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Abstract 

The physical and chemical changes in coal resulting from mild oxidation a t  

ambient conditions with NOe were studied. Various liquid phases were used as 

transport media for the  NOz. Subsequent to the  oxidation, the coal was sub- 

jected to a wash with aqueous Na2C03 at  ambient conditions. Particular atten- 

tion was given to the  desulfurization of the coal. A mathematical model of the 

reactions between NO2 and coal a t  temperaLures less than 1007C and a pressure 

of 1 a t m  was developed from the  experimental data. This model included the 

simultaneous diffusion and reaction of NO2 in the  solid-coal matrix and con- 

sidered pore diffusion not to be controlling. The elemental cornpositiorl and the 

energy co~l tenl  after processing were extensively exsznined. The effect of the 

NOz t reatment Gn the  pore structure was establlslted. 



Because of the increased interest in the exploitation of coal for energy and 

chemicals, many areas of coal chemistry are currently under investigation. The 

major motivation for the work discussed in this thesis was to investigate the 

applied chemistry of the reactions of coal and NO2, with particular emphasis on 

oxidative desulfurization. A mathematical simulation of the r-eactions of NO;: 

and coal a t  temperatures less than 100°C and a t  a pressure of 1 atm was 

developed from the experimental data. I t  was found that  when the coal was 

exposed to NOz a t  concentrations of less than 2 F in CC14 a t  temperatures of 0 to 

SOOC, the  rate of nitrogen uptake by the coal obeyed Erst order kinetics: 

dY - -  
d t 

= k X , where 

r n ~  = the net increase in the nitrogen content of the coal 

( g  N / 1 0 0  g untreated coal), 

(mN)m = the net increase in the nitrogen content of the coal as 

the exposure time approacl~es infinity (g N/100g untreated coal), 

k = the first order rate constant (min-I), and 

t = the time (min). 

The values of k were found to be 0.0342, 0.0483 and 0.0466 min-I a t  0, 20 and 

50 OC, respectively, for the treatment of the PSOC 190 coal. The value of k deter- 

mined for the treatment of the P S O C  276 coal with NO2 in CCL at 20jC was found 

to be 0.0183 min-l. An analysis of the data also revealed that  the rate of disap- 

pearance of NO2 from the NOE/CC14/coal system was governed by the rate of 

diffusion of NOz into the coal during the first 39 minutes of the NO2 treatment. 

After 30 minutes, diffusion was found to no longer control the ra te  of NO2 



disappearance from the  system. I t  was found t ha t  CC14 was the  best liquid t o  

use as a transport  medium for NO2 because i t  did not  compete with the coal for 

NOz and was easily separated from the  coal after the  NO2 treatment. 

Because it was determined that  NO2 was soluble in the solid-coal matrix, the 

mathematical model incorporated both the  diffusion of NO2 in the  solid-coal 

matrix and the chemical reaction of NO, with the coa.1. It was found that  the 

nitrogen uptake by the  PSOC 190 coal correlated best with a value of 10-l5 

cm2/s for the  coefficient of diffusion of NO2 in the  solid-coal matrix. The 

nitrogen uptake by the PSOC 276 coal, on the  other hand, correlated best with a 

value of 5 x 10-14 cm2/s for the  NOz diffusion coefficient. Although the values 

obtained for the diffusion coefficient are several orders of magnitude less than 

those for the  diffusion of other gases, such as N2, 02, C02 and CO in polymers 

(low8 to  10-lo cm2/s), the  results indicated tha t  diffusion of NO2 in the solid-coal 

matrix was relatively slow and probably coupled with chemical bonding. 

A study of the  pore structure of the  coal revealed that. the  ra te  of nitrogen 

uptake by the coal was governed by the pore structure of the coal particle. In 

particular, the  specific surface area, pore volume, and pore-size distribution of 

the  coal were determined as  a function of the  NO2 exposure time, the NO2 conc- 

entration, and t he  temperature. It was found tha t  t he  first-order ra te  constants 

for nitrogen uptake by the  two coals were proportional to  their respective 

nitrogen-determined surface areas. It was found tha t  the C02-determined sur- 

face areas did not correlate with the  kinetic data a t  all. The results of the C02- 

adsorption study indicated that  C02 was absorbed by the coal ra ther  than just 

adsorbed on the surface of the coal. 

A major r e s ~ l t  was  developed from a study of the hydrogen, mineral mat ter  

and sulfur contents of the coal after treatment with NO2 followed by washing in 

Na2C03 (aq). The hydrogen conlent of the processed coal showed that  up to 25 % 



of the  hydrogen in t he  untreated coal was replaced by oxygen donated by NOz t o  

form a uniformly distributed, acidic precursor in the  coal which imparted an 

ion-exchange characteristic to the  treated coal. Upon exposure of the NOe- 

treated coal to  0.1 M Na2C03 (aq), the precursor bound the  sodium ions, as evi- 

denced by the qualitative elemental analysis of the mineral mat ter  obtained 

with an energy-dispersive analyzer of x-rays. The PSOC 190 took up 0.03 g 

sodium/g coal, and the value for the  PSOC 276 coal was 0.01 g sodium/g coal. 

The sodium ions exchanged with the  hydrogen ions during the  wash with 

Na2C03 (aq). Upon combustion of the  coal in a n  oxidizing atmosphere, this 

sodium-containing precursor trapped SOz, which would have otherwise escaped 

in the  flue gas, in the  ash, probably in the form of Ka2S04. In particular, up t o  

96 % of the sulfur in a treated coal was retained in the ash upon combustion 

under fuel-lean conditions. The heating value of the  coal was not decreased by 

more than 15 percent and averaged about 10 percent. 

The work discussed in this thesis gave several importa~l t  results which 

deserve continued investigation. Important areas for. further. study a re  sug- 

gested as follows: 

1. The chemical structures formed in the coal by the oxidation with NO2 should 

be established. 

2. The use of oxidants other than NOZ should be investigated. 

3. The use of alkaline-earth and alkali metals other than sodium for trapping 

SOz during combustion of the processed coal should be studied further. 

4. The effect of the pressure during the  NaeCOa (aq) wash should be investigated 

to  determine if higher pressures can lead to  greatcr penetration of the 

NaZCO3 (aq) solution into the oxidized coal. 

5. The mathematical model should be modified so that  it conforms more closely 

with the actual experimental conditions. In particular, the time dependence 



of the bulk NO2 concentration should be incorporated into the model. The 

solid void fraction should be replaced by using a Henry's law relationship 

which describes the concentration of NOz just inside the solid coal matrix 

relative to that in the solvent. Other pore geometries should be investigated 

as well. 
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Nomenclature 

A = the affinity of adsorption. 

a = a pre-exponential constant. 

A$ = the molecular cross-sectional area of the adsorbate a t  temperature T 

(cm2/ molecule). 

P 
a = the moles of adsorbate adsorbed a t  relative pressure -(mol/g). 

Po 

a, = the moles of adsorbate adsorbed to form a monolayer (mol/g) 

a, = the external surface area of the coal particle (cm2/g), 

% = the activity of species i. 

C i C,( t ,X)  = -= the dimensionless concentration of species i. 
1.i)~ 

c, = the bulk NO2 concen.tration (moii'cm3 void volume). 

ci = the concentration of species i (rr~ol /cm~).  

c, = the NO2 concentration a t  the particle surface (mol/cm3 void volume). 

cf = t,he coal species conc:entration (mol/cm3 solid volume). 

D = the diffusion coeflicie~lt (crnqs).  

- the effective diffusivity of species i (cm2/s). De.i - 

Di = the molecular diffusivity of species i (cm2/s). 

D, = the NO2 ditiusivity in the solid coal matrix (om2/s). 

6 = the activation energy (cal/rnol). 

E = the electrode potential (V). 

El = the heat of adsorption of the monolayer (J/mol adsorbate). 

EL = the heat of 1iquefact.ion of the adsorbate (J/mol adsorbate). 

Eo = the reference potenticl (V). 

F = the concentration in units of formality (mol/l). 

f = the fraction of pore filling. 

fi = the fugacity of species i. 



AG, = the differential change in the molar free energy upon adsorption with the 

bulk liquid adsorbate a t  the same temperature as the standard 

(cal/mol). 

AGggBX = the free energy of reaction at  296 K and 1 atm pressure fcal). 

g = the acceleration of gravity (960 c n i s 2 ) .  

Hg = the heating value of the coal (Ftu/lb,). 

AHgOBK = the enthalpy of reaction a t  298 K and 1 atm pressure (cal). 

I = the ionic strength (mol/cmF). 

Ki = the dissociation constant c.f species i. 

k = a first-order rate constant (s-I). 

k = a measure of the average pore size. 

k, = a distribution characterization constant. 

k, = the mass transfer coefficient for NO2 between the particle surface and the 

bulk solvent (cm /s). 

kj = a second-order rate constant (cm3/mol/s). 

L = the thickness of the solid slab comprising the idealized slit-pore geometry of 

the coal (cm). 

Li = the mass corrected mass loss of species i from the coal. 

Ms = the molecular mass of species 5 ,  

( L V F V ) ~  = the molecular rnass of species i, 

m, = the molality of species i (mol/kg solvent). 

m, = the net mass increase of species i in the coal (g i / lOOg untreated coal). 

N D  = Avogadro's number (6.02 X lo2' molecules/mol). 

P = the pressure (atm,t.orr). 

Po = pa = the vapor pressure of the adsorbate (atm,torr). 

P -= the relative pressure. 
P a  

Q = the area of the pore cross-section (crn2) 



R = the gas constant (1.9872 cal/mo!/K). 

R = the potentiometric reading for the sample during HNOz analysis. 

Ri = the net rate of formation of species i (mol/cm3/s). 

Rs = the potentiometric reading for the standard during the HNOz analysis. 

r = the radial distance (cm), 

rk = the core radius (cm). 

r ,  = the diffusicn path length (cm). 

S = the electrode slope. 

S; = the specific surface area determined with adsorbate i (cm2/g adsorbent). 

St = the specific entropy of phase i (cal/mol/K}. 

SW,, = the micropore surface area (cm2/g adsorbent). 

T = the temperature (K). 

t = the time (s). 

t = the film thickness (cm). 

il = the average molar volume of the adsorbed phase (cms/mol). 

V, = the molar volume of an ideal gas a t  273 K and 1 atm (22,414 cm3/mol). 

T/, = the total nitrogen-determined pore volume (cm3 void/g solid). 

V, = the spherical shell volume (cm3), 

-- dV - the differential change in pore volume with respect to the pore surface 
d S  

area (cm). 

W = the volume of the pore structure filled with adsorbate (cm3). 

W = the calorimeter constant (cal/g). 

Wo = the limiting adsorption volume in the micropores (cm3/g adsorbent). 

x X = - = a dimensionless thickness. 
L 

Xi = the solid coal species j .  

x = the amount of adsorbate adsorbed (cm3 a t  STP/g adsorbent). 

x:kf = the monolayer amount of adsorbate adsorbed (cm3 a t  STP/g adsorbent). 



z = a characteristic distance (cm). 

z = the conversion. 

Z i  = the electric charge of species i. 

Greek Symbols 

rw = a characteristic function of the pore environment. 

olj = the stoichiomet;.ic coefficient, 

@ = an affinity coefficient which allows the adsorption isotherms of different 

gases on the same solid to merge. 

r (n)  = the gamma function evaluated a t  n. 

yi = the activity coefficient of species i. 

( Y , ) ~  = the mean ion activity coefficient of species i. 

y[ = the activity coefficient of species i when molar concentrations are used. 

(y,C)( = the mean ion activity coefficient of species i when molar concentrations 

are used, 

E = the void fraction jcm3 void/cmS total volume). 

E, = the solid fraction (emS solid,cm3 total volume). 

19- = the contact angle. 

19 = the fraction of the m.onolayer occupied. 

= the chemical potential of specjes i (callmol). 

= the viscosity of species 1 (g/cm/s).  

pi = the density of species i (g/cm3). 

p, = the solid density (g/crn"). 

u = the surface tension (dyne/am). 

vi = the molar volume of species i. 

p = the adsorption potential in the micropores. 

T = the partic113 tortuosity. 
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Special Characters 

h 

x = the quantity x in the solid coal matrix. 
N N N  

a=, bi, ci = the elements in the tridiagonal matrix. 

(X) = the concentration of species X (mol/cm3). 

( X I o  = the initial concentration of species X (mol/cm5). 



CHAPTER 1 

Introduction 

During the past decade, it has been generally recognized that the world sup- 

ply of crude oil is being rapidly depleted. Indeed, a pervasive fear exists that 

mankind may not be capable of meeting its energy needs by the year 2000. As 

the United States has become increasingly dependent on foreign oil to supple- 

ment its own domestic production, the country has become more vulnerable to 

external political and economic manipulation. The recent escalation in world oil 

prices caused by the revolution in Iran and the concomitant interruption in the 

oil supply from the Persian Gulf states in 1979, however, has resulted in a 

decline in the amount of oil the United States now imports, which is due pri- 

marily to the increased efficiency in energy usage and to increased conservation. 

Nevertheless, the amount of oil the United States imports is still significant. 

This threat to national security can be countered by the aggressive development 

of domestic energy supplies. In any event, it will be necessary to switch from 

fossil fuels to some other energy source in the future. 

There are predictions that by 2010, annual domestic oil production will 

decrease from 20 quads (1 quad = 1015 Btu) in 1975 to only 6 quads.' Even 

under the most favorable economic and regulatory conditions for oil explora- 

tion, annual production would still fall to 16 quads by 2010. Consequently, the 

annual level of oil production will decline. The level of natural gas production is 

projected to fall a t  an even faster rake, decreasing from an annual production of 

19.7 quads in 1975 to only 5 quads in 2010.' Again, however, if quite favorable 

economic and regulatory conditions exist, production in 2010 is projected to fall 

only to 16 quads. In any event, natural gas production is expected to decline 

significantly in the future. 



The situation with respect to coal, on the other hand, is not as bleak. Coal is 

the most abundant fossil fuel in the United States. Of the total domestic 

resource of 80,000 quads, only 6,000 quads are economically recoverable a t  this 

time. Nevertheless, the total annual consumption of coal is just 14 quads, or 

less than 0.3 percent of the recoverable reserves.' The nation uses about 10 per- 

cent of its recoverable oil and natural gas reserves each year, on the other 

hand. Although coal would seem to be the ideal panacea for the nation's energy 

ills, the rapid escalation in coal production and usage which would be required 

has many inherent problems. Primarily, the coal mining and utilization indus- 

try would experience a large expansion which would require the investment of 

hundreds of billions of dollars over the years. Furthermore, much effort must 

be expended to allow the combustion of coal to be conducted in an economically 

yet environmentally acceptable manner on such an expanded scale. 

There are several other sources of energy which do not rely on the combus- 

tion of fossil fuels. Of these, the most important a t  this time is the production 

of electricity using the nuclear fission of uranium. The currently employed 

technology uses enriched uranium on a once-through basis without recycle. On 

this basis, only about 400 1,000 megawatt reactors, each of which have a 30-year 

lifespan, can be built before the entire domestic supply of recoverable uranium 

is committed. As of 1978, the equivalent of 46 such reactors were in operation 

in the United States. Therefore, even the prospects for nuclear power are some- 

what limited, unless the uranium is recycled. Use of breeder reactors allows the 

uranium to be recycled up to one hundred times, however, which would greatly 

enhance the fuel supply for nuclear reactors. Environmental concerns, particu- 

larly after the incident at  Three Mile Island, however, may prevent the expansion 

of the nuclear industry beyond its present day level. Consequently, reliance on 

nuclear fission to compensate for the continued decline in oil and gas supplies is 



tenuous at  best. 

It does not appear likely that  other alternatives for energy production will 

have a significant impact on the total energy picture for the balance of this cen- 

tury. Such processes as thermonuclear fusion and the conversion of solar 

energy are still in an incubative stage. Other processes, such as the conversion 

of geothermal and hydroelectric energy, have well established technologies but 

limited resources, And still other processes, such as the conversion of shale oil 

and tar sands to useful fuels, are being tested on a commercial scale but still 

face a myriad of environmental problems. A major breakthrough would be 

needed to advance any of these processes to the forefront in the fight to meet 

domestic energy needs with resources indigenous to the United States. 

In view of the overall situation, it appears that in the case of oil and natural 

gas, the technology is extensive but the reserves are rapidly dwindling, whereas 

in the case of the more elegant schemes, the reserves appear to be inexhausti- 

ble but the technology has not been sufficiently developed. On the other hand, 

much of the technology needed for the commercial utilization of coal is already 

available, and the reserves. of coal far exceed those of oil and natural gas. Con- 

sequently, it is not surprising that research in the area of coal utilization is 

extensive. 

One area of particular interest involves pollution abatement. One particu- 

larly noxious pollutant is sulfur dioxide, which is evolved during coal combus- 

tion and is formed from the sulfur inherent in the coal. Current air quality 

standards require the removal of 70 to 90 % of all of the SO2 which would other- 

wise enter the atmosphere upon combustion of the raw coal in a utility boiler. 

Consequently, the combustion of virtually any coal requires some degree of sul- 

fu r  reduction, whether it is before or after combustion. Current technology 

employed on a commercial scale emphasizes the post-combustion treatment of 



the flue gas with SO2 scrubbers to meet air quality standards. This sort of treat- 

ment appears to be appropriate for large electric utility boilers. For smaller 

boilers and fuel burning equipment, however, desulfurization prior to combus- 

tion may be better.4 The technology in this area is not as well developed as in 

the post-treatment case. Clearly, then, the incentive for developing techniques 

for pretreatment exists. If such techniques can lead to the formation of 

economically viable and commercially feasible processes, there will be time to 

develop other energy technologies without facing severe social, economic and 

political consequences. 
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CHAP'IXR 2 

BACKGROUND 

2.1 Coal 

Coal is the product resulting from the decomposition of plant material which 

lived millions of years ago. Thus, the composition of a particular seam of coal 

depends upon the composition of the flora and fauna from which it is derived 

and the environment in which the decornpositon occurs.' Because the variation 

in the species of flora which lived even in previous epochs was quite extensive, 

the variation in coal composition is quite extensive as well. Indeed, samples of 

coal taken just feet apart from each other can show significant differences in 

elemental compositron. Such variations lead to difficulties when designing 

processes employing coal, whether it be the combustion of coal to generate elec- 

tricity or the chemical treatment of coal to obtain petrochemicals. Several 

methods of classifying the rank and petrographic constituents of coal have 

evolved as researchers attempt to gain a better understanding of coal. 

The most widely used ranking system is probably the ASTM classification 

(ASTM D-338-66), which is based solely on the carbon content and the dry, 

mineral matter free (DMMF) heating value of the coaL2 Anthracite has a carbon 

content of greater than 86 percent by mass. Anthracite is the oldest coal by 

rank since it has decomposed to the greatest degree by evolving almost all of its 

hydrogen, The next rank is bituminous, in which the coal has a DMMF heating 

value greater than 10,500 Btu/lb, and a fixed carbon content less than 86 per- 

cent. Subbituminous coal has a DMMF heating value between 8,300 and 11,500 

Btu/lb,. The lowest rank is lignite, where the DMMF heat content is between 

6,300 and 8,300 Btu/lb,. Of the total proven coal reserves in the United States 

which are legally and economically recoverable, the proportion of anthracite: 



Several systems for classifying the petrography of coal exist. Thiessen4 

developed a method for classifying the macerals found in coal based on the 

transmittance and reflectance of light interacting with thin slices of coal. He 

found three basic macerals, namely anthraxylon, exinite and fusain. The 

~ t o p e s - ~ e e r l e n ~  system also classifies the petrographic constituents of coal into 

three groups: vitrinite, exinite and inertinite. A more extensive system is used 

by the U.S. Bureau of Mines, which employs six classifications: vitrite, clarite, 

duroclarite, vitrinertite, clarodurite and durite. KnowIedge of the petrographic 

constituents in a particular coal may enable a prediction of its extractibility 

with various solvents. For instance, recent research in this area by Vasilakos 

and ~awson' utilizing solubility parameter spectroscopy show that vitrinite in 

particular may be amenable to extraction with a 50:50 mixture of carbon tetra- 

chloride and methanol. 

2.2 Forms of Sulfur in Coal 

Coal generally has a sulfur content of 1 to 4 mass percent, although it can be 

as high as 10 percent for coals mined from seams with large pyrite deposits.? 

Sulfur occurs in two basic forms in coal, either inorganic or organic. The ratio 

of inorganic to organic sulfur ranges from 4: 1 to 1:3, with 2:l being most com- 

mon.% The major constituent of inorganic sulfur is iron disulfide, FeSz, which 

occurs in various crystall~ne forms, namely pyrite, marcasite and troilite. These 

various crystalline forms are usually considered together as simply pyrite. The 

other major form of inorganic sulfur is sulfate, found as a salt with various 

metals, the most important being iron, calcium, magnesium and barium. 

Although the amount of sulfate sulfur in freshly mined coal is generally quite 

small relative to the amount of total sulfur, coal which has been exposed to 

oxygen in the presence of water can nave virtually all of its inorganic sulfur in 



sulfate form. The conversion of pyrite to ferric sulfate is due to the action of 

the thiobacillus ferroxidans bacterium, whose occurence is quite prolific in acid 

mine water.g Inorganic forms of sulfur generally occur as crystals or particles 

separate from the carbonaceous part of the coal. However, the size of the parti- 

cles range anywhere from 1 pm to I mm in diameter,'' 

The other major form of sulfur found in coal is organic. In contrast to inor- 

ganic sulfur, organic sulfur is homogeneously distributed throughout the carbo- 

naceous matrix of the coal." The forms of organic sulfur are classified accord- 

ing to the functional group in which the sulfur occurs. The major forms are 

thiols, sulfides, disulfides and thiophenes. In the first three forms, the sulfur 

can be considered to be aliphatic, while in the thiophenic form, the sulfur is 

aromatic. The distribution of the various types of organic sulfur occurring in 

coal is not accurately known. 

2.3 Coal Drrsulfurization 

The sulfur in coal used for power generation can be removed either before or 

after combustion. Post-combustion desulfurization requires the use of large 

scrubbing towers where the flue gases from the boiler are contacted with an 

appropriate adsorber for SOz, usually an aqueous lime solution. Although this 

method is the most widely used for desulfurization on an industrial scale, the 

costs encountered for incorporating Aue gas scrubbing can be as high as 20 per- 

cent of the total capital outlay for a power p1ant,l2 Retrofitting an existing plant 

can be even more expensive. Furthermore, the scrubbers produce a large 

amount of sludge which poses a significant solid waste disposal problem. For 

instance, a typical lime scrubber generates 4.25 Ib, of dry sludge for every :. Ib, 

of sulfur in the coal.13 

Two basic methods exist for the removal of sulfur from coal prior to combus- 



tion, namely physical and chemical. Physical desulfurization seeks to separate 

the sulfur from the coal without altering the sulfur or breaking chemical bonds 

in the process. The fact that no chemical bonds are broken implies that only 

the inorganic sulfur forms which, unlike the organic sulfur, are not intimately 

bound in the carbonaceous matrix can be physically removed. Several methods 

of physical cleaning of coal are currently in use. 

One widely used process involves the separation of pyrite, which has a density 

of roughly 5.0 g/cm3, from the rest of the coal, which has a density ranging 

from 1.0 to 1.6 g/cm3, in a solvent with a density between 2.0 and 4.0 g/cm3 .I4 

Ideally, the pyrite sinks and the carbonaceous material floats, Good separation 

requires the coal to be milled to suffciently small particle size so that the pyrite 

crystals are released from the rest of the coal. In cases where particle sizes are 

too small (on the order of law3 cm), electrostatic and dispersion forces predom- 

inate over buoyancy forces, resulting in separation difficulties.15 

Another separation procedure employs a strong magnetic field (20,000 gauss 

vs. 0.57 gauss for the magnetic field of the earth) influencing a stream of ground 

coal.16 Since pyrite has a dipole moment while the carbonaceous material does 

not, the pyrite particles, as well as any other inorganic material which has a 

dipole moment, is deflected from the stream. Other physical beneficiation 

methods include froth flotation, stage crushing, and microwave and electronic 

separation of pyrite.l7 

Although most physical beneficiation methods are relatively inexpensive, only 

inorganic sulfur forms are removed from the coal, Since current regulations 

regarding SO2 emissions require 90 % sulfur removal for most coals,18 removal of 

organic sulfur is necessary as well. Because organic sulfur is covalently bonded 

to carbon in the coal, processes energetically capable of breaking carbon-sulfur 

bonds are required. The sulfur is then removed in a form different than its form 



in coal. Reductive desulfurization results in the removal of pyritic and organic 

sulfur as H2S. The major disadvantages of the process include the high cost of 

maintaining the high temperature (450°C) and pressure (2500 psi) required for 

reaction and the high cost of hydrogen. For instance, FeSz does not react with 

Hz below 45o0~.lg A t  that temperature, coal begins to thermally decompose and 

liquefy due to incorporation of Hz into the organic structure. Organosulfur 

compounds also require temperatures greater that 400°C for H2S evolution, even 

in the presence of catalysts such as COO and MooB supported on alumina.20 

Hydrodesulfurization is best suited for liquefaction and gasification processes 

where the coal is converted to a synthetic fuel, 

Oxidative desulfurization schemes, on the other hand, seek to remove as 

much sulfur as possible while minimizing alterations in the rest of the coal 

structure. This is best accomplished by using cheap oxidants, such as air, under 

ambient conditions. The selectivity of the oxidant for sulfur with respect to the 

rest of the coal is of crucial importance in order to minimize the loss in heating 

value of the coal. Several oxidative desulfurization schemes have been 

developed, Most attain high inorganic sulfur removal without significant losses 

in heating value. Significant organic sulfur removal, however, is usually accom- 

panied by a large amount of oxidation of the carbonaceous material. 

The use of oxygen dissolved in an  aqueous slurry of coal,21 for instance, pro- 

vides a good example. This scheme, sometimes referred to as the Ames process, 

attains 20 to 70 % pyrite removal at ambient pressure and 70°c, and up to 90 % 

pyrite removal a t  300 psi of oxygen and 130°C. Under these conditions, however, 

some combustion occurs resulting in a 6 Z mass loss. Both this process and the 

Meyer's process" rely on soluble sulfate as a chain carrier: 

3 Fez+ + 1.5 [ 0 ]  -+ 3 F'e3+ + 1.5 [02-] , (2.3.1) 



Removal of organic sulfur involves the direct formation of sulfur-oxygen bonds, 

resulting in sulfoxides and sulfones which are then hydrolyzed: 

sul f oxide sul f one 

Utilizing temperatures from 150 to 200ac and pressures from 500 to 1500 psi, up 

to 50 % of the organic sulfur is removed. However, severe heating value losses of 

up to 50 % occur as well. Indeed, it is not clear if the organic sulfur removal is 

due solely to combustion or to a selective reaction of oxygen with organic sulfur. 

Another process employs aqueous hydrogen peroxide under ambient condi- 

t i o n ~ . ~ ~  No appreciable pyrite removal occurs unless aqueous sulfuric acid is 

added. This requirement implies that soluble sulfate is needed as a chain car- 

rier in this scheme as well. The overall reaction is: 

2 FeSz + 15 HzOz -+ Fe2(S04)3 + H 2 S 0 4  + 14 H 2 0  . (2.3.3) 

Complete pyrite removal can be attained without significant heating value 

losses. However, no organic sulfur removal occurs unless an excessive amount 

of HzOz is added, which results in complete oxidation of the coal. This scheme is 

practical for pyrite removal only. 

One promising oxidative desulfurization scheme is the chlorinolysis process 

developed by the Jet Propulsion ~ a b o r a t o r ~ . ~ ~  In this instance, chlorine gas is 

bubbled through a slurry of coal in an appropriate solvent such as water, methyl 

chloroform or carbon tetrachloride. The treated coal is thn stripped with N2 to 

remove the chlorine. Once again, removal of pyrite is fairly complete. The 

pyrite is ultimately removed as FeCIS and HzS04. The fact that Clz is very selec- 



tive for sulfur as opposed to carbon or hydrogen in model sulfur compounds 

implies that the selective attack of organic sulfur in coal should occur as 

Research conducted to date, however, shows insignificant organic sulfur remo- 

~ a l . ~ ~  The problem may be the removal of the oxidized sulfur products, which 

may still be bound to the rest of the carbonaceous material, Although chlorine 

shows a high selectivity for sulfur oxidation, it does not have a propensity for 

simultaneous or subsequent carbon-sulfur bond scission. A major problem with 

the process involves the removal of chlorine from the desulfurized coal, The 

chlorinated coal generally has a high chlorine content of up to roughly 10-15 % 

by mass. Reducing the chlorine content to its pretreatment level (about 0.1 %) 

is quite difficult,although treatment of the coal with hydrogen a t  4502C does 

lower the chlorine content to its pretreatment level. Coals with chlorine con- 

tents greater than a few tenths of one percent pose serious corrosion problems 

for combustion in utility boilers, 

Aqueous nitric acid can also be used to remove sulfur from Indeed, 

10 % aqueous nitric acid is used to wash coal in the standard procedure for the 

determination of the pyritic sulfur content of coal.2r In this procedure, 1.0 g of 

coal is slurried in 50 ml of 10 % HNQ3 (aq) and stirred overnight, The amount of 

iron dissolved in solution is determined and is attributed to the pyrite in the 

coal. By definition, complete pyrite removal is obtained as follows: 

No organic sulfur removal occurs, however, when the coal is washed in 10 % 

HN03 (aq). Use of 35 % HNO, (aq) does result in substantial organic sulfur remo- 

val coupled with extensive oxidation of the coal. As in the case of aqueous 

oxygen, the organic sulfur removal may be due to non-selective oxidation of the 

coal. Treatment of anthracite and bituminous coals with mixtures of concen- 

trated nitric and sulfuric acids indicate that coal is quite amenable to nitration, 



the degree of which is independent of the rank and the temperature of the treat- 

ment.2B All of the six coals examined, which had carbon contents ranging from 

81 to 93 mass percent, show about a 27 & 2 % mass increase due to the intro- 

duction of nitro groups alone, with the balance of the mass increase due to the 

creation of oxygenated groups in the aliphatic portion of the coal structure. 

Interestingly, there is no loss of carbon during nitration. Furthermore, there is 

an increase in the number of carboxyl, and to a much lesser extent, hydroxyl 

and carbonyl, groups in the coal after treatment. These two facts imply that 

carboxylic groups originate from the oxidation of methyl groups in the coal. 

The organic sulfur reduction for the bituminous coals ranges from 0 to 7 % while 

that of the anthracite is 44 %. The nitrogen contents increased from roughly 2 

to 7 % as well. Since nitrogen in coal is ultimately converted to NO and NO2 dur- 

ing combustion and are serious pollutants as well, nitric acid treatment com- 

pounds rather than alleviates the SOZ emission problem. Whereas SO2 can be 

scrubbed from the flue gas, oxides of nitrogen cannot be removed by stack gas 

scrubbing. 

An analogous, but milder oxidizing agent is nitrogen dioxide. Pyrite reacts 

readily and exothermically with NOz under anhydrous and aqueous conditions: 

FeSz(s) + 6 N02(g) -t FeS04(s) + SOz(g) + 6 NO(g) , where 

Af1ggaK = -185 kcal and dGzgBK = -222 kcal , and (2.3.5) 

FeS2(s) + 7 NOz(g,aq) + N20 -r 

FeS04(aq) + H2S04(aq) + 7 NO(g) , where 

AH$OBK = -260 kcal and A G$gBK = -222 kcal . (2.3.6) 

Under anhydrous conditions, once a layer of FeSO, has formed on the surface of 

a pyrite particle, further reaction is inhibited due to the increased mass 

transfer limitations imposed on the NOz. When reaction takes place in aqueous 



solution, on the other hand, reaction is not inhibited because the FeSO, product 

is soluble. Therefore, complete conversion of pyrite to ferric sulfate and suf- 

furic acid is possible. The oxidation of organosulfur compounds proceeds as fol- 

lows: 

NOz + R -S -R' -r R -(SO)-R' + NO , where 

= -12.2 kcal and AG&gaK = -1 1.6 kcal , and (2.3.7) 

NOz + R -(SO)-R' + R-(SO,)-R' + NO , where 

. ( ~ H & J ~ ~  = -41.6 kcal and .(lGggaK = -40.4 kcal , and (2.3.8) 

The thermodynamic data indicate that formation of the oxidized products is 

favored when no kinetic limitations exist. Mixtures of NOz and air are used com- 

mercially for the oxidation of dimethyl sulfide to dimethyl sulfoxide, for 

instance.2g Di-n-butyl sulfide reacts readily with NOz a t  room temperature to 

form the corresponding sulfoxide and s u l f ~ n e . ~ '  Reaction of NOz with diben- 

zothiophene, however, leads to products other than the sulfoxide or sulfone, 

which indicates that NO2 does not demonstrate the selectivity for sulfur that Clz 

does under similar ~ o n d i t i o n s . ~ ~  Some of the possible reactions of NOz with 

organic compounds are: 

Ketone Formation: R-CH,-R' + 2 NOz -r R-(C=O)-R' + 

R-(C=O)-R' + HzO + 2 NO, where 

AH$gsrr = -59.6 kcal and A G$gaK = -7'0.0 kcal , and (2.3.9) 

Carboxylic Acid Formation : R -CHs + 3 NOZ + 

R-COOH + HzO + 3 NO, where 

AH$OBK = -100.3 kcal and A GggsK = -1 11.2 kcal , and (2.3.10) 

Phenol Formation: Cell5-H + NOz -+ C6H5-OH + NO , where 

ANBQsx = -29.2 kcal and A G$gBK = -30.3 kcal , and (2.3.1 1) 



Subst i tdim : CeN5-H + 2 NOz + CBH5-NO2 + HNOz , (2.3.12) 

where the thermodynamic quantities shown are for reactions in the gas phase. 

Values of AHgesK and AGgBBK for the substitution reaction could not be 

estimated. I t  is apparent from comparison of the thermodynamic data for reac- 

tion of NO2 and organosulfur compounds with that of NO, and simple organic 

compounds that NO2 should show little or no selectivity for sulfur when kinetic 

limitations are nonexistent. 

Recently, the reaction of NO2 and coal in the gas phase has been investi- 

gated,32 The treated coal is then washed in water to remove ferric sulfate. 

Further treatment with aqueous caustic is then claimed to remove organic sul- 

fur, For example, a coal containing 3.6 % pyritic sulfur and 0.7 % organic sulfur 

is treated for three hours in a fixed bed at 1004: with a gaseous mixture con- 

taining 5 to 10 % NOz. The treated coal is then washed with water followed by a 

wash with 10 % NaOH (aq), leaving a coal with only 0.5 % total sulfur content. 

Unfortunately, there is no mention of mass or heating value losses, which makes 

it very difficult to verify the claims of high selectivity made by the authors. 

Furthermore, the coals examined were not predried to remove water. Thus, it is 

not clear whether NO2 or nitric acid is the true oxidizing agent. Nitric acid 

results from the rapid reaction of NOz with water: 

HzO + 2 NO, -, HNO, + HNO, 

H z O + 3 N 0 2  + 2HNOa+N0 (2.3.13) 

Indeed, the presence of water can lead to the creation of many species, includ- 

ing not only nitrous (HN02) and nitric (HN03) acids, but nitrosonium (NOf) and 

nitronium (NO;) ions as we11.~~ Any of these species are capable of reacting 

significantly with organic compounds. Indeed, overwhelming evidence exists 

that NO; is the active nitrating species in aromatic nitrations performed with 



concentrated nitric acid or a mixture of concentrated nitric acid and concen- 

trated sulfuric acidVs4 In more dilute solutions, however, the formation of NO; is 

greatly suppressed by water.'= Therefore, participation of NO' and NO$ in the 

reactions with coal would be possible if sufficient moisture exists in the pore 

structure of the coal. Once exposed to excess NOz, the water can be quickly con- 

verted to concentrated nitric acid, allowing the formation of NO;. On the other 

hand, NOz dissolved in organic solvents such as carbon tetrachloride does not 

ionize: 

N204 # NO' + NO, (2.3.14) 

Although NOz can oxidize organosulfur compounds to the corresponding sul- 

fones, removal of sulfur from these compounds is extremely difficult. The addi- 

tion of oxygen atoms to a sulfur atom weakens the carbon-sulfur bonds by 

roughly 20 percent. Only aliphatic sulf ones readily decompose, however, a t  

room temperature in the presence of aqueous alkali: 

R2CH-CR2-SO2-R' + P O -  -+ 

The sulfonic acid ( ~ ' ~ 0 2 )  is water soluble. If R' is still attached to the coal 

matrix, however, which is quite likely, there is no sulfur removal from the coal. 

Aromatic and thiophenic sulfones are extremely stable. Desulfurization 

requires extremely severe conditions before reaction will take place: 

- - 

AT -(SU~)-AT' + ArOH, A r  -Art, NaZSO3 , and 
300 "C 

NaOH 
DBTOz -+ Dibenzofuran,  Biphenyl, and Nu zSO, (2.3.17) 

300 OC 

Coal would be severely oxidized under these conditions, resulting in high heating 

value losses. On the basis of these facts, one would not expect a significant 

degree of organic sulfur removal unless very severe conditions are employed. 



2.4 Changes in Coal Structure Due to Reaction 

During the reaction of NOz with coal, the structure of the coal itself changes. 

These changes can influence the course of the reaction. For instance, the addi- 

tion of oxygen groups to the interior surfaces of the pores may inhibit further 

NOz mass transfer. All alterations occur on the atomic level. The best way to 

gauge these changes in the coal microstructure is by monitoring the variation in 

the appropriate macroscopic structural parameters. For instance, the specific 

surface area of the coal indicates the fraction of the solid material exposed. 

The total pore volume determines the void fraction of the solid. This parameter 

relates the degree of "openness" of the coal particle, which affects the rate of 

diffusion of molecular species into and out of the particle. More information is 

conveyed by the pore size distribution. Whereas the average pore size can be 

determined from the specific surface area and void fraction, the pore size distri- 

bution provides information concerning the pore volume as a function of the 

pore radius. The distribution serves as an indicator of the tortuosity of the par- 

ticle, where the tortuosity is simply the reactant path length per unit thickness 

of the particle. Furthermore, coals with similar specific surface areas and void 

fractions may have vastly different pore size distributions. Thus, the rates of 

NOz transport may be quite different because the pore diameters of one coal 

may be smaller than those of another coal. Taken together, variations in these 

three parameters as a function of an appropriate reaction parameter can pro- 

vide valuable information regarding the nature of the interaction of NOz and 

coal. 

2.4.1 Measurement of the Specific Surface Area of Solids 

The most common method of measuring the specific surface area of a solid 

involves the adsorption of a gas by the solid. Generally, the gas should not react 

chemically with the solid under the conditions of the measurement. The most 



commonly used adsorbates are nitrogen, carbon dioxide and argon. Two 

theories are widely employed in obtaining the specific surface area from the 

adsorption data, namely that developed by Brunaeur, Emmett and Teller (BET), 

and that formulated by Dubinin and Polanyi (DP). 

The BET theory is essentially an extension of Langmuir's one molecule to a 

site theory to encompass the formation of multilayers during ad~orpt ion . '~  The 

fundamental equation of the BET theory is: 

p2 - 1 - -  -I--- c - l x P z  , where 
x (Po - P2) ex, CZ, Po 

Pz = the system pressure, 

Po = the adsorbate vapor pressure, 

x = the amount of adsorbate adsorbed per unit adsorbent mass at  

pressure P, (em3 a t  STP / g  adsorbent), 

x, = the monolayer amount of adsorbate adsorbed per unit 

adsorbent mass (cm3 at  STP f g adsorbent), and 

El -EL -- 
C a  e RT , where 

E ,  = the heat of adsorption in the first layer (J /mol adsorbate), and 

EL = the heat of liquefaction of the adsorbate (J /mol adsorbate). 

By plotting the adsorption data in the form p2 p2 vs. - and performing 
x(P0 - p2) Po 

e - 1  a least squares fit to obtain the slope (-) and the intercept (L), one can 
CXrn C xm 

determine the values of c and 2,. Application of this theory to a myriad of sam- 

p2 ples shows that the data are generally linear in the range 0 . 0 5 ~  - < 0.35.'~ The 
Po 

specific surface area is then given by: 



S, = xmNdia , where 
xa 

S, = the specific surface area (cm2 /g adsorbent), 

No = Avogadro's number = 6 . 0 2 ~ 1 0 ~ ~  molecules /mole, 

V, = 22,414 cm3 at STP /mol, and 

A, = the molecular cross-sectional area of the adsorbate (em2 /molecule). 

The determination of the molecular cross-sectional area, 4, is of crucial impor- 

tance, The most common expression used for the calculation of A, is based on 

the assumption of two dimensional close packing on the surface of the solid? 

2 Ma - AZ = 1.0911 (-I3 , where 
NOP 

Ma = the molecular mass of the adsorbate (g /moll, 

T = the temperature of the adsorbate (C), and 

p = the density of the adsorbate at  temperature T. 

This formula yields the commonly used value for nitrogen adsorption a t  -196C 

of ~ g i ~ ~  = 16.2 A2. Values ranging from 13 to 20 L2 have been reported, how- 

everV3' It is postulated that the same adsorbate, in this case Nz, interacts 

differently with different surfaces. Furthermore, various adsorbates interact 

differently with the same solid. For instance, the expression above gives a value 

of 14.1 A2 for the molecular cross-sectional area of carbon dioxide at -00 C. 

Comparison of surface areas determined from C02 adsorption data with those 

determined from Nz adsorption data for the same solid, however, yield a range 

of values for A$: of 15.4 to 44.2 BZ,*O It is obvious that some surfaces interact 

differently with COz, just as they do with N2. In addition to the same forces 

accounting for Nz adsorption, however, C 0 2  possesses more potential modes of 

interaction. In the specific case of polymers, for instance, the permeabilities of 



twenty different polymers to  Cog are all roughly thirty times their permeablities 

to NZ.41 

Another, less widely used theory for interpreting adsorption data is that of 

Dubinin's extension of the Polanyi adsorption potential theory.42 The basic equa- 

tion of the DP theory is: 

R = a V  = f ( A G , ) ,  where (2.4.5) 

W = the volume of the pore structure filled with adsorbate, 

a = the moles of adsorbate adsorbed a t  the relative 
P 

pressure -defined above, 
Po 

V = the average molar volume of the adsorbed phase, and 

f (A G,) = a function of A & ,  the molar free energy upon adsorption. 

Dubinin derived the following equation for AGa: 

P AGa = RTln -, where 
Po 

AGa = the differential change in the molar free energy upon adsorption 
with the bulk liquid adsorbate a t  the same temperature 
as the standard, 

R = the gas constant, 

T = the absolute temperature (K), and 

P - = the relative pressure. 
Po 

Dubinin and Radushkevich modified the DP theory to account for micropore 

adsorption, where micropores are pores whose diameters are less than 15 A, 

This modification is known as the Dubinin-Polanyi-Radushkevich (DPR) theory,*' 

the fundamental postulate of which is: 



A Ga K = f ( p) , where 

/3 = an  affinity coefficient which allows the adsorption isotherms 

of different gases on the same solid to merge. 

The basic result of the DPR theory is: 

k~ G," 
W = a V = W o  e ~ p ( - ~ )  , where 

P 

W o  = the limiting adsorption volume in the micropores, and 

k = a measure of the average pore size. 

This equation can be rearranged to yield: 

P By plotting the adsorption data in the form of In a vs. inZ(-) and performing a 
Po 

least squares fit, the slope yields k and the intercept yields ul,, which is the 

micropore volume. This equation is particularly useful for obtaining the micro- 

pore volume from the low part of the adsorption isotherm. For instance, COz 

has a vapor pressure a t  290% of 63.5 atm. If adsorption data is acquired in a 

glass apparatus where the system pressure cannot exceed 1 atm, then the rela- 

tive pressure range available for examination is from 0 to 0.016. This range is 

not adequate for use of the BET theory, but it is satisfactory for application of 

the DPR theory. 

The DPR theory has been modified by Kaganer to allow the calculation of the 

specific surface area.44 The major assumption concerns the monolayer region 

where a Gaussian distribution of adsorption potential over the sites on the sur- 

face is postulated. The distribution is represented by: 



a 
'1P = exp (-k 1 ~ ~ : )  = - , where 

am 

d = the fraction of the monolayer occupied, 

k, = a constant which characterizes the distribution, 

P a = the moles of adsorbate adsorbed at the relative pressure -, and 
Po 

a, = the moles of adsorbate adsorbed forming a monolayer. 

After substituting the expression for AG, and rearranging, one obtains: 

2 p A plot of In a vs. In ( -) ylelds a straight line whose intercept gives a,, from 
Po 

which the surface area can be obtained using the expression S, = a,No&, 

where the quantities involved have been previously defined. Use of the Kaganer 

modification of the DPR theory gives values for am which agree within rt 3 % with 

those obtained for the same adsorbates by application of the BET theory, which 

is quite good, considering that the DPR theory usually uses relative pressures 

less than 0.1 while the BET theory requires relative pressures up to 0,35. It 

should be noted that the linearity of the DPR plot does not arise because of the 

generality with which log vs. log2 plots can linearize data.45 Indeed, nearly all 

DPR plots show significant deviation from linearity when the relative pressure 

exceeds 0.15, 

2.4.2 The Adsorption of Nitrogen and Carbon Dioxide on Coal 

Although N2 is by far the most widely used adsorbate for obtaining adsorption 

isotherms, much of the work performed with coal utilizes C O ~ . ~ ~  Proponents of 

C 0 2  claim that equilibrium between the bulk and adsorbed phases of the adsor- 

bate occurs readily at 195% when COz is used while the same equilibrium may 

not occur at all at  77% when N2 is used. The fact that COz possesses more 



modes of interaction with the adsorbent, however, has negative implications 

regarding the validity of assuming solely physical adsorption of C02 on solid sur- 

faces. especially on a surface of a polymer-like solid such as coal. 

A study of the unsteady state Musion of N2 and CO, from coals with ultrafhe 

pores (dp  < 4 A )  yields the following empirical expression for the diffusion 

~oef f l c ien t :~~  

1 - 
D 2  -E - - = A e RT , where 
T o  

D = the diffusion coefficient (cm2 /s), 

T O  = the diffusion path length (cm), 

A = the pre-exponential constant (cm /s), and 

E = the activation energy for diffusion (kcal /moll. 

The data yield values of E and A which are smaller for C02 than Nz. The data 

were obtained in the temperature range from 20 to l l ~ t .  Extrapolation of 

these results to the appropriate adsorption temperatures indicate that D , ~ , J ~  is 

10% to lo7 times larger than L$iX. Although one might question the validity of 

extrapolating the results over such a large temperature range, the authors 

claim that since the pore radii are on the order of molecular dimensions, the 

diffusion process is analogous to conventional surface diffusion, except that two 

surfaces rather than one surface are involved. Therefore, neither E nor A is 

expected to be a function of temperature. The salient result, therefore, is that 

Nz is not expected to diffuse into the micropores in a reasonable amount of time 

at 77%. Indeed, even COz is not expected to completely fill all of the micropores 

at 195% within 30 minutes. Rather. the adsorption must be conducted a t  295% 

to insure complete pore filling. 



More compelling evidence for favoring C 0 2  over Nz lies in the molecular sieve 

characteristics of coal. In a straightforward, yet elegant study, Medeiros and 

Petersen measured the surface areas of 4 and 5 A molecular sieves using both 

the BET and DPR theories to interpret their data.4e The results are shown in 

Table 2-1. 

The Nz adsorption was conducted a t  7 7 * ~  using a value of 16.2 A' for the 

molecular cross-sectional area (A$: X), while the COz adsorption was performed 

at 196X using a value of 234  AVor The results in the table imply that 

either Nz or COz is adequate for measuring the surface area of solids whose 

pores have diameters greater than or equal to 5 A, but that only GOz is adequate 

when the pore diameters are less than 5 A. The fact that the NZ surface areas 

are about 20 % lower is probably due to the presence of a substantial minority of 

4 W pores in the 5 sieves. The N2 determined areas of the 4 A sieves, however, 

are roughly 40 to 50 times smaller than the C 0 2  determined areas. The obvious 

implication is that C 0 2  can penetrate 4 a pores while NZ cannot penetrate pores 

with diameters less than 5 A. The fact that many coals show the same adsorp- 

tion behavior as the 4 A sieves indicates that the vast majority of the pore 

volume in most coals consists of micropores with diameters less than 5 

It should be noted, however, that most surface areas are used to determine 

the amount of solid exposed for reaction with some externally introduced 

reagent. If the reagent, such as NOz, has molecular dimensions which do not 

allow penetration into micropores as small as those accessible to COz, then use 

of the GOz determined surface area could lead to wildly erroneous results. For 

this reason, the surface area of the solid, particularly in the case of catalysts, is 

determined with the reagent to be used whenever possible. In the case of NOz 

and coal, however, this is not possible since NOz reacts with coal a t  room tem- 

perature, which also happens to be the boiling point of NO2. NO2 should 



TABLE 2-1 
* 
Surface Areas of 4A and 5A Molecular Sieves 

Sieve 

4 A  

5A 
_I 

DPR Theory 

Nz 

12 

580 

BET Theory 

co2 
- 

540 

690 
1 

NZ 

11 

48 0 
I 

C02 

480 

570 



resemble Nz more than COz, however, because NO2 is a bent molecule while COz is 

a linear molecule. Hence, N2 determined surface areas should be better for use 

in the kinetic study of the NO2-coal reaction. 

As previously mentioned, other reasons exist for favoring Nz over COz for sur- 

face area determinations as well. Primarily, C 0 2  is expected to interact with a 

solid surface, particularly that of coal, in more ways than Nz. For instance, a 

propensity of polar groups, such as -0 or -NOz, on the surface should lead to a 

stronger interaction with COz than with Ng due to the greater polarizability of 

COZ. Furthermore, C02 can display much stronger quadrupole interactions with 

a polar surface than Nz. These reasons alone, however, cannot totally explain 

the large discrepancy between the Nz and COz determined surface areas. If one 

rejects the 4 molecular sieve characteristics of coal, the only other explana- 

tion is the absorption of COz by the coal. If COz absorption occurs, then the 

C02-determined surface area is really an indication of not only the exposed sur- 

face area but also the capacity of the solid to accept COz as well. In the case of 

coal, the N2 determined area could be taken as the true surface area component 

of the COz determined "area", and the other roughly 98 % of the COz "area" could 

be attributed to COz uptake by the solid coal matrix. 

More importantly, the validity of describing an organic structure as micro- 

porous with pore diameters of 4 is highly questionable since 4 A is on the 

order of atomic dimensions. Indeed, such a description necessitates a distinc- 

tion between the true interatomic voids which would comprise a pore and the 

interatomic voids encountered in loose bonds, such as hydrogen bonds (1.5 A to 

2.0 A). It may be more appropriate to classify diffusion through such a struc- 

ture as hindered molecular diffusion since the coal 'knolecules" are not free to 

counterdiffuse. There is no compelling evidence, however, to favor this theory 

over that of coal possessing pores mainly of diameters less than 5 i. 



2.4.3 The Measurement of Pore Volume 

The pore volume of a solid is commonly expressed in terms of the void frac- 

tion: 

E = 1 - L, where 
Ps 

E = the void fraction (cm3 void /cm3 total volume), 

p, = the solid density (g solid /cm3 solid), and 

p = the total density (g solid /cm3 total volume) 

The solid density, p,, is usually measured by helium displacement while the total 

density, p,  is usually measured by mercury displacement. The helium Alls the 

entire pore volume while the mercury cannot penetrate any of the pores. An 

alternative method for measuring the pore volume is by employing gas adsorp- 

tion. If an entire gas adsorption-desorption isotherm is taken, the point closest 

to a relative pressure of unity corresponds to all of the pores being completely 

filled. The calculation of the total pore volume from the amount of gas 

adsorbed is straightforward: 

V, = - xTM , where 
PV 

'V, = the total pore volume (ern3 void / g  solid), 

xr = the total amount of adsorbate adsorbed (cmS a t  STP /g solid), 

ICP = the molecular mass of the adsorbate (g /mol), 

p = the density of the adsorbate at  the adsorption temperature 

(g adsorbate /cm3 adsorbate), and 

v = 22,414 cm3 /mol of ideal gas a t  1 atm and ooC (STP). 

Since much more C02 is adsorbed for most coals than N2, ostensibly because of 

the microporous structure of most coals, a substantial discrepancy between GO2 



and N2 determined pore volumes exist. The same arguments regarding the 

molecular size of the reagent mentioned in the previous section still apply, how- 

ever. An adsorbate which resembles as closely as possible the reagent should be 

employed if the solid surface area is to be used in conjunction with kinetic data. 

2.4.4 The Determination of the Pore Size Distribution 

Although the specific surface area and the void fraction can provide informa- 

tion about the pore volume of the solid, the pore size distribution conveys infor- 

mation concerning the pore structure of a solid. The development of the theory 

required to extract the pore size distribution from the adsorption-desorption 

isotherm began with the discovery of the phenomenon of capillary condensation 

in 1871 by ~ h o m s o n . ~ ~  Condensation of a vapor in a pore follows from the fact 

that the equilibrium pressure over a concave liquid surface is less than the 

saturated vapor pressure a t  the same temperature. The appropriate thermo- 

dynamic expression describing this phenomenon is the Kelvin equation: 

p - trv 1 1 a v  1 In - - - -(-+ -) = - 2  -- where 
PO RT r, rz RT r ' 

P = the equilibrium pressure above a concave adsorbate meniscus, 

P O  = the saturated vapor pressure of the adsorbate, 

cr = the surface tension of the liquid adsorbate, 

v = the molar volume of the liquid adsorbate, 

rl,rz = the radii of curvature of the liquid surface, and 

r = the radius of curvature of a hemispherical surface, i.e. T ,  = r 2  = r. 

Zsigmondy then proposed that as the relative pressure, & is increased that a t  
Po 

first a layer of adsorbate is formed on the pore walls followed by capillary 

condensation in pores whose radii are less than or equal to the value of r 



P 
corresponding to - 

PO 
iven by the Kelvin equation." In 1932, Foster realized 

that the thickness of the adsorbed Iayer must be accounted for when using the 

Kelvin equation to determine pore size  distribution^.^^ Development of the BET 

theory in 1932 allowed the calculation of the monolayer thickness, which then 

allowed the determination of the pore size distribution. In a further develop- 

ment in 1955, Dubinin and Pierce recognized the function of micropores in 

altering the mechanism of adsorption because of the increased force acting on 

the adsorbate molecules due to the proximity of the adsorbent walls.53 The 

effect of this realization was to establish a lower limit on the domain of pore 

radii to which the Kelvin equation is validly applicable. Except for some slight 

modifications in the last twenty years, the theory as it existed in 1955 is still 

used today for the calculation of pore size distributions of solids. 

2.4.4.1 The Derivation of the Kelvin Equation 

In order to understand some of the limitations of the Kelvin equation and its 

applicability to adsorption-desorption isotherms, the full derivation of the Kel- 

vin equation will be discussed. Referring to Figure 2-1, the difference in pres- 

sures on either side of the curved liquid surface is: 

1 1 
2 -  = ( -  -1, where (2.4.16) 

T1 T 2  

P2 = the pressure on the concave side of the meniscus, 

P I  = the pressure on the convex side of the meniscus, 

a = the liquid surface tension, and 

r l , r z  = the radii of curvature of the liquid surface. 

At  equilibrium, the chemical potentials, A, in all phases are equal: 



3 0 

Condensed Adsorbate i n  a Cy l ind r i ca l  Pore 

Figure 2-1 



which implies that  

LT 
dP2 - d P 1  = 2 d (-) and d p l  = d p 2 .  (2.4.18) 

Tm 

where for a hemispherical meniscus r l  = rz = r,. Application of the Gibbs- 

Duhem equation to  both phases results in: 

S l d T  + v l d P l  + d p l  = 0 and S2dT + vzdPz  + d h  = 0,  where (2.4.19) 

Si = the specific entropy of phase i (cal /mol /K), 

T = the absolute temperature (K), and 

ui = the molar volume of phase i f cm3 /mol), 

If the vapor phase is on the convex side of the meniscus, then vz<<vl,  which 

leads to 

0 2 d( - )  = - - RT RT dPl  = - -d (ln P I )  
r m v2p 1 V z  

a t  constant temperature ( d T  = 0). Integrating the left side from r, = r, to 

r, = m and the right side from Pz = P to PZ = P O  while assuming that the liquid 

is incompressible in the range of P2 from 0 to Po results in the Kelvin equation. 

The major implication of the Kelvin equation is that capillary condensation will 

occur a t  some pressure less than the saturated vapor pressure if the condensed 

liquid forms a concave meniscus. 

A model of the pore geometry must be adopted in order to calcutate a pore 

size distribution. Generally, the pores are assumed to be cylindrical. If the 

meniscus has the contact angle 19 with the adsorbed layer, the Kelvin equation is 

rewritten as: 



l n P =  --- 
PO 

2ov ' , where 
RT ~k 

d = the contact angle, and 

T~ = T~ cos 2P = the core radius. 

Equation (2.4.22) forms the basis for the standard computational procedure 

described below for calculating the pore size distribution. 

2.4.4.2 Hysteresis in the Adsorption-Desorption Isotherm 

A common phenomenon observed in gas adsorption work is that  the amount 

of adsorbate adsorbed will be higher in the desorption branch than in the 

adsorption branch of the isotherm a t  the same relative pressure. One 

hypothesis asserts that this phenomenon results from the difference between 

the advancing and receding contact angles which the adsorbate makes with the 

adsorbent surface.51 This hypothesis is not accepted, however, mainly because 

there is no way to accurately measure the different contact angles. In fact, the 

contact angle for both capillary condensation and evaporation is assumed to be 

zero. 

The most widely accepted theory accounting for hysteresis is the ink-bottle 

hypothesisn5' The basic assumption concerns the pore structure which is 

assumed to contain large chambers connected by narrow passages. All pore seg- 

ments will experience capillary condensation a t  the relative pressure 

corresponding to the pore radii given by the Kelvin equation as if the segments 

were totally independent. Evaporation, on the other hand, occurs in a different 

fashion. The Kelvin equation predicts that evaporation of the adsorbate occurs 

in pores of smaller radii a t  lower relative pressures due to the increased curva- 

ture of the meniscus. As a direct consequence, evaporation from the large 

chamber commences only when evaporation begins in the narrow neck to which 

the chamber is connected. Therefore, the chamber empt~es a t  a lower pressure 



than that a t  which it fills, resulting in hysteresis. The ink-bottle hypothesis has 

a profound effect on the interpretation of the pore size distribution. If the pore 

volume of the adsorbent consists mainly of large chambers connected entirely 

with short segments of relatively narrow passages, the pore size distribution will 

indicate that the entire pore structure consists of pores with radii correspond- 

ing to the narrow passages. 

2.4.4.3 The Range of Validity of the Kelvin Equation 

It is important to establish the limits within which the Kelvin equation is 

applicable. Since the theory is based on thermodynamic arguments, it is valid 

only for the description of macroscopic systems, As a result, the Kelvin equa- 

tion becomes inaccurate when the pore radius approaches molecular dimen- 

sions, Guggenheim concludes that surface tension becomes independent of pore 

radius only when the radius is greater than 500 k '' while others contend that 

the equation is valid for radii as small as 15 i.57 An expression relating the sur- 

face tension of the liquid in the pore to the surface tension of the free liquid 

indicates that for a pore radius of 20 A, the calculated values of the radii are 

high by a factor of 1 . 3 . ~ '  Another study that uses partition functions to calcu- 

late the change in surface tension as a function of curvature indicates that the 

calculated values of pore radii are high by a factor of 1.41 for liquid N2 a t  77-K 

and a pore radius of 20 kSQ 

Whereas the above treatments rely on the application of thermodynamics to 

systems containing a small number of molecules, Dubinin has developed an 

experimental method to determine the point of failure of the Kelvin equation by 

defining an affinity of adsorption, A:60 

P At a given fraction of pore filling, f ,  T, and -have definite values so that 
Po 



Over a short temperature range -is constant so that ar 

By plotting the adsorption-desorption data for a variety of adsorbents in the 

vs. A. Dubinin finds that the data are linear for pore radii greater form ( 

than 15 Significant deviation occurs for radii !ess than 15 A. Based upon 

these experimental results, the Kelvin equation is usually assumed to hold for 

pore radii greater than 15 A. For radii less than 15 A, the results imply that a 

mechanism totally different than capillary condensation occurs. 

Whereas a lower bound on the range of pore radii over which the Kelvin equa- 

tion is valid exists because of the physical nature of pore filling, an upper bound 

exists because of experimental accuracy. According to the Kelvin equation, as 

the relative pressure approaches unity, the corresponding pore radius exponen- 

tially approaches infinity. Thus, the pore radius range from 300 A to infinity 

corresponds to the relative pressure range from 0.969 to 1.000 for liquid Nz a t  

7 7 ' ~ .  Such a change in relative pressure usually corresponds to one step in the 

desorption branch of the isotherm. Therefore, application of the Kelvin equation 

is valid only in the pore radius range from 15 to 300 A. 

2.4.4.4 Application of the Kelvin Equation for Obtaining Pore Size Distributions 

The most commonly used method for obtaining pore size distributions util- 

izes a correction which accounts for the changing thickness of the film of 

adsorbed gas on the pore walls as the relative pressure decreases," This con- 

cept of film area is expressed mathematically as: 



A v  = A v k  + A v f  = Auk + A ~ ~ ( A S ~ ) ,  where (2.4.26)  

A v  = the total volume change measured at each point in the 

desorption branch of the isotherm, 

A v k  = the change in pore volume, 

Avl = the volume of the adsorbate released from all exposed walls, 

A t  = the reduction in film thickness, and 

Z(hS,) = the area of pore walls for pores which have lost their 

capillary condensate. 

For cylindrical pores, 

2 A S ,  = - A v ,  , where 
T~ 

T, = r k  + t = the pore radius, and 

r k  = the core radius, where 

the core refers to the void within the pore not encompassed by the condensate 

film (see Figure 2-1). 

This formulation necessitates an expression relating the film thickness to the 

relative pressure. Wheeler has suggested that adsorption on the walls of fine 

pores is greater than on an open surface, particularly at  low relative pres- 

s u r e ~ . ~ ~  Therefore, he proposes the use of the Halsey equation to determine the 

Elm thickness:63 

a = the thickness of a monolayer, and 



Po - = the relative pressure. 
P 

Several researchers have compared the adsorption data for various silicas and 

aluminas and for various non-porous solids and have found very good agree- 

ment with the Halsey equation in the relative pressure range from 0.2 to 1.0 

using a value of 3.5 W for the N2 monolayer thickness, o ,  at  ??kpe4 The Kelvin 

equation provides the expression for the core radius, rk. Using the values of 

34.6 cm3/mol for the molar volume, 0.05 dyne/crn for the surface tension of 

liquid N2 at 7 7 O ~ ,  and zero for the contact angle, the Kelvin equation reduces to: 

The basic calculation scheme then becomes: 

1. Calculate (%) i t  t i ,  a n d ( r p ) i  = ( T k ) i  + ti for each desorption data point 

pi 
---; v i )  beginning with the highest relative pressure. 

( PO 

1 2. Interpolate between points to obtain (Tp)r = - [ ( T ~ ) ~ + ~  + ( T ~ ) ~ ]  and 
2 

1 
= F [ ( r k ) i + l  + J r k ) i l .  

3. Calculate ( A t ) i  = ti+l - ti and ( A v ) ~  = v%+~ - vi. 

i -1 

4. Calculate ( A v ~ ) ~  = 0.064 ( A t ) i  C and ( A v k ) i  = ( A v ) ~  - ( 6 ~ ) ~  
j = 1  

5. Calculate ( A v p ) i  = ( A q )  [-I' and ( A S p ) (  = 2 ( A v p  )i 
( ~ k ) i  ( ~ p ) i  

6. Repeat each step for the desired number of data points down to a relative 

pressure no less than 0.3. 

2.4.4.5 Application of the DPR Theory to the Carbon Dioxide Isotherm for Hicropore 

Recently, ~ e d e k "  has proposed a theory which allows the determination of 





The second assumption treats the distance z as an average distance of the 

adsorbate molecule from all pertinent walls when several walls interact with the 

adsorbate molecule. In an enclosed environment, such an average z can be 

expressed as an equivalent radius: 

= r e = -  2Q where 
P ' 

re = the equivalent radius, 

Q = the area of the pore cross-section, and 

P = the perimeter of the pore cross-section. 

It is apparent that T, does not depend upon any particular pore geometry. 

The third assumption states that the dependence of p on r, described by 

equations (2.4.33) and (2.4.34) holds within the domain of micropore radii, 

namely 4 to 16 A. Within this domain, adsorption proceeds by volume filling, 

that is, no adsorbed monolayer is first formed followed by condensation. 

If there are no perturbations in the adsorbed phase, the following relation- 

ship holds: 

AG, = p = krc8. 

Substitution of this expression into equation (2.4.32) yields 

k W = Wo exp [ - ( j$)" re-$"] . (2.4.36) 

The micropore size distribution is then given by differentiation of W with respect 

to re, which gives 

An expression for the effective micropore surface area can be obtained by let- 

ting dh be an element of pore depth h, which when substituted in equation 



(2.4.34) yields 

Using the above expression in conjunction with equation (2.4.37) gives 

- =  k k *' 672 wO ( jn ~ ; ( 3 n + ~ )  exp [ - ( Fin T ; ~ ~ ] .  
dre E 

Integration of this equation yields 

E L  ,I d S  = 2 Y Y o ( $ 3  x L  e Z d z .  where 
0 

After integration, one obtains 

1 
E - 3n+1 ) , where +%tm = 2 Po tr)3 r(,- 

r ( n )  = the gamma function evaluated a t  n. 

In order to utilize the equations above, values for some of the parameters are 

necessary. The best value for n is 2,0, which is based on optimal linearization 

for coke samples activated in C O ~ . ' ~  The characteristic energy, E, is given by 

1 d lop W - - 
E = 2.303 R T  [2.303 n  

It should be noted that the term in brackets is simply the slope of the DPR plot. 

The calculation of Wo requires the density of the adsorbed phase, p,. It is 

assumed that p, at  a given temperature T is the same as the bulk liquid density 

p, at  the temperature ( T  - A T). The empirically determined value of A T is 19%. 

The resulting values for p, as a function of temperature are 



The value of k is 3.145 kJ/nm3 far C O ~ ,  '' which was determined empirically, 

With these values for n, E, p, and k, it is now possible to calculate the rnicro- 

pore size distribution and effective micropore surface area, 



2.5 Model of the Rmractian System 

A mathematical description of the physical and chemical nature of the 

N02/solvent/coal system is needed in order to quantify the experimental 

results. As a result, significant and trivial parameters can be identified. Of 

greatest significance, however, is the possibility to better predict the behavior of 

other coals under the same reaction conditions. 

2.5.1 Derivetion of the Pertinent Equations 

For the sake of mathematical simplicity, the coal can be considered as a col- 

lection of spherical particles, all of which have the same radius. Within a spheri- 

cal shell, the equation describing the transport and reaction of a given chemical 

species is: 

+ Ri A f  , where 

E = the void fraction of the particle 

( cm3 void /em3 total solid volume ) , 

4n ire = the shell volume = - [ 3r2Ar + 3r (AT )2 +  AT)^ ] (cm3), 3 

t  = the time (see), 

At = the differential time element (sec), 

r = the radial distance from the particle center to the 

inner shell surface (cm), 

Ar = the shell thickness (cm), 

ci = the concentration of species i (mol /cm3 void volume), 

&Di GBi = the effective diffusivity = - (cm2 /s), 
T 

T = the tortuosity of the particle, 



Di = the molecular diffusivity of species i (cm2 /s), and 

Rt = the net rate of formation of species i within 

the shell (mol / cm3 / s),  

Dividing by A t  A r  and taking the limit as A t  -r O and A r  -, O results in the par- 

tial differential equation: 

Generally, a rate expression corresponding to an appropriate reaction must be 

determined to proceed further. One possible reaction is: 

k j  
ajN02 + 4 + ajNO + (XOg)j , where 

Xi = some coal species which reacts with NOz, 

(XUa,) = the oxidized coal species, 

kj = the second-order rate constant (cm3 /mol /s), and 

aj = the stoichiometric coefficient. 

The appropriate rate expression is: 

N 
Ri = - kj cs ps S, caj cx, , where 

j = 1  

cs = the solid fraction of the particle (em3 solid /cm3 total volume), 

ps = the solid density (g /cm3 solid volume), 

S, = the specific surface area (cm2 particle surface area /g), 

c = the NO2 concentration (mol NO2 /cmS void volume), 

cxj = the coal species concentration (mol X / cm2 particle surface 

area), and 

N = the total number of coal species. 



The most logical selection for the c o d  surface species comprises the atomic ele- 

ments which constitute the coal, namely C,  H, N, 0 and S .  In this case, then, 

N = 5. The appropriate boundary conditions are: 

E(~=O,T) = EO (2.5.4a) 

~ ( t  ~ 0 , ~ )  = co (2.5.4b) 

cxj(t=o,r) = [cx,)o . (2.5.4~) 

B De - C  (T,t) = kc (cb - c,) = 0 or c ( t , R )  = cb, where (2.5.4e) 
ar 

R = the particle radius (cm), 

kc = the mass transfer coefficient for NO2 between the 

particle surface and the bulk solvent (cmls),  

cb = the NOz concentration in the bulk solvent 

(mol/ cm3 void volume), and 

c, = the NOz concentration a t  the particle surface 

(mol/ cmS void volume). 

Equation (2.5.2) applies to those reactants not contained by the solid matrix of 

the coal. The appropriate equations for the coal species, Xj, are: 

The corresponding boundary conditions are: 

~ ~ ( t  =O,r) = E,O , 

~x,(t=O.r) = (c4)0 I 

The following assumptions are involved in this model: 

1. The void fraction is a function of time only: E = ~ ( t )  and E # ~ ( r )  

2. There is no mass transfer resistance from the bulk phase to the 

particle surface. 



3. The tortuosity factor, r, is constant. 

4. The solid density, p,, is constant. 

These assumptions are all subject to debate. The first assumption is highly 

questionable since E changes presumably due to reaction, the rate of which is a 

function of the spatial dimension, Indeed, the porosity is commonly assumed to 

linearly depend on the solid reactant c o n v e r s i ~ n : ~ ~  

cB 
E~ = E,O + C#O (vS0 -v,) (1 - E , ~ )  (1 - -) , where 

cP0 

CP = the molar surface site concentration (mol sites /cm3 

solid volume), 

v,o = the reactant molar voIume (cm3 /mol), 

v, = the product molar volume (cm3 /rnol), and 

It is obvious that E, = E,O if the solid reactant and product molar volumes are 

equal, namely v, = vso. Since E = 1 - E, does change during reaction, however, it 

is only valid to consider E in general terms as ~ ( t , r ) .  Inclusion of this refinement 

into the model poses no problem as long as an equation such as (2.5.6) is avail- 

able. 

The second assumption may also be suspect. Commonly, the boundary condi- 

tion at the particle surface is expressed as: 

In slurry reactors. the relative velocities of the solvent and the particles are 

essentially equal because the particles tend to move with the liquid. Agitation 

does not enhance the rate of mass transfer across the particle film when the 



particles have diameters less than 200 microns.6Q A minimum value can be 

obtained for I ,  by equating the settling velocity due to gravitational force to the 

relative velocity in the expression relating the Sherwood number to the Peclet 

number:?' 

2 
EL1 

1 

(kc)* (-1' = 0.34 ( 
pt D 

A p ' L g ) 9 ,  where 
P? 

pi = the viscosity of the liquid (g/cm/s), 

pl = the density of the liquid (g /em3), 

Ap = p, - pl = the density difference between the solid and liquid, and 

g = the acceleration of gravity = 960 cm /sZ, and 

At 2 5 " ~  for the NOZ/CCl4/Coal system, (kc)- = 2.53x10-~ cm/s. By equating the 

rate of reaction with the flux at T = R, one obtains: 

?" = a, kc ( c b  - c, ) , where (2.5.9) 

Y 
a, = - = the external surface area of the particle (cm2 /g). 

P R  

The initial rate of NOz disappearance is on the order of 3x ~O-~rnol N02/g coal/s. 

For a particle with a diameter of 100 microns, a, = 462 cm2Ig. Using these 

figures results in: 

c ~ l k  - c,,fiCe = 3 . 2 ~  mol /cm3. (2.5,lO) 

Under most reaction conditions, ct, RJ 1 .Ox 1 o - ~  mol/ cm3. Therefore, the change 

in NOz concentration from the bulk to the surface is only 3 % of the initial bulk 

concentration. After 15 minutes, the rate drops by a factor of ten, so that the 

difference between the bulk and surface concentrations becomes negligible. In 

the case of agitation, kc would increase if it changes a t  all, resulting in even 

smaller differences between c b  and c,. The second assumption is valid, there- 

fore, unless very small NOZ concentrations are encountered. 



The third and fourth assumptions are more readily acceptable. Since previ- 

ous work has shown that the pore size distribution of treated coal maintains the 

same character as the raw coal despite rather large decreases in pore volume, 

the tortuosity can be taken as constant. Such an  assumption is valid because 

the tortuosity includes the effects of the altered diffusion path length as well as 

the changing cross-sectional area in the pores.71. Since the shape of the pore 

size distribution remains invariant, these effects are invariant. This conclusion 

does not mean, however, that the effective diffusivity, De, does not change. The 

decrease in D, is accounted for by the decrease in the void fraction, E, The 

fourth assumption is valid provided the solid does not react to a significant 

extent, which is the case in the experiments performed, 

It should be noted that this model entails the numerical solution of the full 

unsteady-state equations. Most analyses of this sort, however, involve gas-solid 

noncatalytic systems where it is possible to neglect the time dependent terms by 

invoking the pseudo-steady-state app rox ima t i~n ,~~  An analysis by has 

shown that the unsteady-state and pseudo-steady-state solutions converge if 

h<< 1 ,  where h is the root of the transcendental equation: 

In gas-solid systems, ha 0.001, which satisfies the condition. In the case of the 

N02/CCI,/Coal system, however, this is not necessarily true. If the coal is con- 

sidered as pure carbon with a specific gravity of 1.2, then c,(t=Q) = 0.1 

mol/cm3. Taking e = 0.1 and cNOl(t=O) = 0.001 mol/ emS, then equation (2.5.11) 

gives a value of AM 0.04, resulting in a 0.1% error in the pseudo-steady-state solu- 

tion. This represents a best case scenario, however. If the NO2 reacts only with 

5 % of the coal material, on the other hand, then c,(t =0) = 0.005 mol/cm3 and h 

= 0.33, which definitely does not satisfy the criterion, Thus, it appears that a 



numerical solution of the full unsteady-state equations must be performed, 

So far, only those equations concerning diffusion and reaction of NO2 on 

exposed coal surfaces have been developed. The model assumes that only those 

atoms actually adjacent to the voids can react. The coal primarily used in this 

study has an initial nitrogen-determined surface area of 50 m2/g. Assuming the 

coal is pure carbon with a density of 1.2 g/cm3, only 1.7 % of the atoms compris- 

ing the solid are actually exposed. Since reactions of NO, and coal components 

occur to a greater extent, i t  is obvious that NO2 penetrates beneath the exposed 

surface. Therefore, a set of equations describing the diffusion and reaction of 

NOz within the solid matrix of the coal are necessary as welI. 

In order to develop the appropriate equations, a pore structure must be 

assumed. The simplest geometry is the parallel slit pore model, which assumes 

the solid is comprised of slabs separated by voids, as depicted in Figure 2-2a. In 

this model, diffusion within the solid occurs in one linear dimension, as shown in 

Figure 2-2b. The same set of reactions in equation (2.5.3) can be used, namely 

k  j 
ajNO,  + 4 + a jNO + (XO,,,)j , where (2.5.3) 

Xi = some coal species which reacts with NO,, 

(XOa,) = the oxidized coal species, 

k j  = the second-order rate constant (cm3 /moI /s), and 

aj = the stoichiometric coefficient. 

where now the reaction is understood to occur in the solid. Utilizing the same 

procedure used for deriving the earlier equations yields: 

A 

a - -  a A a~ N A , A  

= -(Dg -) - 2 vj k j ~ a f C $ ,  and at ax ax j = 1  (2.5.12) 
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a A n  " A  h " B  & 4 ~ x , )  = -kj E E .  c4  C$ for j=1. .... I?. where (2.5.13) 

* 
c = the NOz concentration within the slab (mol /cm3 void volume), 

a. 

Cxr = the Xj concentration within the slab (mol /em3 solid volume), 

h 

E = the void fraction in the slab (cm3void/cm3total volume) 

h 

E, = the solid fraction in the slab (cm3solid/cm3total volume) 

7 -  

D, = the effective diffusivity of NO2 within the solid matrix (em2 / s), 
C 

k,. = the reaction rate coefficient for reaction j 

[(cm3 solid volume /rnol)'j s-l] , and 

aj, P j  = the reaction rate order in the NOz and substrate species, 

respectively. 

The boundary conditions are: 

6 " A 

assuming E and & are constant. In equation (2.5.12), D, may be a function of 
h A 

cxi, which is a function of x, although it is easier to assume that D, is a con- 

stant. If the NO2 reacts selectively with a minor component of the coal, such as 
h 

sulfur, the structure will not be altered significantly, and D, should remain rela- 

tively constant. 

Ideally, the complete set of time dependent equations (2.5.2), (2.5.5), (2,5.12) 

and (2.5.13) which describe diffusion of NO2 and reaction of NOz with the coal 

components should be solved simultaneously. such a solution can be done in 

principle, but the computation time would be prohibitive. It is possible to 



neglect equations (2.5.2) and (2.5.5), however. Since the coal used has a particle 

size distribution from 200 mesh (74 p,m diameter) to 325 mesh (44 pm 

diameter), a value of R = 50 pm is a conservative estimate for computational 

L) 
purposes. Using a value of 1 . 0 ~  loe5 cm2/s for - in the pores and a value of 

7 

0.10 for E, a numerical solution of equations (2.5.2) with no reaction indicates 

that the concentration of NOZ at the center of the particle attains 96 % of its 

bulk value within one second. Since significant reaction does not take place 

within this time span, assuming the NO2 concentration initially in the pore 

structure to be equal to its bulk value should not introduce significant error. 

Therefore, penetration of NO2 through the coal should be the only potentially 

significant mass transfer resistance. 

2.5.2 The Reaction System 

The mathematical model described in the previous section requires a set of 

chemical reactions, which must be proposed in order to calculate the rate terms 

in the diffusion and reaction equations. The major components of coal are car- 

bon, hydrogen, nitrogen, inorganic and organic sulfur, oxygen and ash. Conceiv- 

ably, NO2 can react with all'of the coal constituents. In order to keep the model 

mathematically tractable yet realistic, some assumptions concerning the types 

of reactions occurring can be made. For instance, NO2 is assumed to oxidize 

methylene bridge (-CH2-) groups and methyl (-CHS-) groups to the 

corresponding ketones and carboxylic acids without any nitrogen substitution. 

On the other hand. NO2 can not only oxidize aromatic (C-H),, groups to the 

phenol (C-OH),, but also replace hydrogen to form the corresponding nitro- 

aromatic (C-NO2),,. Thus, the only mode of nitrogen uptake by the coal is 

assumed to be aromatic substitution. Furthermore, all aliphatic hydrogen is 

assumed to be indistinguishable. The same holds for all aromatic hydrogen. 



These constraints result from the number of extents of reaction which can be 

determined from the elemental analysis of the coal, nameIy five. These concepts 

can be expressed as the following set of chemical reactions: 

k, 
6 NOz ( s o l )  + F e S 2  ( s )  -+ F e S 0 4  ( s )  + SO2 ( s o l )  + 6 NO ( s o l )  , ( 2 . 5 . 1 4 a )  

k2 
2 N o z  ( s o l )  + So, ( s )  -+ ( S O Z ) , ,  ( s o l )  + 2 NO ( s o l )  , ( 2 . 5 . 1 4 b )  

k3 
(CH2),&% ( s )  + 2 N02( soL)  -.r (C=O)a l i  ( s )  + H Z O ( s o l )  + 2 NO(so1)  , ( 2 .5 ,14c )  

k 5 
(CH),, (s) + 2 NO2 ( s o l )  -+ (C-N02)aT ( s )  + HNOz ( s o l ) .  ( 2 . 5 . 1 4 e )  

where sol  implies that the species is solvated, a l i  refers to aliphatic and ar 

refers to aromatic. The extent of the first reaction is determined by the change 

in pyritic sulfur concentration, while the extent of the second reaction is deter- 

mined b y  the change in organic sulfur concentration. The extent of the fifth 

reaction is determined from the change in nitrogen concentration, since only 

this reaction accounts for nitrogen uptake by the coal, The extent of the third 

reaction is given by the change in hydrogen concentration after correcting for 

hydrogen loss due to the fifth reaction. Finally, the extent of the fourth reac- 

tion is given by the change in oxygen concentration after correcting for the 

oxygen gain due to the other reactions. 

2.5.3 PTumerical Solution of the Modelling Equations 

The most appropriate numerical method for solving equations ( 2 . 5 . 1 2 )  and 

(2.5.13) simultaneously employs implicit finite difference formulae. Although an 

explicit method would be much less time consuming computationally, severe 



convergence problems are encountered using such a technique. These conver- 

gence problems are overcome through utilization of the more complicated 

implicit scheme. The finite difference equations are: 

ac - - - - 1 
a t  (c i  - c i )  , and 

a2c - 1 - -  - - c - 2 + c ) , where 
ax (W2 

A t  = the time increment, 

Ax = the spatial increment, where L = N,Ax , 

i = the index of the spatial increment, and 

the prime indicates the variable is evaluated a t  the next time increment. The 

hats have been dropped for the sake of simplicity. Defining the dimensionless 

variables 

, and 

the equations become: 

The boundary conditions become 



C(t,X=O) = 1 , and 

Cxj(t=O.X) = 1 .  j=1, .... N .  

Application of the finite difference formulae yields: 

1 
( C )  - ( C ) ]  = c ( c ~ ) ( c )  ( C j f  , j=1. ... N . (2.5.20) 

Rearrangement of equation (2.5.19) results in: 

N N N 

Ci = aiCil-, + bit,' + cicif+, , where 

N N 

a= = ci = --- A t  , an, 
L2   AX)^ 

Equation (2.5.21) gives the'N02 concentration a t  each spatial point i as an impli- 

cit function of the NO2 concentration at the previous time increment. There- 

fore, determination of the complete spatial concentration profile at a given time 

requires the simultaneous solution of the set of coupled equations generated by 

application of (2.5.21) at each point in the spatial dimension. If 9 = 1 for all j ,  

that is, if all the rate equations are linear in NOz concentration, then equation 

(2.5.21) is linear. Solution of the simultaneous equations is then easily accom- 

plished using a Gaussian elimination procedure. If aj # 1 for any j ,  then 

(2,5.21) is no longer linear. The Gaussian elimination procedure can still be 

employed, however, by using an iterative scheme. The values for Ci determined 



for the previous time step are used as initial guesses for the current time step 
N 

and are used to calculate values for bi. The set of equations is solved using the 

Gaussian elimination procedure and the new values of are compared to the 

guesses. If all the values agree within a certain tolerance, usually about 0.01 % 

to minimize error propagation, then proceeding to the next time step is allowed. 

On the other hand, if any of the values do not agree within the set tolerance, 

then the new values of Ci are used as guesses and the procedure is repeated. If 

the time increment is small, the values of Ci do not change appreciably, and 

convergence is quite rapid, usually within four iterations. 

N 

Examination of the equation for bi also reveals a dependence upon (Cx,)i for 

the current time step. Once again, the values of determined from the pre- 

vious time step are used as initial guesses. Once satisfactory values for Ci are 

obtained using the procedure described above, new values for are obtained 

using equation (2.5.20) in the form: 

If Pj = 1, then the equation for (Cif)i is linear, and is easily solved. If $ 1. 

then the equation must be solved by trial and error. If the values of (C$-j)i given 

by (2.522) agree with the initial guesses within a given tolerance, proceeding to 

the subsequent time step is allowed. If any of the values do not agree, then the 

new values of (C',)i are used as guesses. and the entire procedure is repeated. 

Again, if the time increment is small, convergence occurs quite rapidly. 

The finite difference equations a t  the boundaries of the spatial domain are 

slightly different from the form given by (2.5.21), which results from the applica- 

tion of the boundary conditions. The condition that C( t ,  0) = 1 yields 



since Co, the concentration a t  the surface, is constant for all time, i.e. C; = Co. 

Application of the other boundary condition. Elx=, = 0, is a Little more compli- 

cated. If there are iU intervals in the spatial domain, expanding CMer in a Taylor 

series about X = 1 results in: 

The second term on the right side vanishes by application of the boundary con- 

dition. Rearrangement yields 

Application of (2.5.25) to (2.5.17) followed by rearrangement yields 

Therefore, the equations to be solved are 

N N 

2aMC*-, + bMc;  = CM , where 

N N a -1 
bt = f + At C vj kj c?-I (cx,)!' (CI) j (~4) f j .  i=l. .... M, and (2.5.27e) 

j=l 

i=l ,  ... M ;  j= l , . , .N .  (2.5.28) 

These equations were solved numerically on a PDP 11/34A computer. The solu- 

tion for each set of parameters usually required 3 hours of CPU time for 



diffusion with one chemical reaction. Incorporation of more chemical reactions 

would be expected to increase the CPU time required geometrically, due to  the 

iterative nature of the numerical procedure. 
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The experiments were designed to obtain qualitative and quantitative infor- 

mation concerning the reaction of NO2 and coal. The selectivity of NOz for sulfur 

and the extent of its removal, particularly the removal of organic sulfur, from 

the combustion gases of the coal was of primary interest. The alterations in the 

coal structure as a result of NO2 treatment were also important. The experi- 

ments and analytical procedures were designed with these goals in mind. 

3.1 Ekperimental Apparatus 

9.1.1 The Experimental Apparatus for the Slurry Phase Reaction of Coal with Continu- 

ous Nitrogen Dioxide Flow 

The reactor system is shown in Figure 3-1. The liquid NO2 is heated in a 

stainless steel bomb to 5ooc, a t  which temperature the vapor pressure of NO2 is 

3.4 atm. The lines and rotameter leading from the bomb to the reactor are 

heated to 7 0 ' ~  to prevent the condensation of NOz, The heated NO2 enters the 

bottom of the reactor and flows through a medium porosity (10-15 pm pores) 

fritted glass disc which allows the uniform formation of small gas bubbles 

(about 1 mm in diameter) in the slurry. The slurry is well stirred using a teflon 

coated magnetic stir bar and a magnetic stirrer. The effluent gases from the 

reactor then flow to a Perkin-Elmer 3920 gas chromatograph (GC) equipped with 

an automatic gas sampling valve. Alternatively, the emuent gases can be vented 

in the fume hood. 

Treatments performed a t  room temperature are conducted in a glass reactor 

with a water jacket as depicted in Figure 3-2. Reactions at higher temperatures 

are performed in the reactor shown in Figure 3-3. This reactor is wrapped in 
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heating tape connected to  a temperature controller (Versa-Therm Proportional 

Electronic Temperature Controller- Model 2156). The controiler uses a thermis- 

tor (Yellow Springs Instrument Company- Mode1 404). The slurry temperature is 

monitored independently with a mercury-in-glass thermometer. The sampling 

port allows the periodic removal of liquid samples for analysis. The fritted glass 

disc in the sampling line prevents the entrainment of coal particles during sam- 

pling. 

The gas sampiing valve on the GC allows the periodic injection of samples of 

the effluent gases into the GC column. Samples are injected every five to ten 

minutes, depending upon the length of time required for the separation of the 

various effluent components. The separation is performed on a 12 foot column 

(0.125 in. O.D.) packed with Porapak Q (80 to 100 mesh). The chromatograph is 

equipped with two detectors. The thermal conductivity detector (TCD) detects 

nitrogen, oxygen, oxides of nitrogen and any compound whose volume concen- 

tration exceeds roughly one percent. A flame photometric detector (FPD) is 

used to detect sulfur compounds whose volume concentration exceeds 0.1 ppm. 

The FPD utilizes a hydrogen flame to atomize the compounds which enter the 

detector. All of the sulfur is converted to an excited species, s;, which immedi- 

ately relaxes to the ground state while emitting a photon with a wavelength of 

394 nm, An optical light pipe carries the photons to a 394 nm optical filter 

which screens out all photons except those in the 394 k 2 nm wavelength range. 

These photons are  then detected with a photomultiplier tube. The signal from 

either detector can be integrated electronically with a Perkin-Elmer Model 1 

Integrator. Both signals are displayed graphically on a dual channel chart 

recorder (Linear Instruments Corporation). 



3.1.2 The Apparatus for the Batch Slurry Phase Reaction 

Some reactions were carried out in a batch system without continuous NO2 

flow. The reactor consists of a 500 ml three-neck round bottom boiling flask 

placed in a water bath as shown in Figure 3-4. The temperature of the slurry is 

monitored with a mercury-in-glass thermometer for all experiments except 

those conducted at OOC, where a pentane-in-glass thermometer is used. The 

sampling tube consists of a 23 cm length of 6 mm O.D. glass tubing. The end of 

the tube which is immersed in the slurry is plugged with about 2 to 3 cm of 

pyrex wool to prevent the entrainment of the coal particles during sampling, 

Samples are withdrawn using a 10 cm3 glass syringe equipped with a hypodermic 

needle, the base of which has been wrapped with a strip of paraffin film, The 

paraffin allows the formation of a tight seal between the base of the needle and 

the sampling tube. The slurry is maintained with magnetic stirring while the 

water bath is agitated with a variable speed stirrer (Talboys Engineering Cor- 

poration, Model 102). 

3.2 Choice of Coal and Coal Pretreatment 

Since the removal of organic sulfur in the form of SOz from the combustion 

gas of the coal is of primary concern, the ideal choice for study would be a coal 

with no pyritic sulfur. Furthermore, since changes in the pore structure of the 

coal are also of interest, a coal with a reasonably high surface area, say 100 

m2/g, would be desirable. The best choice from the extensive catalogue of coals 

available from the Pennsylvania State University Coal Bank is PSOC-190, an Illi- 

nois No. 6 bituminous coal. In order to mitigate intraparticle mass transfer 

effects, the coaI particles should be as small as possible. The particles cannot be 

so small, however, as to create slurry suspension and filtration problems. The 

best particle size which satisfies these criteria appears to be in the range from 

200 (74 pm diameter) to 325 (44 pm diameter) mesh. An analysis of the coal 
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provided by the coal bank is shorn in Table 3-1. An independent analysis of the 

particular mesh size of the ground coal used in the experiments is shown in 

Table 3-2. This analysis was performed using the various procedures described 

below. There is little difference between the analyses except for the sulfur con- 

tent. The pyritic sulfur content is 80 % lower while the sulfate sulfur content is 

440 % higher in the coal used than in the PSU Coal Bank Analysis. The carbon 

and hydrogen contents are slightly lower as well. These differences are caused 

by the weathering of the coal between the time of the coal bank analysis and the 

independent analysis. The time span is approximately 10 years. The difference 

in the particle size of the coal used in the analysis accounts for some of the 

discrepancy as well. Another set of runs was performed using another coal for 

purposes of comparison. The coal, PSOC 276 (Ohio No. 8), has the elemental 

composition shown in Table 3-3, as determined by the PSU Coal Bank. An 

independent analysis of the 200 to 325 mesh particle size fraction of the coal is 

given in Table 3-4. 

The undried PSOC 190 contains 12.66 i 0.17 % moisture by mass. The coal 

was not dried for those ru.ns utilizing water as the solvent. Some preliminary 

runs employing pyridine and nitrobenzene as solvents used the undried coal as 

well. The coal was predried, however, when used for runs utilizing carbon tetra- 

chloride as the solvent. The pretreatment consisted of vacuum drying the coal 

in 80 to 100 g quantities at approximately 180 to 200 '~  for several days. For 

some runs, the coal was first washed in deionized water, filtered, air dried and 

finally vacuum dried at 180 to 200 '~  for several days. The pretreatment condi- 

tions for the coals are shown in Table 3-5. The higher mass loss in the case of 

the washed and dried (W&D) PSOC 190 is due to the leaching of water soluble 

compounds from the coal. 



TABLE 3-1 
Elemental Analysis of PSOC 190 (Illinois No. 6) 
on a Dry Basis Provided by the  PSU Coal Bank 
8.49 % Ash 1 1.00 % N 1 0.10 % Sulfate Sulfur 

1 ~ e a t i ' n g  Value = '11,960 Btu/ Ib, i 
69.15 % C 
4.89 % H 

1 3'05 ' 1.05 % Pyritic Sulfur 
1.90 R Organic Sulfur 

TABLE 3-3 

TABU 3-2 

Elemental Analysis of PSOC 276 (Ohio No. 8) I 

on a Dry Basis Provided by the PSU Coal Bank 
11.19 % Ash 1 1.57 % N 1 0.02 % Sulfate Sulfur 

. 

1 

1 ~ e a t i k g  Value = '12,990 Btu/lb, 1 

Elemental Analysis of PSOC 190 (+ZOO-325 mesh) on a Ilry Basis -- / 

72.19%C 
4.96 % H 

8.67 i 0.08 % Ash 
66.02 * 0.19 % C 
4.47 i: 0.07 % H 

1 Heating Value = 12,590 Btu/lb, I 

3m47%s 

TABLE 3-4 
Elemental Analysis of PSOC 276 
f+200-325 mesh) on a Dry Basis 

Heating Value 

1.30 2 0.03 % Sulfate Sulfur 

3,07 * o.O 
% Pyritic Sulfur 
75 Organic Sulfur 

2.28 % Pyritic Sulfur 
1.17 % Organic Sulfur 

. 

0.14 % Sulfate Sulfur 
2.12 % Pyritic Sulfur 
0.94 % Organic Sulfur 

11.23 % Ash 
71-00 % c 
4.87 % H 

1.37 % N 

3-20 % s 





33.1 Procedwe for the Siurrg Phase Reaction with Continuous Nitrogen Dioxide Flcm 

3.3.1.1 Preliminary 

The set of preliminary runs consists of six experiments using three different 

solvents, namely water, pyridine and nitrobenzene, at  room temperature and 

6 0 ' ~ .  The coal used in each experiment was the PSOC 190 (+loo-200 mesh) coal. 

Although the NO, flowrate was not monitored, there was sufficient flow to cause 

agitation even without magnetic stirring. Approximately log of raw, undried 

coal were slurried with 250 to 300 ml of the solvent in the reactor while purging 

with N2. The slurry was heated for those runs a t  B O ~ C  while purging with N2. NO2 

was then bubbled through the slurry for two hours. Magnetic stirring was used 

to maintain the slurry and to aid in heat transfer. The slurry was then filtered 

and the solid coal left was washed with water until the filtrate was neutral to 

litmus paper. In the case of nitrobenzene, however, the filter tended to clog, so 

that the coal left over was not washed further. The filtered coal was then dried 

under vacuum at 1 0 0 ~ ~  until a pressure of less than 0.001 torr could be main- 

tained. Such drying usually required several days, particularly for the coal sam- 

ples treated in nitrobenzene. After drying, the samples were weighed to deter- 

mine the coal mass loss for each experiment. 

Extraction of the coal occurred when pyridine and nitrobenzene were used. 

Therefore, these solvents were distilled from the filtrates. The pyridine filtrate 

was distilled up to 116 'C (pyridine b.p. 115.5 C). Pyridine forms an azeotrope 

with water(57.0Z pyridinel 43.0% water), however, which boils at 92.6 -C. Thus, 

most of the distillate was in the 92-96'~ range. There was not very much residue 

left. Distillation of the nitrobenzene filtrate, on the other hand, yielded large 

amounts of extract which were saved for analysis. The experimental conditions 



for this set of runs are found in Table 3-6. 

3.3.1.2 Runs Using Water as the Solvent 

A set of exploratory runs using water as a solvent was conducted. Approxi- 

mately log of the undried PSOC 190 coal (1-200-325 mesh) were slurried with 

300 ml of deionized water in the reactor. While maintaining the slurry with mag- 

netic stirring, NOz was admitted a t  a constant flowrate as indicated by the 

flowmeter. Although the actual NO2 mass flowrate was never determined, the 

NO2 flowrates were essentially equal throughout the series of runs. These exper- 

iments were conducted in the reactor without the water jacket a t  room tem- 

perature. There was a temperature rise of a few degrees due to the exothermi- 

city of the reaction. At the end of the reaction, the slurry was filtered and the 

coal was washed six times with 250 ml of deionized water. The coal was allowed 

to air dry and was then dried under vacuum for 6 hours at 100 to l lO°C. A 

blank run using Nz instead of NOz was performed as well. After drying, the sam- 

ples were weighed to determine the mass loss and saved for further analysis. 

The pertinent experimental conditions are tabulated in Table 3-7, 

Approximately lg samples of the NOz treated coals were then washed with an 

aqueous solution of 0.5g anhydrous NazCOs dissolved in 50 ml deionized water. 

The slurry was stirred for two hours at room temperature. The slurry was then 

filtered and washed five times with 75 ml of deionized water. The coal was 

allowed to air dry and was then vacuum dried for I day at 11 0 to 120 OC. The 

samples were then weighed to determine the mass loss and saved for further 

analysis. The overall mass loss due to treatment with NOz followed by washing 

with Na2COs (aq) are also tabulated in Table 3-7. 

Another set of experiments using water as a solvent under more controlled 

conditions was done as well. The weighed coal was loaded into the reactor with 



Represents the extract mass as a percentage of the initial coal mass. 

TABW 3-6 
Experimental Conditions for Preliminary Runs Using PSOC 190 

(+ 100-325 mesh) and NO2 for 120 rnin 
Mass 

. Loss 

( %) 
14.4 
13.2 
22.8 
16.2 
37.8 

-54.1' 
54.6 

-30.6' 
The N b 2  was bubbled in while the slurry was &ing heated: The slurry was '72 C after 30 rnin and 

82 C after 45 min. The temperature was maintained at  roughly 80 C after that time. 

Run # 

1 
2 
3 
4 
5 

6 

Coal 

Mass 

(R) 
9.50323 
9.4284 
9.255 1 
10.2647 
10.7623 

10.3873 

Sample 

H20/N02/Coal 
HzO/NOz/Coal 

Pyridine/NOz/Coal 
Pyridine/N02/Coal 

Nitrobenzene/NOz/Coal 
Extract 

Nitrobenzene/N02/Coa1 ' 

Extract 

Solvent 

Volume . 

(rnl) 
300 
300 
250 
300 
250 

250 

Temperature (C) 

High 
2 8 
8 0 
3 0 
95 
38 

08 

Low 
23 
23 
25 
7 9 
24 

78 

Average 
2 6 
78' 
2 '3 
83 
3 4 

81 



= the initial mass of NOZ treated coal used for the Na,CO, (aq) washand mf = the final mass of washed coal. Then 

Experimental Conditions for Exploratory Runs Using Water As A 
Solvent for the Treatment of PSOC 190 (+200425 mesh) with NO2 

Overall Mass Loss = mr-mf(l - f )  
mi 

Stopcock grease melted and contaminated this sample during drying because the temperature rose to 140 C. 
Thus, the mass loss figures are low. 

NO2 flow rate not monitored. 

Overall 
Mass 
Loss 
(%I1 . 
24.29 
21.47 
22.93 
21 .402 
26.60 
15.02 

19.47 

Represents percent mass loss relative to initial mass of coal. Let f = the fractional mass loss due to NOz treatment, 

Relative NOz 

Flow Rate 

0.00 
1.33 
1.24 
1.27 
1.22 
-3 

- 3 

# 

7 (Blank) 
0 
9 
10 
11 
12 

13 

Initial Coal 

Mass (g) 

1 1.7094 
10.9133 
10.0578 
10.4977 
11.1770 
10.6012 

10.2654 

Reaction 
Time 

(mini 

120 
30 
60 
90 
120 
240 

400 

Temperature 

Range (C) 

26.5 
26-20 
26-29 
25-29 
26-29 
24 -31 

24-31 

Mass Loss 
Due to NOz 
Treatment 

(%) 

15.04 
14.48 
13.89 
12.66 
1 1.79 
10.33 

12.71 

Mass Loss Due 
to NazCOs(aq) 

Wash (%) 

10.04 
0.17 
10.50 
10.012 
lt3.08 
6.12 
7.74 



350 mi of deionized water to form a slurry. The slurry was purged with N2 for a t  

least 30 minutes to eliminate dissolved O2 while stirring magnetically. Then NOz 

was admitted a t  a constant flowrate as indicated by the flowmeter. For these 

runs, the NOz mass flowrate was determined by weighing the NOz bomb before 

and after the experiment and dividing the mass difference by the reaction time. 

Liquid samples were withdrawn every 15 minutes for analysis of HN03 (aq) and 

HNOz (aq). At the end of the run, the slurry was Altered and the coal was washed 

six times with 100 ml of deionized water. The coal was allowed to air dry and 

was then vacuum dried for several hours a t  100 to 120~~. The samples were 

then weighed to determine the mass loss and saved for analysis. The experimen- 

tal conditions are shown in Table 3-8. I t  should be noted that the NOz flowrates 

for the experiments run for various reaction times are not the same. This varia- 

tion is symptomatic of the extreme difficulty encountered when attempting to 

keep a constant flow rate of NOz. Because NOZ dimerizes to Nz04 to a different 

extent depending on temperature and pressure, minor fluctuations in these 

parameters in the NOz lines and the flowmeter can cause problems, including 

condensation of NO2 in the lines. Heating the lines and the flowmeter to a tem- 

perature higher than the bomb temperature helps to alleviate these problems to 

a great extent. Nevertheless, averaging the flowrates for runs 14, 15, 19 and 20 

yields a value of 0.774 k 0.039 g N02/min. Clearly, it would be desirable to 

obtaln better flow rate control. Such control, however, would necessitate 

extremely fine temperature (i 0.1%) and pressure (rt 5 torr) controlling capa- 

bility. Of course, the whole problem can be circumvented by using a batch reac- 

tor, which will be discussed later. Samples of the NO2 treated coals were also 

washed with aqueous Na2C0, using the procedure discussed above. 



= the initial mass of NOz treated coal used for the Na2C03 (aq) wash and mf = the final mass of washed coal. Then 

TABLE 3-8 

Experimental Conditions for Huns Using Water As A Solvent for 
the Treatment of PSOC 190 (+200425 mesh) with NOz 

Overall Mass Loss = ms - q ( l  - f )  
mi 

Run # 

- 
14 (No Coal) 

15 
16 
17 
18 
19 
20 

Represents percent mass loss relative to initial mass of coal. Let = the fract.iona1 mass loss due to NOz treatment, 

Reaction 
Time 

(min) 

240 
60 
120 
120 
120 
180 
240 

Initial Coal . 

Mass (g) 

10.0015 
10.001 1 
10.0025 
10.0013 
10.0029 
10.0066 

Temperature 

Range (C) 

25 -37 
23.0 -23.8 
22.6 -24.0 
24.0 -25.0 
23.0 -24.0 
23 6 -26.0 
23.2-2 5.0 

Overall 
Mass 
Ia ss 
(%I1 

20.'72 
20.95 
19.63 
17.55 
17.78 
18.64 

Average NO2 
Flow Rate 

(g/min) 

0.778 
0.697 
0.209 
0.403 
1.039 
0.802 

02Jl9 

Mass Loss 
Due to NOz 
Tr eat,ment 

(%1 

17.56 
17.43 
15.52 
14.47 
10.86 
13.70 

Mass Loss Due 
to NazC03(aq) 

Wash (%) 

3.83 
rf.26 
4.86 
3.60 
4.55 
5.73 



3.3.123 Runs Using Carbon Tetrachloride as the Solvent 

Carbon tetrachloride was chosen as a solvent in order to avoid the reactions 

which take place between NOz and water when water is the solvent. Therefore, 

the only species capable of attacking the coal in a coal/CCL slurry is NO,, 

rendering the evaluation of the kinetic data much easier. Two sets of experi- 

ments were conducted using carbon tetrachloride as a solvent in the continuous 

flow reactor. 

The first set of experiments consisted of seven runs a t  room temperature. 

Approximately five grams of predried PSOC 190 coal (4200-325 mesh) - Batch 1 

were placed in the vacuum assembly shown in Figure 3-5. The assembly was 

placed on a vacuum rack and evacuated a t  room temperature for two hours. 

The vacuum rack was then isolated from the vacuum pump and the valve isolat- 

ing a flask containing degassed CCL was opened. The coal was allowed to adsorb 

CC14 at room temperature for one hour. The tube containing the coal was then 

placed in an ice bath. After approximately one more hour, enough CCl, had con- 

densed in the tube to form a thick slurry. This procedure was adopted to ensure 

that the pores of the coal particles filled completely with CC4,  because it is not 

known if CC14 could wet the entire coal particle. The assembly was then con- 

nected to a flask containing CCf4. The valve was opened and the assembly 

flooded with liquid CCl,. The slurry was then mixed with enough CCI, which was 

dried over anhydrous MgS0, to make 400 ml of slurry. The slurry was placed in 

the reactor with the water jacket and purged for one hour with Nz while being 

stirred magnetically. Then NOz was admitted at a constant flowrate as indicated 

by the flowmeter for various reaction times. The average NOz mass flowrate was 

determined by dividing the difference in the bomb mass before and after the run 

by the reaction time. Liquid samples were withdrawn every 15 minutes to deter- 

mine the NO2 concentration. At the end of the run, the slurry was filtered and 
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the coal was placed immediately in a 200 ml round bottom boiling flask and con- 

nected to the vacuum rack. The samples were dried under vacuum for 12 hours 

at roughly 160°C. The samples were then weighed to determine the mass loss. 

Samples of the treated coals were also washed with aqueous Na2C03 using the 

procedure discussed in the previous section, The experimental conditions are 

shown in Table 3-9. Referring to the table, it should be noted that the coal from 

Run 26 was vacuum dried for 12 hours at room temperature rather than 1 6 0 ' ~  

in order to determine the effect of the drying temperature. As expected, a 

significant amount of otherwise volatile material is not removed a t  room tem- 

perature. 

The second set of experiments consisted of five runs conducted at 50 '~ .  The 

major advantage in conducting the experiment at 50O~ is that it is possible to 

saturate the C C 4  with NOz. By using a flowrate of roughly 1 g N02/min, it is pos- 

sible to saturate 400 ml of CC14 in 30 minutes. As in the previous set of experi- 

ments, approximately five grams of predried PSOC 190 coal (t.200-325 mesh) - 

Batch 2 were used. The coal was not presaturated with CC14, however, since such 

pretreatment did not seem to alter the reaction to any discernible extent. The 

coal was added to the reactor wrapped in heating tape after 400 ml reagent 

grade CCl, were saturated for 45 minutes with NO2. The same NO2 flowrate as 

indicated by the flowmeter was used throughout this set of experiments. The 

slurry was stirred with a magnetic stirrer at all times and liquid samples were 

withdrawn every fifteen minutes. At the end of the run, the slurry was filtered 

and the coal was placed immediately in a 200 ml round bottom boiling flask and 

connected to the vacuum rack. The coal was vacuum dried for 6 hours at tem- 

peratures ranging from 100 to 120'~.  The samples were then weighed to deter- 

mine the mass loss. Samples of the treated coals were also washed with aqueous 

Na2C03 using the procedure described in section 3.3.1.2. The experimental con- 



= the initial mass of NO2 treated coal used for the NaZCO3 (aq) wash and rn, = the final mass of washed coal. Then 

Experimental Conditions for Runs Using CC14 As A Solvent for the 
Treatment of PSOC 190 (-b200-325 mesh) with N O Z  in the Continuous Flow Reactor 

Overall Mass Loss = w -mf(l - f )  
Tni 

Run # 

2 1 
22 

After treatment with NO2, this coal was vacuum dried for 12 hours a t  room temperature. 

5.0125 25 -28 1.195 -3 7.23 13.57 -1.32 
120 5.0054 25 -27 1.420 -33.51' -2 

180 -1 7.27 13.86 -1.01 

Represents percent mass Ioss reIative to initial rnass of coal. Let f = the fractional mass Ioss due to NOz treatment, 

Reaction 
Time 

(min) 

30 
60 

Initial Coal 

hfass k) 

5.0131 
5.0305 

Temperature 

Range (C) 

25 -27 
26 -2'7 

Average NOZ 
Flow Rate 

(kz/min) 

1.233 
1.203 

Mass Loss 
Due to NOZ 
Treatrnent 

(XI 
-9.69 
-I 1.56 

Mass Loss Due 
to NazC03(aq) 

Wash (%) 

9.70 
9.43 

Overall 
Mass 
Loss 
(%)I 

0.0 1 
-1.04 



ditions are shown in Table 3-10. It should be noted that a minimum of coal 

should be used in order to avoid a significant decrease in NO2 concentration 

when the coal is initially added. Enough coal must be used, however, to provide 

a sufficient amount of sample for analysis. The best compromise is five grams, 

which is the amount used. Of much greater importance is the fact that the 

treated coals could not be washed in 0.1 M NazC03 (aq) and then filtered. The 

coals treated with NOZ a t  5 0 ' ~  appeared to dissolve completely in 0.1 M Na2C03 

(aq) while coals treated with NOz a t  lower temperatures (25 "C) do not dissolve. 

Rather, these coals treated at SO'C seem to form an emulsion which cannot be 

filtered. 

3.3.2 Procedure for the Slurry Phase Reaction in the Batch Reactor 

Due to the difficulty in maintaining a reproducible NOz flowrate to the 

continuous-flow reactor within a set of runs, several experiments were run in 

the batch reactor shown in Figure 3-4. Four sets of experiments were con- 

ducted. For each set of runs, approximately 800 to 900 ml of reagent grade CC1, 

were exposed to a stream of NO2 until the NOz concentration was approximately 

2.5 F, which served as a stock solution. This solution was stored in a dark bottle 

and kept in a closed cabinet to prevent any photolysis of NOz. Furthermore, the 

solution was used within a week to ensure that the NOZ concentration was rela- 

tively constant. 

For each run, enough stock solution was added to reagent grade CC4 to make 

350 ml of solution with [NO2] w 1.0 to 1 .1 F. The solution was placed in the reac- 

tor and then sealed to prevent the escape of NOz. The reactor and its contents 

were then allowed to equilibrate thermally with the water bath. The bath tem- 

perature was maintained by adding small amounts of ice or by heating slightly 

with the combination magnetic stirrer/heater unit. After thermal equilibrium 

was attained, approximately ten grams of coal were added to the reactor while 



standard deviation of the average. 

TABLE 3-20 

Experimental Conditions for Runs Using CC14 As A Solvent for the 

Treatment of PSOC 190 (+200$125 mesh) with NO2 in the Continuous Flow Reactor a t  50 C 

For some unknown reason, the heating mantle did not raise the temperature as high as it did in other runs, even though 

the voltage supplied in all flve runs was the same. 

Run 

# Range (C) 
Time iiveragei 

1.159* 0.053 21.55 

5.0041 50.0i 0.2 1.270 1.073 26.03 9 y2 1 . 2 8 4 ~  0.057 

120 5.0183 50.0& 0.2 1.212 0.974 1.152& 0.077 25.CO 109 

28.03 113 

The average shown was obtained by simple averaging of the values obtained for [NO,] while the error shown i s  the 

Reaction 

Time 

Initial 

Coal 

Temperature 
NOz Concentration (mo~/l) 

Mass 

Gain 

Drying 

Temperature 



the CCl,/N02 solution was stirred. Initially, the slurry temperature rose 1 to 2OC 

within the first minute, but then fell back within the next few minutes as the 

slurry thermally equilibrated with the water bath. Liquid samples were with- 

drawn every 15 minutes for determination of the NO2 concentration. At the end 

of the run, the slurry was filtered and the coal was placed immediately in a 200 

ml round bottom boiling flask and connected to the vacuum rack. The coal was 

vacuum dried for 3 hours at 1 2 0 ~ ~ .  The samples were then weighed to deter- 

mine the mass loss. Samples of the treated coals were also washed in aqueous 

NaZC03. The procedure used for the wash was the same as that discussed in sec- 

tion 3.3.1.2, except five grams of the NO2 treated coal were slurried with 250 ml 

Na2COs (aq: log  Na2C03 (anhydrous)/l). After stirring for two hours a t  room 

temperature, the slurry was filtered and the coal was washed five times with 100 

ml of deionized water. After air drying overnight, the coal was vacuum dried for 

four hours at 1 3 0 ~ ~ .  These samples were then weighed to determine the overall 

mass loss. 

The experiments in the Arst set of runs were run for different lengths of time 

to generate kinetic data. The experimental conditions are shown in Table 3-1 1. 

The washed and dried (W&D) PSOC 190 (+ZOO-325 mesh) - Batch 1 coal was used 

in this set of experiments. All of the experiments were conducted a t  20 '~ .  The 

experiments in the second set of runs were run at different initial concentra- 

tions of NO2 in order to obtain data regarding the effect of [NO2] on the kinetics 

of the various reactions between NO2 and coal. The experimental conditions can 

be found in Table 3-12. All of these experiments were run at 2 0 ' ~  as well. I t  

should be noted that Run 36 appears in Table 3-12 as well as Table 3-11 for 

purposes of comparison. The experiments in the third set of runs were con- 

ducted for various lengths of time a t  O'C in order to generate kinetic data at 

another temperature. The pertinent experimental conditions have been tabu- 



Deviation is the standard deviation of the average of the slurry tempcrat.ures, which were taken every IS minutes. 

TABLE 3-1 1 

Experimental Conditions for Runs Using CC14 As A Solvent for the 
Treatment of W&D PSOC 190 (+200625 mesh) -Batch 1 with NO2 in the Batch Reactor at  20 C 

* Represents percent mass loss relative to initial mass of coal. Let = the fractional mass loss due to NOZ treatment, 

Run 

# 

33 
34 
35 
36 
37 

= the initial mass of NO, treated coal used for the NazC03 (aq) wash and mf = the final mass of washed coal. Then 

Overall Mass Lass = mi -mffl -f) 
ma 

Reaction 
Time 

(min) 

30 
60 
90 
120 
180 

Initial 
Coal 

Mass la) 
10.0043 
10.0064 
10.01 10 
10.01 64 
10.0107 

Average 
Temperature 

(C)' 
80.31.0.2 
20.11. 0.1 
20.0+ 0.1 
20.CI: 0.1 
20.01t 0.1 

21, 

(mol/l) 

1.122 
1.058 
1.081 
1 087 
1.09 1 

Mass Gain 
Due to NO2 

Treatrne~t (%) 

13.02 
14.55 
16.67 
16 at', 
1 5-EJ 

Mass Loss Due 
to NaZC03(aq) 

Wash (%l 
3.99 
4.67 
5.60 
5.00 
4.87 

Overall 
Mass 

Gain (%I2 
8.52 
9.20 
10.14 
10.92 
10.22 



Deviation is the standard deviation of the average of the slurry ternperat,ures, which were taken every 15 minutes. 

Experimental Conditions for Runs Using CCll As A Solvent for the 
Treatment of W&D PSOC 190 (+200425 mesh) -Batch 1 with NOz in the Batch Reactor a t  20 C 

For Different Initial NOz Concentrations 

Represents percent mass loss relative to initial mass of coal. Let f = the fractional mass loss due to NOZ treatment, 

Run 

# 

38 
39 
30 
40 
4 1 

m+ = the initial mass of NOz treated coal used for the NazC03 (aq) wash and mf = the final mass of washed coal. Then 

Overall Mass Loss = mi - m f ( l  - f )  
mi 

Reaction 
Time 
(rnin) 

120 
120 
120 
120 
120 

Initial 
Coal 

Mass k) 
10.0162 
10.0187 
10.01 64 
10.0060 
9.9933 

Average 
Temperature 

(Cll 

20.2,t 0.1 
20.21t 0.1 
20.2kO. 1 
20.0& 0.1 
20.2% 0.1 

lm 21, 

(mol/l) 

0.097 
0.408 
1.087 
1.713 
1.074 

Mass Gain 
Due to NOz 

T r e a i ~ n t  (%I 
5.69 
18.72 
16.86 
20.'?4 
22.81 

Mass Loss Due 
to Na2COs(aq) 

Wash (%) 

2.27 
4.27 
5.08 
8.11 

935 

Overall 
Mass 

Gain (%Iz 
3.29 
7.90 
10.92 
10.95 
1 1.45 



lated in Table 3-13. The second batch of washed and dried PSOC 190 coal was 

used in these runs, Examination of Table 3-5, however, indicates that there is 

no discernible difference between the two batches of washed and dried coal. The 

experiments in the fourth and Anal set of runs were run using washed and dried 

(W&D) PSOC 276 (t.200-325 mesh) coal at 20°C in order to generate kinetic data 

which can be compared with the data from the data set using the PSOC 190 coal. 

Furthermore, the two coals have very different pore structures (s? = 55 m2/g 

for PSOC 180 vs. 233 = Q m2/g for PSOC 276). Since the PSOC 276 coal has a 

much smaller void fraction than the PSOC 190 coal, comparison of the kinetic 

data should provide an insight into intraparticle mass transfer effects, The 

experimental conditions are shown in Table 3-14. It should be noted that Run 

47 is a blank run in which the coal was slurried in pure CC14 and stirred for two 

hours at room temperature, filtered, vacuum dried and weighed, A sample from 

this run was then treated with aqueous Na2C03 in the manner described above, 

Altered, vacuum dried and weighed. 



Deviation is the standard deviation of the average of the slurry temperatures, which were taken every 15 minutes. 

Experimental Conditions for Runs Using CCI4 As A Solvent for the 
Treatment of W&D PSOC 190 (c200-825 mesh) -Batrj12 with NOz in the Batch Reactor a t  0 C 

Represents percent mass loss relative to initial maso of coal. Let $ = the fractional mass loss due to NOz treatment, 

Run 

# 

42 

43 
4.4 
45 
46 - 

= the initial mass of NOz treated coal used for the MazC03 (aq) wash and mf = the final mass of washed coal. Then 

Overall 

Reaction 
Time 

(min) 
30 
60 
90 
120 
160 

Mass Loss = 

Initial 
Coal 

Mass (g) 

10.01 14 
10.01 38 
10.0054 
10.0079 
10.0136 

Average 
Temperature 

(c)' 
0.9% 0.1 
0.5F 0.1 
0.6% 0.2 
0.51 0.1 
0.51, 0.1 

Mass Gain Mass Loss Due 
to NazC03(aq) 

1.040 14.12 
1.008 14 40 4.97 8.72 
1.040 15 02 5.54 9.41 
1.028 16 20 5.02 10.38 



A blank run. 

TABLE 3 1  4 

Experimental Conditions for Runs Using CC14 As A Solvent for the 
Treatment of W&D PSOC 276 (+200825 mesh) with NO2 in the Batch Reactor at 20 C 

Deviation is the standard deviation of the average of the slurry temperatures, which were taken every 15 minutes. 

Run 

# 

47' 
48 
49 
50 
51 
52 

&presents percent mass loss relative to initial mass of coal. Let f = the fractional mass loss due to NOz treatment, 

9 = the initial mass of NOz treated coal used for the NaZCO3 (aq) wash and m, = the Anal mass of washed coal. Then 

Overall Mass Loss = mi -mf ( l  -1) 
tni 

Reaction 
Time 
(mid 

120 
30 
60 
90 
120 
180 

Initial 
Cod 

Mass ( E )  

10.0098 
10.0038 
10.0086 
10.0013 
10.0062 
10.0046 

Average 
Temperature 

(cll 

20.2& 0.1 
20.0* 0.1 
20.0Tt: 0.1 
19.8* 0.1 
19.8k 0.1 
19.9* 0.1 

[No 210 

(mol/l) 

0.000 
1.04.4 
1.048 
1.097 
1.090 
1.074 

Overall 
Mass 

Gain (x)~ 

Mass Gain 
Due to NO2 

Treatment (%I 
-2.08 -5.94 

10.63 
12.13 
14.33 4.99 8.63 
1367 4.05 10.98 

Mass Loss Due 
to Na2C03(aq) 

Wash (%I 



3-4 Chemical Analpsis 

3.4.1 Analysis of Nitr- Dioxide and Related Species 

9.4.1-1 Analysis of Nitric and Nitrous Acid in the Liquid Phase When Water Was the Sol- 

vent 

Samples of the liquid phase were withdrawn every 15 minutes from the reac- 

tor during a run. When water was the solvent, the predominant liquid phase 

species derived from NO2 were H N 0 3  and HN02.  Since the reaction between NO2 

and HgO is so rapid, very little solvated NOz can exist unless the concentration of 

H N 0 9  is quite high (about 16 M). Since the concentration of H N 0 3  never 

exceeded 10 M in any of the experiments, it was assumed that only H N 0 3  and 

HNOz were present in the bulk liquid phase. Reaction of H N 0 3  (aq) with coal, 

however, leads to the formation of NOz in situ as evidenced by the presence of 

NOz in the vapor space in the reactor. 

3.4.1.1.1 Analysis of Nitric Acid 

Exactly 100.00k 0.05 ml of deionized water were pipetted into a 200 ml 

beaker. The p H  of the HzO was measured using a Radiometer Model 26 p H  meter 

to determine the initial pH of the water, pHo. Then 1.00k 0.05 ml of the liquid 

sample was pipetted into the HzO, which was then magnetically stirred for 1 

minute. The p H  was then measured to determine p H 1 ,  Since p H  = -logaH+, 

- where aH+ is the activity of H f ,  a*+ - yH+ mH+, where yH+ is the activity 

coefficient of H f  and mH+ is the molality of N', and cH+ = m*+ Ps 
, where 

1 + mH+ MH+ 

cH+ is the molar concentration of Hf, ps is the solution density and MH+ is the 

molecular mass of H f ,  



The H+ present is due to the dissociation of both HNOs and HN02. Since pH1 is 

usually between 0.0 and 3.0, the HNOs may not be completely dissociated. Furth- 

ermore, HNOz has a pK, of 3.37. Therefore, a substantial fraction of the H' 

present can be attributed to the dissociation of HN02, particularly at higher pH 

values. Therefore, two simultaneous mass action equations must be solved, 

namely 

=H+ a ~ ~ T  
= K 1 ,  and 

~ H N O ,  

a ~ +  alvoz 
= K2. where 

~ H N O ,  

~i = the activity of species i, 

Kl = the dissociation constant of HNOs, and 

K2 = the dissociation constant of H N 0 2 .  

These equations can be expressed in terms of activity coefficients as 

(y* )$NUS mH+ mN*; 
= K1 , and 

Y H N O , ~ H N O ,  

(Y* )&NOz m ~ +  m ~ o ;  
I = K2 , where 

Y H N O , ~ H N O ,  

(y,)$ = the mean ion activity coefficient of species i, and 

yi = the activity coefficient of undissociated species 4, 

Letting the extent of HN03 dissociation be x and the extent of HN02 dissociation 

be y, then 
7n,+ = x fmm,)o + y ( ~ H N O , ) O  1 



~ H N O ,  = ( 1 7 )  ( ~ H N o , ) ~  , where 

( 7 4 ,  = the total concentration of species i, expressed as 

undissociated i. 

Substitution of these expressions into equations (3.4.4) and (3.5.5) yields 

The value of (mHNo2)o is known from the determination of HNOz discussed in the 

next section. Furthermore, mH+ can be determined if values for yH+ are known: 

- - c 
aH+ - Yw+ mH+ - yH+ c H + ,  where (3 .4 .8)  

yf = the activity coefficient when molar concentrations are used. 

Although values for yH+ cannot be determined directly by experiment, determi- 

nation of yNoc and (y,)xNo, allows the calculation of yH+: 

where the superscript c denotes that molar concentrations are to be used. It 

should be noted that the conversion from molal to molar units is easily accom- 

plished using the following formula: 



N = the total number of salute species, 

(MFY)i = the molecular mass of species i (g/mol), 

p, = the solution density (g /crn3), 

mi = the molality of species i (mol/kg solvent), and 

ci = the molarity of species i (mol/l solution). 

Equations (3.4.6) and (3.4.7) can be rewritten as: 

(7: ):No3 
A[ 1 [ x (CHNO~)O + Y (CHNO~)O] = % , and (3.4.1 1) 
1 %  YHNO, 

I:X(CHNO,)O + Y(CHNO~)G] = I I J C Z ,  where (3.4.12) 

The determination of is now relatively straightforward since cH+ and 

are known. First, equation (3.4.12) is used to determine y in the form: 

It  is important to recall that the activity coeffcients must be evaluated a t  the 

appropriate ionic strength, which in this ease is given by: 



The value for x is now determined by equation (3.4.1 1) recast as: 

Finally, (cwNo3)o is given by equation (3.4.14) rewritten as: 

The values for  YE)^^^^ and ygN03 determined by Davis and deBruinl were 

used in the calculations and are shown in Table 3-15. It should be noted that 

the values for the ionic strength, 1, given in Table 3-15 were obtained b y  multi- 

plying ( c ~ ~ ~ ~ ) ~  by the degree of dissociation, a. Therefore, ( ~ z ) ~ ~ ~ ~  and ygNo3 

are now given as a function of the ionic strength. Linear interpolation was used 

between the appropriate points to obtain the necessary values for the calcula- 

tion. The authors determined a value of 15.4k 2.1 for G. The values given for 

ysoi in Table 3-15 were obtained using the method proposed by Bates and 

Alfenar as described by O'Brien and B a ~ t i s t a . ~  By using the C1- ion in aqueous 

NaCt solutions as a standard, the mean ionic activity coefficient of any simple 

ionic species can be obtained, In this case, 

log y;,; = log y&- ' 2 log [ 
(YE )HNO~ 
(Y )HQ 

1 .  

The value for y&- is given by 

1 - 
- log y&- = 0.509 r 

1 '  - 

where I is the ionic strength, which in general is given by 



TABLE 3-15 

i 

Values for the Activity Coefficients of HNOs H+, and NO K 
( c ~ ~ ~ 3 ) ~  

(mol/l s o l d  

0.000 
0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
0.7 
1.0 
1.5 

a 
Degree of 

Dissociation 

1.0000 
0.99994 
0.99988 
0.99972 
0.99947 
0.9990 
0.9978 
0.9960 
0.9930 
0.9852 
0.980 
0.973 
0.961 

I 

(mal/l soln) 

0.00000 
0.00100 
0.00200 
0.00500 
0.0 100 
0.0200 
0.0499 
0.100 
0.199 
0.493 
0.686 
0.973 
1.442 

(?':)HEIo~ 

1.000 
0.996 

0.741 
0.746 
0,766 
0.825 

7&rO3 

1.000 
1,001 

c 

1.000 
0.965 

7:+ 

1.000 
1.028 



1 
M 

2 I = -C z, ci , where 
2 i = 1  

Z~ = the charge on species i. ( eg. zH+ = +I,  zNo; = -1 

and ZHNos = 0 ). and 

cc = the molar concentration of species i (mol/l solution). 

Values for 7;. were then calculated using the deanition of the mean ionic 

activity coefficient, namely 

Values for yffNa, are available, but values for (yz)HNo2 have not been determined. 

Lumrne and Tummavuori, however, have determined KC2 as a function of the 

ionic strength.' Thus, the activity coefficients are implicitly included in the 

expression for r2: 

The authors obtained the following expression for KCZ (1): 

1 1 

- log [K; ( 0 1  = 3.148 - 1.023 r T ( 1  + 1.622 IF)-' + 0.261 1 . (3.4.22) 

Equation (3.4.13) is then simplified to 

c ~ +  1-1 y = [ 1 + ---- 
G ( I )  

Therefore, using the values for cH+ and ( c ~ ~ ~ , ) ~ ,  equation (3.4.23) was used to 

calculate y,  equation (3.4.15) was used to calculate x and equation (3.4.16) was 

used to calculate ( c ~ ~ ~ ~ ) ~  



3.4.1-1.2 Analysis of Nitrous Add 

The concentration of HNU2 (aq) was determined using an Orion Research 

Model 95-46 nitrogen oxide electrode and Model 407 meter. The electrode util- 

izes a hydrophobic gas permeable membrane to separate the sample solution 

from the internal electrode solution. The gaseous anhydrides of nitrous acid, 

generated by acidifying an aqueous nitrite sample, diffuse through the mem- 

brane until the partial pressures of the nitrogen oxides, namely NO, NOz, NzOs 

and N2o4, are the same on both sides of the membrane. The nitrogen oxides 

affect the HNOz concentration in the internal filling solution through the follow- 

ing equilibria: 
H+ ( a q  ) + NO< ( a q  ) = HNOz ( a q  ) 

2 H N 0 2  ( a q )  = NO (aq ) + NOz ( a q )  + H 2 0  

NO ( a d  = NO ( 9 )  

NO2 (=!I) = NO2 ( 9 )  

NO (g) + NO2 (g = NzO, ( 9 )  

N z O 3 ( g )  = NzO, (a91  

Once the nitrogen oxides have equilibrated across the membrane, the following 

expression describes the relationship among H f ,  NO; and HN02: 

a ~ '  a ~ ~ z  
= K = constant 

a ~ i V O z  

The concentration of NO; in the internal filling solution is sufficiently high rela- 

tive to the concentrations of HI  and H N 4  so that c,,; can be considered con- 

stant. Thus, the H+ concentration becomes proportional to the HNO, concentra- 

tion. I t  is the H' activity that is actually determined. The relationship between 

the electrode potential and the H+ activity, aH+, is given b y  the Nernst equation: 

E = Eo + S log an+, where (3.4.25) 



E = the electrode potential, 

Eo = a reference potential, 

S = a constant, commonly referred to as the electrode slope, and 

aH+ = the Hf activity. 

Because aH+ is proportional to UHNQ,, however, equation (3.4.25) can be rewritten 

as 

E = E ,  + S log ~HNQ, . 

Therefore, the electrode potential is proportional to log aHm,. 

The measurement of U H ~ ,  involves adding an appropriate volume of the sam- 

ple taken from the reactor to a solution containing 100.00 ml deionized water 

and 10.00 ml of an acid bufTer. The b&er is present to ensure that a pH of 1.7 

is maintained during the measurement. At this pH, virtually all of the nitrite 

will be in the form of HN02. The use of an acidic medium also inhibits the 

decomposition of HN02 via 

3 H N Q  (ag) : H4 + NO; (ug) + 2 NO ( g )  + H 2 0 .  

Furthermore, the adsorption of C02, which can interfere in the measurement, 

from the atmosphere is not appreciable when the pH is less than 6.2. The buffer 

consists of 190 g of anhydrous Na2S04 in roughly 600 ml of deionized water in a 

one liter volumetric flask. After the Na2S04 has dissolved, 53 mi of concentrated 

HzSO, are added and mixed. The buffer solution is then diluted to one liter total 

volume and stored in a dark bottle. The amount of sample added to the solution 

was chosen so that the electrode response would be within the linear range of 

the meter. This range was determined by calibrating the meter using samples of 

known NOg concentration. The standardizing solutions were made by weighing 



out to 0.1 mg roughly 0.7 g of reagent grade NaN02 and dissolving it in deionized 

water in a 100.00 ml volumetric flask to form a 0.10 M NaN02 (aq) solution. Then 

10.00 ml of this solution were diluted to 100.00 ml to form a 0.010 M NaNOz ( a d  

solution, In a similar manner, lo-' M and lo4 M NaNOz (aq) solutions were 

made. Using these solutions, the linear range of the meter was established to be 

between M and 5x M NaN02 (aq). It should be noted that the solution to 

which the sample is added has an ionic strength of roughly 0.4 M. Thus, addition 

of the sample should not change the ionic strength to any appreciable degree. 

Therefore, the activity coefBcients for NO;, H' and HN02 should not change. 

Therefore, the activities in equations (3.4.25) and (3.4.26) can be replaced with 

their corresponding concentrations. 

Since the concentration of HN02 in the reactor was on the order of 0.1 M, 

rather small samples were added to  the buffer solution. A Hamilton 50 pl 

syringe calibrated to 1 pl was used to add the appropriate amount of sample to 

the solution. The solution was slowly stirred using a magnetic stirrer during the 

reading. Equilibration with the electrode usually occurred within one minute. 

The HNOz concentration in.the reactor is given by 

(cHNO,), = the concentration of H N 0 2  in the reactor, 

(cHNO,), = the concentration of H N 0 2  in the standard, 

R = the meter reading, 

Rs = the meter reading for the standard, and 

V = the volume of the sample (ml). 

The concentration of HNOs as a function of time for those runs using water as 

the solvent is shown in Table 3-16, while the concentration of HN02 as a func- 



TABLE 3-16 

I Concentrations of HNOs for Runs Using Water as the Solvent I 

j (,g/rnin) 1 I 
All concentrations are in units of (mol/l) 

Reaction 
Time (min) 

0 
15 
3 0 
45 
6 0 
9 0 
120 
150 
180 
210 
240 

Mean NOz 
Flowrate 

I Concentrations of HNOz for Runs Using Water as the Solvent 1 

. 
.. Run Number 

- 

14 
0.0002 
0.212 
0.709 
1.292 
2.102 
3.951 
4.956 
6.632 
8.077 
9.889 
12.297 

0.778 

' ~ l l  concentrations are in units ,f (mol/l) 

Reaction 
Time (min) 

0 
15 
30 
45 
6 0 
90 
120 
150 
180 
210 
240 

Mean NOz 
Flowrate 
(,g/min) 

15 
.0028 
0.280 
0.726 
1.292 
1.749 

0.697 

Run Number 

16 
0.0024 
0.049 
0.182 
0.267 
0.381 
0.676 
0.940 

0.269 

17 
0.0027 
0.187 
0.572 
0.946 
1.324 
2.258 
3.169 

0.483 

14 
0.0 

0.092 
0.169 
0.243 
0.318 
0.370 
0.388 
0.430 
0.447 
0.450 - 

0.778 

18 
0.0023 
0.364 
0.781 
1.356 
2.876 
4.476 
6.166 

1.039 

16 
0.0 

0.021 
0.068 
0.101 
0.125 
0.185 
0.229 

0.269 

15 
0.0 

0.098 
0.218 
0.338 
0.349 

0.697 

19 
0.0028 
0.316 
0.923 
1.495 
2.102 
3.579 
4.475 
5.733 
8.490 

0.862 

17 
0.0 

0.065 
0.176 
0.250 
0.249 
0.235 
0.293 

0.483 

20 
0.0036 
0.249 
0.761 
1.495 
2.313 
3.856 
5.078 
6.473 
7.684 
9.382 
11.416 

0.759 

18 
0.0 

0.100 
0.203 
0.298 
0.356 
0.250 
0.412 

1.039 

19 
0.0 

0.082 
0.188 
0.248 
0.368 
0.368 
0.430 
0.302 
0.456 

0.862 

q -  -- - 

2 0 
0.0 

0.093 
0.150 
0.200 
0.318 
0.222 
0.124 
0.233 
0.203 
0.103 
0.199 

0.759 
--- x 



tion of time for those same runs is tabulated in Table 3-17. It should be noted 

that neither the HN03 concentration nor the HNOz concentration was deter- 

mined for the exploratory runs using water as the solvent (Runs 7-13). 

3.4.12 Analysis of Dioxide in the Iiquid Phase When Carbon Tetrachloride W a s  

Used as a Solvent 

As mentioned earlier, CC14 was chosen as a solvent in order to avoid any reac- 

tion between NOz and the solvent. Thus, the only dissolved NO2 species should 

have been NOz or the dimer Nz04. Analysis of the NOZ/CCl4 stock solution one 

week after it was made on the gas chromatograph indicated that only NO2 

and/or N204 were present. The relative amounts of NO2 and Nz04 depend on 

temperature and pressure. Although the equilibrium constant for NOz dimeriza- 

tion in the gas phase is known, its value in the solvated state is unknown. Con- 

sequently, for the purposes of further discussion, Nz04 and/or NO2 will be 

referred to as simply NO2. Since only one solvated species predominantly exists, 

the determination of the NO2 concentration is rather easy. 

A 1.00 ml liquid sample from the reactor was pipetted into an excess amount 

of NaOH (aq) which had been standardized with KEICBH40,. The concentration of 

the NaOH (aq) stock solution was roughly 0.1 M. The solution was stirred 

vigorously with a magnetic stirrer which resulted in the formation of a fine 

emulsion of CCl, droplets. The fine emulsion facilitated the mass transfer of NOz 

from the CC14 phase to the aqueous phase. The solution was stirred for one 

minute, since this period was determined to be sufficient for complete transfer 

of NO2 from the CC1, phase to the aqueous phase, Once the NO2 enters the aque- 

ous phase, it rapidly reacts with the excess base: 

2 NOz (aq ) + 2 NaOB (aq) -, NaNUz (aq) + NaN03 (aq ) + H20 . 

The excess NaOH was titrated with standardized HCl (aq) of approximately 0.1 M 



concentration using phenolphthalein as an indicator. The NO, concentration is 

then given by 

CNO, = 1000.0 (VO~NnoH - VieHC1) , where 

cc = the concentration of species i (mol/l), 

Vo = the volume of NaOH (aq) initially used (ml), and 

V = the volume of HC;Z (aq) needed to neutralize the 

excess NaOH (aq). 

The concentration of NO2 in the solvent as a function of time for those runs util- 

izing CCI4 as the solvent is tabulated in Table 3-18. 

3.4.2 Analysis of the Gaseous Species 

As shown in Figure 3-1, the gaseous species produced in the runs with con- 

tinuous NOg flow were conducted to the gas chromatograph equipped with the 

automatic gas sampling valve. The samples were injected every 10 minutes. The 

samples were separated on a 12 foot by 0.125 inch column packed with 

Porapak Q (80 to 100 mesh) a t  25'~. As expected, the major component for 

those runs using water as the solvent was NO, although NO2 did begin to appear 

after the concentration of HN03 approached roughly 12 M. The primary purpose 

of the GC analysis, however, was to detect any volatile sulfur compounds. The 

flame photometric detector did not detect any gaseous sulfur species when 

either water or CCL was the solvent. Therefore, the CC analysis was discontin- 

ued after the first run using CC14 as the solvent. The fundamental conclusion is 

that any sulfur removed from the coal must reside in the solvent, which is really 

not surprising since even if all of the sulfur were removed from the coal, the sul- 

fur content of the solvent would be only about 0.05 % by mass, 



TABLE 3-18 
1 Concentrations of NO2 for Runs Using CC14 as  the Solvent 1 

Reaction 
Time (min) 

0 
15 
30 
45 
60 
75 
90 
105 
120 
135 
150 
165 
180 

Mean NOz 
Flowrate 
(g/min) 

TABLE 3-18 (continued) 

All concentrations are in units of (mol/l) 

Run Number 

7 

21 
0.0 

0.519 
1.206 

1.233 

All concentrations are in units of (rnol/l) 

Concentrations of NO2 for Runs Using CC14 as the Solvent 

22 
0.0 

0.404 
1.046 
1.824 
2.824 

1.203 

Reaction 
Time (min) 

0 
15 
3 0 
45 
6 0 
7 5 
90 
105 
120 
135 
150 
165 
180 

23 
0.0 

0.367 
1.054 
1.617 
2.619 
3.310 
4.058 

1.224 

Run Number 
28 

1.299 
1.088 
1.200 

24 
0.0 

0.526 
1.164 
1.671 
2.507 

- 
3.880 - 
4.998 

1.153 

29 
1.233 
1.067 
1.154 - 
1.177 

25 
0.0 

0.399 
1.077 
1.945 
2.654 
3.496 
4.203 
4.998 
5.610 

1.195 

30 
1.276 
1.073 
1.158 
1.181 
1.192 
1.208 
1.202 

26 
0.0 

0.258 
0.858 
2.152 
3.140 
4.004 
4.830 
5.526 
6.120 

1.420 

2 7 
0.0 

0.359 
1.134 
1.904 
2.956 
3.555 
4.304 
4.959 

- 
6.3 14 
6.837 
7.661 
8.221 

1.246 

F 

31 
1.212 
0.974 
1.133 
1.160 
1.187 - 
1.206 

- 
1.189 

3 2 
1.305 

- 
1.063 - 
1.179 

- 
1.131 - 
1.171 

- 
1.200 

- 
1.204 , 



TABLE 3-18 (continued) 
Concentrations of NO2 for Runs Using CCl* as the solvent1 

Reaction . 
Time (min) 

0 
15 
30 
45 
60 
75 
90 
105 
120 
135 
150 
165 

I 180 1 1 0.105 1 1 
All concentrations are in units of (mol/l) 

33 
1.122 
0.880 
0.763 

Run Number 

For this run, both the HCl(aq) and NaOH(aq) were diluted to  about 0.01 M. 

37 
1.091 
0.911 
0.861 
0.835 
0.802 
0.794 
0.771 
0.732 

34 
1.058 
0.843 
0.763 
0.792 
0.714 

TABLE 3-1 8 (continued) 

35 
1.081 
0.876 
0.810 
0.808 
0.792 
0.792 
0.769 

0.683 

. 

'I 

3 6 
1.087 
0.849 
0.837 
0.802 
0.798 
0.748 
0.752 
0.738 

- 
0.722 
0.705 
0.70 1 

All concentrations are in units of (mol/l) 

Concentrations of NO2 for Runs Using CCL as the Solvent- 
Reaction . 

Time (min) 
0 
15 
30 
45 
60 
7 5 
90 
105 
120 

Run Number 
3 8 ,  

0.0972' 
0.0317 
0.0219 
0.0206 
0.0151 

- 
0.0110 
0.0106 
0.0124 

39 
0.488 
0.369 
0.336 
0.319 
0.301 
0.301 
0.273 
0.280 
0.280 

40 
1.713 
1.433 
1.318 
1.285 
1.274 
1.240 
1.246 
1.238 
1.234 

36 
1.087 
0.849 
0.837 
0.802 
0.798 
0.748 
0.752 
0.738 
0.683 

41  
1.874 
1.568 
1.519 
1.490 
1.471 
1.428 
1.465 
1.443 
1.434 



TABLJE 3-1 8 (continued) 
l~oncentrations of NO2 for Runs Using C C b  as the solvent1 

Reaction 
Time (min) 

0 
15 
30 
45 
60 
75 
90 

1 180 1 1 0.723 [ 
All concentrations are in units of (mol/l) 

TABLE 3-1 8 (continued) 
.,Concentrations of NO2 for Runs Using C C 4  as the Solvent 

Run 47 was a blank run and is therefore not listed in the table. 

0.730 
0.738 
0.703 
0.728 

All concentrations are in units of (mol/l) 

Run Number 

Reaction 
Time (min) 

0 
15 
3 0 
45 
6 0 
7 5 
9 0 
105 
120 
135 
150 
165 

42 
0.985 
0.783 
0.746 

Run Number 

43 
1.040 
0.657 
0.798 
0.796 
0.760 

48 
1.044 
0.892 
0.791 

44 
1.008 
0.811 
0.764 
0.767 
0.741 
0.693 
0.718 

49 
1.048 
0.904 
0.818 
0.766 
0.719 

45 
1.048 
0.886 
0.842 
0.815 
0.800 
0.794 
0.788 

5 0 
1.097 
0.913 
0.894 
0.871 
0.839 
0.812 
0.761 

46 
1.028 
0.876 
0.800 
0.788 
0.788 
0.769 
0.759 

51  
1.090 
0.967 
0.906 
0.868 
0.852 
0.841 
0.816 
0.789 
0.755 

52 
1.074 
0.891 
0.891 
0.857 
0.830 
0.794 
0.788 
0.783 
0.761 
0.757 
0.766 
0.766 



3.4.3 Analysis of the Coal 

9.4.3- 1 Carbon. Hydrogen and Nitrogen Analysis of the Coal 

The coal from Runs 1-6 was not analyzed for C, H or N. The coal from Runs 

7-27 was analyzed for C, H and N by the Caltech Microanalytical Laboratory. A 

2-3 mg sample of coal was combusted in a stream of oxygen. The amount of C02 

and H20 produced was determined. The NOx produced was converted to N2 by 

passing the NOx over a bed of copper metal. Duplicate analyses were performed 

on the NO2 treated coal samples. The fact that the duplicate analyses usually 

agreed within 1 percent indicates that even 2 to 3 mg samples are representa- 

tive of the bulk coal, which is not unexpected because the coal consists of parti- 

cles between 200 and 325 mesh. If the particles are assumed to be spherical 

with a radius of 50 pm and a density of 1.3 g/cm3, then 1 mg consists of roughly 

2500 particles, which should provide a fairly representative sampling of the bulk 

coal. 

The C and H contents of the coal from Runs 28-52 were determined by the 

Analytical Services Laboratory of the Colorado School of Mines Research Insti- 

tute. In this case, approximately 0.1 g of the coal was combusted in a stream of 

oxygen and the amount of C02 and HzO produced was measured. The N content 

of the coal from Runs 28-52 was determined by Galbraith Laboratories, Inc. 

Approximately 15 mg of coal were used in the N determination using the Dumas 

method. The Dumas method is necessary because much of the nitrogen in the 

NO2 treated coal is in the form of -NO and/or -NO2 groups. The Kjeldahl method 

suffers from the inability to convert all organic -NOx groups to NH3. Therefore, a 

Kjeldahl analysis grossly underestimates the nitrogen content of the NO2 treated 

coals. On the other hand, the Dumas method is ideally suited to the determina- 

tion of the nitrogen content of NO2 treated coals because this method relies on 

the easy and complete conversion of coal nitrogen to NOx via combustion. The 





TABLE 3-19 (wni 

32 1 28.93 1 8.19 1 49.6 13.30 15.02 

1 Samples I 
I 

Value 
) Btu,lb,l 





TABLE 3-19 (continued) 
Elemental >a1 Samples 

1 SLECO SBOm Heating 
Value 

(" 1 Btullb,l 



NO, is then converted to N2 and the amount of N2 produced is then determined. 

The C, H and N contents of all of the runs can be found in Table 3-19. 

3.4.32 Determination of the Ash Content of the Coal 

Approximately 50 mg of coal were placed in a tared porcelain boat. The boat 

had been predried at 750°C and placed in a dessicator to cool. The boat and coal 

were placed fn  the combustion tube of the Leco Resistance Furnace shown in 

Figure 3-6. The temperature used for the determination was 7 5 0 " ~ .  A stream 

of oxygen (0.5 l/min) was passed through the tube for 10 minutes, then the boat 

was removed and allowed to cool in a dessicator. It had been determined that 

10 minutes was more than adequate for the complete combustion of the coal 

sample. After the boat had cooled, it was weighed. The ash content is given by 

the following formula: 

Mass % Ash - 100 - mf , where 
7% 

' m ~  = the mass of the boat and ash (g), 

m, = the mass of the boat and uncombusted coal (g), and 

sn, = the sample mass (g). 

The ash contents of the coal from all of the runs can be found in Table 3-19. 

3.4.3.3 The Sulfur Analysis of the Coal 

There are two methods commonly used to determine the total sulfur content 

of coal. One method involves the combustion of coal in a stream of oxygen. The 

combustion gases then pass through an aqueous HCl solution which absorbs the 

SOz produced via combustion. The amount of SOz absorbed is determined by 

titration with mO3 (aq). This method (ASTM E30-47) will be referred to as the 

Leco method because a Leco Sulfur Analyzer based on this procedure was used. 

The second method (ASTM D 3177-73) involves mixing the coal with a mixture of 



MgO and Na2C03, which is called the Eschka mixture, and igniting the mixture in 

a bomb under 30 atm of oxygen. The SO2 produced by combustion is absorbed 

by the Eschka mixture and converted to sulfate. The residue in the bomb is 

leached with hot water and the sulfate is precipitated as BaSO,. After the BaS04 

is filtered and dried, it is weighed to give the sulfur content gravirnetrically. This 

second method will be referred to as the Bomb method. Both methods are dis- 

cussed in more detail below. 

3.4.9.3.1 The Leco Method 

Approximately 50 mg of coal were burned in a stream of oxygen (1.0 l / a in )  

at 1200"~  in a Leco Resistance Furnace, Model 571-018 equipped with a titrator 

as shown in Figure 3-6. The combustion gases were then bubbled through an 

aqueous HCl solution (15 ml concentrated HC1/1 solution) to which approxi- 

mately 2 ml of starch indicator (2 g starch + 6 g K1 + 150 ml H20) were added. 

The reactions which occur in the solution are: 

KI03 + 5KI + 6 H C I  = 6KCl + 3 1 z  

12 + Sta~eh = Blue Colo~ 

The solution is titrated with 0.001 M KID3 (aq) in a manner such that the solu- 

tion stays a light blue which corresponds to a slight excess of KIO3 (aq). It 

should be noted that at  1200°C, about 1 % of the sulfur in the coal is oxidized to 

So3 rather than SO2. Therefore, the system was calibrated at least once a day 

using a coal (NBS-1631-C) with a sulfur content of 3.02 % by mass. Four sulfur 

determinations were made on the NO2-treated coals while three sulfur determi- 

nations were made on the NO2-treated coals washed with Na2COS (aq). The 

results are shown in Table 3-19 in the column headed SLECO. Since the coals 

treated with NO2 in CCL, had up to 5 % chlorine by mass, the modification sug- 

gested by Bremanis was used.4 The author claims that the addition of roughly 





I g NaN3 to the titration vessel eliminates both chlorine and nitrogen interfer- 

ences. Therefore, NaNa was added to the titration vessel when the coal from 

Runs 21-52 was analyzed. There was little difference in the sulfur determina- 

tions, however, whether or not NaNs was used, even though the levels of nitrogen 

and chlorine in the treated coals are substantial. 

3.4.3.3.2 The Bomb Method 

Because chlorine can cause an interference in the Leco method, the sulfur 

contents of the coal from Runs 21-52 were determined using the Bomb method. 

These analyses were performed by the Analytical Services Laboratory of the 

Colorado School of Mines Research Institute. The results are tabulated in Table 

3-19 under the column headed SBOMB. The basic procedure involves mixing 

about 1 g of coal with 3 g of Eschka mixture (2 g calcined MgO + 1 g anhydrous 

Na2cOs). Approximately 1 g of this mixture is then placed in a bomb 

calorimeter, which is then filled to 30 atm with oxygen. The bomb is placed in a 

water bath, the mixture is ignited and the bomb is allowed to cool for at least 10 

minutes. The pressure is then slowly released and the bomb and the residue are 

washed thoroughly with hot water. The residue is allowed to digest with hot 

water for about one hour. The solution is filtered and the insoluble residue is 

washed a t  least five times with hot water. After further treatment, excess 

BaC12 (aq) is added to precipitate BaSO,, which is then filtered, dried and 

weighed. It is important to note that in the Leco method, some of the sulfur 

may potentially be trapped by the ash, whereas in the Bomb method, all of the 

sulfur is trapped by the Eschka mixture as water soluble sulfate. 

3.4.3.3.3 Analysis for Forms of Sulfur 

Since the washed and dried PSOC 190 coal contains mainly organic sulfur and 

only about 0.25 % pyritic sulfur, only total sulfur analyses of the treated coal 



were perf'onned, The PSOC 276 coal, however, contains roughly 2.3 % pyritic and 

1.2 % organic sulfur, it was necessary to determine the amount of sulfate, pyritic 

and organic sulfur in the treated coals (ASTM D2492-68). 

The determination of sulfate requires the leaching of the coal with boiling 

HCl (aq) (2 parts concentrated HC1 + 3 parts HzO) for 30 minutes. The coal is 

filtered and washed six more times with hot, dilute HCl (aq) (1 part concen- 

trated HCl .t 23 parts HzO). The ASTM procedure dictates that the sulfate-sulfur 

content is determined by measuring the iron content of the leach solution and 

assuming that all of the sulfate is in the form of ferric sulfate. It is doubtful 

that all of the sulfate exists as ferric sulfate, however. Therefore, this pro- 

cedure was modified so that the sulfate sulfur is determined by precipitating the 

sulfate in the leach solution as BaSO,, using the procedure described in the 

determination of the total suIfur content. This procedure is obviously superior 

to the ASTM procedure because the sulfur is determined directly. 

The residual coal from the sulfate determination is then leached with 

HNO9 (aq) (1 part concentrated HN03 + 7 parts H20) overnight at  room tempera- 

ture. The coal is then Altel'ed and washed six times with more HNO3 (aq). Once 

again, the ASTM procedure determines the pyritic sulfur by measuring the 

amount of iron in the leach solution. The procedure was again modifled, how- 

ever, so that the pyritic sulfur content of the coal was given by BaSO, precipita- 

tion. It is possible that the pyrite may react during NO2 treatment resulting in 

sulfur removal. The iron may remain in the coal, however, and then be leached 

during the pyrite determination, which would lead to a high pyrite determina- 

tion if the ASTM procedure is used. 

The organic sulfur content of the coal is then given by the difference between 

the total sulfur content and the sum of the pyritic and sulfate sulfur contents. 

These analyses were performed by the Analytical Services Laboratory of the 



Colorado School of Mines Research Institute. The results of the forms of sulfur 

analyses can be found in Table 3-20, 

9.4.3.4 The Chlorine Analysis of the Coal 

As mentioned above, Runs 21-52 employed CC4 as the solvent during the NOz 

treatment. In order to determine whether all of the solvent was being removed 

by the vacuum drying, these coals were analyzed for their chlorine content. The 

procedure used (ASTM D2361-66) is quite straightforward. Approximately 0.5 g 

of coal was mixed with 0.5 g of Eschka mixture (2 parts calcined MgO + 1 part 

anhydrous NazC09) and placed in a bomb whose interior was coated with 5 ml of 

(NH4)2COs (aq) (10 g (NH4)2COs-H20/100 ml H20). The bomb was filled to 30 atm 

with oxygen and placed in a water bath. The mixture was ignited and the bomb 

was allowed to cool for at least 10 minutes. The pressure was slowly released 

and the interior of the bomb was thoroughly washed with hot water. The wash- 

ings were transferred to a 250 ml beaker and acidified by adding 3 ml concen- 

trated nitric acid. Then 25,00 ml of 0.025 N &NO, (aq) were added. The Cl- 

present then precipitated as AgCl (s). The &NO3 (aq) solution was made by 

weighing about 4.25 g of AgN03, which had been dried overnight a t  125OC, to 

0.1 mg and mixing with H20 in a one liter volumetric flask. After the &NO3 (aq) 

was added, the solution was stirred and allowed to stand for 15 minutes. Then 5 

to 10 ml of nitrobenzene were added and the solution was stirred vigorously to 

form an emulsion. The excess AgN03 was titrated with 0.025 N KCNS (aq) using 8 

to 10 drops of FeNH4(S04)2 (aq) as an indicator. The KCNS (aq) titrant was 

standardized with the &NO3 (aq) solution. The surface of the nitrobenzene dro- 

plets serves as a sink for the AgCNS as it is formed. It is possible to form an 

(AgCNS)' species which could then accept another CNS- to form Ag(CNS)2. The 

presence of the nitrobenzene surface, however, inhibits the formation of the 

Ag(CNS)+ species, thus ensuring a one-to-one correspondence between CNS- and 



TABLE: 3-20 

I Analysis for Forms of Sulfur for Treated PSOC 276 Coal 1 

T 

Run # 

Raw PSOC 276 
4 7 
48 
49 
50 
5 1 
5 2 

47C 
48 C 
49 C 
50C 
5 1 C 
52C 

Time (min) 

0 
30 
60 
90 
120 
180 

, 

Mass Percent Sulfur . 
Pyritic 

2.12 
2.28 
1.88 
1.77 
1.74 
1.80 
1.64 
1.92 
1.97 . 
1.82 
1.75 
1.60 
1.72 

Sulfate 
0.14 
0.13 
0.19 
0.20 
0.21 
0.21 
0.25 
0.12 
0.08 
0.07 
0.06 
0.06 
0.07 

Organic 
0.94 
0.86 
0.73 
0.81 
0.82 
0.76 
0.84 
1.17 
0.79 
0.7 1 
1.04 
0.79 
0.59 

Total 
3.20 
3.27 
2.80 
2.78 
2.77 
2.77 
2.73 
3.21 
2.84 
2.60 
2.85 
2.45 
2.38 



Ag+. The chlorine content of the coal is given by 

M a s s  % C1 = 3.5453 
m ( VQ C A g ~ ~ s  

- V C K ~  ) , where (3.4.30) 

rn = the sample mass (g), 

C K ~  = the KCNS concentration (mol/l), 

C A ~ ~ J O ~  = the &NOS concentration (mol/l), 

Vo = the volume of &NOS (aq) used (ml), and 

V = the volume of KCNS(aq) needed to titrate the excess 

&Nos (aq (ml). 

The results of the chlorine analyses can be found in Table 3-19. 

3.4.3.5 The Analysis of the Heating Vdue of the Coal 

The procedure used for determining the heating value of the coal follows the 

ASTM D 2015-66 procedure. An adiabatic bomb calorimeter manufactured by 

the Parr Instrument Company was used. Approximately 0.5 g of coal was 

weighed to the nearest 0.1 mg and placed in a metal crucible. The crucible was 

then placed in the bomb which contained 1 , O  ml of water. The bomb was sealed 

and filled to 30 atm with oxygen. The electrical leads to the ignition system were 

connected and the bomb was carefully placed in the water bath which contained 

2000.0 g of water. The top of the jacket was put in place and the mechanical 

stirrer was connected. The system was allowed to thermally equilibrate for a t  

least five minutes. As the run commenced ( t  = O), the temperature was read 

every minute to an accuracy of rt 0.00l0C. The coal was ignited at t = 5 minutes 

and the temperature was read 45, 00, '75, 90, 105 and 120 seconds after ignition 

to an accuracy of k 0.005"C. After t = 7 minutes, the temperature was again 

read every minute to an accuracy of rt 0.001T. Such reading continued until 

the temperature was constant or changed a t  a constant rate, which usually 



occured a t  about t = 15 minutes. After the run was completed, the mechanical 

stirrer was disconnected and the jacket top was removed. The bomb was 

removed from the water bath and the bomb pressure was released over a three 

minute period. The bomb interior was washed with water thoroughly. The wash- 

ings were collected in a beaker and titrated with Na2COs (aq) (20.9 g anhydrous 

NazCOs/l) using methyl orange as an indicator to determine the correction for 

the formation of HNOS. The length of unburned fuse was measured to determine 

the fuse correction. The heating value of the coal is given by: 

1 8  H, = ; ; ; J - [W(AT)  - e l  -e2 -e3] ,  where 

H, = the heating value of the coal (Btu/lb,), 

rn = the sample mass (g), 

e l  = 23.0 - x (2.3) = the fuse correction (cal), where 

z = the length of the unburned fuse (cm), 

ez = 14.00 m S = the correction for H z S 0 4  formation, where 

S = the mass % sulfur in the coal, 

e3 = 0.2058 CN~,CO, V = the correction for HNOs formation, where 

C N ~ ~ C O ,  = the Na2CU3 (aq) concentration (g Na2C03 /I), and 

V = the volume of Na2COs(aq) required in the titration (ml), 

W = a system constant (cal/g), and 

A T = 7''-Ti-rf(tf - t60)~i( t60-t i )  = the temperature change (C), where 

Tf = the temperature a t  t =tf (C), 

Tz = the temperature a t  t =ti (C), 

rf = the final, constant rate of change in the temperature (C/min), 



T$ = the initial, constant rate of change in the temperature (C/min), 

t ,  = the time at which the flnal, constant rate of change in 

temperature begins (min), 

ti = the time at which the coal is ignited (min), and 

t,,  = the time at which the temperature rise is 60% of the 

total temperature rise (min). 

The results of the heating value determinations are given in Table 3-19. The 

system constant W was determined by calibrating the calorimeter with benzoic 

acid, which has a heating value of 11,373 Btu/lb,. 

9.4.4 Analysis of the Surface Area and Pore Size Distribution of the Coal 

The apparatus used for the surface area analysis is shown in Figure 3-7. It 

consists of two dosing chambers, a gas reservoir, a sample chamber and various 

outlets. The various gas pressures were measured with a Wallace and Tiernm 

Model FA 145 mechanical gauge, which measured from 0 to 1 atm with an accu- 

racy of 0.01 in Hg. During the course of a run, the gauge case was continually 

evacuated to ensure as complete a vacuum as possible. The pressure was also 

monitored with an Edwards Model 812 Pirani gauge. This gauge had an effective 

range from 0.0001 to 1 tom. This gauge was used primarily to monitor the pres- 

sure during sample preparation and the mechanical gauge case pressure during 

the run. During the run, the gauge case pressure was maintained below 0.05 

torr, which is well within the accuracy of the mechanical gauge (about 0.25 

torr). 

The volume of the primary dosing chamber, which is adjacent to the sample 

chamber, was determined by gas exchange with the secondary dosing chamber, 

whose volume was determined by gas exchange with a bulb of known volume. 

The bulb consisted of a 100 ml round bottom boiling flask joined to a high 

vacuum stopcock. The bulb volume was measured by first evacuating it on the 





vacuum rack and then weighing it. The bulb was then placed in a water bath a t  

29.55"~. The stopcock was opened and the bulb was allowed to fill with reagent 

grade acetone. The Alled bulb was allowed to thermally equilibrate for ten 

minutes. The stopcock was then closed and all surfaces of the bulb exposed to 

the exterior were dried. The bulb was then weighed. Since the density of 

acetone a t  29.55t is 0.77928 g/crng, the volume of the bulb was determined to 

be 97.528 k 0.008 g/cm3. Once the bulb volume was known, determination of 

the volume of any portion of the vacuum rack was quite simple. In this case, the 

bulb was connected to the secondary dosing volume and Alled with nitrogen to 

some pressure determined with the mechanical gauge. The bulb stopcock was 

then closed and the rest of the system was evacuated, The primary and secon- 

dary dosing volumes were then isolated from the vacuum pump and the bulb 

stopcock was then opened. Assuming ideal gas behavior, 

Pb 5, = - V , where 
PPS 

Ir,, = the total volume of the bulb and primary and secondary 

dosing volumes (cm3), 

Pb = the pressure of Nz in the bulb initially (in Hg), 

P,, = the final pressure in the system (in Hg), and, 

Vb = 97.528 cm3 = the bulb volume (cm3) 

The average of three determinations yielded a value for V,, of 614.43 k 

0.56 ems. Following a similar procedure, the volume of the primary dosing 

volume was determined to be 205.29 * 0.62 cm3. 

Although the coal samples were previously dried, they were vacuum dried 

before a surface area determination at 11 0 to 120"~ overnight. Generally, 0.3 to 

0.4 g of sample were used in the determination. Typically, a pressure less than 

0.010 torr could be maintained over the sample after such drying, which 



indicates the removal of virtually all of the light volatile material in the coal 

samples. The dead volume of the sample cell containing the coal was deter- 

mined using helium and employing the gas exchange procedure described above 

with the primary dosing volume, Generally two determinations of the dead 

volume were made. The atmospheric pressure, which was equal to the vapor 

pressure of the liquid nitrogen in the dewar in which the sample cell was 

immersed, was measured by simply filling the two dosing volumes with nitrogen 

in excess of 1 atm and then opening the system to the atmosphere and reading 

the mechanical gauge pressure. The system was then purged with nitrogen, 

closed to the atmosphere and evacuated to less than 0.01 torr in order to elim- 

inate any atmospheric contamination. 

The general procedure for nitrogen adsorption involved obtaining roughly 7 

to 10 adsorption points between the relative pressures of 0.0 and 0.4. These 

points were used in the BET calculations. Usually another '? to 10 points were 

needed to obtain the final adsorption point which was generally between a rela- 

tive pressure of 0.98 to 1.00. Finally, about 12 to 16 desorption points were 

obtained down to a relative pressure of roughly 0.3. These desorption points 

were used to obtain the pore size distribution. In order to complete the deter- 

mination of the adsorption-desorption isotherms in a reasonable amount of 

time (about 12 hrs), 15 minutes were allowed for equilibrium to be attained. A t  

the beginning of each point determination, the sampIe dewar was refilled to 

overflowing with liquid nitrogen in order to ensure that the sample cell was 

immersed to the same depth of liquid nitrogen for each measurement. 

The accuracy of this procedure was examined by applying it to two samples of 

known surface area. The first standard examined was a porous rubber (SCI- 

IUPAC-NPL Vulcan 3-G(2700), Code No. 2A/32/1) which had a predetermined 

surface area of 71.3 rt 2.7 m2/g. The procedure described above gave a valv, 



73.2 k 0.5 rn2/g, which is within the range quoted. The second standard was a 

silica (SCI-IUPAC-NPL Gasil Silica (I), Code No. BA/31/32) which had a predeter- 

mined surface area of 286.1 i 3.5 m2/g. The procedure described above yielded 

values of 238.0 i 0.3 m2/g and 240.5 5 0.3 m2/g. Although the values obtained 

are lower than the quoted value, previous workers have obtained values around 

240 m2/g6 I t  may be that this standard has been contaminated with water. the 

removal of which would be quite difficult due to the fine pore structure of the 

silica coupled with the highly polar surface. Therefore, results obtained with 

this standard should probably be used only for approximate comparisons. The 

fact that the surface area obtained for the Vulcan standard agrees so well with 

the quoted value indicates that the procedure is acceptable. 

The results of the nitrogen adsorption studies can be found in Appendix A. 

The data are presented graphically in the form of adsorption-desorption isoth- 

P errns. The plots of the BET parameters (-and ) as well as the pore 
Po V(P0 - P) 

size distributions are in Appendix A as well. 

The C02 adsorption studies were conducted at room temperature, As men- 

tioned in the previous chapter, higher temperatures should favor faster equili- 

bration between the bulk and adsorbed C02 phases. Since the vapor pressure of 

CO, a t  room temperature is roughly 63.5 atm, the relative pressure range which 

could be examined was 0.000 to 0.016. Although this range is inadequate for the 

application of the BET theory, it is ideal for the application of the DPR theory. 

The procedure employed for the C02 adsorption studies is essentially that 

described for the N2 adsorption studies. A COz adsorption run was made the day 

after the N2 adsorption run for the same sample, After the N2 run, the sample 

was evacuated overnight at room temperature. This procedure was adequate to 

allow the maintenance of a pressure less than 0.01 torr in the system after it 



was isolated from the vacuum pump. The dead volume of the sample cell was 

again determined with helium, but this time at room temperature. Approxi- 

mately 10 COz adsorption points were taken. Initially, the first two points were 

spaced about 1 in Hg apart. The pressure spacing between subsequent points 

was increased by roughly 0.5 in Hg each time so that the final points were 

roughly 4.0 to 4.5 in Hg apart. This procedure was adopted because the abscissa 

of the DPR plot is log2 Therefore, the spacing of the adsorption points on 
Po 

the DPR plot was more even. Five minutes were allowed for equilibration, 

although no discernible change in pressure could be detected after 2 minutes. 

The results of the C02 adsorption experiments are in Appendix A. The data are 

presented in the form of DPR plots(log2 Pvs. log q. 
Po 



33 The Examination of the Coal and Ash Using Scanning Electrun B[icnwcopy 

Examination of the coal particles before and after treatment with NO2 using 

the scanning electron microscope (SEM) can reveal the structural changes 

which occur, Although the nature of the surface of the coal particles precludes 

any precise quantitative measurements with the SEM, qualitative conclusions 

can be drawn regarding the effect of the various experimental parameters (e.g., 

reaction time, temperature, solvent, etc.) on the gross structural properties of 

the coal. 

The SEM used for the examinations was manufactured by International 

Scientific Instruments, Inc. (Model Super-TI) which was equipped with an energy 

dispersive analyzer of x-rays (EDAX) manufactured by Tracor Northern, Inc. 

(Model TN-1700). The images of the particles were obtained using secondary 

electrons, Although the SEM was capable of achieving up to 160,000 

magnification, in practice, magnifications above roughly 10,000 could not be 

attained when coal was being examined. Because coal is mainly carbon and 

because carbon is such a light element, the electrons in the impinging beam 

interact more diffusely with coal than with a metal, such as copper. Therefore, 

obtaining a sharp image is much harder at higher magnifications. Conse- 

quently, the best resolution obtainable was about 1000 A. Since most of the 

pore structure in coal is composed of micropores ( d p  < 15 k), it was impossible 

to detect any of the pore openings in the particles. 

In addition to the production of backscattered electrons, the interaction of 

the impinging electron beam also yields x-rays. There are two electron beam- 

solid interactions which lead to the production of x-rays. They are core scatter- 

ing, which results in the emission of a continuous spectrum, and inner shell ion- 

ization, which yields the characteristic spectrum. The characteristic spectrum 

allows the qualitative identification of the elements present in the sample. The 



basic function of the EDAX is to collect all of the x-rays produced and analyze 

their energies and present the results in convenient form on a cathode ray tube. 

A facsimile of a typical EDAX spectrum is shown in Figure 3-8. The EDAX is cali- 

brated using the x-rays generated by aluminum and zirconium or zirconium and 

gold to fix the energy scale. Once calibrated, the element corresponding to any 

peak can be readily identified. The interested reader is referred to the excellent 

text by Goldstein, et-al., for a more detailed discussion of the concepts 

presented above.7 

The method of mounting the samples depended upon the size of the coal par- 

ticles. Particles larger than LOO mesh were mounted on aluminum discs using 

silver paint as a mortar. Smaller particles were mounted on aluminum discs 

using two sided Scotch tape. Because particle charging was a problem, particu- 

larly with smaller particles, the mounted samples were coated with gold (40 mA 

for 5 min), which provided a conduction path from the particles to the electrical 

ground of the SEM. The coating of gold was on the order of 100 A thick. 

For any given sample, usually 15 to 25 separate particles were examined with 

pictures taken of the most representative. The EDAX spectra usually required 

100 to 1000 seconds of data acquisition to yield an acceptable signal to noise 

ratio. The SEM photographs and EDAX spectra can be found in the appropriate 

portion of the results and discussion section. 
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RESULTS AND DISCUSSION 

This chapter is divided into three main sections. The first section is con- 

cerned with the general aspects of the time histories of the various species of 

interest in the system. The first section has two subsections, the Arst of which 

deals with the concentration histories of the liquid phase components derived 

from NOz. For instance, for those runs using HzO as the solvent, the primary 

liquid phase species of interest are HNO3 (aq) and HMOz (aq). In those runs 

using CC1, as the solvent, however, the only significant liquid phase species is 

solvated NOz. The second subsection discusses the fate of the elements compris- 

ing the coal, namely C, H, N, 0, C1, mineral matter and S. The change in the 

heating value of the coal as a function of the various reaction parameters is also 

discussed, Particular attention is paid to the change in the sulfur content of 

the coal relative to the changes in the contents of the other coal components. 

An appropriate macroscopic parameter with which to compare the extent of 

desulfurization is the heating value retention of the treated coal, which is an 

indicator of the selectivity of the process for sulfur removal. The desulfuriza- 

tion and the heating value retention are lumped together in a parameter 

labelled the beneficiation coefficient, which serves as the final topic in the first 

section. 

The second section is also divided into two subsections which both deal with 

alterations in the coal surface. The first subsection discusses qualitative physi- 

cal changes in the coal particles as revealed by use of the scanning electron 

microscope. The physical nature of the ash particles remaining after combus- 

tion of the treated coal is discussed as well. Furthermore, qualitative chemical 

changes on the particle surface deduced from spectra obtained with the energy 



dispersive analyzer of x-rays are discussed as well. The spectra of the ash parti- 

cles in particular provide cogent supporting evidence for the interpretation of 

the results discussed in the first section in regard to desulfurization. The 

second subsection deals with the results of the N2 and C02 adsorption studies of 

the treated coals. In particular, changes in the specific surface area, whether 

obtained with Nz or CUE, are correlated with the reaction parameters and 

changes in the chemical composition of the coal. Variations in the pore and 

micropore size distribution induced by chemical treatment of the coal are dis- 

cussed as well. Furthermore, qualitative conclusions regarding the effect of the 

porosity of the coal particles on the kinetics of the coal-NO2 reaction can be 

deduced from the adsorption studies. When the results of this section are cou- 

pled with those of the previous section, a general mechanism which describes 

the NO2-coal system can be postulated. 

In order to quantify the mechanism obtained on the basis of the results of 

the first two sections, the third section deals with the results of the mathemati- 

cal modelling of the reaction system. This section first deals with the applica- 

bilty of the pseudo-steady-state approximation to the equations which describe 

the system. The selection of the appropriate reaction parameters, such as reac- 

tion rate constants and diffusion lengths, which are consistent with the prem- 

ises of the model, are then discussed. The effect of the assumptions inherent in 

the model upon the correlation of the conversions predicted by the model with 

the actually observed conversions is treated as well. The main goal in employing 

the model is to estimate the reaction rate constants and the diffusion coefficient 

of NO2 in the solid coal matrix. The results of the application of the model to 

the kinetic data to this end form the final topic of discussion in this section. 

Ultimately, the results from the three sections are combined to arrive at an 

overall mechanism which describes the NO2-coal reaction system qualitatively 



and quantitatively. The assimilation of the information discussed in this section 

to arrive at such a mechanism is the subject of the next chapter. 



4 2  Chemical Changes in the System 

4.2-1 Liquid Phase Species 

4.2.1.1 Runs Using Water as the Solvent 

ALI of the runs using water as the solvent employed the flow reactor for the 

NOz treatment. Therefore, the concentrations of the primary species in the 

liquid phase derived from NOz, namely H N 0 9  and HNOZ, would be expected to 

demonstrate a roughly linear increase as a function of time. Referring to Figure 

4-1, such a linear increase for (HN03) is indeed found to occur. The figure 

shows two curves. The top curve corresponds to the situation where the reactor 

has been charged with 350 ml HzO but no coal, while the curve just below 

represents the case where 10 g of coal have been slurried with 350 ml of HzO. It 

should be noted that the NOz mass flowrates are virtually identical (within 2.5%), 

but the temperatures are different. The run with no coal was conducted in an 

uncooled reactor, while the reaction with the coal was run in the water-cooled 

reactor. Reactions of NOz and coal conducted a t  different NOZ flowrates in the 

uncooled reactor show similar temperature increases, however. Despite this 

difference, the major implication of Figure 4-1 is that the coal does not com- 

pete with HzO for NO2 to any discernible extent, This effect may be due to one of 

two causes. First, the rate of formation of H N 0 3  may be kinetically limited a t  

the NO2 flowrate used resulting in an excess amount of unreacted NOz dissolved 

in the aqueous phase. Thus, if the coal were to serve as an NOz sink, it still 

would not affect the rate of H N 0 3  formation. Most studies of the N O z / H 2 0  sys- 

tem indicate that once the NOz is solvated, however, it quickly reacts with HzO to 

form HN03 and HN02.  Therefore, since the coal particles are completely encom- 

passed by solvent, it is not likely that any portion of the coal will encounter 

NOZ (aq). The second, and more plausible, explanation is that the rate of reac- 

tion of HNOs with coal is much slower than the rate of H N 0 3  formation. This 
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difference could be a consequence of a low stoichiometric requirement of the 

coal for HN09. Indeed, in a separate experiment, 10 g of coal were slurried in 

250 ml of HzO previously saturated with NO2. Initially, (HN03) = 10.61 M and 

(HN02) = 0.486 M. After 120 minutes, (HNOS) = 9.63 M and (HN02) = 0.371 M. 

Based on the temperature during the reaction, which rose to a maximum after 

15 minutes and then decreased, the reaction was essentially complete after 120 

minutes. Therefore, the stoichiometric requirement of the coal for HN09 is 

approximately 0.025 mol HN03/g coal, which correlates with the slight diver- 

gence of the two curves in Figure 4-1 quite well; that is, HNOS is formed much 

faster than it can be depleted by reaction with the coal. 

The presence of coal drastically affects the concentration history of HN02, 

however, as shown in Figure 4-2. When no coal is present, (HN02) approaches 

0.45 M in a smooth, asymptotic fashion. This behavior is exactly what is 

expected on the basis of the kinetic studies performed by other workers on the 

decomposition of HN02 (aq), which was found to be fourth order in (HNo~).' 

Incorporation of the expression for the rate of HNOz decomposition into this 

system yields the following equation: 

dc  c - =  k , - k o  - 
d t , where 

PWO 

C = (HN02) = a dimensionless concentration, 
(HN02)w 

(HN02), = the HN02 concentration as t-, m , (mol/ I), 

k , = the rate of formation of HNOz (mol/l/s), 

k o  = the rate constant for the decomposition of HN02 (atm2/s) , and 

p ~ o  = the partial pressure of NO (atm). 

The first term on the right hand side of equation (4.2.1) was chosen on the basis 
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of the linear time dependence of (HN03) which is simply the consequence of the 

constant NOz flowrate. Assuming that the only reaction of importance account- 

ing for the formation of HNOz is 

2 NOz + Hz0 = HN03 + HNO,, 

one obtains a value for k l  = 8.95~ lo4 s-' based upon the NOz flowrate of 0,778 g 

NOz/min, a value of 0.45 M for (HN02),, and a solvent volume of 350 ml. Furth- 

ermore, examination of equation (4.2.1) indicates that if c approaches a con- 

stant value, namely unity, as t -r m , then 

Therefore, if ko and k, are known, then PNO is determined as well. 

The second term of equation (4.2.1) accounts for the rate of decomposition of 

HNOz due to the reaction 

with the rate equation 

- d (HflOz) = k  (HN02I4 , where 
d t  ~ $ 0  

Abel and ,Schmidl determined a value for ko of 0.767 ls/mols/s at 2 5 O ~  and 8.75 

13/mo13/s a t  40°c. The integral average temperature of the run was 34°C. 

-s - 
Assuming that the rate constant follows an Arrhenius form, namely k = A e ", 



an interpolated value for k at  3 4 O ~  of 3.40 13/mo13/s is obtained. Using equation 

(4.2.3), a value of p p ~ ~  = 18.6 atm is obtained, which is obviously much too high, 

since the system is run at  atmospheric pressure. The value for k l  cannot be too 

wrong since it is based on the actual data for this system. In order for equation 

(4.2.3) to predict a value of p ~ o  between 0 and 1 atm, k, would have to be a t  

least 350 times greater, which is not possible because the NOz is simply not sup- 

plied that rapidly. Therefore, the error must lie in the term accounting for the 

decomposition of HNO2. I t  is most likely that under the rather concentrated 

conditions which exist in the system that the kinetics of the decomposition do 

not follow those in equation (4.2.4), which were deduced from the study of more 

dilute solutions. Another possibility is that the large increase in the ionic 

strength of the solution affects the rate of decomposition of HN02, which results 

in a further increase in the ionic strength. Thus, an increase in the ionic 

strength of the aqueous solution may inhibit the decomposition reaction, result- 

ing in a lower rate. 

If one assumes that equation (4.2.1) accurately describes the kinetics for the 

reactor flow system, an implicit solution for c can be obtained analytically as 

where it is assumed that is constant throughout the time domain. Using the 

k 0 value of 8.95~ 10-* s-' for kt, a value of 8.95x104 s - I  is obtained for - 
P ~ U  

according to equation (4.2.3). A comparison of the time history of (HN02) with 

that predicted by equation (4.2.5) is shown in Figure 4-3. The values of c for the 

data and the prediction match at  t = 0 and as t -, m by virtue of the boundary 

conditions. The prediction for c rises much more slowly than the data show, 

although the predicted values for c show the same general trend as the data. As 
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the upper curve in Figure 4-3 shows, a much better f i t  of the data is obtained 

k k 3  -?- 
by letting 4 ( a } 4  = 9 . 2 0 ~  104 s-' ,  which yields a value of 4 . 0 5 ~  s - I  for 

~ $ 0  

- k0 . This result would imply that the rate constant for HNOz decomposition 
P#O 

according to equation (4.2.4) is at  least lo5 times smaller than the value for k 

obtained for dilute solutions, implying a rather severe inhibiting effect by the 

ionic strength. Such inhibition, however, is not outside the realm of possibility. 

Indeed, in a study of HNOz decomposition conducted as part of this series of 

experiments, in a solution which initially had (HN02)o = 0 . 6 0 4  M and (HN03)o = 

9.88 M, (HNOz) dropped asymptotically to 0.500 M and (HNOs) rose to 10.12 M 

within 90 minutes. Furthermore, 12 hours later, (HN02) was 0 . 4 9 6  M, indicating 

that further HN02 decomposition had ceased, whereas the kinetics indicated by 

equation (4.2.4)  would predict that the HNOz would ultimately vanish. The 

salient feature of this discussion is that when no coal is present, the time his- 

tory of (HN02) is what would be qualitatively expected. 

The time history of (HN02) when coal is present is radically different from the 

(HNOZ) time history when 'coal is absent. Indeed, examination of Figure 4-2 

reveals an oscillatory behavior displayed by (HN02) when coal is present. Such 

behavior indicates that coal greatly complicates the kinetics of HNOz formation 

and decomposition. The peaks in the curves must be caused by a reaction 

between HN02, or some species derived from HN02, and coal whose rate is a 

strong function of the concentration of HNOz or the species derived from HN02. 

The oscillatory nature of (HNOZ) as a function of time indicates that HNOz is 

involved in a series of reactions which allows the HNOz concentration to 

decrease before the rate of the reaction begins to decrease as well. On the other 

hand, if HNOz were reacting directly with the coal, one would expect (HN02) to 

just approach a limiting value asymptotically which corresponds to the situation 



where the rate of formation of HN02 balances the sum of the rates of decompo- 

sition and reaction with coal; that is, there would be no oscillatory behavior. 

Unfortunately, not enough information is available from which to deduce the 

mechanism for this unusual kinetic behavior. In any event, the addition of coal 

to the H20/NOZ system greatly modifies the kinetics. 

Another parameter of importance is the mass flowrate of NO2 because it dic- 

tates the concentrations of HNOa and HNOz in the aqueous phase. Figure 4-4 

depicts the concentration of HNOS as a function of reaction time for three NO2 

mass Aowrates, namely 0.269, 0.483 and 1.039 g NO2 /min. The curves 

corresponding to the lower two flowrates display a linear dependence of (HN03) 

on time, which is in accordance with the previous discussion concerning Figure 

4-1. The curve corresponding to the highest flowrate, however, has an interest- 

ing 'kink" between 45 and 60 minutes. Between 0 and 45 minutes, the (HN03) 

curve is linear in reaction time with a slope of roughly 1.0 mol/l/hr, while the 

curve between 60 and 120 minutes is also linear with an approximate slope of 

3.3 mol/l/hr. The most logical explanation for this behavior is that as the 

fiowrate approaches 1 g NOz/min, the coal begins to compete with HzO for avail- 

able NOz because NO2 is now supplied at a rate greater than that of its conver- 

sion to HN03 immediately upon absorption. Rather, the NOz now has the oppor- 

tunity to diffuse into the aqueous phase and encounter the coal before it reacts 

with HzO. The kink occurs when the coal-NOz (aq) reaction is completed, after 

which time all of the absorbed NOz reacts with HzO to form HN03 and HNOZ. 

Furthermore, the higher flowrates should alter the physical nature of the NOz 

bubble-coal slurry system, the effects of which on the kinetics can be 

significant, For example, after 120 minutes of reaction, 46.4, 07.5 and 00.1 % of 

the total amount of NOz admitted to the reactor was converted to HN03 at  

Aowrates of 0.26'5, 0.483 and 1.039 g NOz/min, respectively. This variation in NOz 





conversion can be attributed to both changes in the physical nature of the sys- 

tem as the flowrate increases and changes in the kinetics as (HN03) increases. 

The dependence of (HNO2) as a function of reaction time upon the NO2 

flowrate is shown in Figure 4-5, The curve corresponding to the lowest flowrate 

shows nothing unusual. The behavior of (HN02) a t  this flowrate is that predicted 

k o k ;  -L 
by equation (4 .2 .5)  with 4(:-j4 = 2 . 8 8 ~ 1 0 ~  s-I if (HN02), = 0.45 M. The 

pi0 

curve corresponding to a flowrate of 0.483 g NOz/min shows a slight peak 

between 45 and 80 minutes, drops a little a t  00 minutes, then begins to increase 

again at 120 minutes. This trend is even more pronounced for the curve 

corresponding to the highest NO2 flowrate. The implication of this plot is that 

once (HN02) exceeds roughly 0.24 M, the coal begins to react with some species 

derived from HNOz at a rate faster than that a t  which HN02 can be formed. 

Furthermore, it appears that after 90 minutes, either the reaction with coal 

slows down enough so that HN02 can be formed faster than it is depleted, or 

that the coal has completely reacted. In any event, the presence of coal greatly 

modifles the kinetics of HN02 formation, reaction and decomposition. 

Indeed, much controversy surrounds the exact mechanism responsible for 

the absorption of NOz in water to form HN03. In particular, some workers2 claim 

that the mass transfer resistance in the gas film separating a bubble from the 

liquid determines the rate while other workersg claim that the reaction of NO2 

once it is absorbed determines the overall rate of HNOs formation. Further- 

more, the occurrence of a "mist" seems to confuse everyone attempting a 

mechanistic explanation for the system, Despite these differences of opinion, 

the widely accepted mechanism for the NO2 absorption process is: 

2 NO2 (g ) + HZO = HND3 (aq  ) + HN02 (aq  ) 
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3HN02 (aq) = HNOs (aq) + U20 + 2  NO ( g )  

The overall reaction is: 

3 NO2 ( g )  + HzO = 2 H N O S  (ag)  + NO (3) 

Examination of this equation reveals that only two moles of HNOs should be 

formed for every three moles of NOz adsorbed. 

In keeping with the tradition of confusion surrounding this system, the 

results of this study are at variance with the commonly accepted mechanism. 

In particular, an examination of the (HNO,) data shows that at  an NO2 flowrate 

of 0.483 g N02/min, 87.5 % of the NO2 is converted to HN03 while a t  a flowrate of 

1.039 g NOZ/min, 60.1 % of the NOZ ends up as HN03. In both cases, the NO2 

conversion exceeds the 66.7 % predicted by the commonly accepted mechanism. 

Furthermore, the amount of NO coming off the top of the reactor is well below 

that predicted on the basis of the mechanism. These facts suggest that another 

mechanism is occurring in this situation. At a flowrate of 0.269 g N02/min, how- 

ever, only 46.4 % of the NO2 is converted to HN03, which is within the bounds of 

the commonly accepted model. 

A rather plausible scheme accounting for these discrepancies suggests itself. 

First, it should be noted that in those studies whose data were employed to 

arrive at the commonly accepted mechanism, the NO2 was absorbed from a 

stream consisting primarily of an inert carrier, usually N2. Thus, the NO bypro- 

duct can be effectively purged from the system. In this study, on the other 

hand, pure NO2 was admitted to the system. Therefore, any gas flow from the 

top of the reactor, which was virtually 100 % NO as determined by GC analysis, 

had to be generated by the system itself, assuming of course that all of the NO2 

was absorbed by the system. A very important reaction under these conditions 



involves NO and NO2: 

Although the amount of N203 which exists a t  equilibrium is quite small (M 1 % by 

volume), Nz03 is rapidly absorbed by water. Since equilibrium is rapidly 

achieved as  well, if excess NO2 is present in the gas phase, the overall rate of 

conversion of NO to N203 followed by adsorption can be quite high. The reaction 

between N203 and HzO yields more HN02: 

Therefore, it is conceptually possible to recirculate the NO as it is produced to 

form nitric acid via the HN02 decomposition reaction: 

3 HN02 ( a q )  5 NNG ( a q )  + H20 + 2 N 0  ( g )  

It should be noted that for every three moles of NO recirculated, two moles of 

HN03 and one mole of NO are produced, Therefore, recirculation should allow 

NOz conversions to HN03 in,excess of 66.7 %. 

The crucial criterion for this scheme is that once the NO is formed and enters 

the gas phase, it encounters an NO2 molecule with which to react. Furthermore, 

this reaction must occur in an environment where the N2O3 has access to the 

bulk aqueous phase. In the case of conventional NO2 absorbers, this may not be 

possible by virtue of the purging action of the inert carrier gas. That is, once 

the NO molecule leaves the aqueous phase, there may be insumcient time for 

the NO molecule to react with an NO2 mo1ecule to form an N203 molecule, which 

can then be absorbed by the bulk liquid phase. The major limitation may simply 

be the low concentration of NO2 in the gas phase. In this study, however, the 

only possible gas phase species are NO, NOZ, H20 and smaller amounts of HN03 



and HNO*, Thus, when the NO enters the gas phase, it has a very high probability 

of encountering an NO, molecule. Furthermore, since no inert carrier gas is 

purging the system, the time allowed for the sequence of steps mentioned above 

for NO recirculation is greatly increased. Thus, the possibility of successful NO 

recirculation is greatly enhanced when pure NO2 is admitted to the reactor. 

The fact that the NO2 conversion at the low flowrate is smaller than that a t  

the higher flowrates can readily be explained. A t  the lower NO2 flowrates, the 

NOz may be absorbed as soon as it enters the reactor. Thus, no NOz is left to 

combine with the NO as it escapes the liquid phase. Consequently, the amount 

of NO recirculation is greatly reduced. Furthermore, the interfacial area 

between the gas and aqueous phases will be less when the flowrate is lower. 

Thus, it is more likely that the NO will escape the aqueous phase into the gas 

phase at the top of the reactor. As the flowrate increases, the residence time of 

the NOz molecules in the gas phase of the reactor increases, which means that 

the concentration of NO2 in the gas phase increases. The interfacial area 

increases as well. Hence, the NO produced is more likely to encounter NO2 in the 

gas phase and react to form NzO3, which is then recirculated to form more HNOs, 

as the flowrate increases. Finally, if  the flowrate is too high, the residence time 

of the NO2 bubbles in the liquid will be too short to allow complete absorption. 

Therefore, the conversion of NOz to HNOs should begin to decrease after the 

flowrate exceeds the value corresponding to complete NOz absorption a t  the top 

of the liquid phase. The range of flowrates used in this study seems to cover the 

entire spectrum of cases discussed above since conversions of NOz to HN09 of 

46.4, 87.5, 89.0 and 80.1 % were obtained at flowrates of 0,269, 0.483, 0.759 and 

1.039 g NOZ/min, respectively. 

Although the mechanism discussed above is quite plausible, uncertainties 

about the effect of coal on the nature of NO2 absorption remain. Furthermore, 



it is the interaction of the oxidant with the coal which is of primary interest. In 

an aqueous slurry through which NOz is bubbled, several potential oxidizing 

species, such as HNO9, HN02, NO2 (aq) and perhaps even NO' and NO$, may be 

available to react with the coal. The quantitative determination of the relative 

reactivities of these species with coal would be a major study in itself, and was 

not attempted in this work. In order to gain a better understanding of the rela- 

tionship between the kinetics of the NO2-coal reaction and desulfurization, a 

system where only the coal reacts with NO2 was needed. Such a system exists if 

the NOe cannot react with the solvent, as it does with H20, For this reason, CC4 

was deemed the best solvent for the system because it does not react with NOz. 

The fate of NO2 in CCL, is the basis of the next section. 



42.12 Bens Using Carbon Tetrachloride as the Salvent 

Although the majority of the runs using CCLp as the solvent was conducted in 

the batch reactor, the first two sets of runs were conducted in the flow reactor, 

The first set of runs (Runs 21-27) was conducted a t  2 5 t  with an NO2 flowrate of 

roughly 1 . 2  g NOz/min. A composite (NOz) history which can be applied to each 

run individually can be obtained by averaging the values of (NOz) of each reac- 

tion in the set at  each reaction time. For instance, the values of (NO,) a t  t = 30 

minutes for Runs 21-27 are averaged to obtain the composite value of (NO2) a t  

t = 30 minutes, As t increases, the number of values to be averaged decreases 

since the reactions within the set are run for times from 30 to 180 minutes. 

Consequently, the composite value of (NOz) from t = 135 to t = 180 minutes will 

be equal to the value of (NO;?) for the corresponding 180 minute run within the 

set. Such a composite (NOz) history for Runs 21-27 is shown in Figure 4-6. The 

size of the error bars is determined by the standard deviation of the average 

and serves as an  indication of the degree of variation between the runs. Consid- 

ering the difficulty in reproducing the NOz flowrates, the degree of variation in 

(NO2) between runs is not that extensive. Furthermore, a straight line can be 

drawn through all of the points which indicates that (NOz) is a linear function of 

t .  Such a result is expected because the amount of NOz being admitted to the 

reactor is far in excess of the amount which ultimately reacts with the coal. 

Interestingly, however, not all of the NOz admitted to the reactor is absorbed by 

the solvent, For instance, after 1 8 0  minutes only about 65 % of the NOz admit- 

ted to the reactor is retained by the CC14. This observation is not surprising 

because although CCL shows a high affinity for NOz, the high NO2 flowrate does 

not ailow sufficient contact time between the bubbles and solvent for complete 

absorption, 
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The second set of experiments conducted in the flow reactor (Runs 28-32) 

was performed a t  50*~. A t  this temperature, it was possible to saturate the CCL, 

with NOz. The saturation concentration was roughly 1.27 F NOz. The composite 

(NO*) history is shown in Figure 4-7. A very interesting feature is immediately 

noticeable, namely the rapid decrease in (NO2) a t  the beginning of the reaction. 

This phenomenon is readily explained. Before the reaction is begun, the CC4 is 

saturated with NOz a t  a flow rate of roughly 1.3 g NOz/min. Saturation usually 

takes about 30 minutes, although the NOZ is allowed to flow for 45 minutes to 

insure complete saturation. Once saturation is achieved, the ten grams of coal 

are dumped into the reactor. Obviously, the coal reacts with the NO2 a t  a rate 

which initially is much greater than the rate at which the NO2 is supplied to the 

reactor. According to the plot, this quick reaction is near completion after just 

15 minutes because (NOz) has begun to rise again. It is interesting to note, how- 

ever, that the concentration of NO2 does not reach its initial value as the reac- 

tion time increases, but remains about 5 % lower. This observation could be 

attributed to a second, much slower reaction which is taking place. Another 

possibility is that the presence of solid particles suspended in the CCb  affects 

the NO2 residence time in the reactor and its mass transfer from the gas to the 

liquid phase so that the (NOz) saturation concentration is lowered. Evidence 

based upon the elemental analysis of the coal discussed in the next section indi- 

cates that a second, much slower reaction may indeed be occurring. The possi- 

bility that the coal is affecting the NOz equilibrium between the gas and liquid 

phases, however, cannot be ignored either. 

The next set of reactions (Runs 33-37) was conducted in the batch reactor a t  

20O~. The primary purpose in using the batch reactor was to avoid the problems 

created by fluctuations in the NO2 flowrate from one run to the next. The com- 

posite (NOz) history for this set of experiments is shown in Figure 4-0. An 
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examination of this flgure reveals that (NO2) drops quite rapidly within the Arst 

30 minutes and then decays a t  a much slower rate thereafter. Once again, these 

trends suggest that two processes involving NOz consumption, one of which 

proceeds a t  a much slower rate than the other, are occurring. Another possibil- 

ity is that just a single reaction whose rate depends on (NOz) and the nitrogen 

content in the coal is taking place. Such a dependence would account for the 

very rapid, then more gradual decline in (NO2) as t increases and the number of 

coal sites decreases. 

The composite (NOz) history for the set of experiments conducted a t  Ooc 

(Runs 42-46) shown in Figure 4-9 displays the same trends as in the previous 

set, namely the rapid then more gradual decline in (NO2). It should be noted, 

however, that the rate of NOz consumption, particularly for times greater than 

60 minutes, is lower at O°C than at 2oQc. This fact simply implies that the rate of 

NOz consumption is dependent upon the reaction temperature to a discernible 

extent. The effect of temperature on (NO2) is shown graphically in Figure 4-10 ,  

which shows the relative composite NO2 concentration at 0 and 20°C as a func- 

tion of reaction time. The plot plainly shows that NO2 is depleted at a slower 

rate at O°C than a t  2 0 t .  The temperature can affect the reaction rate in two 

ways. First, the rate constant is probably a function of temperature, and a 

decrease in temperature would be expected to decrease the rate of NOz con- 

sumption. A second, and more subtle, effect of the temperature concerns the 

relative amounts of NOz and the dimer N204 and whether the rate depends on 

(NOz), (Nz04) or [ ( N h )  + (N204)]. Although the equilibrium distribution between 

NOz and Nz04 in the gas phase is well known, no equilibrium data in a solvated 

state such as NOZ(CC14) are available. If one assumes that the gas phase equili- 

brium data hold for the solvated state as well, however, then a t  20°C, 27.4 % of 

the amount of NO2 t. N204 should be NOz, while a t  0-C, only 12.7 % should be in 



RVERRGE NO2 CONCENTRRTION RS R  F U N C T I O N  

1.30 
OF R E F I C T I O N  T I M E  FOR RUNS 4 2 - 4 6  

1.20 

1, 10 

-- 

I I 1 I I I I I I 

- - 
CI - RYERAGE OF R L L  (NO21 VRLUES RT T I H E  T 

, ERROR BRRS RRE THE STRNDRRD OEVIRTIONS 
OF THE RVERRGES 

- 
CORL [PSOC 1 9 0 )  TRERTED WITH NO2 

- I N  CCL4 RT O C - 

- - 

- - 

- 

- 

- 

- 

- 

7 - 

f9 

0.70 - 19 - 

0. 60 

- - 

I I I I 1 I 1 I 1 
0 40 80 120 160 200 

T I M E  ( M I N I  



VERflGE NO2 CONCENTRRTION Fi5 R  F U N C T I O  
OF R E f l C T I O N  T I M E  RND TEMPERflTURE 



the form of NOz. Thus, the ratio of (NO2) a t  20% to that a t  O*C is greater than 2, 

yet the ratio of the initial rates is only about 1.15 while the ratio of the initial 

values of [(NO,) + (Nz04)] is 1.065, which would then imply a very weak depen- 

dence of the initial rate on just (NO,), Obviously the rate cannot depend in a 

simple manner on (Nz04) exclusively because (N204) increases as the tempera- 

ture decreases. Consequently, if the rate constant is not a function of tempera- 

ture, the ratio of initial rates should be proportional to some power of 0.832 

(the ratio of (Nz04) a t  20% to that a t  o~c) ,  which is less than unity. The use of 

initial rates eliminates any effect of a dependence of the rate on the concentra- 

tion of species in the coal. It would appear, then, that the rate probably is pro- 

portional to [(NOz) + (Nz04)ln. For the sake of simplicity, the quantity in brack- 

ets will be referred to as simply (NO2) in the future with the understanding that 

it corresponds to the total amount of NOz and Nz04 expressed as moles of NOz. 

It is interesting to note that at  t = 75 minutes, the ratio of the rates a t  the 

two temperatures is about 1.8 and a t  t = 165 minutes, the ratio is roughly 1.6. 

These ratios were adjusted to differences in (NO,) by assuming a first order 

dependence of the rate on (NO2). These facts are consistent with the occurrence 

of two different processes, because if only one process were occurring, the ratio 

of the rates would be constant for all reaction times. I t  should be kept in mind 

that if the rate also depends upon the concentration of coal species in a simple 

and straightforward manner (i.e., Rate OC (sites)"), the ratio of the rates will 

be affected because the coal species concentration at a given reaction time 

should be higher at the lower temperature than a t  the higher temperature 

because of the difference in their rates. Thus, a coal substrate concentration 

dependence should offset the temperature and (NOz) effects to some degree, 

with the consequence that the ratio of rates approaches unity. In this case, 

however, the ratio actually becomes larger than the ratio of initial rates and 



then decreases slightly ss the reaction time increases, which implies that two 

independent processes are probably occurring and that some coal-species 

concentration-dependence of the rates may exist as well. 

Certainly, it may be argued that a 20°C temperature difference is not large 

enough to reveal unambiguous temperature effects. On the basis of the facts 

discussed above, however, some qualitative conclusions may be drawn, primarily 

that the temperature does affect the rate of NO2 consumption to a discernible 

extent. Furthermore, it appears that the rate does not depend on the relative 

concentrations of the NO2 monomer or N204 dimer, but may depend on the total 

concentration of NOz and Nz04. Also, the reaction rate may depend on the conc- 

entration of species in the coal. 

The composite (NO2) history for the set of runs using the PSOC 276 coal (Runs 

47-52) is displayed in Figure 4-1 1. In this case, the initial rate of NO2 consump- 

tion is not as great as in the corresponding set using the PSOC 190 coal. 

Nevertheless, the comments pertaining to the consumption of NOz by the PSOC 

190 coal apply to the PSOC 276 coal as well. The slight difference between the 

curves can be attributed to several factors. First, whereas the PSOC 190 coal 

has an initial N2 determined speciflc surface area ( 3 3  of 55 m2/g. the PSOC 276 

coal has a Nz determined specific surface area of only 0.6 m2/g. On this basis, it 

is surprising that the difference in rates is not much greater. Consequently, 

N even if the rate of NOz consumption by the coal is a weak function of Sag, this 

effect alone could account for the difference in rates. A second possible cause of 

the difference in rates may be attributed to a difference in the nature and 

number of reactive species between the two coals. Although this point is treated 

in the section dealing with the coal analysis, it appears that that difference can- 

not be too great. Only a small difference would be needed, however, to account 

for the small difference in the reaction rates of the coals. A comparison of the 
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composite (NOz) histories for the two coals is shown graphically in Figure 4-12. 

Referring to this figure, it is interesting to note that after the initial drop in 

(NO2), both curves are basically parallel. This behavior occurs after about 45 

minutes of reaction time. On this basis, it seems that initially the rate of the 

reaction of NO2 with the coal is affected by the pore structure and/or the nature 

of the species in the coal white at later times, the rate is independent of the phy- 

sical nature of the coal. 

Finally, a set of experiments was conducted at various initial concentrations 

of NO2 (Runs 38-41), The composite (NOz) history for these runs is shown in 

Figure 4-13. The concentrations are plotted on a relative basis for ease of com- 

parison. One obvious feature is that the relative consumption of NO2 increases 

as the initial NO2 concentration, (N02)o, decreases. Furthermore, the curve 

tends to level off at  earlier times as (NOz)o increases, Both of these features 

result from the dependence of the reaction rate on (NO2). Indeed, graphical 

differentiation yields some interesting results. For instance, an evaluation of 

the rate a t  t = 0 should reveal the dependence of the initial rate on NO2. Unfor- 

tunately, graphical differentiation at the endpoint of a locus is rather difficult 

because it is quite hard to accurately determine the tangent a t  the endpoint. 

The initial rate can be approximated, however, as lCO - 15' (rnol/l/rnin), where 
15 

c , ,  is the value of (NO2) a t  t = 15 minutes. A visual inspection of Figure 4-13 

shows that this approximation should provide a good first order estimate of the 

initial rate, particularly at the higher values of If the initial rate for the 

run where (NO2Io = 0.097 F is defined as unity, the following results are obtained 

for the relative initial rates: 
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These results indicate that the initial rate is proportional to  NO^)^,^. A determi- 

nation of the rate of (NO2) decay at t = 15 minutes helps to confirm the depen- 

dence of the rate on   NO^)'.^. A graphical differentiation at  t = 15 minutes is 

much more accurate because the accurate determination of the tangent to the 

locus is easier. If the curve corresponding to = 0.097 F is taken as the 

reference with NO2 concentration c '  and rate r ' ,  the following results are 

obtained: 

These results indicate that the rate of NO2 consumption by the coal depends on 

  NO^)^.^. Furthermore, the fact that the ratio of the relative rate to the square 

root of the relative NO2 concentration tends to change slightly implies that 

perhaps there is a discernible dependence of the rate at  t = 15 minutes on the 

concentration of reactive species in the coal because the extent of reaction of 

NOz with coal would be different for the various values of at  t = 15 

minutes. If the rate did depend on the coal-species concentration, then 

' I r '  ] would not be constant, as appears to be the case. A graphical 
[ ( c  / c 1)0.6 

differentiation of the plots a t  t = 60 minutes, using the results obtained for the 



curve corresponding to (N&)o = 0.097 F as the reference yields the following 

results: 

It is interesting to note that at the higher NO2 concentrations the relative rates 

are essentially equal, which implies that the rate of NO2 consumption is becom- 

ing independent of (NOz). This feature is consistent with the concept of two 

different processes which account for the decay of (NO2) because the rate 

expression is changing as t increases. Furthermore, the rates of the reactions 

with the three lowest initial values of (NO2) still obey a rate dependence of 

 NO^)^.^. This apparent paradox is easily resolved because the extent of reaction 

of NO2 with the species in the coal is not as great for the low values of (N02)o as 

for the higher values, Stated another way, the upper curves of Figure 4-13 at  

t = 60 minutes correspond to the situation where the first process (Rate OC 

( N O ~ ) O - ~ )  is already completed and the second process (Rate does not depend on 

(NOz)) predominates. On the other hand, the lower curves at t = 60 minutes 

correspond to the situation where the first process still predominates. 

Further evidence in support of the two process theory can be obtained by 

determining the rate constants assuming the rate can be expressed as 

Rate = k (NO~)O.~ . (4.2.6) 

The values determined for k are: 



co (M) kt ,o (M4v6 min") 

0.097 0.0140 

0.488 0.01 14 

1.087 0.0152 

1.713 0.0143 

1.074 0.0149 

kovg = 0,0140 

k 0.0013 

Obviously, some change in the kinetics must account for the large drop in k 

from t = 0 to t = 60 minutes, or k must depend upon some other parameter. It 

would seem that as the extent of conversion of the coal species approaches 

unity, the scarcity of the remaining reactive species could affect the rate. 

Indeed, the amount of NOz far exceeds the uptake capacity of the coal. Thus, 

once the coal is saturated, the reaction for this mode of NO2 consumption must 

cease. The coal-species concentration may affect the rate of NO2 consumption, 

however, only towards the end of the reaction, Therefore, the two processes 

referred to above may actually correspond to the same reaction; that is, the 

rate law may actually be more complex than that given in equation (4.2.6) .  

Rather, the rate may be better expressed empirically as 

Rate = k 1 (NOZ)O,"S 
 NO^)^.^ + k Z ( s )  

, where 

(S) = the coal-species concentration (mol/ g coal), and 

kl, k 2  = the appropriate rate constants. 

Thus, at  the beginning of the reaction, kz(S)>>   NO^)^.^, so that the rate is of 

the form given in equation (4.2.6). As (S) approaches zero, however, 

( N O ~ ) ~ - ~ > > ~ , ( S )  so that the rate is now proportional to (S). Such a rate 



expression would then qualitatively explain the results. 

There is a very interesting relationship between the global rate expression 

given in equation (4.2.7) and the rate expression obtained when the resistance 

to diffusion of NO2 controls the reaction rate.* If the specific rate of reaction 

between NO2 and the coal species is given by 

T, = k, ( N 0 2 ) n ,  where (4.2.8) 

r, = the specific rate of NO2 consumption (M/min), 

k, = the specific rate constant (rnin-l-M1-n), 

(NO2) = the NOz concentration a t  any point within the particle (M), and 

n = the order of the rate dependence on (NOz), 

then the global rate of NOz consumption is given by 

RNOz = q ks (NO2)P , where 

RNOe = the global rate of NOz consumption (M/min), 

.?7 = the effectiveness factor, and 

= the bulk NO2 concentration, 

In the region of strong pore diffusion resistance, the effectiveness factor is given 

by: 

1 1 ,)= - =  -[ 2 Be I0e5 , where 
p L (n +I) k, (NOz)g-l 

p = the Thiele modulus, 

L = the appropriate diffusion length, which for spherical particles 

would be equal to the particle radius, R (cm), and 

Dg = the effective diffusivity of NO2 in the particle (cm2/min). 

Substituting equation (4.2.10) into (4.2.9) yields the following expression for the 

global rate of NO2 consumption: 



Applying this expression to the results of this study reveals that n = 0 if pore 

diffusion resistance is rate controlling. If the rate of the NOz/coal reaction con- 

trolled the global rate of NOz consumption during the first 60 minutes of the 

reaction, on the other hand, then the specific rate would have to be a function 

of  NO^)^," No simple mechanism can result in such a dependence. Therefore, 

the dependence of the global rate of NO2 consumption during the initial stage of 

the reaction on (NO~)O.' is due simply to the domination of the resistance to 

diffusion of NO2 in the solid coal matrix. That this is the case is not surprising. 

During the initial stage of the reaction, the NOz is reacting as soon as it diffuses 

into the coal, which implies that the specific rate does not depend on (NO2) but 

may or may not depend on (S). 

The kinetic behavior a t  later reaction times readily follows from the discus- 

sion above. As ( S )  approaches zero, the rate of consumption of NO2 declines so 

that the resistance to diffusion of NO2 no longer controls the rate, Rather, the 

rate is now controlled by the chemical reaction, the rate of which is dependent 

on (S) by virtue of the scarcity of reactive species in the coal. The dependence 

of the global rate on (NO2) vanishes, however, which is in accord with the results 

obtained a t  later reaction times. Therefore, the kinetic data derived from the 

experiments using different initial (NO2) concentrations is entirely consistent 

with a model where the resistance to diffusion of NO2 in the solid coal matrix 

controls the global rate of NO2 consumption during the initial stage of the NO2- 

coal reaction and when a t  later times in the reaction, the specific rate of chemi- 

cal reaction controls the global rate of NO2 consumption. Furthermore, the 

specific rate of chemical reaction does not depend on (NO2), but it may or may 

not depend on (S). The fact that the rate constant, k, given by equation (4.2.6) 



varies with (NOZ)o in the later stages of the reaction indicates that the specific 

rate probably does depend on (S). 



4.2-2 Solid Phase Sped- 

4.2.2-1 OveraIl M a s s  Gain 

An examination of the limited data for Runs 1-6 in Table 3-6 concerning the 

effect of the solvent on the mass loss of the coal due to the NOz treatment allows 

some qualitative conclusions to be made. First, the mass loss of the coal 

decreases as the treatment temperature increases where water and pyridine are 

used as the solvents. The reverse is true, however, when nitrobenzene is the sol- 

vent. These trends can readily be explained on the basis of the solubility of NO2 

in the various solvents coupled with the ability of the solvent to extract coal. 

The solubility of NO2 in all three solvents should decrease as the temperature 

increases, but the amount of the solubility change may vary from one solvent to 

the other, Offsetting the decrease in solubility as the temperature increases is 

the rate of the reaction between NO2 and coal, which should increase with the 

temperature. Since NO2 is very soluble in nitrobenzene, the solubility effect may 

not be as pronounced as in the case when water and pyridine are used as the 

solvents. Furthermore, the extraction of portions of the coal into the solvent 

render the extracted coal .more susceptible to attack by NO2. Whereas neither 

pyridine nor water extract an appreciable amount of the coal, nitrobenzene 

extracts 37.6 and 54.6 % of the coal at  34 and 8l0C, respectively. 

It should be noted that just drying the coal used in these runs results in a 

12.29 % mass loss while washing the raw coal in water a t  25°C for two hours, 

filtering the coal and then drying it results in a 15.84 % mass loss. Thus, the 

mass loss of 14.4 and 13.2 % when the coal was treated with NO2 in HzO at 26 and 

78O~, respectively, actually represents a net mass increase, which can be attri- 

buted to the uptake by the coal of nitrogen and oxygen. If the raw coal is just 

washed in pyridine, filtered and dried, there is a 15.84 % mass loss, which can be 

attributed to the removal of water plus a minor amount of extraction. 



Treatment of the coal slurried in pyridine with NOz a t  26 and 83'C results in a 

22.8 and 16.2 % mass loss, respectively. Thus, a net mass loss occurs due to NO2 

treatment when pyridine is the solvent. Most likely, the NOz-treated coal is 

extracted to a slightly greater extent by pyridine than the raw coal. If the raw 

coal is just slurried in nitrobenzene, filtered and dried, only a 7 % mass loss 

occurs, which implies a net mass gain of about 6 %, which can be attributed to 

the incomplete removal of the nitrobenzene by vacuum drying. When the coal 

slurried in nitrobenzene is exposed to NOz, however, 37.6 and 54.6 % of the coal 

is extracted a t  34 and 81"C, respectively, When the recovered extract is 

included, the overall mass losses are - 16.5 and 16-0 % a t  34 and 81 "C, respec- 

tively. Obviously the reaction of the coal with NO2 yields coal derived products 

which are quite soluble in nitrobenzene. Furthermore, the large increase in the 

overall mass loss as the temperature increases may be attributed to the faster 

rate of oxidation of the coal a t  the higher temperature. Therefore, the predomi- 

nance of the decrease in NO2 solubility in water and pyridine over the increase in 

the rate of the oxidation of the coal as the temperature increases accounts for 

the decrease in mass loss when these two solvents are used, while the predomi- 

nance of the increase in the rate of the coal oxidation rate over the NO2 solubil- 

ity decrease as the temperature increases accounts for the increase in mass 

loss when nitrobenzene is the solvent. 

The mass loss of the coal due to NO2 treatment in water a t  25°C (Runs 7-1 1) 

and due to the wash of the NO2-treated coal in 0.1 M Na2CO9 (aq) is displayed 

graphically as a function of NOz treatment time in Figure 4-14. As noted above, 

just washing the coal in water, filtering and vacuum drying results in a 15.84 % 

mass loss, which is due mainly to the removal of the moisture in the raw coal. 

Washing the washed and dried coal in 0.1 M Na2COs (aq) for two hours at 25e 

results in an additional 10.04 % mass loss so that the overall mass loss with 
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respect to the raw coal is 24.29 %. It is interesting to note that the mass loss 

due to NOz treatment decreases as the reaction time increases. This decrease is 

the result of the nitrogen and oxygen uptake by the coal increasing with the NOg 

exposure time. The overall mass loss after washing the NO2-treated coal in 

0.1 M Na2C03 (aq), on the other hand, increases with NOz-exposure time after an 

initial decrease. This increase in mass loss may be attributed to the removal of 

oxidized coal products, the quantity of which should increase with NOz-treat- 

ment time. The initial decrease in overall mass loss is due to the very rapid 

uptake of nitrogen and oxygen by the coal without sufficient oxidation to render 

a significant amount of the coal soluble in 0.1 M Na2C03 (aq). Continued expo- 

sure of the coal to NOz, however, eventually results in a larger portion of the 

coal becoming soluble in 0.1 M Na2C03 (aq), which then accounts for the increase 

in the mass loss. It should be noted that the overall mass loss at t = 90 minutes 

(21.40 %) is not included in the plot because of contamination during drying. 

Furthermore, the results for Runs 12 and 13 have not been included because the 

NOz flowrates during treatment were not monitored. 

The mass loss results for the second set of experiments (Runs 15-20) using 

water as the solvent can be found in Table 3-8. As expected, the mass loss due 

to NO2 treatment decreases as the exposure time or NO2 Aowrate increases. 

Interestingly, in this set of runs the mass loss due to NO2 treatment initially 

increases from 15.84 % (no NO2) to 17.56 % (NOZ for 60 min), which implies that 

some water soluble products from the coal-NO2 reaction are leached into solu- 

tion. This extraction only occurs to a small extent (1.72 % of the total mass) 

and must occur in the initial stage of the reaction since the mass loss begins to 

decrease after t = 60 minutes. The additional mass loss due to the Na2C0, (aq) 

wash is much less in this set than the previous set of runs, The overall mass 

loss decreases from 24.29 % (t=O) to 17.55 % (t=120) and then begins to increase 



after t = 120 minutes. This minimum at  t = 120 minutes contrasts with the 

minimum at  t = 60 minutes in the previous set. The shift in the minimum is 

probably due to the lower NO2 flowrates used in this set than in the previous set 

of runs. The same argument concerning the two-stage mechanism discussed 

above, however, pertains in this set of runs as well. 

In the runs conducted with CCl, as the solvent, the coal was dried before 

treatment with NO2 in order to mitigate the effects of water on the reaction. 

Thus, the NOz-treated coals always gain mass relative to the untreated, predried 

coal. For instance, the mass gain results of the set of experiments conducted a t  

25% in the flow reactor are shown in Figure 4-15. The mass gain due to the 

uptake of 0 and N during the NOz treatment approaches 10 %. Furthermore, 

there is no change in the mass gain after 120 minutes of NO2 treatment, which 

implies that the process accounting for N and O uptake is complete within 120 

minutes, An examination of the curve depicting the overall mass gain after the 

NO2-treated coals are washed in 0.1 M NazC03 (aq) reveals that the overall mass 

gain is essentially zero, which implies that roughly the same amount of material 

taken up by the coal during NO2 treatment is removed by the aqueous Na2C03 

wash. It is not necessarily true, however, that the same material taken up by 

the coal during NO2 treatment is removed by the NazCOs (aq) wash. 

The mass gain results of the set of experiments (Runs 28-32) conducted a t  

50°C in the flow reactor are shown in Figure 4-16. In this case, the mass gain 

due to NOz treatment approaches 30 % at  180 minutes and shows no signs of lev- 

elling off, which contrasts with the 16 % limit of the previous set. Obviously the 

increase in temperature has increased the rate of the coal-NO2 reaction. The 

coal treated at 50°C could not be washed in 0.1 M Na2C03 (aq) because the 

treated coal completely emulsified and could not be filtered. Theref ore, the coal 

samples were washed in 2 M HN03 (aq). The overall mass gain after the 
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HN03 (aq) wash is about 6 % a t  t = 180 minutes and continues to rise slightly, 

which indicates that HN09 (aq) does not extract as much material from the 

NO2-treated coal as Na2C03 (aq). 

The coal used in the runs conducted in the batch reactor was washed in HzO 

at 25°C for two hours, filtered and vacuum dried before being treated with NOz. 

While just drying the coal removed 12.49 % of the mass, washing the coal before 

drying in H20 resulted in mass losses of 17.69 and 17.80 % for the two batches. 

Therefore, about 5.25 % of the coal mass is soluble in HzO. Although this 

difference should not affect the mass gain results for the NOZ treatment of the 

washed and dried or just predried coal to an appreciable extent, it does 

influence the overall mass gain results. During the NOz treatment, presumably 

all portions of the coal are attacked by NO, and there is no extraction of the 

coal products by the CCl,. The overall mass gain results, however, will be based 

on two different bases. The NazCOs (aq) wash of the predried coal treated with 

NOz should remove the 5.25 mass percent water soluble material already 

removed in the washed and dried coal. Therefore, with all other things being 

equal, the overall mass gain for the predried coal treated with NO2 and washed 

with 0.1 M NazCO9 (aq) should be about 5,25 % lower than the overall mass gain 

for the washed and dried coal treated in the same manner. Consequently, com- 

parison of the results from experiments in which the predried coal is used in 

one and the washed and dried coal is used in the other must take this difference 

into account. As it turns out, however, other circumstances preclude the com- 

parison of results for the NazC03 (aq) wash of the two different pretreated coals 

treated with NO2. Since all of the runs discussed below (Runs 33-52) used 

washed and dried coal, the problem discussed above does not pertain, which is 

fortunate because it is precisely these runs which provide the basis of many of 

the comparisons which are made, 



The mass gain results for the set of the experiments conducted a t  20O~ in the 

batch reactor (Runs 33-37) are displayed in Figure 4-17. It appears that the 

mass gain for both the NQ-treated and NazCOs (aq)-washed coals reaches a 

maximum a t  120 minutes of NOz exposure, although it is difficult to determine if 

the drop at t = 180 minutes is simply due to an inadvertent deviation from the 

standard drying procedure. It is also possible, however, that after prolonged 

exposure (t > 120 minutes), the solvent begins to slowly extract some of the 

reacted coal, which would account for the drop of about 1 % from t = 120 to t = 

100 minutes. The drop in the overall mass curve is not as noticeable, which sug- 

gests that the maximum removal of coal derived products of the NOz-coal reac- 

tion is about 6 % by mass. It should be noted that the overall mass gain is 

roughly 11 % at t = 120 minutes while the overall mass gain for the set of runs 

conducted a t  25"r=, in which the NO2 concentration, (NOz), was much greater, is 

only about 6 %, even after adjustment for the difference in the coal pretreat- 

ment. The mass gain curves for the NO2-treated coals are basicalIy identical, 

however, with both approaching 17 % as the exposure time increases, These 

results indicate that the mass gain due to NOZ treatment does not depend upon 

the (NOz) history to a discernible extent while the overall mass gain does show 

such a dependence, These trends are consistent with a two-process reaction 

theory for NO2 consumption. The first process, whose rate is independent of the 

(NOz) history, accounts for the uptake of material by the coal during NO2 treat- 

ment while the second process, whose rate does depend on the (NOz) history, 

accounts for the formation of coal derived products soluble in 0.1 M NaZC03 (aq). 

The mass gain results for the series of experiments conducted at 02 (Runs 

42-46) are plotted in Figure 4-10. The results are basically the same as in the 

previous series of runs, except the mass gain due to NOz treatment approaches 

16 % instead of 17 % and the overall mass gain approaches 10 % instead of 11 %. 
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The rate of increase in the mass gain curves, however, is roughly equal to that in 

the previous set of runs. 

The dependence of the mass gain due to NO2 treatment on temperature is 

shown graphically in Figure 4-19. This plot clearly shows that running the NO2 

treatment a t  0?2 or 20°C has little effect on the mass gain while conducting the 

treatment a t  5 0 ' ~  almost doubles the mass gain. When this latter fact is con- 

sidered in light of the complete emulsification of the coal treated with NO2 a t  

50°c in 0.1 M Na2COs (aq), it appears that the rate of the reaction which pro- 

duces compounds which are soluble in aqueous NazCOs is much greater at 50°C 

than a t  either 20Oc or 0°C. The effect of temperature on the overall mass gain is 

shown in Figure 4-20. Since the amount of material leached from the coals 

treated with NO2 a t  both 25O~ and 0 2  by the 0.1 M Na2C03 (aq) wash is equal, it 

follows that the reaction which produces the soluble coal compounds proceeds 

to the same extent a t  both 20 and 0°C. Therefore, the difference between the 

two mass gain curves can be attributed to a mild temperature dependence of 

the other, independent reaction which contributes to the mass gain. 

The effect of the initial concentration of NO2, (N02)o, on the mass gain is 

displayed graphically in Figure 4-21. A very interesting feature concerning the 

mass gain due to NO2 treatment is evident. The curve shows two linear regions 

of different slopes which implies that more than one process is occurring, which 

is consistent with the two-stage reaction theory. At low values of (N02)o, there is 

an insufficient amount of NO2 available to complete the coal-NOz reaction. As 

(NO& is increased so that NO2 is in excess, the quick process accounting for the 

uptake of nitrogen and oxygen is complete within two hours. The additional 

mass gain for higher values of (NOz)* may be attributed to the mass gain associ- 

ated with the reaction which generates the coal derived products soluble in 

aqueous Na2COs. The overall mass gain curve provides direct confirmatory 
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evidence of this interpretation. Once (N02)o exceeds 1.0 F, the overall mass gain 

remains constant at about 11 %. Therefore, the process which accounts for the 

uptake of material not leached by NazC03 (aq) is complete within 120 minutes 

provided (N02)o exceeds 1.0 F. Any additional mass the coal takes up a t  higher 

values of (NO2)* due to the NO2 treatment is leached by the Na2C03 (aq) wash. 

The mass gain results for the PSOC 276 coal treated a t  20°C (Runs 47-52) are 

shown in Figure 4-22. In this instance, both curves continue to rise after 180 

minutes, which implies that neither of the two reactions discussed above are 

completed within three hours of NO2 treatment. This behavior is a result of the 

resistance to pore diffusion by NO2 in this coal. A comparison of the mass gain 

results due to NO2 treatment for the PSOC 190 and PSOC 276 coals is displayed 

in Figure 4-23, which clearly demonstrates the behavioral difference. Whereas 

the mass gain for the PSOC 190 levels off after 90 minutes a t  about 17 %, the 

mass gain for the PSOC 276 has reached only 16 % after 180 minutes, but is still 

rising. Indeed, if these curves were extrapolated, they would converge a t  about 

180 minutes. The obvious implication is that the difference in the pore struc- 

tures of the two coals (the specific surface area of the PSOC 190 is 58 m2/g 

while that of the PSOC 276 is only 8.6 m2/g) is affecting the rate of the NO2-coal 

reaction. Given that the difference in pore structures is so great, it is surprising 

that the mass gain curves do not show a greater amount of deviation. A com- 

parison of the overall mass gain curves after the NO2-treated coal is washed in 

0.1 M NazCO9 (aq) for the two coals is depicted in Figure 4-24. In this instance, 

if the two curves are extrapolated, they would also intersect at  about 240 

minutes, provided that the point a t  180 minutes for the PSOC 190 coal is 

neglected. The rejection of this point seems reasonable in view of the previous 

discussion concerning the anomalous nature of the mass gain results for this 

run. Since the overall mass gains differ as well as the mass gains of the NO2- 



MRSS GFlI 
(7. I 

T I M E  ( M I N I  

MOSS G R I N  RS A F U N C T I O N  OF 
R E R C T I O N  T I M E  FOR RUNS 47-52 

28 

24 

20 

16 

I I I I 1 I 1 I 1 

- 

El - NO2 [CCL41 FIT 20 C - 
0 - NA2C03 (0. It4 :FIQ) WRSH f l T  25 C 

FOR 120 M I N  
PSOC 276 COOL 

- 

- 

- 

N  
- 

- 

12 - 

7 

8 - 

- 

4 - 

0 
0 200 



MOSS G R I  
I %  I 

T I M E  ( M I N I  



M R S S  G A I N  R S  A F U N C T I O N  OF R E A C T I O N  T I M E  

MRSS G R I  
I% I 

CI - PSOC I90 
0 - PS0C 2 7 6  
COOL TRERTED H I T H  NO2 I N  CCh 
RT 20 C QND ##SHED H I T H  O,lM 
NF12C03 (FIQ) FIT 25 C FOR 120 MI N  

T I M E  [ M I N I  

FIGURE 4-24 



treated coals, it is apparent that the pore structure affects both processes 

which account for the mass gain. 

On the basis of the features of the mass gain results discussed in this section, 

several conclusions can be made. First, the choice of solvent affects the mass 

gain due to NOz treatment because of the solubility of NOz in the solvent and the 

ability of the solvent to remove coal derived reaction products. For instance, 

the use of water as the solvent for NOZ treatment results in a very small mass 

gain after NO2 treatment and an overall mass loss of roughly 10 % after washing 

the NOz-treated coal in NazCOs (aq). On the other hand, the use of nitrobenzene 

as the solvent results in the extraction of up to 55 % of the coal during NO2 

treatment, which is due to the chemical alteration of a large portion of the coal 

by NO2 which is rendered soluble in nitrobenzene. At the other end of the spec- 
* 

trum, the use of CCl, as the solvent results in large mass gains, both for 

NOz treatment (17 % to 29 %) and for the NazCOs (aq) wash of the NO2-treated 

coals (1 1 %), which is a consequence of the inability of CCl, to extract any por- 

tion of the coal, whether or not it has been treated with NO2. Thus, the solvent 

plays a crucial role in the reaction system by virtue of its interaction with both 

NOz and the coal, 

The effect of temperature and (N02)0 on the mass gain results is basically 

that which is expected. An increase in temperature increases the mass gain 

under the same reaction conditions. The mass gain for NO2 treatment continu- 

ally increases as (N02)0 is increased as well, The overall mass gain after the 

NOz-treated coal is washed in 0.1 KK Na2COs (aq), however, levels off once (N02)o 

exceeds 1.0 F. 

Most importantly, all of these facts are consistent with the concept of a two 

stage process which accounts for NOz consumption and the mass gain of the 

solid. The first stage is responsible for adding mass derived from NOZ and/or 



the solvent to the coal in a manner such that the altered coal is still not soluble 

in 0.1 M Na2C03 faq). This process is generally quite rapid and is completed 

within 60 to 180 minutes depending on the temperature and (NOz)o. The second 

stage is responsible for the further addition of mass to the coal during the 

NOz treatment. This additional mass, however, is incorporated into the coal in a 

manner which allows the altered portions of the coal to be leached by 

0.1 M NazC03 (aq). This process is slower than the first process. 



4.2.22 The Carbon Content of the Coal 

The coal samples generated by the NO2 treatment and the subsequent wash in 

0.1 M NazC03 (aq) were analyzed for their carbon content as part of the kinetic 

study of the NO2-coal reaction system. Because the use of water as the solvent 

renders such a kinetic study so intractable, no analysis of the carbon content of 

the coal samples from those experiments were performed, namely Runs 1 to 20. 

In the remaining experiments in which CC14 was employed as the solvent, there 

is no reaction between the NO2 and the solvent, which renders the interpretation 

of the kinetic data much easier, 

Because the treatment of the coal slurried in CC14 with NO2 resulted in an 

increase in the chlorine content of the coal from virtually zero to several mass 

percent and because evidence discussed later indicates that this increase is due 

to adsorbed CCb,  the carbon contents of coals listed in Table 3-19 have been 

corrected for the amount of carbon in the adsorbed CCl,. This correction, how- 

ever, generally amounts to only a few tenths of one percent in the uncorrected 

carbon contents. Carbon contents which have been corrected for the amount of 

adsorbed chlorine will be' referred to as 'knass corrected carbon contents". 

These carbon contents, however, are carbon concentrations. Therefore, they 

have not been adjusted for the mass gain due to NO2 treatment. 

The mass corrected carbon contents of the experiments run at 25T (Runs 

21-27) are shown in Figure 4-25. The curves for both the NO2-treated coal and 

the NOz-treated coal washed in 0.1 M Na2C03 (aq) (hereinafter referred to simply 

as the 'hashed coal") show the same general trend. Initially, the carbon content 

drops rather quickly and then falls at  a slower rate. This behavior seems to 

correlate quite well with the mass gain data obtained for this set of experiments. 

If the carbon content, however, is adjusted for the mass gain to obtain the abso- 

lute amount of carbon lost relative to the pretreated coal (expressed as the 
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' bass  corrected carbon loss," LC), the results appear as shown in Figure 4-26. 

An examination of this figure reveals that treatment with NOz a t  25% in the flow 

reactor results in the very rapid removal of substances from the coal which con- 

tain roughly 10 % of the total carbon in the pretreated coal. This process 

appears to be complete within about 60 minutes. This process probably involves 

the NO2 attack of the lighter volatile material in the coal, which in its unaltered 

state is insoluble in CC14. The attack by NOz, however, could render this material 

soluble in CC14. The results of the carbon loss due to the Na2C03 (aq) wash indi- 

cate that the process which generates coal material soluble in NazCOs (aq) is 

continuing even a t  180 minutes. This process accounts for another 14 to 15 % 

loss in carbon so that the total carbon loss after the Na2C03 (aq) wash is 25 % of 

the original carbon in the pretreated coal after treatment with NO2 for 180 

minutes. Once again, these results mesh quite well with the two-stage process 

postulated for NO2 consumption. 

The mass corrected carbon contents of the coal samples from the experi- 

ments conducted a t  2 0 t  in the batch reactor (Runs 33-37) are depicted graphi- 

cally in Figure 4-27. It wou'id appear that during the NOz treatment, the carbon 

content of the coal begins to increase after 120 minutes. The carbon content at 

180 minutes, however, reAects the anomaly in the mass gain for this run dis- 

cussed in the section dealing with the mass gain results. Otherwise, the curves 

demonstrate the same behavior as in the previous section, although the 

decrease in carbon content is not as great. This difference is revealed in the 

carbon loss results shown in Figure 4-20. In this instance, the carbon loss due 

to NO2 treatment is essentially zero, which implies that no coal substances 

which contain carbon are being extracted during the NOz treatment. This result 

is in stark contrast with the loss of up to 10 % of the carbon during NO2 treat- 

ment in the previous set of runs. The explanation lies in the fact that in the 
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previous set of experiments, (NOz) is a linear function of time, starting at zero 

and reaching roughly 8 F a t  t = 180 minutes. In this set of experiments, on the 

other hand, (NOz) is initially 1.1 F and drops to 0.75 F a t  t = 180 minutes. There- 

fore, a very large increase in (NOz) will result in some extraction of carbon con- 

taining compounds, Furthermore, the carbon loss after the NazCOs (aq) wash is 

much smaller in this set than in the previous set, which is also a consequence of 

the large difference in (NO2). In this instance, LC rises rapidly to 4 % within 30 

minutes, and then rises a t  a slower rate to 7 % at t = 180 minutes. This trend 

contrasts with the 25 % carbon loss after washing in NazC03 (aq) i~ the previous 

set. Thus, (NO*) affects the extent of both processes responsible for the loss of 

carbon, 

Figure 4-29 shows the mass corrected carbon content of the coal samples 

from the set of experiments conducted at OOC in the batch reactor (Runs 

42-46). It appears that the slight increase in the carbon content curve at 180 

minutes in the previous set is more pronounced in this set. Furthermore, the 

points at 90 and 120 minutes for the NO2-treated coal are below those of the 

washed coal, which is unusual. Whether this increase is a true effect or simply 

the result of bad carbon analyses is not clear. It should be noted that the curve 

corresponding to the Na2C09 (aq)-washed coal demonstrates the usual unimodal 

decrease as the reaction time increases, levelling off a t  about 60 to 61 %. The 

absolute carbon loss results displayed in Figure 4-30 can shed some light on the 

problem. The values of LC for the NO2-treated coal show a large amount of 

scatter from -3.5 % to +2,5 %. It should be noted that negative values of LC 

imply an increase in the absolute carbon content, which is impossible unless 

carbon derived from CC14, but no longer associated with chlorine, is taken up by 

the coal. Since the behavior shown here does not occur at higher temperatures, 

and since there is no evidence that NOz reacts with CC14, even in the presence of 
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coal, such an explanation is virtually impossible. Therefore, the scatter must be 

due to either an inconsistent drying procedure or bad carbon analyses or both. 

The curve for the Na2CO9 (aq) washed coal shows a broad maximum of about 3 % 

from t = 60 minutes to t = 120 minutes before dropping back down to 1 % at t = 

180 minutes. Such behavior is also unexpected, which implies that the carbon 

results for this entire set are suspect. Despite the data scatter, however, the 

results do imply that there is very little change in the absolute carbon content 

of the processed coal relative to the pretreated coal. For instance, whereas LC 

at 20°c approaches 7 % for the washed coals, at  LC is not greater than 3 %, 

which would be qualitatively expected if the rate of the process responsible for 

generating Na2C03 (aq) soluble compounds has a typical temperature depen- 

dence. 

The effect of the temperature of the NO2 treatment on the mass corrected 

carbon content of the NO2-treated coals is shown in Figure 4-31. It should be 

noted that only predried coal was used in the 50 ?2 runs while washed and dried 

coal was used in the other runs. Thus, the initial carbon contents differ by 

about 2 %, as reflected in the figure. Despite this difference, it is obvious that 

the magnitude of the decrease in carbon content increases as a function of tem- 

perature. It should be noted that the intersection of the two curves correspond- 

ing to 20 and 0%' is probably due to the large amount of scatter in the carbon 

analyses for the runs done at OOC. Nevertheless, the basic trend exhibited in 

terms of the temperature dependence of the carbon contents is quite clear and 

is that which is expected. The mass corrected carbon loss as a function of tem- 

perature and reaction time is shown in Figure 4-32. Despite the scatter in the 

points, the basic conclusion is that treatment of coal with NO2 under mild condi- 

tions does not result in significant losses of carbon, even at 50°c, where LC is 

roughly 4 %. 
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Figure 4-33 depicts the effect of the NOz treatment temperature on the mass 

corrected carbon contents of Na2C03 (aq) washed coal samples. Once again, the 

higher the temperature, the larger the decrease in carbon content. Both curves 

demonstrate the same trend as the corresponding mass gain curves, namely a 

very rapid initial change followed by a more gradual change. Adjustment of the 

carbon contents for the mass gain results in the values of the mass corrected 

carbon loss shown in Figure 4-34, Whereas NOz treatment at 20-C for 180 

minutes results in an overall carbon loss of 7 %, the same treatment at O ~ C  

results in only about a 3 % overall carbon loss. Furthermore, the overall carbon 

loss due to NOz treatment a t  20°C increases almost linearly as a function of 

reaction time between 30 and 180 minutes, and shows no sign of beginning to 

level off. On the other hand, the overall carbon loss due to NOz treatment at O ~ C  

seems to level off after 60 minutes, and if the point at 180 minutes is included, it 

actually decreases after 120 minutes. Such a decrease might be explained if the 

extent of the reaction which produces the Na2C03 (aq), soluble coal derived pro- 

ducts is quite limited and basically complete within 60 minutes a t  O ~ C ,  but the 

reaction which accounts for the mass gain in the coal continues. The continua- 

tion of the second process could conceivably increase the degree of pore block- 

ing so that as the NOz treatment continues, the accessibility of NaZC03 (aq) to 

the soluble coal derived products is diminished. The amount of variation in the 

values of LC, however, is rather small for the 0°C runs, and the trend shown by 

the data may be caused simply by problems in the carbon analysis. Neverthe- 

less, conducting the experiments a t  0 or 20°C has a discernible and significant 

effect on the overall carbon loss. 

The effect of the initial NOz concentration, (NOz)o, on the mass corrected car- 

bon content for NOZ treatment at 2 0 " ~  (Runs 38-41) is shown in Figure 4-35. 

The curves for both the NOz-treated coal and the NazC03 (aq)-washed coal show 
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the same trends, including the slight increase in carbon content at the end of 

the reaction, which lends credibility to the postulated phenomenon of dimin- 

ished accessibility of NazCO3 (aq) to the coal derived products as the NO2- 

exposure time is increased. An examination of the mass corrected carbon loss 

shown in Figure 4-36, however, reveals that the NOz treatment does not result 

in the loss of any carbon from the pretreated coal, which is in accord with previ- 

ous observations. As mentioned earlier, negative values of LC are physically 

impossible, so that the error must lie in the accuracy of the carbon analysis. 

The curve for the overall carbon loss shows a maximum for LC of about 6 % 

when (NOz)o = 1.7 F. Interestingly, the rise in LC after the NaZC03 (aq) wash is 

quite rapid as (NO& increases, which implies that the production of the 

Na2C03 (aq) soluble coal derived products is essentially complete in 120 minutes 

if ( ~ 0 ~ ) ~  is greater than about 0.5 F, As (NOz)o is increased beyond 1.7 F, how- 

ever, the process responsible for diminishing the accessibility to the Na2C0, (aq) 

soluble coal derived products begins to predominate, so that LC begins to fall. 

Thus, the use of an initial NOz concentration of about 1.0 F seems to insure com- 

plete production of the Na2C03 (aq) soluble compounds in 120 minutes at 2 0 ' ~  

without allowing their accessibility for extraction to be unduly diminished by 

excessive reaction of the coal with NOz. 

The results of the mass corrected carbon analyses of the PSOC 276 coal 

treated with NOz at  20°c (Runs 47-52) are displayed graphically in Figure 4-37. 

In this case, the curves practically coincide, which suggests that the NazC03 (aq) 

wash does not alter the NOz-treatedcoal, Indeed, the curve for the 

NO2-treated coal is actually below that of the washed coal, which implies that 

the Na2C0, (aq) wash is removing material from the NOZ-treated coal which 

does not contain coal-derived carbon. This phenomenon is exactly the opposite 

of that of the PSOC 190 coal treated with NO2, An inspection of Figure 4-38, 
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which contains the mass corrected carbon loss for the processed PSOC 276, 

reveals that the NO2-treated coal suffers a carbon loss which approaches 4 % a t  

180 minutes. The fact that there is any carbon removal from the PSOC 276 coal 

during the NOz treatment in the batch reactor contrasts with the fact that no 

carbon removal occurs when the PSOC 190 coal is treated with NOz. In the case 

of the PSOC 276 coal, apparently there is a component which is rapidly 

extracted by the NO2/ C C 4  solution within 30 minutes. Further exposure results 

in even more extraction. Furthermore, the rate of this second process seems to 

increase with exposure time. On the other hand, the carbon loss due to the 

Na2C03 (aq) wash seems to rise quickly and level off at  about 5 % after about 60 

minutes of treatment with NO,. It would be interesting to know if the two curves 

would meet at longer NO2-treatment times. Theoretically, the value of LC for the 

Na2C03 (aq) wash must always be greater than or equal to the value of LC for the 

NOz-treatedcoal, unless there is an uptake of carbonate by the 

NOz-treated coal. In any event, LC for the washed coal is greater than LC for the 

NOe-treated coal within the domain of NO2-exposure times used, 

The difference between the mass corrected carbon contents of the NOz- 

treated PSOC 190 and PSOC 276 coals is shown in Figure 4-39. It should be 

noted that the initial carbon content of the pretreated PSOC 276 coal is about 

3 % higher than that of the pretreated PSOC 190. Therefore, both coals show a 

similar absolute drop in carbon content during the first 90 minutes of treat- 

ment. Beyond that time, however, the carbon content of the PSOC 276 coal con- 

tinues to drop a t  a fairly constant rate while that of the PSOC 190 coal levels off. 

A comparison of the mass corrected carbon loss of the NOz-treated PSOC 190 

and PSOC 276 coals is displayed graphically in Figure 4-40, Whereas the treated 

PSOC 276 shows a very rapid initial rise in LC, the treated PSOC 190 does not, 

Both curves, however, display the same accelerating increase in LC after t = 60 
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minutes, which implies that the process responsible for this behavior is common 

to both coals. What is indeed surprising is that although the PSOC 276 coal has 

roughly four times less pore volume than the PSOC 190 coal, it is the treated 

PSOC 276 which shows a much greater carbon loss, Obviously the difference in 

the chemical nature of the carbon in the two coals must account for the 

difference in the carbon losses. In particular, the PSOC 276 coal has a carbon 

containing component which is readily extracted by the N02/CC14 solution while 

the PSOC 190 coal does not. Furthermore, the remaining carbon in the PSOC 

276 coal is attacked and extracted by the N02/CC& solution to a greater extent 

than the carbon in the PSOC 190 coal. 

A comparison of the mass corrected carbon content of the NO2-treated coal 

washed in NaeC03 (aq) when either PSOC 190 or PSOC 276 coals are used is 

shown in Figure 4-41. Again, the carbon content of the PSOC 190 coal drops 

more than that of the PSOC 276 coal, even after adjusting for the difference in 

initial carbon contents. The carbon content of the washed PSOC 276 coal, how- 

ever, continues to fall at a greater rate than that of the PSOC 190 coal after 180 

minutes. A better idea of. the overall carbon loss for the two coals can be 

obtained by referring to Figure 4-42, in which are plotted the mass corrected 

carbon losses, Both coals show a very rapid increase in LC of about 4 %. After 

30 minutes of NOz exposure, LC for the PSOC 190 coal then continues to increase 

at a slower, yet constant rate, reaching a value of 7 % at  t = 180 minutes. On the 

other hand, LC for the PSOC 276 coal gradually levels off at  about 5 % after 

roughly 90 minutes of NO2 treatment. This behavior of the NazCOs (aq) washed 

coals is exactly the opposite of that of the NO2-treated coals, in which LC for the 

PSOC 276 exceeded that of the PSOC 190 by a factor of almost five. Thus, while 

the porosity of the coal does not affect the limited amount of attack and extrac- 

tion of carbon containing compounds in coal by the N02/CC14 solution, it does 
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affect the overall carbon loss after the Na2C09 (aq) wash. 

On the basis of the points discussed above, several generalizations concerning 

the effect of the NOz treatment conditions on the carbon content of the coal can 

be made. Of primary importance is the fact that the NOz treatment of the coal 

slurried in C C 4  does not lead to any significant carbon losses, provided that 

(Noz) does not exceed roughly 2 F. Furthermore, treating the coal in the tem- 

perature range from 0 to 50°C does not significantly affect the minimal amount 

of carbon loss that does occur. Of the experiments conducted, the maximum 

carbon Ioss was 4 % when the PSOC 190 coal was treated at 50'C for 180 minutes 

and was 4 % when the PSOC 2'76 coal was treated at 20°C for 180 minutes. Furth- 

ermore, the porosity of the coal does not seem to affect the attack and extrac- 

tion of carbon compounds in the coal by the NOz/CCI, solution. 

The other parameters mentioned above, however, namely the NOZ-treatment 

time and temperature, (NOz) and the porosity of the coal do affect the overall 

carbon loss when the NOz-treated coals are washed in 0.1 M Na2C03 (aq). In par- 

ticular, longer Nostreatment times and higher treatment temperatures result 

in the production of a greater amount of coal-derived carbon containing com- 

pounds which are soluble in aqueous Na2C03. Also, higher values of (NOz) result 

in a faster rate of production of these compounds, Finally, the porosity of the 

coal may affect the removal of these compounds since they must be removed 

from the interior of the coal particle. This last conclusion follows from the fact 

that other evidence, in particular the nitrogen content data, suggests that the 

extent of reaction of NOz with the two coals is equal, from which it follows that 

the porosity of the coal does not affect the extent of the NO2-coal reaction. 

Since both coals possess approximately the same elemental composition, one 

would expect approximately the same distribution of NO2-coal reaction pro- 

ducts. Thus, if their removal from the two different coals is different, then any 



physical differences in the coal which might cause variations in their accessibil- 

ity during the wash with NazC03 (aq) must be responsible. The obvious 

difference in this case is the porosity. 



4.2.2.3 The Hydrogen Content of the C o d  

One of the most likely elemental compositions of the coal to be affected by 

NOz treatment is that of hydrogen because in the oxidation of hydrocarbons, the 

C-H bonds are generally more susceptible to cleavage than C-C bonds. There- 

fore, a knowledge of the variations in the hydrogen content induced by treat- 

ment with NOz under various conditions is essential for a clear understanding of 

the kinetics. Because the use of water as a solvent greatly complicates the 

kinetics of the coal-NOz reaction, the hydrogen contents of those coal samples 

generated by experiments utilizing water as a solvent (Runs 1-20) were not 

determined. Thus, the effect of the various reaction parameters on the change 

in hydrogen content to be discussed below is concerned exclusively with those 

runs using CC14 as the solvent, which does not chemically react with NO,. 

The mass corrected hydrogen content of the coal samples generated by treat- 

ment with NO2 at 25°C in the flow reactor (Runs 21-27) are shown in Figure 

4-43. Once again, the phrase ''mass corrected" refers to the fact that the 

hydrogen contents listed in Table 3-19 have been adjusted for the adsorption of 

CC14. In this case, the effect is only indirect in that the mass gain results must 

be adjusted while the absolute amount of hydrogen remains invariant, which 

results in a change in hydrogen content expressed on a mass percentage basis. 

The curves show the same basic behavior as those of the carbon content, namely 

a very rapid decrease in the hydrogen content, c ~ ,  followed by a more gradual 

decline, In the case of hydrogen, however, cfi is slightly higher after the 

NazC03 (aq) wash than after the NO2 treatment, which implies that the wash is 

removing compounds with a lower hydrogen concentration than the remaining 

coal, The NazC03 (aq) wash does remove some hydrogen containing compounds, 

however, which is demonstrated by the mass corrected hydrogen loss, LH, of the 

treated coal samples shown in Figure 4-44. The mass corrected hydrogen loss is 
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obtained by simply adjusting the values of c~ for the mass gain to obtain the 

absolute hydrogen mass, subtracting the result from the initial absolute 

hydrogen mass and dividing the difference by the initial absolute hydrogen 

mass: that is 

LH (%) = 100 m ~ ( c ~ ) ~  - m c ~  , where 
mo(cH>o 

m, = the initial mass of coal used in the run (g), 

m = the final mass recovered after treatment (g), 

(cH)0 = the initial hydrogen content (mass %), and 

cf-~ = the hydrogen content of the treated coal (mass %). 

Figure 4-44 clearly demonstrates that a significant amount of hydrogen is lost 

during the NOZ treatment. Furthermore, the Na,C03 (aq) wash removes an addi- 

tional, but smaller amount of the original hydrogen in the coal. It should be 

remembered that in thls series of runs, (NO2) rose linearly from zero to 0 F a t  

t = 180 minutes and resulted in a 10 % carbon loss after NO2 treatment for 180 

minutes and a 26 % carbon loss after the corresponding Na2C03 (aq) wash. If the 

results for LH and LC for this set of runs are combined, it appears that the 

NO2 treatment removes carbon and hydrogen in a molar ratio of 1.0 to 1.0. On 

the other hand, the Na2C03 (aq) wash results in the overall removal of carbon 

and hydrogen in a molar ratio of 1.1 to 1.0. The original pretreated coal has a 

molar ratio of carbon to hydrogen of 1.23 to 1.00. These results indicate that 

the hydrogen is lost mainly in the NO2 treatment while the carbon is lost mainly 

in the Na2C03 (aq) wash under the conditions employed for Runs 21-27. 

The dependence of the mass corrected hydrogen contents of the coal samples 

treated with NOz at  20t in the batch reactor (Runs 33-37) as a function of 

NO2-exposure time are depicted graphically in Figure 4-45. Both curves show a 
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rapid drop in c~ followed by a more gradual decline, just as in the previous set, 

even though the Nostreatment conditions were vastly different, In this case, 

both curves are virtually identical, which implies that the NazC03 (aq) wash 

removes compounds with the same c~ as the remaining coal. The values of the 

mass corrected hydrogen loss for this set of runs are plotted in Figure 4-46. In 

contrast to the previous set of runs, LH for NO2 treatment rises rapidly within 30 

minutes and then continues to rise linearly at about one-fourth the initial rate 

thereafter, reaching a value of roughly 22.5 % after 180 minutes. Washing the 

NOz-treated coal with 0.1 M NaZCO3 (aq) results in an additional hydrogen loss a t  

NO2-reaction times less than 90 minutes. As the NOz-exposure time approaches 

100 minutes, however, the additional hydrogen loss vanishes, which implies that 

a sufficiently long exposure to NO2 at  20aC (i.e., t > 160 minutes) accounts for all 

of the hydrogen removal. Thus, the coal-derived compounds leached by 

NaZC03 faq) contain no hydrogen, which is in direct contrast to the carbon loss 

results which show that NO2 treatment results in no carbon removal and that all 

of the carbon loss is attributable to the NazCU9 (aq) wash. 

The mass corrected hyd,rogen contents of the coal samples treated with NO2 

at 0% in the batch reactor (Runs 42-46) are shown in Figure 4-47. The values 

of c~ for the NOz treatment are quite scattered, which is also true for the 

corresponding values of cc. The corresponding mass gain curve, however, shows 

quite normal behavior, which precludes inconsistencies in the drying procedure 

as the cause of the scatter. Despite the scatter, however, the values of cx show a 

very gradual decline on the whole. The values of c~ after washing the 

NO2-treated coal in 0.1 M NaZCO3 (aq), on the other hand, are much more con- 

sistent. Indeed, c~ drops rapidly during the first 30 minutes and then falls 

linearly a t  a reduced rate thereafterb, which is similar to the trend in the previ- 

ous set. An examination of the corresponding values of LH in Figure 4-48 
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reveals the serious nature of the inconsistencies in the hydrogen analysis for 

the NO2-treated coals, since there is absolutely no process by which the abso- 

lute amount of hydrogen in the coal can increase (negative value of LH) during 

the NOz treatment in the CCb solvent. Furthermore, it is highly unlikely that 

the value of LH for the NOz-treated coal can exceed that of the coal washed in 

Na2C09 (aq). On this basis, none of the hydrogen analyses of the 

NO2-treated coals are correct. The values of La for the NazC03 (aq)-washed coal 

samples are much more consistent, however. During the first 30 minutes of 

NOz exposure, LH of the washed coal rises rapidly to 11 %. For longer 

NO2-reaction times, LH increases a t  a much slower rate, reaching about 17 % 

after 180 minutes. It is interesting to note that the corresponding carbon loss 

after the NO2-treated coal is washed in 0.1 M NazC03 (aq) reaches a maximum of 

only 3 % of the original carbon in the coal. Therefore, hydrogen removal is much 

easier than carbon removal when the coal is treated at 0°C with NO2 and washed 

in 0.1 M Na2C03 (aq). 

The effect of the NOgtreatment temperature on the values of cH for the 

NOz-treated coal is illustrated in Figure 4-49. The curves for c~ corresponding 

to NOz treatment a t  50°C and 20°C are virtually identical, while that at  OOC has 

been omitted because of the scatter in the analyses mentioned above. An exam- 

ination of the absolute hydrogen loss shown in Figure 4-50, however, reveals 

that more hydrogen is lost at  20t than at 502 during the NOz treatment. 

Furthermore, LH at  20°C seems to continually increase with NOe-exposure time 

while Lw at 50°C rises a t  a slower rate and tends to level off at longer exposure 

times. It should be noted that the curve for LH at 50°C has been drawn in a uni- 

modal fashion despite the apparent drop between 60 and 90 minutes because 

there is no possible physical explanation why LH sZlouId drop in such a fashion. 

Rather, the drop must be attributed to the uncertainty in the hydrogen analysis. 
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Nevertheless, all of the values of LH at 5 0 * ~  are smaller than those a t  20%. This 

trend is exactly the opposite of that for the carbon loss. The carbon loss a t  50-c 

is greater than that at  20°c during NOz treatment, which is expected. The only 

explanations for the temperature behavior of LH are that the rate of hydrogen 

removal decreases with increasing temperature due to an  increase in the resis- 

tance to mass transfer out of the particle or that the hydrogen containing pro- 

ducts from the NOz-coal reaction are reincorporated into the coal at  a rate 

which increases with increasing temperature. 

Unfortunately, the coal treated a t  50°C with NO2 could not be washed in 

0.1 M Na2C03 (aq) and recovered successfully so that a comparison of the 

hydrogen content of the washed coals as a function of temperature could not be 

made. Nevertheless, the values of c~ for coals treated a t  20°C and O*C with NOz 

and then washed with 0.1 M NaZCO, (aq) are shown in Figure 4-51. Both curves 

show the same trend with the 2oaC curve possessing a larger initial drop than 

the OOC curve. After adjusting the values of c~ for the overall mass gains, the 

values of LH shown in Figure 4-52 are obtained. Once again, the amount of 

hydrogen removed due to NO2 treatment at 20°C is greater than that due to 

NOz treatment at O*C. Both LH curves show an initially rapid rise followed by a 

more gradual increase with NOz-exposure time. A t  30 minutes, the molar ratio 

of C to H loss is 1.0 to 3.6 a t  O°C and 1.0 to 3.0 at 20°c. At 180 minutes, the 

molar ratio of C to H loss is 1.0 to 5.0 at OOC and 1.0 to 2.5 at 20O~. Since the 

coal initially has a molar C to H ratio of 1.21 to 1.00, these results imply that 

hydrogen is much more readily removed than carbon by treatment with NOz fol- 

lowed by washing with 0.1 M Na2CO3 (aq). Furthermore, the rate of the reaction 

responsible for the ultimate removal of hydrogen is much less affected by tem- 

perature than the rate of the process responsible for the ultimate removal of 

carbon. 
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The influence of the initial NO2 concentration, (NOz)o, on the mass corrected 

hydrogen content of the coal after 120 minutes of NO2 treatment at 20°C and 

subsequent washing in NazCO3 (aq) (Kuns 38-41) is shown in Figure 4-53. Dur- 

ing the NO2 treatment, once (N02)o is greater than about 0.5 F, c~ no longer 

decreases after 120 minutes of exposure to NOz. The initial NO2 concentration 

does affect the value of c~ after the Na2C03 (aq) wash, however. Not only is CH 

further reduced after the wash, but it continues to decrease as (N02)o increases. 

The values of the hydrogen loss, LH,  for this set of runs shown in Figure 4-54 

clearly demonstrate the effect of (N02)0 on the removal of hydrogen during the 

NOz treatment and during the wash. During the NO2 treatment, LH does not 

seem to depend on (N02)o. Rather, the presence of a sufficient amount of NO2 

results in the facile removal of roughly 8 % of the hydrogen within 120 minutes. 

The further removal of hydrogen by the Na2C03 (aq) wash, however, does seem to 

depend on (N02)o. Values of (NOZ)~ between 0.1 and 1.1 F all result in the remo- 

val of about 16 % of the original hydrogen by washing. Once (N02)o exceeds 

1.1 F, however, the value of LH due to washing in Na2COs (aq) begins to rapidly 

increase. This increase is a consequence of the greater extent of oxidation of 

the coal which occurs when (No2) is increased. It is interesting to note that the 

values for the carbon loss after the Na2COs (aq) wash for this set of experiments 

levels off a t  approximately 5.5 % after (NOz)o exceeds 0.5 F. Thus, values of 

(N02)o greater than 1.0 F result in the formation of additional Na2C03 (aq) solu- 

ble compounds which contain hydrogen but no carbon. The most obvious expla- 

nation is that additional HzO is formed during the two hour NOz treatment. This 

H20 is trapped in the NO2-treated coal, but is removed by the Na2C03 (aq) wash. 

The treatment of PSOC 276 coal with NO2 a t  20"~ in the batch reactor (Runs 

47-52) results in the mass corrected hydrogen contents displayed graphically in 

Figure 4-55. The values for c~ after the NO2 treatment show an initially rapid 
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decline followed by a more gradual decrease thereafter. Washing the 

NO2-treated coals in 0.1 M Na2COs (aq) results in a further reduction in cH, 

although c~ seems to level off after 90 minutes of NO2 exposure. The values of 

the mass corrected hydrogen loss of the NO2-treated PSOC 276 coal, LH, are 

shown in Figure 4-56. The hydrogen loss during the NOz treatment seems to be 

a linear function of time, reaching a value of about 7 % after 180 minutes. The 

values of LH after the Na2C03 (aq) wash, however, indicate that an ultimate 

hydrogen removal of roughly 14 % occurs a t  90 minutes of NO2 treatment. As 

with the PSOC 190 coal, the water is trapped in the NO2-treated PSOC 276 coal. 

The Na2C03 (aq) wash, however, does not remove the water from the NO2-treated 

PSOC 276 coal. 

A comparison of the values for c~ of the PSOC 190 and PSOC 276 coals after 

treatment with NO2 is shown in Figure 4-57. The figure plainly shows that a 

much larger drop in the hydrogen content of the PSOC 190 coal occurs during 

the NO2 treatment than in the PSOC 276 coal. Furthermore, the rate of 

decrease in c~ is greater for the PSOC 190 coal than the PSOC 276 coal. A com- 

parison of the respective hydrogen losses, which can be found in Figure 4-58, 

confirms that the extent and rate of hydrogen removal during the NO2-coal reac- 

tion is much greater for the PSOC 190 than PSOC 276. This difference in 

hydrogen loss can be attributed to the difference in the pore volumes of the two 

coals. Based on the nitrogen content data to be discussed in the next section, 

the accessibility of the hydrogen in the two coals to NOZ is basically the same. 

Therefore, the difference in hydrogen loss must be due to the difference in the 

resistance to mass transfer of the oxidized hydrogen compounds out of the par- 

ticle. 

Figure 4-59 contains, in graphical form, the values of c~ for the two coals 

which had been treated with NO2 and subsequently washed in 0.1 M Na2C03 (aq). 
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Once again, c~ is lower for the processed PSOC 190 than the processed PSOC 

276. Furthermore, the values of c~ for the two coals seem to level off after 90 

minutes of NOz treatment. The values of the mass corrected hydrogen loss for 

the processed coals are shown in Figure 4-60. Once again, more hydrogen is 

removed from the PSOC 190 than from the PSOC 276. The difference in LH after 

the wash, however, is not nearly as large as the difference in LH after the 

NOz treatment. Thus, the Na2COs (aq) wash removes more soluble coal-derived 

hydrogen-containing compounds from the PSOC 276 than from the PSOC 190, 

both of which have been treated with NOz. It is interesting to note that LH for 

the PSOC 190 continues to increase with NOz-exposure time while LH for the 

PSOC 276 reaches a maximum at 90 minutes and then declines. This behavioral 

difference is caused by the differences in the pore structures of the two coals. 

For instance, it appears that more extensive oxidation of PSOC 190 does not 

inhibit the removal of coal-derived products by Na2C03 (aq), while excessive oxi- 

dation of PSOC 276 does inhibit such removal. It is interesting to note that the 

carbon loss results roughly parallel the hydrogen loss results of the coals 

treated with NO2 which are then washed with 0.1 M Na2C03 (aq). The difference 

in the carbon loss (w 0.2 %), however, is much less than the difference in the 

hydrogen loss (m 6 to 8 %), which implies that the molar ratio of carbon to 

hydrogen removal is greater for the treated PSOC 276 than for the treated PSOC 

190. For instance, the molar ratio of carbon to hydrogen loss after washing the 

coal treated with NO2 for 30 minutes in 0.1 M Na2C03 (aq) is 1.0 to 3.0 for the 

PSOC 190 and 1.0 to 1.7 for the PSOC 276. After treatment with NO2 for 180 

minutes, the molar ratio of carbon to hydrogen removal for the washed coals is 

1.0 to 2.5 for the PSOC 190 and 1'0 to 1.9 for the PSOC 276. It should be noted 

that both pretreated coals had a molar carbon to hydrogen ratio of 1.21 to 1.00. 

Therefore, both coals suffer more hydrogen than carbon loss on a molar basis. 





On the basis of the discussion of the effect of the various reaction parameters 

on the fate of the hydrogen in the coal, several general conclusions can be 

made. For instance, because most of the hydrogen loss during the 

NO2 treatment occurs within the first 30 minutes, the hydrogen which is accessi- 

ble to NOz is rapidly attacked. Furthermore, the values of c~ for the PSOC 190 

treatment with NOZ are roughly equal to those of the subsequently washed coals, 

which implies that the wash removes compounds with the same hydrogen con- 

tent as the remaining coal. Such is not the case, however, with the processed 

PSOC 276, mainly because not all of the reacted hydrogen is removed during the 

NOz treatment. Washing the coal in Na2C03 (aq), however, results in the removal 

of the oxidized hydrogen. 

The effect of the NO2 concentration on the extent and rate of hydrogen remo- 

val appears to be minimal. As long as NOz is in stoichiometric excess, the 

hydrogen readily reacts and is ultimately removed, which implies that mass 

transfer resistances control the extent and rate of the hydrogen loss, The tem- 

perature of the NO2 treatment affects the extent of the hydrogen removal. The 

fact that the hydrogen loss is greater at 2 0 " ~  than a t  5oec implies that the oxi- 

dized hydrogen-containing compounds are more easily trapped in the coal when 

the NOz-treatment temperature is increased. On the other hand, as the tem- 

perature is lowered from 20 to (lot', the hydrogen loss decreases as well. In this 

case, the extent of the oxidation of hydrogen by NO2 is diminished by the lower 

rate a t  0 than at 20'~. It appears, therefore, that the maximum hydrogen remo- 

val during NOz treatment occurs at about 20 to 25-~, at  which temperature the 

rate of the NOz-coal reaction is at  its maximum value before the rate of the pro- 

cess which causes the entrapment of the oxidlzed hydrogen begins to dominate 

the overall extent of the hydrogen removal. 



The most general statement which can be made about the nature of the 

interaction between NOz and the coal hydrogen is that the hydrogen is very sus- 

ceptible to attack by NOz. Furthermore, the removal of the oxidized hydrogen 

depends exclusively on the resistance to mass transfer presented by the pore 

structure of the coal. Alterations in the pore structure which occur during the 

NOz-coal reaction, therefore, affect the extent of subsequent hydrogen removal 

during the NaZCO3 (aq) wash. In general, however, a smaller pore volume in the 

pretreated coal results in a smaller extent of hydrogen removal during the pro- 

cessing. 



4.2.2.4 The NStrogen Content of the Cod  

During the course of the reaction of NO2 with coal slurried in CCLp, i t  is possi- 

ble that the NO2 may become chemically and physically incorporated into the 

solid coal matrix. Fortunately, the extent of such incorporation can be meas- 

ured by determining the change in nitrogen content of the coal during treat- 

ment because the only source of additional nitrogen is NOz when CC14 is the sol- 

vent. When water is used as the solvent, on the other hand, several forms of 

nitrogen exist in solution, including HN03 and HN02. Thus, the determination of 

the relative amounts of nitrogen donated by these species to the coal is quite 

difficult. Consequently, no systematic nitrogen analyses were made of the coals 

whioh were treated with NO2 in water (Runs 1-20). The following discussion per- 

tains exclusively to the treatment of coal slurried in CCl, with NOz and subse- 

quently washed in 0.1 M Na2C03 (aq). 

The mass corrected nitrogen content, c ~ ,  of the coaI samples treated with 

NO2 at 25°C in the flow reactor (Runs 21-27) is shown as a function of reaction 

time in Figure 4-61. The curves for the NO2-treated coal and the subsequently 

washed coal both display a smooth unimodal rise, As expected, the wash does 

remove some of the added nitrogen, but certainly not all of it. The net increase 

in the nitrogen mass, m ~ ,  of the treated coal relative to the initial mass of the 

pretreated coal is shown in Figure 4-62 as a function of NOgreaction time. The 

net increase is expressed in terms of grams of nitrogen per 100 grams of the ini- 

tial pretreated coal. The curves in this figure also show a smooth unimodal rise 

in the nitrogen content of the treated coal, Furthermore, the curve for the 

washed coal indicates the removal of about one gram of the nitrogen added to 

100 grams of the pretreated coal for all of the NOz-treatment times even though 

the total amount of nitrogen added to the coal continues to increase. This con- 

stant amount of removal indicates that about one gram of the added nitrogen is 
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easily displaced during the Na2C03 (aq) wash. Furthermore, the NO,-coal pro- 

cess which accounts for this portion of the added nitrogen is quite rapid, It is 

likely that this portion is simply NO2 adsorbed on the coal surface and possibly 

trapped in the pores, Once the coal is washed in 0.1 M NazC03 (aq), however, the 

adsorbed NOz would be displaced by the more strongly adsorbed aqueous 

species, The displaced NO2 can then react quickly with the Na2COs (aq) to form 

NaNOz and NaN03: 

Furthermore, if NO2 is trapped in the pore structure, treatment with aqueous 

NaZC03 may dilate the pore structure enough to allow the trapped NOz to be dis- 

placed as well. 

Some useful kinetic results can be extracted from the data as it is presented 

in Figure 4-62. If it is assumed that the rate of nitrogen uptake by the coal 

depends only on the availability of sites in the coal, the following rate expression 

results: 

dm8 -=  
d t - k mjf. , where 

m& = the residual capacity in the coal for nitrogen uptake 

(gN/ 1 OOg initial coal), and 

k = the first order rate constant 

In order to use equation (4.2.13), the initial value for m$ is needed. Because the 

top curve in Figure 4-62 seems to asymptotically approach 4.10 mass % N, which 

implies the exhaustion of sites, this would seem a good first guess for the initial 

value of mg, m&o. In general, the integration of equation (4.2.13) results in 



Furthermore, mi is equal to mRo - m ~ ,  where m~ is the net increase in the 

mass of nitrogen in the coal, that is, the values plotted in Figure 4-62. Thus, 

equation (4.2.14) can be rewritten as 

ln(mfio - mN) = In mgo - k t .  (4.2.15) 

Therefore, if the data are converted to the form of In(mao - mN) vs. t and fitted 

using a least squares procedure, the slope will be simply -k. The value of mRo 

can be varied until the least squares fit gives an intercept which equals In mfio. 

The closeness oi! the fit is given by the correlation coefficient, r2. A perfect fit of 

the data to a straight line gives a value of r Z  of unity. A range of values for mgo 

from 4.08 to 4.30 were used, and the results are shown in Table 4-1. It is 

immediately obvious that the convergence between the guessed and calculated 

values of mfio is very rapid. An examination of Table 4-1 reveals that the best 

agreement is obtained using a value of 4.082 for mB0, which yields a value of 

0.0302 min-' for k. It should be noted, however, that the best value of r2 is 

obtained using a value of 4.11 for mgo, which gives a value of k of 0.0241 min-l, 

Further examination of Table 4-1 discloses that while the range of values 

chosen for mfio does not strongly affect r2, the variation in k is quite significant. 

Nevertheless, the value obtained for k should be a good estimate. 

I t  should be noted that if the rate depended on the concentration of NO2, the 

rate expression would be 

dm$ - = - k  mfifN02)n, where 
d t  

k = the rate constant (P-m~l-~-min-'), 

(NO2) = the NO2 concentration in the liquid phase (mol-1-l), and 



TABLE 4-1 
Results of the Least-Squares Fit of the Nitrogen Uptake Datafo 



n = the order of the NO2 dependence. 

Because (NO2) is known as a function of time, the integration of (4.2.16) yields 

where the integration is performed numerically. The best least squares At of the 

data for n = l  gives a value of r2=0.9250 for mfio=4.08 and a value for k of 

0.00706 1-mol-'-min-'. For the case where n=0.5, the best value for r2 is 

0.9458 when mfio=4.08. The corresponding value for k is 0.0159 

10.5 -mo~-0.5-min-l . Furthermore, as n is increased, the best value for r2 

decreases. Therefore, the best fit occurs when n = O ,  which implies that the rate 

of nitrogen uptake does not depend on (NO2). This conclusion is consistent with 

the results obtained with the (NO2) data, namely that the specific rate of the 

coal-NOz reaction is independent of (NO2). This result is not surprising because 

the amount of NOZ in the flow reactor is rapidly in excess. 

The values of the mass corrected nitrogen content of the coal samples 

treated with NO2 at  200C in the batch reactor and subsequently washed in 

0.1 M NazCO3 (aq) (Runs 33-37) are displayed graphically in Figure 4-63, The 

curves clearly demonstrate that nitrogen is quickly assimilated by the coal, with 

over 85 % of the maximum value of c~ attained within 30 minutes. Once again, 

the curve corresponding to the washed coal indicates that only a small portion 

of the added nitrogen is removed by the wash in 0.1 M NazC03 (aq). The net 

increase in the mass of nitrogen per 100 grams of initial coal is shown as a func- 

tion of NO2-treatment time in Figure 4-64. In general, the curves show a 

smooth unimodal rise. The Na2C03 (aq) wash removes between 15 and 21 % of 

the added nitrogen, except a t  t = 100 minutes, when only 10 % is removed, How- 

ever, the value of cs  at t = 100 minutes for the NOz-treated coal appears to be 

low, which would account for the relatively low removal of added nitrogen. 
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Because the removal is essentially constant, the rate of the process which 

accounts for the uptake of permanent nitrogen is essentially equal to the rate of 

the process which accounts for the uptake of nitrogen which is removed by the 

wash. This conclusion is consistent with the notion that the features of the coal 

which account for the uptake of the easily displaced nitrogen are themselves a 

consequence of the NO2-coal reaction. That is, the NO2 adsorbed on the surface 

of the coal, which is displaced by the wash, is held by polar oxygen atoms which 

are themselves introduced into the coal as a result of the NO2-coal reaction. 

If the procedure adopted for the previous set of runs for obtaining kinetic 

rate constants is applied to this set of runs, the results are quite ambiguous. 

The value of mjto which gives the best correlation of the data and the resulting 

rate constants are: 

mao (g N/100 g coal) 

n Chosen Calculated T k 

0 3.89 3.90 0.9842 0.0483 min-I 

0.5 3.89 3.92 0.9847 0,0519 1°.5-mol-0~5-min-1 

1 3.90 3.90 0.9850 0.0550 ~-mol-'-min-~ 

It should be noted that the data point for t = 180 minutes was discarded 

because it represented a decrease in m~ from t = 120 minutes, an unlikely pos- 

sibility. An examination of the values given above reveals that all choices of n 

yield the same value for r2, although they yield different values for k. This puz- 

zling trend is readily explained. however. because both J ( N O ~ ) O . ~ ~ ~  and 

j ( N ~ ~ ) d t  are themselves linear functions of t with correlation coefficients of 

0.9996 and 0.9984, respectively. Therefore, the inclusion of a rate dependence 

on (NO# only serves to alter the time scale. Consequently, a determination of 

the rate dependence is not possible in this set of runs.. Since the previous set of 

runs as well as the (NOz) data indicate that the specific rate of nitrogen uptake 



is independent of (NOz), however, it is probably true in this case as well. Even 

though (NO2) is only in the range from 0.7 to 1.1 F in this set and rose uniformly 

from 0 to B F in the previous set, the NOZ is still in excess in both sets. There- 

fore, a dependence of the rate on (NOz) would be expected to be weak at best. 

Figure 4-65 contains the values of the mass corrected nitrogen content of 

the coal treated with NO2 a t  043 and subsequently washed in 0.1 M Na2C03 (aq) 

(Runs 42-46) in graphical form. Once again, both curves show a smooth unimo- 

dal rise. Furthermore, the wash removes a small portion of the added nitrogen. 

The net increase in the nitrogen mass of the processed coal is shown in Figure 

4-66 as a function of NO2-exposure time, The shape of the loci in this figure are 

the same as those in the previous figure, which implies that much of the mass 

gain occurs as a consequence of the same process which accounts for the 

uptake of nitrogen by the coal. Just as in the previous set of experiments, about 

17 to 21 % of the total added nitrogen mass is removed by the NaZC03 (aq) wash, 

even though the amount of added nitrogen is about 15 % less at 0°C than at 20-C. 

The fact that the same proportion of the added nitrogen is removed provides 

further evidence in support of the notion that the amount of nitrogen eventu- 

ally displaced by aqueous Na2CO9 is proportional to the amount of added 

nitrogen which remains after the wash. Consequently, the features introduced 

into the coal which account for the uptake of the displaced nitrogen result from 

the uptake of the nitrogen which remains after the wash. 

An analysis of the kinetic data for this set of experiments using the pro- 

cedure discussed earlier provides rate constants which can be compared with 

those of the previous set of experiments. Furthermore, the problem which 

occurred in the previous set regarding the inability to determine the depen- 

dence of the rate on (NOz) occurs in this set as well. For instance, if n in equa- 

mg vs. t .  If tion (4.2.17) is zero, the data should be correlated in the form of In- 
mfio 
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m.8 
n is equal to  unity, then the data should be correlated in the form of In- vs . 

mgo 
t t 

(NO2) dt  . A least squares fit of t vs. (NO2) dt  yields a value for the corre- 
0 O t  

lation coefficient of 0.9990. The fit of t vs. f (N02)0.= d t  yields a value for r2 of 
0 

0.9998 as well. The results of the fit of the data from this set are: 

mjto (g N /  100 g coal) 

n Chosen Calculated T k 

0 3.60 3.50 0.9730 0.0342 rnin-I 

0.5 3.60 3.62 0.9754 0.0380 -m~l-O.~-rnin-' 

1 3.60 3.58 0.9802 0.0415 1-mol-'-min-' 

The values for k given here are about 30 % lower than those from the previous 

set, which indicates an important temperature effect, It is also interesting to 

note that  while the best value for mjffo a t  20O~ is 3-90, a t  0@ the best value is 

3.60, which implies that  the initial capacity of the coal for nitrogen uptake is 

temperature dependent. Indeed, the curves for m~ at the two temperatures 

definitely indicate different limiting values for r n ~  of roughly 3.9 and 3.6 a t  20 

and O0C respectively. The difference cannot be due to the thermal contraction of 

the coal because i t  has been determined that  coal generally contracts in volume 

by only 4 % when the temperature is lowered from 25OC to -196°C.~ The only 

apparent explanation is that a small fraction (10 %) of the capacity which was 

available for nitrogen uptake a t  2 0 t  is no longer available at  O°C due to energy 

requirements. 

The mass corrected nitrogen contents of the NOz-treated coals are  shown as 

functions of NO2-exposure time and temperature in Figure 4-67. Included in 

this figure are the data from the NO2 treatment a t  50°c which have yet to be dis- 

cussed. The data from the runs a t  20°C! and O°C have been discussed above. 

When these curves are considered together, the effect of the temperature can be 





plainly seen. As mentioned above, not only does c~ increase to a greater degree 

as the temperature is increased, but the limiting value of c~ as the exposure 

time approaches infinity rises with the temperature as well. Figure 4-66 con- 

tains the net increase in the mass of nitrogen of the NO2-treated coal as a func- 

tion of NO2-exposure time and temperature. The curves in this figure have the 

same smooth unimodal shape as in the previous figure, 

I t  should be noted that the apparent fluctuation in the values of m~ for the 

50°C treatment a t  90 and 120 minutes leads to two possible interpretations of 

the data when attempting to obtain kinetic information. One interpretation is 

given by the manner in which the 50°C curve is drawn in Figure 4-68, that is, it  

is assumed that r n ~  smoothly rises from 60 to 180 minutes with the points a t  90 

and 120 minutes significantly removed from the curve. Because the runs per- 

formed a t  50°C were conducted in the flow reactor, (NO2) was essentially con- 

stant at 1.18 F throughout the course of the reaction. Therefore, the depen- 

dence of the rate on (NOz) cannot be determined, just as  in the runs done at  20 

and O'C. If the smoothed values of m~ are used at 90 and 120 minutes, the best 

value for mfio a t  50°C is 5.27 (g N /  100 g initial coal) which yields a least squares 

fit value for mgo of 5.32 (g N /  100 g initial coal). The corresponding value for k is 

0.0376 min-' and the correlation coefficient is 0.9404. Thus, the values of k a t  

the various temperatures are: 

T c )  0 20 50 

k(min-I) 0.0342 0,0483 0.0376 

These results indicate a very unusual temperature effect which cannot be 

explained. The second interpretation of the 50 C data, however, alters this trend 

somewhat. Recalling that the nitrogen uptake reaction appeared to be complete 

within 120 minutes at  2 0 t ,  it would not be unreasonable to expect that the 

reaction would be complete within an even shorter amount of time a t  50JC. If 
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the point a t  120 minutes is discarded, such would be precisely the case, since 

the points a t  90 and 160 minutes are essentially equal. Therefore, the reaction 

appears to be complete within 90 minutes at  50 ?2. By using only the data points 

a t  0, 30, 60 and 90 minutes, the best value for mRo is 5-33 fg N/100 g initial 

coal). The least squares fit yields a value for m;, of 5.39 g N/100 g initial coal 

and a value for k of 0.0466 min-l, The value of the correlation coemcient is 

0.9320. Thus, the second interpretation of the data yields the following values 

for the rate constant: 

T o  0 20 50 

k(min-I) 0,0342 0.0483 0.0466 

These results imply that the rate constant is roughly equal at 20 and 50%, but 

less at  O°C. There is no simple explanation for this behavior because a smooth 

temperature dependence is expected. One possibility is that the rate constant 

at  5 0 ' ~  represents rate control by diffusional resistances rather than by kinetic 

limitations. It should be noted that the kinetic data for (NOz) indicate that 

diffusional resistances control the global rate of NO2 consumption for the first 

30 to 60 minutes. Since the reaction at  50°C is roughly 90 % complete within 60 

minutes, one might expect diffusional resistances to play a more predominant 

role than in experiments conducted a t  lower temperatures where the time 

required for complete reaction is longer. Indeed, the value of k a t  20-c may also 

be the result of diffusional limitations on the rate, when only 120 minutes are 

required for completion of the reaction. At O ~ C ,  however, the reaction is not 

complete within 160 minutes, which indicates that the kinetics of the nitrogen 

uptake reaction may be rate controlling. In any case, the values of k obtained 

provide good estimates for further kinetic interpretation in the mathematical 

modelling of the reaction system. 

Another interesting feature mentioned above concerns the limiting value of 



mN as the reaction time approaches infinity, (mN),. Based on the kinetic 

analysis, (mN), = mgo, which yields the following values for (mN),: 

T(C) 0 20 50 

(mN), (g N /  100 g coal) 3.60 3.89 5.33 

There is a definite increase in (mN), with temperature which implies that the 

capacity of the coal for the uptake of nitrogen is a function of temperature. As 

previously mentioned, the thermal expansion of the coal is too slight to account 

for such a large increase in (mN), with temperature. Rather, the explanation 

must reside in the energetics of the reaction. That is, the activation energy for 

nitrogen uptake varies from one site to another, rather than being the same for 

all sites. Thus, as the temperature is increased, more sites are available for the 

uptake of nitrogen. 

The values of the mass corrected nitrogen content of the coals treated with 

NOz a t  20 and 02 which were subsequently washed in 0.1 M NazCOs (aq) are 

shown graphically in Figure 4-69 as a function of NOz-exposure time. Basically, 

both loci have the same general shape with the Ooc curve being slightly below the 

20% curve. Furthermore, both curves parallel the curves corresponding to the 

NO2-treated coal. Figure 4-70 contains the corresponding values for m ~ ,  which 

demonstrates that the net nitrogen mass increase of the washed coal follows the 

same trend as that of the NOz-treated coal. In particular, m~ decreases between 

15 and 20 % due to the wash at  both temperatures, which emphasizes the high 

degree of correlation between the uptake of nitrogen which is displaced during 

the wash and the uptake of nitrogen which remains after the wash. 

The effect of the initial concentration of NO2, (NOz)o, on the nitrogen content 

of the coal treated with NOz for 120 minutes is demonstrated graphically in Fig- 

ure 4-71. Both curves show the same general trends, namely an initially rapid 

rate of increase in CN which gradually decreases at  higher values of (NOZ)& Once 
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(NOz)o exceeds roughly 0.5 F, however, the rate of increase in cN is constant. 

Such behavior is indicative of systems where a solute is distributed between two 

different phases in a simple manner. That is, the NOZ is distributed between the 

* 
CCL, and coal in a manner such that the quantity " - '' is constant, where ci 

(NOz)  

is the value of CN as (NOZ) approaches zero. The quantity CN - CN is commonly 
(NO21 

referred to as the partition coefficient, In this case, a least squares fit of the 

points at (NOz) = 0.49, 1.08, 1.71 and 1.67 F yields values of 3,818 mass percent 

for c i  and 0.6137 l/rnol/(rnass %) for the partition coefficient. The correlation 

coefficient for the fit is 0.9799. In any case, it is evident that c~ does depend on 

fNO2). 

In order to incorporate the data shown in Figure 4-71 into the kinetic 

analysis, it is necessary to convert c~ to mN. Thus, the values of the net 

nitrogen mass increase for the processed coal are displayed graphically in Fig- 

ure 4-72, which shows that the same trends which apply to c' apply to r n ~  as 

well. The corresponding partition coefficient is 1.171 1 (g N)- 

l/mo1/(100g initial coal) with a value for m; of 2.979 g N/100g coal. The corre- 

lation coefficient of the fit is 0.9864. This behavior implies that the limiting 

value for m~ as the exposure time approaches infinity, (mN),, is determined by 

(NO2) in the liquid phase. Thus, the rate of nitrogen uptake must depend on 

(NO2) as well. It should be noted that when (NOz)o is less than 0.5 F, there is 

insufficient NOz to complete the uptake of nitrogen within 120 minutes. For 

higher values of (NOz)o, however, the reaction is probably complete because the 

set of experiments run a t  20-c (Runs 33-37), where (NOZ)~ = 1.087 F, indicates 

that the reaction is complete within 120 minutes. Unfortunately, these data do 

not allow the determination of the rate dependence on (NOZ). Indeed, it is quite 

interesting to note that while the analysis of the (NOZ) data indicates the 
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specific rate does not depend on (NOz) and the analysis of the nitrogen uptake 

data from Runs 33-37 seems to confirm no (NOz) dependence, the analysis of 

the nitrogen uptake data for various values of (NOz)0 does indicate a depen- 

dence of the rate on (NOz). This apparent dilemma can be resolved by noting 

that (NOz) seems only to dictate the number of available sites in the coal for 

nitrogen uptake, mgo. There may still be no dependence of the rate on (NOz), 

however. Rather, the value of the rate changes with (NOz) because mgo changes 

(Rate = k m 3  ). These conclusions are consistent with the notion that the 

nitrogen uptake of the coal is the result of the establishment of an equilibrium 

distribution of NOz between the solvent and the coal. Furthermore, attainment 

of this distribution must be irreversible, otherwise the added nitrogen would be 

removed during the vacuum drying. Thus, by incorporating the results from the 

experiments conducted at d~fferent temperatures, (NOz) does affect m&o, but the 

rate of nitrogen uptake does not depend explicitly on (NOz). 

The effect of the pore structure on the nitrogen uptake by the coal can be 

determined by examining the values of c ~  and r n ~  for the treated PSOC 276 coal. 

The values for c ~  of the PSOC 276 treated with NOz and subsequently washed in 

0.1 M Na2C03 (aq) are shown in Figure 4-73. It should be noted that c ~  in both 

cases is still rising after 180 minutes of NOz exposure. Furthermore, the 

NazCOs (aq) wash does not remove very much of the added nitrogen. The 

corresponding values for m~ of the treated PSOC 276 are depicted graphically in 

Figure 4-74. As with c ~ ,  the values of r n ~  continue to rise in both cases even 

after 180 minutes of NOz exposure, which implies that the uptake of nitrogen by 

the PSOC 276 coal a t  20°C is not complete within 100 minutes. The Na2C03 (aq) 

wash removes between 10 and 21 % of the added nitrogen, which is exactly the 

same range of relative nitrogen removal from the NOz-treated PSOC 190 coal. 

Because the pore volumes of the two coals differ by a factor of four, this con- 
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stant partial removal of added nitrogen indicates that no matter how much 

nitrogen is added to the coal, roughly 18 to 20 % of it will be displaced during the 

Na2C03 (aq) wash. This constant relative nitrogen removal serves as very strong 

confirmatory evidence that the process which accounts for the eventually dis- 

placed nitrogen uptake and the process which accounts for the uptake of the 

nitrogen which remains after the wash are the same; that is, the alterations in 

the coal which account for the uptake of the displaced nitrogen are themselves 

a consequence of the uptake of the remaining nitrogen. 

A comparison of the values of the mass corrected nitrogen content, c ~ ,  of the 

two coals treated with NOz at 2 0 " ~  is provided in Figure 4-75. The curve for the 

treated PSOC 190 rises sharply and levels off after about 90 minutes. On the 

other hand, the curve for the treated PSOC 276 rises less rapidly but eventually 

crosses the other curve a t  about 150 minutes. The corresponding values for the 

net nitrogen mass increase, m ~ ,  are shown graphically in Figure 4-76 and 

demonstrate the same trends as the values of c ~ .  The values of mN for the NOg 

treated PSOC 190 rise rapidly and level off at  about 3.9 g N/100 g initial coal, 

while those of m~ for the treated PSOC 276 rise more gradually to about 

3.8 g N/100 g initial coal after 180 minutes of NO2 treatment. The value of r n ~  

for the PSOC 276, however, continues to rise at 180 minutes while that of m~ for 

the PSOC 190 has levelled off. Therefore, the mass of added nitrogen should be 

higher in the PSOC 276 than in the PSOC 190 a t  longer NO2-exposure times. This 

result is indeed striking because the initial pore volume of the PSOC 276 is 

roughly four times smaller than that of the PSOC 190. Therefore, there is no 

correlation between the amount of nitrogen uptake and the pore structure of 

the coal, which implies that penetration of the NO2 into the solid coal structure 

must occur. The plausibility of solid penetration is enhanced by the fact that 

even if the entire pore structure of the PSOC 190 were filled with liquid NOz after 
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the vacuum drying, it could contsin only 40 % off the total nitrogen uptake. In 

the case of the PSOC 276, no more than 7 % of the total nitrogen uptake could 

be accommodated by the pore structure alone. 

A graphical comparison of the values of the mass corrected nitrogen content, 

c ~ ,  of the two NOz-treated coals subsequently washed in 0.1 M NazC03 (aq) is 

shown in Figure 4-77. The corresponding values of the net nitrogen mass 

increase, m ~ ,  are displayed in Figure 4-78. In both cases, for both coals, the 

values of c ~  and m~ parallel those of the respective unwashed coals, even to the 

extent of being roughly 15 to 21 % lower in value. Because the values of r n ~  for 

both coals are  roughly equal, this result implies that the absolute amount of 

nitrogen removed may depend on the length of time of the wash rather than the 

accessibility of the aqueous NazC03 solution to the interior of the coal particle. 

Indeed, if the nitrogen uptake is the result of the establishment of an equili- 

brium between NOz in the liquid and solid phases, it is reasonable to expect that 

once the concentration of NO2 in the liquid phase is lowered, the NOz should 

diffuse out of the coal. The diffusion of NO, out of the coal, however, must be 

inhibited, perhaps through some weak bonding of the NOz to the oxidized coal, 

otherwise the vacuum drying at  1 2 0 ~ ~  for 180 minutes would be expected to be 

sufficient for the removal of the NOz taken up by the coal. In any case, such a 

mechanism requires no distinction between the "displaced" and "remaining" 

nitrogen. Rather, all of the added nitrogen is the result of a single diffusion pro- 

cess. The "displaced" nitrogen is just the portion of the added nitrogen which 

has sufficient time to diffuse out of the coal during the NaZCO3 (aq) wash. There- 

fore, the nitrogen removal is simply the result of the establishment of an equili- 

brium of NOz in the coal and NaZCO3 (aq) phases, just as in the NOz treatment. 

Unfortunately, it is impossible to determine whether that equilibrium is esta- 

blished within the 120 minutes of the Na2C03 (aq) wash because all of the NOz- 
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treated coal samples were washed in the same manner. 

If the data for r n ~  of the NOz-treated PSOC 276 are fit to equation (4.2.17) in 

the manner described above for the various values of n, the following values for 

the rate constant, k, are obtained: 

mgo (g N /  100 g coal) 

n Chosen Calculated T~ k 

0 3.94 3.94 0.9378 0.0 183 min-' 

0.5 3.96 3.95 0.941 5 0.01 94 1°.5-mol-0~5-min-1 

1 3.98 3.99 0.9443 0.0 207 1-mol-I-min-' 
t 

Once again, (NO2)" dt correlates with t almost perfectly. so that it is not pos- 
0 

sible to use this procedure to determine the dependence of the rate on (NO2). 

Nevertheless, it seems reasonable to expect the notion of the NOz uptake being 

the result of an equilibrium process between the liquid phase and the coal to 

apply to the PSOC 276 as well as the PSOC 190. Indeed, a comparison of the 

results for the case when n = 0 for the PSOC 190 treated with NO2 at  20°C with 

the PSOC 276 treated under the same conditions lends support to this theory. 

The values of mbo, r2 and k are: 

mgo (g N /  100 g coal) 

Coal Chosen Calculated r2 k (min-l) 

PSOC 190 3.89 3.90 0.9842 0.0483 

PSOC 276 3.94 3.94 0.9378 0.0103 

It is quite striking that although the values of k differ by a factor of almost 

three, the values of ms0 differ by only 1 %. Therefore, the rate of nitrogen 

uptake by the two coals differs discernibly, but the ultimate amount of added 

nitrogen is the same for both coals, which implies that the partition coefficient 

of NO2 between CCl, and the coal is independent of the pore structure of the 

coal. In particular, if the value of m i  of 2.979 g N/100 g initial coal obtained 



m* - m i  
from the f i t  of the partition coefficient expression K = 

(NO,) 
to the PSOC 

190 data is used for the PSOC 276 data a t  180 minutes as well, the value 

obtained for K is 1.188 l-(g N)-mol-l-(g N/100 g initial coal)-', which compares 

quite favorably with the value of 1,171 l-(g N)-mol-'-(g N /  100 g initial coal)-' 

obtained for the PSOC 190 coal. The pore structure does affect the rate at  which 

equilibrium is established, however, as evidenced by the different values of k. 

On the basis of the analysis of the nitrogen uptake by the coal, several gen- 

eralizations regarding the interaction of NO2 and coal may be made. Probably 

the most important conclusion is that the increase in nitrogen content of the 

coal is the result of the establishment of an equilibrium distribution of NO, 

between the liquid CCh phase and the coal, rather than the result of an irrever- 

sible chemical reaction. Furthermore, the value of the partition coefficient, 

which describes the equilibrium distribution, does not depend on the pore 

structure of the coal, as evidenced by the virtually identical net increase in 

nitrogen mass of the treated PSOC 190 and PSOC 276 coals, which possess quite 

different pore structures yet similar elemental compositions. The pore struc- 

ture does affect the rate a t  which NOz attains equilibrium, however. In particu- 

lar, the initial pore volume of the PSOC 190 is roughly four times that of the 

PSOC 276 and the rate constants for the process differ by a factor of three, 

Certain other factors affect the rate of nitrogen uptake as well. In particular, 

the rate depends on the capacity of the coal for accommodating the NOz. The 

rate does not depend explicitly on the NOz concentration, however. Rather, the 

capacity for nitrogen uptake, m;,, is determined by (NO2), as expressed by the 

equation for the partition coefficient. Thus, the "capacity for nitrogen uptake" is 

really just a measure of the extent of the deviation of the system from equili- 

brium. Thus, the rate can be expressed as 



dm& -- 
d t 

- - k m& , where (4.2.18) 

mg = mgo[(NOz)] - m~ = the capacity for nitrogen uptake, 

mfio[(NOz)] = the initial capacity for nitrogen uptake, which is a function of (NO2), 

m~ = the net nitrogen mass increase, and 

k = the first order rate constant. 

If the expression for the partition coefficient is incorporated, equation (4.2.18) 

becomes 

dm3 -- 
dt 

- - k [K (NOz), + m i  - mN(f )] , where 

K = the partition coefficient (g N-l-m~l-~-(lOOg initial coal)-'), 

(NOz), = the final equilibrium value of (NOz) in the liquid phase (F), 

m i  = the value of MN as (NOZ) -' 0 (g N/ 100g initial coal), 

mN(t) = the nitrogen mass increase in the coal (g N /  100g initial 

coal), and 

k = the rate constant (min-I). 

Thus, only the equilibrium value of (NOz) affects the rate, a t  least for the range 

of values of (NOz) used in this study, where NO2 is always in excess, 

The effect of temperature on the kinetics occurs not only in the rate con- 

stant, k,  but also in the partition coefficient, K, as reflected in mjo.  The change 

in K with temperature is not unexpected, as evidenced by the values obtained 

for mfio for the NOz-treated PSOC 190: 

T(C) 0 20 50 

mfio (g N /  100g initial coal) 3.60 3.89 5.33 

Therefore, the nitrogen uptake by the coal increases with temperature. This 

increase is probably due to the ability of the coal to adsorb more NOz when its 



thermal enery is increased. The effect of the temperature on k is not completely 

expected, however. The values obtained for k are: 

T( C) 0 20 50 

k(min-') 0.0342 0.0483 0.0466 

The change i n k  from 0 to 20°C is not unusual and probably reflects the normally 

expected effect of temperature on the kinetics. On the other hand, the values of 

k a t  20 and 50°c are about equal. It should be noted, however, that the 5 0 t  

treatment was done in the flow reactor, while the treatments a t  0 and 20Gc were 

done in the batch reactor. Evidence that the type of reactor used can influence 

the rate is provided by the value of k for the NOz treatment in the flow reactor 

at  2 5 O ~  which is 0.0302 mine' contrasted with a value of 0.0483 min-' for the 

experiments conducted a t  2o°C in the batch reactor. Nevertheless, the overall 

value of the rate constant under all of the conditions examined is 0.04 rt 0.01 

min-l. 

Finally, it should be noted that the nitrogen removed during the NaZC03 (aq) 

wash also seems to be the result of an equilibrium process. This conclusion is 

based on the fact that the,amount of nitrogen removed from all of the treated 

coal samples is consistently between 15 and 21 % of the added nitrogen. The 

difference in the pore structures of the treated PSOC 190 and PSOC 276 has 

absolutely no effect on the amount of nitrogen removed. Thus, it appears that 

the entire change in the nitrogen content of the coal through the course of the 

treatment is simply the result of equilibrium processes. 



43.2.5 The Oxygen Content of the Coal 

When coal is treated with NO2, the oxygen content of the coal should increase 

due not only to oxidation of various aliphatic portions of the coal but also to the 

incorporation of NO2 into the coal as well. Fortunately, when CC14 is the solvent, 

the only source of additional oxygen is NO2. When water is the solvent, on the 

other hand, various potential oxygen donors to the coal are formed, mainly 

HMO9 (aq), HN02 (aq) and NO2 (aq), which render the determination of the extent 

to which each of these species donate oxygen to the coal virtually impossible. 

Therefore, the following discussion concerning the changes in oxygen content of 

the coal during treatment with NOz and subsequent washing in 0.1 M NazC03 (aq) 

is limited exclusively to those experiments in which CC4 is the solvent (Runs 

21-52). 

Before the results of the oxygen determinations are discussed, one important 

point must be made. The oxygen contents are obtained by adding the carbon, 

hydrogen, nitrogen, chlorine, sulfur and mineral matter contents and subtract- 

ing the sum from 100 percent. Consequently, the error in the oxygen content is 

the sum of the errors for all of the other analyses. In general, the relative 

errors in the other analyses are less than three percent, which implies that the 

relative error in the oxygen content can be as high as 20 percent, although it is 

generally on the order of 5 to 10 percent. Therefore, the likelihood of unex- 

plainable deviations of single oxygen determinations from general trends is 

greatly enhanced. Indeed, the degree of scatter in the data can be sufficiently 

large to render the determination of definite trends virtually impossible. Having 

made this point, the results of the oxygen determinations will now be discussed. 

The mass corrected oxygen content, co, of the coal treated with NO2 a t  25 C in 

the flow reactor and subsequently washed in 0.1 M Na2C03 (aq) (Runs 21-27) is 

shown as a function of NOz-reaction time in Figure 4-79. The data indicate that 
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after 90 minutes of NOz treatment, co no longer increases, which implies that 

the processes which account for oxygen uptake by the coal are completed. This 

behavior is identical with that shown by the nitrogen and overall mass uptakes 

of the treated coals. The oxygen content of the washed coal basically parallels 

that of the NOz-treated coal, but at much lower values. If the values of co are 

adjusted for the mass gain, the values of the net oxygen mass increase, mo, are 

obtained as displayed in Figure 4-00, The upper curve in the figure, which 

corresponds to the NO2-treated coal, also indicates that oxygen uptake is com- 

plete within 90 minutes, attaining a limiting value of roughly 17 (g 0 /  100g initial 

coal) after 180 minutes of NOz exposure. If it is assumed that all of the 

hydrogen removal is the result of conversion of -CHZ- and -CHS groups to > C=O 

and -COOH groups and that the nitrogen. uptake consists exclusively of NOz 

uptake (i.e., no chemical incorporation of any nitrogen containing species 

except NOz), it is possible to determine if these two processes alone can account 

for the oxygen uptake by the coal. The results for the NOz-treated coal are: 

Time (min) 0 30 60 90 120 100 

Determined 0.0 12.68 14.50 16.76 16.72 17.05 
rno (g 0/ 100g coal) 

Calculated 0.0 11.49 14.34 14.31 16.70 16.71 

Except for the point a t  90 minutes, the values are quite close, which, in view of 

the potential error in rno of up to 10 %, indicates that the oxygen uptake by the 

coal can indeed be accounted for by these two processes alone. 

Such a comparison for the washed coals, however, yields a different result, as 

might be expected since the wash removes oxidized portions of the NOz-treated 

coal, which contain most of the oxidized -CHz- groups. Theoretically, if all of the 

> C=O and -COOH groups are removed during the wash, then the oxygen uptake 

can be accounted for solely by the residual nitrogen uptake. The results 

obtained are: 
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m o  Determined 0.0 5.51 6.63 7.31 10.53 9.69 

Hloss+Ngain  0.0 11.86 16.12 14.33 15.87 16.05 
(g 0/ 100g coal) 

N gain only 0.0 4.94 5.71 6.48 6.20 6.52 

The results indicate that removal of the oxidized -CH2- and -CH3 groups does 

occur to a significant extent by virtue of the higher oxygen uptakes predicted on 

the basis of the hydrogen loss and residual nitrogen uptake taken together (i.e., 

no removal of oxidized -CH2- or -CHS groups). On the other hand, the residual 

nitrogen uptake, if taken as NO2, cannot account for all of the increase in the 

oxygen content. This result simply implies that not all of the oxidized -CH2- and 

-CH3 groups are removed during the wash. 

The values of c~ for the coal treated with NO2 at 20-C in the batch reactor and 

subsequently washed in 0.1 M Na2C03 (aq) (Runs 33-37) are displayed graphi- 

cally in Figure 4-81. Once again, the data for the NO2-treated coal indicate that 

the process accounting for the oxygen uptake is essentially complete within 90 

to 120 minutes with a rather large increase in co. On the other hand, the data 

for the washed coal show virtually no change in co during the processing, which 

implies that all of the oxygen added during the NO2 processing is removed dur- 

ing the wash. These conclusions are supported by the values for the net oxygen 

mass increase, m o ,  displayed in Figure 4-82. Whereas there is an uptake of 

roughly 12 g 0/100g coal during the NO2 treatment, the uptake drops to only 

3 g 0/100g coal after the wash, 

A comparison of these values of mo for the NO2-treated coal with the values 

predicted on the basis of the nitrogen uptake and hydrogen loss yields: 
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m o Determined 0.0 8.95 10.60 11.91 12.30 11.44 

Hloss+Ngain  0.0 11.06 13.39 14.20 15.28 16.60 
(g O/fOOg coal) 

N gain only 0.0 7.34 8.10 8.78 8.85 8.36 

The values predicted by the nitrogen uptake (as NOz) and hydrogen loss taken 

together yield values which are about 25 % too high, while the values predicted 

on the basis of nitrogen uptake alone are about 25 to 30 % too low. On this 

basis, it would appear that only about half of the oxidized -CHz- and -CH3 

groups are converted to > C=O and -COOH groups during the NOz treatment, 

while the other half lose their hydrogen without any oxygen uptake. For 

instance, the -CH2- group could be converted to > C(N02)Z or > C(NO)z groups, 

where the oxygen uptake is included in the nitrogen uptake as NO2. In any case, 

it should be remembered that the relative error in the oxygen determinations 

can be quite high, so that either set of predicted values of rno probably agree 

within this relative error with the determined values of rno. Thus, it would 

appear that the oxygen uptake can be accounted for by the hydrogen loss and 

nitrogen uptake during the NO2 treatment. The problem of the accumulation of 

errors in the oxygen determinations is illustrated by the contrast between the 

determined values of rno for the washed coal with those predicted on the basis 

of nitrogen uptake alone: 

Time (min) 0 30 60 90 120 180 

m u  Determined 0.0 1.47 1.14 2.21 2.44 2.90 

(g 0/100g coal) Calculated 0.0 6.06 6.62 6.93 7.50 7.51 

Indeed, the calculated values are  roughly 3 to 5 times greater than the deter- 

mined values. On this basis, only 20 to 35 % of the nitrogen uptake is in the 

form of NOz, the rest being in the form of unoxidized nitrogen, which is highly 

unlikely. Rather, the cumulative errors in the oxygen determinations probably 



account for the discrepancy, although another possibility suggests itself. If 

most of the added oxygen in the coal is due to NOZ, much of the sodium uptake 

may be by the NOz incorporated into the coal, As a result, oxygen which is cou- 

pled with sodium will be determined as mineral matter in the form of NazO 

rather than as organic oxygen in the coal, In this particular case, however, the 

sodium uptake can potentially trap only 2.2 g 0/100g coal, which is still not 

enough to make the experimental and calculated values of rno agree. 

Figure 4-83 contains the values for the mass corrected oxygen content of the 

coal treated with NOz at  06C in the batch reactor and subsequently washed in 

0.1 M NazCO, (aq) (Runs 42-46) as a function of NOz-exposure time. It should be 

noted that the data points for t = 180 minutes both deviate drastically from the 

trends set by the other points. Therefore, they were not considered when the 

curves were drawn, but are included in the plot for the sake of completeness. As 

in the previous set of runs, the rise in co is substantial for the NO2-treated coal, 

but a little more gradual. Because co has not levelled off after 120 minutes of 

NOz treatment, it can be concluded that the process accounting for the oxygen 

uptake is not yet complete., I t  is interesting to note that c o  for the washed coal 

actually drops relative to c o  for the pretreated coal, which implies that the wash 

removes portions of the pretreated coal with oxygen contents greater than the 

overall oxygen content of the raw coal. These conclusions are supported by the 

values of m o  for this same set of runs shown in Figure 4-04, Indeed, the wash 

of the NOz-treated coal does actually result in a small net loss of oxygen, which 

would result if the oxygen were not uniformly distributed in the coal and those 

portions with the higher oxygen contents were removed during the wash. Such a 

non-uniform distribution would occur if the coal had been exposed to air for 

long periods of time which would allow the coal surface to have become oxidized. 

In view of the large errors in the oxygen determinations, however, it is probably 
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safer to conclude that there is no net oxygen uptake after the NO2-treated coal 

is washed in 0.1 M Na2C03 (aq). 

A comparison of the determined and calculated values of rno for the NO2 

treated coals can be based on the following results: 

Time(min) 0 30 60 90 120 160 

m o  Determined 0.0 2.86 '7.01 11.90 12.30 7.57 

(g 0/100g coal) Calculated 0.0 6.18 7.22 1.66 8.01 8.20 

These values show that not all of the oxygen uptake can be attributed to the 

uptake of NO2 alone. Unfortunately, the hydrogen analyses for these runs can- 

not be trusted because some of them indicate a net hydrogen increase during 

the NO2 treatment, which cannot be correct. When the cumulative errors in the 

determined values of mo are taken into account, however, it is probably safe to 

conclude that the oxygen uptake is the result of nitrogen uptake as NO2 and 

conversion of -CH2- and -CH3 groups to > C=O and -COOH groups. The deter- 

mined and calculated values of mo for the washed coal are: 

Time(min) 0 30 60 90 120 160 

mu Determined 0.0 -0.09 0.19 -0.45 -0.30 6.88 

(g 0/100g coal) Calculated 0.0 5.09 6.18 6.13 6.36 6.72 

There are two explanations for the gross disparity between these sets of values 

of mu. The first is that the error in the determined values of mo is on the order 

of 6 g 0/100g coal, which is high, but not outside the realm of possibility. Even 

if sodium trapping of oxygen is considered, the error is still on the order of 

4 g 0/100g coal. The other possibility is that most of the oxygen in the pre- 

treated coal is on the coal surface. Because the NazC03 (aq) wash probably 

removes most of the coal derived products of the NO2 treatment from the coal 

surface, a net loss of the original oxygen in the coal would occur, This loss could 

then be offset by the increase in oxygen content due to NOz uptake to a certain 



degree. In this case, the loss in original oxygen is just matched by the uptake in 

NOz. Because the PSOC 190 was exposed to weather for five years after it was 

mined, this explanation would seem viable, if it is assumed that the pretreat- 

ment does not remove the surface oxygen. Yet, the results for the P S O C  190 

treated at ZO*C seem to correlate very well with the calculated values, so the 

disparity must be attributed to errors in the hydrogen analyses. It is unfor- 

tunate that the oxygen determinations could not be done directly in order to 

mitigate the error. 

The effect of temperature on the change in co for the coal treated with NOz is 

shown graphically in Figure 4-85. The Ioci demonstrate that co increases at a 

faster rate a t  higher temperatures during the initial 60 minutes of the NOz 

treatment. At about QO minutes, cu for the coals treated with NO2 at 50iC and 

2Q°C seems to level off, while c o  for the coal treated with NOZ a t  0°C continues to 

increase beyond that of the 20°C coal. If the point a t  180 minutes for the coal 

treated at 0% is neglected, then the value of co for the coal treated at O ~ C  actu- 

ally exceeds that of the coal treated at 20%. There is no logical explanation for 

this behavior, although it should be remembered that the cumulative error in 

the oxygen determinations may account for the observed temperature effect. 

The corresponding values of mu are displayed in Figure 4-86, where they basi- 

cally show the same behavior as the values of c ~ ,  including the crossing of the 0 

and 20°C curves at 90 minutes. It is interesting to note that not all of the 

oxygen uptake a t  50-c can be accounted for by the nitrogen uptake and 

hydrogen loss after 90 minutes. The determined and calculated values for mu 

are: 
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~ime(min)  0 3 0 6 0 90 120 180 

mu Determined 0.0 13.82 14.18 17.00 19.42 17.43 

(g0/100gcoal) Calculated 0.0 11.86 13.58 12.46 11.92 13.36 

These results contrast with those for the 2occ runs, where the values calculated 

for m o  on the basis of nitrogen uptake and hydrogen loss exceeded the deter- 

mined values, Thus, a t  50°c, another process may account for oxygen uptake, 

such as the formation of alcohols or phenols, which do not result in any 

hydrogen loss. In any event, more extensive oxygen uptake a t  5 0 ' ~  during the 

NOz treatment correlates well with the much greater dissolution of the coal in 

0.1 M NazCOs (aq) than the coals treated with NOz a t  20 and O ~ C .  

Figure 4-87 demonstrates the effect of the NOz-treatment temperature on 

the value of co for the subsequently washed coal. The primary feature of the 

plot is that the NOz treatment a t  20°C results in a net increase of roughly 1.5 

mass percent in co while the NOz treatment at  OOC results in a net loss of about 

1.5 mass percent in cu. The difference can be attributed to the lower nitrogen 

uptake a t  0% than a t  2 0 * ~ ,  It is also obvious that the value determined for co 

after 180 minutes of NOz exposure at  OOC is probably in error, and has conse- 

quently been ignored. The corresponding values of mo are shown in Figure 

4-80, where they display the same trends as the values of co. In both curves, 

however, the net amount of added oxygen never exceeds 3 g 0/100g coal. Thus, 

in view of the potential error in mu, it would be safe to conclude that after the 

wash of the NOz-treated coal, there is essentially no net oxygen mass increase in 

the coal, The added sodium, however, should trap some oxygen (up to 

2.2 g 0 /  100g coal). The oxygen then appears as mineral matter and not organic 

oxygen. 

The effect of the initial concentration of NOz, (NOz)o, on co after 120 minutes 

of exposure is displayed graphically in Figure 4-89. The curve which 
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corresponds to the NOz-treated coal shows a unique feature, namely a maximum 

at  roughly (NOz)o = 1.4 F. The decrease in c o  at greater values of (NO,)o could be 

caused by the increased uptake of material by the coal which does not contain 

oxygen relative to the uptake of material which does contain oxygen. In this 

particular system, the only possibility is the CCl, solvent, but the values of co 

have already been corrected for the CCL+ uptake. Another possibility is that the 

amount of oxidized coal material removed is higher at  larger values of (NOz)o, 

This possibility is supported somewhat by the carbon content data which show a 

slight increase in c c  once (NO& exceeds 1.7 F. In any case, the decrease in co a t  

high values of (NOz)o is slight and may be due simply to errors in the oxygen 

determination. The curve for the washed coal actually shows a decrease in co as 

(NO& increases. This behavior supplies further evidence to support the theory 

that the sodium is trapping the added oxygen. As (NO& is increased, so is the 

extent of the oxidation in the coal, which should result in more uptake of 

sodium during the Na2C03 (aq) wash. Indeed, the corresponding values of the 

net increase in the mass of the mineral matter (Figure 4-109) are quite con- 

sistent wlth the values of rno in this respect. 

The corresponding values of m o  are shown in Figure 4-90 as a function of 

(NOz)o The behavior of m o  parallels that of co for both the NOz-treated coal and 

the subsequently washed coal, for the same reasons as cited above for the 

trends in co. In the case of the NO2-treated coal, the values of rno calculated on 

the basis of the nitrogen uptake and the hydrogen loss can be compared with 

the determined values of m u :  

Tirne(min) 0 30 60 90 120 180 

m o Determined 0.0 5.50 9.50 12.30 12.75 12.24 

(g O/ 10Og coal) Calculated 0.0 6-85 10.48 15.28 12.64 12.92 

In every case, the calculated value of m a  slightly exceeds the determined value, 
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but they agree within the potential error for the determined value of mo. Thus, 

the oxygen uptake during the NO2 treatment is the result of the uptake of NOz 

by the coal and the conversion of -CH2- and -CH3 groups to  > C=O and -COOH 

groups in the coal. The values of m o  for the washed coal indicate again that the 

net oxygen mass increase due to NO2 uptake is offset to a varying degree by the 

preferential removal of portions of the coal rich in oxygen and the trapping of 

oxygen by sodium. 

The effect of the coal particle porosity can be determined if coals with similar 

elemental compositions but different pore volumes are treated in an identical 

manner. In this study, the PSOC 276 has a pore volume about four times 

smaller than that of the PSOC 190, yet both coals have approximately the same 

elemental composition. The values of co for the PSOC 276 treated with NOz at  

2 0 " ~  in the batch reactor and subsequently washed in 0.1 M NaZCO3 (aq) are 

shown in Figure 4-91 as a function of NOz-exposure time. During the NO2 treat- 

ment, co rises rapidly within the first 30 minutes, and then rises more gradually. 

Even after 180 minutes of NOZ exposure, c o  still shows no sign of beginning to 

level off. The trend in co is quite similar to that in the nitrogen content as well. 

The curve for the washed coal is essentially parallel to, but lower than, that of 

the unwashed coal, demonstrating that the wash removes material from the 

coal which is rich in oxygen and that the added sodium traps oxygen as well. 

Ostensibly, the material removed is the portion of the coal which is heavily oxi- 

dized by the NO2. 

The corresponding net oxygen mass increase, mo, of the processed coal is 

shown as a function of NOz-reaction time in Figure 4-92. The basic trend in mo 

is the same as in co, namely a very rapid increase followed by a more gradual 

increase which appears to be linear with respect to the NOz-exposure time. 

Thus, the process which accounts for the uptake of oxygen is not complete 
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within 180 minutes. The value of mo calculated on the basis of nitrogen uptake 

and hydrogen loss, together with the determined values of mo are: 

Tirne(min) 0 30 60 90 120 180 

mo Determined 0.0 7.50 8.78 9.90 11.74 12.76 

(g 0/100g coal) Calculated 0.0 6.50 7.02 0.57 8.57 11.50 

In this instance, the calculated values are about 10 to 20 % lower than the deter- 

mined values. If the determined values are assumed to be accurate, then the 

difference could be attributed to the formation of alcohols, in which no nitrogen 

is taken up or hydrogen is lost by the coal. Thus, in the case of the NO2 treat- 

ment of the PSOC 276 coal, the data are consistent with three processes respon- 

sible for oxygen uptake; ketone and carboxylic acid formation with hydrogen 

loss, alcohol formation with no hydrogen loss, and NO2 uptake. 

The curve for the values of mo for the washed coal has the same shape as 

that for the unwashed coal, but the value of mo is about 50 % lower. The values 

imply that roughly half of the net amount of added oxygen is either removed by 

the wash or trapped by added sodium. The values of mo calculated on the basis 

of nitrogen uptake alone can be compared with the actually determined values: 

Time(min) 0 30 60 90 120 180 

m o  Determined 0.0 3.13 3.76 4.04 6-26 7.47 

(g 0/100g coal) Calculated 0.0 3.90 5.08 5.95 6.03 6.94 

In this case, the calculated values exceed the determined values when the NO2 

exposure is less than 120 minutes, but then fall below at longer NO2-treatment 

times, which implies that the net oxygen increase due to NO2 uptake is offset by 

the removal of the oxygen rich portions of the NO2-treated coal, which is con- 

sistent with the earlier interpretation of the determined values of mo for the 

washed coals. The amount of sodium added to the PSOC 276 can only account 

for the trapping of a maximum of 1.0 g 0 /  100g coal. Consequently, most of the 



oxygen removal by the NazC03 (aq) wash of the NOz-treated PSOC 276 can be 

attributed to the removal of oxidized portions of the coal. 

The values of co for the two coals treated with NOz a t  20-c in the batch reac- 

tor are shown graphically in Figure 4-93 as a function of reaction time for the 

purpose of comparison. Although the initial oxygen contents differ by 0 mass 

percent, both show a rise of roughly 6 mass percent within the first 30 minutes. 

The value of co for the NOz-treated PSOC 190 rises only another 2.5 mass per- 

cent, however, before levelling off a t  90 minutes, while the value of co for the 

NO2-treated PSOC 276 continues to rise linearly with increasing reaction time by 

another 4 mass percent a t  180 minutes. The corresponding values of mo for the 

two NOz-treated coals are shown in Figure 4-94. This plot clearly shows that 

during the first 120 minutes of treatment, about 15 % less oxygen is taken up by 

the PSOC 276 than by the PSOC 190. Therefore, the pore structure of the coal 

has little or no effect on the uptake of oxygen. This is not surprising, since 

roughly 80 % of the oxygen uptake may be attributed to the uptake of NO2, the 

extent of which is not affected by the coal porosity. 

Figure 4-95 contains the values of co for the two NO2-treated coals washed in 

0.1 M Na2C03 (aq) in graphical form. I t  is immediately obvious that while there 

is hardly any change in the oxygen content of the washed PSOC 190, there is a 

significant increase in co in the washed PSOC 276. These results imply that while 

essentially all of the added oxygen is either removed from the NO2-treated PSOC 

190, presumably in the form of oxidized coal components, or trapped by the 

added sodium to form Na20, quite a large amount of the oxidized PSOC 276 

remains after the wash. The values of mo for the washed coals shown in Figure 

4-96 demonstrate this difference more clearly. In particular, the net oxygen 

mass increase of the washed PSOC 276 is about three times as great as that of 

the washed PSOC 190. The results of this comparison are consistent with the 
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previously mentioned mechanism in which the particle porosity has no effect on 

the extent of the NOz-coal reaction, but does influence the removal of the coal 

derived products and the transport of Na2C03 (aq) into the coal particle. That 

is, NOz experiences no resistance to transport into the particle, but the subse- 

quent removal of the resulting products is affected by the porosity. This 

difference is simply the result of the relative size of the species involved; that is, 

NO2 is small enough so that it is not affected by the pore structure during tran- 

sport while the Na2C03 (aq) and the reaction products are larger and more polar 

than NOZ, due to the added oxygen groups, and are therefore influenced during 

transport by the pore structure to a greater degree. Furthermore, more of the 

oxygen may be trapped by sodium in the PSOC 190 than in the PSOC 276. 

According to the previously mentioned theory regarding sodium uptake, the 

sodium is adsorbed by anionic oxygen groups introduced into the coal by the 

NOz treatment. Thus, any oxygen which is coupled with sodium appears as NazO 

in the mineral matter. Consequently, oxygen which adsorbs sodium is analyzed 

as mineral matter rather than organic oxygen. Since the sodium uptake by the 

PSOC 190 is roughly three times that by the PSOC 276, proportionately more of 

the oxygen in the PSOC 190 is classified as mineral matter than that of the PSOC 

276, 

Based on the discussion of the data presented above, several conclusions 

regarding the mechanism of oxygen uptake by the coal can be made. In general, 

the uptake of oxygen during the NO2 treatment can be accounted for mainly by 

the uptake of nitrogen as NO2 and the oxidation of -CH2- groups to > C=O groups 

and -CH3- groups to -C(=O)OH groups. The NOz uptake accounts for roughly 80 % 

of the total oxygen uptake and as a consequence, the values of co and mu 

roughly parallel the values of c~ and mr~. On the other hand, the Na2C03 (aq) 

wash of the NOgtreated PSOC 190 results in values of m o  much less than those 



predicted on the basis of the net nitrogen mass increase. One possible explana- 

tion is that the oxygen increase due to the residual NO2 uptake is offset by the 

removal of initially oxygen rich portions of the PSOC 190, which are the result of 

the surface oxidation of the coal through weathering. Such weathering estab- 

lishes a nonuniform oxygen distribution in the coal, with the oxygen rich sur- 

face of the coal being the most susceptible to NO2 attack and subsequent remo- 

val during the NazCOs (aq) wash. It should be noted that the PSOC 276 has not 

been exposed to air oxidation as long as the PSOC 190. Furthermore, the net 

oxygen mass increase of the washed PSOC 276 can be accounted for by the resi- 

dual nitrogen uptake taken as NO2, which provides further evidence in support 

of the oxygen uptake being due mainly to NO2 uptake. 

The effect of temperature on the uptake of oxygen is negligible from 0 to 

202 ,  with the uptake of NO2 and the hydrogen loss accounting for virtually all of 

the oxygen uptake. A t  50 C, however, an additional process apparently occurs, 

namely alcohol formation. The net amount of oxygen uptake after the 

Na2C03 (aq) wash is essentially zero for the coal treated a t  O t  with NO2 and 

about 3 g 0/100g initial coal for the coal treated a t  20O~ with NOz. This slight 

difference may be attributed to the difference in the NOz uptakes, which is 

slightly lower a t  O'C than a t  20O~. 

As expected, the initial concentration of NO2 affects the oxygen uptake during 

the NOz treatment. In general, the oxygen uptake during the NOz treatment can 

be attributed to the uptake of nitrogen as NO2 and the hydrogen loss within the 

range of values of (N02)o from 0 to 2 F. The values determined for rno of the 

NazCOs (aq) washed coal, however, are well below those calculated on the basis of 

just the residual amount of NO2 uptake, which supports the theory of the remo- 

val of initially oxygen rich portions of the coal, which are created by the NO2 

treatment, during the NaZCO3 (aq) wash. 



Finally, the porosity of the coal does not affect the amount of oxygen uptake 

during the NO2 treatment. The net amount of oxygen remaining after the 

Na2COs (aq) wash, however, does depend on the coal particle porosity. This 

behavior is the consequence of the fact that the transport of NOz through the 

particle is not affected by the pore structure, while the transport of the 

NazCOs (aq) solution into and the coal derived products out of the coal is 

influenced by the porosity, mainly because these species are larger in size and 

more polar than NOz. Hence, these compounds interact with the coal surface 

more than NOz, both from a steric and an electrostatic standpoint. 



42.2.6 The ChIorine Content of the Coal 

Although chlorine is generally a minor component in coal rarely exceeding a 

few tenths of one mass percent in content, its presence can lead to serious cor- 

rosion problems in boilers, particularly with the heat exchangers. The treat- 

ment of the coal with NO2 does not directly affect the chlorine content, except 

perhaps to lower it. When C C 4  is used as the solvent, however, a potential 

source of chlorine exists for coal if all of the solvent is not removed during the 

vacuum drying. As mentioned in the previous sections, total CC14 removal is in 

fact not achieved, resulting in an increase in the chlorine content of several 

mass percent. Because concentrated solutions of NO2 and CC14 are stable for 

weeks and gas chromatographic analysis of liquid phase samples still show only 

the NO2 and CC14 peaks, it is fairly certain that the chlorine uptake is due to 

adsorbed CC14 and not some reactive chlorine species derived from C C 4 ,  Furth- 

ermore, the Na2C03 (aq) wash generally removes all of the added chlorine, which 

would correspond to a relatively weakly adsorbed species such as CC14 being dis- 

placed by a more strongly adsorbed species such as Na' or cO$- or even H20. 

Thus, the remainder of this section will discuss the change in chlorine content 

during the NO2-coal reaction when CC14 is the solvent and during the subsequent 

wash in the context of the mechanism just discussed. 

The values of the chlorine content for the coal treated with NO2 at 25'C in the 

flow reactor and subsequently washed in 0.1 M Na2COs (aq) (Runs 21-27) are 

shown as a function of NO2-exposure time in Figure 4-97. Obviously, the values 

of c c ~  are based on the coal as obtained after the reaction and have not been 

corrected for CC14 uptake as for all of the other elemental compositions. The 

curve for the NO2-treated coal follows the same trend as that of the hydrogen 

loss and nitrogen uptake curves, which implies that the alterations induced in 

the coal by the NO2 attack on the coal are responsible for the CCl, uptake. It 
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should be noted that the points at t = 0 correspond to raw coal washed with CCl, 

for 120 minutes at 25-c and subsequently washed in 0.1 M NazCOs (aq), There- 

fore, the raw coal does not adsorb CCb,  but the NOz-treated coal does adsorb 

CCL, The NO2 attack introduces polar groups into the coal which then interact 

more strongly with the CCl, than the unaltered coal. As mentioned previously, 

the NazCOs (aq) wash then removes virtually all of the added chlorine as evi- 

denced by the lower curve in the figure, It is entirely reasonable to expect that 

the aqueous solution interacts more strongly with the polar groups in the coal 

and hence displaces the CC4.  It should be noted that whereas the removal of 

the oxidized portions of the coal seems to depend upon the degree of coal oxida- 

tion, the removal of the adsorbed CC14 is quite rapid, which implies that the 

adsorbed CCi4 is readily accessible to the aqueous NazC03 solution, 

The values of c c ~  for the coal treated with NO2 at  20% in the batch reactor 

and subsequently washed with 0.1 M NazC03 (aq) (Runs 33-37) are displayed 

graphically in Figure 4-98. In this instance, the rise in c c ~  is more gradual, 

reaching a value of about 2.5 mass percent after 100 minutes of exposure to 

NO2, whereas in the previous set of experiments, GCL reached a limiting value of 

4.4 mass percent after 120 minutes of NOz treatment in the flow reactor. The 

difference is due to the disparity in the NO2 concentration, (NOz), which is 

roughly 1 F in this set and 0 to 0 F as a linear function of time in the previous 

set. The c a  curve parallels that of the hydrogen loss and nitrogen uptake, 

which supports the notion that the NOz attack on the coal hydrogen yields a 

species capable of adsorbing CCl,. As well, the Na2C03 (aq) wash removes all of 

the chlorine added during the NO2 treatment, which implies that the adsorbed 

CC14 is easily displaced by the more polar aqueous species. The values of c c ~  for 

the coal treated at o ~ C  in the batch reactor and subsequently washed in 

0.1 M NazCO3 (aq) (Runs 42-46) are shown in Figure 4-99 and they possess the 
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same basic trends as discussed in regard to the previous set  of experiments. 

The effect of temperature on the uptake of chlorine during the NOz treatment 

is more clearly demonstrated in Figure 4-100, in which the values of cc.  for the 

coal treated at  0, 20 and 5 0 * ~  are  plotted. As mentioned above, the curves for 

the coal treated a t  0 and 20°c are virtually identical, Both curves correlate well 

with the respective hydrogen loss results. At 50°c, however, the amount of 

chlorine uptake almost doubles. Furthermore, the amount of chlorine uptake 

does not correlate with the hydrogen loss at  5 0 * ~  during NOz treatment. As 

mentioned in the discussion of the hydrogen loss, however, trapping of the oxi- 

dized hydrogen compounds (mainly water) within the coal may occur to a larger 

extent a t  50°c than a t  20°C. It should be noted that the values of c c ~  do parallel 

those of c~ and c~ with respect to temperature, Indeed, one would expect that if 

the amount of CC1, adsorbed is proportional to the degree of oxidation of the 

coal, which produces the polar groups and which increases with temperature, 

then the chlorine content should increase with increasing NO2-treatment tem- 

perature. Because the coal treated a t  50% could not be washed in 

0.1 M Na2C03 (aq), the extent of the removal of added chlorine by the aqueous 

solution could not be determined. Nevertheless, in view of the facile removal of 

the added chlorine in the other coal samples, it seems likely that the chlorine 

added during the NO2 treatment at  50% should also be readily removed. 

The effect of the initial NO2 concentration, (NOz)o, on the amount of chlorine 

uptake is shown in Figure 4-101. The amount of chlorine added during the NO2 

treatment at  2oaC for 120 minutes increases linearly with (N02)o up to 1.7 F, 

where ccr, reaches a value of 3.1 mass percent. At higher values of (NO,)o, c c ~  

increases a t  a faster rate. In this case, the amount of added chlorine does not 

parallel the amount of hydrogen lost during the NOz treatment, but does paral- 

lel the amount of added nitrogen and oxygen. It should be noted that the molar 
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ratio of added chlorine taken as CCL to oxidized hydrogen is less than one per- 

cent for all values of (N02)o, which implies that only a small portion of the oxi- 

dized sites actually adsorb CC4.  Thus, it seems reasonable that due to the size 

of the CC14 molecule, it is adsorbed only at sites easily accessed by Na2C0, (aq), 

which is supported by the values of c c ~  for the washed coals which indicate the 

complete removal of the added chlorine. 

The values of c c ~  for the PSOC 276 treated with NOz a t  20°C in the batch reac- 

tor and susequently washed in 0.1 M Na2C03 (aq) (Runs 47-52) are depicted 

graphically in Figure 4-102. Once again, cc. during NOz treatment rises with 

increased NO2-exposure time, reaching a value of roughly 2.0 mass percent after 

180 minutes of treatment. The behavior of c c ~  is similar to that of c~ and co as 

well, being linearly proportional to the NO2-exposure time after 30 minutes. 

Interestingly, all of the added chlorine is displaced during the NaZC03 (aq) wash, 

even though the PSOC 276 has an initial pore volume which is four times smaller 

than that of the PSOC 190. Thus, not only does the pore structure not affect the 

uptake of NO2 and CC1, during the NOz treatment, it also does not affect the 

removal of the adsorbed C C 4  during the NazC03 faq) wash, which seems reason- 

able in view of the molecular size of CCl, relative to those of the aqueous species 

in the Na2C03 (aq) solution. That is, any location within the coal particle to 

which CC14 can penetrate is also accessible to the Na2C03 (aq) solution, in which 

the molecular sizes are smaller than that of CC14. 

A graphical comparison of the values of c c ~  for the PSOC 190 and PSOC 276 

treated with NO2 at  20°c in the batch reactor is provided in Figure 4-103. The 

curves for the two coals are basically parallel after the initial 30 minutes, with 

the PSOC 190 acquiring about 0.5 mass percent more chlorine than the PSOC 

276. This behavior is in accord with the nitrogen and oxygen uptake data as well 

as the hydrogen loss data. 
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On the basis of the consistent chlorine data discusssed in this section, a 

probable mechanism which accounts for the chlorine uptake can be formulated. 

Quite simply, the attack of NO2 on the coal produces polar groups which then 

adsorb the C C 4  solvent. The adsorbed CCL, is not removed by vacuum drying a t  

1 2 0 ~ ~ .  The polar groups introduced into the coal consist primarily of anionic 

oxygen, which replaces roughly 25 % of the coal hydrogen, and adsorbed NO2 . 

Either of these groups is sufficiently polar to adsorb CC14. Once the NO2-treated 

coal is exposed to 0.1 M Na2C03 (aq), however, the adsorbed CCI, is readily dis- 

placed by Na' (aq) and/or H20. Because the aqueous species are smaller in size 

than cc4, they should penetrate to any location in the coal particle which is 

accessible to CC14, resulting in the total displacement of all the adsorbed CCL. 



4.2.2.7 The Mined fitter Content of the Coal 

One of the major constituents of coal is the various forms of inorganic 

material, generally metal oxides and sulfides, conveniently lumped together as 

mineral matter. The mineral matter does not contribute to the heating value of 

the coal, yet it is quite difficult and costly to remove it from the coal before 

combustion. Rather, the ash resulting from combustion is removed from the 

boiler, which contributes to the cost of operating the combustion process. 

Therefore, if portions of the mineral matter are removed during the NOz treat- 

ment, this would be an added benefit. As the discussion of the mineral matter 

determinations in this section will reveal, however, the NOz treatment results in 

a slight decrease in mineral matter content, but the Na2C03 (aq) wash results in 

a two-fold increase in the mineral matter content. 

The net mineral matter mass increase, r n ~ ~ ,  is shown as a function of NOz- 

exposure time in Figure 4-104 for coal that was treated with NOz at 25°C in the 

flow reactor and that was then washed in 0.1 M Na2C03 (aq) (Runs 21-27). The 

data indicate that roughly 12 to 24 mass percent of the mineral matter is 

removed during the NOz treatment. In view of the fact that CCL, is the solvent, it 

is hard to imagine how such a significant portion of the metal oxides which 

comprise the mineral matter can be removed. The scatter in the data suggests 

that the relative error in r n ~ ~  is substantial. Nevertheless, the removal of 

mineral matter is clearly indicated. The NOz is not expected to react with the 

metal oxides further, since they are already oxidized. Rather, the NOz must 

form a sort of metal oxide complex which is soluble in the NO2-CC1, solution. 

In any case, the amount of mineral matter removed during the NOz treatment 

pales when compared to the extremely large increase in mineral matter content 

after the NazC03 (aq) wash. This increase is due to the uptake of Naf cations by 

the coal during the wash, as will be demonstrated when the x-ray analysis of the 
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ash is discussed in the section dealing with the surface analysis of the coal. 

Furthermore, it is the large sodium content of the coal which accounts for the 

large removal of SO2 from the combustion gases. It is the Na' which is ulti- 

mately adsorbed by the oxygenated groups which are introduced into the coal 

during the NOz treatment. Indeed, it is the Na' which displaces the adsorbed 

CC14 due to its stronger interaction with the ionic groups on the coal surface. In 

this particular set of experiments, the mineral matter content almost doubles 

after 90 minutes of NOz treatment followed by the NazC03 (aq) wash. The 

decrease in the amount of added mineral matter a t  higher reaction times could 

be due to more extensive pore blocking, which would inhibit the transport of 

Na2C03 (aq) into the interior of the coal particle. These results indicate that the 

NOz treatment allows the coal to accept roughly 0.3 g Na/lOg coal, a significant 

amount. It should be noted that while just Na' is probably taken up by the coal, 

the mineral matter content is determined on the basis of the ash, in which all 

sodium is converted to NazO or NazS04 . The rapid rise in r n ~ a  after the wash 

correlates quite well with the rapid loss in hydrogen, which lends credence to the 

notion that the anionic oxygen atoms which replace the coal hydrogen do in fact 

adsorb the CCll and the Na' cations. It should be noted that the molar ratio of 

sodium uptake to hydrogen loss is about 1 to 8 after converting the amount of 

NazO and NazS04 in the ash to sodium. Furthermore, it is also possible that any 

adsorbed NOz binds Na' as well. 

The values of r n ~ ~  obtained for the coal treated with NO, at 20% in the batch 

reactor and subsequently washed in 0.1 M NazC09 (aq) (Runs 33-37') are shown 

graphically in Figure 4-105, In this set of experiments, only 6 to 9 % of the 

mineral matter is removed during the NOz treatment as opposed to 12 to 24 % in 

the previous set. This difference is probably due to the different NOz concentra- 

tions in the set of experiments, namely about 1 F in this set and 0 to 8 F as a 
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behavior is consistent with the other data which suggests a slower NOz-coal reac- 

tion a t  0 than 20°C. 

The net mineral matter mass increase in the coals treated with NOz at 20 and 

OC and subsequently washed in 0.1 M NazC03 (aq) is plotted as a function of 

NOz-exposure time in Figure 4-100. As expected, the rise in r n ~ ~  is a little more 

rapid at 20 than at DOC, with both curves eventually converging a t  120 minutes, 

which is consistent with the nitrogen uptake and hydrogen loss data. Thus, 

whether the NOz treatment is performed at 20 or 0% does not seem to make 

much difference in the increase in r n ~ ~  after the NazC03 (aq) wash. There is no 

curve for the 50% treatment because the treated coal could not be filtered from 

the Na2C03 (aq) solution. 

The effect of the initial NOZ concentration, (NOz)o, on the mineral matter con- 

tent after treatment with NO2 at 2occ for 120 minutes followed by the 

Na2C03 (aq) wash (Runs 38-41) is illustrated in Figure 4-109. It is interesting to 

note that 12 % of the mineral matter is lost when (NOz)o = 0.097 F and that the 

loss then decreases with increasing (NOz),, which implies that lower concentra- 

tions of NO2 favor mineral matter removal. This trend is probably the result of 

more extensive pore blocking at higher values of (NOZ) which inhibits mineral 

matter removal. The amount of Na' uptake during the wash as indicated by the 

net mineral matter mass increase closely follows the nitrogen uptake and 

hydrogen loss data. There is a gradual increase in mjtfa as the value of (NOz) 

rises to about 1 F. As (NOz) becomes greater, r n ~ ~  begins to increase at an 

accelerating rate, which gives an overall sigmoidal shape to the curve, much as 

in the case of the corresponding nitrogen uptake and hydrogen loss curves. 

Therefore, the variation in the extent of oxidation of the coal as (NOz), changes 

correlates quite well with the variation in r n ~ ~  as (NO,), changes, which implies 

that the alterations introduced into the coal through oxidation are responsible 
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for the uptake of sodium. 

The values of r n ~ ~  of the PSOC 276 treated with NO2 a t  2072 in the batch reac- 

tor and subsequently washed in 0.1 M Na2C03 (aq) (Runs 47-52) are shown as a 

function of NO2-exposure time in Figure 4-110. As before, the NO2 treatment 

results in the removal of some of the mineral matter. Once again, there is a 

rapid drop in r n ~ g  followed by a gradual increase after 30 minutes, which 

implies that a certain portion of the mineral matter is rapidly removed, Again, 

this result is puzzling because none of the mineral matter is expected to be 

soluble in the NOz/CC14 solution. The NazC03 (aq) wash then results in an 

increase in mHH, Again, the rise in ma@ is quite rapid and seems to level off a t  

about 3.5 % after roughly 90 minutes of NO2 exposure, The extent of the rise in 

the treated PSOC 276 is not nearly as great as in the treated PSOC 190, however, 

as demonstrated in Figure 4-1 11. The increase in r n ~ ~  for the treated PSOC 190 

is three times as great as the increase in r n ~ ~  for the treated PSOC 276, which 

seems to be due to the difference in pore volume of the two coals. Whereas NOz 

can penetrate either coal with virtually identical ease, the transport of aqueous 

Na2C03 into the coal particle is indeed affected by the pore structure. In fact, 

the fourfold difference in the pore volumes of the two coals correlates with the 

threefold difference in the increase of rnua for the two coals. Nevertheless, the 

difference in the amount of sodium uptake by the two coals accounts for a 

significant disparity in the amount of SO2 trapped during combustion. Whereas 

95 % of the sulfur in the treated PSOC 190 is trapped, only about 38 % of the sul- 

fur in the treated PSOC 276 is trapped during combustion. 

On the basis of the trends displayed by the mineral matter content during 

the course of treatment, a mechanism for the ultimate uptake of sodium can be 

proposed. The exposure of the coal to NOz results in the loss of roughly 25 % of 

the original hydrogen content in the coal as well as the uptake of NOz by the 
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coal, Consequently, a large number of anionic oxygen atoms are introduced into 

the coal where the hydrogen is displaced as well as polar oxygen atoms where 

NOz resides in the coal. It is these oxygen atoms which account for the adsorp- 

tion of CC14 during the NO2 treatment which is not removed by vacuum drying at 

1 2 0 ~ ~  for three hours. Once the NO2-treated coal is exposed to Na2C03 (aq), the 

weakly adsorbed C C 4  is displaced by the more strongly interacting aqueous 

species, in particular Na'. Furthermore, many of the anionic oxygen sites which 

do not contain adsorbed CCl, do adsorb Na', mainly because Na' is smaller than 

CCll and can therefore migrate into smaller pores. The overall pore structure, 

however, does influence the amount of sodium ultimately taken up by the coal, 

as evidenced by the different results obtained with the PSOC 190 and PSOC 276 

coals. 



42.28 The Sulfur Content of the Coal 

The ultimate goal of this work is to determine if the sulfur can be removed 

from the coal through treatment with NO2 followed by a Na2C03 (aq) wash 

without altering the remainder of the coal to any great extent. So far, the dis- 

cussion of the results has centered on the alterations in the remainder of the 

coal introduced by the treatment. In this section, the discussion will focus 

exclusively on the effect of the treatment on the sulfur content of the coal. In 

particular, the effect of the NOz-treatment time, temperature and NO2 concen- 

tration on the ultimate sulfur removal will be examined. Furthermore, the 

difference between the sulfur determinations using the Bomb and Leco methods 

of analysis, which were discussed in the experimental section, will play a crucial 

role in the interpretation of the results. 

The values of the sulfur content of the PSOC 190 treated in the various sol- 

vents in the flow reactor (Runs 1-6) which are tabulated in Table 3-19 indicate 

some interesting effects by  the solvent on the overall desulfurization. All of the 

sulfur determinations done for this set of experiments utilized the Leco method. 

When water is the solvent, temperature seems to have little effect, because a t  

25°~, 43 % of the sulfur is removed while at 8O0C, 47 % of the sulfur is removed. 

Since only 24 % of the initial sulfur is inorganic (raw, undried PSOC 190 was used 

in the experiments), some removal of organic sulfur must occur during the NO2 

treatment. Unfortunately, it is irnpossible to determine what type of organic 

sulfur groups are attacked by the NO2-H20 system, although it is probable that 

any aliphatic sulfur groups are more easily attacked than thiophenic sulfur 

groups. Temperature seems to have a more pronounced effect on sulfur remo- 

val when pyridine is used as the solvent. When the coal is treated at 25C, 43 % 

of the sulfur is removed, the same amount as when H20 is the solvent. When the 

coal is treated at 6o0C, however, 59 % of the sulfur is removed, which is greater 



than the corresponding removal when H20 is the solvent. Perhaps the ability of 

the pyridine to extract a small amount of the coal allows NOz greater access to 

the particle interior. Another possible explanation is that while NO2 reacts with 

water to form HN03 and HN02, NO2 does not react with the pyridine. Thus, two 

different mechanisms occur in the two solvents. The use of nitrobenzene as the 

solvent poses another problem in that in the presence of NO2 it extracts up to 

50 % of the coal. Because of its high affinity for coal and its high boiling point, 

nitrobenzene is virtually impossible to separate from the coal, even with vacuum 

drying at 150'~. Therefore, it is hard to determine an exact mass loss or gain 

for the treated coal. Nevertheless, on the basis of the residual coal and the 

recovered extract, NO2 treatment a t  33*C of the nitrobenzene-coal slurry results 

in about a 61 % sulfur removal after adjustment for the 16.5 % overall mass 

gain, while treatment a t  80eC yields only a 45 % sulfur removal. It should be 

noted that a t  BOOC, there is an overall mass loss of 16 %, which implies that the 

extent of oxidation a t  80°C is much greater than a t  33%. Because of the 

difficulties in separating aromatic solvents from the coal, they were no longer 

used in this study. The extent of the sulfur removal, however, is rather impres- 

sive and seems to be greater than when H20 is the solvent. I t  should be noted, 

however, that the potential interference of the nitrogen added to the coal, by 

both NO2 uptake and incompletely removed pyridine or nitrobenzene, may be 

the reason for the high desulfurizations indicated by the Leco analysis. Hence, 

these results must be viewed with some suspicion. 

The values of the sulfur conversion, X,, as a function of NO2-exposure time 

for the PSOC 190 coal treated with NOz in water at 25 to 3 0 2  in the flow reactor 

and subsequently washed with 0.1 M NazC03 (aq) (Runs 7-13) are shown graphi- 

cally in Figure 4-112. The sulfur conversion is just the fraction of the initial 

sulfur which is removed during processing. Values of X, are obtained from cs by 
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adjusting for any mass gain which occurs. It should be noted that just washing 

the coal in water removes 10 % of the total sulfur in the raw coal, and subse- 

quent washing in 0.1 M NazC03 (aq) results in an  overall sulfur removal of 27 %. 

The form of sulfur removed by this washing is sulfate sulfur. Thus, the values 

for X, in the figure a t  t = 0 are 0.18 for the NOz-treated coal and 0.27 for the 

NOz-treated coal washed in 0.1 M Na2C09 (aq). I t  should be noted that the coal 

treated with NO2 in water experiences a mass loss of several percent relative to 

the dried raw coal. A further mass loss occurs after washing in NazC03 (aq). 

Consequently, no mass adjustments were made in X, as they would be if a mass 

gain were to occur. If a mass gain occurs, it is assumed that some material such 

as solvent is adsorbed by the coal, thereby diluting the sulfur and causing a 

decrease in the sulfur content. The conversion, however, is based on the abso- 

lute mass of sulfur removed. Thus, when the sulfur content, cs,  is used to calcu- 

late the conversion, the decrease in cs due to dilution must be taken into 

account. On the other hand, when a mass loss occurs, it is assumed that the 

material lost has the same composition as the remaining coal. Therefore, no 

mass adjustment is made in X, when a mass loss occurs. The curve for the NO2- 

treated coal shows that X, rises from 0.18 initially to 0.50 after 8 hours of NO2 

treatment in a fairly smooth manner. Because the sulfur analyses were done 

using the Leco method, all that can be said is that roughly 50 % of the original 

sulfur in the coal does not appear as SO2 in the combustion gases. Whether the 

SOz was trapped by the ash during combustion is not known, although it seems 

unlikely since sodium seems to account for the SOz trapping. Rather, it is more 

likely that the sulfur is actually removed from the coal during the N02/H20/coal 

treatment in the form of water soluble sulfate. The curve for the NO2-treated 

coal washed in 0.1 M Na2C03 (aq) indicates that X, rises from 0.27 initially to 

0.96 after 0 hours of NO2 treatment. Thus, virtually all of the sulfur in the raw 



coal which would be converted to SOz during combustion can be removed from 

the flue gases. Although the ash of the NaZCO3 (aq) washed coal was not exam- 

ined, it seems reasonable to expect that the uptake of sodium occurs because 

the NOz treatment still introduces anionic oxygen into the coal whether HzO or 

CCL is the solvent. Indeed, the increase in X, due to the NazC03 (aq) wash can 

probably be attributed to the trapping of SOz by adsorbed sodium to produce 

NazSO, during combustion. 

The next set of experiments (Runs 15-20) was performed under more con- 

trolled conditions. The values of the sulfur conversion, X,, are given in Table 4-2 

along with the pertinent reaction conditions. Several trends are established by 

the data. After an initial jump in X, during the first 30 minutes of NOz exposure, 

X, rises more gradually, reaching a value of 0.45 after 4 hours, which implies 

that a certain portion of the sulfur is rapidly removed by the aqueous NOz solu- 

tion while the remaining sulfur is removed a t  a much slower pace, The same 

trend occurs for values of X, corresponding to the Na2C03 (aq) washed coal as 

well. Furthermore, it appears that under these reaction conditions a limiting 

value of 87 % of the potential SO2 can be prevented from entering the flue gas 

during combustion. As mentioned above, the value for X, after the NO2 treat- 

ment actually represents the amount of sulfur removed from the coal while the 

additional sulfur removal resulting from the NazC03 (aq) wash probably 

represents the sulfur which is trapped as SO2 during combustion by the 

adsorbed sodium. 

The remainder of this section will be concerned with the change in sulfur con- 

tent due to NOz treatment when CC14 is the solvent. Because NOz does not react 

with CC14, the only important oxidant is NOz, whereas when Hz0 is the solvent, 

several important oxidants exist, namely HN03 (aq), HNOz (aq) and NOz (aq). 

Therefore, in the remaining experiments, the oxidation of the various species in 
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the coal can be attributed to NOz, which will simplify the interpretation of the 

effect of the various reaction parameters on the sulfur removal. 

The first set of experiments using CC14 as the solvent (Runs 21-27) was con- 

ducted in the flow reactor a t  roughly 25'C. The values for the mass corrected 

sulfur content, cs, are shown as a function of NO2-reaction time in Figure 4-1 13 

for both the NOz-treated coal and the coal subsequently washed in 

0.1 M Na2COs (aq). I t  should be noted that the phrase 'knass corrected" means 

that the sulfur content has been adjusted to account for the adsorbed CC14. The 

initial sulfur content of the predried PSOC 190 is 3,167 mass percent. Basically, 

cs for the NOz-treated coal undergoes an initial drop of about 0.7 % after 180 

minutes, which is due partially to the dilution effect of the mass gain and also to 

the removal of some sulfur. Any sulfur removed is probably in the form of SO2, 

which is produced by the reaction of NOz with the pyrite, which exists to the 

small extent of 0.21 mass percent in the PSOC 190 coal, and with easily oxidized 

organic sulfur structures in the coal. The curve corresponding to the sulfur 

content of the washed coal determined by the Bomb method, cg,  shows an initial 

drop and then levels off at about 1.6 %, which indicates that a portion of the sul- 

fur in the coal reacts rapidly with NO2 and is easily removed during the 

Na2C03 (aq) wash. That is, just exposing the coal to a small amount of NO2 (less 

than 0.25 F) for a short time (30 minutes or less) results in the complete 

conversion of about half of the sulfur into forms which are leached out of the 

coal by the Na2CO9 (aq) wash. More severe NO2 treatment does not enhance the 

removal of sulfur from the coal. The curve corresponding to the values of the 

amount of sulfur converted to SO2 during combustion by the Leco method, c j ,  

indicates that under the reaction conditions employed, NOz-exposure times 

greater than 30 minutes do result in greater sulfur removal. Because the 

difference between c g  and c j  represents the amount of sulfur trapped as Na2S04 
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by the adsorbed sodium during combustion, these results imply that the rate of 

the process which accounts for the ultimate uptake of sodium is much slower 

than the rate of the process which accounts for the removal of the portion of 

the sulfur which is easily attacked by NO2 and extracted by Na2C03 (aq). 

If the values of cs  are adjusted for the net mass gain, the values for the sul- 

fur conversion, X,, can be obtained by using the following expression: 

x, = I -  (f + 1) cs , where 
c 0 

f = the fractional mass gain, 

c s  = the mass corrected sulfur content (mass %), and 

co  = the initial sulfur content (mass %). 

The values for X, corresponding to the values of cs discussed above are shown 

graphically in Figure 4-114. The values of X, for the NO2-treated coal indicate 

the facile removal of roughly 20 % of the initial sulfur in the coal. As mentioned 

above, the removal is the result of SO2 production from the reaction of NO2 with 

pyrite and aliphatic sulfur structures in the coal. It should be noted that com- 

plete conversion of pyrite to ferric sulfate and SOz by the NO2 attack can 

account for only about 3 % of the sulfur removal. The values of the conversion 

for the subsequently washed coal based on the Bomb determination, ~ 8 ,  indi- 

cate a removal of an additional 30 % of the sulfur. Initially, the coal contains 

19.4 % of its sulfur in the form of sulfate, which accounts for the majority of the 

sulfur removal during the NazCO, (aq) wash. The remaining sulfur removal can 

be attributed to the leaching of other sulfates formed by the reaction of NO2 

with the coal. In total, this two step process removes 50 % of the sulfur initially 

in the coal, although just washing the predried coal in 0.1 M Na2C09 (aq) removes 

30 % of the sulfur. During the Na2C03 (aq) wash, however, the coal also takes up 

~ a ' ,  which is adsorbed by the anionic oxygen introduced into the coal during 
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the NOz treatment. This uptake of sodium results in virtually complete removal 

of SO2 from the flue gases during combustion, as indicated by the curve 

corresponding to the values of ~ j ,  which are based on the Leco determination of 

the sulfur content. Even after just 30 minutes of NOz exposure, 78 % of the nor- 

mally produced amount of SOz is removed from the combustion gas. More 

extensive NO2 treatment results in the eventual removal of 97 % of the potential 

SOz emissions. 

The second set of experiments conducted in the flow reactor using CC14 as the 

solvent was performed at 5oCC, at which temperature the saturation concentra- 

tion of NOZ is about 1.2 F. The mass corrected sulfur content of the NO2-treated 

coal and the coal subsequently washed in 2 M HNOs (aq) for 12 hours is displayed 

as a function of NO2-exposure time in Figure 4-1 15. It should be noted that a 

wash of the NOz-treated coal in 0.1 M Na2COS (aq) could not be performed 

because the coal completely emulsified, rendering filtration impossible, This 

problem did not occur when the coal was treated with NO2 at 20 and 0-C,  which 

implies that the extent of oxidation of the coal is immensely enhanced a t  50-C. 

Once again, the NOz treatment causes a rapid drop initially in cs, which was 

determined by the Bomb method, after which cs is constant at about 2.30 mass 

percent for longer exposure times. This decrease is caused partially by the dilu- 

tion effect of the mass gain and partially by the removal of a portion of the ini- 

tial sulfur which is susceptible to rapid attack by NOz to form SO2, which then 

diffuses into the bulk liquid phase. The sulfur content of the washed coal was 

determined by both the Bomb and the Leco methods, The values of the sulfur 

content determined by the Bomb method, c i ,  define the middle curve of Figure 

4-115, in which c,f drops to 1.57 % after 30 minutes of NO2 treatment and then 

levels off at about 1.45 % thereafter, Thus, the HNOs (aq) wash removes addi- 

tional sulfur, primarily sulfates and any unreacted pyrite. It should be noted 



MASS CORRECTED SULFUR CONTENT AS A 
FUNCTION OF REACTION T IME FOR RUNS 28-32 

4b0 

Cl - NO2 (BOH0 HETHODl 
3.6 Q - N02/HN03 t0OH0 tlETH0D) 

A - ND2/HN03 (LECO HETHDD) 
COAL IPSOC 1901 TREATED HITH 
NO2 AT 50 C AND HASHED XITH 2 II 
HNOg IAOI AT 2 5  C FOR 12 HRS 

3.2 

2.8 

Cs  
(MASS % I  

2 ,  4 

2.0 

1,6 

1.2 
40 80 120 200 

T IME ( M I N I  



that just washing the coal in 2 M HNOs (aq), which is the standard ASTM pro- 

cedure for the determination of the inorganic sulfur content, results in a drop 

in cs from 3.17 % to 2.24 %. Therefore, the NOz treatment does cause additionai 

sulfur removal. The most interesting part of Figure 4-1 15, however, is the bot- 

tom curve, which is defined by the values of the sulfur content of the HN03 (aq) 

washed coal determined by the Leco method, c&. What is so important is that cfc 

is essentially equal to cg, which indicates that all of the residual sulfur in the 

washed coal is converted to SO2 during combustion and enters the flue gas 

stream and is not trapped by the ash. This result provides unequivocal evidence 

that the uptake of Naf during the Na2CO9 (aq) wash is responsible for the trap- 

ping of SO2 during combustion in the ash. 

Figure 4- 11 6 contains the values of the sulfur conversion, X, , corresponding 

to the values of cs in Figure 4-115. Basically, after an adjustment for the mass 

gain is made, it appears that the NOz treatment results in a sulfur removal of 

only about 13 to 14 %. Washing the NO2-treated coal in 2 M HN03 (aq) results in 

an overall sulfur removal of about 50 75, which is about the same removal 

obtained when coal treated with NO2 at 25OC is washed in 0.1 M Na2COs (aq), This 

similarity in sulfur removals implies that the wash is just removing water solu- 

ble sulfates. The p H  of the aqueous solution determines to what extent the oxi- 

dized coal emulsifies. Finally, the sulfur conversion based on c& is essentially 

equal to that based on c f ,  as stated previously. Therefore, it is the added 

sodium which is responsible for trapping the sulfur as Na2S0, in the ash during 

combustion, and not some error in the Leco method which accounts for the 

difference in c# and cj$ of the NO2-treated coals washed in 0.1 M Na2C03 (aq). 

The values of cs for the PSOC 190 coal treated with NO2 a t  2 0 ' ~  in the batch 

reactor and subsequently washed with 0.1 M Na2C03 (aq) (Runs 33-37) are plot- 

ted as a function of NO2-exposure time in Figure 4-1 17. The PSOC 190 coal used 
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in this study was washed in water and vacuum dried. The coal has an  initial sul- 

fur content of 2.554 mass percent. As  before, there is an initial drop in cs after 

30 minutes of NOz exposure, after which time no further change in c s  seems to 

occur. In particular, the NO2 treatment results in a drop in cs from 2.55 to 

roughly 2.30 mass percent. The NazC03 (aq) wash results in additional sulfur 

removal, with c g  being about 1.8 to 1.9 mass percent. As usual, the value of c& 

for the washed coal is quite low, reaching a value of roughly 0.1 mass percent 

after 180 minutes of NOz exposure. 

The corresponding values of the sulfur conversion for Runs 33-37 are 

displayed graphically in Figure 4-1 18 as a function of NO2-exposure time. The 

NOz treatment results in only a 10 percent removal of sulfur. Still, some organic 

sulfur must be removed since the only inorganic sulfur present is pyrite, which 

comprises only 0.21 mass percent of the coal, Complete conversion of the pyrite 

to ferric sulfate and SO2 would result in only a 3 % sulfur conversion. Thus, ali- 

phatic sulfur structures in the coal are probably oxidized by the NO2 as well. 

Washing the treated coal in 0.1 M Na2COB (aq) results in additional sulfur remo- 

val which gives an overall sulfur conversion based on the Bomb analysis, ~ g ,  of 

about 30 %. The amount of sulfur removed from the combustion gas, xi, by the 

adsorbed Na' rapidly exceeds 90 % and levels off at  96 %. Thus, the majority of 

the desulurization in terms of reduction of SO2 levels in the combustion gas is 

due to trapping of SOz by sodium in the form of NaZSO, in the ash. 

The effect of NO2-exposure time on the mass corrected sulfur content of the 

coal treated a t  0 k in the batch reactor and subsequently washed in 

0.1 M NazCO3 (aq) (Runs 42-46) is illustrated in Figure 4-1 19. The NOz treat- 

ment results in a rapid, yet small drop in cs from 2.55 mass percent to about 

2.36 mass percent. Likewise, the NazC03 (aq) wash of the NO2-treated coal 

results in a decrease in cs  to about 1.8 mass percent after 30 minutes of NO2 
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exposure, after which time c g  is essentially constant. The concentration of sul- 

fur which ultimately appears as SOz, however, decreases more gradually, which 

implies that the NOz-coal reaction proceeds a t  a discernible rate a t  0°C. The 

values of the sulfur conversion, Xs, corresponding to the values of cs for Runs 

42-46 are displayed graphically in Figure 4-120. As expected, the NOz treat- 

ment yields a small sulfur conversion of only about 8 %. Washing the NOZ- 

treated coal in 0.1 M NaZCO3 (aq) results in an overall sulfur removal of about 

30 %, which seems to be the case for all of the runs discussed so far in which 

PSOC 190 coal was used. The values of x&, which are based on the sulfur con- 

tent determined by the Leco method, however, rise a t  a slower rate, reaching a 

value of 0.85 after 180 minutes of NO2 exposure. Therefore, the rate of intro- 

duction of the anionic oxygen atoms into the coal during the NO2-coal reaction 

is slower a t  0-C than at higher temperatures. This behavior is consistent with 

the nitrogen and oxygen uptake data as well as the hydrogen loss data. 

The effect of temperature on the removal of sulfur during the NOz treatment 

is illustrated in Figure 4-121, where X, is plotted as a function of NO2-exposure 

time. Although there is extensive scatter in the data, a general dependence of 

Xs on the temperature can be seen. In particular, X, increases with increasing 

temperature, ranging from about 8 % sulfur removal at 0-c t o  16 % sulfur remo- 

val a t  50°C. A very interesting feature of this plot is the pronounced peak in X, 

at t = 60 minutes when the coal is treated with NO2 a t  5 0 * ~ .  There are several 

possible explanations for this behavior. First, it is possible that once the SO2 

enters the liquid phase, it may react with the coal a t  a rate which is slower than 

its rate of formation to form more stable sulfur compounds in the coal. The 

second possibility is that most of the SOz is removed during the vacuum drying 

at 120°C, when the high temperature permits the evolution of SOz. Because the 

pore volume continues to decrease with increasing NO2-exposure time, less SO2 
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can evoIve from the coals treated for longer times since it becomes increasingly 

trapped in the solid. It should be noted that  a slight peak occurs in the X, curve 

at t = 30 minutes for the coal treated a t  2072 while the curve for X, a t  OaC 

resembles a simple step function. Because the extent of coal oxidation, and 

hence the degree of pore blocking, increases with temperature, the curves for X, 

at 2 0 " ~  and 0°C indicate less SO2 formation, but also less effect of any pore 

blocking on the ultimate removal of the SO2. In any case, the amount of sulfur 

removed during the NO2 treatment is minimal, regardless of the treatment tem- 

perature. 

Figure 4-122 contains the values for the sulfur conversion based on the 

Bomb method, ~ g ,  as a function of NOz-exposure time for the Na2COs (aq) 

washed coal which was treated with NOz a t  20 and 0°C. It is interesting to note 

that X# is slightly higher for the coal treated with NO2 a t  0 than at  2OCC, which 

may be the result of more pore blocking a t  the higher treatment temperature. 

The two curves converge a t  t = 180 minutes, however, indicating that 30 % of the 

original sulfur content is physically removed from the coal. Such an  amount of 

sulfur removal necessitates. the removal of organic sulfur since only 13 % of the 

initial sulfur content consists of inorganic sulfur. Nevertheless, the amounts of 

sulfur removed from the washed coals which were treated a t  both temperatures 

are roughly equal and the results indicate that the reaction which produces the 

sulfur species which are leached by the NazCO3 (aq) solution is complete within 

30 minutes of NOz exposure. Therefore, about 30 % of the original sulfur in the 

washed and dried PSOC 190 is rapidly attacked by NO2 and removed from the 

coal either as SO2 during the NO2 treatment and subsequent vacuum drying or 

as water soluble sulfur-containing compounds during the Na2COs (aq) wash, 

regardless of the NO2 treatment temperature. 
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The temperature of the NOz treatment does affect the ultimate removal of 

SOz from the combustion gas, as Figure 4-123 clearly demonstrates. If the coal 

is treated with NO2 at  20°c, after just 30 minutes, the Na2CO3 (aq) washed coal 

has a sulfur conversion based on the Leco method, xi, of 0.91. Thus, only 9 % of 

the sulfur in the unprocessed coal evolves as SOz during combustion of the 

washed coal. After 180 minutes of NO2 treatment, the washed coal evolves SOz to 

the extent of only 4 % of that of the untreated coal. Treatment of the coal a t  

the same concentration of NO2 but a t  OnC instead of 20cC, however, results in 

lower levels of SO2 removal during combustion. For instance, ~j of the 

NazCOs (aq) washed coal after 30 minutes of NOz treatment is only 0.63 and 

after 180 minutes of NOz treatment, ~ f :  of the washed coal is still only 0.85. This 

behavior parallels that of the nitrogen and oxygen uptake data, which simply 

implies that the amount of sodium taken up by the coal during the NazC03 (aq) 

wash is proportional to the amount of anionic oxygen introduced into the coal 

during the NOz treatment. The rate of the NOz-coal reaction is demonstrably 

slower a t  o0C than a t  ZO'C, as indicated by the nitrogen and oxygen uptake data. 

Perhaps the most important point to stress is that even after 180 minutes of 

NOz treatment at  20°C, the amount of sodium taken up by the coal during the 

subsequent NazC03 (aq) wash does not exceed the amount required for the 

quantitative trapping of SO2. For example, if the additional amount of mineral 

matter taken up by the NOz-treated coal during the NazCOs (aq) wash is attri- 

buted exclusively to sodium, then the washed coal contains 0.0027 moles Na/g 

coal and 0.00056 moles S/g coal, of which 0.00051 moles S/g coal are trapped as 

SOz. Thus, the coal contains 5.4 times as much sodium as sulfur. Because two 

moles of sodium and one mole of sulfur are needed to produce one mole of 

Na2S0,, then 2.7 times the stoichiometric amount of sodium is needed to insure 

complete SOz trapping. Stated another way, the efficiency of sodium for captur- 
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ing SOz is only about 37 %. Consequently, 180 minutes of NOz treatment at 2OZC 

seems to introduce enough anionic oxygen to result in the uptake of just enough 

Naf during the wash for SO2 trapping. On the other hand, if the NOz treatment 

is conducted at 02, 180 minutes is not a sufficient amount of time for the intro- 

duction of the required amount of anionic oxygen. Hence, not enough sodium is 

taken up during the wash for the complete trapping of SO2 during combustion if 

the coal is treated with NO2 at OeC for only 180 minutes. 

The effect of the initial NO2 concentration, (NOz)o, on the mass corrected sul- 

fur content is displayed graphically in Figure 4-124. As usual, the NOz treat- 

ment results in a sudden drop in cs at the smallest value of (NOz)o used. At 

higher values of (NOz)o, cs is essentially constant. This behavior confirms the 

notion that a small portion of the sulfur is easily removed from the coal even 

when (NO2) is quite small. The removal of sulfur from the NOz-treated coal dur- 

ing the Na2C03 (aq) wash shows some dependence on (N02)o. For instance, when 

(NOz)o = 0.1 F, c g ,  the sulfur content based on the Bomb analysis, does not 

decrease as much as when (NOz)o = 0.5 F, which implies that the rate of the 

reaction responsible for prbducing the Na2C03 (aq) soluble sulfur species does 

depend on (NOz). When (NOZ)~ is in the range from 0.5 F and 1.7 F, c! is almost 

constant. Once (NOz)o exceeds 1.7 F, c g  begins to decline again. It should be 

noted that the hydrogen content displays the same type of behavior. Thus, the 

higher rate of decline in cs  at high values of fNOz)o may be the result of the 

dependence of the rate of the NOz-coal reaction, which produces the water solu- 

ble sulfur compounds, on (NOz). The value of the sulfur content based on the 

Leco method, c&, also depends on (NOz)O. Once (NOz)o exceeds 1.1 F, however, cb 

is constant at about 0,l  mass percent when the coal is treated for 120 minutes 

with NOz. In fact, c& actually begins to increase a little at  higher values of 

(NO&. In any case, treating the coal for 120 minutes with NOz at  a concentra- 
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tion exceeding 1.1 F a t  20°C insures the introduction of enough anionic oxygen 

for the uptake of enough sodium to trap virtually all of the SO2 produced during 

combustion. 

Figure 4-125 contains the values of the sulfur conversion, X,, as a function of 

(N02)o for NOz treatment a t  20-C for 120 minutes followed by a wash in 

0.1 M NazC03 (aq) a t  25°C for 120 minutes. As (NOz)o increases, the amount of 

sulfur removed during the NOz treatment goes through a maximum of 13 % a t  

the lowest initial NOz concentration, before dropping to  about 9 % at the higher 

values of (NOz)o. More oxidation of the coal occurs as (NOz) increases, which 

results in more pore blocking. Thus, the decrease in X, a t  higher values of 

(NOz)o is caused by some trapping of SOz in blocked pores which would otherwise 

be removed from the coal. The middle curve in the figure indicates that the 

yield of sulfur compounds soluble in 0.1 M NaZCO3 (aq) which are produced by 

the NOz treatment depends on (NO& in a unique way. If (NOz)o is too low 

(< 0.1 F), not all of the potentially soluble sulfur compounds are formed. When 

(NOz)o is in the range from 0.5 F to about 1.5 I?, X, is constant a t  about 0,27. At 

higher values of (NOz)o, X, begins to rise a t  an accelerating pace, which implies 

that the rate of the NO2-coal reaction responsible for sulfur removal during the 

Na2C03 (aq) wash does not have a simple dependence on (NOz). It should be 

noted that the decrease in X, is small enough that experiments at  even higher 

values of (NOz)D need to be conducted in order to establish a definite trend. In 

any case, any residual sulfur is essentially trapped during combustion provided 

(NOz)o exceeds roughly 1.1 F. If (N02)o is less than 1.1 F, not enough anionic 

oxygen can be introduced into the coal within 120 minutes to insure the uptake 

of a sufficient amount of sodium during the Na2C03 (aq) wash to trap all of the 

SO2 produced by the residual sulfur during combustion. Provided enough NOz is 

present and a sumcient amount of time 1s provided for the NOz-coal system to 
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react, roughly 95 % of the SO2 which would be produced by the combustion of 

the untreated coal is prevented from entering the flue gas. It should be noted 

that as (NOz) increases, the amount of carbonaceous material in the coal which 

is oxidized increases, as evidenced by the carbon and hydrogen loss data, which 

results in a decrease in the heating value of the coal. Therefore, (NOzIo should 

not exceed 1.1 F because x&, the sulfur conversion based on the Leco method, 

does not increase but the heating value does continue to decrease. 

In order to determine the effect of the porosity of the coal particle on the 

extent of the sulfur removal, a set of experiments was conducted in which the 

PSOC 276 coal, which initially had about 25 % of the pore volume of the PSOC 

190 coal used in the previous experiments, was treated with NO2 at  2OSC for vari- 

ous times in the batch reactor (Runs 47-52). The mass corrected sulfur con- 

tent, es, of the processed coal is shown in Figure 4-126. During the NO2 treat- 

ment, cs goes through a minimum at 30 minutes and then increases. On the 

other hand, cs  decreases smoothly during the NaZCO3 (aq) wash as the length of 

the NOz-treatment time increases. Based on the Bomb analysis for sulfur, c# of 

the washed coal seems to level off at about 2.6 mass percent. On the basis of the 

Leco analysis for sulfur, however, cj$ of the washed coal appears to be continu- 

ally decreasing even after 180 minutes of NOz treatment. It should be noted 

that the Bomb and Leco sulfur determinations of the PSOC 276 coal washed in 

0.1 M Na2C03 (aq) after being washed in CCl, (Run 47C) do not agree, but differ 

by 0.4 mass percent. The Leco analysis is more in agreement with the original 

PSOC analysis of the raw coal, however. 

The behavior demonstrated by cs is paralleled by the sulfur conversion, X,, as 

shown in Figure 4-127. In particular, the sulfur removed during the NO2 treat- 

ment reaches a maximum of 5.7 % after 30 minutes before dropping back to 

about 1,2 % after 100 minutes. These data are consistent with the theory that 
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most of the SO2 formed during the NOZ treatment is removed by the vacuum 

drying after the reaction is terminated, Because the extent of pore blocking 

increases as the NO2-treatment time increases, less of the SOZ is removed during 

the post-treatment vacuum drying. The total sulfur removal after the 

NazCOs (aq) wash based on the Bomb method appears to level off at  about 17.5 % 

after 180 minutes of NOz treatment. It should be noted that the value of ~8 at  

90 minutes was disregarded when the curve for X: was drawn because of its 

large deviation from the trend established by the remainder of the points. The 

total amount of sulfur prevented from appearing as SO2 in the flue gas is given 

by xi, which is based on the Leco method. After 180 minutes of NOz treatment, 

only 40 % of the original sulfur content is effectively removed from the combus- 

tion gas, although X& still seems to be increasing. 

It is important to note that 66 % of the sulfur in the PSOC 276 is pyritic, while 

there is virtually none in the PSOC 190 coal. As the analysis of the forms of sul- 

fur  in the treated PSOC 276 coal shown in Table 3-20 indicates, very little of the 

pyritic sulfur is removed by the processing. This is not surprising when CC14 is 

the solvent, since once the surface of a FeS2 crystal is oxidized, no further oxi- 

dation can occur because of the layer of FeSOB formed, which is insoluble in 

CCG, If HzO were used as the solvent, however, then the surface of the crystal 

would be continually renewed because of the high solubility of FeS04 in aqueous 

solutions. Because the pyritic sulfur occurs as crystals in the coal, it represents 

concentrated sources of SO2 during combustion. Consequently, very little of the 

SO2 produced from the pyrite can be trapped by sodium since it is dispersed 

throughout the carbonaceous material of the coal. Indeed, after 180 minutes of 

NOz treatment and being washed in 0.1 M Na2C03 faq), only about 10 % of the 

pyrite is removed. If it is assumed that the difference between the Leco and 

Bomb determinations of the sulfur content can be attributed to the trapping of 



the organic sulfur, the following values of the conversion of organic sulfur, Xs,o, 

are obtained: 

NOz Exposure Time (min) 0 3 0 60 9 0 120 180 

xs, o 0.0 0.127 0.200 0.150 0.349 0.653 

Therefore, the true efficiency of sodium for trapping sulfur is enhanced. The 

extent of the SO2 trapping, however, is not as great as in the treated PSOC 190, 

probably because not enough sodium is adsorbed by the treated PSOC 276, 

which is caused by its smaller pore volume. 

A comparison of the total amount of sulfur removed from the PSOC 190 and 

PSOC 276 during the NO2 treatment is depicted in Figure 4-128 in the form of 

sulfur conversion, X,, as a function of NO2-exposure time, In both cases, a max- 

imum in X, occurs at 30 minutes of 0,11 for the PSOC 190 and of 0.06 for the 

PSOC 276. As the amount of exposure increases, X, declines to 0.09 for the 

PSOC 190 and to 0.01 for the PSOC 276. This behavior is best explained by the 

theory that the sulfur is removed primarily as SOz during the vacuum drying of 

the coal after the coal is filtered from the NO2-CCl, solution. Because the extent 

of oxidation of the coal increases with increasing NOz-exposure time, the 

amount of pore blocking increases as well. As the pore structure is increasingly 

isolated from the particle exterior, less of the SO2 that would otherwise evolve 

during the vacuum drying actually does manage to escape from the coal parti- 

cles, This theory presupposes that the reaction of NO2 with the portion of the 

sulfur in the coal which produces the SOz is complete within a very short time 

(< 30 minutes). Based on the fact that simple aliphatic sulfides, such as 

n-butyl sulfide, are instantaneously oxidized to yield SO2 upon exposure to NOz, 

this supposition is not unreasonable. Thus, although the pore structure does 

not seem to affect the transport of NO2 into the coal particle, it does affect the 

transport of SO2 out of the coal particle. It is also interesting to note that 
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although the PSOC 276 coal initially has more sulfur than the PSOC 190 coal, 

particularly in the form of pyrite, whose crystal surface is readily oxidized by 

NOz, the amount of sulfur removed from the PSOC 2'76 coal is less than that 

removed from the PSOC 190 coal. This difference can also be attributed to the 

different pore structures of the two coals. That is, the amount of SO2 formed as 

the result of the NOz-coal reaction may be greater in the PSOC 276 than in the 

PSOC 190, but the extent of SOz removal is much less in the PSOC 276 than in 

the PSOC 190. 

The total amount of sulfur removed from the two coals during the 

NazCOs (aq) wash of the NOz-treated coal is shown graphically in Figure 4-129 in 

the form of X# as a function of NOz-exposure time. The rise in ~g for the PSOC 

190 coal is quite rapid within the first 30 minutes of NOz treatment, reaching a 

value of 0.26. After 30 minutes, ~g changes very little, attaining a value of only 

0.30 after 180 minutes of NOz treatment. On the other hand, the value of X# for 

the washed PSOC 276 rises more gradually, attaining a value of 0.17 after 180 

minutes of NOZ treatment. It should be noted that the values of ~ f !  at t = 0 

differ for the two coals, which results from the fact that there is less sulfate ini- 

tially in the PSOC 276 than in the PSOC 190. Nevertheless, the amount of sulfur 

removed by the NOz treatment and Na2CO9 (aq) wash is about 40 % lower in the 

PSOC 276 than in the PSOC 190. Once again, the disparity in the amount of sul- 

fur removal is due to the different pore structures of the two coals. Just as in 

the case of SO2 removal, more water soIuble sulfur forms may be formed in the 

PSOC 276 than in the PSOC 190 during the NO2 treatment. The accessibility of 

these oxidized sulfur species to Na2C09 (aq), however, is greatly diminished in 

the PSOC 276 relative to the PSOC 190, resulting in less sulfur removal, 

The pore structure also affects the amount of SO2 trapped during combus- 

tion, as evidenced by Figure 4-130, which contains the values of the sulfur 
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conversion based on the Leco method for sulfur analysis, ~ b ,  for the two pro- 

cessed coals. It is immediately obvious that while virtually all of the sulfur in 

the PSOC 190 is prevented from entering the combustion gas as SOz, only about 

40 % of the sulfur in the PSOC 276 is so prevented. Furthermore, ~4 for the pro- 

cessed PSOC 190 reaches a value of 0.91 within just 30 minutes of NOz treatment 

and rises more slowly thereafter, ultimately reaching a value of 0.96 after 180 

minutes of NO2 treatment. On the other hand, XJ for the processed PSOC 276 

rises more slowly, reaching a value of only 0.40 after 180 minutes of NOz expo- 

sure, If the added mineral matter to the PSOC 276 is assumed to be derived 

solely from sodium, then the washed coal has 0.0014 mol Nafg coal and 0.00013 

mol S / g  coal which is trapped as SO2. Thus, the efficiency of sodium for trap- 

ping SOz is only 18 % in the PSOC 276 as opposed to 37 % in the PSOC 190. The 

difference in the amount of sulfur removed from the two coals can again be 

attributed to their different pore structures. Because the accessibility of the 

interior of the treated PSOC 276 coal particles is less than that of the PSOC 190 

coal particles, a smaller portion of the sites for potential uptake of sodium are 

available, which explains the difference in the sodium uptake by the two coals. 

Hence, the amount of SO2 trapped during combustion of the processed PSOC 276 

is smaller by virtue of the smaller amount of sodium in the PSOC 276. The 

difference in the trapping efficiencies of sodium in the two coals may be attri- 

buted to the proximity of sodium to the sulfur in the coal. That is, the greater 

amount of sodium taken up by the PSOC 190 than by the PSOC 276 implies that 

the NazC03 (aq) solution has penetrated further into the NOZ treated PSOC 190 

coal particles. If the residual sulfur is uniformly distributed throughout the 

particle, then the sodium is closer to the sulfur in the PSOC 190 than in the 

PSOC 276. Such proximity is important, because during combustion, the SO2 

which is formed must encounter the sodium containing flux before it is carried 



away by the rest of the combustion gases to be successfully trapped in the ash, 

Obviously, a greater degree of penetration of the coal particle by the Na2C0, (aq) 

solution results in a closer proximity of sodium to sulfur. Thus, the pore struc- 

ture has a compound effect on the amount of SO2 trapped as Na2S0,. Not only 

does a smaller pore volume result in less sodium uptake, but it also reduces the 

efficiency of the sodium for trapping SOz. 

Based on the results discussed in this section, the mechanism of sulfur remo- 

val during the NO2 treatment and subsequent Na2COS (aq) wash can be 

described. During the NO2 treatment, a small portion of the sulfur is readily 

attacked by NO2 to form SO2, which is removed primarily during the post- 

reaction drying. Although the pore structure does not seem to hinder the tran- 

sport of NOz into the particle interior, it does affect the transport of SO2 out of 

the particle during the vacuum drylng. In particular, the extent of pore block- 

ing increases with NOz-exposure time while the SO2 formation is essentially com- 

plete upon exposure of the coal to NOz. The effect of (NOz) is also consistent 

with the notion of SO2 removal during the vacuum drying, because X, is greatest 

at the lowest value of (NOZ)0 used, although the decline in X, at  higher values of 

(NO2), is not great. Nevertheless, less pore blocking occurs when (NO2) is lower. 

Thus, more SO2 should be removed when is lower, which is indeed the 

case. 

The reaction of NO2 with coal also results in the formation of sulfur com- 

pounds which are leached from the coal during the Na2COs (aq) wash. The 

accessibility of these species to the Na2C03 (aq) solution is dictated by the pore 

structure as well. The smaller the pore volume, the less sulfur which is removed 

by the leaching action of the NaZC03 (aq) solution. The temperature of the NOz 

treatment has a slight inverse effect on the sulfur removal, with sllghtly more 

sulfur removal occurring during the wash of the coal treated with NO2 at 20't. 



This effect is due to the greater extent of pore blocking which occurs a t  20'C 

than a t  0-C. Also, the effect of (NO2) on the amount of sulfur leached from the 

coal is not great, which implies that the reaction which produces the soluble sul- 

fur species is essentially complete upon exposure of the coal to NO2. 

The third effect of the NOz treatment on the coal is to introduce anionic 

oxygen atoms into the particle which then adsorb Na' during the Na2C03 (aq) 

wash. I t  is the sodium which accounts for the difference in the determination of 

the sulfur content of the washed coal by the Bomb and Leco methods. The pore 

structure of the NO2-treated coal has a profound effect on the amount of SO2 

trapped by sodium to form a NazSOB flux during combustion of the washed coal. 

Not only does the accessibility of the Na' adsorption sites determine the amount 

of sodium taken up by the coal, but it also dictates the proximity of the sodium 

to the sulfur in the coal. Thus, as the pore volume decreases, not only is an 

increasingly insufficient amount of sodium taken up for complete SO2 trapping, 

but the distance between the sodium and the sulfur increases, which causes a 

decrease in the SO2 trapping efficiency of the sodium. The temperature of the 

NO2 treatment also affects, the amount of sulfur trapped during combustion 

because the rate of anionic oxygen uptake during the NO2 treatment depends on 

the temperature, which dictates the amount of sodium taken up by the coal 

during the Na2COs (aq) wash. Furthermore, since (NO2) also affects the rate of 

uptake of anionic oxygen, and hence, that of sodium, by the coal, the amount of 

SO2 trapped during combustion depends on (NOz) as well. 

Therefore, the most important parameter which influences the amount of 

sulfur which is ultimately prevented from entering the combustion gas is the 

pore structure. Although the transport of NO2 into the coal is not affected by 

the pore structure, the removal of SOz during the NO2 treatment and subse- 

quent vacuum drying and the removal of water soluble sulfur compounds during 



the NazC09 (aq) wash are governed by the pore structure. The most critical 

aspect of the process, however, is the accessibility of the Na2C03 (aq) solution to 

the anionic oxygen introduced into the coal, because the majority of the sulfur 

removal occurs as SO2 trapping by sodium during combustion. Therefore, i f  a 

coal has a low pore volume, such as that of the PSOC 276, it is important to 

enhance the accessibility of the particle interior to the Na2C03 (aq) solution dur- 

ing the processing to insure the maximum amount of sodium uptake, and 

hence, SOz trapping in the ash. 



42.2.9 The Heat Contentent of the CoaI 

The best macroscopic indicator of the extent of oxidation of the coal due to 

processing is the loss in the heat content of the coal. The coal loses some of its 

heating value whenever a C-H or C-C bond is broken, due to the reaction of the 

NO2 with the coal, to produce H20, COz, ketone, alcohol and carboxylic acid 

groups in the coal, A comparison of the loss in heating value with the sulfur 

removal is an indication of the selectivity of the process for the elimination of 

SOz emissions relative to the oxidation of the rest of the coal. In this section, 

however, only the change in the heat content of the coal as a function of the 

various reaction parameters will be discussed. 

The values of the corrected heat content, Hg, of the coal after treatment with 

NOz in water, pyridine and nitrobenzene (Runs 1-6) can be found in Table 3-19. 

Hg is the energy content of the treated coal after adjustment for the mass loss 

or gain so that the units are Btu per lb, of coal initially used. When the PSOC 

190 coal is treated with NO2 in H20 at 26 and 7B0c, the overall loss in Hg is 13.4 

and 10.7 %, respectively. The overall loss in the heat content, LHB, represents the 

total amount of energy lost by the coal due to the treatment: 

LHg = 1 - - mH , where 
moHo 

m = the mass of coal recovered after treatment (lb,), 

m, = the initial mass of coal used (lb,), 

H = the heat content of the coal after treatment (Btu/lb,), and 

Ho = the initial heat content of the coal (Btu/lb,). 

It is interesting to note that LHg is higher at 26-c than at ~ B ~ c ,  which is probably 

caused by the decrease in NO2 solubility in water as the temperature increases. 

When the coal is slurried in pyridine and treated with NO2 at  26% and B ~ ~ c ,  the 



overall loss in heat content is 19.2 % and 24.5 % respectively, which is higher 

than when HzO is the solvent. The higher values of LHB are due to the greater 

solubility of NOz in pyridine than in HzO and to the fact that NOz does not react 

with pyridine but does react with HzO, which competes with coal for NOZ. When 

nitrobenzene is used as the solvent for the slurry, the overall heating value loss 

is only 8.1 % when the coal is treated with NOz at  3 4 * ~ ,  but rises to 38.4 % when 

the treatment temperature is 84 %. It should be noted that the removal of 

aromatic solvents, particularly nitrobenzene, from the coal is extremely difficult 

even when vacuum drying is employed. Because any residual pyridine or nitro- 

benzene would add to the heat content of the coal, the values of LHo must be 

considered as suspicious and taken only as minimum values of the real loss in 

the heat content. 

The values of the corrected heat content of the PSOC 190 coal treated with 

NO2 in the uncooled flow reactor using water as the solvent and subsequently 

washed in 0.1 M Na2C03 (aq) (Runs '7-13) are shown in Figure 4-131 as a func- 

tion of NOz-exposure time. It is immediately obvious that very little of the heat 

content is lost during the NOz treatment, with LHB reaching a value of only 2.0 % 

after 180 minutes. The NazC03 (aq) wash results in more substantial losses in 

H,, however, which get as high as 20 % after 100 minutes of NO2 treatment. 

Thus, the NOz treatment renders the otherwise insoluble portions of the coal 

soluble in 0.1 M NazC03 (aq) with a minimal amount of oxidation. During the NOz 

treatment, the coal is exposed to rather high concentrations of HNOB (aq) and 

HNOz (aq), which are the primary oxidants present. Apparently oxygen is intro- 

duced into the coal in such a manner that the oxidized portions of the coal are 

not soluble in water under acidic conditions. Upon exposure to 

0.1 M Na2C03 (aq), however, which has a pH of 11.6 at 25OC, the oxidized portions 

of the coal dissolve in the aqueous solution, as evidenced by the dark brown 
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color of the filtrate, and are removed from the coal. This sequence suggests 

that the oxidized portions of the coal are organic acids with a pK, somewhere 

between 0 and 12, which are insoluble in acidic media but quite soluble in basic 

media. These acids derived from the oxidation of coal are commonly referred to 

coll~ctively as humic acids. On the basis of the loss in heat content of the coal, 

there is no reason that continued exposure to NOz would not eventually lead to 

the total oxidation of the coal. 

The change in the heating value of the coal due to NOz treatment in water and 

the subsequent Na2C03 (aq) wash (Runs 15-20) can be determined from the 

values of H, given in Table 4-3. These values of H, are basically consistent with 

those of the previous set. Most of the loss in H, occurs during the NOz treat- 

ment rather than during the NaZCO3 (aq) wash, however, which may be the 

result of the lower concentrations of HNO3 (aq) and HNOz (aq) in Runs 16, 17 and 

18 than in the previously discussed experiments when the NOZ flowrate was not 

monitored. It  should be noted that at all three flowrates, the loss in Hg after 

120 minutes of NOZ treatment is 7 %, which implies that a small portion of the 

carbonaceous material in the coal is removed from the coal by the NOz-HzO soIu- 

tion system, regardless of the concentrations of the oxidizing species and the pH 

of the solution. The amount of NO2 admitted to the reactor does affect the heat 

content loss as expected, due to the greater oxidation which occurs at higher 

oxidant concentrations. In this set of experiments, roughly 15 % or less of the 

heating value was lost in those runs in which the heat content of the washed 

coal was determined, which is about the same as the heat content loss suffered 

in the previous set of experiments. 

The values of H, determined for the predried PSOC 190 coal treated with NOz 

when slurried with CC1, and subsequently washed with 0.1 M NazCO3 (aq) (Runs 

21-27) are displayed graphically in Figure 4-132. Whenever CC14 is used as the 
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solvent, the heat content of the treated coal must be adjusted for the amount of 

adsorbed CCLp, which has a heating value of 436.5 Btu/lb,. As the plot clearly 

shows, Hg drops in an exponentially decaying manner. The decline in Hg 

corresponds to the loss in carbon and hydrogen for these runs during the NO2 

treatment. The curve seems to level off at  about 9800 Btu/lb,, however, which 

corresponds to a 16 % heating value loss. The lower curve in the figure 

corresponds to the value of Hg for the washed coal after treatment with NO2 and 

parallels the upper curve, levelling off at about 8800 Btu/lb, after 180 minutes 

"of exposure to NOz, which corresponds to a 25 % loss in heating value. These 

results imply that a substantial portion of the oxidized coal is soluble in the 

NO2-CCl, solution and that a smaller amount is removed by the Na2C03 (aq) 

wash. Although the loss in H, in this set of runs is greater than when Hz0 is the 

NOz-treatment solvent, it should be noted that NOz reacts with H20 while it does 

not react with CCl,. Consequently, the NOz concentration is much higher in CCL, 

than in HzO, and more oxidation of the coal is not unexpected when C C 4  is the 

solvent. 

The values of Hg for the.PSOC 190 coal treated with NO2 at 20°C in the batch 

reactor and subsequently washed with O , l  M Na2C03 (aq) (Runs 33-37) are 

displayed in Figure 4-133 as a function of the NO2-exposure time. Once again, 

Hg shows a very rapid drop within the first 30 minutes of NO2 exposure followed 

by a more gradual decline. This behavior confirms the notion that a portion of 

the coal which accounts for roughly 9 % of the heating value is rapidly extracted 

by the NO2-CC4 solution. Further oxidation of the coal results in a 12 % loss of 

heating value during the NOz treatment after 180 minutes of exposure. A more 

interesting feature is revealed by the lower curve in the plot, which shows that 

after the initial exposure of the coal to NOz, no more oxidation which results in 

heating value losses after the wash occurs. For all of the NO2-treatment times 
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used, the loss in H, of the washed coal is about 15 %. These results agree with 

the carbon and hydrogen loss data and indicate that any portion of the coal 

which is ultimately oxidized is rapidly attacked and extracted from the coal by 

the NOZ-CCl, solution. 

The values of Hg for the PSOC 190 coal treated with the N02-CC4 solution a t  

OOC in the batch reactor and subsequently washed in 0.1 M NazC09 (aq) (Runs 

42-48) are depicted graphically in Figure 4-134. Once again, the major portion 

of the loss in Hg during the NOz treatment occurs within the first 30 minutes, 

resulting in a 5 % decline in Hg . After an additional 150 minutes of NOz expo- 

sure, Hg declines another 2 %. The loss in I-i, due to the NaZCO3 (aq) wash 

occurs as a result of the first 30 minutes of the NOz treatment as well. The 

overall heating value loss is roughly 9 %. The speed with which the heating value 

loss occurs suggests that a portion of the coal is rapidly attacked and extracted 

by the NO2-CC14 solution. This conclusion is also supported by the carbon and 

hydrogen loss data. 

The effect of temperature on the loss in Hg during the NOz treatment is 

shown in Figure 4-135, where the corrected heat content of the coal relative to 

Hg , is plotted as a function of the initial heat content of the pretreated coal, ---- 
(Hg )(I 

the NOz-exposure time. As anticipated, a higher NO2-treatment temperature 

results in a larger heating value loss. In each set of runs, the major portion of 

the decline in Hg occurs during the first 30 minutes of NO2 treatment, with heat- 

ing value losses of 5, 9 and 11 % at  0, 20 and 50t, respectively. Furthermore, 

the rate of the decline in Hg after the initial 30 minutes increases with increas- 

ing temperature. For example, after 180 minutes of NO, treatment, the heating 

value losses are 7, 12 and 18 % at  0, 20 and 5 0 = ~ ,  respectively. These results are 

in accord with the carbon and hydrogen loss data, as well as the nitrogen uptake 



CORRECTED HEAT CONTENT AS A FUNCTION 

13200 
OF REACTION T IME FOR RUNS 42-46 

a - NOp [CCL41 RT D t 
O - Nfl2CDS ([l.lt!~AO! WASH AT 25 C 

12800 FOR 1 2 0  nrn 
PSOC 190 CORL 

12400 

12000 

"C 
I B T U / L B # I  

11660 

11200 

10800 

10400 
0 40 80 120 160 200 

T IME ( M I N I  





data, all of which indicate that the rate of the NOz-coal oxidation reaction 

increases with increasing temperature. Furthermore, the results support the 

theory that some portion of the coal, such as easily accessed volatile material, is 

readily attacked and extracted by the NOz-CCl, solution, regardless of the treat- 

ment temperature. 

The effect of the NOz-treatment temperature on the heat content of the coal 

after the NazCOs (aq) wash is illustrated in Figure 4-136, Once again, the loss in 

H9 is greater when the NOz-treatment temperature is higher. The most interest- 

ing feature of the plot, however, is that virtually all of the decline in H, is due to 

the oxidation of the coal within the first 30 minutes of its exposure to NOz. 

Treatment of the coal with NO2 a t  oOC results in a roughly 10 % loss in heating 

value, while treatment at 2O0C results in an approximately 14 % loss in heating 

value. These results suggest that any oxidation of the coal which occurs under 

the conditions employed in the batch reactor and which result in the extraction 

of carbonaceous material or the formation of compounds soluble in NaZC03 (aq) 

is quickly completed. This interpretation of the heating value data is basically 

consistent with the carbon and hydrogen loss data in that the latter also 

demonstrate that the major portion of their rise for the washed coal occurs 

within the first 30 minutes of the NOZ treatment. The loss in carbon and 

hydrogen continues to rise for longer NOz-exposure times, albeit a t  a much 

slower rate, while the heating value remains constant. This apparent paradox is 

easily resolved, however. The slow removal of carbon and hydrogen from the 

coal during the Na2C03 (aq) wash may correspond to the leaching of oxidized 

carbon and hydrogen containing species which have little or no heating value. 

Such species may include HzO, COz and heavily oxidized humic acids. In other 

words, these oxidized species are formed within the Rrst 30 minutes of the NOz 

treatment, but they may also be trapped within the coal particle, due perhaps to 
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pore blocking, Longer exposure to NOz, however, renders these species more 

easily extracted by the NazCOs (aq) solution, perhaps because additional NOz 

exposure and NOz uptake by the coal enhances the accessibility of the 

NaZCOS (aq) solution to these species. For instance, the uptake of NOz may 

increase the solubility of water in the coal, thereby allowing greater penetration 

of the coal particle by the NazCOS (aq) solution. In any case, the heat content 

data indicate that the oxidation of the coal is complete within 30 minutes, while 

the carbon and hydrogen loss data suggest that the removal of the oxidized 

species by the NazCO9 (aq) wash is a much slower process. 

The effect of the initial concentration of NO2, (NOz)o, on the corrected heat 

content, H,, of the PSOC 190 coal after 120 minutes of exposure to NOz is illus- 

trated in Figure 4-137. The upper curve depicts the value of H, for the coal 

after treatment with NO2 as a function of reaction time. When (NOz)o is small 

(0.01 F), very little oxidation occurs as evidenced by the fact that the heat con- 

tent determined after the NO2 treatment is actually greater than that of the 

pretreated coal. Once (N02)o exceeds 0.5 F, however, Hg seems to level off at  

10,800 Btullb,, which represents a loss of about 10 % in the heating value. On 

the other hand, the bottom curve demonstrates how the heating value of the 

NazCOs (aq) washed coal varies with (NOz)o. Initially, the curve drops sharply, 

and then begins to decline a t  a more gradual rate once (NDz)o exceeds 0.5 F. 

This trend is consistent with the previously discussed mechanism in which a 

portion of the carbonaceous material in the coal is rapidly attacked and 

extracted by the NazC03 (aq) solution. In addition, further oxidation of the rest 

of the coal occurs, the extent of which depends on (NOz)o in an almost linear 

fashion. Since more of the original coal material is removed by the NazC03 (aq) 

wash as (NOz)0 increases, it is possible that the oxidized species have larger 

heating values. That is, a higher concentration of NO2 leads to the formation of 



CORRECTED HEAT CONTENT AS A FUNCTION 

12800 
OF I N I T I A L  [NO2] FOR RUNS 38-41 

12400 PSOC 130 COAL 

12000 

11600 

H~ 
[BTU/LBMl  

i 
i 

11200 I 
I: 

i 
I 
i 

t 0890 

10400 

loOD0 
0.0 0.4 0.8 1.2 1.6 2.6 

[ N 0 2 l 0  [MOL/L I 



coal-derived species that are soluble in NazCOS (aq) which are not as extensively 

oxidized as when (NO2) is lower. I t  is interesting to note that the sigmoidal 

shape of the lower curve in this figure parallels that of the corresponding 

hydrogen loss curve exactly, which supports the notion that less oxidized 

species are removed by the NazC03 (aq) wash from the coal treated a t  higher 

NO2 concentrations. 

In order to determine the effect of the pore structure of the coal on the NO2- 

coal reaction, another coal, PSOC 276, which has an initial pore volume four 

times less than that of the PSOC 190 coal, was treated with NO2 a t  2 0 ' ~  for vari- 

ous exposure times in the batch reactor and subsequently washed in 

0.1 M Na2C03 (aq) (Runs 47-52). The values of the corrected heat content are 

displayed as  a function of the NO2-exposure time in Figure 4-138. During the 

NOZ treatment, $3, falls rapidly within the first 30 minutes, and then more slowly 

thereafter, so that after 180 minutes, there is a 7.5 % loss in the heat content. 

The coal, when subsequently washed in 0.1 M Na2C03 (aq), also displays a rapid 

decline in Hg within the first 30 minutes of the NO2 treatment. After 90 minutes 

of NO2 treatment, however, the Na2C03 (aq) wash does not result in any further 

decline in Hg, which levels off a t  about 11,400 Btu/lb,, a 9 % loss in the heat 

content, Therefore, the same interpretation applied to the processed PSOC 190 

coal applies to this set of runs as well. That is, a portion of the coal, such as  

some of the light volatile matter, is rapidly attacked and oxidized by the NOz- 

CC1, solution. Of this oxidized coal material, that which is not extracted from 

the coal during the NOz treatment is removed by the NazCOs (aq) wash. 

A comparison of the change in the heat content of the PSOC 190 and PSOC 

276 coals during NO2 treatment at 2 0 k  in the batch reactor is provided in Fig- 

ure 4- 139. Both coals show a rapid decline in H, during the first 30 minutes fol- 

lowed by a more gradual decline thereafter. The rate of decline in H, for the 
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PSOC 190 coal is greater than that in the PSOC 276 coal, however. Indeed, the 

decline in H, for the PSOC 190 coal is approximately 1.7 times that of the PSOC 

276 at all NO2-exposure times. Furthermore, the decrease in Hg after the first 

30 minutes is a linear function of the exposure time for both coals, which is also 

indicative of the nitrogen uptake data, In any case, it is obvious that the 

differences between the two coals cause disparate losses in Hg. Conceivably, the 

difference could be in the chemical composition of the two coals, with fewer 

species available for oxidation in the PSOC 276 than in the PSOC 190. This 

scenario is unlikely, however, because the chemical compositions of the two 

coals are virtually identical. Indeed, the carbon to hydrogen ratio, which serves 

as an indicator of the relative amounts of aliphatic and aromatic hydrogen, 

differs by only 1.2 % between the two coals. Thus, the concentration of reactive 

species in the two coals should be about the same. Furthermore, the accessibil- 

ity of the NO2 to these species is independent of the pore structure of the coal. 

Nevertheless, the difference in the pore structures of the two coals would lead 

one to expect that less conversion of hydrogen should occur in the PSOC 276 

than in the PSOC 190, due to a greater degree of steric hindrance in the solid 

coal matrix. That is, even though the total nitrogen uptake by the two coals are 

equal, the relative amounts of physical and chemical incorporation of nitrogen 

in the two coals may be different. 

A comparison of the change in the heat content of the two NO2-treated coals 

after being washed in 0.1 M Na2CO9 (aq) for 120 minutes at 25k is shown in Fig- 

ure 4-140. In this case, a distinct difference in the change in H, for the two 

coals can be detected. Whereas the first 30 minutes of NOZ exposure accounts 

for essentially all of the 14 % loss in H, after the NazCOS (aq) wash of the PSOC 

190 coal, longer exposure of the PSOC 276 to NOz results in additional oxidation 

and loss in the heat content, which reaches about 10 % after 120 minutes of 
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reaction. The fact that the value of Hg for the washed PSOC 276 continues to 

decrease for longer NO2-exposure times can be attributed to the increased resis- 

tance to mass transfer of the soluble oxidized coal species out of the PSOC 276 

coal. Once again, this behavioral difference can be attributed to the influence of 

the pore structure on the rate and extent of oxidation. This same influence of 

the pore structure accounts for the similar difference in the rate of nitrogen 

uptake by the two coals as well. Thus, the pore structure of the coal does affect 

the extent of the heating value loss to a small degree, although it seems to pos- 

sess a much stronger influence on the extent of desulfurization through SO2 

trapping by adsorbed sodium. 

Based on this discussion of the changes which occur in the heat content of 

the processed coal, several conclusions regarding the effect of the reaction 

parameters on the extent of oxidation of the coal may be made. It should be 

noted that the heat content data support the conclusions made in earlier sec- 

tions regarding the oxidation of the coal, as it should, since the change in heat- 

ing value is really a composite of the changes in the elemental composition of 

the coal. 

The effect of the solvent on the extent of the oxidation of the coal depends 

upon the amount of competition there is between the solvent and coal for NO2. 

For instance, when HzO is the solvent, virtually all of the NO2 reacts with the sol- 

vent to form HN03 (aq) and HN02 (aq), which then become the primary coal oxi- 

dants. When CCll is the solvent, however, only the coal reacts with NO2. Because 

NO2 can penetrate the solid coal matrix more readily than HNOs (aq) or 

HNOz (aq), more oxidation occurs when CCI, is the solvent than when H20 is the 

solvent, under the same reaction conditions. 

The effect of temperature on the overall rate of the oxidation of the coal by 

NO2 is important. At 50"C, the extent of oxidation is so large that once the 



treated coal is exposed to 0.1 M Na2C03 (aq), it completely emulsifies and cannot 

be filtered. If the coal is treated with NOz at  20"C, the oxidation reaction which 

produces the coal-derived species which are soluble in 0.1 M Na2C03 (aq) is com- 

plete within the first 30 minutes. The same is true if the coal is treated with NOZ 

a t  0?2 as well, although the extent of the oxidation is somewhat less. Thus, it 

appears that a portion of the coal, such as part of the light volatile matter, is 

readily attacked by the NO2-CCI, solution and either extracted during the NOz 

treatment or leached during the Na2COS (aq) wash. The extent of the oxidation 

of the coal increases dramatically with temperature, however, which implies 

that more of the coal structure is susceptible to oxidation as the temperature 

rises. For instance, certain bonds which cannot be broken by NO2 a t  OVC or 20 C 

may be broken at 5Q°C, which is exactly the interpretation given for the effect of 

the temperature of the NO2 treatment on the uptake of nitrogen by the coal, in 

that the accessibility to the reactive species in the coal is determined by the 

temperature. Furthermore, the effect of fN02)o on the extent of the oxidation is 

similar to that on the nitrogen uptake, both of which increase with increasing 

(NOz)o. Because an increase in the bulk concentration of NOZ results in more 

NO2 uptake by the coal, more oxidation of the coal occurs, which results in 

higher losses in the heating value. 

Finally, the pore structure influences the extent of the loss in the heating 

value of the coal. The pore structure has very little effect upon the penetration 

of NO2 into the coal but apparently does influence the subsequent oxidation 

which occurs. The pore structure also influences the removal of the oxidized 

coal species, especially during the NazCOS (aq) wash. The pore structure seems 

to primarily affect the extent of the oxidation reactions of NO2 with the reactive 

species in the solid coal matrix, perhaps because the degree of steric hindrance 

in the NO2-coal reaction increases as the pore volume decreases. 



4.2.2.10 The Selectivity of the Desuifurization Process 

The results of the last two sections can be combined to determine the selec- 

tivity of the NO2 treatment and the NazCOs (aq) wash for the removal of sulfur 

relative to the oxidation of the rest of the coal. The selectivity is defined by the 

beneficiation coefficient, 3, which is given by: 

B = [ l -  
(1 + f ) c s  H, ] [ -1 , where 

( ~ s ) 0  (H, )o 

f = the fractional mass gain of the treated coal relative to the initial 

mass of coal used. (If a mass loss occurs, f = O), 

cs = the sulfur content of the treated coal corrected for any 

CC14 adsorption (mass %), 

(cs)o = the sulfur content of the coal before processing (mass %), 

H, = the heat content of the treated coal corrected for any mass 

change (Btu/lb, of initial coal used) , and 

= the heat content of the pretreated coal before 

processing (Btu/lb, coal) 

Thus, 3 can range from 0 to 1. A value of 0 corresponds to either no sulfur 

removal or the complete oxidation of the coal while a value of I corresponds to 

the complete removal of sulfur with no loss in the heating value of the coal. 

Basically, the equation for B contains a penalty for the desulfurization which is 

based on the extent of the oxidation of the rest of the coal as reflected by the 

heating value loss. As will be seen, values of B above 0,85 are quite hard to 

attain due to the small amount of oxidation of the coal which occurs under even 

the most mild NOz-treatment conditions, 

Because the coal treated with NOz in Runs 1-6 was not subsequently washed 

in 0.1 M NazC03 (aq), values of the ultimate beneficiation cannot be determined. 

Furthermore, the amount of pyridine and nitrobenzene adsorption makes it 

impossible to determine the actual heating value loss of the treated coal. 



Therefore, the beneficiation results will deal exclusively with those runs in which 

HzO or CC1, is the solvent. 

The values of 3 obtained for the first set of runs conducted a t  25% in the flow 

reactor with H20 as the solvent (Runs 7-13) are  displayed graphically in Figure 

4-141 as a function of the NOz-exposure time. Only the Leco method was used 

in the sulfur determinations, so just two sets of values were obtained, one of 

which corresponds to the washed coal. The bottom curve, which is defined by 

the values of B for the NOz treated coal, rises from about 0.18 a t  t = 0 to roughly 

0.42 a t  t = 480 minutes, where the csrve begins to  level off. The value of 0.18 a t  

t = 0 is due to the removal of sulfate sulfur by washing the raw coal in HzO 

without any NOz being admitted, The curve begins to level off after long expo- 

sure times because oxidation of the coal continues but the removal of sulfur 

begins to stop. The top curve corresponds to the beneficiation of the NOz- 

treated coal after the Na2C03 (aq) wash, which reaches a maximum of 0.76 a t  t = 

240 minutes. Even though more sulfur is removed after 480 minutes of NO2 

treatment, the increased desulfurization is more than offset by the increased 

loss in heat content, so 3 declines. Thus, under the conditions employed in this 

set of experiments, the coal should not be treated with NO2 for more than 240 

minutes. 

Table 4-4 contains the values of 3 obtained when the coal was treated with 

NOz for varying lengths of time and a t  varying NOz flowrates a t  25°C in the flow 

reactor (Runs 15-20). It should be noted that 27 % of the initial sulfur content 

can be removed simply by washing the coal first in water and then in 

0.1 M Na2C03 (aq), which results in no oxidation of the coal. As expected, the 

beneficiation of the NO2-treated coal increases when the HNOB (aq) and 

HNOz (aq) concentrations are increased due to higher NOz flowrates or when the 

exposure time is increased. In the wide range of NOz flowrates and reaction 
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times used, 3 is between 0.3 and 0.4, which results from the fact that most of 

the sulfur which is removed during the NO2 treatment is rapidly attacked and 

extracted by the NO2-Hz0 solution. The notion of a rapid attack of NO2 on the 

coal also correlates quite well with the heating value loss data. 

Only the values of H, for the Na2C03 (aq) washed coal from Runs 16, 17 and 

18 were obtained, so values of 3 for the washed coal are available only for those 

runs. These values of B demonstrate, however, that the larger HN03 (aq) and 

HNOz (aq) concentrations obtained a t  higher flowrates do lead to a greater 

amount of SOz trapping, ostensibly due to greater sodium uptake by the NOZ- 

treated coal during the NazC03 (aq) wash, without a great increase in the oxida- 

tion of the rest of the coal. That is, the small amount of oxidation which occurs 

after the initial attack and extraction of the coal accounts for the introduction 

into the coal of the anionic oxygen which ultimately adsorbs Naf during the sub- 

sequent wash. If the oxidation conditions are too severe, however, the increased 

loss in heat content more than offsets the enhanced amount of SO2 trapping, as 

evidenced by the previous set of experiments. In all of the experiments dis- 

cussed so far, H20 has been the solvent for the NO2 treatment. The rest of this 

section will deal with the beneficiation of the coal when CCb is used as the sol- 

vent for the NOz treatment. 

The values of 3 for the PSOC 190 coal slurried in CC14 and treated with NO2 a t  

2 5 a ~  in the flow reactor and subsequently washed in 0.1 M NaZCO3 (aq) are given 

as a function of NOz-exposure time in Figure 4-142. The bottom curve 

corresponds to the beneficiation of the NO2-treated coal, I t  is obvious that all of 

the beneficiation occurs within the first 30 minutes, which is the result of the 

rapid reaction of NOz and coal alluded to in the previous sections, Washing the 

NOz-treated coal in 0.1 M NazC03 (aq), although it does raise 3, does not really 

result in any additional beneficiation over that obtained by washing the 
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untreated coal in Na2COs (aq). That is, the increase in B for the washed coal 

over the treated coal can be attributed to the removal of sulfur compounds 

which would be removed by the Na2C03 (aq) wash even if the coal had not been 

treated with NOz. The wash of the NOz-treated coal does result in the uptake of 

Na', however, which has been demonstrated to be responsible for the trapping 

of SOz during combustion. Once again, the upper curve in the plot indicates 

that the major fraction of the beneficiation occurs because of the anionic 

oxygen introduced into the coal within the first 30 minutes of reaction. Due to 

the rather substantial loss in heating value, however, the maximum value 

attained for B is only about 0.73, even though 97 % of the SO2 has been removed 

from the combustion gas. 

The beneficiation of the coal treated with NO, a t  20°C when slurried in CCL4 in 

the batch reactor and subsequently washed in 0.1 M NaZCO3 (aq) (Runs 33-37) is 

plotted as a function of the NOz-exposure time in Figure 4-143. The trends in 

the values of 3 for the coal are the same as those in the previous set of experi- 

ments, namely that virtually all of the beneficiation is the result of the first 30 

minutes of the NOz treatment. Thus, for longer NO2-exposure times, any addi- 

tional sulfur removal is balanced by an additional loss in heating vaIue. The 

ultimate beneficiation reaches a maximum value of 0.84, however, as compared 

to only 0.73 in the previous set, which is the result of less loss in the heating 

value of the coal with the same sulfur removal of 96 %. Less oxidation occurs 

because the NOz concentration in this set of runs is about 1 F while in the previ- 

ous set of runs, the NOz concentration rises linearly from 0 to 8 F during the 

total exposure time of 180 minutes. Nevertheless, even these milder NOz-treat- 

ment conditions result in a 15 % loss in heating value, which is significant, but 

not drastic, 
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The values of B for the coal treated with the NO2-CCI, solution a t  0% in the 

batch reactor and subsequently washed in 0.1 M NazCOs (aq) (Runs 42-46) are 

displayed graphically in Figure 4-144 as a function of NO2-exposure time. The 

beneficiation of the coal due to the NO2 treatment never exceeds 0.10, which is 

the result of the diminished extent of the removal of oxidized matter from the 

coal under these conditions. The Na2COs (aq) wash of the coal, however, reveals 

that the extent of the NO2-coal reaction is slightly less than that at  20C. 

Although the middle curve in the figure is level after 30 minutes of NO2 treat- 

ment, the top curve actually increases after 30 minutes, reaching a value of B of 

0.78 after 180 minutes of NOz treatment. Furthermore, the shape of the top 

curve suggests that further NO2 treatment at O°C would yield an even greater 

beneficiation of the coal. 

The effect of the NOz-treatment temperature on the beneficiation of the coal 

due to the NOz treatment is illustrated in Figure 4-145, As expected, the value 

of B increases with temperature, although the difference between the 

corresponding curves is quite slight. All of the curves seem to level off after the 

first 30 minutes at values of 3 of 0.07, 0.09 and 0.11 a t  0, 20 and 50C, respec- 

tively. It should be noted that the value of B at 60 minutes for the 50C NO2 

treatment results from a spuriously low sulfur determination, and was therefore 

disregarded when the locus was drawn. In any case, the temperature of the NO2 

treatment has very little effect on the beneficiation of the coal due just to the 

NO2 treatment. 

The beneficiation of the coal due to the Na2C03 (aq) wash of the coal treated 

with NO2 at 0 and 20°C, based on the sulfur determinations made by the Bomb 

method, is plotted as a function of the NOz-exposure time in Figure 4-146. It is 

very interesting to note that the NO2 treatment at O°C results in a beneficiation 

for the washed coal which is about 15 % greater than that for the coal treated 
*" 
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with NOz at  20-C, This feature can be explained on the basis of the greater 

extent of oxidation, and hence, pore blocking of the coal which occurs at the 

higher temperature. Therefore, there is less resistance to the mass transfer of 

the oxidized material out of the particle for the coal treated with NO2 a t  o0C 

than 20°C. Consequently, there is more sulfur removal and beneficiation of the 

coal treated with NOz a t  the lower temperature. 

When the beneficiation is based on the amount of SO2 removed from the 

combustion gas, however, an increase in the temperature of the NO2 treatment 

from 0 to 20°C results in a greater beneficiation, as illustrated by Figure 4-147. 

Because the rate of the NO2-coal reaction is greater a t  higher temperatures, 

more anionic oxygen is introduced into the coal. Hence, there is more sodium 

uptake and a greater extent of SOz trapping, which results in greater 

beneficiation. It is interesting to note that the two curves seem to converge as 

the NO2-treatment time increslses, which implies that, given enough time, treat- 

ment with NO2 at Ot will give as a high a degree of beneficiation of the coal as 

treatment at 20°C. The temperature effect demonstrated by the curves in this 

figure are consistent with the effect implied by the other elemental analyses, all 

of which indicate a slower NO2-coal reaction a t  OuC than a t  2ClCC. 

The effect of the initial NOz concentration, (NOZ)o, on the beneficiation of the 

processed coal (Runs 38-41) is illustrated in Figure 4-148. The beneficiation 

due to the NOz treatment does not depend on (N02)o, as demonstrated by the 

lower curve in the plot. Apparently, exposure of the coal to a very small amount 

of NOz is all that is required for the removal of all the sulfur that can be 

removed during the NOz treatment. The middle curve, which corresponds to the 

beneficiation of the treated coal after washing in 0.1 M NaZCO3 (aq), demon- 

strates the same behavior as the lower curve. Thus, only small amounts of NOz 

are needed for the oxidation and removal of all the sulfur which can be removed 
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from the coal. The initial NO2 concentration, however, does affect the 

beneficiation of the coal from the standpoint of the reduction of SO2 in the 

combustion gas, as illustrated by the top curve. In particular, the curve shows a 

maximum in 3 of 0.86 when the coal is treated for  120 minutes with an initial 

NO2 concentration of 1.1 F. For higher values of (NOz)O, more oxidation of the 

coal occurs without any additional sulfur removal. Consequently, 3 decreases. 

Thus, more extensive oxidation is required for sufficient sodium uptake than is 

required for the maximum physical removal of sulfur from the processed coal. 

The effect of the porosity of the coal particle on the beneficiation was deter- 

mined by running a set of experiments in which PSOC 276 coal, which has a pore 

volume about four times smaller than the PSOC 190 coal, was treated with NO2 

at  2oCe in the batch reactor and subsequently washed in 0.1 M NaZC03 (aq) (Runs 

47-52). The values of B from these runs are plotted in Figure 4-149 as a func- 

tion of NOz-exposure time. The lower curve in the figure shows the beneficiation 

of the PSOC 276 after the NO2 treatment. The highest value of 3 of roughly 0.05 

is obtained after the shortest exposure time, which implies that longer exposure 

times lead to less SO2 removal from the coal during this stage of the processing. 

The middle curve, which corresponds to the beneficiation of the coal during the 

Na2C09 (aq) wash, shows a rapid rise and then levels off a t  a value of about 0.16 

after 180 minutes of NO2 exposure. Thus, all of the sulfur which can possibly be 

removed from the NOz treated coal during the NaZC03 (aq) wash is removed after 

180 minutes of NO2 treatment. Additional sulfur removal, and hence 

beneficiation, may be prevented by pore blocking, which inhibits the further 

extraction of otherwise soluble sulfur species by the NazCOs (aq) solution. The 

top curve, however, shows that additional NOz exposure beyond 180 minutes 

would lead to greater beneficiation of the coal from the standpoint of SOz emis- 

sions. Furthermore, it should be noted that 66 % of the sulfur in the coal is 
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pyritic, of which only about 10 % is removed from the coal by the processing. 

Consequently, about 65 % of the SO2 derived from the organic sulfur during 

combustion is trapped by the sodium, which is adsorbed during the Na2C03 (aq) 

wash after the coal has been treated for 180 minutes with NOZ. The data also 

indicate that further NOZ exposure would result in more sodium uptake and 

beneficiation in terms of organic sulfur removal as well. Therefore, the pore 

structure of the PSOC 276 dictates that NOz-exposure times greater than 180 

minutes are needed at 2 0 = ~  for the maximum beneficiation of the coal. 

A comparison of the beneficiation of the PSOC 190 and PSOC 276 coals by the 

NO2 treatment is provided in Figure 4-150. The curves for both coaIs demon- 

strate the same behavior, namely that the maximum beneficiation occurs after 

only 30 minutes of NO2 treatment. This behavior is consistent with the notion 

that most of the sulfur removed in this stage of the process is removed as SOZ 

during the vacuum drying. It may be that as more oxidation of the coal occurs 

at longer NO2-exposure times, more trapping of SO2, which would otherwise 

evolve during the post-reaction vacuum drying, occurs. Although the smaller 

pore volume of the PSOC 276 accounts for the smaller amount of beneficiation, 

the problem of pore blocking occurs in both coals. Indeed, the problem is more 

severe in the PSOC 276, which is a consequence of its smaller initial pore 

volume. That is, the interior of the PSOC 276 coal particles is easier to isolate 

than that of the PSOC 190 coal particles because less oxidation is needed for 

pore blocking. 

The values of B for the two NO,-treated coals after being washed in 

0.1 M NaZC03 (aq), based on the Bomb method of sulfur analysis, are plotted in 

Figure 4-151 as a function of NOz-exposure time. It is immediately obvious that 

virtually all of the beneficiation which occurs for the PSOC 190 coal is due to the 

first 30 minutes of the NOz treatment. On the other hand, the value of B for the 
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PSOC 276 coal rises at a more gradual rate, which is the result of the slower rate 

of the reaction of NO2 with the PSOC 276 than with the PSOC 190. As the discus- 

sion of the data in the previous sections indicates, this slower rate is caused by 

the smaller surface area in the PSOC 276 coal. It is interesting to note that the 

net beneficiation relative to just washing the untreated coal in 0.1 NI Na2C03 (aq) 

is actually greater for the PSOC 276 than the PSOC 190, which is due to the pres- 

ence of more FeSO,, which is easily leached from the NOg-treated coal during the 

wash, in the PSOC 276 than in the PSOC 190. 

In terms of the removal of SO2 from the combustion gas, however, the 

beneficiation of the PSOC 190 is much greater than that of the PSOC 276, as 

illustrated in Figure 4-152. Whereas the value of B for the processed PSOC 190 

is between 0.80 and 0.85 for all of the NO2-treatment times used, that of the 

PSOC 276 only reaches 0.28 after 180 minutes of NO2 exposure. It should be 

noted, however, that 66 % of the initial sulfur content of the PSOC 276 consists 

of pyrite, of which only a maximum of 10 % is removed by the processing. Con- 

sequently, up to 65 % of the organic sulfur is trapped in the ash of the treated 

PSOC 276 during combustion. Thus, if the PSOC 276 were treated with NOz when 

slurried in water for 180 minutes, so that all of the pyrite were removed, the 

actual sulfur removal would be about 88 %. If the loss in heating value due to 

the treatment remained at about 10 %, then the beneficiation of the treated 

PSOC 276 would be 0.79, which is quite comprable to that of the PSOC 190 coal, 

which has virtuaily no pyritic sulfur. Consequently, the pore structure of the 

coal does not have as strong an influence on the beneficiation as the figure 

might suggest. Rather, it is the difference in the relative amounts of pyritic and 

organic sulfur in the coals which causes most of the disparity in the extents of 

the beneficiation of the two coals. Nevertheless, the pore structure does affect 

the rate of the NO2-coal reaction, which is slower in the PSOC 276 than in the 
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PSOC 190, as exemplified by the fact that virtually all of the beneficiation of the 

PSOC 190 occurs within the first 30 minutes of the NO2 exposure, while the data 

for the PSOC 276 indicate that NOg exposures beyond 180 minutes would 

increase the beneficiation. 

The major purpose of this section has been to identify the effects of the vari- 

ous reaction parameters on the selectivity of the NO2 reaction and Na2C03 (aq) 

wash for desulfurization of the coal relative to the oxidation of the rest of the 

coal, as expressed by the beneficiation coefficient, B. It should now be apparent 

that these effects are interdependent, which is primarily the consequence of the 

fact that the uptake of sodium by the NO2-treated coal, which is responsible for 

trapping SO2 during combustion, depends upon the amount of anionic sodium 

introduced into the coal, which is proportional to the extent of oxidation of the 

coal, Nevertheless, a point is reached in the oxidation which corresponds to the 

minimum amount of sodium required for the maximum extent of SO2 trapping. 

At this point, the maximum beneficiation is achieved. Further oxidation only 

continues to deplete the heat content of the coal, which results in a decline in 

the beneficiation. 

The point a t  which the maximum beneficiation occurs in terms of the NO2- 

exposure time depends on the pore structure of the coal. For example, the 

maximum beneficiation of the PSOC 190 coal occurs within the first 30 minutes 

of the NO2 treatment, while the maximum beneficiation of the PSOC 276 coal 

cannot be achieved, even after 180 minutes of NO2 exposure. The pore structure 

also determines the accessibility of the interior of the coal particle to sodium. 

Thus, a sufficient amount of anionic oxygen may be introduced into the coal, but 

it may not adsorb much Na' if the pores are of a sufficiently small diameter to 

preclude the transport of Nai. Because the proximity of the sodium to the 

sources of SO2 also affects the efficiency of SOZ trapping, the effect of the 



porosity on the beneficiation is compounded, Indeed, if the pore volume of the 

coal is suffciently small, the maximum attainable beneficiation may be dictated 

solely by the porosity of the coal. Some semblance of this effect is demon- 

strated by the PSOC 276 coal relative to the PSOC 190 coal, although the small 

pore volume of the PSOC 276 coal is not sufficiently small to be the limiting fac- 

tor in the beneficiation. 

The maximum beneficiation attained depends on the type of sulfur in the 

coal and the solvent used for the NO2 treatment, For instance, the maximum 

value of B for the PSOC 190 coal, in which virtually all of the sulfur is organic, is 

0.85, while that for the PSOC 2'76 coal, in which 67 % of the sulfur is pyritic, is 

only 0.28. If water is used as the solvent for the NO2 treatment, however, com- 

plete pyritic sulfur removal should be obtained for the PSOC 276 coal, which 

would then yield a value of B of about 0.8, provided the loss in the heating value 

of the coal did not change. On the other hand, the beneficiation of the PSOC 190 

does not differ when either CCL, or HzO is used, because the pretreated PSOC 190 

contains no inorganic sulfur. 

The effect of the temperature and the concentration of NO2 during the NOz 

treatment seems to affect the beneficiation of all coals in the same general 

manner. Of course, the effect of the treatment conditions on B relative to the 

optimum value of B will depend on the coal as  well. For instance, an increase in 

the temperature of the NOz treatment results in a higher rate of oxidation of 

the coal. For example, if the PSOC 190 is treated at  50% with NOz, the coal can- 

not be subsequently washed in 0.1 M Na2C03 (aq) and filtered because the oxida- 

tion of the coal is so severe. O n  the other hand, if the PSOC 190 is treated a t  

2 0 * ~ ,  a very high beneficiation is achieved If the NO2 treatment is conducted a t  

O'C, however, the beneficiation begins to decline because of insufficient sodium 

uptake. Thu;, 20% seems to be the best NOz-treatment temperature for the 



PSOC 190. A temperature greater than 2 0 ' ~  may be better for the treatment of 

the PSOC 276 coal with NO2, however, because the NO2-PSOC 276 coal reaction at  

20'~ is not complete even after 180 minutes. The effect of the NOZ concentra- 

tion is quite similar. For example, the optimum NOz concentration for the 

beneficiation of the PSOC 190 is 1.1 F for 120 minutes of NO2 treatment. Higher 

concentrations result in excessive oxidation while lower concentrations result in 

the introduction of an insufficient amount of anionic oxygen for Na' uptake. On 

the other hand, higher NOz concentrations might yield greater beneficiation of 

the PSOC 276 coal. Hence, the optimal NO2-treatment conditions which yield the 

greatest beneficiation are dictated by the physical structure and chemical com- 

position of the coal. 



4.3 Physical Changes in the Coal 

4.3.1 Qualitative Changes in. the Exterior Coal Surface 

During the course of the NO2 trealment and subsequent wash, various chemi- 

cal changes occur in the coal, as were discussed in the previous section. Conse- 

quently, it seems reasonable to expect that these chemical changes result in 

alterations in the physical structure of the coal as well. One tool which can be 

used to gauge the extent of the physical change in the coal is the scanning elec- 

tron microscope, hereinafter referred to with the acronym SEM. Due to the 

imaging process inherent in the SEM, coal particles can be examined a t  

magnifications of up to 10,000 times while maintaining a sufficiently large depth 

of field to render a three dimensional quality to the image, Unfortunately, only 

the exterior surface of the particle can be examined. Nevertheless, aIterations 

should occur on the exterior surface at  least as readiIy as on the interior sur- 

faces. Therefore, an examination of the exterior of the particle should provide a 

good qualitative indication of the changes induced throughout the particle by 

the processing. Coal samples from representative runs were examined with the 

SEM. Photographs of some of the particles examined form the basis for the rest 

of this section. 

Photographs of the images obtained by the SEM of the raw PSOC 190 coal are 

shown in Figure 4-153. Ali four photographs show the same general features for 

the coal particles. In particular, all of the particles are covered with much 

smaller particles, which is a result of the grinding process, These smaller parti- 

cles adhere to the larger particles and are not removed during the sieving. The 

dimensions of all of the large particles in the pictures range from roughly 40 to 

150 p,m. As photo d) shows, however, there is a multitude of smaller particles as 

well, which have dimensions ranging from roughly 20 to 50 pm. 



Just washing the coal in water for 120 minutes a t  25'~ (Run 7) does not seem 

to clean the exterior coal surface to any discernible extent, as the photos in Fig- 

ure 4-154 demonstrate. In each photo, all of the particles are still covered with 

a multitude of smaller particles. Thus, the removal of the water soluble 

material from the coal ( FY 4 % by mass of the raw coal) has not affected the coal 

appreciably. Washing the coal subsequently in 0.1 M Na2C03 (aq) for 120 

minutes at  2 5 ' ~  (Run 7C), however, results in the removal of a substantial 

amount of the smaller particles from the exterior of the large particles, as Fig- 

ure 4-155 clearly shows. Because this wash removed an additional 10 % of the 

original coal mass without reducing the mass corrected heating value of the 

coal, the material removed must consist of soluble mineral matter. Therefore, 

the small particles on the surface of the larger coal particles conslst of mineral 

matter, which has no heating value. The spectrum obtalned with the energy- 

dispersive-analyxer of x-rays, hereinafter referred to by the acronym EDAX, in 

photo d) still shows the presence of Al, Si and sulfur, however. The sulfur peak 

is virtually masked by the largest peak in the spectrum, which is due to the a, 
x-ray emission peak produced by the gold coating on the particle surface, 

referred to in the figure as Au(M). The tip of the peak due to S, however, is just 

discernible as a shoulder on the right side of the Au peak. Therefore, although a 

large amount of mineral matter has been removed by the Na2C03 (aq) wash, a 

substantial amount still remains in the coal. 

Run 18 was chosen as ihe most representative experiment which used water 

as the solvent for the NO* treatment. The run was conducted for 120 minutes a t  

2 5 " ~ .  The SEM photographs are shown in Figure 4-156. It can be seen that the 

N02/H20 treatment does result in the removal of some of the smaller mineral 

matter particles from the external surface of the larger coal particles. Other- 

wise, the coal particles seem to be unaltered by the treatment. 



SEM photographs of the NOz-treated coal subsequently washed in 

0.1 k1 NaZCO3 (aq) for 120 minutes a t  2 5 2  (Run 18C) are shown in Figure 4-157. 

As photo a) shows, the processing with NO2 results in a rather large amount of 

surface cleaning, just as the processing without NOZ does. Most of the coal parti- 

cles have an additional feature, however, as demonstrated by photos b), c) and 

d), Not only are most of the small particles removed from the coal surface, but 

the surface also shows a large amount of etching. Whereas the untreated coal 

particles show rather smooth surfaces after the NaZCO3 (aq) wash, the coal par- 

ticles treated with NO2 have very rough surfaces after the Na2C03 (aq) wash. 

Such etching can be attributed to the removal of the oxidized portions of the 

coal by the wash. In addition, some particles have very extensive fissures which 

are absent in the untreated coal particles. Such fissuring is indicative of the 

breakdown of the integral structure of the coal particle. While the fissuring is 

discernible, its occurrence is quite infrequent, which implies the coal particle 

seems to maintain most of its overall structure during processing. 

When CCl, is the solvent used during the NO, treatment, no alterations in the 

external particle surface are apparent, as shown in Figure 4-150, which con- 

tains the SEM photographs of coal particles from Run 37, in which the coal was 

treated for 100 minutes a t  20'~. These photos contain no indication that the 

particles are any different from untreated coal particles, primarily because no 

mineral matter is removed, which is expected because CCl, is the solvent. Even 

though the coal is oxidized by the NO2 treatment, none of the resulting material 

is soluble in CC4 ,  as the photos plainly demonstrate. Once the coal treated with 

NOz in CCl, is washed in 0.1 M Na2C03 (aq), however, the etching, fissuring and 

mineral matter removal which resulted when the coal treated with NOz in HzO 

was washed in Na2C03 (aq) occurs in thls case as well. The SEM photographs in 

Figure 4-159 clearly demonstrate this fact. 



The other coal used in this study is the PSOC 276 coal. SEM photographs of 

the coal after washing in CCl, for 120 minutes a t  20O~ (Run 47) are shown in Fig- 

ure 4-160. The particles are quite similar in appearance to those of the PSOC 

190 coal, although there is not as much mineral matter dispersed on the exter- 

nal surface of the particle. The subsequent wash of the untreated coal in 

0.1 M Na2C03 (aq) a t  25OC for  120 minutes (Run 47C) does not result in any dis- 

cernible cleaning of the particle surfaces, in contrast to the Na2C0, faq) wash of 

the untreated PSOC 190 coal. The SEM photographs in Figure 4-161 support 

this claim. 

In contrast to the PSOC 190 coal, however, treatment of the PSOC 276 coal 

with NOz in CC14 for 180 minutes (Run 52) and subsequent washing in 

0.1 M Na2C03 (aq)  for 120 minutes a t  25 2 (Run 52C) does not result in any 

noticeable etching or fissuring of the coal particles, as demonstrated by the SEM 

photographs in Figure 4-162. The NO2 treatment does not lead to any visible 

change in the external particle surface, which is also the case with the PSOC 190 

coal. On the other hand, the Na2C03 (aq) wash of the NOz-treated PSOC 276 only 

leads to the removal of mineral matter frorn the external particle surface 

without any of the etching or fissuring which occurs in the washed PSOC 190 

coal. This result is consistent with the smaller extent of reaction which 

occurred when the PSOC 276 coal was treated with NO2 than when the PSOC 190 

was similarly treated, 

The examination of the coal particles with the SEM, therefore, has revealed 

some interesting qualitative effects of the NO2-Na2C03 treatment on the particle 

structure. Initially, the coal particles have a large amount of smaller particles 

consisting of mineral matter adhering to them, Oxidation of the coal with NO2 

allows these smaller particles to be removed from the coal particle surface by 

the NaZCO3 (aq) wash. Just washing the raw coal in NazC03 (aq) does not remove 



all of these smaller particles. Therefore, oxidation prior to the wash is neces- 

sary for complete removal. Furthermore, the surface of the NO2-treated PSOC 

190 coal is etched by the NazCO9 (aq) wash and a small amount of fissuring in 

the particles occurs as well. The etching results from the removal of oxidized 

portions of the coal from the particle surface. The fissuring is caused by the 

breakdown of the internal structure of the particle which is probably induced by 

the penetration of the Na2L'O3 (aq) solution into the interior of the NO2-treated 

coal particles. In the case of the PSOC 276 coal, however, where the extent of 

the NO2-coal reaction is not as great as when the PSOC 190 coal is used, no such 

etching or fissuring occurs. Consequently, the degree of the alterations intro- 

duced into the surface of the particles depends on the extent of the reaction of 

NOz with the coal. 



RAW PSOC 190 COAL (+ZOO - 325 MESH) 



RAW PSOC 190 COAL (+200 - 325 MESH) 



RUN 7 (N2/H20 - 120 MINI PSDC 190 (+ZOO - 325 MESH) 



RUN 7 (N2/H20 - 120 MINI PSOC 190 (+ZOO - 325 MESH) 



JN 7C (N2/H20 - 120 M I N j  N A 2 C 0 3 ( A ~ )  - 120 M I N  

PSOC 190 (+200 - 325 MESH) 



RUN 7C (N2/H20 - 120 MIN, N A ~ C O ~ ( A Q >  - 120 MINI 
PSOC 190 (+200 - 325 MESH) 



RUN 18 (N02/H20 - 120 M I N )  PSOC 190 (+200 - 325 MESH) 



PSOC 190 (+ZOO - 325 MESH) 



R U N  18C (N02/H20 - 120 M I N ,  N A 2 C O 3 ( A ~ )  - 120 MINI  

PSOC 190 (+200 - 325 MESH) 



R U N  37 (N02/CC~4 - 180 M I N I  PSOC 190 (+ZOO - 325 MESH) 



PSOC 190 (+ZOO - 325 MESH) 





RUN 4 7 C  ( C C L ~  WASH - 120 MIN, N A ~ C @ ~ ( A Q )  - 120 MIN) 

PSOC 276 (+200 - 325 MESH) 



RUN 52 PSOC 276 (+ZOO - 325 MESH) 

B) M 0 2 / C C ~ 4  - 180 M I N j  N A ~ C @ ~ ( A Q )  - 129 M I  N j  ~950 



4.3.2 Walitative Changes in the Chemical and Physical Nature of the Ash 

Throughout the previous discussion, reference has been made to the uptake 

of sodium by the NOz-treated coal during the NaZC03 (aq) wash and the trapping 

of 50, during combustion by the added sodium. This section will discuss the evi- 

dence for this claim, which is provided by the EDAX spectra of the ash particles 

remaining after the combustion of the processed coal. These spectra provide 

unequivocal evidence that the intimate addition of sodium to the coal results in 

the retention of sulfur in the ash. 

A photograph obtained with the SEM of some of the ash obtained from the 

combustion of raw PSOC 190 coal along with the corresponding EDAX spectrum 

is shown in Figure 4-163. The photo clearly shows that the ash particles are 

quite small with dimensions on the order of about 10 pm. The EDAX spectrum 

reveals that the ash consists primarily of Al and Si, probably in the form of N2O3 

and SiO,. In addition to Al and Si, the ash also consists of Fe and smaller 

amounts of K, Ca, and Ti. The ash of the coal treated with NO, in CCl, for 180 

minutes (Run 37) has the same characteristics as that of the raw coal, as the 

SEM photograph and EDAX spectrum in Figure 4-164 clearly demonstrates. The 

ash still consists of rather small particles and contains Al, Si, K, Ca, Ti and Fe. 

In addition, the ash of the NO2-treated coal has a minute amount of sulfur, 

probably in the form of Fe2(S0,)3, which is formed by the oxidation of the small 

amount of pyrite in the coal. 

Figure 4-165 contains an SEM photo and EDAX spectrum of the ash obtained 

from the combustion at  750'C of NO2-treated coal after washing in 

0.1 M NaZC03 (aq) (Run 37C). The photo clearly shows that the ash now consists 

of relatively large, spherical, porous globules with diameters on the order of 1 to 

2 mm. The globular nature of the ash is due to the fluxing of the ash during 

combustion, which does not occur when the untreated coal is burned. The EDAX 



spectrum shows a large amount of Na and S in the ash, in addition to the other 

elements present in the ash of the untreated coal. The small group of peaks to 

the right of the S peak are due to the Ma x-rays of the silver paint used to 

mount the ash particles on the aluminum disc. The sodium in the ash is the 

result of the uptake of NaC by the oxidized coal during the Na2C03 (aq) wash 

since the sodium compounds formed during combustion are not volatile a t  

750 C .  Because only the addition of sodium to the coal results in the retention 

of sulfur by the ash, it is reasonable to expect that the sulfur is retained as 

NazS04 in the ash, particularly in view of the fact that the combustion occurs 

under highly oxygen rich conditions. In any case, this EDAX spectrum provides 

the explanation for the disparity in the Bomb and Leco sulfur analyses of the 

coal. The oxidative treatment followed by the uptake of sodium in the coal 

allows the sulfur to be trapped in the ash during combustion rather than to 

escape as SOz. 

In order to determine if the ash structure containing Na2S0, is stable under 

conditions employed in coal-fired boilers, the coal from Run 37C was also com- 

busted a t  1 2 0 0 ~ ~ .  The resulting ash was examined with the SEM. Photographs 

of representative ash particles are shown in Figure 4-166. Once again, the ash 

consists of relatively large, porous, globular particles, with dimensions on the 

order of 1 mrn. The globular nature can be attributed to the fluxing of the 

mineral matter in the coal during combustion, Since globules are not formed 

during the combustion of the untreated coal, the added sodium must account 

for the ability of the ash to flux during the combustion of the processed coal. 

The porous nature of the ash globules is due to the escape of gases during the 

combustion of the treated coal. Figure 4-167 contains some typical EDAX spec- 

tra. The top spectrum indicates the presence of sodium, but very little sulfur. 

Rather, the point on the surface of the ash particle corresponding to this spec- 



trum consists mainly of Al, Si and Fe. The bottom spectrum, however, is more 

typical, I t  indicates the presence of large amounts of Na and S, as well as Al, Si 

and Fe. Because virtually all of the sulfur in the coal from Run 37C is trapped in 

the ash, these spectra indicate that the ash particles are not a homogeneous 

mixture of N a ,  Al, Si, S and Fe. Rather, the ash particles consist of regions rich 

in Na2S04 and poor in A1203 and SiOz and other regions poor in NazS04 and rich 

in A1203 and SiOZ. This heterogeneous mixture is expected because Na2S04 melts 

at 884 '~ ,  but d 2 O 3  and SiOz melt at  much higher temperatures, 2 0 1 5 ~ ~  and 

1 7 1 0 - ~ ,  respectively. Therefore, not all of the ash components are expected to 

melt a t  the combustion temperature of 1 2 0 0 ~ ~ ,  leading to the formation of glo- 

bules consisting of SiOz, A1203 and some Fe203 crystals embedded in a glassy 

matrix of sodium salts, including Na2S04. 

In contrast to the PSOC 190 coal, treatment of the PSOC 276 coal with NO2 

followed by washing in Na2C03 (aq) leads to much less sodium uptake by the 

coal. Consequently, there is less sulfur trapping by the ash during combustion. 

Figure 4-168 contains an SEM photo and EDAX spectrum of the ash remaining 

after combustion of the raw PSOC 276 coal. The photo shows that the ash con- 

sists of very small particles with dimensions on the order of several microns, 

just as in the case with the ash from the PSOC 190 coal. The spectrum indicates 

that the elemental compositions of the two ashes are quite similar as well. In 

particular, the ash consists primarily of A1203 and Si02, with smaller amounts of 

KzO, CaO, TiOz and Fez03. 

Exposure of the PSOC 276 coal to NO2 in CCl, for 180 minutes a t  2 0 * ~  (Run 

52) does not seem to alter the nature of the ash, as the SEM photograph and 

EDAX spectrum in Figure 4-169 demonstrate. The ash is still comprised of 

small, jagged particles of relatively small size. The EDAX spectrum indicates 

that the ash still consists primarily of AlzO,, SiOz and Fe203. The fact that the Fe 



peak in this spectrum is larger than that  in the spectrum of the ash from the 

raw PSOC 276 just serves ns an indication of the heterogeneity of the chemical 

composition of the ash particles. 

Washing the NO2-treated PSOC 276 coal in Na2C03 (aq) (Run 52C) does result 

in some sodium uptake, but only to about one third the extent of that of the 

NO2-treated PSOC 190 coal. Figure 4-170 consists of an SEM photograph and 

EDAX spectrum of the ash obtained from the combustion of the coal from Run 

52C a t  7 5 0 ~ ~ .  In contrast to the ash from Run 37C, the ash particles from this 

run are much smaller and are still jagged, which is the result of less sodium 

uptake. Nevertheless, the EDAX spectrum shows that some sodium uptake and 

sulfur trapping has occurred. The fact that the A1 and Si peaks are larger, how- 

ever, indicates that the uptake of sodium is not as great in the treated PSOC 276 

coal as in the treated PSOC 190 coal. 

If the processed PSOC 276 is burned a t  1200°~, however, the ash particles 

contain a sufficient amount of sodium to acqulre the globular nature of the pro- 

cessed PSOC 190. Indeed, the SEM photographs in Figure 4-171 demonstrate 

that the ash now consists of very porous, roughly spherical particles with 

diameters on the order of about 0.5 mm. As the EDAX spectra in Figure 4-172 

show, however, the amount of sodium m the ash is relatively small. Conse- 

quently, the amount of sulfur trapped in the ash during combustion is relatively 

small as well. The implications of these spectra are consistent with the results 

discussed previously, namely that not as much sulfur is trapped by the pro- 

cessed PSOC 276 coal as by the processed PSOC 190 coal during combustion. It 

is interesting to note that the size of the Fe peak in the spectra of the PSOC 276 

ash is much greater than that of the PSOC 190 ash, wh~ch is due to the large 

amount of pyrite in the PSOC 276 coal (2.1 mass %) than in the PSOC 190 coal 

(0.1 mass %). 



The SEM photographs and EDAX spectra of the ash obtained from the 

combustion of the processed coal discussed in this section provide unequivocal 

evidence that the treatment of the coal with NO2 followed by a NazC03 (aq) wash 

results in the significant reduction of SOz emissions during combustion. In par- 

ticular, the sodium taken up by the oxidized coal forms a well distributed pre- 

cursor for the trapping of sulfur during combustion of the coal. During 

combustion, this precursor forms a flux which traps the SO2 produced from the 

sulfur in the coal in the form of Na2S04 in the ash. In the case of the processed 

PSOC 190 coal, 98 % of the SO2 is removed from the combustion gases, while in 

the case of the PSOC 276 coal, only about 40 % of the SOz is eliminated from the 

combustion gases. 

Finally, it should be noted that the stability of the sulfate-containing flux 

during combustion is not in doubt, particularly from a commercial standpoint. 

When the coal was burned at both 750 and 1200DC, the ash was left in the Leco 

furnace for six minutes with a steady stream of oxygen (0.5 l/min) passing over 

it. This amount of time is sufficient for any decomposition of the ash which may 

occur. Furthermore, in a coal-fired utility boiler, the residence time of the ash. 

is only on the order of a few seconds. Consequently, if the NazS04-flux structure 

does not decompose in six minutes, it shoilld be stable for a few seconds. There- 

fore, SO2 which would otherwise escape in the flue gas is trapped as Na2S04, 

which is removed from the boiler along with the rest of the ash. 



ASH (1200 C) FROM RAW PSOC 190 (+ZOO - 325 MESH) 
- -- - 



ASH (750 C) FROM RUN 37 (N02 /CC~4  - 180 MIN) 

PSOC 190 (+ZOO - 325 MESH) 
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ASH (1200 C) FROM RAW PSOC 276 (+ZOO - 325 MESH) 



ASH (750 C) FROM RUN 52 (Nf12/CC~q - 180 MIN) 

PSOC 276 (+ZOO - 325 MESH) 



N A ~ C O ~ ( A Q )  - 120 MINI PSOC 276 (+ZOO-325 MESH) 





PSOC 276 (+ZOO-325 MESH) 



4.3.3 Changes in the SurFace Area. Pore volume and Pore Size Distribution of the Coal 

The previous discussion in this section dealt exclusively with the qualitative 

changes induced in the physical structure of the coal by the NO2 and 

Na2C03 (aq) treatment. This section will discuss these changes in a more quanti- 

tative manner. In particular, the specific surface area (S,), the pore volurne 

( V p )  and the pore size distribution of some of the treated coals were determined. 

Changes in these three parameters due to the coal treatment provide a good 

macroscopic indication of the alterations introduced into the particle structure. 

Knowledge of the variations in S,, Vp and the pore size distribution due to the 

processing then allows the determination of the effect of the reaction 

parameters, such as NO2-exposure time and temperature, on the particle struc- 

ture of the coal. Furthermore, the effect of the particle structure on the extent 

of reaction with the coal can also be determined. 

4.3.3.1 Standardization of the Pmcedure 

As mentioned in the experimental discussion, the surface area of the two 

standards were measured in order to check the experimental procedure. The 

first standard examined was the Vulcan rubber, which gave a value for Sa of 

74.57 k 0.35 m v g ,  which agrees with the quoted value of 71.3 k 2.7 m2/g within 

experimental error, It is interesting to note that the pore size distribution, 

which can be found in Appendix A (Figure A-2), shows a broad peak a t  a pore 

radius of about 100 A. Furthermore, the N2 adsorption-desorption isotherm 

(Figure A-1) shows that 70 % of the pore volume is encompassed by pores with 

radii greater than 15 A. The volume of N2 still adsorbed during desorption a t  a 

relative pressure of 0.35 corresponds to the pore volume encompassed by pores 

with radii less than 15 i. The other 30 % of the pore volume occurs in micro- 

pores, the structure of which cannot be determined using N2 adsorption. 



The other standard examined was the silica, which gave a value of S, of 

242.8 ~t 0.2 m2/g, which is slightly lower than the quoted value of 

286.1 ~t 3.5 ms/g. As previously mentioned, however, other workers have also 

obtained low values of S, for this standard, which suggests that this standard 

may be contaminated, The pore size distribution for this sample, which can be 

found in Appendix A (Figure A+), also shows a broad peak with a maximum at  a 

pore radius of about 50 A. Furthermore, the N2 adsorption-desorption isotherm 

indicates that 86 % of the pore volume is encompassed by pores with radii 

greater than 15 i, and that only 14 X of the pore volume consists of micropores. 

An Nz adsorption-desorption isotherm (Figure A-7) was also obtained for 

another solid, namely activated coconut charcoal, which consisted of particles 

in the range from 80 to 90 mesh. The value obtained for S, is 979.1 rt 1.9 m2/g, 

which is rather high, but quite reasonable for an activated charcoal. In this 

instance, the pore size distribution (Figure A-8) shows more distinctive features 

than those of the two previous samples, with a sharp peak a t  a value for r,, of 

19 A. Another peak is shown at 11 A, but due to the invalidity of the Kelvin equa- 
0 

tion for values of r, below 15 A, this peak should not be considered too seri- 

ously. The more interesting fact, however, is that the Nz adsorption-desorption 

isotherm indicates that roughly 96 % of the pore volume is enclosed in pores 

with radii less than 15 i. Consequently, the pore size distribution shown in Fig- 

ure A-8 only corresponds to 4 % of the total pore volume. 

In any event, the acquisition of the N2 adsorption-desorption isotherms for 

these three samples has served two useful purposes. Primarily, the determina- 

tion of the surface areas provided a means by which to check the experimental 

procedure. The results indicate that the experimental procedure is satisfactory. 

Furthermore, the difference in the results for the Lhree samples, particularly 

with regard to the pore size distributions, demonstrates the additional 



information regarding the pore structure which can be extracted from the 

isotherm. In particular, not only can the total pore volume be measured, but its 

distribution among micro and macro pores can be determined as well. Further- 

more, the pore size distribution obtained from the isotherm yields more precise 

information regarding those pores with radii between 15 and roughly ZOO i. 

4.3.3.2 The Reproducibility af the Pmcedure 

In order to determine the accuracy of the surface area measurement and 

pore size distribution determination, the N2 adsorption-desorption isotherms 

for several samples were acquired more than once. In particular, the reproduci- 

bility of peaks in the pore size distribution is of primary concern. By obtaining 

more than one isotherm, the sensitivity of the results to the experimental pro- 

cedure can be determined. 

For instance, two determinations of the surface area on the same sample of 

raw PSOC 190 (+ 100-200 mesh) yielded values of 7'0.0 5 0.3 and 7'2.6 k 0.3 m2/g. 

These values, although they do not agree within experimental error, still indi- 

cate a reasonably good reproducibilit,y. More importantly, however, the pore 

size distributions obtained from the isotherms are virtua.11~ identical. Both dis- 

tributions show a single peak a t  19 i. although the peak heights differ by 15 %. 

Such a relatively large discrepancy is not unexpected since the pore size distri- 

bution is essentially a numerical differentiation of the isotherm. Consequently, 

small errors in the isotherm are amplified in the pore size distribution. 

Nevertheless, the agreement between the two pore size distributions is quite 

good, as demonstrated in Figure 4-173, in which both pore size distributions are 

plotted together. 

Although the +loo-200 mesh PSOC 190 was used in Runs 1-6, the finer +ZOO- 

325 mesh PSOC 190 coal was used in the remainder of the runs. As it turns out, 





the particle size has a profound effect on the specific surface area and total 

pore volume, Six Nz adsorption-desorption isotherms were obtained for the 

same sample of the raw PSOC 190 (+200-325 mesh), which yielded values of 

43.4 i 0.3, 44.4 k 0.2, 46.1 * 0.3, 45.3 i 0.2, 46.0 i 0.2 and 43.4 * 0.2 m2/g for 

N 
S, 2, which are  about 40 % lower than the values obtained for the +loo-200 mesh 

coal, Such loss in the surface area and pore volume as the particle size 

decreases is typically observed for most coals. Once again, the pore size distri- 

butions obtained from the isothernis are virtually the same. As in the case of 

the larger particle size coal, the pore size distributions have a single peak a t  a 

value of rP of 19 A. Furthermore. the peak heights are just about equal, as 

demonstrated by Figure 4-174, which contains the six pore size distributions 

plotted together. 

Because many of the runs used the washed and dried PSOC 190 (+ZOO-325 

mesh) coal, live Nz adsorption-desorption isotherms for the same sample of this 

coal were obtained as well. The calculated values of st2 are 55.0 & 0.3, 59.5 * 
0.3, 59.5 k 0.3, 57.7 k 0.3 and 50.6 k 0.3 m2/g. Once again, the reproducibility 

is excellent, particularly if the first value is discarded, It is interesting to note 

that just washing the raw coal in water for 120 minutes a t  25;C increases the 

surface area by 30 % over that of' the unwashed coal. Since the water wash does 

not remove any of the organic matter in the coal, which follows from the fact 

that the mass corrected heat content of the washed coal is the same as that of 

the unwashed coal, the increase in the surface area, and hence pore volume, 

must be attributed to the removal of water soluble inorganic material contained 

within the pore structure of the coal. Once this material is removed, more of 

the pore structure can be accessed by nitrogen during the BET run. 

The pore size distributions based on isotherms of the washed PSOC 190 are 

once again virtually identical. As ia the case of the unwashed coal, all of the 





pore size distributions have one peak with a maximum at 19 i. Furthermore, 

the height of the peak in each pore size distribution is relatively constant. Fig- 

ure 4-175, which consists of a composite of these five pore size distributions, 

provides a good indication of the high degree of reproducibility in the experi- 

mental results. It is interesting to note that the wash of the PSOC 190 coal 

affects the pore size distribution uniformly, so that if the pore size distributions 

of the washed and unwashed coals are normalized, they are virtually the same. 

The pore size distributions of both coals have a single peak a t  19 A, which 

implies that the wash does not alter the pore structure, it only increases its 

accessibi1it.y to N2. This conclusion is consistent with the notion that the water 

wash removes only soluble inorganic material from the coal particle. If this 

inorganic material is uniformly distributed within the void space of the particle, 

then its removal should lead only to an enhancement of the total pore volume 

without altering the pore size distribution. 

Finally, it should be noted that the pore size distributions for both the 

washed and the raw PSOC 190 coals correspond to only about half of the total 

pore volume of the coal, as revealed by the isotherms. In particular, 50 ~t- 2 % of 

the total pore volume of the raw PSOC 190 resides in pores with radii less than 

15 i. On the other hand, 53 k 1 % of the total pore volume of the washed and 

dried PSOC 190 is encompassed in pores with radii less than 15 k .  Thus, both 

coals possess a substantial amount of micropore structure before exposure to 

NOZ. 

4.3.3-3 Changes in the Particle Structure of the Coal Treated With Nitmgen Dioxide in 

Water 

A11 of the runs using HzO as the solvent were conducted in the flow reactor. 

Unfortunately, i t  is not possible to correlate the changes in the surface area and 

pore volume of the coal particles with the kinetics in a quantitative manner 





because of the numerous reactions which take place in the NO2/H2O system. 

Nevertheless, a few qualitative conclusions can be drawn from the BET measure- 

ments. The values obtained for sf2 and V, of the treated coals examined can be 

found in Table 4-5. I t  should be noted that Run 7 corresponds to the washed 

and dried PSOC 190 coal, hence there was no NO2 exposure. No values of Vp for 

Runs 16 and 17 are shown because the full adsorption isotherms for these sam- 

ples were not obtained. An examination of the table reveals that the trend in 

N 
S, with exposure time and NO2 flowrate parallels the trend in 'Vp. In particular, 

the coal from Run 8 has a value of s:' which is only 40 % of that of the 

untreated coal, while the value of Vp is 47 X of that of the untreated coal, After 

N 
120 minutes of NO2 treatment (Run 11), 5, ' drops to 17 % of its initial value 

while Vp drops to 26 % of its initial value. Thus, both s,N" and I$ show drastic 

decreases upon exposure of the coal to NO2. 5 does not decline to quite the 

N 
extent that S, declines, however, which implies that the surface to volume 

ratio of the pore structure decreases upon increased exposure to NO2. For 

N 
instance, after 30 minutes of NO2 treatment (Run 8), the S, 2 /  Vp ratio is only 

86 % of its initial value. ~ f k r  120 minutes (Run l l ) ,  the ratio drops to just 64 % 

N 
of its initial value. This trend in the S, 'l/p ratio is expected because the ratio 

varies as r -' for cylindrical pores, Thus, if surface area is lost due to the addi- 

tion of species to the surface, the loss in area should be greater than the loss in 

volume. Furthermore, pores with small radii may be blocked altogether due to 

N 
reaction, leading to  a proportionately larger decrease in S, than in 5. 

In the case of the PSOC 190 coal, 52 % of the Nz-determined pore volume 

exists in pores with radii less than 15 i. It is interesting to note that as the 

exposure time increases, the amount of pore volume residing in pores with radii 
0 

less than 15 A increases slightly, being 56 % and 62 % of the total pore volume 



TABLE 4-5 
Nitrogen Determined Surface Area and Pore Volume of PSOC 190 Coal? 

(+200-325 mesh) Treated with NO2 in H 2 0  in the Flow Reactor j 



after 30 and 120 minutes of NO2 treatment, respectively. Thus, the overall 

decrease in sf2 and Vp upon treatment with NOz seems to be drastic over the 

entire range of pore radii accessible to Nz, with the volume of the larger pores 

decreasing slightly more than the volume of the smaller pores. This latter effect 

can perhaps be attributed to the easier access of NOz to the larger pores. 

The effect of the oxidative treatment on the pore structure of the coal is 

demonstrated in Figure 4-176, which is a composite of the pore size distribution 

of Runs 7, 8, 9 and 11, which correspond to NOz-exposure times of 0, 30, 60 and 

120 minutes, respectively It should be noted that the pore size distributions 

were obtained by fitting the results obtained from the application of the Kelvin 

equation to the raw Nz desorption data as outlined in Chapter 2 using a cubic 

spline curve fitting procedure. Furthermore, the distributions in this figure 

have been altered from those in the appendix in that the vertical scale is now 

log f d V / d r )  rather than d V / d r ,  which allows the change to be seen more clearly. 

The maximum of the predominant peak in the distribution of the raw coal 

occurs a t  a value of % of 18.3 i. After just 30 minutes of NO, treatment. the 

peak height drops to only about 30 % of that of the raw coal and the maximum 

is shifted slightly to a pore radius of 18.9 A. After 60 minutes of NOz treatment, 

the peak height is only about 15 % that of the raw coal. Furthermore, the pore 

radius a t  which the maximum occurs has increased to about 19.6 i. It is 

interesting to note that the peak in the distribution is now becoming indistin- 

guishable from two other shallow peaks which occur a t  roughly 24 and 32 A. 

Because the pore size distribution is essentially a numerical differentiation of 

the desorption branch of the isotherm, small errors in the desorption data are 

greatly magnified in the distribution. Consequently, the two latter peaks may 

just be the result of scatter in the desorption data rather than true peaks. 

These peaks can be conveniently referred to as noise. Therefore, the peak a t  
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20 is becoming indistinguishable from the background noise after 60 minutes 

of NOz treatment. Nevertheless, the distribution obtained for the sample after 

120 minutes of NO2 treatment shows a further decline in the peak height to 

about 10 % of that of the raw coal. Furthermore, the peak maximum has shifted 

to  a pore radius of 20.7 i. A t  this point, this peak is just barely discernible from 

the noise, however. 

These observations concerning the pore size distributions demonstrate 

several things. Primarily, the NO2 treatment tends to flatten the distribution so 

that a uniform distribution of pore sizes results. In particular, a substantial 

portion of the pore volume encompassed by pores with radii between 15 and 

roughly 200 k occurs in the narrow range of 15 to 23 A. After 120 minutes of 

NOz treatment, however, the predominance of this peak has virtually vanished. 

The loss of this peak is most readily explained by the pore dimensions to which 

it corresponds, namely a radius of 19 in the raw coal. In view of the trapping 

of substantial amounts of CCl, by the oxidized coal, these pores should be 

blocked quite easily. When the N2 adsorption-desorption isotherm is obtained a t  

7 7 * ~ ,  the CCIQ of course solidifies and acts as an extension of the solid coal 

matrix. Hence, isolated void spaces In the particle, which are inaccessible to N2 

during the BET determination, may be created during the NOz treatment due to 

pore blocking. 

The shift in the pore radius a t  which the maximum occurs can be attributed 

to a small degree of dilation in the remaining pore volume still accessible to N2. 

Such dilation may occur as the result of either a small amount of etching of the 

pore walls by the NO,-H20 solution or the slight expansion of the pores during 
0 

the treatment. In any case, the increase in radius is only 2.3 A after 120 

minutes of NO2 exposure, which is quite modest considering the drastic decrese 

in surface area and pore volume. 



N 
Table 4-5 also contains the values of S, for Runs 16, 17 and 18. In each 

run, the aqueous coal slurry was exposed to NOz for 120 minutes a t  room tem- 

perature a t  the various NO2 flowrates indicated. The values of S? indicate a 

dependence of the loss in surface area on the amount of NO, to which the coal is 

exposed. In particular, 80 % of the surface area is lost when the flowrate is 

0.269 g NOz/min, whereas the surface area loss is 90 % when the Aowrate is 

1.039 g N02/min. Nevertheless, the extent of the variation in s:' with NOz 

flowrate pales when compared to the overall loss in surface area just upon expo- 

sure of the coal to NOz. As these and the previous data indicate, the NOz-coal 

reaction is extremely rapid. Consequently, most of the physical and chemical 

changes occur within the first 30 minutes of exposure to NOz, 

Table 4-5 also contains values of sf2 and I$ for a sample of NOn-treated coal 

subsequently washed in 0.1 M Na2C03 (aq) (Run 18C). The results indicate that 

the NaZC03 (aq) wash leads to a further reduction in sf2. On the other hand. 

there is virtually no change in I$. Because a substantial amount of material is 

exchanged with the coal during the wash, such as CCll with Naf, it is surprising 

that there is not a greater loss in sf2 and 5. It should be noted, however. that 

the values of sfp and V, for the NO2-treated coal (Run 18) are quite low to begin 

with. so that there is little room for a further decline in either sfz or l$, 

Because the surface area and pore volume of the coals from Runs 16, 17 and 

18 are so low, it was not possible to obtain meaningful pore size distributions for 

these samples. As mentioned previously in regard to Figure 4-176, once 

falls below about 10 m2/g, not enough nitrogen is adsorbed to provide accurate 

desorption data from which an accurate pore size distribution can be obtained. 

In particular, it would not be possible to determine the change in the distribu- 

tion peak a t  18 with the same degree of accuracy as was possible with Runs 7, 



8, 9 and 11 

4.3.3.4 Changes in the Particle Structure of Coal Treated with Nitrogern Dioxide in Car 

bon Tetrachloride 

All of the experiments using C C 4  as the solvent for the treatment of coal with 

NOz for which values of 5':' and I$ were obtained were conducted in the batch 

reactor. In particular, the coal samples from Runs 33-46 were examined using 

both Nz and COz as the adsorbate. Because these experiments were conducted 

under controlled conditions and in a solvent which did not react with NO2, it is 

possible to correlate the results obtained for the surface area and pore volume 

with the rate data, which forms the first topic of discussion in this section. The 

second topic of discussion in t h ~ s  section concerns the change in the pore struc- 

ture as evidenced by the pore size distribution. 

4.3.3.4.1 Correlation of the Changes in Surface Area with the Kinetics of the Reaction 

of Nitrogen Dioxide with the Coal 

The results of the N2 and C02 adsorption studies on the coal samples gen- 

erated by treatment of the washed and dried PSOC 190 (+ZOO-325 mesh) coal 

with NO2 in CCI4 at  20°C in the batch reactor are in Table 4-6. Included in the 

table are the values of S, determined from both the N2 and COz adsorption 

isotherms as well as the total nitrogen-determined pore volume, V ? ,  An exami- 

nation of the table reveals that just the initial exposure of the coal to NO2 

results in virtually all of the loss in t.he nitrogen-determined surface area. sf2. 

Exposure beyond 30 minutes does not seem to alter 5'3 very much. In particu- 

lar, after 30 minutes, the coal has suffered a 69 X loss in sf8. After 100 

minutes. the loss has increased to o ~ l y  73 %. Indeed, if all of the values of $3 of 
the treated coal are averaged. a value of 17.47 -t 1.10 m2//g results for s:', 

which represents a 70 % loss in the initial surface area of the coal. Again, these 





results are consistent with previously discussed data which indicate that the 

NO2-coal reaction is essentially complete within 30 minutes. 

The results of the C02-determined surface area, on the other hand, are com- 

pletely opposite to those of the Nz-determined surface area. Indeed, the values 

CO 
of Sa for the NO2-treated coal are actually greater than that of the raw coal. 

CO N 
Furthermore, the value of Sa for the raw coal is 2.85 times that of Sa 2. As 

mentioned previously, this phenomenon is quite common with coal, where values 

of SF2 can sometimes be two orders of magnitude greater than 272. What is 

interesting in this case is that SF2 seems to increase with increasing exposure 

N 
to NO2 while 5'. decreases quite drastically. The increase in s;' can be attri- 

buted to the greater amount of interaction between COz and the oxidized coal 

surface. As mentioned in Chapter 2, it is possible that C02 actually penetrates 

the solid coal matrix at  ~ Q B ~ K ,  the temperature a t  which the C02-adsorption 

isotherm is obtained, whereas N2 caniiot penetrate the matrix at  7 7 O ~ ,  the tem- 

coz perature at  which the Nz adsorption isotherm is obtained. Consequently, Sa 

probably serves more appropriately as an indication of the permeability of the 

coal to C02 in addition to the surface area of the coal. 

At this point, it would be beneficial to digress for a moment and discuss the 

CO 
validity of the procedure used for obtaining Sa from the DPR plot, In particu- 

CO 
lar, it  is important to establish the correspondence between Sa determined by 

CCI 
the BET method to Sa determined by the DPR method. As mentioned in 

P Chapter 2, the volume of COz adsorbed a t  a relative pressure, ---; of 0.1 is used 
Po 

empirically as the monolayer capacity of the adsorbent. To determine whether 

this is valid, the same coal sample (Run 35) was allowed to adsorb C02  a t  both 

2 9 8 * ~ ,  for which the DPR method of analysis was used, and at  196 '~ ,  for which 



the BET method of analysis was used. The DPR method gave a value for SF of 

170.0 m2/g while the BET method gave a value of 180.6 m2/g, These values are 

in very good agreement considering the difference in the relative pressure range 

to which they apply. Therefore, the valldity of either method for obtaining 

values of the surface area is firmly established. 

In regard to Table 4-6, it should be noted that the last entry pertains to the 

Na2C03 (aq) washed coal from Run 36. In this case, the drop in ,St2 after the 

wash is also quite drastic. The NO2-treated coal retained only 29 % of its initial 

surface area. The washed coal, however, only retained 3 % of the initial surface 

area, The retention of the nitrogen-determined pore volume is 40 % and 15 % for 

the NOz-treated coal and the subsequently washed coal, respectively. Although 

N 
the drop in S, a due to the Na2C03 (aq) wash is greater in this case than in the 

N 
case when water was the solvent, the absolute values of S, for the two washed 

coals are roughly equal (2.02 vs. 4.69 m2/g). Rather, in the case of those experi- 

ments conducted with the C C 4  solvent, the extent of the loss in 5':' is not as 

great as when H20 was the solvent. In this case, it is obvious that the 

Na2C03 (aq) wash leads to a substantial amount of pore blocking in the NOZ- 

treated coal. Furthermore, the results from the elemental analysis of the coal 

indicate that a substantial amount of displacement occurs during the 

NazC03 (aq) wash, particularly of CCl,. Indeed, it seems reasonable to expect 

that if CCI, is effectively trapped by the oxidized coal and cannot be removed by 

vacuum drying a t  1 2 0 ° ~ ,  then a more polar compound such as H20  should be 

even more effectively trapped in the washed coal. Coupled with the sodium 

uptake by the coal, the trapping of H20 in the coal can easily lead to a further 

loss in s,N2 and I$,. In fact, the lower values obtained for ST' when the coal is 

treated with NO2 in H20 than when CCZ, is the solvent are probably the result of 



the greater extent of trapping of H20 by the oxidized coal. 

In order to determine if the drastic loss in st2 affects the kinetics of the 

N 
NO2-coal reaction, the values of S, "t) can be correlated with an appropriate 

rate of reaction. For this system, the best rate to use is the global rate of NO2 

disappearance from the N02/CCl_l/coal system. For Runs 33-37, these rates can 

be obtained by a graphical differentiation of the plot of the bulk NO2 concentra- 

tion vs. reaction time (Figure 4-8). The results are presented in Table 4-7 and 

Figure 4-177. Table 4-7 contains not only the absolute values of r, the global 

T rate of NO2 disappearance, but also the values of -7 where ro is the initial rate, 
T o  

s? 
which can be compared with the varues of , as well, Figure 4-177 illus- 

cs,".,o 

trates this comparison graphically. 

An examination of the table reveals that while S? is relatively constant after 

30 minutes, r continues to decline. The value of r after 30 minutes is relatively 

small, however, compared to the initial rate, ro, as Figure 4-177 so amply 

demonstrates. Indeed, the figure clearly shows that the correlation between the 

T 
rate and the surface area is quite good, despite the fact that -approaches 

To 

s? 
zero asymptotically while levels off a t  roughly 0.3. Both curves simply 

cs30 

indicate that the reaction and loss in S? are essentially complete within the 

first 30 minutes of NO2 exposure. 

T The good correlation of - with 
s> 

is not really surprising. As men- 
T o  cs.".,, 

tioned in the earlier discussion concerning the time dependence of the bulk NO2 

concentration during the reaction, it appears that NOz is diffusing into the solid 

coal matrix. Furthermore, this solid diffusion process is rate limiting during the 
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first 30 minutes of the reaction. Thus, the global rate of NO2 disappearance is 

proportional to the total flux of NO2 into the coal particle. This total flux, in 

turn, is proportional to the amount of surface area available to the NOz for 

diffusion into the particle. Consequently, r should be proportional to sta, which 

Figure 4-177 clearly demonstrates. 

A similar comparison of the change in S? with the rate of change in the 

nitrogen content of the coal during the NO2 treatment, r ~ ,  can be made. The 

results of a graphical differentiation of the curve in Figure 4-64 which pertains 

to the net increase in the nitrogen content of the coal, n z ~ ,  given in Table 4-7. A 

s',? 
plot of and - TN is shown in Figure 4-178. The results are quite similar 

(s!?), ( r ~ ) o  

to those obtained using the global rate of NO2 disappearance, namely a good 

correlation of S? with the rate, in Lhis case T N .  Of course, the same explana- 

tion given for the correlation of s:' with r applies in this instance as well. 

It should be obvious that there is no correlation of SF' with either r  or r ~ ,  

simply because S:02 irlareases while the reaction rates decrease during the 

course of the reaction. Indeed, this fact provides further evidence that S? is 

probably a measure of the permeability of the coal to C 0 2  as well as the surface 

area of the coal. Apparently the permeability of the coal to COz is altered by nei- 

ther the NOz treatment nor the subsequent Na2C03 (aq) wash. This latter fact is 

amply demonstrated by the value of SF obtained for Run 36C of 193.3 rn2/g. 

which is essentially equal to the value obtained for Run 36 of 187.7 m2/g. These 

N 
results are in stask contrast to those obtained for S, 2, which clearly show that 

the accessibility of the coal to N2 after the wash is almost totally restricted. 

Consequently, it appears that it is better to use the nitrogen determined surface 

area for describing the kinetics of the NOz-coal reaction. 
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CO 
Similar results were obtained when variations in 5'3 and Sa for the PSOC 

190 treated with NO2 in CCL4 a t  0°C (Runs 42-46) in the batch reactor were 

co2 examined as a function of NO2-exposure time The values of 5'3 and Sa . as 

well as 5, for the coals from these runs are tabulated in Table 4-8. An exami- 

iir 
nation of the table reveals that S, follows the same trend at O°C as at 20°C, 

namely that virtually all of the ultimate loss in surface area occurs within the 

first 30 minutes. In fact, the decrease in both sf2 and V, is slightly greater in 

the coals treated a t  OOC than at 20°C. The most probable explanation for this 

behavior is that the coal surface has a higher propensity for NO2 adsorption at 

the lower temperature, which would result in a slightly higher NO2 concentration 

at the coal surface. Consequently, slightly more pore blocking should occur a t  

CO 
O^C than at 20°C. As before, the values of Sa ' tend to remain invariant or 

increase moderately as well, which implies that the NO2 treatment at Oc does 

not alter the permeability of the coal to COz. 

V a  A comparison of with the relative global rate of NOz disappearance 
CS."~,, 

T 
from the N021CC14/coal system, -, and with the relative rate of nitrogen 

To 

TN , can be made for Runs 42-46 just as for Runs 33-37. uptake by the coal, - 
(TN)O 

Utilization of the same procedure yields the values tabulated in Table 4-9. It is 

interesting to note that the initial rate of NOz disappearance, T O ,  is roughly 30 % 

higher a t  0% than at 20'~. After 30 minutes, however, the rate a t  0% becomes 

smaller than that at  20'~. 

S> r .  
The correlation between and -1s shown graphically in Figure 4-179. 

L S ~ O  TO 

Once again, the correlation is quite good, mainly because both the reaction and 
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the loss in surface area are essentially complete within the initial 30 minutes of 

NOz exposure. Nevertheless, the argument invoked in the previous discussion 

N 
stating that r should be proportional to SaZ because the flux of NOz into the 

solid coal matrix, which is the slow step in the overall process, is proportional to 

sfz, applies in this case as well. A comparison of the change in  S? with the 

rate of nitrogen uptake by the coal, r ~ ,  can be made as well for Runs 42-46. 

Table 4-9 contains the values of r~ obtained from the numerical differentiation 

of the curve in Figure 4-66 which pertains to the nitrogen content of the NO2- 

treated coal. The correlation between 
s'? 

and - rH is illustrated in Figure 
CS.".,~, (TN)O 

4-180. Once again, the two curves display parallel behavior, which indicates 

that the correlation is quite good, as expected in view of the previous discussion. 

The effect of the initial NO, concentration, (NOz)o, on the surface area and 

pore volume of the coal can be deduced from the results presented in Table 

4-10. An examination of the table reveals a weak dependence of 5':' on (N02)0. 

In particular, 120 minutes of exposure to NO2 at  the lowest concentration used 

results in a 61 % loss in the nitrogen-determined surface area. When (NOz)0 was 

at  the highest concentration used. the loss in s,N' amounted to 80 %. Thus, a 

discernible dependence of the loss in sZz on (NOz)o is evident, although expo- 

sure of the coal to very small concentrations of NOz results in most of the 

nitrogen-determined surface-area loss. This conclusion is in accord with previ- 

ous results, all of which indicate the facile and rapid reaction of NO2 with the 

PSDC 190 coal at  20%. The change in V, follows that in 33, although not as 

drastically. In particular, 5 drops by only 43 % when (NO& = 0.1 F, but by 62 % 

when (NO& = 1.9 F. Thus, the ratio of surface area to total pore volume 

decreases as (NO& increases, just as it does when the exposure time increases. 

This effect is due to the preferential blocking of pores with small diameters. 
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TABLE 4-10 
' ~ i t r o ~ e n  Determined Surface Area and Pore Volume of PSOC 190 coal! 

I (+ZOO-325 mesh) Treated with NO2 in CC14 in the Batch 
i Reactor at 20 C for 120 Minutes * 1 I 
I Run # I s.". v 8 1 (F) I (m2ig) (m2/g) 1 (cm / g )  ' e 
Washed & Dried 0 58,06 

38 1 0.0972 22.68 
39 / 0.4877 18.76 
36 1 1.0872 17.04 
40 i 1.7127 1 14.10 

165.5 1 0.00284 
180.2 i 0.04749 
170.1 0.03898 
187.7 1 0.03319 
192.3 0,03043 

41 150.7 1.0743 1 11.70 0.03151 



These pores contribute greatly to  the total surface area but not as greatly to the 

total pore volume. Nevertheless, the majority of the loss in both sfz and V, 

occurs just upon exposure of the coal to NOz, even a t  small concentrations. 

CO 
The change in S, due to the NOz treatment, on the other hand, is somewhat 

minimal and random. These values are consistent, however, with the other 

CO 
values of S, discussed previously. Extending the previously invoked argument 

regarding COZ adsorption, the concentration of NOz during the treatment also 

does not affect the permeability of the coal to C02. Consequently, exposure of 

the coal to NOz does not affect the C02 adsorption yet adversely affects the N2 

I? 
adsorption. Because the rate data correlates quite well with S, 2, but not with 

sFz, nitrogen should be used as the adsorbate for acquisition of structural data 

for kinetic studies of the NOz-coal reaction, 

Finally, nitrogen adsorption studies were attempted with the treated PSOC 

276 coal (Runs 47-52). Unfortunately, the amount of nitrogen adsorbed by 

these samples was too low to obtain an accurate adsorption-desorption isoth- 

erm. Nevertheless, values of 3":' and I$ were obtained for the raw PSOC 276 

(Run 47) and the sample exposed to NO2 for 100 minutes (Run 52). The values 

obtained are listed with the corresponding values for the treated PSOC 190 coal 

in Table 4-11. It should be immediately obvious that the PSOC 276 coal has an 

initial value of sfz which is much smaller than that of the PSOC 190 coal. The 

relative change in sf2 of the PSOC 276 coal due to NOz treatment, however, is 

much smaller. In particular, whereas the PSOC 190 coal suffers a 73 % loss in 

N 
S, after 100 minutes of NOz treatment, the PSOC 276 coal only suffers a 30 % 

loss in SP after 180 minutes. Of course. the PSOC 276 possesses less surface 

area to potentially lose in the first place, so this result is not surprising. 



TABU3 4-1 1 
Surf ace Area and Pore Volume of PSOC 190 and PSOC 276 Coals 

(+200-325 mesh) Treated with NOz in C C 4  in the 
1 

Batch Reactor a t  20 C for 120 Minutes 
I 

Run # / Coal Type I NOz Exposure s:' SF 
1 (PSOC #) j Time (min) (m2/g) I (m2/g) 

Washed & Dried 0 58.06 1 165.5 / 0.08284' 
37 180 15.60 

Washed & Dried 
52 

203,2 0.03270 
192.9 0.02091 
143.9 

276 0 0.60 
0.01423 6.01 276 180 



Of greater interest, however, is the effect the difference in S? of the two 

types of coal have on the global rate of NO2 disappearance from the system and 

on the rate of nitrogen uptake by the coal. Table 4-12 contains the values for T 

and r~ of the PSOC 276 at f = 0 and t = 180 minutes. The values of r and rN for 

the PSOC 276 were obtained by a graphical differentiation of the curves in Figure 

4-1 1 and Figure 4-74, respectively. Of greatest interest are the initial rates. In 

the case of the global rate of NO2 disappearance, the rate when the PSOC 276 is 

used is only 48 % of that when the PSOC 190 is used. The PSOC 190, however, ini- 

tially has 6.8 times as rnuch surface area as the PSOC 276. Hence, the surface 

area would seem to have a discernible, but seemingly mild effect on the initial 

rate of NOz disappearance from the system. Because the surface area of the 

PSOC 190 drops much more rapidly than that of the PSOC 276 during the initial 

stages of the NOz treatment, however, the surface areas of the two coals differ 

N 
by a factor of only 3 after just 30 minutes of NOz exposure. Indeed, if S, * for 

the PSOC 190 instantaneously drops upon exposure to NO2, then the difference 

in the rates of NOz disappearance correlate much better with respective 

nitrogen-determined surface areas of the two coals. A t  t = 180 minutes, the rate 

when the PSOC 276 is used is now 84 % of that when the PSOC 190 is used, which 

lmplies that the reaction of NO2 in both cases is nearly complete within 180 

minutes. 

An examination of the values of r, reveals a similar trend as well. For 

instance, the initial value of r~ for the PSOC 276 coal is 53 % of that of the PSOC 

190 coal, which is in good agreement with the initial values of r .  The best corn- 

parison of the rates of nitrogen uptake by the two coals is provided by the ratio 

of their respective rate constants, because both coals have the same initial 

capacity for nitrogen uptake and they were treated under identical conditions. 

The ratio of the rate constants is 2.6, which is exactly the same as their N2- 



TABLE 4-12 



determined surface areas a t  t = 180 minutes. Consequently, the proportional 

dependence of the rate of nitrogen uptake by the coal on is clearly esta- 

blished. This dependence is explained by the fact that both of these rates 

appear to be limited by the rate of diffusion of NO2 into the solid coal matrix. 

The total rate of diffusion in turn depends upon the total accessible interfacial 

area between the solid coal matrix and the rest of the NOz/CC4/coal system. 

This interfacial area seems to be well represented by the nitrogen determined 

surface area of the coal. 

4.3.3.4.2 Changes in the Pore Size Distribution Due to Treatment of the Coal with 

Nitrogen Dioxide 

Treatment of the coal with NO2 results not only in a reduction in surface area 

and pore volume, but in the alteration of the pore size distributior~ as well. In 

particular, the exposure of the coal to NOz causes any predominant peaks in the 

distribution to become greatly diminished in magnitude, as evidenced by the 

previous discussion of Runs 7-11. Furthermore, the peaks may be shifted to 

higher or lower values of the pore radius, r,, depending upon the predominant 

physical forces during the treatment. For instance, if  material is etched from 

the pore walls, the peaks should be shifted to higher values of T,. If material is 

adsorbed on the pore walls, on the other hand, the peaks could disappear 

entirely or show a shift to lower values of r,. 

In the case of the PSOC 190 coal, there is only one predominant peak in the 

distribution in the range of radii from 15 to 200 A, which occurs at  a value of r, 

of 18.3 in the washed and dried coal. Figure 4-181 contains a composite of 

the pore size distributions obtained for samples of the PSOC 190 coal treated 

with NO2 in CCl, at  2 0 ' ~  in the batch reactor (Runs 33-37). Once again, log 

(dV/dr) is plotted in the range of 5 from 10 to 1000 A for the sake of clarity. 





The figure shows that exposure of the coal to NOz results in a reduction in the 

main peak at 18.3 A. In particular, after 30 minutes of NOz treatment, the peak 

height has decreased by 52 % and the position of the maximum has shifted to 

18.9 A. After 120 minutes, the peak height is 58 % less than that of the raw coal 

and the peak maximum has shifted further to a value of 19 .4 i .  After 180 

minutes, the decrease in the peak height amounts to 69 % of that of the raw 

coal, but the position of the maximum is now a t  18.0 A. The range of variation 

in the value of r, for the peak maximum is so small, however, that it may be 

attributed to fluctuations in the data, rather than to some specific physical pro- 

cess. The decrease in peak height 1s due most probably, then, to pore blocking 

by adsorption of NOZ and/or CC1,. It is interesting to note that the decline in 

peak height is not as severe in this case as in the previous case where HzO was 

used as the solvent. The difference, however, may be attributed to the fact that 

the concentration of the oxidizing species in the water runs was much higher 

than when CC14 was used as the solvent. 

The temperature of the NOz treatment does not seem to affect the degree to 

which the pore size distribution is changed to any significant extent, as evi- 

denced by Figure 4-182, which contains a composite of the distributions 

obtained from samples of PSOC 190 coal treated at  02 (Runs 42-46), In partic- 

ular, the decline in the peak height is slightly greater a t  0 k  than a t  20O~. For 

instance, after 30 minutes of NOz treatment, the peak height is 44 % of that of 

the untreated coal. The position of the maximum has been shfted to 19.3 i. 
Interestingly, after an additional 30 minutes of NOz treatment, there is essen- 

tially no change in the peak height or position. After 120 minutes of NO2 treat- 

ment, the peak height has declined to 30 % of that of the untreated coal, while 

the position of the maximum has sbfted back to 18.5 A. Once again, the shift in 

the peak position is small enough so that it can be attributed to the fluctuations 
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in the data. Nevertheless, the data indicate that the loss in peak height is 

slightly greater a t  OdC than a t  ~o 'c ,  which is consistent with the greater decline 

in sf2 a t  0-C. This increase in the loss of pore volume as the temperature 

decreases can be accounted for by the increased adsorption of NO2 by the coal 

at  the lower temperature of O'C. 

The effect of the initial NOz concentration, (NOz)o, on the pore size distribu- 

tion is just what might be expected based on the previous discussion of this set 

of experiments (Runs 38-41), in which the coal was treated for 120 minutes with 

NO, a t  20°c. A composite of the pore size distributions obtained from samples of 

the coal from these runs is shown in Figure 4-183. An examination of the figure 

reveals that the height of the predominant peak a t  18.3 decreases as (NOZ)~ 

increases, which is expected due to the increased extent of the NOz-coal reaction 

as   NO^)^ increases. In particular, the peak height declines by 38 % a t  the lowest 

initial NOz concentration used, namely 0.097 F. At the next highest concentra- 

tion, 0,488 F, the peak height declines to only 39 % of that of the untreated coal. 

As (NOz)o increases further, the rate of decline in the peak height diminishes. 

For instance, when (NOz)0 = 1.713 F, the peak height decreases to 28 % of that of 

the initially untreated coal. Hence, exposure of the coal to even small amounts 

of NOz results in a significant decrease in the height of the distribution peak. 

This conclusion, of course, is consistent with previously discussed data which 

indicate the facile and rapid attack of coal by NOz. Finally, it should be noted 

that although the figure seems to indicate a shift in position of the peak max- 

imum as (NOz)o increases, the change is too small to be attributed to any physi- 

cal process. Rather, the shift can be ascribed to the fluctuations in the 

adsorption-desorption data, the numerical differentiation of which pelds the 

pore size distribution. 





4.3.3.4.3 Changes in the Hicropore Size Distribution Due to Treatment of the Coal with 

Nitrogen Dioxide 

Appendix A contains the the micropore size distribution of the coals used in 

CO 
the COz adsorption studies, namely Runs 33-46. Because the values of S, did 

not change appreciably during the NOz treatment, the micropore size distribu- 

tions did not change significantly either, The values of the peak height, 

(F)mx, and the position of the peak maximum, T,.. can be found in Table 

4-13, An examination of the table quickly reveals that neither the peak height 

nor the position of the maximum has been altered by the NO2 treatment. These 

results are consistent with previously discussed data which indicate that expo- 

sure to NO2 does not alter the adsorption of COz on the coal to a discernible 

extent. The fact that the COz-determined micropore size distributions do not 

change despite the significant chemical alterations introduced into the coal by 

the NO2 treatment provides compelling evidence which suggests that C02 may be 

an inappropriate adsorbate for determining the structural properties of the 

coal for use in the kinetic study of the NOz-coal reaction. 

One very interesting feature of the C02  adsorption is revealed by the COz- 

determined distributions, however. Recalling that Nz should not penetrate pores 

with radii less than about 5 while C 0 2  should easily penetrate 4 pores, it 

seems reasonable to expect that the large difference in and SF' should 

resuIt in a substantial portion of the micropore size distribution being in the 
0 

range of pore radii less than 5 A. An examination of the distributions, however, 

reveals that virtually all of the C02-determined micropore volume resides in 

pores with radii greater than 5 A. One of two explanations is possible for this 

dichotomy, 

One possible explanation for the difference between the predicted and actual 
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results resides in the theory used to determine the distribution. In short, the 

problem is that the position of the maximum is too high. Differentiation of 

equation (2.4.40) reveals that the position of the maximum is proportional to 

1 - 
k 3 ,  where k is a function of the pore environment. Although the value used for 

k may be in error, it is not likely it is sufficiently in error to cause a shift in the 

position of the maximum so f a r  beyond 5 A. For instance, to shift the position 

of the maximum from 4.5 to 6.5 A, k would have to be in error by a factor of 3, 

which is not likely. 

A more plausible explanation for the dichotomy is that which has been stated 

before, namely that COz is not just adsorbed on the surface of the coal as is NZ. 

Rather, the COz actually penetrates into the solid coal matrix. Consequently, 

CO, 
the values determined for S, correspond not only to the surface area, but pri- 

marily to the permeability of the coal to COz. Hence, C 0 2  should not be used as 

the adsorbate for the determination of the structural parameters of the coal for 

the kinetic study of the NOz-coal reaction. 



4.4 The Carre1ation of the Mathematical Hodel of the Reaction System with the Data 

As mentioned in the introduction to this section, it would be fruitful to deter- 

mine if the data can be correlated with a model which describes the various 

phenomena which take place in the NOz/coal system. In particular, knowledge 

of the relationship between diffusion and kinetic effects is helpful in predicting 

the behavior of other coals when exposed to  NO2. For instance, if the global rate 

of the NOz-coal reaction has a strong dependence on the specific surface area 

and pore volume, some coals may require longer exposure times than other 

coals to achieve the same extent of reaction. 

Because it was possible to obtain rate constants for the rates of reaction of 

some of the coal species, namely H, N and 0, the model can be used to obtain an 

estimate of the diffusion coefficient of NO2 through the solid coal. Unfor- 

tunately, the data for the conversions of hydrogen, sulfur, nitrogen and oxygen 

do not A t  the set of reactions proposed in section 2.5, namely 

k, 
6 NO2 (sol) + FeSz (s ) -+ FeS04 (s ) + SO2 (sol) + 6 NO (sol) , (2.5.14a) 

k2 
2 NOz ( s o l )  + Sow (s) -* ( S O Z ) ~  (sol) + 2 NO (sol) , f2.5.14b) 

k4 
(CH), (s) + NO2 (sol) + (C-OH), (s) + NO (sol) , (2.5.14d) 

k 5 
(CH), ( s )  + 2 NO2 (sol) -+ (C-NO2), ( s )  + HNOz (sol). (2.5.14e) 

where "sol" implies the species is solvated, "ali" refers to aliphatic, "ar" refers to 

aromatic and "org" refers to organic. In particular, using the scheme outlined in 

section 2.5, the extent of reaction (2.5.14~) was almost always determined to be 



negative. Because the hydrogen data are  frequently quite scattered, the extent 

of reaction (2.5.14d) was also negative a t  times. Furthermore, it is not possible 

to determine the actual extent of the oxidation of sulfur from the analysis of 

the coal because it does not correlate a t  all with the residual sulfur content of 

the treated coal. Indeed, there is no indication that the organic sulfur reacts 

with NOZ at  all, because most of the desulfurization is achieved indirectly. 

Nevertheless, the extent of reaction (2.5.14e) is easily determined from the 

nitrogen content of the treated coal as a function of NOZ-exposure time. For- 

tunately, it is just this reaction which will allow the determination of an estl- 

mate for the diffusion coefficient of NO2 through the solid coal. It should be 

noted that although reaction (2.5,14e) is a convenient mnemonic device for dis- 

cussing the uptake of nitrogen by the coal, there is no unequivocal evidence in 

this study which indicates that this reaction indeed occurs. In fact, it  seems 

much more reasonable to expect that much of the nitrogen uptake by the coal 

is in the form of NO2 absorbed by the solid matrix. In any case, because the rate 

constant for nitrogen uptake has already been determined, the value of the 

diffusion coefficient used in the model can be varied until the observed values of 

the net nitrogen mass increase match those predicted by the model as closely as 

possible. 

4.4.1 The Determination of Important Input Parameters for the Model 

As mentioned above, the value of the rate constant for the rate of nitrogen 

uptake by the coal has already been determined. The other important 

parameter which is needed for the model is the thickness of the slabs, 2L, which 

comprise the solid coal in the idealized particle structure depicted in Figure 

2-2. The value of 2L is established by the values of the specific surface area, 

N 
S, 2, the pore volume, I$, and by the geometry of the particle. In this case, the 



values obtained for these parameters employing nitrogen as the adsorbate are 

used. The value of 2L is determined as follows using one gram of coal as the 

basis: 

1 .  The coal is assumed to have a constant density, p. 

2 .  The void fraction, c, of the coal is given by pVp. Hence, the solid fraction 

of the coal, cS,  is given by 1-c. 

3. The particle is assumed to be a cube, so that the length of one side of the 

1 -- 
cube is p a for one gram of coal, 

4 .  The width of one slab, c,z, and adjacent void, E Z ~ ,  is x ,  and the particle con- 

sists of n slabs. 

2 -- 1 -- 
3 5. The surface area of one slab, s,  is 2p + 4p c,z. 

2 -- 1 .  -- 
6. The total surface area, S,, is equal to ns; ire., Sa = n ( 2 p  + 4p csx ) .  

7. The total length encompassed by the n slabs and n-1 voids is 

1 
1 -- -- -P"  n;c - EX a nx. This distance is also equal t o p  '. Hence, z - 

n 

2 2 
I - -- 

3 8.Thenumber of slabsisgivenbyn = p3 [S. - 4 p  8.1. 

2 -- 
9. Hence, the slab width is given by 2L = c S z  = %sa - 4p c,]-'. 

P 

For the PSOC 190 coal. the values used are S> = 58.06 m2/g. Vp = 0.08284 

cm3/g and p = 1.25 g/cm3. These quantities yield a value of 2.474 x lo-@ cm for 

ZL. For the PSOC 276 coal, the values used are 32 = 8.60 m2/g. V, = 0.02091 

cm3/g and p = 1.25 g/cm3, which give a value of 1.889 x10-"or 2L. It is 

interesting to note that the value of 2L for the PSOC 276 coal is a factor of 7.6 

greater than that of the PSOC 190 coal, which is due to the smaller surface area 

and pore volume of the PSOC 276 coal. The other important parameters are 

determined directly from the data and are shown in Table 4-14. It should be 
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noted that three sets of runs are tested with the model, namely Runs 33-37 

(PSOC 190 coal a t  20"C), Runs 42-46 (PSOC 190 coal a t  OuC) and Runs 47-52 

(PSOC 2'76 coal a t  20°C). 

Finally, it is necessary to determine a value for 6 ,  the solid void fraction (as 

opposed to E ,  the particle void fraction). This value cannot be determined from 

the data obtained. Since only an estimate of the coefficient of diffusion of NOz 

into the solid matrix of the coal is needed, a value of 0.1 for E' seems reasonable 

in view of the extent of nitrogen and oxygen uptake by the coal. Although it 

would be expected that 6 is a function of time if NO2 absorption occurs (i.e., the 

NOz creates its own void space as it diffuses into the solid), a constant value of 

0.1 is used for the sake of simplicity. A value for E' is necessary so that the final 

NOZ concentration in the solid coal matrix does not equal the bulk solvent NO2 

concentration, which is of course impossible. 

4.4.2 Comparison of the Pseudo-Steady-State and Time-Dependent Solutions of the 

Modellbg Equations 

In order to establish the validity of the criterion in equation (2.5.11) which 

determines whether it is admissible to use the pseudo-steady-state approxima- 

tion in the mathematical modelling of the system, the solutions obtained using 

the pseudo-steady-state and time-dependent equations can be compared. Using 

the values of 0.001 mol/cm3, 0.0035 mo1/cm3 and 0.1 for cNOz(t  =O), c N ( t  =0) and 

i, respectively, the value obtained for X is 0.12, which is certainly not < < 1. 

Hence, the criterion predicts a significant deviation of the two solutions. 

Both the pseudo-steady-state and time-dependent solutions were actually 

obtained for the conditions mentioned above. In both cases, the bulk NOz conc- 

entration was taken to be constant a t  0.001 mol/cm3. A preliminary compari- 

son of the sets of equations used a value of 0.0001 cm for L, which is on the 



order of the particle size and about 80 times larger than the value of L deter- 

mined for the raw PSOC 190 coal. The pseudo-steady-state equations are the 
A 

ac same as equations (2.5.12) and (2.5.13), except that the &' -term is set equal 
at 

to zero. Using the procedure outlined by wena in conjunction with the pore 

geometry assumed in this study, the solution is: 

t (F)  = t, + n F  a F rpF .$'(F) -[-- I ]  +k+[ - 1 I (4.4.1) 
akco De De 2 #(F) 

for t s  t, , and 

F $ ( F )  z (F )  = -- 
PLCIF) 

for t k  t ,  , and 

t (x )  = cosh(yx) - tanh(qL)sinh(px) , and 

e f x )  = sinh(px) - tanh(pL)cosh(px) , where 

t = the reaction time (s), 

1 t ,  = - = the time at which the solid conversion a t  x =O is unity, 
akc 

a = the stoichiometric coefficient for the reaction between NO2 

and the coal, which in this case is taken as unity, 

co = the NO2 concentration in the bulk solvent (mol/cm3) , 

k = the reaction rate constant (cms/mol/s) , 

De = the effective diffusivity of NO2 through the unreacted 

and partially reacted portion of the coal (cm2/s), 

Di = the effective diffusivity of NO2 through the completely reacted 

portion of the coal (cm2/s), 

F = the position of the boundary between the completely reacted and 

partially reacted portions of the coal ( F = O  for O i  t l  t,), 



akcxO ) ' = a Thiele modulus (am-'). ul = (4 

cxo = the initial solid substrate concentration (mol/cm3), 

2L = the thickness of the coal slab (cm), and 

= AsL %a, = the solid substrate conversion. 
L O Cxo 

For purposes of comparison, De = D; in this study since the time-dependent 
A 

equations only accommodate one solid diffusivity, namely D,. The pseudo- 

steady-state solution evolves in such a way that the position of the front, F', is a 

transcendental function of time, t. Consequently, a position for the front is 

chosen, which determines the time. The solid conversion, z ,  is also a function of 

F when t r  t,, as expressed by equation (4.4.3). When t s  t,, z is a function of t ,  

as expressed by equation (4.4.2). 

A graphical comparison of the solutions of the two sets of equations is pro- 

vided in Figures 4-184, 4-185 and 4-186 for three different values of the 

diffusion coefficient, namely lo-', 10 -lo and lo-" cm2/s. This range of values 

of De is common for the diffusion of small gas molecules in polymers.' 

An examination of Figure 4-184 reveals that if De = cm2/s, the pseudo- 

steady-state solution predicts a linear rise in z as t increases. Complete solid 

conversion occurs at  about 84 minutes, The linear nature of the curve is due to 

the fact that t, = 83.3 minutes, Hence, equation (4.4.2) applies when t <  83.3 

minutes. An examination of equation (4.4.2) reveals that z is a linear function 

of t ,  which arises from the fact that diffusion is occurring in only one direction 

in rectangular coordinates. A solution of the time-dependent equations, how- 

ever, yields a greatly different set of values of z ,  as evidenced by the upper curve 

in Figure 4-184. In particular, z rises much more rapidly, reaching a value of 

0.84 within 17 minutes. A t  later times, z increases more slowly, reaching a value 





of unity within 67 minutes. Therefore, it is obvious that the time-dependent 

equations must be solved under these conditions. 

Figure 4-185 contains the values of z obtained from the solution of the two 

sets of equations with D, = lo-'' cm2/s, The results are quite similar to those 

obtained in the previous case, although the conversion predicted by the time- 

dependent equations does not rise quite as rapidly as when D, = 10% cm2/s, 

Hardly any change in z predicted by the pseudo-steady-state equations is discer- 

nible, however, when D, = lo-'' cm2/s. In reality, however, these values are 

slightly lower (fil 2 Z) than when D, = lo-' cm2/s. One would expect z to 

increase at a slower rate as Dl decreases simply because the rate of reaction 

depends on C N O ~ .  The two models predict a different degree to which z is 

changed by a decrease in DL, however. In any case, the time-dependent equa- 

tions must be used under these reaction conditions as well. 

If D,' is decreased further to 10-l1 cm2/s, the conversion predicted by the two 

sets of equations is that depicted by Figure 4-186. In contrast to the two previ- 

ous figures, z determined by the solution of the pseudo-steady-state equations 

rises more rapidly than z determined by the solution of the time-dependent 

equations. In fact, the two curves almost coincide until t reaches about 35 

minutes, at which time the two curves diverge. The conversion curve derived 

from the pseudo-steady-state equations continues to increase linearly until 

t=t,=83.3 minutes, a t  which time z=O.BlS. At this point, the front between the 

completely reacted and unreacted zones begins to move, which results in the 

deviation of z from a linear dependence on t .  The conversion curve derived from 

the time-dependent equations, on the other hand, rises much more slowly, as 

indicated by the lower curve in the figure. In particular, the pseudo-steady-state 

equations predict that the solid will have completely reacted when t = 112.5 

minutes, while the time-dependent equations predict that it will take about 350 



C O M P R R I  SON O F  THE PSEUDO-STERDY - S T R T E  RND T I M E  - 

T I H R l  

b - PSEUW-STERDY -STCITE SOLUTIOH 
O - FULL TIIIE-OEPENOEIT SOLUTION 

0; = 10-lo cn2/s 



COMPRRISON OF THE PSEUDO-STERDY -STflTE RND TIME-  



minutes to achieve complete conversion. 

In view of the results obtained with the two sets of equations, it is obvious 

that the full time-dependent equations should be used for modelling the 

N02/coal system under the reaction conditions employed. It should be noted 

that although the value used for L in the study just discussed is about 100 times 

greater than the value of L determined for the PSOC 190 coal, the results 

obtained are still applicable because in both sets of equations, t is contained in 

D; the equations only as - 
L 2  ' 

Consequently, the values obtained for z with 

De = lo-'' cm2/s and L = 10" cm are the same as those that would be obtained 

for z with De = lo-'* cm2/s and L = lo-' cm. Thus, even though the value of L 

used in this comparison of the pseudo-steady-state and time-dependent equa- 

tions is much larger than the actual value of l, which pertains to the PSOC 190 

coal, the conclusion is still valid, namely the full time-dependent equations must 

be solved. This result is consistent, then, with the criterion established by Wen 

which was discussed a t  the beginning of this section. 

4.4.3 Comparison of the Predicted Nitrogen Conversion in the Coal with the Actual Data 

As mentioned previously, the actually observed data were not consistent with 

the set of five proposed NO2-coal reactions. Furthermore, the data for hydrogen 

loss and oxygen uptake in the coal contained quite a bit of scatter, Conse- 

quently, the only data which can be compared with the model with any 

confidence are those of the nitrogen uptake by the coal. Since each of the pro- 

posed reactions is independent of the others except for their possible depen- 

dence on the NO2 concentration, however, only the nitrogen uptake reaction 

needs to be used in the model to obtain an order of magnitude estimate for the 

diffusion coefficient of NO2 in the solid coal matrix. Consequently, the nitrogen 

uptake data for the PSOC 190 coal treated with NO2 in CCI, at  0 and 20t as well 



as that for the PSOC 276 coal treated with NOz in CCl, at 20°C are compared with 

the predictions of the model to arrive at an estimate for the diffusion 

coefficient. 

The flrst set of reactions to be examined was that of the PSOC 190 treated 

with NO2 in C C 4  at 20°C (Runs 33-37). Using the values for the model 

parameters shown in Table 4-14, three different values for the diffusion 

coefficient, namely 10-14, 10-l5 and lo-'' cm2/s, were employed in solving the 

model equations. The results are shown in Figure 4-187, where the nitrogen 

conversion in the coal, z ,  is displayed as a function of reaction time. The 

nitrogen conversion is simply the normalized nitrogen uptake by the coal. The 

actually observed data are also shown in the figure as the dashed curve. Exami- 

nation of the figure reveals that the actual data coincide most closely with the 

model curve generated by using a value of 10-l5 cm2/s for the diffusion 

coefficient. Indeed, the slight difference in shape between these two curves may 

be due to the fact that the model assumes a constant NOZ concentration, co,  in 

the bulk CCl, of 1.0 F while in reality the concentration drops from 1.1 to 0.7 F 

during the course of the reaction. If this change in co could be incorporated 

into the model, the shape of the predicted conversion curve would more closely 

resemble that obtained from the real data, mainly because as co drops, the flux 

of NO2 into the coal drops, which would result in less nitrogen uptake by the 

coal. In any event, it appears that a good estimate for the diffusion coefficient 

of NOz in the solid coal matrix as obtained by the model is 10-l5 cm2/s. 

Although this value is several orders of magnitude less than that obtained for 

the diffusion of gases such as N2, 02, CO and C02 in polymers (on the order of 

lo-' to 10-lo ~rn ' /s)~,  it is not that unreasonable. After all, if there were no 

solid penetration, the diffusion coefficient would be zero. Hence, the value 

obtained indicates that penetration of the solid coal does not occur as easily as 
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it might in a synthesized polymer. This difference in permeabilities may be 

attributed to two factors. First, the coal matrix may not be as flexible as that of 

a polymer in terms of NO2 penetration. Secondly, the very nature of the NOz 

molecule may inhibit its ability to diffuse into coal and polymers as easily as 

other gases such as N2, CO or C02. Consequently, a comparison of the value for 

the NO2 diffusion coefficient in coal obtained in this study with those obtained 

for other gases in polymers may possess its own inherent faults. Indeed, a com- 

parison of the COz adsorption studies with the nitrogen uptake results indicates 

that COz does penetrate the coal much more easily than NOz, provided the COz- 

absorption theory previously postulated is true. 

The values of the average dimensionless NO2 concentration in the solid coal 

matrix, c/co, as predicted by the model are presented in Figure 4-188. The 

three curves shown correspond to the three curves in the previous figure. The 

values of c/co were obtained by integrating the NO2 concentration over the slab, 

that is: 

L = the slab thickness (cnr), 

* = the dimensionless NO, concentration at x ,  
C 0 

Ci - = the dimensionless NOZ concentration at point i in the slab, and 
C 0 

N = the total number of grid points in the slab. 

It is interesting to note that the range of diffusion coefficients examined with 

the model f 10-l4 to lo-'' cm2/s) produce curves for c/co which cover the spec- 

trum from very rapid attainment of a uniform NO2 concentration in the coal 

slab (10-l4 cm2/s) to incomplete attainment of a uniform NO2 concentration in 





the coal slab (10-'' cm2/s) within the maximum reaction time of 180 minutes 

used in this study. I t  is also interesting to note that the middle curve, which 

corresponds to the value of the diffusion coefficient, D, which best matches the 

actual data of cm2/s, has a distinct sigmoidal shape. This shape is the 

result of the fact that the nitrogen conversion in the coal slab reaches unity 

before the NO2 concentration in the slab reaches its maximum. As the rate of 

reaction decreases, then, the rate of increase in c/co increases, resulting in the 

sigmoidal shape observed. It should be noted that the model assumes that all of 

the NOz in the coal slab relating to c / c o  is removed by the vacuum drying so 

that the only nitrogen left in the coal is that which has 'Ireacted", as indicated by 

z .  If this is not the case, however, then the diffusion coefficient which best 

correlates with the data would not be altered significantly from the value of 

10-l5 cm2/s, because the complete saturation of the coal with nitrogen 

represents a nitrogen concentration of 0.00348 mol/cm3 while a value of unity 

for c / c O  corresponds to a nitrogen concentration in the coal of only 0.0001 

mol/ cm3 (EC O ) .  Hence, inclusion of c / co  in the total nitrogen uptake by the coal 

would only change the values of z shown in Figure 4-191 by about 3 %, which is 

well within the other errors introduced into the model by the assumptions. 

The set of experiments in which the PSOC 190 coal was treated with NO2 in 

CCL a t  O<C (Runs 42-46) was examined as well, The parameters listed in Table 

4-14 which pertain to these runs were employed in the model simulation. In 

particular, all of the parameters were the same as in the previous set of runs, 

except the values of k (0.1'78 cm3/mol/s) and cxo (0.00320 mo1/cm3). The same 

three values of 101'*, 10-l5 and 10-l6 cm2/s were used for the diffusion 

coefficient. The results are shown in Figure 4-189, in which the normalized 

nitrogen uptake of the coal, z ,  is plotted as a function of reaction time. An 

examination of the figure quickly reveals that as in the previous case, the actual 



cu,-tl n,uaulu ur I nt rntuiL 1 t U  NITROGEN CONVERSION 

1.00 
I N  THE CORL WITH THE RCTURL DRTR FOR RUNS 42-46 

0.80 

0.60 a - o rn 10-f4 C H ~ / S  
o - o cn2/s 

i! A - 0 = 10'16 d/9 
3 - RCTUAL ORTA 

0.40 

I = a 178 C ~ ~ / H O L / S  
L 1.237 X l o 4  CH 

0.20 
8 = a10 
2 = NITROGEN CONVERSION I N  THE CORL 

P90C 190 COOL TREATED WITH NO2 I N  
CCL4 I N  THE BRTCH RERCTOR RT O C 

0.00 

RERCTION TIME [ M I N I  



data correlate quite well with the curve for z predicted by the model with D = 

10-l5 cm2/s. This result is not surprising because the difference in the data 

between the two temperatures of 0 and 20°c, while it is slight, is nevertheless 

accounted for by the change in the rate constants. At both temperatures, most 

of the reaction is complete within the first 30 minutes, which the model ade- 

quately predicts in both cases when D r 10- l~  cm2/s. The same arguments 

presented in the previous case regarding the discrepancy in the shapes of the 

conversion curves of the actual data and the model prediction apply in this case 

as well. 

The values of the average NO2 concentration in the solid coal matrix, c/co, 

which correspond to the values of z discussed above are shown graphically in 

Figure 4-190, Just as in the previous case, the curve generated by the model 

when D = 10-l5 cm2/s shows a sigmoidal shape. As before, this shape can be 

attributed to the fact that z reaches unity before c/co does. Consequently, as 

the rate decreases as z approaches unity, c/co should begin to increase at a 

greater rate, which leads to the sigmoidal shape observed. 

It is interesting to no te  that at  both 20 and O'C, the diffusion coefficient 

seems to be pretty much the same. Even though the difference in the absolute 

temperature is small, the effect on the diffusion coefficient can be substantial 

because the coefficient of diffusion in solids generally follows an exponential 

dependence on the temperature:@ 

E D = Do exp(--) , where 
RT 

(4.4.5) 

Do = a pre-exponential constant (cm2/s), 

E = an activation energy for diffusion (cal/mol), 

R = 1,9872 cal/mol/K, and 
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T = the temperature (K). 

Therefore, unless E is rather small (< 100 cal), the change in D from 20 to OeC 

~ 2 7 3 . K  
can exceed several percent. For instance, if E = 1000 cal. -= 0.88 and if 

p 7 3 "  
E = 10,000 cal. y= 0.28. There is no manner in which to independently esti- 

mate the activation energy for diffusion of NO2 into the coal, however. 

It should be noted, however, that a difference does exist in the values deter- 

mined for k a t  the two temperatures. Furthermore, these rate constants 

correspond to the global rate of nitrogen uptake by the coal. Consequently, if  

diffusion limitations affect the global rate, these effects would be incorporated 

into the rate constant. Indeed, it has already been established in the earlier 

section concerning the nitrogen uptake by the coal that diffusion does control 

the overall rate of NO2 disappearance during the first 15 to 30 minutes of the 

reaction, after which time the kinetics control the rate. Nevertheless, the rate 

ing to note that the rate constant, k, should obey an Arrhenius type of equation 

just like (4.4.5). Hence, if it is assumed that D is the same at both 273 and 

293°K and that k can be expressed as 

ET 
k = k o  exp(--) , where 

RT 
(4.4.6) 

ko  = a pre-exponential constant (cm3/mol/ s), 

E, = an activation energy for reaction (cal/mol), 

R = 1.9872 cal/mol/K, and 

T = the temperature (K), 

then the two values of k at  273 and 293% can be used to obtain values for ko 



and E,. Those values are ko = 12.6 cm3/mol/s and E, = 2,310 cal/mol. In fact, 

because k may include diffusional effects, it may be more appropriate to con- 

sider E, as an activation energy for diffusion and reaction. 

On the other hand, if it is assumed that the variation in the observed values 

of k are due solely to diffusional effects, then a value for the energy of activation 

for diffusion can be obtained. Using the theory of effectiveness factors, when 

1 
1 D -  diffusional resistances predominate, the rate is proportional to -4 -) 2 ,  where 
L k, 

L is the slab thickness and k, is the true reaction rate constant, which is now 

assumed to be temperature independent. Since the rate is also proportional to 

k. then 

Using this expression, a value for E of 14.2 kcal/mol is obtained. Unfortunately, 

it is not possible to determine the relative contributions of diffusional resistance 

and kinetic limitations to the overall rate. Furthermore, as the previous discus- 

sion indicates, the influence of these two factors changes during the course of 

the reaction. Initially, the rate of NO2 diffusion into the solid coal matrix 

governs the rate while after 30 minutes, the rate of reaction governs the overall 

rate. 

The final set of runs examined with the model concerns the PSOC 2'76 coal 

treated with NOz in CC14 at ZOGC (Runs 47-52). The parameters listed in Table 

4-14 which pertain to these runs were used in the simulation with one excep- 

tion. Instead of using the value for k of 0.0867 cm3/mol/s listed in Table 4-14, 

the value listed for the rate constant for the PSOC 190 coal of 0.238 cm3/mol/s 

was used. Because the two coals behave in such a similar manner in all other 

respects, it seems reasonable to expect that they would possess the same rate 



constant for nitrogen uptake. If such is the case, then the difference actually 

observed in the rate constants can be attributed to the difference in their 

respective surface areas and void fractions, which is reflected in the model as 

the slab thickness, L. The value of L for the PSOC 276 coal is 7.6 times that of 

the PSOC 190 coal. Therefore, if the difference in the rate constants is due to 

the difference in the pore structure, the use of the same value of k for both 

coals should yield the same value for the diffusion coefficient, D. 

The values of z predicted by the model are shown in Figure 4-191, along with 

the actually observed data. The values of the average NOz concentration in the 

solid coal matrix as predicted by the model are shown in Figure 4-192. As in 

the previous cases, the same behavior is observed, except the values of D are 

greater. Referring to Figure 4-191, it can be seen that the actual data fall 

between the two curves corresponding to values of 10-l3 and lo-" cm2/s for 1). 

Thus, the value of D in the PSOC 276 coal is about 5 x 10-l4 cm2/s, which is 

about 50 timss that of D in the PSOC 190 coal. 

Nevertheless, it seems unlikely that the diffusion coefficient for two very simi- 

lar coals should differ by a factor of 50. The reason that D for the PSOC 276 coal 

must be 50 times that of the PSOC 190 coal is that the actual conversions for 

the two coals are quite similar but the value of L for the PSOC 276 coal is 7,6 

times that of the PSOC 190 coal. On this basis, much longer times would be 

needed for the PSOC 276 coal to reach the same conversion as the PSOC 190 

coal if both coals had the same value of D. Consequently, it may be that the 

values obtained for L have no real physical significance. Indeed, the assumed 

pore geometry may not even apply. It should be noted that the value of L is 

obtained from the nitrogen adsorption results. If, on the other hand, the 

results of the COz adsorption studies were more applicable, then the values of L 

for the two coals would be just about equal. In any event, more data concerning 
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the geometry of the pore structure of various coals are needed in order to gain 

confidence for either accepting the model or discarding it, Alternatively, 

different pore geometries can be employed by the model to determine if better 

agreement in the values of D for the two coals can be obtained. 
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CHAPTER 5 

Conclusions and Recommendations 

The first section of this chapter summarizes the conclusions reached as a 

result of the discussion in the previous chapter. In particular, the significant 

effects on the elemental composition of the coal by the NOz treatment and sub- 

sequent NazC03 (aq) wash are presented, followed by a discussion of the changes 

in the pore structure induced by the NO2 treatment as revealed by the Nz and 

COz adsorption studies. Then the salient features of the model simulation of the 

reaction of NO2 with the coal are discussed. Finally, all of these results are 

linked together to formulate a plausible mechanism for the NOz-coal reaction. 

51.1 The Effect of the Processing on the Qemental Composition of the Coal 

Exposure of the coal to NOZ results in several changes in the elemental com- 

position of the coal. While none of the changes are drastic, some of them pos- 

sess significant ramifications, particularly in terms of the removal of SOz from 

the combustion gases of the coal. At the outset, it should be noted that the coal 

was slurried in a liquid phase, which served as a transport medium for the NOz, 

in order to mitigate the heating value losses in the coal due to the excessive oxi- 

dation of the coal which occurs when the coal is treated with gaseous NOz. The 

best liquid for the purposes of this study was determined to be CCI* because it 

did not react with either the NO2 or the coal. Although H 2 0  is much cheaper and 

easier to handle than CCL, it competes with the coal for NO2 to form HN03 (aq) 

and HN02 (aq), which nevertheless do attack the coal. The kinetic analysis 

becomes rather difficult, however. The use of aromatic solvents, such as pyri- 

dine and nitrobenzene, was found to extract significant amounts of the coal 



(55 % of the PSOC 190 was extracted when treated with NO2 in nitrobenzene a t  

80Oc). Furthermore, these solvents were rather difficult to separate from the 

coal after the NO2 treatment. 

One interesting feature of the elemental analysis is that there is very little 

loss in carbon during the NO2 treatment when the coal was treated with NO2 in 

CC14 in the batch reactor at 0 and 20-C. Furthermore, the subsequent 

Na2C03 (aq) wash results in a loss of only 3 to 7 '7% in the carbon content. Use of 

C C b  as the liquid phase at 25 C under much higher NOz concentrations (6 F vs, 

1.1 F in the batch reactor), however, results in a greater carbon loss of 10 % dur- 

ing the NO2 treatment and 26 % during the subsequent Na2C03 (aq) wash. Conse- 

quently, it was determined that NO2 concentrations on the order of 1 F and reac- 

tion temperatures no greater than roughly 25-c should be used in order to miti- 

gate carbon losses. 

The coal hydrogen, on the other hand, is readily attacked by NO2. When the 

coal is treated with NO2 at  high concentration (8 F) at 25Oc in CCl,, 20 % of the 

hydrogen is rapidly lost. The subsequent Na2C03 (aq) wash results in a total 

hydrogen loss of 27 %. Milder conditions do not alleviate the hydrogen loss. For 

instance, NO2 treatment (1.1 F) at 20% in CCl, in the batch reactor still results 

in a 22 % loss in hydrogen. The subsequent Na2C03 (aq) wash does not result in 

any additional hydrogen loss, however. Interestingly, the same NO2 treatment at 

QOC results in only a 4 % hydrogen loss, but the wash at 25-C results in a total 

hydrogen loss of 16 %. It is interesting to note that the PSOC 276 coal only 

suffers about half the hydrogen loss of the PSOC 190 coal when treated with NO2 

at 20t. The NO2 treatment results in a 6 % loss and the wash yields an overall 

loss of 12 %. The difference in the hydrogen losses of the two coals can be attri- 

buted to their respective pore structures. The PSOC 276 coal initially has only 

one-sixth the surface area of the PSOC 190 coal. Although the pore volume does 



not affect the amount of NO2 which diffuses into the coal to a discernible extent, 

it does affect the transfer of the oxidized coal products out of the coal, In any 

case, about 20 % of the coal hydrogen is rapidly attacked by NOz under all of the 

reaction conditions used in this study. 

The fact that the pore structure does not affect the amount of NO2 which 

diffuses into the coal is supported by the nitrogen analysis of the treated coal. 

Under all of the conditions used in this study, the net nitrogen mass increase in 

the coal varied from 3.6 (g N/100 g untreated coal) a t  O'C to 5.2 (g N/100 g 

untreated coal) at  50 2. There are several interesting features concerning the 

nitrogen analysis. The first feature is that both the PSOC 190 and PSOC 276 

have the same ultimate net nitrogen mass increase of 3.9 (g N/100 g untreated 

coal), despite the difference in their pore volumes. The second feature is that 

the Na2C03 (aq) wash, which is always conducted at 2 5 = ~  for 2 hours, con- 

sistently removes between 15 and 21 % of the added nitrogen in all of the experi- 

ments conducted. These two observations imply that neither the pore structure 

nor the coal type influences the capacity of the coal to take up nitrogen. 

Rather, the coal behaves as a second phase in the N02/CC14/coal system. During 

the NO2 treatment, the NOZ seeks to establish a partition equilibrium between 

the coal phase and the CCl, phase. Indeed, the study of the effect of the initial 

NO2 concentration on the nitrogen content of the coal shows that the data obey 

the simple expression for the partition coeffcient, K, of 

K = '"I-'": where 
(NO21 

K = the partition coefficient, 

c~ = the nitrogen content of the coal (mass % N), 

c i  = the nitrogen content of the coal as (NO2) -r 0 (mass % N), and 



(NOz) = the bulk NOz concentration in the solvent (F). 

The data yield a value for c i  of 3.82 mass % N and a value for K of 0,814 

(mass % N-l/mol) with a correlation coefficient of 0.900 at 20°C The fact that 

the NazC03 (aq) wash consistently removes the same percentage of the added 

nitrogen just reinforces the theory of a simple equilibrium of NOz between the 

solvent and the coal. 

The nitrogen data also obey simple first-order kinetics of the form: 

dm.$ - -=  
dt k mi$, where 

m8 = ( ~ N ~ ) o  [(NOz)l - m ~ ,  where 

m$ = the concentration of available NO2 absorption sites (mass 7%) 

( W L ~ , ) ~  [(NO,)] = the initial number of NO2 absorption sites in the coal, 

which is a function of the bulk NO2 concentration, (NOz), 

m~ = the net nitrogen mass increase (mass %), 

t = the time (min), and 

k = the first order rate constant (min-I). 

Because the NOz concentration, (NO2), does not change markedly during the 

course of the reaction, it is not possible to detect any dependence of the rate on 

(NOz). Nevertheless, the fact that (mN,)o depends on (NOz) implies that such a 

dependence may exist. The following values were obtained for ( m ~ , ) ~  and k: 

PSOC 190 Coal PSOC 276 Coal 

T (C) 0 20 5 0 2 0 

( w L ~ , ) ~  (g N /  100g initial coal) 3.60 3.89 5.33 3.94 

k (min-') 0.0342 0.0483 0.0466 0.0183 



The analysis of the coal for oxygen uptake reveals that most of the oxygen 

taken up by the coal during the NOz treatment is removed by the Na2C0, (aq) 

wash. In particular, the NO2 treatment results in a net oxygen increase in the 

coal of 12 to 18 mass percent. The Na2C03 (aq) wash, however, yields an overall 

net oxygen increase of only O to 3 mass percent for the PSOC 190 coal and 7 

mass percent for the PSOC 276 coal, The net increase in oxygen during the NO2 

treatment can be attributed to the uptake of nitrogen as NOz and the oxidation 

of the aliphatic hydrogen in the coal to yield ketonic and carboxylic oxygen 

groups. The decrease in the amount of oxygen in the coal during the 

NazCOs (aq) wash can be attributed to two processes. The first process is the 

removal of the heavily oxidized portions of the coal as water soluble compounds 

(humic acids). Indeed, if the coal is treated with NOz a t  50%, the oxidation is so 

extensive that virtually all of the coal forms an emulsion when mixed with 

0.1 M Na2C03 (aq). Hence, a certain portion of the coal is lost during the 

NaZCOS (aq) wash. Fortunately, it is also the most heavily oxidized portion of the 

coal which contributes the least to the total heat content of the coal. The 

second process which accounts for the oxygen decrease during the wash is the 

uptake of sodium by the oxidized coal. In particular, it is the anionic oxygen 

groups in the coal which bind the sodium ions. Consequently, the oxygen which 

is bound to the sodium is determined as mineral matter and not organic oxygen, 

Therefore, the oxygen analysis of the washed coal must be treated with caution. 

In fact, because the oxygen content is given directly by the difference between 

unity and the sum of all the other elemental contents, the oxygen content may 

contain large relative errors. Despite this potential error, however, the oxygen 

analysis yields results which are consistent with the rest of the data. 

The chlorine analysis of the coal after treatment with NOZ in CCL revealed 

some interesting results. Primarily, during the NO2 treatment, the chlorine con- 



tent rises from 0.1 mass percent to anywhere from 2.5 to 5.2 mass percent. 

Washing the treated coal in 0.1 M NazCO, (aq) at 25-c for 120 minutes, however, 

results in the reduction of the chlorine content to its original level of 0.1 mass 

percent. These results are easily explained. The CC14 is trapped in the coal par- 

ticle by the polar oxygen groups introduced into the coal by the NOz treatment. 

This adsorbed CCL cannot be removed by vacuum drying a t  12o0C for three 

hours. Once the treated coal is exposed to the NazC03 (aq) solution, however, 

the CC14 is easily displaced by the water and sodium ions, which have a higher 

affinity for the polar oxygen groups in the coal, Furthermore, the H 2 0  and Na' 

species are much smaller than the CC14 molecule, so that they should be able to 

penetrate any portion of the coal containing CCl, to displace it. 

The mineral matter analysis of the coal provides corroborating evidence for 

the displacement of CCl, by sodium. In all of the runs conducted, the NO2 treat- 

ment resulted in a slight decrease in the mineral matter content of the coal, 

usually less than one mass percent. The NazC03 (aq) wash, on the other hand, 

results in a large increase in the mineral matter content. For instance, the 

washed PSOC 190 coal experiences an increase from roughly 6 to 16 mass per- 

cent in the mineral matter content. The PSOC 276 coal, because it has only 

one-fourth the pore volume of the PSOC 190 coal, only experiences an increase 

in the mineral matter content from €3 to 13 mass percent. Cogent evidence for 

sodium uptake by the NOz-treated coal is provided by the EDAX spectra of the 

ash remaining after combustion of the coal. The ash of the NO2-treated coal 

contains no sodium while the ash of the subsequently washed coal contains a 

substantial amount of sodium. Therefore, the NOz-treated coal behaves as an 

ion-exchange support. In this case, the adsorbed CCI, and any loosely adsorbed 

NOz, as well as acidic hydrogen, are displaced by the more strongly adsorbed 

species in the NazC03 (aq) solution. 



The uptake of sodium by the coal is the cornerstone of the ability of this pro- 

cessing scheme to remove SO2 from the combustion gases of the coal. The NOz 

treatment a t  0, 20 and 5 0 * ~  when CCL is the solvent results in the removal of 

only about 10 % of the sulfur from the PSOC 190 coal, which consists exclusively 

of organic sulfur. When water is the solvent, the sulfur removal increases to 

20 %. The treatment conditions in the latter case were more severe, however, 

and the heating value loss was greater. The Na2COs (aq) wash of the NOz-treated 

PSOC 190 increases the desulfurization to 30 %, as determined by the Bomb 

method. The Leco analysis, however, which determines the amount of SOz in the 

combustion gases of the coal, indicates a 97 % desulfurization when the NO2 

treatment is conducted a t  202 for 180 minutes and an 87 % desulfurization 

when the NOz treatment is conducted at OOC. These high desulfurizations are 

due primarily to the trapping of SO2 by the sodium in the coal during combus- 

tion. This conclusion is supported by the EDAX spectra, which show a predom- 

inant sulfur peak in addition to the sodium peak in the ash of the washed coals. 

The PSOC 276 coal does not show as great an extent of desulfurization as the 

PSOC 190, The NOz treatment results in only a 3 % desulfurization. The 

NaZCO3 (aq) wash increases the sulfur removal to 18 % according to the Bomb 

analysis. The Leco analysis, however, indicates that only 40 % of the sulfur is 

removed from the combustion gas. There are two explanations for these obser- 

vations. The sulfur in the PSOC 276 consists primarily of pyritic sulfur (66 % of 

the total sulfur content), which is not removed by the NO2 treatment when CC14 

is the solvent because once the surface of the pyrite crystals are oxidized to 

FeSO,, no further reaction occurs. The FeSO, remains on the surface and 

prevents the penetration of NOz into the pyrite crystal. If water is the solvent, 

on the other hand, the FeS04 would dissolve and the pyrite crystal surface would 

be continually renewed until it completely reacts. Hence, most of the pyrite 



remains unaltered by the NO2 treatment and subsequent NaZCO3 (aq) wash. 

These pyrite crystals then serve as point sources of SOz during combustion. 

Because of the high concentration of SO2 at these points, virtually all of the SOz 

escapes into the combustion gases because there is hardly any sodium at these 

points for trapping SOz. This escape occurs because the sodium is uniformly 

dispersed throughout the coal while the SO2 derived from the pyrite evolves a t  

point sources. The analysis for forms of sulfur indicates the removal of only 

10 % of the pyritic sulfur. Hence, the 40 % overall desulfurization translates into 

a 90 % removal of SOz derived from organic sulfur. Consequently, if the pyrite 

were removed by treatment with NO2 in HzO rather than CCl,, where complete 

pyrite removal is expected, the overall desulfurization would be roughly 97 %, 

which compares quite well with the results obtained with the PSOC 190. 

In terms of desulfurization, therefore, the results indicate that the NOz treat- 

ment forms an acidic and well distributed precursor in the coal, which then 

behaves like an ion-exchange support. Subjecting the NOz-treated coal to a 

basic solution of 0.1 M NaZCO3 (aq) results in the uptake of sodium ions by the 

acidic precursor in the coal. Upon combustion of the coal, this sodium- 

containing precursor traps SO2, which would otherwise escape into the combus- 

tion gases, as Na2S0,. The dispersion of the sodium throughout the coal is 

important. This dispersion is governed somewhat by the coal as evidenced by 

the contrasting results obtained with the two different coals. The efficiency of 

the sodium for trapping SOz in the PSOC 190 is 37 % while that in the PSOC 276 

is only 10 %. The efficiency is defined simply as twice the ratio of moles of SO2 

trapped to moles of sodium in the washed coal. The efficiency is less in the PSOC 

276 coal because it has a smaller pore volume than the PSOC 190. Although the 

pore structure does not affect the extent of the NOz treatment significantly, it 

does affect the dispersion of sodium in the coal during the wash, and hence the 



amount of SO2 trapped during combustion. 

As a consequence of the formation of the acidic precursor in the coal result- 

ing from the NOz treatment, a loss in the heat content of the coal occurs. The 

extent of this loss, however, is mitigated by conducting the NO2 treatment under 

mild conditions, namely a t  ambient temperature and pressure using small conc- 

entrations of NO2 (< 2 F). In particular, the NO2 treatment results in heating 

value losses under 10 %. The subsequent Na2C0, (aq) wash results in additional 

losses, but the overall loss is still only 15 % for the PSOC 190 treated at  20 C, 9 % 

for  the PSOC 190 treated at  0°C and 9 % for the PSOC 276 treated a t  20LC. By 

way of contrast, the PSOC 190 treated a t  2 5 e ~  in CC4 with an NO2 concentration 

of 8 F experiences a 25 % loss in heating value, Most of the heating value loss 

can be attributed to the rapid and facile attack of NO2 on the hydrogen in the 

coal. Hence, it appears that it is inevitable that a loss of 10 to 15 % in the heat- 

ing value will occur when subjecting the coal to even mild oxidizing conditions. 

The results of the heating value loss can be coupled with the desulfurization 

results in a parameter called the beneficiation coefficient, defined as: 

B = [ l -  
(1 + f ) c s  Ifg ] [ -1 , where 

tcslo (H,  10 

f = the fractional mass gain of the treated coal relative to the initial 

mass of coal used. (If a mass loss occurs, f = O), 

cs = the sulfur content of the treated coal corrected for any 

CCL adsorption (mass Z ) ,  

(cs)o = the sulfur content of the coal before processing (mass %), 

Ii, = the heat content of the treated coal corrected for any mass 

change (Btu/lb, of initial coal used) , and 

= the heat content of the pretreated coal before 

processing (Btu/lb, coal) 



Basically, B translates the desulfurization from a mass basis to an energy basis. 

The beneflciation coefficient, therefore, serves as an indicator of the selectivity 

of the process for desulfurization relative to the oxidation of the rest of the 

coal. In particular, the values of B obtained for the processed PSOC 190 coal in 

terms of SOz removal from the combustion gas all lie in the range from 0.80 to 

0.85. A value for B of unity corresponds to complete SOz removal without any 

loss in the heating value. The value of B obtained for the PSOC 2'76 coal, on the 

other hand, is only 0.28, which is simply a reflection of the high pyrite content of 

the coal and the fact that the sodium uptake is not as great as that of the 

treated PSOC 190. 



5.1.2 The Effect of the P r o d n g  on the Physical Structure of the Coal 

The chemical changes which occur in the coal as the result of the NO2 treat- 

ment and subsequent NazCO3 (aq) wash are accompanied by changes in the phy- 

sical structure of the coal as well. Particles of the treated coal examined with 

the scanning electron microscope (SEM) reveal some interesting qualitative 

changes in the particle structure. When the PSOC 190 coal is treated with NOZ 

and washed in 0.1 M Na2COS (aq), the large amount of mineral matter initially 

adhering to the particle surface is removed. Furthermore, etching of the parti- 

cle surface and a small amount of fissuring in the particle occur, The etching is 

due to the removal of the oxidized coal species from the particle surface by the 

NaZCO3 (aq) wash. The fissuring is probably caused by the penetration of the 

Na2C03 (aq) solution into the NO2-treated coal particles, which results in a 

breakdown of the internal structure of the coal matrix. The processed PSOC 276 

coal, on the other hand, does not demonstrate any etching or fissuring, which is 

consistent with the other data which indicate that the extent of the NO2-coal 

reaction is not as great in the PSOC 276 coal as in the PSOC 190 coal. 

The ash remaining after 'combustion of the processed coal was examined with 

the SEM and EDAX (Energy-Dispersive Analyzer of X-Rays) as well. The ash of the 

NOz-treated coal is indistinguishable from that of the untreated coal. This ash 

consists of very small, sharp-edged particles with average dimensions on the 

order of 10 pm. The ash is composed primarily of Si02 and A1203, with additional 

amounts of KzO, CaO, Ti02 and Fez03. The ash remaining from the combustion of 

the NO2-treated coal washed in Na2COs (aq), however, consists of large, porous, 

globular particles with diameters on the order of I mm. In addition to the inor- 

ganic species mentioned above, the ash also contains very large amounts of 

sodium and sulfur in the form of NazO and NazSO,. The amount of sodium and 

sulfur in the ash of the processed PSOC 190 is roughly twice that in the ash from 



the processed PSOC 276. Furthermore, the ash was obtained by conbusting the 

coal a t  both 750 and 1200'~. In both cases, the ash contained large amounts of 

NazO and Na2S04, which demonstrates that the NazS04 is stable at temperatures 

very close to those used in commercial coal-fired utility boilers. These EDAX 

spectra provide unequivocal evidence that the NOz treatment of the coal yields 

an acidic and uniformly dispersed precursor which binds sodium upon exposure 

to  an aqueous solution of NazCOs. This sodium precursor then forms a flux 

when the coal is combusted, which explains the globular nature of the ash from 

the washed coal, This sodium-containing Aux then traps the SOz generated dur- 

ing combustion as Na2S04 in the ash. 

The results of the N2 and COz adsorption studies on the treated coals show 

some interesting features. For instance, during the first 30 minutes of the NO2 

treatment at 20t using CCl, as the solvent. the specific surface area, s?, of the 

PSOC 190 coal drops 10 % from 58 m2/g to 10 m2/g. Washing the NO2-treated 

N 
coal in Na2C03 (aq) reduces S, to just 2 m2/ g, which corresponds to the virtu- 

ally complete blocking of the pores. The large reduction in $2 is due to the 

rapid oxidation of the coal: The pore size distributions indicate that virtually all 

of the pores have radii less than 25 A, which implies that little reaction in the 

pores is required for blockage to occur. The blockage of these pores is amply 

demonstrated by the change in the pore size distribution as the NOz-exposure 

time increases, The peak at 19 rapidly disappears, which is indicative of pore 

closure, 

The change in S? also correlates quite well with both the rate of NO2 disap- 

pearance from the N02/CCb/coal system and the rate of nitrogen uptake by the 

coal. As has been mentioned before, it appears that the NOz is actually diffusing 

into the solid coal matrix of the coal. This solid diffusion process is rate limiting 



during the Arst 30 minutes of the reaction. Consequently, the rate of NOz disap- 

pearance depends on the total flux of NO2 into the solid coal matrix. This total 

flux, in turn, is proportional to the interfacial area between the solid coal 

matrix and the NOZ/CC14 solution. Consequently, the rate should be propor- 

tional to s?, as it is. The rate of nitrogen uptake by the coal also correlates 

quite well with the nitrogen-determined surface area. In particular, a compari- 

son of the first order rate constants obtained for the rate of nitrogen uptake a t  

2 0 * ~  by the PSOC 190 and PSOC 2'76 coals reveals that they differ by a factor of 

2.6. Since the initial capacity of the coal which can take up nitrogen is the same 

for both coals, the ratio of the rate constants is also the ratio of the rates of 

N 
nitrogen uptake by the two coals. The value of 5, for the PSOC 190 coal after 

100 minutes of NO2 treatment is 15.6 m2/g while that of the PSOC 276 coal after 

100 minutes of NO2 treatment at 20y is 6.0 rn2/g. Hence. the values of 5":' and 

k both differ by a factor of 2.6, Consequently, the rate of nitrogen uptake by the 

coal is proportional to the nitrogen-determined surface area. 

The results of the COz adsorption studies, on the other hand, are in stark 

contrast to those of the Nz' adsorption studies. While treatment with NO2 causes 

a 70 % decrease in 3:' and the subsequent Na2C03 (aq) wash results in an 

N 
overall decrease of 97 % in Sa '. the values of SF actually increase about 10 to 

20 % after the NOZ treatment. Washing the NO2-treated coal in NaZCO3 (aq) does 

not affect 27:' at all. These puzzling results can be explained by the previously 

postulated theory of C02 dissolution in the solid coal matrix; that is, C02 pene- 

tration into the coal is not affected by the pore structure. Rather, C02 

penetrates the solid coal in much the same manner as NOz. 



5.1-3 The Application of the Mathematical Model to the Reaction System 

A mathematical model which incorporates the combined processes of 

diffusion and reaction of NOz in the solid coal matrix was developed from the 

experimental data. The model was applied to those experiments in which the 

PSOC 190 coal was treated with NO2 in CCL, a t  0 and 20°C. Using the assumption 

of a parallel slit-pore geometry, the results of the nitrogen-determined specific 

surface area and pore volume, and the values of the rate constants determined 

from the nitrogen uptake data, it was possible to estimate the coefficient of 

diffusion of NOz in the solid coal matrix. 

A t  the outset, it  was determined that the full time-dependent modelling equa- 

tions must be solved in order to obtain an  accurate solution. This fact was esta- 

blished by comparing the predicted nitrogen uptake obtained by solution of the 

full time-dependent equations with the predicted nitrogen up take obtained by 

solution of the corresponding pseudo-steady-state equations. Under the condi- 

tions in the reaction system, it was established that the pseudo-steady-state 

solution deviates significantly from the solution of the full time-dependent equa- 

tions. Consequently, the full time-dependent equations were used in the model 

simulation. It was also determined that diffusion of NO2 in the pores was not 

controlling. In particular, it was established by solution of the full time- 

dependent equations that the NO2 concentration in the center of the coal parti- 

cle, which was assigned a radius of 50 pm, reached 96 7% of the NOz concentra- 

tion in the bulk C C b  within one second. 

Application of the model to the actual nitrogen uptake data by the PSOC 190 

coal a t  20k yields a diffusion coefficient, D, of lQ-15 cm2/s for NOz diffusion in 

the solid coal matrix. The same value is obtained when the data obtained a t  0 C 

are fit to the model. Although this value of D is several orders of magnitude 

lower than those observed for diffusion of such gases as Nz, 02, CO and C02 in 



manufactured polymers, if no diffusion of NO2 were to  occur, then D would be 

zero. Therefore, the value obtained for D implies that NO, cannot diffuse into 

coal as easily as Nz, 02, CO or C02 can diffuse in polymers. This difference may 

arise because either the coal itself is less susceptible to gaseous diffusion or the 

nature of the NO2 molecule itself inhibits its ability to diffuse into the coal. 

Without any definitive information concerning the mechanism of NO2 diffusion in 

the solid coal matrix, it is not possible to determine if the value of 10-l5 cm2/s 

is accurate or not. All that can be said is that the data are adequately explained 

on the basis of the diffusion and reaction of NOz in the solid coal matrix. 

When the data for the nitrogen uptake by the PSOC 276 coal are fit with the 

model, a value of 5 x 10-l4 cm2/s is obtained for D. This value is 50 times 

greater than that obtained for the PSOC 190 coal. In view of the similarities in 

the two coals, it is hard to reconcile the large difference in the values obtained 

for D. The difference in the fitted values of D arises from the difference in the 

nitrogen-determined specific surface areas and pore volumes of the two coals, 

which are used to give the thickness, L, of the slabs which comprise the idealized 

coal particle assumed by the model. The value obtained for L for the PSOC 276 

coal is 7.6 times that obtained for the PSOC 190 coal, Because the values of the 

nitrogen uptake by the two coals are quite similar and because L can be treated 

as a characteristic diffusion length, the characteristic diffusion time is given by 

L2 t = - which should be approximately the same for the two coals since they 
D ' 

both achieve their maximum nitrogen uptakes within 120 to 180 minutes. Con- 

sequently, if the values of L differ by a factor of 7.6, then the values of D would 

have to differ by a factor of 58, which explains the difference in the values 

obtained for D. Therefore, the idealized slit-pore geometry may not correspond 

to the actual situation in the coal particle. There is no compelling reason, how- 

ever, why the diffusion coefficients cannot differ by as large a factor as the 



model predicts. In any case, the experimental data  which pertain to the 

nitrogen uptake by both the PSOC 190 and PSOC 276 coals during treatment 

with NOz a t  ZO*C are adequately explained on the basis of the simultaneous 

diffusion and reaction of NO2 in the solid coal matrix. 

5.1.4 A Plausible Mechanism Describing the Reaction of Nitrogen Dioxide with Coal 

Utilizing the results of the elemental analysis, the N2 and CO, adsorption stu- 

dies and the mathematical modelling, it is possible to formulate a mechanism 

which describes the reaction of NO2 with coal. The basic feature of this mechan- 

ism involves the formation of an acidic, uniformly distributed precursor in the 

coal by exposure to NOz under mild conditions (ambient temperature and pres- 

sure, small NOz concentrations). Upon exposure of the NOz-treated coal to 

0.1 M Na2C03 (aq), this acidic precursor binds sodium ions in a manner analo- 

gous to an ion-exchange support. Upon combustion of the coal, the sodium- 

containing precursor forms a Aux which traps SO2, which would otherwise 

escape in the combustion gas, as Na2S04 in the ash. The NazSO, containing flux 

is stable at  1200°~, rendering this process acceptable for the pretreatment of 

coal to be used in coal-fired utility boilers. A mechanism which is consistent 

with the findings of this thesis is: 

1. Upon exposure of the coal particles (t-200-325 mesh) to the solution contain- 

ing NO2 solvated in CCl,, the NOz concentration in the pore structure rapidly 

(< 1 sec) rises t o  the NO2 concentration in the bulk solvent. 

2. The NOz reacts with the coal in various ways: 

a) The NO2 reacts rapidly with hydrogen in the coal, which results in the for- 

mation of the acidic, well-distributed precursor, which can occur as the 

result of any of the following possible reactions: 

NO2 + > CHz + > CH(0H) + NO 

NO, + > CH(0H) -+ > C=O + NO + HzO 



3 NO2 + -CIS:, + -COOH + 3 NO i- HzO 

NO2 + - p H  -, -pOH + NO 

where p represents an  aromatic benzene structure. 

b) The NOz penetrates the coal surface and is absorbed by the solid coal 

matrix. Some removal of the water formed from the oxidation of the 

coal hydrogen from the solid interior must occur because up to 20 per- 

cent of the hydrogen initially in the coal is lost during the NOz treatment 

and only 2 percent is expected to reside on the particle pore-surfaces. 

The absorption of NOz accounts for the increase in the nitrogen content 

of the coal of several mass percent as well. Furthermore, the pore struc- 

ture does not affect the extent of the uptake of nitrogen by the coal. 

3. The chlorine trapped in the coal after the NOz treatment is due to the adsorp- 

tion of CCL, by the acidic precursor in the form of weak inductive bonds 

between CI and 0, as shown in Figure 5-1, Some of the NOz may be adsorbed 

by the polar surface in an analogous manner, as illustrated in Figure 5-2. 

4. Once the NO2-treated coal is exposed to Na2C03 (aq), three physical processes 

occur: 

a) Heavily oxidized portions of the coal are leached Prom the coal as water 

soluble compounds (humic acids). 

b) NO, diffuses back out of the coal to the extent of 20 % of the absorbed NO, 

when the wash is conducted with 0.1 M Na2C03 (aq) a t  2 5 * ~  for 2 hours. 

c) The coal behaves like an ion-exchange support with the following reac- 

tions occurring: 

i) The adsorbed CCL is rapidly and quantitatively displaced from the 

coal. Any adsorbed NO2 is rapidly displaced from the surface as it 

reacts with the Na2C03 (aq): 

2 NOz + Na2U03 -, NaN03 + NaNOz + C02 



Adso rp t i on  of CC14 on t h e  Ox id ized  Coal Sur face  

Coal 

F i g u r e  5-1  

Adsorp t ion  o f  NO2 on t h e  Ox id i zed  Coal Sur face 

Coal 

F i g u r e  5-2 



ii) The acidic hydrogen is displaced by cationic sodium: 

where p represents an aromatic benzene structure. 

iii) Any NOz, which is uniformly distributed in the coal, accessible to 

NazCOs (aq) would result in the formation of sodium salts of oxidized 

nitrogen: 

2 NOz + Na2CO3 -+ NaN02 + NaN03 + COz. 

If these salts are  not completely leached out of the coal, it is possible 

that the NaNOz and NaN03 may be well dispersed in the pore struc- 

ture of the coal, since trapping of the salts would be expected to 

occur primarily in the smaller pores, 

5, During combustion of the coal, the well-distributed sodium containing precur- 

sor forms a flux which traps SO2,  which would otherwise escape in the 

combustion gas, as Na2S04 in the ash. 



5.1.5 Concluding Remarks 

The most important feature of the entire study encompassed by this thesis is 

the discovery of the formation of an acidic, uniformly distributed precursor in 

the coal by mild oxidation with NO2. Upon exposure of the coal to Na2C0, (aq), 

the precursor binds sodium ions in a manner analogous to that of an ion- 

exchange support. Upon combustion of the coal, the sodium-containing precur- 

sor forms a flux which traps the SO,, which would otherwise escape in the flue 

gas, as NazSO4 in the ash. The flux has been shown to be stable with respect to 

SOz evolution a t  a temperature of 1 2 0 0 ~ ~  for a minimum of six minutes, which is 

much longer than the average residence time of ash in a utility boiler of a few 

seconds. Consequently, this process represents a commercially viable alterna- 

tive to flue gas desulfurization, provided the problem of increased NO and NO2 

emissions due to the uptake of nitrogen by the coal can be alleviated. 

A11 other chemical desulfurization processes discussed up to this time have 

sought to physically remove sulfur from the coal prior to combustion in some 

altered form, Although many of these processes are quite good for the removal 

of pyritic sulfur, none of them have demonstrated any significant reduction in 

organic sulfur. Indeed, due to the well-dispersed nature of organic sulfur in the 

coal matrix, it is not possible to remove organic sulfur without drastically alter- 

ing the rest of the coal, resulting in significant heating value losses, The process 

described in this work, however, is quite unique in that this is the first time that 

virtually complete removal of SOz, which is derived exclusively from organic sul- 

fur, from the flue gas has been demonstrated without significant heating value 

losses. Furthermore, in contrast to other desulfurization schemes, this process 

does not physically remove the organic sulfur from the coal prior to combus- 

tion. Rather, the chemical nature of the coal has been altered so that instead of 

evolving as SO,, the sulfur is trapped as Na2S0, by the ash upon combustion. 



Due to the unique and novel aspect of the process described in this work, a 

patent has been filed on this chemical treatment scheme.' 

Of all of the desulfurization work currently being conducted, perhaps that  

which is closest in scope to the process discussed here is that done by Freund 

and  o on.^ ~hhese researchers "mildly" oxidize the coal a t  4 0 0 ~ ~  to impart an ion- 

exchange characteristic to the coal. No heating value analyses of the oxidized 

coal were given in the paper, so it is not possible to comment upon the extent of 

the oxidation of the coal. The oxidized coal is then soaked in ammoniated cal- 

cium acetate for 48 hours and then dried, apparently through solvent evapora- 

tion without filtration or washing of the coal. Due to the large size of the 

Ca(CH3C00)2 molecule, it seems reasonable to expect that most of the calcium 

in the coal resides on the exterior particle surface with very little calcium 

uptake in the interior pore structure of the coal. Indeed, although the authors 

claim a uniform distribution of calcium in the coal, they did not prove that thls 

is the case. In order to do so, the pore s u e  distribution of the oxidized coal is 

needed in order to determine if the Ca(CH3C00)2 can penetrate into the coal 

pore structure. 

The authors claim that if the calcium-containing coal is then burned under 

fuel rich conditions, the sulfur will be retained in the char as CaS. Extrapola- 

tion of their data to combustion under fuel lean conditions, as employed in the 

process development discussed in this work, however, indicates that no sulfur is 

retained by the calcium in the coal ash. Although sodium was used exclusively 

in the process discussed in this work, there is every reason to expect calcium to 

trap SO2 during combustion just as well. The reason calcium did not trap the 

sulfur as CaSOa in the work conducted by Freund and Lyon is that the calcium 

was not well-distributed throughout the coal particle. As mentioned previously, 

the precursor must be in close proximity to the SO2 as it evolves during 



combustion in order to trap it as sulfate. Otherwise, the SOz will escape from 

the particle into the flue gas. It appears that this is indeed the case when the 

coal is treated with CafCHSC00)2. Therefore, the novel and unique aspect of the 

process discussed in this thesis for the chemical alteration of the coal under 

mild conditions to eliminate the evolution of SO2 during combustion is firmly 

established. 



5 2  Recammendations for Future W o r k  

Although a system which successfully eliminates a substantial portion of the 

SOz emissions during coal combustion has been developed, several areas of 

further investigation remain. 

1. An examination of other oxidants, such as air, OZ, 03, COz, Clz, HzOz, KMnO,, . 
and organic peracids and peroxides, should be conducted to determine if 

oxidants other than NOZ are capable of forming an acidic, uniformly distri- 

buted precursor in the coal. If other oxidants do not result in the formation 

of such a precursor, it may be that NO2 possesses some unique property, 

such as its facile penetration into the solid coal matrix, which makes it more 

effective. 

2. It would be desirable to establish a mechanism for NO2 absorption by the coal. 

Such a study would include a comparison of the permeabilities of well- 

characterized polymers to NOz with the permeabilities of those polymers to 

other gases such as Nz, OZ, CO and CDz, in order to determine if NOz demon- 

strates analogous or anamolous behavior with regard to other gases. Later 

on, the penetration of NO2 in a variety of coals can be examined to deter- 

mine if the NOz permeability correlates with any other parameters which 

describe the coal, 

3. An identification of the type of oxygenated structures being formed in the 

coal upon oxidation would greatly facilitate the understanding of the nature 

of the acidic precursor necessary for the ultimate trapping of SOz during 

combustion. Indeed, oxidation introduces many different oxygen groups 

into the coal whereas only one particular group may actually be the active 

precursor, Hence, identification of the active precursor(s) may provide an 

insight into the mechanism by which the precursor traps SOZ, The types of 

oxygenated structures in the NOz-treated coal may be identified by infrared 



or nuclear magnetic resonance, or even wet chemical techniques which take 

advantage of the ion-exchange characteristics of the treated coal.3 I t  would 

also be desirable to know if the oxygen groups are truly anionic or if some 

charge transfer with the aromatic structure of the coal occurs during the 

Na2C03 (aq) wash, for instance of the quinone-hydroquinone type. This pos- 

sibility can probably best be examined by using model organic compounds 

which best correspond to the oxygenated structures in the NO2-treated coal. 

4. The ability of metals other than sodium to bind to  the precursor and subse- 

quently trap SO2 should be examined. In particular, calcium should be 

examined because it has been commercially demonstrated that CaSO, is 

stable in a utility boiler. Another possibility is lithium, which due to its very 

small size, may be able to penetrate further into the coal particle and more 

easily trap SO2 during combustion. Other possibilities include potassium 

and any other alkali or alkaline earth metals which demonstrate any poten- 

tial promise. 

5. An examination of the effect of the pressure during the wash should be per- 

formed. Because this study indicates that the pore structure affects the 

uptake of sodium by the oxidized coal, it may be possible to dilate the pore 

structure somewhat by conducting the NazC03 (aq) wash at  higher pressures 

(up to 1000 psi, for instance). Consequently, the trapping of SO8 may be 

enhanced. 

6. One interesting result of this study was the greatly enhanced extraction of 

coal by nitrobenzene when exposed to NO2, This enhanced extraction could 

be examined further by investigating the extraction of other coals by the 

N02/nitrobenzene system. Additionally, the chemical nature of the-extract 

could be examined to determine if this system can extract useful products 

from the coal. 



7. The changes in the density of the coal during processing should be monitored 

to determine if significant changes occur. Such changes, if they occur, 

would provide an  indication of the possible swelling of the coal structure due 

to  the absorption of NOz or solvent by the solid coal matrix. 

8. The mathematical model should be modified so that i t  corresponds more 

closely to the experimental conditions. For instance, the time dependence 

of the bulk NO2 concentration should be incorporated into the model. The 

solid void fraction, E', should be replaced by using a Henry's law type of rela- 

tionship in which the NO2 concentration on the CC14 side of the surface of 

the solid coal matrix is equal to a constant times the NO2 concentration on 

the coal side of the surface of the solid coal matrix. Other pore geometries, 

such as random or cylindrical pore structures, should be investigated as 

well. 
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Results of the NZ and COZ Adsorption Studies 

This appendix contains both the data and the results of the Nz and CO, 

adsorption studies made of the treated and untreated coals. The data and 

results are presented graphically in the order in which the experiments were 

conducted, and are classified by the run number. The data and the results 

of the study of the raw and washed and dried PSOC 190 are presented first. 

For each run, the data and results are presented in the following order: 

1. The data are presented in the form of the NZ adsorption-desorption isoth- 

erm. 

2. If the desorption branch of the isotherm was obtained, the resulting pore 

size distribution is shown. 

N, 3. The data used to determine the specific surface area, S, , are presented 

in the form of the BET plot, which demonstrates the degree of correla- 

tion between the data and the BET theory. 

4. If the C02 adsorption isotherm was obtained, the data are presented in the 

form of the DPR plot, which demonstrates the degree of correlation 

between the data and the DPR theory. Also shown is the data point used 

CO 
for the determination of S, ', which is taken at a relative pressure of 

P - = 0.1. This point is delineated by the dashed lines. 
Po 

5. The micropore size distribution obtained from the COZ adsorption data is 

shown. 

All of the curves in these plots were generated by fitting the data points using a 

cubic spline technique. 
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The reaction conditions for the treated coals studied are: 

Nitrobenzene 

Refers to reactor type: F = Flow Reactor, B= Batch Reactor 
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NITROGEN ADSORPTION-DESORPTION ISOTHERM 
FOR R U N  46 









MICROPORE SIZE DISTRIBUTION FOR RUN 46 













NITROGEN ADSORPTION-DESORPTION ISOTHERM 
FOR RUN 52 
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