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ABSTRACT

The behavior of the incident and reflected shock waves
in a convergent channel is investigated in order to
determine if such a geometrical device could be used as a
means 6f producing high—enthalpy gas samples. A 10° half-
angle conical convergence is mounted on the end of a
pressure-driven, six~-inch shock tube. Using argon at an
initial pressure of 1.5 torr, initial shock Mach numbers
are varied.from 6.0 to 10.2. During each run locél shock
velocities at several positions along the cone axis are
measured using a small, multi-crystal, axial piezoeléctric
probe inserted from the cone vertex.

The incident shock velocity profiles show that the
shock behavior is dominated by multiple diffraction
processes which originate at the cone entrance. Sudden
increases in shock velocity at certain positioﬁs along the
axis are observed, corresponding to the intersection of
stemshocks formed by Mach reflection on the cone wall.
These increases are separated by regions of deceleration
and acceleration, corresponding to the growth and decline
of a center shock formed by Mach reflection on the cone
axis. Near the vertex the shock velocity has increased by
as much as a factor of three, indicating that high temper-
atures and pressures are generated. By varying the initial

Mach number and pressure, real gas effects are found to
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influence the diffraction process only in a region near
the vertex.

Reflected shock profiles show that the shock velocity
is nearly constant for much of the convergence lengfh, in
contrast to the'powér—law decline predicted by the
similarity solution. During this period the shock propa-
gates into fluid originally set into steady, unifdrm
motion outside the cone entrance. $Small variations in the
velocity result from weak interactions with localized
nonuniformities and secondary waves. Beyond the cone
entrance the shock decelerates towards the velocity‘corre-
sponding to reflection from a plane end wall. A departure
from ionization equilibrium is likely near the vertex
during the rapid expansion which occurs behind the

reflected shock.
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I. INTRODUCTION

For the past quarter century the shock tube has been
the primary experimental tool for studies of gases at
elevated temperatures. When investigators found thaﬁ the
temperatures required for cértain areas of interest involved
shock waves too strong to be generaﬁed in conventional
pressure~-driven shock tubes, a number of modifications were
introduced.* Most were techniques for heating the driver
gas, either by an internal electric discharge, by shock
heating (multiple diaphragm shock tube), or by combustion
of dilute mixtures of hydrogen and oxygen. An alterhate
approach used a sudden reduction in the shock tube cross-
section, located either at the diaphragm station in order
Eo éccelerate the driver gas, or at some position in the
test section in order to accelerate the shock wave directly.
The introduction of explosively-driven and electromagneti-
cally—driven.shock tubes resulted in the production of very
strong shockAwaves.

For most of this period of shock tube development it
has been known that shock waves propagating through grad-
ually converging channels tend to strengthen. The flow
generated in such a channel is nonuniform and unsteady,

and presumably these limitations account for the scarcity

*Descriptions of the various modifications, along with
corresponding references, can be found in Chapter IV of
Reference 1.
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of experimental inﬁestigations into this behavior. However,
the simplicity of a geometrical approach, together with
recent interest in nonequilibrium radiation phenomena
involving unsteady conditions, indicate that thls method of

shock strengthening requires further study.

1.1 Motivation for Generation of Strong Shock Waves

Although the shock tube was pioneered by Vieille in
1899 (Ref. 2), modern application of the device began
during the Second World War when it was used to célibrate
piezoelectric gauges designed for blast wave studies
(Ref. 3). Following the war, the shock tube proved useful
in studying the reflection of shock waves at oblique
surfaces (Refs. 4, 5). Extensive use of the shock tube
began in the early 1950's, when experimentalists realized
its potential for investigation of high temperature kinetics.
The basic appeal of the instrument was the sudden tempera-
ture rise associated with the shock front. Throug£
propagation of a plane shock wave of modérate Mach number,
a volume of test gas can be heated homogeneously to a
temperature of seQeral thousand degrees in a time much
less than a microsecond. Since the different degrees of
freedom available to gases at high temperatures approach
equilibrium at different fates, the shock tube provided a

method for studying the various mechanisms for energy



transfer which occur in relaxation phenomena.* Through
use of appropriate gas mixtu;es, chemical reaction rates
under the uniform conditions existing behind plane shocks
have been measured. The shock tube also has proved useful
in investigating thermodynamic properties and equations of
state of high temperature gases.

With the production of stronger shock waves the shock
tube became a basic tool for the study of radiatiqn physics.
Emission and absorption spectra from molecules, aﬁoms, and
ions have been measured. Relative and absolute measurement
of spectral intensity has provided information on atomic
constants and energy levels, transition probabilities,
and Stark and Zeeman constants. Gasdynamic processes
involving radiative heat transfer, such as the propagation
of very strong shock waves (Ref. 8), have been studied.

Of more recent interest is the investigation of radiation
from gas samples in which significant sustained departures’
from equilibrium occur. Such samples can be produced

through a rapid expansion of shock-heated gas (Refs. 9, 10).

*A multitude of shock tube investigations have been
reported during the past twenty years. Reviews of
measurements not specifically referenced, together with
extensive bibliographies, can be found in References
1, 6, and 7. '
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1.2 Theoretical Solutions for Shock Wave Strengthening

in Converging Channels

1l.2a Similarity Solution

A similarity solution for the motion of a converging
cylindrical or spherical shock wave was obtained in 1942
by Guderley (Ref. 11l). 1In 1954 Butler (Ref. 12) reworked
the Guaerley solution with improved computational methods
and greater emphasis on the reflected shock wave generated
by the collapse of the converging shock. The solution
assumes that as the shock wave propagates into a uniform,
stationary perfect gas its strength continuously increases.
When the shock wave collapses on the axis or point of
symmetry its strength is singular. Taking the symmetry
axis or point to be the origin, then in some neighborhood
of this origin the shock wave is sufficiently strong for
the pressure and temperature of the gas ahead of the shock
to be considered negligible compared with those properties:
behind the shock. Assuming that this neighborhood is small
compared with the dimensions of whatever mechanism generated
the shock wave initially, then there are no dimensional
parameters in the problem with which to form length or
time scales, and only one parameter with the unit of mass
(the initial gas density). Consequently the problem can be

described as a self-similar motion of the second kind.*

*A discussion of conditions for self-similar motion can be
found in Chapter XII of Reference 13.



The soclution takes the form

2 g(&) » o =p  h(E) (1)

where r 1is the distance measured from the origin, t is
time measured from the instant the converging shock
collapses, u 1is fluid velocity, p 1is fluid pressure,

p is fluid density, and Po the initial density. £ is

the similarity variable given by

S = -k

Br

where a 1s a dimensionless similarity exponent which
remains to be determined, and B is a dimensional constant
which depends on initial conditions (in the similarity
regime the motion has "forgotten" the details of its dfigin,
thus a numerical value for B cannot be found:from the
equations in similarity form). The converging shock wave

is given by & = -1, thus the shock velccity‘obeys the
power law

shock velocity = %,r-(l—a)/d

The expressions given in (1) are substituted into the
unsteady equations of motion (either cylindrically or
spherically symmetric) and a set of ordinary differential

equations are cbtained for £, g, and h . When the
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equations are numerically integrated for increasing §
using the shock conditions at § = -1 and an arbitrary
value of o , a singularity is encountered at a critical
value of § which corresponds to the characteristic
passing through the origin r = t = 0 . Determination of a
unigque value for & which eliminates this singularity
results in a solution for the flow field between the
incident and reflected shock waves.

The reflected shock motion is also assumed to be self-
similar with the same similarity exponent a . Thus, the
reflected shock trajectory is given by some positive value
of.the_similarity variable, say § =8 . To find B , it
is first necessary to find solutions to the flow behind.
the reflected shock which satisfy the boundary condition
of zero velocity at r = 0 . This is done by rewriting
the equations in terms of a new similarity variable
n = 5-0 , then performing numerical integration for
increasing 1N using the boundary condition at m = 0 .

The parameter o .is chosen so the solution remains regular
at n =20 ; A family of solutions results, of which only
one permits a matching with the solution for the flow ahead
of the reflected shock using the shock jump conditions.

Butler computed the similarity exponent o for the
cylindrical and spherical cases for éhocks propagating in

gases with specific heat ratios of 5/3, 7/5, and 6/5.



The reflected shock position g was found for the spherical

case with specific heats ratio 5/3.

1.2b Chester-~Chisnell-Whitham Theory

The Guderley similarity solution applies only to
cylindrical or spherical shock waves within some neighbor-
hood of the axis or point of symmetry. During the 1950's
Chester, Chisnell, and Whitham progressively developed an
approximate formulation of the more general case of
arbitrary-strength shocks propagating through chahnels with
slowly changing cross—-sectional areas.

Chester (Ref. 1l4) considered the motion of a shock
wave through a channel consisting of two uniform sections
of nearly equal éross—sectional area joined by a section of
gradually changing area. The small area change is assumed
to create only small perturbations in the flow behind the
shock, and the equations of motion describing fhe flow can
be linearizgd and solved exactly. The solution shows that
the shock is not uniform across the channel after enhtering
the area change, but at any time the shock strehgth
averaged over its area is proportional to the local channel
~area. Thus, when the shock has passed the area change the
average shock strength remains constant. Local variations
on the shock surface decrease with time, and eventually a
steady state condition is reached in which shock strength

is uniform. The relationship between the small change B%A



in the cross-sectional area A and the resulting change

5M 1in shock Mach number M has the form

_ 2b2»15M (2)
(M"=1)K (M)

BA
A
where K(M) 4is a slowly varying function that contains
the specific heats ratio Yy .

Chisnell (Ref. 15) also considered the motion of a
shock through two uniform channels.separated by a small
area change, and by matching steady state flow regions in
the distance versus time plane (retaining only termé of the
order of the area change ©8A ) an expression equivalent
to (2) was obtained. He then extended the result to
éhéﬁnels with gradual but finite area changes by taking
the limit ©8A - 0 in equation (2) and integrating , thus
obtaining an expressiﬁn iﬁ closed form betweeﬁ local
channel area and shock Mach number. This procedure is
equivalent to representing a finite areé change by a
series of infinitesimal area changes, and assuﬁing that
the interference between successive interactions can be
neglected. 1In addition to the exact integration of (2},
Chisnell observed that a simpler approximate relation
could be obtained by treating the slowly varying function

K(M) as a constant and integrating (2) directly to find



1/K (M)

A(M2~l) = constant - (3)

This formula can be applied to converging cylindrica; or
spherical shocks by considering channels with areas pr04
portiénal to rj ' where r 1is the distance of the shock
from its axis or point of symmetry, and j equéls'l or 2
for cylindrical or spherical shocks, respectively. 1In the
neighborhood of the origin where the Mach number is large,

equation (3) becomes

rJMZ/K = constant (4)

where K is the limiting value of K(M) for very strong

shocks given by

L

11,1 [y 77
£oEg YT [2(\«-1)}

For comparison with the similarity solution equation (4)

can be written
shock velocity « r~IK/2

The exponents jK/2 for various values of Y are listed
in Table 1 for comparison with Butler's wvalues for
(1-a) /oo . Chisnell explained the close agreement between

corresponding values by obtaining a higher-order solution
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which considered the modification of the shock motion by
re-reflected disturbances. He found that although the
disturbances are not small, they tend to cancel each other
such that only slight modification results.

Whitham (Ref. 16) obtained the Chisnell relation
between shock Mach number and channel area using a signifi-
cantly different approach. The one-dimensional, unsteady
equations of motion are written in characteristic_form,
and the differential relation which holds along charac—
teristics intersecting the shock wave is applied to the
flow guantities immediately behind the shock. Substitution
of the Rankine-Hugoniot shock relations (expressed as
functions qf shock Mach number) results in a first-order
equation for Mach number as a function of channel area
which can be integrated directly to give a relation

identical to Chisnell's. The validity of the method

depends upon the smallness of the quantity %% + pa %%
at the shock (p 4is the fluid pressure, p the density,

a the sound speed, and u the fluid velocity). .Whitham
shows that this quantity is zero for one of Chisnell's
interactions, and since interference between successive
interactions is neglected the results for the two
approaches must be identical.

Whitham's method is more general in that it can be

applied to shock wave propagation into.-various kinds of
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nonuniform regions. An example of this will be given in

Part 4.4b.

l.2¢c¢ Shock Diffraction Due to an Initial Geometry Change

The Chester~Chisnell-Whitham formulation (hereafter'
referred to as the wa theory) assumes that the interaction
.between the shock wave and the converging channel can be
deécribed by the one-dimensional equations of motion. As
discussed in Part 1.3, experimental investigations have
typically involved contractions 6f various shapes.mounted
on conventional shock tubes, and significant two-dimensional
effects initiated at the transition from constant-area tubel
to converging geometry have been observed. These effects
are due to Mach reflection of the plane incident shock
on the channel walls, a phenomenon known to occur* where
shock waves encounter even a slight inclination of channel
boundary. In Mach reflection a discontinuity in shock
strength and propagation direction occurs at a three shock
intersection point (sketched in figure 30) which moves away
from the channel wall as the main shock progresses. The two-
dimensional nature of the shock diffraction results in
local perturbations in the flow behind the shock, and the

question arises as to the applicability of a one-dimensional

*A number of investigations of regular and Mach reflection
of shock waves at inclined surfaces were made following-
World War II. A good example is Reference 5.



12

theory. Although previous investigators noted the
cccurrence of shock diffraction, they failed to address
this guestion when comparing their results with the CCW

theory.

1.3 Previous Experiments

The first experimental investigation of shock strength-
ening in converging channels was made by Bird (Ref. 17).
Uéing argon at an initial pressure of 24 torr, shocks of
Mach number 2.3 - 2.6 were passed through two-diménsional
converging channels with various wall shapes. A schlieren
system and drum camera wefe used to measure the shock speed
along the channel centerline. Bird found that smooth,
gradual contractions produced the largest shock velocity
incieases, which wefe within 20% of the predictions of the
CCW theory. He also observed an apparent discontinuity in
shock speed on some of his streak photographs, which he
concluded was the intersection point of Mach reflections
from the nozzle walls. |

Similar drum camera techniques were used by Belokon'
et al. (Ref. 18) and McEwan (Ref. 19). Using high-energy
electric discharges Belokon' propagated extremely strong
shocks (up to M = 67) in air into a two-dimensional wedge
contraction.- By examining the light emitted from the
wedge.vertex a rough estimate of temperature was made, and

the device was suggested as a source of high-intensity"



13

radiation. McEwan made streak photographs and sequential
photographs of reiatively weak shocks in air propagating
into a two-dimensional parabolic contraction. Measurements
of shock velocity using the streak records were claimed to
show increases greatér than predicted by the CCW theory,
and McEwan suggested an optimum geometry might be found.
Both Belokin and McEwan noted Mach reflection effects.

A nonoptical method of measuring shock strengthening

was used by Russel (Ref. 20) and Dvir et al. (Ref; 21).

In these investigations shock velocities were measured in
a constant-area channel downstream of a conical convergence,
and estimates of the shock velocity at the convergence exit
were obtained by extrapolation. Russel's extrapolated
values were below the CCW predictions, and the differences
increased with increasing shock Mach number and decreasing
pressure. Better agreement was obtained by using real-gas
equilibrium conditions instead of ideal gas shock relétions
when applying Whitham's method. Dvir also found shock
velocities that were less than predicted values.

The only nonoptical measurement of the shock trajec—
~tory inside a contraction was a preliminary investigation
by Storm (Ref. 22) which led to the present work. A 17.5°
half-angle conical convergence was mounted on thé end of |
a three-inch diameter shock tube, and measurements were

made of the shock transit time from a thin film gauge on
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the straight shock tube to a piezoelectric pressure trans-
ducer located within the cone. By verying the transducer
position along the cone axis between successive firings of
the shock tube, a distance versus time trajectory for the
shock motion within the cone was obtained. A definite
shock acceleration was observed, but experimental scatter
~due to insufficient repeatability of the shock tube
prevented accurate shock velocity measurements. The data
did indicate the arrival en the eone centerline of at least
one stemshock corresponding to Mach reflection on the

convergence walls.

1.4 Goals of the Present Investigation

The present work is an experimental investigation into
the behavior of streng shock waves in a convergent channel.
The ihvestigation is directed towards determining if sueh
a geometrical device can be used to produce samples of high-
enthalpy gases. In order to improve upon previous efforts;
the first objective is the development of a new technique
for accurately measuring shock wave velocity aleng the
convergence centerline. Such measurements can be compared
. to the similarity/CCW predictions, and the extent to which
the expected shock diffraction at the convergence entrance
influences the shock behavior can be determined. By varying
the strength of the initial shock and the initial gas

pressure, the altering.of the shock behavior by real gas
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effects can be observed. Estimates of thermodynamic
conditions immediately behina the incident shock can be
obtained from calculated equilibrium conditions behind
plane shocks of comparable strength, and fitting the simi-
larity solution to the measured shock trajectories results
in a qualitative description of how these conditions change
in time. Since the convergence used is terminating,
measurement of reflected shock trajectories can provide
further insight into the state of the shocked gas; Any
evidence of a rapid expansion in the hot gas behind the
reflected shock would suggest the possibility of creating

sustained nonequilibrium conditions.
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II. EXPERIMENTAL APPARATUS AND PROCEDURE

2.1 The GALCIT Six-inch Shock Tube

The experiments were perforﬁed in the GALCIT* six-inch
shock tube (Ref. 23L a facility designed for the production
of stfong shock wavéé under very reproducible conditions
(a feature essential for the measurement techniQue usedS.
The basic shock tube system consists of a 6' long, 6.5"
diameter driver section, a diaphragm-transition section,
and a 36' long, 6" diameter test gas section (figure 1).
The entire tube is type 321 stainless steel with é 0.5"
nominal wall thickness, and the inside surface is honed
to a mirror finish. The reproducibility of the shock waves
is achieved through_a carefully designed diaphragm opening
mechanism. A hydraulic system clamps the diaphragm in the
diaphragm-transition section, and a set of crossed knife
blades mounted across the transition section uhiformly cuts
the diaphragm as it bulges under pressure. The various |
diaphragm bursting pressures are repeatable to within 4
psia or less, resulting in shock waves with Mach numbers
reproducible to within 1%.

The vacuum system consists of two mechanical pumps

and a liquid nitrogen cold-trapped oil diffusion pump.

*Graduate Aeronautical Laboratories, California Institute
of Technology
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The test section can be evacuated to a pressure of 5 x 10-5

torr in one-half hour, then with pumps off the leak/out-

gassing rate is less than 1 x 1073

torr per hour. A
thermocouple gauge and a cold-cathode ilonization gauge are
used to monitor the vacuum level. 1Initial test gas pressure
is set using a calibrated control volume (1/30 of the test
section volume) connected to a 0-50 torr, bellows-type
Wallace and Tiernan gauge. Incident shock velocities are
measured uSing two platinum'thin £film heat transfer gauges
mounted flush with the shock tube wall.

In the present investigation room temperature hélium
or hydrogen is used as the driver gas to produce Mach
number 6.0 to 10.2 shock waves in argon. The initial test

gas pressure was typically 1.5 torr, although some. measure-

ments were made at lower pressures.

2.2 The 10° Half-angle Conical Convergence

The circular cross-section of the GALCIT six-inch
shock tube, together with machining considerations, dictated
that a conical geometry be used for the area cohtraction.
The experiments of Bird (Ref. 17), as well as a preliminary
analysis of possible shock diffraction effects, led to the
conclusion that the convergence angle should be as small as
possible. The choice of 10° as the cone half-angle is a
compromise between small angle and machining costs.

In the final design the cone consists of two sections
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(£igure 2). The first section, which comprises 60% of the
convergence length, was made by electroplating nickel to a
3/8" thickness onto an aluminum mandrel (a procedure sug-
gested by Professor Donald E. Coles). The principal
advantage of this unique process is that the inside surface
of the nickel section has the mirror finish of the mandrel,
which was relétively easy to machine. The initial radius
chénge on the mandrel (and thus on the nickel section) was
smoothed over a X0.5" axial distance in the hopé of reduc-—
ing shock diffraction effects. The initial diameter of
the nickel section matches the final diameter of the shock
tube to within 0.001". The second cone section was made
from 2024 aluminum har stock using conventional machining -
methods. The minimum diameter of the second section is
1/8", giving an overall area reduction of 2300:1. A 1/8"-
diameter hole remains at the vertex to allow insertion of
instrumentation. The initial diameter of the second
sectién matches the final diameter of the first section to
within 0.001". The two sections are joined to each other
and to the shock tube by means of collars and alignment
rims. A vacuum seal is cbtained at all joints by using

neoprene O-rings.

2.3 Multi-crystal Axial Piezoelectric Probes

The basic deficiency of previous investigations is

the lack of accuréte shock velocity (and thus shock
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strength) measurements within the area contraction. The
only method that had been used was to measure the slopes of
sﬁock trajectories on distance versus time streak photo—_
graphs obtained with a schlieren system and drum camera.
This graphical differentiation procedure is subject to large
errors, and is insensitive to small, localized variations

in shock velocity. A better method of measuring shock
velocity was obviously required in the present investigation
in order to achieve the objective of a precise determination

of shock behavior.

2.3a Probe Design and Construction

The device designéd to produce'accurate shock velocity
measurements in the 10° conical convergence is shown in
figure 3. Suitably named a “multi-crystal axial piezo-
electric probe", the instrument consists of two or more
PZT-5% cylindrical tubes 0.043" in length contained within
a 0.124" diameter axially-symmetric support structure.
Conducting epoxy is used to fasten the iﬁ;ide surface of
each crystal to separate 0.094" o.d. stainless steel
support tubes 0.30" in length. Electrical leads are
soldered onto the inside surfaces of the support tubes.

A "basic two-crystal unit" is formed when a 0.094" i.d.

fiber-filled phenolic tube having a precisely measured

*A lead zirconate/lead titanate piezoelectric ceramic
manufactured by the Clevite Corporation.
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length (0.367" typically) is used to join two crystal
suppor: tubes (figure 3). The probe used in most measure-
ments has two such units, with their crystal-pair midpoints
located 1.997" apart. Fastened on the front of the probe
is a sharp (7o total vertex angle) conical aluminum tip
with a rounded shoulder. The probe shaft is a 0;120" o.d.
stainless steel tube 11" in length. At the rear of this
shaft are a 0.60" diameter aluminum collar used in locating
crystal positions within the cone (described in Part 2.3b),
and a 7-pin miniature connector to which the internal
electrical leads from each crystal are soldered. The
remainder of the support structure consists of a series
of 0.124" o.d. stainless steel and phenolic tube segments
connected by means of 0.094" o.d. stainless steel support
tubes. A standard epoxy is used to fasten all components
of the support structure, and to f£ill the interior of the
probe ;haft ét the rear end to ensure a vacuum seal. The
electrical path for the piezoeleétric crystals is cémpleted
by using either siiver print or conducting epoxy to paint
conducting paths from the external crystal surfaces to the
stainless steel probe shaft (which serves as a ground).

The probe is inserted into the cone at the vertex

»

and positioned along the axis of symmetry. 1In order to
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isolate the probe from stress waves in the cone walls¥*

the shaft is entirely supported by three neoprene O-rings
contained within an aluminum “probe holder" (figure 2). At
maximum extension the tip of the probe is measured to be
within 1/16" of the cone centerline, corresponding to a
maximum angular deflection of less than 1/4°. For
measurement of incident shock velocities near the cone
entrance the second section of the cone is removed, and
the probe inserted through an end wall fastened té the
main cone section. The probe holder attaches to this end

wall by means of an adapter.

2.3b Shock'Velocity Measurements

The piezoelectric crystals are polarized between the
inside and outside diameters. Thus, the radial compression
produced by the shock pressure jump generates a sequence
of signals as the shock passes the crystal positions along
the probe. Shock velocities are determined by measuring
the time interval between signals produced by the adjacent
crystals in a "basic two-crystal unit". Since ﬁhe velocity
determined in this manner is an average over the distance

between crystal positions, it is advantageous'to have

" *When the diaphragm bursts, stress waves generated in the
shock tube walls propagate down the tube at a velocity
considerably higher than typical initial shock velocities.
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the crystals as close together as possible. The separation
distance of lcm* used in all crystal pairs is a compromiseé
between a small averaging distance and sufficiently long
time intervals to ensure adequate resolution. These inter-
vals were typically in the range 1.6 - 5.5 microseconds,
and the time resolution (discussed in Part 2.4) sufficient
to obtain velocities accurate to 3% or better.

Typical probe responses for several different shock
Mach nunbers are shown in figure 4. The signals ére
unamplified, aﬁd no impedance-matching circuitry is used.
Initial rise times are typically 0.4 microseconds and the
initial ringing has a frequency of approximately 1.5 MHz.*%
The standard convention used in reading the crystal
responses is to measure the time interval between the first
positive peak on each signal (a detailed analysis of the
probe response can be found in Appendix A.3). :An exception
to this is necessary at Very high shock Mach numbers, when'
tﬂe fundamental mode of crystal response changes (shown in the
third picture in figure 4). The modified convention is
then to measure the time interval between the first small
negative peak on each signal, and this necessitates a small

time interval correction (discussed in Part 2.4).

*The distance corresponds to 0.023 of the cone length.

**The weak precursor oscillation shown on the bottom traces
is a signal induced by the response of the adjacent crystal
(upper traces).



23

When construction of the first probe was completed,
it was tested in the straight shock tube where reference
shock velocities could be measured with thin film‘gauges
(the cone was removed and the probe mounted on a plane end
wall). The first measurements gave velocities that were
7 = 11% lower than the reference values, indicating that
a significant interaction between the shock wave and the
probe was occurring. This interaction effect was believed
to be primarily a result of the diffraction of the plane
shock by the conical tip of the probe*. To alieviate the
problem, the original probe tip'(23O total vertex angle,
0.65" long) was replaced by the sharper, longer tip shown in
figure 3 (7o total vertex angle, 2.83" long). This geometry
change reduced the differences between the reference wveloci~-
ties and the probe-measured velocities to 1 - 4%, as shown
in figure 5. 1In this figure the symbols VSl ~and 'V52
refer to velocity measurements made with the first and
second crystal pairs, respectively.

The probe enables the measurement of shock wave
velocity at two locations along the cone centerline during
each firing of the shock tube, To obtain a complete shock
velocity versus distance profile, it is necessafy to make

a large number of runs under identical initial conditions

*Mach reflection occurs, and a weak reflected shock remains
attached to the probe tip.
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while varying thevprobe position within the cone*. When
adjusting the probe position the individual crystal loca-
tions relative to the cone must be found. A vernier
caliper with 0.00l1" divisions is.used to set the distance
between the front face of the aluminum collar on the procbe
.shaft and the rear face of the probe holder (figure 2).
This effectively determines the crystal positions relative
to the probe holder, since the distances from the aluminum
collar to the various crystals were accurately meésured
during construction. Knowledge of the cone dimensions then
allows the calculation of the crystal positions relative to
either the cone entrance or the virtual Qertex. Since the
initial radius break at the entrance was smoothed during
construction, it is necessary to define an "effective" cone
entrance as the virtual location of the wall slope discon-
tinuity. The distance from the "effective" enfrance to the
probe holder is found using the cone vertex angle and the-
dimensions of the second cone section. 1In this manner the
crystal positions within the cone can be determined to
within 0.002" relative to previous settings, and to within
0.005" relative to the probe holder. The distance from the
probe holder‘to the “"effective" cone entrance can be

calculated to within 0.015".

*The extreme repeatability of conditions in the GALCIT 6"
shock tube allows this approach to be used.
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2.4 Data Reduction

To obtain a velocity value from an oscillogram dis-
playing the responses of two adjacent crystals (figure 4),
it is necessary to accurately determine the time intérval_
between a consistent ‘point on each signal, then divide this
time by the corresponding distance traveled by the shock..
As mentioned in Part 2.3b, the standard convention used in
reducing most pictures is to measure the time between the
first positive peak on each trace. Since this peék is
believed to correspond to the instant when the shock arrives
at the rear fage of the cylindrical crystal (discussed in
Appendix A.3), the appropriate distance used in computing
the velocity is the length of the phenolic spacing tube
plus the length of the second crystal. This distance is
measured to within }0.001" for each crystal pair during
construction.

To account for inaccurate oscilloscope sweep rates and
horizontal drift of the beams, the time intervals are
measured in a roundabout way. Timing marks placed simulta-
neously on both beams at the start of the sweep are used as
an absolute time reference. The location of these timing
marks and the initial positive peaks are scribed on the
oscillogram, then the distance from the timing mark to the
first positive peak on each trace is measured under magnifi-

cation using a scale with 0.02" divisions. These distances
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are converted to oscilloscope grid lengths by measuring
the grid divisions on the oscillogram using the same scale.
The grid scale numbers are then converted to times by using
accurate sweep rate calibrations for each beam (made .
periodically during running by means of a Tektronix model
180A Time Mark Generator). The time interval is finally
determined by subtracting the time from the timing mark to
the initial positivé peak on the first trace from_the
corresponding time on the second trace. The estiﬁated
accuracy for this reduction procedure is 10.05 microseconds
for a typical 4 microsecond time interval. The marking and
reading of the pictures must be done by hand, but the
remainder of the manipulation is done by computer. The
times from each crystal signal, together with delay times
and vernier caliper readings, are also used to produce
distance versus time shock trajectory data.

Two modifications to the data reduction procedure are
required under certéin conditions. The first involves a
change in the basic crystal response mode when the.shock
Mach number is'very high (shown in the third picture in
figure 4). As discussed in Appendix A.3, it is believed
that when the shock velocity is above a certain limit the
" crystal response changes from a longitudinal ringing mode
to a radial ringing mode. The limiting velocity is not the

same for all crystals, and at some shock speeds mixed-mode
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oscillograms result. One consistent feature of crystal
responses at higher shock velocities (just prior to and
after the mode switch) is a small initial negative peak.
The time difference between this negative peak and the
first positive peak of the longitudinal mode can be measured
for a small range of shock velocities, and is foqnd to be
nearly constant for each crystal. Thus, when the lbngi—
tudinal mode is no longer visible in one or both traces on
an oscillogram, the modified convention is to measure times
to the initial negative peak and then add the small time
differences previously determined.

The second modification required is a result of coating
the entire surface of the probe with a thin layer of con-
ducting epoxy when meaSuring very high shock velocities.

The coating is necesséry to protect the probe from the high
temperatﬁres produced by very strong shocks, but has the
effect of attenuating the shock velocity along the probe
surface (probably due to the local effect of increased
surface roughness). By comparing identical measurements
made with and without the probe completely coated, it was
found that a 1.3 } 0.1% attenuation occurred at the first
crystal-pair position, and a 3.8'i 0.2% attenuation occurred
at the second crystal-pair position. A weak Mach number
dependence was also indicated. To compensate for this
attenuation when reducing data obtained with the probe

coated, correction factors of 1.3% and 3.8% were added.
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These corrections could be 1% low at the highest measured

velocities due to the Mach number dependence.
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ITI. RESULTS

In the first phase of the experiment the.incident
shock wave behavior was investigated by obtaining complete
profiles of the centerline shock velocity along the length
of the convergence. For the first profile a relatively
low initial shock Mach number was used in order to minimize
deviations from ideal gas behavior (present theoretical ap-
proaches assume a perfect gas). A second profile was then
obtained using a much higher initial shock Mach numbe: in
order to observe the effects of relaxation and radiation
processes. Finally, the effects of varying the initial
shock Mach number and initial test gas pressure were
studied at particular locations on the shock velocity
profiles.

The piezoelectric probe was found to be sufficiently

sensitive to respond to the weaker pressure juﬁp associ-
ated with the reflected shock wave. Consequently, in the
second phase of the investigation a compiete profilé of the
centerline reflected shock velocity was obtainea for each
of the two primary conditions used in the first phase.
The beha&ior of the reflected shock as it emerged from the
cone entrance was observed using a piezoelectric probe with
a much longer support shaft.

Estimates of actual gas conditions immediately behind

the incident shock were obtained from calculations. of the
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equilibrium conditions behind plane shocks of comparable
strength. To determine qualitatively how the gas properties
vary in time after the incident shock has passed, the
similarity solution (discussed in Part l.2a) was fitted to
the incident shock profiles. Fluid velocity, pressure,
temperature, and density were computed numerically along
particle paths for the flow between the incident and

reflected shock waves,

3.1 Velocify of the Incident Shock Wave

3.la Mach Six Initial Shock

For the first incident shock velocity profile a low
initial Mach number and a relatively high initial test gas
pressufe were needed to minimize deviations from perfect
gas behavior. It was necessary to compromise the low Mach
numbei requirement, however, due to the minimum pressufe
Jjump requirementé for adequate probe response (é minimum
pressure rise of 50 torr was.found to be necessary for
good signals). The conditions chosen were an initial Madh
number of 6.0 in argon at an initial pressure of 1.5 torr.
At this pressure real gas effects are negligible for
shock Mach numbers below nine.

The results of the measurements are shown in figure 6.
Vs is the local shock velocity measured along the cone
axis with the probe, V_ is the initial shock velocity,

X is the distance from the cone entrance, and L is the

total convergence length (from the entrance to the virtual
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vertex). All data.points are shown in figure 6 to illus-
trate the small experimental'scatter. The most striking
characteristic immediately apparent is that a gradual,
monotohic increase in shock velocity does not occur, ‘but
instead there are a number of small intervals in which the
shock experiences very rapid acceleration. The region
between two bf these sudden jumps is characterized by an
initial deceleration interval followed by a gradual accel-
eration. The measured velocity for the first 3o%zof'the
convergence is the same as the initial shock velocity.
Near the cone vertex the shock velocity has increased by a
factor of three.

The data displayed in figure 6 indicate that Mach
reflection of the initially plane shock occurs on the
convergence walls, and the subsequent diffraction processes
dominate the shock behavior throughout the convergence
length. The first velocity jump shown in figure 6 corres-.
ponds to the arrival of the three-shock intersection point
at the cone axis (sketched in figure 7). Beyond this point
Mach reflection of the stemshock on the cone axis occurs (a
previously unobserved effect), and a "center shock" (actually
the new stemshock of the Mach reflection on the axis) pro-
gressively grows until it fills the cone cross-sectional
area. At this time the entire diffréction process repeats,

with Mach reflection on the cone walls followed by Mach
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reflection of the stemshock on the cone axis. The cycle
apparently continues until the cone vertex is reached.

The positions along the cone axis where stemshock
intersections occur (hereafter referred to as intersection
points) and the magnitudes of the corresponding velocity
jumps can be determined more accurately by examining the
individual piezoelectric crystal responses. As a parti-
cular crystal is moved past the intersection point on
successive runs a marked increase in signal amplifude
occurs. The intersection point position can thus be pin-
pointed (typically to within *.04") and runs made with a
crystal-pair located on either side to determine the
velocity jump. In figure 8 the intersection point posi=-
tions are indicated with a dashed line. For this figure
overlapping measurements have been averaged and data
correéponding to intersection points occurring within a
crystal-pair location have been eliminated.

The measured velocity just before each jump and the
velocity increase across each jump are plotted versus
intersection point position using logarithmic scales in

figure 9. V_ is the initial shock veiocity,‘ V; is the
velocity immediately before the jump, and V: the velocity
immediately after. Theoretical values from an approximate
solution of the shock diffraction process (due to

Mr. Erik Storm)} are included in the figure, and will be



33

discussed in Part 4.2. The measured jumps in shock velocity
appear to be nearly constant, while the velocity values
immediately before an intersection point apparently have a
simple power law dependence on intersection point position.
The nearly equal logérithmic spacing of the intersection
points indicates that the position of a given point (rela-
tive to the cone vertex and normalized by the cone length)

is proportional to the position of the previous point.

3.1b Mach Ten Initial Shock

For measurement of a second shock velocity profile the
initial conditions were altered so that "real gas effegts"
on the shock diffraction process could be observed. The
initial test gas pressure was again 1.5 torr (measurements
to sfudy the effect of initial pfessure variations will be
described in Part 3.lc), but the initial shock Mach nuﬁber
was increased to 10.2. As discussed in Part 3.3a, for this
initial Mach.number significant electronic excitation and
ionization should occur in the shocked argon beyond the
first intersection point.

All data poinfs obtained in this measurement are shown
in figure 10. The general features of the profile are the
same as the Mach six case up to the third intersection
point, after which considerable differences are apparent.
Figure 11 shows the same data with the intersection points

located, overlapping measurements averaged, and data
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corresponding to intersection points occurring within a
crystal-pair position elimihated. The dashed line in this
figure indicates the results of the Mach six measurements for
comparison. Beyond the third intersection point the high
Mach number data show a rapid decline in the shock velocity.
The velocity jump at the fourth intersection point is very
weak, and a fifth intersection point is not observed (in both
cases the measurements terminate at x/L = 0.95). The loca=-
tions of the first two intersection points are the:same,
while the third and fourth points are displaced slightly.

The jump in shock velocity at each intersection point
and the velocity immediately before each jump are plotted
versus intersection point position on logarithmic scales
in figure 12. The velocity jumps are not constant in this
case, but instead decrease progressively. The measﬁred
velocities just prior to intersection points deviate
slightly from the simple power law dependence on intersectidn

point position found with the Mach six initial shock data.

3.1c Effects of vVarying Initial Mach Number and

Test Gas Pressure

The shock diffraction theory (Appendix B) predicts
that at any particular location in the cone the measured
‘shock velocity should scale with the initial velocity.

Because the theory assumes ideal gas behavior, a breakdown
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in the scaling is expected at higher Mach numbers when
real gas effects become important. The shock velocity
profiles in figure 11 show that increasing the initial
Mach nunmber from 6.0 to 10.2 results in a significant
scaling breakdown only after the third intersection point.
since the local Mach number jumps from 19.1 to 23.2 at
this intersectiomn point in the Mach ten case, the pfofiles
do not accurately indicate the local Mach number where real
gas effects begin to alter the shock diffraction pattern.
In order to examine the dependence on local Mach number
more precisely a series of measurements were made holding
the probe at fixed locations while varying the initial
shock Mach number between 6.0 and 10.2. The initial pres-
sure was again 1.5 torr. The results are shown in figure
13, where measured velocity normalized by initial velocity
is plotted as a function of initial shock Mach number for
three locations along the cone axis. As might be expected
from figure 11, no significant variations are observed
except at a position between the third and fourth inter-
section points. At this location the scaling begins to
fail at a local Mach number between 18.7 and 19.8.

Because real gés effects are enhanced by reducing
:the initial gas pressure'(Refs. 24, 25), the measurements
shown in figure 13 were repeated fof the last two probe
positions using an initial pressure of 0.5 torr. The

results are shown in figure 14. At a position between the
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second and third intersection points the measured velo-
cities are nearly the same as in the higher pressure case,
though a slight rise with increaéing initial Mach number
is indicated. At a position between the third and fourth
intersection points the measured velocities are substan-
‘tially lower and show no variation with initial Mach
number. The highest local Mach number measured at this

location is 21.1.

3.2 Velocity of the Reflected Shock Wave

The incident shock veiocity profiles show that
multiple Mach reflection processes are initiated at the
cone entrance and continue until the cone vertex is
reached. 2an interesting question arises as to whether
the<shock wave retains a two~dimensional character upon
reflection, or instead appears like a spherical shock‘
emanating from a point source. Whatever the nature of the
shock immediately after reflection, its subsequent behavior
is determined by the divergent geometry and the complex
flow generated by the incident shock. Although.the nature
of this flow can only be inferred from an investigation of
. the reflected shock behavior, such an investigation was
undertaken in the hope of contributing to a qualitative
understanding of the way gas properties change in time
after the incidént shock has passed. Measurement of reflec-—

ted shock velocity profiles began after the piezoelectric
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probe was found to be capablé of respohding to the weaker
pressure jumps associated with the reflected shock. Since
complete incident shock profiles were determined at an

initial pressure of 1.5 torr in argon using initial shock
Mach numbers of 6.0 and 10.2, these conditions were chosen

for the reflected shock measurements.

3.2a Mach Six Initial Shock

The results of the velocity ﬁeasurements made using a
Mach six initial shock are shown in figure 15. ,Thé data
points are averaged from two or three runs, and the error
bars indicate the experimental scatter. The measurements
for x/L > 0.3 were made with the four crystal probe
described in Part 2.3, while the measurements for
x/L < 0.3 were made using a probe constructed with a 22"
shaft containing only one pair of crystals. V is the

RS

measured reflected shock velocity, and V is the velocity

E
of a shock reflecting from a plane end wall under the same
initial conditions. The numerical value for VE results
from calculations of equilibrium conditions in argon by
Arave.and Huseby (Ref. 25), in which electronic excitation

‘and’ single ionization are taken into account.* For the

initial conditions used in this measurement, V is 6.6%

E
less than the corresponding ideal gas reflected shock

velocity.

*The use of real gas values for Vg was suggested by
Dr. J. E. Broadwell.
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The first feature of the data in figure 15 is the
absence of values for x/L > 0.84 . Measurements were
attempted in this region, but no detectable signals
corresponding to shock propagation were observed. The
measurements shown for x/L > 0.80 are characterized by
very weak probe signéls. The second feature of the.data
is the velocity variation which occurs in the region
0.55 < %x/IL. < 0.84 , and to a lesser degree near the cone
entrance. Between these two regions the measured:velocity
shows a surprisingly slow deceleration, decreasing by only
11% over a distance of half the convergence length. Beyond
the cone entrance the shock deceleration increases, and
the measured velocity appears to be approaching the value
for shock reflection from a plane end wall.

The reflected shock was also observed using the two
platinum thin film gauges located 13.3 cm and 23.3 cm from
the cone entrance. The last datum point on figure 15 was
obtained with these gauges, the position shown corresponding
to the midpoint 18.3 cm from the cone entrance. This value
is necessarily an average over the 10 cm spacing between
the gauges. Typical thin film responses produced by the
.reflected shock are shown in figure loa. The unsteady
oscillations in the signals following the reflected shock
are characteristic of these gauges wﬁen the gas is partially
ionized (Refs. 26, 27), and thus indicate that upon

emergence from the cone the reflected shock is strong
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enough to produce at least a small degree of ionization.
‘The small "dips" indicated on the first oscillogram in
figure léa ére a consequence of radiation emitted from the
cone vertex region after the reflection of the incident

shock. These will be discussed further in Part 4.4d.

A final feature of the Mo 6.0 reflected shock
measurements is shown in figure 17, which is a distance
versus time plot of the incident and reflected shock waves.
In the region 0.74 < x/L < 0.92 a second.reflecﬁed shock
is clearly visible in piezoelectric probe responses
recorded using a slower oscilloscope sweep rate. As the
parallel trajectories in the figure indicate, thé measured
velocity of this shock is nearly the same as the primary
reflected shock velocity. The probe signal corresponding
to the second shock is weak for x/L < 0.80 , and for

x/L < 0.74 the signal can not be seen. The dashed-line
curves in figure 17 are approximate particle paths cal-

culated from the Guderley similarity solution‘(discussed

in Part 3.3Db).

3.2b Mach Ten Initial Shock

The results of reflected shock velocity measurements
made using an initial shock Mach number of 10.2 are shown
in figure 18. The data points are averages over two or
three runs, and error bars indicate typical scatter. The

notation is the same as in figure 15, but VE is now the
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calculated (real gas) velocity of a shock reflecting from
a plane end wall under the present initial conditions.
For this case Vi is 45.9% less than the corresponding
ideal gas reflected shock velocity. The dashed line in
figure 18 indicates the results of the Mach six initial
shock measurements for comparison

The general features of the Mach ten initial shock
measurements are similar to those found in the lower Mach
number case. Near the cone vertex rapid variatioﬁs in
velocity are observed, but these variations are smaller and
occur closer to the vertex. Unlike the Mach six case, the
reflected shock is easily detectable up to x/L = 0.95
(the probe measurement limit). The velocity is again
nearly.constant over a large fraction of the convergence
length, and beyond the cone entrance a more gradual decel-
eration towards the velocity value for shock reflection
from a planéAend wall is indicated. | :

Considerable difficulty was encountered in observing
the reflected shock with the thin film gauges due‘to
spurious signals occurring prior to the reflected shock
arrival. These large-amplitude, unrepeatable signals
indicate charged particles are present, pfoduced either by
photoionization or by photoemission from the film. A con-
sistent signal caused by radiation emitted from the hot gas
at the cone vertex (upon reflection of the incident shock)

preceeded the irfegular signals, as shown in figure l6b.
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A distance versus time plot of the incident and
reflected shock trajectories is shown in figure 19. 1In
contrast to the Mach six case, a second reflected shock
could not be detected. The dashed-line curves in the
figure are approximate particle paths calculated from the

similarity solution (Part 3.3b).

3.3 Flow Conditions Behipd the Incident Shock Wave

The measurement of incident and reflected shock
velocity profiles determines the.dynamic behavior:of strong
shock waves in the conical convergence. A;though these
measurements are the primary objective of the experiment,
the underlying motive is to ascertain if such a convergence
can be used to produce high-enthalpy gas samples. For this,
corresponding estimates of thermodynamic conditions in the
shocked gas are necessary. Efforts to make these estimates
are restrict¢d by the complex nature of the flow generated
by the incident shock. Nevertheless, a qualitative descrip-
tion of the flow between the incident and reflected shock
waves can be obtained from perfect gas and equilibrium
normal shock conditions, and from the Guderley similarity
solution. Similar means for obtaining estimates of condi-
tions behind the reflected shock are not available.* A
brief discussion of possible conditions in this region is

given in Part 4.44d.

*The similarity solution for the flow behind the reflected
shock is not applicable (discussed in Part 4.4a).
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3.3a Normal Shock Eguilibrium Conditions

When the incident shock is at any position along the
cone centerline (except near an intersection point), the
thermodynamic conditions closely behind the shock shquld be
approximated by the c¢onditions behind a plane shock with
the same Mach number. For an initial pressure of 1.5 torr,
ionization is negligible in argon when leocal Mach nﬁmbers
are less than nine, and the plane shock conditions are given
by the ideal gas Rankine-Hugoniot equations. At higher Mach
numbers the "frozen" conditions immediately behind the shock
are still given by the ideal gas equations, but a relaxation
region follows in which equilibrium ionization is estab-
lished. Equilibrium conditions beyond the relaxation region
can be calculated numerically. The accuracy in using these
one-~-dimensional calculationé to estimate experimental condi-
tions depends upon whether the corresponding length of the
relaxation region is small compared to local cone and shock
diffraction dimensions.

By combining the methods of statistical thermodynamics
with the gasdynamic conservation laws, Arave and Huseby
(Ref. 25) calculated equilibrium properties of argon across
incident and reflected normal sﬁock waves. Only single
ionization and excitation to the first few electronic
energy levels were taken into account, but these approx-
imétions are reasonable for the range of Mach numbers

.measured in the cone. Since the calculations are made
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for initial pressures of 0.1, 1.0, and 10 torr, interpola-
tion is necessary to find conditions corresponding to an
initial pressure of 1.5 torr. The resulting values for the
equilibrium temperature ratio TZ/Tl* , pressure ratio |
p2/pl . and degree of ionization « are plotted as
functions of shock Mach number in figure 20. Indicated in
the figure are the range of local Mach numbers obsefved in
the measurement of the two incident shock velocity profiles,
and the particular Mach numbers found at certain positions
'along the cone centerline (approximate midpoints between
stemshock intersection points). At a position between the
third and fourth intersection points (x/L = 0.86) the
predicted temperatures behind the incident shock for the
initial Mach number six and ten cases are 11,000°K and
14,1000K respectively, the corresponding pressures are
0.487 and 1.325 atmospheres, and the degrees of ionization
are 0.075 and 0.346. ‘
The curves in figure 20 furnish estimates of conditions
closely behind the incident sho¢k provided the length of
the relaxation region is small compared to local cone and
shock diffraction dimensions. Theoretical and experimental
studies of the relaxation region behind strong shocks in
argon {(Refs. 28, 29) show that the relaxation distance

decreases with increasing Mach number and initial pressure.

*The subscripts "1" and "2" denote conditions ahead of and
behind the advancing normal shock, respectively,
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Table 2 lists relaxation distances and times (laboratory
frame of reference) for the Mach numbers measured in the
two incident shock velocity profiles at the four particular
positions indicated in figure 20. The cone radius and the
distance to the previous intersection point at each of these
positions are also listed for comparison. In the Mach six
case the relaxation distances are large compared to the
expérimental dimensions, indicating that the thermodynamic
variables behind the incident shock do not attain the pre-
dicted equilibrium values before compressive changes
resultiﬁg from the converging geometry occur. In the Mach
ten case the relaxation distances are smaller than the
experimental dimensions for positions beyond the second
intersection point, and estimates from figure 20 should be

more accurate.

3.3b Similarity Solution for Flow in Convergence

Because the normal shock calculations only provide
estimates of conditions directly behind the incident shock,
it remains to determine how these conditions vary in time
after the shock has passed. The similarity solution
described in Part l.2a produces a complete description of
the flow field behind a spherical shock imploding in an
ideai gas. The assumptions of spherical symmetry and
perfect gas behavior prevent a quantitative description of
the flow produced in the experiment, but the solution still

provides a gqualitative picture of the expected compression
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resulting from the conical geometry.

The solution is formulated using the independent
variables r and t' , where r is distance from the point
of symmetry, and t' is time measured from the instant of
collapse of the implading shock. 1In the experiment the
more practical variables are distance measured from the

cone entrance, x , and time measured from the shock arrival

at the cone entrance, £t . The two sets of variables are
related by
= - L —
r L X . t t tA
where tA is the time required for the incident shock to

propagate the length of the cone. The results of Butler's
calculations (Ref. 12) are in the form u/Ué and a/Ué at
a fixed LI plotted as functions of t'/té . u is the
fluid velocity, a 1is the local sound speed, Ué is the
shock'velocity at the position ro o and té is the time

at which the shock reaches rO . The last three values '

1/0

are related by tO = Bro

. Wwhere B 1is as yet undeter-
mined. To use the solution it is necessary to pick an

initial shock position (r_, t') and either the shock

o} o}

velocity at this position or t, - Some flexibility thus
exists in fitting the solution to the experimentally-
determined incident shock trajectory. The exponent in the
power-law dependence of shock velocity on position (which

is a fundamental result of the éolution) is not affected

by the fitting.
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Figure 21 shows various fits of the similarity solution
to the Mach six incident shock data. xO/L and T are
the normalized initial shock position and time chosen, Uo
is the shock velocity at the cone entrance (either chosen
or fixed once tA is chosen), and TA. is simply tA
normalized. All times are normalized by L/VO (- where Vo
is'the measured shock velocity at the cone entrance.
Matching the position and velocity at the cone entrance
(curve 1) results in a predicted shock that is faster for
most of the cone length, and thus arrives at the vertex
sooner. Matching the position at the entrance and the
final arrival time tA (curve 2) results in a predicted
shock initially slower than observed, but again progres-
sively faster near the vertex. Matching the position at
an intermediate point within the cone (midway betwéen the
first two stemshock intersection points) and the final
arrival time results in a much slower predicted shock at
the cone entrance, but a better fit near the vertex
'(curve 3). The last matching method is the most appro-
priate, since the similarity solution is valid only in some
neighborhood of the point of symmetry.

Using the fitting conditions fér the.third éurve in
figure 21 and Butler's calculations for fluid velocity
behind the incident shock, particle paths were computed

by numerically integrating
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dx _
T = u(x,t)
for x(t) . Examples of the resulting particle paths are

shown in figures 17 and 19%. Each computation is terminated
by the arrival of the reflected shock as predicted by the
similarity solution, which characteristically occurs earlier
than the observed reflected shock. Fluid temperatures along
a particle path follow from Butler's computed values for
sound speed. Pressures and densities are found by.noting
that the quantity p/pY is constant along a particle path
(since entropy is constant along a particle path), where p
is the pressure, p the density, and vy the specific heats
ratio. For a given particle path the wvalue of p/pY can be
found from the shock jump conditions using the shock velocity
at the initial particle path position. Knowing the sound
speed ( Yp/p) at each point along the path then allows
solution for p and p .

The results of these calculations are shown in figures
22 - 25, In figure 22, fluid velocity along several parti-

cle paths is plotted as a function of time. u is the

2
o

fluid velocity behind the Mach six initial shock, while
(x/L)I and (x/L)R are the initial and final particle

positions. Along each of the paths a fluid particle

*The similarity solution was fitted toc the Mach ten incident
shock data to obtain the particle paths shown in figure 19.
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experiences a gradual acceleration followed by a rapid
deceleration. This behavior is accentuated near the vertex.
Fluid pressure along the same particle paths is plotted on
semi~logarithmic scales in figure 23. The monotonicjrise
in pressure becomes quite steep near the vertex, with a
fluid particle initially shocked at =x/L = 0.76 experi-
encing a factor of 14 increase. Temperature also rises
conéiderably along particle paths, as shown in figure 24.
The fluid particle starting at x/L = 0.76 experiences a
factor of 2.8 increase during the compression. The varia-
tion_of fluid density along a particle path is vefy similar
to ﬁemperature, with the same particle experiencing a
factor of 4.5 increase. 1In figure 25, fluid velocity,
bressure, and temperature are plotted versus cone position
at the instant the shock reaches the cone vertex. Condi-
tions near the cone entrance are not shown, since the
similarity solution can only be applied to fluid particles
originally located within the convergence.

The calculations shown in figures 22 - 25 provide a
qualitative description of the compression which follows
the Mo = 6.0 incident shock; Only scale changes result
from similar calculations using a fit to the M, = 10.2
incident shock, since the Guderley solution assumes ideal
gas behavior. Because of increasing ionization in the

experimental flow, the actual temperature rises during the
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compression should be smaller than the predictions of the
similarity solution, and the density increases should be

somewhat larger. The actual pressure changes are probably

comparable.
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IV. DISCUSSION

4.1 Comparison of Incident Shock Behavior with

One-Dimensional Theories

The Guderley similarity solution and the Chestecr-
Chisnell-~Whitham theory.(in the strong shock limit) predict
that shock velocity varies with distance from the cone
vertex (r) according to the power law

shock velocity « r™ "
where the exponent depends only on the specific heats
ratio, Y . Butler's calculation of the similarity solution
gives n = 0.45269 for argon (Y = 5/3), while the CCW'
theory predicts n = 0.45211. The CCW formulation requires
that the initial shock velocity at the cone entrance be
speéified, whereas an undetermined constant and a different
time origin in the similarity solution allow some flexi-
bility in choosing the initial conditions.

In figures 26 and 27 the similarity and CCW solutions
are compared with curves represehting the incident_shock
data and the shéck diffraction solution (discussed in
Part 4.2). Because shock velocity is plotted as a function
.of distance from the vertex on logarithmic scales, the
similarity and CCW curves appear as straight lines. The
"#3 fit" of the similarity solution refers to the matching
conditions chosen for the third curve in figufe 21, in which

measured arrival times.at the midpoint between the first
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two intersection points and at the vertex are used to fit
the solution to the incident shock trajectory. Such a fit.
is a better approximation near the vertex, where (in the
absence of real gas effects) the validity of the similérity
assumption improves. . The same Vo is used to normalize
both the CCW and similarity velocity values, and conse-
quently the similarity solution is shifted downward'(the
"#3 fit" gives a lower initial velocity). The CCW curve in
figure 26 shqws the effect of correcting the local channel
cross—~sectional area for the.area of the piezoelectric
probe. The correction is negligible for x/L < 0.90, and
at .x/L = 0.95 only a 4% velocity increase results.

A fundamental difficulty in comparing the experimental
results and the one-dimensional theories arises from the
fact that the measured values are centerline velocities of
a shock wave witH distinct two-dimensional variations over
its surface (which persist until the cone vertex is reachgd),
whereas the theories assume a uniform shock producing one-
dimensional flow. A question that comes to mind is whether
the one-dimensional theories still approximate the shock
strength averaged over its surface area. Knowledge of only
'the centerline shock velocity is insﬁfficient to determine
such an average, but a qualitative estimate can be made by
noting that the stemshock formed in Mach reflection pos-
sesses higher local velocities than the original shock. At

a position approximately midway between two successive
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intersection innté, the center shock formed by Mach
reflection on the cone axis (figure 7) occupies the entire
cross~sectional area. Since Qariations in Mach number over
the center shock surface should be small compared to -the
changes which occur at a three-shock intersection, the
measured velocity at this position should be close to an
averaged valﬁe. Between such a midpoint and the ne#t inter-
section point the growing stemshock contributes higher local
velocities towards an average, and the cénterline:velocity
in this region will be less than an averaged velocity.
Between a midpoint and the previous intersection point.the
cenﬁer»shock is itself a stemshock formed by Mach reflection
on the cone éxis, and centerline velocities in this region
will be greater than an averaged value. By suchvarguments
it follows that an experimental curve of shock veldcity
averaged‘over the shock surface area would bevﬁsmoothed out"”
and appear more like the power-law curves in figures 26 and
27. rThe mean slope of the smoothed curve would be somewhat
‘less than the theoretical slope, since the measured veloci-
ties at positions midway between intersection points fall

progressively below the corresponding theoretical values.*

*A rough calculation for an averaged shock velocity up to
the first intersection point, in which the stemshock is
assumed straight with a uniform Mach number equal to that
at the wall (given by the diffraction solution described in
Appendix B), predicts a smoothly rising shock velocity
which remains within 3% of the CCW theory. '
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4.2 Comparison of Incident Shock Behavior with an

Axisymmetric Shock Diffraction Solution

The measurements of centerline shock velocity should
be more properly compared with a theoretical model which
takes into account the cyclic pattern of stemshock growth
and reflection. Since significant difficiencies,remain in
theoretical descriptions of the simpler problem of Mach
reflection on a plane wedge, an accurate analysis of the
shock diffraction in the cone is not feaéible. However,
an approximate solution capable of predicting the basic
diffraction characteristics observed in the experiment has
been formulated by Mr. Erik Storm, using a theory on shock
dynamics by Whitham (Refs. 30, 31). A preliminary descrip-
tion of this solution can be found in Reference 22, but a
complete account remains to be published. A summafy of
Storm’'s solution can be found in Appendix B.

Comparisons between the incident shock measufements
and the diffraction solution (fo£ centerline shock velocity)
are shown in figures 9, 12, 26 and 27. The shock diffrac-
tion is assumed to begin on a discontinuous change in wall
slope at the cone entrance, whereas the actual slope change
at the entrance was intentionally smoothed during construc~
tion. This may account for the predicted stemshock
intersections occurring slightly sooner than observed.

The theoretical velocity jumps at the intersection points

are considerably larger than the measured values, but
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display the constancy shown by the Mo = 6.0 results. The
solution closely predicts the observed power-law dependence
of V;- (the velocity immediately before a jump) on distance
from the cone vertex. By assumption, the theoretical inter-
section points have nearly equal logarithmic spacing
comparable to that found experimentally. The observed
deceleration 6f the center shock following each stemshock
intersection is qualitatively predicted, but the subsequent
acceleration prior to the next intersection point:is not.
This contrast is a consequence of'assuming that rays normal
to the center shock remain straight (Appendix B). A basic
difference between the solution and the experiment is the
necessity of having a finite diameter probe present in
carrying the theoretical calculation past the first stem-
shock intersection. In the experiment the diffraction
process was found to be insensitive to the preéence of the
probe at an intersection point*. Since the theoretical
model assumes perfect gas behavior, the increasing dispari-
ties between the calculation and the measurements for

M, = 10.2 are expected.

*Due to the large spacing between the crystal pairs in the
probe, it was possible to measure the velocity at certain
points (such as x/L = 0.51) with the first stemshock
intersection occurring on the probe; and then repeat the
measurement with the probe beyond the intersection point.
The resulting velocity values were always within the
scatter shown in figures 6 and 10.
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4.3 Real Gas Effects on the Shock Diffraction Process

The approximate diffraction solution predibts that the
incident shock velccity at any location in the cone should
scale with initial velocity. This feature of the solution
follows from the use of the CCW area - Mach number relation
in the strong shock limit (Appendix B). As stated by
Whitham in his development of the diffraction theory (Refs.
30, 31), the shock wave should pass through the same
sequence of positions for all initial Mach numberé) the
only difference being a proportionate change in the time
scale. This conclusion is subject to the validity of the
perfect gas assumption used in the analysis. Since real
gas effects Will alter the basic area - Mach number relation
(discussed in Part 4.3a), a breakdown in the velocity
scaling is expected for sufficiently strong shocks. It is
therefore.surprising that for Mo = 10.2 the diffraction
pattern is unchanged except near the vertex (x/L > 0.84)
where local Mach numbers are very high (M > 19), even
though considerable ionization (>5%) should occur beyond the
first intersection point (x/L > 0.30). This result will be

investigated in the following sections.

4.3a Relaxation Effects

The calculated equilibrium conditions shown in figure
20 deviate from corresponding ideal gas curves for Mach

numbers above 9, commensurate with the onset of significant
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ionization. Equilibrium temperatures progressively fall
below the ideal gas values as Mach number increases, while
equilibrium pressures and densities are progressively
higher. Russel (Ref. 20) used calculated equilibrium con-—
ditions instead of ideal gas jump conditions in applying
Whitham's method for obtaining the one-dimensional area -
Mach number felation. The resulting Mach number increase
predicted for a particular area reduction was considerably
less than that given by the ideal gas formula. Since the
area - Mach number relation is the essential fluid mechanics
result used in the diffraction solution, it should be
poséible to use a "real gas" relation obtained in this
"manner to modify the diffraction analysis. The required
computational effort was not undertaken, since the antici-
pated result would show a progressive departure from initiai
velocity scaling at any position as the initial Mach number
is increased. Such behavior would be inconsistent with the
éxperimental results shown in figures 13 and 14.

. The persistent scaling of the measured shock velocities
indicates that the wave propagation and diffraction are
insensitive to the relaxatioﬁ processes in the shocked gas.
:This uncoupling of shock velocity and thermodynamic equili-

- bration intuitively seems to be a consequence of the unsteady
nature of the wave motion. To examine this possibility,

local relaxation times can be compared with time scales
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associated with the changes in shock velocity. Relaxation
times for steady, plane shock propagation* can be taken
from the results of Petschek and Byron (Ref. 28), but some
uncertainty exists in choosing appropriate time scales for
the unsteadiness of the shock motion. If the shock displayed
continuous acceleration as predicted by the one—dimensional
theories (Parts l.2a, 1l.2b), a suitable time scale would be
tS = V/(dv/dt), where V is the local shock velocity.
Using the similarity results discussed in Part 1.25, it
follows that tS « R/V , where R is the local cone radius.
Choosing R/V as the time scale for shock veloéity changes,
comparisons with relaxation times can be made for the Mach
numbers measured at various positions in the cone. If 7T
denotes the relaxation time (laboratory reference frame)
behind a shock with constant velocity V , then the relaxa-
tion distance (laboratory reference) is £ = Vr . An
equivalent comparison is therefore between relaxation
distance and cone radius. As mentioned in Part 3.3a, the
ratio of relaxation distance to cone radius is greater than
one for the entire M, = 6.0 incident shock velocity profile,
and for positions prior to the second intersection point in
the M, = 10.2 profile. The comparison of these character-

+istic lengths (or times) proves to be more interesting for

*In laboratory frame of reference, with an assumed impurity
level of 5 x 107°.
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measurements made near the vertex where the scaling break-
down occurs. For an initial pressure of 1.5 torr, the ratio
of relaxation distance to cone radius at x/L = 0.86 is less
than one for local Mach numbers above ~18, and greater than
one for lower Mach numbers (values listed in Table 3). As
shown in figure 13, the velocity scaling begins to fail at
this position when the local Mach number reaches ~19. For
an initial pressure of 0.5 torr, this ratio at the same
position is greater than one for all Mach numbers.measﬁred
(up to M = 21). Figure 14 shows that the velocity.scaling
in this case persisted (although an initial pressure effect
apparently decreased the scaling factor).

These comparisons suggest that perfect gas scaling
continues as long as relaxation processes proceed slowly
relative to changes in the shock velocity. The eventual
breakdown in scaling apparently occurs when the relaxation
becomes sufficiently rapid so that equilibrium conditions
"catch up" to the shock and modify its motion. However,

10.2 measure-

the fact that scaling persists in the Mo
ments beyond the second intersection point (where relaxation

distances are less than local cone dimensions) indicates that
this simple comparison of the chosen time scales is probably

an over-simplification, and additional physical processes

could be involved.
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4.3b Radiation Effects

The high Mach numbers measured in the convergence
indicate that the shocked gas should radiate strongly upon
reaching equilibrium. The energy flux associated with
this radiation is probably sufficient to cause considerable
cooling of the equilibrium region.* Absorption of the
radiation by the cold gas ahead of the shock can influence
the shock motion by effectively changing the test gas
initial conditions. Analytic studies of steady shock
propagation with radiative heat transfer (for example,

Ref. 33) show that temperature, pressure, density, and fluid
velocity are all increased in front of the shock over a
distance of fhe order of the absorption mean free path.

For -argon the radiation flux consists primarily of visible
and near-ultraviolet continuum radiation (Ref. 32), and
correspoﬁding photon mean free paths are quite long

(~1 meter for 1.5 torr initial pressure). It therefore
seems unlikely that radiative preheating directly effects
the incident shock motion, although a focusing of the radia-
tion by the conical geometry could intensify preheating near
the vertex.

The incident shock behavior can be influenced by
radiation effects in an indirect manner. It was suggested

in Part 4.3a that perfect gas scaling persists as long as

*Wong and Horn (Ref. 32) found experimentally that for a
Mach 16 shock in argon at 3 torr, radiative cooling rapidly
reduced the equilibrium degree of ionization from 16% to 10%.
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relaxation proceeds slowly compared to changes in the shock
velocity. Any mechanism which will increase relaxation rates
near the cone vertex should enhance the scaling breakdown
which occurs in this fegion. Such a mechanism can result
from the production of free electrons ahead of the incident
shock by photoionization and by photoemission from thé cone
walls. In the absence of precursor electrons, the first
stagé of the relaxation process involves the production of
a small degree of ionization (~ 10% of the equilibfium value)
by relatively inefficiént atom—atom collisions (Ref. 29).
After approximately four tenths of the total relaxation time,
a second stage begins in which ionization proceeds by in-
elastic electron-atom collisions. The ionization rate in
this regime depends upon the rate at which electrons acquire
energy through elastic collisions with ions. The presence
of precursor electrons at the shock front will therefore
reduce the time required for the first relaxation stage,
and if a significant number are fairly energetic (> leV)
the ionization rate in the second stage will be increased.
Figure 13 shows that at x/L = 0.86 the velocity
scaling begins to fail when local Mach numbers reach ~19.
.In order to have an initial degree of ionization correspon-
ding to 10% of the equilibrium value behind a Mach 19
normal shock (1.5 torr initial pressufe), a precursor
electron number density of approximately lO15 cm_3 is

required at the shock front. Reasonable estimates of
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precursor levels in the convergence due to photoionization
are difficult to make, since experimental and theoretical
nvestigations of photoionization in argon have been
reétricted to steady propagation of normal shocks at lower
Mach numbers. For example, Lederman and Wilson (Ref. 34)

10 cm—3 at

measured electron number densities less than 10
the front of a Mach 13.4 shock (1 torr initial pressure).
Theoretical descriptions by Ferrari and Clarke (Ref. 35)

and by Dobbins (Ref. 36) predict precursor levels:several
orders of magnitude below experimental values. On the basis
of what information is available, it seems doubtful that
photoionization alone could produce sufficient precursor
electrons to significantly reduce relaxation times. The
importance of wall reflectivity has béen.pointed out by
Dobbins, however, and a focusing effect due to the conical
geometry could therefore enhance photoionization in the
vertex region.

An additional source of precursor electrons is photo-
emission from the cone walls. Although suggested'by Hollyer
in one of the earliest reports of precursors in shock tubes
(Ref. 37), photoemission has not been carefully investigated.
The importance of this process in the present experiment is
indicated by the fact that photons resulting from electron-

ion recombination to the ground state have energies that

are large (213.9eV) compared to the work function of the
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aluminum cone (4.leV). Although Wong and Horn (Ref. 32)
felt this ultraviolet radiation could be neglected, the
analysis of Dobbins shows it to be important at high Mach
nurbers. Because the absorption mean free path for this
radiation is relatively short*, significant precursor levels
resulting from photoemiséion should occur only near the -
vertex. 1In this region the combination of photoionization
and photoemission is probably sufficient to reduce relaxa-
tion times, and thus contributes to the bfeakdown in

velocity scaling.

4.4 Reflected Shock Behavior

4.4a Comparison with Similarity Solution

The reflected shock velocity measurements are compared
with'corresponding curves given by the Guderley similarity
solution in figure 28. The theoretical curves are obtained
by fitting the similarity solution to the incident shock
data in a manner that matches shock velocities near the
cone vertex (described in Part 3.3b). The meaéured values
for the initial Mach number six and ten cases, as well as
the similarity values, are normalized by their respective
‘initial shock velocities and plotted versus distance from
the vertex using logarithmic scales. The similarity curves

appear as straight lines, since the solution predicts that

*At x/L = 0.86, the ratio of cone radius to photon (15. 75eV)
mean free path is ~2 for 1.5 torr initial pressure.
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the shock velocity varies with distance from the vertex

according to the power law

-n
VRS « r

where n = 0.4527. The measured velocities obviously do not
display a power law behavior, but rather remain nearly
constant for much of the convergence length. This contrast
is a consequence of fundamental differences between the
experimental flow conditions and the conditions assumed in
the similarity analysis for the reflected shock.

The primary difference leading to the observed Behavior
is illustrated in figures 17 and 19. The first particle
path shown in each figure is the approximate trajectory of
a.flﬁid particle initially located at the cone entrance.
This path represents a boundary éeparating fluid initially
outside the convergence and fluid involved in the incident
shock diffraction. For x/L < 0.66 (approximately) in the
M, = 6.0 case, and x/L < 0.75 in the MO = 10.2 casex,
the reflected shock propagates into fluid origiﬁally set
into uniform motion by the plane, constant-strength initial
.shock wave outside the cone entrance. 1In the'similarity
analysis the fluid in these regions has supposedly undergone
a gradual, continuous compression after initially experi-
encing a much weaker shock, resulting (apparently) in

conditions ahead of the reflected shock that progressively

*Indicated by the dashed lines in figure 28.
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deviate from the actual flow conditions. lFigure 18 shows
that these regions correspond to the intervals in which the
measured velocities are nearly constant.

Additional differences arelimportant in the region
near the cone vertex; The similarity solution assumes that
an infinitely thin shock reflects at the point of symmetry,
and as a resulf the initial reflected shock velocity is
singular. The significance of having a finite shock.thick-
ness is shown by the numerical calculations of Payhe
(Ref. 38), in which an artificial diffusion term is included
in the equations of motion to simulate the effects of
viscosity and heat conduction. For an imploding cylindrical
shock initiated at a radial position r = R , the incident
shock calculations agree with the theory until r/R ~ 0.08.%
At the axis the singularity is replaced by finite flow
conditions, and the initial reflected shock velocity is
comparable Eo the velocity of the incident shock at r = R.
The reflected shock displays very little decelération until
r/R ~ 0.5 , after which its velocity falls rapidly. Al-
though Payne's calculations assume cylindrical'symmetry,
these results are qualitatively similar to the observed
reflected shock behavior in the vertex region.** In the

" experiment the reflection actually occurs at the vertex of

*The shock thickness in the calculations is typically
~0.02R.
**This point was suggested by Professor G. B. Whitham.
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a locally annular contraction because of the presence of

the piezoelectric probe.

4.4b Reflected Shock Propagating into Steady,

Subsonic Flow

Ih part 4.4avitﬁwas pointed out that during the portion
of the reflected shock trajectory in which the shogk velo-
city is nearly constant, the shock propagates into fluid
originally set into uniform motion outside the cone entrance.
If a simplified model is assumed for the subsequent flow of
this fluid, an analytical description of the refleéted shock
motion can be obtained. The accuracy of this descriﬁtion
depends upon both the flow model and the procedure by which
the shock motion is determined.

The Mach number of the flow behind the inéideht shock
is 1.26 in the M_ = 6.0 case, and 1.31 in the MO =‘lO.2

o]
case. At these Mach numbers, the supersonic flow near the

shock tube wall cannot be turned through theylAOo angle at
the cone entrance by means of a stationaty, oblique-shock.
Conséquently, as the initial shock enters the céne an

upstream-facing shock locally normal to the wall must form

-outside the entrance*. An unsteady sonic surface behind

this shock separates subsonic flow adjacent to the wall from

*This shock is the extension of the third (reflected) shock
in the initial Mach reflection occurring within the
convergence. :
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the central supersonic stream. The size of the subsonic’
region increases aé‘the upstream-facing shock propagates
outward from the cone entrance, eventually intersecting -
upon itself at some position on the shock tube axis.tiA
flow model whichvassﬁmes that a uniform subsonic region is
created by a plane upstream-facing shock is pictured'in
fiéure 29. The upstream shock is assumed to propagate at

a constant velocity U , reéulting in a subsonic flow which
subsequently undergoes a steady, isentropic compréssion in
the convergence. Prior to the sonic point for this flow,
the_reflected‘shock is assumed to be at an initial position

xO/L with an initial velocify Ves
' o

The corresponding reflected shock motion is found by
using Whitham's one-dimensional method (discuésed in Ppart
1.2b) 'in a manner suggested by Chester (Ref. 39). .The
differential relation which holds along charactéristics
overtaking the reflected shock trajectory is applied to the
flow conditions immediately behind the shock."The Rankine-
Hugoniot relations are used to couple these conditions to
the known distribution of flow variables in the steady
_compression ahead of the shock. The result is a first-
order, ordinary, nonlinear differential equation for shock
" Mach number (or velocity) as a function of position that

can be numerically integrated.* The curves shown in.

*Details of the formulation can be found in Ref. 39.
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figure 29 were obtained by performing the integration for
several possible steady flow situations ahead of the
M, = 6.0 reflected shock. My is the Mach number of the

upstream-facing shock, M the Mach number of the stéady

5
flow entering the convergence, and MRS(xO) the initial
Mach number of the reflected shock. The initial position
and velocity of the reflected shock are chosen to match the
MO = 6.0 measurements.

The theoretical curves show a graduai shock decelera-
tion in contrast to the constancy of the obéerved velocities,
but the agreement is still far better than with the similar-
ity solution5 The MU values listed indicate that the
upstream~facing shock must be fairly strong (MU ~ 2) in
order for the predicted sonic point of the subsonic
compression td be sufficiently near the cone vertex. The
initial rise shown in two of the curves results:from
starting the reflected shock close to the sonic point. It
should be noted that Whitham's method neglects‘modification
of the_shock motion by re-reflected disturbances (Ref. 16),

and in the assumed flow model such disturbances could be

important.
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4.4c Interactions with Localized Nonuniformities and

Secondary Waves

As the incident shock propagates towards the coﬁe‘
vertex, the multiple stemshock growth and reflection process
‘creates a number of local regions withih the shocked gas
distinguished by sharp gradients in the £fluid properties.
The gradients in these regions are a result of the discon-
tinuity in shock strength and propagation direction which
occurs at the three-shock intersection point in Maéh
reflection. As sketched in figure 30, a contact surface
(oC) is formed which separates fluid that has passed through
the original aﬁd reflected shocks from the fluid that has
passed through the stronger stemshock. Temperature and
density are discontinuous across the contact surface, while
pressure and flow direction are continuous. Referfing‘
to the symbols used in figure 30, the solutionvbf the two-
dimensional three-shock theory* for Mach reflectioh of a
Mach six initial shock on a 10° wedge givés the following:

T4/T3 = p3/p4 = 1.092 , p3/p2 = 1.181"

x = 29°-58' , g = 77%-54' , ¢ = 33°-35"

‘where T 1is temperature, p density, p - pressure, and
the subscripts refer to the numbered regions in the figure.

This solution predicts a 10% difference in temperature and

*The formulation and necessary assumptions in the three-
shock theory are outlined in Ref. 40. ‘
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density across the contact surface, which should be a good
fapproximation fofEthe‘first Mach reflection in the conver-
gence until x/ﬁ ~ﬁ%.15. Beyond this position the aXisym—
metry results inrg‘rapid increase in the stemshock Mach
number near the three-shock hTtersectioh (Appendix B), and
the diffe;ences across the contact surface increase
accordingly. X new Mach reflection process begins when
the stemshock reaches the cone axis, as shown in figure 31.
The incident shock and stemshock roles réverse,”ahd a new
contact surface (0'P) is formed between the three-shock
intersection and a point (P) moving along the cone axis.
Because the contact surface formed by the original Mach
reflection (PC)'intersects the axis at the same point,
this point (hereafter called the contact surface inter-
section point) separates fluid regions having considerable
temperature and density différénces. The température
~discontinuities diffuse as the intersection point‘is cone
vected towards the vertex, and it thus abpeaté to the
centerline reflected shock as a small region in which
temperature falls rapidly.* The resulting perturbation
~to the reflected shock motion should be qualitatively
similar to the refraction of a plane shock wave by a

contact surface separating regions of unequal temperature

*Because of the deceleration of the center shock (M'),
the reflected shock experlences a gradual temperature-
rise prior to this region.
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(Ref. 41). The result for the appropriate case is a
transmitted shock with a higher Mach number but lower
velocity. The centerline reflected shock velocity meésure—
ments should therefbre show a small interval of deceleration
corresponding to the ‘shock passing thrdugh each contact
Surface intersection point.*

- The positions where these interactions occur can be
estimated from the particle paths shown in figures 17 and
19. The seéond pafh in each figure indicétes the-épproxf
imate trajectory.of the first contact surface intersection
point. In the M_ = 6.0 case, this particle path reaches
the reflected shock trajectory at x/L = 0.76 . The
reflected shock velocity measurements in figure 15 show a
pronounced deceleration starting at x/L = 0.74 ‘and ending
at x/L = 0.60 . The last two particle paths in figure 17
indicate that the remaining contact surface intérsectioh
points are compreséed into the region near the veftex where

the piezoelectric probe could not detect the réflected

shock. In the Mo 10.2 case, the second particle path
reaches the reflected shock trajectory at x/L ~ 0.82
(extrapolating from the path termination). The velocity

measurements in figure 18 show a small deceleration starting

*Contact surface intersection points are formed at each
stemshock intersection point along- the cone axis. A cor-
responding situation occurs on the cone wall (at D in
figure 31) as a result of Mach reflection of the center
shock on the wall. : ' ‘
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at x/L =’0.83 and ending at x/L = 0.75 . The remaining
ihterSectidn points are compressed beyond x/L = 0.90 ,
where too few measured velocities are a§ailable for |
compariéon.

The second-reflébted shock observed in the MO = 6.0
measurementsvcould be the result of a similar interaction in
which a sharp gradient in the degree of'ionization is also
involved. Figure 20vindicates that significant ionization
occurs in the fluid shocked beyond the third stemshockl
intersection point in the M0 = 6.0 case, and beyond the
first intersection point in the M, = 10.2 case. The
particle paths in figures 17 and 19 show that the fluid in
these regions is compressed into the final 6% of the con-
vergence in the first instance, and into the final 20% in
the seCond. If a distinct boundary* exists between the
region of ionized gas and the adjacent region df'cooier,
un-ionized gas, the reflected shock will experience a fairly
strong interaction. Since the shock passés frbm a hot gas
to a cooler gas at the boundary, the reflected wavé in the
interaction is probably a shock (as would be the case in
one dimension). This secondary shock implodes‘upoﬁ the

vertex, reflects, then propagates outward behind the

*Prior to the compression, the boundary corresponds to the
contact surface formed at the first stemshock intersection
point (PO' in figure 31) where center shock Mach numbers
are high enough to produce significant ionization.
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primary shock.v Thé,process is similar to the generation
of secondary shocks when spherical blast waves are produced
by detonating finite-diaméter‘spherical charges (Ref. 42)3
The short interval (~20usec) between the two shocks in ﬁhe
M, = 6.0 measurements indicates that this interaction must
occur very close to the vertex, in accordance with theb
predicted loéation of the ionization boundary. In>£he

MO = 10.2 case the region of ionized gas near the vertex

is much larger, since the ioniiation boundary coincides
with the first contact surface intersection point.. Figure
18 shoWs only a weak perturbation to the shock velocity at
this interaction (x/L ~ 0.80) , indicating that the
boundary is iess distinct. A second reflected shock in
this case would therefore be weaker and much farther behind
the primary shock (3 to 4 times the M = 6.0 interval) .
Although feflected shock measurements which scanned a long
time interval after the primary shock failed to show a
second shock, the piezoelectric probe may have been too
insensitive for detection.

A final source of perturbations to the reflected shock
motion is the secondary wave structure generated by the |
‘incident shock diffraction. This structure consists of
, the third f(or reflected) shocks formed during each Mach
reflection'cycle (R and R' in figures 30 and 31,

respectively). Simple estimates of the strength of these
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waves* show that interactions with the reflected shock
should be fairly weak. It can be speculated that the velo-
city variation observed near the cone entrance in the

MO = 6.0 measurements results from such an interaction.

4.4d Thermodynamic Conditions Behind the Reflected Shock

Reasonable estimates of fluid properties behind the
reflected shock can not be made from knowledge ef ohly the
shock velocity. Approximate upper and lower bounds for the
thermodynamic conditions in this flow, however, can be found
by using‘the measured initial and final incident shock Mach
numbers as initial conditioﬁs for plane reflection of‘a‘
uniform’shoEk. Equilibrium properties behind plane reflec-
ting shocks in argon have been calculated by Arave and
Huseby (Ref. 25) for 1n1t1al Mach numbers up to 25.: In the
M, = 6.0 -case, the incident shock Mach number at the iast
measufement poeition (x/L = 0.95) is M~ 18 . TFor an
initial pressure of 1.5 torr and shock Mach number of 18.0,
the calculated equilibrium temperature, pfessure, and
degree of ionization behind a plane reflecting shock are
17,600°K, 10.14 atm, and 0.555, respectively. The corres—
ponding conditions for an incident shock Mach number of

6.0 are 7860°K, 0.465 atm, and 0.002. TIn the‘kMO = 10.2

*The solution of the two-dimensional three-shock theory
for the My = 6.0 case predicts that the thlrd shock has
a normal Mach number of 1.07. :
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case, the final measured Mach number is M ~ 20%. Using
this value as the incident shock Mach number in plane
reflection, the calculated equilibrium temperature, pressure,
and degree of ionization are 19,2000K, 14.10 atm, and
0.706, respectively.' The corfesponding conditions for an
incident shock Mach number ofl10.2 are lZ,lOOOK,\l.49 atm,
and 0.102. Because the reflected shock velocities measured
at the cone entrance are considerably higher than the
velocities for reflection from a plane ehd wall‘(ﬁart 3.2),
the lower limits estimated in this manner are probably too
low for the fluid éroperties in the convergence during the
time span of the reflected shock measurements. The upper
limits should also be somewhat higher, since these estimates
fail td consider the compression behind the incident shock
in the vertex region. | |

The thermodynamic conditions near the vefﬁex change
éonsiderably during the expansion following incidént shock
reflection, as indicated by the plane refiectibn calcula-
tions. At the start of the expansion the temperature and
electron number denSity** are quite high, and relaxation
processes should be sufficiently rapid for the gas to
remain in ionization equilibrium. A subséquent departure

- from ionization equilibrium occurs if ionization rates fall

*Assuming the speed‘of sound in the test gas has not changed
due to radiative preheating. .

**Electron number densities are >lO18 cmf3 for both the
Mo = 6.0 and 10.2 cases, excluding contributions from
photoionization and photoemission. :
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below recombination-rates as the temperature and density
change. A simple afgument by Zeldovich and Raizer (Ref. 13)
indicates that such a departure will occur if temperatures
fall to fairly low values during a rapid expansion. The
ionization rate depends exponentially on temperature as
e—I/kT , where I is the ionization potential (l5.75eV‘
for argon) ahd k 1is Boltzmann's constant. For KkIK<I
the‘exponential dominates a power-~law density dependence,
and the ionization rate is very sensitive to decreéses in
temperature® On the other hand, recombination processes
generally have power-law dependences on temperature'and‘
density, Zeldovich and Raizer thus conclude that ionization
processes wili essentially stop at some time during the
expansion, after which the degree of ionization falls with
temperature following a power law (while the equilibrium
value decreases exponentially). Except at low electron
number densities, the predominant recombination mechanism .
in argon involves three-body collisiéns (with an electron
acting as the third body). In an analysis of this recombi-
nation proceés in supersonic nozzle flows, Bray (Ref. 43)
showed that the recombination rate includes a factor which
.increases exponentially as the electron temperature falls.
- As a result, the degree of ionization does not "freeze

suddenly" during a rapid expansion, but rather decays

*kT << I during the expansion in the experimenf, since
I/kT > 10 near the vertex at the start of the expansion.
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gradually at a réte somewhat less than if equilibrium were
maintained.

In three—body’recombination the electron is captured
by the ion into one of the upper levels of the atom. Thé
bound electron then descends down the atomic energy levels
very rapidly due to inelastic electron collisions and
spontaneous radiative transitions. A portion of the
potenﬁial energy I from the recombination is thus released
in the form of line radiation. The ultraviolet radiation
corresponding to transitions to the ground state is the
probable source of.the thin film gauge signals marked "1"
in figure l6a and "2" in figure 16b. These signals are
characteristicvof such gauges when charged particles are
present in the neighboring gas (Refs. 26, 27). The start
of the signals coincides with the reflection of the incident
shock at the vertex, indicating that radiation from recom-
bination behind the reflected shock is either photoionizing
the gas adjacent to the gauge, or caﬁsing photoemission
from the platinum films. The duration of the signal could
be a measure of the time required for recombination to
diminish to negligible proportions, and as such would be a
rbugh estimate of the time scale of the expénsion.v Using
the upper and lower bounds obtained from plane reflection
calculations, and the signal durationsvmeasured frbm the

oscillograms in figures 1l6a and 16b, an order of magnitude
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estimate of the mean cooling rate during the expansion is

found to be ~lO8 ©

K/sec.

Rapid expansion of a shock heated gas has been sug-
‘gested by Hurlé and Hertzberg (Ref. 9) as a means of -
producing a population inversion between two electronic
energy states. The two states must be optically.connecfed,
and the uppef state must have a radiative lifetime that is
conéiderably longer (several orders of magnitude) than the
lifetime of the lower state. The expansibn must bé suf-
ficiently rapid to presérve the initial population. of thé
upper state while fhe lower state decays by emission. If
tﬁeée conditions are satisfied, the population of the lower
state will bevgoverned by radiative transitions from the
upper state, énd a degree of inversion approximately'equal
to the ratio of the lifetimes of the two states will result.
Hurle and Hertzberg calculated that cooling rates of the
order of lO9 ?K/sec could be obtained by expanding shock-
heated gas through a slit orifice in a shock tube end wall.
This was felt to be sufficient for inverting two electronic
states in xenon having radiative lifetimes of 10_6Sec énd
~].0-9 sec, but eXperimental efforts to verify,the inversion
‘were unsuccessful. In the present experimént the estimated
» cooling rate behind the reflected shock is an order of
magnitude less than that of Hurle andeertzberg,’indicating
thét the expansion isvprobablyvtoo slow to produce inver—‘

ions between electronic states. This is certainly true for
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the Ar" electronic states used in argon-ion discharge
lasers, since the upper laser levels in these systems have
radiative lifetimes of only 7-10 nsec (Ref. 44). A mdre
likely application 6f the expansion in the convergence
would be the productibn of population ihversions between
vibrational energy levels in é shock-heated molecular gas.
' Suchvinversions have been successfully produced (Ref. 10)
using an expansion from a slit orifice in the manner.

proposed by Hurle and Hertzberg.
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V. CONCLUSIONS

The shock velbcity measurements have produced a>com-
prehensive description of the shock dynamics within the
convergence, and enabled estimates to be made of thet
thermodynamic conditions created near the vertex. The
incident shock profiles show that the shock behavior is
dominated by cyclic diffraction proceéses which originate
at the convergence entrance. Each diffraction cycle is
characterized by Mach reflection on the cone wall-folloWed
by Mach reflection on the axis. The two-dimensional
nature of these prbcesses festricts comparison with the
Chester-Chisnell-Whitham and similarity theories, but the
~ basic features of the incident shock profiles are predicted
by én approximate axisymmetric diffraction solution due to
Storm. Real gas effects, introduced by increasing thé
initial Mach number and decreasing the initialfpressure,(
alter the ihcident shock behavior only in a region neér the
vertex where ionization rates become very rapid. Radiative
.preheating and the reduction of relaxation timeé‘by pre-
Eursor electrons probably contribute to the sudden decline
~in shock velocity observed in this régionf

The reflected shock profiles show that the shock
velocity is nearly constant for much of the convergehce
length, in contrast to the power~law decline predictéd by

the similarity solution. Durihg this period the shock
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propagates into fluid originally set into steady, uniform
motion outside the cone entrance. Small variations in the
velocity result from weak interactions with localized
nohuniformities and secondary waves. Beyond the cbné
entrance the shock déceleratés towards the velocity corre-
‘sponding to reflection from a plane end wall.

As a device for generating high-enthalpy gas samples,
the conical convergence can produce a small reg;on of very
hot, highlj compressed fluid near the vertex. Thermo-
dynamic conditions in this region are nonuniform and
unsteady,’but estimates indicate that temperatures
considerabiy higher than the typical range of conventional,
pressure~driven shock tubes can be achieved. A departure
from ionization equilibrium is likely near the vertex
durihg the rapid expansion which occurs behind the re—b
flected shock, but the productioh of inverted pbpulaﬁions
in électronic*energy states is doubtful. A possible '
application of this expansion is the productioﬁ of popu;
laﬁion inversionsvin the vibrational energy levels of

molecular gases.



8l

APPENDIX A

MULTI-CRYSTAL AXTAL PIEZOELECTRIC PROBES

A.1l Background

In principle, the simplest means of measuring shbck
wave velocity is to determine the time required for the
shock to travel between two positions a known diétahce
apart. This has traditionally been the standard procedure
in shock tubes, with either thin film heat-transfer gauges
or piezoelectric pressure transducers used as sensing
elements mounted flush with the tube walls. In the present
investigation the rapid changes in shock velocity that were
anticipated ruled out these conventional techniques, and a
new approach was necessary.

The conical geometry suggested some type of probe that
could be inserted at the vertex and positioned continuously
along the axis of symmetry. Liepmann and Vlases (Ref. 45)‘
used a piezoelectric disc mounted on the end of a thin rod
to detect the shock arrival at various radial positions in
an inverse pinch shock tube. Such a probe produces a large
local perturbation in the shock motion, howeve:, since the
disc axis is perpendicular to the shock. This is un-
:important when using a single probe to determine only the
shock arrival at the disc position, but prevents the use
of two adjacent probes at differént radial positions in

order to measure a local shock velocity. The present
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investigation apparently required a single, sharply~tipped
probe containing two or more piezoelectric crystals. This
led to consideration of other available crystal geometries,
and radially polarized cylindrical tubes (commonly used in
underwater acoustic transducers) appeared as the obvious
choice. Although the standard diameters of commercially
produced piezoelectric tubes are too large for use in

the conical convergence, tubes with sufficiently small
diameters were fortunately found in a miscellaneoﬁs stock

list.

A.2 Details of Probe Construction

The final probe configuration used for most measure-
ments is shown in figure 3. As mighf be expected, this
design evolved from a number of successive modifications
which proved to be necessary during the initial testing
of the probe in the straight shock tube. The design is
by no means optimum, but additional modifications would
not significantly improve the probe performancé.

* The primary components in the probe are the PZT-5%
cylindrical tubes. When obtained from the manufacturer
_these crystals are typically 1/8" in diameter, 1/8" long,

and have a 0.018" wall thickness. Because the PzT-5

*A lead zirconate/lead titanate piezoelectric ceramic
manufactured by the Clevite Corporation, Cleveland, Ohio.
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ceramic is rather brittle, machining is not possible. Each
crystal is first cut into two tubes 1/16" in léngth by
continuodusly séoring around the circumference with a razor
blade. The tube length is then reduced to 0.043" by '
grinding the end faces flat (perpendicular to the cylinder
axis) using fine grit emory paper. The inside diameter is
increased to 0.094" by lapping using a tapered brass rod.
A finished crystal is mounted on a 0.094" o.d. stainless
steel support tube (cut from hypodermic tubing stoék) using
a conducting epoxy that will cure at room temperature. The
support tubes are approximately 0.30" in length and have
a 0.012" wall thickness. Prior to crystal attachment a
length of #30 enameled copper wire is soldered onto the
inside diameter of the support tube. A "basic two-crystal
unit” (figure 3) is formed by joining two crystal support
tubes with a O.l24"_o.d.,.0.094" i.d., fiber—fiiled phenolic
tube machined from 3/16" rod stock. The length of the
phenolic spacing tube is precisely measured before assembly,
since this length determines the interval over Whiéh shock
velocities are measured. The other phenolic tubes shown in
figure 3 are made similarly, and the remaining stainless
steel tubes are cut from available stock sizes. The
"aluminum tip and collar are machined from rod stock.

When all the components are completed, the entire

probe is epoxied* together simultaneously while clamped in

*Resiweld adhesive 7004, produced by the H.B. Fuller Company.
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two directions using straight metal strips. This is done
Eo‘prevent probe cﬁrvature'resulting from the compounding
of individual tolerances. The probe is then polished with
fine grit emory paper until all component junctions are
smooth. A short lenéth of #30 wire is soldered frqm the
inside diameter.of the stainless steel shaft to one pin on
a 7-pin miniature connector. The electrical leads from the
individual crystal support tubes are soldered to remaining
pins on the connector, which in turn is epoxied to-the rear
of the aluminum collar. The probe construction is completed
by using either silver print or diluted conducting époxy to
paint the outside surfaces of the crystals and conducting
paths from the crystals to the stainless steel shaft.

' The probe shown in figure 3 took between two and three
weeks to complete. Increased machining proficiehcj would
have reduced the construction time considerablyﬂ The total

cost of the materials used was less than $20.00.

A.3. Analysis of Probe Response

A piézoeléctric material is characterized by an electro-
mechanical coupling, in which strain produced by the
-application of an external force results in a net electrical
. charge displacement. Conversely, the application of an
electrical field produces a deformation of the material
specimen. Fefroeledtric materials, such as the PZT=-5

cylindrical tubes used. in the probes, are both piezoelectric
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and pyroelectric. The latter classification describes
crystals containing dipoles within the unit cells, and having
the property that heating causes a charge displacement.‘
When an external fiéld is applied to a sufficiently heated
ferroelectric crystalﬁa number of dipoles become aligned
with the field, and upon cooling a preferred polarizatién
axis.remains. In this manner the probe crystals were polar-~
ized radially during production. The temperature at which

a ferroelectric material can gain (or losé) an impésed
polarization is called the Curie point. For PZT-5 this
temperature is above 3500C,'which is sufficiently high for
the transient‘thermal loading typical of most shock tube
applications. As an electrical source a piezoelectric
crystal behaves like a voltage generator in series with a
high capacitance. The output impedance is typically guite
high (apprqximately 2000 ohms for a probe crystal), and
cathodleollower circuits are commonly used to matéh the
impedances of connecting cables. This was not done for the
probe crystals.

Static relations between applied stresses and resultant
'voltages for a variety of crystal geometries and polariza-
tions can be obtained by combining manufacturer's
*speqifiéations (for example, Ref. 46) and elastic theory
solutions (for cylindrical tubes, Ref; 47). For a PZT-5
cylindrical tube with outer radius b , inner radius a ,

and shielded ends, the open circuit output voltage V as a
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function of externally applied pressure p 1is predicted

to be

b-a
b+a

v = % 32.4 bp [ ) -0.435] millivolts

where a and b are in centimenters, p 1is in millimeters
of mercury, and the sign depends upon the polarization
direction. Using the dimensions of the probe crystals,

this gives .
v =% 1.51 p millivolts

Thié formula is inaccurate, since the inside diameter of
the crystal is.fastened to a stainless steel support tube.
This effectively reduces the inner radius a , resulting
in a smaller numerical factor on the right-hand side. The
factor vanishes if the ratio a/b = 0.394 (the crystal
‘dimensions give a/b = 0.758). - The support tubes apparently
lowered the effective value of the ratio close to this
limit, for the crystals were found to be practically
insensitive to static pressure changes. The probe signals
displayed no DC shift when subjected to a uniform radial
compression after shock passage, as shown by the character-
istic responses in figure 4.

The signals in figure 4 are transient, high frequency
oscillations corresponding. to fundamental ringing modes of

the piezoelectric cryétals. This ringing results from the
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shock acting like a stepload moving along the finite
cylinder length. A theoretical analysis of the signal
generated by the shock during its transit along the crystal
would be quite difficult, due‘to the cylindrical geometry
and the uncertain.bouhdary conditions. Most theoretical
work on stresses produced by moving loads has been limited
to very simple geometries and load distributions (Refs. 48,
49). A response analysis,therefore, must be confined to
identifying the observed modes of crystal oscillation,

and determining the shock position relative to the crystal
for some characteristic point on the probe signal.

For simpler'geometries, natural ringing frequencies
can be predicted if the crystal dimensions and acoustic
wave speeds are known. In a piezoelectric ceramic like
PZT-5 a large number of acoustic speeds can be defined,
depending upon the type of wave and its orientétibn with
respect to the polarization axis. For the present consider-
ations the relevant speeds* in cm/usec ére as follows
(Ref. 46):

vy = velocity of dilatational wave parallel to
polar axis (no boundary conditions) = 0.380

v, = velocity of shear wave perpéndicular to
polar axis with particle displacement paral-

lel to polar axis (infinite plate) = 0.226

*Assuming open external circuit conditions
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V3 = velocity of shear wave parallel to polar
.axis = 0.226
V, = velocity of Rayieigh surface wave (longituf
dinal wave in limit of small wave length)
= 0.210
V5‘= velocity of 1dngitudinal wave perpendicular
to polar axis (infinite plate) = 0.312
These standard wave speeds are for idealized geomeﬁ:ies,
and can only be used for estimates when considerin§ the
cylindrical piezoelectric tubes. An additional complication
is the mismatch in acoustic impedance which occurs atvevery
crystal surface. Nevertheless, approximate ringing
frequendes can be défined as follows:

£, = Vl/ZT = 4.96 MHz

1
£, = V,/2h = 1.04 MHz
£, = V3/2T = 2.96 MHz
£, = V4/2h = 0.96 MHz-
£, = Ve/2h = 1.43 MHz

where T and h are the crystal wall thickness and length,
respectively. fl and f3 correspond to radial ringing |
~modes, while the remaining frequencies are for longitudinal
(axial) modes. |

The initial response of the probe crystals can be
classified according to the local shock velocity# For

velocities less than 0.25 cm/usec (Mach numbers below_7.8)
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the time from the first observable response to the first
pbsifive peak (initial rise time) is considerably longer
than the time required by the shock to traverse the cfystal
length (shock traverse time). The initial ringing fréquency
is nearly constant fd& each crystal, though varying between
érystals from 1.43 MHz to 1.59 MHz*. For shock speeds
between 0.25 cm/usec‘ and 0.45 cm/psec (Mach numbers less
than 14) the initial rise times are comparable to thé shock
traverse times, and the ringing frequencies are'unéhanged.
As shock velocities incfease above 0.45 cm/usec thé response
of the crystals progressively changes. The initial rise
time decreases more rapidly than the shock traverse time.
A small negative peak appears prior to the first positive
péak} and a high-~frequency ringing becomes superimposed on
the 1.5 MHz signal. For velocities above 0.65‘cm/usec 
(Mach numbers above 20) -the response is completély dominated
by the high-frequency ringing, which varies between crystals
from 5.6 to 6.0 MHz. B

"By comparing the observed ringing frequencies‘with
the resonant frequencies predicted by the approximate
‘acoustic speeds, certain conclusions can be made. bFor most
of the shock velocities measured in the experiment the

" fundamental crystal response is a longitudinal (axial)

*The convention used in obtaining these values is to measure
the oscillation perlod between the first two p051t1ve peaks
on an oscillogram trace (figure 4).
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ringing mode, with the corresponding acoustic velocity

slightly higher than V For the highest shock velocities

5 *
the fundamental response changes to a radial mode, with the
corresponding acousﬁic velocity somewhat larger thanfvl .
In the narrow range 6f shock speeds fof which two modes

'ére superimposed, the time required for the shock to tra-
verse the crystal length is nearly equal to the period of
radial ringing. For lower velocities the shock traverse
time is longer than the radial ringing period, ahd-for
higher velocities the traverse time is less. Thus,; the.
ratio of shock traverse time to radial ringing period
apparently determines when the fundamental response mode
changes. The long initial rise time at the lower velocities
appears to consist of the shock traverse time preceded by a
period in which signals are generated by precursor}distur-
bances in the probe. For shock wave velocities:abové 0.25
cm/iLsec the shock is apparently "supersonic" with respect

to the velocity of these disturbances, an& the rise time
'primarily depends upon the shock traverse time. The fact
that the signal prior to the first positive peak is strongly
‘shock vglocity dependent, while after this peak little
dependence‘is apparent, indicates that the first positive

" peak corresponds to the shock arrival at the rea:‘crystal
face. This is the basic assumption used in the data
reduction, and the test measurements shown in figure 5

verify that it gives consistent results. The small initial
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negative peak, which is used for data reduction at higher
shock velocities (Part 2.4); must be associated with the
shock arrivalbat the front crystal face. By adding a fixed
correction when meaéuring times to this signal, the varia-
tion in shock traverse time is neglected. Over the range
bf velocities for which this convention is used this

corresponds to an error of ¥ 0.03 pusec, or at most 2%.

A.4 shock Diffraction Effects

In order for the piezoelectric probe to accurately
measure shock velocity at one or more positions, the inter=-
action betweeﬁ the shock waﬁe and the probe must not\
significantly perturb that portion of the shock running
along the probe surface. Thié interaction consists of
Méch‘reflection of the shock on the conical prbbe tip,
followed by an "expansion" of the stemshock at the tip.
shoulder. In the initial proceés the locus of Succeésive
three-shock intersection points forms a constant angle Y%
with the probe axis (as in the two-dimensional case shown
in figure430). The stemshock is curved, and deéreases in
strength from the cone surface to the intersection point.
.When the stemshock reaches the tip shoulder, an "expansion"”
characteristic of shock diffraction at a convex corner
E occurs. The expansion effects a growing portion of the
stemshock;in which Mach numbers are reduced.

Whitham (Ref. 31). considered the diffraction of strong

shock waves by slender bodies. He found that for a high
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initial Mach number M, and small cone angle ew , the

stemshock Mach number at the cone surface Mw is given by

—Dg’l-l—ezlog-—-l ~0.619
M T T Yw ) :
O w

For the 7° total-angle tip ﬁsed in the final probé design,
fhis'formula predicts M /M_ = 1.008 . Beyond the tip

- shoulder the local shock Mach number will drop due to the
"expansion", perhaps undershooting the expected final value
of M = MO‘. Since Whitham's formula predicts a Mach
number increase at the.cone surface of less than 1%, it is
doubtfui that larger deviations will occur after»thebshock
passes the tip shoulder. The measurements shown in figure

5 confirm the small magnitude of the shock velocity

perturbations.
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APPENDIX B
AN AXISYMMETRIC SHOCK DIFFRACTION SOLUTION
DUE TO E. 'STORM

The diffraction of a plane shock wave in a conical
convergence is obviou§ly a complex process involving a
number of two-dimensional wave interactions. An accurate
analysis that takes into account all possible factoré (such
as sécondary waves, re-reflected disturbances, and real
gas effects) is simply not feasiﬁle. Whitham (Refé. 30, 31)
developed an approximate theory for investigating shock
diffraction problems in which disturbances to the flow are
treated as a wave propagation on the incident shock. 1In
two-dimensional problems the successive shock positions and
rays. locally normal to these positions are used as prtho—
gonal coordinates. One relation between the local shock
Mach numbér and the distance between adjacent rays follows
from geometry, and a second is obtained from the CCW theory
by assuming that adjacent rays act like channel walls.
Combining the two relations results in a second-order hyper-
bolic equation which displays wave motion analogous to one-
dimensional, unsteady gasdynamics. Mach reflection at a‘
Wall inclination appears as a compressive.wave on the inci-
,dent shock, and because of nonlinearities the wave breaks to
form a "shock-shock”. This shock-shock is in,fact the three-
shdck intersection point, and the theory is correct to the

extent that effects of the reflected (third) shock can
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be ignored. In three-dimensions the formulation is basi-
cally the same, except Cartesian coordinates prove to be
more practical.

Following Whitham's approach, Mr. Erik Storm cbtained
an approximate solutién for the axisymmetric diffraction
df a normal shock entering a conical convergence. A
preliminary description of the solution can be found in
Reference 22, but a complete account has not been published.
This appendix will be confined to a summary of the basic
equations and aséumptions. The motion of the shock is.

described by the form
aot = a(x,r)

where ag is the sound speed in the undistufbed gas, x

is distance along the axis of‘éymmetry, r is‘radial
positibn from this axis, and a(x,r) defines tHe shock
position at a particular time t . If M 1is the local shock
Mach number and 6(x,r) is the local angle bétWeen a ray

and some fixed direction (parallel to the cone axis), then

_ cosh _ sinb
Oy = v and Qp = M
so that
_0 [sind 9 (cose _ , | _
Sx\ M ) " sr\wn )" (1)
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If A 1is proportional to the area of a ray tube, Whitham's
geometrical relation in axisymmetric coordinates takes the

form

S% (rcAf6> + 3% (rs;n6> =0 7 ; (2)

Considering a small ray tube intersecting the suffade of
successive shock-shock positions (hereafter called the
shock—shock,trajectory),bthe continuity of «a and the

conservation of M%Q results in the following jump

conditions:

(o )?1)" (1))

tan (91—60) = -

l+(AlMi7AOMO) , (3)
1
2 2
M, /M )"-1 :
tan (x-8_ ) = L o 5 , (4
: 1- (Al/AO)

where the subscripts "o" and "1" refer to conditions

before and after the shock-shock trajectdry,'respectively,
and ¥ (x,r) is the local angle between the trajectory

and the reference direction used in defining 6 . A final
relation between A and M follows from theACCW'theory

in the strong shock limit:

"/n = n oo =L 2,12
A/B = (MO/M)‘ ;ono= 5e L+ 3+ Yo (5)
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After using (5) to eliminate A , (1) and (2) form a set
of equations for the two dependent variables M and 6 ,
subject to the jump conditions (3) and (4) and the boundary
condition at the wall (6 = ew) . To solve this systém of
equations, numerical technigques employing the method of
characteristics are necessary (analogous to the methods
used for two-dimensional, steady, supersonic flow).

In his solution Storm avoids the formidable computa-

tional work required to solve Whitham's full equations.

Equations (1) and (2) in characteristic form become:

A __tand dr _
as + M dM+\/ﬁ tan6+1 r 0 (6)

on dr _ vn tanf+l
dx

v/n - tand
and
n tand dr _ :
a8 - M daM -+ i-vA tand r 0 ' (7)
on dr _ _ 1-vA tané
ax Vo + tand

Equation (7) is a differential relation that holds on
characteristics which originate at the cone wall and
arrive at the shock?shock. Following the method used

by Whitham is his formulation of the CCW theory (Ref. 16),
Storm applies this equation to the conditions immediately
behind the shock~shock trajectory. These conditions are

then related to the initial conditions by means of the
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- jump relations (3) and (4). ©No rigorous justification for
this procedure is attempted, but it is suggested by an
extension of the analogy between two-dimensional shock
diffraction on a wedge and the steady one-dimensional
piston problem. In this analogy the fixed wedge angle

(in a Cartesian plane) corresponds to the constant piston
velocity (in a distance versus time plane), and the resul-
ting constancy of the shock-shock angle <Y corresponds to
the steady velocity of the piston-driven shock wave.A>When
extended to the axisymmetric case, this analogy calls for
the shqck-shock trajectory to behave like the shock pro-
duced by a converging cylindrical piston. This in turn
suggests the application of Whitham's method. The solution

for the first shock-shock trajectory reduces to solving:

' Z ,

r : \ :
g = exp - ‘/F g(u)(G(u) +'¥§§du (8)
‘ L%2_p |

n-1
with g(u) =0 + u (u +1) ,
Vu2-1 Vu2n-1
n-1 2 2n , 2n
Gu) = S—Fh Mol [n R U ]
<un+l \ V& -1 u“-1 u +1
+1 )
M, (x,r) cos (X -5 )
7 = 1 .z - 2-D “w

My 2-D COSY 5 _p



98

where R 1is the initial cone radius, u 1is simply an
integration variable, and Xo_p is given by Whitham's
solution for shock diffraction on a 10° half-angle wedge.
The computational procedure is as follows:
1. A series of wvalues for Ml/MO are chosen, and
equation (8) is integrated numerically to find
the corresponding r/R .
2. For each pair of values for Ml/Mo and r/R ,
X follows from equations (4) and (5).
3. For each set of Ml/Mo , /R , and ¥ values,
the corresponding x/R 1is obtained from

1

_ 1
= Jl;R Eany d(r/R)

These computations give the shock-shock trajectory and the

e B

stemshock Mach number along this curve. The ray inclination
along the trajegtory (61) is found at each point using
equation (3). The results show that ¥y , Mo and el all
increase monotonically as the cone axis is approached. 1In
the limit r/R—o0, ¥ and 61 approach m/2 and M- .
This singular behavior only appears for extremely small
values of r/R . The stemshock Mach number adjacent to the
wall can be estimated by applying equation (5) to a ray
tube bounded by the wall and a neighboring ray. The initial

inclination of this ray is taken to be the first value of

Gl found in the compufation, and the area of the fay tube
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at any position follows by assuming the ray remains
straight. The result is a gradual monotonic rise in the
Mach number for increasing x .

A number of assumptions are necessary in order to
continue the solution beyond the first stemshock inter-
section point. To avoid the singularity at r/R = 0 the
stemshock must intersect on a finite radius boundary. 1In
the calculations this boundary is taken to be the surface
of the piezoelectric probe. Using the computed values of
M and ©

1 1

is assumed to diffract two-dimensionally on the probe

at this position, a locally plane stemshock

surface. This gives the initial conditions required for

the computatioh of the second shock-shock trajectory. For
convenience a coordinate system centered at the first
intersection point is now used. The method of solution is
the same, but the procedure is complicated considerably by
the fact that the initial Mach number and ray direction at
the shock-shock are unknown. Storm estimates these guanti-
ties by assuming that rays remain straight between the first
and second shock-~shock trajectories. The initial Mach
nﬁmbers along the second trajectory then follow from corres—
ponding values along the first using the CCW area - Mach
number relation. The Mach number of the center shock along
the probe surface is found by applying the relation to an
adjacent ray tube, again assuming that the bordering ray

remains straight.
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The numerical calculation is arbitrarily discontinued
when the second shock-shock trajectory reaches the cone
wall. Subsequent cycles of Mach reflection on the cone wall
followed by Mach reflection on the axis can be approximated
by assuming that in each cycle the center shock is initially
pléne and uniform. The diffraction is then a duplication of
the first cyclé, and the initial calculations are repéated

after appropriate scale changes.
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TABLE 1

Comparison of Exponents in Shock Velocity Power Law

Y Cylindrical Shock Spherical Shock
(1-a) /o JK/2 (1-a) /o JK/2
6/5 0.161220 0.163112 0.320752 0.326223
7/5 0.197294 0.197070 0.394364 0.394141
5/3 0.226054 0.225425 0.452692 0.452108
TABLE 2

Relaxation Distances and Times for
Incident Shock Velocity Profiles
(Ref. 29)

Test gas: 1.5 torr argon

~5x107°

cone radius (cm)
relaxation distance (cm)
relaxation time (usec)

Impurity level:

Nomenclature:

03 =g
| T

point (cm)
Distances and

distance to previocus intersection

times in laboratory frame of reference

MO = 6.0 ' MO = 10.2
x/L R 4 4 T d
0.46 4.13 * * 7 17 6.8
0.73 2.07 * * 1.2 2.1 3.8
. 0.86 - 1.07 - 10 23 0.6 0.8 1.9/1.5%%*
0.92 0.61 1.6 3.1 0.5 0.7 1.1/1.7

*Relaxation region quite long, but equilibrium conditions
nearly the same as "frozen" conditions behind shock front

**Pirst value for MO = 6.0 , second for MO =

10.2
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TABLE 3

Ratios of Relaxation Distance to Cone Radius
at x/L = 0.86

Test gas: argon
Impurity level: ~5x107°
Nomenclature: M = local shock Mach number
p, = initial test gas pressure
R, 4 = same as Table 2

Relaxation distances from Ref. 29 (laboratory refer-
ence frame)

L/R

M Py = 1.5 torr p; = 0.5 torr
14 5.4 16
16 2.0 5.9
18 1.0 3.0
20 0.6 1.9
22 0.4 1.3
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M = 10.0
M= 13.7
M= 17.6

Sweep Rates: ljysec/div.

Sensitivities: Upper Bean 0.2v/div.
Lower Bernn 0.1lv/div.

Test gas: 1.5 torr argon

Figure 4. Characteristic Piczoelectric Proke Responses
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Figure 1ll. Mo = 10.2 Incident Shock Velocity and
Stemshock Intersection Points
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2.5 | o R PY-
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Figure 19. Mg = 10.2 Incident and Reflected
Shock Trajectories :
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