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ABSTRACT

This thesis is an algebraic study of the irreducible ideals of a
modular lattice and their application to the characterization of the
homomorphisms or congruence relations of the lattice.

First, an arithmetic characterization of modularity is given in
terms of the irreducible ideals of the lattice. This is a new struc-
ture result for modular lattices which, since it characterizes general
modular lattices, is more fundamental in the structure of modular lat-
tices than the Kurosh-Ore Theorem.

Second, through the arithmetic characterization developed; sub-
sets of the irreducible ideals are used to define congruence relations
on the lattice and its lattice of ideals. It is then shown that every
éongruence relation on & modular lattice can be so characterized.

In conclusion, a generalization of the theorem that the congruence
relations of a finite dimensional modular lattice form.a.ﬁoolean algebra
is given by proving that the congruence relations on the lattice of ideals
of a modular lattice form a Boolean algebra if and only if the lattice is

finite dimensional.



HOMOKORPHISKS OF A WODULAR LATTICE

l. lattice Theory Foundations

In the following paragraphs will be compiled the essentials of
lattice theory as they relate to the results to be presented in this
manuscript. ‘the verminplogy and notation are essentially ‘qhdse of
varrett Bifkhoi‘i‘ (). |

A partially ordered set is &z set P and a binary relation < on

the elements of P satisfying the postulates

Pl: a=a for all a in P,

P2: a<b and b<c imply that a<c.
For a and b :i;x P, a=b implies and is implied by a<b and b<a. a<b
shall mean a<b but not b=a. An element ¢ in P is said to be the union
or join of a subset X of P, when it exists, if x<c for each x in X and
if x=d for each x in X implies c<d., 4n element ¢ in P is éaid to be
the intersection or meet of a subset X of P, when it exists, if c<x
for each x in X and if d=x for each x in X implies d<c.

A lattice is a partially ordered set L in which each two elements
have a union and an intersection in L. The union of a and b lS desig-
nated avb and the intersection, anb. The unions and intersections
satisfy the following identities

1l: ana=ava=a,

l2: anb=Dbna and avu b:/bu a,

L3: an(bne)= (ar\b)h ¢ and av (bve)=(aub)ve,
Lh: anfaub)=a and au(anb)=a,

A lattice is said to be complete if every non-empty set has a union
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and an intersection. 4n element I is said to be the unit element of

the lattice L if it is the union of all the elements of L. Dually, an

element O is said to be the null element of the lattice if it is the

intersection of all elements of the lattice. 4 lattice with un:r.t and

null element 1is said to be complemented if for each a in 1L, there ex-

ists an a! such that anat =0 ar{d avat=1I, In a lattice an element a
is said to cover an element b (a>Db) 1f a>p>b implies p=a.

A modular lattice is a lattice L which satisfies the postulate

Li: b=<a implies an(buc)=(anc)ub for all ¢ in L.
In a modulsr lattice aub>b implies ayanb and conversely.

& distributive lattice is a lattice L which satisfies the postu-~

lates

D an(buc)=(anb)u(anc) and

(1]

1
D

.

2 av(bne)=(aub)n{avc)

for all a, b, and ¢ in L. It is immediate that every distributive lat-

tice is modular, but the converse is false. 4 Boolean algebra is a

complemented, distributive lattice,
A single-valued mapping © from a lattice L onto a lattice L' is
a ‘homomorphism, if for every a and b in L the two relations
B(aub) = O(a) v B(b) and
Sanb) = 6(a) N O(b)

are valid. If the mapping is one-to-one, the homomorphism is referred

to as an isomorphism.

A congruence relation O on a lattice L is an equivalence rela-

tion on L with the properties that a=b in L implies a=b(0) and

that 2=b(0) dimplies anc®=bnec(0) and auc=buc(@) for all
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¢ in L. The notion of a homomorphism and that of a congruence rela-
tion are eguivalent in that there exists a one-to-one correspondence
between them. If © is a homomorphism of L onto a lattice L%, then
the relation &=b(0) defined by a=b(8), if and only if 6(a) = 9(b),
is a congruence relation on L. If © 1s a congruence relation and ag ,
the equivalence class generated:by element a of L, the set of all equi-
valence classes forms a lattice, and the mapping ©O(a)=a, ié a homo-
morphism of L. For convenience in this manuscript the congruence nota-
tion will be utilized. The set of all congruence relations on a lat-—
tice L forms a complete, distributive lattice (©@(L)) under' the partial
order ®<0, if and only if a=b{(p) implies a=b(0)., If I is a non-
void subset of ©@(L), a=b(N[") is characterized by a=b(0) for every
©® in ", and a=b(U[") is characterized by the existence of xy, %,
eees X in L and O, in [ for =1, 2,..., k such that X)=a,

Xy 1= by and x;= x, 0 ( 91) . The 0 and I of &(L) are cheracterized as
a=b(0) if and only if a=b and a=b(I) for all a, b in L,

A subset A of a lattice is said to be an ideal if it has the prop-
erty that (aub)nc is in A for every a and b in 4, and ¢ in L. A4 set
with the dual property is a dual ideal. The set of all ideals of a
lattice L forms a complete lattice, denoted L,, in which the order ¢
is set inclusion ( €, proper inclusion). As a result of this order the
intersection of two ideals is the set intersection of the ideals; the
union of two ideals, A and B, is thé set of all x in L such that there
exist a in A and b in B with xsé.u b; and the union of a chain of
ideals is the sebt of all elements which are in one of the members of

the chain. Uhe set (a) = {x in L| x<a} is an ideal called a principal
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ideal. The set of all principal ideals of L forms a sublattice of Lo
‘which is isomorphic to the lattice L; in such a way any lattice can be
embedded in its lattice of ideals. Further, Lo has been shown to be

mnodular or distributive as the lattice L is modular or distributive.

2. Irreducible Ideals of & todular Lattice

Irreducible ideals in one form or another have played a signifi-
cant role in the structure of specizl types of modular lattices. ‘‘he
fact that the irreducible ideals of a distributive lattice are prime
ideals has enabled Stone to study these lattices as topological spaces
with the set of all prime ideals being the underlying space (2); By
showing that the maximal ideals satisfy the axioms of a projective
geometry, rrink wss able to study complemented modular lattices (3).

i sﬁccessful study along the same lines for a modular latticé has not
yet been conducted; nor has the structure of modular lattices been dis-
covered, rowever, the results of this section will display an arithmet-
ical property of the set of irreducible and completely irreducible
ideals wnich characterizes the modularity of a lattice.. Since this
property characterizes modularity without restriction, it is the most
general structure result now known for modular lattices.

An idesl P is szid to be a proper ideal if it is not the ideal

consisting of all of the elements of the lattice. An ideal P is said
to be irreducible if it is a proper ideal such that when P=A4nB in Lo,

then either P=4 or P=B. An ideal P is completely irreducible if P

is a proper ideal such that when P==;2FQ¢, Q« in Lo, then there exists

o, in " such that P=Q, . J denotes the set of irreducible ideals of
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L and J¥, the set of completely irreducible ideals of L. Since every
completely irreducible ideal is an irreducible ideal, then J¥*¢<J.

An ideal P is a prime ideal if when anb is in P then either a is
in Por b is in P. This definition 1s eguivalent to the stronger state-

ment that ANBCS P implies either ASP or BSP. A maximal ideal is a

proper ideal which 1s contained J_n no other proper ideal. Iumediately
every proper prime ideal is an irreducible ideal and every maximal ideal
is a completely irreducible ideal.,

The existence of irreducible and completely irreducible ideals is
guaranteed by the following lemma of Stone (2). |

Lemma 8: If V is a non-empty subset of L closed under intersec-—
tiohs and A is an idesl of L such that ANV=@; then

(1) there exists P in J such that P24, PAV=¢, and P!> P
implies P'A V& '
(2) if NV is in V then P is in J%,

Proof: (1) Let @={B in L}B24 and BAV=¢} and consider as
a partially ordered set under set inclusion. If [ is a chain in 2
and ¢ = U{B|B in C}, then C={x in L|x in some B of [ } . Hence
CAV_=¢ and ¢ is in d. & is non-empty since A is in d and further
every chain in d has an upper bound in d ; therefore, by the maximsl
principle there exist maximal elements of . If P is & meximal sle-
" ment of d and P'DP, then PPAV#@. P is a proper ideal since V is
non-empty. If P=QgnR, PCQ, and P/CR; there exist g in ¢ and r in R
such that both are in V. Then qu\r is in P and V contradicting their
void intersection. Therefore either P=Q or P=K and P is in J.

(2) Suppose P = N Q. and each Q> P. Then Q AV# @ and (\VV is
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in Q. hence, in () Q.= P, contrary to the assumption that vi is in
V and PAV=¢. Therefore P=(Q, for some « and P is in J%.

Corollary: =zvery proper ideal of L is an intersection of complste—
ly irreducible idezls of L.

Proof: If A is proper, there exists x not in 4, and Lemms S im~
plies there exists P in J# such that P24, Therefore let A' equal

N{Pedg#| P24}, then ACA's If x is in A' but not in A, then from
Lemma S there exists Q in J% such that Q24 with Q not containing x.
Then x is not in A', contrary to assumption. Therefore x in A' implies
X is in A and therefore At'=A. |

In general J¥#CJ; however, there are cases in which J¥#=J. 1In
particular the following lemma shows that this condition is true for
a finite lattice.

Lemma F: If L 1s finite dimensional, J=J%,

Proof: Since L satisfies the ascending chain condition,ievery
ideal is a principal ideal and Lg is isomorphic to L. Therefore, since
L satisfies the descending chain condition, Lo satisfies the descending
chain condition. Then let Pbe in J and P = N Qoo Since L, satisfies
the descending chain condition, the arbitrary intersection may be re-
placéd by a finite one. Hence P=Q.nQ,n ++.0Q,, and by a finite
number of applications of the irreducibility condition P=4, for some
v o Thus P is completely irreducible and in J%*. Therefore J=J%,

Lemms 1l: P in J% implies there/exists a unique ideal P¥ such that
pii . |

Proof: Define P% = N{Q in L. {Q2P}. P* is well defined for P

is a proper ideal which implies the set is not empty and the intersec-
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tion exists since Lo 1s a compiete lattice. Since each QDO P, then
P#*2 P; however since P is completely irreducible and each {2 P, mst
P#¥> P, Now if P#*¥2K>P, KOP implies that K is in the set defining
P¥* and consequently that K2 P¥*, Hence K=P*, which implies that
P#% P, To show that P¥ is unlque, let Q¥ P; then QO P; hence {2 ity
and Q2 pP¥> P, which by definition implies that Q=1r%, _

Lemma 2: If P is in Lo and {Q. |« in "} is a chain in L,, then
Pn O&JFQ“= éﬁp(PnQu) .

Proof: If x is in P N \JQu, then x is in P and x is in UQu.
Since the set of @, forms a chain, x is in Q. for some o :Ln "+ There=-
fore x is in PnQ, for some « and hence in t,}elr,(l?r\ Qo o ConseQuently
Pn HvQ“ < XP(P(‘Q““ however in a complete lattice the converse is
always true. Therefore P n UQ,L U(PnQ“).

Lemma 3: If {Qu) and {R.} are chains in L, with the same in-
dex set [ and are related such that (. < Q,, if and only if R < R,,
then U (QuNRJ= (Y. QI N (VR

Proof: If x is in (Y.Qu N (YR, then x is U Qgand Y Ree
since {Q.} and {R«} are chains, there exist « and # in [ such
that x is in Qu and Rge If x is in Q,, then x is in ¢, n R, and hence
in U (QanR.)« If x is not in Q,, x in @, implies Q_$Q,; and since
{Q«} is a chain then Q,<Q,. Consequently from the hypothesis of the
lemma ity € R,; and therefore x is in R,, Q.0 K,, and iﬁl"(Q“A RJ . Hence
( &QFQ,) N ( HPR“) < ogr(Qur\ R?‘) 3 howe\/rer the converse inequality is imme-
diately true; and therefore (W .NRJ= (.Hr' R N( &épﬂ,‘) R

The previous results are true for any lattice; however they are

dpplied in that which follows to modular lattices. It is assumed in
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all that follows that L is a modular lattice.
. Lemma'l: If P, A, and B in L, are such that ANBCP, then there

exist in L, Q24 and R2B such that PAQ=PnR=QnR.

Proof: Define Q=AY (PNB) ‘a.nd R=BU(PNA); then gnR =
[av(PaB) ] n [Bu(Pon)] = (Pnayu{Bn [av(PnB)]l} =
(Poa) U{(Bna)U (PNB)} = (PNB)U(PNA)=P N [Bu(Pn4)]=
PN[Av(PNB)) . Therefore QN P=PNR=QNR. -

Theorem 1: If P is in J, and A and B in L, such that A4 P, B4P,
and ANB<P; then there exist A' and B! in J such that &'2 A, B'2 B,
and At'n B'= A'n P=B'n P, o

Proof: Define ¢ ={(Q,E) |Q,Re¢L>Q24, R2B, and QN R=QAP=
RAP } and define (Q',R') € (Q",R") if Q'€ Q" and RICR', < is ime-
diately a partial order on G, and ANB<P plus Lemma 4 implies that
¢ is not empty. Let L[={(Qu,R«) |« in I} be a chain of & and de-
fine QE“\&JPQK and R = Y Rs. Obviously Q24 and R2B. {Q} and
{r are chains of L satisfying the hypothesis of Lemua 3; there~
fore (a\e)\" QI N (~ U Ry) =°&)P(Q°Ln R)= gp(QJ‘ P) = a\(gr(Re‘r\ P). Hence by
applying Lemma 2,‘ QNR=QNP=RNP; and (Q,R) is in ¢ . On the other
hand Q2Q, and R2 R, for each « in I imply (Q,B) > (QusRed for each
o in T, and therefore (Q,R) is an upper bound for C in & . Apply-
ing the meximal principle, there exist maximel elements in . Let
(4',B') be a maximal element of & , then A' and B! will be shown to

’

have the property of the theorem, "First, A' and B! are proper. ideals.
For if B<At', then BSB' and A'nB'<P imply B &P, contrary to assuwmp~
tion. Therefore A! is proper and similarly B! is proper. Second, if

Al= er\ Qz, it can -be shown that A'=Ql or Qz. For by computation
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Lrunepl 0 lruBingy) )= ruienern [rPu@ing)l} =
Pu{gn [EBnpuEn]) = pru{ynBng)=pPuEna)=r
Now P irreducible implies P=Pu (B? (\Qi), for i=1 or 2. But

P=Pu (B'n Qi) implies BN Qs< P and Lemua 4 implies that there exist
Br o B ehd Q'2 Q;such that B'"nQ'=B"N P=Q'Nn P, However BCB'< B"
and ASA'sQ,<Q' imply (Q',B") is in £ and that (Q! ,B")}(A',-B');
Therefore the maximality of (a',B') in ¥ implies invpart A'=Q' and
hence A'=Qj. Similarly B! caﬁ be shown to have this property and the
theorem is established. |

C;)rollarz d: P in J% implies A' and B' are in J¥%,

Proof: A' and B' are proper ideals since they are irreduéible;
therefore it suffices .to show thal They possess the second property of
completely irreducible ideals. Suppose 4l =0Qr~Q°‘; then, since for each
« PU(B'nQ)2P, N [Pu@na)]2r. 1 O [ro@E'0el]op,
then Lemma 1 implies u{)p[?kl(B'” Qu)] 2 P¥ or PU(B'n Q«) 2 P¥ for
each « in M. Then P#=Pen [PU(B'N QL)) = Pu(Pn B'n Q) vP for
each o« in M. Since L is a modular lattice then P¥NB'N QT PAB'N Q&
PNB'. However B¢ P implies B'U P2 F; hence P*=P*n(PSQB') =
PU (P*N B' )PP, waich then implies *AB'¥FPAB'. But P¥NB' 2
P*¥NB'N Qq3 therefore P#N B'= P¥NB'N Q and Q2 P*¥NB' for each « in
', Therefore A! '=°LDFQ‘2 P#NB'; hence A'NB'2P¥NB'. However since
~ A'N B'=PNB', this is a contradiction of rP#NB'Y¥ PNB'. Therefore
“(;\P [PU(Qn B') ] =P and since P ié_ completely irreducible this im-
plies P=PU(Q;OB') for some « in I', For this «, by the same argu-
ment as in the theorem, maximality of the pair (a',B') in 104 implies

A'=(Q e« In a similar manner B' may be shown to be cdmpletely irreducible.
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Corollary 2: If a and b are in L and P is an irreducible ideal of
‘L, with aNnb in P and neither a nor b in P; then there exist irreduci-
ble ideals A!' and B' of L such that a i in A', b is in B', and A'NB!'=
A'NP=B'n P, o |

Proof: anb in P implies (anb)eP., a not in P, b not in P, im~
ply (a) 4P and (b) $P. (anb) = (a) n(b) implies (a) n (b) QP; therefore
applying Theorem 1, the result follows. |

Corollary 3: A necessary and sufficient condition that & lattice
L be modular is that every completely irreducible ideal P of L has the
property that when anb is in P with a and b not in P, tliefe exist com-
pletely irreducible ideals A'2 a and B'2b such that a'nB'=4ANP =
B'n P,

Proof: If L is modular, the condition follows from Corollaries
1 and 2. Conversely, suppose L satisfies the condition and is not
modular; then there exist a, b, and ¢ in L such that a>b and an(buc) >
bu(anc). Then the corollary to Lemma S implies there exists P in J%
such that bu(ane¢) is in P but an(bwe) is not. How bu (anc) in P
implies anc in P, and an(buc) not in P implies neither a nor c in P.
Tﬁerei‘ore the condition of the corollary implies that there exist A!
and C', completely irreducible ideals of L, such that a is in A', ¢ is
in C', and A'NC'=A'NnP=C'NP. Then b<a implies b is in 4'; b inP
then implies b in A'N Pc (', Therefore buc is in ¢! and an (bu ¢) is
in A'NC'c P, which.is a contradidt’ion. ‘Therefore L must be modular.

It may be noted that similar results are valid for dual iceals

from the dual nature of a lattice.
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The relationship just proved for modular lattices implies that
there are two possibilities for arithmetical properties of irreducible
ideals of the lattice. For either the ideal is prime or there exist a
and b not in the ideal with anb in the ideal. The above result shows
what mast happen in the latter situation. Though this relationship
appears strange, it may be jntex;preted as one of a linear neture. In
fact, it was just such a dual property, PUQ=PUR=Ru{, for maximal
dual ideals that enabled frink to define the notion of & line generated
by two maximal dual ideals and thus to get a projective geometry out of
a complemented modular lattice (3). This relationship will now be used
to define a perspectivity and projectivity for irreducible ideals of a

modular lattice,

3. Perspectivity and Projectivity in J

Two irreducible ideals ¥ and § of L are said to be g_gersygective
(P~qQ) if
(1) P=Q or
(2) P<%Q and Q¢P, and there exists R in J such that
PAQ=PNnR=HKENQ.

Tvio irreducible ideals P and Q of L are said to be projective
(P=Q) if there exist Py, Pyyess, Py 5 in J such that Pl= P, P, 1=Q,
and Py~ Pi+l for i=1, 2,..., ke

Corollary:

(1) P~Q implies P=Q,

(2) ~ is symmetric and reflexive, and
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(3) ¥ is an equivalence relation on J.
Proof: The results of this corollary are immediate consequences
of the definitions.
Lemma 5: J¥% is closed under projectivity.
Proof: It is necessary to show that ¢ in J% and P®Q imply that
Q is in J%, It suffices to consider P~Q and P#Q. Therefore P4Q,
Q¢ P; and there exists R in J such that PNQ@=PNR=QnNR. If H<P,
then PNQ=RNnP=R; but R in J implies R=Q or R=P. R=Q and R<P
contradict Q$P. R=PF and PnQ=R imply Q2 P which is contrary to
P4 Q; thus R$P, Therefore Q, B, and P satisfy the hypothesis of
‘Theorem 1 with QnE <P, Q4P and R$¢P. Consequently, by Corollary 1
of the theorem, there exist Q' and R' in J% such that ReR', Q<Q',
and R'A Q'=PNR'=PnQ'. Then PAR=PNER'n R=Q'n R'n R=Q'n K, but
Q2 PnR=0'n R implies g=Qu (Q'n K)=Q'n (RUQ). If g=RUQ, then
REQ; but just as R4P, R$Q. Hence Q#QUR and the irreducibility of
Q implies Q=Q'; thus Q is in J¥%,
Theorem 2: If N is a subset of J, define for 4 and B in L.
AEB(ﬁ) if when P is in J such that P2ANB and
PR AUB, then P=Q for some Q in Nj
then A=B(N) is a congruence relation on Lg.
Proof: From the definition it is obvious that the relation is re-
' flexive and symuetric. For transitivity, let A=B(N), B=C(ii), ¥2ANnC,
and P$ AUC with P in J. |
Case 1: Assume P2B. Then r2BNA and P2BNC; however FRAUC
implies that either one or botii of the relations r?Bu4, PPBUC hold.

Since A=B(N) and B=((}l), in either eventuality there exists some & in



K such that P=Q.

Case 2: Assume PP B and that either P24 or P2C. Then either
P2ANB and PRPAUB or P2CNnB and PP CUB; 4=B() and B=C(N) imply
there exists some ¢ in N such that PvQ.

Case 3: Assume P2B and that neither ASP nor C<P. Since A¢P,
C4P, and ANC<P; Theorem 1 implies that there exist 4' and C' in J
such that A<A', C=C', and 4'N C'= A P=('n P, Then B¢P implies B
is not containéd in both A' and C'. Therefore either A'2aNnB and
AtP AUB or C' BQC and C'2 BNC; since a=B(N) and C=B(l);, either
AY=2 Q' with Q' in N or 0'3(.),“ with Q" in N. However 44 P and C4P im-
ply A'$ P and C'¢ P. If PSA' or PSGC', then P=A'nC' which, since F
is irfeducible, implies P=A' or P=(', contradicting the assuuption
that neither 4 nor C is contained in P. Therefore P$4a', P$C', C'$F,
A'4P, and A'N C'=PAC'= PnA! imply P—A! and P-C', Therefore Psa!
aﬁd P=(GY'3 P=Q! or Px"‘nQ“; and P=wQ for sonie Q in H. - Since fhese cases
are exhaustive, 4=C(l). Therefore this relation is transitive and is
an equivalence relation. ‘o show that the relation is a congruence re-
lation, it remains to show that unions and intersections are preserved.

Let A=B(N), P be an irreducible ideal, F2(AUC)Nn(BYC), and
P2 AUCVYB. Then since (AUC)Nn (CUB) contains C and ANB, P contains
C and ANB. How P2C, PRCUVAVB imply PP AUB; therefore A=B(N) im-
plies P=Q for some @ in N. Hence AV C=BUCG(). |

Let a=B(N), P be an jrreducibie ideal, P2ANCNB, and P 2
(AnC)u(BNC). Since C2(4nC)u (BNC) and AUB2(ANC)V(BNC), P #
(AnC)V (BNC) implies C¢ P and AUB¢P. Therefore if P2ANB, A=B(N)

would imply that there exists @ in N such that P¥®Q. If AnB¢P, since
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C4¢P and ANBNCSP, Theorem 1 implies there exist C!' and (4NB)! in J
such that C<C!'y, anB<(anB)t, and (ANB)'NC'=CIn P=(4NB)!n P,
Since CN(AvB)2 (ANC)U(BNC), if aUB is in (AnB)', then Cr\(AuB)
would be contained in C'n (ANB}!' and hence in P, contradic.tingf the
fact that (ANC)u (BNC) ¢P. Therefore aUB¢ (ANB); then A=B(N) in-
plies (ANB)'*RQ for some Q in N. But AnB¢P implies (AnB)'¢ P, If
P<(anB)', then P=(ANB)'Nn C'; however in view of C¢P and AGB!FP,
this would contradict the irreducibility of P. Thereforé P¢ (ANB)!*,
(AnB)'4 P, and (A0B}'NnC'=C'n P=(ANE)'Nn P imply P (4NnB)'. Since
(AnB)1=1Q, then Px=Q and therefore ANC=BNC(K). |
Corollary: If N is a subset of J, for a and b in L define
a=b(lN) if when P is in J such that P2anb and
Paub, then Py for some @ in N;
then a=b(N} is a congruence relation on L.
Proof: Replacing the use of Theorem 1l by Corollary 2 to the theo=-

rem, the proof is the same as that of the theorem above.

4. Characterization of the Congruence Relations of L.

In the previous section it was shown that an arbitrary subset of
irreducible ideals of a modular lattice was capable of defining a con=-
gruence relation on the lattice. It remains to be shown that every con-
gruence relation on L can be so ygenerated. This will be done by study~-
ing the relationship between the congruence relations on L and L..

There exist means of proceeding from a congruence relation on L to a

congruence relation on 1, and of proceeding from a congruence relation
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on L, to one on L.
Let © be a congruence relation on L and define a congruence re—
lation é on L, by
4=B(6) if for each a in 4 there exists b in
B such that a=b(8), and conversely.
Lemma 6: The relation AEE(@) is a congruence relation on Lg.
Proof: From the definition A=B(6) is immediately an eqﬁivalence
relation on L,. Let A=—-‘B(6) and let a be in anC, then since a is in
4 and A=B(O) there exists b in B such that a= b(6). Then a=anb(0),
and a in C implies anb is in CnB,., The converse follows .m the same
way; hence ANC=BNC(6), Let p be in AUC, then there exist a in A
and c in G such that p<auc. & in A, A=B(6) imply there exist b in
B such f.hat a=b(0); hence auc=buc(6). Therefore p=pnlauc)=
pn{buc)(®) and pn(buc) is in BWC. Since the converse follows in
the same way, AU CEBUC(é), and AEB(@) is a congruence relation on Lge
If O is a congruence relation on Ly, define for a :and b in L
a=b(8) if and only if (a) =(b)(8).

Lemra 7: a=b(8) is a congruence relation on L.

Proof: a=b(8) is inmediately an equivalence relation since © is
an equivalence relation on Lg. Since (x)n (y)=(xny) and (x)u(y)=
(xvy), a=b(8) implies (anc)= (a) n(c)= (b) n{c)=(bnc)(e) and simi-
lé.rly (ave)=(buc)(8). Hence anc=bnc(8) and ave=buc(6); thus
a=b(8) is a congruence relation on L.

Lerma 8: If 4 and B are principal ideals of L, A= B(é) if and
only if A=3B(e).

Proof: Let A= (x}) and B=(y), then (x)= A=B=(y)(0) iamplies
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x=y(8). Let a<x, then a=anx=any(®) and any is in (y). Simi-
larly for b in (y) there exists a in (X) such that b= a(§) and there-
tfore (x)= (y) (3). Ir (x)=(y) (é), since x is in {x) there exists b in
(y) such that x=b(6); likewise there exista a in (x) such that y=a(0).
But asx and bsy imply x=aux=yub= y(6) and therefore (x)= (y)(9).

In order to characterize the congruence relations in .te'rms of sub-
sets of J & "collapsed" or ®characteristic" subset is defined. Thus if
© is a congruence relation on Lg, define

N(@©) = {P in J |there exists 4 in L. such
that 42 P and ASP(O) ¥,
E(@) = {P ind ‘11‘ 42 P and A=P(0), then
4=PY,
Immediately N(O)V E(©)= J and N(©®) AE(O) =¢, where V and N denote set
union and set intersection respectively in J. |

Lemnz 9: N(Q) is closed under projectivity.

_lir_o_g__i_‘_ : It is necessary to show that P¥»Q and P in :N(G) imply-Q is
in N(©)., It suffices to consider P“Q and P#Q; then P¢Q, Q¢ P, and
there exists R in J such that PAR=PNnQ=QnR. Now P.in N(O)} implies
that there exists AD P such that A= P(©). Define a'=QU(ANR), then
A'2 Qs If A'=Q, then ANRSQ; and AREQNR <P, Therefore P =
(AnR)VP=An(PYR); then P irreducible and P# A imply P=PUR or
HeP, But this implies H=PnQ; and K, an irreducible ideal, implies
R=Por =~Q. How R=Q implies QE/P, and R =P implies P Q3 each of
which is a contradiction of the non-comparability of P and Q. There—
fore Q#A', A=P(OQ) implies anR=PNH(6) and Qv (anR)=Qu(QnR)(9);

therefore a'=Q(6) and Q is in N(@).
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Lemua 10: Let € denote set inclusion among the subsets of Jd,
then:
(1) <6 implies N(P)EN(B),
(2) N(PnO)=N@)AN(B),
(3) NM@ue)=N@)Vi(e),
(4) H(®)=¢ if and only if ©=0, and
(5 ¥I)=4d.

Proof: (1) P in N@) impli;as there exists 4 DP such that 4=P(Q),
Then @ <©O implies A=P(0) and therefore P is in N(O).

(2) From part (1) N(Pn O )cH(P)AN(B), Let P be in.N((p) and
N(O), then there exist 4 and a' such that a2 P, 4'2P, 4i=P(¢), and
A'=P(8). Then ARANA'2 P and A=P(P) imply anA'=F(Q), and likewise
ANAT= P(B); therefore ANA'=P(Pn O), ADP and 4'> P iuply ANAI2 P,
and the irreducibility of P implies P#ANA'., Hence ANA'D P and P.is
in N(p n© )., Therefore N(Q n O )=N(P) AN ().

(3) Part (1) implies N(Pu® )2N(P)VN(8). Let Pbe inH(Ppvo),
then there exists AJ P such that A=P( @ v ©), Then from the nature of
the union of two congruence relations there exist ideals Pis Poseee ’Pkﬂ.
and ¥; in {®,0} for i=1, 2,..., k such that P 1=A, Pp=P, and
Pi= Py, ( 8;)e P 3=4OP implies that not all P; SP; therefore let j
be the first index such that Pj $¢P. Since P,=7P, then j>1 and Pj-lg P.
" Then Py 1= P( Xj_l) implies P PUP; = PUP;( ¥; ), and PJ.¢P implies
PUPjD P, Therefore P in N( Kj—l) and K,j-l in {9, 0} imply P is in
N@)VN({®). Hence N( Qv O )=N(@)VN(8),

(4) Since O is equality, it is immediate that there exists no P in

N(0) and hence that N(0O)=@. Let N(6)=@ and 4=B(6). Suppose A+B,



~18-

then the corollary of Lemma $ implies there exists P € J¥% such that
P2ANnB and PPBuA. Therefore P=PU(ANB)=PUAVB(O) and P is in
N(9) contrary to assumption. Therefore A=B and ©=0,
(5) Since I identifies everything, the result is obvious..
Lemma 11: If N(9Qv® )=J and 9ab=0, then N(9)=E.(<))).
Proof: Let P be in (). Lemua 10 implies that N(Q)AH(8) =
N(9n®©)=H(O)=¢. Therefore P in N(6) implies P is not in I§(¢) and
hence P is in E(9). Hence N(®)SE(P). Let P be in E(P), then P is
not in N@). But P in J=N(gv® )=N(g)V N(8), and hence in ().
Therefore N(Q)=E(p). |
Theorem 3: a=b(6) if and only if a=b( N(8) ).
Proof: Let a=b(0), anb be in P, and aub not be in Po Then
A= (an:)u PO P. HNow it can be shown that A= P(é). For p in P there
exists an element in A congruent to p, namely p itself suffices., For
x in A=(avb)u P, there exists p in P such that x<(avb}u é. Then
y=xo [(@nb)vp] is in P and ysx n [(anb)upl=xn [(ana)up]l =
XN [(aoa)u pl= xn[(aub)upl= x(8). Therefore 4= P(a), P is in
N(B), and a=b( N(B) ).
Conversely, let a=b( N (6) ) and define
| S={xinL]xu(anb)Eanb(e)}.
S is an idesl of L, for let x and y be any two elements of S and w be
" any element of L, then xv(anb)= anbay‘u (anb)(©). ‘Then computing,
[(Xuy)nw] v (anb) = [(Xuy)n‘w] v [XU(anb)} = [(xuy)nw] V)
[xuyu(anb)}a xuyu(ar\b)aku(anb)a anb(0), and hence (xuy}nw
is in S. Further (anb)u(anb)=anb(0) implies that anb is in S.

Define V={x in L|x=aub(e) }. aub in V implies V+#@. Then V
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is closed under intersections, for if x and y are in V, then xny =
(aub)M(avb)=aub(@) implies xny is in ¥. If SAV=¢, then from
Lemna S there exists an ideal P eJ, maximal under the conditions P28
and PAV=g. Since aub is in V, P is an irreducible ideal of L such
that anb is in P and aub is not in P. But since a=b( N(é) Js PRQ
for some Q in N(a); and Lemma 9 iimplies that P is in N(é) . However if
P is in N(é), there exists A DP such that A=F(6)., 4DP implies that
ANV#@ and there exists x in A such that x=aub(8)., A=P(8) implies
there exists p in P such that x=p(8), and then p=x=aub(0) implies
p is in V contrary to the fact that PAV is empty. rence t;rle assump-
tion that SAV is empty leads to a contradiction; therefore a=b( N(a) )
impiies_Sl\ V#@ and there exists x in S such that x=aub(0). But x in
S implies xv(anb)=anb(0); therefore a=zau(anb)=avuxvu(anb)=
avf{avb)v (anb)zaub=(avub)u(anb)ubzxu(anb)jub=(anb)u b=
b(0) and the theorem is proved.

The following theorem is an outgrowth of an attempt to generalize
the theorem that the congruence relations of a finite modular lattice
form a Boolean algebra (1l). fThough it is a theorem about the congru-
eﬁce_ relations on L,, it is in particular a statement about the con-
gruence relations of L in the finite case since here L and L, are iso-
morphic. _

theorem 4: J=J% if and only if for every © in ©(L,) there
exists ¢ , such that ©aP=0 and i/\l( Bu®)=4Jd.

Proof: Let J=J% and let O be a congruence relation on Lg. Then
by Theorem 2 1(®) defines a congruence relation on L,. N( E(©) }=E(©).
For if P is in n( E(®) ), there exists ADP such that A=P( (6} }; then

P is in J such that P2ANP=P and PPAUP=4A. Thus AZF( (@) ) im-
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plies Px{ for some  in £(O). Lemma 9 implies P is in 5(6) and there~
fore ti( E(©) )SE(8). However since J=Ji# for F in 1(0) there exists
P# P, If R is any irreducible ideal of L such that X2PNpP¥=p and
R} PU px=P#; then Pi¥P implies P=RnNP¥*, and P#P¥ with P irreducible
implies r=R. Therefore for such i, R¥P and P is u(0); thus P¥ =
P( £(6) ) and P is in n( E(®) ). Thereiore u( £(6) ) =E(®). Hence
N(OUE(®) )=N(®)VN( E®) )=NO)VE®)=J and N( On E@) ) =
N(©) AN( E(@) )=N(0)AN:(8)=¢ from Lemma 10, However N(OnE(®) )=¢
implies ©On £(8)=0 from Lemma 10,

vonversely, let P be any irreducible ideal of L and define

0= U{¥in OWs) |pis inu@® .

Then ¢ is in #(@) for if A2P and A=P(); then ©O=UJY implies there
exist Py, Ppyeeey bypy and 8 dn {8] P in B(¥)} for i=1, 2,..., k
such that ¥y= P, P, =4, and P;=P. ,( z(i). By taking the gnion of
each side with P, it is evident that it can be assumed that each PiQ P.
since ¥; in {¥|P inE(¥) Y, P is in E(¥;) for each iand PBy=P in-
Plies P,=P for each i, 1=1, 2,...,ktl. Therefore A=P and P in £(9).
iow by hypothes‘is there exists ¢ such that N( Ov § )=J and ©,9=0,
Then Lemma 11 implies P is in n(p) and there exists 4D P ‘such .’chat
AE?({p). Let FE{Q in J%| Q2P, 2$4}. The corollary to Lemm 3 im~-
plies [' is not empty and P=A n[(;,\q]. A+ P and P in J imply then that
F= Q Q. Since [' is a subset of J, it defines by ‘rheérem 2 a congru-
ence relation on Lge OSuppose P is in &(M" ), then as congruence relations
"€ O and u(P)< N(B). But since each @ in [" is in J¥*, as above @¥DQ
and Q*=Q("), and each § is in k(M"). Thus as subsets of J, M S N(O).

However for each ¢ in I', Q ®A implies QUAD Q; and A= P(P), PeQ imply
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AUg=PUQ=Q(9). hence each i in | is in n(y). N(9)AL(8) =

H(9n© )=1(0)=¢ implies this is a contradiction and ¥ cannot be in
("), Therefore ¥ is in x(I") and there exists a' 2P such that a'=p([").
But P24atnpP=p, PPA'U P=4', and 4'= P(0) imply P=Q for some 'y in r.
then § €J% and Lemma 5 imply that & is in J%, Therefore J=J%,

Corollary 1: ® (Ly) is a poolean algebra if and only if ¢=J% and

O = i(8) as congruence relations for all O in ©O(Lg).

Proof: Assuue @(Lg’} is a Boolean algebra. ‘then for each O in
@tL.,) there exists ©' such that O©n©'=0 and Que'=I, Since
#()=J then i{ BU O }=N(I)=J, and by rheorem 4 o=J%, Let 4=E(9)
and let P be in J such that r24NB and rP 2UB. ‘fhen rvav B“DP and
PUAUB=PU(ANB)=P(O) imply P is in 5(0). rherefore 4a=s5( K(B) ).
Hence as congruence relations, ©<=N{0). Lemma 10 implies then that
N SH{ N®) jo. If P is in N{ N(©) ), there exists ADP such that
A=P(N(@) ). But P2ANP=F and PRAUP=4; thereiore by the defini-
tion of the congruence relation, there exists (; in N(8) such that PRy,
Lemma 9 then implies that r is in N(B). Therefore N( H(8) }=N(9).
Kow if © (L) is a Boolean algebra, it is relatively complemented and
there exists T in @(Lq) such that ©=Lk(@)NT and TV H(B)=1.
Lemua 10 then implies N(@)=H(TnN®) j=N(T)AN( 1(B) J=51(T)Au(O)
and J= K(I)=H( Tv H(O) )=N(TIVN( §(6) /=:(t)VH(O). Therefore as
subsets of J, K{B)<€H(T) and N(T)=dJ. If 7' is the complement of T,
T'uT=I, T'NT=0, and Lemma 10 inply H(T)= (V)N J=N (T NalT)=
H(T'ax )=‘J(O)=¢; and therefore by Lemma 10 T'=0, Hence T=I and
Q =1i(Q) as congruence relations. Therelore A'—EB(G} if and only if

A=B( @) ).



Conversely, if the first part of the condition holds, Theorem 4
dimplies there exists © for each © such that ©nO=0 and H(QPve j=
Je. To show then that @(L{} is a Boolean algzebra it will be sufficient
to show that Qv©O=I, since it is well known that @(Lq) j.s aj'ciis—
tributive lattice. The congruence relation I is defined by A=B(I)
for all 4 and B in L and it must be shown that A=B( QuoOj if and only
if 4=B(I). However it is imuediate that A=B{ ¢u ©) implieé A=B(I).
Therefore let A and B be any two ideals of L. Since every P in J is
contained in N( Q@ v O}, those P in J§ such that P2 ANB with P2AUVB are
contained in d( ¢ wv©), and hence A=B( N(Pvej }, Therefor*e the
second part of the condition implies A=B( Pv©O); thus Qv 6%—3:.

' Corollary 2: The congruence relations of & finite modular iattice
form a Boolean algebra.

 Proof: From Lemma F J=J%, Let 4=B( N(®) }; then since the
ideals of L are all principal ideals, é:v(x} and B=(y} for some x and
Yo Since all ideasls gre principal, Lemma 8 implies 3=:6 + From Theo-
rem 2 (= (y)( N(O) ) implies x=y( N(®) } or x=y( N(é} } and Theorem
3 then implies xé v(8); hence (x)=(y)(©). Therefore A=B( K (Q} j dim-
piie_s 4A=B(0}, but as in Corollary 1 above A=R(Q) implies AEE( N{©) };
hénce A=B(Q) if and only if 4=B( N(®) }. Thus Corollary 1 above also
implies @(L«} is a Boolean algebra. But since L and L“— are isomorphic,
(L) is 2 Boolean algebra. |

Theorem 5: O (Ly) is e Boolea'r; algebra if and only if L is finite.

Proof: If L is finite, Lg is isomorphic to L. Then since O(L) is
a Boolean algebra, ® (Ls) is a Boolean algebra.,

1 O(Ls) is a Boolean algebra, Corollary 1 of Theorem 4 implies
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that J=J% and that the correspondence between O on Ly and N{©) is
_one~to-one.

First, if J=J%, then L has a null element. For since the void
set is immediately an irreducible ideal, ﬂ{(x)‘ xe L}== ¢ contradicts
J=J¥%, Thus the intersection is not void and there exists z in L
such that z<x for all x in L.

Suppose L does not satisfy the ascending chain coradi%ion; then
there exist <K< oo KX K eoen Let A= Q, (xn} 3 this is clearly not
& principal ideal of L. If ((xn’j} denotes the principal ideal of Lo
generated by (x) in Ly, then O (()) € (&)= ( U xy) ) n Lo
nQ ((x,)) is not a principal ideal of L.; for if Q|((>crl))= (B)., there
exists m such that B is in ((xm)) and (}:n’}s B for each n. Then B E(xm)
and 4= g (x,) SBS (x)« Thus g (xn)= (x,) contrary to the fact that
A is not principal. Thus pl ((x0) € ( g (x,) ) and there exist com~
pletely irreducible ideals of L, containing QI((XH)) but not ( g(xn) 7.
Not all of the irreducible ideals can be principal ideals; for if
0, (G)) = 0(4,) with Ly complete, then  (04,) =Qaw= D)),
contrary to the fact that g ((x,)} is not principal. Therefére there
eﬁst irreducible ideals of Ly which are not principal, and which con-
tain g((xn)) but do not contain ( g (Kn} }Jo Clearly every irreduc-
ible ideal of I generates a principal irreducible idea; of L¢3 and
since J=dJ¥%, these are completely irreducible ideals of L,. Thus let
H be the set of all principal irre@.t/zcible ideals of Lg. From the cor-
ollary to Theorem 2,H defines a congruence relation H on Lg. Clearly
p*=P(H) for each P in J%*, and thus N(H)=J. Each (xn) is in rg ((xn)),

and thus there exist irreducible ideals of L, which contain (Xn} s but
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not Q,(xn) s and which are not in H. Thus if it can be shown that
PF=Q for some W inn implies F is in H, it will be clear that

(::n) * Q‘(xn) (Iij end that the congruence relation generzted by L is
not the trivial congruence relation on L., contrary to the one-to-one
nature of the correspondence above., It sufiices to consider P—I[]
with @ in He %Then let Pnll=0aR=PnR s and let P, Q, and i
respsctively denote the union in L, of the set of ideals in P, [,
H. Let ¢ denote the union of the ideals of Pr\R, then Png=4gnit=
RaP=C. For immediately CelinpP; then if x is in EnP, x is in R and
x is in P. x in R implies x is in Rlu RZV ...an with B’i inH, and x
in P implies x is in Pyv Pou oo VP with P, in P. Thus (%) is in
FnR  and (2) €<C; therefore x is in U and naP=¢., since Pall=
HaH= Elr\ﬂ, the result follows. HNow since Q is principal, Q=(qQ)
and () 0 Q=@ @=@n0Q. xow (#)2H and (&)2R ; thus (P)nR=
Hoalle Panga H=Pv [(P)nm] = (¥) n[puﬁ] o Ulearly the non-
comparability of B and D implies R¢ p 3 therefore (&) =P ana P is
principal. Conseguently, the contradiction is proved and L must satis-
fy the ascenciing cnain condition.

Since L has a null elesent and satisfies tle ascending chain con-
dition, it is complete. Let x> X > .e>XZe.s , letb € be the set of
= and assume ﬂxn is not in €. Then ﬂxn# u, the upit element of
" the lattice. let V= {y \y?:«’h, some n} o dmmediately V is a dusl
ideal and Nx, is not in V. Then a};pl;;ring the dual to wemmz o to the
lattice of elements greater than or equal to ﬂxn, there exists V!2V,a
dual ideal, such that ﬂxn is not in v', every element of V' is grezter

than ﬂ:—;n, and any dual idesl properly containing v', each of whose
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elements is greater than or equal to Nx,, contains Nx,. oSince
VIA(Nx )=@, Lemna & implies there exists P in J such that FAVI=,
P2(0x,), and when 4D P, 4AV'# @, since J=J% and L satisiies the
ascending chain condition, £#»P and there exist x and y su_ch that
»=(y), P*=(x), and X%y. rhen since F%DP, there exists s in V!
such thet s<x and x is in v'. wsince N X, is in r, Nx ¢y. From
the meximelity of V', y not in v' implies that the dual ideal con-
taining y end V! contains Nx,. 7thus there exists t in v! such that
ynt=0x,. © in v* implies ¢ is not in ¢ and (Xj=FP*S(L)ju P im-
plies x<tvy., Then X=xXxn(tuyj=yul(tnx) and tnxny= thy=ﬂxn.
Therefore since X and ¢ are in v', xnt is in V'. rurther x =
yulxnt) Yy dmplies by wmodularity that xatyxatlny=Nx,. rhus
xAat is the minimal element of v'j; in particular xnt sx; for all n.
ihus xn 't $ A Xp, conbradicting xnt »Ax,. iuerefore Nixy is in€,
Thus Nx,=x, for some m, and X=X, 4= .., ; btherefore the descend-

ing chain condition is satisfied and L is finite.
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