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ABSTRACT

Three probl_ems concerned with the motion of a shock wave are
discusséd. The first is an analytical and experimental study of the
performance of a shock tube with area change near the diaphragm.
Intereéting results of this section are the development of a simple
shock-speed c'oﬁtro-l through the use of area change, and fhe fact that
a spread-out dissipation region was shown to exist for a configuration
where a non-stationary secondary shock wave was originally expected.
A general discussion of the use of this type of area change is also
included.

The second problem is a study of the effects of boundary-layer
growth on the motion of a shock wave. A simple theory for predicting
the attenuation of a shock wave on entering an upétream—facing tube is
developed from the analysis of Spence and Woods. When simple laminar
boundary-layer approximations are applied, the the.ory shows good
agreement with measurements.

The final problem is an experimental study of the motion of a
shock wave downstream of a finite-length area ccsntraction. Normalized
results are presenied which show that the shock wave emerges from the
area change at a speed close to the ''linearized' theory value, and is then
- attenuated by second-order disturbances until it reaches the speed pre-
dicted for the steady-state configuration. The results are presented in
a form which is shown to be insensitive to both the incident shock Mach

number and the amount of the area reduction.
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GENERAL INTRODUCTION

This work is divided into three main parts. The first, a study
of area change near the diaphragm of a shock tube, was reported
earlie—r (ref. 1). The primary concern in part I is with the effect of
area change at the diaphragm location on the shock speed at large
distances from the diaphragm. The wave systems in this case have
reached a s‘teady-state velocity, and hence analytical solutions are
obtained simply by matching conditions across the various waves of the
assumed model. Measurements were made to check the vélidi‘i:y_ of the
theory and some interesting conclusions were reached. Principal among
these is the postulation of a spread-out dissipation region for the
configu_ration where a traveling secondary shock wave was originally
postulated. This work has practical importance for the design of
shock tubes, and the results of this section were used extensively for
the control of the incident shock speed for the models used in parts II
and III, | |

In part II, the motion of a shock wave which has entered an
upstream facing tube is studied. This work was initiated in order to
learn something of the viscous attenuation effects on the shock wave in
the third problem studied. It is treated as a separate section because of
the concise attenuation theor.y that was developed, and the possibilities
of using this model to gain more insight into the phenomenon of viscous
'attenuation of shock-waves.

In part III, the motion of a shock wave downstream of a finite
1ehgth area convergence is studied. Both part II and pé.rt III are

essentially studies of the effect of the flow behind the shock wave on the



shock-wave motion. In part II the governing one-dimensional equations
can be linearized and a simple solution obtained. For the problem of
part III this is not so, for the effect studied is intimately tied to the
higher-brder terms in the one-dimensional equations of motion.

When a shock wave travels through a region of continuaily de-
~aeasing cross-sectional area, very large increases in shock speed are
predicted by the theory based on the linearized equations of motion.

This theory relates the strength of the accelerating shock wave directly
to the local cross-sectional area at the shock-wave location. Now if the
shock wave emerges from the converging section into a section of
constant area, according to this theory its speed should remain constant
(since the area is constant), On the other hand, far downstream the
region of varying area will appear identical to an instantaneous area
change, for which a lower transmitted shock speed may be calculated by
fnafching parameters across the steady-state wave model; "Thus the shock
wave must actually decelerate downstream of the area éhange until it
reacﬁes the final steady-state velocity, and the linear theofy fails to
predict this deceleration.

This problem is studied in detail in part III. Normalized
experimental results are presented which (in combination with the
results of part II) allow finite-length area changes to be designed to
provide a specified shock=wave attenuation per foot at a fixed position
downstream. This is of considerable importance for the practical use
of the large shock-strength enhancement possible with converging cross
sections, and the results themselves help to shed more light on the

re-reflected disturbances (represented by the higher-order terms in the



equations of motion).

When viscous effects can be neglected, it is convenient to divide
problems involving the effects of cross-sectional area change into three
inter-related groups. The first group, typified by part I and by the
asymptotic steady-state solution of part III, involves non-accelerating
wave systems and can generally be solved by a process of matching

parameters across an assumed wave model. Next in mathematical

complexity is the group involving montonically accelerating or
dec,;elerating wave systems, an example being the motion of a shock wave
down a continuously-converging duct. For this type of 'proialem useful
solutions may often be found by solving the linearized one-dimensional
equat;ions of motion. Finally, there is the class of problems typified
by part III. Here the wave system is not monotonically accelerating,
the shock wave actually accelerating through the area convergence and
then decelerating to finally attain a steady-state configuration of the
form of the first classification. For problems of this type, which
involve non-monotonically accelerating wave systems, the flow
history behind the shock wave affects the shock-wave motion and any
mathematical treatment must involve the higher¥ordez‘ terms in the

one-dimensional equations of motion.
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I. ASTUDY OF AREA CHANGE NEAR THE DIAPHRAGM

OF A SHOCK TUBE
1. INTRODUCTION

It was mentioned in the General Introduction that the types of
cross-sectional area change that affect wave motion in a duct rﬁay be
| conveniently classified on the basis of the type of acceleration exhibited
by the resulting wave systems. The configurations involving no wave
acceleration have similarity solutions in the x-t plane about some
origin. They may be further divided into those configurations for which
there are waves entering as well as leaving this origin (i.e., problems
involving wave reflection {ref. 2)), and those for which there are only
waves leaving the simiiarity origin. For a shock tube, the latter group
is referred to as having area change ''near the diaphragm'. This implies
that, for flow times of interest, the various waves have attained a state
éf c.onstant velocity, wave reflection has ceased to be important, and the
contact surface has passed through the region of varying area. The
purpose of part I is to study this type of area change in :a shock tube.

Shock tubes with area change near the diaphragm may be trea%ed
in ideal theory (see section 2} as though the area change were an
isentropic nozzle located at the diaphragm. The calculatioﬁ of shock-tube
performance is then basically a problem of matching pressure and velocity
across the contact surface. In general, an upstream-facing secondary
wave, between the nozzle exit and the contact surface, will be found
necessary in order to achieve the contact-surface matching (see fig. 1}.
For very high shock Mach numbers, this wave will be a non-steady
expansion wave; for lower Mach numbers, a non-steady normal shock

wave is required; for still lower Mach numbers, the normal shock wave



moves into the nozzle and becomes stationary; while at the very low
Mach numbers, the nozzle flow becomes subsonic, and thus incapable
of supporting any secondary wave.

The above wave configurations are the only possible ones for a
shock tube with area change near the diaphragm; however, a given shock
tube miay not produce them all. Previous work, notably by Resler, Lin,
and Kantrowitz {(ref. 3) and by Alpher and White (ref. 4)%, has been
concerned with the use of area change at the diaphragm for the attain-
ment of high speed shocks, and thus has only partially considered the
first configuration (the case where the secondary wave is .iéentropic).

In this report, the exiéting work is extended to all four configurations,
and thus covers the whole range of shock Mach numbers and possible area
changes at the diaphragm.

The ideal theory for the different configurations is discussed in
the first section of part I. : (betailed calculation p.rocedures are
presented in Appendix I.} Curves of range of application and of initial
pressure ratio versus shock Mach number are presentéd for Nitrogen-Air
and Helium-Air shock tubes. The second section discusses the useful-
ness of various area coﬁﬁgurations with the aid of the ideal theory.
Particular attention is given to the use of a simple drilled plate inserted
at the diaphragm,as a means of gaining additional flexibility in shock
tube operation.

The agreement between experimental and theoretical curves of

initial pressure ratio versus shock Mach number is discussed in the next

* Reference 4 includes a critical review of earlier work, and in
particular points out an error in a previous study of the expansion wave
configuration made at this laboratory. (Yoler, Y.A.: Hypersonic Shock
Tube. GALCIT Hypersonic Research Project, Memorandurn No. 18,
July 19, 1954.) ‘ '



section, where the fine wire and piezo-electric pressure gauge observa-
tions of the secondary waves are shown to indicate the necessity for a
new model for the noﬁ—steady, non-isentropic configuration.

A simple model, based on the concept of the Fanno process, or
spread=out compression region, is presented in the fourth section. With
this new theory the remarkable agreement with experimental basic
performance is shown, and the insensitivity of the basic performance
curves to the type of model is demonstrated. The inadequa.éies of this

new theory are discussed, and more realistic models are indicated.



I-2. IDEAL THEORY

The ideal theory is based on the assumptions of no heat transfer
and no boundary layers or aséociated viscous-interaction regions. These
restrictive assumptions, which allow the use of isentropic nozzles aﬁd
simple plane waves, will turn out to be remark;bly good for predicting
most of the performance characteristics of shock tubes with area change
near the diaphragm. The procedure is based on matching conditions
across the contact surface, and is set up so as to avoid the iterative
calculations that are common to this type of problem.

The shock tube configurations studied are illustrated in figure 1.
Each model shown is similar to a plain shock tube, except for the changing
area at the diaphragm station and the resultant secondary waves. The
notation used is adapted from the accepted shock-tube notation, where
region 1 refers to the undisturbed driven gas, regions 2 and 3 to the
gas downstream and upstream of'the contact surface, and re.gion 4 to the
undisturbed driver gas. The primed numbers refer to the gas immediately
upstream and downstream of the area change as shown. It should be
noted that the secondary waves are always upstream of.the contact surface,
and are always upstream-facing waves (although non-steady waves are
swept downstream by the flow). It can be shown that any other secondary
wave configuration is unstable, for the wave will eithe;' tend to change its

‘position to correspond to one of the configurations in figure 1, or it will
catch up with one of the primary waves.

The assumption that the area change may be treated as an isentropic
nozzle allows the shock-tube geometry to be completely specified by

A.4/A1 (the ratio of driver to driven tube area) and A.’f‘/A.l {the rétio of the



throat area to the driven tube area). For a given shock tube with
specified gases (i.e., ays 24, a }2 1), the velocity downstream of
the contact surface is uniquely determined by MS (the shock Mach number),
while the velocity upstream of the contact surface is fixed by the nozzle
geometry (if the nozzle exit flow is assumed supersonic). Thus, there is
only one value of Ms for which the velocity will match across the contact
surface. For shock speeds above this value a secondary expansion wave is
necessary to further expand the nozzle exit flow. This is the "expansion
wave configuration' depicted in figure la. For shock speeds below the
critical value, a normal shock wave will, in general, be exbected
(figure 1lb). As mentioned in the Introduction, this wave increases in
strength as Ms is lowered, until it becomes stationary in the nozzle. ..
the '""shock-in-nozzle' configuration (figure lc). Finally, for very low
shock speeds, vthe nozzle flow becomes completely subsonic and no
secondary waves can exist. Curves illustrating the regions of application
of these vgrious configurations are presented in figure 2, for A.4/A.1 = 1,
The actual analyses are worked out in Appendix I. The ideal
theory for the e:{pansion wave configuration has been previously demon-
strated for A4/A.17 1 and A.*/A.1 = 1 (ref. 3 and 4)%, but is reviewed
both as a background for the other configurations, and to show its extension
to all values of these area ratios. Lt i8 seen that the solution of the basic
shock-tube relation is available in closed form for this case. Indeed, an
"equivalent standard shock tube' may be defined as shown in Appendix I. A.

In this analysis it is not necessary to consider the speed of the secondary

* Reference 4 also considers the energy aspects of the problem
.. .considerations of energy transfer efficiency across the various wave
systems affords a useful qualitative understanding of the whole process.



expansion wave itself, for the ratio of the parameters across the wave
depends only on the flow Mach numbers on either side. For the normal
shock-wave configuraﬁon, however, the expression for the pressure
ratio across the secondary shock involves the speed of the shock wave,
and elimination of this speed in terms of the flow Mach numbers involves
the solution of a high-degree algebraic equation. The resulting calcu-

| lation becomes so unwieldy that the usefulness of a closed form solution
for the normz'll shock case is questionable. The procedure presented
provides a relatively fast means of calculating performance, avoiding the
necessity for iteration by not attempting to solve. the direct.problem in
which Ms is specified. The shock-in-nozzle configuration is an extension
of the shock~wave case, simplified because the shock is stationary, but
complicated because of the additional steady expansion,

Illustrative performance curves are shown in figures 3 and 4 for
the high Ms regions., These curves are for varying A*/A1 only. Fig-
ures 5a and 5b allow determination of the performance of a Helium-Air
shock tube of any geometry, but for the expansion-wave.case only.

Figure 12 shows the low M, solution for a Nitrogen-Air shock tube again
with varying A,*/Al only. Since the effect of the nozzle depends solely

on A4/A. for the '"subsonic nozzle' configuration, that part of the curves

1
of figure 12 corresponds to the conventional shock=-tube curve.

The dividing line between the regions of application of the
expansion-wave and shock-wave model does not readily come out of the

expansion-wave theory. It is arrived at by taking the limit of the normal

shock-wave theory, that is, where the secondary shock has zero strength
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(e - s 1),

S
The lower limit for the normal-shock model is where the shock first
becomes. stationary (USz = 0); the lower limit for the shock—infnozzle
theory is where the shock is at the throat and has zero strength. These

boundaries are depicted in figure 2 for shock tubes with varying A*/A.l .
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I-3. APPLICATION OF AREA CHANGE AT THE DIAPHRAGM

One of the first studies of area change at the diaphragm was that
of Lukasiewicz (ref. 5). Both he and subsequent authors (ref. 3 and 4)
have been primarily concerned with the interesting fact that area change
may be used to increase available shock speed for a given shock tube,

This effect is a maximum for A’f‘/,A.1 = 1 and A4/A ~y=00; however, from

1
figures 5a and 5b it is seen that a small increase in A.4 produces very
nearly the same effect as the limit of infinitely large A‘4/A.1. The actual
per cent increase in MS over that of a conventional shock tube is a
complicated function of MS itself, but figures 5a and 5b illustrate it to be
of the order of ten per cent for a practical shock tube operating at near
maximum pressure ratio. Information contained in reference 4 shows
that this figure is reasonable for shock tubes operating with other gas
combinations. While the figure of ten per cent is appreciable in some
instances, other techniques will generally produce more spectacular
increases (i.e., different gas combinations, a heated driver, or a
double~diaphragm shock tube (ref. 6)).

A studyr was made of the use of area char;-ge at the diaphragm for
the economical operation of large shock tubes. The diaphragm cost

3/

(prt:;portional to A* 2) turns out to be negligible when compared with
that of the driver gas at the high pressure ratios where cost becomes
significant. The gas volume is proportional to P4A4, and it is readily
shown that A,’%‘/A1 must be unity for optimum economy at a given Ms’

The optimum value of A.4/A,1, however, is not obvious, and curves of

AylA, versus P, A, must be plotted for each value of M_. Such curves
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are presented in figure 6. It is seen that the value of A'4/A‘1 at which

P4A'4 is a minimum is a function of Ms as expected. The trend to

higher optimum values of A‘é‘:/A'l

asymptotic behavior of the basic performance curves, such that the

with increasing Ms is a result of the

high values of MS cannot reasonably be achieved in a plain shock tube
where the Ms asymptote is low. For operation at moderate Ms it is

seen from figure 6 that a conventional shock tube (A4/.A. = 1) is not far

1
off optimum for economical operation. For operation at high MS,
however, the above logic shows that the use of A’Q/A'1> 1is most
efficient, and figure 6 illustrates that factors of ten or greéter decrease
in operating costs can be realized for a Helium-Air shock tube. Studies
of this nature aid in the choice of driver size, and they may result in a
significant decrease in operating cost for a large shock tube,

The use of area change can provide additional flexibility in shock
tube' operation. Since the nozzle used in the ideal theory has no
characteristic axial length, it may be assumed to have negligible length
and to consist merely of a drilled plate placed perpendiéular to the flow
at the diaphragm station. Separation losses and consequent violation of
the assumptions inherent in the ideal theory might now be expected,
however the experimental evidence presented in the next section shows
these losses to be negligible. Thus the use of a simple insert in a con-
ventional shock tube enables any reduced-diaphragm-area shock tube to
be easily obtained. The insert plates provide an additional control on

Reynolds number, and they are a logical way to produce low shock speeds. *

*In addition, the ideal theory for the normal-shock-wave configura-
tion predicts a jump in pressure after the primary shock wave, and a
jump back to essentially the initial pressure after the passage of the
secondary wave. This pressure pulse might have useful application, but
the experimental evidence indicates that it is not to be expected for small
shock tubes operating at reasonable pressure levels.
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Figures 3, 4, and 12 show the performance of such a modified
shock tube; figure 7 shows the diaphragm insert section used for
obtaiﬁing the experimental results presented in this report. Placement
of the drilled plate just far enough downstream to clear the opening
diaphragm provides model and instrument protection from possible
diaphragm fragments, and circumvents the rippage and uncertain
breaking-pressure problems associated with the alternative use of very
thin diaphragms. For large shock tubes it may be desirable to reduce
the diaphragm size and thickness, and this may be facilitated by

clamping the diaphragm directly over the plate orifice.
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I-4. EXPERIMENTAL RESULTS

An experimental study of area change near the diaphragm of a
shock tube was undertaken in the GALCIT 3-inch~square tube. The
~ purpose of this study was to check the validity of the ideal theory, both
by observing the basic performance of a modified shock tube, énd by an
investigation oflthe secondary waves. This shock tube has an area
ratio of A.4:/14L1 = 0,855, and was modified by the diaphragm insert of
figure 7, Nit:rogen—Air runs were made with various insert piates
giving a range of A.’-“/A,1 from 0. 855 to 0.03. Varying the initial pressure
from 5 - 500 mm. gave enough range in Ms to enable measurements to
be made in all of the flow regimes involving secondary waves. A
description of the shock tube and instrumentation used is presented in
Appendix II. |

The ideal theory predicts initial pressure ratio as a function
of Ms with no attenuation. In order to experimentally verifsr these curves
with Ms measured some distancg down the tube, the attgnuation muset be
taken into account. Thus, for the initial measurements, Ms was obtained
at two stations along the shock tube.

The resulting values of per cent attenuation per foot showed
considerable scatter, and only crude correlation with theory (ref. 7).
This was presumably due to the uncertain effect of diaphragm opening time,
the appearance of turbulence in the boundary layer, and the relatively
short distance over which it was possible to make the measurements. The
measurements did show, however, that for a given Ms there is no con-
sistent or appreciable dependence of attenuation on A.*/’A.l. This means

that a value of Ms’ measured in a modified shock tube, may be corrected
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for attenuation by adding to it the difference between the ideal and the
best-fit experimental curves for the unmodified shock tube with the
same MS. Figure 8 presents the original Pé/Pl versus Ms data.

(Note that the ideal theory curves are plotted for A4/A1 = 0. 855

and thus differ from those of figure 12.) Figure 9 shows the data
replotted with the small attenuation correction applied. The experi-
mental points were obtained on different days and are accurate to the
order of the symbol size. A few points, for which the diaphragms were
only partially opened, fell understandably low and have been omitted.

The agreement between the theory and the corrected experimental
results is seen to be excellent for the shock-in-nozzle configuration. The
expgrimental points also appear to fair into the ideal theory curve for the
expansion-wave case. The validity of the ideal theory for the expansion
wave configuration was also noted by Alpher and White (ref. 8), who
made measurements at high Ms in a shock tube with various values of
A4/A.1 and observed that the chan‘ge in basic performance agrees with
the theory. These results emphasize the general validity of the ideal
theory and they imply that any nozzle plate losses are insignificant {from
the standpoint of the ideal theory). Indeed, nozzie losses could be easily
added into the theory (if the experimental data were available), but it is
felt that the remaining uncertainties in attenuation are of more significance.

The discrepancy between theory and experiment for the normal
shock configuration remains unexplained. In order to shed more light on
this situation,the actual details of the secondary waves were investigated
for the normal-shock-wave and expansion-wave configurations. The_
primary tool for this investigation was the fine unheated wire (ref. 9,

for which the analysis techniques are discussed in Appendix IIB..
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Tungsten wires with diameters ranging from 1.5 - 0. 2 mils. were used,
affording a wide range of sensitivity. The wire response was expected to
exhibit a sharp changé in slope when a secondary shock wave passed over
it, or a gradual change of slope through an expansion wave. The slope on
each side of the secondary wave, together with the expected time of
arrival of the wave at the gauge, was calculated and compared with the
experimental results. The use of slope ratios eliminates some of the
wire calibration properties, and it is felt that the resulting slope
predictions are accurate to within ten per cent. Principal errors in

this calculation are due to end losses, the cumbersome calculation
procedure, and the extension of existing hot-wire data to the current
situation.

Typical results are presented in figure 10, where the relevant
theoretical and experirnental slope ratios are also listed. Figure 10a,
for the expansion-wave case, . shows reasonable agreement, both in
times and slope ratios, The normal=shock-wave case, . however, did
not show the expected change in slope. Indeed, there was no definite
slope change observed for this configuration with any of thé wires tested,
and the predicted slope ratio was always considérably different from the
observed value, indicating that the secondary=normal-shock model is
incorrect.

An exarnination of the slope ratios for the normal shock con-
figuration revealed that the experimentallslope is always nearer to the

predicted values of 92153, than it is to SZ/S Since no change in slope

3"
occurs after the contact surface, this might indicate that the secondary
shock occurred at the contact surface. To check this unlikely possibility,

and to provide additional information concerning this configuration, static
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pressure measurements were made using a commercially available
crystal transducer. (Kistler Piezo-Calibrator Model 2 with S. L. M.
pickup) A sample trace is shown in figure lla. These traces did not
show the expected sharp pressure drop through the secondary shock
wave. Instead, they showed the gradual pressure rise that has been
observed in conventional shock tubes (ref. 15).

It is unlikely that the shock wave is masked out at the wall by
boundary layer inter-action, but total pressure measurements were
made to check this possibility. A small total-pressure probe was
constructed, using a Barium Titanite crystal modeled after that of
reference 10. A trace from this instrument is shown in figure 1lb.
There is a suggestion of a drop in total pressure, but it is not con-
clusive in that it is unfortunately obscured by hash from the diaphragm
and a natural frequency of the crystal mounting. Since the total pitot
pressure is relatively insensitive to the existence of a secondary
normal shock, this study was not pursued further than a few unsuc-
cessful attempts to clean up the response. It is felt that the measure-
ments tended to support the previous findings of no secondary normal
shock wave.

A final experimental study was made with a four-inch wooden
nozzle attached to the downstream side of the 0.03 inch orifice plate.
The purpose of this nozzle was to check the effect of the plate itself on
the existence of the normal shock wave. Fine wire results were
essentially identical with and without the nozzle on the plate. The points
on the P4/P1 versus M curves of figures 8 and 9 fall a little high, .but
the results are too few to be conclusive, and are probably due to a change

in the attenuation history. A smoothly contoured nozzle appears to
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produce the same shock-tube flow as the orifice plates.
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I -5, FRICTIONAL THEORY FOR

THE NON-ISENTROPIC SECONDARY WAVE CONFIGURATIONS

The experimental results of the last section indicate that the
normal—-shock model is marginal for predicting M_ and thus conditions
in region 2, and quite inadequate for describing the flow details ﬁpstream
of the .contact surface. -To a.gree with the measurements, a new theory
for this non-—iseﬁtropic configuration is needed which willlpredict no
static pressure jump and no sharp slope changes in the fine wire response.
The new theory must, in addition, predict nearly the same basic per-
formance as the ideal theory, and must fair into the valid
solutions for the other configurations.

The starting point for the new theory might logically be to
consider the secondary shock to be replaced by many weak shocks, result-
ing jn a spread-out compression region. The existence of a sp;read-out
compression region in a supersonic duct has been studied iﬁ connection
with wind=tunnel nozzles (ref. 11 and 12). Indeed, in reference 12 itis
pointed out that the shock wave‘ reflecting off the end of .a shock tube has
been observed to take this form., It would seem quite possible that the
interaction between the secondary shock wave and the thick bbundary
layer from the diaphragm could also result in a spread-out region for
the configuration under study.

Appendix III. A shows the relevant calculations. for a new model
based on the replacement of the secondary shock wave with such a
stationary interaction region. The functional relationship of the flow
variables across this region is that of a ,Fa.nno curve, and the model will
be referred to as the Fanno-process model. The relationship is obtained

by writing the energy and continuity equations for the average cross
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sectional flow values, replacing the momentum equation by a statement
of the overall pressure ratio. This allows for arbitrary frictional
processes and still enables the shock«tube performance to be calculated,
although the details in the Fanno region itself remain arbitrary. It
should be mentioned that in the calculations that lead to the Fahno model,
the exit Mach number may come out to be subsonic. Since a frictional
process in a constant area duct cannot result in a transition from super-
sonic to subsonic flow (ref. 13), a stationary shock wave must exist
within the Fanno regions for these cases.

Figure 12 shows the results of the Fann§ process rﬁodel for
A.4/Al = 1.% Figure 9 shows the remarkable agreement between this
model and the experimental data. It is seen that the new curves fair in
with both the expansion wave and subsonic nozzle solutions, even though
they may cross the ideal theory curve before doing so. It is interesting
to note that there is no slope discontinuity corresponding to that which
occurs at the junction of the normal shock and shock-in-nozzle solutions,
and that the shock-in-nozzle solution itself is unchanged by the new theory.

An attempt was made to choose a combination of shock-tube gases
so as to further separate the two solutions and thus exi:)erimentally check
the validity of the Fanno model under more severe conditions, but the
relative M_ difference was quite insensitive to the gases used. The
insensitivity of the basic performance to the model used is further exempli-
fied by the fact that solutions which consist of part stationary Fanno

* The plain shock tube curve was obtained with the use of a Fanno

process from sonic velocity, replacing that part of the driver expansion
wave which was downstream of the diaphragm.
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process and part drifting secondary normal shock lie in the small
enclosed region between the two pure solutions.

The agreement with the detailed flow measurements is also
improved with the Fanno model. The calculated fine-wire slope ratio
for figure 10b is -5.4 as compared with an experimental value of -7. 7,
and an ideal theory value of -2.0. The static pressure is now expected
to remain constant, and while it actually tends to rise, this feature has
been observed in plain shock tubes (ref. 15) and is thus not directly
coﬁnected with the area change.

There is another interesting reason for accepting the Fanno
model. From reference 14 it can be inferred that the nozzle starting
process is important for times as short as those involved in shock-tube
ope.rati_on, and, in fact, the nozzle may not attain fully developed super-
sonic flow before the end of the run. A quasi-steady model of this
situation might be to consider isentropic flow to a given station in the
nozzle exit, and a Fanno process through the remainder of the nozzle.
As time proceeds, more and more of the nozzle will be occupied with
the isentropic flow and the Fanno region will move out of the nozzle. It
is shown in Appendix III. B that for this model the flow parameters
downstream of the Fanno process are independent of the location of the
beginning of the Fanno process in the nozzle, and depend only on the
overall pressure ratio across the whole region. Thus this quasi-
stationary model must give results identical with the previous Fanno
curve model, a fact which lends further credence to that model.

The simple stationary Fanno model has shown appreciably better
agreement with experiment than the ideal~theory modelg indeed,the

remaining unexplained differences are of the same nature as those which
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have been observed in a plain shock tube (ref. 15). The use of the basic
Fanno-process idea, inter-related with a time-dependent mechanism
for attenuation, may be a key to more complete understanding of these
flows. 'The Fanno region may be combined with non-steady waves,

may be allowed to drift down the tube, or may be assumed to grow with _
time (i.e., the downstream boundary moving with the speed of the
contact surface). In the latter case, the time-dependent equations may
be simplified by the introduction of a conical flow parameter, but the
detailed history of one variable is needed to replace the momentum
equation, and solution difficulties arise for all bﬁt the most simple
assumed profiles,

A model, consisting of a stationary Fanno curve with a weak
expansion wave downstream, was tried in an attempt to explain the wall
pressure rise with time that existed for all shock-tube configurations.
Some agreement with experiment was obtaiﬁed, but more detailed
measurements are necessary in order to justify the existence of this
type of model, and to provide a thorough understandingjof the Fanno-type
of frictional process in a shock tube. In particular, it would be useful to
learn more of the way in which this process may be advanta.geously used

in place of the more complicated boundary-~layer approaches.
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I-6. CONCLUSIONS

The ideal theory presented in this report accurately predicts
Ms for shock tubes with area change near the diaphragm, with the
exception of those configurations where a moving secondary shock wave
is expected. For these cases, it is shown that the secondary shock wave
can be replaced by a spread-out dissipation region. The resultant Fanno-
process model accurately predicts Ms and provides agreemént with
flow details to the same degree that flow measurements agree with theory
for a plain shock tube. Further refi_nement of th.e theory, t..o coincide
more closely with observation, awaits a more detailed éxperimental
investigation. It is suggested that the Fanno-type of frictional process
might have useful application to other shock-tube problems.
It appears that the most practical applications of area change
at the diaphragm are the use of A4/A'l > 1for increased M_, and the
use of simple insert plates to provide an additional control o.n shock~tube
performance. In addition to these, and certain advantages that may
occur in large shock tubes, area change near the diaphragm offers an
interesting research tool for a further understanding of shock-tube

flows.
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II. A STUDY OF THE VISCOUS ATTENUATION OF A SHOCK

~ WAVE ENTERING A TUBE

1. INTRODUCTION

It is a well established fact that a shock wave attenuates due
to the boundary-layer growth behind it. Since this effect can be important
to an understanding of shock~tube flows, most actual shock-wave attenu-
ation studies have been directly concerned with predicting the attenuation
in a shock tube. Perhaps the most widely accepted of these studies is the
theory of Mirels (ref. 7), in which the shocketube boundary layer is
replaced by a mass addition term in the continuity equation. Another
treatment of shockewave attenuation in a shock tube is that of_Trimpi and
Cohen (ref., 22). They replace the boundary layer by averaging its wall
shear and heat transfer over the whole cross-section, using this informa-
tion to modify the momentum equation. These theories are quite different
in nature and cannot b.e expected to yield the same results. Of particular
interest is the fact that Mirel's approach predicts a decrease in shock
attenuation duerto the driver expansion-wave boundary layer, while the
theory of Trimpi and Cohen predicts the opposite effect!

The complete shock-tube boundary layer is complicated by the
existence of the driver expansion—wéve boundary layer. and the problem of
" boundary-layer matching at the contaci? surface. In the above analyses,
these complications are reduced by simplifying assumptions which are
justified by the fact that the major contribution to attenuation comes from
the boundary layer between the contact surface and the shock itself. The
actual flow in a shock tube however, is also affected by the non-ideal

diaphragm opening, and this is extremely hard to predict in a general
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fashion. The result is that definitive measurements as to the actual
mechanisms of attenuation are difficult to make, both theories providing
roughly the same agreement with experiment. To provide more insight
into the attenuation mechanism a much simpler configuration than the
complete shock~tube flow is needed.

The problem studied in this section provides such a configuration.
This is the problem of the motion of a shock wave after it has entered
a sharp-edged tube which faces upstream into the flow (see figure 13).
Here it is assumed that the impinging shock wave is produced in a
shock tube of sufficient size so that the only sigrﬁficant atténuation occurs
in the open-ended tube itself, Thus the attenuation of the shock wave is
determined entirely by the boundary layer developed in the small tube,
and there are no uncertain diaphragm effects to contend with, There is
however, a problem provided by the fact that the complete boundary layer
in the tube is as yet unsolved* (ref. 23), and must the.refore be approxi-
mated by arbitrarily picking a condition for matching the known leading-
edge—bourida,ry layer with the known shock<boundary layér. Various
criteria may be used for the matching of the two boundary layers, each
providing a different relative position for the matching point and conse-~
quently affecting the predicted attenuation. This source of error does not
occur in the shock-wave analyses referred to above {where the position of
the matching point is known to be very near the contact surface.) However,
it will be shown in what follows that displacement-thickness matching will

yield results that agree with experiment to at least the same degree that

*In reference 23 Lam and Crocco cannot demonstrate the existence
of a solution in the matching region between the two boundary layers, but
they present arguments that the boundary layer equations are capable of
producing a continuous solution which satisfies the boundary conditions.
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has been observed in complete shock-tube attenuation studies. Moreover,
in this case the disagreement can arise only from the approximations
used in the theory, the measurements being in principle quite clean and
repeatable. Thus, as more information on the tube boundary layer
becomes available, the theory can be improved and better agreement
expected.

An appropriate theory for the motion of a shock wave in a tube
might be developed from the previously mentioned studies (fef. 7 and 22);
however, a recent paper by Spence and Woods (ref, 24) contains a more
concise approach to the problem of shock-wave a.ttenua.tion.. They
integrate the complete continuity equation across the duct, and obtain
a linearized one-dimensional continuity equation for the motion of the
core-flow. The boundary-layer terms enter this equation in a simple
way. The new system of linearized one-dimensional equations is
written in characteristic form and integrated to obtain.general expressions
for the velocity and pressure in the core flow. The undeterfnined functions
in these expressions are evaluated by the appropriate 'béundary conditions
at the shock and the interface, and the expression for the shock motion is
obtained in a relatively simple form.

Spence and Woods used this technique to calculate the attenuation
in a shock tube with a turbulent boundary layer extending from the shock
to the contact surface. They also went on to treat interesting combustion
effects in the same manner, Their work is an extension of the earlier
work of Demyanov (ref, 25), who treated the motion of a shock wave with a
laminar Polhausen~type boundary layer.

In what follows, the theoretical treatment of Defnyanov and Spence

and Woods is further extended to deal with the problem of the shock~wave
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motion on entering an upstream-facing tube. Analytical expressions
are presented for the case of laminar boundary layers, and good

agreement with experiment is shown.
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II - 2. ANALYSIS

A. The Continuity Equation:

The axially-symmetric continuity equation is

5@ (eu) +1 al,(Irev) (1)

Multiplying by r and integrating across the duct from 0 to d/2 yields

d df2 |
%E Qrdr + g—x eu.rdr =0 '- (2)

o

Following Spence and Woods (ref, 24), putp = Py U= ue,for
0&r&(d/2 -8 ) (where § is the boundary-layer thickness). Perform-

ing the integration results in

%% . %l(@dxe)r-' g ‘iil(f"-’e)dﬂ +§iﬁ&ue-eu)dj R (3)

where the right-hand side, representing the boundary-layer contribution,
is of order & /d (higher~order terms have been neglected). Since the
right-hand side is of lower order, it will be consistent for the following
linearized theory to evaluate it from the two-dimensional boundary
layer solutions for the unperturbed shock speed Uo' Thus, for the
stationary laminar-boundary layer, the definition of the displacement
thickness 81* and its known dependence on Reynolds number and X

(ref. 26), results in
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where K1 is a constant which will be evaluated later.

For the shock-boundary layer, it is most convenient to trans-
form the right-hand side of equation 3 to shock-fixed coordinates,
such that s = Uot -2 . Evaluating this quantity in the sh(l)ck—fixed

coordinates results in

$ s
13| @y - ﬁ(eeuvﬂmﬁs

\ds? (Mo-uie) B lot 4
= - ‘ w g o i -

L d

where %2*, the displacement thickness in the shock-fixed coordinate

system, is defined by w0

e 2= [l

¢

and is a positive quantity.
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B. Solution of the Linearized Equations:

The momentum and isentropic equations for the core flow are:

d Ael L3R _ -
@Aie+% )+S%_o | | (6)

@ .

For small perturbations such that

Pe= Paq.P; LL3=Ua+u5 e'tC..J (8)

there is obtained from equations 3, 4, 5, 6, and 7 (after some

re-arrangement) ~ 7 -
2K, det(x) -
| (“@*-“24?) thiu Jd . %
aZpate\dt  9x) W x| oo fll Ry Ud:—:x.)
¢ A H_Z{ Uz ) zd ( d

- (9)

e(J +uedh)rip -0,

Writing the equations in terms of the characteristic variables

n =X -(u, + az)t and €= x - (u.2 - a,)t results in;

on 1 = constant:

gié [Qaazu "’P] =

C%fs‘iz K, de-}’z%>’ - .
- a_j& ( uo- U—z) Kz de‘yz(u.%_'ic)d * (10)

on & = constant: a ) b -Y
— — deQ2lz K, R,y <?£
S d

d 20z U-PI= ) =72
dq[e 0z W P] 4 —_ad_zeg(u;llz) KZRZJ/Z((%:%>.V

-
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Putting "9 and (U_t-X) in terms of n and £, and performing the

integration finally yields:

elesd -HE) o)yl

(11a)
P-pe = {lE) -a(%)+ 2‘{;’: < Raf ()"

for the set of equations for the stationary-boundary layer, and

: i-i.)Y = F[. : —i— ~4-0: Uz ot

Qzaa(u Ua) F(,%) +6(Y}) (ﬁi)/’aau) Kszd U;at_{'é) -
p Pl el il Rl

for the shock-boundary layer. Here f{, g, Fyand G are the arbitrary
functions arising from the integration. They are to be determined from
the boundary conditions for each set of equations. m and n are

constants chosen to simplify the notation in the following section;

m = Lto“(uz‘}“ﬂz) 3 = u.o"(Uz;-C\z) .
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C. Application of the Boundary Conditions:

The boundary conditions must be applied at the positions in the
x-t plane given by the unperturbed flow.” Thus, at the shock (L= Uot)
the linearized Rankine-Hugoniot relations together with equations 11b

yield:

(Rec)2an (14 418 = F) + 614 .
¥ Mo ¢l = Fit) - 6LL),

where (Nt)‘-: Us-Uo = Mc-M,. (12b)
Cl; '

(12a)

From equations 12a, eliminating Gf(t)

r N -
ozl ( |+ 'ﬁ})*__g-%rpam:) gle) = FLE). (12e)

¥+

In a similar fashion, application of the conditions that u = u, and

p = p, at the entrance of the tube (X = 0) results from equations 1lla in:
F= 9= O. (12d)

The connection between the stationary-boundary-layer region
and the shockeboundary=layer region may be assumed to be some line
2 = ol Uot in the X~ t plane. On this line perturbed velocities and
pressures must match. Thus equations 1lla and 11b, together. with 124
yield

-
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ilz*-a; Ue - Uz tla)
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Adding the above two equations ellmlna.tes the function G and gives

an expression for F (Ml) #|. Changing time scales, this
Uo (U210 ‘

value may be inserted into equation lZ2c to obtain the solution for

¢ (t). After some re-arranging there is obtained

Yo, Yo

Roa ) ()T (B Y et

(13)

-

where, T(Ms) = ¥+ '(Mb“>+LM0
Mo |Qz 2 M P

and the Ky and KZ are the boundary~layer constants defined by
equations4 and 5 respectively. In the next section both these values

and the value of & will be derived for certain simple assumptions.
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D. Ewvaluation of Boundary Layer Constants:

Simplifying assumptions are made in the following calculations.
For most practical cases, these assumptions will introduce little
error in the attenuation analysis; however, they can be relaxed if the
appropriate boundary-layer solution is available.

For the steady cozmpressible-boundary layer, assuming

Pr=1, T_ =T, and 4T ="'}‘( k there is obtained (ref. 26)
W 1 du‘z

{14a)

Ug_t("‘ Tz, W+ X’*’iMz.—f }‘“w)
T, "T} Uz 2 Uz Uz

Transforming the definition for the displacement thickness by the use
of the Howarth-Dorodnitzyn variable, and utilizing the fact that pT = const..

in the boundary layer, results in

ol

g' \gzxmf% F.?d,?-f—k’—le z{’? i’d;@)d’]

(14b)

where the F‘(n) are the Blasius functions, and the numerical values of
the integrals are given in reference 26. Finally, from the definition of

Ky (see equation 4)

% ﬂ.?: - 173 T +oee4(é«—)m (14c)

T2
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With the assumption that P/J' # constant, the shock-boundary
layer displacement~-thickness in the shock-fixed coordinates is given
in convenient form by Rott and Hartunian (ref. 27), Transforming to

the notation of the present report, (and assuming Pr = 1, TW = Tl),-

O* = U |+ 2Up-1Z lha
2 LL; Uz (;;’:Auo + Uy

(152)
4+ U
T [Uo -l (i7-1))
Thus
— | =
K, = g; Uz = Uz |+ Zuu-vzu?_ 4 U L sy

Y25 (ol & otz |/ T [ Uo-tefi-1]]

The value of O( (that is, the location in the x-t plane of the

matching line for the cross over from the stationary«boﬁndary layer
to the shock-boundary layer) will be determined by equating the
laboratory-reference-frame displacement thicknesses ‘on the line

= o Uot. This would.seem to be the most reasonable physical
criterion for the boundary-layer matching; however, since the
boundary layer enters the attenuation calculation through the vertical
velocity at its edge®, an argument can be presented for matching this
velocity. It is found that this latter type of matching results in a lower

*
value of O(. and hence slightly more attenuation than the g matching.

*The terms involving the slope of the boundary-layer thickness
in equations 4 and 5 may be rewritten as functions of the actual vertical
velocity at the boundary-layer edge.
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Since it will be shown that this will provide poorer agreement with the
experimental measurements, vertical-velocity matching will not be
considered further.

To match the displacement thicknesses, the displacement
thickness of the shock~boundary layer in the laboratory-coordinate
system is needed. This was found by writing the definition for the
displacement thickness in the laboratory system, and.the,n transforming
to the shock-fixed system in order to evaluate the integrals. Again
using the work of Rott and Hartunian (ref. 27) and the assumptions used

above in determining é 2*, there is obtained

')
[(2!10— :;T Uz - UO — m%__{_&.
2. L | Uo-lUz A
+ U 0 2 _
3 Uo + Uz (16a)

Thus

Kez SSfla = U /4 Uz --K’u (16b)
> SV .2.55 UD"UZ Ir[Llo-' UZ{F-’)] ‘

Now the line where the displacement thicknesses are equal

. may be found by putting

, f—

K J»as» K ¥Utx) ki)

| 3 _i.:{_z_. 3\! 0 | YLz
Solving for x:

i = Kz® Uot | Huws = K2

KKz i+ Kz*
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The boundary-layer constants 0& , K, K_,and K, are shown

2
plotted against 1\./i0 in figure 14. It is interesting to note that O is
always less than 0. 5,. that is,the matching point always occﬁrs nearer
to the leading edge of the tube than to the shock itself, The attenuation
parameter defined by equation 13 is presented in figure 15 for the
constants of figure 14. Also shown is the value of this parameter
obtained By putting K, = o = 0, that is with the shock-boundary layer
extending all the way from the shock to the leading edge of the tube.

It is seen that the leading edge-boundary layer accounts for more thand

15 per cent correc_:tion,’ and that this correction takes the form of a

reduction in the amount of attenuation predicted.
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II - 3. EXPERIMENTAL RESULTS

An experimental study of attenuation in open-ended tubes was
underta.ken in order to check the validity of the theory. The pertinent
factors that must be considered in the design of this type of attenuation
experiment are the length of shock-tube test gas available, theblength
of the laminar boundary layer behind the shock wave, and the ratio §%/d.
These parameters are illustrated in figure 16. A discussion of figure 16,
as well as a brief description of the models and instrumentation used,
may be found in Appendix II C. It is noted here that the tubes used were
approximately 2 feet long, and had inside diameters of 1", 5/8", or 3/8".
An initial pressure of 5 mm. was ordinarily used, although some runs
were made at 50 mm.

Figure 17 presents the collected experimental results, and it
is seen that attenuations varying from 1 to 6 per cent per foot were
recorded. The shock-tube attenuation per foot at the model location,
calculated by the theory of Mirels (ref. 7) for the case pf laminar
boundary layers, was always less than 10 per cent of the above attenuation.
It was thereforre assumed that the basic shock-tube attenuation would have
little effect on the present measurements, *except for the 50 mm. points
where a relatively larger amount of basic attenuation would be expected
due to the increased importance of turbulence in the shockutube boundary
~ layer.

The accuracy of the experimental points was essentially dependent

on counter error and gauge response. The latter error was due to the

*For a detailed study of this effect, the pressure and velocity
perturbations at the tube entrance could be obtained from Mirels' theory
and applied as a boundary condition on the present problem (i.e.,
modifying equation 12d).
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finite axial width of the upstream wall gauge compared to the infini-
tesimal width of the gauge on the face of the movable plug (see fig. 13).
The plug gauge had essentially instantaneous response, while the side
wall gauge was observed to have a rise time of as long as 1 rL sec.
This error, combined with the fact that 1 ’L sec. counters were used,
resulted in an overall accuracy of + 2 I‘L sec. on each counter reading.
Since the attenuation depends on the ratio of the two counter readings
(corrected for. any length discrepancy), the maximum error thus
roughly corresponded to the case where one count was 2 I). sec.
high and the other Zl,l,sec. low, Referring to figure 17, this error
amounted to approximately + 5 per cent uncertainty in the value of
('M?M;). It is felt that this effect, in combination with the basic shock
tube attenuation scatter, could account for the scatter observed for the
individual set of points.

The measurements give the average value of M_ over a distance
%X, In order to compare this with the theory, it is necessary to integrate
the local theoretical value of MS over the same distance. For laminar
boundary layers, (_1\_4:7_1\/1—0-:—1-) over a distance x is found to be equal to
two thirds of the local value of (Ms/Mo - 1) atx. Using this fact, the
theoretical curves in figures 17 and 18 were readily obtained from
figure 15,

The experimental data are presented in concise form in
figure 18. Here it is. seen that the agreement between theory and
experiment is generally to within 10 per cent. Since individual points
have been plotted and not the averages of sets of points, this agreement
is at least as good as that which has been reported for shock-tube

attenuation studies (ref. 22). On figure 18, the accuracy of the 3/8"
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tube points is again + 5 per cent. For the other points the actual
measured value of (W) was much smaller, and hence the
previously mentioned + 5 per cent error in (m) becomes much
more significant. Indeed, the error for the 50 mm. points would be
almost + 100 per cent when plotted on figure 18. As mentioned above,
these 50 mm. points were expected to involve turbulent boundary layers
and therefore more attenuation. This trend is observed in figure 17,
where the 50 mm. points all fall lower with respect to the theory than
do the 5 mm. points. For these reasons the 50 mm,. points were not
carried over to figure 18. |

Also shown in figure 18 is the theory with the matching point
fixed half way between the shock and the leading edge. This seéems to
exhibit better agreement with the experimental results and raises
questions about the validity of the assumptions used in the original
theory. The possibility of using matching conditions other than
continuity of displacement thickness has been briefly discussed (see
section ZQD), and until the complete boundary-layer solution is available,
there appears to be little justification for any other matching scheme.
However, the assumptions used for the evaluation of the boundary-layer
thicknesses themselves may warrant further consideration. Lowering the
Prandtl number to 0. 72 will affect S;k, as does increasing the wall
temperature above ’I‘l. These effects are ;small, but if they affect one
boundary layer more than the other. they will change the position of the
matching point. In spite of these possibilities, it is felt that more

accurate measurements are needed before the theory is further refined.
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These measurements might be accomplished with faster counters
and matched gauges in a larger shock tube where less inherent

attenuation is present.
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II - 4. CONCLUSIONS

The study of the motion of a shock wave on entering an open-
ended tube offers possibilities for obtaining more insight into the
problem of shock-wave attenuation. A simple theory has been developed
for this configuration and experimental agreement to within 10 per cent
has been observed.

It would be of considerable interest to carry out more precise
measurements for this configuration, and also to investigate the effects
of larger ratios of boundary-layer thickness to tube diameter on the
agreement with the linearized theory. Once this is done, further
refinement of the theory would be justified; including extension to. more

complicated situations involving turbulence in the boundary layers.
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III. AN EXPERIMENTAL STUDY OF THE INTERACTION OF A SHOCK

WAVE WITH AN AREA CHANGE OF FINITE LENGTH
1. INTRODUCTION AND REVIEW OF THE LITERATURE

The passage of a shock wave through a converging or diverging
tube offers possibilities of very great shock-speed modification. Many
authors (ref. 30-35) have studied this problem analytically by assuming
one-dimensionality of the flow. In each case, however, the complexity
of the motion has necessitated linearizing assumptions in ofder to obtain
a useful result,

An interesting example is the work of Chisnell (ref. 30),. in which
it is assumed that the desired relationship for an arbitrary area change
may be obtaine.d by a simple summation of the incremental effects of a
shock wave passing through a series of infinitesimal area changes. Each
infinitesimal area change is assumed to produce a slightly modified
transmitted-shock wave, a reflected sound wave, and a weak contact sur-
face (see fig. 19). For strong shocks, Chisnell's integrated result is
essentially the same as the strong-shock similarity solution of Guderley
(ref. 31), while for weak shocks Rayleigh's sonic-wave solution is
obtained.

Chisnell's theory indicates that the shock strength is a function
only of the local duct area at the shock location, and not of the flow
behind it. This is because the second-order effects of re-reflected
disturbances are neglected, since there is no mechanism supplied for
the interaction of the elemental reflected-sound waves and contact

surfaces with the changing area and with each other. Chisnell estimates
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the effects of these second—order disturbances and shows them to be

small for a continuously slowly-varying area change. This conclusion

is further documented by the fact that Payne (ref. 36) has numerically
solved the equations of motion for a converging cylindrical shock and
finds good agreement with Chisnell's linearized theory.

Different approaches to the study of the motion of a shock wave
| through a continuously-varying area change are provided by Chester
(ref. 32) and Whitham (ref. 33). Chester's approach is based on a
linearized study of the diffraction pattern behind_the shock, while
Whitham 1inéarizes the one-dimensional equations of motioﬁ and follows
a characteristic integration procedure similar to that used in part II of
this report. (For convenience, and because of the similarityv to part II,
Whitham's approach is reviewed in Appendix IV.) Both of theése studies
result in the same final expression for the relation between area change
and shock strength. This expression is also identical to that obtained
by Chisnell, since re-reflections are neglected in all three analyses.

The linear solution of Chisnell, Chester, and Wﬁitham is shown
in figure 20 for overall area ratios of 10 and 4%, Also shown .on this

figure is the steady-state solution for an instantaneous area change. This

solution was obtained by assuming a wave pattern as shown in figure 19,
For sonic flow at the exit of the area change, the reflected shock is
readily calculated from the Rankine-Hugoniot relations. With this

information the transmitted shock speed may be found by an iterative

*It is useful to note that a specific area~ratio curve can be used
repeatedly to find the transmitted shock speed for a larger area ratio
which is equal to a simple power of the first area ratio. I.e., for Mo =2
into an area ratio of 100, the transmitted shock speed for an area ratio 10
is first found, and then used as the input into another area ratio 10. This
provides the final transmitted shock speed for an area ratio of 100,
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procedure based on assuming different pressure ratios across the
expansion wave. The choice of the correct wave pattern and the
‘ca.lcula.ting procedure itself have been dealt with before {(i.e., ref. 34,
37, and 38), and will not be further discussed.* The main interest here
is in the fact that for a given area change and initial shock Mac;h number,
two solutions for the transmitted shock Mach number are available -- that
provided by the steady-state solution for an instantaneous area change,
and the higher (see fig., 20) value given by the linear theory for a con-
tinuously varying area change. The difference between these two
solutions can become very large, since, when the overall area-ratio
approaches infinity, the linear theory value for the transmitted shock
Mach number goes to infinity while the steady-state value rem‘ain.s

finite (and not much greater than that predicted for an area ratio of 10).

The shock speed history through and downstream of a finite-length
area change mt:;st involve elements of both of the above limiting solutions.
While the shock wave is in the region of gradually changing area. its
behavior is expected to follow the prediction of the linear theofy. On the
other hand, when the shock wave has progressed far downstream of the
convergent section its motion must be given by the steady-state calculation,
since the region of gradually changing area will now appéar as an instan-
taneous area change. As the transmitted shock speed given by the
_ linear theory is much higher than that of the steady-state-calculation,

the shock wave must actually decelerate from the end of the convergence

*It should be mentioned that the area ratios used for this study
are large enough so that no ambiguity exists in the assumed wave
pattern (see ref. 37).
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until it finally reaches the steady-state velocity at some point down-
stream. ¥

The linear theory relates the shock Mach number directly to
the local cross-sectional area at the shock location, and hence cannot
predict the deceleration in the constant-area duct downstream of the
convergence. The deceleration stems from the higher-order terms
neglected in the. linearized theory, these terms representing the
complex wave interactions taking place in the flow behind the shock
wave and their ultimate effect on the shock itself. For a continuous
monotonic area convergence these re-reflected di-sturbance:s fortuitously
have little effect on the shock wave motion (ref. 30). For a finite-length
area convergence however, the upstréam moving disturbances will
usually re-enforce each other to form a reflected shock wave, and the
downstream moving disturbances will modify the transmitted shock wave
as discussed above.

The motion of a shock wave downstream of a finite-length area
convergence is studied in this report. The above arguments show that the
solution to the problem will be time dependent, and any analytical
approach must consider the second-order effects neglected in the linear
theory. The author's attempts to modify the boundary conditions applied
to the linearized equations, or to use simple integral approaches based
on tﬁe linear solutions, have been unsuccessful. It appears that a

useful solution is dependent on the inclusion of higher-order terms in

*The argument that the shock speed varies downstream of the
nozzle may be illustrated by sketching an x-t diagram of one instantaneous
area change followed by another. It is immediately seen that the secondary
waves will interact with the various area changes and with each other, and
that some disturbances must eventually catch up with the transmitted
shock wave.
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the one-dimensional flow equations.

Friedman.(ref. 39) has made a study in which some of the
higher-order terms have been included, and has found that the extra
terms result in the negative characteristics joining together to form
a r.eﬂected shock for cases where a reflected shock is expected from
the steady-state model. This reflected shock formation (non-existent
" in the linear theory) is closely coupled with the transmitted shock
speed reduction; however, it appears to be impossible to obtain a
useful closed-form solution for the presentvproblem from the improved
equations of motion used by Friedman. Indeed, Friedman himself was
ﬁot able to find a convenient general éxpres sion for the motion of the
negative characteristics, finding it necessary to make further assumptions
in order to exhibit this motion.

The remaining possibilities for a solution to the problem of shock
wave motion through a finite-length area change are the tedious numerical
characteristics calculation procedure, and possibly a more physical
approach of the type used by Chisnell to estimate the effect of the
second-order disturbances (see above). The first step in the latter
approach might logically be to obtain careful exp.erimental informatioﬁ,
and attempt to get some ideas about the parametric dependencies. Both
this and the characteristics calculation procedure are used in this paper,.

Liftle experimental information is available for the motion of a
shock wave through an area change, and what little evidence is available
is concerned primarily with the flow behind the shock wave {(ref. 40, 41),
An exception is the work of Hertzberg and Kantrowitz (ref. 42) which
illustrates the validity of the one-dimensional x-t characteristics

calculations for the shock-wave motion. Of specific interest is. the
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more recent study of Bird (ref. 43) which provides some insight into
the relationship between the linear and steady-state theories. Bird
reasoned that the transmitted shock strength should vary from the
steady-state value for a 90° nozzle to the linear.theory value for a
0° ﬁozzle, and he was qualitatively able to show this,

In the following work the effect of nozzle angle on transmitted
shock motion is investigated more fully. Measurements are made at
different distances downstream of the nozzles in order to study the
approach of the shock speed to the steady-state value. In any practical
application of a finite-length area change (as for .example shock strength
augmentation in a large shock tube), boundary-layer effects must be
considered, and use of the theory of part II is made here in order to
develop a scheme for estimating these effects, Section 2 presents the
experimental data and the application of the viscous corrections. This
is followed by a discussion of the experimental results and some
interesting conclusions concerning the shock-speed parametric

dependencies.
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II - 2. EXPERIMENTAL RESULTS

A. Basic Measurements:

An area-change model, typical of those studied in this report, is
illustrated in figure 21. Conical nozzles of 5, 10, and 30° angle were
used with downstream tubes of 1' and 5/8" inside diameter, providing
overall area ratios of 4 and 10. 24, (A description of the models and
instrumentation, as well as the choice of operating conditions, is
presented in Appendix IID.) As shown in the figure the average down-
stream shock speed, Hs’ was measured by two thin-film géuges, one
fixed near the nozzle exit and the other on the movable end-wall plug.

%, the distance between these gauges, was fixed at either 6'/, 12", 18",
or 24”._ The initial pressure was set at 50 mm. for most of the measure-
ments, although some runs were made at 5 mm.

The raw data thus obtained are presented in ‘figure 22, where
Mo refers to the shock Mach number measured just upstream of the
convergent section. It is immediately seen that all of the data fall
below the linea;' theory and that there is a strong dependency on nozzle
angle and x. It 1s also noted that these effects are reduced for the
smaller area ratio, and that there is more scatter in the points for
this case than for the area ratio 10 {see fig. 22c). This trend is to be
expected since the shock-speed modification is weakest for the smaller
area ratio.

The main source of inaccuracy in the measurements comes from

the finite width of the gauge at the nozzle exit, * and the possible counter

*The gauge used had a rise time in the neighborhood of 1 }L sec.
Before constructing narrower gauges, the effects of possible shock-
wave curvature and tilt should be considered.
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srror of 1 [.!. sec, Considering these effects, the inaccuracy in the data
corresponds roughly to the scatter observed, It is further noted that
whereas the 6" points. would be expected to show the miost scatter from
these effects, the 24' points will involve some turbulence in the
boundary layer behind the shock wave, and this may provide an
additional source of scatter for the longer lengths (see fig. 16).

Figure_ 23 shows a typical cross-plot of the raw data, in this
case for an area ratio of 10 and Mo = 3. In the absence of two-
dimensional and viscous effects, the significant non-dimensional |
length for this study must be the distance downst.ream divided by the
nozzle length. This fact emerges quite naturally in the one-dimensional
characteristics calculation (Appendix V), and it is used in this figure
where the number of nozzle lengths refers to the non-dimensional distance
measured downstream of the nozzle exit. In plotting the points,it was
assumed that the measured value of (MSIMO) over a fixed x was
equivalent to the actual value at x/2. The justification for this is
provided by the fact that each set of points in figure 23 x}ery closely
approximates a straight line.

It is observed in figure 23 that the u‘ncorr.ected data-points
approach the linear-theory value at the zero nozzle length position,
and fall off towards the steady-state value downstream. It would be of
interest to obtain points nearer to the nozzle exit; however, it was
impractical to construct nozzles of angle smaller than 50, and meas-
urement inaccuracies would make the use of shorter gauge spacing

questionable.
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B. Viscous Corrections:

Because of the model size and the operating conditions used,
some viscous effects were expected. It was originally planned to
keep these effects small, and to correct for them by making identical
measurements at various initial pressures and extrapolating to the
point where the effects were negligible. This turned out to be difficult
to do, principally because of the changing laminar-turbulent nature of
the boundary layer as the initial pressure was varied. It was therefore
decided to keep the pressure low enough to avoid transition, and to make
a theoretical correction based on the results of 'bart II of tﬁis report.

The primary assumption necessary in developing the theoretical
correction procedure was that the viscous effects on the downstream
measurements may be considered to result solely from a non-steady
laminar-boundary layer extending from the shock wave to the nozzle
exit. On the basis of this assumption, the attenuation parameter for the
viscous effects may be found from the upper curve of figure 15. For a
specific configuration aﬁd distance x, the average value of the shock
Mach number downstream of the nozzle was estimated from the measure-
ments of figure 22 and used to provide the input value of M on figure 15,
The actual viscous attenuation at a distance x, Ms/Mo -1, was then
obtained. However, since the measurements to be corrected actually
represented thevaverage value of the shocic Mach number over a distance x,
it is the average viscous attenuation over a distance x that is needed, and
this is found by taking 2/3 of the actual attenuation at x (see part II-3).
The viscous (371;7_1\71;) thus obtained was divided into the measured trans-
mitted shock Mach number to obtain the corrected value.

The results of the application of this correction are illustrated
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in figure 23, where it is seen that the 5 mm. corrected points fall
very nearly onto the 50 mm. corrected points. There is some slight
discrepancy; howevef, it shows no systematic trend and is well within
. the accuracy of the individual points. Excellent agreement was also
observed with the M0 = 2 cross-plot, and it is concluded that the
attenuation correction accurately eliminates the viscous effects
occurring downstream of the nozzie.

No correction was made for the effect of the boundary layer within
the nozzle itself, however it should be noted that the nozzle boundary
layer would be expected to reduce the transmitted shock stfength. This
effect could, in principle, be estimated by including a boundary-layer

term in Whitham's analysis (see Appendix IV).



53
III - 3. DISCUSSION

The corrected experimental points are shown plotted in
figure 24 for incoming shock Mach numbers of 2 and 3 and area ratios
of 10 and 4. Here the ordinate is the difference between the actual
transmitted shock speed and the calch:lated steady-state value, divided
.by the difference between the linear and steady-state values. The
experimental points would thus be expected to approach the value of
one at zero nozzle lengths, and to taper off to zero at some position
downstream. It is seen from the figure that this.behavior is observed,
the collected points falling off to zero at 14 to 17 nozzle lengths
downstream. *

A careful study of figure 24 will reveal that the observed scatter
in the experimental points roughly corresponds to the magnitude of the
discrepancies between different nozzle angles. These.discrepancies
are clearly illustrated in figure 23. From figure 24 it may be seen
that the discrepancies show the same trend for all the cbnfigurations
studied; for a specified value of M, and area ratio, the last point
for a specific nozzle invariably falls on a line which is lower than
the first point of the next larger angle nozzle. This effect is not
completely understood. It may be due to two dimensionality, to the
‘ fact that the boundary layer in the nozzle has not been accounted for,
of to the fact that for the longer distances between gauges, a portion
of the boundary layer is probably turbulent {(see fig. 16). The latter

two mechanisms would result in an additional small decrease in Ms’

*The fact that the larger area ratio was actually 10. 24 instead of
10. 00 was taken into account in the calculation of the theoretical quantities
that appear in the ordinate. :
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and this would essentially be a function of position downstream. It is
felt, however, that more experimental work is necessary in order to
justify making any further corrections to the data. In particular, it
would be of interest to invéstigate and isolate fhe effects of two-
dimensionality. |

- The main purpose of the normalized method of 'preﬁenting the
data was to allow direct comparison of the measurements from different
configurations. From figure 24 it can be seen that, neglecting the
discrepancies mentioned above, the collected experimental points plot
out as a single curve for all of the configurations tested. This single
curve is estimated:by the best-fit curve shown on figure 24. Since
the actual attenuation of the shock wave downstream of the area change
is due to weak disturbances catching up with it from behind, and these
disturbances must travel with speed u + a, a measure of the scale of

this effect may be assumed to be provided by the parameter
(u+a) - Us
Us

Here the numerator represents the closing speed of the disturbance

-

on the shock wave. For values of Ms above 2, this parameter is an
extremely weak function of Ms' This may explain why. there is little
dependence on Mo’ and suggests that the nbrmalized curve 6f figure 24
can be extended to arbitrarily large values of M, and oﬁerall area ratio!
The success of the é.bove simple argument immediately raises

the possibility of applying simple approaches to a determination of the
number of nozzle lengths necessary for the transmitted shock Mach
number to fall off to the steady-state value. Unfortunately, this léngth

is dependent upon complicated re-reflection processes, and approximate
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schemes for calculating it will be found to be too simple to involve
the correct physics or too complicated to justify the use of simple
assumptions. On the question of this decay length, it should be mentioned
that it would be of some interest to make measurements at nozzle lengths
greater than 16 in order to make sure that the corrected value of the
transmnitted shock speed ceases to fall off, * |

Also shown on figure 24 is the characteristics calculation for
an area ratio 10 conical nozzle with M = Z, The only assumption made
for this calculation was flow one-dimensionality, and consequently,
because of the tédiousness of the calculation (see Appendix V), it was only
carried to 4 nozzle lengths downstream. The x-t plot of the calculation
is presented to a 1/5 scale in figure 25, while the calculation procedure
itself is discussed in Appendix V. Of interest here is the fact that the
experimental data fall below the characteristics solution, even though the
slope of the points roughly corresponds to the calculated value. This
effect could be attributed to two-dimensionality, but if this were the case
more difference might be expected between the 30 and 5?'nozzles. Another
possible cause of this effect might be the boundary layer within the nozzle

(see section II-B). It should be mentioned, however, that the extrapolated

M -M
—=> 5% = 0,85 at zero nozzle lengths corresponds to an
My - Mg '

actual value of Ms that is only 3-4 per cent below the linear-theory value.

value of

Thus, if the results were plotted in terms of Ms versus nozzle lengths,
' the per cent agreement would be considerably better.
From the above discussions it is concluded that the normalized

curve of figure 24 exhibits the expected transition from the linear to the

*The downstream tubes used in the experiments were not long
enough to provide nozzle lengths 7> 16 with the existing nozzles. Larger
angle nozzles were not used because of expected two-dimensional effects.
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steady-state theoretical value for the transmitted shock speed. Further-
more this curve, together with the procedure developed for estimating
viscous effects (section III-2B), may be used to predict the shock wave
history downstream of any small-angle conical nozzle for any value of
the overall area ratio and any value of Mo above 2, Since the
deceleration history has been shown to depend on nozzle leﬁgth,a

nozzle can thus be chosen so as to combine the large increase in

shock strength predicted by the linear theory with a specified allowable

shock-wave deceleration rate downstream.
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III - 4. CONCLUSIONS

A normalized curve of the shock-wave history downstream of
finite-length converging area ratios has been experimentally obtained.
When shoc1\<-speed measurements are plotted in this form, the); are
shown to be insensitive to both the value of the incident shock Mach
number and the overall area ratio. It has also been shown that the
shock Mach number at the exit of the area change agrees reasonably
well with the prediction of the linearized theory, and that the second-
order re-reflections neglected in that theory eventually atténuate the
shock wave to the steady-state value.

The effect of viscosity on the shock-wave history downstream
of an area change has been studied,and a method for estimating this
effect has been developed from the theory of part II. When the
measurements are corrected for these viscous effects, they exhibit
reasonable agreement with the shock history calculated by the full
one-dimensional characteristi¢cs method. It would be of interest to
investigate this agreement more closely by studying the viscous and

two-dimensional effects associated with more abrupt area convergences,
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APPENDIX I

IDEAL THEORY CALCULATION PROCEDURES

It may readily be shown from one-dimensional shock theory that

P“/Pb = | + (ZY/(YH))(M;—-I) 3 | (1)

transforming velocity so as to apply to a shock tube results in

Ape e s)

A similar procedure results in

iy = (",2/(y'+l)>( wa-)

Hence,

()] fn

Wz a,= (%—l> )]l @.a_ﬂ)(—g?-’)) +¥,2 ’ (4)

The Riemann invariant applied across a non-steady isentropic

wave results in:

2¥

- 4 % | L X My ¥
PO./Pb :[Qa/c)b]: [Q%J = , - g ’ )
2

Ma.

while the energy relation applied across a steady isentropic process

results in
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¥ X
fe/Po= [@a/(’&’]i[a“/ a*f: M R

H\‘;—'Ma‘

In the following analyses, extensive use is made of the tables
for the parametric relationships across a stationary normal shock
wave, and tables for steady isentropic flow with area change (ref. 16
and 17). The calculations are arranged so that only these tables
and curves of equation 4 need be obtained in order to calculate the
complete performance of a given shock tube. In the following

calculations, perfect gases have been assumed throughout.
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A. Expansion-Wave Configuration (fig. la)

Referring to figure la, the overall pressure ratio may be

r/R= (WRIBR[RRIYRIRR).

Applying equation 5 across the non-steady expansion waves (regions
4-4' and 3'-3), equation 6 through the supersonic nozzle {4'-3!), and

applying the pressure boundary condition, P, = PZ’ yields:.

3
) , %
B/R =1+ Y] % [ L5 T My TR
= |+ Y-l M2
¥y, TR - - (8)
X l 2 3 |- —PZ/P\ .

'+\§)ﬁ:_! Ms'
Z

Now,extending the results of reference 3, define an "amplification

factor':
B 2
_ e ¥EMt s ol g !
3 [+ %‘lMB'Z |+ y_,%\ Na'| (9)

' g is a constant, depending only on the driver gas and fhe parameters
A_4/A.1 and A.*/A.l. It may readily be determined with the use of tables
(ref. 16 and 17). Curves of g for all values of the area parameters
are shown in figure 5a for a Helium-Air shock tube. Since A‘4/A.1

cannot be less than A."‘/A,1 by definition, the line where these ratios are
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equal forms the left-hand boundary and each curve for a given value

of A4/A1 must terminate on this boundary. Previous work (ref. 3

and 4) has been concerned only with the case where .A.’*‘/A.1 = 1;
inclusion pf the effect of A”:‘IA,]L results in a complete surface as shown.

Equations 8 and 9 result in

%‘/X!ﬁ
Bf/ﬁ = | — [ + Yﬁa:‘Ms ! .Pz/P\. (10)
g (A K0w)

The velocity boundary condition, u

= u3, enters through M,

2 3

M () ()= ) o o).

Using equations 5, 6, and 9,

Ya-!
M5=(uz/al 41/04)@2&’ [‘ + %:—,MS]- | (12)

Solving equation 12 for M3,and inserting into equation 10 there is

obtained

/P = yg(Pz/a}[n '(uz/a,)(a/a,, ) = N

Thus, assuming a given Ms’ one may calculate uzla1 and

’ PZ/P1 from relations 2 and 3, Knowing g, P4/P1 may be calculated,

- and in-a similar manner any of the flow parameters arrived at.
Reference should be made to the well-known connection between

the above theory and that of a standard shock tube. The standard shock
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tube equation may be obtained by putting g = 1 in equation 13

2%

B/R= R/R| - % wfu)ajag). = oo

Comparin‘g equations 13 and 14, it is seen that the area-ratio tube

produces the same shock speed for a given P4:/P1 as a standard tube

with the following modifications:

. -(¥, - 1)/(223)
(alla4)standgrd =8 4 * (a1/a4)area. ratio

»,/

4 Pl)standa.rd = B (P4/Pl)area ratio .



63

B. Normal Shock-Wave Configuration (Fig. 1b)

Starting as in the previous case, applying the pressure boundary

condition and relations 5, 6, and 9, the overall pressure ratio becomes

- [l + X_‘.LZ.[ M )]%%
R/R = (B/RYR/R) L =Ms

= C,(%u%)&)(%’/%)(g/ﬁ%'

(16)

where the notation is that of figure 1b.

The velocity boundary condition results in

U.z/a, = US/CI, z ( U's/ ug)(us'/as’)(asyaq')(a4/a¢)- | (17)

Again using equations 5, 6, and 9

U=/a, = u?/uf(ad/a’) |+ @;i‘_m , %574
3
= CZ(%?:)%T)XJ‘) (al_ﬂ@s/u?:;l), | | (18)

Now consider region 3 - 3' and define the secondary shock

velocity as USZ' Transforming to a stationary shock system, .the
. flow Mach number into the shock becomes

(MS'- _Lis_z).

oz’
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Equation 1 then yields

P3/P3’ = |+ %l[(Mﬁl‘Lg’—:’)z—’ .

(19)

The calculation procedure is as follows:

{1) Assuming supersonic flow out of the nozzle, obtain

B Ay
M, (Ki s -A-—l s 4:) from the tables and evaluate C1 and C2 in
equations 16 and 18,

{2) Now assume a value for Uszla3, and calculate P_3/P3r from
equation 19. Knowing the flow Mach number into the shock,E\/Ig,- (Usz/ a3'],
calculate or obtain from the tables the exit-flow Mach number

[M3 ~(L£Z/a3) ;and the speed of sound ratioc a3,/a3.

(3) M3 may be found from the relation

U
M3 = exit-flow Mach number + asZ (a3,/a3). (20)
3! '

The velocity ratio across the moving shock becomes.:
ULS/“S' = Ms/Mz (03/a3’> ‘ (21)

(4) Knowing u3/u3,, equation 18 determines uZ/al‘, equations 4
and 2 determine PZIPI and Ms. It is suggested that the PZ/PI versus
u,z/a.1 curves referred to at the beginning of the section be used to
‘determine PZ/PI’ and Ms be either calculated from this value
(equation 2) or picked out of the tables.

(5) With PZ/PI and P3,/P3 known, P4/P1 is readily calculated

from equation 16.
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C. Shock-In-Nozzle Configuration (Fig. lc)

In this case, the shock is stationary, and it is necessary to
assume the shock position in the nozzle. Denoting the nozzle area

at this p.osition as A's’ the equation analogous to egquation 16 is

~

.78
Y -" i < -
B/R = ByR)R/R)R/R) L EMS]ET

&s

A
where g, =8 (.Af, ﬁa

s s
The velocity boundary condition yields

) and the notation is as in figure lc

U2/0,= Usfa, = M5(ds/as’)(ﬂa’/a5"}(ﬁ5“/a4QYQA7&4}(04/&;). (23)

Applying equations 5, 6, and 9

Ya-l

uz/a. = M?>(a3/ai‘> [03/0%”)(&4/0) %52&’ | (24)
v YT

* .
The knowledge of A‘4/As, A /A.S, and {,enables g, and M,

to be calculated (ref. 16 and 17). The shock tables and the value of M3,.

then give P /P3,, a3,/a3”, and M Allowing the subsonic flow at

3" 3!'

- station 3' to expand, M,; P3,/P3, and a3/a can be obtained by using

30

the tables and the value of Mg, and A.S/A.l. Thus u.zla1 can be found

from equation 24 and PZIP then obtained from the curves of equation 4.

i
The value of PZ/PI and the shock tables yield Ms’ and P4/P1 is

determined from equation 22,
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D. Subsonic Nozzle Configuration (Fig. 1d)

In this case the nozzle flow is completely subsonic and conditions
between regions 4’ and 3 depend only on A4/A'l' The performance may
be calcuiated by the procedure of Appendix I. A, putting conditions in
region 3' equal to those in region 3 (since no secondary expansion wave

exists), and choosing the subsonic value for M As expected, the

3
resulting relations are identical with those for a plain shock tube when

A4/A‘1 = 1, and there is an effect on performance only if _A.4/A.1 # 1.
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APPENDIX II
EXPERIMENTAL EQUIPMENT AND INSTRUMENTATION

A. General Description of Facilities and Techniques Used

The GALCIT three-inch-square shock tube was used for all of
the experiments. This is essentially the shock tube reported in
reference 18, but the pressure seals have been improved and the two-
dimensional nozzle at the end of the tube has been removed. This
nozzle was replaced by a dump chamber for the first series of
experiments, while for parts Il and III the dump chamber itéelf wa.s
removed and was replaced by a flange assembly. The flange a;sembly
was designed to hold the various models, and was located 18 feet
downstream of the diaphragm section.

The shock tube has a circular driver such that A.4/Ai = 0.885,
and it was modified by the diaphragm insert section of figure 7.. Soft
alumiﬁum diaphragms 0. 006 inches thick were .used in combination
with 20-100 psi. nitrogen or helium drivers. Air was used as the
driven gas. The shock speed was controlled by careful diaphragm
scoring and by the use of area ratio 0.4 - 0.01 diaphra.gzﬁ insert plates.

The basic shock speed was detected with two matched platinum
_thin-film gauges spaced two feet apart. The gauges had high resistance
(50041 ) in order to maximize sensitivity, a gauge current of 10-2
amperes proviaing enough sensitivity to enable shock speeds as low as
1.04 to be readily measured. The gauge outputs were fed through low

noise~level amplifiers to a Beckman l'Lsec. counter. For situations
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where two separate shock-speed measurements were required (i.e.,
parts II, III, and the attenuation measurements of part I}, each pair
of gauges was connected in series and fed into a single amplifier.
The differentiated output was then applied to the period function of a
llu.sec. counter.

For the downstream shock-speed measurements of parts II
and IIT it was found most convenient to machine the insulated backing
for the thin-film gauges from lucite. Electrical lead-outs were
provided by copper wires cemented into holes drilled through this
backing material. Epoxy cement was used, and the wire ends wére
ground off flush on the inner surface of the lucite plug. Since it is
difficult to evaporate a thin film directly onto lucite, the gauges
therﬁsel_ves were made from thin strips of Mylar adhesive tape onto
which an alumiﬁum film had been evaporated. Mystic Type 7300 was
found to be the most satisfactory tape for this application, since it is
stable at relatively low pressure and high temperature, and it has an
overall thickness of under .002", Painted silver connections were
made from the tape to the flush ends of the copper lead-out wires.
The conflicting requirements of durability and sensitivity resulted in
the use of relatively low resistance (50 ) films. Gauges made
from these films lasted typically for fifty shots, and were easily repaired
by lifting off the old film and pressing a new one into place.

The initial pressure was measured with a Wallace and Tiernan
0-50 mm. gauge and an aircraft type manometer. When it was required,
the driver pressure was measured with an 0-100 psi. Bourdon gauge.
All gauges were carefully calibrated with either a McLeod gauge or

known reference volumes. It was estimated that the corrected 50 mm.
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gauge reading was accurate to + .1 mm. The shock-tube leak rate
was always considerably less than 1 mm. per hour.
The distances between the film centers of the various sets

of gauges was measured to within ., 01",
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B. Specific Details Pertinent to Part I

The average distance of the two shock-speed gauges from the
diaphragm was 16. 7 feet for these experiments. For the attenuation
measurements of this section, two pairs of platinum gauges were used,
the center of the extra pair being located at 12. 7 feet from the diaphragm.

The fine wires were constructed as in reference 9. A constant
excitation current was applied and the voltage across the wire was
directly sensed by an oscilloscope. The wire acts like a calorimeter,
and thus its response to a given flow change is roughly exponential with
time. Thus, for small times relative to the characteristic time, the
slope of the wire response will be constant; for very long tirhes, the
wire response will be a step function. It was found that a wire \chosen
so as to have the former response characteristic was the most practical
for these tests.

- Given a specific MS and Pl, all the flow variables could be
calculated from the ideal theory. Approximate Nusselt numbers for
the various flow regions could then be found from the caiculated Reynolds
and Mach numbers through the use of references 19 and 20. The Nusselt

number is defined as

- &d
NLL P{(Tk—_llu)’ (1)

where d is the wire diameter, K the thermal conductivity of the

fluid (evaluated at total temperature, ref. 21), Tr the recovery
temperature, and TW the initial wire temperature. The heat transfer
per unit area of wire, ¢, may be shown to be directly proportional

to s, the response slope (ref. 9). Thus,
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S/ =%2/-5=Kz(_'—”"_r‘) Nuz/Nus. |,
’ b Ks['_Tvs—(Tmez)] A

It may also be shown that

ATZ - AEZ. ,
K Tw Rw (3)
where IW is the wire current (»~ 2(10)"3 amp. ), RW the wire resistance
at T1 (v 28), OC the coefficient of resistivity (taken as 0. 004 /°C for
tungsten), and AE the voltage jump.on the experimental respm;se trace.
AT, was of the order of 50°C for the 14+ mil. wire.

Equation 2 predicts the slope ratio between regions 2 and 3
vs;heﬁ the recovery factors and Nusselt numbers have been found.
The equation may easily be extended to other regions if care is taken
in obtaining the wire temperature at the beginning of each change in

slope.
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C. Specific Details Pertinent to Part II

For this serie_s of experiments, the tube and flange assemblies
of >part IITl were reversed. This provided open-ended tubes of 1'' and
5/8" inside diameter which protruded roughly 2 feet upstream from
the end of the shock tube. (See fig. 21 and 13). The upstrearn‘ends
of these tubes had a . 004" wall thickness, tapering back 2'" to the full
1/8" thick wall. A 3/8" inside diameter open-ended tube was also
used, this tube being obtained by sliding a long insert into the 5/8"
tube. Each tube was aligned with the shock—tube_ center line to within
10, and was provided with a movable plug at its downstream end. The
plugs were positioned at either 26" or 14" from the leading ‘edge of the
tubes. These distances were chosen in order to provide a lenéth of
shock-wave travel sufficiently long to make the shock-wave attentuation
easily discernible.

- The shock speed upstream of the tube entrance was measured
by two platinum thin-film gauges located two feet apart, ‘the downstream
gauge being on the shock-tube wall in a position directly in line with

the small tube entrance: The average shock speed in the small tube
was measured between this latter gauge and an aluminum-tapé gauge

on the movable plug face. The gauge outputs were amplified,
differentiated, and fed into two I}A sec. counters., The ratio of the

. two counts, corrected for the length discrepancies, directly provided

the value of(MS/ MO).

In order to check the theory of this section accurately, three
factors had to be considered in the design of the expei'iment. The
first of these was the length of the shock-tube testing region, which

must be such that the experiment is over before the shock-tube contact
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surface reaches the leading edge of the model. This length was
evaluated by the theory of Roshko (ref. 28), and is shown in figure 16
for an 18 foot length of the 3-inch-square shock tube, and for initial
pressures of 50, 5, and 0.5 mm. Itis seen that there is a significant
reduction in this parameter as the pressure is lowered, in contrast
to the ideal theory which predicts no pressure effect.

The second importlant consideration is that the boundary layer
must be laminar in order to justify comparison with the theory. As
the shock-boundary layer is most important in the attenuation mechanism,
a reasonable criterion is that this boundary layer must havé a distance to
transition of at least half the length of the open-ended.tube being studied.
The length of laminar houndary layer behind the shock was obtained from
figure 4 of the experimental study of Hartunian et al (ref, 29), and is
shown in figure 16 of this report. As expected, a reduction of initial
pressure increases the probability of a complete laminar—"boundar'y
layer in the tube.

The final important factor is the ratio ®%/d, since the theory
is only valid for boundary-layer thicknesses that are small compared
with the tube diameter. The maximum displacement thickness occurs
at the matching point of the leading-edge and shock boundary layers.
This maximum thickness is shown in figure 16 for a pressure of 5 mm.
and a tube length of 26'. Since D *is inversely proportional to the
square root of the pressure, the values of 8*max at 50 and 0.5 mm.
can be easily obtained from the 5 mm. curve. It was felt that keeping

ma

S x x/d < 0.1 should provide agreement with the assumptions of

the theory. (It would, however, be interesting to investigate the effects

of larger & *maxld.)
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From a study of the above effects it was decided to use an
initial pressure of 5 mm. for the bulk of the attenuation measurements.
This choice ensured both adequate testing time and the existence of
laminar boundary layers in the 26" and 14" tubes. Figure 16 indicates
that 26" tubes with diameters as small as 3/8" still satisfy
S*max/d £ 0.1 as long as the initial shock Mach number is not much
less than 2.

In addition to the 5 mm. shots, runs were made with the 1"
and 5/8" tubes at an initial pressure of 50 mm. in order to check the
prediction that some boundary-layer turbulence would exist at this

pressure.
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D. Specific Details Pertinent to Part III

The nozzle assembly used for these experiments is depicted
in figure 21, the "O" ring seals and other construction details having
been left off for clarity. The steel insert was necessary in order to
convert the square shock tube to an axially-symmetric geometr;)r. This
was desirable because it allows larger area ratios for a given down-
stream channel height, and hence helps alleviate viscous boundary-layer
effects. The insert itself was 13" long and had a 2" inside diameter.
Its sharp leading edge (. 003" thick wall with a 20_ bevel) was assumed
to have no effect on the propagating shock wave. |

The nozzles and downstream tube assemblies were made of brass
with their inner surfaces polished. 5, 10, and 3()0 conical noizles were
used with downstrgam tubes of 1" and 5/8" I.D. This provided area
ratios of 4 and 10. 24. The incoming shock speed was measured by two
§1atinum thin-film gauges located two feet apart, the downstream gauge
being on the shock-tube wall directly in line with the leading edge of the
steel insert. The average downstream shock speed was: measured over
a distance x (see figure 12) between an aluminum-tape wall gauge
located 1" downstream of the nozzle exit, and another aluminum tape
gauge located on the movable end-wall plug. As in part II of this report,
the gauge outputs were fed into two counters, and the ratio of the two

. counts (again corrected for length discrepancies) directly yielded

{MS/MO). The temperature in the laboratory was recorded for each run
and used to determine Mo' The maximum value of M0 was limited by

the necessity of keeping the initial pressure high enough to ensure both
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small viscous effects and a long shock-tube test gas region (see fig. 16),
An initial pressure of 50 mm. was found to be the most satisfactory for
these experiments, although runs were also made at 5 mam. in order to

check the validity of the viscous corrections used.
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APPENDIX III

THE FANNO-PROCESS MODEL

A. Constant-Area Fanno Model

In this study, the secondary normal shock of figure 1b is replaced
with a stationary compression region supported by shock;bopndary layer
interaction. This interaction region is assumed to take place in the
constant-area duct, and, as in the ideal theory, the entering flow
(region 3') is assumed known.

Assuming a perfect gas, the steady energy equation is

(aa/ag = ; : \ii '\&i = (%/Ro)[(%/ea)— (1)

The continuity equation, applied between regions 3 and 3' may

be written as
(P;«, Ms)/0 = G)‘ﬁ' M ')/ az's (2)

where it is understood that flow parameters describing the Fanno region
are the average values across the cross-section.

Applying equation 1 across the Fanno region, and substituting

a3/a3, from equation 2 yields

2 v
Q + \-/.—'Z"_-I MS’Z) E?ll_PﬁA}I "'M;("" %—'—Msz) (3)
2 .
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Solving for M3

hi

RS [PRRT Ve

The shock-tube periormance is readily calculated by first

3

From this information 3,3/a,3' is obtained from equation 2. u?‘/a.1

 assuming P3,/P3. Then, since M,, is known, M, may be found.

may now be determined and the performance calculated in a manner

analogous to that of Appendix I.

(4)
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B. Varying-Area Fanno Model

For this model, the Fanno process is assumed to take place in
the nozzle itself, The flow is assumed to expand isentropically from
the sonic throat to some station 3' and then proceed along a Fanno
curve to a station downstream of the nozzle. (See sketch.) Thé

‘entering flow is known, as well as A.*/A.3, A~3,/A,3, and P*/P3-

i

{ R
)
ISENTROPIC |, FANNO / CONSTANT

EXPANSION / PROCESS Aren Duct
/

Z
‘A* Az’ I A=

The isentropic relation between the throat and station 3! gives
/R =[] = [
#/ 3 = Qf/(’s = a-*/as . (5)

Appropriately applying equations 1 and 5, the overall density

ratio may be written
¥-
+EIM 12} M2
z '3 I+ T V3 R (6

¥/0z = 2/)(03/03 )= ]
s = (Rusleere) e (g

but X
P3'/ P (%ym ( E/ 5> - -:g_k‘—l |

P/— A 7)
Mz? | Fs

!



Thus, collecting terms

5 R
o /| = 2.
R s &

and the continuity equation and perfect gas relation yield

s (o))< [ ] ] (k). o

Applying equation 8 to equation 9 and solving the algebraic relation

(e-1)M2 = — | + [H (%) E(R /P_,,)(A*/AB%Z]JE‘; (10)

but, again, applying continuity and equation 8

2.
| + Az

s )+ E ) o

NF(

and equation 1l together with equation 10

Us/Ou = @’4" [(p“/% (A*/A?,ﬂ
1+ (xewgu(wa)my/@‘gj

Equations 8, 10, and 12 demonstrate that the exit flow is

independent of the position of station 3'. Thus the Fanno process could
be completely outside of the nozzle, so that this solution is identical

to that of part A above.
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APPENDIX IV

WHITHAM'S ANALYSIS FOR THE MOTION OF A SHOCK WAVE

THROUGH A REGION OF CHANGING AREA

The following analysis for the motion of a shock wave through
a continuous area change will be seen to bear a strong resemblance to
the theory for shock-wave attenuation presented in part II of this report.
For a discussion of additional shock-wave interaction probl_gms for
which this ty;pe of analysis yields useful results, the reader is referred
to Whitham's paper (ref. 33).

The axially-symmetric continuity equation for the flow ‘in a

varying area duct is

Multiplyiﬂg by r and integrating across the duct from 0 to R yields

R R R
N R
SgE rdy + %i(gu{‘;dr Yev| = QUR%lE) (2)
(2] o °
where p and u are assumed to be only functions of x, and

(v /W) g = dR/dx.

For small perturbations such that

Q= Qz-re' ) u=U2_+U.l 3 All’-)’ AZ*'A'; Q-+C')

(3)
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equation 2 may be re-written in terms of the cross-sectional area as

é%-\—gzév» +U~z <bc= —Qzuz- olA' (4)

Replacing the primed quantities in equation 4 by the complete flow
quantities (equation 3), and introducing the isentropic relation and
the linearized momentum equation (see part II, equations 6, 7, and 8)

there is obtained

(ép +U.z_E> \s__u: = J_dﬂc

Ozzezuz 2 0% Az dx

Qz(%%*FU.z%QXB-I-%%L:Q, e

These equations may be compared directly with equations 9 of part II,
the difference between the two problems coming in through the right
hand side of the first equation in each set.

Following the procedure of part II, equations 5 are written in

terms of the characteristic variables n = x - (u, +a2)t and £ = x ~(u, - a,)t:

Q
=]
=3
i

on 1 = constant: a"% [ P2tz U + pl=- Qaaz uz dA (62)

Uz+az A7_

3]

~on & constant: o\ [ 20U - P 202 Uz dpc ] (6b)
dv e ] QU.';_""C’.Z’_ 2

Integrating equations 6 results in

Fly) +Gg) S2atie Al

Qz_O.z(,U.'U-Z.) oy N

P-pPz = F(']) G(“{) ﬂhrﬁiﬂ_i' A_(_LAL

U22-Q2*

(7)
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The next step in the solution of equations 7 is to evaluate
the constants F and G by applying the appropriate boundary conditions,
It is immediately realized that one of these boundary conditions is that
the shock relations must be satisfied at x = Uot. The other boundary
condition is supplied by the statement that F(n) must be identically zero,
since F represents disturbances catching up with the shock wave from
behind, and such re-reflected disturbances are of second order. Thus
this boundary condition is necessary for a consistent linear analysis,
and the use of it precludes any possibility of the final solution being
useful for.the problem considered in part III. |

Now, the function F arises from the integration of equation ba,
thus when F is put equalto zero equation 6a must hold for the complete
flow,and not just on lines of 1 = constant. Applying equation 6a at the
shock wave and using the linearized Rankine-Hugoniot relations, there is
obtained

dA . _2Mo  dMs

—————

A MN KM
k=2 (10 2 s on]

(8)

= EMev2
23’”’0"-(.?")

This is the result of Chester (ref. 32) and Chisnell (ref. 30) for

an infinitesimal area change. It is seen from this relation that the
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shock Mach number is a function only of Mo’ Y » and the area at the
shock location. When equation 8 is integrated, the linear solution for

an arbitrarily-large continuous area change is obtained

A (-\(Msy = Constant. (9)

where f(MS) is a complicated function of Ms and BJ s (see ref, 30).
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APPENDIX V

ONE-DIMENSIONAL CHARACTERISTICS CALCULATION FOR THE

MOTION OF A SHOCK WAVE DOWNSTREAM OF AN AREA CHANGE

In this section some details concerning the characteristics
- calculation of figure 25 are discussed.* The procedure used was
developed from Rudinger's book (ref. 44), to which frequent reference
is made. It should be mentioned that much simpler characteristic
schemes are available for problems where only the flow in the nozzle
just behind the sho.ck wave is desired., Typical of these is the
isentropic calculation . procedure discussed. in detail in reference 45.
Approximations such as this however, are of little use for the present
problem for which a more thorough analysis is necessary.

The '"quasi-one-dimensional' equations of motion for the flow

in a duct with changing cross=-sectional area may be written (ref. 44)

>

+

=1

&Y 3T
= —anynft +3 &

R+
X 3T

'S' (1)

o
o

|

:-_O)

o

* It should be noted that figure 25 is a 1/5 scale reproduction
of the actual calculation, and hence it has not been possible to show the
complete details for the smaller cells near the nozzle exit.
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po is a reference length (taken as the nozzle length and a a

reference velocity (taken as the speed of sound in the undistirbed gas).

Equations 1 indicate how the parameters P, @, and S vary in

the X) ’t plane along curves that are given by

d'xz U+a PQY‘P
IT _ -3 For ®

= U S (2)

Now consider the following segment of figure 25, and assume

that P, Q, and S are known at points 1, 2, and 3.

4-
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' The following procedure was used to determine the location of point 4
and the values of P4, Q4 and 84:

{1) Point 4 is chosen to lie on the particle path from point 1,

thus S4 = Sl' Assume values for P4, Q4 and calculate Uy 3y (u + a)4,
(a - 5)4. .
_ oy + u,
(2) Project a line from point 1 with slope (u)l 4 = >

and one from point 3 with slépe (u - 5)3, 4 The intersection of these
lines determines the first trial position for point 4. Frorr.z this position
project a line with slope (u + 2)4 to locate the trial position for point 5.
(3) With the trial position of point 5 known, interpol'a.té between
points 1 and 2 to obtain Py Q. §5, and thus calculate ES and 55.

(4) The initial values and positions having been determined,

calculate new values P4' and Q4‘ from equations 1 and 2:

38 -lan( e s
(el
Qu= Qs +(%"—%-Q>4,3(/&4—T3).
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(The value of AO&'IA/‘\% may be determined from a curve of ADY\A/A’X'

versus X for the configuration studied.)
r ! : fral S | T oy !
(5} From P, andQ4 determine Uyt a,h (v + a),'s and
(—13.- - \5)4’. Locate a new position 4! by projecting new lines from

1 1

points 1 and 3 with slopes (-1-1—)1 4 and (u - respectively.

23, 4
From this new position project a line with slope (u + 5)4;, 5 to locate

a new position 5!, Now calculate the various parameters at 5!

(by interpolation), and use this information with equations 3 to calculate

P," and Q,". The whole procedure is repeated until convergence is
4 P -_

4
achieved, usually requiring 2-3 iterations.

Some care must be exercised when a cell involves the shock
wave as one of its boundaries. For this case the flow is no longer
particle-isentropic, there being an entropy jump at the shock wave.

In addition, the Rankine-Hugoniot relations must be satisfied across
the shock wave, The calculation procedure is discussed in Rudinger!'s
book where useful tables are also presented.

The characteristics calculation for a specific coﬁfiguration can
become quite lengthy, especially for large area changes where many
cells are necessary to achieve an accurate solution. Rudinger (ref. 44)
suggests that the cell sizes should correspond to steps in é aYlA/é‘)(_
not much greater than 0.2, Slightly larger cells were used for the
“calculation of figure 25; however, excellent agreement with the linear
theory for local shock speed was maintained. By taking all numbers
to four significant figures and plotting slopes to 1 per cent, itis estimated
that the calculated values MS are good to within + 1 per cent. This

was checked by plotting the specific values of Ms versus their axial

position, and observing less than 1 per cent scatter,
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The characteristics calculation presented in figure 25 is for
the shock-wave motion through, and downstream of, an area ratio 10
conical convergent nozzle. The shock Mach number entering the nozzle
was chosen equ-al to 2, and it can be seen to increase through the
nozzle and then start to fall off downstream. The cell size decreases
near the exit of the nozzle since the rate of area change for the conical
nozzle is increasing., Downstream of the nozzle exit the cell size
becomes very large, the area terms have dropped out of equations 1
and 3, and the shock speed is dependent only on the flow behind it. It
is also interesting to note on the figure that the "QU waves (iines of
(u - —a-.)) are tending to coalesce to form the reflected shock wave inside

the nozzle.
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