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ABSTRACT

The problem of robust performance analysis is solved for SISO control systems
with uncorrelated model parameter uncertainties. The robust performance problem
is formulated in a manner consistent with structured singular value p-analysis —
for SISO systems this means restricting the magnitude of a weighted closed-loop
sensitivity function. The solution to the problem is graphical in nature and well
suited to a computer-aided controller-design procedure. It utilizes region boundaries
on the complex plane that contain specified sets of process models at each frequency.
An algorithm is presented for locating the region boundaries corresponding to model
transfer-functions with uncertain real coefficients and time-delay. Convergence and
containment properties of the algorithm are proven.

The region-based analysis is combined with the Internal Model Control design
procedure to form a controller synthesis method for robust performance. Tradeoffs
between performance and robustness are transparent to the designer in the proposed
synthesis method. Useful tables of controller parameters are presented in tabular
form for a wide range of parameter uncertainty levels in a first-order-with-time-
delay model. The controller resulting from the IMC design procedure is compared
with the p-optimal controller. Although the new synthesis procedure is generally
applicable to SISO systems, it can be used to design decentralized controllers for
MIMO systems with uncertain scalar dynamics and symmetric interactions. The
particular application of cross-machine-direction basis-weight control in paper man-
ufacturing is discussed in detail. Robust performance and robust failul:e tolerance

of desirable decentralized controllers for this system are proven.
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The contribution of left-half-plane pole uncertainty

to U (s) + 1.

The contribution of left-half-plane zero uncertainty

to I, (s) + 1.

~



Figure V.1

Figure V.2

Figure V.3

Figure V4

Figure V.5

Figure V.6

Standard feedback control system with process
P(s), controller C(s), set-point r(s), disturbances d(s)
and output y(s).

Magnitude of the performance weight specifying ac-
ceptable bandwidth and magnitude of the sensitivity
function: w(s) = (4s +1)/8s

-------------------------------------------------------------

Condition number of Pg}g with p; =1, p, = r, and
ps = —r in Equation V.4 as a function of parameter r
and dimension n. (Truncated at 4 = 50 to improve

scale.)

Slice modelled as a beam supported by springs at
actuator locations. The springs exert forces F,, on the

slice at distances na from the center (0,0,0).

-------------------------------------------------------------

Deflection of the slice actuator as a function of the

dimensionless design parameter D,.

Cross sections of two slices currently available from
Beloit Corporation. Note that the slices are thicker in
the middle to resist machine direction shear while main-

taining flexibility.



Figure V.7

Figure V.8

Figure V.9

Figure V.10

Figure V.11
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Internal Model Control (IMC) parameterization of
feedback controller has process p(s), model p(s), con-

troller g(s), set-point r(s), disturbances d(s) and output

y(s).

Nyquist plot illustrating robust stability of the sys-
tem with loop transfer-function kp(s)c(s) for all p(s) €
7w and for all k € [z\m,-n(Pg4’3),Amaz(Pg4’3)]. Since
none of the regions 7 (iw)c(iw) include (—1,0) the sys-

tem is robustly stable.

-------------------------------------------------------------

Plots of p(w) for the CD response control systems
designed in Sections 9.1.2 and 9.3. When p(w) is less
than one for all frequencies, robust performance is guar-

anteed.

Simulations of CD response to step disturbances
d10a, d10b, and djo.. Note that response to djgp in the
direction of the vector corresponding to the minimum

singular value is sluggish.

Condition number of positive-definite G2C6’4 as a
function of parameter ¢ in Equation V.28. The optimal

value of ¢ is —0.21.



Figure V.12

Figure V.13

Figure V.14

Figure VI.1

Figure V1.2

Figure V1.3

Magnitude of multiplicative error l,, (s) used for the
model-inverse-based design in Section 9.3 with interac-

tion parameter uncertainties.

------------------------------------------------------------

Responses at one actuator position to a step-change
in set-point are shown for the system with diagonal con-
troller in Section 9.1.2 and the model inverse-based con-
troller in Section 9.3 without interaction parameter un-

certainties.

------------------------------------------------------------

Eigenvalue and condition number bounds of CD
response interactions model P;.O’m as functions of the

dimensionless actuator design parameter D,.

-----------------------------------------------------------------

Feedback control system with nominal process
P(s), controller K(s), weighted input uncertainty
A;W;(s), performance weight Wp(s); control action

penalty W, (s)W;(s), and performance block A,.

General interconnection structures for u-synthesis
and p-analysis corresponding to the feedback control

structure in Figure 1.

------------------------------------------------------------

Structured singular values for systems with models

a—d and full matrix p-optimal controllers.



Figure V14

Figure VI.5

Figure V1.6

Figure VI.7

Figure VI.8

Figure V1.9

Figure VI.10

Figure VI.11

-----------------------------------------------------------------

Bode plot for full matrix p-optimal controller syn-

thesized for example a.

Bode plot for full matrix u-optimal controller syn-

thesized for example b.

-----------------------------------------------------------------

Bode plot for full matrix p-optimal controller syn-

thesized for example c.

-----------------------------------------------------------------

Bode plot for full matrix p-optimal controller syn-

thesized for example d.

-----------------------------------------------------------------

Feedback control structure with off-diagonal part
K, of the full controller Ky written as an additive per-

turbation to the controller.

The off-diagonal part K, of the full controller K
is illustrated here as two types of norm-bounded multi-

plicative perturbations at the controller input.

Theorem 1 applied to examples a and b showing

that sufficient conditions are satisfied for both examples.

-----------------------------------------------------------

Theorem 1 applied to examples ¢ and d showing
that sufficient conditions are not satisfied for both ex-

amples.



Figure VI.12

Figure VI.13

Figure VI.14

Figure VI.15

Figure VI.16

Figure V117

Figure VI.18
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Theorem 2 applied to examples a and b showing

that sufficient conditions are satisfied for both examples.

Theorem 2 applied to examples ¢ and d showing
that sufficient conditions are not satisfied for both ex-

amples.

-----------------------------------------------------------

Structured singular values for systems with models

a—d and repeated sequential RS u-optimal controllers.

Comparison of structured singular values for sys-
tems with models @ and b and u-optimal, DOy, and
RSy controllers.

Comparison of structured singular values for sys-
tems with models ¢ and d and u-optimal, DOy, and
RS u controllers.

Comparison of Bode plots of controllers DOy and
RSy for example a.

Comparison of Bode plots of controllers DOu and
RSpu for example b.



Figure VI.19

Figure VI.20

Figure VI.21

Figure VI1.22

Figure VI.23

Figure VI1.24

Comparison of Bode plots of controllers DOy and
RSpu for example c.

-----------------------------------------------------------

Comparison of Bode plots of controllers DOu and
RSy for example d.

...........................................................

Block structure used for u-synthesis of two-block
decentralized controllers with penalty on off-diagonal

controller elements A W, (s).

Bode plots for example e illustrating the effect of
penalty A.W,(s) on the magnitude of off-diagonal con-

troller elements.

Structured singular values for example e. The di-
agonal part DOp(full) of the u-optimal controller loses
much robust performance as a result of model reduc-
tion to two states DOpu(2st.). The two-block u-synthesis
leads to a much Dbetter two-state controller

TBu(2st.).

-----------------------------------------------------------

Bode plots for example f illustrating the effect of
penalty A W,(s) on the magnitude of off-diagonal con-

troller elements.



Figure VI.25

Figure VI1.26

Figure VI.27

Figure VI1.28

Structured singular values for example f. The fully
decentralized part DO3u(full) and two-block decen-
tralized part DO2u(full) of the u-optimal controller
both exhibit good levels of robust performance. Model
reduction to two states of DO2u(full) leads to
DO2u(2st.). Robust performance is little changed by
the model reduction. The two-block u-synthesis con-

troller with two states T'B2u(2st.) is no improvement.

Block structure used for u-synthesis of n-block de-
centralized controllers with penalties on off-
diagonal controller elements (I + Aka(s)) and
(I+AWi(s))

-----------------------------------------------------------

Structured singular values for example a with con-
troller RSyu. Solid curve is u(w) without n-block penalty
Wk(s) on off-diagonal controller elements. Dashed
curves correspond to values for Wy(s) of 0.5, 0.6, 0.7,

0.8, 0.9, and 0.95 as magnitude of y(w) increases.

Structured singular values for example b with con-
troller RSu. Solid curve is u(w) without n-block penalty
Wk(s) on off-diagonal controller elements. Dashed
curves correspond to values for Wi(s) of 0.5, 0.6, 0.7,

0.8, 0.9, and 0.95 as magnitude of u(w) increases.



Figure VI.29 ...l e tteesirsaeeeaeeaeaneas

Responses to step disturbances for example a with
full matrix u-optimal controller.

Figure VI 80 ...ttt ittt itteiitenneateansanonsssessssnnaonannsnnns

Responses to step disturbances for example a with
diagonal controller from repeated sequential u-synthesis.
Figure VI8l ..ottt ittt eaeeeaeetannenaassosennnnnnns
Responses to step disturbances for example b with
full matrix p-optimal controller.

Figure V032 ..t i ittt ittt teaeeeeneeannnaaeecnnnnnnnnns

Responses to step disturbances for example b with
diagonal controller from repeated sequential u-synthesis.
Figure VI8 ..ottt ittt ittt iananeeeaereenaneneeeennnnns
Responses to step disturbances for example ¢ with
full matrix p-optimal controller.

Figure V34 .o i i it ittt ettt teateieaneesnnnnaanans

Responses to step disturbances for example ¢ with
diagonal controller from repeated sequential u-synthesis.
Figure VI35 ..ottt ittt ittt ittt ittt ettt tteeeseeeneeaeanenenans
Responses to step disturbances for example d with
full matrix u-optimal controller.
Figure VI 86 ...uvetiiiiiiiiiii ittt ittt ietetteteeteeereeneeseeneananenans
Responses to step disturbances for example d with
diagonal controller from repeated sequential u-synthesis.
D 7B T U i
Robust performance interaction measures for sys-

tems a—d equal to the ratio prs(w)/mopt(w)-
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CHAPTER I: INTRODUCTION



INTRODUCTION

Modelling errors are inseparable, undesirable companions of modelling — like
Ignorance and Want clinging to the feet of Dickens’ Ghost of Christmas Present.
The objective of the control engineer is to design controllers that satisfy system

requirements despite these modelling errors. Control system designs that meet

the objective are said to exhibit robust performance. It is perhaps true that control
systems have always been designed for robust performance even if the early designers
didn’t recognize it — physical systems have not just recently become difficult to
model. Early control-system designers lacked rigorous mathematical tools to meas-
ure robust performance. Development of structured-singular-value analysis and

synthesis [Doyle, 1982] provided the needed tools.

This work utilizes the tools of structured-singular-value analysis and synthe-
sis for control-system design. Evaluating control-system designs with these tools
allows development of attractive necessary and sufficient conditions for robust per-
formance despite modelling errors. It is not always possible, however, to formulate
control-system design problems so that they are compatible with existing tools for
robust performance analysis and synthesis. For example, uncertain time-delays, real
model parameter variations, and synthesis of desirable decentralized controllers —
important issues in chemical engineering control problems — are all inadequately ad-
dressed by existing analysis and synthesis techniques. An objective of this work is
to eliminate these deficiencies of existing techniques with intuitively api)ealing and

practical new controller-design techniques. The focus and advantages of new results
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in this work are best appreciated after reviewing the present status of structured-

singular-value analysis and synthesis.

1. The Structured Singular Value p and Robust Performance

In structured-singular-value analysis, a control structure is proposed as illus-
trated in Figure 1 with nominal model }3(3), controller K(s), expected disturbances
d(s), output y(s), and modelling error W;(s)A;(s). Matrices A; in such structures
are usually bounded in the sense that 0,42 (A,-) < 1 Yw to represent model uncer-
tainty in all directions from the nominal model. The weight W;(s) is used to shape
the modelling error as a function of frequency w. The requirements of the control
system in Figure 1 are that the system be stable and that the system perform atten-
uation of disturbances d(s) in the output y(s). The control system is robustly stable
if it is stable for all models P(s) = P(s)[I+Wy(s)A1(s)]. The Small Gain Theorem
states that this will be the case if and only if the nominal system with P(s) is stable
and the gain in the loop containing A, is less than one; that is, the control system
in Figure 1 is robustly stable for all 0,,,44 (A 1) < 1if and only if the nominal system
is stable and oynaz (Wi (s)P(s)K(s) [I+ P(s)K(s)] _1) < 1Vs = iw. Acceptable at-
tenuation of disturbances in the output, or performance, is described in terms of a
bound on the closed-loop sensitivity function by 0,4, (W2 (s) [I +}3(s)K (s)] —1) <1.
The system exhibits robust performance if it exhibits performance for all models

P(s).

A key iﬁsight of Doyle was recognition that robust performance of the system
in Figure 1 is equivalent to robust stability of the system in Figure 2. In Figure 2 a
second uncertainty block A, and weight W (s) connect output y(s) to disturbances
d(s). Once again, the Small Gain Theorem states that the system in.Figure 2 is

robustly stable if and only if it is nominally stable and the gain in the loop containing
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A, is less than one; that is, the control system in Figure 2 is robustly stable for all

Omaz (Az) < 1 if and only if it is nominally stable and

p= wsgi)omaz (Wa(s) [T + P(s)K (s)] _1) <1 (1)
Since the sensitivity function [I+ P(s)K(s)] ! relates output y(s) to disturbances
d(s), the performance weight W2(s) can be used to shape the disturbance attenu-
ation as a function of frequency. Since P(s) = Is(s) [I + W, (s)Al(s)] appears in
the condition u < 1 for the system in Figure 2, the level of performance specified
by W2(s) is guaranteed for the whole set of models P(s). Therefore, the structured

singular value u is a rigorous measure of the robust performance of a control system.

The control structure in Figure 2 is equivalent to the two structures illustrated

in Figure 3. Matrix transfer-functions A, G(s), and M (s) are given by:

(A1 O
A= ( 0 Az) (2)
0 0 WP
G(S) = W2 W2 W2~P (3)
-1 -1 -P

~ ~ -1 ~ ~ -1
M(s) = ( ~W.PK[I+ PK]™' —W,PK[I+ PK] ) . (4

~Wo[I+PK]™"  -W,[I+PK]™
Figure 3 (top) is typically associated with u-synthesis; Figure 3 (bottom), with
u-analysis. When 0ymaz(A) < 1 Vw, the robust performance condition given by 1
can also be defined as nominal stability and u[M (s)] < 1 Vs = iw, where u is
calculated according to the structure associated with A. The u-optimal controller
is defined as the stabilizing controller K(s) in Figure 3 (bottom) that minimizes x
of the associated matrix transfer-function M(s) [Doyle, 1987]. The beauty of the

structured-singular-value framework is that all control structures can be written
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as in Figure 3, with matrices A, G(s), and M (s) taking appropriate forms to ac-
commodate specified model uncertainties and performance requirements. Although
robust performance of all control structures can be defined in terms of the struc-
tured singular value, methods for computing x and for synthesizing the u-optimal

controller exist for a limited number of structures A.

Currently the method of Fan and Tits [1986] is employed to calculate a tight
lower bound on u[M (s)] when A is composed of nonrepeated complex blocks A;.
The method of Doyle [1982] is used to calculate an upper bound on x[M(s)], when
A is composed of complex blocks A;. Both methods are guaranteed to converge to -
the actual value of 4 when A has no more than three blocks. Methods are being
developed to enable calculation of 1 when A contains real scalar blocks [Sideris and
de Gaston, 1987|. Extensions of u-analysis are being applied when A is a structured
cone-bounded nonlinearity [Doyle and Packard, 1987]. No existing method enables
efficient calculation of 4 when A contains repeated real parameter variations or
enables synthesis of the u-optimal controller, when A contains repeated and/or
real parameter uncertainties. An active area of research is the development of
additional methods to calculate 4 when A is more highly structured. Enabling
more information about model uncertainty to be incorporated into A results in less

conservative robust-performance analysis.

2. Model Parameter Uncertainties and Region-Based Analysis

In this work a new algorithm is presented for calculating x4 as defined by Equa-
tion 1 for SISO systems with real parameter uncertainties in the process model.
The set m of Laplace transfer-function models that can be accommodated by the
algorithm is given by 5. Terms z(s), y(s), n;(s), and d;(s) are assumed to be exact
transfer-functions, while real numerator coefficients a;, denominator coefficients ¥;,

gain k, and time-delay 6 are inexactly known.



B B a;n;(s) + ...+ ainy(s) + aono(s) | _g,
"= {p(S)IP(S) =2(6) 4 40) K| G T+ hidi(0) + bodols) ]e ’ } )

a’.’i € [a.'l.min’ajmu.z]’ bl € [blmin’blmuz]
k € [kmina kmaz]a 6 € [emin; omaz]

Through the bounded real parameters, the set 7 can capture uncertainty in models
derived from basis principles and uncertainty in models extracted from experimental
data. In order to calculate the structured singular value p for systems with the
set of process models m, the new algorithm locates regions on the complex plane
containing 7 (iw) at each frequency w.

For SISO systems in Figure 1 with controller ¢(s), the robust performance test
1 with W, equal to scalar w, is equivalent to the requirement that the distance of
regions 7 (iw)c(iw) from (—1,0) exceeds |w,(iw)| for all frequencies w. It is clearly
important that regions 7 (iw)c(iw) contain all models in 5 without containing any
extra models to avoid conservativeness. Previous algorithms for locating boundaries
for regions 7 (iw) by Chen [1984], Saeki [1986], East [1982], and Longdon and East
[1979] are either excessively conservative or cannot guarantee that all models are
contained. The new algorithm presented here was developed to solve these deficien-
cies of previous algorithms. Programming solutions from the field of computational
geometry (see Lee and Preparata [1984]) applied to steps in the new algorithm
enable efficient and accurate location of regions = (iw).

The SISO robust performance test based on uncertainty regions (iw)ec(iw)
motivates graphical techniques for control-system analysis. Several researchers have
offered controller-design techniques that utilize regions on the complex plane or
Nichols chart to represent process uncertainty [Chen, 1984] [East, 1982] [Horowitz,
1982]. Horowitz [1982] associates with such graphical design techniques a property
he calls “transparency”, where the relationship between model characteristics and

control-system requirements are clearly visible to the control-system designer. With
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graphical analysis techniques, for example, it is possible to recognize immediately
that time-delay uncertainty is limiting the achievable performance of a control-
system design — this in contrast to strict u-analysis, where such a condition would be
much more difficult to recognize. To illustrate the property of transparency, regions
7(iw) corresponding to combinations of 20 percent uncertainty in parameters k, 7,
and @ in the familiar first-order with time-delay model 6 are illustrated in Figures

4-10 for 60 frequencies in the range 0.01 < w < 10.0.

7s+1

w={pe)le = £ )

ke [kminakmaz]a Ta € [Tmina'rmax], ES [ominyamaz]

Note in the figures that characteristics of gain, time-constant, and delay uncertainty
are easily recognizable - they are transparent to the control-system designer. Any
controller-design method can be used in conjunction with graphical robust perfor-

mance analysis based on regions 7 (iw).
3. Internal Model Control and Smith Predictors

The Internal Model Control (IMC) design method extensively developed by
Morari et al. [1988] is particularly compatible with graphical robust performance
analysis based on uncertainty regions m(iw). The IMC structure is illustrated in
Figure 11 with process p(s), model (s), controller ¢(s), disturbances d(s) and
outputs y(s). Principal advantages of the IMC structure include:

1) The IMC control structure is a stable parameterization of the feedback con-
troller ¢(s) in Figure 11. The control system is guaranteed to be nominally

stable, if both p(s) and ¢(s) are stable.
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2) The restrictions placed on ¢(s) by robustness requirements are clear, since any
nominal transfer function relating inputs to outputs is affine in ¢(s). For exam-
ple, the nominal sensitivity function 1/(1 + #(s)c(s)) is equal to 1 — (s)q(s).

3) Usually, only a single IMC tuning parameter is required — with a transparent
relationship to robustness and performance. Controller tuning to satisfy system

requirements is straightforward.

The IMC design procedure involves two steps: 1) a controller §(s) is designed
to be Hyo—optimal for the nominal model and the expected input to the system,
and 2) the controller is “detuned” by the addition of a low-pass filter f(s) to meet
robustness requirements. The resulting IMC controller is given by g¢(s) = §(s)f(s).

When the process model is open-loop stable with time-delay, the IMC structure
is a parameterization of the Smith predictor control structure introduced by O. J.
M. Smith [1957]. In the absence of modelling error, the Smith predictor has been
shown to lead to optimal response to step disturbances. Since the chemical pro-
cess industries are replete with transport delays and composition analysis delays,
the IMC parameterization is particularly useful in designing controllers for chemi-
cal processes. The proposed IMC controller-design procedure employing graphical
robust-performance analysis is a powerful tool for control-system design in the face

of model parameter uncertainties.
4. CD Response Control in Paper Manufacturing

The problem of cross-machine-direction (CD) response control in paper manu-
facturing is ideally suited for the proposed IMC robust-controller-design procedure.
Models relating CD paper sheet properties to actuator adjustments are typically
given by P51 (s) = p(s)P5p', where p(s) are uncertain actuator dynamics with
time-delay (as in Equation 5), and PJ}" is an interaction matrix given by Equation

7.



. /m P2 .- Pm O ... ... 0\
P2 pP1 P2 --- Pm ) ) :
: P2 P1 P2
, Pm i p2 - v i pm O
co =" S ™ (7)
0 pm . *e *. p2 . pm
: . P2 P11 P2 :
e T Pm ... P2 P1 P2)
Ao 0 P o 12 m)
nxn

Uncertain interaction parameters in P5p" are bounded real numbers given by

Pi € [Pipins Pimas)- (8)

Since models ng" are typically of very large dimension n, u-synthesis and model-
inverse-based techniques for controller design lead to hugely complicated control al-
gorithms. Moreover, models P5" are characterized by high condition numbers, so
robust performance can be difficult to achieve with model-inverse-based controllers.
Tight bounds on the singular values of positive-definite models P; )" despite interac-
tion parameter uncertainties enable application of the IMC robust-controller-design
procedure. The design procedure leads to desirable diagonal and banded controllers

with valuable robust-stability, robust-performance, and failure-tolerance properties.

If the robust-performance-analysis problem involving P5" with uncertain in-
teraction parameters were written in terms of M and A as in Figure 3, matrix A
would contain m repeated real blocks of dimension n X n in addition to real blocks
corresponding to uncertain scalar dynamic parameters — a problem entirely beyond
the capabilities of existing software for calculating u [M ] . Application of u-synthesis
to design either a diagonal or banded controller for this problem is equa.ily hopeless

without the results in this work.
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Significant raw-material savings often accompany successful control of cross-
machine-direction sheet properties in paper manufacturing. World paper and pa-
perboard production now amounts to some 140 million metric tons — a single per-
cent reduction in fiber use translates into the preservation of some 300 square miles
of forest.t Such raw material savings often accompany successful control of cross-
machine-direction (CD) sheet properties. For example, Eastman Kodak reported a
2.4 percent reduction in fiber usage as a result of CD control [Carey et al., 1975].
Operators can produce thinner paper closer to specifications when variations in CD
sheet properties are eliminated. Successful application of the proposed controller-
design procedure to CD paper-response control is therefore an opportunity for sig-

nificant, beneficial impact on a major industry.

1This 140 million metric tons is a 1982 production Figure from Statistical Year-
book 1983/84. In 1985 the United States consumed 84.1 million cords of pulpwood
in production of 76.5 million short tons of paper and paperboard [Statistical Ab-
stract of the United States, 1987). George S. Witham, Sr., author of a classic 1942
text Modern Pulp and Paper Making estimates “average Adirondack Spruce runs
15 to 20 markets to the acre” [Witham, 1942]. Therefore, a one-percent reduction

in fiber usage saves approximately

84.1 cords pulpwood 0.907 short ¢
1,400,000 metric tons paperx( coras pulpwoo ) y ( shor on)

76.5 short tons paper 1 metric ton

3 markets wood
1 cord wood

= 1,396,000 cords pulpwoodx <
= 4,188,000 markets pulpwood
= 209,000 acres average Adirondack Spruce

= 327 square males forest.



11

5. Thesis Overview

In Chapter II the new algorithm for locating model uncertainty regions (iw)
corresponding to 5 is presented. The containment and convergence properties of
the algorithm are proven. Advantages of the new algorithm over factorial and
region-mapping methods are discussed. Figures in Chapter II illustrate each step
in the algorithm. Chapter III presents the IMC controller-design procedure for ro-
bust performance based on the regions 7 (iw). The performance/robustness tradeoff
associated with selection of the IMC filter tuning parameter is illustrated. Perfor-
mance of the Smith predictor resulting from the design procedure is compared with
that of a PID controller for different levels of uncertainty. In Chapter IV the design
and tuning of Smith predictors are addressed in detail. Translation of parameter
uncertainty into norm-bounded uncertainty is discussed — a particularly useful for-
mula for multiplicative error in the first-order with time-delay model 6 is derived.
A method for selecting the form of performance weight ws(s) is suggested. Use-
ful tables of controller tuning parameters are presented in tabular form for a wide
range of uncertainty levels in the first-order with time-delay model. The Smith
predictor controller resulting from the IMC design procedure is compared with the
u-optimal controller in Chapter IV. In Chapter V the IMC robust-controller-design
procedure is applied to the problem of CD response control in paper manufac-
turing. Characteristics of the physical process that relate to model structure are
discussed. Properties of special matrix forms that model CD response interactions
are established. In particular, bounds on the singular values of uncertain CD re-
sponse models are developed. The bounds enable design of desirable decentralized
and banded controllers for large-dimension CD response control problems. Robust
stability, robust performance, and robust failure tolerance of the controlilers despite

interaction parameter uncertainties are proven. The importance of a dimensionless
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slice actuator design parameter on the CD response control problem is also illus-
trated in Chapter V. Chapter VI presents a study on u-synthesis of decentralized
controllers. Repeated sequential application of the u-synthesis algorithm is found to
be most effective for optimizing decentralized controllers. Properties of uncertainty
structures designed to penalize the magnitude of off-diagonal controller blocks are
summarized. Advantages, applications, and limitations of new results in this work

are summarized in Chapter VII, along with recommendations for future research.
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Figure 1: Standard feedback control structure with
nominal process 13(3), multiplicative uncertainty )
Wi(s)Ay, controller K (s), disturbances d(s) and out-
puts y(s). .
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Figure 2: Standard feedback control structure in
Figure 1 with performance requirement Wy(s)A, in the

loop between y(s) and d(s).
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Figure 3: The block structures for u-synthesis
(top) and p-analysis (bottom) are equivalent to that

in Figure 2.
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tainty in e~*/(s + 1) for sixty frequencies in the range

0.01 to 10.
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certainty in e~ /(s+1) for sixty frequencies in the range
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GAIN AND TIME-CONSTANT UNCERTAINTY
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DELAY AND TIME-CONSTANT UNCERTAINTY
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constant uncertainty in e~*/(s+1) for sixty frequencies

in the range 0.01 to 10.
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terization of standard feedback control system with
process p(s), nominal model (s), controller ¢(s), set- -

point r(s), disturbances d(s) and output y(s).
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GRAPHICAL STABILITY ANALYSIS FOR CONTROL SYSTEMS

WITH MODEL PARAMETER UNCERTAINTIES

Daniel L. Laughlin and Manfred Morari

Abstract

Regions on the complex plane are employed in a version of the Nyquist stability
test for control systems when the system model contains parameter uncertainties.
Generally, the uncertain parameters are real and bounded and appear as numerator
and denominator coefficients in a rational function of frequency. Through the func-
tion, the parameters decribe a set of model points at each frequency. The problem of
locating such sets is defined for a model useful in describing the frequency response
of physical processes. A new algorithm for locating region boundaries enclosing the
set of models is presented. Boundary points connected by straight line segments
are determined by the algorithm. The algorithm offers two principal advantages
over previously available methods: 1) The region boundaries are guaranteed to en-
close the set of models, and 2) the algorithm preserves concave sides on the region

enclosing the set.

1. Introduction

An objective of control-system design is to guarantee system stability and per-

formance despite error in modelling the physical system. Error, or uncertainty in
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modelling, is anticipated in control-system design by specifying a set of models
encompassing the error. If a controller can be designed to deliver stability and

performance for the set, it is termed robust with respect to the modelling error.

The frequency response of a physical system is conveniently modelled by a rational
function of frequency with bounded real numerator and denominator coefficients.
As such, the function describes a set of possible frequency response models for the
system. The problem of locating regions enclosing this set of models is an integral
part of a robust-stability analysis test for single-input, single-output (SISO) control

systems.

1.1. Problem Definition

The continuous frequency response of a physical process is conveniently mod-
elled by the set defined in 1. In 1, the terms z(s), y(s), n;(s), and d;(s) are assumed
to be exact functions, while real numerator coefficients a;, denominator coefficients
bi, gain k, and time-delay 6 are bounded by some minimum and maximum values.
Since the real parameters in 1 are inexactly known, 7 represents a set of process
models. Through the uncertain parameters, the set # can capture uncertainty, or

error, in models.

_ _ a;n;(s) + ... +ainy(s) + aono(s) ] _s,
T {”(s)l”(s) = a(s) +u(e) k[ bidi(8) + - + bydy(s) + bodo(s) }e } (1)

aJ' € [aJ'min’a’J'maz]’ b’ € [blmin’b‘muz]
ke [kmin; kmaa:], XS [0m‘in) 0mam]
Uncertain real parameters in 1 are assumed to be uncorrelated; that is, each may

take on all values within its specified range irrespective of values taken on by other

parameters.
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Nomenclature

To avoid confusion, the following nomenclature will be used in this paper:

7 — the set of frequency-response models of a physical system as given by 1.

p(s) — one model in the set # with all bounded real parameters fixed at one

point in their allowed range.

n(tw) — the exact region containing the set of frequency response models 7
evaluated at one frequency s = iw, including no extra points for

all possible combinations of bounded real parameters in 1.

N(w,a;) — the convex hull (the smallest convex polygon containing a set of
points) defined by the numerator in 1 with bounded real coefficients

aj.

N(w,a;,k) — the convex hull containing N(w,a;) after multiplication by an

uncertain gain k.

D(w, b)) - the convex hull defined by the denominator in 1 with bounded real

coefficients b;.

D(w, b;,0) — the boundary containing D(w,b;) after multiplication by the in-

verse of an uncertain delay e%«.
D~!(w,b;,8) — the inverse of boundary D(w, b;,6).

d; 1(w, b;,6) — line segments and triangles defined to enclose the entire boundary

D‘l(w, bl’ 9)

m;i(w,a;,b;,8,k) — convex hulls resulting from the multiplication of- N (w, a;, k)

by each d:l(w,bg,é).
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1.1.2 Analysis Test for SISO Robust Stability

Graphical performance-analysis techniques in control require that the model
p(s) be evaluated at frequencies s = iw, where 0 < w < co. When all real param-
eters in 1 are exactly known, 7 (iw) is exactly one point on the complex plane at
each frequency w. However, when the real parameters are bounded by minimum
and maximum values, 7(iw) is a connected region on the complex plane at each
frequency. Use of the regions 7 (iw) in SISO control-system robust-stability analysis

is described by Analysis Test 1 based on the familiar Nyquist stability test.

Nyquist Stability Test — SISO Nominal Stability: The SISO system in Figure 1

with controller ¢(s) and nominal model f(s) is stable if and only if the number of
clockwise (positive) encirclements of (—1,0), by p(s)c(s) as s encircles (clockwise)
the Nyquist contour (the right-half plane excluding singularities on the imaginary

axis), is equal to the negative of the number of open-loop unstable poles.

Analysis Test 1 — SISO Robust Stability: The SISO system in Figure 1 with con-

troller ¢(s) and model p(s) € w is robustly stable if and only if the system is
nominally stable for one p(s) € m and regions 7 (iw)c(iw) exclude (—1,0) for all

frequencies w.

(See Laughlin et al. [1986] for more information about this type of control-system
robust-stability analysis). If boundaries resulting from an algorithm are used in
Analysis Test 1, it is important that they enclose the set of models 7(iw) in 1 so
that the test is not indeterminate. Additionally, they must not contain any extra
models in order to avoid unwanted conservativeness in the robust-stability analysis

test.

The new algorithm presented in this paper locates a boundary consisting of

points connected by straight line segments. In Section 3, proof is given that both
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the points and the line segments are on, or outside, the set x(iw). The boundary
located by the algorithm converges on concave boundaries of w(iw) if they exist
in order to avoid conservativeness. Advantages of the new algorithm can be best
appreciated by examining methods reported by other authors for locating regions

approximating 7 (iw).

1.2. Other Methods for Bounding Uncertain Transfer-Functions
1.2.1. Factorial Methods

The use of factorial methods for locating region boundaries is reported by
several authors (e.g. Chen [1984], East [1981, 1982], Saeki [1986]). Each of n real
parameters defining a set of models through a function as in 1 is chosen to take on
d values within its bounds. The function is then evaluated at each of d™ possible
combinations of the parameters. The result of these evaluations is a “shotgun”
pattern of points on the complex plane. A boundary is then usually defined as the
set of line segments connecting points on the outer edge of the “shotgun” pattern.
In general, such factorial methods cannot guarantee that 7 (iw) will be interior to
the located boundary. For example, if 7(iw) is a disk, some of the points in the
shotgun pattern may be on the edge of the disk, but segments connecting these
points will always be on the interior of 7 (iw). The factorial method can take into
account correlation between parameters in the function. For example, if a; = b; in 1,
p(iw) can be evaluated at each of the d™ points while maintaining this equality. The
factorial method converges on 7 (iw) as d is increased, but the number of required

computations grows exponentially with n.
1.2.2. Region Arithmetic Methods

The result of a mathematical operation between two regions can be formally
defined to contain all possible results of the same operation between points in each
region. For example, Bolton [1981] and Henrici [1974] define operations between

disks on the complex plane. A set of such operations between regions is a “region
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arithmetic.” In previous work, authors have used region-arithmetic methods to
bound sets of models 7(iw). East [1981] locates convex hulls containing factors in
7(tw) and defines their product as the convex hull about all possible products of
vertices on the factor hulls. Although these region-arithmetic methods in general
locate a boundary that is guaranteed to contain 7 (tw), they are usually excessively
conservative; that is, the formally defined boundary resulting from a mathemati-
cal operation between two regions may contain many points that are not in 7 (iw).
Concave edges on 7 (iw) are universally approximated by straight lines. Since these
region-arithmetic methods are in general one-step operations, no sequence of im-
proving approximations to 7 (iw) is possible. Therefore, the region-arithmetic meth-

ods as defined do not converge to the actual set 7 (iw).
2. Algorithm for Locating Uncertainty Region Boundary

The new algorithm for locating the boundary of = (iw) utilizes the attractive
convergence and containment properties of the factorial and region-arithmetic meth-
ods without their deficiencies. The algorithm is closely related to the structure of
the function p(s) in 1. When the real parameters are assumed to be uncorrelated,
Lemma 1 in Section 3 shows that both the numerator sum involving uncertain a;
and the denominator sum involving uncertain b; are contained exactly by convex
hulls at each frequency s = tw. The problem of bounding 7 (iw) becomes one of

bounding p(iw) given by

N(w,a;) | _piw
D(w,b;) }e ’ (2)

ke [kmin,kmaa:]a 0 e [0min,0max],

p(iw) = z(iw) + y(iw) k[

where N (w,a;) and D(w,b;) are convex hulls containing the numerator and denom-

inator sums, respectively.
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The new algorithm involves eight steps:
1) Locate N(w,a;) and D(w,b;).
2) Multiply N(w,a;) by k € [kmin, kmaz)-
3) Multiply D(w,b;) by €%*“ with 6 € [0snin,Omaz)-
4) Invert D(w,b;,0) analytically.
5) Bound D~!(w,b;,0) with segments and triangles d; !(w, b;,6).
6) Multiply N(w,a;,k) by each d; !(w,b;,0).
7) Locate the union of products 7;(w,a;,b;,0,k).

8) Multiply by y(iw) and add z(iw).

The eight steps in the algorithm are explained in detail below. Figures 2-9 illustrate
the steps in the algorithm used to locate the boundary of the set 7(iw) containing

models p(s) given by

1 1 ais+ ag —0s
-+ — e 3
2 + 4s [bgsze‘%‘ +b1s+ b (3)

p(s) =
a; € [1,2], ap € [-2,—1]
by € [V2,2V72], by = —1, by € [-1.5,—-0.5]
ke(1,2], 6 € [0,721], s=1,

evaluated at s = ¢ (frequency w equal to one radian per second). Efficient routines

for performing the required geometrical computations are cited.
2.1. Locate N(w,a;) and D(w,b;)

The first step in the algorithm is to locate convex polygons N(w,a;) and
D(w, b;) that exactly contain numerator and denominator sums in 1. The numer-
ator sum involving uncertain coefficients a; is given in Equation 4. Since the a;
in Equation 4 are bounded real numbers and the n;(iw) are fixed complex num-

bers, each term in the sum represents variation along a segment of a ray extending
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from the origin on the complex plane. The assumption that the real coefficients are
uncorrelated allows each term in the sum to. take on all its values independent of
the other terms. Lemma 1 in Section 3 states that the sum of j nonparallel line
segments is exactly contained by a convex 2j-gon with two sides parrallel to each
line segment — no additional points are contained. Vertices of the polygon N(w,a;)
containing the sum result from adding terms with extreme values of the a;. The
value of the sum varies along sides of N(w,a;) parallel to a line segment, as the

uncertain a; corresponding to that segment varies between its extreme values.

N(w,a;) = ayn;(iw) + ... + ayny (w) + agno(iw) (4)
aj € [ajmin’ a.'imu.:r.]

The convex polygons N(w,a;) and D(w,b;) are efficiently located by using
a factorial method. The numerator and denominator sums are evaluated for all
possible combinations of extreme coefficient values; 27 sums are calculated for the
numerator and 2! sums are calculated for the denominator. Note that this is many
fewer calculations than the number required to approximate the whole function
p(iw) by a factorial method. The computational geometry literature is replete with
algorithms for locating the smallest polygon, or convex hull, about a set of points.
The fastest of these algorithms calculates the convex hull in order n X log(n) time
where n is the number of points in the set [Kurozumi and Davis, 1982], [Preparata
and Hong, 1977]. Such an algorithm is used to find the convex hulls N(w,a;)
and D(w,b;) about the 27 numerator sums and 2! denominator sums, respectively.

Regions N(w,a;) and D(w,b;) are located in Figure 2 for p(iw) in Equation 3.
2.2. Multiply N(w,a;) by k € [kmin,kmaz]

The effect of multiplying a convex region N(w, a;) by an uncertain real gain & is
to stretch it along rays extending from the origin on the complex plane.. This effect

is shown in Figure 3, where N(w,a;) corresponding to Equation 3 is multiplied by
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k € [1,2]. Possible product regions N(w,a;, k) resulting from such a multiplication
are easy to describe. If N(w,a;) contains the origin, the region containing the
product is just k42N (w, a;). If N(w,a;) does not contain the origin, the boundary
containing the product is composed of segments on k;nN(w,a;) closest to the
origin, segments on kN (w,a;) farthest from the origin, and segments on rays
extending from the origin connecting corresponding points on ki, N(w,a;) and
kmazN(w,a;) having minimum and maximum phase. The boundary N(w,a;,k)

containing the product is convex since N(w,a;) is convex.

A convenient way to compute the region N(w,a;,k) containing the product of
N(w,a;) and an uncertain gain k is to multiply vertices of the N(w,a;) by both
kmin and k,, ., and then locate the convex hull about the resulting set of points.
In general, beginning this procedure with a convex 2j-gon N(w,a;) excluding the
origin results in a convex (27 + 2)-gon containing the numerator multiplied by the
uncertain gain. A (25 + 1)-gon or a 2j-gon results when the numerator hull has one

or two sides on rays extending from the origin, respectively.
2.3. Multiply D(w,b;) by €®** with 8 € [6,n:n,Omaz)

Multiplying the ratio N(w,a;)/D(w,b;) in Equation 2 by e~% is clearly equiv-
alent to multiplying D(w, b;) by e%“. In this algorithm, D(w, b;) is multiplied by %
to preserve the convexity of the numerator region N(w, a;, k) — this convexity is ex-
ploited in step 6. The effect of multiplying D(w, b;) by an uncertain e?* is to stretch
it along concentric circles centered at the origin. This effect is shown in Figure 4,
where D(w, b;) corresponding to Equation 3 is multiplied by e®“ with 8 € [0, 7/2).
Possible product regions D(w, by, 8) are easily described. If |0,,42 — Opnin| > 27 /w,
the region D(w,b;,0) will be an annulus or circle centered at the origin, depending
on whether or not the origin is contained in D(w,b;). If |0;paz — Omin| < 27/w,
the product region D(w,b;,6) will be be composed of sections of D(w,b;)efmi»v,

sections of D(w,b;)e?ms=**, and arcs of circles centered at the origin. The arcs of
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circles centered at the origin connect points on D(w, b;)e?™* and D(w, b;)efma=*

at relative minimum and relative maximum distances from the origin as shown in

Figure 4.
2.4. Invert D(w,b;,0) Analytically

At this point the denominator region boundary D(w, b;,8) consists of line seg-
ments and arcs of circles centered at the origin. Line segments and arcs are con-
veniently parameterized in terms of the real number ¢ through the linear fractional

transformation 5 with complex coefficients a, 3, and ~.

at+
Nt + 1 (5)

te [tmin’tma:t]a a— ﬂ’y :)é 0

ft) =

When v = 0 in Equation 5, f(t) is a line segment — otherwise f(t) is an arc of a circle.
Since 1/f(t) is also a linear fractional transformation, the inverses of line segments
and arcs on the complex plane are also line segments and arcs. Specifically, segments
on lines containing the origin and arcs of circles containing the origin (f(t) = 0 for
some t: —oo <t < o0) invert to segments on lines containing the origin. All other
line segments and arcs invert to arcs. Therefore, the inverse of the denominator
region boundary D~ !(w,b;,8) will consist of line segments and arcs. Note that this
means that D~!(w,b;,0) will in general be nonconvex. For example, see Figure
5 showing the inverse of D(w,b;,6) in Figure 4. Since recording of circle centers,
endpoints and orientation of individual arcs and line segments is easily done by
computer, D(w, b;, ) can be inverted analytically. If the origin is outside D(w, b, 6),
the interior of D(w, b;,0) maps to the interior of D~!(w, b;,6). If the origin is inside
D(w,b;,6), the interior of D(w,b;,0) maps to the exterior of D~1(w,b;,8) - this
case, however, has limited application in control-system analysis, since it means

that p(iw) is unbounded at this frequency.
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2.5. Bound D~*(w,b;,0) with Segments and Triangles d*(w, b, 6)

Until now, no approximation has been made to located either N(w,a;,k) or
D~ (w,b,68). The uncertain numerator sum multiplied by the uncertain gain is
exactly bounded by convex N(w,a;,k) (see Lemma 1 in Section 3). The region
containing the inverse of D(w,b;,0) is exactly bounded by line segments and arcs
on D~(w,b;,8). The préblem that remains is to locate the boundary of the product
of N(w,a;, k) multiplied by D~(w,¥;,8). The product region will be contained by
a boundary that results from multiplying points on the two factor-region boundaries
(see Lemma 2 in Section 3). Use of a factorial method based on points to locate the
product boundary — multiplying a large number of points on N(w,a;,k) by a large
number of points on D~1(w,b;,8) — would not guarantee containment of the actual
product region. Bounding D~!(w,b;,8) by a single convex hull and locating the
product boundary by region arithmetic introduce unwanted conservativeness and
fail to locate concave product boundaries where they exist. The region-arithmetic
method will, however, locate a boundary that is guaranteed to contain all possible

products of N(w,a;, k) multiplied by D~!(w, b;,9).

The solution to the problem of locating the product region is to use a combi-
nation of factorial and region-arithmetic methods. Curved boundaries of inverted
denominator region D~!(w,b;,0) are approximated by many convex line segments
and triangles d] l(w,b;,ﬂ). The d:l(w,bl,ﬂ) approximating D~!(w, b;,8) in Figure
5 are shown in Figure 6. Each line segment on D~1(w,¥;,6) is divided into 27+!
smaller line segments, where r is an integer resolution parameter. Arcs of more
than 7 radians are bisected into two smaller arcs. Each arc is then approximated
by 2" equal-sized, smallest triangles containing the arc. One side of each triangle is
inside the arc. The other two sides of each triangle are outside the arc and tangent
to the arc at the two vertices on the arc. Defined in this way, the triangles are the
2" convex polygons of least area containing the arc. As resolution parameter r in-

creases, the approximation of D~!(w, b;,8) becomes less conservative — fewer points
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not in D~ (w,b;,0) are contained. The product of each d; *(w, b;,8) multiplied by
N(w,a;,k) is located by multiplying convex hulls in step 6. The union of these
product regions will contain the product of D~1(w, b;,6) multiplied by N (w, a;, k)

by Lemmas 2 and 3 in Section 3.
2.6. Multiply N(w,a;,k) by Each d;*(w,b;,0)

Every line segment and triangle d; *(w, b, 6) used to approximate DY (w,b,8)
must now be multiplied by N(w,a;, k). A set of product points is generated by mul-
tiplying all vertices of N(w,a;,k) by all vertices or endpoints of one d; *(w, b, 6).
‘The convex hull 7;(w, a;, b, 8, k) about this set of points is then located. The convex
n;(w,a;,b;,0,k) is guaranteed to contain all possible products resulting from mul-
tiplying individual points on the two factor convex hulls (see Lemma 3 in Section
3). It may, however, contain additional points that are not in the actual product
region. This step in the algorithm can therefore introduce conservativeness into
the result by locating a boundary outside w(iw). This conservativeness is related
to the resolution parameter r. As parameter r, increases the size of line segments
and triangles d !(w,b;,8) used to approximate D~!(w,b;,8) decreases. The actual
product region that results by multiplying such a small convex hull by N(w,a;, k)
converges to N(w,a;,k) multiplied by a single complex number — a convex re-
gion. Approximating the products w;(w,a;,b;,0,k) of N(w,a;,k) multiplied by
very small d; !(w, b;,8) by convex hulls introduces relatively little conservativeness.
The product hulls 7;(w,a;,b;,0,k) of N(w,a;,k) in Figure 3 multiplied by each
of the d!(w,b;,8) in Figure 6 are illustrated in Figure 7 for resolution parameter

r=1.
2.7. Locate the Union of Products m;(w,a;,b;,0,k)

Each m;(w,a;,bi,8,k) located in step 6 contains all points that result when a
piece of D~!(w, b;,0) is multiplied by N(w,a;,k). The union of all m;(w,a;,b;,8,k)

will therefore contain (by Lemma 3) all points that result from multiplying the
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whole boundary D~(w,b;,0) by N(w,a;,k). What remains is to locate the outer
boundary of the union of all m;(w,a;,b;,0,k). When D(w,b;,8) does not contain

the origin, this boundary will lie wholely on or outside the region corresponding to

the uncertain part of p(iw) in 1 (by Theorem 1 in Section 3.1). When D(w, ¥, )
does contain the origin, this boundary will lie wholely on or outside the region of
the complex plane not given by the region corresponding to the uncertain part of
the function in 1. Unions of regions m;(w, a;,b;, 8, k) for the example function 3 are
shown in Figure 8 for resolution parameters r equal to 1, 2, and 3. Note in Figure 8

that the algorithm converges on 7 (iw) from the outside in, as parameter r increases.

Efficient algorithms for finding intersections between geometric figures can be
found in the literature (see for example Chin and Wang [1983], Edelsbrunner et al.
[1982], Nievergelt and Preparata [1982], or Sedgewick [1983]). Typically, figures are
decomposed into segments whose intersections are searched. The union of many
overlapping geometric figures can be found as follows: 1) locate an extreme point of
the union (for example the point farthest from the origin); 2) decompose the figures
into vectors employing uniform clockwise or counter-clockwise direction; 3) trace
the outer boundary one vector at a time while searching for intersecting vectors,
and 4) select the correct outer boundary vector based on the vector cross product

when intersections are encountered.
2.8. Multiply by y(iw) and Add z(iw)

The terms y(s) and z(s) in 1 are known exactly, so they are each equal to a
single complex number at frequency s = tw. Multiplication of the uncertainty region
by y(iw) results in a simple polygon similar to the original one but translated and/or
rotated on the complex plane. Addition of z(iw) to the uncertainty region simply
translates it on the complex plane. Therefore, multiplying each boundary point of
the union of n;(w,a;,b;,0,k) by y(iw) and adding z(iw) are sufficient te locate the

final region boundary containing n(iw). Figure 9 shows the final region boundary
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for the example in Equation 3. Note that the new algorithm preserves concave sides

on m(iw).
3. Containment, Convergence and Conservativeness

Proof of important containment and convergence properties of the algorithm
for locating the region boundary containing 7 (iw) is given in this section. Theorem
1 (containment) and Theorem 2 (convergence) are based on the following three
lemmas:

Lemma 1: The sum of n line segments on the complex plane is contained exactly
within the convex hull about the set of 2™ points that result from adding all com-
binations of endpoints of the segments.

Proof: The equation of a line segment on the complex plane can be written as
@i = @i min + (@i maz — @i min) Where 0 < t; < 1 and endpoints a; min and a; jaz
are nearest to and farthest from the origin, respectively. The sum of n such line

segments is therefore

n

n n
S=>"0:=) @G mint+ I ti(0 maz — & min) (6)
=1 i=1 ;

=1

0<t;<1Vi=1,n.

That S is convex will now be proven. Consider arbitrary points @ and R in S:

n n
Q = Zai min + Zt?(ai maz — 45 min)
=1

=1
n n
R= Zai min+2tf(ai maz — @3 min)
i=1 1=1
0<t?<1;0<tf<1vi=1,n

The line segment L connecting @ and R can be parameterized by T as follows:
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LT)=Q+T(R-Q) =) & min+ Z(t? + TR = t2)) (% maz — 8 min)

-1 =1

0<T<1.

Since 0 < (t? +T(tR - t?)) < 1 for all ¢, line segment L(T) is entirely in S. There-
fore, S is convex. In fact, Equation 6 is that of a parallelogram on the complex plane
with at most 2n edges. Two sides on the parallelogram are parallel to each segment
a;. The vertices of S are among the set of points corresponding to values of t; equal

to one or zero. These points result from adding endpoints of the n line segments.

QED.

Lemma 2: The boundary of the product of two regions on the complex plane is
icomposed of products of boundary points on each region.

Proof: (After that of property 4 in Chen [1984]) Define P as the set of all products
of n multiplied by d, where n is a complex number in region N and d is a complex
number in region D. Denote the boundary P by P. Assume that n; xd € P, where
n; is an interior point in N. Then there exists a disk around n; of radius € in N.
But this means that there is a disk of radius |d|e around n; X d in P, so n; x d cannot
be a boundary point of P. The same contradiction is obtained by assuming that
nxd; € P, where d; is an interior point in D. Therefore, the boundary of the product

region results from multiplication between boundary points of the two factor regions.

QED.

Lemma 3: The smallest convex polygon containing the product of two convex re-
gions on the complex plane is the convex hull about all products of vertices of the
two factor regions.

Proof: (After that of Theorem V1.6 in Jordan [1985]) First, it is necessary to prove
that the product of two line segments is contained by the convex hull abeut the four

products of segment endpoints. The convex hull P about four points a;1b;, ab,,
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azb;, and azb, contains all line segments connecting these points by definition of

convexity. Now consider two line segments parameterized as follows:

a=a;+tslaz—a1); 0<5t, <1
b=>b; +1tp(ba—b1); 0<¢t, < 1.

The line segment that results by multiplying a by any point b(¢;) on b is given by:

ab(ty) = a1b(ts) + ta(a2b(ts) — a1b(ts))

0<t,<1.

But a1b(ts) is just a line segment connecting a;b; and a;b, in P, and a2b(ts) is just
a line segment connecting azb; and a2b, in P. The line segment ab(t;) connects two
points in P and is itself contained in P because P is convex. Therefore, the product
of two line segments is contained within the convex hull about the four products of
segment endpoints.

Since boundaries of two factor convex hulls are composed of line segments,
the product of the two convex boundaries is contained within the union of convex
hulls containing all combinations of segment products. The product region of the
two convex hulls is bounded by this union of convex hulls by Lemma 2. Since all
vertices of hulls containing the segment products are themselves products of vertices
of the two factor hulls, the convex hull about all products of vertices of the two

convex factor regions is the smallest convex polygon containing the product region.

QED.

3.1. Theorem 1 — The Algorithm Boundary Contains 7 (iw)

Now Lemmas 1-3 can be applied to prove that the boundary resulting from

the algorithm contains 7 (iw).
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Theorem 1: All points on the boundary located by the algorithm lie on or outside

the actual set 7 (iw) in 1.

Proof:

a)

b)

c)

d)

The exact boundary N(w,a;) of the uncertain numerator sum in 1 is found -
in step 1 by Lemma 1. .

The exact boundary D(w,b;) of the uncertain denominator sum in 1 is found
— in step 1 by Lemma 1.

The exact boundary N(w,a;,k) of N(w,a;) multiplied by the uncertain gain
k is found - in step 2.

The exact boundary D(w, b;,6) containing D(w, b;) multiplied by the uncertain
e%“ is found — in step 3.

The region D(w, b;,0) is inverted analytically - in step 4.

One line segment or triangle d; !(w, b;, ) contains one portion of D~!(w, b, 6).
The union of the d!(w, b;,8) contains the entire boundary D~ Y(w,b;,0) - by
definition in step 5.

The convex hull m;(w,a;,b;,0,k) about the product of vertices of one
d; ' (w,b;,8), multiplied by the vertices of N (w,a;,k), contains all products
of the enclosed portion of D~!(w,b;,0) multiplied by N(w,a;, k) — by f) and
Lemma 3.

The union of convex hulls 7;(w,a;,b,8, k) contains the entire product region

of N(w,ay,k) multiplied by D~!(w, b;,6) - by f), g), and Lemma 2.

Since multiplication of the union containing N(w, a;, k) multiplied by D~*(w, b;,6)

by y(iw) and addition with z(iw) simply translates and rotates it on the complex

plane, the entire set m(iw) in 1 is contained within the boundary located by the

algorithm.

QED.
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3.2. Theorem 2 — The Algorithm Boundary Converges to 7 (iw)

It is important to establish that the algorithm converges to the actual set 7(iw)
in 1 as the resolution parameter r increases to enable nonconservative application
of the SISO robust-performance test. Theorem 2 and Lemma 2 establish that this

is true.

Theorem 2: All points on the boundary located by the algorithm with r; lie on or

outside the boundary located with r; if r; < rs.

Proof: Consider one line segment or triangle d Yw,b;,0,71) containing a portion
of D™1(w,b;,0) for an arbitrary r;. The product of d;!(w,b;,0,r;) multiplied by
N(w,a;,k) is guaranteed to be contained in a convex polygon m4(w,a;,b;,0,k,r;)
by Lemma 3. Now consider a resolution parameter r = r; + 1. Following step
5 of the algorithm leads to two smaller line segments or triangles d; (w,b;,0,r2)
and d; ' (w, by, 8, r3) in dq_l(w, bi,0,71), containing the same portion of D~1(w, b, 6).
Multiplication of the two smaller line segments or triangles by N(w,a;, k) results
in products w,(w,a;,b;,0,k,r2) and m¢(w,a;,b1,0,k,r2) in mg(w,a;,b;,0,k,71) by
Lemma 3. Therefore, the union of all such products with r5 = r; + 1 will be
contained by the union of all such products with r;. The same result holds for

arbitrary ro > r; by induction.
QED.

In the limit of r; = oo, the d l(w,a,-,b;,(),k) defined in step 5 of the algo-
rithm are points along the boundary D~!(w,b;,0). If each point on D~1(w,b;,6)
could be multiplied by N(w,a,, k) and the union of infinitely many product points
located, Lemma 2 assures us that the boundary of this union would exactly contain
the product region. In practice, the algorithm is executed for a few values of the
resolution parameter r and the resulting region boundaries are compared. Experi-
ence has indicated that boundaries resulting from small values of r (e.g., 3 and 4)
are practically indistinguishable from one another and closely approximate curved

boundaries on 7 (iw).
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Conservativeness introduced by the algorithm can be attributed to two fac-
tors: 1) additional points included in the products =;(w, a;, b;, 8, k), when large line
segments or triangles d 1(w, b;,0) are multiplied by N(w,a;,k), and 2) additional
points included in triangles d !(w, b1, 8) containing portions of arcs on D~ (w, bi,8).
Specifying a larger resolution parameter r decreases the conservativeness introduced

by both of these factors at the expense of additional computation.

4. Discussion and Conclusions

It has been demonstrated that the proposed algorithm locates region bound-
aries containing the set m(iw) in 1. The set of models in 1, though quite general,
does not encompass all frequency response models useful for describing physical
processes. For example, the second-order system given by Equation 7 does not fit

the form of 1, if uncorrelated variations of parameters # and ~ are allowed.

s+ a —0e
g(s)=k[(s+ﬂ)(s+7)]e ? (7)

ac [amin, ama:c], B e [ﬂmina .Bmaa:]a € [’Ymina 'Ymaz]

ke [kminakmaaz]a 0 e [0min10maa:]

Multiplying the denominator terms in Equation 6 results in s? + (8 + 4)s + 8.
Interpreted in the form of 1, coefficients bg = #+ and b; = 8+~ would be correlated.

The proposed algorithm can be extended, at the expense of additional com-
putation, to locate region boundaries containing functions of the form given in
Equation 7. If Equation 7 is considered to be the product of two functions of the
form given in 1, the product region boundary can be located as follows: 1) Locate
each factor region boundary using the proposed algorithm; 2) locate convex hulls
containing products of all combinations of line segments on the two factor-region

boundaries, and 3) locate the boundary of the union of the resulting array of convex
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hulls. Since all segments of the factor boundaries are on or outside the >actual re-
gion containing factor functions, the product boundary located in this way is on or
outside the actual region containing the product. Clearly, the number of required
computations becomes large as the number of segments on each factor boundary
increases. It is worth mentioning, however, that the computational effort required

is no greater than that required by the factorial methods discussed above.

Robust stability of discrete systems can also be evaluated through application
of the proposed algorithm. For discrete systems, a set of pulse-transfer function
models h(z) would replace the set of Laplace transfer-functions p(s) in 1; exact
functions z(2), y(z), n;(2), and d;(z) would appear in 1. In the discrete version of
the the Nyquist Stability Test, encirclements of (—1,0) by ;c(z)c(z), as z encircles the
discrete Nyquist contour (the unit disk excluding positive real axis and singularities
on the unit circle), are determined. The nominal closed-loop system is stable if
and only if the number of encirclements is equal to the negative of the number of
open-loop unstable poles. Since functions z(z), y(z), n;(2), and d;(2) evaluated
at z = €' are complex numbers, the proposed algorithm can be applied to locate
region boundaries for the sets h(z)c(z) at points z on the discrete Nyquist contour.
If these regions exclude (—1,0) and the system is nominally stable, then the system

is robustly stable despite parameter uncertainties in h(z).

The proposed algorithm enables calculation of boundaries that are guaranteed
to enclose the set m(iw) in 1. The algorithm boundaries converge on the actual
sets 7(iw) from the outside in, as additional computational effort is expended.
The boundaries resulting from the algorithm preserve concave sides of the actual
set, thereby minimizing the enclosed area. These properties make the algorithm a
valuable tool for meeting sufficient conditions of the SISO control-system robust-

performance test without introducing excessive conservativeness.



48

5. Appendix - Implementation of Algorithm in Program REGIONS

The new algorithm for bounding sets 7 of models from uncertain model pa-
rameters has been incorporated into program REGIONS, a computer graphics tool
for control-system design. Versions of program REGIONS have been written for
both VAX and IBM-PC. The particular implementation of the algorithm in RE-
GIONS is explained in this appendix when not fully described above. Methods from
computational geometry used to solve graphical problems are cited. Implemented
in program REGIONS, the algorithm is a useful tool for control-system-robustness

analysis.

Step 1
The method of Kurozumi and Davis [1982] is used in program REGIONS to

locate convex hulls N(w,a;) and D(w,b;).

Step 3
In program REGIONS, the points on D(w,b;) at relative minimum and maxi-

mum distances from the origin are identified. The two convex hulls D(w, b;, 8,,02) =
D(w, b;)ebme=** and D(w, b;,0,min) = D(w, b;)e®min* are located. Arcs of circles cen-
tered at (0,0) connecting counter-clockwise, from relative extrema on D(w, b;, 0,naz)
to the corresponding extrema on D(w,b;,0,,:,), are located. The boundary of
this set of structures is D(w,b;,8). The arc connecting the global minimum on
D(w,b;,0maz) and D(w, b, 0min) is always part of the boundary D(w,b;,6). Por-
tions of the arcs and hulls interior to the denominator boundary can be discarded by
starting at the global minimum of D(w,b;,0,,) and searching the outer boundary
counter-clockwise for intersection points. At each intersection point a decision is
made to follow the outer boundary based on the cross product of alternative routes

until the starting point is reached.
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Let p equal the total phase uncertainty of D(w,b;). If [0maz — Omin| > (27 /w) —
p, the region D(w,b;,8) can overlap itself around the origin. Whether or not this
is the case can be determined by searching the boundary D(w,b;,8) for intersec-
tions with itself. Program REGIONS does not concern itself with such overlap in
D(w,b;,0) because step 7 eliminates overlap when the union of n;(w,a;,b;,08,k) is

found.

Step 7
In program REGIONS, the method used to locate the union of 7;(w, a;, b, 0, k)

product convex hulls involves the “plane-sweep” line intersection routine presented
by Sedgwick [1983]. In REGIONS, a routine locates the simple polygon that con-
tains the union of a simple polygon and an intersecting convex polygon. The routine

is called repeatedly until the union of all convex ;(w,a;, b, 0, k) is found.

Robustness Analysis

In practice, it is necessary to plot out enough of the boundaries for 7 (iw)c(iw)
over a relevant frequency range to allow determination of the envelope, or Nyquist
band, of the uncertain loop-transfer function on the complex plane. In REGIONS,
visual inspection of the n(iw)c(iw) plot is utilized for stability determination. The
minimum distance between the critical point (—1,0) and the region boundary, re-
lated to control-system performance, is determined by selecting the smallest dis-
tance between each boundary segment and (—1,0). Efficient algorithms can be
found in the literature for this search when boundaries have special characteristics
(e.g., Chin and Wang [1983], and Schwartz [1981]). An alternative (and conserva-
tive) analysis method utilizes disk-shaped approximations to regions m(iw). The
determination of containment of the critical point and distance from the critical
point is simplified when 7(iw) is a disk. In REGIONS, this option is offered through
an algorithm for fitting disks around simple polygons based on Bass and Schubert

[1967] and Graham and Yao [1983].
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Figure 1: Standard feedback control structure with

process p(s), controller ¢(s), set-point r(s), disturbances )

d(s) and output y(s).
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CONVEX HULLS N(m,lj) AND D(w, b;)
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Figure 2: Convex hulls N(w,a;) containing the
uncertain numerator sum and D(w,b;) containing the
uncertain denominator sum in Equation 3 are located )

here following step 1 of the algorithm.
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N(m,aj) MULTIPLIED BY UNCERTAIN GAIN
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Figure 3: Multiplication of N(w,a;) in Figure 2
by an uncertain gain (1 < k < 2) stretches the region
along rays extending from the origin. Note that the

region containing the product is still convex.
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2
1 —
4
4
4
0
-1 —
4
-2 -
-3 —
4 .
-‘ R Ty T ' L) T T L] ‘ L} LA 3 L) l 7 L L l L I ] L} I LA | ¥ LJ L) L} ¥ Ll h L] T ’j
-6 -5 -4 -3 -2 -1 0 1 2
REAL

Figure 4: Multiplication of D(w,b;) in Figure 2
by €' with 0 < 8 < 7/2 rotates it about the origin.
Points on D(w,b;)e’“’™" and D(w,b;)e“?™3= at rela-

tive minimum and maximum distances from the origin

are connected by arcs of circles centered at the origin.
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ANALYTICAL INVERSE OF D(w,b;, 0)
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Figure 5: The inverse of the denominator region
D(w, b;,0) in Figure 4 can be located analytically, since
circles centered at the origin invert to circles centered at

the origin and line segments invert to arcs or segments.
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Figure 6: The entire boundary of D~1(w,b;,6) in
Figure 5 is contained within the union of line segments
and triangles d} 1(w, b;,6). Here the number of trian-
gles and segments used to approximate the boundary

corresponds to a resolution parameter r = 1.
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numerator hull N(w,a,,k) in Figure 3. The resolution

each of the d;
parameter here is r = 1.
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UNION OF PRODUCT HULLS ni(m,aj,bl,e,k)
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Figure 8: The outer edge of the convex hulls
7i(w,a;,b,0,k) in Figure 7 (r = 1) illustrated by long
dashes contains the boundary of the product of
N(w,aj,k) and D~*(w,b;,8). Convergence of the al-
gorithm can be seen here with intermediate (r = 2)
and least conservative boundary (r = 3) illustrated with

short dashes and solid lines, respectively.
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UNCERTAINTY REGION =« (imw)
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Figure 9: The region boundary with resolution
r = 3 in Figure 8 has been multiplied by 1/41 and added
to 1/2. The uncertain function of w in Equation 3 is
contained within the boundary shown here at w = 1.0 )

rad/sec.
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CHAPTER III: INTERNAL MODEL CONTROL AND PROCESS
UNCERTAINTY: MAPPING UNCERTAINTY
REGIONS FOR SISO CONTROLLER
DESIGN
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INT. J. CONTROL, 1986, voL. 44, No. 6, 1675-1698

Internal model control and process uncertainty: mapping uncertainty
regions for SISO controller design

DANIEL L. LAUGHLINt, KENNETH G. JORDANt and MANFRED
MORARIY

A complete SISO controller design technique is presented that allows robust
controller design in the face of process uncertainty. Process-uncertainty descriptions
with meaningful physical interpretations are compatible with the technique. A test
for robust performance can be applied when the process is described by a transfer
function with real parameter variations. First a method is presented for lccating all
possible complex variations of a transfer function resulting from real parameter
uncertainties. The possible variations are pictured as model uncertainty regions on
the complex plane. Next a controller design technique based on the internal model
control structure is outlined. The controller is used to map the process uncertainty
regions to the Nyquist plane for stability and performance analysis. The region-
mapping technique offers a unique opportunity to compare robust performance of
PID and Smith Predictor controllers. Finally, applications of the proposed tech-
nique to structured singular-value analysis are discussed.

1. Introduction
1.1. The robust control problem

The challenge for the control engineer is to design a robust controller for a process
that cannot be modelled exactly. It is not enough to design a controller that provides
stability and adequate performance for a nominal model. A robust controller
guarantees stability and adequate performance for a whole family of linear models
used to represent the actual process. The SISO robust control problem formulated here
involves three steps: (i) representing the diversity of plants to be controlled by a
mathematical uncertainty description; (ii) translating desired response characteristics
into mathematical performance requirements; and (iii) designing a controller and
testing to ensure that all performance requirements can be met by all plants within the
uncertainty description. A valuable robust performancs guarantee is obtained by
following the recommended procedure for each step.

1.1.1. Selecting the process uncertainty description

A set of linear models must be selected to represent the actual process. This set of
models is best selected after considering the origins of process uncertainty. One source
of process uncertainty is variation of real parameters affecting plant operation. For
example, ambient temperature and pressure can stray from nominal conditions. A
second source of process uncertainty is the inherent non-linearity of most processes.
Linearizing the process model around different steady states results in different

Received 17 February 1986.
t+ Chemical Engineering, 20641, California Institute of Technology, Pasadena, California

91125, US.A.
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transfer-function descriptions. A third source of uncertainty is experimental identifi-
cation of the process. A ‘fuzzy’ plant description on the complex plane results when
input/output data is Fourier-transformed to extract a frequency-domain model.
Uncertainty originating from all three sources can be considered by defining model
uncertainty regions on the complex plane. Let n(w) be a simply or multiply connected
domain on the complex plane at each frequency w. The set IT of all possible process
models is defined as follows:

' = {p(s)| p(iw) € n(w), Yo} (1)

Note that in general the set IT is infinite, since a never-ending variety of transfer
functions p(s) can lie inside the regions n(w) when evaluated at frequency w. The set Il
is meaningful in the context of the robust control problem when the boundaries of
each n(w) reflect uncertainties identified above. A method for locating these region
boundaries will be presented.

1.1.2. Establishing performance requirements

The control structure in Fig. 1 must be closed-loop-stable for all plants in the set
I1. Additional SISO performance objectives are typically ‘good’ command-following
and disturbance-rejection. These performance objectives are achieved if the error
signal e(s) = r(s) — ¥(s) is kept ‘small’. Exactly what is meant by ‘good’ and ‘small’ is
established by considering the nature of inputs to the control system. The inputs
Ht) — d(t) are assumed to belong to a set of norm-bounded functions such that

M) —d? _ 1 [+ |rio) - dio)
2—27[ -~ o

wy(t) wy(iw)
r +’T rL-c_|-| = P —> Y

Figure 1. Standard feedback structure with commands r{s), disturbances d(s) and outputs y(s).

2
do <1 )

The class of permissible inputs is determined by the choice of w,(iw). The magnitude of
a typical input weight w,(iw) is shown in Fig. 2 (a). When such a weight is selected,
high-frequency inputs are expected to have small amplitudes. If the disturbance
spectrum is a narrow band concentrated near o (i.e. the disturbance looks almost like
sin wt) the disturbance power (amplitude) is limited to |w,(iw)|. For all inputs
described by (2) the error e{s) is required to belong to a similar set of norm-bounded
functions:

1 [+
lew 3= ZJ'_ le(iw)w,(iw)|? do < 1 3)

Error weight w(iw) can be interpreted as follows: if the spectrum of e(iw) is
concentrated near w (i.e. the error looks almost like sin wt) then the error power is
limited to |1/w_(iw)|. Usually |w(iw)| resembles the curve in Fig. 2 (b), indicating that
only small small low-frequency errors will be tolerated.
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Figure 2. (a) qught Wy(s) = (s + 0-1)/2:5(s + 0-02). (b) Weight ws) = (s + 002)/s. (c) Per or-
mance weight w,(s) = (s + 0-1)/2-5s. (d). The magnitude of the sensitivity function must
be less than |w,(iw)| for all frequencies in order to achieve robust performance.
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1.1.3. Testing for robustness

Robust stability and robust performance must be guaranteed for all plants in IT.
Robust stability is evaluated by applying the Nyquist stability criterion to regions
n(w)c(iw). The system is closed-loop-stable if the net number of counterclockwise
encirclements of (—1, 0) by pc(s) as s traverses the Nyquist contour is equal to the
number of unstable open-loop poles. When pc(s) is represented by regions n(w)c(iw) at
each frequency s =iw» the additional constraint that no region n(w)c(iw) contain
(—1, 0) must be met to ensure stability. If any region m{w)c(iw) contains (— 1, 0) the
number of encirclements is indeterminate and closed-loop stability cannot be
guaranteed.

Robust performance is evaluated by examining the magnitude of the sensitivity
function s(iw). Equation (3) is satisfied for all inputs described by (2) for all plants in IT
if and only if s(iw) satisfies

Vo, Vp(s) e TT (@)

1
w,(iw)

. 1
|s(iow)| = \ 1 + pliw)c(iw) ‘ <

The weight w,(iw) in (4) is related to the weights w,(iw) and w,(iw) by
W) = wlie)wg(io) ()

The weight w,(iw) corresponding to previously selected w,(iw) and w,(iw) is illustrated
in Fig. 2 (¢). For convenience, (4) can be written as

11+ plio)dio)| 2 |wy(iw)| Yo, Vpis)eIl (6)

Since all plants p(s) € Il are restricted to lie within region n(w) at frequency w, the
requirement (6) can be met by ensuring that the distance of regions m(w)c(iw) from
(=1, 0) is greater than |w,(iw)|.

1.2. The issue of conservativeness

Unless a robust controller can be synthesized directly from the uncertainty
description and performance requirements an iterative design procedure must be
used: (i) describe process uncertainty and specify performance requirements; (ii)
perform analysis tests to determine whether or not robust stability and performance
have been achieved; and (iii) if the stability and performance requirements are not met
then select another controller and repeat the analysis tests. Conservativeness enters
the design procedure if the tests cannot be applied to exactly the same set of plants
used to describe the process uncertainty. A useful solution to the robust control
problem has eluded researchers because of the incompatibility of uncertainty
descriptions that accurately represent process behaviour with convenient tests for
robust performance.

The proposed solution to the robust control problem eliminates the incompati-
bility of meaningful uncertainty descriptions with convenient analysis tests. Controller
design can begin with the uncertainty description given by

as"+a, "'+ ... +a;s+a,
= = _ - 7
n {p(s)lp(s) [b,,,s"'+b,,,_1s"'"+ .. +bys+ b, exp (= 6s) ™

a; € [aimim aimax]’ bi € [bimim bimax]v 0 € [Gmim Gmax]
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The set IT can accurately represent physical parameter variations in the process or
linearization of the process about different steady states. This uncertainty description
also enables controller design to begin where many experimental identification
methods end—with transfer-function coefficients described by a standard deviation
about their mean. When the proposed design method is employed, uncertainty regions
n(w) corresponding to IT will be found. Initially a nominal model with all parameters
at their mean values will be used to design a controller ¢(s). Regions n(w)c(iw) will be
located on the Nyquist plane to evaluate robust stability and performance. The
controller ¢(s) will be adjusted until robust stability and performance can be
guaranteed for all models in T1. Advantages of the design procedure proposed in this
paper are best appreciated after examining some currently available design
techniques.

1.2.1. Other region-mapping methods

Several researchers have offered controller-design techniques using arbitrarily
shaped regions n(iw) to represent process uncertainty (East 1982, Chen 1984, Horowitz
1982). In particular, Chen outlines a region-arithmetic-based design technique where
process uncertainty regions are mapped to regions that describe the closed-loop transfer
function. He offers an algorithm for locating the boundary of each new region.
Unfortunately, his algorithm does not guarantee that all possible closed-loop transfer
functions are contained within the region boundary. An unstable system might be
considered to be stable if Chen'’s algorithm is used. Perhaps the best aspect of Chen’s work
is that he uses the internal model control (IMC) design procedure to determine the
controller after selecting a nominal plant. Advantages associated with the IMC design
procedure have been noted by several authors (Garcia and Morarn 1982; Holt and Morari
1985 a, b; Rivera et al. 1986; Morari and Skogestad 1985). Chen and the others are not the
first to have considered use of a region arithmetic to find bounds on closed-loop transfer-
function elements. Bolton (1981) employed a circular region arithmetic in a procedure he
called ‘inverse Nyquist design’. Bolton’s arithmetic was similar to that defined by Henrici
(1974) to locate regions containing polynomial zeros. Horowitz (1982) described a
‘quantitative feedback theory’ where plant uncertainties are described as arbitrarily
shaped regions on the complex plane at each frequency. Horowitz applied a controller
to these regions and mapped them to a Nichols chart. From this mapping Horowitz
was able to adjust controller parameters that lead to robust stability and performance.
The parameter adjustments were based largely on experience. A SISO example using
Horowitz’s design method was given by Krishnan and Cruickshanks (1977).

1.2.2. Loop-shaping

Multiplicative perturbations on a nominal plant can be accounted for in the
control system design process through loop-shaping (Doyle and Stein 1981). Consider
a set of plants p(iw) represented by

p(s) = K1 +1a(9)], (i) <|wy(iw) ®)

Using the norm-bounded multiplicative error [ (s) is equivalent to representing
process uncertainty by a disc-shaped uncertainty region n(w) with radius | piayw, (iw)|
on the complex plane. A feedback system with controller c(iw) is stable for all I (‘w)
such that |l (iw)| < |w,(iw)| if and only if
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Pliw)c(iow) 1 ]
1 + Kiw)c(iw) | |w,(iw)| ve ?

When piw)c(iw) < 1 at high frequencies, (9) is approximated by

| Bliw)c(ivw)| (10)

< —

[wy(iw)|
The sensitivity function s(iw) = (1 + p(iw)c(iw)) ~! is required to be small to yield good
performance:

1

1+ pliw)c(io) vo (n

1 1
- ‘ L+ (1 + In(@)pio)dio) | [w(iw)]

In (11) w,(iw) is selected as a performance criterion. The restriction that (11) places on
Pliw)c(iw) is expressed clearly by

11+ (1 + (iw)Niw)div)] 2 |wiv)]
= —1+{(1 + [ (iw)Hiw)civ)] = |w,(iv)

] Hio)div) > 2N+ L (12
1 — |w,(iw)]

The transfer function Kiw)c(iw) is shaped to satisfy the performance specification (12)
at low frequencies and the stability requirement (10), which usually limits performance
at high frequencies. The loop-shaping method causes conservativeness to enter the
design procedure when actual process uncertainty cannot be represented by discs on
the complex plane. Additionally, loop-shaping cannot guarantee that the closed-loop
system will be stable. Perhaps the greatest weakness of loop-shaping is that it gives the
controller designer no information about the crossover region—only low- and high-
frequency ranges are considered.

1.2.3. Structured singular-value analysis

The most promising new developments in robust controller design are based on
structured singular-value analysis. Doyle (1982) has developed a single necessary and
sufficient test for robust stability and performance when norm-bounded perturbations
A(s) can be used to describe process uncertainty. Doyle constructs the SISO robust
control problem as shown in Fig. 3. Both A, and A, are bounded such that
|Afiw)] < 1. Blocks w, and A, represent the same multiplicative error [, (s) as in (8).
Blocks w,;, w, and A, combine into the same performance requirement expressed
through (2)5). Figure 3 is equivalent to the simple two-block structure shown in

Figure 3. A SISO robust control problem is written in terms of this block structure for
structured singular-value analysis. The actual input d’ and error e are modified by
weights w, and w, so signals d” and ¢’ are 2-norm-bounded by 1.
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A k
M

Figure 4. Structured singular-value analysis requires reconstruction of the control problem in
terms of a two-block structure. Matrix M contains information about the nominal
model, the controller, the uncertainty weights and the performance specifications.
Elements in the matrix A are norm-bounded uncertainties.

Fig. 4. Matrices M and A are given by

AA‘O 13
—OAZ (13)

—w,(iw)cio)Hiw) — w,(iw)c(iw)iow)w,(iw)
M= 1 + c(iw)pliw) 1 + c(iw)Kiw) 14)
w,(iw) w(iw)w,liw)
1 + c(iw)p(icw) 1 + cliw)piw)

Both robust stability and robust performance of the control system are guaranteed if
and only if the structure singular value u(M) is less than unity:

HM) =|(1 - S(iw)w,(iw)] + |Siw)w,(iv)| <1 (15)

Here $(iw) = (1 + c(iw)p(iw)) ! is the nominal sensitivity function. The weight w,(iw) in
(15) is given by (5). The ability to guarantee robust stability and robust performance if
and only if u(M) < 1,V w, establishes the strength of structured singular-value analysis.

Unfortunately, structured singular-value analysis cannot be applied unless the
process uncertainty is represented by a disc-shaped region on the complex plane at
each frequency. The proposed design method begins with uncertainty descriptions like
that given in (7) that do not appear as disc-shaped regions. A design method based on
the uncertainty description (7) will be a powerful tool for the control-system designer.

2. SISO robust controller design procedure
2.1. Translating parameter variations into uncertainty regions

When a transfer function with coefficients restricted to intervals on the real axis
describes the process, it is necessary to locate the corresponding uncertainty regions
n(w) for robustness analysis. Translating coefficient uncertainties into uncertainty
regions always introduces conservativeness. Conservativeness enters because regions
n(w) represent a structure-free process description; that is, a specific transfer function
form is not selected.

A method has been developed for locating the regions m(w) corresponding to the
transfer function in (7) with any required degree of accuracy. The essential require-
ment throughout development of the method was that the regions located be
guaranteed to contain all plants represented by (7). First the control engineer must
specify a frequency range of interest. Enough regions n(w) must be located to allow
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construction of the envelope around all uncertainty regions within this frequency
range. At a given frequency the region n(w) can be located by performing steps given
in § 2.1.1-2.1.4.

2.1.1. Locating polynomial rectangles

All coefficients a;, b; and 6 in (7) are assumed to be uncorrelated. When upper and
lower bounds are given for the parameters a; a hyper-rectangle in a; parameter space is
defined. This hyper-rectangle representing possible values for the ag; is mapped into a
rectangle on the complex plane by the numerator polynomial. The denominator
polynomial maps a hyper-rectangle in b; parameter space to another rectangle on the
complex plane. This fact is easily established by considering the numerator poly-
nomial N(s, a)):

N(s,a)=a,s"+a,_s" '+ ... +a;s+a, (16)
When the polynomial is evaluated at s = iw, the following equation is obtained:
N(iw, a) = (ap — a,0* + a,0* — ...) + i(a,0 — a;0* + as0° — ...) 17
The real and imaginary parts of N(iw) are given by
Re [N(iw, a)] = ap — a,w? + a,0* — ... (18)
Im [N(iw, a)] = a,0 — a;0> + asw® — ... (19)

The sides of the rectangle are parallel to the real and imaginary axes. Real and
imaginary coordinates of points inside the rectangle are bounded by the following
values:

max [Re (N)] = Ggmar — 32 min®@> + G4 max®@* — ... (20)
min [Re (N)] = Gg min — 32 max®’ + Qg min®@* — ... (21
max [Im (N)] = G 5ax® — @3 min®@> + G5 max®> — ... (22)
min [Im (N)] = @y 1in® — 03 max®@> + s min®° — - (23)

Knowledge of the upper and lower bounds for each coefficient a; and b; is sufficient to
map the numerator and denominator polynomials to rectangles on the complex
plane. Numerator and denominator rectangles for the set of linear models described
by (24) are located in Fig. S for frequency w = 1-0 rad/s.

2.1.2. Inverting the denominator rectangle

Once the numerator and denominator rectangles N(iw, a;) and D(iw, b;) have been
located, the denominator rectangle must be inverted. This operation is restricted to
denominator rectangles that do not contain the origin. If D(iw, b;) contains the origin
then the inverse region will extend to infinity on the complex plane. Such a
denominator rectangle indicates the possibility of a process pole on the imaginary
axis. Since the mapping f(z) = 1/z is a special case of a linear fractional transformation,
it maps line segments either to circular arcs or to line segments. Inverting the
boundary of the rectangle D(iw, b;) results in a closed curve of connected line segments
and circular arcs (see Fig. 5). If D(iw, b;) does not contain the origin then the interior of
D(iw, b;) maps to the interior of this closed curve.
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] NCw,ai) DCuw,bi)

®

1 D (wbi)

N

Figure 5. Rectangles representing uncertainty in the numerator and denominator poly-
nomials N(w, a;) and D(w, b,). The inverse of the denominator rectangle D ™ (w, b;) is
also shown.

2.1.3. Locating the rational uncertainty region

Once the denominator inverse region D~ !(iw, b;) has been located, it must be
multiplied by the numerator rectangle N(iw, a;). The product of this multiplication will
be the uncertainty region corresponding to the rational part of the transfer function. A
method utilizing multiplication of convex hulls has been developed for locating the
rational uncertainty region.

(i) Each circular arc on the boundary of D~ !(iw, b;) is covered by 2" triangles as
shown in Fig. 6 for n=1. The line containing collinear sides of adjacent
triangles is tangent to the arc.

(i) Each line segment on the boundary of D~ !(iw, b;) is divided into 2" smaller line

segments. Denote the triangles and line segments by d; !. The d; ! number
2(n+2).

(iii) Multiplication operations are carried out between the numerator rectangle
and each d; !. The product region in each operation is defined as the convex
hull about the set of points formed by multiplying each vertex on a d; ! by all
four vertices of the numerator rectangle. An algorithm for locating the convex
hull about a set of points was given by Kurozumi and Davis (1982).

(iv) The final rational uncertainty region is the union of 2®"*! convex hulls
resulting from multiplications between N(iw, a;) and the d;”'. This region is
guaranteed to contain all points that can result from multiplication of an
arbitrary point on N(iw, a;) by an arbitrary point on D~ (iw, b;).

Defining the product of each d;”! times N(iw, a;) as a convex hull introduces sc me
conservativeness; that is, the convex hull contains extra points that do not result from
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Figure 6. The boundary of the inverted denominator rectangle is covered by line segments and
triangles d;!.

the multiplication. The conservativeness is reduced as the parameter n is increased.
Naturally, computational effort increases as n increases. Experience indicates that
n=3 or 4 strikes an acceptable balance between computational intensity and
accuracy in locating uncertainty regions.

2.1.4. Multiplying by the time-delay uncertainty

The final step in locating the region n(w) corresponding to (7) is multiplication of
the rational uncertainty region by the time-delay uncertainty. First the boundary of
the rational uncertainty region is multiplied by exp (—if,,;,w). Next the boundary
of the rational uncertainty region is multiplied by exp (— i8,,,). New regions result-
ing from these two multiplications are located on the complex plane. Correspond-
ing points on the regions located at relative minimum and maximum distances from
the origin are connected by circular arcs as shown in Fig. 7. The interior of this
construction is the final uncertainty region guaranteed to contain all plants described
by (7) at frequency w.

2.1.5. Example

This example will illustrate the procedure used to locate regions n(iw) correspond-
ing to transfer functions with uncertain coefficients; a region corresponding to the
model in (24) will be located at w = 1-0 rad/s:

a,s + a,
S = —
Ps) b,s*> + bys+ b,

ape[—15, —0-5], a, €[0S, 10], 6e[0,2:0]
bo € [08, 12], b, €[0:5,10], b, e [07, 0-8]

exp (—0s) (24)
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Figure 7. Convex hulls representing the product of each d;” ! times N(w, ;) are illustrated with
dashed lines. The union of these convex hulls is the uncertainty regions corresponding
to the rational part of the transfer function. Time-delay uncertainty sweeps the
uncertainty region about the origin.

Numerator and denominator polynomials in (24) map to the rectangles N(iw, a;)
and D(iw, b;) in Fig. 5 at w = 1-0 rad/s. The inverse of the denominator rectangle
D~ Y(iw, b;) is shown in Fig. 5 as well. Line segments and triangles d; ! used to cover
the boundary of D ~(iw, b;) are shown in Fig. 6. Parameter n is equal to 1 in Fig. 6—
note that there are a total of 2"*? = 8 triangles and line segments. When each of the
d; ! is multiplied by N(iw, a;) the convex hulls indicated by dashed lines in Fig. 7 are
formed. Parameter n is equal to 2 in Fig. 7, so there are a total of 2"*% = 16 convex
hulls. The union of these convex hulls is the uncertainty region corresponding to the
rational part of the transfer function. Rational uncertainty regions multiplied by
low- and high-time-delay terms are located in Fig. 7. (Since 6,,;, = 0 in (24) the union
of convex hulls is one of these regions.) The final uncertainty region n(iw) is enclosed
when the two regions are connected by circular arcs as shown.

2.2. Using the internal model control design procedure

Once the process uncertainty regions m(w) have been located following the
procedure outlined above, controller design can begin. A robust controller design
procedure for open-loop stable systems based on Internal Model Control (IMC) has
been developed. The IMC structure is illustrated in Fig. 8. The IMC design procedure
is used because it requires an engineer to vary only a small number of filter parameters
when tuning the controller for robustness. First a controller §(s) is designed to yield
H, optimal performance for the nominal plant (model). Then a filter is employed to
‘detune’ the controller (g(s) = §(s)f(s)) and achieve robustness. In many instances (see
the example) only a single filter parameter need be adjusted. The IMC structure
guarantees stability of the nominal closed-loop system for any stable filter. This and
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Figure 8. The internal model control structure with plant p and controller q.

the transparent relationship between filter parameters and control system perfor-
mance is largely responsible for the effectiveness of IMC as a design tool.

IMC is used for controller synthesis in the example. However, region mapping
techniques presented here can be used for control system analysis in conjunction with
any controller design method. The procedure involves the steps in §§ 2.2.1-2.2.7.

2.2.1. Specifying performance criteria

The maximum magnitude of the sensitivity function for all plants within the
uncertainty description is specified as a function of frequency according to (4).

2.2.2. Designing a controller for the nominal plant

The nominal model j(s) is chosen as that given by (7) with all parameters a;, b, and
0 at their mean values. An H, optimal controller §(s) is designed for this nominal
model. The optimal §(s) depends on the type of inputs expected. For step inputs the
optimal §(s) can be designed as follows: (i) factor the nominal plant into p(s) =
p+(s)p_(s), where p~!(s) is stable and causal and | p.(s)| = 1; and (ii) set the controller
q(s) equal to p'(s). Methods for performing this factorization and designing the H,
optimal controller can be found in Holt and Morari (1985 a, b).

2.2.3. Selecting the IMC filter

The IMC contro'ler g(s) given by (25) below is equal to the H, optimal controller
multiplied by a filter f(s); a convenient form for the filter is f{s) = (es + 1) ", where the
power n is selected large enough for g to be proper or to have a zero-pole excess of one
if derivative action is desired; for a model given by (26) the filter f(s)=(es + 1)~ %

q(s) = 4(s) f (s) (25)
. _ kexp (—6s)
) =1 (26)

The filter parameter ¢ is adjusted to meet stability and performance requirements. A
small value for ¢ yields faster system response, whereas a large ¢ detunes the system
and results in greater stability margins.

2.2.4. Determining the controller ((iw)
The standard feedback controller ¢(s) is related to the IMC controller g(s) by

)= —2__ 7

1 - p(s)q(s)
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2.2.5. Mapping the regions n(w)c(iw)

Regions n(w)c(iw) that describe uncertainty in the loop transfer function must be
located for stability and performance analysis. The boundary of n(w) is multiplied by
the controller transfer function evaluated at the same frequency to locate the new
regions. Multiplication of region n(w) by a complex number simply scales and
translates the region on the complex plane. When the process uncertainty regions are
multiplied by the controller in this manner it will be referred to as mapping the regions
to the Nyquist or pc plane.

2.2.6. Testing stability robustness

Regions n(w)c(iw) are examined to evaluate robust stability. Nominal stability is
not an issue because the nominal closed-loop system is stable for any stable filter. If
none of the regions m(w)c(iw) contain (— 1, 0) then robust stability has been achieved. If
the closed-loop system is found to be unstable when process uncertainty regions are
mapped to the Nyquist plane the filter bandwidth is decreased (by increasing the
parameter ¢) requiring the designer to return to step 2.2.5.

2.2.7. Testing performance robustness

Performance robustness is evaluated by finding the minimum distance from each
region nt(w)c(iw) to the critical point (— 1, 0). If this minimum distance satisfies (6) then
performance robustness has been guaranteed. Increasing the filter parameter ¢ will
increase the distance from the critical point for open-loop stable systems.

2.2.8. Example

In this example a controller is designed following the recommended procedure for
the model given by (28); graphical outputs that could be included in a computer-aided
controller design program illustrate the example:

k exp (—0s)

s+ 1 (28)

pls) =

ke[l1,14], 6€[9, 11], te[7,13]
12-5 exp (—10s)

p(s)=pa(s) = et
i) = o220, = AR L2
pals) = 1—4L7]:(+:1-“—s), pa(s) = 5_‘;’.;?5.(;11132

One process uncertainty region corresponding to the model in (28) evaluated at
w = 015 rad/s is displayed with a solid boundary in Fig. 9. Regions n(w) for several
frequencies within the range of interest are shown in Fig. 10. Discs centred.at p(iw)
have been included in Fig. 10 to enable comparison between designs based on the
actual and approximate uncertainty regions. .
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Figure 9. The uncertainty region m(w) corresponding to the model in (28) evaluated at
w =015 rad/s. The smallest circle containing n(w) could be used as a norm-bounded
approximation to the actual uncertainty.
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Figure 10. Uncertainty regions n{w) corresponding to the model in (28) for 30 frequencies in
the range 0-001 < w < 1. The nominal model passes through the center of each region.
Discs centred at the nominal model containing the actual uncertainty regions are
shown. )
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The weighting functions illustrated in Fig. 2 are used in this example. Transfer
functions for the weights w,(s), w,(s) and w,(s) are given by

s+ 01
wy(s) = m (29)
i) = 1002 0)
01
wie) =0 (31)

With these weights the bound |1/w,(iw)| =|2-Siw/(iw + 0-1)] is placed on the mag-
nitude of the sensitivity function. This bound is illustrated in Fig. 2 (d).

The nominal model is factored into js)= p.(s)p_(s), where p.(s)=exp (—10 s)
and p_(s)=12-5/(10s + 1). The IMC filter is selected to be f(s)=(es+ 1)~ . This
results in an IMC controller given by g(s) = (10s + 1)/(12-5(es + 1)). The filter param-
eter ¢ is varied as directed in §§ 2.2.6 and 2.2.7 until robust performance is achieved with
¢ = 7. Uncertainty regions n(w)c(iw) are located as shown in Fig. 11.

()

e (0 ]

Figure 11. Uncertainty regions m(w)c(iw) on the Nyquist plane. Robust stability requires that
none of the regions contain the critical point (—1, 0).

Since none of the regions pc intersect (—1, 0) when ¢ =7, the Nyquist stability
criterion is satisfied. The maximum peak in the sensitivity function generated by the
actual process uncertainty regions is determined to be approximately 2-15. Figure 12
illustrates that (4) is satisfied to achieve performance robustness. If the disc-shaoed
uncertainty regions are used to approximate the actual uncertainty regions, Fig. 12
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Figure 12. Maximum peaks in the sensitivity function with ¢ = 7 for the nominal model in (28),
the actual uncertainty regions n(w), and the disc-shaped approximations. Performance
requirement |1/w,(iw)| is also shown.

indicates that (4) will not be satisfied. The maximum peak in the sensitivity function
generated by the disc-shaped regions is greater than that caused by the actual
uncertainty regions. Use of the approximate uncertainty regions results in a more
conservative design since the controller must be further detuned to meet performance
specifications.

When the disc-shaped uncertainty regions are used, the structured singular value
u(M) for the system with e =7 can be calculated via (15). Figure 13 indicates that
u(M) > 1 for a range of frequencies around 0-1 rad/s, so robust performance cannot be
guaranteed for all plants within the disc-shaped uncertainty specification. The
frequency range where u(M) > 1 corresponds to that where the maximum magnitude
of the sensitivity function exceeds | 1/w,(iw)| in Fig. 12. Once again, this illustrates that
approximating parameter uncertainty descriptions by norm-bounded uncertainty
descriptions will introduce conservativeness into the controller design procedure.

The effect of different filter parameters ¢ on the maximum magnitude of the
sensitivity function is illustrated in Fig. 14. Note the transparent relationship between
the IMC filter parameter and performance. Increasing ¢ lowers both the maximum
peak in the sensitivity function and the bandwidth.

Once the maximum magnitude of the sensitivity function satisfies performance
requirements the analysis is complete. The IMC controller is then guaranteed to
provide robust stability and performance for all plants within the uncertainty
specification. Closed-loop step responses achieved with the IMC controller having
¢ =7 are illustrated in Fig. 15. Responses for both the nominal plant and the ‘extreme’
plants given by (28) are included.
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Figure 13. Structured singular-value u( M) for the system with ¢ = 7. Disc-shaped uncertainty
regions in Fig. 10 were used to calculate weight w,(iw) in (15).
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Figure 14. Maximum peaks in the sensitivity function for different values of the filter
parameter &.
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Figure 15. Closed-loop step responses of the nominal model and several ‘extreme’ plants for
the system with IMC filter parameter ¢ = 7.

2.3. Comparing Smith predictor with PID control

The region mapping technique affords a unique opportunity to examine the
relative robustness of Smith predictor and PID-with-first-order-filter controllers. The
IMC design procedure leads to a PID controller with first-order lag when a first order
Padé is used to approximate the time-delay in (26) (Rivera 1984). General expressions
for Smith predictor and PID controllers resulting from the model in (28) are given by

s+ 1
Csmin(s) = k(1 + &s — exp (—0s)) (32)
1,
cols) = 5T DGYs + 1) (33)

ks(e + 0 + 16es)

Both controllers were applied with ¢ =7 to the family of plants described by (28).
Maximum peaks in the sensitivity function for both controllers are compared in
Fig. 16, which indicates that there is relatively little difference in the maximum magni-
tude of the sensitivity functions when either a PID or Smith predictor controller is
used to control the process in (28). The closed-loop step responses of the nominal and
‘extreme’ plants with a PID controller are indistinguishable from those in Fig. 15 with
a Smith predictor controller.

It should be realized that the process represented by (28) has quite a large variation
in each of the parameters. When smaller variations in the parameters occur, as in (34),
the maximum magnitudes of the sensitivity functions are less alike. Figure 17
illustrates maximum magnitudes of the sensitivity function for both PID and Sn.ith
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Figure 16. Maximum peaks in the sensitivity function for csp;n(s) and cpp(s) applied to the set
of models (28).
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Figure 17. Maximum peaks in the sensitivity function for cgm(s) and cpip(s) applied to the set
of models (34).



83

Internal model control and process uncertainty 1695

predictor controllers applied to the process described by

__ kexp (—6s)
P = s+ 1

ke[1225,1275), 6e[99, 101], 7e[98, 10-2]

For the smaller uncertainty regions described by (34), the maximum peak with the
PID controller is higher than that with the Smith Predictor having the same filter
parameter. When a filter parameter ¢=1 is used in the Smith predictor, a filter
parameter of ¢ =4 must be used in the PID controller to yield the same maximum
peak. The resulting PID controller has narrower bandwidth and worse performance
than the Smith predictor. Closed-loop step responses of nominal and ‘extreme’ plants
with the two controllers are illustrated in Figs. 18 and 19. It is clear from these figures
that the Smith predictor step response is superior to the PID step response for the
given process. This example suggests that, although relatively little difference in PID
versus Smith Predictor performance is observed when there is large process un-
certainty, greater difference in performance will result when the process is more
accurately known.
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Figure 18. Closed-loop step responses of the nominal model and several ‘extreme’ models in
(34) with Smith predictor controller. The IMC filter parameter is e = 1.

24. MIMO applications

Exact uncertainty regions for the SISO transfer function pc are easily located once
process uncertainty regions are specified. In contrast, exact uncertainty regions for
elements in the MIMO transfer matrix PC cannot be located when individual element
uncertainty regions are specified. If region-mapping is used to locate an uncertainty
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Figure 19. Closed-loop step responses of the nominal model and several ‘extreme’ models in
(34) with PID and first-order lag controller. The IMC filter parameter is ¢ = 4.

region corresponding to an element in PC the result will always be conservative. The
origin of this conservativeness is easily understood by considering the 2 x 2 transfer

matrix PC below:

P=|:Pu Plzjl
P21 P22
[Pu"u'*’szCzl P11012+P12022:|

P21C11 + P22€21  P21C12 + P22C22

PC= (35)

More than one element in the MIMO loop-transfer matrix contain the same plant
transfer function element. For example, both [PC],, and [PC],, contain the plant
element p,,. If regions on the complex plane are used to represent [PC],, and [PC],,
the correlation between these elements caused by p, , is lost; that is, all occurrences of
pi; in the matrix PC are assumed to be independent uncertainties. Since the loss of
correlation between elements in the MIMO loop-transfer matrix introduces arbitrary
conservativeness, region-mapping is impractical in the MIMO case.

Structured singular-value analysis preserves correlation between elements in the
MIMO loop-transfer matrix. However, application of structured singular-value
analysis requires that disc-shaped uncertainty regions be used to represent elements in
the MIMO plant matrix P. The proposed method for locating uncertainty regions :an
be used to locate these discs when elements in P are described by Laplace tran.ifer
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functions with uncertain coefficients. If the smallest disc containing the actual process
uncertainty region at each frequency has radius Wij(w) an approximate additive
uncertainty E;;(s) can be specified such that P;;(s)= P;;(s)+ E;;(s) and |E;;(iw)|
< Wii(w). A~multiplicative unceItainty L;j(s) can then be defined such that P(s) =
[1+ L;j(s)]P;j(s) where |L;;(iw)P;(iw)] < W;j(w). Once a multiplicative uncertainty
has been specified, the controller design problem can be rewritten in a form allowing
application of structured singular value aralysis. Figure 9 illustrates how an additive
uncertainty can be used to approximate parameter uncertainties in (28). The accuracy
of the approximation depends on the shape of the actual region representing the
parameter uncertainties. If the actual region is very nearly disc-shaped the approxi-
mation will be quite accurate. The regions representing parameter uncertainties in
(28) are closer to disc shapes than those in

_ kexp (—6s)
Ps) = s+ 1

ke[12:25, 1275], Be[8,12], te[98, 10-2]

(36)

Comparatively large time-delay uncertainty in (36) stretches the corresponding
uncertainty regions into shapes that are not accurately approximated by discs.
Conservativeness that results from approximating the parameter uncertainties in (36)
by discs can be seen by comparing the maximum magnitudes of the sensitivity
functions in Fig. 20. Peaks due to the disc-shaped approximations are considerably
higher than the actual peaks.
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Figure 20. Maximum peaks in the sensitivity function corresponding to the nominal model in
(36), the actual uncertainty regions n(w), and the disc-shaped approximations.
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3. Discussion and conclusions

The proposed techniques for locating process uncertainty regions on the complex
plane and for mapping them to the Nyquist plane are useful control system design
tools. They are particularly applicable when process identification results in models
with parameter uncertainties. Required calculations are quickly performed by
personal computers found in most engineering environments. Moreover, process
uncertainty regions can be displayed on modern graphics terminals. With these
computer resources in hand, the proposed technique can be conveniently applied to
control system design problems. By viewing process uncertainty regions and noting
how they map to the Nyquist plane, the designer can see transparent relationships
between adjustable IMC filter parameters and performance.

Computer-aided design can make the proposed region-mapping techniques
accessible to the control engineer. The software will allow the user to enter either
parameter uncertainties or uncertainty region boundaries. The user will also enter
weights wy(iw) and w(iw) to specify performance requirements. The computer can
then locate and store uncertainty region boundaries for a desired number of
frequencies. The computer can be programmed to calculate the IMC controller
automatically and map the regions n(w)c(iw) to the Nyquist plane. The Nyquist plot
can be furnished to the user for a visual stability evaluation. Maximum peaks in the
sensitivity function can be output to the user and compared with performance
requirements. If performance requirements are not met the user will specify changes in
the IMC filter until a robust controller has been designed.

The proposed technique offers several advantages over existing control system
analysis methods. First, the proposed technique allows incorporation of arbitrarily
shaped uncertainty regions into the analysis procedure, whereas loop-shaping and
structured singular-value analysis require the use of norm-bounded uncertainties.
Secondly, the proposed method allows the designer to see the exact characteristics of
the loop transfer function and the sensitivity function in the critical crossover region.
Thirdly, the proposed method for locating process uncertainty regions results in a
region guaranteed to contain the actual process uncertainty region. Fourthly, the use
of IMC control structure allows the designer to tune the system by adjusting relatively
few filter parameters. Finally, by following the recommended procedure the control
system designer can accurately determine norm-bounded uncertainties to approxi-
mate uncertainty descriptions that result directly from process identification.
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Smith predictor design for robust performance

DANIEL L. LAUGHLINY, DANIEL E. RIVERAY and
MANFRED MORARIY

A method is outlined for designing Smith predictor controllers that provide robust
performance despite real parameter uncertainties in the process model. Insight into
the design process is gained by viewing the Smith predictor from the perspective of
internal model control. Performance requirements are written in terms of a
frequency-domain weight restricting the magnitude of the closed-loop sensitivity
function. A general method for approximating multiple parameter uncertainties by a
single multiplicative uncertainty is developed—an exact bound is derived for the
magnitude of multiplicative uncertainty used to approximate simultaneous un-
certainties in process gain, time-constant, and time-delay. Three different tuning
methods are demonstrated; each is applied to a wide range of parameter un-
certainties in a first-order with time-delay model. The first tuning method locates
loop transfer-function uncertainty regions to test for robust performance—real
parameter uncertainties are considered exactly. The second tuning method approxi-
mates real parameter uncertainties by multiplicative uncertainty and uses structured
singular value analysis to guarantee robust performance. The third is a ‘quick
design’ method that considers the unit magnitude crossing of the multiplicative
uncertainty. Finally, the Smith predictor controller is compared with the structured-
singular-value-optimal controller.

1. Intreduction

Callender et al. (1936) recognized the importance of time-lag in a control
system more than fifty years ago. In the last five decades their ‘controlling
gear’ and ‘control apparatus’ has given way to high speed digital computers, but the
basic problem remains the same: robust controllers must be designed for systems with
time-delay. In particular, the chemical process industries require controllers that can
cope with material transport delays, composition analysis delays and other delays
that cannot be avoided.

1.1. Smith predictors

Early researchers addressed the problem of controller design for systems with
time-delay by correlating PID controller settings with model gain, time-constants and
time-delay (e.g. Cohen and Coon 1953). Low loop gains were required to avoid
instability when time-constants were small compared to the time-delay, leading to
poor system performance. Smith enabled larger loop gains to be used by incorporat-
ing a minor feedback loop around a conventional controller (see Fig. 1) to stabilize the
system (Smith 1957). The effect of the minor feedback loop has been described as
similar to that of a lead network with considerable lead (Astrém 1977). The Smith
predictor controller has been particularly successful in tracking step commands when
applied to systems with the ability to respond quickly (systems with small time-
constants) despite large time-delays between the controller and the plant input

Received 9 September 1986. Revised 31 October 1986.
t Chemical Engineering 206-41, CALTECH, Pasadena, CA 91125, US.A.
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Figure 1. The Smith predictor control structure. A conventional controller g and a minor
feedback loop are used to control systems with time-delay.

(Horowitz 1983). In the absence of modelling error the Smith predictor has been
shown to lead to optimal response to step disturbances. Although first suggested for
use in single-input-single-output (SISO) systems, the Smith predictor concept for
controlling systems with time-delay has been extended to multivariable systems (e.g.
Holt 1984, Palmor 1985, Bhaya and Desoer 1985, Jerome and Ray 1986).

1.2. Robust performance for systems with time-delay

Only recently have researchers attempted to quantify the Smith predictor
controller’s robustness to modelling errors. In several studies stability boundaries
were plotted as functions of error in a single plant parameter (Ioannides er al. 1979,
Palmor 1980, Palmor and Shinnar 1981). Brosilow (1979) proposed a method for
tuning the Smith predictor when one model parameter was uncertain: either gain,
time-constant, or time-delay. Owens and Raya (1982) consider the effect of additive
plant/model mismatch on the robust stability of Smith predictor controllers and
derive an expression for a bound on the magnitude of multiplicative uncertainty used
to approximate time-delay uncertainty. All these studies failed to consider the effect of
simultaneous uncertainties in gain, time-constant, and time-delay on the robustness of
Smith predictors. Finally, Chen (1984) addressed this failure by locating regions on the
complex plane corresponding to first-order models with uncertain gain, time-
constant, and time-delay. Chen correctly evaluated robust stability of Smith predictor
controllers using these regions. The question of robust performance of Smith predictor
controllers despite simultaneous parameter uncertainties remained unanswered.

The research results presented here address the question of robust performance of
Smith predictor controllers. A systematic design procedure is presented that will
guarantee robust Smith predictors despite uncertainties in model parameters. Specific
results include:

(1) a concise method for designing robust Smith predictor controllers with a single
tuning parameter;

(2) a method for tuning the controllers for robustness with respect to simultaneous
uncertainties in gain, time-constant, and time delay or with respect to
uncertainty in an even greater number of model parameters; and

(3) a rigorous test for robust performance with respect to parameter uncertainties.

2. Modelling uncertainty in processes with time-delay
It is often convenient to model processes with transfer-functions containing real-
parameter uncertainties as in

-1
= {p(s)[p(s):p’(s)[ a,s"+a,_,s" '+ .. +a;s+a, :lexp(—f)s)} )

bpS™ +bp_ "+ ...+ bys+ by
ai € [a' aim.l]’ bi € [b bim.,]v 9 € [gmim omax]

imin® Imin*
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or
_ _ ool KIL(1/z)s + 1)
= {p(s)lp(s) =p (”[m exp ( —95) (2)

MES [:imin’ zimu]’ D€ [pimin’ pimu]’ k € [kmin’ kmax ]1 0 € [emin’ emu]

For example, the parameter bounds may represent uncertain process flow rates,
uncertainty introduced by linearizing a model at different steady states or variations
in environmental operating conditions (temperature, pressure, relative humidity, etc.).
The factor p'(s) in (1) and (2) is known exactly and does not contain parameter
uncertainties. A special case of (1) and (2) is the popular first-order with time-delay
model (3).

exp ( —05)} 3)

Ir= {P(S)IP(S)=p'(S)k st 1

k € [kmin’ kmax ]’ TE [rmin’ Tmax ]i 6 € [Bmin' gmax]

The model (3) has been used extensively to describe chemical processes. Time-delay is
often used in the simple model to incorporate additional phase-lag caused by ignored
higher-order dynamics or to approximate the dynamics of a distributed parameter
system. For example, Ogunnaike (1986) uses (3) to represent almost every element in a
multivanable model for a distillation column.

The method proposed in this paper for designing robust Smith predictor
controllers applies to all models (1) and (2) that are open-loop stable. The particular
case (3) with simultaneous uncertainties in gain, time-constant, and time-delay will be
studied in detail. Controller parameters leading to robust performance for various
levels of uncertainty in these three parameters will be presented.

2.1. Locating model uncertainty regions from parameter uncertainties

The set of possible process models indicated by (1)—(3) can be represented at each
frequency by a simply connected region n(w) on the complex plane. A method has
been developed for locating the regions m(w) corresponding to the transfer functions in
equation (1) with any required degree of accuracy (Laughlin et al. 1986). East (1981,
1982) outlined a conservative method for locating convex polygons containing regions
corresponding to (2) when the time-delay is known exactly. A set IT of all possible
process models can be defined as follows: '

I = {p(s)| pliw) € n(w), VYw} )

The set IT given by (4) is almost always larger than the corresponding set I1" given by
(1)-(3) since some elements of 1 might not be expressed by a transfer-function with
the specified structure. To prove robustness requirements are met for all models in
(1)-(3) it is sufficient to show that they are met for all models in the corresponding

set T1.

2.2. Translating parameter uncertainty into multiplicative error

When modelling error is represented by uncertainty in several real parameters it is
often mathematically convenient to approximate the uncertainty with a single
multiplicative perturbation. Multiplicative perturbations on a nominal plant are
represented by (5).

p(s) = pis)[1 + [(s)],  |m(iw)] < lw) (&)
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Using the norm-bounded multiplicative error I(s) is equivalent to representing
process uncertainty by a disc-shaped uncertainty region n(w) with radius |p(iw)|/(w) on
the complex plane. The multiplicative uncertainty description can be incorporated
into controller optimization techniques where parameter uncertainty descriptions are
less tractable.

It is straightforward to determine the bound /w) on the magnitude of the
multiplicative error for the general cases of parameter uncertainty (1) and (2). First
the boundaries of a sufficient number of uncertainty regions m(w) must be located
over the frequency range of interest. Next a nominal mod:l j(iw) must be specified —
in the proposed design procedure parameters will be fixed at their mean values in
the nominal model. Finally the maximum distance d(w) from j(iw) to any point on the
boundary of n(w) is determined at each frequency. This distance d(w) is related to the
bound on the magnitude of the multiplicative error through d(w) = |p(iw)|(w).

For the special case of simultaneous uncertainties in gain, time-constant and time-
delay in the first-order model (3), an exact analytical expression for the bound (w)
can be derived. Owens and Raya (1982) derived the simple expression /[(w)=
lexp (Afiw) — 1| for the bound when only uncertainties in time-delay are considered.
Bound 1 specifies the smallest possible magnitude |I,(iw)| = l(w) such that all plants
given by (3) with simultaneous errors in gain, time-constant and time-delay can be
represented by p(s) = p(s)[1 + I.,(s)].

Bound 1: Gain, time-delay and pole uncertainty
Consider the following set of process models:

. (k+ dk)exp [— (0 + 86)s]

p(s)=p'(s) Grost] (6)

where p'(s) does not contain parameter uncertainties and k, T, f, 6k, 6t and 46 are
defined by:

Tmin + Tmax Bmin + Omax

kmin + kmax = —
, T= 2 ’ 0-"' 2

2
I(Skl < Ak = Ikmax - k-l < Ik-l’ I6T| < At = Itmax - TI < Iﬂ’ |60| < Ab = Iomax - 9] < IO—I

Define a nominal model j(s) with gain, time-constant and time-delay at their mean
values:

k=

kexp (—0s) )

5 =P

The smallest possible bound [w) on the multiplicative error I (s) stfch _that all models
in (6) are contained in the set p(s) = p(s)[1 + ln(5)], llm(iw)| < l(w), is given by:

L R

|/ 1kl + Ak Tiw + 1 v . 9
I(w)—l( s )(ﬁnrﬁwﬂ)‘ﬂ, 030 )

where o* is defined implicitly by: -

YN D VIR DS
1+ (T F Ar)w*? 2

lw)=

+ AfBw* + arctan l:
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Bound 1 applies to both stable and unstable models (6). Top signs are selected
in (8)—(10) if 7 is positive indicating a left-half-plane pole. Bottom signs are selected in
(8)—(10) if T is negative indicating a right-half-plane pole. Note that Bound 1 simplifies
to the expression derived by Owens and Raya (1982) when Ak = At =0. Proof of
Bound | is given in the appendix along with a similar bound on multiplicative error
for the case of simultaneous variations in gain, time-delay and one process zero lo-
cation. The bounds l(w) for Ak/k = At/ = AG/F = 0-1and for Ak/k = A1/t = A8/G =05
are shown in Fig. 2.

3. Selecting performance requirements
3.1. Robust stability

The standard feedback control structure is shown in Fig. 3 with commands r(s),
disturbances d(s), outputs y(s), control actions u(s) and errors e(s). The control
structure must be stable for all process models in the set 1. Oncc a controller c(s) is
selected, robust stability can be evaluated with respect to the actual parameter
uncertainties or with respect to the multiplicative uncertainty approximation. When
considering the actual parameter uncertainties the closed-loop system is stable for all
plants in IT if and only if a nominal system with p(s) = j(s) € I is stable and the regions
n(w)c(iw) exclude (— 1, 0) for all frequencies w. When the modelling error is described
in terms of a multiplicative uncertainty as in (S), robust stability is guaranteed if and
only if a nominal system with p(s) = fi(s) € IT is stable and

h(lw)l(w)< 1, Vo (11)
1
10 3
1. 3
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Figure 2. The bound l(w) on the magnitude of the multiplicative uncertainty is shown for both
10 per cent parameter uncertainty and 5O per cent parameter uncertainty in model (6). At
a frequency of 9:014 rad s ~! the bound /(w) = 1-0 for the case of 10 per cent parameter
uncertainty. The dashed curve is the magnitude of the rational function

s+1 \[1+025s
- . — l
lls) =13 (0-5s + 1>(1 - 025s)

used to approximate the bound /(w) for SSV-optimal controller synthesis.
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Figure 3. The standard feedback control structure with commands r(s), disturbances d(s),
outputs }{s), control actions u(s) and errors e(s).

~

where the nominal complementary sensitivity function h(iw) is given by
- k)
1 + pliw)c(iw)

Condition (11) is equivalent to the condition that the disc-shaped regions with radius
|pliw)c(iw)|(w) centred at p(iw)c(iw) exclude (— 1, 0) for all frequencies w.

3.2. Robust performance

In addition to robust stability, ‘gopod’ command-following and disturbance-
rejection are required of the control structure in Fig. 3. If the error signal e(t) = r(t) —
1) is kept ‘small’ for all inputs r(t) — d(t), these performance objectives can be met.
The errors are related to the inputs as shown in (12).

e(iw) 1

Hio) — d(iw) 1+ plio)lia) (12

In this study robust performance will be defined mathematically by placing a bound
on the magnitude of the sensitivity function s(iw) = [1 + p(iw)c(iw)] ~*.

Yw,Vp(s)e Il (13)

Is(icw)] =

wz(iw)"

1 + piw)c(iw)

Usually only small steady-state errors are acceptable so the magnitude of the
performance weight |w, (iw)| is specified to be large at low frequencies and small at
high frequencies. The inverse of a typical weight is shown in Fig. 4. For convenience
(13) can be written as:

|1 + pliw)c(iw)] > |w, (iw), Yo,¥ps)ell (14)

Since all plants p(s) e IT are restricted to lie within region n(w) at frequency w, the
requirement (14) can be met by ensuring that the distance of regions n(w)c(iw) from
(—1,0) is greater than |w,(iw)|.

When pliw) = pio)[1 + 1, (iw)], |l.(iw)| < (w), (14) can be written in terms of the
nominal complementary sensitivity function A(iw) = 1 — §(iw) as follows:

sup [A(iw)ll(w) + (1 — Aliw)w, (iw)] < 1 (15)

Given nominal stability, both robust stability and robust performance of the control
system are guaranteed if and only if condition ( 15) is satisfied. Condition (15) represents
an additional performance specification for the complementary sensitivity function
h(iw) beyond the small gain theorem requirement (11) for robust stability alone.
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Figure 4. The inverse of the performance weight w,(s) = (1-162s + 1)/2:324s used for experi-
ment 1 in Table 5. The worst-case sensitivity function must lie below this curve to satisfy
the robust performance specification.

Requirement (15) is equivalent to a special case of the robust performance condition
derived by Doyle (1982). Doyle defines the ‘structured singular value’ to be the

supremum in (15).

3.3. A performance weight for the Smith predictor problem

Performance requirement (13) indicates that the weight w,(s) specifies a bound on
the maximum peak of the sensitivity function. It is useful to examine the functional
form of the H,-optimal nominal sensitivity function for the expected inputs before
selecting a performance weight for a particular problem. An expression for the
H,-optimal nominal sensitivity function for general inputs is given by the theorem in
§ 4.2 of this paper. If the process were known exactly the weight w, (s) could be selected
to be just less than the inverse of the nominal sensitivity function. This would lead to a
structured singular value for the system of just less than one; the system would pass
the robust performance test.

For the special case of first-order with time-delay systems (3) the H,-optimal
nominal sensitivity function for step inputs is:

Sopi(iw) =1 —exp (— Biw) (16)

If a first-order Padé approximation is used for the time-delay in (16) equation (17)
results.

. fiw
Soplio) = - _ a7
Equation (17) suggests the following functional form for the weight w,(iw): _
1 1
w(iw) = b2 '18)

aiw
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Note expressions (17) and (18) are inverses of one another when a=8/2 and b= 1/2.
The weight w,(iw) in (18) requires that the bandwidth of the closed-loop system be at
least 1/a and that the maximum peak in the sensitivity function be less than 1/b.
Parameter a would be increased and parameter b decreased to allow for degradation
in closed-loop performance due to modelling errors. The inverse of the weight w, (iw)
used for experiment 1 in Table 5 with a = 1162 and b = 0-5 is sketched in Fig. 4. The
worst-case (largest magnitude) sensitivity function generated by the set of models IT
must lie below this curve to satisfy the robust performance specification. The
controller is typically designed to push the worst-case sensitivity function as far below
this curve as possible over the entire frequency range.

4. Designing the controller
4.1. Smith predictor structure

In order to construct the Smith predictor control structure shown in Fig. 1 it is
necessary to select a process model j(s) = p°(s) exp (—s) and to design the controller
g(s). Usually g(s) is selected to be a conventional P, PI or PID controller. The
controller g(s) must be designed so that the system is robust with respect to errors
between the actual process p°(s) exp (—6s) and the model 5°(s) exp (— s).

The Smith predictor control structure can be considered to be a particular
parameterization of the more general feedback control structure. The relationship
between g(s) and the standard feedback controller ¢(s) in Fig. 3 is given by (19).

g(s)
[T g0 G)L1 —exp (= B9)] (19)

Unfortunately, the Smith predictor structure does not provide much insight into the
design of controller g(s). The effect of the level of model uncertainty on the choice of
controller parameters is not clear. A systematic method for designing robust Smith
predictors can be developed by considering an alternate parameterization of the
controller.

c(s)=

4.2. Internal model control parameterization of the Smith predictor

An alternate parameterization of ¢(s) is the internal model control (IMC) structure
shown in Fig. 5. It has been shown that the IMC structure leads to a Smith predictor
controller for open-loop stable processes with time-delay (Brosilow 1979, Holt 1984,
Rivera et al. 1985). An advantage of the IMC structure is that the system is guaranteed
to be nominally stable if both p(s) and g(s) are stable (Garcia and Morari 1982).
Moreover, since any transfer function (e.g. A(s) = j(s)q(s)) relating inputs to outputs is

Figure S. The internal model control (IMC) parameterization of the Smith predictor
controller.
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affine in the IMC controller the restrictions placed on ¢(s) by robustness requirements
(11) and (15) are clear. Usually only a single tuning parameter 4 is required. Adjusting
2 to meet stability and performance requirements is straightforward.

The IMC design procedure involves two steps:

(1) a controller §(s) is designed to be H,-optimal for the nominal model and the
expected input to the system; and

(2) the controller is ‘detuned’ by the addition of a low-pass filter f(s) to meet
robustness requirements.

The resulting IMC controller is given by g(s) = §(s) £ (s).
Morari et al. (1987) derived the following theorem for the H,-optimal controller
4(s) when p(s) is stable.

Theorem
Consider the IMC structure shown in Fig. 5 with process model §(s) and controller
q(s). The nominal model j(s) is factored into an allpass portion j,(s) and a minimum
phase portion py(s)
P(s) = Pa(s)Pm(s)
so that p,(s) includes all the right-half-plane zeros and delays of p(s) and
Paliw) =1, Yo
The expected disturbance input d(s) is factored similarly

d(s) = da(s)du(s)
The controller §(s) that minimizes the two-norm of the error is then given by

4(s) = (Pu(8)dp(s) ™ ' [Pa ' (S)du(s)] (20)

where the operator [ - ], denotes that after a partial fraction expansion of the operand
all terms involving the poles of p, ! (s) are omitted. The H,-optimal sensitivity function
Niw) is given by

Sliw) = 1 — iw)glic) = 1 — py(iwMdy  (0)[Fx ' (iw)dy(io)],

The filter form is selected to ensure that the controller g(s) is proper and that the
closed-loop system has the appropriate asymptotic tracking properties. For asympto-
tic tracking of step inputs f(s) can be chosen of the form

1

JO= G5y

where n is large enough to make q(s) proper and 4 is the IMC filter tuning parameter.
(Filter forms for other inputs can be found in Morari et al. 1987.) Usually a single
tuning parameter is used. A small value for 4 yields faster system response whereas a
large 1 detunes the system and results in greater stability margins. If robust
performance is specified in terms of a weight like w,(iw) in (18) with both bandwidth
and maximum peak (MP) requirements, it may not be possible to meet both
requirements with a single tuning parameter. When confronted with this situation the
filter form can be changed to incorporate more tuning parameters as in

1
SO = s+ D
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or an alternative constant performance weight w), = 1/MP without a bandwidth
constraint can be selected. If the alternative weight is selected the controller is
designed so that the maximum magnitude of the sensitivity function is equal to 1/w), =
MP. Designing the controller so that the worst-case sensitivity function is as far
below 1/w’, = M P has no meaning since the absence of a bandwidth requirement in w
would allow complete detuning of the controller (A = oo and ¢(s) = 0).

The relationship between the IMC controller g(s) and the standard feedback
controller (s) is given by (21).

q(s)
1 — q(s)p°(s) exp (—05s) (21)

The particular example of controller design for first-order with time-delay systems
clarifies the relationship between the IMC parameterization and the Smith predictor.
Consider the set of process models (6) with p’ = 1. Select the nominal model as in (7)
with all parameters at their mean values. The H,-optimal controller {(s) for step
disturbances is given by (s) =(ts + 1)/k. The appropriate filter is f(s)= 1/(4is + 1),
resulting in the IMC controller

c(s)=

s+ 1
q(s) = m (22)
Substituting the IMC controller (22) and the nominal model (7) into the expression
(21) for the conventional feedback controller results in

_ s+ 1
" k(s + 1 —exp (- 0s))

Note that (23) is equivalent to the Smith predictor controller (19) when p°(s)=
k/(ts + 1) and g(s) is the PI controller g(s) = (ts + 1)/k4s.

cofs) (23)

5. Tuning the controller for robust performance

In this section five alternative methods are presented for designing robust
controllers for systems with time-delay. The first four methods result in Smith
predictor controllers; the fifth, in the structured-singular-value-optimal controller.
The methods differ in their numerical complexity, in the type of uncertainty
description they consider, and in the robust performance guarantee they offer. The
more numerically complex methods introduce less conservativeness into the con-
troller design. In selecting an appropriate design method the required system
performace is of paramount importance. If performance requirements are mild then
the ‘quick design’ procedure should suffice. Moderate performance requirements
might necessitate the robustness test that considers actual parameter uncertainties
rather than a multiplicative error approximation. More demanding performance
requirements might require optimizing all parameters in the Smith predictor con-
troller. Only the toughest performance requirements would justify synthesis of the
structured-singular-value-optimal controller.

The IMC design procedure and tuning methods presented here are applicable to
all open-loop stable processes that can be modelled by (1) or (2). The methods are
illustrated with controller designs for the particularly useful first-order with time-
delay model. Three recommended tuning methods were compared by examining
controller designs for twenty-four families of process models (3) with p'(s)= 1. All
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possible combinations of 10 per cent and 50 per cent uncertainty in gain, time-
constant and time-delay were investigated at each of three levels of the ratio 7/4.
Tuning method A was used to design controllers for an even greater range of the
parameter uncertainties and the ratio 7/8. The results of the different IMC filter-tuning
techniques are presented in Tables 1-5. Details of each of the tuning techniques are
outlined below.

A For MP =20
robust -
Experiment dk/k dt/t a6/8 stability Ja A ic
1 01 01 01 0-080 0525 0661 0313
2 01 05 o1 0-230 11109  1:647  1:425
3 05 01l o1 0-107 11199 1498 0495
4 01 01 05 0-401 1-136 1-648 1-594
5 (131 (U 05 0737 1412 2:547  2:895
6 05 05 01 0627 1-833 2677 3135
7 05 01 05 0-537 2012  2:256 2367
8 05 05 05 1-091 2:312 3477 4541

Table 1. Filter parameters resulting from tuning methods A-C. 4 from robust stability
condition is shown for comparison. In experiments 1-8 the ratio /8 = 1-0.

i For MP =20
robust
Experiment dk/k dr/t ao/g stability ia Ap ‘e

9 01 01 01 0-080 0454 0632 0316
10 01 05 01 0185 0758 {172 0923
11 05 01 01 0-107 1-115 1-:344  0-496
12 01 01 05 0-399 1-104 1-608 1:562
13 01 05 05 0611 1-189 2:087  2:208
14 0S5 05 01 0367 1-293 1-872 1733
15 05 01 05 0529 1-998 2:120 2-202
16 05 0S5 () 0-823 2:125 2704 3-194

Table 2. Filter parameters resulting from tuning methods A-C. i from robust stability
condition is shown for comparison. In experiments 9~16 the ratio #/§=0-5.

A For MP =20
robust
Experiment dk/k di/z do;§ stability 4, Ap 2
17 01 01 01 0-080 0594 0661 0311
18 01 05 01 0415 1703 2905 3316
19 0s 01 01 0-106 1309 1787 0489
20 01 01 05 0-400 1267 1637 1576
21 01 05 05 0971 2391 3757 5141
22 05 0's 01 1-688 2714 5617 8790
23 05 01 05 0-535 2200 2476 2478
24 05 0S 05 2:090 3677 6356 10066

Table 3. Filter parameters resulting from tuning methods A-C. A from robust stability
condition is shown for comparison. In experiments 17-24 the ratio 7/ = 3-0.
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Values for the filter parameter 4 for these ratios of 7/0

dk. k dt.t do/§ 005 0-1 05 1-0 30 10-0 300
0-0 0-0 0-0 0000 0000 0000 0000 0000 0000 0000
0-0 01 0-0 0030 0062 0196 0245 0277 0283 0285
01 00 0-0 0265 0266 0266 0265 0265 0265 0266

0-0 00 01 0192 0192 019 0192 0192 0192 0192
0-0 01 01 0199 0203 0268 0339 0399 0415 0418

01 01 0-0 0267 0271 0360 0417 0457 0468 0469
01 0-0 01 0400 0400 0400 0400 0400 0400 0400
01 01 01 0403 0410 0454 0525 0594 0612 0617
01 05 01 0433 0447 0758 1-109 1-703  2:041 2:157
05 01 01 1-:097 1-102 1-115 1-199 1-309 1-342 1-349
01 01 05 1-100 1-106 1-104 1-136 1-267 1:338 1-355
01 05 05 1-130 1-155 1-189 1412 2:391 3102 2318
05 05 01 1-128 1-161 1-293 1-833 2714 3226  3-395
0S5 01 05 1977 1-987 1998 2012 2200 2-292 2319

05 05 05 2020 2059 2125 2312 3677 4666 5017
0-0 0-0 0-0 0000 0000 0000 0000 0000 0000 ~ 0000
01 01 01 0403 0410 0454 0525 0594 0612 0617
02 02 0-2 0777 0784 0799 0959 1-179 1267  1-292
03 03 03 1:166 1-185 1-166 1-403 1-860 2099  2-164
04 04 0-4 1-573 1-607 1-621 1-855 2:674 3189  3-349
05 05 05 2020 2059 2125 2312 3667 4666 5017
06 06 06 2485  2:538  2:664 2765 4884 6724 7498
0-7 07 07 2974 3053 3215 3216 6-341 9-819 11478
0-8 0-8 08 3499 3595 3837 3659 8152 14892 18926
09 09 09 4-051 4166 4479 4280 10192 24200 37169

Table 4. Controller parameters resulting from tuning method A. The ratio 7/f varies allowing
the control system designer to interpolate between values for 4 in the table to arrive at
an acceptable tuning parameter.

sup
Experiment dk/k  dt/z d6/§ i, p a (15) K T ]

01 01 01 0998 0998 1162 1026 0969 0989 1005
01 05 01 1225 1225 1-512 1120 0923 0733 0962
05 01 01 1310 1310 2312 1082 0994 0887 0992
01 01 05 2121 1899 1-794 0982 1051 1-234 0965

- 2460 2460 2194 1030 0863 0986 0953
05 05 01 1870 1870 2-874 1104 0937 0575 0977
05 01 05 2207 1976 3212 1013 1080 0949 1004
05 05 05 2395 2395 3397 1122 0857 0684 0992

00 2O\ W b WK —
=)
_
=Y
W
1=
W

Table 5. Controller parameters resulting from optimization method D. The ratio 7/§ = 1-0.
Parameter a in the performance weight and A from tuning method A are included for
comparison. The structured singular value u is shown for the system with the controller
resulting from the optimization. N
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5.1. Method A: tuning with actual uncertainty regions

The first IMC filter-tuning method utilizes the loop transfer-function uncertainty
regions m(w)c(iw) to test for robust performance. Real parameter uncertainties in (1)
are treated exactly. Once a filter parameter 4 has been selected the sensitivity function
with largest magnitude at each frequency given by

1

T+ pliwictio) .

[s*(w)l = max
pliw)ell

is determined by locating the point closest to (—1,0) on each uncertainty region
n(w)c(iw). The filter parameter is adjusted until the robust performance requirement
(14) has been satisfied. Increasing A reduces the maximum peak in |s*(w)| and
decreases the bandwidth of the system.

For the first-order with time-delay examples, the weight w), = 1/MP = 1/2 was
used to specify performance requirements. Controller (23) was designed following the
IMC procedure after selecting the nominal model (7). The IMC filter parameter 4 was
adjusted and regions n(w)c(iw) located until the maximum peak in the sensitivity
function |s*(w)| was determined to be 2. Values of 4 leading to this result are listed in
Tables 1-4. As expected, the filter parameter increases as the level of parameter
uncertainty increases— less aggressive control action is required for robustness with
respect to large modelling errors. The filter parameter increases slightly as a function
of the ratio 7/6.

5.2. Method B: tuning with multiplicative error

In the second IMC filter-tuning method the real parameter uncertainties in (1)-(3)
are approximated by a multiplicative perturbation I (iw) for the purposes of
robustness analysis. The approximation is discussed in § 2.2 above. After the IMC
controller has been designed and the filter form selected the IMC tuning parameters /;
are implicitly defined by condition (15) for robust performance. If a performance
weight w, = 1/MP is selected filter parameters are adjusted iteratively until

~ 1 -
sup [iw)i) + 37511 ~ Kie)] = 1 (25)

If the performance requirements are too severe it may not be possible to find
values for the 4; such that (15) is satisfied. When this situation is encountered it is
possible that the less conservative tuning method based on the actual parameter
uncertainties will lead to an acceptable design. If not, either the performance
requirements must be relaxed or a different IMC filter form must be selected.

For the first-order with time-delay examples and performance weight w) =
1/MP = 1/2, condition (25) can be rewritten to yield an implicit expression for the
filter paramater 4 in controller (23):

(w) 1 |diw+ 1 —exp (—Fiw)|
sup — =

_— 1 26
w lAdiw+1  MP |Aiw + 1 (26)

Condition (26) represents the robust performance specification on the filter parameter

A. The robust stability requirement (11) is rewritten in terms of the filter parameter in
(27) for comparison.

l(w)

— <1 27

P iw + 1] )
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Values of 4 leading to equality in (26) and (27) are listed in Tables 1-3 for each level
of parameter uncertainty. Filter parameters required for robust performance are
significantly larger than those required for robust stability in all of the examples. The
same general trends are observed in the filter parameters for robust performance as in
tuning method A. Note, however, that the values of A from method B are slightly
larger than those from method A. Conservativeness that entered the design procedure
when parameter uncertainties were approximated by multiplicative uncertainty
resulted in less aggressive control action.

5.3. Method C: a quick design method

At the frequency where the magnitude of the multiplicative uncertainty is equal to
one condition (11) indicates that A(iw) must already be rolled-off to prevent instability.
This observation motivates a ‘quick design’ procedure for selecting the filter
parameters A;. At the frequency ' where [(w’)=1 the filter parameters can be
implicitly defined by a conservative bound as follows:

|Aie ) l(w') + (1 = Alie)w, (iw')] < [Aliw (@) + (1 + [Aiw))w,(iw) =1  (28)
With {w’) =1 and the choice of w,(iw’) = 1/M P equation (28) becomes:

MP -1 :

MP + 1 29)

|h(ic) =

Equation (29) allows quick calculation of the IMC filter parameters i; once the
frequency w' at which {(w’) = 1 has been located. Bound 1 enables quick calculation of
o' when simultaneous uncertainties in gain, time-constant, and time-delay are
encountered. For example, see Fig. 4 where w'=9-014rads™* for ten per cent
uncertainty in k, t and 6.

For the first-order with time-delay examples and the controller (23), at ' the
nominal complementary sensitivity function is given by A(iw’) = 1/(Ziew’ + 1). Then
equation (29) can be rewritten explicitly for 4 as follows:

[(MP+ 1>2 1]”2
S L\MP—1 30)

’

w

where MP is the desired maximum magnitude of the sensitivity function and w’ is the
frequency at which l(w’) = 1. Equation (30) with M P =2 was used to calculate filter
parameters shown in Tables 1-3. Although the filter parameters compare favourably
with those obtained by the two methods discussed above the quick design method
does not guarantee that the maximum peak in the sensitivity function will be less than
MP. No such guarantee can be made since the quick design method considers only
one frequency «'. In fact, the filter parameters calculated using (30) for the examples
with high levels of gain uncertainty lead to maximum peaks greater than 2. For those
cases where gain uncertainty dominates (where the quick design method is least
accurate) it is straightforward to tune the controller based on simple gain-margin
arguments. Nevertheless, the data indicate that the quick design method will be useful
for a wide range of uncertainty in model parameters. The filter parameter obtained via
this method can certainly be used as a first guess for either of the more rigorous
iterative methods A or B discussed above.
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5.4. Alternate nominal models

The Smith predictor controller (21) resulting from the IMC design procedure
contains more adjustable parameters than the 4; in the IMC filter. All the parameters
fixed by the choice of a nominal model also appear in the controller. Since the Smith
predictor given by (20) with A =0 is known to be optimal for the processes (1}-(3)
when there is no parameter uncertainty, the recommended IMC design method seems
appropriately justified. Chen (1984), however, indicated that the nominal model with
all parameters at their mean values does not always lead to an optimal control system
design when the uncertainties are considered. Certainly it seems logical to fix nominal
model parameters at their mean values when confronted by the process description
(1)=(3). In order to evaluate the performance lost as a result of this selection another
set of controller designs was performed for the first-order with time-delay examples in
which all four controller parameters k, 7, § and 4 in (23) were optimized.

A control-relevant identification technique developed by Rivera and Morari
(1986) was used to optimize all four parameters in the Smith predictor (23). Inputs to
the optimization procedure include a nominal model, the magnitude of the multi-
plicative uncertainty, a performance weight w,, and the structure of the model to be
identified. The input nominal model was specified to be the centre of the smallest disk
containing all models in the set (3). The optimization procedure selects a new nominal
model and IMC filter parameter 4 so as to reduce the structured singular value (15).
Note that through the IMC design procedure selecting a new nominal model and filter
parameter is tantamount to selecting new values for the parameters in the Smith
predictor controller (11).

Table 5 lists the controller parameters selected by the optimization procedure for
the same eight levels of uncertainty as in Table 1. The mean value for the three model
parameters is 1-0 for all eight levels of uncertainty. In most cases the controller
parameters in Table 5 do not differ significantly from 1-0. The weight w, in (18) with
b=1/2 and the parameter a indicated in Table 5 was input to the optimization
procedure for each example. It can be verified using tuning method A that this is the
best level of robust performance achievable with nominal model parameters at their
mean values as in (7)—the system would fail the robust performance test (14) if
parameter a had a value less than that indicated in Table 5. The optimization
procedure attempted to reduce the supremum in (15) using a multiplicative error
approximation for the actual parameter uncertainties. Values of the supremum for the
eight designs are shown in Table 5. In the designs where the supremum is greater than
one the additional conservativeness introduced by the multiplicative error approxi-
mation outweighted any benefit from optimizing all four parameters in the controller.
These designs would not be considered robust based on the test involving the
multiplicative error approximation. Results of this study indicate that selection of a
nominal model with gain, time-constant, and time-delay at their mean values will, in
most cases, lead to an acceptable Smith predictor controller.

5.5. Structured-singular-value-optimal controller

The structured-singular-value-optimal (SSV-optimal) controller is the controller
that minimizes the supremum in (15). In this section the Smith predictor is compared
with SSV-optimal controllers. The comparison illustrates how system performance
might be eflected by selecting the form of the controller to be that of the Smith
predictor. The comparison also highlights differences in the SSV-optimal controllers
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that result when process uncertainty is modelled with a single multiplicative
uncertainty or with multiple real parameter uncertainties.

Both Smith predictor and SSV-optimal controllers were designed for the system
modelled by (3). The nominal values of gain, time-constant and time-delay were all
unity. The case of 50 per cent uncertainty in each of the three parameters was studied.
Performance requirements were expressed in terms of the weight w,(iw) in (18) with
a=3-397 and b = 0-5. Recall that this level of robust performance was possible using a
Smith predictor based on the nominal model and the tuning method in § 5.1 (see Table
5). The Smith predictor controller is given by (23) with 4 = 2-395.

The SSV-optimal controllers for the system were synthesized following the
methods outlined in Chu et al. (1986) and Doyle (1982). Model uncertainty was
represented by a single multiplicative uncertainty for synthesis of the first SSV-
optimal controller. Figure 6 (a) shows the control structure with uncertainty and
performance requirements written in terms of blocks A, and A, with norm ||A; |, < 1.
The structure 6 (a) can be rearranged into that shown in Fig. 7 (a). The SSV-optimal
controller is then given by the stabilizing K which solves

min |DF,(G; K)D™ |
D.K

where
F(G;K)=G,,+G,,K(I - G,,K)™'G,,
and
D =diag (d,,d,, ..., d,)
with n being the number of blocks in
A=diag(A,,A,, ..., Ap)

The HONEYXt computer software used to synthesize the SSV-optimal controller
requires rational approximations of all irrational transfer functions appearing in the
block structure. Hence, a fourth-order Padé approximation was substituted for the
time-delay in p; a first-order Padé approximation, for the time-delay in the bound (8)
for L, (see the dashed curve in Fig. 2).

For synthesis of the second SSV-optimal controller model uncertainty was
represented by individual parameter uncertainties. Figure 6 (b) shows individual
uncertainties in gain, time-constant and time-delay written in terms of three blocks
A,, A, and A,. Note that the block structure represents a first-order Padé
approximation for the time-delay. Figure 7 (b) illustrates the equivalent interconnec-
tion structure for that in Fig. 6 (b). The HONEYX software assumes each A, is a
complex perturbation with |A;|, <1 even though they represent real parameter
variations.

The magnitude and phase of the two SSV-optimal controllers are shown in Fig. 8.
The controller resulting when a single multiplicative uncertainty was used (labelled 2
in Fig. 8) was 18th order. The controller resulting when multiple parameter
uncertainties were used (labelled 3 in Fig. 8) was 19th order. Note in Fig. 8 that both
SSV-optimal controllers have slightly lower gain than the Smith predictor (labelled 1)
for frequencies below one. The magnitude of model uncertainty is low over this

~

1 Developed by Honeywell Systems and Research Center, Minneapolis, Minnesota, U..;.A.
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6k/kmA,

Figure 6. Feedback control structures incorporating a single multiplicative uncertainty
(a) and individual gain, time-constant and time-delay uncertainty (b) are shown. In
(b) a first-order Padé approximation is used to represent time-delay. Since the inverse
of T and 0 appear in (b) the following variables are used to define real parameter vari-
atiOPS: l/i = (1/2Tmin) + (1/2rmax )3 l/é: (1/20mm) + (1/20max )’ 1/6‘2 = (1//%) - (l/tmax )v
1/60 = (1/0) — (1/0,may ).

4 4

K]+
(@ (®)

Figure 7. The two feedback structures in Fig. 6 can be rewritten as shown with interconnec-
tion matrix G, norm-bounded matrix A and controller K.

frequency range; hence the controller shape is largely determined by the performance
weight w,. At higher frequencies the SSV-optimal controllers employ higher gain than
the Smith predictor. The higher gain causes oscillation in the nominal sensitivity
function in the high frequency range as shown in Fig. 9. The SSV-optimal controllers
reduce the structured singular value (see Fig. 10) at frequencies near 0-3 where the
performance requirement is tight and increase it at higher frequencies where the
performance requirement allows additional gain. Note that there is little difference
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Figure 8. The Bode plots of SSV-optimal and Smith predictor controllers are quite similar in
the low frequency range. Curve 1 is the Smith predictor. The SSV-optimal controllers
synthesized using multiplicative uncertainty and parameter uncertainty are curves 2
and 3, respectively.
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Figure 9. The sensitivity function for the system with SSV-optimal controller (dashed curve)
has larger amplitude oscillations in the high frequency range than does that with the
Smith predictor controller (solid line). The sensitivity functions with the two SSV-
optimal controllers are indistinguishable from one another.
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Figure 10. The structured singular values for the control system with SSV-optimal controllers
(2 and 3) and Smith predictor controller (1) are compared here. Structured singular
values with SSV-optimal controllers synthesized using multiplicative uncertainty and
parameter uncertainty are on curves 2 and 3, respectively.
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Figure 11. Responses to step disturbances are quite similar for the system with Smith
predictor (1), with SSV-optimal controller synthesized using multiplicative uncerta nty
(2), and with the SSV-optimal controller synthesized using parameter uncertainties (3).
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between the two SSV-optimal controllers in Figs. 8 and 10, indicating that relatively
little conservativeness entered the design when the A, representing real parameters
were assumed to be complex. This outcome may be limited to this example, however,
since such an assumption can in general be quite conservative. All structured singular
values in Fig. 10 are greater than one, indicating that the performance requirement w,
would have to be relaxed in order for the system to pass the robust performance test
based on the norm-bounded blocks A;. Recall that the robust performance test based
on the actual uncertainty regions can be passed using the same requirement w, used in
Fig. 10.

Figure 11 shows the nominal system response to step disturbances with Smith
predictor and SSV-optimal controllers. There is relatively little difference in nominal
system response despite the complexity of the SSV-optimal controllers.

6. Discussion and conclusions

The internal model control structure provides a useful framework for the design
and tuning of robust Smith predictor controllers for systems with time-delay. Results
of this study offer several alternatives to the control system designer confronted with
the task of designing robust controllers for processes modelled by transfer-functions
with real-parameter uncertainties. An H,-optimal IMC controller can easily be
designed for the nominal model and expected disturbance using the results of § 4.
Augmenting the controller with a filter can ensure robust performance despite
parameter uncertainties. The IMC filter can be tuned following the methods outlined
in § 5 or the model can be non-dimensionalized (see § 6.1) allowing the use of tabulated
filter-tuning constants. The Smith predictor that results from the IMC design
procedure compares favourably with the SSV-optimal controller for systems with
time-delay. Simultaneous parameter uncertainties can be considered exactly when
testing for robust performance, or they can be approximated by a single multiplicative
uncertainty for mathematical convenience. Bound 1 in § 2.2 gives an exact expression
for the magnitude of multiplicative uncertainty that can be used to approximate
simultaneous uncertainties in gain, time-constant and time-delay. Use of Bound 1 in
SSV-optimal controller synthesis was demonstrated.

6.1. Non-dimensionalizing the model

When confronted with a stable process described by (6) the control designer can
non-dimensionalize the model enabling use of tuning parameter data in Table 4.
Model (6) with p'(s) =1 can be rewritten as follows:

..o pls) (1+6k)exp(—(1+887)s")
p(s )=T=

(1+51:')5.s’+1

where dimensionless parameters are defined by

sk . 6t . 46
=% fU=%, 0=

Note that the following bounds are implied for the dimensionless parameters:

s =s0, dk’

16k’ <1, |ot7|<1, 168°1<1, O<§,<oo
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A dimensionless IMC controller q°(s") can be designed for p“(s*) with the appropriate
filter parameter A° found by interpolating between values listed in Tables 1-4.
The real controller g(s) is related to its dimensionless counterpart as follows:

q(s) = Q};ﬁ

The real controller g(s) will have an IMC filter parameter given by

A=i0

6.2. Simulating the worst case response

The time-domain behaviour of the system can be investigated by simulating
the response of the ‘worst case’ sensitivity function to selected disturbances. When the
regions n(w)c(iw) are located the closest point on each region to (— 1, 0) defines the
sensitivity function s*(w) as in (24). The magnitude of s*(w) at each frequency will be
greater than or equal to the magnitude of any sensitivity function resulting from a
model in (4). The response of s*(w) to different types of disturbances can be determined
by inverse Fourier transform. If the process model is accurate, the integral square
error in the response of the real system to each of these disturbances will be less than
that in the response of s*(w) to the same disturbance. The shape of the response of
5*(w), however, may not resemble the real system response since different models in IT
contribute to s*(w) at different frequencies. Nevertheless, s*(w) can provide a useful
measure of the system’s disturbance rejection capability.

Responses of s*(w) to step disturbances are shown in Fig. 12 for 10 per cent and 50
per cent uncertainty in each of the three parameters k, r and 0 in the first-order with

STEP DISTURBANCE
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®

o
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o
[
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Figure 12. Using the Smith predictors resulting from tuning method A, the responses of s*(w)
to step disturbances are shown for 10 per cent parameter uncertainty (curve 1) and 50
per cent parameter uncertainty (curve 2) in model (6). Responses of the model
p(s) =k exp (—0s)/(ts + 1) with k =k + Ak, =7 + At and 6 = § + A6 are shown using
the same controllers for 10 per cent parameter uncertainty (curve 3) and 50 per cent
parameter uncertainty (curve 4).
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time-delay model. The worst case integral-square-error ||e(t)||3 for these two examples
was calculated to be 2:258 and 6:425, respectively. A real system response to the step
disturbance is shown for comparison at each of the two levels of uncertainty. The three
parameters were specified to be at their highest values in the model used for the real
system response: k =k + Ak, t =7+ At and 6 = 8 + Af. For 10 per cent parameter
uncertainty and 50 per cent parameter the integral-square-error in the response of the
real system to the step disturbance was calculated to be 1:304 and 2-335 for 10 per cent
parameter uncertainty and 50 per cent parameter uncertainty, respectively. The
integral-square-error in the response of the real first-order with time-delay system is
less than that of s*(w). This is to be expected since s*(w) is the worst combination of
parameter values at each frequency (an oco-norm bound on the magnitude of the
sensitivity function) rather than one particular first-order with time-delay model. The
extent to which s*(w) gives a conservative estimate of the two-norm of the error
emphasizes the inherent conservativeness introduced when transfer functions with
real parameter uncertainties are represented by uncertainty regions on the complex
plane—the parametric structure of the process model is lost. It also emphasizes the
lack of clarity in the relationship between oc-norm performance requirements and the
eventual time-domain behaviour of the system.

6.3. Additional applications

Bound 1 and Bound 2 (see the Appendix) provide particularly useful links between
parameter uncertainties and multiplicative error for simple process models. The
bounds can be applied to higher order models if uncertainty can be accurately
represented by variations in three parameters: gain, time-delay and one pole location
or gain, time-delay and one zero location. In MIMO systems where low-order
dynamics g;;(s) with parameter uncertainties can be factored out along the diagonal of
the matrix transfer-function as shown below, the bounds can be applied to approxi-
mate the parameter uncertainties by multiplicative perturbations.

[p”m pu(s)]_[i“m flz(s)}[gum 0 ]
P21(s)  Paals) ]’21(5) izz(s) 0 822(5)

_[/’u(s) ﬂzm][gm(s) 0 }([1 0}+[1m,,<s) 0 D
fa1(®) S0l 0 g9 \[ O 1 0 lnyuls)

Certain types of actuator uncertainty and input uncertainty are accurately described
in this manner (see Skogestad and Morari 1986 for a distillation column example).
Representing MIMO modelling error with different multiplicative uncertainties in
each input direction can be less conservative than representing it with a single
multiplicative perturbation to the whole matrix transfer-function. Approximating the
parameter uncertainties in the MIMO transfer-function matrix with multiplicative
uncertainties 1, (s) and [, .(s) also allows convenient application of structured
singular value analysis for robust performance.

Appendix ) .
Definition of variables
The description (6) for a set of process models can be rewritten as follows:
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p(s)=p'( )M exp [—(F + 60)s]
B T+or)s+1 P
, k + ok s+ 1
p(s)—p(s)fH_ 1 exp(—(fs)[l + < T )((?+5r)s+ 1>exp(—(59s)— 1:, (A1)
p(s)=ps)[1 + [(s)] (A2)
From equations (A 1) and (A 2) we can identify expressions for p(s) and I_(s).
ps)= s exp (=09 (A3)
k + 8k s+ 1
Im(s)=< 3 )((f+6r)s+1)exP(_5gs)_l (A 4)

Bound 1 gives the smallest bound l(w) such that |I,(iw)| < l(w) for all 6k, 6t and 66. The
proof will be approached from the perspective of determining the greatest distance
of I..(s)+ 1 from the point (1, 0). Clearly this distance will be the bound {(w). With
|0k} < Ak, |6t| < At and |66] < A@ all possible values for I (s)+ 1 at one frequency
s =iw can be located inside the boundary ABCDEF sketched in Fig. 13 (Laughlin et al.
1986). Along curve AB 0k = Ak, 61= — At and 660 varies. Along curve BC &k = Ak,
06 = — A0 and 67 varies. Along curve CD 6t =Ar, 60 = — A6 and 6k varies. Along curve
DE 6k = — Ak, 8t = At and 66 varies. Along curve EF, 6k = — Ak, 60 = A6 and 67 varies.
Along curve FA, ét= —At, 60 =A0 and 6k varies. Equation (10) specifies the
frequency w* when arg [A] = 7. Bound 1 claims that point 4 on Fig. 13 is farther from
(1, 0) than any other point on the boundary of the region ABCDEF for frequencies less
than w*. Proving this claim is possible by considering the individual contributions of
gain, time-constant and time-delay uncertainty to I.(s) + 1.

Figure 13. All possible values for /,(s) + | at one frequency s = iw can be located inside the
boundary ABCDEF given the parameter uncertainties in (6). The bound /(w) on the
magnitude of the multiplicative uncertainty is equal to the radius of the smallest disk
centred at (1, 0) that contains the region boundary.
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1+C

(0,0) jo8w| 1,0)

v

Ot

Figure 14. The contribution of time-delay uncertainty to [, (s) + 1.

Figure 14 represents the contribution of time-delay uncertainty to I,(s) + 1; that is,
exp (+[00ls)=1+c and exp(—|86}s) =1+ C. Restrict [68jw <7 to define positive
x=1—cos (66lw) and positive y=sin (|60lw). Then ¢= —x +iy and it is easily
verified that

—2x+x2+y?=0 (AS)

The contribution of gain uncertainty to I,(s)+ 1 is (k+|0k|))k=1+r and
(k — |6k|)/k = 1 — r where positive r = |5k|/k.

Figure 15 represents the contribution of a left-half plane pole uncertainty to
I.(s)+1; that is (ts+ 1)/((T—[0t])s+ 1)=1+b and (Is+ 1)((T+[0t)s+1)=1+d

1+b

(0.0) b s

v

1+d

Figure 15. The contribution of left-half-plane pole uncertainty to I,(s) + 1.
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where b=s+it, d= —p—iq, and positive s, t, p and q are defined below.
oo |67)(T — 107|)w?
T 1+ (T —|61))*?
_ [67|w
T 1+ (7 - |01)}w?
6|z + 167))w?
T+ (T + 107 2w?
_ l24%)
T+ (7 + 101)%?
Since |b| = |d| for all values of w, T > 0, and |97} < T the following inequalities are easily
verified:
sz+t2—p2—q2>0 (A 6)
t—g=0 (A7)
1 1
1+ (@ —101)2w? 1+ (T + |67))°w?

s2+t2+p2+q2+s—p=15r|1?< >>0 (A 8)

The following lemmas will be used in the proof of Bound 1. For brevity they are
presented here without proof. The reader can easily establish their validity via simple
geometrical arguments.

Lemma 1

Consider a circle centered at the origin. Let XY be an arc of the circle passing
through the positive real axis having endpoints X and Y. If Jarg[X]|<~r and
larg [Y]| < m then the point on XY with maximum distance from (1,0) is X if
larg [X]| > larg [Y]| or Y if [arg [Y]| > |arg [X]I.

Lemma 2

Consider a ray originating from (0, 0). Let X YZ be a line segment on the ray with
midpoint Y on or outside the unit circle and endpoint X nearest the origin. The point
on XYZ with maximum distance from (1, 0) is endpoint Z farthest from the origin.

Lemma 3

Consider a ray originating from (0, 0). Let X YZ be a line segment on the ray with
midpoint Y inside the unit circle and endpoint X nearest the origin. The point on
X'YZ with maximum distance from (1, 0) is either endpoint X or endpoint Z.

Proof of Bound 1

Consider Fig. 13 illustrating the region containing possible values for I, (iw) + 1
when T > 0. The following arguments prove that of all points on boundary ABCDEF,
point A is at the maximum distance from (1, 0) at frequencies below w*. -

(1) |4 — 1} is greater than or equal to the distance from (1, 0) to any point on arc
AB (Lemma 1).
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(ii) |A — 1] is greater than or equal to the distance from (1, 0) to any point on
segment FA (Lemma 2).

(iii) The distance from (1,0) to any point on B[ is less than or equal to the
distance from (1, 0) to a corresponding point on AG (Lemma 1).

(iv) The distance from (1,0) to any point on FL is less than or equal to the
distance from (1, 0) to a corresponding point on AG (Lemma 2).

(v) The distance from (1,0) to any point on EL is less than or equal to the
distance from (1, 0) to a corresponding point on DJ (Lemma 1).

(vi) |E — 1] is greater than or equal to the distance from (1, 0) to any point on arc
DE (Lemma 1).

(vii) |4 — 1| is greater than the distance from (1,0) to any other point on AG
because 4G lies outside the unit circle and both magnitude and argument of
A are greater than those of any other point on AG.

(viii) Either |C — 1| or |D — 1| is greater than or equal to the distance from (1, 0) to
any other point on CD (Lemma 3).
(ix) |[A — 1| =2 |C — 1] since
A=12=|IC=12=(0+2r+r}) (s> +12—p*—4q?)
+2y(1+r(t—gq)
+2x(1 +r)(p+3s)+2r(s+p)+2pr’ =0
(Equations (A 5)-(A 8) with r, s, t, p, g, x and y all positive.)
(x) |[A—=1|>=|D— 1] since
[A=12=D—-1P2=(1+r*)s?+1>=p*—q?)
+2r(s2+ 12+ p*+q*+s—p)
+2px(1 —r) + 2y(t — q) + 2ry(t + @) + 25x(1 + 1)
+2pri +4rx+2r3s =0

(Equations (A 5)-(A 8) with r, s, t, p, x, and y all positive.)
(xi) Points on DJ and CI are not farther from (1,0) than point A because
arguments (vii)—(x) can be applied with smaller ét.
Therefore (w)=|A — 1| for w < w*.
For w > w* Bound 1 follows from the triangle inequality and the .fact that the
model described by the extremes of gain, time-constant, and time-delay in Bound 1 is

a member of the set described by (6). . .
The region containing all possible values for I, (iw) + 1 when T <0 is the mirror
image of that in Fig. 13 across the real axis. The same arguments apply for the proofin

this case with s = —iw, hence the change of signs in Bound 1 when 7 <0. a

The proof of Bound 1 motivates a similar bound on the magnitude'of the
multiplicative error when simultaneous parameter uncertainties in process gain, zero
location and time-delay are encountered.

Bound 2: gain, time-delay and zero uncertainty
Consider the following set of process models:

p(s) = p'(s)(k + 8k)((Z + 8z)s + 1) exp [—(F + 86)s] (A9)
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where p'(s) does not contain parameter uncertainties and K, z, 8, 6k, 6z and 6 are

defined by:

k_= kmin + kmax 5= Zmin + Zmax , g‘= Bmin + amu

2 ’ 2
|Ok| < Ak = |k — K| < K], [02] S Az = |2p0s — 2] < |2]
166} < A8 = 10, — 6] < 18]
Define a nominal model j(s) with gain, zero and time-delay at their mean values:
P(s) = p'(s)k(Zs + 1) exp (—Bs) (A 10)

The smallest possible bound /(w) on the multiplicative error [_(s) such that all models
in (A 9) are contained in the set p(s) = H(s)[1 + I(5)] is given by:

<|E| %Ak)((fﬁsiwl+ l)exp(iAGiw)- 1)!, Vo<o* (All)

|kl + Ak \ [ (Z + Az)iw + 1 .
( IK] )( Ziw + 1 )‘“’ Vozo (A 12)

where w** is defined implicitly by:

llw)=

(w)=

. +Azo** _ n .
+Abw +arctan[l+E(z_iAz)w“2]—i7r, ZSABw <n (A 13)
Bound 2 applies to both left- and right-half-plane zeros in (A 3). Top signs are selected
in (A 11)—(A 13) if Z is positive, indicating a left-half-plane zero. Bottom signs are
selected in (A 11)-(A 13) if 7 is negative, indicating a right-half-plane zero.

The similarity between Bound 1 for simultaneous uncertainties in gain, pole
location and time-delay and Bound 2 for simultaneous uncertainties in gain, zero
location and time-delay can be seen by examining I,,(s). The description (A 9) for a set

of process models can be rewritten as follows: '
p(s)=p'(s)(k + 6k)((z + 62)s + 1) exp [ —(F + 66)s]
T ‘ k+6k\/(Z+62)s+1 N
pis) = p'(s)k(Zs + 1)exp(—9s)[l + ( T )( Tt 1 )exp( 66s) lj] (A 14)
P(s) = p(s)[1 + I (s)] (A 15)

From equations (A 14) and (A 15) we can identify (A 10) as the expression for the
nominal model p(s) and the following expression as I (s):

I (s) = (E ?”‘) (‘2 ‘”z_fi)sl“” 1) exp (—66s)— 1 (A 16)

Figure 16 represents the contribution of a left-half plane zero uncertainty to
I(s)+ 1; that is, ((Z +16z])s + 1)/(Zs+ 1) =1+a and (Z—16z))s+ D/(zs+ )=1—a
where a = u + iv with positive u and v defined below.

|6z|Zw?
2
6zlw
PE ¥ 0t
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1+a
v
(0,0) o u >
(1,0)
-a
1-a

Figure 16. The contribution of left-half-plane zero uncertainty to /,(s) + L.

Proof of Bound 2 uses the same arguments used to prove Bound 1. The only
modification required -is that the zero uncertainty replace the pole uncertainty by
setting s = p = u and t = g = vin the proof for the case Z < 0. Subsequently set s = —iw
in the proof for the case Z> 0. The substitution s= —iw necessitates the change of
signs in (6)—(8) for the case z> 0.
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ROBUST PERFORMANCE OF CROSS-DIRECTIONAL
BASIS-WEIGHT CONTROL IN PAPER MANUFACTURING
Daniel L. Laughlin and Manfred Morari

Abstract

The cross-machine-direction (CD) control problem in paper manufacturing is

analyzed from the viewpoint of robust performance. The objective of robust per-

formance is to maintain control-system stability and to satisfy a bound on the
maximum singular value of the closed-loop sensitivity function despite modelling
error. Characteristics common to all CD response control problems including pa-
per basis-weight control are identified. The response of an important actuator for
basis-weight control, the paper machine slice, is described by a single, dimension-
less, design parameter that provides considerable insight about the CD response
control problem. Methods for incorporating CD response -characteristics and mod-
elling error into accurate process models are presented. Interactions in typically
large-dimension (many inputs and outputs) CD response problems are represented
by three standard matrix forms: centrosymmetric, Toeplitz symmetric, and cir-
culant symmetric matrices. Special properties of the three forms relevant to the
CD control problem are identified. The properties enable development of controller
design procedures to meet the robust performance objective despite model interac-
tion uncertainties. The design procedure results in desirable diagonal and banded
controllers. Sufficient conditions allowing design of the robust diagonal and banded
controllers are developed. Stability, performance, and failure-tolerance properties

of the controllers are proven.
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1. Introduction

The cross-machine-direction (CD) control problem in paper manufacturing is
aimed at maintenance of flat profiles of paper sheet properties across the paper ma-
chine. Basis-weight, or paper weight per unit area, is an example of one important
sheet property. Variations in CD basis-weight can result in paper that will not lie
flat. Successful control of CD paper sheet properties can mean significant reductions
in raw material consumption. For example, Eastman Kodak reported a 2.4 percent
reduction in fiber usage as a result of CD control [Carey et al., 1975]. Minimal vari-
ation in CD sheet properties enables operators to produce thinner paper closer to
the target caliper. Additional motivations cited for better CD control in the paper
manufacturing industry include: increasing demand for greater production rates;
improving product quality despite a high turnover rate in the work force resulting
in inexperienced operators; eliminating breaks, rewinds, and rejects; and reducing

energy consumption [Wallace, 1981].
1.1. Control System Robustness Objective

The purpose of this paper is to analyze the CD response control problem from

the perspective of robust performance. In this section the objective of robust perfor-
mance is mathematically defined. The formulation is done in a manner consistent
with the new theory by Doyle (1982, 1987]. First, a set of possible models II is
used to express uncertainty in knowledge of the physical system to be controlled.
Control system requirements are then proposed — two universal requirements for
the control system illustrated in Figure 1 are stability and acceptable attenuation
of the disturbance in the output. If a controller satisfies these requirements for the
whole set II, it is said to exhibit robustness with respect to the modelling errors.
Exactly what is meant by stability and acceptable attenuation of disturbances is

defined in the following two sections.
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1.1.1 Robust Stability

Nominal stability of the control system in Figure 1 for one process model Is(s) €

IT and robust stability for the whole set II are defined as follows:

Definition 1 — Nominal Stability: The control system in Figure 1 with controller

C(s) and process Is(s) is stable if and only if all of its closed-loop poles are in the
left-half plane.

Definition 2 — Robust Stability: The control system in Figure 1 with controller C(s)

and process P(s) € II is robustly stable if and only if it is stable for all P(s) € II.
1.1.2. Robust Performance

Before defining robust performance, it is necessary to define what is meant by
performance of the control system in Figure 1. The performance of a control system
is defined in terms of a weight W (s) restricting the magnitude of the closed-loop,
sensitivity function [I + P(s)C(s)] .

Definition 3 — Nominal Performance: The control system in Figure 1 with controller
C(s) and process P(s) = 13(3) exhibits performance if and only if it is nominally
stable and

SUP Opnas (W(s) [1+ P(s)C(s)] _1> <1. (1)

s=tw
Since the sensitivity function relates system outputs y(s) to disturbances d(s), it
is desirable that it have low magnitude. It is convenient to select a weight W (s)
equal to scalar w(s) times identity as in Equation 2, with parameter 0 < < 1 and

parameter a > 0.

(2)
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If a control system satisfies the performance requirement 1 with weight w(s) given
by 2, it will have a bandwidth of at least 1/a. The magnitude of a weight |w(s)| with
b =1/2 and a = 4 is illustrated in Figure 2. The concept of robust performance

now follows from that of nominal performance.

Definition 4 — Robust Performance: The control system in Figure 1 with controller
C(s) and process P(s) € II exhibits robust performance if and only if it is nominally

stable and the bound 1 is satisfied for all P(s) € II.

The supremum of the maximum singular value in 1 over all frequencies and over
all process models P(s) € II is Doyle’s “structured singular value” u for weighted
sensitivity function problems. In this work the symbol p(w) will denote the supre-
mum of the maximum singular value in 1 over all process models as a function of

frequency.

1.2. Controller Design Strategy

Design procedures are presented in Section 6, which result in desirable diag-
onal and banded controllers for CD response control systems with typically large
dimensions (large numbers of inputs and outputs). In Sections 4 and 5 it is shown
that the eigenvalues of useful CD response models can be bounded on a segment
of the positive real axis. The segment is then interpreted as gain uncertainty in a

SISO process model of the form p(s) given in Equation 3.

— _[ain;(s) + ... + ayni(s) + aono(s) ] _o.,
T = {p(s) p(s) = k[ bdh(3) T T b () T Bodo(s) }e } (3)

aj € [aJ‘min’ajmu:]’ bl € [blmin’blma.z]

ke [kmins kmaz]s 0 e [0min, ema:z]
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In Equation 3 the terms n;(s), and d;(s) are exact functions, while real numerator
coefficients a;, denominator coefficients b;, gain k, and time-delay # are bounded
by minimum and maximum values. Since the real parameters in Equation 3 are
inexactly known, 7 in Equation 3 represents a set of process models. Laughlin et al.
[1986] have developed a procedure for designing SISO controllers ¢(s) that exhibit
robust performance in control systems with processes p(s) € . These controllers
are modified in an appropriate manner to develop robust MIMO controllers for CD

response control systems.

Analysis tests used to ensure that SISO controllers c(s) exhibit robust perfor-
mance are based on regions 7(iw) on the complex plane containing all possible p(iw)
in Equation 3. A method for locating these regions can be found in Laughlin et al.
[1986]. Once these regions are located, a convenient test for SISO robust stability

based on the familiar Nyquist stability test can be applied.

Nyquist Stability Test — SISO Nominal Stability: The SISO system in Figure 1

with controller ¢(s) and nominal model p(s) is stable if and only if the number of
clockwise (positive) encirclements of (—1,0) b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>