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ABSTRACT

The problem of determining linear models of structures from
seismic response data is studied using ideas from the theory of system
identification. The investigation employs a general formulation called
the output-error approach, in which optimal estimates of the model
parameters are ohtained by minimizing a selected measure-of-fit
between the responses of the structure and the model. The question
of whether the parameters can be determined uniquely and reliably in
this way is studied for a general class of linear structural models,
Because earthquake records are normally available from only a small
number of locations in a structure, and because of measurement noise,
it is shown that it is necessary in practice to estimate parameters of
the dominant modes in the records, rather than the stiffness and damp-
ing matrices.

Two output-error techniques are investigated. Tests of the
first, an optimal filter method, show that its advantages are offset by
weaknesses which make it unsatisfactory for application to seismic
response. A new technique, called the modal minimization method,
is developed to overcome these difficulties. It is a reliable and effi-
cient method to determine the optimal estimates of modal parameters
for linear structural models.

The modal minimization method is applied to two multi-story
buildings that experienced the 1971 San Fernando earthquake. New
information is obtained concerning the properties of the higher modes
of the taller building and more reliable estunates ol the properties of

the fundamental modes of both structures are found. The time-varying



character of the equivalent linear parameters is also studied for both
buildings. It is shown for the two buildings examined that the optimal,
time-invariant, linear models with a small number of modes can re-
produce the strong-motion records much better than had been supposed

from previous work using less systematic techniques.
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1. INTRODUCTION

1.1 Structural Identification, Introduction and Previous Work

Broadly speaking, system identification is the process of try-
ing to deduce a model of a real system from its output and possibly
its input. In this definition, 2 model is any mathematical represen-
tation of the system which allows a good approximation to its output
to be computed. * An important aspect of system identification is to
allow for the fact that measurements made on the system are inevi-
tably contaminated by noise. Some survey articles on system iden-
tification in general are those by Cuenod and Sage (1968), Bekey
(1970), Nieman, Fisher and Seborg (1971), Astrdm and Eykhoff
(1971), Bowles and Straeter (1972), and Sage (1972). " The book by
Eykhoff (1974) also has an extensive bibliography.

This dissertation is concerned with the application of system
identification ideas to structural systems such as buildings, bridges
and dams. In this context, the output of the system refers to the
histories of response quantities measured at points within the struc-
ture. These quantities could be the displacement or its time deriva-
tives, velocity and acceleration, or even the stress or strain.

However, it is rare for the latter to be measured in structures and

The terms input and output are used here in a technical sense to de-
scribe the observed portions of the excitation and response, respec-
tively. Theyneednot correspond to the complete excitation and re-
sponse of the system.

ate ol

"“References are given at the end of each chapter.



and the term ''response at a point" will be used to refer to the dis-
placement or its derivatives unless otherwise specified. The input to
the system refers to the measured portion of the excitation producing
the structural response.

Some survey articles on different areas of structural identi-
fication are those by Schiff (1972), Collins, Young and Kiefling (1972},
Rodeman and Yao (1973) and Hart and Yao (1977). Hudson (1977) has
reviewed the means by which structural response data can be produced.
We shall first consider two widely-used sources, steady-state har-
monic tests and ambient vibrations, and then concentrate on the major
concern of this dissertation, which is the use of seismic response

records.

1.1.1 Steady-State Harmonic Tests

Steady-state harmonic tests are performed by shaking a struc-
ture with special mechanical vibrators which effectively exert a sin-
usoidal point-force on the structure. In this area, structural identi-
fication with linear models has been applied quite extensively. The
basic approach, as in most frequency-domain methods, is to estimate
the amplitude and phase components of the transfer function,

H(iw), between the location of the response measurement and the
location of the excitation. Because of both the steady-state charac-
ter and the monochromatic frequency content of the input and output,
these functions can be evaluated directly from the amplitude and phase

of the response, relative to the exciting force, for each frequency of



excitation.

In practice, the phase information is often ignored and the
modal parameters are estimated from resonant peaks of [ﬁ(iw)l,
the amplitude of the estimated transfer function. The modal fre-
quencies are estimated from the location of these peaks; the modal
damping factors are estimated from their half-power bandwidth; and
the (unscaled) modeshape values are estimated from their heights.
Some consideration of the phase is required to determine the correct
sign of each modeshape value. In some cases, the parameter esti-
mates obtained by this resonant-peak technique are strongly affected
by modal interference, that is, by the contribution to the response of
other modcs in the neighborhood of a given modal frequency. This
can make the damping estimates particularly unreliable. Hoerner and
Jennings (1969) have investigated a particular case of modal interfer-
ence.

A deficiency of the resonant-peak technique is that only a small
number of points of 1I:\I(iu))[ are used to estimate the modal param-
eters, so much of the data is ignored or, at best, used only quali-
tatively. This makes the estimates sensitive to measurement noise
and to model error, where the latter refers to errors arising becausec
the structure is not a time-invariant linear system with uncoupled
modes as assumed in the model. Nevertheless, the approach has
proved successful with low-amplitude forced vibration tests because
the noise levels involved are small for the lower modes of vibration.

However, as discussed later, the same technique applied to \H(iu))\



estimated from seisinic response records leads to unreliable para-
meter estimates because the noise levels and model error are much
greater.

Ibéfﬁez (1972) has pointed out the above deficiency in the context
of steady-state harmonic tests and proposes a technique which uses
all the frequency-domain data. This procedure, which he calls YFIT,
estimates the parameters by minimizing an output-error functional.

It is essentially a frequency-domain version of the general system
identification approach adopted in this work.

The above discussion has been concerned with identification
using linear models. The identification of structures using nonlinear
models and steady-state harmonic data has been investigated by
several authors, including Ibitez (1972), Jennings (1967) and Novak

(1971).

1.1.2 Ambient Vibrations

Structural identification has also been carried out by utilizing
ultra low-level ambient vibrations induced by wind and microtremors.
Techniques for this application generally assume that the system is
linear, the excitation is (band-limited) white~-noise and that the re-
sponse is an ergodic random process. The stochastic hypotheses
are necessary because the actual excitation, which is spatially-dis-
tributed, is not recorded.

By treating each individualmodal response as that of a singledegree-

of-freedom oscillator, itis posasible to dcterminc an cffective transfer



function using an approach based on the equation:

P_(w) = |Hiw)| %P, ()

where PO and Pi are the power spectral density of the output and
input respectively of a linear system. FIor ambient vibrations, PO
must be estimated from the recorded response whereas Pi is un-
known but, by hypothesis, assumed constant. In practice, because
only records of finite length are used, the stochastic hypotheses above
have the same effect as making the deterministic assumption that the
average over the records of the Fourier amplitude spectrum of each
point-excitation does not vary greatly with frequency. The average
spectrumm of the records can then be used directly as an estimate
of IH(iw)\ in the neighborhood of each modal frequency. This allows
the efficient Cooley-Tukey FFT algorithm to be used.

Once ‘H(iw)\ has been estimated, the parameters can be
determined by the resonant-peak technique discussed in the previous
section. Again, difficulties arise because of modal interference and
the use of only a few data points, which are accentuated in this appli-
cation because of the more variable character of the estimated
transfer function. In addition, the assumption that the average spec-
trum of the excitation is approximately constant is often violated.
This can be caused by strong wind gusts for eiarnple. A further
consideration relates to the frequency resolution. In steady-state
harmonic tests the frequency resolution depends on the frequency

control of the shaker. With modern equipment, a frequency



resolution of 0,01 Hz or less can be achieved. However, when the
transfer function is estimated from ambient data the frequency reso-
lution is given by 1/T where T 1is the record length, so that very
long records are required to adequately define the resonant peaks of
the low modes.

Schiff and his colleagues (1972, 1973) give a discussion of the
difficulties which arise when the modal paramcters arc cstimated
from an estimate of the transfer function made under the assumption
of white-noise excitation. Schiff proposes applying a parametric
curve-fitting method to lﬁ(iu>)i which considers all the frequency-
domain information in the neighborhood of a modal frequency in order
to get more reliable estimates of the corresponding modal parameters.
In the second paper, the authors carry out some tests by applying this
technique and Vanmarcke's method of moments (1970) to simulated
data. They were interested in investigating whether these techniques
could successfully estimate the damping from short-duration records
so that they could be used with seismic response data. The results
indicate that for a single-degree-of-freedom linear oscillator at
least ten cycles from a stationary response are required to get rea-
sonable damping estimates from either of the methods mentioned
above. Furthermore, nonstationarity of the response has a strong
influence on the accuracy of the damping estimates. By way of
comparison, one of the time-domain techniques discussed later gives
nearly exact results in an analogous situation, even when only half of

a cycle of nonstationary response, together with the corresponding



nonstationary excitation, are used in the identification process. This
illustrates the importance of using input records if they are available.
The discussion so far has concentrated on frequency-domain
identification methods for ambient vibration data and the attendant
difficulties. Gersch and his colleagues (1974, 1976) have developed
a time-domain technique which is based on an auto-regressive moving-
average model of a discrete time-series. This technique appears to
be a promising one for ambient vibration applications, particularly
since it gives some idea of the accuracy of the computed estimates

of the parameters.

1.1.3 Seismic Response Data

It has long been recognized that an earthquake can be viewed
as a full-scale, large-amplitude experiment on a structure, and that
if the structural motion is recorded, it offers an opportunity to make
a quantitative study of the behavior of the structure at dynamic force
and deflection levels directly relevant to earthquake-resistant design.
However, the time and location of a strong-motion earthquake can
not be predicted with confidence so the acquisition of such data
requires an extensive deployment of dedicated instrumentation, which
must be capable of remaining operational over long periods of time.
For these reasons, response data of good quality were not readily
available until recently, so there was little motivation to develop
systematic techniques for structural identification from earthquake

rccords.



The 1971 San Fernando earthquake in California dramatically
changed this situation. Seismic response records from about 50
buildings in the Los Angeles area were obtained (Jennings, 1971;
California Institute of Technology, 1971-1974). None of the instru-
mented buildings was heavily damaged but the peak acceleration
response in some buildings approached % g and many of the buildings
exhibited nonlinear behavior, at leasl to the exlent of lengthening
fundamental periods.

To date, the ideas of system identification have not been fully
utilized in the interpretation of these records. A common approach
has been to compare the recorded response of a building with the
response of a synthesized linear model subjected to the recorded
base excitation. This comparison has been followed by some trial-
and-error adjustment of the model parameters to achieve better
visual matching of the theoretical and recorded response. (Wood,
1972; Blume and Associates, 301-443, Gates, 445-574, Martin and
Associates, 575-596, in Murphy, 1973). Such an approach can be
viewed as a rudimentary scheme for estimating parameters in the
time domain. One of the aims of this work is to investigate system-
atic versions of this procedure which give the best possible response
matching in a2 well-defined sense.

Systematic techniques for structural idéntification from
earthquake records must contend with the transient nature of the
excitation and response records. However, in contrast to ambient

vibrations excited by wind and microtremors, most of the excitation



can be recorded.

If a building is supported solely by a rigid foundation then the
excitation would be completely specified by recording the motion in
the six rigid-body degrees of freedom of the base. In the past, only
the three translational components at one point on the base have been
recorded so that it is difficult to separate the rocking and twisting
components of the base motion from the translational components.
Nevertheless, in the absence of strong soil-structure interaction,
the dominant contribution to the lateral response of the structure will
arise from the horizontal motion of the base. Itis also often assumed
that the building axes define two orthogonal horizontal directions in
which the total horizontal response can be decomposed so that the
component in each direction is due only to the base motion in that
direction. This leads to the commonly assumed planar structural
modele. One limitation of these models is that they do not treat
properly any torsional response of the structure.

Several authors have applied frequency-domain identification
to data from the San Fernando earthquake (Hart, 597-607, in Murphy,
1973; Udwadia and Trifunac, 1974; Hart et al, 1975; Hart and
Vasudevan, 1975). For a planar linear model the response history
y (acceleration, velocity or displacement) at any point is related in
the frequency domain to the base acceleration history %z by the

transformed Duhamel equation:

Y(w) = Hiw) Z (w) (1.1.1)
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where H(iw) is the appropriate transfer function. In theory, this
relation could be applied to estimate H(iw) and then any of the rele-
vant techniques discussed in the previous sections could be applied

to estimate the modal parameters, although the half-power band-width
method for estimating damping is generally replaced by an approach
based on the height of the resonant peak. This approach requires a
prior estimate of the corresponding modeshape so that the participa-
tion factor can be evaluated.

In practice, difficulties arise because the estimated transfer
functions are characterized by extreme variability with numerous
peaks which appear to be a function of measurement noise and model
error and are not related to resonant peaks. Smoothing of ‘Y(w)i
and ]Z (w)| before taking their quotient, or smoothing of !ﬁ(iw)i
after division, can reduce the variability and therefore make the
resonant peaks more apparent, but this leads to a loss of inforination
which can result in the damping being overestimated. Generally,
past work suggests that the only modal parameters which can be re-
liably estimated from ‘ﬁ(iw)\ by current techniques are the fre-
quencies of the first few modes and possibly the damping factor of the
fundamental translational modes.

A further complication in any frequency-domain approach
arises from the typical short duration of earvthquake records. This
leads to a frequency resolution which is inadequate for long-period
structures when the Cooley-Tukey FFT algorithm is used to determine

the Fourier spectra of the base motion and structural response.
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Spectral ordinates can be calculated at intermediate frequency points
either by adding zeros to the digitized time-history data or by eval-
uating the Fourier transform integral at selected frequencies. This
will produce valid estimates of the true Fourier spectrum only if the
major portion of the complete excitation and response histories are
used in the spectral analysis. This same requirement is also nec-
essary of course for the transformed Duhamel equation (1.1.1) to
be a valid approximation, unless it is modified to include nonzero initial
and final conditions. Because of these considerations, there are
difficullies in any frequency-domain approach which must be overcome
if short time segments of the full response are to be used.

Some of the above difficulties can be avoided by using the
time-domain version of the nonparametric identification procedure
based on equation (1.1.1), that is, the impulse response function h(t)

is estimated from the Duhamel or superposition integral equation:

t
y(&) = [ h(ryz(t- mar (1.1.2)
0

where it is assumed that there is no motion until time t = 0. The
modal parameters are then estimated from the computed h(t).
Torkamani and Hart (1975) have estimated the impulse re-
sponse function by discretizing equation (1.1.2), which leads to a set
of ill-conditioned linear equations. They apply a smoothing criterion
during the estimation of h(t) to help overcome this problem. Udwadia

and Marmarelis (1976) have estimated h(t) from equation (1.1.2) by
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using a correlation technique based on the assumption that the base
motion is white noisc. They used the basement and roof records
produced in the Millikan Library building at the California Institute

of Technology during the San I'ernando earthquake. In a companion
paper, these authors have also applied the correlation technique to
determine the second-order Wiener kernel of the Millikan Library
from this earthquake data to attempt to gain some insight into the
nonlinear processes which occurred in the building (Marmarelis and
Udwadia, 1976). The Wiener kernels give a nonlinear, nonparametric
model which is based on a representation of the response as a sum of
integral terms that is valid for a general class of nonlinear systems.
The first-order kernel is analogous Lo the lmpulse response function
because the corresponding integral term in the representation of the
response has the same form as the right-hand side of equation (1. 1.2).
One problem in identifying Wiener models from earthquake records

is that the excitation is not band-limited white noise and it is difficult
to determine the effect of this on the estimated kernels.

In the cited papers by Udwadia and Marmarelis, the authors
point out the nature of the compromise that must be made in the
selection of the record length to be analyzed. On one hand this should
be long so that the statistical variability of the estimates is reduced but
on the other hand it should be short enocugh that the structural prop-
erties can be considered stationary. This is a major difficulty for
non-parametric identification of structural systems because many

cycles of response are required to give reliable estimates.
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Iemura and Jennings (1973) have developed a novel nonpara-
metric technique based on the general form of the equation of motion
for a single degree-of-freedom oscillator. They used their approach
to eslimate the global hysteresis loops from the roof response of the
Millikan Library during the San Fernando earthquake. The same
approach has recently been applied to some seismic response records
for an earth dam (Abdel-Ghaffar et al, 1977). The hysteresis loops
identified by this technique appear to be contaminated by considerable
noise unless the original data are severely band-pass filtered about
the fundamental frequency of the structure.

In general, the performance of nonparametric identification
methods when applied to earthquake records has not been completely
satisfactory. It is felt that these difficulties may stem from the lack
of model constraints during identification in the presence of high
levels of measiirement noise and model error, particularly the latter.
For example, in the nonparametric procedures based on equation
(1.1.1) or (1. 1. 2), the only assumptions made about the structural
model is that it is linear and time-invariant. Much useful informa-
tion, such as the fact that the dynamics satisfy Newton's Second Law,
is ignored. A parametric model is imposed only after the transfer
function H(iw) or the impulse response function h(t) is estimated,
so the prior information contained in this model is not used in the
critical first stage of the identification where it wnuld facilitate the
extraction of the signal information from the noise. It would appear

to be advantageous to impose the parametric model right from the
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start when such a model is available. Prior knowledge can then be
utilized more efficiently to reduce statistical variability and hence

to enable the structural parameters to be estimated more reliably

from short records.

Most of the work in structural identification using parametric
models has been based on variations of the response-matching idea
mentioned earlier. This is referred to as the output-error approach
to parameter estimation and it is the basis of the techniques inves-
tigated in this dissertation. The model parameters are estimated by
minimizing an integral (continuous data) or sum (discrete data) of the
squared response error. Althoughpastworkhas favored the time domain,
linear parametric models can also be determined in the frequency do-
main by applying the output-error approach using the square of the trans-
formed response error. If the complete records are used, then by
Parseval's identity the parameter estimates should be equal to those
obtained by minimizing in the time domain.

Many authors havé tested identification techniques for para-
metric models by employing simulated seismic response data.
Distefano and Rath (1974) have applied two output-error techniques,
one based on an optimal filter and the other on a Gauss-Newton
procedure (which is also known as the modified Newton-Raphson
method). They use these techniques to estimate the parameters of
some single degree-of-freedom nonlinear models from simulated

data. The same optimal filter approach is used in this work with
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linear models. Beliveau (1975) has also used the Gauss-Newton
method to estimate the parameters of a single-mass linear soil-
structure system and a single degree-of-freedom nonlinear system
on a rigid foundation. Udwadia and Shah (1975) cstimated the stiff
ness distribution of a continuous shear beam. They found it necessary
for this continuous case to add derivative terms to the integral squared
response error to provide smoothing constraints during minimization,
which was done by a mixed gradient technique (steepest descent fol-
lowed by conjugate gradient near the minimum). Finally, a discrete
equation-error technique has been developed by Caravani et al (1977)
to estimate the stiffness and damping matrices for a linear chain
model. In contrast to output-crror tcchniques, this technique requires
a response record for each degree of freedom and so it has limited
potential as far as seismic data is concerned.

Several authors have applied time-domain techniques to de-
termine parametric models from both simulated and real data.
Raggett (1974) has employed an output-error approach to estimate
modal parameters. He uses the simulated seismic response of a
three degree-of-freedom linear chain system and response data from
a real structure. His technique is described more fully in Chapter 5
because the technique discussed there has several similar features.
Distefano and Pena-Pardo (1976) have used the optimal filter tech-
nique to estimate the parameters of a linear three degree-of-freedom
chain model and the same model with cubic softening added. They

tested the algorithm with simulated data and then applied it to records
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obtained from a three-story steel-frame structure, which was shaken
by simulated earthquakes on the large shaking-table at the Richmond
Field Station, University of California, Berkeley. This facility has
also been used by Matzen and McNiven (1976, 1977) to generate
seismic'' response records for a single-story steel-frame. They
then use these recorded data, after some prior testing with simulated
data, to estimate the parameters of a single degree-of-freedom
model with a Ramberg-Osgood hysteresis law. They employed a
Gauss-Newton procedure to minimize the integral squared response
error. Finally, Beck and Jennings (1977) tested an optimal filter
algorithm on a single degree-of-freedom linear oscillator and then
applied this algorithm to short time-segments of the response to
investigate the changes in the equivalent linear parameters of the
fundamental mode of the Union Bank building during the San Fernando

earthquake.

1.2. OQutline of This Work

The principal aim of this work was to devise a practical ap-
proach which would allow the best estimates of parameters of linear
structural models to be determined systematically from records of
base motion and response during an earthquake.

Linear models were chosen partly because they are a natural
starting point for identification of structures and partly because they
are easily formulated. In addition, the identification of time-invar-

iant linear models is of practical importance because these are the
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models commonly used in dynamic design. This is either through
their use in the response spectrum approach (Hudson, 1956; Housner,
1959), which is based on the modal decomposition of linear structural
models, or through the use of synthesized models and particular
ground motion records to compute full response histories. One of
the aims of this work was to investigate how well time-invariant
linear models can reproduce the strong-motion response of a build-
ing.

The general features of parametric and nonparametric models
for structural identification are discussed in Chapter 2, and it is
concluded that the former models are more useful in earthquake
engineering. It is noted that empirical parametric models obtained
by the identification of existing structures can be used to evaluate the
accuracy of techniques for synthesizing models from structural plans.
In addition, empirical models can be used to estimate parameters,
such as those describing structural damping, which are difficult to
determine by synthesis.

These remarks in Chapter 2 are followed by the formulation
of what is termed the output-error approach to parameter estimation.
This approach is based on the idea of estimating the parameters by
calculating those values which optimize the match between the re-
corded andmodel responses. It is noted that any technique which
implements this formulation will not only provide a means for deter-
mining the optimal estimates of the parameters of specified models,

but in the case where measurement noise is known to be small, it
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will also allow the mathematical form of the model to be evaluated.
The remainder of Chapter 2 contains a discussion of the reliability
of the estimates of the parameters obtained by an output-error
method.

In Chapter 3, the question of identifiability of a general class
of linear structural models is examined. This involves an investi-
gation into whether the values of the parameters of the model are
specified uniquely by its input and output, which is a necessary condi-
tion for uniqueness of the optimal estimates given by an output-error
method. An investigation of identifiability is particularly important
when the measured output from a system does not correspond to the
history of the complete state of the model used in the identification.
This is the situation when earthquake records are used in structural
identification because on one hand, the response is typically measured
at only a small number of locations in the structure, while on the
other hand, it is desirable to have a large number of degrees of
freedom to model adequately the distribution of stiffness.

Two results of importance are proved in Chapter 3 relating
to the identifiability of the class of linear structural models con-
sidered. The first shows which parameters are specified uniquely
by the input and output of a model. These are the modal periods,
damping factors and effective participation factors. The second
result shows that to determine the stiffness and damping matrices

uniquely within the general class of linear models with N degrees
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of freedom, it is necessary to measure the response at no less than
#N of the degrees of freedom. This assumes thal sufficiently good
prior information about these parameters is available so that the
appropriate values can be chosen from a finite number of possible
values. If this is not the case, uniqueness is strictly guaranteed

only if the response is measured at every degree of freedom.

The class of models may be further restricted to ensure identi-
fiability. However, it is concluded that even if the models are identi-
fiable, the stiffness and damping matrices generally cannot be esti-
mated reliably in applications because of noise in the records. A
practical strategy is then suggested for structural identification using
linear models and earthquake records, in which the parameters of
the dominant modes are estimated by perforining a series of identi-
fications.

An investigation is made of two output-error techniques to
estimate modal parameters of linear models from seismic records.
The first, described in Chapter 4, is an optimal filter method which
was adapted from the literature on state estimation. This technique
processes the data sequentially and leads to sequential estimates of
the parameters. The second method, described in Chapter 5, is
an iterative approach which uses all the data at each iteration. It
is referred to as the modal minimization metﬁod and it was developed
in this work to provide a reliable technique to estimate the modal

parameters after certain weaknesses of the optimal filter technique
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became apparent when it was applied to seismic records. Both
methods were initially tested by using simulated seismic response
records.

The modal minimization method was applied to seismic rec-
ords from two multi-story buildings and the results are reported in
Chapter 6. Optimal estimates of the parameters of the first few
dominant modes are presented and their reliability is discussed. It
is shown that the optimal time-invariant linear models for the build-
ings can reproduce their strong-motion response remarkably well.
In addition, time-varying lincar models are used to examine changes
in the structural properties of the buildings during their earthquake

response,
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II. IDENTIFICATION USING PARAMETRIC MODELS

Some of the features of two principal categories of models,
parametric and nonparametric, are discussed in this Chapter and the
advantages derived from using the former in earthquake engineering
are given. The output-error approach to parameter estimatjon is
then formulated and several associated problems are examined,
including the reliability of the estimates of the parameters. Except
for §2. 1.1 and parts of §2. 1. 2, the discussion in this Chapter has
general applicability in system identification. In later Chapters,

several aspecls will be specialized to linear structural models.

2,1, Paramectric and Nonparametric Models in System Identification

A model is defined here to be any mathematical representation
which approximates the relation between the input and output of a
system. The models emploved in system identification can be clas-
sified into two principal categories:

(2a) Parametric models. Here a particular mathematical

form is chosen to describe the essential features of the input-output
relation of the system under study, but certain parameters must be
assigned values before the model is completely specified. Often prior
information is available to assist in this step, but in general some of
the parameters must be estimated from the input and output of the
system. As an example, a single degree-of-freedom model could be

represented in the time domain by the differential equation:
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X+ £(t, x,x32) = z(t) (2.1.1)

where =x(t) is the output of the model; =z(t) is the input to the model;
the restoring force f is a prescribed function or functional and a
is a vector of unknown parameters to be estimated. If the model is
linear and time-invariant, an equivalent representation in the fre-

quency domain (Fourier-transform space) is:

X(w) = H(iw2)Z(w) (2.1.2)

where H is a prescribed function of y containing unknown param-
eters a to be estimated.

(b) Nonparametric models. Here the unknown parts of the

model are functions rather than parameters, and so they are like
infinite-dimensional ""parameters' for identification. The only as-
sumptions that need be made about the system are that it has finite
memory and is time-invariant, although linearity is also often as-
sumed. The system is treated ag a '"black box'! since the aim is to
determine a functional relationship between the input and output with-
out recourse to any prior information about the internal structure

of the system. For example, a time-invariant linear model with a
single input and a single output could be characterized by the impulse

response function h(t) and the associated input-output relation:

x(t) = jo h(7)z(t - T)dT (2.1.3)
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The corresponding model in the frequency domain would be given by
the transfer function H(iyw), the Fourier transform of h(t), and the

input-output relation:
X(w) = Hiw)Z(w) . (2. 1. 4)

Note that in the nonparametric formulation, h(t) and H(iw) are arbi-
trary functions to be estimated from the input and output, whereas in
(a) these functions are of a prescribed form but with unknown param-
eters. Different identification procedures are therefore required in
the two cases.

In view of the preceding discussion of models, system identi-
fication can be considered as the process of:

1) specifying the matﬁematical form (input-output re-
lation) of the model for the system under study,

2) estimating the unknown parameters for a parametric
model, or the unknown functions for a nonparametric model, using
input and output data from the system,

3) evaluating the capability of the selected model to

describe the essential features of the system.

2.1,1, Parametric and Nonparametric Models in Earthquake

Engineering

The prime motivation to engage in system identification re-
search in earthquake engineering is to provide the design engineer

with more accurate models with which to predict the seismic response
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of a proposed structure during its design. Nonparametric models
suffer from several disadvantages for this application which stem
from the fact that they neglect prior knowledge about the system.

Firstly, the identification of nonparametric models for struc-
tural systems is inevitably followed by a parametric interpretation,
whenever this is possible. For example, the estimated transfer
function }:I(iw) completely characterizes a linear nonparametric
model for a structure, but without imposing some parametric model
it is difficult to give a physical interpretation of the information in
this model. This is the reason for the common practice of subse
quently estimating the parameters of a linear parametric model from
the estimated transfer function. It has already been pointed out in
Chapter 1 that if parametric models based on prior information are
available, it would be better from the point of view of reducing sta-
tistical variability to use these models from the beginning of the
identification process. This is particularly the case when linearity
is assumed because the parametric form of linear structural models
is well known.

Possibly the greatest disadvantage of truly nonparametric
models in earthquake engineering is that they are empirical models
which cannot be constructed by synthesis. Successful identification
from records at a number of points in a structure leads to a relation
between the excitation and response at only those points. The be-
havior at other points in the structure, or the seismic response of

different structures, cannot be predicted from a purely nonparametric
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model. In particular, these models are not useful in the process
of designing for earthquake resistance wherein the seismic behavior
of a proposed structure must be predicted,

These disadvantages of nonparametric modcls can be avoided
by using empirical and synthesized parametric models, so that the
latter models are more useful in earthquake engineering. In the
remainder of this dissertation, the emphasis will therefore shift to
parametric models and the adjective "parametric'' will often be

omitted.

2.1.2. Empirical and Synthesized Parametric Models

To predict realistically the seismic response of a structure
during its design, theoretical models are required for which the
parameters can be estimated from the properties of the structural

subcomponents and their interactions. The resulting parametric

models will be called synthesized models to distinguish them from

empirical models for which the parameters are estimated from

records of the structural response. Synthesized models are some-

times called theoretical models, but in this work a theoretical model

will mean a general mathematical form describing the internal struc-
ture of a system, without specification of values of the parameters.

To illustrate these definitions, consider the equation
Mx + Cx + Kx = {(t) (2.1.5)

which will be used later as a theoretical structural model. Its
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mathematical form is based on Newton's Second Law and the cons-
titutive laws for a linear viscoelastic solid. If the unknown parameters
in this theoretical model are estimated by synthesis using the plans of

a structure, it becomes a synthesized model, whereas if the unknown
parameters are estimated from structural records, it becomes an em-
pirical model. A useful interpretation of a theoretical model is that it
is a generic form defining a whole class of models. Each model has

the same mathematical form and is given by a particular set of values
for the parameters,

Despite recent advances, which include the development of the
finite element method and great improvements in computer technology,
synthesis of structural models has only met with partial success. One
of the reasons for this is that it is extremely difficult to estimate sys-
tem damping from the damping of each subcomponent. Raggett (1975)
has made a contribution in this area. However, even the values of the
significant modal periods for linear models are often not predicted
well (Wood, 1972; Murphy, 1973), and these are the most important
parameters in predicting the seismic response to a given ground-
motion history.

The lack of complete success with structural synthesis could be
due to a number of factors which include the uncertainties associated

with the properties of the structural and nonstructural components, the
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simplification necessary to ensure the model is computationally fea-
sible, and the difficulties in selecting a theoretical model which is
capable of realistically modelling the physics of the strong-motion
response of a structure. As a consequence of these problems, it be-
comes necessary to complement the a priori knowledge used in a syn-

thesized model by the a posteriori knowledge derived from empirical

models.

Empirical models of existing structures have some intrinsic
value of their own. However, it is the interplay between synthesized
and empirical models based on the same theoretical model which is of
greatest value in earthquake engineering., Generally, the empirical
model will be a reduced form of the full theoretical model because it
must be identifiable from records at only a few positions in the struc-
ture (§2.4. 1) and because of the limited resolution of the parameters
in the presence of noise {§2.4.1). For example, an empirical struc-
tural model corresponding to a linear theoretical model should be
based on parameters of the dominant modes and not upon the equation
of motion in physical coordinates which involves all the parameters of
the mass, stiffness and damping matrices (see__Chapter 3). Thus,
when identification is performed on a structure in the field, the em-
pirical model cannot be expected to give the same level of detail as a

synthesized model, but it will impose constraints on that model.
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These empirically-determined constraints can be used to modi-
fy a synthesized model of the structure to ensure that such a model is
consistent with the observed behavior. For a linear model, the mod-
ification could be as simple as scaling the synthesized stiffness matrix
to match the observed fundamental frequency or it could be the small-
est possible change in the elements of the stiffness matrix necessary
to give the observed values for all of the related modal quantities.

To lead to improvements in the earthquake-resistant design
process, the identification of an empirical madel for an existing struc-
ture may best be viewed as having three functions:

1) The estimated parameters may be used to evaluate the ac-
curacy of the techniques used to synthesize the parameters for a cor-
responding theoretical model. For example, for linear models the
accuracy of the modal periods and participation factors obtained by
synthesis can be determined.

2) For those parameters of a theoretical model which cannot
be reliably estimated by synthesis, the corresponding estimated pa-
rameters of the empirical model can be used to determine typical values
for a given type of structure, For example, modal damping factors
determined empirically can be used with linear theoretical models
during design.

3) Some evaluation can be made of the mathematical form of
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the theoretical model from the degree to which the empirical model
matches the structural response. For example, the ability of linear
structural models to describe the response of structures to strong
ground motion can be examined in this way,

One of the fundamental problems arising during the identifi-
cation of an empirical model is whether the parameter estimates are
reliable. Different aspects of this problem are discussed after the
output-error approach to system identification is introduced in the

next section.

2.2. Output-error Approach to System Identification

The output-error approach (Bekey, 1970; Bowles and Straeter,
1972) to the estimation of parameters of dynamic models is used in
this dissertation. The equation-error approach (Bowles and Straeter,
1972; Distefano and Rath, p. 16 and 51, 1974) was investigated for
linear single degree-of-freedom models but its accuracy in several
cases was found to be inferior to the output-error approach. Fur-
thermore, it is well known that this approach is not useful for multi-
degree-of-freedom models because it either requires measurements
at every degree of freedom, or measurement at one degree of freedom
of each modal contribution if a modal approach is taken.

The idea behind the output-error method, illustrated in Fig, 2,1,
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is to estimate the parameters of 2 model by determining those values
which give an optimal match of the output of the model and the output
of the real system, when both are subjected to nominally the same
input. The quality of the output match is determined by some scalar
measure-of-fit, J, which is a positive-definite function of the output-
error, Either a continuous form or a discrete form can be chosen for
the measure-of-fit, In the applications in this dissertation, continuous
records are used which are obtained by linear interpolation between
discrete data points, and so an integral mean-square output-error is
chosen for J. Finally, the purpose of the parameter-adjustment algo-
rithm, shown in a schematic way in Fig.2.1, is to select the optimal
parameter values by minimizing the measure-of-fit J in a systematic
manner. Appropriate algorithms are discussed later in §2, 2, 4.

It is convenient to formulate the output-error approach in four
parts: state equation, output equation, criterion for optimality, and

minimization (or parameter-adjustment) algorithm.

2.2,1. Stale Eguation

It is assumed that a theoretical model is available which is
spatially discretized, so that its dynamics may be described by a

state equation expressed in the general first-order form:

x(t) = £(x,z, t;a) (2.2.1)
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Here x is the state vector of the model. For structural models, it
will consist of the generalized displacements and velocities for every
degree of freedom of the model. It is not necessary for the state vec-
tor to correspond to physical coordinates; for example, it may cor-
respond to modal coordinates if a linear model is used. The vector
function or functional f describes the mathematical form of the theo-
retical model and its argument z represents the input history to the
model, The vector ¢ consists of the parameters of the model.

Notice that the history of the state is not uniquely defined by
Eq. (2.2.1) unless the initial state, §(Ti) , 1is prescribed., However,
this is likely to be unknown in many applications. For example, when
using seismic records to identify structures, it is genecrally not pos-
sible to take advantage of the fact that the structure starts from rest.
The reason for this is that the initial start-up motion is usually lost
because a certain threshold motion is required before recording occurs.
If the time interval used in the identification is only a portion of the full
history of the response, §_(Ti) is still likely to be unknown because ob-
servations of the state will be contaminated by noise. Furthermore,
the complete state is typically not observed anyway,

The value chosen for the initial state will influence the estimated
values for the model parameters. Both sets of unknown quantities are

therefore combined into one vector a and all the components are
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!

treated as "model parameters' which are to be estimated from avail-

able data, that is,

x(T,)

o
i
IR

It should also be noted that what is to be considered as the input
z is model-dependent and that this model input may not include all the
excitation of the real system, as indicated in Fig.2.1. For example,
for planar structural models the seismic input corresponds to one
component of the horizontal acceleration at one point on the base of
the structure, whereas the real structural motion parallel to a verti-
cal plane may also be caused partly by out-of-plane excitation and ro-

tation of the base,.

2.2.2. Output Equation and Qutput-error

The output equation describes how the output of the model is
related to the state of the model. It is sufficient for most purposes
to take a linear relation between the model output m and the state

and its rate of change, so that:

m =T x + X (2.2.2)

where I‘l and I‘Z are constant rectangular matrices. The elements
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of these matrices might be chosen, for cxample, to be either zero ox
unity in such a way that they select those components of x and g
which contribute to the output.

The output-error v is the difference between the output meas-

urements y of the real system and the model output m, that is,

v(t;a) = y(t) -m(t;a, z) (2.2.3)

where the jimplicit dependence of the model output on the parameters
of the model and the input to the model has been shown. There are
two contributions to v, measurement noise and model error, which
are discussed in §2.4.3. Also, the dimension of vy, m and v will
in general be smaller than the dimension of x because the number of
output records will be less than the desired number of degrees of
freedom in the model.

In etructural identification, the output vector y will be the
record esponse (displacement, velocity or acceleration) at various
poin a1 the structure, The term I‘Zz.c_ is included in (2. 2. 2) so that
it possible to use acceleration records, Although the acceleration

+y be integrated to provide displacement and _velocity historics, this
process accentuates the long-period errors in the digitized data, which
in some cases rnay cause difficulties in the identification. It also

lowers the signal-to-noise ratio at high frequencies, which can be an
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advantage when determining the properties of the lower modes but not

if the higher modes are of interest,

2.2.3. Optimality Criterion

For a given recorded input z and recorded output y over a
time interval [Ti’ Tf] , the optimal estimates of the parameters are
defined to be the values which minimize the measure-of-fit:

(11

o f
J@) =
o7

lwttal®  dt+ fa-a) @2.2.4)
; V(t) A

subject to the constraints of Eqs. (2.2.1), (2.2.2) and (2.2.3). The
vector of optimal estimates is denoted by _é'_t_. It is assumed for the
present that 4 is defined uniquely by the minimization.

In Eq. (2.2.4), ;5:0 is an a priori estimate of the parameters,
and A and V(t) are prescribed symmetric positive semi-definite and
positive definite matrices respectively, which allow weighting of the
parameters and output-error based on prior knowledge, Some judg-
ment is required in selecting these quantities. The norms in Eq. (2. 2. 4)

arc the weighted Euclidean norms:
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2 o7
iv =) ) V.. (t)v.v.
and (2.2.5)
s 1220 ) A A ;
- EOUA—éJj 15031 730,105 - %, )

The weighting matrices are commonly taken diagonal so that, for
examplec, H_\CHZ reduces to ;Vii(t)vf .

Instead of viewing the out;}ut—error approach as estimating the
parameters of a theoretical model, it is often useful to take an alter-
nate point of view: a class of models is defined, then the recorded
input and output from the system under study are used to determine
the optimal model within the class, The class is defined by the theo-
retical model chosen to represent the system, together with the output
equation. FKEach model in the class is given by assigning values to the
parameters of the theoretical model from within a set of allowable
values; the optimal model being given by 4.

The optimal model is essentially that model with the smallest
weighted integral-squared output-error but with some constraints,

governed by the size of the elements of A, which prevent too large

. For example, if A.. is

a departure from the prior estimates -%-O i

relatively large, a. will be constrained to remain close to 30 i
1 ’

during the minimization of J. It is desirable in many structural
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applications to set A equal to zero so that the parameters are not
constrained by prior estimates, However, for reasons explained later,
this cannot be done with one group of output-error techniques, the filter
methods.

It is apparent that in the case A =0 the output-error approach
allows the chosen theoretical model to be evaluated, when there is prior
information available which indicates that measurement noise has only
a small influence on the optimal output-error. In this case, since the
mean-square output-error is minimized, if the agreement between the
response of the real system and the optimal model is not satisfactory,
then the theoretical model must be at fault,

The optimality criterion has been given in a deterministic set-
ting where the presence of noise in the data is acknowledged but no
statistical assumptions are made about its form, It is possible to give
a stochastic interpretation of the optimality criterion, because the same
minimization problem can be derived by assuming the output-error v
is Gaussian white noise with zero mean and covariance matrix V‘l(t).
In this case, if A =0, é is the maximum likelihood estimate of a.

On the other hand, if the parameters are assumed to be Gaussian ran-
dom variables with mean éO and covariance A’l, then _é; is the

Bayesian maximum probability estimate. These ideas for a discrete

measure-of-fit are discussed in Bowles and Straeter (1972), while



42 -

Jazwinski (p. 150, 1970) treats both discrete and continuous cases.

2.2.4. Minimization Algorithms

The problem of identilying the optimal model from system
data has been reduced to minimizing the function J(a) in Eq. (2.2.4)
where v is subjected to the constraints of Eqs. (2.2.3), (2.2.2) and
(2.2.1). This minimization could be tackled by directly solving the
condition for the stationarity of J with respect to a:

}

vJ =0 (2.2.6)

a=3a
although this usually leads to a set of simultaneous nonlinear algebraic
equations in a which cannot be solved analytically. The nonlinearity
arises because the model response is almost always a nonlinear function
of the parameters, even if the model itself is linear in the state and
linear in the parameters (Eykhoff, p. 113 and p.446; 1974). Most
techniques actually carry out the minimization by other means although
the Gauss-Newton minimization method is equivalent to applying to
Eq. (2.2.6) a modification of the classical Newton-Raphson method for
finding the zcros of a multi-variable vector function,

Two major groups of methods for determining the minimum of
J can be distinguished and these will be considered briefly., A number

of authors, including Bekey (1970), Bowles and Stracter (1972) and
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Eykhoff (p. 151, 1974), have given a more extensive review of minimi-
zation techniques.

(a) Filtering methods: These are based on state estimation

theory (assuming no ''process' or "plant' noise) and the minimization
is achieved in an indirect manner by solving an initial-value problem.
Either a deterministic setting (invariant-imbedding filter) or a
stochastic sctting {extended Kalman filter) can be used but the final
equations to be solved are formally equivalent,

A characteristic feature of these methods is that they process
the data sequentially and give rise to sequential estimates of both the
parameters and the state. One drawback of these methods for param-
eter estimation is that they give only anapproximation to the optimal
estimates,

The invariant-imbedding filter is discussed in more detail in
Chapter 4.

(b) Descent methods: These arc itcrative methods which use

all the data over a given time segment at each iteration. They may be
interpreted geometrically as finding the minimum by a search in the
multi-dimensional space rcpresented by the allowable values of the

parameter vector a. An initial estimate ::’.:l_ is required to start the

0

algorithm, even if A is zero in (2, 2.4).

Some techniques in this category which have been used in
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structural identification have been given in §1. 1. 3 and include the
Gauss-Newton method {also called the modified Newton-Raphson
method), the method of steepest descent and the conjugate gradient
method., The first procedure is a modification of the classical

%—vvj[ S in (2. 3. 8)]is

Newton-Raphson method, The Hessian matrix
modified by neglecting the term containing the second derivatives of
the model response with respect to the parameters (Matzen and
McNiven, p.17, 1976; Distefano and Rath, p. 16, 1974), Bard (1970)
has compared several descent methods for their application to param.-
eter estimation,

A new descent method called the modal minimization method is
introduced in Chapter 5, This was specifically developed to provide
a reliable technique for the identification of lincar multi-degree-of-

freedom models,

2.3. Some Useful Definitions and Shorthand Notation

It is convenient to introduce the scalar product <=+, *> defined
on the space of continuous vector functions by:
T

<b,e>=1 T(b(), vite(mar (2.3.1)

T,
i

where V is a prescribed continuous matrix function which is symmetric

and positive definite and b,c are any continuous vector functions
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defined on the given time interval [T;>T;]. The notation (-,*) refers

to the usual Euclidean (or vector) scalar product, so that:

(b(t), V(e(®) =), * V(b (e, () (2.3.2)
5

R s =YY A (a -3
and (2-3g, A2 -ag)) =) 2 Ayla -8y ) 5-3, 4)

L]

~ 12
“la-5,l° (2.3.3)

from Eq. (2.2.5). Itis easy to show from (2. 3.7) that <=+, *> sat-
isfies the required properties (symmetry, linearity and positive de-
finiteness) to make it a scalar product.

With this shorthand notation, Eqs. (2.2.4) and (2. 2. 3} may

be written as:

Ja) =< v, v>+(a-3,,A2-2,) (2. 3. 4)

and v(a) =y - m(a. z) (2.3.5)
It is also useful for later work to define:
Jola) =<y, v>. (2.3.6)

From the properties of a scalar product, it can be shown that Egs.

(2.3.4) and (2. 3. 5) imply:

0J
(VI (@], 2 5o
— ko day (2.3.7)

_ dm . ~
=-2 <X,-EE—~>+Z(_£1{,A(3 —io))



46—

where 4 is the unit vector (_Lk)j = 6jk , and:
A1 Al 9%
Si @) =] 2V VI )].k: 2 52 0a_
J ) (2.3.8)
dm 9m A 9 m
= L — , .r__:...>+ - <.Y..’
aJ dak ik 0 3ak

The symmetric matrix S :S(é) is called the sensitivitymatrix, It

plays an important role in the application of any output-error approach
and it will be discussed in more detail later., It is also convenient to

introduce a reduced sensitivity matrix-function ASJ(g_) defined by:

~ om 8115_1

Sjk(i) :<§‘§Jf s *g;l:> (2.3.9)

The matrix g(i) is symmetric and at least positive semi-definite.

It can easily be shown that S is positive definite if and only if the
om

da,

interwval [Ti’ Tf] (see Appendix A).

(the sensitivity coefficients) are linearly independent over the time

Several technical points are to be noted in relation to these
definitions. First, the output-error v(a), and hence J(a) and S(a),
are also functions of the input and output records, z and y respec-
tively, while g(g) depends on m(a,z) and so it is a function of z
(but not y). These arguments have been omitted in the above notation
and the time dependence of y, z, m and v is also not denoted
explicitly. Second, it is assumed that there is sufficient continuity and

differentiability for all the quantities involved to be mcaningful and for
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the manipulations carried out on these quantities to be valid.

The definitions above are useful for two reasons. The first
reason is that they are a convenient shorthand which makes the
analysis in subsequent discussions more economical. The second and
most important reason is that they give wide generality to the argu-
ments developed in the remainder of this chapter. Thus, the dis-
cussion need not be restricted to the particular measure-of-fit J
defined in (2. 2.4), It will apply to any measure-of-fit which has the
form of Eq. (2.3.4), where <=, *> is now to be interpreted as an
arbitrary scalar product and the time interval [Ti’ Tf] is to be inter-
preted as the appropriate data interval., The discussion which follows
can therefore be applied to measures-of-fit which arc integrals (con-
tinuous data) or sums (discrete data) in either the time domain or
frequency domain. The model does not even have to be dynamic; it

could be a "static"

model, that is, (e, z) could be simply an al-

gebraic relation between the "output'" m and '"input" z involving
unknown parameters a. With a suitable interpretation, the output-
error approach and the discussion in the following sections are

therefore applicable to structural identification using the data from

steady-statc harmonic tests.

2.4, Reliability of Optimal Estimatcs ot Parameters

There are a number of questions relating to the reliability of
the optimal estimates of the parameters which should be considered

when applying an output-error algorithm to a theoretical model of a
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system.

One important question is whether the values of the parameters
of the theoretical model can be expected to be defined uniquely by the
input and output for the system. 'The first step is to examine whether
the corresponding class of models is identifiable.  This concept is
discussed in §2, 4.1 and its relation to the resolution of the internal
structure of the system is given.

Identifiability of the models is necessary for meaningful results
but it does not ensure that the optimal estimates of the parameters are
unique. Conditions for uniqueness are considered in §2. 4. 2 along with
the question of convergence of the algorithm, that is, whether the
values of the parameters returned by the algorithm actually give the
global minimum of J.

The next question considered is how the accuracy of the
optimal cstimates is affected by measurement noise. A fundamnental
difficulty is that there are no true or exact values for the parameters
because every theoretical model gives only an approximation to the
physical processes nccurring in the real system. This prohlem is
considered in §2. 4, 3 where the concept of an ideal model is introduced
to act as a basis for judging the accuracy of the optimal model. In
§2.4. 4, a deterministic error analysis is carried out to investigate
the accuracy of the optimal estimates of the parameters with respect
to the ideal values. Only limited results can be obtained unless

quantitative assumptions are made about the level of measurement
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noise and ideal model error. In §2.4.5, some properties of the
sensitivity matrix desirable for good accuracy are discussed and a
geometrical interpretation of these properties is mentioned.

In §2. 4.6, attention is drawn to the fact that the optimal esti-
mates of the parameters can be expected to change as different por-
tions of the data from a system are used because of limitations of the
theoretical model. This is followed by a section containing some

final remarks on the problem of assessing the reliability of the param-

eter estimates,

2.4.1. Identifiability and Resolution:

Let M denote the class of models corresponding to a theoretical
model to be used in the identification of a system. The first question
considered in this subsection is whether knowledge of the input and
output of any model in M gives sufficient information to allow the
values of the parameters for that model to be determined. To show
that this need not be the case, an example is given which is based on
some work by Udwadia and Sharma (1978), but given from a slightly
different point of view.

Consider a theoretical structural model which is a linear chain
model with two degrees of freedom (Fig.2.2). To begin with, suppose

that the output m corresponds to the response of the top mass m

2’
so that a class of models is defined by the state equations:
mo¥X, t+ k,x, -k, x, =-m.,%
2 272 7271 2 (2. 4. 1)

m, %, + (k1 +k2)xl - kzxz =-m %
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Figure 2, 2. Linear chain model with two degrees of freedom
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and the output equation:
(2.4.2)

where the parameters k1 and kz can have only positive values.
The masses my and m, are assumed to be known and equal, and are

denoted by m It is also assumed that the model is initially at rest

o
so that the initial conditions X, (0) =0 :;;i(O), i=1,2 are known. Thus,

the vector of parameters is _a_:[kl,kz]t and the set of allowable values

G={ak;>0,k,>0}.

2
The input-output relation for the models can be given in an

explicit form, rather than as a differential equation, by using

Duhamel's integral:

21 o .t
m(t;a, z) :—S ajr— { sinw (t- MzZ(T)dT (2. 4. 3)
rL::l ‘r "0 r

Here the modal frequencies Wy and wz(wl <w2) are given by the

positive roots of:

2.2 2
w

2
mo( ) —mo(kl+2k2)w +k1k2 =0 (2.4.4)

and the modal participation factors @, r= 1,2, are given by:

1 flfcp(lr) _
Ct‘r = ‘—'*——-(-}—')’—2- (2. 4. 5)
1+[Cp1 ]
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_ 0,2

where cp(r) =1- W (2.4.6)

m
1 k

2
The model output m 1is controlled by the four derived
parameters Gy Wy, C(l and cvz which are functions of the model
parameters k., and k,. It may be shown by substitution that these

1 2

derived parameters have the same values for the two models given by:

k, =k¥>0 , kzzkf >0
“ (2.4.7)
b _ l B
and k1 = Zkz s k2 = 21(1

(The algebra is shortened if the numerator of the difference

P 1

o (k§,K3) - o (2k5,5

k’f) is shown to vanish.) Thus, these two models
will have the same outpul regardless of the input z and so the valucs

of the parameters for any model in the prescribed class of models

are not specified uniquely by the input and output unless kl = Zkz. It

should be noted, however, that the response of mass my will be

different in the two models.

Suppose the output Eq. (2. 4. 2) was changed to:
m =X (2. 4. 8)

so that the output now corresponds to the response of the bottom mass
m,. For this new class of models, it turns out that the parameters
are defined uniquely by any input-output pair if the input z has finitc

duration. This is because in this case the four derived paramelers
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controlling the output, w 0 cp(ll)al and qogz)ozz are specified

| A

uniquely (see Chapter 3), and these in turn specify kl and kZ

uniquely.

Definitions of Identifiability

Consider a class of models M and a class of inputs C, then:

A model in I is globally identifiable for C if the values of its

parameters are specificd uniquely by each input in C and the corre-
sponding output.

A weaker property can be defined which is implied by the above
but which is motivated by the fact that local uniqueness may be all
that is required if sufficiently good prior knowledge of the parameters
is available:

If the values of the parameters are specified uniquely by each
input and output only in some neighborhood of the actual parameter

values, the model will be said to be locally identifiable for C.

Prior to identification, it is not known which particular model
in a class will be determined by the input and output so it is useful to
investigate the identifiability of the whole class:

The class M is globally (or locally) identifiable if each model
in M is globally (or locally) identifiable. The adjective '"globally™
will sometimes be omitted.

With this terminology, the first class of models in the example,
which used the response of the top mass as output, is not globally

identifiable for any input, although it is locally identifiable for any
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input of finite duration. The second class of modcls, which used the
response of the bottom mass as output, is globally identifiable for
the class of inputs with finite duration.

Other definitions of identifiability have appeared in the liter-
ature. It is shown in Appendix A that the definitions used here are
equivalent to the concepts of global and local identifiability introduced
by Bellman and Zistr'dm (1970), except for an essential change in their
definition of global identifiability. In addition, the definitions used
here have been generalized from the delta-function input used by
Bellman and Astrom to a prescribed class of inputs, so that the inputs
expected in applications can be included. Another definition of iden-
tifiability has been given by Beck and Arnold (1977) in their rccently
published book on parameter estimation. It is shown to be a stronger
form of localidentifiability in Appendix A.

It is emphasized that identifiability as defined here relates to
the unique determination of the parameters of a model from the input
and output of the model. An obvious question to be asked is what

happens when input and output records from a real system are used to

determine the optimal model within an identifiable class of models.
The situation is now complicated by noise in the records and the
limitations of the class of models in describing the behavior of the
system, and minimizing J might not lead to unique optimal estimates
of the parameters. However, it is easily scen that global and local

identifiability of an optimal model are necessary conditions for global




-55.

and local uniqueness, respectively, of the corresponding optimal

estimates of the parameters based on minimizing JO' The difficulty
in finding sufficient conditions for uniqueness is that the output-crror
is unknown prior to identification. A partial result is given in §2. 4.2

where it is shown that linear independence of the sensitivity coefficients

om

'é'?a‘:.' is sufficient for local uniqueness of the optimal estimates, pro-
vided the optimal output-error is sufficiently small,

When a class of models based on some theoretical model is
used in the identification of a system, unique determination of the
optimal estimates of the model parameters may be viewed as re-
solving the internal structure of the system, as it is portraycd by the
theorctical model. If too much detail is asked for, the class of models
may not be identifiable and the desired resolution will be unattainable.

Even if the desired resolution is attained, some of the model
parameters might be estimated inaccurately because of noise. The
accuracy of the parameter estimates is governed by the sensitivity of
the model output to each parameter and by the characteristics of the
noisec in the records from the system. In general, as the resolution
is increased by refining the models, the optimal model becomes more
sensitive to the particular noise content of the records used. A
compromise must therefore be made between the amount of resolution
asked for and the variance of the optimal estimates of the parameters.
This trade-off between resolution and variance is well-known in the

literature relating to the geophysical inverse problem (see, for
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example, Jackson, 1972).

In Chapter 3, the ideas in this subsection are applied to a class
of linear structural models. It is shown that these models are typi-
cally not identitiable if the unknown parameters of the theoretical model
are the elements of the stiffness and damping matrices, the mass
matrix being assumed known. It is also shown that certain parameters
of each mode give all the information about the stiffness and damping
distributions that is contained in the input and output. Furthermore,
as a compromise between the resolution of this information and the
accuracy of the estimates, only the parameters of the domjinant modes

should be estimated.

2.4.2, Convergence and Uniqueness of the Optimal Estimates

Recall that an optimal parameter vector gives the global mini-
mum of J(a) in Eq. (2.3.4), subject to the constraints of (2. 3. 5)
and the input-output relation (state equation and output equation) for
the class of models being used. Two questions which should.be con-
sidered are whether the minimization algorithm has converged to the
global minimum of J and whether this minimum defines unique opti-
mal estimates. Convergence cannot be confirmed simply by examin-
ing the output because the cffect of lack of convergence on the output-
error cannot be distinguished from the eftects of measurement noise
and model error (§2.4.4). Also, uniqueness is not implied, of course,
by the existence of the global minimum.

A technical point requires clarification. Recall that a class
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of models is defined by a theoretical model, an output equation and

a set G of allowable values for the parameters of the theoretical
model. The allowable set G will usually be determined on physical
grounds and, for czamplc, might correspond simply to cach param-
eter being positive. The global minimum of J is strictly associated
with the region of allowable values in the parameter space defined by
G. However, if the parameters are constrained during the minimi-
zation, the algorithm must be written to cope with the case where the
global minimum may lic on the boundary of the region. Alternatively,
one can leave the minimi zation unconstrained and check the final
estimates; this is the approach used in the applications in this dis-
sertation, If the values returned as the optimal estimates by the min-
imization algorithm lie outside the allowable set, it is clearly indic-
ative of either trouble with the algorithm or inadequacy of the chosen
class of models to represent the system,

Let é be the parameter vector calculated by the minimization
algorithm, then for é to be an optimal parameter vector, it must
satisfy successively:

1) vJ(a)=0  (stationary point)

2)" J(@)=J(2) for all a in some neighborhood of 3

(local minimum)

3) J(3)<J(a) forall a (global minimum)

Note that in general there is at least onc point in parameter space at

which the conditions 1), 2)' and 3)' are satisfied because J(a) isa
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continuous function of a and it is bounded below by zero. The excep-

tional case is where the global minimum occurs as {g_t_” tends to
infinity, which should not occur in practice.
To identify a system unambigucusly, unique optimal estimates
are necessary. This requires a refinement of 2)' and 3)' to give:
2) J(é)<J(§l~) for all g_;‘-_é;_ in some neighborhood of §_ (strict
local minimum)

3) J(§)<J(§_) for all a# §_ (unique occurrence of global mini-

The condition 2) excludes the possibility that §__ is just one of a
continuum of points giving the same minimum value of J, while 3)
also excludes the possibility that the global minimum occurs at other
local minima. Notice that the results of Appendix A imply that 2)
and 3) would be guarantced if the optimal model were locally identi-
fiable and globally idcentifiable, rcspectively, and if the optimal output-
error i}_ were zero. Unfortunately, measurement noise and model
error make the latter a most unlikely event.

Ideally, the parameter vector _é_i_ calculated by the minimiza-
tion algorithm should be required to satisfy conditions 1), 2) and 3),
each successive condition being more restrictive than its predecessor.
Each of these conditions is discussed in turn.

1) Stationary point:

Define the algorithm crror by:

[3] i

e;=5vI@) (2.4.9)

DN



-59.

then € should ideally be zero but in practice it need only be small.
Its effect on the accuracy of §_ is shown in §2. 4. 4.

If VJ is not used explicitly in the algorithm, the algorithm
error can be calculated separately by using Eqs. (2.3.7) and (2. 3. 5),

that is:

(eg)y == <V, 5>+ (i, A - &) (2. 4.10)

o R dm om
where v=y-m(a,z) and o S 5a |
k kija

A small algorithm error can always be expected because of

round-off errors when evaluating the quantities J, VJ, elc, in the
algorithm and because the minimum is always an approximate one.
The latter situation arises either because only a {inite number of
iterations are performed (descent methods) or because of an approxi-
mation in the theory (filter methods).

2) Local minimum and local uniqueness

Assume e, =0, then {rom a result in advanced calculus, a

J
gives a strict local minimum of J if the sensitivity matrix S :S(é)

is positive definite [see, for example, Eq. (2.4.32)]. This is a suf-
ficient condition for a strict local minimum, but not a necessary onec,
However, it is necessary that S be positive semi-definite for a mini-

mum at gt_ The sensitivity matrix can always be evaluated by sub-

stituting 51 given by the algorithm into Eq. (2. 3. 8).

o N

If the sensitivity coefficients 5o are linearly independent and

the output-error :\‘Z corresponding to é is sufficiently small, then S
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will be posilive delinile. This follows from (2. 3. 8) and (2. 3. 9)

because:
S(a) =S(a) +A - B(a) (2.4.11)
821_17_1 2 2
where BJ k(i) =<V, _8—535_5;> (2.4.12)

The weighting matrix A 1is positive semi-definite by definition and if

om A
the = are linearly independent, S(a) is positive definite

(Appe:ani)?fi% Thus, if B(4) is sufficiently small, §:S(§_._} will be
positive definite.

Equation (2. 4. 11} also suggests that S could be made positive
definite by a suitable choice of the weighting matrix A, at the risk
of possibly biasing the estimates (see %2.4.3 and $2.4.4). Thus,
prior knowledge could be used to force the parameter estimates to

be locally unique.

3) Global minimum and global uniqueness:

Assuming that conditions 1) and 2) are satisfied, the remain-
ing questions are whether the strict local minimum given by i is
also the global minimum of J and whether it is the only local mini-
mum to give the global minimum. These questions are difficult to
answer affirmatively, although if the maodel corresponding to i is
not globally identifiable, there is at least one other point in param-

as a

eter space which gives the same minimum of Jo a.

The difficulties can be traced back to the nonlinear dependence
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of the model output mf(a,z) on the parameters a (§2.2.4). If the
model output was a linear function of a, then B(a) would be identi-
cally zero in (2. 4. 11) and thus S =S+A would be positiv