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Abstract

We study the nature of various quantum phase transitions corresponding to the onset of
superfluidity, at zero temperature, of bosons in a quenched medium. Particle-hole symmetry
plays an essential role in determining the universality class of the transitions. To obtain a
model with an exact particle-hole symmetry it is necessary to use the Josephson junction
array Hamiltonian, which may include disorder in the Josephson couplings between phases
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yields a (d+ 1)-dimensional classical XY -model with extended disorder, constant along the
extra imaginary time dimension — the so-called random rod problem. Particle-hole symmetry
may then be broken by adding nonzero chemical potentials or site energies, which may also
be site dependent and random. We may then distinguish three cases: (i) exact particle-hole
symmetry, in which the site energies all vanish, (ii) stafistical particle-hole symmetry in
which the site energy distribution is symmetric about zero and hence vanishes on average,
and (iii) complete absence of particle-hole symmetry in which the distribution is generic. We
explore in each case the nature of the excitations in the nonsuperfluid Bose glass phase. We
find, for example, that the compressibility, which has the interpretation of a temporal spin
stiffness or superfluid density, is positive in cases (ii) and (iii), but that it vanishes with an
essential singularity as full particle-hole symmetry is restored. We then focus on the critical
point and discuss the validity of various scaling arguments. In particular, we argue that
the dynamical exponent z could be different from d, and the arguments leading to their
equality are incorrect. We then discuss the relevance of a type (ii) particle-hole symmetry
breaking perturbation to the random rod critical behavior, identifying a nontrivial crossover
exponent. This exponent cannot be calculated exactly but is argued to be positive and the
symmetry breaking perturbation therefore relevant. We argue next that a perturbation of
type (iii) is irrelevant to the resulting type (ii) critical behavior: the statistical symmetry
is restored on large scales close to the critical point, and case (ii) therefore describes the

dirty boson fixed point. Using various duality transformations we verify all of these ideas in
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one dimension. To study higher dimensions we attempt, with partial success, to generalize
the Dorogovtsev-Cardy-Boyonovsky double epsilon expansion technique to this problem.
We find that when the dimension of time €, < € ~ % is sufficiently small the symmetry
breaking perturbation of type (ii) is irrelevant, but that for sufficiently large e, > €< this is
a relevant perturbation and a new stable commensurate fixed point appears. We speculate
that this new fixed point becomes the dirty boson fixed point when e, = 1. We also show
that for e, < 1, there exists a particle-hole asymmetric fixed point of type (iii), but we
provide evidence that it merges with the commensurate fixed point for some finite e, =~ %
This tends to confirm symmetry restoration at the physical ¢, = 1.
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Chapter 1

Introduction

There has been much excitement in recent years with the discovery of novel zero tempera-
ture quantum phase transitions in condensed matter systems. These transitions are driven
entirely by quantum fluctuations in the ground state wavefunction. In many cases a crucial
requirement is the presence of quenched disorder. Examples include random magnets with
various kinds of site, bond [1], or field [2] disorder; the transitions between plateaux in the

Tall effects [3]; metal-insulator [4], metal-superconductor, and

]

two-dimensional quantized
superconductor-insulator [5] transitions in disordered electronic systems; and the onset of
superfluidity of He in porous media [6].

Here we will be studying the zero-temperature superfluid-insulator transition for bosons,
with short range repulsion, moving in both periodic and random external potentials. This
was motivated by the problem of the onset of superfluidity in a porous media, such as Vycor
Glass. However, as is often the case in the study of critical phenomena, the universality
class of this transition, or a straightforward generalization of it, also includes other physical

phenomena, including many aspects of quantum magnetism and superconductivity.

1.1 Helium in Vycor Glass

Although the basic bulk superfluid transition has been studied for several decades, it is only
comparatively recently that we have been looking at the superfluid transition under more
exobic conditions. Motivated to some extent by experiments on the Kosterlitz-Thouless
transition in two-dimensional thin films [7], experimentalists began to explore the behavior
of *He absorbed in various porous media, especially Vycor glass [8]. One interest was
in very low coverages of helium, with the expectation that the resulting thermodynamic
behavior might appear two-dimensional. The great surprise was that over a wide range
of coverage of helium in Vycor, superfluid density data demonstrated clear bulk three-

dimensional behavior. Even more surprising was the behavior at ultra-low coverages, where
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the interatomic spacing is of the order 50 to 100A, 20-30 times the helium effective hard-core
diameter, a. There is aways a localized /frozen “inert” monolayer or so, of density p. and
we define the effective density, p, is the total density minus the density of this inert layer.
In this regime of ultra-low p (of order 1% of p.), the superfluid density profiles resembled
those of a an ideal Bose gas, vanishing nearly linearly as T(p) is approached.

The interpretation of these observations is that the pores are interconnected and the
atoms move throughout a three-dimensional volume. Hence the three-dimensional nature of
the phase transition. The characteristic size of an atomic wavepacket is set by the thermal
de Broglie wavelength Ap = h/(2rmkpT)/?, where m is the mass of the helium atom. At
ultra-low coverages, and low temperatures, A7 becomes of the order the pore size. In this
limit, one could imagine helium behaving like a dilute Bose gas in which the only role of
the porous medium could be to yield an effective mass m.ys, and some effective interatomic
scattering potential [9]. A key effect of the porous medium must be to screen out the
long range attractive tail of the interatomic potential in order to preempt condeunsation.
The superfluid transition in an ideal Bose gas takes place when the interatomic separation,

2/3 Thus at such low coverages 75 is strongly

ds ~ A7, hence we may estimate T)\(p) ~ p
suppressed, and at the superfluid transition the dilute Bose gas picture should hold. This
picture seems to agree reasonably well with experiments.

However, the problem with the above effective medium picture is that it does not account
for the disorder or randomness inherent in porous media. The effect of disorder near a
critical point can be very serious, sometimes completely changing the universality class of
the transition. There is a simple criterion, called the Harris criterion [10], which determines
when this happens: if the specific heat exponent, «, of the pure nonrandom transition
is positive, then disorder is relevant and changes the nature of the transition, else it is
irrelevant. For bulk “He, a: &~ —.0126, is negative. However, for low coverages the critical
behaviour crosses over to that of an ideal Bose gas, with specific heat exponent o = 1/2,
a strongly positive value. Thus we expect disorder to have an increasingly stronger effect
at low coverages. For Vycor, the disorder on long length scales is believed to be extremely
weak, making it hard to look for the effect of disorder. However, trying to understand
its effect takes us into the realm of localization effects and quantum phase transitions in
interacting boson systems.

Quantum phase transitions are those that occur at zero temperature, where fluctuations
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are entirely due to the Heisenberg uncertainty principle, i.e. the fact that certain observables
do not commute with the Hamiltonian. For Helium in Vycor glass, the superfluid transition
temperature decreases with coverage, and vanishes at some critical coverage, p.. Below this
coverage superfluidity ceases to exist even at T=0. Alternatively, at T=0, if we vary the
coverage p the system passes from an insulating localized phase at p < p. to a superfluid
phase at higher values of p. This insulator-superfluid transition at T=0 is a quantum phase

transition.

1.2 General theory

Localization transitions in fermions have received a lot of attention [4]. There, for a given
external potential, it is believed that one has low energy localized states separated from

higher energy extended states by a mobility edge. Therefore if free fermions are added to
such a system at T=0, two per state, one first fills up the localized levels until a critical
density p. is reached, at which point all states below the mobility edge are filled, then any
excess density p. goes into the extended states. These excess electrons are free to move
about the entire system, and contribute to the conductivity. This Anderson metal-insulator
transition is another example of a quantum phase transition. As we aproach the transition
from the insulating side, the localization length & ~ |p|™¥ for p < 0, and measures the
diverging linear extent of the localized states as the mobility edge is approached. The
exponent v is highly nontrivial.

Building upon the above picture, we now consider bosons instead of fermions. It is
immediately apparent that repulsive interactions are crucial: without them the ground
state of the system would consist of all particles occupying the lowest energy single-particle
localized state. Any kind of short range repulsion would preclude behavior of this type. It
is essential to have short range repulsion to get a superfluid onset transition. The insulator-
superfluid transition is a consequence of the competition between the kinetic energy, which
tries to delocalise the particles and reduce phase fluctuations, and the random potentials
which try to pin down the particles and hence increase phase fluctuations. This competition,
in conjunction with short range repulsion, plays an essential role in the analysis of this
transition. A crude picture of what happens is the following: as particles are added to

the system they occupy the lower-lying localised states. As the density is increased, short
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range repulsion become important, and beyond a critical density, p., excess particles go
into extended states, just as in the free fermion case. This picture provides a framework
for a microscopic description of the formation of the frozen “inert” layer in Vycor, and an
intuitive argument for the existence of a critical density p..

To obtain a more precise picture, it is convenient to begin with a simple lattice boson
model with nearest neighbor hopping and an onsite repulsion U > 0. Disorder could be
incorporated in both the random site energies ¢; and the hopping J;;. Thus we consider

the second-quantized Hamiltonian, sometimes called the boson Hubbard model,

1 A
Hp = ) > i [ala; + a;f-ai] + > (& — p)iy
& i
i .
+ 5D Vigha(iy = 8i3), (1.1)
i?j

where #; = af;a; is the site number operator and 1 the overall chemical potential. The index
1 is assumed to label the lattice sites which could be thought of as idealized pores. For this
model there exist three different phases: the Mott insulating phase, the Bose glass phase
and the superfluid phase. For the Mott phase, each site has an integer number of particles,
n, per site. This is a localized, incompressible phase. In the Bose glass phase, quasiparticie
and quasihole excitaions are trapped by disorder. This is a localized but compressible phase,
the Bose equivalent of the Fermi glass. The superfluid phase is characterized by long-range
order. We will discuss the phase diagrams in Chapter 2. It is believed that in the presence
of disorder, the onset to superfluidity always occurs from the Bose glass phase. Only in the
absence of disorder can one get a direct Mott to superfluid transition.

Considerable progress in the understanding of transition has been made [6]. Various
scaling arguments have been proposed. Many of the detailed results come from Monte
Carlo simulations [11]. They provide the best numerical estimates of the critical exponents
in 2 dimensions. The basic phase diagrams have been verified in 1 and 2 dimensions (though
there is some controversy about whether the Bose glass phase mediates between the Mott
and superfluid phases, at certain special commensurate points). Recently it has also been
demonstrated that in mean field theory one can can obtain a Bose glass phase, though only
as a line separating the Mott and superfluid phases [14].

The main motivation for the present work is an attempt to find a satisfactory dimen-
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sionality expansion about the upper critical dimension for the transition (analogous to the
epsilon expansion about d = 4 for classical spin problems). A previous attempt [12], al-
though yielding very reasonable answers, encountered technical difficulties which were never
satisfactorily resolved. In this paper we shall resolve these difficulties, demonstrating that
the situation is far more complex than was assumed in [12]. In particular, we shall ar-
gue that the approach [13] based on a simultaneous expansion in both the dimension, e,
of imaginary time (physically equal to unity), and the deviation, ¢ = 4 — D, of the total
space-time dimensionality, D = d + €., from four does not yield a perturbatively accessible
renormalization group fixed point, and therefore does not produce a systematic expansion
for the dirty boson problem. Nevertheless it does produce nonsystematic estimates for the
fixed point properties and we shall argue that certain basic features, such as the mechanism
by which mean field theory becomes valid above d = 4, were correctly predicted by the
original calculation [12]. A key issue that has to be taken into account is particle-hole sym-
metry, which plays a major role in determining the universality class of the transition. We
provide support for statistical particle-hole restoration at the critical point for the generic

transition.

1.3 Applications in superconductivity

It would be worth mentioning possible examples of disordered Bose systems besides helium.
These include, in particular, two-dimensional granular and amorphous superconductors,
and magnetic Aux phases of high T, superconductors.

Superconductor-insulator transitions are observed in granular films, prepared by deposit-
ing soft metals such as Sn, Pb, Ga, Al, and In on insulating sustrates [5]. The starting point
for comparisons between such granular superconductors and superfluidity is the Josephson

junction array Hamiltonian
Hy = —>. Jijcos(di — i) + > (& = i)
4 i
1 . ,
-+ 5 Z Uijninj, (1'2)
ihj

where ggl is the phase operator on grain i, and 7; is the conjugate number operator which

measures the deviation of the number of Cooper pairs on grain 7 from some reference value
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Np. The idea is that there exists the usual Josephson coupling between the superconducting
grains, giving rise to the jijcos(qgi — qASJ) term. The U term is the so-called charging energy
which disfavors large fluctuations in the 71;. We will talk more about the detailed connection
between the Josephson Hamiltonian and the boson Hamiltonian in Chapter 2. The general
structure of the phase diagram is similar, with Mott, Bose glass, and superfluid phases
present in both systems. The critical behavior is also believed to be the same.

The essence of the equivalence between granular superconductors and superfluids is the
assumption of the existence of well defined Cooper pairs well before actual superconductivity
occurs. Thus the operators ngi, n; are well defined even above the critical temperature. In
granular systems this assumption is valid because individual grains are usually sufficiently
large that they behave like small pieces of bulk superconductor, and order at the bulk
transition temperature, 7. Ordering between grains, mediated by the Josephson coupling
J, occurs at a much lower temperature Tc(j ) < T2. Thus well defined Cooper pairs exist
within each grain and may be treated to a good approximation as bosons. To the extent
that all excitations of a fermionic character, such as pair-breaking and residual interactions
with normal electrons are separated from the bosonic excitations by a finite energy scale
AFE > TC(J~ } this treatment should be exact near the critical point.

For amorphous systems, such as Bismuth films, without well defined grains, the validity
of the boson model is less clear. However, it can be argued [15] that in dirty systems, the
role of grains is played by localized states in which it is favourable to put pairs of electrons.
Nearby localized states are then assumed to interact via some effective Josephson coupling,
eventually leading to bulk superconductivity. An experimental signal of this would again
be the existence of a well defined energy gap between hopping of localized Cooper pairs and
single electron-type excitations.

As a final example of boson physics in electronic systems, we mention the exotic magnetic
fluxes of high-temperature superconductors. Using the Feynman path-integral formulation
of boson statistical mechanics, one may view the flux lines in the mixed phases of high
T, compounds as boson world lines, with time progressing parallel to the applied field [16].
The sample thickness then represents the effective inverse temperature of a two-dimensional
system of interacting bosons. For columnar disorder, superconducting crystals (e.g. YBCO)
are bombarded with energetic heavy ions of tin, iodine or lead to produce columnar pins for

the flux lines. For the magnetic field aligned in the direction of the columns, the system can
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be mapped onto the disordered boson model, and one expects similar phases in this system.
The superfluid phase corresponds to an entangled flux fluid phase, while in the Bose glass
phase the flux lines get pinned by the columns [17]. The Meissner phase corresponds to a
Mott insulating phase. This provides us with a more visual picture of the transitions.

There has also been a lot of attention devoted to the case of “point” impurities in the
form of, say, oxygen vacancies. Here the bosons see a time-varying as well as spatially
varying random potential [18]. So, instead of the conventional Bose glass, one has instead
5 “vortex glass.” Very little is understood about this phase, or the superfluid—vortex glass
transition. One can easily write down a standard functional integral representation of this
system. However we find that in the limit of short range (onsite) repulsion this model
does not show a digsorder mediated transition at all for a three-dimensional sample. So,
the nature of this transition, perhaps dominated by longer range interactions, is an open

questiot.

1.4 Outline

The outline of the remainder of this thesis is as follows. In Chap 2 we discuss the role of
particle-hole symmetry in the context of the two Hamiltonians (1.1) and (1.2). We discuss
the phase diagrams and introduce various useful functional integral formulations for the
thermodynamics. We begin in Chap. 3 by considering the role of particle-hole symmetry
in the nature of the excitation spectra of the glassy phases. Using a phenomenclogical
model in which we view the structure of the Bose glass phase as a set of random sized,
randomly placed isolated superfluid droplets, we focus on the density and compressibility
and examine how they vanish as full particle-hole symmetry is restored. In Chap. 4 we
begin focusing on the critical point through various phenomenological scaling arguments.
In particular we identify a new crossover exponent that describes the relevance of particie-
hole symmetry breaking perturbations to the random rod critical behavior. We also discuss
the asymptotic restoration of statistical particle-hole symmetry at the dirty boson critical
point. In Chap. 5 we illustrate all of these ideas using an exactly soluble one-dimensional
model. The analysis is very similar to that of the Kosterlitz-Thouless transition in the
classical two-dimensional XY -model. In Chap. 6 we generalize the previous analyses to

general €, # 1, observing along the way some apparent pathologies that make ¢, = 1 very
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special, leading one to question how smooth the limit ¢, — 1 might be. We then introduce
the Dorogovtsev-Cardy-Boyanovsky double epsilon expansion formalism, the calculations
support asymptotic particle-hole restoration at the critical point. Finally, two appendices
outline the derivations of various path integral formulations and duality transformations

used in the body of the thesis.



Chapter 2

Lattice models and particle-hole symmetry

It will transpire that an essential ingredient that is necessary in order to correctly understand
the physics is an extra “hidden” symmetry, which we call particle-hole symmetry, that
is present at the critical point, but not away from it. To make this notion precise, we
compare the following two lattice models of superfluidity: the first is the usual lattice boson

Hamiltonian,

1 , : .
He = —5 3 Jylela; +ala] + Y (i — iy
0j
1 o \
+ 5 2 Vighaliy = 8iz), @1)
i7j

where J;; = Jj; is the hopping matrix element between sites ¢ and j, which we will allow to
have a random component; p is the chemical potential whose zero we fix by choosing the
diagonal components, Jy;, of J;; in such a way that > Jij = 0 for each i; ; is a random site
energy with mean zero; V;; = V}; is the pair interaction potential, assumed for simplicity to
be nonrandom; the only nonzero commutation relations are [ai,a}] = 4y, and 7y = a;-[ai is

the number operator at site ¢. The second is the Josephson junction array Hamiltonian,
Hy = = Jijeos(i—§y) + D (& — i)
i i
1 .
+ 3 Z Uijiifig, (2.2)
Z!j
with analogous parameters, but now the commutation relations [cﬁzﬁjj = 1d;5. These two

Hamiltonians are, in fact, very closely related. It is easy to check that if Ny is any positive

integer then

af = (No + ﬁz)%eml

a; = e i (Ny + 7;)3 (2.3)
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satisfy the correct Bose commutation relations, and we identify 71; = Ny+7;. Note, however,
that the commutation relations between ngi and 7; permit 7; to have any integer eigenvalue,
positive or negative, whereas the eigenvalues of 7; must be non-negative. Therefore it is
only when Np is large, and the fluctuations in 7i; are small compared to Ny, that H; and

‘Hp may be compared quantitatively: inside the hopping term we may then approximate
1

. > L
al ~ Ng e g & Ng e~ and make the identifications
~ _ . ~ 1
Jij = NoJigy Uy = Vigs & = ei; o = p— NoVo ~ 5V, (2.4)
where Vy = V; and VO = Zj Vi, and there exists an overall additive constant term EqN =

(%Nof/o + Vo — u)NoN, where N is the number of lattice sites.

an exact discrete symmetry which the boson Hamiltonian lacks. Thus the constant shift,
7, = 7i; + ng, where ng is any integer, has no effect on the commutation relations or the

eigenvalue spectrum of the 7,;. The Hamiltonian correspondingly transforms as
Ho{Ai} = H{n}t +nolo Y 7is + Nel(ng, ), (2.5)

where €%(ng, i) = no(%ngﬁ[‘; — ), and Uy = >-; Uij. The free energy density, f; =

_3%\7 In {tr e_m[J], where 8 = 1/kgT, transforms as

Fi(i) = fr(ii — noUs) + €%(no, ) (2.6)

independent, of the jl-j and &;. This implies that the only effect of a shift ngly in the
chemical potential is a trivial additive term in the free energy which is linear in f. This
term serves only to increase the overall density, n = —%%, by ng but otherwise has no
effect whatsoever on the phase diagram, which therefore will be precisely periodic in f,
with period U.

Consider next the transformation 7, = —7;, ¢, = —¢;. The Hamiltonian transforms as

Hgl7is, &, & — i) = Hosliis, i, — (& — 1)), (2.7)
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so that
fJ(/]’? {‘i}) = fJ(_/]ﬂ{_éi})' (28)

Combining the two symmetries (2.6) and (2.8) we see that if all & = 0, then for i = ji =
%kﬁo, where k is any integer, the Hamiltonian possesses a special particle-hole symmetry,
namely invariance under the transformation 7] = k — ;, qg’ = —gg. At ji = [ip the density is
precisely %k per site, and the thermodynamics is symmetric under addition and removal of
particles (the removal of particles being synonymous with the addition of holes). If the ¢;
are nonzero, but have a symmetric probability distribution, p{&;} = p{—£&;}, then the exact
particle-hole symmetry is lost, but there still exists a statistical particle-hole symmetry at
the same special values fiy, of ji: self averaging will ensure that f;(ix,{€;}) = fr(ak, {—&}).
The lattice boson Hamiltonian (2.1) clearly can never possess either form of particle-hole

symmetry since the hopping term mixes the number and phase in an inextricable fashion.

2.1 Phase diagrams

In Fig. 2.1 we plot the zero temperature phase diagram in the fi-Jy plane, where Jp is a
measure of the overall strength of the hopping matrix, e.g. Jy = % Diskj jij, in the simplest
case of onsite repulsion only: U;; = Updy;. [Further neighbor interactions substantially
increase the complexity of the phase diagram in the absence of the random site energies,
€¢;. One can, in principle, generate Mott insulating phases with arbitrary rational densities
(“charge density wave” states). Generically, only the integer fillings are stable against
small disorder since the fractional fillings necessarily break the lattice translation symmetry,
leading to multiply degenerate ground states related by a discrete translation. It is not
hard to see that arbitrarily small random ¢; will always generate rare regions where it is
energetically favorable to form two such states with a domain wall between (R. Shankar,
public communication). If one allows negative further neighbor hopping matrix elements,
Ji;, one can also generate supersolid phases which break both lattice translational symmetry
and XY-phase symmetry, i.e. superfluid charge density wave states [19].] This phase
diagram has been discussed in detail previously [6, 11] for the lattice boson Hamiltonian,
Hp. Here we emphasize the features unique to H, namely the periodicity in f, and the
special points fig, corresponding to local extrema in the phase boundaries. In Fig. 2.1(a) we

show the phase diagram in the absence of all disorder. For J;; = 0 the site occupancies are
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good quantum numbers and each site has precisely ng particles for ng — % < i1/Up < ng+ %
The points /Uy = k+% for integer k are 2V fold degenerate with either k or k+1 particles
placed independently on each site. For J;; > 0 communication between sites occurs and the
effective wavefunction for each particle spreads to neighboring sites. We denote by &(ji, Jo)
(to be defined carefully later) the range of this spread. One can show within perturbation
theory [6], however, that for sufficiently small, short ranged J;;, the overall density remains
fized at ng. Consider first fi # 0. Then only at a critical value Jy o(f1) of Jo does the system
favor adding extra particles (or holes). Equivalently, for a given Jy there is an interval
fi(Jo) < i < fig-(Jo) of fixed density ng. These extra particles may be thought of as a
dilute Bose fluid moving atop the essentially inert background density, ng. The physics
is identical to that of a dilute Bose gas in the continuum, and is well described by the
Bogoliubov model [20], [21]. From this one concludes that the system immediately becomes
superfluid (recall that we assume T' = 0) with a superfluid density ps ~n —ng ~ Jo — Jo ,
and an order parameter 1 = {ei‘ii) ~(n— ﬂg)% ~A{(J - J’O,c)%n The characteristic length in
this phase is £ = Jo% / [ﬁw;}i(Jo)]% ~ (n-no)_% ~ (Jo——JoYc)'% and represents the distance
between “uncondensed” particles: n — ng — |1hg|? ~ & 4 This zero-temperature superfluid
onset transition is therefore trivial, in the sense that all exponents are mean-field-like. In
fact, historically this onset has never been viewed as an example of a phase transition.
Furthermore, although all quantities vary continuously as Jy decreases toward Joe, the
actual onset point is entirely noncritical. For a given value of Jy within a Mott lobe, the
interval fi_(Jp) < fi < fiy(Jo) represents a single unique (incompressible) thermodynamic
state. Thus incompressibility implies that for the given (integer) density, the value of the
chemical potential is ambiguous. One might just as well set i = nglUy, its value at the
center of the lobe. The correlation length, £(f, Jy), is then independent of fi, and remains
perfectly finite in the Mott phase at Jy (/). In this sense the transition has some elements
of a first order phase transition.

The more important transition is the one occuring at fixed density, n = ng, at i = ngUg
through the tip of the Mott lobe at Jp(0). At this transition £(Jp) ~ (Jo,c — Jo) ¥ diverges
continuously with a characteristic exponent, v. One may show (see Ref. [6] and below) that
the transition is precisely in the universality class of the classical (d + 1)-dimensional XY -
model. What distinguishes this transition from the previous ones is precisely particle-hole

symmetry: superfluidity is achieved not by adding a small density of particles or holes atop
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Figure 2.1: Zero temperature phase diagram for the Josephson junction model. (a) The
model without disorder, showing the periodic sequence of Mott lobes (MI) and the superfluid
phase (SF). The transitions to superfluidity at the tips of the Mott lobes are special and
are in the universality class of the (d + 1)-dimensional XY -model. The points pj have an
exact particle-hole symmetry. (b) The model with disorder, showing the now shrunken {or
even absent, if the disorder is sufficiently strong) Mott lobes, and the new Bose glass phase
that now intervenes between them and the superfluid phase. The transition to superfiuidity
now takes place only from the Bose glass phase (BG), and it is believed that the nature of
this transition is independent of where it occurs, even at the special points u; which now
have only a statistical particle-hole symmetry.
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the inert background, but by the buildup of superfluid fluctuations within the background,
to the point where particles and holes simultaneously overcome the potential barrier Uy and
hop coherently without resistance.

We have already observed that the lattice boson Hamiltonian (2.1) never has an exact
particle-hole symmetry. Nevertheless one still has Mott lobes (now asymmetric and decreas-
ing in size with ng) for each integer density, and a unique extremal point, [Jo (no), te(n0)],
at which one exits the Mott lobe at fixed density n = ng. One may show [6] that the
transition through these extremal points is still in the (d + 1)-dimensional XY universality
class, and that particle-hole symmetry must therefore be asymptotically restored at the
critical point. The difference now is that there is a nontrivial balance between the densities
of particle and hole excitations, and the interactions between them. The position of the
critical point is no longer fixed by an explicit symmetry, but must be located by carefully
tuning both the hopping parameter and the chemical potential.

This phenomenon of “asymptotic symmetry restoration” at a critical point is actually
fairly common (and we shall see it again below). For example, though the usual Ising
model of magnetism has an up-down spin symmetry, the usual liquid vapor or binary liquid
critical points do not. However the Ising model correctly describes the universality class of
the transition, and one concludes that the up-down symmetry must be restored near the

critical point. Similarly, the p-state clock model with Hamiltonian

o~
o
Re)
N’

H = -JZCOS L—\qi -G, %=12,...,p,
(ig
which may be thought of as a kind of discrete XY-model, has for sufficiently large p (specif-
ically, p > 4 in d = 2; clearly p = 2 corresponds to the Ising model and p = 3 to the
three-state Potts model) a transition precisely in the XY-model universality class. Note,
however, that in the ordered phase, corresponding to the zero temperature fixed point, the
order parameter will (for d > 2) spontaneously align along one of the p equivalent directions,
gi, breaking the XY-symmetry and generating a mass for the spin-wave spectrum. This
latter property is not relevant in the present case since breaking particle-hole symimetry
does not break the symmetry of the order parameter: the nature of the superfluid phase is
unaffected.

Consider now the phase diagram, Fig. 2.1(b), in the presence of disorder. We see that
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the Mott lobes have shrunk (and may in fact disappear altogether for sufficiently strong
disorder), and a new phase, which we call the Bose glass phase, separates these lobes
from the superfluid phase [6]. In this new phase the compressibility is now finite, but
the particles do not hop large distances due to localization effects: particles on top of the
inert background still see a residual random potential, whose lowest energy states will be
localized. As particles are added to the system, bosons will tend to fill these states until
the residual random potential has been smoothed out sufficiently that extended states can

form, finally yielding superfluidity [6].

2.2 Criticality and particle-hole symmetry

We will consider two types of disorder: (i) disorder in the hopping parameters, j,ij, and (ii}
onsite disorder in the &;. If i # [ for any k, that is if particle-hole symmetry is broken,
we expect the two types of disorder to yield the same type of phase transition. In renor-
malization group language, each in isolation will generate the other under renormalization.
If i = iy and the & have a symmetric distribution about zero so that the Hamiltonian
possesses a statistical particle-hole symmetry, the obvious question is whether or not the
transition in this case is different from the one in the presence of generic nonsymmetric dis-
order. We shall argue below that it is not, i.e. that breaking particle-hole symmetry locally
is not substantially different from breaking it globally, and that in fact statistical particle-
hole symmetry is asymptotically restored at the critical point. (This idea has been used
to explain the vanishing of the Hall conductivity at magnetic field-tuned superconducting
transitions [22].) Only if 4 = jig and & = 0 does the disorder fully respect particle-hole
symmetry. We shall see that in this case the transition is entirely different, lying in the
same universality class as the classical (d + 1)-dimensional XY -model with columnar bond
disorder, precisely the kind of system addressed in Ref. [13].

The significance of the restoration of a statistical particle-hole symmetry at the critical
point is the following. In Ref. [12] only the boson Hamiltonian (2.1) was considered, and a
fixed point sought only in the space of parameters accessible to this Hamiltonian. Such a
fixed point can therefore never possess a statistical particle-hole symmetry. However if the
true fixed point does possess this symmetry, it is clear that it must then lie outside the space

of boson Hamiltonians of the form (2.1). Accessing this fixed point requires an enlargement
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of the parameter space so that both particle-hole symmetric and asymmetric problems may
be treated within the same model. The Josephson junction array Hamiltonian, (2.2), satis-
fles this requirement. We shall see that, indeed, a new statistically particle-hole symmetric
dirty boson fixed point can be identified, and that all technical problems encountered in
Ref [12] may then be avoided. Specifically, certain diagrams that were ignored in Ref. [12]
are in fact important and accomplish the required enlargement of the parameter space.
There is, however, a price: this new fixed point is not perturbatively accessible within the
double epsilon expansion. Thus, the random rod problem may be analyzed for small ¢ in
d =4 — € — ¢, dimensions if the dimension, €., of time is also small [13]. We find, however,
that for small € and ¢, site disorder is irrelevant at the random rod fixed point, and that
full particle-hole symmetry is therefore restored on large scales close to criticality. This
remains true for sufficiently small e, < (D), with €2(D) = O(1). Only for e, > €£(D)
does a new fixed point appear which breaks full particle-hole symmetry. Extrapolation of
the critical behavior associated with this new fixed point, though uncontrolled, shows sig-
nificant similarities to some features of the known behavior at €, = 1. To lowest nontivial
order in ¢, we find €£(D = 4) ~ £ (D = 4, hence € = 0, corresponding to d = 3 at ¢, = 1).
This value of €& is significantly less than unity, and leads us to hope that estimates based
on these extrapolations from small €, are not too unreasonable. Also, particle-hole asym-
metry, which is relevant for small values of €., seems to become irrelevant at €, > €,1, and
for € = 0, we obtain an estimate ;1 ~ 2/3. This supports our argument that at criticality

statistical particle-hole symmetry is restored.

2.3 Functional integral formulations

In order to obtain a formulation of the problem more amenable to analytic treatment, we
turn to functional integral representations of the partition function. It will turn out to
be important to have an exact representation. Representations which involve dividing the
Hamiltonian into two pieces, H = Hg + Hi, then using the Kac-Hubbard-Stratanovich
transformation to decouple H;, generate effective classical actions with an infinite number
of terms, which must then be truncated at some finite order [6]. In addition, such represen-
tations work only when i lies within a Mott phase when Jy = 0, and hence break down for

unbounded, e.g. Gaussian, distributions of site energies. We turn instead to representations
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obtained from the Trotter decomposition (see App. A). For the lattice boson model, the

coherent state representation is most appropriate, and yields a classical Lagrangian

ﬁBZ/O dr {Z% )0:i(T) — Hp{i (1), Yu()}| (2.10)

where H{;(7),v;(7)} is obtained by substituting the classical complex variable 1;(7) for
the boson site annihilation operator a; (and ¥} (7) for the creation operator a}) wherever it
appears in the (normally ordered form of the) quantum Hamiltonian. The partition function
is given by Z = tr¥[e”], where tr¥[] is an unrestricted integral over all complex fields,
yi(7). Notice that the only term that couples different time slices is the “Berry’s phase”
Y*Or1p term which arises from the overlap of two coherent states at neighboring times.
This should be contrasted with the spatial coupling, é 22 Jig i, (essentially a discrete
version of 1*V?1), which appears in . The imaginary time dimension is therefore highly
anisotropic. This anisotropy is increased further if disorder is present since the ¢; and Jj;
are 7-independent: the disorder appears in perfectly correlated columns, rather than as
point-like defects, in (d + 1)-dimensional space-time.

If the 1*8,1) term were replaced by *8%, only the disorder would contribute to the
anisotropy (the fact that the coefficients of 1*921 and 1* V21 are different is not important,
and may be cured by a simple rescaling). The model then becomes precisely a special case
in the family classical models with rod-like disorder treated in Ref. [13]. Clearly the linear
time derivative term in (2.10) is more singular than a term with a second derivative in time.
It should notf be too surprising that its presence leads to different critical behavior.

Yet another crucial property of the "8, term is that it is purely imaginary:

/dwaw - j/dm 8,4, (2.11)

where integration by parts and periodic boundary conditions have been used. Therefore
the statistical factor, e“#, used to compute the thermodynamics is in general a complex
number, and leads to interference between different configurations of the #;(r). Unlike that
with coupling ¢*8%v, this model therefore does not correspond to any classical model with
a well defined Hamiltonian in one higher dimension. In fact, it is precisely this property

that reflects the particle-hole asymmetry in the model. Interchanging particles and holes
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is equivalent to interchanging ¢ (7) and ;(7). The ©*9;1 term changes sign under this
operation, while Hp[y*, 9] is unaffected. Thus although Lg is invariant under the com-
bination (known as time reversal) of complex conjugation and 7 — —7, the boson model
always violates each separately.
Consider now the canonical coordinate Lagrangian for the Josephson array model (see

App. A for a derivation):

B -
£y = [ dr| S Tgeoslsitr) - o5t
S SO g ii(r) + i~ @iy () + - )
’ (2.12)

with partition function Z = tr®e7. Notice that the linear time derivative, qb“ now appears
in a much more symmetric looking fashion. If i — & = 0 we see that £; is particle-hole

symmetric and real:

BT =
0] = /{; dT[ZJa;jCOS[@(T:’“QSj(TH

LJ’ [ﬂ -+ Ei
-3 Z Dijbilm)dy(r Nk (2.13)
and takes precisely the form of a classical XY-model in (d+ 1) dimensions. The periodicity,

(2.6), of the phase diagram is a consequence of the periodicity of the ¢; in 7. Substituting

ji — noUyp for fi and multiplying out the (U™ term yields

;Cj[ﬂ*—noﬁo} = ﬁj[ﬁ —ZHQA d7—2¢1

+ BN (ng, fi). (2.14)

However f(’)@ drdi(T) = 2rm; and e?™mino = 1 g0 the second term simply drops out of
the statistical factor, e“7, and we recover (2.6). Notice that if i — & = —%—U’o, we obtain a

statistical factor

eﬁJ[ﬂ"gi:%ﬁD] — (_I)Zé my QCJUQ“&:O]JrﬁNEO(%»O)’ (2.15}

which, though real, is not always positive. Although this Lagrangian is also particle-hole
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symmetric, it too does not correspond to the Hamiltonian of any classical model. This model
is very different from that with i — € = 0. For example it always has superfluid order at
T = 0, for arbitrarily small J;;, as opposed to (2.13) which orders only for sufficiently large
Jij [6].
For later reference, note that, in contrast to (2.10), (2.12) has an obvious generalization
to noninteger dimensions of time. (There are however not so obvious generalizations of

(2.10)). If €, is the dimension of time, we simply write

8 -
ch = /0 deTT[ZJijCOS[(pi(F)_§bj(7?)]

+ = Z )i (IV+i(T) + [ — &) - (iV7¢;(T)

.
+ i-g), (2.16)
where 7, [i and € are e,-dimensional vectors: 7= (7q,...,7.), etc.

Renormalization group calculations are performed most conveniently on Lagrangians,
such as (2.10), which are polynomials in unbounded, continuous fields and their gradients.
Therefore we would like to convert (2.15) to such a model, while retaining the essential

physics. If we write 1;(7) = ¢**(") | then (2.16) may be written
(er) b [ o T :
Ly = /;) dr Z Jij[ i (F);(F) + c.c.]
+ “Z Zsz (V ‘*"#_Ez)@DZ(.W @b (7)
X (Vo= 57| (2.17)

For onsite interactions only, U;; = Uydyj, the second term simplifies to

[ zw (PN + fi = &), (2.18)

which is conveniently quadratic in . We now relax the assumption |¢;| = 1, employing

instead the usual 7[1|? 4 v|p|* Landau-Ginzburg-Wilson weighting factor, obtaining finally

€r € 1 7 T al
E,(/, )= /d 77{5 Z Jij (107 (7)1 (7) + c.c]
]
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+ Sl YA, - &)

= 3 [ + vl (2.19)

7

This model retains the exact particle-hole symmetry at i+ € = 0, but loses the precise
periodicity of the phase diagram when e, = 1: thus the second term in (2.13) now becomes

[compare (2.10)]
B
no [ dr S w0, (2.20)

which reduces to the previous form if |¢;] = 1. However if |¢;| fluctuates, as in (2.19),
this term is no longer a perfect time derivative and therefore will not yield a simple integer
result. We will therefore only use (2.19) near i = 0 when we study the role of particle-hole

symmetry near the phase transition.
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Chapter 3
Particle-hole symmetry and the excitation spectrum of the

glassy phases

In this chapter we shall consider the nature of the non-superfluid phases in the presence of
the two types of disorder, g; and J;; (to simplify the notation we henceforth drop the tildes
on the Josephson junction model parameters). Recall that for the boson problem the ¢;
yield a glassy phase, which we called the Bose glass phase [6], with a finite compressibility
and a finite density of excitation states at zero energy. We shall contrast this with the
case of the particle-hole symmetric, random J;; model which we shall show has a vanishing
compressibility and an excitation spectrum with an expounentially small density of states,
p(e) ~ e7/¢ ie. a “soft gap.” We shall find that the compressibility is precisely the spin-
wave stiffness in the time direction, which therefore vanishes in the “symmetric glass,” but
is finite in the Bose glass. This yields an upper bound 2y < d for the dynamical exponent at
the particle-hole symmetric transition. An effective lower bound on zy may be obtained by
demanding that particle-hole asymmetry be a relevant operator at the symmetric transition.
This is a necessary condition in order that the particle-hole asymmetric transition be in a
different universality class from the symmetric one. We shall obtain estimates for this lower

bound within the double e-expansion in Chap 6.

3.1 Superfluid densities or helicity modulii

Let us begin by defining the superfluid density, called the “helicity modulus,” or “spin wave
stiffness” in classical spin models. The idea is to compute the change in free energy under a
change in boundary conditions. Consider a box shaped system with sides Ly, a = 1,..., D.
We shall be interested in D = d + 1 and Lp = 8. We shall say that i obeys §,-boundary

conditions if

.
Y(z1,..., %o+ La,...,2p) = eY(x1,...,T0,...,TD)
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?,D(I:El,...,:vﬂ—FLg,...,ZL‘D) = 1/)(331,...,:%,...,3:13),
fa (31)

i.e., a twist angle 6 is imposed on the « direction, while periodic boundary conditions are

maintained in all other directions. Let

D
1 6
Oc LV —
flo = =gt tr (), Vb = I_I Lg, (3.2)
B=1
where £% is the Lagrangian, be the free energy obtained using 6,-boundary conditions.

We may define

w(ﬂ?l, BRI 7$D) = emwza/[/aw(xla s ,-ﬁED), (33)

which then obeys periodic boundary conditions in all directions. In all cases of interest one
may then write

L[] = LO1] + 6L[h; 0/ Ly (3.4)

where 6L is a Taylor series in powers of /L, and superscript “0” denotes periodic boundary
conditions. Thus

1

0o — f0c _ £0 __
5t =~ =

[(51:) + %wﬁz)g b } , (3.5)

where (§£2). = (6£2%) — (6£)?, and the averages are with respect to £° |1ﬁ] Equation (3.5)

yields a series of terms in powers of §/L,, and we use the notation

ga—__i_g_ 1(1)2 3
6f7 = TPt ylp) Tot (3.6)

to define the coefficients in this series. This only makes sense for || < , since it is clear
from the definition that f% is periodic in 6, with period 2. We shall see that the first term,
which in most previous cases was completely absent, arises from particle-hole asymmetry.
The second term defines the helicity modulus, Y, in the direction a.

Let us now turn to specific cases with Lagrangians defined by (2.10) and (2.12). In both

cases, when « is a spatial coordinate (a = 1,...,d) the sensitivity to boundary conditions



- 93.

comes only from the hopping term [see (2.1) and (2.10)] so that

1 (P Tes i0(z®—2)/La >
iLp = 5/ dT%:Jij (G5 (7= e 1)) 4 c.c]

0
= —19— ﬁdTZJ” w1¢]~cc]
92 B
- ZE—z—/ dTZJw — 292 [ptd; + c.cl
+ O(6°/L), (3.7)

which yields po =0, « =1,...,d, and

Yo = 1 [ S (e - oo i s ()

70 .7,k

0 (O)5(0) = e.e]) )
S (o) (O (0) + c.c) ),

a=1,....,d, (3.8)

where ((-)) denotes an average over the disorder (we assume self averaging). For nonrandom

Jij, with nearest neighbor hopping, J, this reduces to

‘ /<]
Yo = g [ S 0(r) ~ (0u7 ()
0
x [16(0)0at0(0) — 3(0)0ay} (0)])
+ §Ja2<z/1;a’z/)0 +Pibs), a=1,...,d, (3.9)

where 8,%0; = Yits, — i, and a is the lattice spacing. We recognize this as the discrete
version of the usual definition of T, in terms of the current-current correlation function.
The Josephson Lagrangian yields precisely the same expressions if one identifies 1;(7) =

¢ (7) Thus, (3.8) becomes

B
Y, = —/; dT%((Jij(m?—m?)Jkow%<
x  sinfg; () — ¢i(7)]sin[po(0) — ¢ (0)]) ))

+ 3 ala)P(f (eoslgi(0) = 6of0)) )
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a=1,...,d (3.10)

and (3.9) becomes

g
T, = —J2a2/0 dr Z(sin[qﬁi(r) — Givn(T)]

7

x sin[go(0) — ¢z, (0)])
4+ Ja?*{cos[pz, (0) — ¢o(0)),a =1,...,d. (3.11)

Consider now the stiffness in the time direction. We will show that it is precisely the
compressibility, £ = —%ﬁi. To see this, note that only terms with time derivatives are

sensitive to #,-boundary conditions. In the Bose case, (2.10), we have
9 8 . -
i =i / dr i () (7) (3.12)
0

which corresponds precisely to an imaginary shift, g’ = u + i%, in the chemical potential.
Similarly, in (2.12) we define ¢;{7) = ¢;() — %7’3 leading to the exactly the same chemical
potential shift. Thus in both £5 and £; the time derivatives appear with the chemical
potential in just the right way to give rise t6 what amounts to the Josephson relation between
the time derivative of the phase and changes in the chemical potential. We immediately

conclude that the series (3.6) takes the form

000 1 /iB\2 §2 70
sptr = WO +—<3-) LI
g op  2\pB/) 0u?
0 1 (9)2 _
= ——p+z-l{=) k+... (3.13
5" 2\5 (3-13)
where p = —%—{f is the number density, and we identify T, = .

Our classical intuition would tell us that Y, should be nonzero only when the model
has long range order in the phase of the order parameter, i.e. only in the superfluid phase.
Although this statement is true for the spatial directions, o = 1,. .., d, this is not necessarily
true for o« = 7. Our intuition about 4 He in porous media would lead us to be very surprised
if the system were incompressible, k = 0, throughout the nonsuperfluid phase. Thus there is
no barrier to the continuous addition of particles to the system, even when it is completely

localized {only Mott phases, in which disorder is unimportant, are incompressible because
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the density is pinned at special values commensurate with the lattice [6]). The Bose glass
phase is therefore rather special in that the order parameter phase has a temporal stiffness,
T, = k > 0, even when there is no spatial stiffness, T, « ps; = 0. Our classical intuition
breaks down because the Lagrangian is typically not real and, as discussed earlier, does not
have a proper classical interpretation.

The particle-hole symmetric model described by (2.13), however, does have a classical
interpretation, and despite the fact that the J;; are random and the model anisotropic (the
disorder being fixed in time) it would be suprising if the disordered phase possessed long
range order in time. Thus we expect x to vanish when p; does, so that the disordered phase
is incompressible. This is permitted because the particle-hole symmetry now dictates that
the density be an integer. What distinguishes this disordered phase from the Mott phase,
however, is that & is not zero for an entire interval of u, but vanishes only for the special

value i = 0 where particle-hole symmetry holds.

3.2 Droplet model of the glassy phases

Let us now understand in detail how these two different behaviors merge with each other
in the full phase diagram. Consider therefore the particle-hole symmetric model (2.13)
with, for concreteness, J;; = J(1 + dJ;;) > 0 on nearest neighbor bonds only, with all §.J;;
independent random variables. Let J. be its critical point, and let JY be the critical point
when all §.J;; = 0 (note that it is entirely possible that J. < JU since random fluctuations
can sometimes enhance superfluid order [11]}. In the latter, nonrandom case, the transition
is from a Mott insulating phase for J < J? to a superfluid phase for J > JO. Suppose
now that —1 < 4.J;; < AJ is bounded from above (as well as, trivially, from below) with
AJ the essential supremum (i.e., the largest value of 8.J;; achievable with finite probability
density). Then for J(1+ AJ) < J? all J;; are smaller than .J, and the system must have a
Mott gap. However for J. > J > J2/(1+ AJ) one will form, via probabilistic fluctuations,
exponentially rare, but arbitrarily large regions of bonds in which all J;; > JO. These regions
therefore represent finite droplets of superfluid. It is here that the 7-independence of the J;;
is crucial — in the classical interpretation these droplets are one-dimensional cylinders with
arbitrarily large cross-section, made of material that would be ferromagnetically ordered

in the bulk. The fact that these regions are already infinite along one dimension clearly
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enhances magnetic ordering more than would finite (zero-dimensional) pieces of magnet.

We shall see now that these droplets close the Mott gap.

3.2.1 Correlations and excitations in the symmetric glass

Consider such a droplet of volume V', which will occur roughly with density e=P°V, for some
constant pg. The behavior of V' x co cylinders of magnet has been discussed in detail by
Fisher and Privman [23], who were concerned with finite size scaling theory of magnets
with a continuous O(n) symmetry below their bulk critical points. Their main result was
that the correlation length, &, along the cylinder is governed by the bulk helicity modulus
along the same direction:

£ = 2T(T)V/(n — 1)kgT. (3.14)

In our case, kgT =1, n = 2 and T(T') = T, (J). The correlation function, Go(7), along the
cylinder then varies as

GO(T) ~ 6“'7?//6}[’ |7’I > fll (315)

There is some ambiguity in what we should take for V' and T,(J) in (3.14): the droplets are
neither perfectly spherical, nor is J;; uniform throughout the droplet. Thus V should be
some effective volume, while T-(J) should be the bulk temporal helicity modulus associated

with some effctive uniform J > J?,

say roughly the average of .J;; over the droplet. None
of these ambiguities change the order of magnitude estimates we make below.
The full temporal correlation function, G(7), is obtained by averaging Go(7) over all

droplets. We estimate this as
Gr) =~ [V [ dTep(V, X )Golr), (3.16)

where p(V, 1) is the probability density for droplets of volume V' and bulk helicity modulus
T,
p(V,T;) ~ e V/V(x), (3.17)

The coefficient Vo(Y;), which we interpret as the “typical” droplet size for a given Y, will
depend on the detailed shape of the tail of the probability distribution for Jij > JO. Using
(3.15), for large 7 we may do the integral over V using the saddle point method. The
integration will be dominated by V near the solution of - (V/Vy + 7/2Y,V) = 0. This
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yields

G(r) ~ /dTTe'VQT/T*VO(TT), T — 00. (3.18)

The coefficient T, V(Y,) will have a minimum at some value, Y,(J), corresponding to the
most probable large droplets, and this will govern the asymptotic behavior of the integral

(3.18) to yield finally,

1_ _
G(r) ~ eVl mo(J) = 5T Vo(T5). (3.19)

The droplets therefore yield a stretched exponential behavior, to be contrasted with the
purely exponential behavior in the Mott phase. From {3.19) we may derive the quantum
mechanical single-particle density of states [6],]20], p1(¢), defined as the inverse Laplace

transform of G(7):

Glr) = /0 * depy(e)ell. (3.20)

It is easy to see that exponential decay in G(7) requires a gap in p;(€),

ple)=0e<e. o Glr)~e el (3.21)

A

while slower than exponential decay permits p1(e) > 0 for all € > 0. The form (3.19) yields
, S
pi(g) ~ e Arollel (322)
a “soft gap.”

3.2.2 Correlations, excitations and compressibility in the Bose glass

Now consider the compressibility. Its computation requires the addition of a small uniform
chemical potential, u. As alluded to earlier, we expect pi(e) to be finite at ¢ = 0 in the

presence of u, implying power law behavior for G(7):

G(r) = p1(O; ) /7, T — oo, (3.23)

though we shall see that p;(0; ) will be exponentially small in i. Such behavior lies far

outside any classical intuition. To see how this behavior comes about we must generalize the
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ideas of Fisher and Privman to this case. Fortunately this is relatively straightforward: a
compact statement of the Fisher-Privman result is that long time correlations along V' x co

cylinders (for n = 2) are governed by an effective one dimensional classical action
SOy = 1y / ’ dr Y ¢(7)?, (3.24)
2 Jo
where ¢(7) is a coarse-grained phase. This immediately yields
Go(r) = (P90 = =3B (3.25)

which, upon using

0 1 — ™7 duy 7

) =¢OF) = |~ v -y

yields (3.14) and (3.15).

(3.26)

B |

Now we must generalize (3.24) to finite 4. This is accompished using (3.6): effective long
wavelength, long time “hydrodynamic” fluctuations in the phase ¢ are governed by precisely
the same elastic moduli that govern equilibrium twists in the phase. Thusin (3.6) one simply
replaces % by O,¢ and integrates over all space. If, as in the present case, the twists in
different directions, «, superimpose without interacting (this may be checked directly from
(3.7), where now one defines ¢ = ¢ 2a 6"“%‘/]4‘11,&7 with 1 obeying 6,-boundary conditions
simuitaneously in each direction), one simply sums over all directions « to obtain the final
answer:

D
1
Sess = 3 [ dlodr |~ipadud + 5 Ya(0ud)?]. (3.27)
a=1 -

In the case where the interactions are spatially isotropic one has p, = 0 and ¥, = T for

a=1,...,d With the identifications (3.13) for o = 7 we then have
y 1,1 )
Sep = | dzdr | —ipg + or¢" + STV . (3.28)

For V x oo cylindrical geometries, the effective one-dimensional Fisher-Privman result is
obtained by assuming that for each 7, ¢(x,7) is essentially constant in space, and hence

that only the temporal fluctuations are important. More formally, the finiteness of V

2/d

implies a gap of order V7% in the spatial spin-wave spectrum between uniform ¢(x) and
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the next excited state in which ¢ twists by 27 from one side of the system to the other.
The temporal spectrum has no such gap (the frequency, w, in (3.26) is continuous), and
therefore the asymptotic long time, large distance behavior may be obtained by assuming
#(x,7) = ¢(7) only. The |V@|? term in (3.28) then drops out, and we find the proper
generalization of (3.24):

1) g L oo .

All the effects of particle-hole asymmetry are in the p term.

Let us now study the consequences of (3.29). First, when pV is an integer (i.e. the
density in the bulk is commensurate with the volume, V') the 27-periodic boundary condi-
tions on ¢ imply that the p term simply drops out of the statistical factor, esé})f. This then
implies that only pV mod 1 (the fractional part) matters in (3.29). Recall that the values
of p and k are appropriate to a bulk superfluid system with some effective J > J°. The
bulk compressibility, ko(.J), of such a system is finite and nonzero. When y = 0 the density

is p = 0 {or, more generally, some integer), so for small ¢ we must have

p = ro(N)u+0(u?)

k= kolJ)+O(u). (3.30)

We must be careful to distinguish p and » from the actual density and compressibility of
the droplet of volume V. The latter must be computed from (3.29) as follows: the free
energy density is given by

1 _g(®
f=fo— WW [e Seff] ; (3.31)

in which fq is the bulk free energy density corresponding to the input parameters, x and p.

Thus, for example, at a given value of the chemical potential, u = pg, we have

(9o B _ o [\ o
(a—l;)ﬂzﬂo = plpo) =p, <W> = w(pg) = &°, (3.32)

and hence, correct to quadratic order in p — ug, we may take

Jo(u) = folpo) — p° (1 — o) — %f@o(u — po)*. (3.33)

The effective action must also be correct to quadratic order, therefore for the purposes



- 30 -
of computing the full free energy, consistency requires that in S( ) we take K = ¥ and
p = p°+ k% — po). Therefore, for the purposes of computing demvatives with respect to

i, the only p-dependence in the fluctuation part of the free energy is in p. We have then

f——m~5%n{ijW&S%H

m=—aoQ

(0)
= 0 — '—ZTL I: Z eZﬂmthT { Seff }:| s (334)
m=—=-—00

where 17" means that we impose the temporal boundary condition d(B) = ¢(0) + 27m.

Now define (1) = ¢(1) — 2wmr /3, so that ¢(3) = $(0), to obtain

o0

1 2rmpV —272m2k0 /8
[ o= fomgpin| 3 emmevesients

m=-—00

X
=
B
AN
——
ml
n
o
)
I
=
[——
[S—

e f@—%—f@o{ — M———l'n, [ Z e ZEOV(F’V l) J (335)

where we have used (see App. B)

i o e—m2/2K i 9 ZK( 1)2

6’L TE — e-— T T—i (336)
= VerK ’ ‘
m=-—0o0 1=—00

with K = 8/47%x°V, and foo[r°] = In {\/ﬁ/Qﬂ“HOVﬁ'& {6_ ef H is independent of p— ug.
In the limit § — oo only the term with minimal (z — )2, i.e. —% <zr—-1I< %3 contributes
(at the boundaries, two terms are degenerate). Let Io(x’, 1) be this minimizing value of [.

We then obtain finally,

1
I = fot foo+ 577 (pV = lo)*. (3.37)
The density is therefore
of 1 lo
— —{(pV —ly) = —. .
G =P Y ) =3 (3.38)

There are then exactly Iy particles in the droplet for the interval of 4 such that |p(p)V —Ig| <

%, and we have established the desired result that the droplet is then incompressible on this

same interval.
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Consider next the temporal correlation function which is given by

Gy(r —7') = (1=
tp [ S il <r>—¢<r’>}]
tre { g‘)f}

Z%OZ—OO ei?ﬂ'mpvtr(ﬁm l:e—Sé?c)f ei[qﬁ("‘)"d)('ﬂ)]}

o) (3.39)
00 €i2mmpY gr™ [ Seff}
Defining the same periodic field, ¢(7), we obtain
G (1t —7') = (g9 gl e
Peff
i V+T—_T/ 6.2 0
) s K 7r7‘n(P 3 )e 227;77; KOV
Z?ono:—oo ei2rm(pV) o—2m2m2:9V /3
— 6—|7"_T’|/2EOV6—(T—T’)(pV mod 1)/&0‘/, B = oo,
(3.40)

where we have used (3.36). Once again, in the limit 3 — oo only the term with —% <

a]

pV —1 = pVmod 1 < %, contributes and the final line of (3.40) results. We see that Go(T)

decays exponentially for both 7 — 400, but at different rates:

Gp(r) = e_(li”h!/%ov, 7T — oo

—1<vy = 2(pV mod1)<1. (3.41)

This exponential decay signifies an energy gap, proportional to Eﬁlvv for adding a particle,
and is equivalent to the incompressibility result above. However, for large V this gap is
very small, and we need only increase p (and hence p) by a small amount to add a single
particle to the droplet. For given u the number of particles in the drop will be I = [pV],
the greatest integer less than or equal to pV. Since there exist arbitrarily large droplets,
an arbitrarily small change in p will then add particles to the system in precisely those

1

droplets with volume V > % N o Focussing on p near zero (where &

0 = kg), we may
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estimate the total density as

KoV
Ptot  ~ /dVdHOP(V:in)[ O{;L ]
~ Rop dve=V/Vo(ko)
V>$
~ RO‘U/C_I/ROHVO(RO)7 (342)

where Fg is defined analogously to T, in (3.19). In the derivation of this formula we have
assumed that g > 0, but the result is valid also for 4 < 0 if p is replaced by |u| in the

exponent (only). The total compressibility may then be estimated as

Ktop ~ Foe ™/ FoVo(Follul (3.43)

Finally we may use the above results to estimate the total temporal correlation function

and to exhibit the finite density of states, (3.20), at € = 0. Once again, the total correlation

function, G,(r) is the average of G,(?O) (7) over all droplets:

G, (r) = / AV drop(V, ko) GO (73 10, V). (3.44)

For large 7 and small p > 0, only large volumes contribute to the integral. It is clear from
(3.41) that G/()O) (1) decays most slowly when pV is close to half-integer, and those droplets

with such “resonant” values of V will contribute the leading large 7-dependence. The

i

smallest resonant volume (into which a single particle will be added) is precisely V = 2

3 35

and contributions from higher order resonances, V = 250350 will be exponentially smaller

in % . Thus

GP(T) ~ /dVdKOp(V, K,O)e‘“!Tl/2moVe-~*yT/2nQV

ol
- 6-1/2;%0“%(/20)/ fi_meﬁur!ﬂ, (3.45)
0 KoM

where z = |pV — §| and § < 5 is a cutoff and we have replaced V by its smallest resonant

1o 1

Value7 2—,5 ~ m,

everywhere except in v = 2(pV mod 1). The integration is now trivial,

and we obtain
4

T —Lusie] L —1/2R0uVo(Re) (
Rop?|| [1 ¢! }e ' 340

GP(T) ~
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This reproduces the % behavior, (3.20), predicted for the Bose glass phase with
p1(e = 0) ~ e~ 1/ 2RopVo(Ro) (3.47)

All results are valid for p < 0 if p is replaced by |p| in the exponent. Note that the power
law prefactors of the exponential must not be taken seriously because we have made a very
crude estimate for the probability function p(V, ko). Recall that g is the “most probable”
compressibility for large droplets.

To summarize, we have seen that for the particle-hole symmetric model the correlation
function, G/(7), has stretched exponential behavior coming from large rare regions in which
J > J?. This is known as a Griffiths singularity [24], and this kind of effect is ubiquitous
in random systems. Since G(7) still decays faster than any power law, the effects of these
singularities are obviously physically rather subtle. In contrast, when p # 0 the model
no longer has a classical interpretaion, and the behavior is far more singular: for given u,
finite droplets of size V ~ %Rgu give rise to power law decay of G,(7) — no longer do the
singularities occur only in the limit V — oo. Quantum mechanically we understand this
as being a consequence of the existence of arbitrarily low energy single particle excitations,
arising from superfluid droplets with very small energy gaps for the addition of an extra
particle. It is interesting to see this derived explicitly from the interference terms in the

Lagrangian [see (3.36)-(3.41)].

3.2.3 Statistical particle-hole symmetry

The above results were derived by assuming a random J;; model with a small uniform p.
Suppose instead that we maintain g = 0, but include instead the random site energies &;
with a symmetric distribution. The model is then statistically particle-hole symmetric (see
the discussion in Chap 2). Does this change any of the results? If we assume the ¢; to be
statistically independent of the J;; (or, more specifically, with statistics such that the ¢; do
not automatically vanish in large superfluid droplets) it is clear that the answer must be
no: If the scale of the ¢; is du (e.g., dpu = <(512)>%) then it is clear that we will be able to
find superfluid droplets of arbitrary size in which all &; > §u. The previous analysis then
goes through precisely as before with the results (3.46) and (3.47), but now with u replaced

by du, and a different volume scale, Vo(Ro,du), now depending on du. Thus, at least at
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this qualitative level, statistical particle-hole symmetry is the same as generic particle-hole
asymmelry. It seems very unlikely then that the superfluid transition in this case would be

any different either. We shall address this issue in the next chapter.
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Chapter 4

Particle-hole symmetry and scaling near criticality

In order to discuss scaling it is convenient (but by no means necessary) to use the 3?

Lagrangian, (2.18), further simplified by taking the continuum limit and dropping all un-

necessary dimensionful coefficients. For now we take e, = 1 only. Consider then the
Lagrangian
1 1 5 1
Lo = — [ d¥% [ dr|Z|0:97 + 21Vl + 2r(x)|)?
o= = [dls [arl S+ SIver + S0t
+ alult+ 9w 0] (@1)

The random coefficient r(x) is equivalent to the random J;;, while the random coefficient
g(X) is equivalent to the random site potential, —u; = —p+¢;. We write r(x) = rg + 6r(x),
and the phase transition occurs when ry becomes sufficiently negative. When g = 0 the
particle-hole symmetric problem is recovered. If the |6,4|? term is dropped and we take
g = 1 we obtain the closest approximation to the boson coherent state Lagrangian, (2.10),
which was the starting point for the work in Ref. [12]. We shall see that the |3,¢|* term,
which was ignored in Ref. [12], is actually crucial for a correct understanding of the critical
behavior. The model (4.1) with g = 0 is precisely the model studied in Ref. [13], which we
shall henceforth refer to as the “classical random rod” problem.

The superfluid density, ps, and compressibility, &, are related to twists, spatial and tem-

poral respectively, in the superfluid order parameter (see Sec. 3.1). Thus we can introduce

w(x7 T) — e—(iko,x—%z’wgﬂw(x’,r)’ (42)

and impose periodic boundary conditions on i/?(x, 7). This is equivalent to imposing a twist
fo in the boundary condition, with wy = 6o/8 and bfky = (61/L1,..,64/Lq). In (4.1), if

we replace 1 (x,7) by d(x,'r‘), then

]67-’9[}‘2 - }87'7/;]2 + ino[i/?*arl/; - 7;871;*] - w2w’;12’
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and

IVatp|? = [V + 2iko [ Vb — V00%] — K2|)2.

The free energy can be expanded in powers of kg and wyg, giving

1
—KWE (4.3)

1
f(ko,wo) = f(0,0) + §Tk(2’ + pwo + 5

For the Lagrangian (4.1) we can write down especially simple expressions for the helicity

moduli T and &, [(3.6) and (3.8)]. We find

o = (WP N+ [ds [ ar(( (@ oup(x)
< O0,0)), a=1,...d

ko= o) 0+ [ da /d,,< 0-1)
- g|¢l ](X’T)W} 877/}_917” ]( ’ )/ ))
po= pr={{{¥P)9(x))) (4.4)

We shall ultimately require these expression only when g = 0.

Let us first consider the scaling of p, and s for the classical random rod problem,
which corresponds to g(x) = 0. Note that koq/j*vxzﬁ and woﬂ;*ﬁﬂﬁ are symmetry breaking
perturbations (they break the z <> —z, and 7 < —7 symmetries of the Lagrangian). Tt is

proposed that the singular part of the free energy varies as
Fslko,wo) m Al ® (ko€ , woé-), (4.5)

where § ~ |67 and & = &,0/0]7"° are the correlation lengths in the spatial and
temporal directions, respectively, and the dynamical ezponent is defined by 25 = v, /.
The subscript 0 on the exponents indicate that they are those appropriate to the classical
random rod problem, and the generic auxillary parameter, § is ro — 70,c in (4.1), but more
generally is any parameter such as chemical potential, pressure, strength of disorder, film
thickness, or magnetic field which moves the system through the phase transition at 7" = 0,
defined to occur at § = 0. We assume that § > 0 corresponds to the disordered phase and
4 < 0 to the ordered (superfluid or superconducting) phase. There are actually two distinct

sets scaling functions and amplitudes for § > 0 and § < 0, but for notational simplicity



- 37 -
we shall not make this distinction explicit. ps; (and x in this case) are nonzero only in the
superfluid phase.
More properly, the boundary condition dependence appears in a finite size scaling ansatz

for the free energy

Af0 ~ gL ARY(ASLY Y0 Bo Y/ om0, (4.6)

where A and B are nonuniversal scale factors (no nonuniversal scale factor is needed due to
quantum hyperuniversality). The existence of a nonzero stiffness (in the ordered phase), i.e.,
a leading finite-size correction of order L™2 or 372, now requires that the scaling function

(2, y) m a2y (®fz =% 4 ®hy~2#) for large x,y, (and & > 0), yielding

T =~ A(d—ZWOBZOZ/O(q)?/QQ)é'UO

ko~ ATOBTR(BY /97)svre (4.7)

implying the Josephson scaling relations vo = {(d + 20 — 2)vy = 2 — ap — 21 and v, =
(d— 2z0)vg = 2 — ap — 2291, and requiring in addition q)§,2 o 62. The crucial assumption is
that the leading boundary condition dependence is all in the singular, i.e., finite size scaling
part of the free energy. We emphasize here that we can make this assumption only because
kg and wg introduce relevant perturbations which fundamentally alter the symmetry of the
Lagrangian. Further evidence for this is that we expect all stiffness to vanish identically in
the disordered phase of the classical model: thus YT and & can have no analytic part at all.

Now we can try to extend the above arguments for nonzero g(x), following Ref. [6]. In

the same way, the singular free energy could be written as (incorrectly, as it turns out),
fs(ko,wo) = A|8|**®(ko&, woky). (4.8)
This then implies that the compressibility scales as
Ko~ B2 (4.9)

All exponents now refer to the dirty boson critical point. For g(x) 5 0, both the Bose glass
and superfluid phases are compressible, so it is expected that the compressibility remains

finite right through the transition. This leads to the prediction that z = d.
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The arguments leading to z = d turn out to be incorrect. For g(x) # 0, the density

of the Bose glass phase varies smoothly with p. A temporal twist only perturbs slightly

a term, g(x)y*0;¢, that is already present in the Lagrangian, and we do not expect it to

produce a new relevant perturbation. Thus the scaling variable cannot be wpé,. Rather

wo produces only an infinitesimal shift 1 — p — dwp which through the above analyicity

argument, alters the free energy in a completely predictable fashion unrelated to scaling.

Spatial twists still represent a relevant pertubation, and therefore we predict a scaling form
at wg = 0:

Afl =B L0 (ASLYY, Bs g/, (4.10)

with ®(z,y) ~ &12(9"2y for large x,y, yielding T ~ A2 B=v($9/2§v v = (d + 2 —
2)v = 2 — o — 2v as before. All exponents refer to the dirty boson critical point. We expect
small subleading corrections in y*”. Now, if we include a finite wp, the basic change in (4.10)
is that g — p— 1wy everywhere, in addition we must include changes arising from boundary

condition dependence of the analytic part of the free energy. Thus

AP = BLT0(AS LY, B8yS Jzv)

+fa(Jaﬂ_iw0)_fa<J7ﬂ)7 (411}

where f, is analytic, & = J — Jo( — dwg) ~ & + iwoJ.(1). Most importantly, ¢ is the
same function as that in ( 4.11), and therefore produces small corrections in (8/€,)~". The
scaling function itself therefore contributes nothing to s, which must therefore arise

(a) from the analytic part of the free energy,

(b) from the wy dependence of &g, and

(¢) from other subleading terms in the nonanalytic free energy.

Part (b) couples derivatives with respect to p, or equivalently wy, to derivatives with respect
to §, producing the most singular part of the compressibility, s ~ |§]™®. There is a famous
theorem [25] that requires v > 57 which implies & = 2—(d+2)v is negative. The application
of this theorem to the disordered boson problem has been questioned recently [26], however
1t seems very unlikely that o will be positive. So we expect the singular part of x to vanish

at criticality. ‘The main contribution comes from the analytic part of the free energy.

Faldy ) = =pellp = el = el = el D + (4.12)
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expanded for convenience about the transition line p.(J). We immediately then obtain a
finite compressibility right through the transition, with the exponent z nevertheless com-
pletely undetermined. The fact that the leading correction is linear in wq also leads to a
incorrect predictions for the scaling of the total density, p = _g_/]:' If the density comes from
woér dependence in the singular free energy, it follows that

ofs ~ 5

p= Do (4.13)

However the density has to be finite at the transition, and the finite piece cannot come from
the singular free energy. So the original scaling hypothesis for temporal twists, wy, is not
valid.

For the classical random rod model, g(x) = 0, we have already seen that x = 0 in the
disordered phase [notice that (4.11) is no longer valid since the special symmetry at p = 0
implies that § and p are “orthogonal” thermodynamic coordinates and the derivatives with
respect to p that define k = x5 do not mix with derivatives with respect to d]. We therefore
expect « to rise continuously from zero for § < 0, with the exponent {; > 0. This implies
that z < d in this case [equality is still permitted and would imply a discontinuity in & at
0 = 0, which indeed is the case in d = 1 {see Chap. 5)]. Note that for homogeneous classical
disorder, where the coefficient 7 in (4.1} depends on both x and 7, we will have isotropic
scaling, z = 1. The rod disorder should increase z.

We now ask the following question. Since we expect the presence of g(x) to change the
universality class of the the phase transition, there must be an associated positive crossover
exponent, ¢4, which quantifies the instability of the classical random rod fixed point with
respect to this term. What is the value of ¢,, and what conditions does it place on the

values of the classical fixed point exponents?

To begin to answer this question, let us write £ = Ly + L4, where

Ly= —/ddaj / drg(x)yY* o (x, 7). (4.14)

We assume (see below) that ((g(x))) = 0, ((9(x)g9(x'))) = Agpp(x — x'), which implies a
statistical particle-hole symmetry, and that g(x) and r(x) are independent. The correlation

function ¢(x) = d(x) for uncorrelated disorder, but for reasons that will become evident
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below, we shall allow more general long-range power-law correlated disorder with ¢(x) ~
x|~ (d+a) for large |x| and some exponent, a. The crossover exponent, ¢,, which in general
g g

will be a function of a, is defined by the scaling form, valid for small A,

BA
fs m2 A5, P ®, (W) (4.15)

where the subscript on 4, is to serve as a reminder that A, will also generate a shift in the
position of the critical point: d; = 6 + 1Ay + .... The value of ¢, may now be inferred

from the derivative

of, TR b (3 o a1
(3A9>Ag_0 ~ APEC[BIO s — (2 - a)erldl )

151 — 0. (4.16)

Note the very singular [§|™' term generated by the shift, which may often dominate the
|6]7%2 term of interest. Now, this derivative may also be calculated directly in perturbation

theory:

. 7, L. N e
F(8g) = 10) = = | {£g)o = 5[(£5)o = (£)F] + Olg™)| (417)

where the averages are with respect to £y. Assuming that g(x) and r(x) self average, we

have (£g)o = (( {£g)o )) = 0, and

PN R i, ge s
f(8g) = F0) = 5= (L5 )+ O(g")

- ——A /dT/dda:QS ( (" 0rp(x, 7)
P0,4(0,0))0 ) + O(A2), (4.18)

X

where independence of g(x) and r(x) has been used. Thus

of
9 ( s ) - / dr / i (x)G, (x, 7) (4.19)

where we have defined the correlation function

Gg(x,7) = (( {(¥*0r(x, 7)¥"0-1(0,0))o )). (4.20)
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Let us define the Fourier transforms

B0 = [dlacpx)
Gylk,w) = /dT/ddmei(k'er‘”T)g(x, 7). (4.21)

Then when g(x) = 0 we have from (4.4) and (4.7),
T, = po— G4(0,0) ~ [5(45, (422)
where pg = ({ {||*)o )). More generally we expect a scaling form for small |k| and w:
Tr(k,w) = po — Gy(k,w) =~ Aq]6]“"2" V(ke, we,) (4.23)

where for § > 0 we have lin,, ;0 Y{w, s) = 0 while for § < 0 we have limy, 5.0 V(w, 5) = 1.

Now,

of R B
- 2 (E)Agzo = /{(Cb(k)gg(kaw =0)
= pud(x = 0) = [ $(k)T-(k,0), (4.24)

where we have used the convenient shorthand notation f = [ %"’—d«? =1

uncorrelated disorder, ¢(k) = 1, while for power law correlated behavior, P(k) ~ cok® +

dw

5=, etc. For

co+...as k — 0. The final k-integral must be treated carefully to extract its é-dependence.
Let us rewrite

V(w) = w4V (w,0), Y(w — o) =y > 0. (4.25)

Clearly one cannot simply scale £ out of the integral in (4.24) since the resulting integral
over ¢(w/E)w?*Yy(w) will not converge. Rather, one must first subtract out the large w

behavior. Let us write
Vai(w) & yo + 1w + yow ¥ 4 ysw Y 4. (4.26)

where the source of the spectrum of exponents, 0 < wy < wy < w3 < ..., will be discussed
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below. We see then that the term y;w™% yields a contribution

| 900y k= (k)™ = by 6"
b=y [ Gkt (4.27)
so long as w; < Wmaz(a) = 2d — z + min{a, 0} (i.e., the integral converges at small &k —

convergence at large k is ensured by the implicit lattice cutoff, & < kp ~ Z). Let us define

the subtracted scaling function,

oV (w) = Y(w) — Z yjw . (4.28)

> blsler

Wi <wWmaz (@)

[ K (ke), (429)
Jk

—
RSN
x
<
=
o
ol
n
™

%

where the last term may be evaluated as

Z)a](s!@dﬁz-{—a)u + boiél(Zd——z)u,

Q

j; k2 (k)5 (ke)

ba

il

Ca/ wd—z+a55)(w)

bg

Il

co / wi=Z6Y (w). (4.30)

In fact by = 0 in our case because, by time reversal invariance, (¢*9.¢) = 0.

Now, the origin of the exponents w; is as follows: the operator
P= j/ddfv/dT/d‘r/'gb*@,-w(x, T Op(x, 7"}

will have an expansion in terms of eigenoperators of a renormalization group transfor-
mation near the critical fixed point of interest: P = h;O; + hoOs + h3O3 + ..., and
O; is assumed to have renormalization group eigenvalue A;. This implies that (P) ~
hy 8|22y 4 po|§(dte=X2)v 1 But since (P) = i V(kE)kY#, comparison with (4.26)

and (4.27) implies that w; = d 4 z — A;. The w; therefore reflect the renormalization group
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transformation properties of P near the fixed point.
We can now understand the crossover exponent, ¢,. Comparing (4.16) and (4.29) to-

gether with (4.30) (with by = 0), we see that

2—a—-¢, = vumin{w;,2d—z+a}
= A = o _ max{A;,2z —d — a}. (4.31)
v

The crossover exponent is therefore either ¢, = A1v, or for small enough a, ¢4 = (2z2—d—a)v.

Thus

22 —d-—a, a<2z—d— X\
g = (4.32)
A1, a>2z—d— A,
implying
'z>%fg, a<32z—d— M\
¢g>0<:>{ (4.33)
AM>0, a>2z—d-— ).

In particular, for short range correlated disorder, where in effect a — oo, we require A; > 0
in order that dirty boson disorder destabilize the random rod fixed point. The exponent
A1 is a nontrivial exponent, and we shall compute it within the ¢, e.-expansion [13]. A
naive estimate for this exponent is obtained by supposing that the equality 22 —d —a = Ay
should occur when a ~ 0, vielding A\; ~ 2z — d which becomes positive for z > :%l. Note
that this same estimate would have been obtained from the second term in (4.30) if we
had assumed by # 0. As an aside, this estimate is actually exact in the corresponding
derivation of the Harris criterion for classical disordered magnets. There the correlation

function (|v(x)*1v(y)|?)o appears. Since (1)?) does not vanish, neither does the coefficient

P|?)E ~ 62722 which leads

analogous to bg. This gives rise to a free energy contibution (
immediately to the Harris criterion, ¢, = a.

In fact, we shall find that Ay > 2z — d, i.e. a drops out at some negative value, and
¢4 becomes positive for z somewhat less than %. The random rod result z =1 ind =1 is
consistent with this criterion, although this case is somewhat special because the random
rod fixed point is the same as the pure fixed point in d = 1 (i.e., random rod disorder is
irrelevant, though boson disorder is relevant). The generalized Harris criterion [13] indicates
that rod disorder is irrelevant when opyre + Vpure < 0. Using hyperscaling (valid here for
d < 3), and the fact that z = 1 at the pure fixed point, this requires vpy.. > % (compare the

less stringent requirement, vyyre > ﬁ with dge = d + 1, for the usual Harris criterion for
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point disorder). For d = 1, v — oo, while for d = 2, v ~ %, so the pure fixed point becomes
unstable to rod disorder somewhere in between d = 1 and d = 2. In all cases where rod
disorder is irrelevant, one then trivially has z > %, and dirty boson disorder will certainly
be relevant.

For a more direct and formal way to see why an equivalent of the Harris criterion cannot
be used to give us the crossover exponent for Ay, we can turn to renormalization group
arguments. It turns out that the reason why the Harris criterion works is that we are
perturbing about the pure fixed point. There we were trying to find the crossover exponent
for A, 5/ ddl‘d7‘¢i(w,7)¢%(l‘,7) about the nondisordered fixed point. We are using a
replicated Lagrangian, with o and § being the replica indices. We look at a vertex FXV+M)
with N fields with the replica index o and M fields with the index 3, a # £, and one
insertion of A. Since only terms that represent disorder can couple different replica indices,
for A = 0 there are no terms that couple fields with the index a to fields with index 3.
Thus we have

N M AY % Vs
F(A - )(Pb oy DN 1y N ) = ré}rg(m, -~-,PN)F£/22(Q17 qM)- (4.34)

)Z 2. will renormalize I‘X\HM), and hence the

The above factorization implies that Z 4% (N+M
anomalous dimension of qbi(é% is 27/;2, where 7;2 is the anomalous dimension of ¢?. This
leads to the Harris criterion. In our case, we want the crossover exponent for A, in the
presence of A,. Here since A, is already present, it will couple different indices, even in
the absence of A,. So we cannot break up the vertex function, as we did for the Harris
criterion, and are unable to relate the anomalous dimension of A, to that of the gg term.
In summary, we cannot get an equivalent of the Harris criterion because we are perturbing
about a disordered fixed point.
We now turn to the question of the relevance of g, = ((g9(x))). If one carries through
a naive scaling analysis using Ly, = go [ d%= [ drp*0,4(x,7) in place of (4.14), one could
arrive at (incorrectly),
0% f

7 = —G4(0,0) = —po + T ~ [3](*2, (4.35)
dg;
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The singular free energy has a dependence on gg or ug that goes as
fo = AT Dy, (uob0). (4.36)
We could then be lead to identify a crossover exponent via
2—a—2¢,, =(d—2)v = ¢, =2z (4.37)

which is always positive. Now, if §g(x) = 0, this is the correct exponent describing the
crossover from the critical behavior at the special commensurate point, to the generic in-
commensurate transition. However for nonzero dg(x) = 0, this is not true, for the same
reasons that z may not be d, which we discussed in the beginning of this chapter. In particu-
lar, there is no |6](“"#)” piece in the compressibility whatsoever. The exponent Guo 1s related
to subleading terms in the in the nonanalytic free energy, and is completely undetermined
by any scaling analysis. We will obtain ¢,, both in 1D and within the € expansion, and
show explicitly that particle-hole asymmetry is irrelevant about the statistically symmetric

dirty boson critical point, in agreement with previous arguments.
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Chapter 5

Calculations in one dimension

In this chapter we review and expand upon the analysis of one-dimensional versions of the
dirty boson problem [6, 28]. In App. B we derive various dual representations for the one-
dimensional Lagrangian based on the discrete-time Villain representation, (B.4). We shall

analyze the sine-Gordon version, (B.14) with (B.15):

1 1 5 ,
Lse = 5 > (,, (0rSr)” + Vo(@ISR)21
R LA J
— Z,u[(a]SR) - 20 Zcos(Zﬂ'Sr), (5.1)
R R

where we have assumed that Viy = Vpdrs is diagonal. Here R = (I,T), where I and T
are integers, are points on a discrete space-time (dual) lattice, the —co < Sg < oo are
continuous spin variables, and the cosine term represents an external periodic potential
which prefers integer values of the Sg. This model has the physical interpretation of a
fluctuating interface, represented by the “height variables” Sg. In the absence of y;, which
has the interpretation of a random tilt potential, the phase transition in this model is
from a flat phase, where Sg has only small fluctuations about some integer value and
exponentially decaying correlations, to a rough phase in which the interface wanders and
has logarithmically divergent correlations. This rough phase corresponds to the superfluid
phase in the boson model, and the renormalized, long wavelength value of yy vanishes. In
the presence of the random tilting potential, s, the rough phase is qualitatively unchanged,
but the flat phase is no longer necessarily quite so flat: see below.

When yo = 0 if is clear that the gy may be removed by the following transformation:
define the random walk o

wr = o+ Jy
7 J:Ou (

ot
)
~—r
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where for I < 0 wr is actually minus the sum from J = I to 0. Now let
Sr = Sg —wy, R = (I,T). (5.3)
Then

1 ~ 1
Lsc = 5 > [ (0rSr)* + Vo(0:5r)* — 7#%
R 0

— 20 Z cos( 27rSR + 27wy), (5.4)
R

and when yo = 0 it is clear that the uy yield only a trivial additive constant to the Free

energy. In this limit the two-point correlation function is given by

1 =~
Grr' = :—(SR — Swri)o
Ko [ p(R — Ri)}
o |20 AT o, 5.5)
Vo p” P (5.5)
where we have taken K; = Kj fixed,
pR-R) = | (-1 1 Kovo -T2 (5.6)
KoV o J ‘

is the appropriately rescaled distance, and pg = O(1) is a constant scale factor. When
K fluctuates one must also average over it as well. The result is still (5.5), but Ky then
becomes a complicated effective parameter. The generalized Harris criterion (Ref. [13] and
Chap. 4) tells us that disorder in the coefficient Ky is an irrelevant perturbation at the
critical point in d = 1, so we will, for the rest of this chapter, simply take K7 = K.

Let us now consider the yo term as a perturbation on the quadratic term in £go. One

may, for example, compute the correlation function
CA(R —RY) = ({ (¢MEr=5w)) ) (5.7)

in powers of yg. Deep in the superfluid/rough phase, where K(/V; is large, this is a well
defined expansion. It is also well defined when u = ((us)) is large: the cosine term in
(5.4) then oscillates very rapidly from site to site, and effectively averages itself out. This

corresponds to the region between Mott lobes in Fig. 2.1. In the orginal variables, Sg, one
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then has

({ (Sr — 8w} )) =~ OA(R — R) s

~ |7 = Ol Ko, Volo + O(w) | (' =), (5.8)

where ¢(p, Ko, Vo) is a positive constant that may be calculated explicitly [29]. The corru-
gation due to yo therefore slows down the rate of climb of the interface from its unperturbed
rate, p/Vy. When Ky/Vy and g become small this perturbation theory breaks down — a
signal of the phase transition. One can, in fact, infer precisely where this happens from a
scaling argument analogous to the one used to derive (4.20).

To this end, define

Or = cos(2nSR + 2mwy) (5.9)

and introduce a “temperature” variable, analogous to § in Sec. IV, by adding a mass term
L > Sk (5.10)

9 —~ R /

to Lsg. By this device we may discuss the relevance of the yg term to the critical behavior

as t — 0. To this end, we postulate a scaling form for the singular part of the free energy,

_ By?
folyo) ~ AP0 ( t;j“) (5.11)
so that
1 (8
5 < 3 j;s> ~ ABt* 2% @' (0). (5.12)
Yo yo=0

The superfluid phase always occurs at yg = 0, so there will be no shift in the critical value
of £ = 0. As usual, the yp term is relevant if ¢, > 0. Now, the derivative in (5.12) may be
computed in terms of the average
o2 f 4 2
a—y'g = _Bf<< <<ZR:OR) )0 ))
= -2 Z<<cos(27rwj)))e4“2G(R’t), (5.13)
R
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where

1 -1
GR,1) = [(—Ea%-vea%ﬂ) 5RR/] 0

]

1 — gilkI+wT)

~ , IR| = 0. 5.14
To evaluate this further, let us write
pr = p+6pr, ((Opr)) =0, (5.15)

and we assume that the duy are independent, with a symmetric distribution. Let us define

a measure of the disorder strength, A, via
L2
(e W) = 2 (5.16)

then

/

0% f (27‘( ) —om2A2|]| —dn? \
— =2 E cos | =T ) e 2m A7l —~4m*G(R.t) 5.17)

For t — 0, G(R,t) has the logarithmic form (5.5), and e~47"C is therefore slowly varying
relative to the exponentially decaying prefactor in (5.17). We may therefore do the sum
over I by setting / = 0 in G(R, 1) to obtain

O*f

Lo D(p, Vo, A) S e i GRY, (5.18)
8yO T

where D is some constant, diverging as A — 0. Now one may write
- - 1
¢ TR & [p(R)/po] " E(p(R)E /o), [R] = oo, (5.19)

where w = 2m/K/Vy determines the power law decay of correlations at criticality (i.e.
in the superfluid phase) and the scaling function E(w) decays exponentially for large w
[this can be seen explicitly by writing GR,t) = G(R,0) + §G(R,t) and using (5.14)] and

E(0) = 1. This exhibits the scaling of the correlations when y = 0. Thus the correlation
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length exponent is v = %, and we may finally compute

Y3

0f ~ 2D/loodT(\/Kng|T|/po)_wE(\/K0Vb|T|%/Po)

w—1

~ T (5.20)

From (5.5) and (5.6) we see that, up to scale factors, space-time is isotropic. Thus z = 1

and hyperscaling yields 2 — a = 2v, so that from (5.12) we may finally identify

by = S_Tw = g — v/ Ko/Vo. (5.21)

Hence yo becomes relevant when /Ky /Vy < 5?37; This should be compared to the analogous
result, \/E)"/'T/E < %, for the usual Kosterlitz-Thouless transition where py = 0. Thus, the
interface roughens earlier (i.e., at smaller Ky), meaning that superfluidity is more stable,
in the presence of disorder. For /Ky /Vy > %v Yo is irrelevant and may be set to zero
to calculate universal quantities near the phase transition. At the critical point one has
w = we = 3, which should be compared to the Kosterlitz-Thouless value, w, = 4. One
may then, for example, invert the duality transformation in this limit to obtain the actual

superfluid correlation function. One finds that (B.4), with (B.16), takes the form

. 1 . -
Li(yo—0) = 3 > [Ko(q5r+>‘c — ¢r)?
r
1 m TN / a)
+ —‘;0'\¢r+~f- - ¢I‘/‘2}a {0.22)

where r = (i,7) is the direct lattice integer position vector and where now —oo < ¢y < 0o
is a continuous phase variable [since (B.16) forces V. x m = 0 as y — 0, we may write

m = Vp, where p is an integer scalar field, then define ¢, = ¢r — 27pe]. Thus
A e 1
G(x) = (!0 =90)) = (¥ =00)) . )0, g = L, (5.23)
w

where p(r) is the same as p(r) in (5.6), but with KoVj replaced by ‘K;To' The exponent
77 is defined in such a way that G(i,7 = 0) ~ [¢|~(@+*=2F7) ag criticality. Equation (5.23)
then follows since d = z = 1 and j(i, 7 = 0)  |i| for large |7|. At the critical point we have

n= %, which should be compared to the Kosterlitz-Thouless value, n = %.
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The above calculation was performed at yo = 0. When y¢ > 0, in the region where
it is irrelevant, the parameters Ky and Vp in the Lagrangians (5.4) and (5.22) must be
renormalized to values Kg(yo) and Vr(yo) before setting yo = 0 in the derivation of (5.23).
Thus w = 2m/Kg/Vg and ¢y = 2 — 7/Kg/Vg, but the relation n = L s still exact. The
parameters Kp and Vg are the exact, long wavelength (hydrodynamic) interface stiffness
moduli that a bulk experimental probe would measure, and are directly analogous to the
suberﬂuid density and compressibility in the superfluid problem — see (3.27). The above
analysis shows that when the ratio \/Vg/Kg exceeds the universal value %7’, Yo becomes
relevant, and simple renormalization of the Gaussian Lagrangian, (5.22), is invalid. We then
expect Vr/KpR — oo, and the interface becomes localized. At the critical point separating
the localized and delocalized phases, the interface is still delocalized, with the universal
parameter values quoted above.

Recall, finally, the discussion of “asymptotic symmetry restoration” at the end of Chap 4.
We can see this explicitly in (5.4), where the chemical potential is absorbed completely
into the yo term. Whenever yg is irrelevant (which includes the critical point itself) this
term vanishes on long length-scales, and in some renormalized sense is indeed “redundant.”
Within the scaling analysis, 1 appears only in the cosine factor in (5.17). This factor is
completely dominated by the exponential decay due to the fluctuating part of the uy, and
is therefore of no real consequence. The origin of this whole effect can be seen in in (5.9):
only the value of 8 = w; mod 27 is important, and when the variance measure, A, of
dpg is sufficiently large this field is basically uniformly distributed over the interval [0, 27),
irrespective of the “mean drift” pl/Vj.

Following Giamarci and Schulz [6, 28], detailed renormalization group flows may be
constructed, to confirm the above results. We start with the sine-Gordon Lagrangian (5.1),

and set pg = 0. Then we replace,
S'R:SR——ZIUJZSR—UJ]. (5.24)

This transformation gets rid of (97 Sr), and the cosine term becomes yocos(27Sg +2rwr).

The disorder averaged free energy density, f = —%((an )), can formally be evaluated by

(ZP-1)
P

the use of the replica trick: InZ — as p — 0. We need to take the average, ((ZP)),

as p — 0. Note that all the disorder is now contained in w;. For Gaussian distrubition, the
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average is
ZP)) = / [ DSall, T)e ™t (5.25)
where
£ = ¥ Y e 0rSna + 200,50,
== o 2K0 TPOR,« 2 PR, o
230 ST N e ANl o278 (1, Th) — 27 85(J, Ty, (5.26)
I,J T1T2 a,@

a being the replica index that arises since we are averaging ZP. Note that the cosine
term, which contained all the disorder, couples different replica indices (a, 3). This is quite
general, in the replicated Lagrangian terms that represent disorder always couple different
replica indices.

It is argued that near criticality, long wavelength fluctuations dominate. Hence, in the

continuum limit, (and after rescaling time), we can write the Lagrangian in the form

f didw 3 (w2 Ga (b w)? + k284 (K, w)]
MD/ dxdﬁdTQZcos 218z, 1) — 2mSg(x, )] (5.27)
afl

K here really corresponds to +/Kq/Vy. A Wilson momentum shell renormalization group
calculation for this Lagrangian has been carried out by Giamarchi and Schulz [6, 28]. The
idea is to integrate out S(k,w) with kx/b < k < ka, and rescale as &' = bk and o' = b w.
ka is the ultraviolet cutoff for k. The parameter z is chosen to keep coefficients of k2(§a)2
and w?(S,)? remain identical. Working to lowest order in D and K — %, one obtains the

recursion relations, (I = in(b), is the flow parameter)

oD 9 27 -
— = —(K—-—/7)D
ol 277'( 3 )
0K D .
with B
_4. P 5.29)
FEA T Ok (5

Here D = 48” D
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Note that D flows towards zerc for K < 2{ There is a fixed stable line of the flows
for K < %’r at D = 0. Points which flow to this stable line represent the superfluid phase.
For K > %’T, D flows off to infinity, which is considered to be a signature of the disorder-
dominated localized phase: the Bose glass phase. D = 0, K = 2% corresponds to the
critical fixed point. The critical exponents are z = 1, and n = K. /7 = %— (Note that the
the correlation length in the Bose glass phase goes as £ ~ e!/(K Ko

in [6]).

, unlike that suggested

Now we reintroduce the symmetry breaking term, puo0rSy(I,T), in the sine-Gordon
Lagrangian. It introduces a net tilt of the interface. It can be absorbed into (87Sr)?, by

the additional transformation

Sgp = Sr — . (5.30)

2

This transformation however gives us an extra piece in the Lagrangian, --’6—2]%]/%‘1, which gives
0

rise to an analytic term, of the form Ap3, in the free energy. In the replicated Lagrangian,

the cosine term now becomes

5 . ~ ~ 2 —
—y5 /dwldwzdrldee_’rzAZ'““Iz' Zcos(QwS&(ml,ﬁ) — 278 (29, 72) + ___—_“WMO(? xl))
‘ a8 0

(5.31)
Around criticality, we can expand this in powers of (z; —z2). The leading asymmetric term

is of the form

90 / dzdridry Z(915"(56,7'2)008[271'5’(;(:1:,7'1) - 27&%(3@,7’2)]. (5.32)
0

The recursion relation for gg is

dgo 27
A ) R VS .33)
o =27 )9 (5.33)

Close to the critical fixed point, it flows as

dgo

and is explicitly irrelevant. This demonstrates that finite compressibility comes from the

analytic part of the free energy, and the singular free energy depends on pg as % and not

MO{T'
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We end this section with a brief discussion of the generic Mott insulator-to-superfluid
transition as a function of y in the nonrandom case. The Mott insulator corresponds to
the flat phase of the interface model, which exists even in the presence of the random tilt
potential so long as the dur are bounded by a sufficiently small number, dpy < Ay, and u
is not too large. The Mott gap corresponds to a free energy barrier, p.(Ko, Vo), against the
formation of steps in the interface. Thus for 4 < . the chemical potential is insufficient to
overcome the corrugation of the cosine potential, and therefore the interface remains flat.
Only for p > p. does it become advantageous for the interface to have a finite density of
steps. For p close to p,. this density will be small, and we may treat each step in isolation.
If we are well below the tip of the Mott lobe, we may compute the approximate shape of

each step via mean field theory: i.e., by simply minimizing the action

Lyr = ﬂE[%Vo(@ISI)Q — 2yocos(2mSy)]
I

%

8 / dx[%%(@IS)Q — 2ypcos(2S)] (5.35)

with the boundary conditions S(z — c0) = 0, S(z — —oo) = 1, and §(0) = 3. The solution
is the soliton

1 1 L i
S(z) — 3= ;T—aTcta;n{smh@w\/Qyo/Vgx)] (5.36)
and the total action of such a step is

1 4
—ﬁ-ﬁ rEg = —v 2y Vo, (5.37)

T

If there are N widely separated solitons, the total action is

L~ BNe, — ﬁu/dm(BmS) = _BN(es - ). (5.38)

If u < g4, £ is minimized by N = 0. If u > &5, N grows until the number of solitons is

stabilized by interactions, giving rise to a “soliton compressibility” . Thus if

£ BN[(es — )+ %ﬁp], p=N/L, (5.39)

then for u > e; the soliton density will be p = (u — €)/k, and the interface will have an
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average slope p. Clearly, in this limit we have p. = €5. Since p then vanishes linearly with
i — €5, this self-consistently validates the low density approximation, (5.36)-(5.38). One
may improve somewhat on the above analysis by allowing the solitons to meander in time,

7. Let z,(7) be the center of the nth soliton. Then we expect

B 1 )
L =~ /OdT[ZQm@ffm”(T)Z

n

+ % Z Ueff[$n(7) — T (7)]

n#Em

+ BN(es — p), (5.40)

where the effective mass meyy =~ I%E’ and the effective interaction potential, vess(z), could,
in principle, be computed from (5.35) by considering two solitons a distance x apart. Equa-
tion (5.40) is just the Feynman path integral formulation of a one-dimensional interacting
Bose gas. Note that the usual sum over permutations, P, of the endpoints, z,{f) = 2 p(n)(0),
is alsc included in (5.40) because the field 97Sy satisfies periodic boundary conditions in 7.

We have therefore come full circie back to a boson representation. One knows from
studies of the one-dimensional dilute Bose gas at 7" = 0 [30] that the compressibility x ~ Vg
is indeed finite in the dilute limit, and hence that p indeed rises linearly with y —e,. We
claim also that this soliton gas is a superfluid. This is not completely obvious because even
though the interface is tilted, superfluidity occurs only if deviations from the average tilt,
Sr = Sg — pl, diverge logarithmically at large distance, as in (5.5). This means that the
soliton positions, z,(7), must be mobile enough to roughen the tilted interface. Since the
density is small, roughening can occur only on length scales much larger %, and the effective,
long wavelength stiffness, Kr(u), will hence be very small, vanishing with p. One expects
Kpr(p) « p, corresponding to superfluid density ps o< p in the boson picture. This is indeed
found to be the case [30]. Note that the reason the transition occurs at /Kg/Vp = 0

1
1)

(and hence n = oco), rather than at the universal Kosterlitz-Thouless value of % (and n =
found at the tip of the Mott lobe, is because the 1y term has been been renormalized to zero
identically by the uniform tilt of the interface. The uniformity of u is, of course, crucial here.
In the presence of disorder we have seen the p. decreases, but nevertheless, just above u. we

expect the solitons to be localized by the dp; and the interface will not roughen immediately.

The density of solitons must be increased further, until the Bose glass-superfluid transition
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occurs, at which \/Kp/Vg jumps to the universal value of == (and 7 = 3) found earlier.
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Chapter 6

The epsilon expansion

Unlike the classical point disorder problem, the classical random rod problem [(2.13), or
(4.1) with g(x) = 0 but r(x) random]|, does not have a simple epsilon expansion about d = 4.
Rather, as shown in Refs. [13], one must consider also the limit in which the dimension,
€r of the rods is small, and perform a double expansion in € = 4 — D and e, (recall that

D = d + ¢, is the total dimensionality). The exponents take mean-field values, z = 1,

MIE

v=35,n=0,etc. at € =¢, = 0, and deviations from these values may be computed as
two-variable power series in € and .

Our purpose in this section is to extend this technique to the dirty boson problem. We
saw in Chap 4 that a certain nontrivial crossover exponent must be positive if, as expected,
particle-hole symmetric disorder is to lead to new critical behavior, different from that
of the classical random rod problem. This result was confirmed explicitly for d = 1 in
Chap 5: there, random rod disorder was found to be an irrelevant perturbation on the pure
(Kosterlitz-Thouless) critical behavior, whereas dirty boson-type disorder was found to be
relevant, leading to new critical behavior. We shall find that for small €., particle-hole
symmetric disorder is an irrelevant perturbation on the random rod problem, and therefore
that the crossover exponent changes sign, from negative to positive, at a certain value,
er = €2(D). To first order in ¢, we obtain the estimate e5(D = 4) = £ (D = 4 yielding
d =3 at ¢, = 1). For ¢, > €¢ there are then two fixed points, the stable dirty boson fixed,

and the unstable random rod fixed point. This then establishes the nonperturbative nature

of the dirty boson fixed point.
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6.1 Scaling for general ¢,

Let us now extend the scaling arguments to noninteger e,. We consider the following

generalization of (4.1):

Lo = = [dl [ar 517, - gG)UP + 5IVUP

+ g+ ulylt, (61)

where g(x) is an e.-dimensional vector. This form is based on (2.18), with the same simplifi-
cations used in (4.1). We will write g(x) = go+0g(x), and assume that dg(x) is isotropically
distributed in 7 space. This yields the correct €, = 1 limit, and ensures that the free energy
depends only on go = |gg|. Clearly, gg = 0 is the generalization of particle-hole symmetric
disorder.

The evaluation of the stiffness constants, (4.4), is slightly more complicated than before:
although the spatial stiffnesses, Y, are as before, the temporal stiffness now takes on a

tensor character. Consider a §-boundary condition in the T-subspace:
Y(x, 7T+ BF,) = e p(x, ), p=1,... ¢ (6.2)
Defining the periodic field, o) = =107/ Pap, and substituting into (6.1), we find that
Lefth; go] = Lelih; go — i6/6]. (6.3)

The free energy, fg = -3 L %n {tT {eﬁcw’]] }, is therefore shifted by

R S
57 = f- 0= (i) G
+ G(i08) 5t (i) + Ol(6/9)"] (6.4

Isotropy implies that fg is actually a function only of g go. This implies that

8f0 . 8f0
R — go—_
Jgo 990
82f0 1 afo 82f0
= (I— &oBo)2 + oo =L, 6.5
Dg00%0 go( g0g0)890 g0go a9 (6.5)



so that if we define py = ggL and kg = —6;g O, then we have
4]
i _ .z 2 7 5 \21P0
af? = ﬁ(9 go)po + Q/BQHH! — (6 8o) ]90
+ 262 Sazho+ O[(@/ﬁ) ]. (6.6)

It is straightforward to write down expressions for pg and xg analogous to (4.4), but we will

require only

ro(go = 0) = Tr = (( ([v*) ))
[t [t on w0 onp(0,0)) ), (67)

where 71 is any given direction in 7-space. The long wavelength action generalizing (3.27)

then takes the form

Seff = /d%/d%[%riw)g?
+ LVof — (80 Vo)
90

Lo
+ 5r0(8o Vrd)* +ino(Eo - Vr4)]. (6:8)

Note that when go — 0 we have po/go — xo(go = 0) = Y-, and S,y reduces to the more

familiar form

.
Serp(go = 0) = /dd /def r|v¢|2+§r,;v7¢s;2]. (6.9)
Defining the frequency variables w) = go - and &) = & — w) o, (6.8) yields a long

wavelength, low frequency Green’s function

Gkw) = <\¢(kvw>12>5eff
o
(P0/90)|5 17 + rowf + TIk[?’

(6.10)

where 5 = (Y(x,7)) ~ |§|° is the order paramecter, and for slow variations, ¥(x,7) ~
oe'®™ ) In deriving this form we have neglected the surface term, ¢pggo - V¢, relative to
the others. This is valid in the superfluid phase where ¢ has only small fluctuations about

the long range ordered value, which we have taken to be ¢ = 0. In the disordered Bose
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glass phase, as we saw in Chap 4, this term becomes important (see also below).
Equation (6.10) determines the correlations in the hydrodynamic limit, even near the
critical point, so long as new, unforseen low energy excitations do not develop [11](e). One

could write down a scaling function of the form:
G(k, &) ~ Go&2 Mg (ke w1 &, wyelh). (6.11)

Here k, &, and wj appear scaled by their appropriate correlation lengths, &, {ﬂ ~ &4l and
f.% ~ {*+ where, for gg # 0, we have allowed for different scalings parallel and perpendicular
to go. When go = 0 we expect {” = ff = §; and 2 = 2 = 2. Comparison with (6.10)

implies that
1

9zT% 4 gLy? + 922

g(z,y,2) ~ z,1y,z — 0, (6.12)

in which gy, g1 and g are universal numbers. Thus

T ~ Gj'lyolgz€"
ko~ Gyllvol?g e

po/go =~ Gy'llbolg e, (6.13)

%

The hyperscaling relation is now 2 — « = [d + 2| + (¢; — 1)z, ]v. Along with the usual
scaling relations, a + 26+~ = 2 and v = (2 — n)v, this immediately implies that T ~ ||,
Ko ~ §5|'C|Tt and po/go ~ |8]5, where

{ = [d—i—(ET—I)Z_L—{—ZH ——2]1/
= d+ (er — D2y — 2 lv

(o= [d+(er =3zl + 7w (6.14)
If z; = 2| = z, then ( = (d + ¢, — 2)v and Ql-l = =¢ = [d+ (e, — 2)z]v. Following the
argument [6], relating finite compressibility to exponent z = d, it can be argued (incorrectly)

that if the full compressibility, g, remains finite through the transition even for noninteger

€r, then we have

(7)) (6.15)
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This is the generalization of the result z =d at e, =1 [6].
The above analysis is actually incorrect for the particle-hole asymmetric transition, as
argued in Chapter 4. In particular, for the incommensurate case, gy could play the role of

the control parameter, and thus the singular part of the compressibility goes as

Kg ~ 0% (6.16)

with o = 2 — (d + €;z)v. If this is also the total compressibility, for it to be compatible
with the previous analysis, we must have a = (;, which implies z = 1/v. The other option

is that the the total compressibility x¢ is finite. Since the renormalization group analysis,

d

5, We are forced to conclude that there is no

does not agree with either z = 1/v or z =
8 piece in the compressibility.

We next calculate the particle-hole symmetric crossover exponent, (4.29), for general €.
The calculation is essentially identical to that leading to (4.29). The perturbation, (4.14),

now becomes

—~ / dé / drp*g(x) - Vo i(x, 7). (6.17)

We assume ((g,(x)g,(x))) = Agh(x — x')6,,,, where ¢ is a delta function for short range
correlated disorder, and varies as (% for large z for power law correlated disorder.

Equation (4.19) now becomes

-2 (;A ) = /ddw/ dTé(x
T A=
X{( (" T@/J( 7) - "Vr1p(0,0))c ), (6.18)

where the remaining disorder average is over the random rod disorder, r(x), while the
statistical average is with respect to the random rod Hamiltonian with g(x) = 0. From
isotropy in 7-space, the right hand side of (6.18) is just e, times the average for any given
direction in 7-space [i.e., with V, replaced by, say, d,, as in (6.7)]. Extracting the scaling

behavior of (6.18) is now straightforward: equation (4.25) becomes
T, (k,0) ~ Ak® )2y, (kg), (6.19)

and as in (4.26), Y4 (w) will have a similar spectrum of exponents, 0 < w; () < waler) <
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w3(€r) < ..., now depending on e,. This leads in the same way to (4.29) and (4.30), still
with by = 0, and a term by |6]24=(=¢r)2* | We then find

22—d—-a, a<2z—d— Ai(er)

Polv = { A(er), a>2z—d—A(e) (6.20)

essentially as before [see (4.32)], but now with all exponents evaluated in €, time dimensions.

We shall compute Aj(e;) to O(e;) below. From the naive (and, as we shall see, incorrect)
estimate, Ay = 2z — d, we again have A\; > 0 for z > %. Since z = 1 at ; = 0, we expect,
as stated earlier, A\; < 0 for small e, becoming positive only for e, > €2 > 0. We shall find
that for e, > €7 a new stable fixed point with A > 0 bifurcates away from the random rod
fixed point (with A* = 0). The exponent z is substantially smaller than g at this point,
violating (6.15) for any e, > 0. Assuming that this new fixed point may indeed be identified
with the true dirty boson fixed point when €, = 1, we conclude that (6.15) is incorrect.
Either the compressibility, x, vanishes at criticality, or the finite part of the compressibility
comes from the analytic free energy. Later we shall generalize the analysis of the excitation
spectrum of the Bose glass phase in Chap. 3 to general e.. For e, < 1, the issue of whether

the Bose glass phase is compressible turns out to be rather subtle.

6.2 Phase diagram for general ¢,

It turns out that e, = 1 is special. For ¢, > 1, as we will see in the next section, there
is no incompressible phase at all we always have superfluidity. To understand the phase
diagram for e, < 1 it would be constructive to first consider the infinite range hopping
model (J;; = J/N for all 1,j, where N is the number of sites). In the absence of disorder the

mean-field Lagrangian is given by
e J ] 1 2
Luyr = / drr(=5 2 coslpi(r) = & ()] + 3 5 (Ordhi — 1)), (6.21)
i i
where 71, 79,... go from 0 to 8.

Gi(T + Bey) = di(T) + 2mny,

n, being an integer.
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A complex Hubbard-Stratanovich field M(7) may now be introduced to decouple the
hopping term. Using

exp(—(— )z 2) /dq/)dw exp — (apz* + ayp*z + aN|p|?)
the partition function can be written as (without the normalization factor)
/ [[{dM (7 dM*(7) e~ JArNIM*M {63} oy / dr[JM (7)Y e7i1)
FIMA ()Y 6%+ 3 o (@i — )]} (6.22)
which is of the form
Z:i/IHMWGMNPGnmm}NSUWH. (6.23)
T

In the thermodynamic limit, a saddle point evaluation of the integral becomes exact. We
assume that the lowest-energy saddle point involves a time independent field, M(r) = M,

which can be chosen to be real. Then S(M) can be expanded in powers of M,
S(M) = Blr(u, )M +u|M*+ ..]. (6.24)

We need to expand 6.22 in powers of m. For this purpose it is convenient to make a change

of variables to ¢;(7), where

JEE—

§il(7) = gu(F) - 2T (6.25)
B
such that ¢;(7 + Bé;) = ¢(7). Then r(u, J) is given by
J? - g IR 72
J) = J-— jf 47 dE 7y / 16 B8 - 5 [(0-0)
(n ) i [l f dbte e [0-97)
T z —1lger— B e — A
2{627"”'(%"'&2_“0 BT 2 e 4+ cc(with — )],  (6.26)
where Zy = [ dge 2 J0r0)*
We will use the identity
C iorR (2 _pU-1ger—1 ‘2"4”2U1 2 2
262271'71-( B B ,U, ﬁ ) T 325er Z —27 Y(x l_) (627)

n



- 64 -
where & = —gU~181—¢ + ﬁ—g—ﬁ; and Y = ﬁz;;TU. In the limit 8 — oo, all the contribution

comes from | = 0. In this limit
J2 2|2—€r =
r=J- - /dGTTe—(U/Q)[Tl +7f (6.28)

The phase boundary between the Mott phase and the superfluid phase occurs at r(u, J) =
0 (for r < 0 we have the superfluid phase with nonzero magnetization M = 0, while for

r > 0 we have the Mott phase). Thus the boundary is given by
1/J. = %/dETTe"(U/Q)mQ_ET*F'ﬁ. (6.29)

We plot the phase boundary for different values of e; in 6.1. For large values of u, this

boundary goes as

2;6).

Jo ~ ea:p[—AM'(l-ET ] (6.30)
where
-,
A= ——F
(2 —¢€)T=er

and p' = p(2U 1)/ 2=¢7) " Also note that there is only one Mott lobe for e, < 1. The easiest
way to convince oneself of this is to use the methods developed in the next section to show
that for all values of y, a single site always has p = 0. In mean field, at the commensurate
point p = 0 one has the dyanmical exponent z = 1 while on the remainder of the line z = 2
(this is true even in the presence of disorder).

Since in mean field theory, every site gets effectively decoupled, it is very easy to in-
corporate the effect of site disorder within this formalism. In the presence of disorder, the

phase boundary is at
=5 [dor [ amep(@ye OG-0, (6.31)

where p(€) is the single site distribution for the site disorder, & So, in the presence of
disorder the Mott lobes shrink, but the mean field critical behavior is unchanged. For
finite hopping, we expect a finite width Bose glass phase to appear between the Mott and

superfluid phases.
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Figure 6.1: The phase diagram for the Josephson junction model, showing Bose glass/Mott
(BG/M) and superfluid (SF) phases, with incommensurate line (IC) and commensurate
point (C) for e; = 0.5,0,9,1, with larger ¢, corresponding to a smaller Mott lobe. Note

that only one Mott lobe persists for e, < 1. For e, = 1 the Mott lobe shown is actually
repeated priodically.
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6.3 Droplet model for general ¢

To establish these results, let us first generalize the results of Sec. III to general e,. We
consider then the effective action (6.8) in a finite droplet in which ¢ is assumed constant in
space [compare (3.29)]:

(1)
Seff

Il

1
V [ drrl5al Vg + i Vo

il

Sy +iv [ drp Vg, (6.32)

We take ji = (1,1,...,1)p and g'= (1,1,...,1)p so that || = /& and |p] = \/e;p. Finite
1, p and & yield the correct normalization both at €, = 1 and small ¢,. Periodic boundary
conditions imply ¢(7 + 8&;) = ¢(T) + 2wm;, for integer m; and 7 = 1,...,¢,. There is only
one integer for each temporal direction &; because V¢ must be periodic in all directions.
If m; were to depend on the time components 7+ perpendicular to &;, there would be a
nonperiodic contribution, V, m;(71), to V,¢.

Let us first generalize the free energy calculation, (3.31), to general €,. First let us define
the periodic field

- 21 & 2

P(T) = ¢(T) + = > mums = ¢(7) + Tm- 7 (6.33)
g & 5

The generalization of (3.35) then reads

. 2miBeT ~Im.pV —2n2k0V ger 22
f = fo—ﬂsrvln[Ze m-7 K m
% tré {e_sgff[&] }]
= fo+ foo[k"]
1 dmer | ger—1 2 /0,0
. —grer|ger =15V 1|2 /260V
57 In [;e V17 2% | (6.34)

where (3.36) has been used for each component of m and the functions fg and fog are defined

analogously to (3.33) and (3.35): fo(l77l) = fo(|fio|) — 1°[(12l — |fio]) — 5x° (1] — | o] )?, while

foo 1s the free energy associated with Sé(}?f with periodic boundary conditions. When 8 — oo

for e, < 2 only the term with minimal exponent survives. Thus if Iy is chosen such that
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|6 1pV —Io| < 3, then

f(B—00) = fo+ foo
+ BB oV — 1g)? 260V, (6.35)

Recalling that |g] = /erp = /&rp° -+ £°(|ji] — |fio|), the density is then

__Lor
SN
= p—(p—P"l/V) =5/ V. (6.36)

Now, for 0 < e, < 1 we have 87! — 0 as 8 — oo, and hence Iy = 0 for all pV. Therefore
pdrop = 0, and all droplets have zero density, and are completely incompressible, no matter
their size. This seems to indicate that the Bose glass phase is incompressible. However there
are additional subtleties to worry about here.The point is that since the Mott to superfluid
phase boundary has y dependence, the distribution of droplet sizes would change as we
change p. This would be equivalent to having the volume of the droplets depend on u, i.e.
V(). This would lead to a finite compressibility in the Bose glass phase for ¢, < 1. For
€ = 1 we recover immediately the result (3.38). For 2 > ¢, > 1 we have 81 — oo as
B — o0, and hence ly grows with 8, and lg/#“V — p. The droplet is therefore compressible
— the density varies continuously and is equal to the bulk density.

We may similarly compute the temporal correlation function for general e.. The result

18

Gplr —7')

o of
I—T N

Z PiQ"rm'(WﬁsTAl‘*‘ 3 /e—-27r2rn?;cOVﬂE“-'_2
m €

. 7
= GO(T -7 ) Zm ci2mm 5V Ber—1 ,—2r2m2R0V Ger 2
(3 e BT BT T VA () -1 /260
= Go(r—7) ) e— B e |Ber~ 15V 12 /207
(6.37)
where
Golr = 7') = (=60 ) = o=OFF)/RV (6.38)

eff

and C(7) « |7|>7° is the Coulomb potential in ¢, dimensions. Once again, when 8 — 0o
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and €, < 2 only the term in which all [; = [y survives and we find

Gt — ') = Go(r — 7")
w8 T (VAT o) ST (ri= ) [V (6.39)

where, it should be recalled, the [y factor in parentheses lies between —-% and % For

2 > & > 1 we have 817 — 0 and G,(F) = Go(F): the droplet behaves like the bulk
superfluid, in agreement with our finding for the density. For e; = 1 we recover (3.41). For

0 < e7 <1 we again have [y = 0 and

o}

G,(7) = Go(F)e PT/%", (6.40)

6.4 Renormalization group calculations

Let us finally revisit the renormalization group calculation carried out in Ref. [12], but
now with explicit attention to issues of particle-hole symmetry. To this end, we use the
standard replica trick to average over the disorder [31], and obtain the replicated Lagrangian,

ﬁff’ ) = Egp ) -+ E;p )7 where p — 0 is the number of replicas, and

P = _i / dz / 07 e[V rtpaf?
1 = 9 T T
” 1 .
+ 8o (Y'Via) + §€z'vwa‘2

+ srolyal? +ulbel' (6.41)

1 p
Egp) :§ Z /ddmfdGTT/dérT/

a,B=1
X Al (x, )P ls (x, 7))
+ ATV — golYl (%, 7) - [0V — gol](x, 7).
(6.42)
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For simplicity we have taken g(x) and 7(x) = r(x) + g(x)? to be independent Gaussian

random fields with g(x) = gg + dg(x), 7(x) = 9 + é7(x) and

{(0g(x))) = 0, ((Igu(x)dgw(x))) = Agd(x — x')dp
((67(x))) = 0, ({(67(x)07(x))) = A, d(x — x). (6.43)

The analysis in Ref. [12] was carried out with gy = (1,1,...,1) and Ay = 0, but A, > 0.
However, considerations of particle-hole symmetry lead us to expect that gg = 0 and A, > 0

should yield a more appropriate model. In Fourier space we have

p

1
e — L /// 5(ky —ky + ks — k
2 20[;_4 ki Jko Jks Jks er = ka -y = keo)

x // Ay — 2880 & — Ay - ]
TﬁZ(kl:ﬁ)T/ﬁ(kz’5)¢Z(k3,5/)¢ﬁ(k475’)7 (6'44.)

X

where A, = A, + g%Ag, Nominally, by naive power counting, it appears that the leading
term at low frequencies is the A, term, and one might expect the other two frequency
dependent terms to be strongly irrelevant. This will turn out to be true for small e,, where
naive power counting is almost valid. However, beccause & and &' refer to different replicas,
o and §, these terms break particle-hole symmetry, and are not as strongly irrelevant as
one might expect (as compared to, for example, w? corrections to the |¢|* coeeficient, u),
and in fact become relevant for larger e..

We shall begin by setting go = 0. Nominally, this term again appears to multiply
more relevant terms than does A, — especially the quadratic gg - ¥*V, 19 term focused
on in Ref. [12]. We shall return later to understand how the irrelevance of this term
comes about. We shall perform a standard Wilson momentum shell renormalization group
transformation [33] in which successive shells in k-space are integrated out. For each such k
all frequencies, w, are integrated out. Since the frequency is unbounded, the Brillouin zone
is really a hypercylinder. After each integration, we rescale k and w in order to maintain
the same wavevector cuttoff, ky. The spin rescaling factor and the dynamical exponent, z,
are determined in the usual way by setting the coefficients of the quadratic terms, ¥} V2,

and % V24, equal to unity. We show the diagrams that contribute at lowest nontrivial
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o B

Figure 6.2: Vertices corresponding to u, A, and A,.

Figure 6.3: Diagrams that do not contribute as the number of replicas p — 0.
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(3) C))

Figure 6.4: Diagrams that contribute to the propagator renormalization.

(1 2

3 )

&)

Figure 6.5: Diagrams that contribute to the renormalization of u.
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N/

ey )

Figure 6.6: Diagrams that contribute to the renormalization of A,.

Figure 6.7: Diagrams that contribute to the renormalization of A,.
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order. We obtain, then, in a straightforward way the recursion relations:

dr _2m+1Da 24, 2 X2 A2
— = 2 — ALLA
di TFIEE igr O AR
(6.45)
du _ _2 _x _3
- = et — 2(m + 4)a° + 12aA, + O(@”, .. .)
(6.46)
da, A L 9A2 A 3
o = (e+€-)Ar +8AZ — 4(m + 1)aA, + O(w°,...)
(6.47)
dA, - - - - .
‘“El—‘ - Ag(E + €r + IOA«,- - 2Ag - 2) = AgAg - 2Ag
(6.48)
z = 1+A,+ Ay n=0, (6.49)

where m is the number of boson species (m = 1 physically), 7 = ro/k3, 4 = Kqu, A, =
K4, Ay = k3 K40, are appropriately rescaled by the cutoff, and Ky = 2/(4m)¥21(d/2)
is (27)7¢ times the area of the unit sphere in d-dimensions. Note that A, does not enter
any recursion relations except its own at this order. If one sets Ag = 0 one obtains the

usual Boyanovsky-Cardy lowest order recursion relations [13], with fixed point

82m—1) " T 4@2m—1)

_ - (2—m)e+ (m+4)e,
A = 0, Ar =
g 0. & 8(2m — 1) ’

o 3me+ (bm + 2)e, €+ 3er

(6.50)

correct to linear order in € and e,. For sufficiently small ¢ and €, we see that A7 < 0 and

this fixed point is stable against the perturbation [lg, However, for

8(2m — 1) — 3(m + 2)e

C__—
r> 6= 13m + 16

(6.51)

this fixed point becomes unstable. Setting m = 1 and € = 0 (so that e, = 1 corresponds to
d = 3) we find
€= — (6.52)

which is actually quite small, and therefore might actually be a reasonable estimate. We

may write Ay = 22 — d + 8A,. The last term shows the deviation from the naive result,
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Ag = 2z — d, which would have led to the estimate, € = g, which is uncomfortably close to
1, considering how poorly controlled this expansion is at higher order [13].

For e, > €<, there is now a new stable fixed point with

1
Sm + 10 ¢). (6.53)

‘*_1 A * _
A7 = —(e+ e + 10A7 2)—4(2m»~1)(67 °

g2

Therefore the new fixed point bifurcates continuously away from the random rod fixed point.

The dynamical exponent, z, is substantially larger than the random rod value:

- v (mA+4)e+ (Tm + 10)e,
rlTe 4(2m — 1)

,er > €S, (6.54)

which, for m = 1 and e = 0, yields z = l42 at €, = 1 (not far from z = 3, considering the
crudeness of our estimates). However, this result grows, instead of shrinking as it should if
z = d, with € at fixed ¢,, but this could change at higher order. The “thermal” eigenvalue,
determining v, is
%:2—2(m+1)a*+2A::,.5, (6.55)
while, as stated above, 7 = 0. These results are both unchanged from their random rod
values at this order.
Finally, let us include the gg term. To linear order the flow equation for go = |go| is

found to be

go = go[l + AT — Ag} (656}
This term becomes irrelevant at the dirty boson fixed point for e, > e, = %fl%imT:lg. For

m = 1 and € = 0 one obtains €, = 2/3. This is again an uncontrolled estimate, but does
indeed indicate that the statistical symmetry is restored prior to €, = 1. For €, < €, there
is a new incommensurate fixed point at nonzero gg. In order to locate it one should choose

z to keep go, rather than e,, fixed during the RG flow. The flow equation for A, becomes

Ay = Ayle+e, —4+8A,] 4 8AZ (6.57)

while the remaining ones are identical to those in [12]. The fixed point found in that work
did not account for Ag, but we see that if AT = O(e,¢;) then A = O(€?, eer, €2), s0

the results given there are indeed correct to O(e,e,). However, as e, grows, so does A¥,
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Figure 6.8: Proposed behavior of the random rod(RR), commensurate dirty boson boson(C)
and incommensurate(IC) fixed points as a function of ;. Here G and G'g are commensurate
and incommensurate Gaussian fixed points. We propose that at e, = e;1 &~ 2/3, C and IC
merge and at e, = 1, C is the stable fixed point that describes the physical dirty boson
problem.
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eventually leading to the merging with the dirty boson fixed point.

The technical problems encountered in [12] are also overcome in our analysis. Specifi-
cally, the |V 1), |* term, which was also ignored in [12] has the flow equation &, = —(1 +
Aner + Ag, implying that it is of the same order as A; at the fixed point. A nonzero
er fixes the convergence problems found in [12], and allows one to remove the unphysical
frequency cutoff wy.

Finally, to see how the two fixed points merge we write down flow eqns in the intermedi-
ate region, €,1 > €, > €2, where one must consider both e; and gy = kpago. We will choose z
so that e, +go = 1 remains fixed. The flow equation for gy is then gol = (2+2A, — z)gy with
z=(1+A,;A,)+(1+A,)go. At the fixed point we therefore find g§ = (1+A5-AN/(14+4}),
which vanishes precisely when go becomes irrelevant at the dirty boson fixed point.

To summarize, for small e; the unstable DBC fixed point and stable incommensurate
fixed point exist. For € < e, < ;1 there are three fixed points, with the new commensurate
dirty boson fixed point being more stable than the DBC fixed point, but less stable than
the asymmetric fixed point. Finally, for e, > €,; the incommensurate fixed point merges
with the dirty boson fixed point, which is then completely stable. This provides a detailed
scenario by which statistical particle-hole symmetry is restored (see Fig. 6.2). We caution,
however, that due both to the uncontrolled nature of the double e-expansion at the dirty
boson fixed point, and the special nature of €, = 1, extrapolation of these results to e, = 1
is not completely justified. The general scenario we propose, however, seems very natural

and illuminating.

6.5 Relevance of “point” disorder

In this section we discuss the relevance of “point” disorder for magnetic flux phases of high-
tempearture superconductors. As mentioned in the introduction, flux lines could be viewed
as boson world lines. We can represent the disorder by a potential w(x, 7). The partition

function can be written as a functional integral of the form

Z = / {dip}e %, (6.58)
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d 1 2 * 1 2
£ = [ diadrlzelompl + (9o + 8915, 7)) (67 Br) + eal VY

5o+ 6ra (e, )12 + o). (6.59)

For “point” disorder Ar and Ag are functions of both = and 7 (unlike the dirty boson case).

The replicated Lagrangian can again be written as £®) = Egp )+ Egp ), with

r
L) = =5 [l [ rlsend Vol
a=1
. 1
+ 8o ("/)*v"ﬂpa) + EezivwaP

+ émwalz + ultpal] (6.60)

1 & _— .
£ > / A / 4T [Ay a3, 7) s (x, 7) 2

a,B=1
+ Ag[$* Ve = golvl?|(x, 7) - [V — golyl)(x, 7).

(6.61)

We investigate the relevance of both A,; and Ay at d = 2. First we consider the
commensurate point go = 0. A, is the usual classical disorder, and its relevance/irrelevance
is linked to the sign of «, as indicated by the Harris criterion. The singular free energy can

be written as

fo = 6" F(A,157%). (6.62)

For the commensurate nondisordered transition at d=2, & = —.0126. The negative sign
indicates that A,q is irrelevant for this case.

Next we investigate the role of Ayy. Since we are perturbing about the pure fixed point,
scaling calculations (similar to those in Chapter 4), would give us the crossover exponent.

Thus
1
Of [0Ag1 = —599(:6 =0,7=0) (6.63)

where

Ggz,7) = ({ (4" Orip(e, 70" B:46(0,0)) ). (6.64)
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About the pure commensurate fixed point

fs(g0) = 5V(z+d)f8(905_uz)> (6.65)
0% f
8985 = /dddegg (z,7)
5Z/(Z+d)—21/2' (6.66)
Using the form
Gola,7) =&Y (2/€, 7/€7), (6.67)
and rescaling z and 7,
= §vletdts) / dia/dr'Y (! 7') ~ 57007 (6.68)

This implies that the exponent a = —2d. If
fs(Agl) ~ 5V(Z+d) fT(Agl/(S(bg) (669)

then it follows that

Note that this argument works only because we are expanding about the nondisordered
fixed point. If ¢4 > 0, Ay is relevant, else it is irrelevant. Since at the commensurate fixed
point without disorder, z = 1, Ay is irrelevant for d > 1.

Next we investigate the effect of disorder on the generic incommensurate transition.
Here, either go or ro can be chosen as the control parameter, playing the role of §. For
either choice the critical exponents are the same, implying that we can apply the Harris
criterion to both Ay and A.q. So their relevance is related to the sign of a. At d = 2, the
incommensurate transition is mean-field like and « = 0, so disorder is marginally relevant.
Above d = 2, where the nondisordered transition has mean field exponents, the crossover
exponent for disorder is o = 2 — (d + z)v, (not a, which is equal to 0). Thus “point”
disorder plays no role at the incommensurate transition for d > 2.

Note that these calculations were done in the limit of short range interactions. For
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short range interactions, point disorder does not seem to play any role in 2 dimensions (i.e.
three-dimensional sample). So one should look for the vortex glass phase in the limit of
“unscreened” interactions between the vortex lines. This agrees with work done by Bokil
and Young [37], where they find that screening of the interaction between vortices destroys

the (2+1) dimensional vortex glass to superfluid transition.
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Appendix A

Functional integrals based on the Trotter decomposition

Given a Hamiltonian, H, thermodynamics is obtained from the partition function Z =

tr [e“m‘q. The Trotter decomposition involves identifying a convenient complete set of
M

states {|a)}, writing e #H = [e‘AT’H} , where M = /A7, and inserting the |a)’s between

each element of the product:

Zz = Zz Z (aple ™Mo ) an]e ™2 ) ...

g o1 OAr—1

X Aan-1]le” 2 ap). (A1)

Often one can write decompose H = Hg + Hi, and choose the |a)’s to be eigenstates
of Hg. This is especially convenient when H = H[{¢;}, {pi}] is written in terms of a set of

canonically conjugate positions, §;, and momenta, p;, and takes the special form
H = Hol[{Gi}] + Hil{p:i}] (A.2)
in which H; is a quadratic polynomial in the p;:
Hy = —;: ; Siipip; + EZ: tipi- (A.3)
J

The |@)’s are then taken to be product eigenstates of the positions ¢;: |¢) = |q1, ... JAN) =
N, |g:) with g;lg) = gilg). We also define product eigenstates of the momenta, |p) =
Ip1,. .. pN) = N, |pi), with ilp) = pi|p). From the canonical commutation relations,

[Gi, pi] = 405, which in turn imply

[Gie P = XeTPigy,

[ei)‘(ji,pj] = —/\ei/\giéij, (A4)
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we immediately infer that

eTig) = g+ A

eMilps) = |pj+A). (A.5)
From this we obtain the wavefunctions

(@ilps) = (g = 0[P |p;) = "iPi(g; = 0]™P1%|p, = 0)

_ %eiqim’ (A.6)

where J%/- = (¢; = 0O|p; = 0) normalizes the wavefunction. Note that if the g; are periodic
variables, defined only modulo 27, say, then |¢;) = |¢; + 27) are identified. This then
requires the same periodicity of the wavefunctions, and determines the possible eigenvalues,
p; (which then must be integers in this case).

We may now compute, for small AT,

—AT’qu/> ~ —AT'HO(Q)G—ATﬁl(ﬁ)Iq’)

{gle

= AT S (glp) (plem AT )
p

= e AtHo(a) Z o~ ATH1(p)

(gle

{qlp)(pld’)

— —-AT’HO(ZI) Z elz pi(gi—q i ATHl(p)7

(A7)

and we are then left only with computing the inverse Fourier transform of the Gaussian

function e~ A7H1(P) To do this, we first complete the square:

Hilp] = _ZSU Pi +vi) (B +vy) — ZVWJ

7]

Z(S Z]ij 7 ZS’L]V] (AS)

J

Vi

il

We specialize now to the case of integer p;, using the formula

/ dp; E pi —ny)

p ni=-—00
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oo 0 0

® my=—o0

Then
S e PXpilama) mATHI)
P
frd Z/dpeipi(Qi“q;‘i-Qﬂ‘mi)e—AT’Hl(p)
m
= Z e%AT 2y Srivi—i) vi(gi—gi+2mm;)
m
X /dﬁe_%AT Zi,j Sijﬁiﬁj-f‘iZiﬁi(%—q;-l-?wmi)
= ! Z e%AT 2o Sivivi— ), vilai—gj+2mmy)
N(AT) &
X 6_57.{.7 Zi,j (S_l)ij (i —q}+2mm;) (g5 w(13,4,2.,‘.7,%) (A10>
where, in the second line, we have changed variables to p; = p; + v, and N(A7) =
1
det{A7S)z.

Now consider the limit A7 — 0. For given {¢;} only a single term in the m-sum will
survive, namely that which minimizes the exponent. Furthermore, only if ¢; — ¢} 4+ 27m, =
O(AT%) will the term contribute to the path integral, (A.1). Therefore, modulo 2, ¢;(7)
becomes a continuous function in the limit A7 — 0, and ¢; — ¢} + 27m; — —Ar¢;. Clearly
we will nearly always have m; = 0, with m; = £1 every so often when the periodic boundary
conditions are enforced (for example, when ¢; = 27~ and ¢, = 07, or vice versa). When
AT — 0 we may equivalently define a continuous function ¢;{7), taking arbitrary real values,
and then sum over all boundary conditions ¢;(7) = ¢;(0) + 2wm;, with m; running over all
integers. Thus, we finally have, as A7 — 0:

(al e ATHID) |41y = 1 oA Y, (57 Disdids

N(AT)

e~z’AT ZZ vigi+5 AT Ei,j Sijviv;

= 1 e“%ATZi,j(S*i)ij(di+iti)(qj+itj)7 (a1

N(AT)
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i)+ I1 [ Pastr)esp | — [ ar[olatr)

St + ity + )] (A12)
7,7

where [Dg;(7) is a functional integral is over all paths with a uniform measure.

Equation (A.12) now leads directly to the path integral representation for the Josephson

Hamiltonian, (2.12), with § replaced by ¢ and p replaced by #. The term H(§) is then just

the Josephson cosine coupling term.

If, instead of canonical coordinates, H = H[al, al, is written instead in terms of raising

and lowering operators, another convenient complete set of states are the coherent states,

:L;o T ala) = ale)

o0 m

3 (&) _tjapp-tjorp

7'1:0 n7

e —glal*—gla’|? (A.13)

Thus, for any normally ordered operator, O(a', a), we have

and hence for AT = 0

{ale

Recognizing that

n

Z [a;an+1

(alO(a',a)|a’) = O(a*, o/ Y|y, (A.14)
“arHlatelle!y ~ (al(1— ArHal al)|of)
~ (o )e AR (A.15)
1 1
- f2“f0<n| §[an+1l
. * O‘n—[—l — Qp
= AT af <—————-—AT ) (A.16)

where the periodic boundary conditions in imaginary time have been used, we arrive at
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(2.10) (with ¢ replacing ) when A7 — 0.
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Appendix B

Duality transformations in one and two dimensions

In order to obtain a model amenable to analysis in one dimension one must derive a dual
representation for the Josephson Lagrangian, (2.12). In Ref. [6] this was done in a rather ad
hoc fashion using the Haldane representation for one-dimensional bosons. Here we perform
the duality transformation directly, on a variant of (2.12), in a much more transparent
manner, following closely the analogous derivation for the two-dimensional XY -model and
its associated Kosterlitz-Thouless transition [34].

The transformation is best carried out in discrete time. The continuous time limit
is mathematically well defined but, as we shall see, physically less transparent: one runs
into logarithmically divergent coupling constants, just as in the Trotter decomposition of
the quantum Ising model in a transverse field [35]. These are consequence of the usual
exponential weighting times in continous time, by discrete state, Markov processes. In order
to avoid introducing the probabilistic formalism necessary for dealing with the continuum
limit we shall maintain a discrete time variable.

We begin by introducting the Villain, or periodic Gaussian form of the XY -coupling [34]:

o0
e~ Ko(l—cos(¢)) _ Z o3 K (@—2mm)? — eVo(d%K), (B.1)

=00

which allows the duality transformation to be carried out ezactly. We will consider only
the case where J;; in (2.12) is nearest neighbor, but possibly random. In (B.1) Ko = J;; AT
for the bond (ij), and therefore already includes the effect of discretizing the 7-integral in
(2.12). There are two limits in which K and K may be quantitatively compared. For large
Ky the variable ¢ will have only small fluctuations about zero, and only the curvature, K,
near the minimum of the cosine potential at ¢ = 0 is important. In this limit only the
m = 0 term contributes to the Villain form, and the two potentials therefore match when

K =~ Ky. Conversely, when Kj is small, ¢ fluctuates strongly, and many m contribute to
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the Villain sum. It is then convenient to use the Fourier representation [34]

Vo(hK) _ —12/2K .
= ¢ B.2
_}_:oo o (B.2)
where now, for small K, only the [ = 0, £1 terms are important. This yields
1
Vo(9, K) = —5In(2rK) + %~ cos(4), K — 0, (B.3)

and hence the correspondence K ~ 1/2In(2/Kp) in this limit. Now, the continuum limit,
AT — 0, corresponds to Ky — 0, and therefore (B.3) is appropriate. This yields K ~
—1/2In(J;;AT) as AT — 0. This is the logarithmic behavior alluded to above. We shall
keep A7 small but finite, setting aside the question of its optimal value, which would have to
be addressed for quantitative comparison of the Josephson and Villain forms of our model.
For our purposes it is important only that the discrete and continuous time versions lie in
the same universality class.

Using (B.1) we then define the Villain form of the Josephson Lagrangian, (2.12):

eﬁ‘][qb] = Z eEJ[¢7m]
Ly = —= Z K2 (Oypr — 2mm&)?
r,as£0
- = Z l)’éj i — 1V — 271‘771,?7.)
74] T

X (Ordpjr —iv; — 27rm?7_), (B.4)
where y¢r = ¢ria — ¢r and my = (m, ml,...,m?) is a (d+ 1)-dimensional integer vector
field defined at each space-time lattice site r = (4,7), and the index o = 0,1,...,d runs

over the neighboring sites in the & = X, direction, with %X = 7. Until further notice there
is no restriction on the dimensionality, d. The parameters K, V;; and v; are, respectively,
the Villain analogues of J;; A1, U AT and p; AT in (2.12). Since L is separately periodic

in all the differences 0,¢r we may write it as a Fourier series,

Ll Xlxt' ; ¢ 2or " Brrabe) L] (B.5)
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where
—c[n H / S D ST (B.6)
so that
A 1 (”%)2 1 0.0 0
Lo ==5 > “Ke T3 > Vyngnd, + > ving, (B.7)
4, 7,070 2 2,7 iT

and the normalization is

[

M:( 11 ;—:;) det(2mV)?3. (B.8)

7, 7,070

To derive (B.7) we have used the identity

/oo g}ie‘imue—%f((u-f-ivf = 21 Ke_mvg_mz/zK (BQ)
—oo 2T &

and its higher-dimensional generalizations. The partition function now becomes

Ry 1 A
Z = trfetil0l = — ZH(SV.HF,Oe—ﬁJ[n], (B.10)
M n r

where V - n is the discrete space-time divergence,

Veong =Y (nd —nd,). (B.11)

8]

Note that this formulation is entirely real, and has been used as a basis for Monte Carlo

simulations of the dirty boson problem [36].

B.1 One dimension

Let us now restrict attention to d = 1. One may then solve the constraint V -n = 0 by

introducing a dual lattice integer field, sg, such that
=(Vx 9 = (Sr_%x — Sr, SR — Sr—#), (B.12)

where the dual lattice bond connecting R — 7 to R is the one that cuts the real lattice

bond connecting r to r + %, while that connecting R — %X to R crosses the one connecting
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rtor+7,ie. R= (I,T) =1+ %(f{ + 7). Thus the a-component of the discrete curl
of a scalar is the difference between its values on the two dual sites that border the bond
from r to r + & The field Sg is defined uniquely up to an overall additive constant, and
the constrained trace over the ny, is precisely equivalent to the free trace over the sg. One

therefore has

1 £,[V%S
= S eLalvxs (B.13)
M S
with

(0,5

CAJ[VXS] = - KI

DN =

Z Vii(0zS11)(0:S 1)
[,J,T

Vi (855R). (B.14)

B =
bq

+
4\

Here 0.Sr = Sr — Sr-#, etc., Ky is the Villain coupling on the real lattice bond that
cuts (R — 7,R), and similarly for v; and V;;. Note that in this representation the La-
grangian is purely real and has a very natural classical interpretation, namely that of a
three-dimensional interface model. The field sg represents the height of a surface over a
two-dimensional plane. The first two terms in £ yield the energy cost for steps in the 7 and
x directions, respectively. In this case the energy associated with steps in the 7 direction is
random, but only in the spatial index. The last term represents a random tilting potential
which favors steps in the z direction with the same sign as vy. It is precisely this breaking of
the symmetry between left and right steps that reflects the broken particle-hole symmetry
in the original quantum Hamiltonian. Note that in this dual model the symmetry being
broken is associated with parity (z — —z) rather than time reversal (7 — —7).

The more common sine-Gordon representation is obtained from (B.5) by softening the
integer constraint on the Sg. Thus 353, _ = [ dSR Y% - 6(Sr — hr) is replaced
by [ dSrq(Sr), where ¢(t) is periodic with period one, and is peaked around ¢t = 0. The

sine-Gordon model (5.1) results from the choice
q(t) — e2yocos(27n‘,) (B.15)

where yo is called the fugacity. The integer constraint is recovered in the limit yy — oo.
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For small yo (see below) this term may be obtained directly by including a term

In(yo) Y (V x m)% (B.16)
R

in the original Lagrangian, (B.4). The discrete curl of a vector field is a scalar field on the

dual lattice obtained by summing the vector field around the dual lattice plaquette,
(V xm)g =m} +md g —mp . —m, (B.17)

and is precisely the vorticity on that plaquette.
Finally, the Coulomb gas representation is obtained either from the sine-Gordon repre-
sentation by expanding the exponential in (B.15) and integrating out the Sgr, or from the

discrete version, (B.14), by substituting Y°0°__ ™R for Y =00 0(SR — hR):

7 = rigS {ezﬂizﬁzasﬁeéJ[vXS]]

- tﬁ[ng}? (B.18)

where [we include the term (B.15) for completeness]

. 1
Lolll = 3 Z Grr (2rlg + i0,vy) 27iRs + 10511}
R R’/

+ In(y) Yl (B.19)
R

and Gry’ is the inverse of the quadratic form:

1 ,
(Q“I)RRI = E(aTaT/(SRR/) + (8161/V11/)5TT/. (B.QO)

For diagonal Vi; = Vyér; and fixed K; = K, Grpe is, modulo a trivial rescaling, the
inverse of the two-dimensional lattice Laplacian, and yields the usual logarithmic Coulomb
interaction at large distances. So long as Vi is short ranged and K; = Ky + 6K with
0K1/Kr <1, Gy will still be Coulomb-like at large distances. Note that L is once again
complex, with 9;v playing the role of complex offset charges.

The sine-Gordon form yields the same result, (B.19), except that the values of Ig are

restricted to 0, =1 only. When yj is small large values of g are suppressed anyway, and the
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difference between (B.15) and (B.16) is negligible.

B.2 Two dimensions

What can one say in two dimensions? The constraint V -n = 0 in (B.10) may still be
satisfied, now using a three component dual lattice vector field, a, with V x a = n. The
problem is that a has the usual gauge freedom: any gauge transformation a’ = a + V.,
where A is any dual lattice scalar field, has no effect on n. The constrained sum on n is
therefore not equivalent to a free sum on a. One may fix the gauge by demanding that
V -a = 0, but this is precisely the same constraint that we have been trying eliminate to in
the first place!

In order to obtain a more appealing dual representation in d = 2, it is convenient
to generalize the Lagrangian, (B.4), to include external magnetic fields. In the quantum

Hamiltonian, (2.2), this entails a more general hopping term

= > Jicos(Badi — AD), (B.21)
3,50
where we again assume only nearest neighbor hopping, and the vector potential, A; =
(A}, A2), is related to the (random, if desired) static externally applied dual lattice scalar
magnetic field, By, via [compare (B.17)]
By =(V x A= Aiy_e_ﬁ — Aiy — A§+$, + Af, (B.22)
where [ =1 + %—(fc +¥) is the spatial dual lattice site. We introduce here the convenient
notation where V includes only the spatial part of the gradient, while V®) will denote the

full space-time gradient. We now treat the following generalized Villain model

1
Ly = =3 > K(Oatr — A7 — 27m])?
r,a#0
- _1_ Z (Q?L)z
2 K%
R,a0 T
1 _ .
— —2* Z(V 1)2';1' (87-(%7 — Wy — 27rm?7)
4L3T

X (Brjr — vy — 2ml,), (B.23)
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where

dr = (V(g) X m)R
= (ml g —m¥—miy+mg,

0 0 Y Yy
Mypyg — My — My, - + My,

My s = Ty — mg—}—i +my) (B.24)
is the full three-dimensional discrete curl of m, and R = (I,T) is the center of the cube
with one corner at r = (i,7), ie. R=(i+3(X+§),7+3)=r+ (3,%,1). The second term
has been added for later convenience and, as we shall see, does not change the fundamental

2m-periodicity in the individual ¢,. The partition function is

z=3" / D¢ eFvimdl, (B.25)
m
The field g clearly satisfies the current conservation constraint,

(VO qr = (¢~ 1)+ (gFr - 97—2,1)

+ (gfr —di_y7) =0, (B.26)

and is invariant under the addition of perfect gradients to m, i.e. m — m’ = m + V®n.
We shall use this later to isolate the vortex constibution to m.
Let us first decouple the interaction term by introducing a ficticious continuous scalar

magnetic field —oco < b;r < 0o and using the identity

o2 200 (VT )y

= det(V)3 / Db ¢ 25 Visbibiti 3 biws (B.27)

The partition function is then Z =%, [ D¢ [ Db eLvimaedl with

=~ 1
Lv = =5 3 KP(ute - A7 - 20m)?
r,a#0

+ iy be(Orpr — 27mY)
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> Vigbirbjr + > vibi
0,3 r

2
Z (QFU) _
R,a#0

NGNS R

(B.28)

nh R

Now introduce the two component dual lattice ficticious vector potential, agp = (aﬁ,alﬁ)
such that by = (V x a);. Let us also now identify the vortex part of the vector field m:

choose a real lattice scalar field n in such a way that
m=V®n+my, V- (Kmj) =0, (B.29)

where (Kmi), = (Kfmi ., K I m?{/r) is the spatial part of my, suitably scaled by the nearest
neighbor exchange constants. This amounts to choosing a kind of rescaled Coulomb gauge

for my. The reason for this choice will become evident below. From (B.24) we have

(V xm)g = (V x my)g = g} (B.30)
We may then write
(Kmy)y = (V x )y, =V (K 'VS)g = g}, (B.31)

where (K~ 'VS)r = [??;(SRJF,A( — Smr), T(‘;%'L;(SRH/ — Sr) so that on the dual lattice the
divergence is scaled by the inverses of the exchange constants, and with z and y inter-
changed. Equivalently, we define the dual lattice exchange constants *K; = (*K7* KY) =
(K f’+x, Ziy) to be those on the direct lattice bonds that cut the given dual lattice bonds.
This implies that

Sir =3 *Gridyr; =V - (K Gy =61, (B.32)
J

where *G 7 is the discrete dual lattice two-dimensional Coulomb-type potential, normalized
so that *Ggp = 0, say.

It is clear that neither n» nor my will be strictly integer fields. However, for two real-
izations, m; and my of m, with the same my, the fact that m is an integer field requires
that m; — my = V(n; — ng) be an integer field. Therefore (n; — ny) can always be chosen

integer. As a consequence, for a given my we may alway write n = ng + dny, where dny
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is fixed, equal to the fractional part of m — my for example, and ng runs over all integer
fields. It is precisely this freedom in Vn that guarantees 27 periodicity in the ¢,. The trace
over m is now equivalent to a free trace over ny and over q with the constraint (B.26).

Since ¢ and ng occur only in the combination ¢ — 2wng we may combine the two into a
single trace over an unbounded field —oco < 6 = ¢ — 27n < co. Note that we have absorbed
on into 6 as well which, for fixed q, amounts to a trivial shift in the integration variable.
By the same device we may assume that

(V-KA); = (KJA] - K7 3A7 3)
Y AY YAV ) —
+ (K/A] - Kz‘~yAz‘—y) =(, (B.33)

since any perfect gradient subtracted from A may also be absorbed into 8. This implies
that

(KA); = (V x ®);; @1 =) *GjyBy, (B.34)
7

where ®; is then the static magnetic potential due to Bj.

The partition function is now Z = Za /Db [ D6 elv [the prime on the sum indicating

the constraint (B.26)] with

E}

~ 1
Ly = D) Z K (Ora —gr)Q
r,as£0
1
- 5 2 KMAP +2mmf,)?
r,as%:0
+ D> KHAF A+ 20m$,) Oy — 6r)
r,a#0

+ 0> be(Bepr — B) — 210> byym
r r

1 &)
= 52 Vigbirbjr + 3 vibe — 3 9R)° (B.35)
2,3 r R,a#0

Now, the gauge choice (B.29) for m and A implies that the first term on the second line
vanishes after an integration by parts. The first term on the third line may also be integrated

by parts to yield

—2mi Yy biymy = —2mi »_arr - [afy — ("K7'V)8, 8] (B.36)

1,7
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If we choose the gauge condition
V- (*K'a)gr =0, (B.37)
implying

(K 'a)g = (VxQr; Qur=> Gybj,
J

*-V(KV)GZ] = 51']', (B38)

where G;; is then the direct lattice Coulomb-type potential. An integration by parts then
immediately shows that the second term vanishes. Furthermore, using (B.31) and (B.34)

the second term in (B.35) may be integrated by parts to obtain

1
5 0 KE(AT + 2mm, )
r,a#0

. Br By :
=21’ Y *Grs <€I?T + 2—> (qu + —) : (B.39)
T 27
LT
Finally, since the §-dependence is now purely Gaussian, we may integrate it out. Using the

correlation function

1
5((91‘7 —0;0)%0 = Gijdre, (B.40)

where the average is with respect to the very first term in (B.35) only, we obtain the partition

function Z = 37/, [ Db €~¢, where

By By
E = 9 2 *G G __) ( 0 =J
e, 7T 1;1" 1J <qIT + 5. )\ + o )

1
+ 5 Z Gij (aTbi'r)(arbj'r>

3,3,7
1
. 1
+  2mi ZaR “gr — 3 Z Vijbirbjr + Z Viby
R Y r
1 (gR)? ,
- 3 R; (B.41)
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Note that the second term may also be written
1 1 :
- ZG” (8-bir )(0-bjr) = -5 Z *Ka(a a%)?. (B.42)
1,5,T R,a7#
Recalling now the form (B.10) for the original Villain model, we may now reverse the
transformation (B.5) with q in place of n. Introducing a new vortex phase field, 0 < @1 <

21, we have Z = Y, [ D¢ [ Db ¢“P | where the dual Villain Lagrangian is

1
Lp = -3 Z K¢ (Oapr — 2mal — 2ml%)?
R,a3£0
1 . 0 \12
Z 7(271_)2*[(& [00(0r R — 2mi® 1 — 27lg )]
R I

1 1
-5 1_4 " el (s GR)
2 R,a5£0 K?

by
5
——
b
-’

o

I R B N
~
Q
i
(=)

’L]b7TbJT + Z Vq r- (B43)

LT

e
[

Finally, we recognize this as the discrete time Villain form of the quantum vortexr Hamilto-
nian

By B
Hy = 2W2Z*TIJ<N1+—> (N +—J>
77 2 2

~ D Jfcos(8apr — af)
I a;éO

+ ZUZJan)an Zszxa

2

()2
+ — B.44
I%Q 2Mlg ( )

where N7 is the number operator conjugate to the phase operator ¢; and 1@ is the mo-
mentum conjugate to the quantum operator a. For small Ar we have the identifications

(see (B.3) and below)

K¢ = MPAT

K = —12in(JFAT). (B.45)
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A less complete version of this duality transformation was first written down in [5](c). Notice
that the vortex hopping term arose from the extra ¢ term in (B.23) that does not actually
appear in the original Hamiltonian. Notice also that the electomagnetic vector potential
which was quenched in the original model now fluctuates. However these fluctuations are
about a quenched random mean determined by the classical minimum of the first two terms
on the second line, and therefore are not expected to constitute a significant difference
between the two models. Note finally that the A7 — 0 limit is incompatible with that for
the original model, (2.2). In particular, for fixed J;j we saw from (B.3) that K¢ vanishes
logarithmically with A7, implying then that M7 diverges as —1/ 2Afrln(jij AT): the vector
potential fluctuations become extremely massive. More importantly, from (B.32) *Grs
scales linearly with the K§, implying that *I';; diverges in the same logarithmic fashion:
the interaction potential between vortices becomes very strong. The duality transformation
is therefore not very clean, and is only intuitively well defined in discrete time. This,
however, is not expected to affect the universal properties of the phase transitions governed
by the two Hamiltonians. In particular, when the original interaction Uj; is logarithmic, the
model is approximately self dual, and the universal features are expected to be identical,
leading to certain exact predictions in this case [5](c).

Finally, we note that other more space-time symmetric dual models, involving vortex
loops that interact via a Biot-Savart-type law, may also be obtained by using other gauge
choices and starting with a slightly different version of the Villain model. This description
is well-known for the classical three-dimensional XY -model. However this dual description

has no natural correspondence with any dual quantum mechanical Hamiltonian.
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