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ABSTRACT

In this thesis, arrays of coupled waveguide CO, lasers and some aspects of
coupled laser arrays in general are studied. The in-phase coupled supermode is
desirable in almost all laser applications, but it is not always obtained in laser
arrays. An analytical method is used to investigate the spatial overlap between
the distributions of laser mode intensity and the medium gain and cavity loss, and
its effect on mode. The result shows that the gain/loss in the inter-element
regions of an array determines which supermode to oscillate: for a fixed gain level
a high loss favors the out-of-phase supermode while a low loss, the in-phase
supermode. Several waveguide CO, lasers, including wall-slot coupled ceramic
and metal arrays, uncoupled arrays, single slab waveguide lasers, and slab
waveguide lasers with unstable resonators were tested for their modal properties
and power output. A new structure, the groove-coupled strip waveguide CO,
laser array, that favors the in-phase coupled supermode was proposed and tested
in two, three and five-element arrays. The experimental results showed that this
new structure yields robust, pure in-phase coupled mode operation with a
reasonable amount of output power.

Also discussed in this thesis are the coupling of Gaussian waves in active
media, the experiments in an all-metal, ridge-waveguide CO, laser pumped by
microwaves, a new type of optical switching based on the unique properties of a

coupled twin-element laser, and two-dimensional array of gas discharge lasers.
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CHAPTER 1. INTRODUCTION

§1.1 Some Thoughts on the Discovery and Development of Lasers

The history of lasers is filled with the emergence of new ideas and breaks
with prevailing thought in both theoretical and experimental fronts.

Before Albert Einstein, it was the popular belief in the scientific community
that atoms can only absorb or spontaneously radiate light. Einstein! pointed out
the possibility of stimulated emission, where atoms in excited states can be made
to radiate light before the spontaneous emission can happen when they are
irradiated with photons. This is a basic principle necessary for laser operation,
and it was proposed in 1916, 44 years before the first laser was made. The
concept of stimulated emission was first applied only to spectroscopy, not to the
amplification of light because people blindly assumed that thermal equilibrium
was the norm for all matter, which dictates that any higher energy level should
have less population than the lower levels by the law of Boltzman distribution. In
the early 1950’s Townes?, Webers, and Prokhorov and Basov? proposed
independently that a population inversion, which defies thermal equilibrium, was
possible to achieve, demonstrated its use in producing microwave amplification
and a microwave oscillator. Breaking another prevailing thought barrier, that a
resonator should be of the size of the radiation wavelength, Schawlow and

Townes®

published their ideas of using a Fabry-Parot resonator hundreds of
thousand wavelength in size to provide feedback for a light oscillator. When
Maiman succeeded in demonstrating the first laser6, a pulsed ruby laser in 1960,
he also was at odds with the popular belief that ruby was not suitable for laser
action. And, ironically, this belief was fostered by a calculation made by

Schawlow’.

Today laser action has been demonstrated in all phases of matter, with
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wavelengths from the far infrared to soft x-ray regions. And they are used in all
aspects of life. Still, it is necessary for us to keep open minds in our research in

order to expand to new frontiers of laser technology and application.

§1.2 A Brief Introduction to CO, Lasers

The first CO, laser was made by Patel et al8 in 1964. It has gained
tremendous popularity since because of its versatility. It is used in material
processing, surgery, lidar, communication, and a host of other applications. To
this day it has the biggest commercial market (in dollars) of any type of laser, and
its application and commercial market is still expanding and at a rate about the
same as diode lasers?.

CO, lasers’ power outputs range from a few watts to megawatts; it can be
operated in continuous or pulse mode; it can be excited by a variety of means:
electric discharge, thermal dynamic, chemical and electron beam, with the most
popular being electric discharge excitation.

There are four vibration modes associated with the linear carbon dioxide
molecule, the symmetric stretching mode, two bending modes in perpendicular
orientations, and the asymmetric stretching mode. They are illustrated in Figure
1. The laser related transition diagram of the rotational-vibrational energy states
for electric discharge excited lasers is given in Figure 2. The most common laser
transition originate from the 001 state of the excited asymmetric vibrational
mode, and end at either 10%0 of the symmetric vibration mode (10.6 gm band) or

the 0200 bending mode (9.6 ym band). Each of these vibrational energy levels is

actually composed of many rotational energy levels. The laser transition usually
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Q /\ {) unexcited CO, molecule
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bending mode (degenerate)
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Figure 1. Ilustration of CO, molecule vibrational modes. (a) Unexcited

molecule, (b), (c) and (d) The three normal modes of vibration.
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Figure 2. Laser related vibrational levels of the CO, molecule, and the laser
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occurs between only a single pair of these rotational levels at a time, due to
competition and relaxation among the rotational states. This is depicted in
Figure 3. The upper energy level, 0001, has a longer collision lifetime than the
two lower energy levels, 100 and 02%0. This makes CO, gas system ideal for a
laser system. N, is added to the gas mixture used in electric discharge excited
CO, lasers to make the electron-to-CO, energy transfer much more efficient. This
occurs because the first excited vibration level of nitrogen molecule, N 2" (v=1), has
coincidentally nearly the same energy as the CO, 00%1 level, and the vibration
levels of Ny have large excitation cross-sections at the electron energy of around 2
ev, that is characteristic of the COy+N, glow discharge. Being a metastable
state, the radiative lifetime of No*(v=1) is very long, on the order of seconds. In
collisions with CO, molecules, Ny readily transfers its vibrational energy to the
CO, 00%1 level. The net effect is that the energy is “funneled” from the discharge
electric to the electrons, then to the Nitrogen vibrational manifold, and finally to
the single CO4 level. Helium is also typically added to the gas mixture of CO,
lasers because it has a large heat conductivity, reducing the gas temperature and
helping to depopulate the lower laser level via collisionl?,

In discharge-excited gas lasers, there is always an optimum pressure at
which the the electron temperature is at the best to excite the molecules so that
the laser power output is maximum. The scaling laws of discharges!! states that
one can change the characteristic size of the discharge vessel (usually the diameter
or distance between nearest walls) and keep the electron temperature the same by
following some simple rules to adjust other parameters of the discharge, most
importantly, the pressure. One rule is that the electron temperature will remain

constant if the pressure P varies inversely with the bore diameter D; that is
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Figure 3. The rotational levels within each vibrational level near the 10.6 um

laser transition of a CO2 molecule. Source: Ref. 14.
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PD = constant. A waveguide CO, laser has a small bore, and will thus require a
higher pressure. This will collision-broaden the gain line width and increase the
saturation intensity. One consequence of this is that the laser power density
increases. Another consequence is a wider range of operating frequency. Thus
waveguide CO, lasers are suited for compact devices, wide frequency tunable
sources, and mode-locked short pulse generators. An undesirable consequence of
the higher pressure in small diameter lasers is the higher electric field and higher
voltage required for the discharge. This disadvantage was alleviated by means of
transverse RF excitation, demonstrated by Laakman!2.

The interest in waveguide laser arrays developed as higher powers were
desired. Although one can increase the length of a waveguide laser to obtain
higher power, the device becomes a thin, long shape that is hard to implement
and handle, and more importantly, the higher power density thus obtained will
increase the optical flux on the laser mirrors, which will eventually fail. However,
if one can put several waveguide lasers in parallel and phase-couple them, one can
obtain a high power, coherent device in a small size with a reasonable aspect ratio,

and with power density in the laser optics basically the same as in a single

waveguide laser.



§1.3 Coupled Mode Systems

Probably the first reported observation of two modes coupled together
occurred in 166513, when Christiaan Huygens noticed that two pendulum clocks
hanging close together on the same wall would tick precisely together for an
arbitrarily long period of time. He attributed the mechanism of coupling to small
vibrations transmitted through the wall. In all large systems composed of smaller,
similar systems, there are interactions among these small systems. That is why
now, more than two hundred years after Huygens’ discovery, there is scarcely a
branch of science whose theory does not involve wave motion with its related
concepts of modes, energy flow, and mode coupling.

A complicated coupled oscillation system can often be divided into a
number of isolated elements, whose equations of motion can be solved and the
solutions expressed in terms of normal modes. The original complex system is
then assumed to be made up of the individual elements weakly coupled together.
The mutual coupling perturbs the state of each elements slightly, and this
perturbation serves to “coordinate” the individual elements into the single
complex system. This complex system of identical elements has more than one
overall solution even if all the constituent elements are in the same mode, because
of the various ways of coupling among the elements. These overall solutions of
the system in the optical field can be called “supermodes,” a term used by
Yariv!4 and others in the case of coupled waveguides.

In our theoretical treatment of the coupled laser array, we used the concept
of supermodes and calculated the competition between two such supermodes: the
all-in-phase coupled mode and the alternating in-and-out-of-phase coupled mode.
Based on the analysis, we conceived and tested a new coupled waveguide array

structure which favors the all-in-phase coupled supermode.
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§1.4 Outline of the Following Chapters

In Chapter 2 we set out from Maxwell’s equations to treat the spatial mode
competition problem. Our approach includes the spatial distribution of the
competing modes, the spatial variations of the medium gain and the loss in the
laser array. Numerical examples of coupled CO, laser array systems are carried
out and the results show that the loss in the inter-element region of the coupled is
the main factor in determining the mode of oscillation.

Chapter 3 gives experimental results for wall-slot coupled arrays, including
the pressure-power relationship, the waveguide material factor (same geometry
with different wall materials), and the supermode behavior. We compared the
oscillation modes of different inter-element region loss with the analysis in
Chapter 2.

Chapter 4 discusses the results of our study of slab waveguide lasers, the
modes of this particular structure, the effects different dielectric coatings have on
the waveguide losses, the relationship between the laser power output and surface
finishes, etc.

Chapter 5 presents our new structure, the groove-coupled strip waveguide
COgq laser array. This is a successful attempt to reduce the loss in the inter-
element region and to ensure the oscillation of the all-in-phase coupled mode. It
is related to the mode competition studies in Chapter 2. We obtained pure in-
phase coupled mode operation in arrays of two, three and five elements. The
concept of coupling between free-space Gaussian modes is proposed.

Chapter 6 reports our on-going experiment on microwave excited CO,
waveguide lasers, based on an idea of making an all metal, low cost device.
Waveguiding is provided for both the microwave and the laser by the same

structure.
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Chapter 7 describes two proposals for future study: a new type of optical
switch based on the supermode of two-element array lasers; and two-dimensional

arrays of phase coupled CO, lasers.
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CHAPTER 2. THEORETICAL ANALYSIS OF MODE COMPETITION
AND STABILITY WITH SPATIAL LOSS/GAIN DISTRIBUTIONS

§2.1 Introduction

Laser mode selection has been an important part of the study and
application of lasers since their discovery in 1960. Traditionally, the selection of
modes 1s necessary to obtain a single frequency with a single transverse mode,
which in single-channel lasers is usually the fundamental Gaussian mode, and in
laser arrays, the all-in-phase coupled array model’2. Recent progress in active
photonic switching and logic devices uses the different modes to represent
different states, with the oscillation being switched back and forth between the
modes to change the state®?. These modes can be the longitudinal or transverse
modes of the laser cavity, including polarization. Usually the different modes
have different field distributions in the laser cavity. The differences in their
overlap with the gain and loss distributions over the cavity volume play an
important role in their competition with each other. Understanding of these
differences is then fundamental to the proper vselection of lasing modes. The
original theoretical work on multimode laser operation was done by Sargent,
Scully and Lamb®, and we are greatly indebted to them. However, because they
did not include spatial dependence in their laser modes, medium gain, and loss,
their theory can not be directly applied to the coupled-laser arrays. Also, their
treatment was limited to cases where the laser intensity is much smaller than the
saturation intensity. In this chapter we develop a general analytical method,
which takes into account both spatial distributions and strongly staturated gain,
to help understand better the interactions between the modes and the medium,
and their effects on mode competition. Conditions on gain and loss distributions

for competing modes to oscillate are derived with special attention to the in-phase
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coupled and the out-of-phase coupled modes of an array.  Section 2 of this
Chapter considers the spatial variation of cavity loss and gain, and gain
saturation. Differential equations for laser mode development in time are derived.
Section 3 studies the stability of single mode solutions in a two-mode system.
Conditions on gain and loss distribution for competing modes to oscillate are
derived. Section 4 presents one-dimensional numerical examples of competition
between the in-phase and out-of-phase array modes in a two-channel CO, laser
array. Section 5 extends the theory to two-dimensional numerical examples to
reveal some finer aspects of mode competition as affected by the array structure.

Section 6 discusses the stability of a two-mode state for the laser system.

§2.2 Model and Theory
We concentrate our attention to the coupled-waveguide laser array, the
general form of which is shown in Figure 1. For this model, Maxwell’s equations

can be written as:%

E
VxH=J+ 8B 0P

VxE= ——u%——?
where the current density J is introduced to account for the loss that is not in
resonance with the laser (for example, the mirror transmission loss or the loss
introduced by the waveguide boundaries) and P} ., is the complex polarization of
the medium that resonates with the laser.

Using a normal mode expansion of a resonator field, the total electric and

magnetic fields are:
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rt) = Ye(t) (1)
J

H(rt) = Sohi(t) ()
J

where the modal functions ¢;(r) and ¥;(r) are dimensionless and are normalized to

the volume of the cavity, V:
F] 4@ a0 av =5,

The loss and resonant polarization become:

T = o(0) Yes(0)4,(0
J ®)
Plaser (r,t) = EOX(raw)Zej(t) ¢j(r)
J

The formal conductance o(r) and the complex dielectric susceptibility x(r) are
functions of space here, while in reference 6 they are treated as constants. The

first of Maxwell’s equations becomes:

Zh(t)VXd)(r)-o(r)Z +[e+egx(r Z i(t) 85(x) - (%)

Taking the time derivative of equation (5), we obtain:
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distributed gain and loss

Figure 1. Schematic showing the general structure of the waveguide array of two

channels with distributed gain and loss.
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22 Bi(t) Vxgy(r) = o(1) X &(t) dy(x) + [+ ex()] 3 &(6) 5(x) - (6)
J ] j

The normal-mode field functions satisfy Maxwell’s equations for the empty

unperturbed resonator, which is charge free, uniform and passive and lossless:
Vxii(r) = iw;geds ()

where wig is the normal frequency for the j-th mode in the passive cavity.

Substituting the first line of (7) into the second of Maxwell’s equations, we have:
&(t) = g hi(t) (s)
Using equations (7) and (8) in (6):

5 e (1) 4i(x) = o)) X2 (t) 5(0) + e+ ex(@I Y (1) 4. (9
J J J
Rearranging the above, we obtain:
-62( 00 ¢ +8) (1) = 30 +egx(x) & (). (10)

]

Multiplying both sides of the above equation with %qﬁk(r) and integrating over the

volume V, we have

—e(wk02 ek+'e'k> Z ( o (t +60XJke (t)) (1), (11)
j
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where
oy = %J’V o(r) (1) - i (x) dv
(12)
X5k = [y X(©) () y(x) dv.
We may write &;(t) as:
1 —iwjt
e(t) = 5 eolt)e I +cc., (13)

where w5 is the laser frequency, and ejo(t) is the slowly-varying part of the time-
dependent e(t). We assume e Vvaries slowly, |éj0l < w ]éjo(t)l, so that the

second derivative of € (t) can be approximated as:

.. . . iwt

&(t) = S[-we;q(t) +i2w &g(t)] et (14)
and equation (11) can be written as:

2 2 : A1 —

K J J

We see from this equation that the spatial variation of the loss and gain causes
direct coupling between different modes. This is distinct from the kind of
coupling that is our main object, in which the interaction is via the cross

saturation of one laser mode by another. Because laser gain and loss can never be



-7

truly uniform in space, direct coupling will in general be present and must be
given due consideration. Only under the conditions that the orthogonality
between the modes is not violated by the presence of x(r) and o(r) in equation
(12), so that the following inequalities are true, can the direct coupling terms be

omitted:

[y ) 40 x(z0) dv < [ 8- (1) x(rw) dv
} k#j. (16)
J v A0 #(0) o) dv < J v 4 $(n) o(r) dv

Inequalities (16) are well-satisfied in the cases we are treating here, where o(r)
and x(r) are nearly symmetrical functions, and the k-th and j-th modes are of the
opposite spatial symmetry. If o(r) and x(r) are exactly symmetrical, then the left
sides of inequalities (16) becomes exactly zero. With this approximation, equation
(11) becomes:

(201 +73) +7) = [wyg? r 2+ 3 w2 i Ly (17)

n J b2l

where n is the index of refraction of the medium in the absence of the gain, and o
and X;j are shorthand for 5 and Xij» respectively. The modal susceptibility X;j can

be further written in terms of its real and imaginary parts:

X =4y 40 60 xme) dv=F [ g0)-4() (¥ -i X()av. (18

When we require €y =0 in equation (17), we obtain the steady state solution,

which then yields two conditions for steady state laser oscillation; the first one is
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for phase and the second one for amplitude:

0 I _ Y 19
wj - Re X; ’ m(Xj) - 60 L(Jj * ( )
I+——
n

To simplify the problem further, we consider only homogeneously-broadened

media, since in Section 4 of this chapter we will treat CO, lasers, which are
essentially homogeneously broadened. From Appendix A, the imaginary part of

X; can be written as:

. nef _ 200 140 dv
Im(x) = [, P X0 dv = B[ %Oekoe*ljo%(f)"f’k(f)’ |
1+ 27715

(20)

where the wave impedance of space filled with dielectric material of permitivity

\/%. | (21)

The small signal gain v, [m™!] and homogeneous saturation intensity I [W/m

€ = €€ is defined as:

n

?]
are defined in the usual way; their relations to the laser atomic parameters are
given in Reference 6, and are cited in Appendix A. Solving equation (17) for €0

and substituting the laser frequency w; as given in the first of (19) we obtain:
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For most gas-laser media, |x| <« 1, and thus |Xj| /n? < 1 in equation (22). If the
cavity loss is small, i.e., o5 /€ < 2w, the denominator above is effectively i2wj and
equation (22) can be further simplified. Using these simplifications and expanding

the electric field using equation (2) in (20), equation (22) becomes:

2
SV O NP TR P
J TRV LT e oh(D) 4 |
1+ I
S

It is seen clearly in equation (23) that the coupling between the modes now exists
in the form of cross saturation through all the ey g, o* terms. This is the basis of
mode competition. In expressing (22) in the form of (23), some assumptions
about the population inversion were made, which are described in more detail in
the derivation of the population inversion in Appendix A.

Equation (23) is the differential equation for the laser field coefficients, each
including phase and amplitude. In mode competition cases we are only concerned
with the change in the intensity of a laser mode, an easily measurable quantity, so
we will write equations for the intensities of each mode using equation (23). In
doing so we also eleminate information on the phase of each mode that we are not
interested in and further simplify the treatment. The intensity coefficient for the

j-th mode is defined as:

*
€:nC:
_ J05j0

It represents the power density [W/m?] in the j'! mode. The differential equation

for b; may be found from equation (23):
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*
o drS0%0 N 1. o« o k)
by =ail=z )= 2(¢j0%0 + ejotin”) =

2 v
UGG M-

Y by (r) - (r) I
14k T

=2 2erJV

In deriving (25), we used the fact that the square bracket term is real. We also

introduced a modal loss coefficient as:

(26)

L
Il
&

§2.3 Mode Stability Analysis

We can now use the results of the previous section to investigate the
stability of a given mode when it is possible for a second mode, i.e., one with a
different transverse field distribution, to oscillate. =~ We make the following

assumptions:

1. There are only two modes that are sufficiently near the threshold to be

appreciably excited. The total field is then:

E(r,t) = ey(t) ¢1(r) + eq(t) dy(r) . (27)

2. The z-dependence of the modal fields is a simple standing wave, and is

the same for all modes considered, since we have assumed they all have the same
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longitudinal mode number. Thus the spatial hole-burning resulting from this fine
standing-wave pattern in the z-direction does not favor one mode over another
and can be ignored. Integrals over volumes can thus be replaced by integrals over
the transverse cross-section.

3. The gain does not depend on z, so the integral in equation (25) is only
affected by the field variations in the transverse direction (x,5);

4. The loss o(r) is divided into a spatially-varying part and a constant part:
o(r) = o’(r) + 0y (28a)

With these assumptions, the effects of the localized loss and the distributed

loss on laser mode competition can be separated. The modal loss is then:
L= L J o(r) i(x)- () dv+ 20 =T/ + L (28b)
b 2V]V J J 2¢ — “jTHO -

To obtain steady-state solutions for equation (25), we require Bj =0 for
J=12. Then on the right hand side of equation (25) either the term in the
square brackets is zero or bj is zero. All possibilities considered, we have three

non-trivial steady state solutions:

(by, bg) = (£, 0), (0, g), or (py, Py). (29)

It is necessary to analyze the stability of these solutions and find the conditions
for them to be stable and unstable. We will only treat the single-mode solutions
(£,0) and (0,g) in this section, since they are of more interest; two-mode oscillation

will be the subject of Section 6 of this chapter. In our experiment, we did indeed
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obtain oscillations corresponding to (£,0) and (0,g), as will be discussed in Chapter
3.

First, consider the stability of the state (f,0). Under perturbation (61,69),
this state becomes (f+6,,85). We use equation (25) to study the dynamics of the

perturbations 8, and 6,:

2
5 =92 C 7O(X7Y) I¢1(X7Y)| dXdy L f16 ‘
+=as] S, 88y P+ bl | OV
I,
- (30)
5y = 2] J 705 [bp(ey)® dxdy |5, J
5JS | (481161 (03) [ + 8alhn(x,y)I°
IS

Here, S is the total cross-sectional area of the laser cavity. Because the
perturbation is very small, f » |6,], |6,], we can ignore all the second-order é—

terms in equation (30):

2 2
. c 70(X7Y) 161(x,5)] 1_ 61]¢ (%3] dxdy =L |(f+6,). (31)
1 2nSJS 1+fl¢1(IXa.’>’)|2 15(1+f|¢1(IX,Y)|2) T :

The fact that (,0) is a steady state solution implies that the saturated gain

equals the total loss:

c Jsvg(x,y) |6(x,y)[? dxdy L =0. (32)

203 . |y (x,)]?
A
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Equation (30) evolves into the following form:

61 |¢1 (X7Y) |2

1+f|¢1<1x,y>|2}2

b= s [ noey) 1 o) P [

f _ol_c 79(%:¥) l¢2(X,y)|2 dxdy
5y =255 J .
n 5 1 fl¢l(X7Y)|
o
S

—Ly| 69

We can write (33) in a matrix form by defining a vector §:

The time derivation of § is:

e

From (33), the matrix elements B and C are zero. Thus the eigenvalues for the
operating matrix are A and D. If both of them are negative, then the vector §
will not grow, and the steady state (f,0) is stable; if either A or D is positive, (£,0)

will be unstable. We see from (31):

4
A= cf JS 70(X7Y) |¢1(X7y)| dxdy <0

HIS f X, 2
S5 1 Tl

(35)

7(%,3)|o(x,7) |2
2

[1+f|¢1(;{7}7)| ]2

— C _
D=2 QHSJS dxdy — L,
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The sign of D is not known until Yo(%Y), #1(x,¥), é9(x,y) and o'(x,y) are
specified. But because A is negative, the sign of D determines the stability of the
solution (£,0): if it is positive (negative), this state is unstable (stable).

Similar arguments obviously apply to the other single mode steady state (0,

g), which becomes (6, g+ 6,) with perturbation. The equations are:

5 =2 J 70(5y) [1(x3)I> dxdy_L1 5,

205JS glga(x,y) 2

1+___I__
S
(36)
: 8oldy(x,y)[
S0 8 2 2192 dxd
2 nISSJS70(X’Y) l¢2(X,Y), [ 1+g|¢2(X,Y)I2 ]2 Xay
Is

We define the self-saturated modal gain Sy and cross-saturated modal gain

ij, both in unit of s, as follows:

79(%¥) | (x,y)[? dxdy

aqubk(XaY)IQ

i shd S

IS

SkEQﬁSJs

Jak:1a2a.]'_/ék7 a15f7 0[2Eg. (37)

2
ijE c J 70(XaY) I¢J(x,y)| (;Xdy
. 14 Sl

S

These definitions are similar to those used by Tang et al?! Then we may

summarize the conditions for the existence and stability of the jth modes:
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For the jth mode to exist
For the k*® mode to exist

The stability of the jth mode is determined by
<0 stable

> 0 unstable

The stability of the k™! mode is determined by
<0 stable
ij - L'J- -L, (38d)

> (0 unstable

Thus, for a laser to have a single j*® mode, (38c) must be <0 and (38d) must be

> 0, and vice versa for a single jth mode to exist.
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§$2.4 Numerical Examples

In this section we consider numerical examples using parameters typical of
CO, waveguide lasers. The model chosen is an array of two channels coupled by a
region with some loss, as shown in Figure 2a. The competition between the in-
phase and out-of-phase coupled modes (or “super modes,” as they are sometimes
termed®) is considered, based on the stability of the (£,0) and (0,g) states.

The fields are assumed to vary only in the y-direction; they are assumed to
be uniform in x-direction (Figure 2b). The small signal gain v is assumed to be a
constant across the array. The loss distribution, which peaks in the coupling
region, is also assumed to vary only with y, and its amplitude is changed to affect
the mode competition (Figure 2c). The x-dimension is taken as 2 mm, and the y-
direction as 6 mm. The small-signal gain 79 and loss coefficient that is equivalent
to 2Ly/c are estimated for a CO4 waveguide laser array to be 0.0012 mm™ and
0.00034 mm™, respectively. The saturation intensity is taken from experimental
datad as I, = 80 [watt mm™?] at pressures of around 110 torr. The following two
functions are used to represent the general forms of the in-phase and out-of-phase

coupled modes:

$1(y) = cy{exp[—(y — 1.5)%] + exp[—(y + 1.5)3]}
: (39)

$o(y) = cofexp[—(y + 1.5)%] —exp[—(y + 1.5)2]}

where ¢; =1.540, ¢, =1.557 are normalization constants. These modes are
plotted in Figure 2b. Although they are not the actual modal solutions, these two
functional forms resemble the general shapes of the in-phase and the out-of-phase

modes, and the difference between them. When they are substituted into (16),
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a

>

-(7, 2 L

c

2

£ 1.5

o)

D

ES 1

©

£

8 0.5}

o

. — out-of-phase
b -3 -2 -1 1 2 3
x 108 57
| B =4.45+108
B =12%10%
3 2 71 0 1 2 3
¢ y (mm)

Figure 2. a) Schematic cross-section of the waveguide array; b) the assumed
intensity distributions for the in-phase and out-of-phase coupled mode; c) the

assumed loss function for two different values of 5.
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the left side yields zero. Thus the omission of the direct coupling terms in
equation (15) is justified.
The spatially-varying loss is located at the center of the array where the two

channels meet, and is assumed to be the following:

%ﬁ) = exp(—20y2), (40)

where § is a parameter with a unit of s’1. We calculated the stability of the two
array modes for two different values of 8, 1.2x108 and 4.45x10%. The total loss
function for these two cases are plotted in Figure 2c. The results of the

calculation are given in Table 1.

Table 1. Summary of Stability for the Two Array Modes

B =1.2x108

stable in-phase mode

2

£ =29.66 [——WattJ
mim

unstable out-of-phase mode
021 — Ll =2.7x 106[5_1] >0

mm2

f=29.10 [—Watt]

B =4.45x 108

stable out-of-phase mode
Cy1—Ly=-1.1x10%s] <0
g = 28.60 [WL%J
mm
unstable in-phase mode
Cig~Ly =6.9x108s1] > 0

mm

_ bt
g = 27.32 [E%J
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integrand for Ci2- L2

1 2 3
a y [mm]
integrand for Cz - L7
1 2 3
b y [mm]

Figure 3. Integrand comparison for f =1.2 x 108, yielding stable in-phase coupled

mode and unstable out-of-phase coupled mode. The larger areas for S;—1L' in (a)

and Cyy — L7 in (b)

are due to contributions from gain in the center region.
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~3 -2 -1
integrand for C21 - L1’ y [mm]
21 F
a
integrand for S1 - L1’
b Al

Figure 4. Integrand comparison for B =445x% 108, yielding stable out-of-phase
coupled mode and unstable in-phase coupled mode. The larger areas for Sy —1L%

in (a) and Cy9— L in (b) are due to contributions from gain in the center region.
12 2 g
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The result in Table 1 clearly indicates that for the smaller loss
(8= 1.2x108) in the center, the in-phase coupled mode (with subscript 1) is
stable and the out-of-phase coupled mode (with subscript 2) is unstable; and for
the larger loss in the center (8 =4.45x108), the out-of-phase coupled mode is
stable and the in-phase coupled mode is unstable. Figures 3 and 4 are plots of the
integrands for the two B values, showing that the difference in areas comes mainly
from the center region where the loss varies most rapidly.

We can obtain the mode stability readily by a simple graphic method.
From (37), S; and Cy4 are functions of f; and Sy and Cy; are functions of g. We
plot these functions in Figure 5. These curves, combined with the horizontal
lines representing the total modal losses, show the range of stability for both (f,0)
and (0,g) states. In Figure 5a, the intersection A of L; and S; fixes the value of
intracavity intensity f, which is 144 [W/me]. This f value in turn determines
C19 at point B. Ly is always less than L, because there is less overlap of the out-
of-phase mode with the central lossy region. Thus if Ly lies between A and B,
then Cy9 <Ly, and according to (38c), the in-phase mode will be stable. This
same Ly line also crosses the S, curve at point C, setting g = 140 [W/me] for the
out-of-phase coupled mode. This g value in turn yields Cy; at point D, which
satisfies C9) > Ly, and according to (38c), (0,g) state is unstable. Figure 5b shows
a different case, where L) and Ly are farther apart, corresponding to a larger
value. Here, the L, line is below point B, and the C.9 value at B is larger than
Ly. Thus the in-phase coupled mode is unstable. The same L, line crosses S, at
point C, which also determines g. The Cyy value for this g is given by
intersection D, lying below the Ly line. Thus the out-of-phase coupled mode is
stable. The various values at the intersections on Figure 5a and 5b are the same

as listed in Table 1.
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125 130 135 140 Pﬁ\l\éo
a

Intracavity Intensity [Watt/mm2]

g-1

5.8 10 8
B=4.45%10
71 ci12

5.6 10

S2
5.4 10
5.2 10

125 130 135 140 14?\150
b Intracavity Intensity [Watt/mmz]

Figure 5. The stability diagrams. S, Ci9; Sg and Cg; are plotted as functions of
intensity. Intersection A of S; and L; determines the in-phase mode intensity.
The position of the L, line lying above or below point B determines whether the
in-phase mode is stable or not. Intersection C of Sg and Ls, determines the out-of-
phase mode intensity. The position of the L; line above or below point D
determines whether the out-of-phase coupled mode is stable or unstable. Thus (a)
represents a situation with a stable in-phase mode and an unstable out-of-phase

mode, (b) vice versa and in (c) both modes are unstable.



n-23

7P
5.8 10

71
5.6 10

71
5.4 10

7
5.2 10

125 130 135 140 14?\1_%0
Intracavity Intensity [Wat/mm?2]

Figure 5¢

This stability diagram reveals yet another possibility, i.e., a situation where
neither mode is stable. In Figure 5c, the Ly line is just slightly bellow point B so
intersection C is to the left of B, and the intersection D is slighly higher than the
L; line. Thus we have C;9 > L, and Cq; > L; and both modes are unstable. In
our experiments we have observed the laser switching continuously between the
two modes, not stable in either one. This may correspond to the situation
described in Figure 5c.

In the above we used a constant small-signal gain that corresponds to a
uniform excitation, and a loss in equation (40) that corresponds to a non-uniform
and non-saturable loss in the laser array. It is also possible, even likely, that the
excitation is actually not uniform, e.g., there is a smaller gain ( or even no gain)
in the central coupling region compared to the lasing channels. To reflect this

situation, we made calculations with a saturable loss in the central region, with a
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small signal gain:

Y0(y) = 7 - B exp(-20y?) , (41)

and o(y) is taken as zero. The results for two different values of 3 showed the
same qualitative trend as for the unsaturated loss case, i.e., for larger (smaller) 3
values within a certain range, the out-of-phase (in-phase) coupled mode is stable
and the in-phase (out-of-phase) coupled mode unstable.

Another interesting observation to be made from these numerical
calculations is that only about ten percent of the laser volume is involved to
achieve the mode switching: for a total width of the intensity distribution of 5
mm (-2.5 to 2.5), the dimension over which the loss varies is only less than 0.5
mm. In our experiments with CO, lasers, we have no convenient way of changing
the local gain or loss electronically. But if our calculations are applicable to
semiconductor lasers, where there are ways of changing the local injection current,
it should be possible to change the oscillation mode electronically. The small
volume involved implies a small capacitance and hence a high switching speed.

This might be useful in semiconductor optical logical devices.
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§2.5 Numerical Examples of Two-dimensional Loss Distribution

We now proceed~to apply the theory developed in the previous sections to a
two-dimensional model, where the loss and the transverse distribution of the laser
fields are functions of both x and y. It is our expectation that two-dimensional
numerical calculations of the mode stability and mode competition will reveal
more information on practical array structures. Two different wall-slot coupled
gas laser array structures are treated, the transverse profiles of which are shown in
Figure 6. One of them is the symmetric wall structure that is an approximation
to the array reported by Bourdet et al.%; and the other, nonsymmetﬁc wall
structure, is an approximation to that reported by Newman et al’. Because gain
and loss can be treated as the same parameter with different signs, we still assume

gain to be a constant and assign all the spatial variation to the loss.

a. symmetric wall b. non-symmetric wall

Figure 6 Illustration for the symmetric and non-symmetric array structures.

The laser modal fields for the in-phase and out-of-phase coupled modes are
assumed to be approximated by the functions:
$1(xy) = c;sin(Z){exp[—(y — 1.5)%] +exp[—(y + 1.5)%]}
(42)
bo(x,y) = cosin(ZE){ exp[~(y — 1.5)%] — expl~(y +1.5)%]}
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respectively, where c¢; = 2.177 and ¢, = 2.202 are normalization constants. They

are shown in Figure 7.

2 >
5 2
S 4 e
£

3

2

1
y N h * "-,‘

in-phase *
P out-of-phase
-3 -2 -1 1 2 y 3
2 a b

Figure 7. a) The 3-D intensity distribution for the in-phase coupled mode; b)

center cross section of both in-phase and out-of-phase coupled modes.

We will calculate the stability for both coupled modes for the two structures
with the same array dimension, 2 mm x 6 mm, and same slot width, 1 mm.

The loss function for the symmetric wall array can be expressed as:

2¢

. 2
o'(x) :{ fexp(—ay?), 0<x <05, 15<x<2 .

0, 0.5<x<1.5
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and for the single wall array:

o (%,7) Bexp(—ay?), 0<x<1
) = (43Db)
0, 1<x<2
These two loss functions are shown graphically in Figure 8.
The localized modal loss as defined in equation (28b) becomes:
L = 5k [ o o x3)82(xy) dxdy (44)

a. symmetric b. non-symmetric

Figure 8. Spatial loss distributions for both the symmetric and the non-symmetric

structures.

Substituting o’(x,y)/2¢ in (44) with (43a) and (43b), we obtain the spatially-

dependent part of the modal loss for the two structures. In each structure we can
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determine the stability of both the in-phase and out-of-phase coupled modes via
the graphical method introduced in Section 4. The fixed modal loss that
originated from the mirror absorption, transmission, etc., for both structures are
assumed to be the same as in Section 4, Ly = 5.1 107. Thus for a 3 value of
8.9 x 108, twice as the high 3 value in Section 4, where the one-dimensional loss
distribution should be the spatial average of the loss here, we obtain a stable
(unstable) in-phase coupled mode and an unstable (stable) out-of-phase coupled
mode in the symmetric (nonsymmetric) structure. These are depicted with the
stability diagram of Figure 9. Such numerical results are reasonable because in
the symmetric array structure, the lossy wall overlaps with the tail of the sine
distribution of the intensity, while in the nonsymmetric structure, the wall
overlaps partially with the peak of the intensity distribution, introducing more
modal loss. We believe the above numerical results provides an explanation to the
difference between the symmetric array structure that was reported in Reference 9
where in-phase coupling was obtained in arrays with five channels, and the
nonsymmetric structure that was reported in Reference 7, where the out-of-phase

coupled mode is dominant in the array.
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Figure 9. Stability diagrams for both the symmetric and the non-symmtric

structures.
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§2.6 Stability of Two-Mode Oscillation

From Section 3, we know that in a two element array, one of the steady
state solutions for the differential equation is (py,py), which represents two modes
oscillating simultaneously. Here we will investigate the stability of this solution.
Under perturbations, this state will become (p;+8;, py+&y). From equation

(25) in Section 2 and Appendix A, the differential equation are, for j=1, 2:

70(X7Y) |¢J (X>Y) l2 dXdy

5. =2|-C -
! 2HSJ81 L (18191 (xy)% + 0y + 69) 165 (x3) 2
I

Because the perturbations are small, we can ignore terms of second order or higher

in 6, and é5. Using the binomial expansion, we obtain:

. 79(%) 15(xy)|? dxdy] 611611+ 65/¢o”

b: o2 | 5E J ] - ——L7L T2 ~Li|(p; +6) -

=2 )55 g 1+p1|¢112;tp21¢212 L IS<1+P11¢112;‘P21¢2IQ) R
(46)

Because (py, py) is assumed to be a steady state solution, we must have the

saturated gain equal to the total loss for both j =1, 2:

c J 70(X7Y) |¢j(X)Y)12 dxdy

- L. =0. (47)

S, 21l () +paldp(ey)®
8

Then (46) becomes:

[ W) e POP bl bty L,

T nISS (1 +P1|¢1|2+P2|¢2]2)2

IS
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This equation can be written in a matrix form exactly as equation (34):

S
8,) \cD)\s,

We make the following definition for the integrals in (48):

_ 7(y) 16" dxdy b= _c [ 700561 lgyf? dxdy
a_‘nIst 2 2N, = nISJS 2 2o’
s 1. P1l81]" + polgy|*\2 s P1/81]" + poldy|?)2
+ I+
I I
79(%,y) ||* dxdy
d= nICSjs 0 22 T - (50)
s 1 +P1|¢1| + Pyldy|*)2
S
From (48) we can see:
A=pja, B= pib, C=pyb, D= pad . (51)

The eigenvalues for the operating matrix in (49) are:

Moo= %[A+D +/(A+D)2—4(AD — BC)]

- %[A-}—D +\/(ATD)2— 4p py(ad — b2)] . (52)

The Schwarz inequality tells us for two arbitrary real functions f;(x,y) and f5(x,y):

Ufl(x,y)f2(x,y)dxdyJ2 < ffIQ(x,y)dxdyJf22(x,y)dxdy , (53)
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in which the equality sign holds only when f; =15. Applying this to a, d, and b,
as defined in (50), we obtain:

ad > b2 (54)

It follows from this that both eigenvalues A and A, take the sign of A + D, which
is negative. Thus the two-mode steady state is always stable.

In most laser applications, multiple transverse mode operation is
undesirable. And now there is only one way left to avoid it: Make equation (47)

invalid. This can be realized by increasing the modal discrimination.
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APPENDIX A
Saturated Population Inversion under Multi-mode Operation

Multi-mode laser oscillation has been treated by Sargent, Scully and Lamb?,
to whom we owe a great deal for their insight. However, their study was based on
a small-signal approximation, which is not the case in our situation. We build our
treatment from Yariv® and expand it to multi-mode cases with some assumptions
and approximations.

Equations (17), (22), (23) and (25) are coupled mode equations. Mode
coupling occurs in form of saturation of the population inversion saturation, hence
the susceptibility x(r,w), and is carried through to the modal susceptibility Xj-
The imaginary part y” is proportional to the difference of the diagonal density
matrix elements (P11 — p9y) which represents the population difference between
the upper and lower laser levels5, and the differential equations for the density

matrix elements are:

p
d%-ﬂm —lwppg; +1 E(t)(p11 — oo ‘—T%l (A.la)

}

. (P11 = P22) — (P11~ P2y)
ait(/’u*/’m)=12%E(t)(/)21-/’*21)— AL 0 )

We assume a single longitudinal mode with N transverse modes. The frequency
differences among these modes are assumed to be very small compared to the line
width. Using the expansion in (2) and (13) for the linearly polarized total electric
field,

N

E(z,t) = Ze (t) ¢;(x 2[2 ejo(t) e wjt+c.c.J (1) . (A.2)

J
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For convinience, we write the off-diagonal density matrix element P9y as

follows:

Sdw ot
PQ]_(t) = 0'21(t)e “a ’ we = JN . (A'3)

Thus from (A.la) we have the differential equation for 791"

. . N iAa.jt 021
0'21 = 1(w w0)021 + 12h(p11 p22) Zejo(t) ¢Je et T_2 3 (A4)
J

where Aaj is the frequency difference: A . =w, - w:.. High-frequency terms in

aj J
(A.4) are ignored, because their contributions to the integration average to zero
over the time scale of change for 0y;. Multiplying both sides of (A.4) with the

factor exp{[i(w, — w;

5) + ﬁ]t} and performing some manipulations, (A.4) becomes:

1

. . 1
d [l(wo*“’a)"‘T*’]t] | N [i(wp — w)+7t
d& {021e 2 :1%(/’11—/’22)2%'0 € 2.
J

(A.5)

Assuming the rates of change for (P11 — Pes) and e e are much lower than 1/T,,

we can pull them out of the integration. Then we obtain by integrating (A.5):

‘721—1 (p11— P22)Z 0¢e D(Ty, wy—w;), (A.6)

where D(T,, wy —wj) is defined as:

D(Ty, wy-w;) = 1 . (A.7)

TL2 +i(wy — wj)
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The (pg; — p*9;) term in (A.1b) becomes:

* -iw t * i(.d t
(Pg1 — p*91) = 0918 2" —o*y1e'“a

=i h(pll £99) (Z ) ¢e D(Ty, wy—w w;) +c.c.) . (A.8)

Thus we have:

(P11 = P2) — (P11 = P20)
$ip11— poo) =i2% FE(6)(pgy — p*yy) — L P22 LT Pan

= (E )(Z gt ¢ +c.c %e- eiwjtgb-D(T wy—w:) +c.c
= h (P11 — Pa2 j T EC ) 22550 N2, W — W -C
]

_(p11—p92) _T(Pll — P22)o . (A.9)

If the frequency spread of the transverse modes is small compared to the line
width, we can approximate D(Ty, wy —wj) with D(Ty, wy—w,). One can see from
(A.9) that there are beatings in the population inversion, and it does not have a
steady state solution under multimode oscillation. But we realize that the spatial
relaxation in the longitudinal direction can neutralize this beating. So it is
possible that the rate of change of (P11 — P99) is much slower than ei(wj_wk) ' fo

any k#j. Thus we need keep only the terms with no exponential time

dependence on the right side of (A.9):

o1 = p22) = 3011~ 1) [D(T, =) + 0] 3 esgesg 147
dg P11 P22) = —5(3)7(P11 — Pa2 2 w0~ %a) T CCL2_ %5080 |9
J
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_ (P11 = P99) = (P11 — Pas)g
- .

(A.10)

We follow the majority in the literature in making the definitions below:

Normalized line shape function:

2T
g(w) = 5 2 5 (A.11)
1+ To*(wp—wa)
saturation intensity:
_ h? 13
Iy = cne = : (A.12)
0 )
i wirg(w)  Tulrg(w)
and the laser intensity:
X 1 o *| 112

By requiring the left side of (A.10) to be zero, we obtain the steady-state
solution for (p;; — pgo):

(P11 = P99) P11—P
(P11 = Pog) = ) 11{1 2270 ; :( 1; N 122)0 . (A.14)
. I
55 2~ 0%0" 14| I
]
1+ T

From Yariv5, we know the susceptibility satisfies the following:

X" o P11 — P99, (A-15)
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and

X'=-15%, (A.16)

where 7 is the gain coefficient of lasing medium in unit of meter 1.
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CHAPTER 3. EXPERIMENTAL STUDIES OF CO, LASER ARRAYS
OF HOLLOW BORE WAVEGUIDES

§3.1 Introduction

There had been several reports of phase-coupled CO,, laser arrays before the
beginning of our project. The first was by Youmans! and Schlossberg2 (Figure
1a), where the waveguides are separated by walls of an IR transparent material,
for example, ZnSe, through which the wave in one element leaks to the
neighboring elements. Although it proved the concept of phase coupling in CO,
laser arrays, this structure has the disadvantage that the optical quality of the
expensive ZnSe material could deteriorate when exposed to the ion bombardment
in the gas discharge. It was not a practical structure.

Another way of achieving mode coupling in a linear array was reported by
Colley et al.3 (Figure 1b), where the length of the array is considerably less than
that of the laser optical cavity, so that the wave exiting one of the elements can
leak into other elements after it reflects off the cavity mirrors. This method tends
to have a very weak coupling, and thus a small coupling range. In addition, the
geometry of the individual waveguides must be controlled very accurately in order
to achieve the coupling. The temperature gradient in the array is capable of
producing enough frequency displacement to perturb the coupling in this
structure.

DeMaria and Bridges suggested another CO, waveguide laser array
structure® (Figure 1c), where the coupling is facilitated by a partial opening in the
waveguide walls, through which the wave from one element can leak into the
neighboring element. Because the coupling occurs within the laser active region,
this type of coupling tends to be strong. This structure was successfully

demonstrated by Newman et al®
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Bourdet et al.t (Figure 1d) reported yet another type of coupled array Co,
laser. But we can categorize their structure as a variation from that of DeMaria
and Bridges, in the sense that it also has open slots between lasing channels that
allow coupling; the “slots” are just much larger.

We chose to start from the structure suggested by DeMaria and Bridges not
only because professor Bridges is my thesis adviser, but also because we could
obtain samples of waveguide array ceramics from researchers at United
Technologies, with whom professor Bridges has been a collaborator working on the

array lasers. All the array structures mentioned above are shown in Figure 1.
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Figure 1. Various schemes for coupled CO, waveguide laser arrays.
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§3.2 Modes of a Single-Bore Waveguide CO, Laser

Marcatili and Schmeltzer’ were the first to suggest using hollow metallic or
dielectric waveguides for lasers. They found that the attenuation for each of the
hollow waveguide modes was proportional to the square of the free-space
wavelength and inversely proportional to the cube of the diameter of the
waveguide tube. Their modal analysis was applied to circular waveguide only, but
all the important physicél phenomena were described. Laakman and Steier®
studied the modes of hollow rectangular dielectric waveguides (Figure 2) obtaining

the same dependence of modal loss on wavelength and guide aperture, and derived

the field components for EH*,,, modes as follows :

Ex:\/gHy:

sin(m;rx)sm(ngy), m, even; n, even,

cos(® ) cos (n7ry)’ m, odd; n, odd,

= , inside material €y, (3.1a)
nry

cos( X )sin(—2), m, odd; n, even,

b

nm
WX cos(TrY),

b

m, even; n, odd.

sin(

and for EHY ), modes as follows :

= 1, -

sin(m;rx)sm(mry) m, even; n, even,

cos(FE ) cos (nﬂ'y)7 m, odd; n, odd,

= , inside material 5, (3.1b)
cos(mgx)sm(mry) m, odd; n, even,

mwx)cos(n—ﬂi), m, even; n, odd. J

sin(*] b
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and the fields vanish everywhere else. In (3.1) Ex and Ey represent x and y-
direction polarized electric fields for two group of modes, respectively. Metal
materials such as aluminum are not perfect conductors in the optical frequency

range, so they need to be treated as lossy dielectric materials.

NN

s Nz
7/ “u

7™
o

N\

N
&n

AN
N

Figure 2. Hollow rectangular leaky waveguide studied by Laakman and Steier.

The four corners are omitted to simplify the treatment.

For a “regular” or index-guided waveguide, where the core material has a
higher dielectric constant than the surroundings, there is evanescent field in the
surrounding material outside the waveguide region. This evanescent field can
serve as means of coupling between several index-guided waveguides if they are
parallel and placed in close proximity. A good example of this was given by

Somekh et al? However, if the dielectric constant of the core is lower than that of
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the enclosure, this type of waveguide is termed an anti-waveguide or “leaky”
waveguide, since the fields inside can “leak” through the boundary and radiate off
to leak into infinitylo. But if the wall material is also lossy, then the waves that
“leak” out are also exponentially attenuated, and thus appear much like the
evanescent waves in the regular index-guided waveguides. But the waveguide
losses are finite for the “leaky” waveguide case. In fact, if the dielectric losses are
very high, very little field exists in the wall material. Equations (3.1) assume that
there is actually no field in the wall of our leaky waveguide, nor is there field
outside it. Thus it is impossible to couple a group of hollow bore waveguide gas
lasers by simply putting them in a closely spaced group. For these lasers, various

methods of leaking waves from one element to another were shown in Figure 1.
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$3.3 Arrays of Two-Bore Waveguide Lasers

At the outset of the project we elected to make a “test bed laser” in which
the laser active region could be easily interchanged without disturbing the mirror
alignment, so that different waveguide arrays could be checked one against the
other easily without changing the other laser parameters. This test bed has
allowed us to try new arrangements very quickly.

A photograph of the test bed laser is shown in Figure 3. The vacuum box
for the test bed laser also serves as the optical bench for the laser cavity mirrors,
and thus required more structural strength than it would just to withstand one
atmosphere pressure. The inside dimensions to the box are 6”x6” x 18" and the
wall thickness is 3/4”. The box was fabricated of stainless steel by MDC Corp.
The cross section of the electrode assembly inside the vacuum box is shown in
Figure 4. Water-cooled aluminum anvils are used to hold the waveguide laser
array, and keep it cool. The mirror adjustment micrometers installed is shown in
Figure 3. The aluminum box on top houses the RF matching network.

The power source for the laser was in an oscillator-amplifier configuration at
146.505 MHz.  The oscillator was a Kenwood TS-711 radio transceiver,
continuously adjustable in power 0-25 Watt, and the amplifier was a Henry Radio
3002 vacuum-tube linear amplifier with a 1.5 kW maximum CW output. A Bird
Thruline Model 43 power meter was used to monitor the input power and an
Electro Impulse Laboratory TS-3499/URM power meter used to monitor the
reflected power simultaneously. We built our own adjustable matching network
to match the laser plasma impedance to the 50 © value desired by the linear
amplifier. The electrode assembly including the waveguide array behaved as a
capacitor, so a shunt inductance were added across it to resonate at 146 MHz.

The circuit diagram for the power supply is drawn in Figure 5
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Figure 3. Photograph of the test bed laser. The aluminum box on top of the

vacuum box contains the RF matching network.
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Figure 4. Cross section of the inside of the test bed laser
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Figure 5. The 246.505 MHz driving circuit for the waveguide laser experiments.
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The first array we tested was the type shown on Figure 6. Both coupled
(Figure 6a) and uncoupled (Figure 6b) arrays were tested. The coupling is
realized by the leakage across the opening in the walls. The gas mixture used was
Ng:COq:He:Xe =1:1:6:0.25. The output mirror transmission was 10%. The high
reflectance mirror had 99.5% reflection. The highest laser power obtained from
this coupled array was 41 watt at 432 watt of RF input and a gas pressure of 113
torr, for an efficiency of 9.4%. Figure 7 gives the laser output power as functions
of the input RF power, with gas pressure as the parameter. The power was
measured with a Coherent 201 power meter. The diagnostic setup for these
measurements is shown in Figure 8. A diffraction grating was used to split the
laser output into two beams. An Optical Engineering model 16-A spectrometer
was used to monitor the rotational transition. A Boston Electronics model R004-
0 fast HgCdTe photodetector was used with a Hewlett-Packard hp 8554B
spectrum analyzer to detect beat notes; this detector has about a 1 nsec response
time. The near-field spatial mode patterns were monitored with Optical
Engineering quenched-fluorescence image plates inserted into the optical path and
photographed with a 35mm camera. A pair of ZnSe lenses could be inserted
ahead of the image plates to obtain the far field pattern as well. Total power was
measured by inserting the Coherent 201 power meter into the laser output.

Figure 9 shows a typical behavior of the beat spectra and mode patterns for
the coupled two-bore array. In these patterns the “0 Hz” is the large spike
artifact at the left edge of the photograph, and the rightmost spike is leakage of
the RF power source at 146.505 MHz, which served as a convenient frequency
marker. The mode patterns in the upper right corner of each figure are
corresponding far field intensity distributions. The beat spectra contained more

than one component, indicating multimode operation for each bore. When the
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TO.13" two channel ceramic array
/ position of top electrodes
f 0.045" 0.090*

Figure 6. Sketch of UTRC ceramic two-channel waveguide showing dimensions.
Details of the coupled and uncoupled arrays are shown in the blow-ups a) and b).

They differ only by the gap. The material is high purity AlyOs, precision ground.
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uncoupled array in Figure 6b was used, there was only single beat frequency.
This frequency could be varied by tilting one of the cavity mirrors, all the way
from zero to a maximum value of around 30 MHz. This indicated that the
individual bores supported only one mode each. We concluded that the
multimode behavior mentioned above arises from the opening in the wall, and we
speculate that it is due to the additional gain in the opening, which could support
higher-order modes.

Even with this multimode operation, we can still see from the far-field
distributions that with proper cavity adjustment, the dominant mode of the two-
bore coupled array is either the in-phase or the out-of-phase coupled mode. These
two states of operation can both be stable for hours at a time. Figure 10 shows
the spatial far-field patterns obtained with the coupled array: (a) in-phase locking,
(b) out-of-phase locking, and with the uncoupled array: (c) unlocked operation.
Shifting between the in-phase locked mode and the out-of-phase locked mode
required only a slight mirror adjustment. However, we noticed that the out-of-
phase state would persist over a wider range of mirror tilt and translation
adjustments than the in-phase state. This suggested, from the point of view we
developed in Chapter 2, that the loss introduced by the intervening wall in the
inter-element region is relatively large, so the array favors the out-of-phase
coupled mode more than the in-phase coupled mode.

To further confirm this picture, we ran a test with a small additional loss in
the inter-element region, introduced by gluing a tiny glass chip to the dividing
septum on one end of the guide, as shown in Figure 11. Radiation is still able to
couple from one guide to the other over the major portion of the guide length, so
phase locked operation could be maintained. We were able to obtain pure out-of-

phase locking as indicated by the far field pattern and the lack of beats on the
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Figure 10. Far-field spatial mode patterns for different locking conditions: a.

locked in the in-phase coupled mode, b. locked in the out-of-phase coupled mode,

and c. not phase locked.

Glass chip

Figure 11. Skech of the coupled two-channel UTRC guide with a small glass tab

added that suppressed the in-phase coupled mode while keeping the out-of-phase

coupled mode.
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spectrum analyzer, but we were unable to obtain the in-phase locking. This is
consistent with our analysis in Chapter 2, where we concluded that a large inter-
element loss would support the out-of-phase coupled mode only.

The second coupled array we tested was one with the same geometry as in
Figure 6a, but the material was aluminum rather than AlyOg. This choice was
motivated by trying to find a less expensive way to make the coupled array
structure; the precision-ground Al,O5 arrays from UTRC costed on the order of
$1000 apiece. The first question to ask was where would the discharge strike: on
top of the wall or within the bore? Paschen’s law!! states that the gas breakdown
voltage is a function only of the product of pressure p and the separation between
the electrodes, d, and there is a minimum in the curve of the breakdown voltage
v.s. pd. The discharge would strike at a location with a characteristic dimension
d given by (pd),;,/p.- So with a proper choice of gas pressure, it was possible to
obtain discharge inside the bore region instead of at the top of the partial walls.
We tested the feasibility of using a total metal structure to strike a discharge in
this geometry before we actually made the laser array. The discharge was
confined to the bores and looked very uniform within the pressure range that
allows laser action, as shown in Figure 12.

We then fabricated a two-bore laser array identical to Figure 5, but made
of aluminum. The surface finish was approximately 5 yum rms. A flat ceramic
top plate was used as shown in Figure 13. In this two-bore aluminum array test,
although the discharge was uniform, we were only able to obtain the out-of-phase
coupled mode. No in-phase coupled mode could oscillated no matter how the

cavity alignment was adjusted. This was in contrast with the result of the

ceramic two-bore array, where we did obtain in-phase coupled mode.
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L

Figure 12. End view of the seven-channel aluminum test section at three different

operating pressures: a) 10.7 torr, b) 18.1 torr, c) 32.4 torr. The schematic end-

view is shown in d).



Figure 13. The waveguide array with aluminum body and ceramic top.

An analysis of the loss in the inter-element region of the two arrays reveals
the reason for the different behavior of these two arrays. As indicated in Fig.14,
we measured the polarization of the laser from the ceramic array to be in the y-
direction, i.e., parallel with the electrode surfaces, while the polarization from the
aluminum array was observed to be in the x-direction, i.e., perpendicular to the
electrode surfaces. These two modes can be approximated with equation (3.1) as
EHY,; and EH*;, in each guides, respectively. The array materials, ceramic
alumina and metal aluminum, are both considered dielectric with some loss. To
the first-order approximation, the electric field at the wall top in the ceramic
array would also be polarized in the y-direction. Thus the magnetic field is in the
X-direction, this yields no surface current at the top of the wall because the
surface current is expressed as:

J=nxH, (3.2)
where n stands for the normal direction of the surface at the top of the wall,
which is also in x-direction. For the aluminum array, the electric field at the wall

top is in the x-direction, so the magnetic field in y-direction. Thus (3.2) tells us



I1-21

.........................................................

.....................................................

e %mgw%

c) Al array d) Al a
1n—phase coupled mode ouT—of—pha oupled mode

— E-field ---=H-field

Figure 14. Schematics showing the loss mechanism in the two-channel aluminum
array (a and b) and the c rray (c and d).
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that there is surface current on top of the aluminum wall. This is presumed to be
the source of the additional loss. Putting these two cases into the picture we
developed in Chapter 2, we see that because it has less loss in the inter-element
region, the ceramic-bore array is more suitable for the in-phase coupled mode than

the aluminum-bore array.
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CHAPTER 4. SLAB WAVEGUIDE CO, LASERS

§4.1 Introduction

At the very beginning of the program, it became apparent through
discussions with the UTOS personnel and with ceramic venders that the cost of
precision-ground, multiple-waveguide ceramic pieces was going to be very high.
In order to be able to pursue our own ideas without the extreme cost of precision
grinding, we explored the possibility of making the complicated multiple
waveguide pieces out of aluminum and then anodizing it to make the surface look
like aluminum oxide, the same as ceramic, and we were successful, as described in
Chapter 3 as far as the RF discharge was concerned. However, we were not sure
whether the material thus processed would actually behave optically like ceramic,
nor what type of anodization was best for a waveguide laser. So we decided to
make simple structures first, just to investigate the material side of the problem,
and then, if it turned out to be successful, we would proceed to more complex
shapes. This simple structure was a pair of slabs, which serve both as electrodes
and guiding surfaces for the waveguide (Figure 1). We tested slabs of bare
aluminum, and aluminum coated by different anodizing procedures. We also
tested different mechanical surface finishes for both the bare aluminum and
anodized aluminum. At the beginning, we were not concerned with the
multimode operation allowed by the broad cross-sectional area of the slab; our
intention was to use it only as a test vehicle for materials, not as a final laser
structure.

At the mean time, we became aware of the research work performed by
Hall’s group on ceramic slab waveguide CO, lasers. ! They used the slab structure
as the primary candidate for waveguide lasers, and used small-hole output

coupling to avoid high-order-mode oscillation and multi-moding. It turns out that
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slab lasers have a lot to offer in their own right.

matching
network
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network

diSChane spacer
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v power
single slab channel

Figure 1. Illustration of a wide area slab waveguide laser.



$4.2 Modes of Slab Waveguide Laser

The mode of a slab waveguide laser shown in Figure 1 can be approximated
with a hybrid mode structure: the modes of infinite parallel plates in the x-
direction (narrow), and the free-space Hermite-Gaussian mode in the y-direction
(wide). The polished slab electrodes provide the wave-guiding in the narrow
dimension. In the wide dimension, however, there are no guiding surfaces, so the
modes are controlled by the extend of the gain, diffraction losses and the mirror
curvature, just as in ordinary (non-waveguide) gas lasers and the field distribution
can be described by the free space Hermite-Gaussian modes. A detailed
derivation of the modes is given in Appendix A.

A picture of a 3rd order cosine-Gaussian mode is shown in Figure 2. The
theoretical transverse intensity distribution is shown at the top, the measured
image on a quenched fluorescence screen is shown in the middle, and, for
comparison a cosine-cosine mode that would result in a 4-wall waveguide is shown
at the bottom. It is clear that the experimental result matches the cosine-
Gaussian pattern, with its characteristic non-uniform zero spacing and the higher
intensity outer lobes.

In the course of experiments with slab waveguide lasers, we made a
deformable mirror and used it as the total reflector in the laser cavity. The
deformable mirror utilized polished brass shim stock as the reflecting surface, it
could be bent into a cylindrical surface with a variable radius of curvature as
shown in Figure 3a. The mirror assembly is made so that its radius of curvature
can be changed while the laser is operating. With the normal concave curvature,
the resonator is stable and a high-order Gaussian mode results. As the concave
radius increased to infinity (a flat mirror), the laser had a Fabry-Perot cavity and

the oscillating mode decreased to the third-order Hermite-Gaussian with four
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- 3rd order Hermite-Gaussion

0140

experimental result

cosine distribution

Figure 2. Comparison of the intensity distribution of the experimental
measurement(middle) with the theoretical calculation of the 3rd order cosine-
Hermite-Gaussian mode(upper) and the a cosine-cosine mode(lower) with the
same number of zeros. Resemblance is clearly seen between the experimental

distribution and the Hermite-Gaussian mode.
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lobes as shown in Figure 3b-d. (These figures were obtained from thermal
sensitive paper irradiated by the laser.) When the curvature is adjusted so that
this mirror becomes convez, the resonator becomes unstable but the laser
continues to oscillate. When the magnification of this unstable resonator is
gradually increased (radius of curvature decreased) the order of the lasing mode
decreases, as shown in Figure 3b, from d to b, until at last the fundamental
Gaussian mode appears, Figure 3b-a. At this point, the radius of curvature is 3.2
meters convex. Because the brass shim was hand polished and hence very lossy,
we obtained very low power from this cavity, 1.5 Watts with the third-order mode
and 1.1 Watts with the zeroth order mode at 131 Watt RF input. However, these
tests allowed us to compare the power from the fundamental (zero-th order)
Gaussian mode using the unstable resonator with that of the 3rd Hermite-
Gaussian mode which corresponds to a Fabry-Perot resonator when the brass shim
mirror is flat: the fundamental mode had 73% of the power of the 3rd order mode.
We believe this kind of unstable resonator is a good alternative to the hybrid
resonator used by Hall et all where the edge coupled output would invariably
introduce scattering loss. A similar unstable resonator consisting of two convex

reflectors were reported by Salzman et al? for broad area semiconductor lasers.
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Figure 3. The unstable resonator with a variable convex total reflector, and the

different modal intensity patterns corresponding to decreasing radius of curvature

of the convex mirror in the order of d to a.
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$4.3 Optical Attenuation of Dielectric-Coated Metal Waveguides—Calculation
Yariv and Yeh® derived the attenuation coefficient a of leaky slab

waveguides of the type shown in Figure 4a by a ray-optics approach:

_ _In(Ry9R93)
~ 2atanf,

) (1)

where Rqy and Rgs represent the reflectivity at the interfaces 1-2 and 2-3,
respectively. From this equation we see that the loss is related only to the
reflectivity of the interface. If the slab waveguide in question is made of lossy
material, instead of the lossless material as in Ref. 3, the wave leaking from the
interface will be absorbed by the waveguide wall, instead of radiating outwards.
The reflected wave is not affected by the loss mechanism, so the loss coefficient
should have the same form as in Equation (1), which for symmetric waveguide

structure becomes:

1n(R12R23) _ IH(R) _ mT 1
2atanf, ~  ak,/ky a2k

Z

n(R), (2)

Oy —

where R = Ry = Rog, ky and k, are the projections of the propagation constant in

the x and z-directions, respectively, and m is the order of the waveguide mode.
The reflectivities as a function of the complex refractive index n for both TE

and TM modes are derived in Appendix B. The loss coefficient a,,, for the m-th

mode as a function of gap size a and complex index of refraction n is given as:

2m25\—§ Rer—l—} , TE,,, modes
a |V n?—l
an={ _ 0
2 2
2m2A Re —n—] , TM,,, modes
" ad | V n2—1 "



Figure 4. Illustration of (a) a simple parallel plate waveguide, and (b) a parallel
waveguide coated with a single layer of dielectric material for a CO, slab

waveguide laser.
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We note that the expressions for a have the same form as those obtained by
Marcatili and Schmeltzer? for TE and TM modes in the circular guide, obtained
by solving Maxwell’s equations, apart from the numerical factor out front that
arises from the difference in geometry.

Equation (2) should also be true for coated waveguides, shown in Figure 4b,
provided the reflection coefficient R includes the effect of the coating, since the
reflected wave intensity does not carry any information about the interface that is
not already contained in R. We have calculated the wall reflectivities for both TE
and TM modes for sample dielectric coatings on aluminum substrates as a
function of coating thickness. The equations are derived in Appendix C. In all
the calculations we assume a wavelength of 10.6 microns and guide dimensions
a= 1.5 mm. The lowest order modes in TE and TM are assumed, hence the
incident angle is 89.80°. Values of the optical constants at 10.6 ym are given in

Table I:

Table I. Refractive Index at 10.6 ym for Several Materials

material complex index reference
aluminum 27.7—194 5
aluminum oxide 0.82 —10.0656 6,7
germanium 4.004 —i1.35x 1070 6
glass (510,) 2.24 —10.102 6
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Figure 5 shows the value of —In(R) for the TE mode (electric field parallel to the
surface) as a function of coating thickness for Al,O3, Ge and SiO, coatings on an
aluminum substrate. Three different ranges of thickness are shown in Figure 5a,
5b, and 5c. At zero thickness, the value is 4.1x10'5, the value for a bare
aluminum surface at an incident angle of § =89.80°. All three coating materials
initially cause the attenuation to increase from the bare metal value, with Ge
causing the fastest increasing and Al,O4 the slowest (Figure 5a).

At a thickness somewhat greater than 0.6 microns, the attenuation with the
Ge film peaks sharply, a resonance in the coating layer. We can see from Figure
5c that this peaked loss function occurs periodically with the Ge coating, and also
with the SiOy coating, but not with the Al,Og coating. Figure 6 gives the
variation of —In(R) for Al,O3 layers out to 10 microns thickness, where it
approaches the value for an infinite thickness of the coating material, 0.00373.
The lack of resonant peaks occurs because the real part of the refractive index is
less than unity, and the total internal reflection occurs at the vacuum-Al,Os
interface (modified slightly by the finite imaginary part of the refractive index).
It is impossible for the wave to resonate in the coating layer, as in Ge and SiO,.

Figure 7 shows similar calculations for the TM mode (electric field in the
plane of incidence, which means nearly normal to the surface for # = 89.80°). For
this mode, the bare aluminum losses are much higher, —In(R)=0.353.
Germanium and SiO, coatings initially decrease the attenuation (Figure 7a) from
0.353, but exhibit attenuation peaks at larger thicknesses (Figure 7c). Aluminum
oxide, on the other hand, initially increases the attenuation for very thin layers,
with an broad peak at about 0.03 microns (Figure 7a), then decreases smoothly to

the infinite-thickness value of 0.0050 beyond 5 microns thickness (Figure 7b).
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Figure 5. Values of -In(R) for AlyO3, Ge, and SiO, coatings on aluminum as
functions of coating thickness for TE modes and for various ranges: (a) 0 to 0.5

pm; (b) 0 to 1 pgm; and (c) 0 to 5 um.
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aluminum for TE modes.
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Figure 7. Values of AlyO3, Ge and SiO, coatings on aluminum as functions of
coating thickness for TM modes at various ranges: (a) 0 to 0.1 ym; (b) AlyO3 0 to
10 pm; and (c) Ge and SiO, 0 to 10 pm.
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In order to apply these analyses to a two-dimensional rectangular
waveguide, the intrinsic modes of which are the EH-modes, we can use the
technique proposed by Laakman and Steier®. In this technique the loss suffered
by the EH;; mode is approximated by the loss suffered by TEgy; mode on two
parallel walls and the loss by TMy; mode on the other two walls.

From the data presented above we can draw several conclusions about the
design of waveguides for CO, lasers:

(1) It is possible to use aluminum for two of the four walls and dielectric for the
other two walls. This was already suggested by Laakman and Steier® and Adam
and Kneubiihl®. The mode of oscillation will have its electric field vector parallel
to the metal walls.

(2) Coatings over aluminum of a lossy dielectric such as Al,O5 only a few microns
thick will look just like a wall of infinite thickness. Thus the dielectric walls
described in (1) can also be metal underneath. Such coatings are easily obtained
by anodization.

(3) Coatings over aluminum of low or intermediate loss material such as Ge and
Si0y can also be used to good advantage provided they are made the proper
thickness (about 0.5 to 1 pm), and might be superior in optical loss to thick
coatings of Aly,O3. However, they are quite likely to be more difficult to apply

and may be less durable in the discharge environment.
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$4.4 Comparison of Experimental Results with Different Surface Finishes

Having discovered that we could obtain a uniform, non-filamenting
discharge in the region between two parallel aluminum plates, that the laser
output power was only a little lower than what we could obtain with the channel
waveguides, and that we could obtain single mode operation with relative ease, we
decided to make a parametric study of this geometry in addition to simply
comparing surface finishes.

We observed in §4.3 that the optical attenuation coefficient (in 1/meter)
should increase as the inverse cube of the separation between the parallel plates.
The small-signal gain in our pressure range, on the other hand, should remain
about constant provided the pressure is changed to make pd constant!?.
Eventually the waveguide loss will become significant and finally overcome the
gain as the plate separation is decreased, and the performance should suffer. The
fixed losses (mirror absorption, output coupling fraction) do not change with the
plate separation (to first order; there are second order effects caused by diffraction
in the short space separating the mirrors from the ends of the guide). Just where
the waveguide loss becomes the dominating factor was not known initially, since
we had only theoretical estimates for that loss.

We undertook a series of experiments with metal plates 20 mm wide by 370
mm long, a considerably wider laser than the two-channel laser, which had an
overall size of about 5 mm by 370 mm. The mirrors used for these experiments
had 99.5% reflectivity for the feedback mirror, and 90% reflectivity for the output
coupler. Both mirrors were flat. The first set of metal plates were evaluated just
as they came from a standard milling machine. We estimate the surface
roughness for those plates as 2 micrometers rms. The results are shown in Figure

8, with the power output plotted v.s. gas fill pressure (using our standard mix of
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Figure 8. Pressure-maximum power relationship for the milling-machine surface
finish, with an rms roughness of about 2 ym. An apparent power drop occurs at a

plate-spacing between 1.18mm to 0.95mm.
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COy:Ny:He of 1:1:6) with the plate separation as a parameter. We were not able
to reach the optimum pressure point, limited by our r-f measurement power to
about 1 kw at 146 MHz. Clearly, the smaller separations prefer higher pressures,
as we would expect from pd=constant scaling laws for glow discharges. And we
see that down to separations of about 1 mm, we were able to maintain the same
maximum output power, indicating that the waveguide losses aren’t increasing too
rapidly. Below about 1 mm separation, there is a serious fall-off in power. We
think this is evidence that the waveguide losses are comparable to the mirror and
end-diffraction losses at about that spacing, and then increase rapidly as the
inverse cube at smaller spacings.

Figure 9 shows a similar set of curves taken with a pair of aluminum plates
that were roughened with sandpaper after being machined. We estimate the
surface roughness for these as 9 micrometers rms. We note that these curves are
not much different from those of Figure 10, maybe just a little worse. Figure 10
shows another similar set of curves, taken with aluminum plates polished by an
outside firm, Jancur Gauge Co., that claimed a finish with 0.1 micrometers rms
roughness. Figure 11 shows another set taken with as-milled plates that had been
anodized with a coating thickness of 5 micrometers Al,O3. From Figure 6 we can
estimate that this coating would increase the loss by a factor of 50 from bare
aluminum for the TE modes, assuming, or course, that our ”bare aluminum?”
samples had little or no natural oxide layers. However, the curves with the
anodized coatings are not significantly different from the others. All these curves
are surprisingly similar in performance, indicating that neither surface finish nor
material finish is of first-order performance in determining the operating
parameters, in our range of roughness. We have plotted samples of all four

finishes in Figure 12 for comparison. Unfortunately, we were unable to reproduce
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Figure 9. Pressure-maximum power relationship for the 9 ym surface finish. The
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Figure 10. Pressure-maximum power relationship for a pair of professionally-
polished surfaces with a rms roughness around 0.1 yum. Power drop similar to that

in Figure 8 and Figure 9 is seen.
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the glass spacer thickness accurately from one set of plates to another, so the plate
spacings are not exactly the same within each group; nevertheless, no clear
advantage of one finish over the other is evident from Figure 12. We should note
that the laser output was polarized parallel to the waveguide plates (TE) in all
cases. Since there seems little choice between the finishes studied, it would seem
that we would be able to recommend the cheapest (as-milled) and an anodized
finish to reduce discharge erosion of the plates (since they are also the discharge
electrodes and suffer ion bombardment) and reduce chemical clean up of the

discharge oxygen (from dissociated CO,) by oxidizing a bare metal surface.

§4.5 Calculation of Laser Power at Different Gap Sizes

All the above measurements indicate that the loss related to the gap size of
the slab waveguide plays a major roll only when the gap is small. We applied the
laser oscillation theory and confirmed such a trend. For steady state oscillation
of the laser, the gain of a homogeneously broadened medium must be equal to the

loss:

2t _1=1, (4)

where « is the loss coefficient, £ is the length of the gain medium, and L is the
total loss. The gain is usually very small, so the right hand side of this equation

is approximately 2v£. If we define the distributed loss as

o (5)

0%
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then

}7
7=_0:a7 (6)

where 7, is the small signal gain coefficient, and I is the saturation intensity,
which increases quadratically with the pressure!l. o can be partitioned into

waveguide loss, diffraction loss and cavity mirror loss (see Figure 13a):
a=agtag+ap. (7)

The waveguide loss coefficient from Equation (4.3) can be written as:

o = 24 R[HV%J , (8)

where A is the laser wavelength, a is the gap size, n is the complex index of
refraction for the waveguide material, and Cg is a dimensionless coefficient we
introduced to include the enhancement of the loss by the surface roughness.

The diffraction loss oy occurs when the light exits the waveguide and is
reflected back by the mirrors. We use the Fraunhofer diffraction as an

approximation to estimate the diffraction angle:
6 =2442 (9)

and the area that the light misses when it comes back from the mirror. The lost

power should be proportional to the relative area missed by light. Because of the
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Figure 13. (a) Schematics showing various loss mechanisms; (b) Comparison of

the losses over a range of plate-spacings. The sum of the waveguide loss and the
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sinusoidal distribution of the field across the gap, there is less diffraction at the
exit. Thus the power lost should be less than case of uniform distribution and a4

1s written as:

— 1

where cg is the correction factor that is less than 1 to account for the fact that the
laser distribution is not uniform, h is the distance from the end of the waveguide
to the mirror, £ is the cavity length.

O is the mirror loss, including both that due to the output (T) and that

due to the absorption (A) at the mirror surfaces:
am:—ln[l—T—Ab]Elz. (11)

The intensity inside the cavity is considered to be the sum of the intensities
of the two traveling waves in opposite directions, so the output laser power P is

related to the average intra-cavity intensity I by:
P=0.5ATI, (12)

where A is the area of the laser beam cross-section, which we take as ax 2 cm?.

This equation in combination with the laser gain equation yields:
P(a,p) = asp2T[ﬂ~ 1J , (13)
a(a)

where a stands for the gap size and p for the pressure, and the saturation intensity
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is written as I;=sp?, and s is a coefficient|Watt/ cmZ—torrz]. From our
measurements, it was found that pa = 12 ~ 13[cm - torr], so we take p=12.5/a in

our calculation. Thus (11) becomes:

70

P(a) = 12.525T . (14

@ ¢ Cz)ﬁRe[_l_J+?g 2.44h\ | 1,1 1 (14)
8ad T |VnZ—1] LaZi244nx 22 [1T-Ay

Table II lists the numbers used for the calculation. Figure 13b shows the various
loss mechanism plotted as functions of gap spacing. The surface roughness
parameter c¢; was varied to fit the data. It is seen that as the gap decreases, the
loss due to waveguide absorption and diffraction at the ends of the waveguide
increase, while the loss due to mirror loss is a constant. Figure 14 shows the
calculated laser power as a function of the gap size for two different surface

finishes. It agrees with the general trend of the experiment results.
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Table II. Parameters for Power Calculation

parameter value unit reference
2 38.1 cm actual value
Yo 0.08 cm’! mid-range Ref. 11
T 0.1 actual value
Ay 0.02 estimate
n 27.7-194 Ref. 6
Cg varies taken as parameter
cq 0.1 estimate
A 0.00106 cm actual value
8 0.3 W/(cmtorr)? |chosen to fit curvel*
h 0.5 cm actual value

L In Ref. 10, this value was measured to be about 0.42.
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Appendix A. Modes of the Slab Waveguide Laser
Using a pair of infinite plates and assuming a TE-like mode:
E=Ey.“Y, H= VEEye Y (—); (A1)

where i and j are unit vectors in the x and y direction respectively. The electric

field satisfies the Helmholtz equation:
V?Ey +k%By =0, k=w /G . (A.2)
Assuming the solution for Ey is separable in spatial dimensions:
Ey(x,y,2) = EgX(x)1(y,2)e k. (A.3)

Substituting (A.3) into (A.2) and applying the boundary conditions for a perfect

conductor to the electric field at the surfaces of the two conductors, we have:
X(x) =sin(B), m=1,2,3, - (A.4)

the differential equation for ¥(y,z) is obtained after suitable approximations:

2
0 5 9%

ay2 oz (%)2@/’ =0, (A-5)

where we assumed
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%

52 < kaZ . (A.6)

This equation is then solved by the conventional method!! by assuming the

form of 1) to be

W(y.2) = exp{ {P) 455 }} (A7)

~Substituting ¢ in (A.5) according to this equation, we obtain the equations for P

and ¢:

__ik— (z k2 ? 7 — mm2 _
a(z) 2P )+q2(z)[ ¢(z)-1]- (BE)? =0. (A.8)

By comparing terms of equal powers in y, we have ¢ = 1. Then
q(z) =z+qq . (A.9)

And the differential equation for P is:

() ==i__1 _ 1 mm2
P(Z) =3 W 2k( a ) . (A-IO)
Then P can be solved as:
P(z) = E—IIn(qO +2z)— ﬁ(%ﬂ + constant. (A.11)

Requiring P(0) = 0, then the constant becomes —é—ln(qo), and P becomes
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P(z) = —5(%5)? - idin(1 +&) - (A.12)
If gj is imaginary, as in the case of two-dimensional Gaussian beams,

—Ln(1 + Z)= m—zlé—m — Jarctan(Z) . (A.13)
(L+Ig1%)

Express ¢; the same way as in the two-dimensional case:

2

9o =i— (A.14)

where Wy 18 the radius of the Gaussian beam waist.

Finally, the linearly polarized field becomes:

Ey(x,y,z) =E, sin(mgx) 1

ex v
[1+<-/\L>2T/4 p{W02[1+()\z/7rW02)]}x

2
7TWO

2
X exp{—i[(l + %(%)2)kz + %argtan( Az )+ QII;}EZ):,} (A.15)

2
7TWO

For higher order modes in the wider direction, we assume % in equation

(A.3) in the form

P(y,z) = h(%) exp{—i[P + %yﬂ} ) (A.16)

where w is a function of z. After inserting this into equation (A.5), we arrive at a
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differential equation for h:
b+ i2k(dW — Wyl w2k 4 ok 4 (@I = g (A.17)
I~ Y q S . .

Now instead of requesting the square bracket term in the above equation to be

zero as in the lowest order mode case, we require it to satisfy
(X + 2k 4 (B2 = _3}% : (A.18)

where n is an integer.

If we define w the same way as in the two-dimensional Gaussian beams:

w =g W (A.19)

at the beam waist (z = 0) we have:
b — f"v%h' +dnh=0. (A.20)
We now change the variable for h to v/2y/w, and rename
h() = g(VZ) . (A.21)
Thus the equation for g becomes:

g — Qﬁzg' +2ng=0. (A.22)

Wo
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This is the differential equation for the n'! order Hermite polynomial. Thus the

laser field at z = 0 becomes:

2
Ey(x,y,2) = E, sin(%}g)Hn(\/E—g—O)exp(w—g) . (A.23)
0

Now we see the high order modes in the wide dimension for the slab waveguide
structure are still Hermite-Gaussian, as in the case of two-dimensional free-space

laser resonators.
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Appendix B. In(R) for Lossy Waveguides

The intensity reflection coefficient R is given by:

(B.1)

R =rr*,

where r is the electric field reflection coefficient given by the complex Fresnel

the E-vector perpendicular to the plane of

equations. For TE-like modes, i.e.,

incidence:

cos — VnZ — sin20 (B.2)

cosf + vn? —sin26’

T =
where n is the complex refractive index and 6 is the angle of incidence.

cos < 1, we can use In(1 +x) ~x. So

When ——252
vn? — sin26

1

In(R) = 1ln(r) + c.c. o~ —_2cosf +c.c. =—4 osORe{———J'z
®) x) Vng——singe “¢ ¢ Vn?—sinie
2m) 1
~ Re . B.3
0 [ ¢n2_1J (B.3)

For TM-like modes, i.e., with the E-vector parallel to the plane of incidence,

2
1 —__n< cosf
r = n cosf — Vn? — sin24 vn?— sin20 ‘ (B.4)
n2 cosh + vn? — sm26’ 1+ n2 cosh

n° — sin“f



Note that In(R) can be written
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In(R) = In(rr*) = In[(—r) (—1*)] .

2
B cosh_ 1 then

As long as
8 vn?— sin26

1— n? cosf

ln(R) — ln vn 2—- sin !0
1410 cosf
n“ —sin“f

_ 2mA Re n

2
4+cc.=—-2cosb——2
vn? — sin2

2
= —4cosf Re| —L2—— _
L/ n? — singﬁ:l

@ L/ n? — sin%

I

-+ c.c.

(B.5)
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Appendix C. In(R) for Lossy Waveguides with Lossy Coatings

The field reflection coefficient r for a lossy layer with complex refractive
index ngy and of thickness h on a lossy substrate of complex refractive index ny can

be written as:

-i26,

tioto] roq €
+ 12%21 *23
1 + r12 1'23 €

(C.1)

I=T19 5125,

where I;; are reflection coefficients and t;; are transmission coefficients of interface
1-j; b9 is the phase shift through medium 2. These can be found in textbooks on
optics, for example, reference 12. The reflection coefficient r includes loss when

ny 1s complex through a complex 0q:

85 = 2% hy/ny? — sin% . (C.2)

For TE-like modes:

cosf — n22 —sin24

cosf + \/ n22 — sin26

T =

\/n22 — sin%g — \/n32 — sin28
Tog = : ;
\/n22 — sin2f + \/n32 — sin2g

r : (C.3)

4 coséh/n22 — sin2f

cosb + \/ n22 - sin29)2

t19t91 :(
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For TM-like modes:

n22 cosé — n22 — sin24

n22 cosf + \/ n22 — sin2f

T19 =

2 2

ng“y/ny” — sin%6 — n22

n32 —sing
3= N T
n32\/n22 — sin?6 + n22\/n32 — sin2g

ro (C.4)

w
.

4 n220039\/n22 — sin?f
t19%91 =(

n22cos9 + \/ n22 — sin29)2 ’

Substituting ryg, o3, tysty; in equations (C.3) and (C.4) into (C.1), we

should obtain the field reflection coefficients. Then using (B.5):

In(R) = In(-r) + In(—1*) , (C.5)

we can plot —In(R) as given in Figures 5 to 7.
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CHAPTER 5. A NEW STRUCTURE — THE GROOVE-COUPLED STRIP
WAVEGUIDE ARRAY

§5.1 Introduction

In Chapter 2, we found that the spatial loss distribution within a laser
cavity played an important role in determining the transverse mode of oscillation.
Numerical calculations were carried out for two-element arrays of both one-
dimensional and two-dimensional models. The results of the calculation suggested
that the smaller the loss in the inter-element region (a small 8, see Table 1 in
§2.4), the more likely the in-phase coupled mode will oscillate, and wice versa.

In Chapter 3 we found that the wall-slot coupled array favored the out-of-
phase coupled mode over the in-phase coupled mode. The reason for this was
found to be the high loss in the inter-element regions. If there were a way of
coupling the waveguides without going through such a lossy region, we would be
more likely to have an in-phase coupled array mode. Yet some kind of separating
region must exist between the elements to preserve the individual channels,
otherwise we would simply have a slab waveguide, as described in Chapter 4.

In Chapter 4, we found that the mode of a slab waveguide is a combination
of a sinusoid from the waveguiding dimension and a free-space Gaussian mode in
the direction where there is no guiding. A wide slab will inevitably yield high-
order Gaussian mode oscillation, which is undesirable in most laser applications,
while a narrow slab can provide only limited laser power.

Combining the knowledge we gained from earlier experiments, we proposed!
an array structure that has less loss in the inter-element region and hence would
favor the in-phase coupled mode. Depicted in Figure 1, it is named the groove
coupled strip waveguide array, because it has several strip waveguide laser

channels positioned side by side, separated by grooves. A strip waveguide can be
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Figure 1. Schematics showing the new groove coupled strip waveguide laser array:

(a) Transverse cross section; (b) three-dimensional illustration.
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considered as a narrow slab waveguide, in which the gain width supports only the
fundamental Gaussian mode. The high order Gaussian modes are not only less
favored by the narrow gain, but also suppressed by the scattering at the straight
edge of the waveguide element. (Recall that the caustic curves of the Gaussian
modes in the y-z plane are hyperbolas, not straight lines, and thus the locus of
Gaussian zeros in the y-z plane cannot match the straight grooves. Also, the
grooves are equally spaced, while the Gaussian zeros are not.) When these strips
are put together as in Figure 1, they can couple with their Gaussian tails leaking
into each other’s channels and suffer much less loss in the inter-element region,
compared to the wall-slot coupled arrays, because there is no lossy material in this
region. Another advantage of this array structure is that it can be made
completely of flat pieces except for the spacers shown in F igure 1. This yields
considerable savings by replacing expensive ceramic material and ceramic
precision grinding with economical flat metal material (we used aluminum) and
simple milled slots, whose surface finish is unimportant. We tested arrays of two,
three, and five elements and obtained in-phase coupling in all of them. A U.S.

patent was issued for this structure?.
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§6.2 RF Field Distribution for a Single Strip and Mode Coupling Between the
Strip Waveguides

A finite-difference calculation was carried out to simulate the RF driving
field with a static electric field and to yield the electric field distribution in the
all-metal slab (or strip) waveguide. Solutions were obtained for different electrode
gap sizes and groove depths. Because of the symmetry of the structure, only half
of it is involved in the calculation. Figure 2 is the equipotential line plot for a
structure with the ratio of strip width: groove width: waveguide spacing being
9:1:1, similar to the actual structure to be described later in this chapter. The
electric field lines are perpendicular to the equipotential lines, and the field
strength is higher where the equipotential lines are closer together. We can see
that the electric field within the strip away from the edges is perpendicular to the
waveguide/electrode surfaces and is quite uniform; and at the edge of the strip the
field starts to bend outwards and there is a higher field strength around the
corner. This is typical for the static electric field.

The fact that the field is strong at the corner and bending outward suggests
that the discharge, and thus the laser gain, will extend beyond the Width of the
strip. This has been confirmed by our observation of the discharge and by Hall et
al. in their photograph of the discharge of the slab geometry. Thus the Gaussian
distribution of the laser field also extends considerably outside the strip geometry.
This extended Gaussian distribution increases the coupling between the channels
in the array over what is implied by the geometric shape of the channels alone.
In an index-guided waveguide, the evanescent field distribution outside the core
varies exponentially, €®. When two or more of these waveguides are put
together, this exponential portion of their field distributions overlap with each

other. This is the source of coupling. If the Gaussian field of our structure does
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not extend considerably into the inter-element region, the coupling between the
elements would be versr weak because the Gaussian tail fall off is much faster than
the exponential fall off, ey 2. From Fig.2, we see that there may still be some
small gain in the inter-element regions above the slots because the presence of the
non-zero RF driving field. This would help enhance the preference for the in-
phase coupled mode over the out-of-phase coupled mode, as long as it is not

enough to encourage the high-order Gaussian modes suppressed by the groove loss.
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Figure 2. The equipotential lines in the laser waveguide and the groove regions
for the RF excitation field. It is clearly seen that the field is strongest around the
corner of the strip. Because of symmetry, only half of the wide-direction is

plotted. The ratio of strip width: groove width: waveguide spacing is 5:1:1.
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$5.3 Coupling Between the Cosine-Gaussian Modes in Active Media

In a regular index-guided waveguide, the modes are well defined by the
waveguide structure, which has a given distribution of the index of refraction.
When two waveguides of this type are parallel and are brought into close
proximity, it is inevitable that the polarization of one waveguide will perturb that
of the other, and coupling occurs between two or more similarly-polarized guided
modes as a result of this perturbation. Yariv? gave the equations that describe

this coupled set of m modes:

Ignj—iﬁmdidnﬁg;nei(“*ﬁmz) toc. :yaa—;[Ppert(r,t)]y, (1)
where Ap,(z) is the complex amplitude of the y-polarized m-th modal field &y,
and Pt is the perturbation polarization. From (1) we can see that Ay, becomes
a function of z only because of the presence of the perturbation in polarization,
Ppert- It Ppoepy were zero, then Ay, becomes a constant and we are back to the
uncoupled modes. A host of devices such as directional couplers have been built
on mode coupling of this kind.

For free-space Gaussian modes, no guiding is required for them to exist and
propagate. Nothing happens when two Gaussian beams are brought close to each
other in free space, which can have no polarization, Ppert- However, the situation
is quite different in active media, where the existence of saturable gain distorts
the transverse shape of a Gaussian mode, while not providing actual guiding, as
discussed by Bridges®. Thus if two Gaussian modes are brought close to each
other, together with the gain distributions that support them, the gain
distribution for one mode will be perturbed by the existence of the gain

distribution of the other mode, and vice versa, making Ppert in equation (1) non-
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zero. Thus coupling between two Gaussian modes can occur. This happens only
in polarizable media, in this case, the laser gain medium. The coupling of two
channels through an active gain medium is different from regular waveguide mode
coupling, in which the modes in two adjacent passive channels are coupled. Also,
the Gaussian beam does not have a straight envelope in its propagation direction,
and thus the coupling happens mostly in the sections of the beams where they
have larger cross sections.

Because the one-dimensional Gaussian mode in our array does not differ
from the regular two-dimensional Gaussian mode in its dimension, there is a
possibility that two-dimensional free-space Gaussian modes from two or more non-
waveguide lasers could also be coupled together, as long as the gain region of each
laser extends sufficiently in the direction of coupling, but not so much as to make
the gain region a smooth continuum. The utilization of this Gaussian mode
coupling could possibly lead to a more powerful combination of lasers. It can also
be applied to laser gain media other than COs,.

In Chapter 4, we observed that the modes for a single channel slab laser are
the free-space, Hermite-Gaussian modes in the transverse direction parallel to the
waveguide plates. However, if the slab is very narrow, say, a strip of width
comparable to the waveguide spacing, and gain medium is equally narrow, then
the Gaussian mode can be distorted so that it is more like the gain-guided mode
described by Streifer, et al8

If the strip is narrow enough to support only the fundamental Gaussian
mode, yet wide enough so that a considerable part of the Gaussian caustic curve
in the y-z plane would not feel the boundary of the gain, then we can still regard
the mode being free-space Gaussian. On the other hand, if the waveguide strip

and the gain medium are the same size as or even narrower than the beam waist



V-8

of the Gaussian caustic curve, then the part of the Gaussian beam that exceeds
the strip and gain region would be scattered by the gain-loss boundary; the stable
modal distribution in such a laser cavity would have a profile in the x-y plane
that does not vary with z, unlike the free-space Gaussian mode. Even in this
situation, the modal intensity profile in the y-direction can still be Gaussian, as
suggested by Streifer, et al® Thus when a number of parallel, gain-guided strip
waveguides are placed close together, the perturbation to the gain distribution is
of the same nature as the aforementioned Gaussian mode array. This array
should be called a gain-guided array, as in semiconductor lasers.

There is hardly a clear boundary between the coupled free-space Gaussian
mode array and the gain-guided array. In our experiments, to be described in
later sections, we used several arrays of strip waveguides, where the strip widths
were from 3 mm to 6 mm, all supporting a fundamental mode for each strip. We
can say that the 3 mm strip array is closer to the gain guided array and the 6 mm
strip array is closer to the coupled Gaussian mode array.

The index of refraction of the active medium is related to the gain through
the Kramers-Kronig relationship?, as well as the change of gas density in this
region. The former is weak in the low gain, relatively high-pressure waveguide
CO, lasers”, and the latter, although stronger than the former, is calculated from
Colley et al.8 to introduce a correction of about 10 to the index of refraction.

Thus the real-index guiding is negligible and both effects can be ignored.



$5.4 Experimental Results

Stable, single in-phase mode operation was obtained in two, three and five-
element arrays. The setup for the measurements is shown in Figure 3, where the
laser power is divided into two beams with a grating. One of the beams is either
sent into the CO, laser spectrum analyzer or dumped. The other beam goes
through a variable focal length, two-lens system to be imaged. By adjusting the
position and the focal length of the two-lens system, either the far field or the near
field of the laser beam can be imaged at the plane of the HgCdTe fast detector
(fmax 200 MHz). And by scanning the beam across the small detector area (1
mm2), we could see the intensity distribution of the beam at the oscilloscope.
The output from the fast detector is also sent to an RF spectrum analyzer so that
the beat notes will appear if there is more than one mode. The far-field intensity
distributions of 2, 3 and 5-channel arrays are given in Figure 4a. The near-field
distribution of the five-element array is shown in Figure 4c. For all three arrays,
we can adjust the cavity alignment to obtain high power output, a symmetrical
intensity distribution, and no beat note evident on the spectrum analyzer. The
polarization of the laser was TE-like, i.e., the electric field was parallel to the
surface of the waveguide. From these observations, we can conclude that this was
single, in-phase coupled mode operation.

The gradual evolution of the intensity distribution from the near field to the
far field was recorded as burn-patterns on a piece of Lucite, as shown in Figure 5.
A telescope was formed from lenses f; and f, to provide a focal spot 15" from f,,
and a series of burn patterns were taken at distances 6” to 15" from lens f; at 17
intervals.

To turther investigate the robustness of the in-phase coupled mode, we

performed the additional-loss test on the two-strip array shown in Figure 6. Up to
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Figure 3. Measurement setup for the modal intensity scans of 2, 3 and 5-channel

groove-coupled strip laser arrays.
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Figure 4. (a) Measured far-field intensity distributions for three arrays, (b) the
sizes of the arrays, and (c) measured near-field intensity distribution for the five-

channel array.
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Figure 5. The evolution of the intensity distribution and the measurement setup.

The mode patterns were measured 1” apart in the direction of laser propagation

by varying d.
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Figure 6. The groove coupled strip array with intentional loss introduced in the

inter-element region. After the three pieces of glass were added one at a time, the

in-phase coupled supermode still oscillated stably .
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three small pieces of glass could be positioned in the inter-element region of the
array with the in-phase coupled mode still dominant in oscillation. This result
suggests that the in-phase coupled mode in the groove-coupled strip array is
robust. It also contrasts with the similar test for the wall-slot coupled two bore
array described in §3.3 (Figure 10), in which a single small piece of glass in the
inter-element region completely eliminated the in-phase coupled mode.

As we observed in §5.2, at the edge of a strip laser, the RF driving field
bends outward. If the groove between the elements is too narrow, we can imagine
that the field in this region will be almost as strong as in between the top
electrodes and the strips. Then the discharge will “ignore” the groove and the
laser gain will be more or less uniform across the grooves, and thus uniform across
the array. This will bring back the high order Gaussian mode. For example,
Figure 7a shows experimental results indicating a mode with #three zeros
originating from a structure with two 0.5 mm wide grooves. This pattern was the
same in both the near and far fields, showing that the adjacent lobes are 180° out
of phase and the pattern is Hermite-Gaussian. However, when the two grooves
were made slightly larger, e.g., 1.0 mm, the three laser channels were well defined
and the near field changed to Figure 7b, where the number of zeros is the same as
the number of grooves cut. The far-field pattern (Figure 4a) and beat spectrum
confirm that this is indeed a single, in-phase coupled mode.

Our next test involved the laser power output comparison of the coupled-
strip array operating in the in-phase coupled mode and a slab laser that operates
on a third-order Gaussian mode. Both wall pairs were made of aluminum and had
a surface finish of about 2 ym, from a milling machine. The power V.s. pressure
curves are plotted in Figure 8. It can be seen that the array structure greatly

improved the optical quality of the laser with a modest cost in power: the in-phase
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Figure 7. The effect of groove width in a three-strip array: (a) narrow grooves
being ignored by the discharge and the near-field intensity distribution is that of a
third-order consine-Gausssian mode. Three nulls do not match two grooves. (b)
Wider grooves yield a distribution of coupled mode: lowest-order consine-Gaussian

mode in the strips coupled together. Two nulls match the number of gooves.
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Figure 8. Output power comparison between the strip array laser and slab laser.
Curve M is for the array. Curve Q is for the slab with the same overall volume as
the strip array. Curve P is for a slab reduced in volume so that it has the same
total discharge surface area as that of the array. The reduction in power from Q

to P is assumed to be proportional to the reduction in area. The maximum point

of M is 73% of Q and 87% of P.
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array mode had 87% of the power of a higher-order mode from a slab laser of the
same discharge volume (i.e., corrected by subtracting the volume over the
groove). For the in-phase coupled mode, the power in the center, near-diffraction
limited main lobe of the far-field distribution was measured to be between 60-70%
of the total power. Thus, these two factors combine to place 52-61% of the total
high-order Hermite-Gaussian mode power into the central lobe of the in-phase
coupled mode. As can be seen from Figure 4b, the groove between the two
elements in this array is 2 mm. If it were reduced to 1 mm, as in the cases of
three and five-strip arrays, we could expect an even higher power concentration in
the center main lobe.

The physics of coupling in our groove-coupled strip array is quite different
from that of the anti-guiding array of semiconductor lasers, in which the
transverse structure has to be at resonance with the guided wavelength in order to
arrange the optical field in all active channels to oscillate at the same phased. In
our experiments, as can be seen from Figure 4b, we used quite different channel
widths for different arrays, e.g., 3 mm, 5 mm, and 6 mm; and we used groove
widths from 1.0 mm to 2.0 mm. They could all be coupled in-phase; no resonant-

condition behavior depending on the width of strips and grooves was observed.
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CHAPTER 6. MICROWAVE EXCITED CO, WAVEGUIDE LASER

§6.1 Introduction

Our demonstration of a bare metal slab waveguide laser as described in
Chapter 4 lead us to consider how we might make an all metal waveguide laser of
simple construction and excited by an inexpensive power source. Figure 1 shows
the evolution of our reasoning. Figure la shows the transverse cross section of the
waveguide, matching inductance and the vacuum structure used in our slab laser.
The two metal slabs forming the optical waveguide are separated by insulating
spacers and joined by inductors to form a resonant LC circuit at 146 MHz. The
entire assembly is suspended inside an external metal vacuum chamber. The RF
excitation is brought into the vacuum chamber via a vacuum-tight coaxial
feedthrough insulator. All waveguide lasers demonstrated to date that we know of
utilize similar elements. Since the two metal slabs must have an RF potential
difference between them, at least on of them must be insulated from the metal
vacuum chamber walls.

If the resonating inductance could be made in the form of a vacuum-tight
connecting metal wall, however, as shown in Figure 1b, there would be no need for
the insulating spacer, since the RF potential difference could be supported across
this inductance. Thus the electrodes/optical waveguide plus this inductive wall
could form the outer vacuum envelope of the laser. Of course, such a wall would
have much lower inductance L than the coils or straps used in our previous lasers,

so that the resonant frequency w; that is given by

Wr = "'\/i=c (1)

would be increased greatly for the same inter-electrode capacitance C. We
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b) —

Figure 1. (a) Cross section of LC resonant slab laser inside a vacuum chamber,
similar to the test bed laser used in this project. One side is grounded and the
other is fed with RF at 146 MHz through a hermetically sealed coaxial fitting. (b)
Cross section of a double ridge-loaded waveguide, with dimensions just above

cutoff frequency at 2450 MHz. RF feeding can come from a connected waveguide.
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normally think of a power source becoming more expensive as its frequency
increases.  However, there is an “anomalously low” cost associated with
microwave power at 2.45 GHz, the frequency used by commercial microwave
ovens. Thus we were motivated to consider what dimensions would be suitable
for this frequency.

There have been several reports of microwave excited CO, lasers!2.
However, to our knowledge, the structures used provided waveguiding only for the
microwave power; none of them used a structure that provided waveguiding for
both the microwave excitation and the optical wave.

The structure in Figure 1b is referred to in the microwave literature as a
double ridge-loaded waveguide, and is often used to decrease the transverse
dimensions of a standard metal waveguide. As we propose to use it, the ridge
surfaces form the optical waveguide and also concentrate the RF pump power in
the guide. Strong electric field concentrations occur between the opposing
surfaces of the ridges, so that this structure is not often used with high power
microwave systems, since an RF discharge would be inclined to break down in this
field-concentration region. However, that is just what we desire to have happen
here: We want to form a discharge primarily between the ridges to form the
active region of our laser. The discharge should concentrate here if we adjust the
ridge spacing and the gas pressure to favor a Paschen minimum in that region.
There may be a frequency dependence for the Paschen minimum constant, but we
will have to determine this by experiment. We start with the gas pressure and
spacing in the laser operating range for excitation at 146 MHz. All the above
considerations apply to a single ridge waveguide, which we elected to use for
simpler machining.

The other dimensions of the ridge waveguide are not arbitrary. To make
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the discharge uniform in the laser length, about 38 cm, the waveguide needs to
operate near cutoff, so the guided wavelength is (ideally) longer than the laser.
The free space wavelength at 2.45 GHz is 12.25 cm, too short compared to the
laser length. Thus, to make a long laser, the transverse guide dimensions need to
be adjusted to near cutoff, but just a little larger. This design will assure strong,
uniform fields to help initiate the discharge.

Of course, the calculations for the cutoff conditions only apply to the ridge
waveguide before the discharge begins. Once the discharge strikes, the loading
will drastically alter the conditions in the waveguide. The high electron density in
the discharge, about 1011 cm™, yields a plasma frequency of about 9 GHz, which
is above the 2.45 GHz power source. Thus, no propagation could occur if this
were a collisionless or lossless’ plasma. However, this plasma is also collisional,
with a collision frequency of 740 GHz, and thus is quite lossy. In fact, also these
same conditions were in effect with the 146 MHz excitation used previously. The
question did not arise since the physical dimensions of the laser suggested a
lumped-element viewpoint. In the 146 MHz experiments, the discharge looked
like an equivalent resistance of around 100 ohms across the LC circuit. Hall et
al.% also concluded that the RF discharge was basically resistive. There are not
many experiments published on microwave-excited laser discharges to turn to.
Mendelsohn et al.? described a microwave pumped XeCl* excimer laser that
exhibited “insignificant” reflection once the discharge was struck. However, the
conditions in such a laser may not be readily scalable to a CO, laser.

What the discharge will look like at 2.45 GHz is not easily calculable, so we
chose to proceed experimentally, with the design for operation at cutoff prior to
the discharge, and then determine the proper matching elements experimentally

once the discharge began.



§6.2 Ridge Waveguide Theory

There is no exact electromagnetic field solution for single-ridge waveguides
shown in Figure 2. Various approximate solutions have been published by Ramo
and Whinnery5, Cohn6, and Chen’. We chose to use the method given by Cohn6,
which treats the guide as a propagating structure in the transverse direction. The
condition for cutoff of the longitudinal guide is when this transverse propagating
system is an integral number of its guide wavelengths long and there is no
longitudinal propagation, that is, when it is in resonance. Cohn’s transverse
resonance model treats the ridge region as one parallel plate transmission line and
the “inductor loop” as another, shorted parallel-plate line. The step discontinuity
where these two lines meet is treated by adding a lumped “discontinuity
capacitance” to the transmission system, as calculated by Whinnery and
Jamieson8. The dimensions of the transverse cross section are then varied to
obtain the resonant condition. According to Cohn®, for the single ridge waveguide

shown in Figure 2, the dimensions b; and b, are related by the following equation:

by cotd —B./Yy,;

9 o ta,n02

—

, (2)

o

where B, is the admittance due to the discontinuity capacitance, Y is the quasi-
static admittance of a parallel-plane waveguide with height b;. B, can be

computed from Whinnery and Jamieson’s paper®. The definitions for the #’s are:

_ 27 @ — 273~ %
=P, H=FEED, 3)

where ) is the free space wavelength at the cutoff frequency.
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Figure 2. (a) Single ridge waveguide and (b) Its equivalent transmission line

circuit for the lowest order mode.
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We intended to use off-the-shelf waveguide metal stock as the enclosure of
our ridge waveguide, so that we could fabricate a test vehicle without an undue
amount of machining. Thus the two numbers a; and b; are fixed by waveguide
standards. Because we planned to use an oven magnetron at 2.45 GHz, ), is
fixed, too. The remaining variables are then the sizes for the ridge, ag and b,.

Using equation (2), we computed a set of curves showing the relationship
between ag and by with frequency as a parameter around 2.45 GHz for the single
ridge waveguide, as given in Figure 3. We find that we can make a reasonable
single ridge waveguide, just cutoff at 2.45 GHz, with a gap spacing of 2.8 mm and
a ridge width of 15 mm, and that further fits the overall rectangular dimension of
a standard copper microwave waveguide, WR-137. Or we can make a ridge 10
mm wide with a narrower gap, 2.4 mm. WR-137 guide is cutoff at 4.3 GHz with
the ridge absent. Thus, to obtain “short circuit” sections at the ends of the
waveguide to confine the fields, we need only to have the ridge shorter than the
waveguide; these ends are severely cutoff at 2.45 GHz and will reflect almost
100% of the incident power if they are just a few evanescent lengths long. The
evanescent length is

&=t (4)

C

For f = 2.45 GHz and {, = 4.3 GHz, 1/a = 2.8 cm.
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resonant frequency = 3.0 GHz
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Figure 3. Cutoff conditions for the single ridge waveguide made from a standard
WR-137 waveguide (34.8 x 12.4 mm?). A 15 mm wide ridge and a 2.8 mm gap or

a 10 mm wide ridge and a 2.4 mm gap makes the waveguide cutoff at 2.45 GHz.
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§6.3 Experiments with Microwave Excitation
6.3.1 Measurement and cold test with the ridge waveguide

We measured the power distribution in the ridge waveguide in both the
transverse and longitudinal directions and fine tuned the position and dimension
of the ridge so that it was very close to the cutoff under the cold test conditions.
The test setup is shown in Figure 4. Six small holes were opened on top of the
ridge waveguide to monitor the field distribution along the direction of ridge. A
small antenna can be inserted into the ridge waveguide from one end, and placed
very close to the end of the ridge. Then the antenna was moved along the.lateral
direction across the ridge to measure the field distribution between the ridge and

the top waveguide wall along this direction.

scanning atenna

/ from signal
matched ldad generator

o O aften @
B funer uafor

T

NSWP meter

Figure 4. The setup for measuring the cutoff of the ridge waveguide.

ridge waveguide
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It turned out that the 15 mm wide ridge we designed for cutoff at 2.45 GHz
actually cutoff at 2.26 GHz. The discrepancy should be attributed to the finite
length of the waveguide. When the frequency decreases to near the cutoff, the
guide wavelength approaches infinity. Thus the length of the ridge waveguide is
inevitably smaller than a wavelength. This introduces considerable error in our
calculations, which assume the waveguide is infinitely long by ignoring the
scattering at both ends. We found that one way to fine tune the cutoff frequency,
without changing the shell waveguide and or ridge dimension, was to change the
location of the ridge in the lateral direction, as indicated in Figure 5. This can be
explained with the equivalent resonant circuit of the ridge WaveguideG, as shifting
the ridge off center shortens the wall length on one side of the ridge waveguide,
and reduces the total inductance and raises the cutoff frequency. The measured
transverse field distribution is given in Figure 6a, and the measured longitudinal
distribution in Figure 6b.

The cutoff frequency for the 10 mm wide ridge was slightly smaller than the
designed cutoff frequency also. The step we took to remedy this was to reduce the
height of the ridge so it could remain in the center of the waveguide.  The

measured transverse field distribution is given in Figure 7.
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Power distribution at the end of the ridge.
The ridge is shifted off center as indicated

8 by the two vertical lines.
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Figure 6. (a) The lateral field distribution in the ridge waveguide with the ridge
off center. The total waveguide width is 34.8 mm, ridge width is 15 mm. The
flat part of the curve at right indicates the noise level. (b) Longitudinal field

distribution at different frequencies around 2.45 GHz.
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6.3.2 Ezperiments with microwave excitation

We tested the 15 mm ridge waveguide to investigate the conditions for
obtaining a uniform discharge with 2.45 GHz microwave. The test setup is shown
in Figure 8. A microwave oven magnetron rated at 750 watts average power was
used as the RF power source, driven by a rectified DC power supply. The output
of the magnetron was connected to a section of standard S-band waveguide, WR-
284, in which a block of dielectric material, Rexolite, of half a guide-wavelength
long forms the “half-wave vacuum window.” Following this window we used a
three-screw tuner for matching the discharge loaded laser section with the
magnetron. The center of the discharge section, i.e., the ridge waveguide built
from WR-137, was connected to the end of the tuner to form a T shape. To help
reduce the reflection due to the discontinuity in heights between the ridge
waveguide and WR-284, a ramp was added in front of the ridge, making a gradual
change of the waveguide height as indicated in Figure 8.

The most difficult problem we have to face in high-frequency, high power
excitation of a gas discharge is the following: We want to maintain a very low
SWR to transfer a maximum amount of power to the plasma from the power
source. Yet we also want to build up a high field strength on top of the ridge to
start the discharge, which means the discharge chamber should be resonant with
the driving frequency before the discharge strikes, yielding very high SWR. This
initial high SWR is the major problem we have encountered so far. It results in
the internal arcing at points other than the ridge. Such arcs have damaged
Rexolite vacuum window very often, resulting in contaminated gas and vacuum
leakage. It also led to unwanted discharges between the tips of the tuner screws
and the bottom of the waveguide. This problem was so persistent that we

abandoned the three-screw tuner altogether.
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Figure 8. The microwave discharge test setup in a ridge waveguide, including a
three-screw tuner. Ridge width is 15 mm. (a) The top view, and (b) the side

view of the WR-284 waveguide and end view of the ridge waveguide.
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We tested a second setup without the screw tumer. In this setup the
vacuum front window is the only thing in between the magnetron and the ridge
waveguide, but there is a sliding short on the other side of the ridge waveguide
that we intended to use as a tuning device. A second ramp was added to help
reduce the discontinuity in heights to this WR-284 extension. This movable short
was separated by another vacuum window from the ridge waveguide. A sketch of
this setup is given in Figure 9. Although we located the surface of the vacuum
windows in nulls of the voltage standing wave, the high SWR was still a problem,
for the vacuum window on the magnetron side was still burned after 20 seconds of
discharge, slightly longer than when the three-screw tuner was present. The
vacuum window on the sliding short side was not damaged, because most of the
reflection was caused by the ridge waveguide.

The section of WR-137 was 380 mm long, and the ridge was chosen to be
270 mm long. Thus we had a 55 mm section of empty WR-137 waveguide on
each end that was far bellow the cutoff frequency. The microwave power was
reflected from these sections and only a little leaked out. The U.S. safety
standards for microwave radiation at this frequency is 1 milliwatt per square
centimeter. We measured the leakage with a relative method: We assume that
the commercial microwave ovens all comply with this standard and measured the
leakages from two microwave ovens in use in Caltech buildings using a
commercial microwave leak detector (Tenma 72-220). We found the leakage from
both ends of the ridge-waveguide to be smaller than the oven leakage. We then

concluded that the leakage of our waveguide was below the U.S. safety standard.
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Figure 9. The second test setup for microwave excitation in a ridge waveguide.

(a) The top view, and (b) the side view.
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6.3.3 Future plans

The next step we plan to take is to use quartz vacuum windows, which
hopefully will be able to endure large SWR and thermal shock, and thus will not
break down. This would allow us to do some fine adjustment of the ridge position
and find the resonant position with the magnetron frequency. Also, we have
designed another transition scheme to direct the microwave into the ridge
waveguide, in which the ridge waveguide section is parallel to the WR-284
waveguide. The ridge comes up gradually from within the WR-284 section and
ramps up to the full height into the ridge section. The required length of the

9. is one guided wavelength long, in order

ramp ridge section, according to Moreno
to effectively reduce the reflection due to the discontinuity of the transition. We
hope that this transition will expose the full length of the ridge section under
microwave and make the discharge uniform. This design is shown in Figure 10.
Although not suitable for a laser as it is shown, we feel that we must understand
the discharge better before we can design a configuration that will allow both a

good discharge and a good optical path. This will have to be accomplished in

future experiments.
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Figure 10. A suggested test setup for microwave excitation in a ridge waveguide.

WR-284 waveguide and the ridge waveguide are in parallel.
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CHAPTER 7. SOME NEW IDEAS ON FUTURE RESEARCH

§7.1 A New Type of Optical Switch

Through analysis and experiments with two-element laser arrays, we have
found that such arrays possess some special properties for an optical device:
(1) The array oscillation mode can be determined by the loss and gain in a very
small portion of its total volume. The large portion of the gain volume in the two
channels provides the power, while the gain or loss in the inter-element region
provides the mode discrimination, and hence, switching.
(2) The loss or gain value does not have to change very much to switch the
oscillation from one stable spatial mode to another. In the case of CO, lasers
calculated in §2.4, a three-fold increase in the loss can switch the array from the
in-phase coupled mode to the out-of-phase coupled mode.
(3) These two spatial modes (in-phase and out-of-phase coupled modes) have
distinct far-field intensity distributions that basically do not overlap with each
other. |

These properties should be the same for two-channel laser arrays with other
gain media, although the mathematics may be somewhat different due to the
possibly different situation properties of the laser. This effect can be used to re-
distribute the laser power spatially. Also, the two far-field mode patterns can be
used to represent two logic states. Thus a two-element laser array can be used as
an binary optical logic switch. Optical logic devices with three states should also
be possible: Our experiments described in §5.3 showed that if the gain in the array
channels expands too much into the inter-element region, the gain distribution
becomes more or less uniform, thus the high order Gaussian mode takes over as
the main oscillating mode. And this Gaussian mode had four lobes instead of the

three that would have been dictated by the three-channel array structure. If this
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also happens in two channel array, e.g., by selecting the width of the channels and
the gain distribution we can elect to have a three-lobed Gaussian mode oscillate,
then can make a thrinary switch among these three modes (states):

(1) The in-phase coupled mode with a single lobe at the far-field. The array has
well-separated gain regions and small loss in the inter-element region.

(2) The out-of-phase coupled mode with a twin lobe at the far-field. The array
has well-separated gain regions and large loss in the inter-element region.

(3) The second-order Gaussian mode with three lobes in the far-field. The laser
has more-or-less uniform gain distribution across its width direction. It is not a
coupled array anymore, but rather a single slab laser as described in Chapter 4.

The theoretical far-field intensity distribution for these three states are
shown in Figure 1.

The near-field intensity of the in-phase coupled mode and the out-of-phase
coupled mode are almost identical in their spatial distributions, with the
exception of the inter-element region where they exhibit a small difference. Thus
any mode discrimination method needs to be applied to this region, which
occupies only a small portion of the total array volume, e.g., ten percent as
indicated in §2.4. This small volume leads to small capacitance and hence lends
itself to fast switching applications.

The switching can be triggered by controlling the gain or loss in this region,
either optically or electrically or even mechanically.

For gain control electrically, suppose the laser is excited by electrical means;
we can have three separate regions of excitation. The two side-electrode pairs do
not need to be adjusted and they deliver most of the power. The central region
can be switched on slightly or partially to favor the in-phase coupled array mode,

or it can be turned off to favor the out-of-phase coupled mode, or it can be turned
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Figure 1. Salient features of the far-field intensity distributions for the two-
channel laser array, suggested to represent three logical levels: (a) in-phase
coupled mode, (b) out-of-phase coupled mode, and (c) a second order Hermite-

Gaussian mode from the same array as the channel separation is filled with gain.
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on completely to favor the slab waveguide high order Gaussian mode. Thus the
trinary operation is realized.

To control gain optically, one might excite the array so that the in-phase
coupled mode would oscillate, and then take the far field and feed it back by
focusing it (possibly after some amplification) to the center of the laser cavity.
This beam will bleach the gain locally so the out-of-phase coupled mode becomes
the mode favored to oscillate. This, in turn, will reduce the center far-field
ntensity to zero, and thus eliminate the power in the feedback path and cause the
gain in the inter-element region to recover, along with the in-phase coupled mode.
This makes an all-optical binary multi-vibrator or pulse oscillator, the time
constant of which is determined by the feedback path length or the time it takes
for the modes to switch in the cavity, whichever is longer. Ozeki et al.l pointed
out that the speed of switching between two modes of semiconductor lasers based
on saturation phenomenon can be much faster than the traditional on-and-off
method. They argue that in the former, the changes in carrier populations can be
minimized if there is substantial overlap between the modes, and since there is
always one mode lasing, the carrier lifetimes are shortened appreciably by
stimulated emission; while in the latter, the switching speed is limited by the
spontaneous carrier lifetime in the active region.

For loss control, we could excite the array in a way so that the in-phase
coupled mode would oscillate, and then add some loss in the inter-element region
electronically, in order to switch the mode to the out-of-phase coupled mode. One
way to do this electronically in semiconductor lasers would be to bias the inter-
element region so it becomes lossy and this would switch the laser to the out-of-
phase coupled mode. The laser will flip between the in-phase and out-of-phase

modes when the reverse bias current is turned off and on.
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Another method that falls into the optically-controlled-loss category would
be to excite the array so that the out-of-phase coupled mode oscillates, with some
of the loss in the inter-element region being saturable, e.g., a piece of unexcited
laser medium. If a beam is focused on a saturable loss region, it would be
bleached and become transparent, thus causing the in-phase coupled mode to
replace the out-of-phase mode. When this control beam is withdrawn or blocked,
the array returns to the out-of-phase coupled mode. We can make this device
bistable by sampling at the center of the far-field and then feed back the sample,
amplified if necessary, to the lossy region. This way, once the in-phase coupled
mode starts to oscillate, it will keep the loss bleached and maintain itself, even if
the outside trigger source is withdrawn, until the feedback beam is re-directed,
blocked, or some additional loss is added to the region beyond its focal area. The
device will then stay in the out-of-phase coupled mode.

The two-element array can also be used as a multiple-modulation device:
while the total intensity is modulated by some signal, the distribution of the
intensity may be modulated by another signal. For example, the total intensity of
a semiconductor laser array can be modulated by the injection current in an
analog fashion, and the supermode switched according to some digital information.

The basic scheme of binary pulse code of this array can provide better error
probability than the conventional on-and-off switching because it is antipodal as

compared to the uni-podal scheme of the on-and-off switching.
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§7.2 Two-Dimensional Arrays of Discharge Lasers

The linear array of groove-coupled strip waveguide CO, lasers in Chapter 5
has astigmatism as shown in Figure 5 of §5.4. In applications that require high
power densities, this has to be corrected with additional optics. Two-dimensional
arrays would avoid this disadvantage and at the same time increase the power
density per laser length. Two-dimensional array of lasers has been a hot topic in
semiconductor, surface emitting quantum well lasers. Our proposal here would be
the first in gas medium lasers, and it can also be applied to lasers of other media.
The basic element of a 2-d array is made of two cross-positioned dual-channel
linear arrays, which can be considered as an array of four elements, as shown in
Figure 2. If all the four elements are designed to oscillate in the lowest cosine-
Gaussian hybrid mode, and the distance between the elements and the electrode
gap are properly selected; we know from Chapter 5 that the two parallel elements
can be coupled in-phase. To make a two-dimensional array, we will then need to
couple two perpendicular linear arrays together. However, these two linear arrays
have to oscillate in the same polarization in order to couple. Thus if the
horizontal array oscillates in the TE mode, then the vertical array needs be in the
TM mode, and wice versa. TE; and TM; modes for a pair of infinite plate
waveguide have the same propagation constant. Thus we can expect these two
modes in the perpendicularly oriented two waveguides of the same geometry in
the laser cavity to have the same natural oscillation frequencies. In reality,
however, even if a small frequency discrepancy exists, the two modes can still
couple. In the tests described in Chapter 5, we measured the polarization of the
array to be parallel to the surfaces of the electrodes. That is to say we had TE
modes. For a pair of aluminum surface which has large conductivity, the TE

modes suffer the least loss so they start to oscillate first. In the two-bore ceramic
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Figure 2. The suggested two-dimensional discharge laser array: (a) Cross section

view, (b) side view at a reduced size to fit the page.
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array described in Chapter 3 with the top plate being aluminum, the polarization
was such that the electric field was perpendicular to the ceramic (alumina) side
walls.  Also from the calculations made in Chapter 4 for aluminum plate
waveguides coated with AlyOg (alumina), the loss to TM modes decreased
drastically for the coating thickness above 2 ym (see Figure 7b in §4.3). Thus it
should be possible that for a pair of electrodes coated with alumina, or anodized,
the TM mode loss would be much less, so it can also oscillate, as long as the
tendency for the TE mode to oscillate is suppressed. On the other hand, the TE
mode in the alumina-coated waveguide may still oscillate because it may still have
less loss than the TM mode as indicated in Figure 6 and Figure 7b in §4.3. In
such a case it may become necessary to use a Brewster window to force the
parallel polarization.

The electrode structure in Figure 2 is a so-called quadrupole electrode, with
adjacent electrodes having opposite polarity and diagonal ones, the same polarity.
The size of the center gap may be critical in obtaining an in-phase coupled array
mode.

Once this four-clement 2-d array is demonstrated, it can be grouped
together to form arrays with even more elements. Such a laser array will need to
have its back mirror made with holes on the center of each of the electrodes, so
that cooling water and electric connections can be fed through the mirror. The
electrode has to be water cooled in the center. It actually plays three roles:
electric conduction for the pumping, waveguiding for the laser light, and thermal
conduction for cooling. It also needs to be mechanically strong.

We have so far been discussing arrays of waveguide lasers. As we reported
in 85.3, phase-coupled laser arrays can be made from free space Gaussian mode

lasers as long as there is enough leakage among the elements in the active
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its elements, instead of the waveguide laser.

The far field inteﬁsity distribution from a 2-d array cell was simulated in the
computer, and is given in Fig.3. We see there are some side lobes in all four
directions, but if the gap between the electrodes is not too narrow, the center lobe

still possesses a considerable amount of power.

Figure 3. Far-field intensity distribution of a four-element, two-dimensional

waveguide laser array. Each element has a cross section of 2 mm by 3 mm.
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