1/2) solutions are

readily found from equations (2.16) and (2.18) to be

o8
r _ 6 _ 1,2 2
Ee " Ee - g ) (2.19a)
a
z _ Y, 2 2
= = Ll e (2.19b)
TrZ Iz
e = 2 (2.19¢)

where it may be noted that for a large aspect ratio, the condition

(r = 0) of triaxial hydrostatic tension is achieved. Further,
u=~%€r(1—zz) (2.19d)

Apparent Modulus

Another quantity of experimental interest is the apparent
uniaxial modulus EA’ defined as the ratio of the average stress
over the bonded surface A’ required to produce the axial dis-
placement w, to the nominal axial strain €, viz,

o 27rf:-f_r_7‘rdr

E, = = (2.20)
A € wa‘zz
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Upon substitution of T equation (2.16¢), into (2.20) we find

E, S 21, (avVM)
moal w0l R —
avM I()(a\/M)

(2.21)
e Il(am) 7
21, (avM) 1 -
1
. 1 1+ aVvM Io(a\/m

1+v - —
avM Io(a«/m—) 1+ 1 ;2" ( _ _]__(a ) )
aVM I,(avM)/ ]

This apparent modulus can be conveniently employed for
determining the bulk modulus of nearly incompressible materials.
Namely, given an aspect ratio a, and experimentally measured
modulus EA’ the modulus ratio E/K can be deduced from a graph
of equation (2.21), such as shown in Figure 10. It is observed
that EA/Eaz depends on only the parameter avE/K for a < 30.

The accuracy of expression (2.21) is expected to be good, even
for small aspect ratios. This follows from the fact that the appar-
ent modulus is an average property, and therefore should not be

sensitive to error in stress near the periphery. Furthermore,

EA has the correct limiting value of E for a = 0.

End Effect Parameter

By forming a ratio of expression (2.21) and (2.17b) a measure
of the multiplicity of the local hydrostatic stress over the average
applied stress can be obtained.

o

E
A
e/ =

Te /”A (2.22)

7
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By evaluating this quantity at a given location in the specimen, the
effect of aspect ratio can be plotted versus material parameters.
Figure 11 is the result for the center of the poker-chip and is quite
useful as an aid for acquiring an intuitive feel of the geometrical
effects. The abscissa is plotted for values of a greater than or
equal to about fifteen. In other words the limit conditions for
am —0 would represent an incompressible material, not a
uniaxial tensile specimen, For most elastomers the ratio of max-
imum normal stress to the average applied stress will be in the

range of 1,8 to 2.0.

The Effect of Corner Stress Singularities

The methods of solutioﬁ just presented for the stresses in
the poker-chip are not able to predict the conditions at the bound-
aries where the character of the boundary conditions change, the
reason being the presence of stress singularities, which give rise
to large gradients of stress that become averaged out by the global
methods used. Therefore this region has to bve investigated by a
different method capable of describing the local character of the
field variables, Such a method was employed by Williams (42, 43)
in studies of plates with angular corners, and then extended by him
to include bimaterial systems. (44) Zak (45) showed that when the
methods employed by Williams are extended to bodies of revolution
the same results are obtained as in the case of plane strain, There-
fore Lindsey and Zak (46) obtained the solution to the poker-chip

problem through the use of the plane strain configuration of Figure 12,
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Figure 12. Mathematical Model with Coordinate Description
for the Investigation of the Stress Singularity.
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This represents the condition existing at the junction of the free
and rigid boundaries, as shown in Figure 5. Material 1 represents
the grips to which the poker-chip specimen is bonded and Material
2 represents a portion of the specimen near the edge. Material 1
extends over 180° and Material 2 over 90°. This situation cor-
responds to the case where the grips have a larger diameter than
the specimen. A complete analysis of the eigenvalues that produce
the stress singularities is given in Reference (41), including a
matching of the localized singular stresses to the field stresses

obtained by the approximate solution,

COMPARISON OF RESULTS WITH OTHER SOLUTIONS
Finite Dﬁference

It has been interesting to see how closely the stress distri-
butions obtained from the approximate solution of this section have
been verified by the numerical results subsequently obtained in
Reference (39). Using equations (2.17) the three average normal
stresses and the shear stress have been computed for the case
a=10and v = 0.4 and 0.5, which are configurations analyzed in
Reference (39). The results of this calculation for the axial stress
o, are shown in Figure 13, where the stresses obtained from the
two methods of solution are compared. It can be seen from these
results that, although the analytical method predicts only the aver-
age normal stress &_z’ the two methods agree very closely except
at the edge of the poker chip. At the edges both methods are not

accurate because of the presence of the singularity. The agreement
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Figure 13.Comparison of Axial Stresses Obtained from Two
Different Methods of Solution.
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for the other three stresses is equally good.

Potential Encrgy Analysis

In a previous section, an analysis was presented which satis-
fied the displacement boundary conditions, and the z-averaged
equilibrium equations and stress boundary conditions, As such the
solution was expected to be a judicious compromise between a best
deformation (minimum potential energy) and best stress (minimum
complementary energy) approximation. It is informative to inquire
at this point what type solution would result if the potential energy
were minimized, particularly as the deformation functions chosen
earlier, i.e. (2.7), are admissible functions for application of this
theorem. It will be convenient for later purposes to use the dimen-

sionless forms, viz.
a(r,z) = - [1 - (z/hv)z] g(r) (2.23a)
w(z) = (WO/hv)Z (2.23Db)

where hV is the half-thickness of the specimen.
In the absence of body forces and with zero applied stress
on the stress prescribed boundary r = a, the Minimum Potential

Energy Theorem (47) requires that the potential energy

a h 2
V = T € +e_+e + €2+62+€2+ zﬁ—z«z dzrdr.27 (2.24)
- T € €0 ] TP 0TS 2 “ moAes
0 -h
A\

be a minimum with respect to the variation of functionals involved

in the double integral. Using the expressions for strains (2.8) in
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(2.24) and performing the variation by standard techniques, one finds

the governing differential equation to be

1 1
i — 1 - [l e
g'(r) + = 8 (r) Lz + Mv] g(r) 0 (2.25)
where
_5 1-2v 1
Mv T4 T1-v h2
v

The boundary condition turns out to be

(2.26)

GQ.-
B
+
<
mr’:\
{1
RSy
<
=
&

The appropriate solution of (2.25) is for finite displacements

at the center of the specimen, r = 0,
g(r) = AVIO(r VMV)

-where to satisfy (2.26)

W a
A =22 -8 ! , (2.27)
v v (L-v)aVM_ I (aVM)-(1 -2v)I; (VM)

The basic similarity with (2.12), the z-averaged method, is
very evident. For hv =1, a 5:6 ratio for MV:M is obtained in the
governing equation and nearly the same ratio is found for AV:A. In
the latter the ratio is not precisely 5:6 because A is a function of
M. Nevertheless a qualitative idea of the diiference in the two and
indirectly a bound on the average error can be obtained by observing

from the differential equation that
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M
v

- 5.
™ "6

|

(2.28)
h

< o

such that if h = \/_5_7? = 0.912 then the governing equations for a mini-
mum energy solution of hv = 0,912, or a, = 1.088 corresponds to a
z-averaged stress solution in a specimen of thickness h = 1 and as-
pect ratio, a. Of course, if values of I\/IV and Av from (2.25) and
{2.27) are used in the basic solution instead of M and A from (2.13)
and (2.15), then the results for the minimum potential energy solution
can be immediately reproduced.

Because one is generally interested in the stress state at
failure, and hence stresses that satisfy equilibrium of stress at
least in some sense — here taken as the z average — it is recom-
mended that the results from the previous section be used for frac-
ture analysis.

POKER-CHIP SPECIMEN SUBJECTED TO COMBINED TRIAXIAL
LOADS

Having obtained a solution for the hydrostatic tensile field,
it is of interest to inquire into the possibility of creating a more
general three-dimensional test specimen, One such method has
been suggested by Lindsey (48) which employs an adaptation of the
poker-chip test to a state of combined loading, wherein a shear
producing torque, as well as axial tension, is applied to the disk
through the rigid plates., Such a test is theoretically feasible and
has the capability of producing a general triaxial field, but it has
never actually been attempted in the laboratory. The solution is

given here for completeness.
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The idea is to superpose upon the axial extension of the poker-
chip a torque about its longitudinal axis that will produce a shift in
the magnitude and direction of the principal stresses. The result
will be a general triaxial stress state with which failure surfaces
can be more definitely described and with which the actual failure
mechanisms can be studied. With this modification of the poker-
chip test, a wide range of stress fields can be obtained by varying
the ratio of angle of twist to axial extension. Consequently, a study
can be made of the change, or constancy, in the appearance, loca-

tion, orientation and initiation level of the initial fracture point.

Torsion of a Circular Cylinder (49)

The definition of the stress field results from combining
the stress fields of pure extension and that of torsion of a circular
cylinder, It will be recalled from classical theory of elasticity
that for a circular cylinder (and only a circular cylinder) a solution
to the torsion problem can be obtained which leaves the lateral
surfaces free of stress and does not warp the cross-section. The
amount of rotation of a point in a cross-section depends upon its
distance from a base of reference which we will take to be z = +1

from Fig. 5.
©= a(z-1) (2.29)

where a is the twist per unit length. For a pure torque, the only

displacement is

ve:rez ra (z -1) (2.30)
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The resulting strains are

Vg, = TG ELTEgTE, TV 0TV ‘30 (2,31)

The corresponding system of stresses is
’rezzGra v =0g=0, = =7 =90 (2.32)

This solution will now be used in conjunction with the approximate

analytical solution for the poker chip in extension.

Stress Analysis of Combined Torsion and Extension
Following a procedure very similar to the one used previously

on the regular poker chip, the displacement functions are assumed

to be,
u_ = -(1-2%)g(r) (2.33a)
Vg = raf{z-1) (2.33b)
w =ez (2.33c)

In (2.33) the displacement boundary conditions are satisfied
at surfaces z = *£1 and g(r) is presently an unprescribed function of
the radius. The strains corresponding to these displacements are

found to be

£, = Brr = ~(1—zz)g'(r) {2.34a)
u

eq =—;11= S(1-2%) &(;11 (2, 34b)
ow

g = 55 = ¢ (2, 34c)
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ov Vg
Yoo 557 T3 C 0 (2.344)
ave
Yo, T 5y T T¢ (2.34e)
aur
er = 52 = Zzg(r) (Z. 34f)
from which the z averaged normal stresses are found as
1
— 1 B 2, 2 g(r)
T, =5 S‘ crrdz = Aé: - 38 {r) - 35 3 Gg'(r) (2.35a)
-1
! 2 2g(r)) 4 . glr)
o= = - =o' -.__g_,_.l; ____‘gm_t:
Ty ZS‘ credz >\<s 3 8 (r) 3 > 3 G - (2.35b)
-1
1 ! 2 2 g(r)
T = = = P ' — _gm.{-. . 8!
v, 5 S‘ crzdz )( 3 8 () 3 >+ 2Ge (2, 35c)
-1

As will be seen from the equilibrium equation, it is not necessary

to average the shear stresses from the equilibrium equation,

T 0 (2.35d)
Ty = 2Gg(r)z (2.35e)
T, = Gra (2.351)

The radial equilibrium equation is satisfied on the average as before

with the tangential expression becoming,
1

1 95, 1 1
> 5. dzz—z [TGZ]_I = 0 (2.36)
-1

However, Ta, = Gra and is not dependent upon z. The third equi-

librium equation is satisfied identically due to the symmetry of the



-47-
specimen and applied load about the midplane, z = 0. Thus the dif-

ferential equation for g(r) remains unchanged

g () + LT (fz i M) g(r) = 0
where (2.37)
3G 3 (1-2v)
M=5G36 = 2700

Now it can be seen that the Yo displacement arising from the torsion
portion of the load produces no effect upon any of the field quantities
from the approximate solution for the regular poker-chip. Therefore
the two loads are superposable just as they would be fof,?i.;xact solu-~
tion of infinitesimal theory. The normal stresses for the combined
loading, valid everywhere except near the edges, become the same
as before for a regular poker-chip, equation (2.17), and the shear

stresses become,

T I.(r E)
rz o _3Vv ‘}5 S S (2.38a)
E¢ 1+v VE E' c T
I (a%j:)
0 K
TGZ r B a
Ee = 2(1+v) B—Z (2.38b)

Principal Stresses
By seeking for an orientation of stress such that the surface
traction is perpendicular to the surface and no shearing stress exists,

one obtains an equation of the form,

-56.. =0 (2.39)
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where o represents the principal stresses. Expanding the determi-

nant,

3 — - — 2 e e e — 2 2
- ta : -T T
a (O‘T (TG o-Z) o4 (crrcre+ o"r(rz+ croqz Trﬂ TOZ 7r7)cx
s e o 2 2 - 2
- (crrc-echJr ZTI'GTGZTI‘Z - o-r'rez-o*e'rrz-cr 'rra) =0 (2.,40)

Simplifying to the situation at hand and nondimensionalizing the

inci - o
principal stresses S = o

22— = [ 2., 2 1
B [Grqz "% <78z t T )] 3 0 (2.41)

Substituting equations (2,17) and (2.38) into this expression and
solving the cubic equation for S, we obtain the plots of Figs. 14

to 18.

Observations

There are several things to be noted from this solution, one
of which is the fact that for angles of twist that can be classified as
being in the range of infinitesimal displacements, the hydrostatic
condition can be altered considerably. For example a typical mater-
ial with E = 500 psi subjected to g = . 005 and a = 0.1 rad, S1 =10
psi, S2 = 92 psi, S3 = 177 psi at r = 10, Thus a large variety of
stress fields can be readily obtained; however, for failure studies
Fig. 16 shows that B > 2 must be used in order to obtain stresses

larger than the hydrostatic field in the center. In other words, if
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Figure 14. First Principal Stress at Midplane for Modified Poker Chip.
{B=angle of twist per unit length/axial strain).
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Figure 15, Second Principal Stress at Midplane and Interface
for Modified Poker Chip.
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Figure 16, Third Principal Stress at Midplane for Modified Poker Chip.
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Figure 17. First Principal Stress at Interface for Modified Poker Chip.
(B=angle of twist per unit length/axial strain).
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Figure 18. Third Principal Stress at Interface for Modified Poker Chip.
(B=angle of twist per unit length/axial strain).
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B < 2 the largest stresses occur at the center of the specimen where
there is always hydrostatic tension, so in order to produce fractures
under other conditions 3 must be greater than 2,

As can be seen from Fig. 17, one component of the triaxial
field can be made compressive. This will provide for failure studies
in the ++ - quadrant of the failure surface. Little, if any, work has
been done in this quadrant because of experimental difficulties, but
now barring unforeseen laboratory difficulties this failure surface
can be constructed.

One last observation is made from comparing Figs. 15 and
17 and Figs. 16 and 18. For B > 2 the stress distribution at the mid-
plane is identical to that at the interface of the specimen and the
lucite grips. The stress field is virtually constant through the thick-

ness in the central regions a thickness distance in from the edge.

SUMMARY

In summary it may be stated that these analyses have served
to demonstrate the feasibility of producing a state of hydrostatic
tension in soft nearly incompressible materials. They have also
opened the possibility of creating a rather general state of three-
dimensional tensile stress, useful in the study of failure surfaces.,
Furthermore a detailed definition of the field variables has been
obtained, suitable for use in the reduction and evaluation of exper-
imental data. As a side benefit, a means for measuring bulk
properties in tension has been developed. This is not only a con-

venient method of obtaining such information, but correlation can
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now be made with compressive values, obtained from the more

classical tests, for better definition of material behavior.
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CHAPTER III

EXPERIMENTAL ANALYSIS IN HYDROSTATIC TENSION

MATERIAL DESCRIPTION

The selection, procurement and characterization of an
appropriate material areprerequisite to experimental investigation.
This always involves a compromise as one tries to find typical
materials that are readily available and yet still possessing mater-
ial properties that are amenable to étandard laboratory testing.
There is currently in progress a program (50) to find one or more
rubber materié.ls suitable as standards for all interested investi-
gators to use as a basis for interchange of information. One of
the candidates under study is a polyurethane elastomer of a type
employed as propellant binders, It is commercially produced by
the’Thiokol Chemical Corporation under the trade name of Solithane
113 (S-113). Chemically, urethane polymers are the product of a
reaction between an isocyanate and a hydroxyl radical. Normally
the process consi‘sts of three steps: prepolymer formation,
chain extension, and curing. Although the specific formulation
of S-113 is company proprietary, some general statements can
be made about .it. Quoting extegsively from ""Polyurethanes:
Chemistry and Technology,'' (51) with occasional annotations, we

will discuss the three steps.

Prepolymer Formation

The reaction of a diisocyanate with a hydroxyl-
terminated polyester, polyester amide, or polyether
to form an isocyanate-terminated prepolymer can
be represented schematically as follows:
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OCN-R—-NCO + HOmwOH —
diisocyanate polyester or polyether
O O

OCN—-R—~NH— (JJ»OMO——éwNI-ImRMNC O

prepolymer
For S-113 the diisocyanate radical R was Tolilene, TDI. After the

basic links are formed, they are used as building blocks to form

extended chains.,

Chain Extension

Chain extension of the prepolymer with active hydrogen-
containing compounds, usually difunctional, such as water,
glycols, diamines, or aminoalcohols, proceeds to give a
higher molecular weight, soluble polymer, Chain extension
with glycols takes place with the formation of urethane
groups as shown below:

O O
20CN-R—NH—C—0OmmO—C~NH—-R~NCO + HO—R'—OH —
glycol
o) 0 o

é{ : “ : urethane
O C N—-R—=NH-—C—OmmmmmmnO— mNH*-R-t—NH—-C——Cz}\

O
OCN~R—-N I{W(Q»O

For S-113 the extension agent R' is Polypropylene glycol, PPG,

Thus far chain extension has been shown wherein an
excess of isocyanate was used, giving an NCO-terminated
polymer. These polymers are actually high molecular
weight polyisocyanates, and as such are reactive with
many chemicals, hence are not indefinitely stable. Solu-
ble polymers of better stability may be prepared, if
desired, by using a slight excess of the active hydrogen
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component, rather than an excess of isocyanate. For
example, an excess of glycol would lead to a polyure-
thane terminating in hydroxyl groups, and would hence
be much more stable,

2 OCN-R-NHCOQOm-OCONH-R-NCO + 3 HO-R!-OH —

HO—ER 1 _OCONH~R—~NHC OO OCONH~R-NHC O%-RI—OH
2

Other active hydrogen compounds could be used similarly,
but hydroxyl compounds usually serve as the best chain
terminators, free from other complicating side reactions.

Curing or Crosslinking

The curing or crosslinking of the elastomer may be
accomplished by reacting an added curing agent with
the intermediate molecular weight elastomer, or by
formulating the elastomer so that it contains free iso-
cyanate groups and curing by heating.

A convenient means of introducing crosslinking in
the urethane polymer chain is the use of triols, either
in form of monomeric polyols such as trimetholylpro-
pane or by employing poly(oxypropylene) glycol deriva-
tives of triols such as trimethylolpropane, glycerol,
and others, In this case, crosslinking occurs through
the formation of urethane links as shown below:

O @) OH

oC N—R—NH——Q——OMO-—CQ-—NH——R—NCO + HOLOH —
triol

O

O E"""" ,
i l
MO——ﬂ——NH-R{ISI_'I_—_—_-:QJ urethane crosslink

T
——R——NH~—A—~O Ow‘ﬂmNH——R——

The catalytic triol used in S-113 was Thiokol catalyst C113-300 and
curing was prescribed at 150°C,
S5-113 can be made with widely different mechanical proper-

ties by varying the relative amounts of the prepolymer and catalyst.
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A study by Knauss (50) shows the degree of sensitivity, which is
graphically displayed in Figure 19. The ratio used in this program
was one to one by volume, which was found by testing other pro-

portions to be the most suitable for this investigation.

MATERIAL FABRICATION

A very detailed account of material fabrication along with
descriptive photographs and schematics of the equipment has been
given by Zak. (51) Briefly the process may be described by stating
that the two separate components, prepolymer and catalyst, were
preheated to 606C while they were in an inert atmosphere of nitro-
gen. They were then carefully measured by volume and mixed
together, ;c,till under nitrogen, and raised to 100°C. The mix was
degassed for five minutes, which acted to reduce virtually to zero
the number of visible bubbles produced in the casting, and further-
more it tended to make the finished product more nearly colorless.
A mold of polished aluminum was preheated in the oven to 1250C,
and it should be emphasized that no mold release was ever used in
the fabrication process. It was found impossible to remove com-
pletely the residue left by the release regardless of the solvent
used, and the contamination of the surface prevented the formation
of a goo.d bond. A polished mold face was found very acceptable
for releasing the specimen. Polished brass, steel and aluminum
as well as Pyrex glass, and Micarta were used, but polished alumi-
num was found to be fhe most desirable when all of the factors of

cost, weight, etc. were considered, The surface quality of the



-60-

300 ) . : ]

200

G & G, psi

100 -

80|

60

20

o l O . |
© 40 50 60

PERCENT OF PREPOLYMER

Figure 19a.Complex Modulus at 20°C as a Function of
Prepolymer«Catalyst Composition.



TENSILE STRENGTH, psi

-60a-

400 , ,
25°C
* STRAIN RATE=0.22 min™'
300 - -
200 |- —
100 ‘ ‘
40 50 60

PERCENT PREPOLYMER

Figure 19b. Uniaxial Tensile Strength as a Function of
Prepolymer=Catalyst Composition at 20°C.



-61-
cast sheet is diréctly related to the surface quality of the mold, but
as will be discussed later when the material is bonded vto the lucite
grips, the wetting properties of the bonding agent eradicate surface
imperfections in the cast sheet. Therefore the mold surface need
be polished only to the degree necessary to allow the rubber to be
removed from the mold.

With the mix up to temperature and degassed, the molds
were filled through tubular arrangements while they were in the
oven, so that the material was never exposed to the atmosphere,
The reason for the great care wasto prevent side reactions that can
be produced by water.

Chain extension with water leads to the formation of

substituted urea linkages and the evolution of carbon

dioxide as follows: (2)

O O
2 OCN—R—NHJ -—OmO—Cl—NH—R-——NCO + HZO e
O
ﬂ £ ==
OC N—-R—NH=C—OmmmO—C—NH-R+NH E

i |
:C—O: + CO
t 1
OC N—R—NH—(u—OWO—C@-—NH—R-LNH _: subst. urea
L-._.._
chain-extended polymer

Since such a reaction would cause undesirable by-products like
variations in the basic structure and entrapped gases, it is avoided
if at ale possible. However only small traces of HZO can produce
the réaction, making it very difficult to control., After filling, the
ovens were then raised to 150°C, and the material was cured for

two hours.
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Every effort was made to closely control each step of the
process; however due to the fact that several very complex chemical
reactions are taking place simultaneously, it is difficult to produce

polyurethane with low batch to batch variability. This problem has

been alleviated somewhat with a correlation between modulus and
percentage of prepolymer in the mix. (See Figure 19.) By cutting
a test strip from each casting, the material can be quickly evaluated
by means of its modulus. Thus a uniform set of specimens can be
gathered and variations due to slight modifications in the basic mix
can be quickly detected. Scatter ranges are discussed under Mater-
ial Characterization.,

After curing was complete}the material was removed from
the mold and placed in a dry box for two weeks or until used. The
final product was a large round sheet 13 inches in diameter and
0.10"" thick. When ready the smaller poker-chips were then cut
into disks of approximately 2-1/2'"" in diameter. The resulting
material specimen was virtually clear, which is one of the primary
reasons for selection of S-~113, It allows the possibility of either
viewing directly, or photographing, the internal fracture process
as it happens. This is a great advantage, for it is normally very
difficult to surmise accurately what has happened during fracture
solely from looking at the surface after the fact. Furthermore the
material is optically very sensitive, and ideally suited for bire-
fringence work. This property has been characterized ahd is alluded

to in the discussion of material characterization,
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MATERIAL CHARACTERIZATION

The characterization of 5-113 has received the attention of
several investigators including Williams, Ferguson, and Arenz (52)
as well as Knauss, (53) and Zak. (54) These include various me-
chanical property définitions under infinitesimal strains, including
a rather complete description of viscoelastic properties which even
encompasses the optical properties of birefringence. Figures 20
to 22 give information relating to the constitutive properties of
S-113 in the form of the Relaxation Modulus, the Master Stress-
Strain‘curve and the accompanying shift factor for them. The data
was obtained using standard techniques primarily based on the
constant strain rate test. The relationship between the constant
strain rate response and the relaxation modulus is straightforward
and can be derived as follows. For a linear viscoelastic material

the stress-strain law can be written in an integral form
t
_ de
O'(t) = S‘ E(t-'r) -a;_- dr (3.1)
0

where o is the stress, E(t) is the relaxation modulus, € the strain

and t the time. For constant strain rate conditions
€ = Rt (3.2)

where R is the strain rate. Making an independent variable substi-

tution under the integral sign of equation (3.1)
x=t-7T (3- 3)

we have
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. .

o(t) =-R§ E(x) dx (3.4)
0

From equation (3. 4) it follows that

1 - |
R & - E® (3.3)

Equation 3.5 shows that the relaxation modulus for a linear visco-
elastic material is equal to the time rate of change of stress divided
by the strain rate in a constant strain rate test. This relationship
is used to evaluate the relaxation modulus from the data of the con-
stant strain rate tests. The tests were performed for a wide range
of rates and temperatures and then shifted (55) by the ag factor de-
scribed in Figure 22 to give the composite master curves of Figures
20 and 21. The mechanics of data representation, interconversion,
etc. is involved, but now reduced to standard practice as described
in detail by Arenz, Ferguson, Kunio, Williams. (56) The curves
indicate something of the nature of the material; however, the par-
ticular quantity to be noted at this itirne is the rubbery modulus of
approximately 500 psi, which will be used in data reduction for the
elastic analysis. Zak, (54) using an experimental technique sug-
gested by Smith, (57) demonstrated that constant-strain rate tests
at 0.02 in/min. and T = 25°C, were in the rubbery regions for S-113,
This is the test condition used in the experiments to be described
subsequently; consequently E = 500 psi is the pertinent material

parameter.
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Bulk Properties

A side benefit of the poker-chip test is the measurement of
the bulk mechanical properties that it provides through a knowledge
of the apparent modulus. It will be recalled from equation (2.21)
that if the normal stress in the axial direction T, is integrated over
the face of the poker chip, the apparent modulus can be computed
from the approximate stress analysis., This turns out to be ex-
pressed in terms of not only Young's modulus, but als’o the bulk
modulus, which establishes a relationship between the three prop-
erties, This demonstrates that EA is an independent piece of in-
formation which can be used with the regular tensile modulus to
define the two independent mechanical properties of an isotropic
material, Figure 10 taken from Reference 41 graphically demon-
strates this relationship and is a convenient tool for determining
the bulk properties of materials. Thus armed with E and EA’ which
turns out to be 15,400 psi, Bulk Modulus and Poisson's ratio can
be determined for the material from Figure 10, For S-113, K=
47,000 and v = 0,4978. This value of Bulk Modulus may be some-
what surprising since it is actually of the order of one thousand
times smaller than that of steel. It is only because the ratio of
shear modulus to bulk modulus is so low that the incompressible
assumption is justified. Of course, this ratio is also the reason

for Poisson's Ratio being very nearly one half.

Finite Strain Characterization

Finite strain fields are commonplace in elastomers and
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require a special characterization for the material subjected to
them. (4) Both uniaxial and biaxial tests have been conducted by
Beckwith and Lindsey (58) to determine the form of the strain
energy function, W. It is customary to express W as a function

of the three strain invariants

2.2 2

L =M+ A F A (3. 6a)
2.2 2.2 2.2

L, = A A5 + A A + A (3. 6b)
_.2.2.2

I, = A A5 (3. 6c)

where A's are stretch ratios. When the material is incompressible

13:’: 1, and

W = W(Il ,12)

-1/2

For the case of uniaxial tension ?\,1 = A and >L2 = A, = A s

3

and the corresponding tensile stress is (4)

oW | 1 aw> (3.7)

-2
o= 2(A-2 )(————+————
811 A 812

By dividing out the first factor and plotting it versus 1/X and using
experimental data from a uniaxial strip, we obtain Figure 23, (The
two sets of data points demonstrate maximum batch to batch varia-
bility.) From the trend of the data it can be inferred that the inter-
cept, E)W/BI1 , is constant and the slope, 8W/812, is zero. The

strain energy function must then be of the form

W = Cl(Il—?:) (3.8)
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where the factor three makes the function vanish in the unloaded
state; i.e., Ki = 1., This classifies the finite strain behavior of
S5-113 as Neo-Hookean, which is the simplest representation and

a mark in its favor. Simplicity in analysis is a big asset in large

deformation problems.

Now to see exactly how close S-113 follows Neo-Hookean
behavior in uniaxial tension, Figure 24 has been plotted. Only in
the larger values of stretch ratio near fracture is there any per-
ceptible deviation. Also the value of the material constants agree
well with the infinitesimal limit case, which defines C, = E/6.

Corroboration of the Neo-Hookean result based on uniaxial
test was made from equal biaxial tests on the test rig pictured in
Figure 4. In this case 7L1 = 7&2 = A and A3 = )&-2 from the incom-
pressibility condition. The corresponding in-plane stress turns

out to be (4)

_pR _ -6, (oW 2 W
cr_g—t—_zu-x )(Tﬁi«»x 812> (3.9)

where p = internal applied pressure

R

it

radius of curvature
t = sheet thickness
Proceeding upon the assumption that S-113 is Neo-Hookean, equa-

tion (3.9) becomes

6

P.Bzcl(l_yg ) (3.10)

4t

Assuming a circular arc deflection curve, the radius of curvature

for a sheet of original radius 3' and pole height h (see Figure 4) is
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2 2
R =2 ?lh (3.11)
Giving
E(a2+}12) -6
ShT = Cl(l -3 7) (3.12)

By measuring p, h and A it was possible to construct Figure 25 for
an initial sheet radius of five inches. The plot indicates a linear
relation except in the initial stages of deformation. It was definitely
established that the nonlinearity was due to slippage of the sheet
underneath the clamping ring making the measured value of h too
large. The ring is not fastened down too tightly since premature
fracture at the grip will ruin the test. After the initial slippage the

curve then becomes linear to establish Neo-Hookean behavior.

EXPERIMENTAL APPARATUS FOR THE POKER-CHIP TEST

As the equations and figures of Chapter II demonstrate, the
poker-chip test constitutes a vehicle by which a hydrostatic tensile
field can be applied to a local region of a body whose actual dimen-
sion is dictated by experimental practicality. The theoretical
analysis shows that an aspect ratio of fifteen to one is the lower
limit required to produce this stress field and twenty to one is
more desirable. A two-inch diameter with 0.10 inch thickness
was selected to be a reasonable compromise between what could
be effectively bonded and pulled and what was desired in the way
of observation. Although Gent and Lindley originally performed

the poker-chip test by pulling or squeezing rubber blocks between
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steel plates, it was decided for the experimental work on S-113
that the apparatus would be altered considerably to facilitate a
more thorough study of the actual mechanisms of the fracture pro-
cess. This was accomplished by using transparent lucite grips

in place of steel. Lucite has a modulus in the neighborhood of
500,000 psi (59) and this provides approximately a 1,000 to 1 ratio
between modulus of grip and specimen, kwhich closely duplicates
the theoretical assumption of rigid boundaries made in the stress
analysis. Goupled with the clear grip and clear specimen a
transparent bonding agent was found in the form of Eastman 910,
which happily acted as a wetting agent for both the rubber speci-
men and the lucite grip. When the assembly was complete, a
window was produced through which the observer could view the
internal regions of the material and study the fracture process.

A schematic drawing of the entire assembly is shown in Figure

26 where the arrows indicate the attachment of a testing machine

through which the specimen was loaded.

Bonding Procedure

A very critical facet of the experimental technique of
the poker-chip test is the bonding procedure. Being somewhat
of an art, it is demanding upon the technician to produce a bond
with sufficient strength that the specimen will not tear away from
the grip before an internal fracture is produced. The specimen
is prepared by roughly cutting it to size and then cleaning it thor-
oughly with a cloth slightly dampened in methyl alcohol. If used

sparingly this procedure will not produce noticeable sweliing in
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the rubber. The lucite grips must be lightly roughened and thor-
oughly cleaned; furthermore it was found advisable to avoid silicon
compound abrasives, and aluminum oxide paper was found to work
nicely. A bonding accelerator (number GA-1Al) supplied by Eastman
was then applied to the specimen and the Eastman 910 to the grip.
The two pieces are brought together under hand pressure and al-
. lowed to set. The process is repeated for the other grip; however
| a V-block is used to insure perfect alignment. Absolutely no mis-
aiignment can be tolerated due to the bending imposed in the test.
The same is true of taper in the specimen; once beﬁding is present,
the local stress conditiohs beche unknown and the test is of little

use.

Optics

With the specimen bonded to the lucite, the grips were
screwed into special fixtures depicted in figure 26. Front sur-
face m.irrors were mounted at 45° to the horizontal in these
heads, providing a periscope arrangement for viewing the spec-
imen. Through one mirror the specimen was illuminated by
means of a Peck model 110 Mercury vapor point source and view-
ing or photographing took place through the other. With this
powerful light source, it is possible to take high spéed motion
pictures of the fracture process to document a detailed history
of it.

This meihod has also been successfully used even on

quite opaque and translucent materials. Theseare:not as desirable
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as the clear materials, nor are they as readily photographable, but
fracture initiation is easily detected along with rather gross details
of the propagation phase, depending upon the degree of opaqueness
of the material. Furthermore, if the material being tested lends
itself at all to the transmission of light, the fracture point can be
detected, for there are instances recorded where it has been found
difficult to ascertain the point at which the specimen actually failed
because no direct manifestation of it was made on the load his-

tory. (60)

Strain Measurements

One of the many interesting aspects of this test is the fact
that the overall specimen strain based upon the initial thickness is
small; i.e., S-113, which evinces 35 percent to 40 percent ultimate
strain in uniaxial tension, exhibits only two percent to three percent
ultimate strain in hydrostatic tension. This was another reason
for putting faith in the results of the approximate stress analysis
which employed tools of infinitesimal elasticity. It should be pointed
out that this configuration is one of the few wherein infinitesimal
theory can be applied to fracture analysis of rubbery materials with
confidence in the accuracy of the solution. Such a state of affairs
is certainly welcome since use of finite elastic techniques for
analysis is very limited and virtually never used in fracture studies;
however, Levinson and Blatz (61) have employed a variational scheme
to solve the poker-chip problem for large deformations, so that

materials demonstrating strain levels out of the range of the linear
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theory or on the border of linear theory can still be analyzed for the
poker-chip test.

Because the displacements were small, for instance in the
tests to be discussed total displacement at the grip was in the neigh-
borhood of 0,002 inches, extensometers were used to measure the
axial separation of the lucite grips, (See Figure 26.) They incor-
porated linear, variable}differential‘transformers, LVDT, in con-
junction with Schaevitz LVDT exciter, demodulator, type DMPS-3,
These operated into a Moseley Autograf, X-Y Recorder, Model
2FR~A(S), made in Pasadena, California, where the displacements
were magnified 2000 times. A photograph of the actual specimen
with the LVDT's mounted in place is shown in Figure 27. The com-
plete assembly was placed in a Universal Testing Machine, Model
Number TTC, manufactured by Instron Engineering Corporation of
Canton, Massachusetts. A photograph of the apparatus ready for

test is given in Figure 28.

EXPERIMENTAL RESULTS

With a knowledge of the two independent mechanical proper-
ties v and E, Figure can be used to find the relationship between
the internal field stress in the poker-chip and the externally applied
strain 6'1 , which of course can in turn be related through the apparent
modulus to the applied load. The load was correlated with the dis-
placement through an apparent stress-strain curve. This was
computed by considering the specimen to be a uniaxial tensile bar

where the stress is obtained by dividing the applied load by the
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Figure 28.
General View of the Triaxial Test Showing the Specimens in

the Instron Testing Machine and the Recording Equipment.
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cross-sectional area of a large face, P/A, while the strain is com-
puted like a tensile bar on the basis of specimen thickness. The
descriptive parameter for this pseudo stress-strain curve is the
apparent modulus, EA’ computed in the obvious way by dividing the
equivalent uniaxial stress by the equivalent uniaxial strain. A plot
of several typical apparent stress-strain curves obtained at a strain
rate of 0.02 in/min, is given in Figure 29, showing the rubbery,
elastic response of S-113 in HT. This gives some indication of the
scatter in the apparent modulus due to the batch to batch variability
of the material. Both the mode and the average come out to be
approximately 15,400 psi with a maximum variation of £8 percent.
As can be seen, the apparent stress-strain relation is linear
well above one percent strain, and then it bends over as it proceeds
to fracture at strains of 2-1/2 percent to 3 percent. The actual
fracture stress levels involved are considerably higher than their
uniaxial counterparts; however as was discussed previously, the
ultimate strain is greatly reduced. From Figure S‘EO‘Z/EE = 48,
which gives a local HT of 625 psi. S-113 possesses an ultimate
"strength in uniaxial tension of approximately 160-200 psi, (62)
while local stress values in the hydrostatic configuration range
approximately three times this value in the neighborhood of 500-650
psi. These values quoted represent the range of a large number of

tests conducted at room temperature.

Stress-Axis Theorem

It is interesting to abstract from this and other work (22)
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a theorem on fracture, which can be conceived to provide a guide
for engineering intuition. It can be stated roughly that as the number
of axes of stress increase the ultimate stress is increased and the
ultimate strain is decreased; furthermore, as the degree of axiality
of stress is altered toward the hydrostatic this same trend will be
emphasized. In other words, as an additional axis of stress is
added to a body in uniaxial tension, the ultimate stress and strain
increase and decrease respectively from the uniaxial value as the
new stress component grows from zero to become equal to the orig-
inal one producing a state of equal biaxial tension. Adding another
axis of stress to the biaxial case further alters the ultimate proper-
ties in the same direction as it grows from zero to become equal to
the original two and produce a state of three-dimensional hydrostatic
tension., GConsequently the state of hydrostatic tension is a limit
case in that it provides the maximum in stress that a given material
can withstand, as well as a minimum in strain at which fracture can
be produced. In essence the material performs at its best in this |
geometrical configuration if dilatation is the criterion; however if

strain is the criterion, pure distortion states are by far superior.

Description of Fracture

The actual physics of the fracture process are quite unusual
and produce a unique mode of rupture. As the load is applied, the
field remains seemingly undisturbed even while observing the speci-
men through crossed polaroids. S-113 is a very sensitive bire-

fringent material; in fact this is one of its most outstanding
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properties, and yet no fringes are seen to appear in the field until
the fracture process begins. (This constitutes additional evidence
to the condition of HT alluded to previously. >k) Then at an average
applied stress of approximately 300-350 psi of a local field‘stress
of 500-650 psi, what appears to be a bubble catastrophically bursts
into the field somewhere in the vicinity of the center of the speci-
‘men. It rapidly grows in a spherically radial fashion resembling
an ablating cavity until it fills the entire thickness of the specimen
and interacts with thé boundary. Figure 30 is a composite photo-
graph depicting this growth which requires about“"O. 016 seconds.
The data was obtained with a 16 mm, Beckman and Whitley, Magni-
fax High Speed Camera (63 mm, /2 lens) at a framing rate of 2000
frames per second. Next, two of the extremities of the cavity tail
off into a sharp crack that appears to propagate perpendicular to
the plane of maximum principal stress. Subsequently one and
occasionally two such nuclei manifest themselves and the specimen

appears much like the sketch in Figure 31 below.

Fig. 31. Axial view of poker-chip fracture field.

" The number of fringes is proportional to the difference in principal
stress, n= o1 “0ge .



Figure 30: Internal Fracture Growth History
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Fracture Surface

If the specimen is further loaded beyond the initiation point
until it is actually pulled completely apart into two pieces, the re-
sulting mating surfaces are completely riddled with crevices and
fissures and appear badly mottled. Figure 32 is a photograph of
a typical poker-chip fracture'where the points of initiation can be
readily discerned with some experience. One of the facets of frac-
ture in this geometry that makes it unique is the location of the
point of initiation of fracture. In all other test specimens the frac-
ture initiates at a manufactured boundary, and in some degree the
ultimate properties are actually a measure of how well that surface
is prepared. In this éase, however, the fracture originates wholely
within the material. It is a true test of the material strength, which
is determined by the structure of the material and by the existence
of internal flaws., By focussing in closer on the origin of fracture,
a nuéleus is discovered as photographed in Figure 33, where the
magnification is 100X, The surface as seen here is inclined at an
angle of approximately 20° to 30° and is consequently distorted
-slightly, but the floral pattern emanating from the nucleus shows
the rather regular manner in which the crack propagates radially
away from the original nucleus or cavity. The surface in focus here
is virtually planar and consequently what had appeared to be a bubble
growing in the field while the fracture was being observed is be-
lieved to have actually been a circular, planar, Saturn-ring crack
that was enlarging in a radial direction, but due to the hydrostatic

stress field, its mating surfaces were pulled apart and made to



Figure 32: Fracture Surface of Poker Chip Specimen

Figure 33: Nucleus of Fracture 100X



Figure 34: Nucleus of Fracture 200X

Figure 35: Nucleus of Fracture 800X
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resemble a spherical bubble that was ablating. This interpretation

is further substantiated by unloading the specimen and watching the

. collapse o£ the bubbles back into the flat planar cracks. The crack

surface is not perfectly planar but does possess a slight curvature
which seems to become more pronounced as the nucleus moves
closer to one of the boundaries. The orientation of this pseudo-
plane seems to be reasonably random, but if there is any bias, it
is toward planes tending to the vertical.

A more hi;ghly magnified view of the origin of fracture shows
a very rough and cobbled area as seen in Figures 34 and 35 which
was, in these specimens, consistently found to be of the order of
10-3 inches in diameter. The region outside of the dark center
circle is a glassy, mirror-like surface characteristic of the high
velocity phase of propagation. Since the pattern and dimension of
the striations radiating from the nucleus were so reproducible, they
must be evidence of some fundamental mechanism transpiring in
fracture. Knauss (63) has discussed the notable difference in ap-
pearance in fracfure surfaces of an '""H.C."' ‘rubber, (64) and has
been able to draw quantitative correlations between velocity of prop-
agation and roulghness of surface. The two materials bear enough
similarity that it should be possible to make inferences about rate
of propagation in S-113. Based on Knauss' observations, the cobbled
surface around the nucleus would have been formed from a very
slowly moving crack--almost of zero velocity. Fracture then would
resemble severing bonds almost individually like rubber bands.

The glassy surface on the other hand is a sign of veryi high velocity
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motion, which would correspond with the short times noted from the
high-speed films. The change in surface is quite abrupt, indicating
a very rapid change from the slow to the fast mode. These obser-
vations would then support the hypothesis that fracture begins from

a nucleus that is formed very slowly in the material. It might even
be considered as a flaw that is ''grown'' in the material under load,
which, upon reaching a certain critical size, triggers a catastrophic

rupture at high velocities.

Fracture Propagation

High speed motion pictures (1000 to 3000 frames per second)
of the fracture process taken through the periscopic mirrors have
documented portions of the propagation behavior. Unfortunately they
did not shed light on the initiation mechanisms, but the character of
propagation in the high velocity mode is documented. Figure 36
shows the short period of acceleration from the zero velocity region
to some critical velocity which remains essentially constant with
some evidence of a stick-slip behavior. The data for these curves
were obtained by photographing the growth of the fracture surface
that was mentioned previously as having the appearance of a bubble,
but which is actually a planar crack that has been pulled apart by
the HT. The test was conducted at room temperature at a strain
rate of 0,20 in/min. The films were subsequently projected and
measurements made of the diameter of the circular crack as a func-
tion of time obtained through a knowledge of the framing speed,
which was calculated through timing blips made on the film. Due

to the limitations set by the grain of the film and the magnification
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under which the actual filming was performed, the entire propagation
history could not be recorded; especially the short-time regime.
This is indicated in the figure by a dotted line as an extrapolation
back to the original flaw size,

It appears then in retrospect from evidence studied a posteri-
ori and coupled with other evidence acquired before and during frac-
ture that: |

1) Fracture nucleates probably from a point of weakness in
the material.

2) The early phase of fracture is a static one that can be
approximated as crack propagation at virtually zero velocity, where
bonds are broken slowly.

3) After reaching a critical size the crack will rapidly accel-
erate and the remaining surface changes from a rough and coarse
one to a mirror-like or glassy one.

4) This critical stress is almost three times the uniaxial
strength.

5) The acceleration period is very short and is followed by
a steady state situation where the fracture surface propagates at a
constant velocity until it intersects the boundaries.

6) It then propagates as a very blunt crack along a trajectory
that takes it perpendicular to the plane of the maximum principal

stress of the distorted field.
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CHAPTER IV
FLAW ANALYSIS
FLAW DESCRIPTION

In the description of material fabrication covered in Chapter
III, it was mentioned that the mix was degassed under vacuum to pull
out entrapped gases dissolved in the components. Furthermore if
there were any trace of water present, a side reaction would result,
and carbon dioxide would be given off, continuing as long as any
water was available. Consequently the probability is quite high that
miniature flaws are produced in the material in the form of entrapped
gaseous bubbles, Although a large volume of gas is removed by
vacuum, there seems to be a limit to the size of bubbles that can
be drawn out of such a viscous liquid. Visual inspection of a cast
sample will not detect any indication of bubble-type flaws; however
microscopic observation at 200X has proved their existence, as
shown in the photograph of Figure 37.

In fact such flaws have been found in quantity. Samplings
taken at random throughout the castings, which in our particular
specimens are in the form of circular sheets 13'' in diameter and
0.10'" thick, show uniformity from section to section both in size
and distribution of the voids. By and large the voids ranged from
3 to 5 times ].0_4 inches in diameter with the larger or smaller
voids occurring only in exceptional cases. Figure 38 shows a typ-
ical mapping of a section of a sheet with a typical ratio of void

volume to material volume. A representative figure for this ratio
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Figure 38.
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is approximately 7.6 x 10—5. This is admittedly quite a small volume
fraction, but at the same time there is supplied a large number of
possible fracture nucleation points; viz. 30 x 104 voids per cubic
inch. Although this number sounds large the cavities are usually 50
to 100 diameters or more apart. This makes it reasonable to assume
that each flaw acts independently and that attention can be focused
on a single cavity in making the fracture analysis. In other words,
it will be hypothesized that fracture will initiate from one of these
cavities and attention will only need to be given it. Furthermore the

HT environment produced on the flaw in the poker chip will closely

resemble that of Figure 39. The local field stress p is determined

P
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Fvigure 39. Schematic of Flaw in the Hydrostatic
Tensile Field in the Poker Chip.
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from the applied load P or boundary displacement § through Figure 8.
Then since the cavity is small compared to the specimen thickness,
an analysis can be made considering the flaw to be alone in an infinite
hydrostatic field, and the test will closely duplicate the theoretical
assumptions and boundary conditions,

The approach to be followed will be to consider the transfer
of energy for the cavity region during the fracture process. From
this a critical value of the hydrostatic pressure will be predicted in
terms of pertinent material and geometric parameters, indicating
the point of rupture of the spherical flaw. However this will require
some extensions of the classical concepts in order to deal with this
particular geometry, stress field, etc., and a general discussion of

the energetics of fracture is in order.

ENERGY CRITERIA FOR ELASTIC FRACTURE

To a novice in the field it appears that there is great need
for elucidation of the basic principles upon which fracture energetics
are built; so that extensions to other geometries, other stress
fields, and other materials will be clear. Since this will have to be
done in the instance of the spherical cavity, let us review a few fun-

damentals.

Conservation of Energy

Beginning with the First LLaw of Thermodynamics as applied
to a general fracture process (65) it is possible to arrive at Grif-
fith's classical results, (66) which were originally obtained in quite

a different manner. The recoverable strain energy Ul’ representing
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the strain energy before fracture, plus the work done by the surface
tractions during fracture, 6W, must, from the Conservation Law,
equal the strain energy after fracture UZ’ plus the energy dissipated

in forming new surface 65.

U1+ 6W=U2+GS (4.1)

or forming an incremental equation
AU - W + 65 =0 (4.2)

Differential Form

It is convenient for computation and for later comparisons
to cast the energy equation into a differential form. This will be
accomplished by dividing the equation by an increment of crack
length and taking the limit as the change in crack length approaches
zero. Implicit within this operation is the assumption that each
term in the equation can be written as a continuous function of crack
length, which can only be done if the flaw hypothesis is made.
This results from the fact that the fracture point of a specimen
with a residual crack is actually the point of initiation of the prop-
agation phase, and the energy terms can be represented as contin-
uous functions of crack length. On the other hand, if theve is no
microscopic flaw and fracture originates at a sub-contimjum level,
then the energy terms are not continuous functions of crack length,
and the incremental equations must be used. The differential form
of the conservation law for a fixed force boundary condition be-

comes,
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du ds dA
@ Y@ fym ¢ (4.3)

where F =Applied force at the boundary

)

Displacement of the boundary
v = Surface energy density

A =New surface created during fractures

ENERGY FUNCTIONALS

| Consider now certain energy functionals which have been used
in fracture analysis. The Potential Energy Functional can be con-
sidered as a starting point for Griffith's (66) discussion of fracture.
In attempting to translate his discussion into mathematical terms

we obtain,
V=U-P+Ss (4.4)
where U = Strain energy

P = Potential of the boundary load computed
while the load is held constant

= Surface energy
§V. = 86U - 6P + 6S (4.5)

By a careful comparison of expression (4.2) and (4.5) and the physi-

cal processes which they describe, (30) it can be shown that &P =

§W. This is the crux of an argument that can be used to establish

what Griffith assumed for the fracture criterion, i.e.,

— (89U 9P dA _
&V [-8-5 --8€+y-d-5] dc = 0 (4. 6)
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By a comparison with the energy equation (4. 3), it is apparent that
they are identical. This is a significant result, for it establishes

5K

that fracture predictions for fixed grip loading made on this basis

of the adjusted potential energy being a minimum, are the same as
obtained from energy conservation. At this point it is difficult to
ascertain just why a minimization of y should predict fracture, but
a later examination of the stability aspects of the problem will

clarify this point,

Extended Complementary Energy. If a similar comparison

is made between the extended potential energy of equation (4.4) for
fixed grip loading and the energy balance made for the same condi-
tions, it can be demonstrated that the two do not coincidé and that
the two conditions are not the same. It is therefore concluded that
the extended potential energy is not the correct functional for fixed
grip loading. However an analogy can be made between the types of
loading and the correct functional, for in the case of fixed force
loading, where the force is held constant and the displacements
are varied, it was found that the potential energy was the proper
functional; therefore it would appear appropriate that for the fixed
grip condition where the displacements are held constant and the
forces are varying that complementary energy (49) should be con-
sidered,

It turns out that this is true. A direct comparison can be

* Griffith did not specify the boundary conditions with which he
worked, but it can be deduced that it had to be {ixed force.
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made and a minimization of an altered form of the  complementary

energy functional.

VT =U-Q+S (4.7)
where Q = ZaFicSid(r
2 . = Portion of the surface where displacements

are specified

do = Differential surface element

coincides with the energy equation (4.3). At this point the physical
reason why 6_'\7'* = 0 predicts fracture is obscure, but it will be ex-

plained by considering the stability of the crack.

STABILITY

By means of the conservation law of energy, it has been pos-
sible to establish a necessary condition for fracture, since it is
necessary that energy be conserved for the phenomenon to occur.
Now it is of interest to inquire into the stability of the crack; whether
it be in stable, neutral, or unstable equilibrium. Classically it is
the second variation that provides information on stability, but this
is not necessarily always the case, Sometimes the very nature of
the problem will cause the first or possibly the first and second
variations to vanish identically. (67) In fact, there is no limit to
the number of variations that can vanish and consequently it is not
a set principle as to which variation controls stability. This turns
out to be the case in the general fracture problem that we are cur-

rently investigating. In order to see this, let us take a closer look
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at the physics, which reveals that the only ''resistance'' to be over-
come is the surface energy, and until the other ''driving'' energy
terms build up to it, a crack is perfectly stable. At the point of
equality any'thihg can happen and the crack at this critical stress
is in neutral equilibrium. Anything above the equality point results
in an unstable state for the crack, and it starts to propagate. Con-
sequently in this case it is the first variation of the exteﬁded potential
energy being set equal to zero that gives the stébility criterion for

the point of neutral equilibrium.

Buckling Analogy -

The problem of elastic buckling theory for columns is a
good analogy to fracture initiation and is helpful in clarifying this
point of which variation is related to stability. By thinking of the
potential energy of the column as a continuous function of the varia-
tion parameter, a qualitative plot can be made as shown in Figure
40, and the potential energy can be expanded in a Taylor's series
with the variation parameter acting as the independent variable, (67)
This method gives a better physical insight into the problem and

will make it easier to understand the analogous fracture problem.

Vv

€

Figure 40. Arbitrary Plot of Potential Energy
vs. the Variation Parameter.,
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A Taylor's series expansion is readily written as
2
V= V(0) + V'(0)e + V' (0) 57 + ... (4.8a)

However, by definition of the variation operator (68)

AV = 6V + 62V + 65V + ... (4.8b)

Thus if we are at an equilibrium point, the first variation vanishes
and the sign of AV is determined by the second variation, or in other
words, the second variation gives information about stability. The
one additional facet that affects the column buckling is that AV is
computed around a loading position when buckling is imminent;
therefore AV bevc‘omes a second order incremental change on top

of the AV generated by loéding from the natural state to the point

of buckling. Consequently, if the potential energy is used, the first
variation about the loaded state corresponds to a second variation
about the initial state, so that the first variation for column buckling
actually becomes equivalent to a second variationAa.nd gives the

point of instability.

A similar set of circumstances prevails in the instance of
imminent fracture, where we are using the exj:ended potential
energy. For, as in the case of buckling, the first variation about
the point where fracture is imminent corresponds to a second var-
iation about the natural state, and it is therefore the first variation
that gives the information about crack stability, This can also be
seen from the fact that the critical point using the extended potential

energy was actually based upon the first law of thermodynamics,
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which implies that a state of equilibrium prevails. Interpreted in
the light of a series expansion for V, this would mean that the first
variation, which is concerned with equilibrium, is automatically
satisfied. Thus in the expansion the first term that appears is
actually the second variation and is the one that is of interest when
seeking information about stability. From this it is seen that for
fracture prediction we are not dealing with equilibrium principles
as Griffith discussed but stability, and now it is clear why the
vanishing of the first derivative of the adjusted potential energy
is the appropriate fracture condition.

In summary it may be stated that the conservation of energy
provides a necessary condition for fracture as well as a basis upon
which the potential energy can be extended; furthermore, the value
at which the first variation of the new functional vanishes is the
point of neutral equilibrium, demonstrating that the crack will run
at this point, and this constitutes a type of sufficiency condition for
fracture. Therefore the critical values predicted by this analysis
are necessary and sufficient conditions for fracture within the limit

of the degree to which the physics are modeled by the mathematics.

ENERGY FRACTURE ANALYSIS - INFINITESIMAL THEORY

We return now to consider the growth and eventual rupture
of a spherical cavity in an infinite medium subjected to HT at infin-
ity. Based upon the findings described previously in relation