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ABSTRACT 

The equations describing combustion in a flow field are modified 

for use in laminar flows where the so called boundary layer apprqximations 

may be employed. These equations are transformed into a corresponding 

incompressible flow with the Howarth transformation. 

As an example of the use of boundary layer concepts this analysis 

considers the ignition and combustion in the laminar mixing zone between 

two parallel moving gas streams. One stream consists of a cool combusti

ble mixture, the second is hot combustion products. The two streams come 

into contact at a given point and a laminar mixing process follows in which 

the velocity distribution is modified by viscosity, and the temperature and 

composition distributions by conduction, diffusion and chemical reaction. 

The decomposition of the combustible stream is assumed to follow first

order reaction kinetics with temperature dependence according to the 

Arrhenius law. For a given initial velocity, composition, and temperature 

distribution, the questions to be answered are: (1) Does the combustible 

material ignite and (2) How far downstream of the initial contact point 

does the flame appear and what is the detailed process of development? 

Since the hot stream is of infinite extent it is found that ig

nition always takes place at some point of the stream. However when the 

·temperature of the hot stream drops below a certain value, the distance 

required for ignition increases so enormously that it essentially does 

not occur in a physical apparatus of finite dimension. The complete de

velopment of the laminar flame front is computed using an approximation 

similar to the von Ka'.'rma.~ integral technique in boundary layer theory. 
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I. INTRODUCTION 

The study of combustion in a laminar flow field presents many 

complex problems. A complete description of the various mechanisms 

involved requires knowledge from the fields of gas and chemical kinetics, 

and at the present time, a complete formulation seems too complicated to 

solve except in the case of the simplest first order reactions in one 

dimensional flow. However, even this case is complex,(l) unless one 

makes simplifying approximations.(2, 3, 4) 

In order to achieve any solution of this problem, then, one must 

resort to formulating simplified concepts of the mechanisms involved, 

and hence one is restricted to solving specialized problems covered by 

the range of validity of the approximations chosen. A crude approxi

ma.tion<5, 6) that has been rather intensively studied is that in which 

the flame is considered to be an infinitesimally thin discontinuity in 

the flow. The flow problem is formulated similarly to the shock wave 

problem, in this case, and gives some idea of the effect of a flame front 

on a given flow. 

However, many problems exist in which the physical situation can 

be approximated by neither a plane one dimensional flame nor a disconti

nuity in the flow. For example, the thermal quenching of a gaseous 

mixture(?) near a cool wall and the thermal ignition near a heated wall 

essentially involve both two dimensional fields and a knowledge of the 

structure of the flame. Also, combustion processes in free jets and 

combustion under conditions of mixing between two gaseous streams require 
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considerations beyond the one dimensional or discontinuity type theories. 

In many situations which arise in thermal jet propulsion systems, a 

relatively cool stream of fuel is ignited by mixing and contact with a 

hot stream of gas. This process occurs near the injector of a rQcket 

nozzle, in the flow in and through turbojet combustion cans, and plays 

a definite and vital role in the stabilization of flames behind bluff 

body flame holders. 

In each of the problems mentioned as exa.mples of the process of 

ignition and combustion through mixing, the flow has the physical property 

that for large stream velocities, the variations of temperature, compo

sition, and velocity, are much larger in the direction normal to the main 

stream than they are in the direction of the main stream. In fluid 

mechanics, problems exhibiting this characteristic are treated by the 

so-called boundary layer approximations which simplify the description 

of the problem by deleting certain variations in the direction of flow 

in comparison with those normal to the flow. Hence, an extension of 

this idea to cover flows with combustion allows treatment of this entire 

class of problems, either by analytic, or by simple numerical methods. 

The present treatment, then, is concerned with this class of 

problems, and in particular with that problem of ignition and development 

of a flame front in the laminar mixing region between parallel streams of 

·combustible gas and hot products of combustion. The general conservation 

equations are first rewritten in terms of variables more familiar to the 

aerodynamicist so that the boundary layer approximations may be applied 

more easily. Next, the resulting relations are modified, with the use of 

several approximations, to the usual boundary layer equations with the 
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addition of terms due to combustion, and added conservation equations for 

the chemical species. 

After discussing the physical and chemical relations which apply 

to the problem and simplifying the equations through extension of the 

boundary layer concept, the initial portion of the mixing zone with two 

components is investigated where the heat evolved through chemical re

action is yet small and the problem is solved through a perturbation to 

the solution for mixing without combustion. Then using the integral 

technique introduced by von Ka'rma'n into the study of the boundary layer, 

the development of combustion is traced from initial mixing through 

development of the flame front. The equations for a ternary system 

with the concentration of two of the components small compared to the 

third are developed, and a perturbation solution is obtained for the 

same mixing problem. 



II. CONSEHVATION EqUi~'l'lONS FOR COUBUSTION IN FLOWING GASEOUS SYSTE:MS. 

The equations necessary to describe the flow field of a multi-

component gas mixture, either with, or without chemical reaction,, have 

been stated in detail by Hirschfelder, Curtis, Bird, and Spatz(B) through 

a generalization of the work of Chapman and Cowling.(9) The general con-

servation relations were obtained from the Boltzman equation, and, by the 

usual method of perturbing the velocity distribution function slightly 

from a Maxwellian distribution, the non-equilibrium calculations of the 

transport properties were carried out. In generalizing the work of 

Chapman and Cowling to a multi-component gas system, Hirschfelder et al 

used a slightly different method of solving the integral equations for 

the perturbation function. Instead of expanding the unknown functions 

in an infinite series of Sonine polynomials, as done by Chapman and 

Cowling, Hirschfelder and his group considered a finite series of Sonine 

polynomials and employed a variational procedure to find the coefficients 

of the expansion. Thus, while the two methods of solution are equivalent, 

the form and in some cases the definition of the transport properties 

vary. (i.e.: Dij' the multicomponent diffusion coefficient, reduces to 

l>ij the binary coefficient, but DiT , the multi-component thermal 

diffusion coefficient does not reduce to Chapman and Cowling's definition 

'for the binary case.) Another point of variance arises in the definition 

of the diffusion velocity. While Chapman and Cowling define (Q2 - Q1 ) 

as the diffusion velocity for a binary mixture, Hirschfelder defines Ci 

as the diffusion velocity of the ith component. In order to avoid 
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confusion, the Hirschfelder definitions will be used throughout this 

paper. 

The conservation equations modified for the presence of chemical 

reactions and polyatomic molecules are employed. The coefficien~s of 

diffusion and viscosity are not changed by considering molecules with 

internal degrees of freedom, but the heat flux vector Z. , and the 

coefficient of thermal conductivity, .il , are affected. The best ap-

proximation to A. at the present time involves the Eucken correction. 

Following the notation of Hirschfelder, the conservation equations 

are written in the following form: 

Conservation of mass 

The continuity equation for each species is, 

Jni. +- 17· n.: (fo +- .(',) -
dt 

I{ 
' 

If this equation is multiplied by 1Di_ and summed over i, the 

total continuity equation is obtained. Thus, 

since ~ ~· ~· = f' , by definition, and }; 117t· hi = 0 and 
~· /. 

'(""? n.m. C,. = 0 L;J ',_ 
' 

from mass conservation considerations. 

Conservation of momentum 

Summation of the separate momentum equations for each species 

gives the overall momentum equation. 

(1) 

(2) 

(3) 
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Conservation of Energy 

Again, summation of the separate energy equations for each species 

gives the energ'J equation for the mixture, 

( h) 

where 

(5) 

is defined as the heat flux vector. 

State 

The equation of state for each species is that of a perfect gas, 

R::: n . .J T 
L ' 

so that the overall equation of state is: 

P= n.J T (6) 

where 

Difi'usion Velocities: 

The diffusion velocity of each component is defined as 

Finally, one can write the identity 

;; }(. 
• L 

' 
=EL; - I 

i /' 

(?) 

(8) 

(9) 
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The species continuity equations (1), may be written in terms of 

the relative mass concentration ~· , after multiplication by ~· • 

Thus m.1~· = ,.- .!1· = ,..O...t'i , anci. equation (1) becomes 
I° 

so that 

and employing equation (2}, one obtains 

(10) 

Also, the energy equation can be written in terms of the enthalpy, 

and finally, in terms of a mass average specific heat. 

Since 

then 

or 

......, 
_ a r...L h...IT 

/' 

(11) 

where the equation of state (6) has been used. With the aid of equation 

( 11) and the definition of tJ, = Z7_ t; c~. , the energy equation can be 
I° ' 



8 

transformed as follows: Taking the derivatives indicated, 

and using equation (2), one obtains 

(13) 

Next, through substitution of ~ = J ,;;1.~ . .:. and elimination 
~ 

of .Jn..· with equation (1), equation (13) becomes: 
.tlr 

where the general derivative 

_ d./.I u 
;J?-'/p #j 

=- ~ dT 
'4· dS 

since each component is assumed to be a calorimetrically perfect gas. 

(14) 

Substitution of equation (14) into the general energy equation, 

gives 
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However, 

where ~ contains the terms due to viscous dissipation. Also the terms 

and the heat flux vector / may be combined to yield 

r' ""' -- V·/ ..,_ £i m.,,,/. '7·11. e_. 
• ' ' I. _, - ' 

- "1 
- V·~ 'ilT - '7· Em.;,. c.,J. 

,l I. I. -I. A 

- "· .JT >' ~ ~T /(. - C·) T ~In .,1. rl· IJ. f,. 
II' - LI - l :.., -;J 4' . I ' ' -... . . ,.,.,. ,, ' r' l.J I.~·· , l.J 

Finally, the energy equation may be written: 

- 17· .Jr E .f2· lff {C.- c.J + I -
11 . · m. _J:'\ -1.. - J 

,,, J ' flf./JJ 

(15) 
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The equations necessary to describe the phenomena of combustion 

in a flow field, in terms of the familiar physical variables of density, 

relative mass concentration, velocity, pressure, and temperature, can be 

collected now. While both the species and the overall continuity equations 

are written, it is evident that since If;.= r· ' if one is considering 

a system of r components, only r-1 of the species equations and 

the overall continuity equation need be solved. 

The necessary equations are as follows: 

fl/ d{'o + C'0 •17 Co l - V·=P + p. h,· X,. lff - -;- . 

P = n..J T 

r ~ -J;'P.Ca C··flT -!f/ / t '(• _, 

(2) 

(10) 

(3) 

(15) 

(6) 



ll 

- .i f"1 T C!· = _a_ LI In· IJ . . d. - - 1 lJ,. [7~ T - n. n o1' ...,, J l.J -J h. _ 
-~ ,- ...... l'"l 

(7) 

where 

cJ. = V{!!;) -+- ( nj _ n;m;) v.k }' - nJm; /p,X. _, -£ ~~) (8) 
-J n n p 1'1' {' 'Jm; .R 
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III. FORMULATION OF COMBUSTION PROBLEM 

Consider two semi infinite gas streams flowing steadily parallel 

to the X0 axis. The upper stream consists of a cool combustible at 

temperature 7; , density f':r , and velocity U.z , while the lm'l'er stream 

consists of hot products of combustion at temperature 0z , density 

P11 , and velocity U .1I • At X0 = o , the two streams mix, and due 

to diffusion of species and thermal conduction, a reaction is initiated, 

releasing heat and forming products of combustion. 

_/ 
!~// ___ ---------~/:/ 

------<:: .. .X0 Mixing Zone / 
' / - / - // 

.......... -- -- __...,, - ------

Throughout the mixing region, the reaction rate is increasing until at 

some distance downstream of the point X,, =O , an equilibrium is reached 

where the reaction rate has reached its final constant value, and thus a 

flame has been established. 

In establishing a model with which to study the mixing region 

with reaction, the following assumptions are made: 

1) The flow is two-dimensional, steady flow, with no external 

forces. 
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2) The mixing region is a laminar mixing region in which the 

usual boundary layer assumptions hold. 

3) The pressure variation in the direction of flow is negligible. 

This, coupled with the results of assumption (2), that the 

lateral pressure variation is negligible, implies that the 

pressure is constant throughout the mixing region. 

4) The action rate is of first order occurring in a binary system 

so that the general chemical reaction is /A]- b/J3j , where 

[A] and /B j are the molar concentrations of the two com

ponents, and h is the number of moles of B formed by 

decomposition of one mole of A . 

5) The specific heats at constant pressure of each of the two 

6) 

7) 

8) 

components are approximately equal and constant, defined by 

the ratio of the total heat release due to reaction, to the 

temperature rise. This assumption, then, considers the com-

ponents to consist of gases with approximately the same heat 

capacity so that a change in concentration has a negligible 

effect on the heat capacity of a given mass of mixture. 

The Prandtl number (C'~-f!.) of the mixture is a constant. 

The Schmidt number ( .4. ) of the mixture is a constant. 
t=7'4.i. 

The molecular weights of the two components are the same, 

equal to the average actual molecular weight. Since the 

pressure is assumed constant, this implies that !'« ..L • 
T 

9) The transport properties of each of the components are equal 

and vary as though the molecules were Maxwellian (Le.: The 
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molecules are assumed to be point centers of force repelling 

proportionately to f -Y , where r is the distance between 

molecules, and JI is the force index. Fbr Maxwellian molecules, 

JJ=,, .) Thus ,,,,« « Ts where so that 

,,,u. « T and /',,a is a constant. 

10) The Eucken correction for the coefficient of thermal conduction 

holds for the mixture. 

11) The diffusion coefficients do not vary appreciably with con-

centration, and the thermal diffusion is negligibly small. 

12) The ratio of thermal to kinetic energy is so high as to make 

viscous dissipation negligible. 

13) The .Arrhenius rate law holds for the rate at which chemical 

reaction proceeds • Thus K;_ = :t !!£. e - A4T , where 'r is 
'!" 

the characteristic time of reaction, A, the activation 

energy, R , the universal gas constant, and 11, , the 

number of molecules per unit volume. The plus sign refers 

to the products of reaction while the minus ~ign refers to 

the combustible. No backward reaction is considered. 

Both parts of assumption (11) arise from the fact that, using 

Hirschfelder 1 s(lO) development, one considers only one term of the ex-

pansion for the first approximation to the non-equilibriwn distribution 

· function. The use of this one term gives good approximation to the trans-

port coefficients; to this order of approximation, moreover, the diffusion 

coefficient is independent of the concentration and the thermal diffusion 

coefficient is identically zero. If two terms of the expansion are used, 

the dependence of /),; on concentration, and nr can be approximated. 
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That assumptions (5) through (10) are mutually consistent can be 

shown by the following analysis. By assumption ( 6) is constant 

and from ( 5), is constant. Therefore, ,,,t,(. « A • However, by 

assumption (10), A = { CP. r 1.25 .e) A- , where l'1f is the molecular 
111.1. /If 

weight of mixture at any temperature and mixture. Therefore, if ~· 

and .A?, are the i ~ mole fraction and molecular weight respectively, 

• Now, by assumptions (5) and (8), c,P, J is constant 
1»1/d' 

and M is constant, so again _,a. a A. 

Also, from assumption (?), ~~.{9,z is constant. Now, from as-
/ s rs·l'I sumptions (8) and (9), ;:>« T and ,,,«."' T • Therefore~ « d9. 

,,.,~., ,1.z 

From gas kinetic theory, however, one can show that for molecules which 

behave as point centers of force, at constant pressure,(11) ot9
4 

cc Tsn 

so that T .T_,I 

~°'-=I r'JJ,,,. rJo 

In reality, then, 

, or ~ is constant. 
/"..tfh.z 

assumptions (6) and (?) are the motivation for 

assumptions (5), (U), (9) and (10). The motivation for assuming the 

molecules to be Maxwellian so that .J'=I , will become apparent in 

later transformations of the mixing region equations. 
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IV. CONSERVATION RELATIONS FOR COMBUSTION IN A UMINAR 
MIXING REGION; BINARY SYSTEM 

While the simplification to the general equations due to most of 

the assumptions are evident, the use of the boundary layer assumptions in 

a reacting gas flow should be clarified. With regard to the momentum 

equations, it can be seen that since there are no new terms due to reaction, 

the results of assuming that P#. P(Xo), tt
0 

= 0(1) , 11; = O(f) 
' 

}k
0 

= O(j_'), ~ =- 0(-j) , and L~~ Otii) where is of the order of 

the thickness of the mixing region, L is the distance downstream, and 

'R~ is the Reynolds number, are exactly those results obtained in boundary 

layer study. That is, the axial, or X0 , momentum equation is simplified, 

and the lateral, or J: , momentum equation reduces to Jf = O(llJ so that 

"P ~ constant. This assumption then hinges on whether or not reaction 

affects the pressure in the mixing zone. Siince the change in P through 

a fully developed laminar flame is usually negligible, the chemically 

induced change in P throughout the mixing region where the effects of 

reaction are even smaller, must be negligible. 

In both the continuity and energy equations one makes the same 

type of order of magnitude comparison usually made in boundary layer 

theory, and finds that the resulting equations differ from the familiar 

equations of continuity and energy by reaction terms which are explicitly 

independent of the velocity or any derivatives. Thus, as far as the 

order of magnitude comparison is concerned, the combustion terms are not 

considered. However, by assuming that the changes in concentration, 

temperatures and velocity in the Ko direction are negligible compared 

to those in the ~ direction, one has tacitly assumed that the reaction 
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induced changes in these variables, follow this same pattern. Since a 

flame is usually IlillCh thinner than a mixing zone, this means that in 

order to keep these assumptions valid in the whole region, the flame must 

lie at a very small angle with respect to the Xo or flow axis •. This 

implies that if «,, is the flame speed, t.t,,/tt; < < I in order to validate 

the boundary layer assumptions through a fully developed flame. However, 

even if U,,/u is not small compared to unity the assumptions hold through-
"'.t' 

out most of the mixing region and break down only at the incipience of a 

stabilized flame, since the effects of reaction are very small initially 

but increase exponentially. Therefore, when these effects become large 

enough to affect the assumptions, their rate of growth is so large that 

the final equilibrium flame is reached very quickly. This will become 

apparent upon following the growth of the maximum temperature through the 

mixing region, a result which is given in the solutions obtained for the 

decomposition of azomethane. As will be seen in a later section, the 

only result of increasing the initial flow velocity to the point where 

u..,4 <<I is to allow computation of a flame speed, and thickness, results 

which could be gained by much simpler analyses. 

The application of the assumptions to the general equations re-

sults in a great simplification. Before the final equations are collected, 

the transport and reaction rate terms can be developed to their final form, 

After the boundary layer approximations have been employed, the transport 

terms become: 

(16) 



where 

since P is constant, and 

and, 

18 

X.=O ' so that d. -.1 -.; 

(17) 

reduces to f7(.J1 , 

(18) 

For a binary system, equation (17) becomes particularly simple, 

for in this case D,.. =,,E), .. , the binary diffusion coefficient, ~nd ~ 
•J l..J 

may be calculated as, 

so that 

(19) 

In order to transform this mass transport term into a function of 

k, , the following identities may be employed; 

= 

since 
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Also, since 

n~ = I- A:! 
h 17 

then 

so that 

( 20) 

where 

Since Cp is assumed constant, equation (18) becomes, 

{21) 

where 

The term which gives the energy addition due to diffusion in the 

energy equation reduces to zero with the assumption that ~ = C-1 =- ~ = CP. 

Thus, 

since r" C - o from continuity of ms.ss. Li"?·~· _,. -,. 
Finally, m . .K.. , the rate at which mass of the 

' ' 
kind is 

produced through reaction can be computed for component one, the combustible 



20 

In terms of tn, }'1 , the heat addition due to combustion is 

where tn,~ = -111~.}{,z , since the mass formed mst equal the mass consumed. 
/.\ ~ In this heat addition term, A H - "JI ~ is defined as the negative IZ -A, -A.z 

/\ 

of enthalpy of reaction per gram of combustible. .Al though ""-· i.s 

defined as ~ = j~P.. dT +- ..:.1 H;. ( where All,/ is the heat of' 
4 L 7 

Z18.1'1 J ) 
formation at 298 .16° Kelvin so that Ll"".z = (Cf.,-Clf )clT -t- {AHi,-tJJI~) 

JPS.I~ 

and although the c,._. are assumed as approximately constant and equal, 
t 

in order to account somewhat for the fact that the C,._. are slightly 
' 

different and dependent on temperature, an average A 1112 may be defined 

as 

.d /'1.z = ~ H,z (7;) t- .t:JNQ (7j.} 
2 

where 7; and 7i refer to initial temperature and adiabatic flame 

temperature respectively. Therefore, if CP. , and CP. 
I ~ 

are known 

analytically as functions of temperature, a better approximation than 

the net heat of formation at T = 298.16°K can be compuved. 

(22) 
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The application of all assumptions to the general equations, then~ 

givesthe following set of equations which hold in two-dimensional boundary 

layer or laminar mixing flows with reaction. Since a binary system is 

considered, one needs only the overall continuity and one separate species 

equation to completely specify the conservation of mass. 

P = C~n.r f ~n t 

= 11...I r 

- ,.o..lf_ T 
lo/ 

( 23) 

While the above equations are greatly simplified from the original 

relations, they still refer to a compressible flow regime, and thus are 

not easily solved. However, through the use of the so called Howarth(l2) 

or Dorodnitzyn(lJ) transformation, a new vertical scale is introduced 

with which the equations are reduced to incompressible form: denote 

/

fa 

'I= L o',t. 
tf ~ () 

() 

(24) 
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where f.r is the density of the combustible free stream. Thus intro-

ducing a new coordinate system X , 1 , where X= X0 , one can write 

the variable transformation as follows; 

and (25) 

where 

(26) 

Also, introducing the usual aerodynamic stream function, ~(,r.~t) 

defined such that 

( 27) 

one finds that 

r>q., =- ,ofi1 

and ""/ ( 28) 

/';/; == -~ (a -r ~q) 
41!',Y ? '-t 

Finally, denoting by tt. , and V- , the veloci ti.es in a corresponding 

incompressible flow, where now 

( 29) 

so that from equations (28), 
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(30) 

one can see that 

and (31) 

since by assumption (9) , /,...a =- tf.h , and ~..r,,,,,. ~ =J/. 
~ 

Applying these transformations, equations (30) and (31), to the 

equations (23), one obtains the corresponding set of equations in the 

corresponding incompressible flow 

(32) 

The simplification given by the use of the Howarth transformation 

coupled with the assumption~ = constant is now immediately apparent. 

The momentum equation is now completely uncoupled from the energy and 

concentration relations and hence its solution demands only the consider

ation of a pure mixing problem such as that solved by Lock'.!14) The 

effects of temperature, through density, are brought in only upon trans-

forming the solution back to the compressible flow, and these effects 

serve only to change the vertical scale and leave the horizontal, or flow 
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direction scale, unchanged. Also, in t~e incompressible flow, the velocity 

need be considered only insofar as the region under consideration lies 

within the velocity mixing zone. After the flame propagates out of this 

zone, the velocity is constant, l.t== a.r. 

It is convenient to consider the equations with dependent variables 

in dimensionless form. Since the flame finally propagates into the upper 

combustible stream, at which time a fully developed laminar flame is 

developed, the velocity tL..z , and the flame velocity will determine the 

angle at which the flame lies with respect to the ....r axis. Hence ~.r 

is used as the characteristic velocity. The characteristic temperature 

is chosen as • I( is, of course, already dimensionless. 

Denote: 

'l7= t.(. A = U.zr 
~ U..r 

P=k ~ =.k 
L-t.z: ~ 

VJ= I i9.= .?; 
7z -/ ii-

Since; -':.brough the assumptions on Cp , .t:i~.z = Cp (r, - Tr) , 
where 7f is the adiabatic flame temperature, equations (32) become: 

a.J7" T U=O 
ax a/I 

1T@ r JT t.i./J::I = .J:!. .;;z~ - ~ e -~ 
.ax dj -ttlz ;J;z ?-a..z: 

l7 dl7 + Vdl7 = _,Y e'1 2
U 

.ax .;; ar ,aj'z 

l7 tJz>' -1- v dz9 = ~ d)Z# T (71}-1) ,.+:; ({?- ~4 
~X dJ ~U.r .?J'" ~?' 

(33) 

(34) 
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The problem. then consists o.f solving equations (31.i.) with the 

boundary conditions: 

k. =/ V'=l1 l7=! . I ,, .) 
J j>o .1 A'=o 

l j'=- "co / q// ...I' 

/(' = tJ I zf'== z£ l7=-..d . I 1~ 0 .) ...l'=tJ 
/ ~.I ..1) { ;= -a:J ,I t?// ,.t 

CJ~= <2lf' = t9l7 = Gl • :J= ~co) all x 
.?J 7 e:t ) 
It should be noted that after the flame is fully developed and 

propagating in the constant velocity combustible stream, the previous 

equations reduce to those for a one-dimensional flame·if these relations 

are written in terms of a length normal to the flame front. 'rhus, i.f 

the front is plane, and one defines S as a length normal to the front, 

I the angle of the flame with respect to the X axis, and tLh the 

velocity normal to the front, then: 

since ~ = ~.r in the upper stream. 
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Also, starting at any point on the front along which physical 

variables are constant, and moving to some point P in the flame along 

a line ,! = constant gives .LJSl = .J'/h ~ .LJX Likewise, starting some-
'/ 

where on the flame front and moving to P along a line X :::: constant 

gives .d S /x = - cos f' 43 . In terms of the changes of any of the physical 

variables with respect to X , :! and S , these equalities imply 

that 
d - J/17 !' 2._ 

C}X CJS 

a - - Co.r{J a 
and o]- t!l.S 

a!.. :::: C' O.s' If' e!-
a;z as• 

Thus the concentration equation (33) for example, becomes: 

or since 

) 

However, since the boundary layer assumptions are assumed to hold, 

the, flame must lie at a small angle with respect to the flow axis so that 

Cos"~ z I. 

Thus, the concentration and the energy equations may be written 

in terms of one independent variable as, 

(35) 
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which are recognized as those relations usually employed for one dimen

sional flame propagation at constant pressure, transformed into a correspond

ing incompressible flow. 



28 

V. INITIAL DEVELOPLlENT OF THE COMBUSTION ZONE 

In view of the fact that the lower, hot stream is in general at 

a temperature lower than the adiabatic flame temperature, the transport 

phenomena of diffusion and heat conduction must govern the ignition and 

initial reaction rate. Hence, there will be a region immediately after 

mixing begins where the effects of reaction are small and the concen-

tration and temperature field differ only slightly from those of a classi-

cal mixing problem. Figure 1 represents the velocity and temperature 

profiles found in such a classical mixing problem. The initial profiles 

are smoothed by the action of viscosity in the case of velocity and by 

heat conduction in the case of temperature. Figure 2, then, exhibits 

the expected changes in the temperature distribution when reaction takes 

place. After proceeding a short distance downstream, the heat addition 

is still small, and the dotted line in the second profile illustrates the 

change in temperature. At some point downstream, of course, the local 

temperature exceeds the lower stream temperature so that a bulge forms, 

shown by the solid line in the third profile, and finally, after a laminar 
' 

flame is developed, the local temperature is essentially at the adiabatic 

flame temperature. The steep gradients associated with the laminar flame 

are formed, as is shown by the dotted line in the third profile. For a 

short distance downstream, however, the variations due to combustion may 

be treated as a perturbation to the pure mixing problem. 

Since in the pure mixing problem, it is possible to reduce the 

conservation equations to total differential equations through the 
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introduction of a variable 

(36) 

with the assumption that all dependent variables are functions only of 

? , this variable is used as one of the independent variables for the 

perturbation development. Thus, changing variables from X , J to 

S, ? , one can write 

With a similar relation for tJ 
~., 

• If now, s = X , one finds: 

( 37) 

Also choosing a stream function in the usual manner, gives 

Then 

and 

so that the operator u Ii. r r L 
oX 4J' 

becomes .,t 1 d _ _:f d 
iJ% JX .ilf 

These relations plus the transformations (37), identically satisfy 

the overall continuity equation and transform the momentum, concentration, 

and energy equations (34) to; 



1111 -/-..ff II = 0 
.z 

JO 

(JS) 

where the equations have been rearranged slightly, and the subscript on 

It dropped. For the remainder of the text, then, h:: will refer to the 

concentration of the combustible. 

Now, if the reaction were taking place at a temperature 7 , and 

a concentration K. , the rate at which fuel would be consumed would be 

~ e-~~ . Since the Arrhenius factor has such a strong influence, 
"l" 

the maxil!Rlm rate takes place deep in the lower stream where the tempera-

ture is close to ?z. It, of course, cannot equal Tz exactly since 

T= ~ at ?= -a::J where k =CJ • Thus, some measure of the con

centration, IC , at the maximum reaction rate must be found so that the 

order of magnitude of the heat release may be calculated. If one considers 

the initial mixing to be practically that of a classical mixing problem, in 

which the variables are functions of ? alone, it follows that the 

maximum reaction rate occurs when 

Thus 
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and 

Hcn~ever, an approximate value for the term in parenthesis may be 

found by considering the case where the Schmidt number and Prandtl number 

are equal. Then, in the same ? increment, k 

while # goes from I to # Hence 

goes from I to A::' 

d~ ~ ,.. 1-K 
df /gt' - I-# 

d1 

Finally, accounting for the fact that at the maximum reaction 

rate, r~ !i , /(-.:!:-O 

maximum reaction rate as 

, one may calculate the order of K at the 

I /?z - -- ~ 
(39) 

~-/ ~ 

and the maximum reaction rate is then approximately 

with the maximum heat release rate being proportional to this rate. 

·Since the ma.ximum rate occurs far down in the hot stream where a :I& t.t'.tr 

then the time taken to go a distance X downstream in this region will 

be of the order of where is the initial velocity of the hot 

lower stream. Hence, the heat released in a distance X downstream will 

be proportional to 
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From the foregoing computations, then, it seems logical to define 

a chemical characteristic length 

(40) 

which can be used as a measure of the heat release in the initial mixing 

region. Define j = ]! 
-~ 

• Then the energy and concentration e~1ations 

may be written in the dimensionless forms, 

(41) 

Now, for j =- j < < I or, the distance downstream very small 

compared to the characteristic chemical length, the appropriate expressions 

for It' and P' are 

(42) 

Substitution of the relations (42) into equations (41) givesthen, the 

zero' th, first, second, etc. order equations according to a classical 

perturbation calculation. The zero 1th order equations, of course, reduce 

to the pure mixing equations, since the X dependence becomes un-

necessary. Hence, the zero 1 th order equations are, 
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The boundary conditions on the zeroth order functions are now, 

l t= "~ 
j 

(43) 

(41+) 
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while all perturbations and their derivatives vanish at ? = ra:;:, • It 

should be noted that it is assumed tbat the reaction is nonexistent at 

, or in other words at T= Tz • Since the exponential vari-

ation of the rate with temperature does not predict this zero vaiue, it 

must be assumed that although the combustible enters the mixing field with 

a temperature Tz. , at which there would be a small rate, the effects 

are negligible so that there is effectively no reaction at temperature 

"(; • This cold boundary condition is discussed by von Karma'n in refer-

ence 4. 

It is evident that while the Blasius equation (38) and equations 

(43), (44), and (45) have been simplified to the extent that they are now 

total differential equations,. it is not possible to find a general solution. 

However, it is sufficient to solve the special case of velocities equal 

(/I=/) with an added calculation showing the results of changing the 

velocity ratio. 

If, then, the velocities of the two streams are supposed equal, 

it is not necessary to consider the momentum equation since no shear field 

exists in the incompressible flow field. Moreover, the streamlines are 

lines /= constant, so that / =? , where the zero streamline is 

supposed as the line j'= CJ , satisfies the conditions on / • The 

zero' th order equations are then very simple to integrate and give the 

following solutions: 

(46) 
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where erf(s) =~fe-.,.d-C . These are well known solutions of the 

heat conduction and diffusion equations. 

Considering, next, the first order energy equation, it is first, 

rewritten as 

(47) 

where 

(48) 

The homogeneous equation has two linearly independent solutions(l5) 

which may be written in the form: 

~(f) =/ii 'l e-Jtz t-.z/;i(-j + -1!}?2J(erf(/F1)-) 

~·('()=If 'l e-/fz r.l/Q {-j +_/l'lz)(erf((f ?} +- 1) 
Also, defining a Green's function, G(r,f;·!t) , such that 

a> 

~(;~!?) = ~fi!-1){4-1)4f~f?,,f; it}rRff) df 
. tf 

-eo 

and substituting into equation (47), one obtains, 

so that 

(49) 

(50) 
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where J('!-if.) is the usual delta function defined such that 

- C:~ I f:= f 
't'l'I' 

/c!('l-Ji)df = I (e arbdl'"o>-!J) 
f-£ 

·Thus q. must satisfy the boundary conditions on zfl~J in t 
and a jump condition in slope, for, integrating (50) between !-E and 

and thus: 

f+t ~/in jt-c I fn: 
jf I ,. .ft 9; -f;: I tl d? "' - dft-f )df = - I 

f -£ - -f-E ')-£ !-C 

However, tf and thus /v<7 are by necessity continuous, so 

that as E°--11'" 0 

Thus if 

9(1) ~j ~) = ti l?;fi,Pr) 

- ~(1t/v11.J 
the jump condition becomes, 

with 

til = ~l 
? ? 

I 

/ 

(51) 

and the boundary conditions on /:' 
~ 

, and ~ are now; q _,,.c t?J' , __ ,..47 
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and ~ _,. c 4s "!-- - a:1. 

Since for ? = i , equation (.50) is homogeneous, one can separate 

variables. Farther, in view of the boundary conditions which G, , and 

l7.i must satisfy, these functions may be written as 

~ = -~ (f) //ft) 

~ = -~ (f) Kr (1) 
where the minus sign is used to account for the fact that Ji, 

(.52) 

is always 

negative, ~ , always positive. This then makes 1$ inherently posi-

tive, as will be seen later. 

The functions ,,,( (?/ and ~ (#) must be evaluated by the jump 

condition and the continuity of t; at f . 
Thus, 

and 

or writing d,K,/ = d/( , etc., 
d1ft elf 

But 

~ t;J = --'- I _f_ a - ..!. ri.!tl-1 

~ I. ~ df A: .:/f J 

_ ...!.. /.z $. - 9fr(er//./£ b) -1) / 
~/ i , ! ''.fc/ /j 

( .53) 
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so that 

and (54) 

from equation (53). 

The solution for if'&I can be written now as; 

aJ . 

zf'~'1J= t:.(lf-tJ(~-1)# /ti(M;~)<??ffNr 
-4:1 
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where since ~q) is all-vays < o , and ~(t) always > 0 
' 

ti> 0 

Likewise, the solution for .tt't;.1 can be written immediately 

since the equation is similar to the equation just solved; hence 

"° 
1e'' t'f J = -JC r"'-,; fl/ i;ru.1s.; l'l?(f; d t (56) 

-4' 

where, as indicated, the Schmidt number replaces the Prandtl number in 

the Green's function. 

This form is very suitable for numerical calculation by Simpson's 

rule of numerical integration since the Green's function and the rest of 

the integrand are easily computed (Appendix C). Figure 3 shows the re-

sults of one such computation for the temperature profiles. In this 

figure J=o corresponds to the classical mixing problem solution, 

since i_n this case zP = zl'fiJtf) • The physical constants used are ap

proximately those of the combustible azomethane,(l6) which follows a 

first order rate law in its decomposition. Calculations for the physical 

parameters are given in Appendix B. 

Figure 3 indicates that the maximum perturbation occurs well be-

lovi the center line of the two streams, showing the preponderant effect 

of the Arrhenius factor in the reaction rate. It shows, also, that very 

early, a bulge is formed in the temperature profile, when the tempera

ture exceeds 7,; , the lower stream temperature. This bulge grows and 

continues to rise toward the combustible stream, due to the effect of 

the concentration on the reaction rate; the ma.xi.mum rate occurs not at 

the point of maximum temperature, but a little above it where the con-

centration of combustible is greater. 



Since, according to the first perturbation, the temperature in-

creases with X , and the bulge rises toward the combustible stream, 

the tendency is for the initial reaction to develop into a flame, with 

no retardation or blowoff possible. The principal question is th.en what 

length of time is taken, or more practically, how great a distance down-

stream is traversed before combustion is assured? The simplest signifi-

cant length to calculate is that distance which is traversed downstream 

before a bulge in the temperature profile first occurs. This distance 

may be calculated, using only the zero'th and first order functions, 

since at the bulge in the temperature profile, 

(57) 

This expression can be solved .for f as a function of ? , 
giving the distance downstream to a bulge, for any given ? • Since 

one wishes to find the minimrun distance it is necessary to travel before 

a bulge occurs, one must calculate the mininru.m X with respect to ! . 

This minimum .X is defined as the detachment distance, and denoted by 

-%i , or in dimensionless notation, t I. • Likewise, the ! at which 

this mininru.m occurs is denoted by e- . Thus, to calculate "·I 
I / d.Z~d~-d"P'~d~.1/ =CJ -ffrJa I d1~ dt d~ dt I 

but, since c/1'61 is certainly finite over the entire region, the c1, 
bracketed terms must disappear, and employing the equation for ?fX0J(f) 

(43), it is seen that 



However, since d1J"OJ _ o 
df 

occurs only at f=±a:J 

and thus a#=O 
.!If 

for all f , the interesting solution occurs when 

the bracketed terms disappear. Comparison of these terms with equation 

(44) gives a simple algebraic relation, 

which has a solution ~
t 

Finally, ji. is computed from equation (57) 

(58) 

(59) 

While it is not possible to solve (58) and (59) exactly, due to 

the integral form of the solution for -zP6 J , it is possible to calcu

late ~- and h: if one makes use of the fact that the bulee in the 

temperature profile .first occurs for • This can be seen in 

figure 3 where the first bulge shown occurs at f :::!:' - 4 · • This suggests 

using asymptotic forms to calcu.late the detachment distance, in view of 

the fact that, in figure 3, as f gets smaller, /'t/ at the bulge 

becomes larger. Further, all the functions involved are composed of 

exponential and error functions which converge very rapidly. 

The necessary functions are easily expanded for ? large and 

negative to, 
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) 

= c>r,.J - -3. r~11.~ -£ J 
flf -r P,.~~ 

1-r P,. =Sc 

(60) 
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where 4' 

e= j-K ff)eH'rRf?Jdf 

and «I 

e (?,,) ~ j JI, (f)e#f' (fM1Jdi 

"' and the error function expansion 

-x.z; I I- erf )( ........ / .c__ I - _L t- J - · .. 
J7T x I ~x~ (2x~:1. j 

has been used. In order to calculate CE , it was necessary only to 

use calculations of the integral made for the temperature profiles. 

(Appendix C) To calculate {!'('lt,) it would be necessary to compute 

the whole integralfor a few large and negative values of f until it 

was seen that the expansion gave the accuracy desired. 

(6l) 

The use of these expansions (equations 60) then gives an asymptotic 

expansion for -zj)PJ . 
' 

Finally, for this case of velocities equal, equation (58) reduces to 

(63) 

since l'=A =I , so that substitution of the expansions for -zfl~I 
' 

(62), and CR , (60), into equation (63), gives 
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( 61+) 

a relation which may be solved by trial and error for • It might 

be remarked that, using the physical constants for azomethane, as before, 

the value of i obtained was approximately 6, so that the asymptotic 
' 

expansion was justified. (Appendix C) 

In order to solve for ji , then, d'6J must be calculated. 
df 

From equation (55), 

-a:1 

(65) 

and, again, using the asymptotic expansions, (60) in the above relation, 

and calculating cltfX'~ 
df 

equation (59) as; 

from equation (46), one can compute le.· from 

- !!l(S"r:-P,.)(I ,-I 
- 8 e 4 

/- /.2 I r I 
{'4 F '/.~ f~ 1t))j 

' ~ 

(66) 

In order to find the variation of the detachment distance with 

~, it is first necessary to find how and ~· vary with ~ 
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The variation in t,· due to changes in the lower stream temperature 

as well as the activation energy and the Schmidt and Prandtl numbers can 

be investigated, using equation (64). Changing the variable to i?= {j f 
and solving for (!' , one obtains the following relation: 

+-!_ [<~.'~-~ +--L /.' +s +31.1. +!)1~11 
(1-i) l (ft) &~!'lfft) <lft) )L/tj~ 

~.· .. Pr' .. ,. 
' 

(64a) 

where, also, 
Q!J 

r: =ff e - - .z I~ a) ei!"Kr-r'/j ~) e -1'4f.J -1 d~ 
;; • /I. 

Also, z.8 - I 
.,p<PJ 

-#10 

may be -written as 

but since the integrand reaches a maximum when ~ <<t:J , this ex-

pression may be approximated in the integral by Vi -I ~{I- .t.)(! rel"f~) 
· ~I JI 2 

SO that CD - ! ~ ~(1-..t. )f!.-rerf#) e ~ -z K, a)e~ 1t<4W 1 e- 62. ~ ~ d~ 
-a::> 

Hence, the parameters in equation (64a) are 'ft and 

Calculations were made finding the values of · for 

several values of the parameters. The resulting curves are presented 

in figure 4 and indicate that there is very little variation in ~. 
I. 

due to changes in activation energy or lower stream temperatures. Thus, 

since t ~ "{;;r; and ~· 
tt · v.VL ~· varies as "'i or as 

is almost invariant with t (1 - ~) , 

[f~-1) e'll"'/'4)1/z.. Therefore, as either A 

decreases or 7E increases ~· decreases, as one would expect from 

physical considerations. 
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Figure 4 also shows that as Sc increases, or in other words, 
Pr 

as the diffusion zone gets smaller relative to the thermal mixing zone, 

I/.. decreases. Since the calculations for s,. = /.3tJ 
~ Pr gave values of 

~ of about 2.4, it is evident that for larger values of ,. more 

terms of the asymptotic expansion might have to be used to keep the same 

accuracy. 

through 

Next, equation (66) indicates that f,. is proportional to ~z. 

' Finally, since J;· = J;.R = ]. ti_, 'C {1'-1}1' e 2'/~ 
' i(i ;c 

then Ai .-v {~-1) ez4~ so that A':· 
' 

essentially depends exponentially 

on 7,i- Figure 5 gives the variation of ...r, with ~ , for the 

combustible azomethane, using the same values for the physical constants 

as used for the temperature profiles. It is seen from figure 4 that the 

value of .)'.. 

' 
increases enormously as the hot stream temperature de-

creases. Therefore it is apparent that although this process of com-

bustion in a laminar mixing region shows no distinct blowoff, the detach-

ment distance becomes so great for low hot stream temperatures that it 

exceeds the physical dimensions of any apparatus. Thus, the limitation 

present in making it impossible to calculate any blowoff velocity seems 

to be the fact that streams of semi infinite extent were considered, 

rather than the streams of finite extent which would resul~ from using 

any practical apparatus. 

Using the results of the foregoing analysis, it is now possible 

to estimate the effects of a velocity difference between the two streams 

on the detachment distance. The Blasius function must be known, of 

course, to solve the equations even for ,t;· • However, since it is 
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now established that the first bulge in the temperature profile occurs 

at an '/<< o , it is possible to estimate the Blasius function and its 

derivative using asymptotic representations. 

According to Lock,(l?) the Blasius function for a laminar mixing 

region may be represented in the following manner, for ? large and 

negative, and A -::;l:O ; 

where ~ = -j A flt ft r J) and B and B, are constants. 

(67) 

However, for 1 very large and negative f' may be approxi-

mated by the first two linear terms, and /' by the constant .4 to 

very good accuracy. This was checked numerically, using the results of 

Lock's work for .;f = (}.5" • That more terms would be superfluous in 

order to calculate /. , , can also be seen by noting that in the energy 

, and I ' by zl'et.I , both equation, / is multiplied by 
_ 42 

of which are of order e ., . Thus, including the third term in I 

I I or 'the second in would merely add terms of order (e-!} 2 

Since only terms of the first power of this exponential are retained, 

the added terms are urmecessary to this approximation. 

The significance of the constant 13 must still be explained, 

since it is, in fact, the only difference between the value of I for 

velocities different and velocities equal. The stream function is never 

known uniquely, but only to within an arbitrary constant. This constant 
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is set by arbitrarily giving one streamline a numerical value. In the 

present case defining the dividing streamline as the zero 1 th streamline 

sets the constant for each velocity ratio. Also, far from the center

line, I must vary as ? since there the stream is undisturbed. 

Hence, B is simply the difference between I and A f for Jt large 

and negative. 

An. (I-A?)= B (68) 
1~-°' 

From the above discussion, it is apparent that. B not only depends on 

A , the velocity ratio, but also can be determined only by finding the 

complete solution to the momentum equation. 

In order to compute Ji for different values of A , then, 

it is convenient to define a new variable 

In terms of ?* , then, /,.,.A~?* , and for ? large and 

negative, the zero'th order equations (43) become 

..L d""") + .!l* cl~) =- 0 
~ df*~ :z df* 

(69) 

(70) 

·so that the asymptotic solutions for K61J and zf)(•J for velocities dif-

ferent are exactly the solutions given in equations (46) with '!* 

replacing f . Therefore CR (f)::::. K 1"J e_-zg ~; -;; ) has the same 

functional form with f* replacing ~ and can be written CR(fi11) • 
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Hence, the energy equation Oi.4) can be written in terms of !* , for 

t ~arge· and negative, in the following way; 

since -1 cancels throughout the equation. 

(71) 

Again, it can be seen that equation (71) is exactly the equation 

for velocities equal with f H replacing f Therefore, the asymp-

totic solution before derived is valid with the notation zf1'~/= rf?-;}. 
Moreover 

and 

so that equations ( 58) and ( 59) , defining ?,. and ~· 
' 

respectively 

remain unchanged in terms of ?· * and the f. 
' ' 

associated with dif-

ferent velocities. 

Thus, since /'4- A , equation (58) may be written as follows: 

( 72) 

This relation defines ?,* • Since the expansions for #~ff":) , 
l 

·and CRft*) are the same as those for '2J!?fl.ltf) , and rRft) it is 

evident that 

(73) 
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where ?: f4==1) refers to that value deri-ved for velocities equal. 
I. 

Substituting for?. N 
I. 

h (A)= _j_ h (.4=1)- B 
~- ,4'4 {,· 4 (7h) 

which can be used to calculate ?_. for a given velocity ratio to check 
I. 

on the validity of the asymptotic solutions. 

Finally, since 

and since ?:' f.4) c-?: (A=-1} , and z11c.yf"':} and zPt'ff *) have the same 
I. I. 

functional form as zf'~) and zP"'.Yt>J , it is evident that. 

where, again, J (4=1) 
I. 

refers to the ~ calculated for velocities 

equal. 

Therefore, since J. (A) 
' 

is independent of the velocity ratio, 

-\i , the detachment distance, is proportional to &L8 , the velocity 

of the lower stream, as indicated by the definition of j. 
' 

Since 

the, expansion used for I is not valid for A=(:) , this proportion-

ality does not necessarily hold to the limit • Moreover, 

since f: (A) depends on .B 
'4 

calculated for any given -4 

and A , the constant 1J mu.st be 

to assure the fact that ?. (.d} is large 
I. 

enough to justify the asymptotic solutions. From Lock's computations B 

was found for the velocity ratio A = &J,so1 , to be - o • .77S' , which 

then gives a value for Z· {A} of approximately -//J , a value which 
~ 

certainly justifies the solutions found. Moreover, since B= (:) for 
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.A=/ , it seems logical to suppose that ~· is proportional to U:zr 

for any velocity ratio from -4= 1 to at least A-=="-5' • While it is 

probable that the range of validity extends much closer to A = o , no 

other values of :S were calculated to prove this fact. 

That x, '.s dependence on tt8 is physically plausible is seen 

by a consideration of the physical processes taking place. Since the 

lower stream is the hotter stream, the first noticeable reaction takes 

place deep in it, the extent depending on the diffusion of combustible, 

so that the velocity at which this initially reacting material is being 

carried downstream is about tt,JE Since the diffusion velocity and 

reaction rate remain constant if only l.tz is changed, it follows that 

a given constant time interval exists, then, during which the combustible 

has been in a region of high temperature, producing a given quantity of 

heat, and therefore that as l.trz decreases, the distance traveled in 

this constant time decreases. In particular, the given quantity of heat 

chosen is that amount necessary to produce the first bulge in the tempera

t1ire profile. 



VI. DEVELOPMENT OF THE LAMINAR FLAME 

The perturbation scheme discussed in the previous section is, of 

course, inappropriate for following the transition to a laminar flame 

front. However, knowing what happens in the initial region allows one to 

use an approximate analysis to complete the solution through a laminar 

flame front. The technique which allows the best use of the information 

accumulated so far is the integral method introduced by von Ka'rman into 

the study of laminar and turbulent boundary layers. In this method, the 

differential equations are integrated across the streams utilizing a 

descriptive knowledge of the distribution of velocity, temperature, and 

fuel concentration. The resulting ordinary differential equations then 

describe the manner in which the geometric widths of assumed profiles 

vary along the direction of flow. Extension of the Karma.'n integral 

method to the present problem simply involves adding the integrated 

species conservation equation to the usual momentum and energy conserva

tion relations. 

Since the accuracy of the solution depends to a large extent on 

the profiles assumed for the unknown functions, it is necessary to choose 

profiles which exhibit the essential physical characteristics. \Vhile it 

is possible to choose many functions which would satisfy the boundary 

conditions, it was shown by Lock,(l8) that for the case of pure incom

pressible mixing sinusoidal profiles gave good approximation to both 

the velocity and the velocity gradient at the centerline. Since in the 

present analysis, after the Howarth transformation, the momentum equation 

is exactly that for an incompressible pure mixing problem, the same 
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profiles and results.may be used. Finally, since the sinusoidal profiles 

give such good results for the velocity profiles, it may be expected that 

this type of profile is adequate to describe the variation of both the 

temperature, and conibustible concentration. 

The momentum equation is the easiest equation to solve since it 

is independent of composition or temperature after the Howarth transfor-

mation. The two fluid streams are initially separate, and it is convenient 

to separate the integration into two separate parts. The streamline which 

separates the flows is not straight, but deflects slightly. This de-

flection is negligibly small, however, and it will be assumed that the 

zero streamline falls along the line j = o 

constant along this streamline. 

• The velocity I.le is 

Supposing j=tfJX) to be the extent to which the velocity mixing 

region extends into the cool stream, and 1 = - d;.{x) to be the extent 

into the ttlmvertt, hot stream, and integrating the momentum and continuity 

equation ( 34) in the usual m.anner}19) one obtains / for o t::: I!!: d, (%) 

where 

i)/7 L = tJ1_ = 0 j t!Tt'tl,)=I / l7(-J,,)= A 
,,;! '!=.!; ;j 1=-J; 

The results of these two relations must match at the dividing 

, 

(75) 

(76) 

line so that the viscous shear be continuous. Since all fluid properties 
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are continuous at this point, 

rJ!T I - i;IT/ (77) 
,;1 ~=o.,. - df f:=o-

The energy relations may be handled in exactly the same way. How-

ever, as seen in the perturbation analyses, the temperature profiles have 

a different character accordingly as the value of X is less than or 

grea tar than )'. 
" 

where a temperature maximum first occurs. It· is 

necessary, then, to find the conditions necessary to compute for 

this approximate integral method. The case discussed first is the only 

one which can be solved without recourse to information given by the 

perturbation computation, a point which will become apparent after the 

following discussion. 

Denoting by j= -~(..r) and ~ = -A.z(..() the limits in the lower 

stream of the temperature and diffusion mixing regions respectively, one 

can see that for 1:. <Sc , in the absence of reaction, 11..,,(X) >/J.z(X); 

that is, the temperature mixing region is larger than the.diffusion region. 

Moreover, as the reaction takes place only in the region j > -LJ~(.¥} 

the result is to decrease the values of both //.z(X) • This 

decrease takes place because as the reaction proceeds, heat is added, 

raising temperatures initially below ~ , and decreasing ~fr) 

along which T= ~ ) and combustible is used up, decreasing A~(%) along 

which 
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In order for a combustion wave to develop, the temperature of the 

combustible must reach and then exceed 7; until the adiabatic flame 

temperature is reached. Thus, the lower thermal boundary mst decrease 

in value faster than that of the diffusion layer, and at some point then, 

~ (X) = A.z (X) • This point corresponds to ..r = x, , since downstream of 

this point, T exceeds 7_; in some region of the combustible so that 

a "bulge'' in the temperature profile occurs, along with a bifurcation in 

~ (X) • The lower branch is the more important line, marking the limit 

of the thermal 

For X >- Xi. , a temperature profile with a maxinmm must be em-

ployed. While the line of maximum temperature does not coincide exactly 

wi~h j = - A2 (X} , the end of reaction, it must lie very close to it 

because of the overv1helming effect of the exponential on the reaction 

rate and hence the heat release. Thus, there should be little error in 

supposing the temperature maximum to occur at f= -A3 (X), so that 

O>.P I = O • Although this does give some difficulty of solution 
8j /;=-4., 

for X slightly greater than ,r1 , where J,o~ -A.z / is small compared 

to /~.z/ , this difficulty can be resolved, as will be shmm later. 

It is convenient to make a division between the "upperll and n1ower" 
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streams, when evaluating the energy and combustible concentration relations, 

along a line ff= ,do(%) above which the reaction is negligible due to the 

relatively low temperature. This may be taken as the isotherm with a 

temperature V'=~ corresponding to that of the dividing streamline 

/=O in the absence of chemical reaction,if 'To , the tempera-

ture along this dividing streamline, is not so high that an appreciable 

addition to the integral of the reaction rate would be gained by con-

tinuing the integral into the upper stream. Since To depends on 7Z 

and '?;" , this means that the tPa isotherm can be used only if 7i 

is not too great. In the "upper" region, one integration suffices, while 

in the n1owern region two integrations must be performed, for X ~ ..t,· . 

Denoting by ~ = ~ (%) the extent of the "upper11 temperature 

region, and integrating the energy equation, (34), for ,4..., (,,r} ~ 1 ~ /J,(.r)
1 

one finds the following relation: 

j
,l,f.¥) ,4.(r) 

d l/'(1-#J'(j'- (zf,-1)el 1/T,. .= ...l!. d~/ 
d..r . d,r tf " Jt Uz ;; ~a) 
~~ n 

( 78) 

( 79) 

since 
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Next, for X ~ ~· 

where 

since 

-A-1(1'} 

(~~)-~).,£ /p-7 = 0 

" 

~1 .:= O'#/ = 0 1 4m:/ #'('~) = ~, 
e9tf )'=-.d,z .a;;:::~ 

The matching condition at ~ (,y) expresses the physical fact 

that the heat conduction is continuous across ~(A'} , that is 

tJz!J I - dzP I 
d;~+ - ~~-

(80) 

(81) 

(82) 

Integration of the combustible concentration equation (34) presents 

the additional complication that the concentration IC(f9.) along the line 

~(...r) is not constant. Integration above the line ,,e_t.r) , with A,c.r) 

representing the extent of the diffusion region in the "upper" region, 

gives, 
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while integration below the line jY..(X) gives, 

#.,(¥) ((.r) ~(K) d/17/t d~ -k0}d &d~ = .J::!... dKi-_Lf e-4'/z9d!I (84) 
d.r Q dij ... {/ ~"z O'J' ~?' . f7 

-A_,(.() t> i¢ -.4,,(')(j 

where 

~I= ~/ == 0 • K(.4,) =I ,1 Phd /t:'(-A.t)=O. 
a tf /_ tr1;/ / 

A -&.c • 

The continuity of diffusive transport of combustible matter at 

~(K) gives the matching relation 

01~ I - di! I <a5> 
eljl ~~ - eltf~-

Equations (75) through (85), then, must be solved with assumed 

profiles for It' , z? , and l7 , to find the variation of ,P, ' .40 ' 
and Uc , the value of 

lT along j':: o , in the two regions X ~ Xi • However, the energy 

equation has been integrated only when the Schmidt number exceeds the 

Prandtl number. Although this case is the one most usually encountered, 

it is conceivable that the other two cases, Ft= S'c and P; >Sc 

could arise. It is evident that for either of the latter cases ~ 

never crosses 1!12 after the point X = o so that the method outlined 

cannot be used. Thus for '!; > Sc 1 A" > p~ , in the absence of re-

action. This implies that there is some combustible at a temperature '?,; 

so that any heat addition will cause the temperature to rise above 7;.r 
' 
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giving a "bulgett, or maximum in the profile, and an immediate bifurcation 

in /9.z { ,t) .• 

17D reocfion. 

f'=-4.z.W 
~-----1=-A,z{X)- j =-~Ci;I 

For the case P,. = .s; , ~.z = ·,#..r. in the absence of reaction 

so that some combustible is at a temperature as close as desired to 7jz • 

Any reaction would make Az decrease and /1..r. increase, then, with, 

again an immediate bifurcation of ~(...r) 

1~ 
------ ---- x 

IVrfh reoc-J./011 -....._ j; -,4 V<J 

""' "-. /j"-L1z{J<} 

/=-.8,(A'J ....._ __ / = -Ll;z,(XJ=:.--p;(x) / 11" reocrion 

This can be seen by considering again the case of ft. < 4: where, at 

some point and • As becomes closer and closer 

to .s;;. the initial difference between ~ (.,r) and .llz (x) becomes 

smaller and smaller so that if ~ stays constant, A'i decreases. At 

the limit 
' • This will be seen in the later analytic 

developments, also. 

The preceding discussion then indicates that some other criteria 

must be used for ..t= )i when !; ~ Sc A possible substitute is as 

follows. In the absence of reaction, ,B.z (Y} o:: ~ so that the 

value of f associated with ~ {X) is also a constant, say h 
lz 

Also, it can be seen from a simple calculation that this ?~ is 

• 
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approximately - 3 for the case ~ =- .¥..5" calculated in the pertur-

bation analysis where ?. = - 6 . .S-
' 

Thus, the first bulge in temperature 

profile actually occurs at such a large negative value of f that it is 

completely outside the range covered by the integral technique. ~ence, what 

one is actually computing in the integral technique is the first point at 

which a llbulgen, or maximum occurs, within the range of ? covered by the 

integral technique. Therefore, it seems logical to suppose that one could 

define an X; within the limits of accuracy of the integral technique by 

computing the 7z associated with the simple mixing problem and calculate 

a f. 
• 

using "' 7-t instead of f. • At this point then, one must also 
' 

assume that T.,, Tz and c1z (~) = ,A9, (,r;} where ,.d'.., t'..t;) is that value for 

the case of no reaction. While the values of ;8 and A would be in 

error, being calculated from a simple mixing problem, the error would be 

insignificant in view of the fact that the heat addition up to the point 

X= ~ is small, and that in the integral technique one is actually re

placing infinite limits with finite limits to gain simplicity of solution. 

A comparison of the two methods of computing ...r . • when which 

will be given later in the numerical computations, showed very good results. 

The profiles assumed for v- , k and ;fl are as follows: 

(86) 
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~ -

1 - LJ"'(x) :!:-3 ~ p,,(x) 

-#= ~ r fl-~) sin(-: :.=~:) J f],,(x) ~ d 6 ,O,(.t') l 
..r~Ji 

== ~ f ('lf-4,) sm /TT 'J-,<90 ) 1 -19.z(X) -h'J:G(J,,&)} 
( :e -1-1" -~ 

#:: ~ r f!-VJo) s1n(lT .2.::.&) ) f1.cx):!:::J If: (.J,(.K) 
~ A-r'o 

~ -4,,-Po 

= #,,,,r~ r #',.,,-~ Ct:)S/.,, ~1',e .. J )-AzuJ*=j ~-A.a(X) 
..z .z ( . ,.6'"-""' 7 

(87) 

(88) 

(89) 

Substitution of these profiles into the preceding six integral 

equations for X t:: ~ and seven integral equations for )( ·~ X; , yields 

the same number of ordinary differential equations for the functions 

~(X) ' J;t,,r) ' /.{(x) ' ;:9.(¥) , At..r) , A'~.) , d,(..r), and d~(,r) 

for all ..% and for ~ for ..J'~~· • The matching relations supply 

the remaining necessary equations. As an illustration it is instructive 

to use the same example employed in the perturbation analysis, that is, 

where a.r = a0 = ~ or tT = t7c- = .t1 =I. This reduces by two the number of 

functions to be computed, <£(x) and ~ (x) being absent since no shear-

ing stresses are present. Upon evaluation of the integrals in equations 

(78), (79), (83), and (84), the following differential equations are ob-

tained for the region ..r ~ x, • 
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(90) 

where I' is a definite integral over the reaction zone given by, 

/i
4 

I = (I- ~ -). '/~e,>; f-;, -~) dz9 
It- ?J'-~ 

zt ~-~ 

(91) 

D 

The integral ..:L is obtained from the reaction rate integrals in 

the following way. Since It= o for )' < -LJ2 (X) the reaction rate integrals 

in equations ( 79) and ( 84) are really taken over the same interval, -4t,r) 

to f9o ( .r) • Further, al though for j' ce ~{X), K is a function of }'-,#. 
- ,(J_,-,4~ 

and -z5? a function of 2.-6 
~-A ' 

and ~ _,. / as reaction proceeds. 
d,e 

~ =_g
d.( l if 

when there is no reaction 

Therefore, for ~ and ~ ·not too 

greatly different, little error is introduced in supposing both the ~ and 

profiles to be functions of (i.e.: ,,tB~ :::?::: ,,!}~ ) only insofar 

as the integral is concerned. With this supposition, then 

From the profile descriptions, however, 
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so that this approximation gives for z9 ; 

while 

so that 

= d ..t'~J~-1 r,4'.) I e-""4 
lT (~-a:!) 

The equations ( 90) can be simplified since 4 , for this case of 

tr:/ , is just the mean value , being that value which would 

occur at the interface in the absence of combustion. Also from the trigo-

nometric relations themselves and the matching conditions, it is easy to 

show that d',. c-r) = ~ ( p; ( ,r) - ~ (..r}) while the concentration along 

,4,, c..r) is Kjt .. )-= ~ 
A,r-A~ 

• Substitution of these relations into 
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equations (90) and then solving the equations simultaneously for the 

derivatives of ,tJ,-rA.i J .K(~o) 
1 

~-,.cf .. 
1 

and ~4 , yields, for ..Y,f,-A;; 

ti. (A,r.dz) = ~ ~ I J _ 4 K/,8.)fA,rA,,)I e"k 
a'x <tH-.z.) s.,a ( K(.P.)~-K(#.,J» (A, r4.z) (r-.e) {zf-1) ~ 2"'. 

d,t-(4)=-7!.!.__J!_ 1-.?K(,d',.) I r .zK(1'.Jh(~-1_ 1 }K~)-Jlie_i(k 
d A' "1(n-.z) Seu K(.8..)V-Kl,e..l) (A1 1-A.e) 2 (IT-:l.}L { ~-1 / j{-lf-1) U. r 

Now since a numerical integration is obviously called for, it is 

necessary to investigate the behavior of the solutions to equations (92) 

near the origin where integration must begin. The expansions are naturally 

in powers of X , following the usual boundary layer expansions. Thus: 

.d, rA~ = a
0 

r q, ...r ¥.c. .;- ~..a f.71.i ,. . . . . with similar expansions for R'I#-) , 

(#; -,,4.) , and l'9e1 • Substituting the expansions in equations {92), and 

equating the coefficients of like powers of ,t gives the desired coef-

ficients 4., , 41., , ••• etc. However, in order to show some com-

parison vrith the perturbation technique, they may be written very easily 

in terms of the dimensionless variables as, 

(93) 

J + .... 
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(93) 

Actually, these expressions give a fairly accurate idea of the be-

havior of the mixing and reaction zones for • For example, 

the value of itself, determined by the condition 

may be calculated from these results by noting that since 

, the value of ~ i. 

satisfies the relation, #, (~-) -,.4 ... (~·) = A:'/.A';.J[ A,t.r;J t-.tJ~t.r,J] • Then, 

from equations(93), it follows directly that 

1-, 
(ff -1} 
~r~-' -') ~-I 

(94) 

which agrees with the perturbation computation in the sense that this 

approximate J, varies little with 7_i. , so that the main variation 

of )'. 
L 

with is exponential. 

The calculations carried out for the region A' ~,.ti are shown 

in Figure 6 for the numerical values corresponding to azomethane which 

have been employed earlier, with ~ = 3 • .S-D as before. The dotted line 

' 

·indicates the point at which the integration of I could be stopped with 

negligible error. The Runge Kutta method was employed for the numerical 

solution of the differential equations. This method allowed one to change 

the increment in the stepwise solution without setting up the equations 

again, and seemed the most efficient method to use in view of the number 
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of equations to be solved simultaneously. While the solution of equations 

(92) required only the solution of the equations for d. (.11,+4.z) and 
d.r 

simultaneously, the solution for A"~~· required the 

solution of three equations simultaneously as will be seen later~ The 

calculations show to be 0.190 centimeters as compared to the 0.071 

calculated by the perturbation scheme. However, as was mentioned earlier, 

the calculated in the perturbation soiution was for a temperature 

maximum occurring far outside the limits of applicability of the integral 

technique. Thus, one should really compare the perturbation and integral 

methods in the manner described earlier where the first interaction of the 

temperature maximum with the lower pure mixing boundary is compu'l?ed. For 

the present case, the f corresponding to the mixing boundary can be com-

puted from the expansion for ~~,.6'a 
ffT 

, equations ( 9 3), with A. = .I= o • 

'I' hen !,. = -~ = ~ 77': = - 3. Oll • The J,, corresponding to this 
.:i: ;p '.ftr-zJ 

~ was calculated (Appendix C) to be [ lj ~ o.z.z3 so that ~- = a.zo t:im. 
t=-.!etl 

which shows good agreement, and indicates that this method of calculating 

an approximate %; for use in the integral method, would give good results. 

For .A' ~ ..r, , the differential equations are more involved than 

those for the region .% ~Ai due to the more complicated temperature 

profiles and the addition of an unknown ~ (..r) , the maximum temperature. 

Performing the indicated integrations in equations (78), (80), (81), (83), 

and (8h) yields the following differential equations: 

(95) 
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where, now 

is a f1Ulction of ~ (,r) • I (z{l,,) is computed in the same manner as Z , 

except that no approximation is used, both ~ and ,9 being functions 

of in this region. 

From the matching conditions and the profiles themselves, it can 

be ~hown that 

(97) 

and also, the previously derived relation for ...t't:6:,) still holds, 

Substitution of these relations into the equations (95) and solution 

of the resulting equations for the sought after derivatives yields; 
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sf ( t6: -;:,) = (4_ 17) I 7T 2 ..J!__ I I /1 ..,.. . 
d.x .., K~)(d, ,..A;i) 1- 7i / ~ tn-2) s; u l((IJ,,)(1- k(,8.J) (d, r A~) 

{/J,-,Do) 

4/TT-.l) /~-1) fA-AJJ l 
(~-P) (~-1) (A,+'111.) j 

(98) 

The solution of these equations was obtained numerically employing, 

as before, the Runge Kutta method, using as initial values for 19/(Y), 

~a-;, ~:z..(X) , 4t.r) and .£1-1(...r), those values which were obtained at .¥= X~· 
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in the preceding calculations. The calculations were carried·out to the 

point at which a laminar flame developed, at which time j(' (4/~tJ_,)=st(ll,-AJ 
- c/...Y d( 

= d {p> ... r4~J = o since then the thicknesses of the zones remain con-
d..r 

stant. Thus, the values for A,t-~&J A'(Po)
1

and ~ -,40 were obtai~d by 

solving the first three equations of (98) simultaneously. Knowing these 

values, the other two equations were solved separately, and also ~(¥) 

was computed (Appendix D). 

Figure 7 shows the downstream variation of ~ from Vl at 

to ~ at the X distance at which a laminar flame de-

veloped. The exponential increase of the maximum temperature is shown as 

the gas moves away from the point of initial mixing. Also of interest is 

the comparison with ~ obtained from the first order perturbation. 

This shows that at least for t.5' the first order solution is good for the 

major part of the mixing zone. 

The detailed progress of the various regions and zones are traced 

in figure 8, in which the vertical scale is exai~merated for clarity. 

While A,(xJ and /l/(x) are really separate lines, the scale of the plot is 

such that the difference cannot be noted. Figure 8 demonstrates well the 

relatively sudden appearance of the laminar flame propagating into the 

combustible. This is indicated by the rapid convergence of the lines 

representing different temperatures and hence the appearance of strong 

·temperature gradients. This plot also illustrates the total distance 

traversed before a laminar flame is developed, and indicates that for 

'?F/:r.: = 3.so, a combustible with the physical 
r 

properties of azomethane travels approximately .75 cm downstream before 

the flame front is developed. Since for ~ = .s. stJ , .f= (). 87-1 , this 
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means that j ...... / at the end of the mixing region. 

It should be mentioned that all plots .showing a vertical I or 

~ scale are drawn for the corresponding incompressible flow. It seemed 

unnecessary to transform back into the compressible plane since only the 

vertical scale would be affected and the axial or X direction and 

variations of functions in the X direction are of most interest. 

Furthermore, the thicknesses represented in the integral technique are 

approximations so that transformation would serve little value. 

It is evident that knowing all thicknesses, and -Rm · , the de-

tailed temperature profiles can be computed, and this is shown in figure 

9 using f9, (XJ as a base. Figure 9 again illustrates well the rapid 

change in the profiles from almost mixing profiles to those with the 

steep gradients noted at the end of the mixing zone. It is interesting 

to note that the major steepening of the profiles occurs in the last ten 

per cent of the mixing zone. 

The calculations for A, t.rJ for X ~ x, should be discussed at 

this point. Because of the assumption that maximum temperature occurs 

at ; = -A.z(.r) no conduction terms are found in the equation for ,Az-A:1. , 

(98). While this assumption is justified throughout most of the region 

, for A'- .Xi small, the heat conducted, though small, is of 

the same order as that convected. Hence, some measure of the heat con-

ducted from the combustion region, must be made. Denoting by c the 

j distance from 1 = - A.,(~) to the line along which a maximum actually 

occurs, one can compute the derivative .,,71' as follows: 
di 
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However, 

so, 

Next, from equation (31+), one can write the energy equation along the line 

where ~ ~ as 

From the values of 4 for x close to X; , computed from the first 

three of equations (98), it is apparent that i2!fJ is very small, 
.&...!' 

(Appendix D) 

while the heat release term is of order 

/.d-;) .-t'(~) e-~# • .:'.!: -1.s (.r.9/7,y;_, 3
) .&'(~.,,,) 

H. Z' -<'&UJ 

so that even if d (d,,) is supposed as small as 2 x io-2, the re-

action term is an order of magnitude larger than the convection term. 

Therefore, for A'- ...ti -<< / , this convection term is neglected so that 



72 

and 

since ~ ~ ~ at /~A;- and K/z/m) can be replaced by a constant, 

;f , as a first approximation. £ may be defined as a characteristic 

length associated with the conduction process and may be interpreted as 

with ~ as a constant of proportionality. Finally, then, the con-

duction term may be written as 

.v dP I _ ~.K t~-1) e-~/~ U-A
2

) 

It."- d'J ~=-.dz ~"2" 
( 99) 

with the constants t; il still to be determined. 

When the slope at t = -.4_,(.Y) is not considered to be zero, the 

th~rd of equations (95) becomes; 

d / f.d'.,-4~)(-zf'm- ~!}= -.z(.,/1,,,-z/1)~ r -4P dzP / (lOO) 
dX dY ~I;. #!f l;=-4.r(K) 

Now, observation of the values calculated for ~ -~ and .d,/.¥) 

as ,,t-~· increases (see Appendix D) showed that these two functions are 

initially linear in A'- ..r, • Thus, expanding each function in a series, 

one finds the first term adequate for ,¥- Xl small enough. If 

~-V{ = c,, {%-~,:) , ~.i-A.7.(~·) = ~ (A"-A(·) , and one uses equation 

(99) for the conduction term, equation (100) becomes; 
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if 

It. is evident that a linear expression for ;6'-1 - A.i satisfies 

this equation as well as the condition ,6'.,-A.z =CJ at ...r = o , so that 

A-A.i - (101) 

if 

...¥- ,.r. <<- I 
I. 

From equation (101), one can see that 13.l -L1.z. becomes _sensitive 

to the choice of tGil only when £!_£ ~-1) e-,J'.,/~ becomes of 
c,, ~1' 

order 1. For the conditions used in the numerical example, ( PJ = ..1.~ 

/,, .; ,, .... ..,1 ) /I n would have to be of order u. = .?oo c.m/J'd'c_, ) i., = c./, < ) c..z ....:;-

3 x io-3 before A -A~ became very sensitive to the choice of GA:' • 

Thus, for ~ of the order of 1, a lower bound on ,.-t' would be about 

3 x io-3, since below that value, /.3~ -A~ would become negative, that 

is, the conduction term would be insufficient, a fact one knows to be 

physically untrue. 

As an upper bound on A:" , one can use the value of A:: calcu-

lated at the ma.xirmun reaction rate ( equation (39) ) as 1/l ,!
1 
,~ z "'.¥IP:,. 

Since the maximum temperature occurs close to, but at a slightly lower con-

centration value than that for maximum reaction rate, due to conduction, 

the value of K must be less than 6 x io-2. Hence for <; -1 
' 

• The value finally chosen was 

which is close to that value occurring at the maximum rate. With C.i = ~ , 
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then, G: ,ii = /~-~ a value which is well above the mininrum. This choice 

of constants, then, puts each constant in the proper order of magnitude 

range. 

Since the preceding analysis is good only for J'-Aj_ <<I , 

and serves only as a start for the computations for ~ -LJ.;i , another, 

more general calculation of the conduction term must be made. After the 

breakdo'Wll of the linear variation of the various functions with .¥-A'i 
' 

the simple boundary layer approximation may be used. Thus o# = C, ~-~ 
./)! 11~-A~ 

was used for the conduction term at the end of the region of applicability 

of the linear conduction term. At this point, then, the two conduction 

terms were equated to give t:; For the case calculated, this_point 

occurred at A'-A'i ::s.- tt:J.t:Js Ch? , which gave a value of C, of about 1/5. 

Since ~ is generally of the order of 1, the calculated value was in 

the correct range. As #.a -A.; increased the conduction term became 

smaller, and finally was negligible, whereupon equation (100) reverted to 

the third of equations (95). 

While the above approximations are very crude, it is believed that 

they give the correct relative order of magnitude of the variable ~~ as 

compared to A.t • Since the integral approach in itself is an approxi-

mate method, however, these calculations must be interpreted as a quali-

tative picture of the depth to which the higher temperatures penetrate. 

Vlhile, in general, the lines P',t'.r) , ,.6;(¥} ; Af.r), etc., show 

what one would expect to occur physically, the decreases in ~(,y) and d,(.r) 

which occur just before a laminar flame develops, shown in figure BJ are 

physically impossible, since they indicate that the fluid heats up 

slightly, is cooled, and then is heated up to the flame temperature as 
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it fl~Ns downstream. One probable cause of this situation is the fact 

that since profiles with finite boundaries are used, and since the slope 

of the profile at the matching line controls the thickness of the upper 

zone, the extreme rapidity with which the slope grows just before.a lami-

nar flame develops, caused inaccuracies in the thicknesses. 

:i:f:~ ---...... 

_] _ - '~-=-=---1 ti=~- - - - - -

P':z! - - - - - - - -

~, --- --~ 
~--A 

jl 
./ I 

I 

,do 

I I 
I I 
I I 
I I 
I I 

I 

19~ -
I 

11~ 

Thus, as is illustrated in the sketch, ~zP I .-v -zt.-1 , so that 
~14 ,6'~ 

increases, A -,.4. must decrease. Hence a slight inaccuracy in 

the rate of growth of the slope could lead to the result noted in figure 

8, where A -A attains values which should occur just slightly farther 

downstream. 

It is interesting, next, to calculate a flame speed existent with 

the present conditions, and using the integral technique. It is evident 

that after a laminar flame develops, all lines ~ (.y), ,40 (¥) , 4(.¥), 

..d"t~, etc. will lie parallel to one another. Hence one may define a 

normal flame speed as that velocity perpendicular to ,4't in the com-

pressible plane. Hence, denoting by the subscript c the aforementioned 

thicknesses in the compressible plane, one finds that 

(102) 
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and ~ are defined in the sketch. 

One can assume that the flame has propagated far enough into the 

upper stream that it is outside the regular velocity boundary layer in 

the incompressible plane. Thus, since u is unchanged in going from 

the incompressible to the compressible plane, this means that £.tf) = tl..z 

in the compressible plane also. 

Next, from equation (30) 

since /'(#,)=;; 1 4'.,=~· However, 

since at 

, and 
' /= 4' 

~'=!I& 
.::tx c:t-r 

one obtains the equation 

, etc. Also TQ~ a.t' = ~C' while 
d..l'p 

so that, substituting in equation (102), 
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If the boundary layer assumptions are satisfied, L'G?...r°' ~) , so that 

which is recognized as the incompressible flame speed derived in the 

section describing the reduction of the equations of change into an 

equivalent one dimensional system. Since in the present case p.:::: o anq 

·«x = ~rz = U equation (103) reduces to 

(104) 

which exists at the fully developed flame rray be 

computed by noting that since all lines are parallel, d ~-A) = tt:J 
c:Tx 

c/ C4r~.:e) = ttJ and d (4,-..&'o) = 0 so that d R(.4 .. ) = o From 
dJ( ) d.X dX 

' 

equations (98), then, one can get the conditions on the thicl:alesses and 

temperatures, themselves. Thus, 

(105) 

.I61,,,J e·1'/~~-A.)!11·h(,4,,J"f -1//HJIA-1)~ 7 
.le'. z-(~-I) t 7 · ff-n) (f-tJt4,t-4zJ} 
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Simultaneous solution of the first three equations yields the 

following results 

A-.-<90 _ _ ____ 1 ____ _ 
A/rA4 < (-lPrl) - I + p,.. 

(~-J) J;; 

~-,4;, = 71' I .x. _L t~-J e ~!~) 'h .. 
.z ( 2 l; Ztzln,J A:'(Jo;.) 

Also from equation (97) and the matching relation for lt(/3,.} 

so that with substitution of the above relations for /r'~) 

However, zl-1 = .< (zJ.:' -1) , so that 

(106) 

and A,'1-A• 
A'~ 

(107) 

i.e.; the maximum temperature is, in fact, the adiabatic flame temperature, 

at the fully developed flame. 

Finally, after substitution for 
' .1 and 

K (~) / the normal flame speed may be writ ten as 
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u,, = (108) 

which indicates that the flame speed varies with ~ and 'ft essentially 

as {s; • While this variation with transport properties agrees with 
T: 

other derivations of the flame speed, the numerical values for t.tn is 

almost twice that calculated for azomethane by Hirschfelder, for example. 

This is due in part to the simplifying assumptions ma.de for the transport 

properties; however, even more, this discrepancy is due to the fact that 

by neglecting the combustion effects in the upper stream, ~ then 

assumes the character of an ignition temperature found in one dimensional 

thermal theory, and the usual difficulty of defining the proper ignition 

temperature is incurred. 
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VII. CONCLUDING REMARKS 

Through the application of a boundary layer type of analysis to 

the problem of ignition and combustion in the mixing zone between. paral

lel streams of combustible and combustion products some of the essential 

features have been deduced with relative ease. Thus, there is illustrated 

the basic change in temperature profile from a.smooth mixing profile to 

that associated with combustion where a "bulge" exists due to a tempera

ture maximum within the thermal mixing region. Also, although the stream 

· of comtustible eventually ignites, it is shown that when the temperature 

of the hot stream is too low, the distance (or time) required is excessive. 

Then the flame develops so far downstream that it is essentially "blown 

offU any finite apparatus. A general qualitative picture of the character 

of the mixing and reacting zone is given to the point at which a laminar 

flame develops, showing the relative thicknesses of the temperature and 

combustible concentration "boundary layers" and the downstream growth of 

the maxinru.m temperature. Finally, in the Appendix A the equations are 

developed whereby the pre ceding methods may be used for a ternary system 

in which the local concentrations of two of the constituents are small 

compared to the third. 

In a broader sense the analysis shows that a new class of com

·bustion problems is open to investigation through extension of the usual 

boundary layer concepts. In addition to the present one, this class in

cludes such important problems as the theory of thermal quenching near a 

cool wall, the ignition and flame stabilization on a heated surface from 

which the boundary layer is unseparated, the erosive burning of solid 
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propellant grains, and a great many others. There is no essential 

difficulty in proceeding to problems with axial symmetry and it seems 

quite possible that the process may be extended to include cases of 

turbulent mixing. Thus the theory of the plane laminar flame together 

with the description of such boundary layer regions as may be treated 

by the methods just described, would seem to disclose the essential 

features of a relatively wide class of problems which involve steady, 

constant pressure deflagration. 
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APPENDIX A 

COMBUSTION IN A LAMINAR MIXING ZONE 
INVOLVING 'l'Im.EE COMPONENTS 

The general conservation equations (2), (10), (J), (15), (6), (7), 

and (8) written for an arbitrary number of components, can be modified 

through the use of the boundary layer assumptions to the following: 

(A-:-1) 

/>Uc d ~· 7- /'~ d~· = - siZ. « Y.) ~ h?. ff. 
~A(. ..BJ; ~ ~ " 4 ~ (A-2) 

i-=? ~.7A .... 

(A-3) 

(A-4) 

?= J?..J T = Ct:Jns fan. t (A-5) 

r. = ..!!.. ~ Em. )). . J f-.11,,) 
' "·f' J'li ti '" c)~ h 

' "" 
(A-6) 

where I>.. 
<,) 

is the multi component diffusion coefficient and thermal 

diffusion and viscous dissipation have been neglected. 

The coefficient of viscosity for the mixture is defined asC21) 
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(A-7) 

vrith 

.:!.. f + ~J '/~ ff JJt.. 
J 

(A-8) 

where A{ = mole fraction , and ~· = molecular weight. 

The multi component diffusion coefficients have been studied by 

Curtiss and Hirschfelder. In particular, the ternary diffusion coef

ficient may be written as follows;( 22 ) 

-21.z = ~.,f T- "' (~: ~, - ~~) j (A-9) 
17, JJ..,, r ~ .A], t- h.1 ~-l 

with the others obtained by cyclical permutation of the indicies. Again, 

£1.. indicates a binary diffusion coefficient. ~ .. 
The problem which is to be considered now is the ignition and com-

bustion in a laminar mixing zone consisting of a ternary mixture in which 

the-relative concentrations of two of the constituents are small compared 

to the third. Also, the two small concentration components consist of the 

combustible and product of combustion of a simple first order reaction 

while the large concentration component is an inert gas. In this case, 

then, the upper stream is supposed to consist, initially, of a cool mix-

ture of the inert gas and combustible, with the lower stream consisting, 

initially, of a hot mixture of the inert gas and the products of combustion. 
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-K 1 =/-CC -
l<t =c< / 

u. =- «.r K.7=0 t/"" / / 
__ T_=_Tz ______ _,\ ,.r

0 
mi .ti n9 ZOl1 e 

u. =' "zz 
T= 7,i- ...., '\ 

K, = 1-,B 
N~ =o 

A:'.?=" ._ -
Again it is supposed that Cp. = Cp. = 2';:. = C,o • 

' "' 
Thus if one denotes K, as the mass concentration of the inert 

gas, A:".z. as the concentration of the combustible, and k 3 as the con-

centration of the product of combustion, then K~ c: <I 

~ - ..6 43 in the reaction. 

Since ·Ki= 2: N;= lV.!1!4 , it is apparent that for ~1· ~·<<I 
,., /1 16 ,,., ,..., 

something must be said about the ratios ,,,,,1. 
m 

111, refer to molecular quantities and P",· 

• (Here and 

refer to molar quanti-

ties. They are connected by Avogadro's number, /n,· = (,1'1,: , ~- = m4 (Ar. Ml.) 1 
Av. 14.) I 

It is assumed that the mole fractions (!!t"= 11{<<1 for the components L·=~ :ir ,,, 
while all the molecular weights are of the same order, i.,..e. /&?.,'. ..., I ' w 

With the foregoing assumptions, then, that t?!.z , ,,41, and thus 
/7') /?'! 

~ , and ..K3 are negligible compared to unity, one may investigate the 

density and transport coefficients for the mixture. Thus: 

(A-10) 

' 
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However Aj ,.... I , while /':{ << 1 and ~ ..c < 1 • 

Therefore, it will be supposed that the variation of the average molecular 

weight, /JI , is negligible,i with l'1 being calculated either as the 

initial average molecular weight, or as N ~ /"1, • 

Supposing the molecules to be :ffa.xwellian with the same force con-

stants, implies that 

so that 

and 

-1 

while 

~ == _#_,_:.,u._, --

so that to the same order of approximation, 

(A-11) 

From the Eucken correction, for a mixture 

(A-12) 

Hence, with the lmowledge of ,,,«, 
' ~ 1 and II/ , is known. 

Finally, one can write the ternary diffusion coefficients as 

D .. = cEJ.. L1 .. 
l.J '" '"' 

(A-13) 
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where, for example, Jt11z. is, from equation (A-9), 

I r hj ~3 clf1,, - at;,.z) 
-?,~J f-~~I f"J1.J~.t 

(A-14) 

with the others being obtained by cyclical pernrutation of the indices. 

In terms of ;V(· , 4 ~1 becomes 

= I r hj (~' tlfi3 - »2.1) 
~ ~J :fA{ JP.,, r~~.t. 

Taking account of the fact that the cf}ij 's do not differ by an order of 

magnitude since the molecular weights are of the same order, then to the 

given order of approximation, 

The remaining 

A 
-l3 

LJ3, 

I 
L). . s and their approximations are listed below 

i:J 

- I I- ~ (-tt d.,, -c!ZJ) 
Af~,r~4, -1--~,&., 

~ flt JJ.z1 
M,, $_,3 

- I + ~ ( /¥: o/P.,:f - J!v) 
A{ 4 3 ,.. ~ 4, t~4'.r. 

..::!: I 

LI '-l -
N: (~£4, -4.iJ 

/Y, ~ :1 r"f ~I ;I- Aj ~.Z 

..... N1 #,, 
M.z ~z 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

It is apparent, that with the foregoing assumptions,µ.,= constant, 
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and '!;. = Ce -'I. = constant, and a Schmidt number, defined as 
A. 

= constant 

since and P=- n,J 7 Thus, the Howarth transfprmation 

may again be applied, uncoupling the momentum from the species and energy 

conservation equations. Performing again the transformations in equations 

( ) -A/Rr (24) to 31 , with m~K~ = - ~ e = - J??7 K-;, 
-r 

Arrhenius rate law, one can derive the following equations, 

~ t- dlt"= 0 
ax o:J 

ad& -/" z/'~ = -_d ir1z.1} - ~ t:'-'%.T 
ax d) .:1J(~ / ~ 

Ud.hi- r v ollf'I= -c) /4>.i) + ~ e- ~r 
dX d,1 dd(-t; / ? 

a rtB. r r<ia. = J) a~a 
dX '7!f dlz 

a dr t- v <i? - .J:!. dzr -r LJH.,
7 
~ e - -%-r 

.?A' ..,;; ~ dff~ q, 'Z" 

~ = .L!..2 E m. IJ .. d. (hj J 
1·& cl:li .I '" ~ ;;'/ 

from a simple 

(A-19) 

r '-' '-'""' where L..J 171 . ./. !:(. = m, .K_ CJ.-.4, ) since K, =-0 and E /"n. K. = o , 
• i; I - I. '.I ;.( .Z 1 L i; I. 

I ~ ~ 
from continuity considerations. 4 ~3 = ~ ~ is again interpreted as an 

average heat release per unit gram of the reactant over the temperature 

range. 

Next, z{ nn1st be computed. 
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Further, 

However, since m :::- constant, and with the approximations for Llij , 

since ~·J· =- ol} . . 
J{ 

Thus, 

or since ~~ =-/%.,.,a.r , and m -= .m, • 

(A-20) 

Likewise, the same type of analysis gives for the third component, 

~31 = -~ c?K, 
~ S,3 dd 

It is evident that if the expressions just derived for ~31 
~ 

are substituted in the species conservation equations (A-19), 

(A-21) 

and&~ 
~ 

a set of 

equations exactly similar to those for the binary system (equation (32) of 

text) are obtained and hence the transformation to the f and X 

variables can be carried out in the same manner. The equations (A-19) 

then become_, 
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/I/ JI ,, 

'f-.L l'=O 
~ 
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(A-22) 

Here, :zfl and I have the same definition as in the text, and o<: and 

151 are the initial concentrations of A:'~ and A"'~ respectively, so that 

The boundary conditions are as follows, 

I~= I 111 

) =o ' 

f'=: A J l"=-o J af ?=-a:J 

K<: =I 

(A-23) 

(A-24) 

al f= a:7. (a// ..r) 

With initial conditions ~ = / , hJ = o , and #==I in the upper 

stream and ~ = o , K, = / , and zf'= ~ , in the lower stream. 

Since, in terms of It'~ , the problem is exactly similar to the 

binary problem in that the limits of Kz are I and o , while V' goes 

from / to ~ in the same interv:al if , the definition of 
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..f , the characteristic chendcal length is the same. Hence, defining 

j = J again, one can write the species and energy conservation 

equations in terms of f as, 

with the proper expansions for J < < I being 

The zero 1 th and first order equations are then 

d~ii.t•) f -to) 
I __ .e r _ d~ = o 

s;.t df:Z .z df 

-(.t:;) + f dil(t!>) -I c/.z.K, 0 - _, -
S,3 df.z .z df 

_, d.z#'o) + .£. d#(p) = 0 
~ d f'- < d? 

and 

(A-25) 

(A-26) 

(A-27) 



93 

(A-28) 

From equations (A-27) and (A-28) it is seen that for ot == o , the 

problem reduces to a pure mixing problem of two components, K, and 1(:1 

while for ex: finite, the zero 1 th order solution in J , covers the pure 

mixing problem with all three components. The first order problem, then, 

consists of the three components with small heat release. It can be seen 

that for o( and j small the heat addition is very small. 

In view of the fact that the equations ana boundary conditions are 

the same as those encountered in the binary problem, the solutions for the 

case of velocities equal can be written immediately. 

~o(o) = _t'7 I 
v ~ 

<. 

(A-29) 
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-a;J 

K,."'f>cJ = -cq:, fzf-1)#; ;:rM; .r,,) rJ/(~Jc1t (A-30) 

-a? 

l(,
61

f?J = ex J/3 {zf.-1)$ /fi~1 f; .r,,) rR{i)dj 

-ID 

where 

and t;. is the same Green1 s function computed in the text. 
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APPENDIX B 

CALCULATION OF PHYSICAL PARA:METERS 

1) Reaction 

The reaction considered was the decomposition of azomethane, 

, which follows a first order reaction. 

While the products are a mixture of ethane and nitrogen, it is assumed 

that this mixture is one component, with the average properties of the 

actual mixture. For example, the molecular weight of the product of 

reaction is ~ = M~H',.. M.+l = 2 '!. rmr. 
z "10111 

From data presented in reference 1, 

r 

.tl/f,~ = 862 + /( C~ - C~) dT 

3()0~ 

T 

- B'Z rf(o.03,s-- l.S"S.r1"z +-3.3/K/(}<l}dr 
T T.z 

.1oo 0H 

(B-1} 

where subscripts I and 2 refer to azomethane and a mixture of hydrogen 

and ethane respecti veJ:-.r. Thus, at T = 300 °x , d~,. = 8 6Z c,,/ /9m while 

at I= T; = /~S-0 o,t( , ,,1~.z = 7Jif Cl?/_~117 • The average 4""1z is used for 

the calculations, 

(B-2) 

However, 4f1.< - Cp (7; - 7j.) 

Therefore, 

(B-3) 
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3) 1t 
From the Eucken correction, 

A_.~ (E;, +1.2s -ff)= A- CP (1 -1- ~;s-;) 

where M is the average molecular weight. 

Since, 

with Cp as calculated, 

P = C,_ jj 
> ..t:::::::: -

A 
I 

(1 r 1.~s-!! ) 
Cp /I'/ 

= (). 91 

From reference 1 again, Eucken1 s form for A is written as 

where C.. 
1 

is the molar specific heat. In terms of Cp , then rmoe 

A == (c.p + /.Js- R) .MP a9. 
- - I~ .,i:i RT 

(D-4) 

(B-5) 

However, since the usual form for A is listed above, it is obvious ~hat 

the assumption was ..,,a = MP pf), 
i1T u 

, or, since 

so that 

Sc=:::::!!5. =I 
l"'c8,..i 

The same assumption is used in the present paper. 

5) ~ 

Since A= so Kc"'/ , (reference 1), 

z£ = _,, = B:J.B?o 
H!r 

(B-6) 

(B-7) 
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Since JI = >'r = ,«z 
1'".r 
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, and ~ can be calculated with the given 

data, ,;;. = p,:;;; = ;, 7~ 7 K1t:r 3 9ms /cc , it is necessary to calculate 
. R7; 

,A/.z. However, ....«.r= fl A.r = ~~ (~,,~ so that Az or (~,}z nru.st 
c,... 

be calculated. In reference 1 it was assumed that ii-T''Z~·mwhile in the 
'P 

present analysis A.-i.T Hence a it .z was chosen such that A. then 

agreed closely over the temperature range Tz to ~ with the values 

given in reference 1, in order to keep a comparatively consistent set of 

physical parameters. The follmving graph shows a plot of both the laminar 

variation and the variation chosen by Hirschfelder et al. 

-<=I~"' s.o 
.., .... 
..,... 
t: 
cu .... 
v 4.0 

~ 
lb 

~ 
Dq t1 of' Re erence .1 

~ JO 1--~~~--1~~~---7'!:.-i-~~-7"'-~-1-~~~~+-~~~--1~~~~-t-~~~---1 .... 
~ 

-1::: 

" { 
.i: 
~ ~o i--~~~-+~-7"-o__~-t-~~~~-+-~~~~t--~~~--+~~~~-+-~~~---1 

* .i\z = ~.r of Refer nee .J 

l·O 

1.0 2.0 3.0 4.o .s:o 7.0 

Ternpe,,.-qful"e ITatioJT 
7i 
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It was found that a fairly good representation was obtained with llz 

equal to eight tenths of the ~z calculated from the equation given in 

reference 1.. Thus, 

so that 

( B-9) 

Then 

(B-10) 

A sununary of all values used follows 

Reaction 

'l" = /o -u sec 

fl = /. 98 7 cq/ /m"I~ / 0 .1< 

P,. = IJ. 91 
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APPENDIX C 

CALCULATIONS FOR PERTURBATION METHOD 

From equation (55) of the text, 

Since, from equation (49), it is evident that ~(?)-::: -Jt;fp} it was 

necessary to compute only one. l(t0 r,Jand #'~f!J were calculated using the 

tabulated error function, and after tabulating e-~/#'~..J and e / l~ , 

the kernel of each of the integrals was calculated for a range -a *?~8 

at increments of df = t:'J • .2.5" , Using Simpson's rule for numerical 

integration, then, this gave values for the integrals at increments of 

over the same range. Table I gives the values of ;tlft0f'?) , 

K~J(?) , ~ (f) , J, ftJ , I., t'p) and :;f'~-'f?) over the range 

- ~- s t: ? ~ .S:.5" • Where 

p 

I, t1J ~ j..J:(f)elf'Pi'tf)¢f 
-aJ 

(C-1) 
¢) 

I.f7) = 1$,(f)efi'~(iJ<li 

for ~=3.SO. 
! 
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In order to calculate -7'· from equation (64) of the text, it was 

necessary to compute (! , where 

DO 

{!' = - /11, (f J elf, lf?(f Jdf 
-Q:J 

This was calculated from the numerical work using the definition of ~ 

Thus, 

¥,ff) er t tRf >lJ df 

/

a:J R-z 

2 

Values of the integral are given in Table I. By letting ?=- 6 ' -7 , 
and -8 

' 
(! was calculated to be 17•408, 17.397, 17.395; the value 

used then, was tJ> = 17.40 . With this value of (? 
' f. was cal cu-

~ 

lated by trial and error from Equation ( 64) to be ?, = - ~. s 7 • 
~ 

From equation (66), 

Su~stituting values of ' ;::. = Q, 9/ ' ~ = .s:so ' 

gives 

(C-2) 

·Therefore 
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so that for Uzr = ~.r = zoo cm /sec. and 2'= /o-/f, 

(C-3) 

Some representative values, then, for ...ri as a function of PI are 

3.5 

3.25 

3.00 

2.75 

~- {cm) 

0.071 

0.404 

J.082 

34.24 

It was necessary, also to compute an equivalent ~· for an f, 

of -3.08 so as to compare with the Xa'rman integral method, according to 

the method described in the text. From equations (59), (46), and (65), 

J. = 
' 

so that 

(C-4) 

where I, (;z) and .I.z (?) are given in Table I for integer and half 

integer values of 1 . From the development preceding equation (54) 

in the text, 
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After substitution of -z-1==3.5" and the given values for ;; 

~, etc.,· ...ri was calculated for values of ?,= -,r.5, -..?.O 

" 
-.1,5' giving the following values for ,t,. 

~-
' 

- 2 • .5 

- 3.0 

- 3.5 

;;. (c1n) 

o.584 

0.215 

0.129 

, and 

Plotting the given values of vs and reading the value for 

~· = t_ = -3.oB, gave ~· = <tJ.zo cm. 

, 
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APPENDIX D 

NUMERICAL VALUES OF THICKNESSES, .k(,8.), 
AMD MAXIMUM TE!v!PERNl'URE 

The differential equations obtained using the integral technique 

were solved numerically using the Runge Kutta. method. The equations did 

not contain X explicitly, making calculations easier. The physical 

parameters used were those calculated in Appendix B. 

For ~ = J.f , the initial conditions calculated from the 

expansions (equations (93), text) were, for )'= /tt-' ~m. 

K (#.) = o. sool 

The results of integrating equations (92) of the text are presented 

in Table II. The values existing at A'= _.r,. were then used as initial 

values for integrating equations (98) of the text, the results of which are 

presented in Table II. The accuracy of the values in Table II is approxi-

mately 2 per cent since the values of .I('Zf.,) were read from a graph of 

I6f,) Ys ~ similar to that shown in the following sketch. Separate 

graphs of I(al.,) vs ,I,,., were drawn for various ranges of al,.,., , but the 

accuracy was no better than 2 per cent. The predicted final values were 

computed from equations (106). 
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TABLE I 

PERTURBATION FUNCTIONS 

I( -&'0'(11) .K(p'(1) Jt~{?) I,(1)x103 I,,.(I'/) zjl•Jf.?) 

S.5 1.0003 0.9999 52.3362 7.3790 0.0000 0.0000 
5.o 1.0009 0.9998 43.8672 7.3790 0.0000 0.0000 
4.5 1.0030 0.9992 36.1563 7.3790 0.0000 0.0001 
4.0 1.0087 0 .9977 29 .3496 7.3790 0.0000 0.0002 
3.5 1.0228 0.9933 23.2966 7.3790 0.0000 0.0005 
3.0 1.0538 0.9831 18.0421 7.3790 0.0000 0.0015 
2.5 1.1147 0.9615 13.5767 7.3790 0.0000 0 .0038 
2.0 1.2217 0.9214 9.8782 7.3790 0.0000 0.0091 
LS 1.3895 o.8556 6.9140 7.3790 0.0000 0.0199 
1.0 1.6249 0.7603 4.6283 7.3790 0.0000 0.0405 
0.5 1.9199 u.6382 2.9461 7.3790 0.0000 0.0766 
o.o 2.2500 0.5000 1. 7725 7.3789 0.0000 0.1355 

-0.5 2.5801 0.3618 1.0022 7.3682 0.0000 0.2252 
-1.0 2.8751 0.2398 0.5295 7.1889 -0.0012- 0 .3513 
-1.5 3.1105 0.1444 0.2602 6.2313 -0.0182 0.4956 
-2.0 3.2783 0.0787 0.1184 4.2056 -0.1218 0.5801 
-2.5 3.3053 0.0386 0.0497 2.1004 -0.4490 0.5267 
-3.0 3.4462 0.0170 0.0192 0.8023 -1.0997 0.3683 
-3.S 3.4772 0.0067 0.0068 0.2498 -2.0544 0 .2055 
-4.o 3.4913 0.0023 0.0022 0.0650 -3.2180 0.0915 
-4.5 3.4970 0.0007 0.0006 0.0153 -4.4912 0.0350 
-5.o 3.4991 0.0002 0.0002 0.0031 -S.8008 0.0112 
-5.5 3.4997 0.0001 0.0001 0.0006 -7.1023 0.0035 
-6.o 3.49994 0.00001 0.0000 0.0001 .;.8.3618 0.0008 
-6.5 3.49999 0.0000 0.0000 0.0000 -9.5533 0.0001 
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TABLE II 

THICKNESSES AND /( (~.) FOR X = A;. 

% (mm) ( tJ, +A,,.) {~m) l!(f',.) (11. 1"A~) {mm) ( ,B, -llo) (mm) 

0.01 0.021.t.7 o.5001 0.0123 0.0129 
0.02 0.0349 0.5001 0.0175 0.0183 
0.03 0.0427 0.,5002 0.0214 0.0224 
0.13 0.0893 o.5001 0.0447 0.0467 
0.23 0.118 0 • .5012 0.0593 0.0618 
0.33 0.141 0 • .5017 0.0709 0.0737 
0.43 0.161 0..5022 0.0808 0.0838 
o.53 0.178 0.5021 0.0896 0.0927 
0.63 0.194 0.5032 0.0976 0.1007 
0.73 0.208 0.5037 0.105 0.108 
0.83 0.222 0.5042 0.112 0.115 
0.93 0.234 0.5047 0.118 0.121 
1.03 • 0.246 0.5052 0.124 0.127 
1.23 0.268 0 • .5063 0.136 0.138 
1.43 0.288 0.5074 0.146 0.148 
1.63 0.306 o.5o85 0.155 0.157 
1.83 0.323 0.5096 0.164 0.165 
1.90 0.339 o.5100 0.168 0.168 x=x, 
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TABLE II (Continued) 

THICKNESSES, I( (110 ) , Alm l1lAXIMU M TEMPERATURE FOR X ~ X;. 

X (mm) (.111 -1-LJ.i) (mm) !((#.) ~+A.1.) (171,,,) ({'17/1~) (n.m) /f• (mm) (~.-tJ.,) {t11m) (tf,,,-4} 

1.90 0.329 o.510 0.168 0.168 0.0054 0 o.oo 
2.10 0.344 o.511 0.178 0.175 0.0062 0.002 0.004 
2.30 0.359 0.512 0.183 0.182 0.0070 o.oo.5 0.009 
2.50 0.372 o.513 0.191 0.189 0.0080 0.007 0.015 
2.70 0.385 0.514 0.198 0.195 0.0090 0.009 0.020 
2.90 0.397 o.515 0.204 0.200 0.0100 0.011 0.026 
3.10 0.408 o.516 0.211 0.205 0.0112 0.012 J.OJli 
3.30 0.4J.9 0.517 0.217 0.210 0.0125 0.013 0.041 
3.50 0.429 0 • .518 0.222 0.214 0.0138 0.014 0.049 
3.70 0.438 o.520 0.228 0.218 0.0153 0.015 0.058 
4.10 0.455 0.523 0.238 0.22h 0.0185 0.017 0.076 
4.50 o.Ii.68 0 • .526 0.246 0.228 0.0223 0.020 0.099 
4.70 0.474 o.528 0.250 0.230 0.0245 0.021 0.111 
4.90 0.479 0.530 0.254 0.230 0.0268 0.023 0.125 
5.10 o.482 0.532 0.257 0.231 0.0294 0.026 0.140 
5.30 o.Ii85 0.534 0.259 0.230 0.0322 0.029 0.1:)6 
5.50 0.}+87 0.537 0.261 0.229 0.0353 0.033 0.176 
5.70 0.487 0.539 0.262 0.227 0.0387 0.037 0.196 
5.90 0.485 0 • .542 0.263 0.224 0.0426 0.043 0.220 
6.10 0.481 o.546 0.263 0.219 0.0470 0.051 0.249 
6.30 0.474 o.5.5o 0.261 0.213 0.0.520 0.060 0.280 
6.So o.464 o.554 0.257 0.205 0.0579 0.073 0.319 
6.70 o,448 o.560 0.251 0.194 0.06.50 0.090 0.369 
6.90 0.424 o.567 0.2hO 0.178 0.0739 0.114 o.h35 
7.00 0.406 0.571 0.232 0.168 0.0795 0.131 0.479 
7.10 0.383 o.576 0.220 0.15.5 0.0862 0.1.53 0.533 
7.20 0.352 o.582 0.205 0.138 0.0942 0.180 o.co3 
7.22 0.345 o.583 0.201 0.134 0.0960 0.186 . 0.619 
7 .24 0.337 o.584 0.197 0.130 0.0979 0.193 0.636 
7.26 0.328 0.586 0.192 0.126 0.100 0.200 o.656 
7.28 0.319 o.587 0.187 0.122 0.102 0.208 0.678 
7.30 0.309 o.589 0.182 0.117 0.104 0.217 0.700 
7.32 0.298 0.591 0.176 0.111 0.107 0.226 0.725 
7.34 0.286 o.592 0.169 0.106 0.110 . 0.235 0.754 
7.36 0.272 0.594 0.162 0.0994 0.112 0.247 0.784 
7.38 0.258 o.596 0.153 0.0927 0.115 0.259 0.818 
7.40 0.241 o.598 0.144 0.0853 0.119 0.272 o.859 
7.42 0.222 0.600 0.133 0.0772 0.122 0.287 0.904 
7.44 0.200 0.602 0.120 0.0682 0.127 0.304 0.956 
7.46 0.175 0.604 0.106 o.o58J 0.131 0.322 1.019 
7.48 0.147 0.605 0.0892 0.0476 0.136 0.343 1.091 
7.50 0.117 o.6o6 0.0707 0.0365 0.142 0.36.5 1.174 
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TADLE II (Continued) 

THICKNESSES, lt'(A) , Alfi MAXILflIM TEUPERA'I'URE FOR A'~Aj 

X (inm) (11,+Az) (rnm) ,/((14) ( 4 rlJ.i) (mm) (/J, -/Jo) (t,,m) {lo (mm) (11~-A") (mr11J (P,,,-~) 

7.52 0.0856 0.605 0.0518 0.0258 0.148 0.388 1.259 
7.51.i. 0.0586 o.6o8 0.0356 0.0173 0.154 0.412 1.326 
7.56 o.oLJ.2 0.626 0.0258 0.0124 0.160 0.433 1.359 
7.58 0.0329 0.661 0.0218 0.0102 0.166 0.439 1.405 
7.59 0.0294 0.679 0.0200 0.00919 0.169 0.430 1.470 
7.60 0.0253 o.697 0.0177 0.00784 0.173 0 .l.il 7 1.565 
7.61 0.0203 0.715 0.0145 0.00616 0.178 0.399 1.699 
7 .62 0.0150 0.730 0.0110 0.00442 0.185 0.386 1.851 
7.6225 O.Olh2 0.733 0.0104 0.004.16 0.187 O.J8)+ 1.884 
7.6275 0.0129 0.737 0.00953 0.00371+ 0.191 0.383 1.939 
7.6325 0.0121 o. 739 0.00897 0.00348 0.195 0.387 1.969 
7.6375 0.0117 o. 740 0.00866 0.00334 0.200 0.392 1.988 
7.6400 0.0116 0.740 0.00862 0.00332 0.202 0.396 1.993 
7.6425 0.0116 0.741 0.00857 0.00330 0.204 0.400 1.995 

Predicted Values 

0.0115 0.7407 0.00850 0.00327 2.00 ,, 
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FIGURE 9 - TEMPERATURE PROFILES LEADING TO LAMINAR FLAME 


