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Abstract

The interaural time difference (ITD) is one of two primary binaural cues used to compute the position

of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that

terminates at the core area of the central nucleus of the inferior colliculus (ICcc). The actual locus

of the computation of the ITD is prior to ICcc in the nucleus laminaris (NL), and ICcc receives no

feed-forward inputs carrying information that did not originate in NL. Here, we compare single-unit

responses in these two nuclei. The neurons of both nuclei encode spectrotemporal properties of the

stimulus with high resolution in both frequency and time domains, and their response to ITD cues

has a spectral profile given by the square of their spectral tuning, a relationship consistent with

the prediction that these neurons behave as if computing the cross-correlation of the signals at the

two ears. However, the ITD tuning curves of ICcc neurons develop more rapidly than those of the

neurons of NL, requiring as little as a single stimulus presentation per ITD to show coherent ITD

tuning. ICcc neurons also display a greater dynamic range, with a maximal difference in firing rates

due to ITD cues approximately double that seen in NL. These results suggest that ICcc neurons sum

across a population of similarly tuned NL neurons to produce an averaged response with greater

single-unit reliability.
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Chapter 1

Introduction

The task of the nervous system can be grossly summarized as a three-step process: to encode

information about the environment; to make decisions based on that encoded information about

future actions; and to implement those actions. The first of these tasks is the duty of the sensory

system, and the challenges it faces are remarkable. The world around us is vast and ever changing.

Even taking into account the inherent limitations of our sensory organs, we are bombarded by

enormous amounts of information. The sensory systems of the nervous system must first take in this

information and then somehow reduce it to a manageable level, by efficient coding, discarding of

irrelevant information, or combinations of the above. To study a sensory system is thus to attempt

to answer the question of what information about a stimulus is encoded, and how.

Before this question can be tackled, however, the researcher must first be able to describe and

analyze the stimuli he plans to use. From this perspective, hearing is a modality that offers consider-

able advantage. A sound is simply a time-dependent pressure waveform, and hence one-dimensional.

Because of this low dimensionality, sounds can be characterized using the large body of mathemat-

ical work that has been done on one-dimensional signal analysis, permitting simple mathematical

descriptions of complex stimuli. The ability to describe and manipulate complex properties of the

signal in turn allows us to easily explore the dependence of neural response on even high-order

characteristics of the signal.

Additionally, the tractability of auditory analysis makes it simpler to express precise mathemati-

cal models for the behavior of the related neural networks. While this does not address the question
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of how neurons might implement these computations, or indeed whether the models are followed,

and to what degree, the existence of a clear theoretical framework is an invaluable tool for the design

of experiments.

There are a number of perceptual tasks in which audition plays a role. This research deals

with the problem of sound localization. In particular, we focus on the neural processing of the

interaural time difference between its initial computation and its convergence with the interaural

level difference. Before that discussion begins, it is first necessary to provide background detail on

the general nature of sound localization, as well as previous research on the neural mechanisms for

its solution within the barn owl, the model used by this study.

1.1 Overview of sound localization

Audition is not an inherently spatial sense. Even though the responses of the primary receptors

for both vision and audition are functions of stimulus intensity, the photoreceptors of the eye are

arranged spatiotopically, in a two-dimensional map of space. Conversely, the hair cells of the ear

are arranged tonotopically, arrayed across the cochlea as a map of frequency of the stimulus (von

Bekesy 1960; Ruggero et al. 1997). Despite the lack of an explicit representation of space in the

initial encoding of auditory information, animals and humans alike are capable of identifying the

spatial source of a sound. The ability of animals to extract the position of a single source from

auditory information represents a computational challenge that is simultaneously complex and well

defined. The only inputs to the calculation are the two one-dimensional pressure waveforms that

correspond to the sound at each ear, and the results of the computation can be reported using

a single physical movement, usually either an eye or head saccade, or a pointing motion. The

computations underlying sound localization have been studied for over two centuries using behavioral

and physiological methods (Venturi 1796; Rayleigh 1876; Rayleigh 1907).

To understand some of the behavioral implications of sound localization, it is informative to

compare it to echolocation. In echolocation, the animal emits a pulse of high frequency, and then

analyzes the returning echoes to detect, characterize, and locate objects in the environment (Popper
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and Fay 1995). Since it is an active system, information can be extracted by comparing the returned

signal to the original signal. This means echolocation can make use of sophisticated cues such as

the Doppler shift, where changes in the spectrum of the emitted pulse are caused by the relative

velocities between animal and detected object (Müller and Schnitzler 1999). In addition, because

the echolocating animal is the one that creates the sound, it can use a sound optimally suited

to the environmental conditions (Schnitzler and Kalko 2001). Conversely, sound localization is a

passive system, with no prior knowledge of or control over the sound to be localized. As a result, it is

theoretically less precise than echolocation. From an ethological perspective, however, passive sound

localization offers some advantages. Echolocation is energetically expensive (Speakman, Anderson

and Racey 1989), while sound localization requires no additional energy expenditure during the

search for prey. Additionally, prey can develop countermeasures to try to counteract echolocation

(Greenfield and Baker 2003; Waters 2003), while there is no way to avoid passive sound localization

other than the relatively unhelpful strategy of “don’t make noise.”

1.2 Sound localization cues

There are several cues present that can be used to determine the position of a sound (Blauert 1997).

Primary among these are the binaural cues, arising from the differences in the sounds at the two

ears (fig. 1.1), the use of which were first demonstrated by Rayleigh (1907).

The interaural level difference (ILD; sometimes used interchangeably with the interaural intensity

difference, or IID, though the two terms are technically different) arises due to occlusion of the sound

by the head at the far ear. For a sound source to the right of the animal, the head will cast an

acoustic “shadow” over the left ear, reducing the sound intensity there (fig. 1.1). This effect is

not uniform across frequencies. For low frequencies, diffraction causes the incoming waveform to

propagate past the head with relatively little reduction in intensity (Shaw 1974). As a consequence,

ILD cues are theoretically better suited to high-frequency signals.

The interaural time difference (ITD) cue arises because of the difference in path lengths from the

sound source to the two ears. A sound to the right of the listener will arrive at the right ear before
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Interaural
Level Difference

Interaural
Time Difference

Acoustic
shadow

Sound source

Paths to the two ears
are of different lengths

Figure 1.1. An illustration of binaural cues for the purposes of sound localization.

it arrives at the left (fig. 1.1), resulting in an ongoing temporal disparity for that sound between

the copies at the two ears. The maximum ITD an animal can perceive is limited by the size of the

head, as the maximal difference in path lengths from sound source to ears is given by the interaural

separation. In general, this maximum ITD is quite small, on the order of about 630 μs for the

human (Blauert 1997) and 180 μs for the owl (Moiseff and Konishi 1981). Thus, to use the ITD as

a sound localization cue, the animal must be able to detect interaural disparities on a very short

time scale. For reasons we will discuss in detail in section 1.5, this means that the computation of

ITD is generally easier at low frequencies.

In addition to these binaural cues, there are monaural cues. The pinna serves to reflect incoming

sound towards the inner ear. This reflection will create interference, which will be dependent on the

frequency of the stimulus, as well as its incoming direction, and hence location (Blauert 1997). In

addition, many animals have motile outer ears, and presumably can use changes in the perceived

sound due to movement of the ear to relay information relating to the sound position (Populin and
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Yin 1998). However, the evidence is that motion-based cues from the movement of the head in

humans (whose outer ears are fixed) contribute, at best, weakly to localization performance (Pollack

and Rose 1967; Thurlow and Runge 1967).

In the majority of systems that have been studied, including all mammalian systems, the sym-

metry of the placement of the ears on the head causes both the ITD and the ILD to encode position

along the horizontal plane, with ITDs being used for low frequencies and ILDs being used for high

frequencies. This interaction is referred to as the duplex theory. In humans, psychophysics confirms

that monaural cues are used to determine elevation (Middlebrooks and Green 1991).

1.3 The barn owl

The barn owl (Tyto alba) is a nocturnal predator. Despite a well-developed visual system (Pettigrew

and Konishi 1976; van de Willigen, Frost and Wagner 1998), light levels in the wild often fall below

the levels at which the owl can see (Dice 1945; Curtis 1952), indicating that owls must use some

non-visual sense to hunt. It was hypothesized that owls might have vision extending into the infra-

red spectrum (Vanderplank 1994), though this was rapidly disproven (Matthews and Matthews

1939; Hecht and Pirenne 1940). Dice (1945) noted that in darkness owls searching for prey would

occasionally touch dead mice without apparently noticing it, arguing against a role for olfaction in

hunting. Similarly, Curtis (1952) found a direct correlation between light intensity and the ability

of an owl to navigate barriers in its flight path, which made it unlikely that the source of the owl’s

hunting ability lay in either echolocation or the ability to perceive infra-red radiation.

It was Payne and Drury (1958) who first demonstrated the ability of the barn owl to locate and

catch prey using only passive auditory cues. The barn owl’s sound localization ability is impressive.

It can localize sounds which are as short as 10 ms in duration (Konishi 1973), considerably less than

the latency for the initiation of the head saccade (Knudsen, Blasdel and Konishi 1979). Additionally,

it can resolve targets with less than 2◦ error in both azimuth and elevation (Knudsen, Blasdel and

Konishi 1979), compared to 2◦ error in humans (Middlebrooks and Green 1991) and 4◦ error in the

macaque (Brown et al. 1980; Brown et al. 1982).
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Motivated by these reports, researchers began to explore the neural mechanisms that underlie

the barn owl’s localization ability. It was found that the position of sounds are represented in an

explicit, spatially organized map in the external nucleus of the inferior colliculus (ICx) within the

owl’s midbrain (Knudsen and Konishi 1978a, 1978b), providing a direct correlate between behavioral

reports and neurophysiological responses. While the superior colliculus of cat (Middlebrooks and

Knudsen 1984), ferret (King and Hutchings 1987), and guinea pig (Sterbing, Hartung and Hoffmann

2002) have been reported to have maps of auditory space in register with a visual map of space, it is

only in the barn owl that an exclusively auditory map of space, such as that seen in ICx, has been

reported. This map, unconfounded by visual cues and providing a neural correlate to the localization

behaviors, makes the owl an excellent model for the study of the mechanisms of sound localization.

There are several crucial differences between the localization mechanisms of the barn owl and

mammalian species, including the human. The range of frequencies that the owl can perceive extends

only up to about 12 kHz (Konishi 1973), while the hearing range of humans extends to about 20 kHz.

Within this range, the owl can localize well using frequencies from 1 to 8 kHz, and preferentially

uses frequencies in the comparatively narrow range of 4 to 8 kHz (Knudsen and Konishi 1979);

conversely, mammals appear to use the entirety of their range for localization. In the barn owl, an

asymmetry in the owl’s outer ears (Norberg 1977) results in ILD coding for elevation (Knudsen and

Konishi 1979), while monaural cues are not used (Egnor 2000); the preference for high frequencies

ensures that diffraction of the sound about the head does not have a major influence on the use of

the ILD cue. As a consequence of ILD coding for elevation, the owl must use ITD to encode azimuth

throughout its sensitive frequency range (Knudsen and Konishi 1979), while most other animals only

rely on ITD for frequencies less than 2 kHz.

While these differences make it difficult to use the owl as a model of the human process of sound

localization, they argue in favor of the owl as the ideal model for understanding the computational

challenges involved in solving the sound localization problem in a biological system. The owl’s

resolution of passive auditory spatial cues is unmatched by any other reported terrestrial species

(Knudsen, Blasdel and Konishi 1979), and a direct comparison can be made between the performance
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of the neurons of the midbrain and the behavioral capabilities. In addition, the use of the two

binaural cues to resolve orthogonal directions, the lack of use of the monaural cues, and the absence

of mobile pinnae greatly reduces the number of variables to be considered in analyzing the system.

With the understanding that comes from studying such a specialized system, it becomes easier to

recognize optimizations and trade-offs that will be made by non-auditory specialist species.

1.4 Anatomy of the sound localization pathway

The organization of the neural structures that precede ICx with its spatial map have been studied

extensively. A primary result of this exploration was the discovery of parallel pathways for the

processing of ITD and ILD (fig. 1.2; Sullivan and Konishi 1984; Takahashi and Konishi 1988a,

1988b). As each auditory nerve fiber enters the brain, it bifurcates to terminate in both of the

cochlear nuclei, nucleus magnocellularis (NM) and nucleus angularis (NA) (Carr and Boudreau

1991). Neurons of nucleus magnocellularis encode the phase of tonal stimuli for frequencies up to

9 kHz, and have reduced variation in firing rate as a function of stimulus intensity compared to

the auditory nerve fibres (Sullivan and Konishi 1984; Köppl 1997b). Conversely, neurons of nucleus

angularis do not phase-lock, and their dynamic ranges in response to changes in stimulus intensity

are very large (Sullivan and Konishi 1984). Thus, the two nuclei are specialized to process phase or

time information and intensity information, respectively.

NA projects contralaterally to the nucleus dorsal lemnisci lateralis pars posterior (LLDp; previ-

ously known as the nucleus ventralis lemnisci lateralis pars posterior, VLVp; Takahashi and Konishi

1988a). This projection is excitatory, and combined with an inhibitory input from the contralateral

LLDp (Takahashi and Keller 1992) produces a sigmoidal tuning to ILD in LLDp, with a preference

for contralaterally-dominated ILDs (Moiseff and Konishi 1983; Manley, Köppl and Konishi 1988).

NA also has projections to the superior olive (SO; Takahashi and Konishi 1988a), the nucleus ventral

lemnisci lateralis (LLv, not shown on fig. 1.2; Takahashi and Konishi 1988a), and the lateral shell

of the central nucleus of the inferior colliculus (ICcl; Takahashi and Konishi 1988b).

NM projects bilaterally and solely to nucleus laminaris (NL; Takahashi and Konishi 1988a). NL
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Auditory Nerve

NA NM

NL

LLDa

ICcc

ICcl

ICx

LLDp

SOO

Figure 1.2. A simplified schematic of the sound localization pathway. The ILD pathway is shown in
black, the ITD pathway in white, and the sites in which the cues converge are grey. The nuclei of
the closed loop that is the focus of this thesis are emphasized with the heavy black border.

is sensitive to the ITD of the stimulus (Moiseff and Konishi 1983; Carr and Konishi 1990), organized

by tonotopy and by ITD (Sullivan and Konishi 1986; Carr and Konishi 1990), and the tuning to ITD

is largely unaffected by the ILD of the stimulus (Viete, Peña and Konishi 1997). At this stage, the

ITD tuning is ambiguous: for any given firing rate, there are in general multiple ITDs that will result

in that firing rate, regardless of the spectral properties of the stimulus (a point discussed in further

detail in section 1.5). NL in turn has three projections: to SO (Takahashi and Konishi 1988a), to

the nucleus dorsal lemnisci pars anterior (LLDa; previously known as the nucleus ventralis lemnisci

lateralis pars anterior, VLVa; Takahashi and Konishi 1988a), and to the core region of the central
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nucleus of the inferior colliculus (ICcc; Takahashi and Konishi 1988b).

SO receives excitatory projections from NA and NL (Takahashi and Konishi 1988b; Lachica,

Rübsamen and Rubel 1994). The neurons of SO do not encode phase, and are relatively insensitive

to binaural cues (Moiseff and Konishi 1983). GABAergic projections from SO to NL and to NM

(Lachica, Rübsamen and Rubel 1994) have led to the hypothesis that SO serves to eliminate the

effect of stimulus intensity on the tuning of NL neurons (Lachica, Rübsamen and Rubel 1994; Peña

et al. 1996; Dasika et al. 2005).

Following NL in the ITD pathway, LLDa in turn projects to ICcc (Moiseff and Konishi 1983) and

to the nucleus basalis (Wild, Kubke and Carr 2001), which is outside our consideration. There are

no reports that LLDa receives inputs other than from NL. ICcc then projects to the ICcl (Takahashi,

Wagner and Konishi 1989), as well as to nucleus ovoidalis in the thalamus (Proctor and Konishi 1997;

Cohen, Miller and Knudsen 1998). Both LLDa (Moiseff and Konishi 1983; Albeck and Konishi 1995)

and ICcc (Wagner, Takashi and Konishi 1987, 2002) are tuned to ITD, with a lack of sensitivity to

intensity or ILD on a par with the neurons of NL, and their ITD responses are still ambiguous.

As can be seen from this discussion, ITD (fig. 1.2, white boxes) and ILD (fig. 1.2, black boxes)

are processed independently in the first few stages of the ascending auditory pathway. ICcl, which

receives inputs from both LLDp and ICcc, is the locus of the combination of the two cues (fig. 1.2.

grey boxes). Neurons of the ICcl are sensitive to combinations of ILD and ITD, but are not nec-

essarily space-specific (Feldman and Knudsen 1994; Mazer 1995; Keller and Takahashi 2000). ITD

tuning may still be ambiguous, and ILD tuning may still be sigmoidal. Neurons throughout ICcl

are believed to present a gradation which moves towards space-specific neurons, in which tuning

to both ITD and ILD produces a single unambiguous peak (Mazer 1995). ICx is the target of an

ICcl projection (Knudsen and Knudsen 1983), and this is the first truly space-specific nucleus in

the auditory pathway (Knudsen and Konishi 1978b, 1978a). In ICx, neurons are not only space-

sensitive, but organized spatiotopically. ICx in turn projects to the optic tectum (OT), where the

auditory spatiotopic map is preserved and put into register with a visual map of space (Knudsen

1983; Knudsen and Knudsen 1985; Knudsen and Brainard 1991).
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There is a second continuation of the localization pathway other than the tectal one described

above, commonly referred to as the forebrain pathway. Both ICcl and ICcc project to NO, while

ICx does not (Knudsen and Knudsen 1983; Proctor and Konishi 1997; Cohen, Miller and Knudsen

1998; Arthur 2005). From NO, there is a projection through Field L to the arcopallium (previously

called archistriatum; Cohen, Miller and Knudsen 1998), where space-specific neurons can also be

found (Cohen and Knudsen 1995). While the space-specific neurons of arcopallium do not have a

spatiotopic map, microstimulation in either arcopallium or OT will result in head saccades (du Lac

and Knudsen 1990; Masino and Knudsen 1990; Knudsen, Cohen and Masino 1995).

In this research, our interest lies in issues relating to the computation of ITD. As such, the nuclei

of interest are those highlighted in figure 1.2. While the mammalian sound localization pathway

lacks the clear segregation of that of the barn owl, and there is yet to be identified any equivalents to

ICcl or the forebrain or tectal pathway, mammalian homologues for NM (the anteroventral cochlear

nucleus, or AVCN), NL (the medial superior olive, or MSO), and ICcc (the central nucleus of the

inferior colliculus, or ICc1), as well as a more tentative homology for LLDa (the dorsal nucleus of

the lateral lemniscus, or DNLL) have been identified.

1.5 Computation of the interaural time difference

Jeffress (1948) was the first to formulate the coincidence detection model for the computation of

ITDs. In the Jeffress model, a series of neurons are connected bilaterally to the two ears with

calibrated delay lines. The input spikes to these neurons encode timing properties of the auditory

stimulus, and the neurons fire only when they receive coincident inputs from both sides. In this

arrangement, the only coincidence detector that will fire is the one where the difference in propagation

times for the delay lines from either side precisely balances the ITD, resulting in a place code of

ITD (fig. 1.3). Thus, there are three requirements that must be met for the auditory system to

implement the Jeffress model: there must be encoding of the ongoing time (or, equivalently, phase)

1“Core” and “lateral shell” subdivisions of the central nucleus of the inferior colliculus have not been identified in
mammalian models. However, from the perspective of the computation of ITD the entirety of the mammal’s central
nucleus (ICc) behaves in the same manner as the core area of the owl’s central nucleus (ICcc), as there is no known
locus of convergence of ILD and ITD cues in mammals.
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Sound source

Acoustic
delay

Coincidence
detectors

Neural
delay

Difference in
acoustic delays = 0

Difference in
neural delays = 0

Difference in
acoustic delays = +x

Difference in
neural delays = –x

Figure 1.3. A schematic of the Jeffress model. Coincidence detectors are connected by a series
of delay lines to the two ears; the delay lines are arranged such that the difference in the neural
delays from either ear varies across the family of coincidence detectors. When the sound source is
equidistant from the two ears, then only the coincidence detector whose neural delay lines are of the
same length will receive inputs at the same time, and hence be active (left). When the sound source
moves, so that there is an ITD of +x, only the coincidence detector whose neural delay lines have
the same absolute difference but reversed in sign will receive coincident input (right).

of the stimulus, there must be neurons that can operate as coincidence detectors, and the inputs to

the coincidence detecting neurons from the two sides must be delayed with respect to each other in

a manner that is systematic across the neuronal population.

Recordings in the auditory nerve and NM reveal a tendency of these neurons, when stimulated

with a tone, to fire preferentially for a particular phase of the input signal (fig. 1.4; Sullivan and

Konishi 1984, Köppl 1997b). This provides in a straightforward manner an encoding of the ongoing

time of the tone: each spike signals the reoccurrence of the preferred phase.

Two notes should be made in regards to phase-locking. Firstly, frequency and time are intrinsi-

cally related. For example, a jitter of 90◦ in phase with a stimulating frequency of 1 kHz means that

spikes must occur within 250 μs of the true preferred phase. However, for a stimulating frequency

of 5 kHz, that same phase jitter requires a temporal resolution of 50 μs. Neurons are generally

thought to operate on timescales measured on the order of milliseconds. Thus, even encoding and
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Figure 1.4. Examples of phase-locking in the auditory nerve of the barn owl. Each fiber was
stimulated with a tone of its preferred frequency. Spike times were converted to phase relative to
the stimulus, and then a histogram of these phases was plotted. Note that while a peak in the phase
histogram is apparent in all cases, it is also true that spikes occur at all phases, with this being more
pronounced for higher-frequency neurons (a : unit 650.01, 7,500 Hz; b: unit 650.02, 7,750 Hz; c:
unit 650.03, 7,500 Hz; d : unit 650.08, 5,750 Hz; e: unit 650.12, 5,500 Hz; f : unit 650.14, 4,750 Hz;
g : unit 650.18, 4,500 Hz; h : unit 650.19, 3,500 Hz; i : unit 650.20, 2,250 Hz).

detecting time differences of frequencies below 1 kHz push the limits of what can be done with neural

hardware, and it is for this reason that most animals use ITDs only for low-frequency signals. The

owl can phase-lock over an enormous frequency range, at frequencies up to 9 kHz (Köppl 1997b).

At the same time, there is still a decline in the quality of phase-locking with increasing frequency

(fig. 1.4).

We also observe that phase-locking is strictly only defined in the case of tonal stimulation. With

more complex stimuli, “phase” is not a well-defined concept. Even for a stimulus as simple as

the simultaneous presentation of two tones, “phase” can easily refer to the phase of either of the

component tones, or the phase of the amplitude envelope of the sum. The analogue to phase-locking

with complex stimuli is strictly speaking the existence of a spike-triggered average (also called a

revcorr function; de Boer and de Jongh 1978). However, “phase-locking” is generally used to refer
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to ongoing time encoding of stimuli regardless of the spectral properties of the stimuli. This is partly

convention, but is validated by the bandpass properties of the cochlea. Neurons throughout the ITD

pathway, and the auditory nerve and NM in particular, are responsive to only a very narrow range

of frequencies. Even white noise is thus effectively narrowband noise from the perspective of a single

unit, and narrowband noise shares many of the features of tones. In particular, periodic stimuli such

as tones are phase ambiguous : that is, without reference to an absolute end-point, it is impossible

to distinguish between any given periodic signal and that same signal shifted in time by integer

multiples of the period. Narrowband noise is not periodic; however, for small time displacements, it

can be ambiguous in a manner similar to that seen in tones (fig. 1.5).

Broadband

a

Band−passed

b

Figure 1.5. a : A 1 ms segment of broadband noise (1–10 kHz) is plotted (solid line), and then shifted
by 200 μs and plotted again (dashed line). Note that at any given time, the curves have very little
relationship to each other. b: The noise segment as used in a has been band-passed to have a 1 kHz
bandwidth centered on 5 kHz, and plotted as before. The shift of 200 μs corresponds to the period
of the center of the band-pass filter. It can be seen that there is a great deal of correspondence
between the time-shifted versions now, though this correspondence will fall off as larger time shifts
are used.

Having established that NM encodes time, it is then necessary to demonstrate that the projections

of NM to NL form the requisite delay lines. Carr and Konishi (1988) showed that the ipsilateral and

contralateral NM afferents enter from the dorsal and ventral surfaces of NL, respectively. They then

pass perpendicular to these surfaces through NL, and interdigitate within the nucleus. By recording

intracellularly from the NM fibers, they were able to show that there was an orderly progression of

conduction delays within NL. The conclusion is that the magnocellular afferents act as the delay

lines of the Jeffress model, setting up an orderly progression of conduction delay differences through

the dorso-ventral extent of NL.
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Finally, Carr and Konishi (1990) observed phase-locking in NL neurons. If NL neurons are

coincidence detectors, this is expected: the output spikes of NL will be directly related to the timing

of its phase-locked inputs, and hence will be phase-locked themselves. NL neurons are driven by

monaural stimulation as well as binaural stimulation, and the monaural response is also phase-

locked. The preferred phase in monaural stimulation is given by the modulus of the conduction

delay by the period of the stimulating frequency. Thus, the difference in preferred phase between

ipsilateral and contralateral stimulation is equal to the true difference in conduction delays (called the

characteristic delay, or CD) up to some integer multiple of the period of the frequency. So therefore,

in a coincidence detector, presenting tones with an ITD that is equal to the difference in monaural

phases but reversed in sign should elicit a maximal response; using an ITD that corresponds to a

180◦ shift in phase should result in a minimal response. This turns out to be the case (Carr and

Konishi 1990), confirming that NL neurons act as coincidence detectors. Thus, all elements are

present, and the Jeffress model stands as the description for how ITD is computed in the barn owl’s

auditory pathway.

Jeffress’ model was not entirely accurate, however. In his work, Jeffress assumed that there

was a perfect encoding of the complete signal. As we have already discussed, however, the ITD

pathway encodes the temporal properties of the signal within narrow frequency bands, rather than

as a whole, and that this encoding contains a not insignificant amount of noise. The result of the

noise, combined with the effects of phase ambiguity, is that individual NL neurons do not signal

the presence of a particular ITD in a binary fashion; instead, they respond in a graded manner,

going from maximal firing rate at CD to a minimal firing rate at ITDs which are out of phase. The

result of the narrow frequency bands is that all stimuli behave essentially like tones, and are thus

phase ambiguous. Given the range of ITDs the owl can experience, this means that for frequencies

above 4 kHz any given firing rate for a particular NL neuron can be elicited by at least two distinct

ITDs (fig. 4.1). The existence of a graded response is not a problem; in fact, it can be argued

from theoretical grounds that it is actually advantageous (Harper and McAlpine 2004). The phase

ambiguity, however, is a problem that the localization pathway must address.
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Figure 1.6. For a family of phase-ambiguous signals of different frequencies (dashed lines) but
with one peak (the CD) in register, the side peaks will be out of phase with respect to each other
(illustrated with the thin solid lines). The sum of these curves (heavy solid line) will have a maximal
peak at the time of the CD alone.

The basic mechanism by which this ambiguity is resolved is frequency convergence (Mazer 1998;

Saberi et al. 1999). A phase-ambiguous neuron stimulated with broadband will have a peak response

at its CD, and at ITDs that correspond to the CD plus some integer multiple of the period of the

center frequency of its associated band-pass filter (fig. 1.5). A neuron of the same CD but different

preferred frequency will thus have its secondary peaks at different ITDs. By summing across a

population of such neurons with different preferred frequencies, it is possible to reinforce the peak at

CD while the side-peaks will destructively interfere with each other, resulting in a single unambiguous

peak. In the barn owl, the process of frequency convergence has been shown to begin in ICcl (Wagner,

Takashi and Konishi 1987; Mazer 1995, 1998).

To a certain extent, the story within the mammalian literature is not quite as clear. The neurons

of MSO, the homologue to NL, have been shown to behave as coincidence detectors (Yin and Chan

1990; Batra, Kuwada and Fitzpatrick 1997), though there has recently been some argument that their

coincidence detection is noisier than has previously been thought (Batra and Yin 2004). However,

the existence of a systematic organization of delay lines such as the owl’s magnocellular afferents
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has not been unequivocally demonstrated (Smith, Joris and Yin 1993; Beckius, Batra and Oliver

1999). Related to this, McAlpine, Jiang and Palmer (2001) reported that in the guinea pig, CDs

consistently fell outside the physiological range of ITDs as estimated by the interaural separation,

though this work was done in ICc, and not MSO; Sterbing, Hartung and Hoffmann (2003) have

argued that the observed CDs fall within the range predicted by the head-related transfer functions,

as low frequency sounds distort about the head and pinnae, creating a longer path length. However,

from the perspective of the computation of ITD, this is not a critical point: the distribution of CDs is

of importance in the problem of decoding position from a range of ITD responses across a neuronal

population (Harper and McAlpine 2004), and not an issue of how those ITD responses develop.

Similarly, because mammals generally use ITD cues for sound localization only at frequencies below

2 kHz, phase ambiguity does not present a serious complication.

1.6 Role of the post-laminaris ITD pathway?

In the previous section, we described how the ITD was computed in NL, and how the problem of

phase ambiguity was resolved in ICcl. However, this raises an interesting question. Between NL and

ICcl lie the nuclei LLDa and ICcc (fig. 1.2). Both are exclusively tuned to ITD. In fact, the published

data on their response properties suggests that their tuning is similar to that of NL (Moiseff and

Konishi 1983; Wagner, Takashi and Konishi 1987; Albeck and Konishi 1995; Wagner, Mazer and

von Campenhausen 2002). Since frequency convergence does not occur until ICcl (Wagner, Takashi

and Konishi 1987; Mazer 1995, 1998), what role does the post-laminaris ITD pathway fill?

The simplest explanation is that it serves as a relay station, but we may dismiss this out of

hand. This is not a single nucleus, but two; if the purpose was a relay, then presumably the NL–

ICcc projection alone would suffice. In addition to this, ICcc and ICcl are subdivisions of the same

nucleus, so that a direct projection from NL to the ICcl would be at best marginally longer, making

it unlikely that a relay is required.

This redundancy is also present in the mammalian models (Yin and Chan 1990). In fact, because

of the difficulties involved in recording from MSO (Guinan, Norris and Guinan 1972), the similarity
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in response properties is regularly exploited to use ICc as a substitute for recording in MSO (for an

example, see Yin, Chan and Carney 1987).

The goal of this research is to address this apparent redundancy. Since LLDa’s only known

contribution to the higher stages of the sound localization pathway is through ICcc, and because

it receives no inputs other than those from NL, we can treat the post-laminaris ITD pathway as a

black box, whose inputs are the activity of NL neurons and whose output is given by the activity

of the neurons of ICcc. Thus, by comparing the response properties of NL and ICcc neurons in

depth, we hope to understand the computational role filled by the post-laminaris ITD pathway. In

chapter 3, we compare the spectral and temporal tuning of these nuclei using reverse correlation

analysis; this is a hitherto unexplored aspect of the ITD pathway, and therefore a logical place to

commence. In chapter 4, we use those results to explore the interaction between the spectral tuning

and the response to ITD, which gives us a way to quantify and compare the shapes of the ITD

tuning curves. Finally in chapter 5, the ITD responses of the two nuclei are contrasted in further

depth. Our results not only provide an answer at least in part to the original question, but provide

further insight into neural strategies for the coding of information.
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Chapter 2

Methods

Methods limited to a particular experiment will be described in the appropriate chapter.

2.1 Surgery

The protocol for this study followed the NIH Guide for the Care and Use of Laboratory Animals

and was approved by the Institutes Animal Care and Use Committee.

Data were obtained from 15 adult barn owls (Tyto alba) of both sexes. Owls were anesthetized by

intramuscular injection of ketamine hydrochloride (20 mg/kg, Ketaject, Phoenix Pharmaceutical)

and xylazine (2 mg/kg, Xyla-Ject, Phoenix Pharmaceutical), and injected subcutaneously with 10 ml

of lactated ringer’s solution (B. Braun medical). An adequate level of anesthesia was maintained

by additional injections of both when needed as determined by movement and the blink reflex. In

trimming feathers in preparation for surgery, care was taken to ensure that the facial ruff was left

intact. During surgery and recording sessions, the owl was restrained with a soft leather jacket

and body temperature was maintained using a water-based heating pad. During the first recording

session, ear bars and beak holder were used to position the owl’s head with the beak rotated 30◦

in the saggital plane, and the scalp was retracted. A head plate was implanted by removing the

top layer of the skull and fixing the head plate onto the tracbeculae using dental cement, and a

stainless steel reference post was implanted posterior to the head plate and similarly fixed with

dental cement. Once the head plate was implanted, the ear bars and beak holder were removed

and the head plate was used to fix the head from that point forward and in all following recording
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sessions. The craniotomy was packed with gelfoam and sealed with dental cement, and the scalp

was sutured closed. Following the surgery, analgesics (ketoprofen, 10 mg/kg, Ketofen, Merial) and

antibiotics (oxytetracycline, 4 mg/kg, Maxim-200, Phoenix Pharmaceutical) were administered. The

owl was kept in a heated cage until it recovered, at which point it was returned to the home cage.

Weight was monitored from recording session to recording session, and the owl was given at least a

week’s rest between sessions.

2.2 Electrophysiology

Single neurons of NL were isolated and maintained by a loose patch method in which a glass patch

electrode served as a suction electrode, allowing us to hold neurons for a long time. Electrodes

were prepared from 1.0 mm borosilicate glass (World Precision Instruments) using a micropipette

puller (Sutter Instruments P-87). Electrodes were filled with a patch solution (in mM: K-gluconate

100, EGTA 10, HEPES 40, MgCl2 5, Na-ATP 2.2, Na-GTP 0.3), and impedance varied from 4

to 10 MΩ. Neural signals were serially amplified by an Axoclamp-2A (Axon Instruments) in the

conventional current-clamp bridge mode, and further amplified and filtered with a custom-made

device (B.E.S. μM-200). NL neurons were identified stereotaxically and by their response properties:

in the owl’s brainstem, only NM and NL produce neurophonics, and of these, only NL has ITD

tuning.

Single neurons of ICcc were isolated and maintained by extracellular recordings using 1 MΩ tung-

sten electrodes (A-M Systems, Inc.). Neural signals were amplified by a custom-made AC amplifier

(B.E.S. μM-200). ICcc neurons were identified stereotaxically and by their response properties: only

four nuclei in the owl’s midbrain display phase-ambiguous tuning. LLDa and NL can be ruled out by

stereotaxic arguments, and ICcl neurons are tuned to ILD, while ICcc neurons are not; additionally,

ICcc neurons are tuned to ipsilateral space, while ICcl is tuned to contralateral positions. In the

case of low-frequency neurons, where both phase ambiguity of the ITD response and ILD tuning

could be difficult to determine, latency was estimated from the reverse correlation data. If latency

could not be established, the neuron was discarded.
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In both cases, a spike discriminator (SD1, Tucker Davis) converted neural impulses into TTL

pulses for an event timer (ET1, Tucker Davis), which recorded the timing of the pulses. A computer

running a custom software program (XDPHYS, written by J. A. Mazer, and modified by B. J.

Arthur and C. Malek; available for download at ftp://ftp.etho.caltech.edu/pub/xdphys) was

used for stimulus synthesis and online data analysis.

All recordings were done in a double-walled soundproof chamber (Industrial Acoustics Company,

Inc.).

2.3 Acoustic stimulation

An earphone assembly consisting of a Knowles ED-1914 speaker, a Knowles BF-1743 damping device,

and a Knowles EA-1939 microphone delivered sound stimuli. These components are encased in an

aluminum cylinder that fits into the owl’s ear canal. The gaps between the cylinder and the ear

canal were filled with silicon impression material (Gold Velvet II, All American Laboratories). At

the beginning of each experimental session, the earphone assemblies were automatically calibrated.

The computer was programmed to equalize sound pressure level and phase for all frequencies within

the frequency range relevant to the experiment (500–13,000 Hz).

Tonal and broadband stimuli 100 ms in duration and sampled at 48,077 Hz were presented at

a rate of approximately twice per second. Broadband stimuli were bandpassed to contain signal

only from 500–12,000 Hz or from 1,000–12,000 Hz, depending on the preferred frequency range of

the unit under study. Signals were gated at rise and fall with a 5 ms linear ramp to prevent onset

effects. We used PA4 digital attenuators (Tucker Davis) to vary stimulus sound levels.

2.4 Data collection

Long-range ITD curves were obtained by scanning in 10 to 30 μs steps from ±1,500 to ±2,500 μs

with broadband signals (1–12,000 kHz) each repeated 5–10 times. During a recording session, the

characteristic delay (CD) was estimated to be the ITD within the physiological range of response
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that elicited the maximal response; when possible, the estimate was confirmed afterwards using a

family of tonal ITD tuning curves.

Iso-intensity frequency tuning curves were obtained for sound levels 20 to 30 dB above threshold

with randomized sequences of stimulus frequencies in steps of 100 Hz at the CD of the neuron.

Frequency tuning curves were characterized by their width (W50), center frequency (F50) and best

frequency (BF). W50 is the range of frequencies over which the cells discharge rate was equal to

50% of the difference between the maximal discharge rate and the spontaneous level. The frequency

at the center of W50 was defined as F50. BF is defined as the frequency that elicits the maximal

discharge rate in an iso-intensity frequency-tuning curve.

In a single neuron, the sound intensities used for all protocols were the same.

2.5 Modeling

The spiking models in this paper are inhomegenous Poisson processes that follow the implementation

given in Zhang et al. (2001). However, for NL and ICcc, we used a different choice of history function.

NL neurons have a characteristic inter-spike interval histogram (fig. 2.1) which is not well matched

by a sum of exponentials. Instead, a history function based on a hyperbolic tangent was used:

H(t) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
c3

tanh(π t−t1−RA−c0
c1

+ c2) (t − t1) ≥ RA

1.0 (t − t1) < RA

where RA is the absolute refractory period, t1 is the time of the last spike, and the cx are parameters.
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Figure 2.1. Four examples of ISIHs for NL neurons. Note the almost symmetric, gaussian peak.
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For NM, a sum of exponentials was used:

H(t) =

⎧⎪⎪⎨
⎪⎪⎩

c0e
RA−(t−t1)

c1 + c2e
RA−(t−t1)

c3 (t − t1) ≥ RA

1.0 (t − t1) < RA

though strictly speaking, c2 was set to zero, and thus a single exponential was used.

The parameter values were chosen by hand to provide a reasonable approximation to the ap-

propriate ISIH, though an inhomegenous Poisson process is incapable of accurately reproducing the

ISIHs of NL. The values of the parameters used are given in table 2.1.

Table 2.1. Parameters used in the inhomogenous Poisson process

NM NL ICcc
RA 0.6 ms 1 ms 1 ms
c0 1.0 0.003 0.0015
c1 0.2 0.003 0.0015
c2 0 1 1
c3 12.5 2 2
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Chapter 3

Spectrotemporal Receptive Fields

There is considerable evidence that the time-dependent structure of auditory signals is a major

factor in the task of sound recognition. Fine temporal structure is a significant determinant in the

discrimination and recognition of bird song (Brenowitz 1983), for example, and evidence suggests

that intact temporal information permits the comprehension of speech even with degraded spectral

cues (Drullman, Festen and Plomp 1994; Shannon et al. 1995; Wright et al. 1997). To process

this information, the animal requires an encoding of the spectral properties of the stimulus as a

function of time. When considered at the level of a single neuron, the combinations of frequencies

and temporal profiles to which the neuron is responsive is referred to as the spectrotemporal receptive

field (STRF).

The brainstem auditory nuclei of the barn owl have been primarily characterized in terms of

their behavior in the context of sound localization. However, all auditory information, including

that needed for sound recognition and discrimination, ascends through these nuclei. Keller and

Takahashi (2000) characterized the spectrotemporal tuning features of the lateral shell of the central

nucleus of the inferior colliculus (ICcl). ICcl receives inputs from both the ITD pathway (Takahashi

and Konishi 1988b) as well as the ILD pathway (Takahashi, Wagner and Konishi 1989). Both cues

are related to the task of sound localization, and it is not clear which, if any, of the two associated

pathways would be better suited to encoding information for the purposes of sound recognition.

Since none of ICcc, LLDp, and nucleus angularis (NA; the first cochlear nucleus in the ILD pathway,

which also projects directly to ICcl) have been characterized in terms of STRF, the question remains
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open as to which of these nuclei lead to the STRFs of ICcl, or if a combination of both is required.

However, the initial nuclei of the ITD pathway, the auditory nerve (Köppl 1997b), NM (Köppl

1997b), and NL (Carr and Konishi 1990; Peña et al. 1996) phase-lock when presented with tonal

stimuli: they fire preferentially at a particular phase of the stimulating frequency. This link between

a property of the stimulus and spike timing in the case of tonal stimuli suggests that there might

be significant spectrotemporal tuning in the case of complex stimuli. Indeed, a link between phase-

locking and spectrotemporal tuning for complex stimuli has been demonstrated in the auditory nerve

of mammals (de Boer and de Jongh 1978; Eggermont 1993; Kim and Young 1994; Lewis, Henry and

Yamada 2002; Louage, van der Heijden and Joris 2004). Thus, the ITD pathway is a reasonable

candidate for the source of spectrotemporal tuning in ICcl.

In addressing a possible role of ICcc in the context of the post-laminaris pathway, its spectrotem-

poral tuning is a logical place to commence. Unlike the auditory nerve, NM, and NL, ICcc does

not phase-lock to tonal stimuli. At the same time, the temporal resolution required to produce

phase-locking at the frequencies of interest in the barn owl is on the order of tens of microseconds

(Köppl 1997b). It is entirely reasonable to believe that such high-quality temporal resolution can

be degraded and still provide information about the instantaneous spectral properties of a stimulus

with temporal resolution of use to the organism. In partial support of this hypothesis is the fact

that ICcc projects directly to the auditory thalamus, which in turn projects to Field L, the avian

homologue to the auditory cortex of mammals (Proctor and Konishi 1997; Cohen, Miller and Knud-

sen 1998). Conversely, it might be that there is no stimulus-locking present in any form in ICcc; this

would mean that the firing rate of an ICcc neuron is a function solely of ITD, which would simplify

the task of extracting the position of the sound source.

In the work presented here, we set out to describe the STRFs of nuclei in the ITD pathway,

with the intent of determining if spectrotemporal information is preserved through to ICcc. Using

reverse correlation methods, we describe the STRFs of neurons in NM, the cochlear nucleus that

represents the start of the ITD pathway, in NL, and in ICcc. Though NM is not of direct relevance

to the general topic of this dissertation, it provides an interesting point of comparison as the input
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to nucleus laminaris. Our results demonstrate that the STRFs of neurons throughout this ascending

pathway are similar, despite the loss of phase information in the transition from NL to ICcc. This

suggests that phase is of relevance primarily for the computation of ITD, and is encoded in the

output of NL as an artifact of the computation of ITD, but also that high temporal resolution

information about the envelope of the stimulus is preserved throughout the ITD pathway.

3.1 Methods

See chapter 2 for general methods.

3.1.1 Data collection

The occurrence of a spike is assumed to be related to the occurrence of a stimulus feature to which

the neuron is sensitive. To determine the stimulus features to which the neuron is sensitive we used

reverse correlation (de Boer and de Jongh 1978). In this method, we first compute the pre-event

stimulus ensemble (PESE): a matrix in which row n contains the segment of the stimulus that

preceded spike n. By examining the statistical properties of this matrix it is possible to determine

the stimulus features that precede, and presumably elicit, spikes.

Data for reverse correlation were obtained by presenting 100 ms broadband signals at the best

estimate of the characteristic delay of each neuron until a large number of stimulus-evoked spikes

(NM: 7,330 ±4,250; NL: 2,909 ±1,343; ICcc: 2,792 ±1,352) that occurred between 40 ms after

stimulus onset and the end of the stimulus were collected. Onset transients in the neural response

of these nuclei are generally gone within 20 ms of stimulus onset. The time window of the reverse

correlation (e.g., the amount of stimulus preceding each spike that was considered in the analysis)

was 20 ms. Hence, the first 40 ms of response was removed to prevent the onset transient from

appearing within the stimulus window. For each stimulus presentation, the signal was synthesized

de novo to avoid correlation artifacts, and stimuli using a second ITD (or intensity, in the case of

NM) were interleaved during the collection to prevent any effects of habituation to ITD.

Data on the variability and reproducibility of neuronal responses were obtained using the same
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protocol as reverse correlation, except that the stimuli were repeated presentations of the same

broadband stimulus.

3.1.2 Analysis

Principal components analysis (PCA) of an m × m matrix M produces eigenvalues λi, i = 1 . . .m

and a matrix of eigenvectors X such that M = XΛX−1, where Λ(i, i) = λi and is zero elsewhere.

The eigenvectors of M can be thought of as an optimal set of orthogonal axes for describing the

data, and the corresponding eigenvalues describe the relative importance of that dimension. Smaller

eigenvalues indicate that the corresponding eigenvector contributes little to the overall variance of

the data, and can, if sufficiently small, be neglected.

PCA requires that the original data matrix be square. The singular value decomposition (SVD)

can be thought of a generalization of PCA which removes this restriction. An m × n matrix M is

represented by M = UΛV T , where U is m×m, V is n×n, and Λ is an m×n diagonal matrix whose

entries are the singular values λi of M . The fractional energy of a singular value λi is given by

λ2
i /

∑
j λ2

j , and is a measure of the relative contribution of the associated singular vector pair to the

reconstruction of the overall matrix. The fractional energy of λ1 is equal to 1 − αSVD, where αSVD

is the degree of inseparability defined by Depireux et al. (2001). In this work, whenever we compute

the SVD we first subtract off the mean of M ; otherwise the first singular value is dominated by

a constant component. Since we use PCA only for the analysis of the covariance matrix, which is

guaranteed to have mean 0, this step is not required there.

To determine significant second-order spike-triggered effects, the covariance matrix of the PESE

was computed. Covariance is a statistical measure which can be thought of as the two-dimensional

equivalent of the variation. The covariance of two random variables x and y is given by:

Cov(x, y) = E[xy] − E[x]E[y]

where E[·] is the expectation of the random variable (Ross 1994). In our case, the random variables
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correspond to the values of the stimulus at a precedence of t. This gives a matrix C, whose (i, j)th

element is given by:

C(i,j) = Cov(PESEi, PESEj)

where PESEi is the random variable that describes the value of the stimulus at a precedence i.

To analyze the covariance matrix, we used PCA. This gives a family of eigenvectors, and we

would like to demonstrate that we can safely disregard the majority of them. Fractional energy is

an insufficient standard to make this argument except in the case of extreme values, as it does not

provide a criterion for significance. Instead, we proceed by constructing a first-order model. By

design, such a first-order model does not have second-order effects (i.e., it will have no significant

covariance eigenvectors). If the distribution of eigenvalues in the data is significantly different

from the distribution seen in the first-order model, then we can conclude that there are significant

second-order effects present in the data. The first-order model assumes firing rate is related to the

convolution of the spike-triggered average and the stimulus. A nonlinear weighting function of firing

rate as a function of filter output was recovered using the method of Rust et al. (2004): a histogram

of the inner products of all pre-event stimuli and the spike-triggered average was computed, and then

piecewise normalized by the histogram of the inner products of all possible stimuli segments within

the presented stimulus set and the spike-triggered average. The resulting histogram thus gives the

probability of spiking as a function of the inner product of the stimulus and the spike-triggered

average, and was fit with an asymmetric parabola of the form:

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

a1x
2 + b x ≤ 0

a2x
2 + b x > 0

A spiking model was then implemented using an inhomogeneous Poisson process (Zhang et al. 2001)

whose rate parameter was found by convolving the auditory stimulus with the spike-triggered average

of that neuron, passing the result through the weighting function, and then recovering a scaling factor
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through gradient descent to match the model’s mean firing rate to the data (see section 2.5). The

spiking model was used to generate 100 PESEs of the same size as the original data PESE, thus

giving a family of eigenvalue distributions for their respective covariance matrices. An eigenvalue of

the data covariance was considered significant if it and all eigenvalues greater in magnitude differed

from the model distribution by at least two standard deviations.

Power spectral density (PSD) was estimated with the MATLAB implementation of Thomson’s

multi-taper method with the time-bandwidth product set to 5/2. We use three characterizations of

the spectral properties of a signal. BW10 is the 10 dB bandwidth of the signal; that is, it is the

width of the peak of the periodogram 10 dB below the peak. CF10 is the frequency on which the

BW10 is centered, and PF is the peak frequency of the periodogram of the signal. Care was taken

to ensure that multiple peaks did not confound this measure.

To compute the latencies of filters, we first computed the continuous wavelet transform of the

filter using a fourth-order Daubechies over the set of scales that corresponded to the bandpass

range of the stimuli (generally 1–12 kHz). After computing the mean and standard deviation of the

transform over this range, we then computed the wavelet transform at a scale which corresponded to

the PF of the filter (PWT). We identified all points of the PWT whose absolute value exceeded the

mean plus two standard deviations of the full transform and treated them as significant. Adjacent

singificant points were collected into segments, and segments which were separated by no more than

half the period of the peak frequency were combined (i.e., the intermediate points were also treated

as being significant). The segment that included the maximum of the absolute value of the PWT

was treated as being the time interval of the filter, allowing us to identify minimum, maximum, and

peak latencies. Example of the result of this method can be seen in figure 3.1.

Phase differences were calculated by fitting a gammatone (Lewis, Henry and Yamada 2002) to

that portion of the filter between maximum and minimum latencies and then comparing the phase

offsets of the cosine component of the fitted gammatone. A gammatone was chosen because of

precedents set in the literature, and because it successfully managed to capture the phase structure

of the filters. However, it should not be considered to be a truly valid description of the filters, as
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Figure 3.1. Shown are four results of the wavelet-based latency estimation method. The complete
filter is plotted using the dotted line, and that region of the filter that was identified as being between
the minimum and maximum latency is highlighted with a solid line. The method identifies the “non-
noisy” portion of the signal as perceived by the eye well, and in an automated fashion. Peak latency
would correspond to the time at which the maximum of the highlighted region occurs. In general,
we found that both minimum (lowest value of precedence of the highlighted region) and maximum
latencies were reliable, in the sense that they were systematic across the neurons of a given area.
Peak latency tended to have more variability, and be a less reliable indicator of the neuronal latency.

the filters often displayed a temporal asymmetry about the peak.

Spectrograms were computed using a 100-sample Hamming window with an overlap of 75 sam-

ples. Color maps of spectrograms are in grayscale, with white corresponding to minimum values

and black to maximum.

The shuffled autocorrelogram (SAC) is computed as in Joris (2003). We have N spike trains

arising from presentations of the same broadband stimulus to a particular neuron, and begin by
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choosing the first spike train. For each spike in that train, we compute the forward time intervals

(that is, the difference in spike times between that spike and all spikes occurring after it relative to

stimulus onset) between that spike and all spikes in the other spike trains, and then this procedure

is repeated until all spikes in all spike trains have been used as the reference. Because there are

no intra-train comparisons, effects of refractory period are eliminated. The SAC is guaranteed

to be symmetric about the delay of zero (each forward time interval will reoccur as a backward

time interval), and hence we need only consider the forward time intervals. A normalizing factor

N(N − 1)r2ΔτD, where r is the mean firing rate, Δτ is the bin-width of the correlogram, and D is

stimulus duration, results in a unity baseline, where a spike train with Poisson statistics will have

a flat SAC of height 1. We used a histogram of binwidth 50 μs, as in Louage, van der Heijden and

Joris (2004).

3.2 Results

3.2.1 General properties

The spike-triggered average (STA) is computed by averaging the PESE across spikes, and gives

the average stimulus preceding a spike. For auditory stimuli, the STA is only non-negligible in the

case where there is precise synchronization to the stimulus; in particular, the neurons must display

phase-locking (Eggermont 1993). Consistent with reports of phase-locking in NM (Köppl 1997b)

and in NL (Carr and Konishi 1990; Peña et al. 1996), we saw coherent STAs in these nuclei for all

neurons examined (fig. 3.2a–d). In ICcc, neurons do not phase-lock, and as anticipated, the STAs

of ICcc neurons lacked coherent structure (fig. 3.2e).

The STA captures only the first-order relationship between stimulus and response, and is hence

incomplete. As such, we also considered the spike-triggered covariance (STC), given by the co-

variance of the PESE. The covariance is a matrix whose interpretation is roughly analogous to

cross-correlation: the covariance at (m, n) will be positive if the values of the stimulus at times m

and n preceding the spike are likely to have the same sign, and negative if they are likely to have
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Figure 3.2. Shown are the spike-triggered averages of example NM (a–b, left column), NL (c–d),
and ICcc (e) neurons, along with their spectrograms (right column). The abscissa gives the time
preceding the spike; color bars are provided for reference, but in following figures will be omitted
a : 2003Oct31-863.06, 6,614 spikes; b: 2003Nov28-863.07, 5,234 spikes; c: 2005Feb18-854.02, 2,984
spikes; d : 2005Mar11-813.02, 3,509 spikes; e: 2005Jun08-842.03, 3,468 spikes.

opposite signs, with the magnitude of the covariance denoting the likelihood of that relationship.

Because covariance looks at correlations within the signal, rather than absolute value, it does not

require a precise synchrony to phase. Indeed, when we look at the spike-triggered covariance of an

ICcc neuron, structure is apparent (fig. 3.3a). In this example, alternative bands of positive and

negative covariance running parallel to the diagonal centered at a precedence of approximately 8 ms

are present. For any given spike, the relationship of the phase of the stimulus at time t can be

determined by taking a slice through the covariance matrix at t. Figure 3.3a tells us that for values

of t near 8 ms, the nearby stimuli will vary in and out of phase with the value at t with a frequency
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given by the alternation of those bands, regardless of the actual value of the stimulus at t,
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Figure 3.3. The spike-triggered covariance of the ICcc neuron shown in fig. 3.2e. a : The covariance
matrix itself is shown. The diagonal of the matrix gives the variance, which tends to dominate
over the covariance. To emphasize the covariance structure, the central 40 μs along the diagonal
have been zeroed out for this plot only (thus, the band of gray along the diagonal represents zero;
black positive values, white negative values). The rippling pattern of the covariance is now visible.
b: The first four hundred eigenvalues of the covariance matrix, sorted by magnitude. It can be
seen that the first two eigenvectors are distinct from the smooth progression seen in the remaining
values. c and d : The eigenvectors corresponding to the first and second eigenvalues, respectively.
Note their structure is similar to the structure of the STAs in fig. 3.2. e and f : The corresponding
spectrograms of the eigenvectors.

The STC is difficult to visually interpret, and since the tuning is limited to a certain range of time,

it contains an excess of data. To deal with this, we used principal component analysis, determined

the significant eigenvectors of the matrix, and used only those eigenvectors in our analysis (see

Methods; fig. 3.3b–f). Of the 27 ICcc neurons examined, 24 displayed at least one significant

covariance eigenvector, and 18 of those had two.

The existence of a significant STA and STC are not mutually exclusive. Of the 16 NM neurons
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examined, 3 had a single significant covariance eigenvector. Of the 19 NL neurons, 10 had at least one

significant covariance eigenvector, and 6 of those had two. To understand why multiple filters (either

the STA with STC eigenvectors, or STC eigenvectors alone) are present, we note that Yamada and

Lewis (1999) demonstrated in the bullfrog’s auditory nerve that non-phase-locked responses were

described by pairs of filters. These pairs, called quadrature pairs, were identical in spectral profile

but shifted ninety degrees in phase with respect to each other. A quadrature pair forms a basis

with which all possible signals with the same spectral profile but different phases can be generated.

Different weightings of the filters will produce different phase biases in the response. Even neurons

with a high degree of phase-locking will respond to a wide range of phases (Johnson 1980; Carr and

Konishi 1990; Köppl 1997b). Thus, depending on the nature and quality of phase-locking for a single

neuron, a quadrature pair of an appropriate bias may be required to describe the response. When

we compare the spectral profiles of the neurons with two filters (STA and the first STC eigenvector

(STC1) for NL and NM, and STC1 and the second STC eigenvector (STC2) for ICcc), we see that

they are similar (fig. 3.4). Equally important is determining that their temporal profiles are similar,

and the latencies of the appropriate filters are in fact well correlated (fig. 3.5). Estimations of the

phase differences further confirm that the filters are separated by approximately ninety degrees (NM:

91 ± 5.7◦; NL: 89 ± 7.9◦; ICcc: 97 ± 27◦), confirming that when only two filters are present, they

approximately form a quadrature pair.

The quadrature pair hypothesis does not predict the possibility of a third filter. However, it is

clear that while the CF10 of the respective filters are the same (fig. 3.4b), the BW10 (fig. 3.4e) and

the latency (fig. 3.5b,e) do not show the same similarity as seen in the cases where there are only

two filters. This point will be examined in further detail in the Discussion. Excepting this case,

however, we observe that multiple filters are generally differentiated only by their phase. Since the

majority of our analyses do not focus on phase, from this point forward we will primarily refer only

to a single filter, and refer to that as the STRF.

An observation that springs from figure 3.5 is that the range of latencies seen in ICcc is much

greater than in NM or in NL. ICcc latency is highly correlated with the preferred frequency of the
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Figure 3.4. a : When the BW10 for the STA and the first eigenvector of the STC (STC1) are plotted
against each other for NM, we see a generally linear relationship, though the paucity of data makes
this conclusion tenuous. This is true when the same is plotted in NL for neurons with only STC1

significant (b, ◦). The dispersion is greater for the NL neurons which had two significant eigenvectors
(STA vs STC1: ×; STA vs STC2: +). c: The BW10 of STC1 and STC2 for ICcc neurons with
two significant covariance eigenvectors. Again, a good correspondence in the majority of cases is
observed (regression: r2 = 0.83, p < 10−6. d–f : The CF10 in all cases showed a high degree of
correspondence between filters (symbols as in a–c; regression for ICcc: r2 = 1.00, p < 10−6.).
Regression values are not given for NM and NL due to low n.

neuron (fig. 3.6b; regression for maximum latency: r2 = 0.77, p < 10−6; regresssion for minimum

latency: r2 = 0.66, p < 10−5). On the other hand, while the correlation is present in NL, it is weaker

(fig. 3.6a; regression for maximum latency: r2 = 0.62, p < 10−4; regression for minimum latency:

r2 = 0.26, p > 0.01). Latencies in NM were entirely uncorrelated with frequency (p > 0.01 for both

cases; data not shown).

In both NM and ICcc, linear regression did not reveal any significant dependence of BW10 on

CF10 (p > 0.05) for the first filter (STA and STC1, respectively; fig. 3.7a,c). In NL, however, a linear
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Figure 3.5. Comparison of minimum latency for paired filters in NM (a), NL (b), and ICcc (c;
regression: r2 = 0.90, p < 10−6), with symbols as in figure 3.4. The two-filter cases are generally
well correlated; though some deviations are seen in NM and NL, the overall range of values is quite
small. The maximum latencies (d–f ) were well correlated in all cases (regression for ICcc: r2 = 0.98,
p < 10−6; again, regression values for NM and NL are not provided due to low n).

dependence was seen (p < .001) for the STA (fig. 3.7b). Segregating the NM and ICcc populations

by the number of filters did not affect this result. This stands in contrast to the observation that in

NM (Köppl 1997a) and in ICcc (fig. 3.8) estimates of frequency tuning bandwidths using single-tone

methods reveal such a dependence.

The values of BW10 seen in NM were smaller than seen in NL (Kruskal-Wallis, p < 0.001) and

in ICcc (p < 0.005; fig. 3.7d), while ICcc and NL saw a similar range in BW10 values (p > 0.1). This

suggests a convergence across frequency channels from NM to NL, but that no such convergence

takes place from NL to ICcc.
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Figure 3.6. a : In NL, a linear relationship between maximum latency (◦) and CF10 was observed
(r2 = 0.62, p < 10−4). The correlation for minimum latencies was not significant (+; p > 0.01);
as can be seen, the slope of the minimum latencies is almost zero. Both minimum and maximum
latencies in ICcc showed a strong linear dependence on CF10 (b; maximum latency: r2 = 0.77,
p < 10−6; minimum latency: r2 = 0.66, p < 10−5). No relationship was seen for latencies in NM
(data not shown).

3.2.2 Effect of ITD on STRF

The neurons of both NL and ICcc are known to be tuned to ITD, which is a function of the position

of the signal in space. The data on STRFs we have shown was collected at the CD alone. It is

reasonable to ask what, if any, effect ITD has on the STRF properties. When we collected the

reverse correlation, we interleaved trials using a second ITD to prevent habituation. These second

ITDs were chosen so that across the entire set of neurons collected they covered a variety of different

ITD conditions, including favorable (a peak on the ITD tuning curve other than CD), unfavorable

(a trough on the ITD tuning curve), and intermediate values. In ICcc we rarely chose unfavorable

ITDs, as they generally had firing rates that were too low to collect a sufficient number of spikes for

reverse correlation.

Figure 3.9 compares the properties of the STRFs calculated with these non-CD ITDs to the
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Figure 3.7. Plots of BW10 vs. CF10 for NM (a), NL (b), and ICcc (c). Both in NL and NM there
is an dependence of BW10 on CF10, while in ICcc no such relationship is apparent. d : Distribution
of BW10 in the three nuclei. The bandwidths observed in NM are significantly lower than seen in
either NL or ICcc (see text). Removal of the three apparent outliers in a does introduce a linear
relationship (p < 0.01), but examination of those neurons gives no grounds for exclusion. Removal
of the outlier in c has no effect.

STRFs at CD of the corresponding neurons. For all the parameters examined, and in both NL

and ICcc, a strong linear relationship was observed between CD and non-CD STRFs, and the 95%

confidence intervals of the regression included the identity line in all cases. Note that we have not

controlled for firing rate, so that some of the observed variability may be due to differences in spike

counts for the various reverse correlations. Based on these data, there is no evidence to suggest that

there is a significant dependence of the SRTF on the ITD of the stimulus.
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Figure 3.8. A linear relationship is observed between F50 and W50 when frequency is estimated using
an iso-intensity frequency tuning curve in ICcc (regression: 0.18x + 237 Hz, r2 = 0.55, p < 10−4).

3.2.3 Separability

The STRF gives the tuning of a neuron to two stimulus dimensions, frequency and time. A relevant

question is to what degree these dimensions are separable: that is, can the STRF be considered

the product of the separate tuning to time and frequency, or are there non-negligible interactions

between the two? Using singular value decomposition (SVD), this question is equivalent to asking

if a single singular vector pair is sufficient to reconstruct the STRF, or if more than one is required.

Figure 3.10 demonstrates the STRFs of three example units, one for each nuclei, as well as

reconstructions of the STRF using one and two singular vector pairs. The STRFs do not in general

display any obvious signs of inseparability (fig. 3.10a, d, g), such as multiple peaks, or angled peaks

(which would indicate a change in preferred frequency with time). As expected from this, the

reconstructions using only a single singular vector pair (fig. 3.10b, e, h) capture the primary features

of the tuning as visible to the eye. Adding a second singular vector pair to the reconstruction

(fig. 3.10c, f, i) adds some additional structure to the peaks; this is especially apparent in the

asymmetric taper of the peak in either direction along the time axis. However, the net change is
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Figure 3.9. STRFs were estimated for all non-CD ITDs collected, and the CF10 (a , d), BW10 (b,
e), and maximum latencies (c, f ) were estimated using those STRFs and then plotted against the
corresponding values for the STRF of that neuron as estimated at CD. In NL (a–c), all parameters
showed a strong linear dependence (a : r2 = 0.99; b: r2 = 0.82; c: r2 = 0.93; p < 10−6 in all
cases). In ICcc, a correlation was also obvious, though weaker in the case of BW10 (d : r2 = 0.1; e:
r2 = 0.54; f : r2 = 0.91; p < 10−6 for d and f , p < 0.001 for e).

apparently small, with most of the difference occurring in regions that seem to lack tuning.

When we look at the fractional energy of the singular values (fig. 3.11), we see that the first

singular value clearly exceeds all other singular values in all cases. At the same time, the fractional

energy of the first component in all cases represents less than half the total energy (NM: 41± 4.8%;

NL: 39±6.8%; ICcc: 30±4.1%), which indicates a high degree of inseparability (Depireux et al. 2001).

However, this measure does not indicate the source of the inseparability. Specifically, figure 3.10

suggests that the higher-rank singular values may be used primarily to attempt to describe the

noise. To address this, we note that based on considerations of neural latency, we expect tuning in
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Figure 3.10. a : Spectrogram of the STA for an example NM neuron. b: Reconstruction of the STA’s
spectrogram using the first singular vector pair. c: Reconstruction using the first two singular vector
pairs. d–f and g–i are the same for the STA of a NL and the STC1 of an ICcc neuron, respectively.
The tapers of the tuning become more pronounced with the added singular vector pair.

all three nuclei to occur primarily at no more than 10 ms before spike time (figs. 3.2, 3.3). Thus, if

we take the spectrogram of the STRF and divide it in half along the time axis, we expect that the

majority of the power of the STRF (defined as the sum squared of the spectrogram) will occur in

the 0–10 ms segment, rather than in the 10–20 ms segment. By extension of this, it is logical that

if the spectrogram of a singular component of the STRF has the majority of its power in the first

half, then that component contributes to the tuning itself. Conversely, a component that has power

equally balanced between tuned or untuned regions, or that prefers the untuned region, is unlikely to

be a major contributor to the actual tuning of the neuron. This analysis is shown in figure 3.12. As

expected, the first singular value component is heavily biased towards the tuned region (fig. 3.12a,
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Figure 3.11. Fractional energy of the singular values of the STA (for NM (a) and NL (b)) and STC1

(for ICcc; c) for all neurons.

d, g). However, even the second component lacks this bias, with the power between the two regions

having no significant difference (fig. 3.12b, e, h). Even when the summed activity of singular vectors

other than the first is considered there is no indication of preferential action within the tuned region

(fig. 3.12c, f, i). Taken all together, this suggests that there is no reason to believe that the observed

inseparability reflects a significant interaction between frequency and tuning in the STRF.

3.2.4 Variability

The temporal profiles of the filters as shown in this research are narrow (figs. 3.2, 3.3). This indicates

that the lag between the stimulus matching the STRF of the neuron and the spike time is relatively

fixed across reoccurences of the preferred stimulus. Alternatively, we expect that the neurons of these

nuclei would display low variability, and demonstrate similar responses for repeated presentations

of the same stimulus. We tested this directly in 10 NL neurons and 22 ICcc neurons. As seen in

figure 3.13a, b, the spike rasters are indicative of a fixed pattern of firing.

To quantify this, we used the shuffled auto-correlogram method (SAC; Joris 2003; Louage, van der

Heijden and Joris 2004). The height of the SAC gives the likelihood that given a spike at time t in

one presentation of a stimulus that another presentation of the same stimulus will elicit a spike at

the same time; the width of the peak of the SAC gives a measure of how much jitter in spike timing

is present (fig. 3.13).
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Figure 3.12. a : Comparison of fractions of power in the first singular value of the STRFs for NM
neurons in the tuned and untuned regions. b: The same for the second singular value. c: The
comparison for the summed activity of all singular values but the first. Similarly for NL (d–f )
and ICcc (g–i). Boxes extend from lower quartile to upper quartile of the sample, with the line
marking the median. Outliers (+) are data points greater than 1.5 times the interquartile range of
the sample.

Both NL and ICcc showed a low amount of jitter, as measured by the SAC half-height width

(fig. 3.14a). The two populations were not significantly different (NL: mean 0.77 ± 0.37 ms; ICcc:

mean 0.85± 0.29 ms; medians not different by Kruskal-Wallis, p > 0.2). The SAC heights also indi-

cated a high probability of spikes reoccurring at fixed times, and there was no significant difference

in this regard between the two nuclei (NL: mean 5.0±4.9; ICcc mean 4.3±2.6; medians not different

by Kruskal-Wallis, p > 0.5). Thus, both NL and ICcc display jitter on the sub-millisecond scale,

and this precision is maintained through the ascending pathway.
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Figure 3.13. Example spike rasters for a NL (a) and ICcc (b) neuron, using repeated presentation
of identical broadband stimuli. c and d : The respective SACs for a and b. Note the fine-time scale
modulation of the NL SAC, which arises due to the phase-locking of the neuron, is absent in the
ICcc SAC. Despite that, their outer half-height widths are similar.

3.3 Discussion

Previous studies in the barn owl (Keller and Takahashi 2000), as well as amphibian (Hermes et al.

1981), and mammalian models (Carney and Yin 1989), have demonstrated patterned (that is,

stimulus-locked) responses in the midbrain using broadband noise. However, due to the segregation

of sound localization cues in the barn owl, it is not immediately clear if these responses emerge from

the ITD pathway or the ILD pathway. Our results indicate that the spectral properties of the stim-

ulus are encoded with millisecond resolution throughout the ITD pathway. Keller and Takahashi

(2000) observed that a continuum of STRF types in ICcl, ranging from simple, well-defined STRFs
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Figure 3.14. a : The half-height widths of the SACs for NL and ICcc neurons. b: The maximum
height of the SACs for NL and ICcc neurons.

to more complex ones. Our study was done using different techniques, but the STRFs we describe

in ICcc are similar to the simpler of the STRFs that they describe. While this does not rule out

a contribution from the ILD pathway, it must be noted that STRFs have yet to be demonstrated

within the ILD pathway.

The existence of three filters in some NL neurons is not immediately intuitive. The simplest

explanation is the one alluded to in the results above: NL neurons do not phase-lock equally well

to all frequencies to which they respond. Since elimination of phase-locked responses requires two

filters, the presence of a frequency that elicits a non-phase-locked response necessitates the addition

of a third filter. While we did not observe any such similar effect in NM, the fact that we see a

broadening of STRF bandwidth from NM to NL accounts for this. Another possibility arises from

the mechanics of an NL neuron. While this study treats the NL neurons as if their responses were

produced by a single family of filters, in reality they are expected to be driven by two sets of filters,

one arising from each ear. It may be that nonlinear interactions between the two sides result in the

third filter.

Equally surprising are those ICcc neurons that demonstrated only a single significant covariance

eigenvector. A strict statistical interpretation would lead to the conclusion that these neurons
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responded preferentially to a particular phase and that phase shifted by 180◦, but not to intermediate

phases. A more likely explanation is that this is the result of poor spectrotemporal tuning. For both

the neurons with one significant eigenvector, and those with none, there was no correlation seen with

either number of spikes used in the analysis, shape of the peristimulus time histogram, preferred

frequency, or any other tuning parameter. In general, these neurons could be very well tuned to

ITD, suggesting that there was no deficiency in isolation or recording procedure. The conclusion is

that some subset of ICcc neurons has at best very weak spectrotemporal tuning (in our study, 9 of

27). Because there was no correlation of the number of STC eigenvectors with any other studied

response parameter, we can not conclude if this represents a distinct subpopulation of neurons or a

continuum of tuning within the nucleus.

Another oddity is the lack of correlation between bandwidth and center frequency in NM and

ICcc. In the case of NM, this may be a sampling problem. Köppl (1997a) collected many more

units over a broader range of frequencies than we were able to collect. The dependence described in

that data is somewhat weak, and would be difficult to establish over a smaller subset of frequencies.

Explaining the lack of correlation in ICcc is more difficult. Iso-intensity frequency tuning curves

reveal a dependence over the same frequency range and with the same number of units. An immediate

concern is that this is due to noise in our ICcc data. However, as we will discuss in detail in chapter 4,

there is a third method of estimating neuronal response bandwidth using the ITD response curve.

For ICcc, this estimate of bandwidth is in good correlation with the STRF bandwidth (fig. 4.7).

The conclusion is that iso-intensity frequency response is a poor predictor of a neuron’s response

to broadband noise, an observation that has also been made in the owl’s ILD pathway (Spezio and

Takahashi 2003).

Taken all together, our results suggest that the nuclei of the ITD pathway, and specifically

ICcc, can be treated as a dynamic spectrum analyzer with a temporal resolution of approximately

a millisecond. In humans, the time-dependent envelope of speech is known to be of importance: for

example, when the envelope of speech is distorted by a low-pass filter, comprehension is degraded

(Drullman, Festen and Plomp 1994). However, it remains unknown if the owl can detect time-
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dependent properties of the stimulus on a scale such as observed here. It is known that the owl

is capable of discriminating between nearby frequencies with ease (Quine and Konishi 1974), and

complex noises that differ by as little as 2.5 dB in a single 1
3 octave band (Konishi and Kenuk 1975),

but the stimuli used in these studies were not characterized in terms of their temporal modulation.

Nonetheless, behavior suggests that the owl is capable of subtle tasks of recognition: for example,

the owl has been reported to be able to distinguish between the sounds of a mouse walking through

dry leaves versus a mouse walking through chopped-up paper (Konishi and Kenuk 1975). Combined

with the psychophysical work in humans on the relevant stimulus parameters for sound recognition,

it is likely that the owl is capable of detecting spectrotemporal information on a relatively short

timescale.

Both NL and ICcc are tuned to ITD as well as to the spectral properties of the signal. In

their study of the ICcl, Keller and Takahashi (2000) found that firing patterns were independent

of stimulus location, and Carney and Yin (1989) observed the same in the cat’s inferior colliculus.

While we did not characterize firing patterns directly, we observed that the STRFs estimated at

different ITDs for the same neuron in general had near-identical bandwidths, center frequencies,

and latencies. It seems clear from this that the STRF is independent of ITD. It is tempting to

declare from this that the firing pattern is independent of ITD, but this statement requires a caveat.

Specifically, the firing pattern is a function not only of the SRTF, but of the mean firing rate, and

the mean firing rate is a function of ITD. Thus, for fixed firing rates, we can say the firing pattern

of NL and ICcc neurons are independent of ITD. Similarly, ITD will only be independent of the

spectrotemporal structure of the signal if the response is averaged over a sufficiently large period.

With these details in mind, however, it seems clear that neurons of NL and ICcc appear to encode

ITD with their firing and spectrotemporal structure with their firing patterns.

An interesting observation that arises from this involves the role of phase information. In the

auditory nerve and NM, the SRTFs are sharp enough that they encode the phase of the stimulus. It

is widely accepted that it is necessary that phase be encoded at this point in the sound localization

pathway, as phase-locked inputs are a necessary requirement for the coincidence detection that is the
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mechanism for the computation of ITD (Jeffress 1948; Carr and Konishi 1990; Carr 1993). NL also

encodes phase, but this is a consequence of coincidence detection: if NL neurons spike only when they

receive coincident impulses from NM inputs, then assuming there is no significant jitter in the time

required to initiate the spike, the output spikes of the NL neurons will have the same general timing

as the phase-locked input spikes, and hence be phase-locked. The fact that the STRFs are generally

maintained in ICcc, however, shows that this now apparently superfluous phase information is not

discarded. Instead, we see that in the ITD pathway phase encoding is used first to compute the ITD,

and then, in a slightly less precise way, to provide information about the spectrotemporal properties

of the stimulus, providing an elegant demonstration of encoding multiple stimulus parameters with

a limited coding language.
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Chapter 4

Relationship between Spectral and
ITD Tuning

As discussed in the Introduction, both mammals and birds use the interaural time difference (ITD)

to determine the horizontal position of a sound source in space (Heffner and Heffner 1992; Moiseff

1989). The accepted model to explain the computation of ITD uses a combination of coincidence

detection and delay lines to produce neurons that fire maximally when the differences in arrival time

of the sound at each ear and the neural conduction delays cancel each other exactly (Jeffress 1948).

Consistent with this, the axons that project to nucleus laminaris (NL) of the barn owl act as delay

lines converging on neurons that act as coincidence detectors (Carr and Konishi 1988, 1990). Even

in mammals, where the exact method of encoding ITDs is under question (McAlpine, Jiang and

Palmer 2001), the neurons of the medial superior olive (MSO), the mammalian homologue to NL,

behave as coincidence detectors (Goldberg and Brown 1969; Yin and Chan 1990).

The coincidence detection model has been argued to be a special case of a more general cross-

correlation algorithm (Licklider 1959), which expresses the degree of similarity between two time-

dependent signals as a function of lag (how much the signals have been shifted in time with respect

to each other). Experiments have verified that the neurons of NL and MSO do show some cross-

correlation-like behavior (Carr and Konishi 1990; Yin and Chan 1990). The full extent to which

cross-correlation is a description of the behavior of the neurons of NL remains open, and with it,

the completeness of the current coincidence detection model.

Cross-correlation in the NL neurons may also be of perceptual relevance outside the context of
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localization, as the interaural correlation will be also influenced by non-spatial features of the audi-

tory environment, such as the presence of echoes and multiple sound sources. The sound localization

of owls (Saberi et al. 1998) and humans (Blauert and Lindemann 1986) and the firing rate of higher

order neurons of the owl’s sound localization pathway (Albeck and Konishi 1995) strongly depend on

interaural correlation. How the brain detects dissimilarities between the signals that reach each ear

may thus involve computing an estimate of the correlation at fixed lag within narrowband frequency

channels.

A property of cross-correlation is that it has linearity in the frequency domain: the cross-

correlation between two broadband signals is given by the sum of the cross-correlation between

the component non-overlapping frequency bands of the signals. This property enters into play in

addressing the problem of phase ambiguity in sound localization. Due to the remarkable phase lock-

ing ability observed in the primary afferent fibers, barn owls can detect ITD in sounds of frequencies

beyond 8 kHz (Sullivan and Konishi 1986; Köppl 1997b). For periodic signals, ITDs that differ by

integer multiples of the stimulating signal will produce identical responses, a problem called phase

ambiguity. Because of the small range of frequencies to which an NL neuron will respond, even a

broadband signal is bandpassed sufficiently that the stimulus is effectively periodic (section 1.5), so

that phase ambiguity is an issue for complex noises as well as pure tones. For much of the relevant

range, the frequencies used by the owl are sufficiently high that phase ambiguity becomes an issue

in the resolution of sound location, in that all ITDs are encoded ambiguously (Mazer 1998; Saberi

et al. 1999). If the neurons of NL can be treated as cross-correlators, and hence have the property of

frequency-domain linearity, then simple linear integration across frequency bands in the ascending

sound localization pathway will result in what is effectively the cross-correlation of the two original

binaural stimuli. However, a formal approach to the nature of the frequency interaction within NL

has been elusive, due to the difficulties involved in obtaining reliable single-unit recordings at the

primary site of cross-correlation. Previous studies have attempted to address the question of whether

simple summation over frequency components alone is sufficient to explain the ITD response curves

of neurons located at different levels of the pathway, but the results have been ambiguous (Yin, Chan
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and Irvine 1986; Mazer 1998; Fujita and Konishi 1991; Mori 1997; Peña and Konishi 2000). These

studies compared the response to various narrow-band stimuli to the response to broadband stimuli,

which proves problematic due to issues involved in representing a broadband stimulus as a finite

sum of narrow-band stimuli. The previously published data leave open the possibility that another,

possibly nonlinear, mechanism beyond integration across frequencies is at play in determining the

response to broadband stimuli, and hence to assist in the elimination of phase ambiguity. Using

reverse correlation, we can avoid this complication. Therefore, our first goal is to determine whether

the neurons of NL exhibit frequency-domain linearity, which will serve a two-fold purpose: validating

the coincidence detection model, and establishing a baseline for the interaction of frequency bands.

Upon having addressed that question, we will then examine the neurons of ICcc to see if this rela-

tionship is maintained. Maintenance of such a relationship would indicate that the cross-correlation

of the signals at the two ears in individual frequency bands is of use to the animal, lending further

credence to the conclusions of chapter 3 that ICcc may play a role in sound recognition. Alterna-

tively, we might see a disruption of this relationship with the aim of accelerating the suppression of

side peaks in the lateral shell.

4.1 Methods

See chapter 2 for general methods, and section 3.1 for details on the use of reverse correlation to

calculate the effective stimulus.

4.1.1 Data collection

Data for estimation of monaural filters were obtained using the same protocol as reverse correlation,

except that the stimuli were binaurally uncorrelated broadband stimuli. Because of the constraints

of the analysis, the target number of spikes with binaurally uncorrelated stimuli was roughly twice

that of reverse correlation. In the case of binaurally uncorrelated stimuli, the ITD is by definition

undefined, and there were no interleaved stimulus conditions as a result.
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4.1.2 Analysis

Power spectral density (PSD) was estimated with the MATLAB implementation of Thomson’s multi-

taper method with the time-bandwidth product set to 5/2 (for signals sampled at 48,077 Hz) and

5/4 (for signals sampled at 30 μs). In neurons with significant covariance eigenvectors, the PSD

was estimated by averaging the PSD of the STA and the significant covariance eigenvectors. We

use three characterizations of the spectral properties of a signal. BW10 (BW5) is the 10 dB (5 dB)

bandwidth of the signal; that is, it is the width of the peak of the periodogram 10 dB (5 dB) below

the peak. CF10 (CF5) is the frequency on which the BW10 (BW5) is centered, and PF is the peak

frequency of the periodogram of the signal. Care was taken to ensure that multiple peaks did not

confound these measures.

NL

The reverse correlation was done with a 20 ms window at a sampling rate of 48,077 Hz, while the

ITD curve was sampled with 30 μs resolution over a range of no more than 4.8 ms. To remove the

effects on power spectra estimation that arise due to this difference, the reverse correlation data was

down-sampled by a spline to the sampling rate of the ITD curve, and then a time window matching

that of the ITD curve was chosen about the maximum absolute value of the STA.

Model of NL response

Binaurally uncorrelated stimuli were presented repeatedly, and then reverse correlation was done

twice, using the two families of stimuli (left ear and right ear). The resulting spike-triggered averages

were used as estimates of the corresponding monaural filters. The same inhomegenous Poisson

process as described in section 3.1 was used to generate spikes. However, the instantaneous firing

rate parameter was derived by convolving the stimuli by the appropriate monaural filter, summing

them, and then shifting (to represent a threshold) and scaling to obtain the desired mean firing

rate. The nonlinear weighting function of Rust et al. (2004) was not used in this case. That method

depends on having a set of filters which are orthogonal; this is a condition that is not guaranteed by
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our method of filter extraction. The mean firing rate over the reverse correlation dataset was used

as a target to determine the spiking threshold by gradient descent for the model STRF; the mean

firing rate at the characteristic delay for the ITD curve was used similarly for the model ITD tunign

curves. In all cases, only the spikes from 40 ms after stimulus onset to the end of the stimulus were

considered. This was done to avoid effects of the onset transient, which the model does not attempt

to replicate. In the case of the reverse correlation, the same stimuli were used to produce the model

output as were used in the original experiment. In the case of the ITD curve, computing constraints

prevented us from saving the original stimuli, and a different set of stimuli generated using the same

parameters was used.

ICcc

To remove rectification in the ITD tuning curves of ICcc neurons, a Butterworth bandpass filter was

used (MATLAB). The pass-band was centered on the center frequency of the first significant covari-

ance eigenvector (see chapter 3), with a width equal to the center frequency; this is the maximum

possible width, as rectification creates new peaks at integer muliples of the center frequency. The

stop bands were set to be one-eighth of the center frequency beyond the width of the pass-band.

Low- and high-pass attenuation was set to 10 dB, and the ripple parameter was set to 5 dB.

4.2 Results

The responses of NL neurons to ITD contained in periodic and broadband signals differ over an

extreme range of ITDs, but are indistinguishable within a physiological range (fig. 4.1). This indi-

cates an interaction between component frequencies within the NL frequency tuning bands, while

confirming the existence of the general problem of phase ambiguity.

4.2.1 Nucleus laminaris

If NL neurons do behave as cross-correlators, then the Wiener-Khinchin theorem (Appendix A)

predicts a precise relationship between the power spectrum of the ITD response curve and the
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Figure 4.1. a : Laminaris neuron recorded with “loose patch.” When the firing rate is plotted
as a function of ITD in response to broadband stimuli and the range of ITDs is limited to those
that might be encountered under normal listening conditions, the resulting curve can show multiple
peaks of similar amplitude, similar to a cosine. Two example traces show the response to favorable
and unfavorable ITDs indicated by the arrows. The post-stimulus time histogram (PSTH) and
interspike interval histogram (ISIH) are shown on the right. b: When the range of ITDs presented
is expanded, a more complex structure becomes evident. Whereas the response is periodic for tonal
stimulation (thin line), the amplitude of the peaks decay when broadband sound is used as a result
of the response to a narrow-band (bold line). For the physiological range (Phys. Range; inset) the
response to tones and broadband signals is practically indistinguishable.
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power spectrum of the square of the Fourier transform of the effective stimulus: the portion of the

stimulus that passes the various cochlear and neural filters and succeeds in stimulating the neuron

(for a justification of the applicability of the Wiener-Khinchin theorem under these conditions, see

Appendix B). By using a loose-patch technique (Peña et al. 1996, 2001) we were able to obtain

the quality and stability of the recordings (fig. 4.1) necessary to apply reverse correlation analysis

(de Boer and de Jongh 1978; Klein et al. 2000) to estimate the effective stimulus. The power spectral

densities of both the spike-triggered average and the significant eigenvectors of the spike-triggered

covariance were averaged and compared to the power spectral density of the ITD response curve

(fig. 4.2), using the 5 dB bandwidth and the 10 dB bandwidth respectively1. The correlation was

good, with a linear regression near unity (regression 0.86x+363 Hz, r2 = 0.82, n = 18). A large offset

between the two is explained by the fact that the ITD response curve was sampled at much lower

resolution than the reverse correlation data; when the reverse correlation data was down-sampled

to account for this, the offset dropped dramatically (fig. 4.3; regression: 1.03x + 60.4 Hz, r2 = 0.87,

n = 17). It was necessary to remove one high frequency unit (CF10 of STA = 6,500 Hz) because the

sampling rate compensation destroyed the structure of the STA.

We also compared the PSD of ITD curves of 77 neurons with the iso-intensity frequency-tuning

curve, which is a plot of mean spike rates as a function of frequency for the same sound intensity.

Correlation was observed as in the previous comparison, though considerably weaker, in the sense

that the slope was less than unity (fig. 4.4). Squaring the iso-intensity frequency-tuning curve as per

the Wiener-Khinchin theorem did not improve this. Since the iso-intensity frequency-tuning curve is

known to be a poor estimate of the effective spectral response of the neuron (Spezio and Takahashi

2003), this lower degree of correlation is to be expected.

4.2.2 Model of nucleus laminaris response

Our findings support the theory that the neurons of NL can be treated as cross-correlators. However,

working in MSO, Batra and Yin (2004) argued that those coincidence detector neurons did not

1Since dB are a logarithmic unit, comparing the bandwidths at 5 dB and 10 dB is equivalent to comparing the
PSD of the ITD curve to the PSD of the square of the Fourier transform of the effective stimulus.
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Figure 4.2. Some neurons had not only a spike-triggered average (STA; a), but as many as two
significant and coherent eigenvectors (Covariance eigenvector) of the covariance matrix (b and c).
The power spectral density (PSD) of the STA alone (d ; dashed-and-dotted line) is broadened by
incorporating the covariance eigenvectors (d ; solid line). By adjusting the sampling resolution, the
PSD of the reverse correlation (d ; dashed line) matches the halved PSD of the ITD curve (d ; dotted
line) through to the –10 dB mark. The BW5 of the PSD of the STA plus covariance, without
sampling rate compensation, is shown plotted against the BW10 bandwidth of the ITD curve in e.

behave as ideal cross-correlators. Based on the relationship between the phase locking of the MSO

neurons to monaural and to binaural stimuli, they observed that the phase locking in the binaural

cases was less than would be predicted from the monaural responses. In an attempt to resolve these

discrepancies, we collected additional data to test a model of ITD response based on the coincidence

detection hypothesis.

The premise of the hypothesis is simple in concept: the effective time constant of the coincidence

detectors is fast enough such that the spiking threshold is attained only when a certain number of
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Figure 4.3. A plot of the BW5 of the PSD of the down-sampled reverse correlation (STA and STC
included) against the BW10 of the ITD curve. The correlation is improved over that seen in fig. 4.2.

excitatory post-synaptic potentials (EPSPs) occur within a few hundred microseeconds of each other.

These EPSPs come from two populations of afferent neurons, one for each ear, and the instantaneous

firing rate of each afferent neuron can be approximated as a linear filter of the relevant monaural

stimulus (de Boer and de Jongh 1978). NL neurons tuned to frequencies above 2 kHz have been

described as having very little dendritic arborization (Carr and Konishi 1990; Carr and Boudreau

1993). The lack of a dendritic tree suggests little opportunity for complex inter-synaptic interactions.

If these assumptions are true, it should be possible to estimate the response of NL neurons to

arbitrary stimuli using only two linear filters, one for the population of afferent neurons relaying

information for each ear.

To estimate the monaural filters, in six neurons we presented binaurally uncorrelated stimuli.

The coincidence detector model predicts that the resulting spike train contains spikes that can be

grouped into one of three categories: those resulting from coincidences between spikes from the

left-side monaural input population, those elicited by coincidences in the right-side monaural input



57

0 1000 2000 3000
400

600

800

1000

1200

1400

1600

1800

b

W50 of frequency tuning (Hz)

10
 d

B
 B

an
dw

id
th

 o
f I

T
D

 c
ur

ve
 (

H
z)

4000 5000 6000 7000 8000
−60

−50

−40

−30

−20

Frequency (Hz)

P
ow

er
 (

dB
/H

z)

a

4000 5000 6000 7000 8000
0

50

100

150

200

F
iri

ng
 R

at
e 

(H
z)

Figure 4.4. a : While the PSD of the ITD curve (dashed line) and the iso-intensity frequency tuning
curve (FTC; solid line) cover the same approximate frequency range, the FTC is asymmetric and
more sharply peaked. b: The correlation between the BW10 of the PSD of the ITD curve and the
W50 of the FTC at half-height gives a slope considerably less than unity, with the regression line
(solid) intersecting the unity line (dashed) within the data set.

population, and those arising from coincidences between the two channels. In a spike-triggered

average between the spike train and the left-side stimulus, only the first category of spikes will

contribute in a consistent manner; all other spikes are uncorrelated with the left-side stimulus by

construction, and will be eliminated by the averaging process. By estimating the monaural filters in

this manner rather than by using monaural stimulation, we avoid the possible confound of leaving

the unstimulated side in an undefined state.

These filters were then used in the model to generate both the spike-triggered average and the

ITD response curves to binaurally correlated sound. Both the spike-triggered averages and the

ITD curves of the data and the model were good matches in all case (fig. 4.5a–f). In addition,

the relationship between the PSDs of the modeled ITD curves and the PSDs of the modeled STAs

(fig. 4.5g) are comparable to the relationship seen in the collected data, within the constraints of

the small sample size (regression: 0.73x + 477 Hz, n = 6). In three of the neurons (fig. 4.5c, f,

e), a latency shift in the STA is apparent between model and data. The model’s latency is always

consistent with the latency as predicted by the individual monaural filters. Moreover, this latency

shift does not affect the model’s capability to predict the tuning to ITD. As the data used for the
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Figure 4.5. The spike-triggered averages of the data and the model show high correspondence (left
column), beyond the latency shift in neurons c, e, and f , as mentioned in the text. The normalized
ITD curves of the six neurons (dashed lines) correspond well with the normalized ITD curves of the
corresponding models (solid) for those ITDs in which coherent tuning is apparent (right column).
The comparison of the PSDs of the STAs and the ITD curves of the model is shown in g , as in
fig. 4.2.

estimation of the STA and the binaurally uncorrelated data set were collected with as much as half

an hour interval, changes in the amplitude of the spikes may explain this.

The shapes of the predicted and collected ITD curves were also reasonably similar, including the

location of the CDs and the rate of decay at extreme ITDs. The peak-to-trough ratios were highly

dissimilar between data and model. The model ITD curves fell to a firing rate of 0 spikes per second

for unfavorable ITDs, while the data generally saw a low maximal peak-to-trough difference (median

66 spikes per second), with a minimal firing rate well above 0 spikes per second.
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4.2.3 ICcc

In ICcc, a majority of the neurons studied show a clear effect of rectification when considered over a

broad range of ITDs (18 of 28). This rectification has a significant effect on the PSD of the neurons

(fig. 4.6). As a result, the Wiener-Khinchin theorem cannot properly be said to apply to ICcc neu-
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Figure 4.6. a : An example ICcc tuning curve over an extended range of ITDs. The half-wave
rectification of this example is clear. b: The PSD of the ITD tuning curve in a . The low-frequency
component is due to the non-zero mean, an effect which rectification makes more difficult to remove.
A more serious effect is the emergence of additional peaks in the PSD at integer multiples of the
base frequency of the curve (in this case, approximately 5,200 Hz).

rons. Intuitively, there is no way to use knowledge of the inputs alone to derive the threshold of the

neuron. Mathematically speaking, the Wiener-Khinchin theorem describes a particular input-output

relationship; even if this relationship holds between afferent inputs and the sub-threshold membrane

potential, the rectification that occurs in the spiking output represents an extra, unpredicted stage

in the input-output relationship.

This is somewhat unsatisfying, and it is reasonable to ask: in the absence of rectification, does the

Wiener-Khinchin theorem apply? It is possible to attempt a reconstruction of the unrectified curve

by bandpassing the rectified ITD tuning curve (fig. 4.7a, b). When this is done, and the analysis done

above repeated, a strong linear correlation is again observed (fig. 4.7c; regression: 1.28x − 14.9 Hz,
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r2 = 0.77, p < 10−6, n = 24).2 This suggests that ignoring the effects of rectification, the Wiener-

Khinchin result holds in ICcc. Presumably intracellular recordings that studied the subthreshold

membrane potential would directly confirm this finding.
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Figure 4.7. a : The ITD tuning curve from fig. 4.6 has been bandpassed to remove the effects of
the rectification; in order to accomplish this, “negative firing rates” are introduced. The PSD of the
new curve (b) shows only a single strong peak at the CF of the tuning curve. c: Once all of the ITD
curves have been bandpassed, it is possible to plot the 5 dB bandwidth of the PSD of the reverse
correlation against the 10 dB bandwidth of the PSD of the ITD curve. A strong linear correlation is
apparent. d : The ITD curves that do not show rectification demonstrate the same linear relationship
without the need to bandpass. Both c and d include the sampling rate compensation.

To confirm that the observed result was not simply an artifact of the band-passing, the analysis

was restricted to the eight neurons with significant covariance chosen by eye to show no effect of
2For one of the ICcc neurons, no reverse correlation data was available; only those neurons which had at least one

significant covariance eigenvector were included (see chapter 3).
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rectification, and the bandpassing omitted. No significant change in the correlation was observed

(fig. 4.7d; regression: 1.12x + 37.9 Hz, r2 = 0.88, p < 10−3, n = 8).

Neurons of ICcc were in general only weakly responsive to binaurally uncorrelated stimuli, making

it impossible to collect enough spikes to attempt to estimate “monaural” filters. Additionally, the

neurons of ICcc are not coincidence detectors, and the logic underlying the model used for NL neurons

above does not properly apply. As such, no attempt was made to directly model the responses of

ICcc.

4.2.4 Envelope coding

According to the cross-correlation hypothesis, the ITD tuning curve of a neuron generated using

anti-correlated stimuli, e.g., stimulation where the signal to one ear has been inverted, should be

the inversion of the ITD tuning curve generated using correlated signals (Yin, Chan and Carney

1987). In the mammalian IC, there exist neurons which do not demonstrate this effect (Joris 2003),

indicative of locking to the envelope of the stimulus, rather than to the phase.

To test whether this might be the case in the owl as well, we collected ITD tuning curves

using anti-correlated stimuli for 8 NL neurons and 17 ICcc neurons, and then computed the cross-

correlation between these curves and the standard ITD tuning curves. A significant positive corre-

lation would be a clear demonstration of envelope coding, and significant negative correlation is the

prediction of the straight cross-correlation hypothesis. Correlations that are not significant might

be examples of mixed coding (Joris 2003). In all the NL neurons, the correlated and anti-correlated

ITD tuning curves were negatively correlated (p < 10−10), and the same was true in ICcc (p < 10−5).

Thus there is no evidence for envelope coding in the owl’s ITD pathway, though the possibility can-

not be ruled out that such coding is used at the highest frequencies in the owl’s hearing range, which

this study did not sample (highest CF10: 7,000 Hz). As it stands, these results further validate the

cross-correlation hypothesis.
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4.3 Discussion

These results suggest that at the locus of computation of the ITD in the barn owl, no additional

mechanisms for the suppression of non-CD ITDs are at play and their behavior can be characterized

as the cross-correlation between the stimuli presented to the two ears, up to a scale and a shift. Con-

sistent with the theory presented here, Yin, Chan and Irvine (1986), proceeding from an assumption

of classic cross-correlation behavior, showed a correspondence between the sync-rate curve (the rate-

frequency response curve weighted by the synchronization coefficient) and the Fourier transform of

the ITD curve. While direct comparison is difficult, it appears that their results are a close match for

the iso-intensity frequency tuning curve data presented here. Given that their sync-rate curve shares

many of the limitations in estimating the effective frequency tuning of iso-intensity frequency tuning

curves, it is likely that the relationship between spectral and ITD tuning also holds for the neurons

they examined. Yin, Chan and Irvine did their work in the inferior colliculus of cats, which does

not feature coincidence detector neurons; instead, it receives input from the coincidence detectors

of MSO, and is properly homologous to ICcc.

The results from ICcc are somewhat more ambiguous. The emergence of rectification results in

the Wiener-Khinchin theorem being violated, and hence, strictly speaking, cross-correlation behavior

is no longer maintained in ICcc. At the same time, there is no evidence that there are any mechanisms

disturbing the spectral-ITD relationship at play other than rectification, which might have been

introduced to accomplish, e.g., an accelerated suppression of side-peaks to deal with phase ambiguity.

In fact, it is not immediately clear that the rectification should be considered of significance at all.

Previous reports have not reported this rectification in the barn owl’s ICcc (Wagner, Takashi and

Konishi 1987, 2002). This is because those studies restricted themselves to the range of ITDs that

the owl can actually experience under free-field conditions. Under those conditions, rectification is

not apparent (fig. 4.8). Thus, over the short ranges of cross-correlation lag that the auditory system

implements, the effects of this rectification are essentially negligible. The implications of rectification

in ICcc in the context of coding will be discussed in more detail in chapter 5. Regardless, what our

data demonstrates is that up to some degree of rectification due to thresholding, the response of
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ICcc neurons to ITD is determined by the same relationship to their spectral tuning as we seen in

NL.
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Figure 4.8. a : Another example of a ICcc neuron whose ITD tuning curve shows rectification. b:
The ITD tuning curve of a restricted to ITDs of ±200 μs. Without the reference point of the tails
of the curve in a , there is no clear sign of rectification; the relative broadness of the troughs is easily
attributed to noise.

The model presented here is the first model of NL response that works with stimuli other than

pure tones. While models of coincidence detection have been designed that work for broadband

stimuli (for example, see Cai, Carney and Colburn 1998; Hancock and Delgutte 2004), they are

are generally based on data from the mammalian inferior colliculus. A crucial difference in our

model from other models of NL is our approach. Previous models have used cellular models, either

integrate-and-fire (Gerstner et al. 1996) or compartmental (Grau-Serrat, Carr and Simon 2003)

methods. Because there is as of yet no intracellular data on the NL neurons from the adult barn

owl, the parameters of these models are largely based on data from the chick. We instead chose

to use the simplest possible model based on the abstract description of the coincidence detection

hypothesis. By comparing this model to the data, it is possible to determine in what areas it is

necessary to introduce additional levels of detail to account for the data.

Our model of nucleus laminaris response consistently produced lower firing rates at trough ITDs

than observed in the data. This is consistent with the observation of Batra and Yin (2004) that
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the neurons of MSO were likely in the case of binaural stimulation to produce a relatively large

number of spurious coincidences. These spurious coincidences would be expected to dominate at

unfavorable ITDs. The model does not have a spiking representation of the input, which eliminates

this stochastic effect, and hence the troughs show little to no activity. The fact that the shape of the

ITD curve is the same in both model and data, however, indicates the contribution of these spurious

coincidences is constant across ITD. Even though there is an elevated rate of spurious coincidences

in the data, the ITD curve remains a shifted and scaled version of the ITD curve produced by the

perfect coincidence detection model, and hence the relationship between ITD and firing rate can still

be treated as cross-correlation, though with reduced signal power. This reduction could in theory

be easily overcome through the use of population responses.

Approximating cross-correlation using an additive mechanism is known to be problematic in

general. One issue is that addition is sensitive to the relative magnitudes of the inputs. However,

NL is insensitive to differences in intensity in the inputs if either broadband noise or the CF of

the neuron was used. This balancing of the inter-aural intensity difference (IID), thought to be

accomplished via the superior olive (Viete, Peña and Konishi 1997), addresses that concern. The

presence of this feedback loop through the superior olive also provides motivation to be careful

when comparing monaural and binaural responses, as in Batra and Yin (2004). When presenting a

monaural stimulus the IID is not well defined, and it is not clear what effect the IID compensation

circuit might have.

A more pressing matter with an additive mechanism is that it does not properly deal with the sign

of the signals: for example, synchronous large negative deflections will be reported as anti-correlated

activity. However, a strong argument against the use of a multiplicative mechanism can be found

in the fact that the spikes of NL neurons are locked to the phase of the auditory stimulus (which

explains the coherent spike-triggered average in fig. 4.2; Carr and Konishi 1990). Multiplication of

two sinusoid signals leads to the creation of a new sinusoid with different component frequencies,

which would result in phase locking to frequencies not present in the input. Consistent with this,

attempts to recreate the spike-triggered average using a model that multiplied together the two
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filtered monaural waveforms failed. All together, our results indicate that a simple additive neural

mechanism that does not distinguish between ipsi- and contra-lateral inputs is sufficient to implement

a coincidence detector that can be treated as a cross-correlator.
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Chapter 5

Tuning to Interaural Time
Difference

To reiterate the key points of the Introduction, the hind- and midbrain nuclei of the barn owl respon-

sible for the computation of sound location have been well-characterized anatomically (Takahashi

and Konishi 1988b, 1988a). Two segregated pathways process the two primary binaural cues, ITD

and the interaural level difference (ILD; Sullivan and Konishi 1984). The neurons of the nucleus

laminaris (NL) act as coincidence detectors that perform the basic computation for the neural cod-

ing of ITD (Carr and Konishi 1990). Because cochlear hair cells respond to only a limited range of

frequencies, and because the narrowness of this frequency tuning bandwidth is maintained through

to NL, NL neurons respond equally well to ITDs that are phase-equivalent within their frequency

tuning range (Carr and Konishi 1990; Peña and Konishi 2000). Thus, a given firing rate can cor-

respond to multiple ITDs, and the true ITD cannot be determined from the response of a single

NL neuron. Only in the nucleus ICx, following convergence across frequency bands, is ITD encoded

unambiguously (Takahashi and Konishi 1986).

While NL is the initial locus of the computation of ITD, it is not the last nucleus in the exclusively

ITD-responsive pathway. It projects both to ICcc, the terminus of the ITD pathway (Takahashi and

Konishi 1988b), and to the dorsal lateral lemniscal nucleus, pars anterior (LLDa, previously referred

to as VLVa; Takahashi and Konishi 1988a). LLDa in turn projects to ICcc (Moiseff and Konishi 1983)

as well as the nucleus basalis (Wild, Kubke and Carr 2001). There are no reports that LLDa receives

inputs other than from NL. Cohen, Miller and Knudsen (1998) reported a feedback projection from
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the forebrain auditory arcopallium to the inferior colliculus, but they did not differentiate ICcc from

the lateral shell, which also receives input from the ILD pathway and is physiologically distinct.

Previous work has described the response to ITD seen in ICcc as similar to that observed in NL

(Wagner, Takashi and Konishi 1987, 2002). In particular, there is no published evidence of frequency

convergence at this stage of processing.

In chapter 3, we established that both NL and ICcc encode information about the spectrotem-

poral properties of the stimulus, and that they do so with similar resolution in both temporal and

spectral domains. This spectrotemporal tuning is also the primary determining factor in the shape

of the ITD tuning curve (chapter 4). Thus, our results so far have served to quantify the gen-

eral observation that NL and ICcc have similar response properties. What remains to be shown is

some domain in which their responses are dissimilar, and hence allows us to deduce a role for the

post-laminaris ITD pathway.

To accomplish this, we here compare the ITD response of NL and ICcc neurons independent

of considerations of spectral tuning. Single units were recorded in both nuclei, and ITD tuning

curves using broadband noise were collected for each unit over a broad range of ITDs. We observed

that with NL neurons it was necessary to average the responses of upwards of five broadband noise

samples per ITD in order for visible structure in the ITD tuning curve to emerge. Conversely, ICcc

neurons required only one or two noise samples per ITD, indicating an increase in response reliability.

At the same time, ICcc neurons had a greater maximal peak-to-trough response difference than seen

in NL. Since the variability of firing rate for each ITD was approximately the same across both the

NL and ICcc populations, this results in an improved ability of a single unit to discriminate between

nearby ITDs.

5.1 Methods

See chapter 2 for general methods.
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5.1.1 Analysis

An ITD tuning curve is generated in the following manner. To calculate the mean firing rate at

a particular ITD, a family of unique broadband stimuli (5–10) is presented, each stimulus having

the same ITD, and the number of spikes generated for each stimulus is averaged. A single stimulus

presentation is referred to as a trial, and a full set of trials, one per ITD, is referred to as a block.

Trials are presented in random order within blocks; blocks are repeated until the desired number of

trials is achieved.

To examining convergence to the mean, only those neurons for which we were able to collect 10

blocks were included. We first computed the ITD curve generated by averaging across ten trials per

ITD condition (ITD10), and then normalized that by a factor FITD10 to have a root-mean-square

of 1. The error between ITD10 and ITDn (where ITDn is the ITD curve generated by averaging

across a randomly selected subset of n trials per ITD condition, and then normalizing by FITD10) is

given by En =
∑

i(ITD10(i)− ITDn(i))2, where ITDn(i) is the mean firing rate of ITDn at the ITD

i. For each n, En was recomputed fifty times using different subsets of trials in ITDn to give an

estimate of the mean and standard deviations. The resulting curve was then fit by an exponential

of the form c1e
(n−1)/c0 , n = 0 . . . 9. By design, c1 is approximately E1, and thus has no relevance to

the question of rate of convergence to the mean.

We estimated the single-unit Fisher information as IF (i) = (ITD′
10(i))

2/(T · ITD10(i)), where

T is the duration of the stimulus (Dayan and Abbott 2001). ITD′
10, the derivative of ITD10 with

respect to ITD, was estimated using the gradient function of MATLAB.

The rectification index (RI) of an ITD tuning curve is computed by first normalizing the ITD

curve to have values between 0 and 1. Then, the response to the 30 ITDs with the largest absolute

value (15 each from positive and negative ITDs) was averaged. A RI of 0.5 indicates no rectification;

a RI of 0 is consistent with negative half-wave rectification, while a RI of 1 would be positive

half-wave rectification.
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5.1.2 Modeling

To model the response of an ICcc neuron, we used a leaky integrate-and-fire (IAF) model (Koch

1999). The membrane voltage of the model is given by:

V (t) =
1
R

I(t) − 1
τm

dV (t)
dt

where I(t) is the input current, R is the membrane resistance, and τm = RC is the membrane time

constant (resistance times capacitance). Since we are not interested in the absolute values of V (t),

we can without loss of generality set R = 1. Thus, the only parameter of interest is the membrane

time constant, τm. When V (t) exceeds a threshold voltage Vth (determined by gradient descent to

obtain the desired firing rate), a spike is initiated, the membrane voltage is reset to 0, and is held

at 0 for a refractory period Tref . In our model, Tref = 1 ms, and the target firing rate was 100

spikes/second.

The input current I(t) is given by

I(t) =
N∑

n=1

∑
i

g(t − tni)

where N is the number of afferents, tni is the time of the ith spike of the nth afferent, and

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
τs

e−t/τs t > 0

0 t ≤ 0

where τs is the synaptic time constant. The tni are generated using the model of NL response that

was presented in chapter 4, with a threshold set to produce a mean firing rate of 100 spikes/second.

By presenting the same stimuli repeatedly to the NL model N times, we simulate a family of

identically-tuned afferents. Sampling of I(t) and V (t) was done at 100 kHz.

Details of the computation of the shuffled auto-correlogram (SAC) can be found in section 3.1.
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5.2 Results

We collected long-range (at least ±2000 μs) ITD curves for 31 NL and 28 ICcc neurons (fig. 5.1a, b).

In both groups of curves, the amplitude of the peaks that occur within the owl’s physiological range

(±180 μs; Moiseff and Konishi 1981) are of similar amplitude, indicative of the narrow frequency

tuning and the absence of frequency convergence that have been mentioned in previous work (Mazer

1995; Wagner, Mazer and von Campenhausen 2002). However, previous studies have not had access

to comparable data from both nuclei, and hence did not quantify this observation. Plots of the W50

of the iso-intensity frequency tuning curve versus F50 for the 28 ICcc neurons and 80 NL neurons

(including 49 previously recorded neurons which used 50 ms stimuli and are thus not included in

any other analyses; fig. 5.1c) showed a similar distribution, consistent with a lack of frequency

convergence. The slope of the linear regression for each data set falls within the 95% confidence

interval of the linear regression of the other data set. In both nuclei, a significant dependence of

bandwidth on the center frequency (p < 10−4) was observed.

5.2.1 Evolution of tuning across stimulus repetitions

We compared the reliability of the ITD coding in both nuclei by examining the dependence of the

mean response on the number of stimulus presentations. NL neurons’ fluctuations in firing rate

for a single stimulus presentation, whether due to noise or a dependence on instantaneous spectral

properties, mask the fluctuations in firing rate due to the ITD of the signal. Only with averaging

across multiple trials, an act assumed to be equivalent to averaging across a greater period of time

or a number of similarly tuned neurons, does the dependence of firing rate on ITD become apparent.

Conversely, in ICcc the dependence is clear with only a single stimulus presentation (fig. 5.2). This

increase in reliability results in fewer ICcc neurons being required to encode ITD in a shorter expanse

of time.

To quantify the results observed in figure 5.2, we compared the sum squared error (SSE) between

the ITD tuning curve generated by using n trials per ITD (n = 1 . . . 9) and the ITD tuning curve

generated with the full set of 10 trials (fig. 5.3a, b). The absolute magnitudes of these numbers are
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Figure 5.1. Examples of NL (a) and ICcc (b) ITD tuning curves. Note the difference in the dynamic
range of response, as well as the similarity in the amplitude of the error bars (standard error of the
mean). Consistent with a lack of frequency convergence, when only those portions of the curves
within ±200 μs are considered, the peaks of both the NL and ICcc tuning curves show no sign of
relative suppression. c: Width at half-height of the iso-intensity frequency tuning curve plotted
against center frequency for NL (+) and ICcc (◦). The distributions are not different.

not of interest, as they are primarily influenced by the range of values over which the ITD curve

varies (a point we will address in the following section). The parameter of interest is the rate at

which these curves fall to zero. A rapid convergence to saturation at zero indicates that averaging

over a few trials is indistinguishable from averaging over the full set of ten. Conversely, a slow

convergence indicates that even later trials contribute to the overall shape of the tuning curve. This

rate of convergence was established by fitting each of the convergence curves with an exponential.

The time constants for 24 NL neurons and 26 ICcc neurons1 are summarized in fig. 5.3c. The

median time constants of the two populations are significantly different (p < 10−6, Kruskal-Wallis),

indicating that ICcc neurons converge to their mean ITD curve with fewer trials per ITD than NL

neurons.

In this analysis, we used an extreme range of ITDs that greatly exceeds the physiological range.

This raises concerns that the difference in tuning might reflect only changes in the extreme periphery
1For some of the neurons in both nuclei, we were unable to obtain a full ten trials per ITD, hence the reduced

numbers here.
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that the tuning in the ICcc neurons is present immediately, but only begins to be apparent with five
trials per ITD for the NL neuron.

of the response curves, and hence not be of any behavioral relevance. To address this point, we redid

the analysis and considered only ITDs in the range of ±200 μs. The time constants of convergence

remained significantly different at the p < 10−6 level, indicating that this result is not an artifact of

the long-range ITD curves.

Having established that only one or two trials is in general necessary to establish ITD tuning

with ICcc neurons, it is reasonable to wonder exactly how short a stimulus can be to develop this

tuning. Figure 5.5 illustrates this point. In neurons that could develop tuning within a single trial,

we often found that tuning developed quite rapidly, often within the first 25 ms of the stimulus. It
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Figure 5.3. Examples of convergence curves for NL (a , top left) and ICcc (b, bottom left) using
the same neurons as in figure 5.1. The majority of the difference between a single-trial ITD tuning
curve and the full ITD tuning curve is eliminated with the addition of only a single trial to the
averaging process for the ICcc neuron. Conversely, fall-off from the contribution of additional trials
is much slower in the NL neuron. Error bars are standard deviations produced by Monte Carlo
resampling. c: Population data (see main text). Boxes extend from lower quartile to upper quartile
of the sample, with the center line marking the median. Outliers (+) are data points greater than
1.5 times the interquartile range of the sample.

should be recalled that we use stimuli with a 5 ms rise (chapter 2), and that the latency in ICcc

varies from 5 to 8 ms (figs. 3.5, 3.6), so that the first 25 ms can in fact reflect as little as the response

to 10 ms of stimulus.

Quantifying this effect is problematic. Putting aside the issue of the range in latencies, to quantify

this would require a precise definition of quality of tuning. We cannot use the same analysis as before,
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Figure 5.4. This is the same analysis as in figure 5.3, but limiting the range of ITDs considered to
±200 μs. There is no change in the results.

as SSE requires a meaningful standard of comparison to be interpreted. We are further hampered

by the fact that by necessity we have only a single data point per ITD condition. Since this result

is not critical to the question this work hopes to address, we choose not to attempt to quantify it.

5.2.2 Dynamic range

Figure 5.1 suggests that there is also a difference in dynamic ranges between NL and ICcc neurons.

This observation is borne out by figure 5.6a. The median dynamic range of the 28 ICcc neurons

examined was 161 spikes/s, compared to 65.7 spikes/s, the median of 31 NL neurons (significant at

p < .001, Kruskal-Wallis).



75

0

0.2

0.4

25
 m

s

0

0.1

0.2

50
 m

s

0.05

0.1

0.15

0.2

75
 m

s

−1000 0 1000
0.05

0.1

0.15

0.2

10
0 

m
s

0

0.1

0.2

0

0.1

0.2

0

0.1

0.2

−1000 0 1000
0

0.1

0.2

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

−1000 0 1000
0

0.2

0.4

ITD (μs)

Figure 5.5. The ITD response of three example ICcc neurons (columns) in terms of normalized
firing rate computed over the first 25 ms (first row), 50 ms (second row), 75 ms (third row), and
the full trial (bottom row). In neurons that did not develop tuning using only a single stimulus
presentation per ITD (first column), using a subset of the stimulus only served to exacerbate the
situation. However, when a single trial was sufficient, the tuning developed rapidly, clearly visible
even when only the first 25 ms of the stimulus was considered.

While the dynamic ranges were different, the error bars of the ITD tuning curves were not

significantly different (p > 0.1, Kruskal-Wallis). An increase in dynamic range, and hence in the

slope of the tuning curve, along with a constant amount of error intuitively suggests that the tuning

curves of ICcc neurons will provide a finer discrimination of nearby ITDs, as nearby ITDs will

“separate” (have non-overlapping error bars) sooner. Mathematically, this idea is expressed by the

Fisher information (Dayan and Abbott 2001). Estimating the single-unit Fisher information as

the slope of the tuning curve at an ITD x divided by the average firing rate at x, and taking the

maximum across the entire tuning curve, we obtain the population data of figure 5.6b. The ICcc
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Figure 5.6. a : Dynamic ranges. Dynamic range was defined as the maximum difference in firing
rates through an ITD tuning curve. b: Maximum single-unit Fisher information. Box plots as in
figure 5.3.

neurons have a higher single-unit Fisher information, and hence a better ability to resolve nearby

ITDs, than the NL neurons (p < 10−6, Kruskal-Wallis).

5.2.3 Rectification of response

In a majority of the neurons of ICcc, we observed some effect of rectification (fig. 5.7). In other

words, for most of the ICcc neurons, the response for peripheral ITDs was less than the midpoint

between maximal and minimal responses. To quantify this, we introduce the rectification index (RI).

If an ITD tuning is normalized to have values between 0 and 1, then the mean firing rate of the

peripheral ITDs in an unrectified curve should be 0.5.

The results of the RI analysis are shown in figure 5.8. The NL neurons are tightly clustered

about a RI of 0.5. In contrast, the ICcc population is skewed to lower RIs, indicative of a tendency

towards rectification in the population (population medians different by Kruskal-Wallis, p < 10−4).



77

0

5

10

0

20

40

0

10

20

0

10

20

0

10

20

R
es

po
ns

e 
(s

pi
ke

s/
10

0 
m

s)

0

10

20

0

10

20

0

10

20

−2000 −1000 0 1000 2000
0

10

20

−2000 −1000 0 1000 2000
0

10

20

ITD (μs)

Figure 5.7. Eight ITD response curves from ICcc neurons illustrating the presence of rectification.
Not all neurons (right-hand column) displayed rectification, but in a majority of neurons there was
a pronounced effect.

5.2.4 Model of ICcc neurons

The above results suggest that ICcc response derives from a simple summation of the outputs of

a number of similarly-tuned NL neurons. We would like to use the model of NL response we

developed in chapter 4 to explore the mechanisms necessary to produce the observed responses in

ICcc. However, the NL model was not perfect. In particular, because the ITD tuning curves of the

NL model had dynamic ranges closer to what we observed in the ICcc data than in the NL data,

an ICcc model built on the NL model cannot be used to meaningfully explore the evolution of ITD

tuning. However, the reverse correlation of the NL model was a good match to the data. We can
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thus use it to address the question: what mechanisms are necessary to abolish phase-locking while

maintaining a spike-triggered covariance?

Our model ICcc neuron is implemented as a simple leaky integrate-and-fire model with three

parameters: τs, the synaptic time constant, τm, the membrane time constant, and N , the number

of afferent inputs. The different afferent inputs were generated from repeated presentations of a

single stimulus to a particular binaural model of NL from chapter 4 (in all the figures shown here,

the model of fig. 4.5f was used). Because the NL model is stochastic, repeated presentations are

not identical, allowing us to treat them as if they were the simultaneous output of identically-tuned

neurons.

Initially, we reduce the model to two parameters by setting τs = τm = τ . The reverse correlation

of the model is illustrated in figure 5.9. For τ greater than 1 ms, the STA is clearly abolished. When

τ = 1 ms, then there is some apparent structure in the STA, which is clearest when N = 2. STC1

only showed structure for τ = 1 ms and τ = 5 ms. There is little apparent effect of the number of

inputs.
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We can also look at the amount of variability in the response using the shuffled auto-correlogram

method (SAC; Joris 2003; chapter 3). The SACs of the same conditions are shown in figure 5.10.

There is a jaggedness present in all the correlograms; this is due to the fact that the temporal

resolution of the spikes in the model is relatively large compared to the histogram bin-width of the

correlogram. However, it is apparent that there is here a dependence on the number of inputs, with

higher N leading to taller and narrower peaks. The outer half-height widths of these correlograms

are given in table 5.1, and confirms this trend. In general, the NL model output itself tended to

have more variability than was present in the data. Stipulating that, however, an N of 5 or more

(for τ = 1 ms) or 20 or more (for τ = 5 ms) produced a SAC half-height width that is reasonably

consistent with the observed data.

Table 5.1. Outer half-height widths of the ICcc model

2 inputs 5 inputs 10 inputs 20 inputs
τ = 1 ms 2.0122 ms 1.2440 ms 1.0029 ms 0.6934 ms
τ = 5 ms 14.0255 ms 1.7646 ms 1.5448 ms 1.0980 ms
τ = 10 ms 15.0428 ms 14.5322 ms 14.0043 ms 1.7043 ms
τ = 20 ms 16.5271 ms 17.5133 ms 17.0365 ms 16.5049 ms
τ = 50 ms 19.9021 ms 19.9070 ms 19.9072 ms 19.9001 ms
τ = 100 ms 19.9007 ms 19.9102 ms 19.9139 ms 19.9013 ms

Based on this, we would conclude that ICcc should have a time constant of 1–5 ms and require as

many as 20 convergent inputs. There is no published histology or cell count data that would allow

us to determine whether the proposed number of afferents is plausible. The limitations we have

put on τ , however, are fairly strict; measurements of the membrane time constant for most neurons

range from 10 to 100 ms (Koch 1999). So far, we have been equating the membrane time constant

τm (how quickly the membrane voltage can respond to changes in current) with the synaptic time

constant τs (the half-life of the current injection due to a single input spike). In general, these can

be different. When we fix τs to be 1 ms, and vary τm alone, we find that changes in τm have very

little effect (fig. 5.11). When τm = 1 ms, and also in some cases where N = 2, there is some evidence

of a structured STA. For all other cases, there is no STA and a structured STC1. Conversely, if we

fix τm = 100 ms, and vary τs, we find that there is no structured spike-triggered covariance for any
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Figure 5.10. SAC for a model ICcc neuron, for different values of the time constants of the integrate-
and-fire model (rows ; τs = τm) and number of model NL inputs (columns).

τs greater than 1 ms (fig. 5.12).

5.3 Discussion

A basic tenet of neuroscience is the idea of averaging across a population of noisy inputs to achieve a

more reliable measure of the encoded variable. This appears to be the computation that ICcc neurons

are performing. The constant variability from NL to ICcc is indicative of a linear summation, and
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this is consistent with the increase in the dynamic range. The difference in dynamic range as shown

in figure 5.6a is likely an underestimation of the degree of summation present. As we demonstrate in

figure 5.8, there is a degree of rectification in the ITD tuning curves of ICcc that was never present

in the NL tuning curves. If we consider the theoretical dynamic range of the unrectified tuning

curve (that is, the one predicted by the Wiener-Khinchin theorem), then it will exceed the actual

dynamic range by a factor of nearly two. A consequence of this rectification is the possibility of

obfuscation of ITDs in the troughs. As can be seen in a few of the examples of figure 5.7, there are

times when a range of unfavorable ITDs are all encoded with zero firing rate. The conclusion is that

ICcc neurons combine a large number of inputs from NL in order to ensure that changes in ITD

within the owl’s physiological range induce firing rate fluctuations that extend over the majority of

the neurons’ dynamic range, even at the possible expense of rectification due to thresholding.

It is tempting to conclude from this that the troughs of the ITD curve are somehow irrelevant,

but this is not entirely correct. While this is true when coding is perceived from the single-unit

perspective, it is generally believed that neural information is coded across a population of neurons

(Panzeri et al. 1999; Dayan and Abbott 2001; Sahani and Dayan 2003; Johnson and Ray 2004;

Latham and Nirenberg 2005). Given that horizontal position is obtained by converging ITD infor-

mation across frequency channels, this is certainly true in the case of the owl. Interestingly, the

optimal distribution of tuning curves as predicted by Fisher information comes from a population

which has widely varying tuning curves, and for which many neurons respond for any given stimulus

condition (Dayan and Abbott 2001). Normally, these conditions are conflicting: a sharply tuned

response curve normally responds to comparatively few stimulus conditions. However, in both NL

and ICcc, the periodic nature of the response guarantees that they will respond to the majority of

possible ITDs; in accordance with this, Harper and McAlpine (2004) showed that the distribution of

ITD curves in the barn owl matched the optimum distribution as predicted by Fisher information.

Our results demonstrate that while NL and ICcc have the same distribution and shape of ITD curves

(chapter 4), the increase of dynamic range leads to a greater satisfaction of the first condition of the

optimal population code. Because of the information processing inequality, ICcc can have no more
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information than NL. However, the improvement of single-unit tuning in ICcc is a sign that the

information is made more accessible than in NL, and that acquiring position information requires

examining fewer ICcc neurons than would be necessary in using NL.

While rectification may not have an effect on the ITD of correlated signals within the physi-

ological range, its effects remain significant. At extreme ITDs, broadband signals are effectively

uncorrelated: thus, the response to these ITDs is expected to be the same as the response to bin-

aurally uncorrelated stimuli (fig. 5.13). The response to binaurally uncorrelated stimuli in turn

is closely related to the response to monaural stimuli. Our results thus suggest that in ICcc a

suppression of monaural responses is apparent. This is consistent with previous observations that

monaural stimulation becomes less effective ascending through the auditory pathway (Moiseff and

Konishi 1983). Combined with the observation from chapter 4 that the ITD curves of ICcc are

determined by spectral tuning, the conclusion is that monaural responses can be eliminated through

the successive process of thresholding.

The increase in dynamic range serves to reduce the noise in ITD tuning in another, slightly more

subtle manner. As we described in chapter 3, both NL and ICcc neurons have firing patterns that

encode the spectrotemporal properties of the stimulus. As a result of this, there will be variations

in the firing rate that are due to the spectral properties of the stimulus, and not the ITD; this

problem is only exacerbated with short stimuli, which provide less time over which to average and

eliminate such effects. However, these fluctuations would be expected to be of the same magnitudes

in both nuclei, a fact confirmed by our comparison of the standard deviations of the ITD tuning

curves, and they would have less impact within ICcc, as they would be of relatively less significance

compared to the changes in mean firing rate that arise out of changes in ITD. Therefore, another

effect of the increase in dynamic range is to allow ICcc to encode two orthogonal stimulus dimensions

(spectrotemporal properties and ITD) with minimum interference.

Our model results suggest that phase-locking can be abolished and significant covariance can be

maintained with a convergence of five or more inputs on a neuron with a synaptic time constant

of 1 ms and a membrane time constant larger than 1 ms, and otherwise unbounded. It should be
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Figure 5.13. Example ITD curves for NL (left column) and ICcc (right column). The mean firing
rate in response to binaurally uncorrelated stimuli is superimposed (dashed line), along with the
mean firing rate of the peripheral ITDs (dashed and dotted line; estimated using the same range of
ITDs as for the RI). Both firing rates are similar in all cases.

stated clearly that there could be and likely are other mechanisms at play. For example, the afferent

axons are likely to be of different lengths, which could easily introduce enough jitter to abolish

phase-locking. Hence, as a prediction of the actual anatomy and biophysics, our model should be

approached with caution. The model does, however, establish a minimum mechanism to accomplish

the conversion from STA to STC; the fact that the requirements of this mechanism are relatively

undemanding suggest that the abolishment of phase-locking does not require any active mechanism.

In other words, the loss of phase information is most likely not a deliberate move of benefit to the
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auditory system, but rather a relaxation of the effort required to maintain phase information.

Though the results are clear, it is not evident what benefit the system gains by doing this

averaging explicitly within ICcc, as opposed to performing it at the same time as the frequency

convergence or the emergence of combination selectivity to ITD and ILD take place. The implication

of these results is that it is important to have an accurate estimate of the ITD alone within a narrow

frequency band before integrating across frequency channels. It is known that ICcc projects not

only to the lateral shell of the central nucleus of the inferior colliculus (ICcl), but also directly to the

thalamus (Cohen, Miller and Knudsen 1998; Proctor and Konishi 1997). Since the thalamus also

receives projections from the lateral shell, there is no a priori reason based solely on considerations

of sound localization to require a thalamic projection from ICcc. That such a projection does

exist suggests a particular role for band-limited ITD information in the thalamic processing stream.

Because interaural correlation, which is the basis of ITD detection, will be influenced not only by

the location of the sound in space, but by features of the acoustic environment such as the presence

of echoes, the existence of multiple sound sources, and distorting effects of the environment, it is

plausible that it plays some role in non-localization perceptual tasks. Additionally, work in ICcl has

suggested that it may be that frequency convergence is a gradual process, occurring in a cascade

of neurons that terminates in the true space-specific neurons of ICx, rather than in a single step

(Mazer 1995). There may be a biophysical constraint on the number of inputs that can be managed

by a single lateral shell neuron that requires that the summation for the purposes of noise reduction

in the ITD domain occurs before any process of frequency convergence begins.

The question also arises why this averaging to eliminate noise must be done after NL. It seems

likely that the neurons of NL are already performing near the neural limits for coincidence detection.

The temporal jitter of the inputs is significant compared to the frequencies involved (Köppl 1997b),

and the time scales of the coincidences require specialized neurons with fast time constants (Han and

Colburn 1993; Gerstner et al. 1996). Under these conditions, greater reliability may not be possible

within the coincidence detectors themselves, requiring that an additional stage of processing perform

the necessary averaging.
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Another factor that may play a role is the need to segregate feedback circuits at different stages

in the processing of ITD. There are two feedback projections involved in this portion of the ITD

pathway. As described above, the arcopallium is reported to project back to the central nucleus

of the inferior colliculus (Cohen, Miller and Knudsen 1998), and it is possible though currently

unconfirmed that this projection may include ICcc. This feedback is hypothesized to play a role

in attentional modulation in sound localization (Gaese and Wagner 1992); a projection to ICcc

would suggest the need to manipulate the ITD-specific frequency channels independent of ILD. In

addition, a looping projection from NL to the superior olivary nucleus (SO) back to NL again exists

(Introduction; Lachica, Rübsamen and Rubel 1994), which is believed to mediate the elimination of

intensity effects on ITD tuning in NL (Peña et al. 1996). SO’s projections, however, are not limited

to NL. If the forebrain feedback does indeed need to influence ITD information alone, then without

ICcc, the auditory arcopallium feedback would then be required to project to NL, and from NL

through SO and all of its targets.

Since we have taken a black-box approach to the function of the post-laminaris ITD pathway,

it is impossible for us to distinguish how much of the difference between ICcc and NL responses

arises due to the intermediate effects of LLDa, as opposed to the computation of ICcc neurons

using the direct NL projection. However, none of the differences we describe seem to necessitate the

added complexity of the LLDa projection to account for them. The published literature on LLDa

is sparse (Moiseff and Konishi 1983; Albeck and Konishi 1995), and suggests tuning properties that

are similar to NL and ICcc, which is expected from anatomical considerations. The fact that there

is no need to require the action of LLDa to explain our results suggests that its computational role

may be one not triggered by the stimulus conditions used in this study. It may have a function in

localizing moving sound sources, or in the identification of multiple sources. Of course, even though

the actions of LLDa are not seemingly required to explain the observed data, this does not eliminate

the possibility of a contribution of LLDa in the observed averaging. However, any possible effect of

a delayed input from LLDa on the output of ICcc neurons is concealed by the onset dynamics of the

response. To distinguish the NL and LLDa inputs would require intracellular recordings that would
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Figure 5.14. A schematic to illustrate the effects of dynamic range on frequency convergence. In a ,
two cosines of different frequencies are plotted. In b, the same cosines are plotted, but the dynamic
range has been increased by a factor of two. In addition, the cosines have been half-waved rectified,
which means the dynamic range is effectively greater by a factor of four. c: The curves of a and
b have been summed and plotted on the same axes, with the result of the sum of b (dashed line)
shifted to have the same peak as the sum of a (solid line), and then clipped to match the same
dynamic range. Even though the same frequency components were used for both sums, the sidepeaks
of the sum of b are considerably more suppressed than the sidepeaks of a.

allow identification of subthreshold inputs with different latencies or data collected with inactivation

of neural centers.

Strictly speaking, averaging suggests that the dynamic range of the averaging unit should be

on the same order as the dynamic range of its inputs. However, the dynamic range is larger in

ICcc than in NL. This increase may serve to accelerate the process of frequency convergence that

occurs in the next stage of the sound localization pathway (Mazer 1998). The premise of frequency
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convergence, confirmed in the nucleus ICx (Takahashi and Konishi 1986) includes summation across

frequency channels in the ITD domain (Takahashi and Konishi 1986; Mori 1997; Mazer 1998) with

thresholding to eliminate peaks that do not correspond to the true ITD (Peña and Konishi 2000,

2002). This process is influenced by the absolute magnitude of the component ITD tuning curves;

the larger their initial amplitude, the larger the absolute difference between true and secondary

peaks in the summed curve will be, simplifying the task to be accomplished by threshold (fig. 5.14).

It has been shown that the owl can localize sounds as short as 10 ms in duration (Konishi 1973).

Our results indicate that there is a move towards reliable short-time scale ITD encoding on a single

neuron level within the sound localization pathway. The spiking response of ICx neurons, which

feature low firing rates with little or no sustained response (Wagner 1990; Peña and Konishi 2000,

2002), represents the culmination of this trend, and it has been reported that single ICx neurons can

in fact match the behavioral performance (Bala, Spitzer and Takahashi 2003). Experiments in ICx

have indicated that summation and thresholding of inputs is a crucial component of the neuronal

computation of space specificity (Peña and Konishi 2000, 2002). The computations in ICcc provide a

necessary basis for this, with the amplification of dynamic range and the reduction of noise working

together to ensure that only the desired portions of the ITD response will exceed threshold.
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Chapter 6

Summary of Results

We have demonstrated that in addition to encoding the interaural time difference (ITD) in the

mean firing rate, the neurons of nucleus laminaris (NL) respond to complex stimuli with a patterned

response. This pattern encodes details about the instantaneous spectral properties of the signal with

a temporal resolution on the order of a millisecond.1 The ITD response itself, consistent with the

predictions of the cross-correlation model for the computation of ITD, is determined entirely by the

neuron’s spectral tuning. The ITD tuning of a single NL neuron is noisy, requiring the equivalent

of a half-second or more of stimulus to obtain reliable tuning.

In the same manner, the core region of the central nucleus of the inferior colliculus (ICcc) also

encodes both spectral properties and ITD. Its spectrotemporal tuning is essentially identical to that

of NL, though phase information is now lost, and the same general relationship between spectral and

ITD tuning is observed. However, ICcc neurons encode ITD over a greater dynamic range. Partially

as a function of the increase in dynamic range minimizing the impact of instantaneous firing rate

fluctuations due to spectral properties of the stimulus, and presumably in part because of averaging

across a population of NL neurons with similar tuning properties, the ITD tuning is more clearly

encoded and develops in coherency within the context of a much shorter effective stimulus.

Thus, ICcc is NL with improved single-unit tuning. This trend seems at first light to stand in
1Properly speaking, these statements are true only if the position of the neuron within the ITD and frequency

maps throughout the nucleus are known. That is, the characteristic delay (CD) of a neuron is determined by its
position within NL, and the mean firing rate provides a measure of the distance of the ITD of the stimulus from the
CD of the neuron. Similarly, the pattern of response indicates the time of occurence of energy within a particular
frequency band for a stimulus, with the identity of that frequency band being given by the neuron’s location within
the tonotopic map. Under experimental conditions, we have a priori knowledge of the stimulus, which allows us to
interpret a neuron’s output without reference to the maps. From the perspective of computations within the system,
however, the organization provided by the maps is crucial.
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contrast with the accepted view, informed in large part by work in the mammalian cortex, that the

tuning of single units is of vastly lesser importance, and that it is only by considering a population

of neurons that information can be extracted. However, the improvement in single-unit tuning also

serves to improve the ease with which information may be extracted out of the population, as well.

That an improvement in single-unit tuning is seen is in large part a function of the small number of

explicit stimulus dimensions that are encoded at this stage in the auditory processing hierarchy. A

single neuron can convey information only through three channels: its mean firing rate, the exact

timing of its spikes, and the neuron’s position within some map or maps. In ICcc, neurons of similar

bandwidths and temporal profiles explicitly encode spectral and ITD information, and the tuning

profiles for and interactions between these cues are simple. As a result, the necessary stimulus

dimensions fit within the coding capabilities of a single neuron. In contrast, studies in mammalian

auditory cortex demonstrate much more variability in tuning properties, and sensitivity to more

properties of the stimulus (Linden and Schreiner 2003), and the receptive fields of these neurons

can be complex and nonlinear (Depireux et al. 2001; Linden et al. 2003); similar variety in tuning

properties (Cohen and Knudsen 1996), along with a high degree of plasticity (Miller and Knudsen

2001), occur in the owl’s auditory arcopallium. The need to represent stimuli using a higher number

of dimensions in high-level processing exceeds the coding capacity of a single neuron, making the

response of multiple neurons the basic words of the code and thus makes single unit tuning more

difficult to decipher (Dayan and Abbott 2001).

Before the auditory system can perform such complex computations, however, it requires a

reliable and concise encoding of the raw stimulus parameters. Providing such information appears

to be the task of the post-laminaris ITD pathway. The phase encoding used in the computation

of ITD is converted into a spectrotemporal stimulus representation, which is provided in a fashion

effectively independent of the ITD, providing a remarkable example of the nervous system to recycle

and re-represent information in order to encode multiple stimulus dimensions using a limited coding

language.
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Appendix A

The Weiner-Khinchin Theorem

Given a function h which is a function of time t, we can find an equivalent representation H which

is a function of frequency f . The Fourier transform relates these two functions:

H(f) =
∫ ∞

−∞
h(t)e2πiftdt

h(t) =
∫ ∞

−∞
H(f)e−2πiftdf.

We say that h(t) and H(f) form a transform pair, and denote it as:

h(t) ⇐⇒ H(f).

The cross-correlation of two possibly complex signals is given by:

Cgh(τ) =
∫ ∞

−∞
g(t − τ)h(t)dt

where τ is the lag, and g(t) is the complex conjugate of g(t).1 Therefore, we have:

Cgh(τ) =
∫ ∞

−∞
g(t − τ)h(t)dt

=
∫ ∞

∞

[
G(f)e2πif(t−τ)df

∫ ∞

−∞
H(f ′)e−2πif ′tdf ′

]
dt

1Normally, we deal with the case where the signals are real, and hence g(t) = g(t). Thus, the complex conjugate
is often discarded from the definition, but it is required here.
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=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(f)H(f ′)e−2πifτe−2πi(f ′−f)tdt df ′df

=
∫ ∞

−∞

∫ ∞

−∞
G(f)H(f ′)e−2πifτ

[∫ ∞

−∞
e−2πi(f ′−f)tdt

]
df ′df

=
∫ ∞

−∞

∫ ∞

−∞
G(f)H(f ′)e−2πifτ δ(f ′ − f)df ′df

=
∫ ∞

−∞
G(f)H(f)e−2πifτdf

⇐⇒ G(f)H(f).

In the case where g = h (which is the case in all relevant experiments done in this work), we

have:

Chh(τ) ⇐⇒ H(f)H(f)

⇐⇒ |H(f)|2. (A.1)

This result is known as the Wiener-Khinchin theorem or the cross-correlation theorem.

The two-sided power spectral density (PSD) of a signal h at a frequency f is given by:

PSDh(f) =
|H(f)|2 + |H(−f)|2

2
.

In the case where h is real-valued, H(f) = H(−f), and we have

PSDh(f) = |H(f)|2.

Therefore, by Equation A.1, we have:

PSDChh
(f) = |(|H(f)|2)|2

= |PSDh(f)|2

= (PSDh(f))2.
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(since the PSD is always real and postive). Thus, the PSD of the autocorrelation of a signal is

given by the square of the PSD of the signal itself. Since we are presenting signals at the two ears

with perfect binaural correlation (and hence, those signals are indentical), this is the basic result we

wished to establish. For the purposes of this dissertation, we will say that any two signals g and h

are in a Wiener-Khinchin relationship if they satisfy:

PSDg(f) = (PSDh(f))2

for all f .
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Appendix B

Running Cross-Correlation

Let x(u) and y(u) be two integrable signals, 0 everywhere outside u ∈ [0, T ), with values in [−1, 1].

The classic cross-correlation of these two signals is:

Cxy(τ) =
∫ ∞

−∞
x(u − τ)y(u)du

where τ is the lag. The conditions placed on x and y are not necessary for the definition of cross-

correlation. However, they are necessary for later parts of the derivation, and match the nature of

the signals used in the context of this research.

The Wiener-Khinchin theorem states that:

Cxy ⇐⇒ F(x)F(y)

where F(x) is the Fourier transform pair of x and · represents the complex conjugate (see Appendix

A).

However, what Licklider (1959) demonstrated was that the instantaneous firing rate of a coinci-

dence detector would be given by the running cross-correlation of the two stimuli. Choose a function

G(u) such that as t → ∞, G(u) → 0, and G(u) = 0, ∀u < 0. Then, the running cross-correlation is

given by:

RCxy(t, τ) =
∫ ∞

−∞
x(u − τ)y(u)G(t − u)du.
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The running cross-correlation is a function of both time and lag, and is therefore distinct from

the cross-correlation. In particular, no result equating the running cross-correlation to any function

of the Fourier transform exists. Therefore, to apply the Wiener-Khinchin theorem to neural data, it

is necessary to first demonstrate the conditions under which running cross-correlation data can be

treated as a classic cross-correlation.

In analyzing our data, we consider the mean number of spikes produced per stimulus. This is

equivalent to averaging across time, and the time-averaged running cross-correlation is then:

TARCxy(τ) =
1
T

∫ T

0

RCxy(t, τ)dt

=
1
T

∫ T

0

∫ ∞

−∞
x(u − τ)y(u)G(t − u)du dt

=
1
T

∫ ∞

−∞
x(u − τ)y(u)

[∫ T

u

G(t − u)dt

]
du.

Let G(u) = H ′(u) for u > 0. Then,

TARCxy(τ) =
1
T

∫ ∞

−∞
x(u − τ)y(u) [H(T − u) − H(0)]du

=
1
T

[
−H(0)

∫ ∞

−∞
x(u − τ)y(u)du +

∫ ∞

−∞
x(u − τ)y(u)H(T − u)du

]

=
1
T

[
−H(0)Cxy(τ) +

∫ ∞

−∞
x(u − τ)y(u)H(T − u)du

]
.

Note that since y(u) = 0 when u > T , we need not be concerned by the fact that H(T − u) is not

defined when u > T .

From the above, we conclude that the time-averaged running cross-correlation is simply a scaled

version of the normal running cross-correlation, plus an error term. In the context of neural process-

ing, G(u) is generally assumed to be related to the membrane time constant, and of exponential form

(Yin, Chan and Carney 1987). Thus, we examine this error term in the case where G(u) = e−u/k.

If that is the case, then H(u) = −ke−u/k, and we have:

TARCxy(τ) =
k

T

[
Cxy(τ) −

∫ T

0

x(u − τ)y(u)e
u−T

k du

]
.



98

Since x and y have range [−1, 1], we see:

∫ T

0

x(u − τ)y(u)e
u−T

k du ≤
∫ T

0

e
u−T

k du

≤ ke
u−T

k

∣∣∣T
0

≤ k
[
1 − e

−T
k

]

< k.

Similarly for −1, and so we have that the error term is in the range (−k, k). However, it is not

true that for all values of τ the absolute value of the error term will be less than |Cxy|. To see this,

consider the case where x(u − τ)y(u) is the function S(u):

S(u) =

⎧⎪⎪⎨
⎪⎪⎩

−1 u < T/2

1 u ≥ T/2

In this case, Cxy will be zero, and the error term will be 2k(e−τ/k − e(T/2−τ)/k), and hence nonzero.

In the case of the stimuli used in this study, a 50 ms long segment has Cxy with mean abso-

lute values in the range of 3.31 ± 0.50 for the raw stimuli. If the stimuli are first convolved with

the reverse-correlation estimated impulse response, Cxy is in the range of 14.6 ± 3.9. Since k is

expected to be related to the membrane time constant, and hence have a magnitude no greater

than on the order of 10−2, it is reasonable to expect that the error term is insignificant. Thus, the

time-averaged response of a coincidence detector should behave as classic cross-correlation, and the

Wiener-Khinchin theorem applies.
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