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ABSTRACT

The equations describing combustion in a flow field are modified
for use in laminar flows where the so called boundary layer approximations
may be employed, These equations are transformed into a corresponding
incompressible flow with the Howarth transformation.

As an example of the use of boundary layer conceptslthis analysis
considers the ignition and combustion in the laminar mixing zone between
two parallel moving gas streams. One stream.consisté of a cool combusti-
ble mixture, the second is hot combustion products. The two streams come
into contact at a given point and a laminar mixing process follOws in which
the velocity distribution is modified by viscosity, and the tem@erature and
composition distributions by conduction, diffusion and chemicai reaction.
The decomposition of the combustible stream is assumed to follow first-
order reaction kinetics with temperature dependence according:to the
Arrhenius law., ‘For a given initial velocity, composition, and temperature
distribution, the questions to be answered are: (l)_Doesﬁthe combustible
material ignite éhd (2) How far downstream of the initial contact point
does the flame appear and what is the detailed précess of deveiopment?

| Since the hot stream is of infinite extent it is found that ig~
nition always takes place at some point of the stream. However when the
" temperature of the hot stream drops below a certain valﬁe, the distance
required for ignition increases so enormously that it essentially does
not occur in a physical apparatus of finite dimension. The complete de-
velopment of the laminar flame front is computed using an approximation

similar to the von Karman integral technique in boundary layer theory.
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I. TINTRODUCTIQN

The study of combustion in a laminar flow field presents many
complex problems. A complete description of the various mechanisms
involved requires>knowledge from the fields of gas and chemiéal kinetics,
and aﬁ the present time, a complete formulation seems too complicated to
solve except in the case of the simplest first order reactiéns‘in one
dimensional flow, However, even this case is complex,(l) unless one
makes simplifjing approximations.(z’ 3, )

In order to achieve any solution of this problem,-thén, onevmust
resort to formulating simplified concepts of the mechanisms iﬁvc}vedg
and hence one is restricted to solving specialized prbblems cgﬁered by
the rangé of validity of the approximations chosén. A crude abproxi-
matiqn(ss 6) that has been rather intensively studied is that in which
the flame is considered to be an infinitesimally thin discontinuity in
the flow. The flow problem is formulated similarly to the shock wave
problem, in this case, and gives some idea of the effectvﬁf a. flame front
ona given fldw; |

Howéver, many problems exist in which the physical sitﬁation can
bé approximated by neither a plane one dimensional flame nor a disconti-
nuity in the flow. For example, the thermal quenching of é gaseous'

' mixture(7) near a cool wall and the thermal ignition neér a heated wall
essentially involve both two dimensional fields and a kﬁowledge of the
structure ofvthe flame. Also, combustion processes in free jets and

combustion under conditions of mixing between two gaseous streams require



considerations beyond the one dimensional or discontinuity type theories.
In many situations which arise in thermal jet propulsion systems, a
relatively cool stream of fuel is ignited by mixing and contact with a
hot stream of gas. This process occurs near the injector of a rocket
nozzle, in the flow in and through turbojet combustion cans, and.plays

a definite and vital role in the stabilization of flames behind bluff
body flame holders,

In each of the problems mentioned as examples of the process of
ignition and combustion through mixing, the flow has the physical property
that for large stream velocities, the variations of temperature, compo=-
sition, and velocity, are much larger in the direction normal to the main
stream than they are in the direction of the main stream. In fluid
mechanicé, problems exhibiting this characteristic are treated by the
so-called boundary layer approximations which simplify the deséription
of the problem by deleting certain variations in the directioﬁ of fiow
in comparison with those normal to the flow. Hence, an extension of
this idea to cover flows with combustion allows treatment of this entire
class of problemé,'either by analytic, or by simple numerical methods.

The present treatment, then, is concerned with this claés of
problems, and in particular with that problem of ignition and development
of a flame front in the laminar mixing region between parallel sireams of
‘combustible gas and hot products of combustion. The general conservation
equations are first rewritten in terms of wvariables more familiar to the
aerodynamicist so that the boundary layer approximations may be applied
more easily. Next, the resulting relations are modified, with the.use of

several approximations, to the usual boundary layer equations with the



addition of terms due to combustion, and added conservation equations for
the chemical species.

After discussing the physical and chemical relations which apply
to the problem and simplifying the eéuations through extension of the
boundary layer concept, the initial portion of the mixing zone with two
components is investigated where the heat evolved through chemical re-
action is yet small and the problem is solved through a perfurbétion to
the solution for mixing without combustion. Then using the integral
technique introduced by von Karman into the study of the boundary layer,
the development of combustion is traced from initial mixing through
development of the flame front. The equations for a ternary system
with the concentration of two of the components small compared to the
third are developed, and a perturbation solution is obtained for the

game mixing problem.,



N
II. CONSERVATION ESUATIONS FOR COMBUSTION IN FLOWING GASEQUS SYSTEMNS.

The equations necessary to describe the flow field of a multi-
component gas mixture, either with, or without chemical reaction, have
been stated in detail by Hirschfelder, Curtis, Bird, and Spatz(B) through
a generalization of the work of Chapman and Gowling.(9) The general con-
servation relations were obtained from the Boltzman equatioﬁ, ahd, by the
usual method of perturbing the velocity distribution function slightly
from a Maxwellian distribution, the non-equilibrium calculations of the
transport properties were carried out. In generaiizing the work of
Chapman and Cowling to a multi-component gas system, Hirschfelder et al
used a slightly different method of solving the integral equations for
the perturbation function. Instead of expanding the unknown functions
in an infinite series of Sonine polynomials, as done by Chapman and
Cowling, Hirschfelder and his group considered a finite series of Sonine
polynomials'and employed a variational procedure to find the coefficients
of the expansion, Thus, while the two methods of solutioﬁ are equivalent,
the form and in éome cases the definition of the transport properties
vary. (i.e.s Dij’ the multicomponent diffusion coefficiept, réduces to
Dij the binary coefficient, but D; , the milti-component thermal
diffusion coefficient does not reduce to Chapman and Cowling's definition
‘for the binary case.) Another point of variance arises'in the definition
of the diffusion velocity. While Chapman and Cowling define (52 - El)

as the diffusion velocity for a binary mixture, Hirschfelder defines ﬁi

as the diffusion velocity of the ith component. In order to avoid



confusion, the Hirschfelder definitions will be used throughout this
paper.

The conservation equations modified for the presence of chemical
reactions and polyatomic molecules are employed. The coefficients of.
diffusiqn and viscosity are not changed by considering molecules“with
internal degrees of freedom, but the heat flux vector z » and the
coefficient of thermal conductivity, A , are affected. Thé best ap~
proximation 0 A at the present time involves the Eucken correction.

Following the notation of Hirschfelder, the conservation equations
are written in the following form:

Conservation of mass

The continuity equation for each species is,

_é__ﬂ_é v-n fa'f‘_z"' =}(‘
9 + n ( ) (1)

If this equation is multiplied by m; and summed over i, the

total continuity equation is obtained. Thus,

j}f 7+ Vrlo =0 (2)

since 2, 7./ = A , by definition, and 2. pp A = O and
< _
2, mm. L, = O from mass conservation considerations.

Conservation of momentum

Summation of the separate momentum equations for each species

gives the overall momentum equation,

4l + PG =

L P+
7 @

A
]

ZnX, - (3)



Conservation of Energy

Again, summation of the separate energy equations for each species

gives the energy equation for the mixture,

9’2‘ 7“_40‘7[(-\ =—_/7,g _f.-Vg’ 7,_20‘4—": v/_z_ ()4_)
de - - A =/ pr
where
—_ A - -
£=-Avr + LACA + 4z n D/ (F-7) ()
- Z »” S'J ﬁ,‘, ﬂj v

is defined as the heat flux vector.
State
The equation of state for each species is that of a perfect gas,

R=ni7T

so that the overall equation of state is:

P=ntk7T (6)

Diffusion Velocities:

The diffusion velocity of each component is defined as

li= G lam) =2 & [ m D

- 4' J’-‘l

2; g €%zfm472 7

where
Eé = p;;y +.(%?o—-fzn?) Vi, P — ?ng /aI;éé.-jﬁﬂzéga) (8)

Finally, one can write the identity

K =206 = (9)



The species contimuity equations (1), may be written in terms of
the relative mass concentration /4 , after multiplication by »7. .

Thus g7, =~ 4 = ~4 » and equation (1) becomes
F

£ %) rUey (0 rE) = mp X
so that

~ 5%{; ;-_{Z-,-VA;-) * K /a_ét(’f- P—/_’_(;) * VPG =

and employing equation (2), one obtains

£

/’(3_4’: + Lo VK | = - VPl GG #1222, (10)
a¢

Also, the energy equation can be written in terms of the enthalpy,
and finally, in terms of a mass average specific heat.

Since

then
A= Z2d -2 /004 +Lm 47
= Z*LankT
or
,j-—z?f-’a_P (11)

where the equation of state (6) has been used. With the aid of equation

(11) and the definition of ('; = Z’ 2Ly the energy equation can be
=%



transformed as follows: Taking the derivatives indicated,

- 7 A
02 1w = 24 _ 197 AP Pk ~L VP IZEE
5 Je PIE Pt - =
and using equation (2), one obtains
. . |
M ropid - h_ 2P Pk -G VP-P L (13)
2z JZ2 P I e ~

Next, through substitution of /-—- ,-;’ zﬂp{,j and elimination
) ¢
<

of j%z' with equation (1), equation (13) becomes:
z

r o Pl =

L SPE IT - PP # PLL-pT —
~/ P+ I

L
Ry

(1)
- Pk?ﬁg,-—f§375,4f rnd f-4§1azu4?z&; 2

/

where the general derivative

P
€i£z'=: E%éz// 27 r 24/ 2P
75 o as

since each component is assumed to be a calorimetrically perfect gas.
Substitution of equation (1li) into the general energy equation,

gives



pE, T _ IP 408 Co-VT ~V-PLo - mev G+
or

r Em Al =-veg-pve + 20l X

However,

J__’-’Vé’o = PV Lo "i

where f contains the terms due to viscous dissipation. Also the terms

2 m, j 7. 2: and the heat flux vector £ may be combined to yield
¢ /g Y3 =

Pal — -
-vg +_Z’m‘.,{. Vnb =VAVT = 0L mnCh -
¢ 4

= VAVT - Z’mn_z:c V7~ 174727'-4 “G-2)

‘/J t

Finally, the energy equation may be written:

7 /T + 607 ) - JdP # CoulrP
|2 l ot

g
i
Y]
N
d
N
™5
o
<
N
]

(15)
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The equations necessary to describe the phenomena of combustion
in a flow field, in terms of the familiar physical variables of densiiy,

relative mass concentration, velocity, pressure, and temperature, can be

collected now. While both the species and the overall continuity equations

are written, it is evident that since ﬁQ==éﬁ' » if one is considering

a system of , components, only #+-/ of the species equations and
the overall continuity equation need be solved,

The necessary equations are as follows:

2 » P-PCo =0
at

,o//j;r + Lo DA, //-——VP 4 G+ mp A, (10)
rlde vove]l = -vp+ Enk
([ 37 J ¢ (3)
Ep,o/a_ O Vr/ Xd_P + G PPl = T-AVT -
{ 7% /
—Zm,/]f ﬂZ’/’ C—I
~vETuD (6T )+ Fnl X, s

»” ‘d"’cﬂ

P=nk7T



AR
I
R

J
&
{

L DT o4 T (7)

where
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TII. FORMILATION OF COMBUSTION PROBLEM

Consider two semi infinite gas streams flowing steadily parallel
to the X, axis. The upper stream consists of a cool combustible at
temperature 7 , density /4, , and velocity ¢¢, , while the ldwér stream
consists of hot products of combustion at temperature Tz s density
£y » and velocity «, . At X,=p , the two streams ﬁix, ‘and due
to diffusion of species and thermal conduction, a reaction is initiated,

releasing heat and forming products of combustion.

Flame

z, %, U - e
/
- 7
- T o e
< Sy A Mixing Zone s
7’
~ o P
E—" S \\\ ///
G, T, by ————-

Throughout the mixing region, the reaction rate is increasing until at
some distance downstream of the point X,=¢ , an equilibrium-is reached
Where the reaction rate has reached its final constant value, and thus a
flame has been established,

In establishing a model with which to study the mixing region
with reaction, the following assumptions are made:

1) The flow is two-dimensional, steady flow, with no external

forces,



2)

3)

1y

5)

6)
7)
8)

9)

13

The mixing region is a laminar mixing region in which the
usual boundary layer assumptions hold.

The pressure variation in the direction of flow is negligible,
This, coupled with the results of assumption (2), that the
lateral pressure variation is negligible, implies that the
pressure is constant throughout the mixing region.

The action rate is of first order occurring in a binary system
so that the general chemical reaction is [Cﬂz—*'b/3%7, where
[A] and [B] are the molar concentrations of the two com-
ponents, and 4 is the number of moles of B formed by
decomposition of one mole of A4 .

The specific heats at constant pressure of each of the two

components are approximately equal and constant, defined by

‘the ratio of the total heat release due to reaction, to the

temperature rise. This assumptioh, then, considers the com-
ponents to consist of gases with approximately the same heat
capacity so that a change in concentration has a negligible
effect on the heat capacity of a given mass of mixture,

The Prandtl number (’Q%fg) of the mixture is a -constant.
The Schmidt number (,4§§

(L3
The molecular weights of the two components are the same,

‘) of the mixture is a constant.

equal to the average actual molecular weight. Since the
pressure is assumed constant, this implies that /°c<$é~
The transport properties of each of the components are equal

and vary as though the molecules were Maxwellian (i.e.: The



1

molecules are assumed to be point centers of force repelling

proportionately to ,_y » where # 1is the distance between

molecules, and ¥ 1is the force index. For Maxwellian molecules,
V=g .) Thus 4« & 7° where $= % +}-}§/— so that

s x7 and @24 is a constant,

10) The Eucken correction for the coefficient of thermal conduction
holds for the mixture,

11) The diffusion coefficients do not vary appreciably with con-
centration, and the thermal diffusion is negligibly small.

12) The ratio of thermsl to kinetic energjr is so high as to make
viscous dissipation negligible,

13} The Arrhenius rate law holds for the rate at which chemical
reaction proceeds. Thus A =1z _’?7_: e Yot s where 77 is
the characteristic time of reaction, A, the activation
energy, A~ , the universal gas constaht, and #; , the
number of molecules per unit volume. The plus sign refers
to the products of reaction while the minus sign refers to
the combustible, No backward reaction is considered.

Both parts of assumption (11) arise from the i‘act_'bha‘b, using
Hirschfelder! s(lo) development, one considers only one term of the ex~-
pansion for the first approximation to the non-equilibrium distribution
" function. The use of this one term gives good approx:‘unétion to the trans-
port coefficients; to this order of approximation, moreover, the diffusion
coefficient is independent of the concentration and the thermal diffusion
coefficient is identically zero. If two terms of the expansion are used,

-
the dependence of ,0‘. Jj on concentration, and D, can be approximated.



15

That assumptions (5) through (10) are mutually consistent can be
shown by the following analysis. By assumption (6) 4’7«:’_4 is constant
and from (5), ¢, 1is constant. Therefore, .z¢ &« 2 ., However, by
assumption (10}, A= [C‘P'm/e * /LZJ‘/C’);%‘ s Where 47 is the molecular
weight Qf mixture at any temperature and mixture., Therefore, if 7
and A are the £ mole fraction and molecular weight respectively,

;;7;.-27/14/!2 . Now, by assumptions (5) and (8), C;W‘;e is constant
and A7 ‘is constant, so again_« & A,

Also, from assumption (7), /(/a D is constant. Now, from as-

ti (8) (9), P 2 d s T £ | >
— P e
sumptions and R > and _g o€ 7 . Therefore Aa 7 :u

From gas kinetic theory, however, one can show that for moleculés; which

behave as point centers of force, at constant pressure,(1l) A, e« 7
/

s0 that e« o« 7 =/ , or £ is constant.

Pl), TS Pz
In reality, then, assumptions (6) and (7) are the motivation for

assumptions (5), (8), (9) and (10). The motivation for assuming the
molecules to be Maxwellian so that JS=/ s will become apparent in

later transformations of the mixing region equations.,
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IV. CONSERVATION RELATIONS FOR COMBUSTION IN A LAMINAR
MIXING REGION: BINARY SYSTEM

While the simplification to the general equations due to most of
the assumptions are evident, the use of the boundary layer assumbtions in
a reacting gas flow should be clarified. With regard to the momentum
equations, it can be seen that since there are no new terms due to reaction,
the results of assuming that P#P), «,=0(1) , 2= 0(2"!) s

;?o = 0/1_—’-) R j}; = 0(3:’-) , and Z-Erz- 0/’75';) where d is of the order of

the thickness of the mixing region, [ is the distance downstream, and
Re is the Reynolds number, are exactly those results obtained in boundary
layer study. That is, the axial, or X, , momentum equation is simplified,
and the lateral, or /’ » momentum equation reduces to %” = O(f ') so that
P~ constant. This assumption then hinges on whether or got reaction
affects the pressure in the mixing zone., Since the change in- P through
a fully developed laminar flame is usually negligible, the chemically
induced change in P  throughout the mixing region where:the effects of .
reaction are even smaller, must be negligible.

In both the continuity and energy equations one ﬁakes the same
type of order of magnitude comparison usually made in boundar& layer
theory, and finds that the resulting equations differ from the familiar
equations of contimuity and energy by reaction terms which are explicitly
independent of the velocity or any derivatives. Thﬁs, as far as the
order of magnitude comparison is concerned, the combustion terms are not
considered. However, by assuming that the changes in concentration,

temperatures and velocity in the [, direction are negligible compared

to those in the J direction, one has tacitly assumed that the reaction
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induced changes in these variables, follow this same pattern. Since a
flame is usually much thinner than a mixing zone, this means that in
order tc_keep these assumptions valid in the whole region, the flame must
lie at a very small angle with respect to the X, or flow axis.. This
implies that. if &» 1is the flsme speed, “o/‘{p <</ in order to w}alidate
the boundary layer assumptions through a fully developed flame. However,
even if 4674% is not small compared to unity the assumptions hold through~
out most of the mixing region and break down only at the incipience of a
stabilized flame, since the effects of reaction are very small initially
but increase exponentially. Therefore, when these effects become large
enough to affect the assumptions, their rate of growth is so large that
the final equilibrium flame is reached very quickly. This will become
apparent.upon following the growth of the maximum temperature through the
mixing region, a result which is given in the solutions obtained for the
decomposition of azomethane. As will be seen in a later section, the
only result of increasing the initisl flow velocity to thg point where
4494&<</ is to allow computation of a flame speed, and thickness, results
which could be géihed by much simpler analyses.

The application of the assumptions to the general equations re-
sults.in a great simplification., Before the final equations are collected,
the transport and reaction rate terms can be developed to their final form,
After the boundary layer approximations have been employed, the transport
terms become:

V-P = 2wl | @)
y AN~% /)
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where _ a7
=02 m D I I
< mp st Y ‘J1§ﬁ #')

since P is constant, and __Zj-_-p s so that &

. ”:
=4 recmce; to V(;.y

and,

ag
V-AvT £ x;;;r (18)

For a binary system, equation (17) becomes particularly simple,
for in this case D =, . , the binary diffusion coefficient, and 2~

may be calculated as,

#=2 (m 3, g/g))
so that
s =g (£ 2 m g ) (19)

In order to transform this mass transport term into a function of

};; s the following identities may be employed;

V-
2+ e ARV )
/%
- A
£ (- m,) ~ 2%
/7%

since

K, A Hy =/
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Also, since

fs = /- L
Ve Vs

then
g('%) —- o)
% 7
so that
UV-rPa,l, ~-& / ﬂ,ﬁaagz éé_’z)
v %
= - g, rL, jf ) (20)
=-£/
S J/
where
g = L
/B
Since CP is assumed censtant, equation (18) becomes,
V-AVT 2= 2 (A er / (21)
.a; S 2% ”aﬂ, zZ o/
where

R o= Cau
2

The term which gives the energy addition due to diffusion in the

—

energy equation reduces to zero with the assumption that (.}: = (/'3 = c;,: (/‘,,

Thus,

Z@. [-; Zm (_; 7 =0

- —d

—

since _)_ 177.73: _4.’.—.-0 from contimuity of mass,

4
Finally, /73}{‘ » the rate at which mass of the < kind is

produced through reaction can be computed for component one, the combustible
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-4
mK, =-mn L € T
_A4
=-PK L @& ‘e

In terms of m H, , the heat addition due to combustion is

ijif, mA K, + mo A, K,

]

A a
= m, X, (’4/_’41) = m,H, AH,

where /3 X, =-#»7, X, , since the mass formed mst equal the mass consumed.

In this heat addition term, A4 H,z = 2: - ,Z; is defined as the negative

A

of enthalpy of reaction per gram of combustible. Although /{‘ is
T
defined as ,4{:‘ = (‘,:_ JdT + A,l/;‘, ( where A//; is the heat of
' 298./6 4
formation at 298.16° Kelvin so that 44, = [ (GG )dT + @ﬁg ~8Hy ) )
298,/

and although the C,:, are assumed as approximately constant and equal,
in order to account somewhat for the fact that the C@. "~ are slightly
different and dependent on temperature, an average 44#,, may be defined
as |

A, = Al (72) + 24, (7;)
2

(22)

where 7 and 7;} refer to initial temperature and adiabatic flame
temperature respectively. Therefore, if C‘,', s and -4} are known
analytically as functions of temperature, a better approximation than

the net heat of formation at 7 = 298,16°K can be computed.
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The application of all assumptions to the general equations, then,

givesthe following set of equations which hold in two-dimensional boundary

layer or laminar mixing flows with reaction. Since a binary system is

considered, one needs only the overall continuity and one separate species

equation to completely specify the conservation of mass.

J -
g, (puo) + <=;i(;/o(f’z,;) =0

pus K+ P IE — I
A iz’ ,7%

ﬂdoﬂ’*/%ﬂf:i/,ﬂégf
- v w (23)

e g7 # /% &7 = o //4_3__7') * Lz L € T

% % #EP%/ &
P = Constaent
= rk7T
= P/_/; 7

While the above equations are greatly simplified from the original

relations, they still refer to a compressible flow regime, and thus are

not easily solved. However, through the use of the so called Howarth(12)

or Dorodnitzyn(13) transformation, a new vertical scale is introduced

with which the equations are reduced to incompressible form: denote

FA
/- fﬂ’z | (24)
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where 2,  is the density of the combustible free stream. Thus intro-
ducing a new coordinate system X , 7 s Where Xx=J4%, , one can write

the variable transformation as followsj

i:ﬁ *':J_fi.
ok, o4, 2y
and _ (25)

where

2% - £)d
E / (£)% (26)
Also, introducing the usual serodynamic stream function, 7%/,;7

defined such that

PL, = 4‘}"2:7
2
rh =g 2¥ e
3*,
one finds that
Pl = PI¥
7
and d (28)

Finally, denoting by ¢&¢ , and 2# , the velocities in a corresponding

incompressible flow, where now

¥
%y
(29)
y=-2¥
oL

so that from equations (28),
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=t
(30)
- ,;5[ * 7 x/ 2 (2)% )
one can see that
loed Fud = ad F2S
ar, 34 Pre 3
and (31)
/44 % _f é( 22 = PV I
AT Sy

since by assumption(9), Sl = /f/é- » and ,__d; =M =)
%
Applying these transformations, equations (30) and (31), to the
equations (23), one obtains the corresponding set of equations in the

corresponding incompressible flow

léf‘é.#.:&
x 2%
2 -
Lo PP = K I - B
24 2; 6;2;: z
(32)

L TU 1+ U = VL
s 2

— - AL
UDT r I = X AT F A A E T
I e/ 8 35 gz

The simplification given by the use of the Howarth transformation
coupled with the assumption 24 = constant is now immediately apparent.
The momentum equation is now completely uncoupled from the energy and
'concentration relations and hence its solution demends only the consider-
ation of a pure mixing problem such as that solved by Lock‘ 1h) The
effects of temperature, through density, are brought in only upon trans-
forming the solution back to the compressible flow, and these ei‘fects.

serve only to change the vertical scale and leave the horizontal, or flow
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direction scale, unchanged. Also, in the incompressiole flow, the velocity

need be considered only insofar as the region under consideration lies
within the velocity mixing zone. After the flame propagates out of this
zone, the velocity is constant, & = &,

It is convenient to consider the equations with dependent variables
in dimensionless form. Since the flame finally propagatss into the upper
comoustible stream, at which time a fully developed laminar flame is
developed, the velocity ¢&£r , and the flame velocity will determine the
angle at which the flame lies with respect to the 4 axis. lHence &
is used as the characteristic velocity. The characteristic temperature

is chosen as 7 . 4 1is, of course, already dimensionless.

Denote:

7=« A= tx

Uy 4z
V=2 8 =~ &

“r Z

(33)

2 =7 gf = 7

% 7

= A

Since,whrough the assumptions on (n , 44, = (s 4 7 -7z ) s

where 7; is the adiabatic flame temperature, equations (32) become:
27 + QV = 0O
X a;
7.0_74’:*75245.—__13 3%//—-& e /0o
ox g LU, Fyr iy :
- 7 (3h)
Udg + V_d_‘)?_:_- v /g
Bx J; Zy 351
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The problem then consists of solving esquations (3lL) with the

boundary conditions:

H=p, E=), T=1 /‘7’0»’“0
J=rtao , a7 x

/(/*za/// y__d /140110
(;—--m,a//x

M= 970 y=za, all x

7 77

It should be noted that after the flame is fully developed and
propagating in the constant velocity combustible stream, the previoua
equations reduce to those for a one-dimensional flame if these relations
are written in terms of a length normal to the flame front. Thus, if
the front is plane, and one defines § as a length normal'to the front,
;_ﬂ the angle of the flame with respect to the X axis, and &, the

velocity normal to the front, then:

Fleme Front

g, = Tsing ~Vcospg = Sing — ¥ cosy

since « =&y in the upper stream.
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Also, starting at any point on the front slong which physical
variables are constant, and moving to some point A in the flame along
a line ;Az constant gives AS/ =J/n P Ax , Likewise, starting some-
where on the flame front and moving to P along a line X = constanf
gives A‘s/x = - cos P ag - In terms of the changes of any of the.physical

variables with respect to X , F and S , these equalities imply

that
i = S/ é_
IdX y a8
and oy 7 55
2 = cos :f éf—
3}: FS5E
Thus the concentration equation (33) for example, becomes:
| 2
(simg ~Veosp) i — ¥ cosipdh —m & 7
| 35 T Gl EX LR
or since

:_(Q_;:J/”%“VC&.A’;V J
]

| Y/
cosip O% -k, &V
< Se 4r 57 74y

However,_since the boundary layer assumptions are assumed to hold,
the flame must lie at a small angle with respect to the flow axis so that
cosiP =/,

Thus, the concentration and the energy equations may be written

'in terms of one independent variable as,

t, L = ¥ dW - A &%
a5 S /52 z (35)

A
Ly P = Y AP (B g, & %/
s B ds= z
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which are recognized as those relations usually employed for one dimen-
sional flame propagation at constant pressure,transformed into a correspond-

ing incompressible flow,



28
V. INITTAL DEVELOPLENT OF THE COMBUSTION ZONE

In view of the fact that the lower, hot stream is in general at
a temperature lower than the adiabatic flame temperature, the transport
phenomena of diffusion and heat conduction must govern the ignition and
initial reaction rate. Hence, there will be a region immediately after
mixing begins where the effects of reaction are small and the-éoncen-
tration and temperature field differ only slightly from those of a classi-
cal mixing problem. Figure 1 represents the velocity and temperature
profiles found in such a classical mixing problem. The initial profiles
are smoothed by the action of viscosity in the case of velocity‘and by
heat conduction in the case of temperature. Figure 2, then, exhibits
the expected changes in the temperature distribution when feaction takes
place. After proceeding a short distance downstream, the heat addition
is still small, and the dotted line in the second profile illﬁstrates the
change in temperature, At some pbint downstream, of course, the local
temperature exceeds the lower stream temperature so that a bulge forms,
shown by the solid.line in thé tgird profile, and finally, after a laminar
flame is developed, the local temperature is essentially at the adiabatic
flame temperature. The steep gradients associated with the laminar flame
are formed, as is shown by the dotted line in the third profile. For a
‘short distance downstream, however, the variations due to combustion may
be treated as a perturbation to the pure mixing problem.

Since in the pure mixing problem, it is possible to reduce the

conservation equations to total differential equations through the
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introduction of a wvariable

Y,
Lz )%y (36)

with the assumption that all dependent variables are functions only of
7 s this variable is used as one of the independent variables for the
perturbstion development. Thus, changing variables from X , f to

§s 4 5 onecan write

2 = 959 It
25 gx Fp

X X
With a similar relation for ai o If now, s=x | » one findss
2 -2 -2
ox 2x  2x Fp
2 = (%) " g
gy (rx 27 (37)
2% — 4&':92

a7* ’x JYpz
Also choosing a stream function in the usual manner, gives
17
| ¥=(rux)"10)
Then
o ap

7,:.:_9 ==/ (de)/z//' 77;}

so that the operator Ué # 77?_‘. becomes #'Q . £ .

and

X <X a;

These relations plus the transformations (37), identically satisfy

the overall continuity equation and transform the moment’uin, concentration,

and energy equations (3L) to;
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¥ » Lok ~F A = X & z ; (38)

£ .
% 3y 2 Iy Ix 47

A}

S b £ 3 - 3 =)t &
g X 47

where the equations have been rearranged slightly, and the subscript on
4 dropped. For the remainder of the text, then, A will refef to the
concentration of the combustible, |
Now, if the reaction were taking place at a temperature 7 -, and

a concentration A , the rate at which fuel would be consumed would be

K e ’4/29 . Since the Arrhenius factor has such a strong influence,
th: maximum rate takes place deep in the lower stream where the tempera-
ture is close to 7 . It, of course, cannot equal 7, exactly since

I'=7; at y=-ao where #=o . Thus, some measure of the con-
centration, A , at the maximum reaction rate must be fdund so that the
order of magnitude of the heat release may be calculated. If one considers
the initial mixing to be practically that of a classical :mi.xing'problem, in
which the variables are functions of 7 alone, it follows that the

maximum reaction rate occurs when

A fe"%/”/=o

d;?’

Thus

2 ﬂe‘%/z‘#_/g_a_é e'%/"’;/za
o Z w2 4
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and
A= - 5—;—74_,7 Z <
G/ 2

However, an approximate value for the term in parenthesis may be
found by considering the case where the Schmidt number and Prandtl number
are equal. Then, in the same ; increment, 4 goes from / to 4«

while 27 goes from / to 2¢ Hence

ot - /-
> S = £
a—/— / ﬂ
4
Finally, accounting for the fact that at the maximum reaction
rate, 7ax 7% » K=o , one may calculate the order of 4 at the

maximim reaction rate as

P - 2
e rote = /,L; %//,zg
¢ T K=o

—
P—

2 | (39)

L
%~/ 2

and the maximum feaction rate is then approximately

2 & & &Z4

T (H-1)%
with the maximum heat release rate being proportional to this rate.
‘Since the maximum rate occurs far down in the hot stream where « % &,
then the time taken to go a distance X downstream in this region will
be of the order of Zé_:-r where & is the initial velocity of the hot

lower stream. Hence, the heat released in a distance X downstream will

be proportional to
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-%
& £ e /4
Uy (7,2—1)4
From the foregoing computations, then, it seems logical to define

a chemical characteristic length
2£
L= z{,r/é-/)a% o*% (40)
‘4

which can be used as a measure of the heat release in the initial mixing

region. Define }'E 12,‘- + Then the energy and concentration equations

may be written in the dimensionless forms,

4
L 2K r LS (24-1) % jze'%(? %)
-"c aze z 3? f zZ* ,
(L1)
-zZ[_/—.z) .
s 2 +fIP - _,f = (G-1)l4-))k fx € "7 %
R 3?3 -Za"? 4‘

Now, for f = .el <</ or, the distance downstream very small
compared to the characteristic chemical length, the appropriate expressions

for # and 27 are

= K0) + fr7G) ¢ fea®y) s
(L2)
G = F2Yy) + f I fETUY) P
Substitution of the relations (L2) into equations (ll) givesthen, the
zero'th, first, second, etc. order equations according to a classical
,perturbation calculation, The zero'th order equatiéns, of course, reduce
to the pure mixing equations, since the X dependence becomes un-

necessary. Hence, the zero'th order equations are,
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/ ay / =0
df: ‘? d? (43)
L gB? £ g _
F oyt < %7” B

while the first and second order are,
' 2

y /-

_‘Lo/‘/f” +fd/_‘-’"” //i;(uzj/g_/)é Az(o)e e y
z < ¢

77 4 (Lk)

‘Zg /0) -3
L LI £ SV I = A1) f-1) S 4 € CF
7 Tpz < oy %

and
A

L C_/___ 7" @ _2 FH J/z’/j/,g@e 4/4%/ zV)

£ oy 7
/((/
/ ey y@/ y@//

L L + LI 2t I = -t (o) /za-,// pog R F)  U5)

r a/f 7

ft(’ » 2% o (
[,f-(o) 2 ﬂ/j

The boundary conditions on the zeroth order functions are now,

A¥ =y , Z¥=/

27:#&0

Y = Y- O /

@)
“%=g , =2 z

ﬂé}z iyéjz o /
27 7Y

y=-
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while all perturbations and their derivatives vanish at /= Za@ ., It
should be noted that it is assumed that the reaction is nonexistent at
g=+a O in other words at 7= 7r . 8ince the exponential vari-
ation of the rate with temperature does not predict this zero value, it
mast be assumed that although the combustible enters the mixing field with
a temperature 7, , at which there would be a small rate, the effects
are negligible so that there is effectively no reaction at femperature
7 . This cold boundary condition is discussed by von Karman in refer-

ence l.

It is evident that while the Blasius equation (38) and equations
(L3), (hb), and (45) have been simplified to the extent that they are now
total differential equations, it is not possible to find a general solution.
However, it is sufficient to solve the special case of velocities equal
(27=f01 with an added calculation showing the results of changing the
velocity ratie. |

If, then, the velocities of the two streams are supposed equal,
it is not necessary to consider the momentum equation since no shear field
exists in the inéompressible flow field. Moreover, the streamlines are
lines f—.—-_ constant, so that / = 7 » where the zero streamliné is
suppdsed as the line d7era s satisfies the conditions on # . The
zero'th order equations are then very simple to integrate and give the

‘following solutions:

Z <

/((”.-:3/_//7‘-6"/ /;«__;))

I%= hrt - B erf(fF 7/
4
(46)
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5

~ 24
where errF(s) = r—f—. € ot . These are well known solutions of the
7%
heat conduction and diffusion equations.
Considering, next, the first order energy eguation, it is first,

rewritten as

% ~ £ya d,y(/ N LAY /4-//@-/253 RY) (u7)

where

—_ A —/'/—-Z
Gty) = £ 6% (%) )

The homogeneocus equation has two linearly independent solutions(lg)

which may be written in the form:

Z4,() ;/_/Zescf +2fr(F + *;’)(er/(}g_z‘”_/)

(L9)
K ) =fFp e vaty (3 20°)ert(fEp) + 1)
Also, defining a Green's function, C;{%J?}ga) s such that
@ .
?“l) = 73/4-///4—//55 / Gy, 2 )RG) o5
_ 2 |
and substituting into equation (47), one obtains,
/y _-
W& AE - M/m/a/f RG)
50 that
G + BpdG-ph = -3(y-3) (50)
Y o Z 72{ 6 7-t |
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vhere J(7-7 ) is the usual delta function defined such that

S(r-%)=0 + 7#%

ffl' =0 ? ?
/J(q— )d? / (5’ aréitrary )

‘Thus & must satisfy the boundary conditions on 227 in 2

and a jump condition in slope, for, integrating (50) between F-& and

7 +& where <</,

Fre tre
/3__6 +* LR éf—-;?&"//d? = -/f(g-f)a’?

(o & 7
- 7€
and thus:
?+: Sre Fre yre
?6/ "'f /Golf"‘/‘r(?'?/O?
7

45
However, 6 and thus /¢a} are by necess:tty continuous, so

that 28 &y o
PrE
d? 4
-

Thus if

G(p5:8)= &ln52) . 4%

the jump condition becomes,

%/ - .o.’f/ ==/ - (51)
Y

7/

and the boundary conditions on ¢ , and G, are now; G >0 os p—-ra

with
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and §G,—roasyp—>-.
Since for y=45 , equation (50) is homogeneous, one can separate
variables. Farther, in view of the boundary conditions which G, 5 and

G, must satisfy, these functions may be written as

G =4 (5) &)
G =-4G)X.(p)

where the minus sign is used to account for the fact that }{, is always

(52)

negative, ,z; s always positive. This then makes ¢ inherently posi-
tive, as will be seen later.

The functions ,.!j [?‘} and 4(2‘) mst be evaluated by the jump
condition and the contimuity of § at 2 . |
Thus,

-4 (5) 4% 'hé(f/c/_»?z/ = -/
a/? — gy /i

. ? 4

and : ' (53)
LG)H G)= LG G)

or writing <&/ = a/é, , ete.,
Ly i oy

But

-2t //;4 (= 3)-)- 2 (ot )1); /
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b 7 AR e AL
= 4 2 e"’}’;z
K. X

so that
A= Xg)efT
727

and - (5L)
£5) - X/t |
7 /27

from equation (53).

The solution for 294/ can be written now as;

S/ = B (f-)(A-) / G525, 2) F4)7g
2 % ) :
2 e,
- -y/E (et / zfzg/zz:@/ef’ Rg) 5
4 |

+% /d/ Z(3) eFt ‘Rt ofg// (55)
? |
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where since }Z () is always <o , and /K,{g} always >¢ ,
6>0  sand %o
Likewise, the solution for &% can be written immediately

since the equation is similar to the equation just solved; hence.

@
#%)=-% (%4 _//5'? / 6(3,4:5) RG)o7 (56)
4
-

where, as indicated, the Schmidt number replaces the Prandti number in
the Green's function,

" This form is very suitable for numerical calculation by Simpson's
rule of numerical integration since the Green's function and the rest of
the integrand are easily computed (Appendix C). Figure 3 shows the re-
sults of one such computation for the temperature profiles. In this
figure f=o© corresponds to the classical mixing problem solution,
since in this case z7=rz¢QQ%j « The physical constants used are ap-
proximately those of the combustible azomethane,(lé) which foilows a
first order rate law in its decomposition. Calculations for the physical
parameters are given in Appendix B. |

Figure 3-indicates that the maximum perturbation:occurs well be-
low the center line of the two streams, showing the preponderant effect
of thé Arrhenius factor in the reaction rate. It shows, also, that very
early, a bulge is formed in the temperature profile, when the tempera—
‘ture exceseds 7z , the lower stream temperature. This.bulge grows and
continues to rise toward the combustible stream, due to the effect of
the concentration on the reaction rate; the maximum rate occurs not at
the point of maximum temperature, but a little above it where the con-—

centration of combustible is greater.
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Since, according to the first perturbation, the temperature in-
creases with X , and the bulge rises toward the combustible stream,
the tendency is for the initial reaction to develop into a flame; with
no retardation or blowoff possible. The principal question is then wha‘b
length of time is taken, or more practically, how great a diétanée down-
sﬁream is traversed before; combustion is assured? The simplest signifi-
cant lengih to calculate is that distance which is traver_sea dovnstream
before a bulge in the temperature profile first occurs. This distance
may be calculated, using only the zero'th and first order functions,
since at the bulge in the temperature profile, |

" @) 7 R
g_?é’—-gf +f§7’f =0 6D

This expression can be solved for Jf' as a functién of 7 s
giving the distance' downstream to a bulge, for any given 7 . Since
one wishes to find the minimom distance it is necessary to ’brével vefore
a bulge occurs, one must calculate the minimum X wi‘th' respect to r -
This minimum X 1s defined as the detachment distance, é.nd denoted by

X;

; » or in dimensionless notation, _,{ » Likewise, the p at which

this minimum occurs is denoted by 2. . Thus, to calculate. ;‘ y
.Q./.Jf = __/. //Mg_/_ﬂ— d:,./w.a_/_&ay/= o
dp )  [AF¥)* ([ o2 dp oy [
vh, (& ?
but, since o/¥¥ is certainly finite over the entire region, the

bracketed terms must disappear, and employing the equation for iﬂ‘"(f}

(L3), it is seen that
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gy L 2
However, since ¢#%=p occurs only at g=rta where &% o
. a’? =44
and thus j'_?éﬂ =g for all jf‘ » the interesting solution occurs when
the bracketed terms disappear. Comparison of these terms with equation

(LL) gives a simple algebraic relation,

Pty (4-)-1% (58)

which has a solution VA .
(4

Finally, fi is computed from equation (57)

f=- %‘—”7@@) (59)
df z

While it is not possible to solve (58) and (59) exactly, due to
the integral form of the solution for 22% , it is possible .to calcu-
late ?‘ and Jf; . if one makes use of the fact that the bulge in the
‘tempera’c.ure profile first occurs for 7< <o© . This can be seen in
figure 3 where the first bulge shown occurs at 7 = -4 .. This sugasests
using asymptotic forms to calculate the detachment distance, in view of
the fact that, in figure 3, as f gets smaller, /4/ at the bulge
becomes larger. Further, all the functions involved are composed of
exponential and error functions which converge very rapidly.

The necessary functions are easily expanded for 7 large and

negative to,
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B2

i
l,[?} "Z/—(/*P?)-l—p Y% 43 (/ 4'.,/_‘;-2 ’ )
Ko)~-2 80 (- v )
4 f’/z 97 7+
) e -Fs (/_ PR )
“wiy

mE 7 R ()
A -#7
4G H) sty s )
% rgr 7 58
_.‘g'fz ‘-—28(%*&)
A -1 7 /L ¢ - !é élg/_‘_/zﬁ—'—— ’
Rlp) ~ =L %7 Vi) 7 R
p? 5ot
i __d-— ”— /= 12/L +~L /
A7 77 Ceryipe LGy
-
@
By — ¢ 12868 hsn g
/%’/ye Rlp)dy == € +LELS TERT
? |
for EB#5,
= C,) -

e (54°-2 )

ﬁrﬁ.s

S



where A
C=- /4 /f/e;'? ‘0?{7)0/7-

-
and : {61)

‘///(?/E‘?ﬁ(f)a/; + 2 (P?o _Z_ )
and the error function expan31on

Jmerfx o s &S sets r 2 -]
x| exr (axy3 /

has been used. In order to calculate (@ s it was necessary only to
use calculations of the integral made for the temperature profiles.
{Appendix C) To calculate C”(z ) it would be necessary to compute
the whole integralfor a few large and negative values of f until it
was seen.that the expansion gave the accuracy desired.
The use of these expansions (equations 60) then gives an asymptotic

expansion for 29¢

ﬁ(/f)ﬂa - L///—/)_, /l-_/;’?)/ /z//f_l// +)€"?

22 72{5‘-”/«:
£y, Pe4/‘ £ 4] (62)
FeT g e ")

Finally, for this case of velocities equal, equation (58) reduces to

ﬂ’%;: éﬁ—//éf-dg ®°G) (63)

since #'=A =/ , so that substitution of the expansions for 2z9%

(62), and (R , (60), into equation (63), gives
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aéf:z{fw G e
“-x) ~2l5-R) ), o
//P/;‘* ye- po] )/ =/ fz; ' (61y)

a relation which may be solved by trial and error for Z e It might
be remarked that, using the physical constants for azomethane, as before,

the value of VA obtained was approximately 6, so that the asymptotic

(4

expansion was justified. (Appendix C)

In order to solve for f. , then, d#¥” must be calculated.

a7
From equation (55),
o [F 1) (1) /a'}{ ;z/,/e’z@/,/a, ‘
=7 e
d///;// EP ) o ( o (
+dH [ H(G)eTé RE) Iy 65)

and, again, using the asymptotic expansions, (60) in the: above relation,

and calculating 5_1:“" from equation (L6), one can compute ]‘ from
4
equation (59) as;

"%‘P)
=B #° /- C-2267 ")
) gﬁﬁ‘//Pf‘/[ Zlsn) /
o))
- <
g5 (4

it ‘,H))/ for R#4 (6

In order to find the variation of the detachment distance with

7: 5 it is first necessary to find how f and JE vary with 7

-
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The variation in Z due to changes in the lower stream temperature
as well as the activation energy and the Schmidt and Prandtl numbers can
be investigated, using equation (6L). Changing the variahle to Z= /4?; y

and solving for C? s one obtains the following relation:

—=ﬁ-—z£z(%_')/1 + 1 [223-32 + 1 (__4_ + +3(L +7_¢2]I (6ha)
P G )0 @ @ R

where, also,

_ ® ) H
E-/fre=- /zf/z/ez‘w/,gz)e F5) g

Also, 2 may be written as
)

£ _ )= /-.L) L(r+erfz)
200 % /—[/-é)[u-erfz)

but since the integrand reaches a maximum when Z<<go , this ex-
pression may be approximated in the integral by 2% ./ =~ (£ ){/f-erf?)
' e %2
so that @0 i ) ‘
— z _Pef1~- L Wtrerfz
@2—/}/,6?)65/{‘7/32)6 &(’5)[“—_.2 dz
2 ,
-
Hence, the parameters in equation (6lia) are 3¢ and _’«5'//__4 /
B Z 'z
Calculations were made finding the values of 7/_5’; y.  for
i
several values of the parameters. 'The resulting curves are presented
in figure li and indicate that there is very little variation in K,
[
due to changes in activation energy or lower stream temperatures. Thus,
. . . . . . 2% _ 4
since g.w 34/5_ and ¢ is almost invariant with 'z?: {/ Z, ) ’
4 varies as )",’/f- or as [(4-/) e”"/vgj'/‘. Therefore, as either A

decreases or 7z increases Z decreases, as one would expect from

physical considerations.
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Se
R

as the diffusion zone gets smaller relative to the thermal mixing zone,

Figure l also shows that as increases, or in other words,

@ decreases, Since the caleculations for %? =130 gave values of
' (d

Z of about 2.4, it is evident that for larger values of é? s> more
terms of the asymptotic expansion might have to be used to keep the same
accuracy.

Next, equation (66) indicates that .ﬁ is proportional to T.?

4
through 2£* . Finally, since A= J0 = J. a,r(zz-/)% Rz A
¢4
%

then Jf ~ (24_4)69”%42 80 that Ay essentially depends exponentially
on 7z . Figure 5 gives the variation of 4; with 7z , for the
combustible azomethane, using the same values for the physical'constants
as uéed for the temperature profiles. It is seen from figure i that the
value of /g increases enormously as the hot stream temperature de-~
creases. Therefore it is apparent that although this process of com-
bustion in a laminar mixing region shows no distinct blowoff,.the detach~
ment distance becomes so great for low hot stream tempefatures that it
exceeds the physical dimehsions of any apparaﬁus. Thus, the limitation
present in making it impossible to calculate any blowoff:velocity seems
to‘be the fact that streams of semi infinite extent were considered,
rather than the streams of finite extent which would result from using
any practical apparatus.

Using the results of the foregoing analysis; it is now possible
to estimate the effects of a velocity difference between the two streams

on the detachment distance. The Blasius function must be known, of

course, to solve the equations even for A; .« However, since it is
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now established that the first bulge in the temperature profile occurs
at an 7<<0 it is possible to estimate the Blasius function and its
derivative using asymptotic representations.

According to Lock,(]'?) the Blasius function for a laminar mixing
region may be represented in the following manner, for 7 large and

negative, and 4 #0 ;

_z 2
frdy +B+ BE (1-3 rs w)-g B

24 2Ez 477 & guzs
3 5 (67)
-22 1}
flad + 5’,,4’/‘@2(/—__4_ ,«...}_E’_’g_zz,,,‘. .
x Z2% 4 =9

where Z = -2 _414/ > B) and B8 and B, are constants,
Z 7 2—

However, for 7 very large and negative / may be approxi-
mated by the first two linear terms, and /" by the constant to
very good accuracy. This was checked numerically, using the results of
Lock's work for / = 4.5 . That more terms would be superfluous in
order to calculate }' s can also be seen by noting that in the energy

¢ . ‘ :
equation, # is multiplied by 5{2"’ sand £’ by 2% , both
-2
4

of which are of order & . Thus, including the third term in #

or the second in / ’ would merely add terms of order /e‘qz y:z .
Since' only terms of the first power of this exponential are retained,
the added terms are unnecessary to this approximation.

The significance of the constant B must stili be explained,
since it is, in fact, the only difference between the value of # for
velocities different and velocities equal. The stream function is never

known uniquely, but only to within an arbitrary constant. This constant
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is seb by arbitrarily giving one streamline a numerical value. In the
present case defining the dividing streamline as the zero'th streamline
sets the constant for each velocity ratio. Also, far from the center-
line, # must vary as %  since there the stream is undisturbed.

Hence, B is simply the difference between 4 and Ay for -7 large

and negative.

Mo (f-4y) = B (63)

J~ a0

From the above discussion, it is apparent that B not only depends on
A4 s the velocity ratio, but also can be determined only by finding the
complete solution te the momentum equation.

In order to compute _}" for different values of 4 , then,

it is convenient to define a new variable
Y
r"=a%(y+2) | (69)

In terms of 4* , then, £ w,/j“‘?"‘ » and for » large and

negative, the zero!'th order equations (43) become

AP, AN Al 7 A
Ky
» d?#" 4 a/7:v (70)

L M}"".Z*M)::O
J)?a/?.yz 4 a’f"‘

'so that the asymptotic solutions for A% and 29® for velocities dif-
ferent are exactly the solutions given in equations (L6) with #*

L - L
replacing p . Therefore GP(?).—: ,f(‘”e'zg e zg) has the same

functional form with #* replacing » and can be written @(?*) .
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Hence, the energy equation (4h) can be written in terms of s* for

4 large and negative, in the following way;

2,50/ »* - *

since _,4 cancels throughout the equation.

Again, it can be seen that equation (71) is exactly the equation
for velocities equal with 7% replacing 7 - Therefore, the asymp-
totic solution before derived is valid with the notation %= /’/gﬂ .
lioreover

28 - £%IY - 4% (dIVr foP? )=
4 spx op* ap*

and

Y

4 / = &t / 2% o A% / ﬁ%’¢/ﬂf-gjﬂ¢%7=o
o Ry Gy R

A

so that equations (58) and (59), defining 4, and }: respectively

£

remain unchanged in terms of ¢,"" and the _g' agsociated with dif-
[4 .
ferent velocities,

Thus, si-ncé £’ 4 , equation (58) may be written as follows:
Z%p+) = /Zf-/)/»f-d;é R+ | (72)

This relation defines 7"‘ +« Since the expansions for /%*j 3
'4 :
"and GP/?#) are the game as those for yw/?j » and Rfp) it is

evident that

2"(4) =y | | (73)
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where Z (4_-_-/} refers to that value derived for velocities equal,

Substituting for £ *
(4

1) =4, p(4=)-Z (7h)

L
A%l

which can be used to calculate ? for a given velocity ratio to check
£

on the validity of the asymptotic solutions.

L) ( a’?*U)? )

i ¥ = = ¢ | “
and since Z “ ) = z (4=1) , and ¥ ‘)/?.rj and 22 /(?.p) have the same
functional form as 2#%%) and 2%)p) , it is evident that,

fla)=}(2-)

where, again, f /4:/} refers to the _;"’ calculated for velocities
. £

Finally, since

equal.
Therefore, since }" (4) is independent of the velocity ratio,

X , the detachment distance, is proportional to <z , the velocity
of the lower stream, as indicated by the definition of f‘. « Bince
the expansion used for # is not valid for A=¢ , this proportion-
ality does not necessarily hold to the limit 4z =2 . Mofeover s
since Z () depends on B and 4 , the constant & must be
.calculated for any given /4 to assure the fact that z (2) is large
enough to justify the asymptotic solutions. From Lock's computations B
was found for the velocity ratic ./ = d.s0/ » to be ~o2.375 , which
then gives a value for Z (4) of approximately -/ , a value which

certainly justifies the solutions found. Moreover, since &=¢ for
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A=/ , it seems logical to suppose that A; is proportional to Wz
:t‘or any velocity ratio from =/ io at least /4 =25 ., Vhile it is
. probable that the range of validity extends much closer to /=0 , no
other values of & were calculated to prove this fact.

That X s dependence on & is physically plausiblé is seen
by a coﬁsideration of the physical processes taking place. Since the
lower stream is the hotter stream, the first noticeable rea;':tidn takes
place deep in it, the extent depending on the diffusion of combustible,
so that the velocity at which this initially reacting material is being
carried downstream is about &z . Since the diffusion velocity and
reaction rate remain constant if only 45 is changed, it follqws that
a; given constant time interval exists, then, during which the combustible
has been in a region of high temperature, producing a given quéntity of
heat,_ and therefore that as &z decreases, the distance traveled in
this constant time decreases, In particular, the given quantity of heat
chosen is that amount necessary to produce the first bulge in the tempera-—

ture profile.



VI. DEVELOPMENT OF THE LAMINAR FLAME

The perturbation scheme discussed in the previous section is, of
course, inappropriate for following the transition to a laminar flame
front. However, knowing what happens in the initial region allows one to
use an approximate analysis to complete the solution through a laminar
flame front. The technigue which allows the best use of the iﬁformation
accurmlated so far is the integral method introduced by von Kdrmdn into
the study of laminar and turbulent boundary layers. In this method, the
differential equations are integrated across the streams utiiizing a
descriptive knowledge of the distribution of velocity, temperaturs, and
fuel concentration. The resulting ordinary differential equations then
describe the manner in which the geometric widths of assumed profiles
vary along the direction of flow. Extension of the Karmah integral
method to the present problem simply involves adding the integrated
species conssrvation equation to the usual momentum and energy conserva-
tion relations.

Since thé éccuracy of the solution depends to a large extent on
the profiles assumed for the unknown functions, it is necessary to choose
prbfiles which exhibit the essential physical characteristics. While it
is possible to choose many functions which would satisfy the boundary
‘conditions, it was shown by Lock,(ls) that for the case of pure incom-
pressible mixing sinusoidal profiles gave good approximation to both
the velocity and the velocity gradient at the centerline. Since in the
present analysis, after the Howarth transformation, the momentum equation

is exactly that for an incompressible pure mixing problem, the same



profiles and results may be used. Finally, since the sinusoidal profiles
give such good results for the velocity profiles, it may be expected that
this typg of profile is adequate to describe the variation of both the
temperature, and combustible concentration.

The momentum equation is the easiest eguation to solfe since it
is independent of composition or temperature after the Howarth transfor-
mation. The two fluid streams are initially separate, and it is convenient
to separate the integration into two separate parts. The streamline whieh
separates the flows is not straight, but deflects slightly. This de-
flection is negligibly small, however, and it will be assumed_that the
zero streamline falls along the line éy==0 . The velocity-‘QQ is
constant along this streamline.

Supposing ;ﬁ:{&&)to be the extent to which the velocity mixing
region extends into the cool stream, and ¢ =-d.(¥) to be the extent
into the "lower®, hot stream, and integrating the.momentum and continuity

wmﬁm(%)MtMumﬂmmmﬂw)mewmmamros;éé&),
& (x)

7)o .__.
U(r- )/ 7 i/ ] (75)
7=
and for -J;(r) cyc0 ,
o
l4-7)d =—_Z o7
o’A’ / )/ c 5/ (76)
5 4) /-
where
27 _ 27/ —o ; )=/, Pf)=4
Jf}: 77:‘-:1'

The results of these two relations must match at the dividing

line so that the viscous shear be contimucus. Since all fluid properties
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are continuous at this point,

$é=o+= "%Zw- .(77)

The energy relations may be handled in exactly the same way. How-
ever, as seen in the perturbation analyses, the temperature profiles have
a different character accordingly as the value of X is less than or
greater than 1‘ where a temperature maximum first occurs; It is
necessary, then, to find the conditions necessary to compute A; for
this approximate integral method. The case discussed first is the only
one which can be solved without recourse to information giveri_by the
perturbation computation, a point which will become apparent aftgr the
following discussion.,

]jenoting' by y;— -&(x) and 4=-4, r) the limifs in the lower
stream of the temperature and diffusion mixing regions respectively, one
can see that for R < §. , in the absence of reaction, '@{*)5‘42 x) s
that is, the temperature mixing region is larger than the diffusion region.
Moreover, as the reaction takes place only in the region f> - A, (¥)
the result is to-decrease the values of both @G;4r) and: d4,¢¥) . This
decrease takes place because as the reaction proceeds, heat is édded,
raisiﬁg temperatures initially below 7, , and decreasing & /x)
along which 7= 7, ) and combustible is used up, decreasing 4, ¢¥) along

which =0 .

ro reactiar
~ \%\
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In order for a combustion wave to develop, the temperature of the
combustible must reach and then exceed 7, until the adiabatic flame
temperatu_re is reached. Thus, the lower thermal boundary must decrease
in value faster than that of the diffusion layer, and at some point then,

A (x) = 4,(X) - This point corresponds to X=J4; , since downstream of
this point, 7 exceeds 7, in some region of the combustible so that
a "bulge™ in the temperature profile occurs, along with a bifurbcation in

A (x) . The lower branch is the more important line, marking the limit

of the thermal layer.

ro reocction

For X > X; » @ temperature profile with a max:.mu:m must be em-
ployed. While the line of maximum temperature does not coincide exactly
with =~ 4,(x) , the end of reaction, it must lie verj close to it
because of the overwhelming effect of the exponential on the reaction
rate and hence the heat release., Thus, there should be little error in
‘supposing the temperature maximum to occur at = -4 {¥) , so that

28/ - p « Although this dces give some difficulty of solution

27 ;_—- dr
for X glightly greater than X,

; s Wwhere Y/ A -4, / is small compared

to /4./ , this difficulty can be resolved, as will be shown later.

It is convenient to make a division between the "upper" and "lower"
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streams, when evaluating the energy and combustible concentration relations,
along a line y:p}, (¥) above which the reaction is negligible due to the
relatively low temperature. This may be taken as the isotherm with a
temperature 2¥= 2 corresponding to that of the dividing streamline

;/ =0 in the absence of chemical reaction,if 7; , the teﬁpera—
ture along this dividing streamline, is not so high that an appreciable
addition to the integral of the reaction rate would be gainéd by con~
tinuing the integral into the upper stream. Since 7, depends on 7z
and 7 , this means that the 24 isotherm can be used only if 7,
is not too great. In the "™upper" region, one integration suffices, while
in the "lower" region two integrétions must be performed, for A’?.J;.

Denoting by ;3’: A (¥} the extent of the "upper" temperature

region, and integrating the energy equation, B4), for g, v/ % 7 £A.(r),

one finds the following relation:
Aa) ()
/ - f d - y‘/ _4 Fa’ - g’_y
fr 7e // /-‘ )d,r 7 Eﬁ, 72 (78)
%) e Aad

while for =<4, and -4,¢) =4 <m0/,

Aa) VA7 : _
o [Tlf-F)cy - (- Ty ==¥ ¥/ .
oy 2 j/ /.z )o-%/: / 2_;2 %_.
8, (o) o 7
aa)
—Q’Z:’//*edz/"j} (79)
4%2‘-zafz2

since

Gy, 7

7/ - _4,&7 =0 ; FA)=1, )= of , ond Hog ).
w ] -
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Next, for X >4, and ."Az(*) £5 £8.(x)

A (x) - 4,(x) &)

gl/ﬁﬂo’ rzZ(X)g,’/Ua’ - [Py =¥ %/ »
ax 7 J 25 £y
< 4 *y v 7 “pa 5 iy (80)
/% 0r) '
-24
+ (41 Jxe /ﬁd
“IT "A;(X)

where

zyﬂdz)r-ﬁ”ﬁ),apa’ 2F =0

J% /:'-d
while for — g /) =4 & -4;0x),
- dyLx) -4, )
%/y{é-ﬁji/ # (4&)—4)$/y7=0 (81)
AL o '

since

j&_ﬂ .:-.5_7? =0 ,ond Flg)= 24 .
//= -4, / =y .
The matching condition at /@(,y) expresses the physical fact

that the heat conduction is contimuous across Aux) 5 that is

27 = 7 (32)
07; e J/(q’_

Integration of the combustible concentration equation (3L) presents
‘the additional complication that the concentration - A,’Z&, ) along the line
A&) is not constant., Integration above the line A&.dr) , with 4,0
representing the extent of the diffusion region in the "upper" region,

gives,
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4,00 4 (x)

a 7(/%)? * (/—#44,))0%/07=_£ 5’_"? (83)

@ ég s

while integration below the line /L) gives,

%0 acr) Al

Jd Joxd, - o o _ v ok ] _ F%/
g;/ y xz/.)&_/r?_&;:;_/ {é_/ze oy (8L)

=4, ¥ o A% ~4,0)

where
2 7% /
/el -Jg ¢
The contimuity of diffusive transport of combustible matter at

K,)=/,ond Kfa,)=0.

A&) gives the matching relation

oK [/ = X
ek [ = & 8
/"5 (85)

Equa;cions (75) through (85), then, must be solved with aésumed
profiles for £ , & , and & , to find the variation of & , &, ,
B s 4, s Ay s K@) s By s & 5 &, and Z , the value of
U along 7=9 in the two regions X 2 A; . However, the energy
equation has been integrated only when the Schmidt number:' exceeds the
Prandtl number. Although this case is the one most usually eﬁcountered,
it is conceivable that the other two cases, £ =5 and B >S5,
could arise. It is evident that for either of the latter cases A
never crosses 4, after the point X =0 so0 that.the method outlined
cannot be used. Thus for 2> S, , 4, > g, , in the absence of re-
action., This implies that there is some combﬁstible at a temperature 7,

so that any heat addition will cause the temperature to rise above 7 ,
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giving a "bulge", or maximum in the profile, and an immediate bifurcation

in gu) .

arith reaction

=4,
/= #e oty § AW

For the case 2= S , 4,=, 1in the absence of reaction
so that some combustible is at a temperature as close as desired to 7z .
Any reaction would make 4, decrease and 4, increase, then, with,

again an immediate bifurcation of & /&) .

&rth regction =

S 4T A=), Ho recction

This can be seen by considering again the case of R < 4  where, at
some point X= A; and 4,=4, .+ As 7  beconmes éloser and closer
to §, the initial difference between A¢x)  and 4, (X) becomes
smaller and smaller so that if 7y stays constant, A; decréases. At
the llmlt =35 » A =0 . This will be seen in the later analytic
developments, also.

The preceding discussion then indicates that some other criteria
muist be used for K¥=4; when 2 =& . A possible substitute is as
follows. In the absence of reaction, & (¥ o< so that the

value of 7 associated with &, /v) is also a constant,‘ say 72 o

Also, it can be seen from a simple calculation that this 71 - is



approximately -3 for the case 29, = 34 calculated in the pertur-
bation analysis where Z =- 45 . Thus, the first bulge in temperature
profile actually occurs at such a large negative value of V4 that it is
completely outside the range covered by the integral technique. Hence‘, what
one is actually computing in the integral technique is the first iooint at
which a "bulge", or maximum occurs, within the range of 7 covered vby the
integral technique. Therefore, it seems logicai to suppose .that one could
define an JX; within the limits of accuracy of the integral technique by
computing the 71 associated with the simpie mixing problem and calculate
a f‘ using yl instead of e + At this point then, oﬁg must“ also
assume that 7=7 and A4,(x) = 4 (y) where 4, cx) is that'jvalﬁe for
the case of no reaction. While the values of » and 4 would be :m
error, being caleculated from a simple mixing problem, the efi'ofwould be
in_sigr;ificant in view of the fact that the heat addition up to the point
X=X is small, and that in the integral technique one is acﬁually Tew-
" placing infinite limits with finite limits to gain sim;ﬁlicity of solution.
A comparison of the two methods of computing A when /',’ < S5 ~ which

will be given lat;er; in the numerical computations, showed very good results.

The profiles assumed for r s # and # are as follows:

7= 7+ G-a) sinfrd) X ERAZS
ZA" .

(86)
=z + Ud-Z) .r;»(:z;_r _,ff) -~ (¥) £ 20
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# o= K@) * (K@) sin(E L), goyeysac
< a,-8,
(87)
= K48%) — K(&) Sin (_z s | - 4,60 % g2 guc)
< ~4; 4, )
D= 28 + (I- 22) s,n(?n 160 , putn ey & pln) 2
y=yx,  (88)
- Bt Gf-#)sm [T _?_29_) ) 4, 0) "jéﬁ.é\')/ |
< B ' .
B= 2L+ (-8) s T L) Lalr)zy « Blr)
2 A/
(89)

= P /,,,-24)3/)1 T 46 1"&4({) kj 3,00 X2 A;
2 -G |

= Untd, + Y C‘as(ﬂ' ?*ﬁa),jd}dl’)*g = -~A,)
< Z ﬂ.;‘ﬁ-f

Substitution of these profiles into the preceding six integral
equations for Y <.k and seven integral equations for ¥ 24; , yields
the same number of ordinary differential equations for the functions

L) » L) 2 B s A& 2 G s KB) s ), and 4,00
for‘all 4 and for 2%, for A=A . The matching relations supply
the remaining necessary equations., As an illustration it is instructive
to use the same example employed in the perturbation analysis, that is,
where Uy =ty =& or T=0.=/4=/. This reduces by two the number of
functions to be computed, J;&) and J,(x) being absent since no shear-
ing stresses are present., Upon evaluation of the integrals in equationé
(78), (79), (83), and (8l), the following differential equations are ob=-

tained for the region A=< 4X, .



62

(-2)d(an) +dp =2 I 1

-7 Pu ?//6;__4)
(7- i).c_/(/@#%) ~o =¥ T _1 - __{(IZ-// (8 +4, | )T 6-4/?,3

(90)

Ve _ _ . _ (/- #42)
(-3)gO-rarm) + (-ata)gfe = o 7 [

-%/4
1-2)d (#5) (8+4,)) - K = Y T KB _ 2(Ftiy) KA)T & /%
( ”)Zv(#)ﬁ?* )) (&)a%% 5,%42(,&,7-4,) 77/»_’,—;,5 U

where 7 1is a definite integral over the reaction zone given by,

£ |
725 4 A4
<= (._’;_4_-_3.?__ “s%GE) C o (91)
/+ P-25
% Ao

The integral J is obtained from the reaction rate integrals in
the following way. Since K=o for 7= ~4,(x) the reaction rate integrals
in equations (79) and (8L) are really taken over the same interval, — 2,0r)

to A,(¥) . Further, although for 74 /;(x), A is a fﬁriction of =%

~ds=py

and 2¢ a function of 4=% , 2 _ /% when there is no reaction
7% 4, V4 .

and f‘—-/ as reaction proceeds. Therefore, for <% and 2 -not too
B 1

greatly different, little error is introduced in supposing bofh the A and

29 profiles to be functions of L=t (i.e.t & = 4, ) only insofar

-4y,
as the integral is concerned. With this supposition, then
408 5 |
- A
n %5, R N
7 #°
= :/X} /=372 I

From the profile descriptions, however,
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£=&2 7‘(@02/)5/”/7_
| 7 e
so that this approximation gives for

.
E

Z = O*MJ)J/»/F

2 -4 -Iq’
I = B g cos/g L-E
d; 4.4, < Rl PRV A

-Gk 7 (r(z2))"

while
# =) (1= i @7_5:-_2 ))
x> S5, )~ -2
) ( 7L
so that
4,Cx) y
2z ) .
HERH Yy x 2 M) (0i94,) /’ _zf_é " 5'4/”0//
/ 7 (4-2) /+ #-4 '
-4,(x) #%-2

= 2 AR 5) T &%/,
7 (h-4)

The equations (90) can be simplified since 2§ , for this case of

=) » is just the mean value z ; % » being that value which would

occur at the interface in the absence of combustion. Also from the trigo-
nometric relations themselves and the matching conditions, it is easy to
show that L4)= % l A r) — & (ry) while the concentration along

A4 cr) is A8 )= /6_".‘.33 » oubstitution of these relations into
Al"’ Z
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equations (90) and then solving the equations simultaneously for the

derivatives of g, ,4, L, K)o, and g, , yields, for 4«4k,

2 la,ra,) = v / ! 4 w)a,ra) T S
:(fr—z) su (xee) (k) (4, +4;) (T3 ig)ar

/z9
AR 7E Y I-2KE) / K(5, 2) - :
o KA) — + 2 [ﬂ )Afﬂ? ] e

dx  Uma) Su Klg)l-x) (8,50)°  (T-2 i

(92)
-4/g,
</ o) - T2 v 4 (- *(a,r8,) T €
Kdﬂ) 2r-2) Re (B-4) Tl (A1) (A’/))(J -)ee T

-/
dbe = __?_. "’)/2’ ) (4,ra,) L €
ox 7 ( [ /!‘9)) 4(’/_/)”?_

Now since a numerical integration is obviously called for > it is
necessary té investigate the behavior of the solutions to equations (92)
near the 6rigin where integration must begin. The expansions are naturally
in powers of )Y , following the usual boundary layer expansions. Thus:

4ra, = 4; rq X% #4, X% .. ... with similar expansions for #£/4,) ,
(,5; -4 ) s and g, . Substituting the expansions in equations (92), and
equating the coeffi-cients of like powers of X gives the desired coef-
ficients 4, s 2, s « » + etc. However, in order to show some come-
parison with the perturbation technique, they may be written very easily

in terms of the dimensionless variables as,
4,+0s _ 27 (/.. B f ore. )
ZZ3 V7 72

A B) = I/z + (

(93)

0z .
)3(7'-2) j ’
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b o 2m () 2y %I f o+
T

}/ﬁ-i- Vs (re) (47

O (93)
LB — St — T /2 é////z f-) .
VA 7 /f,’ér-z/( LR lr-2) !
«

Actually, these expressions give a fairly accurate idea of the be~

havior of the mixing and reaction zones for X=X « For example,
the value of J; itself, determined by the condition 4, /I‘.) = & 0%)
may be calculated from these results by noting that since |

d,#4 = x(&)[(4,+4,) and G, +@ =4 -, , the value of x,
satisfies the relatioﬁ, L)~ G () = ,e/,q)[d,/;‘.) -,«-A_z(x‘.)] . Then,
from equations(93), it follows directly that |

(F - /) 3m-2) (914)

i z/ x/,_/__,) s

2=/
which agrees with the perturbation computation in the sense that this
approximate J“ , Vvaries little with 7 , so that the main variation
of A with 7; is exponential.

The calculations carried out for the region 4 < A é.re shown
in Figure 6 for the numerical values corresponding to azomethane which
have been employed earlier, with 2 = z.s0 as before., The dotted line
‘indicates the point at which the integration of Z coﬁld be stopped with
negligible error. The Runge Kutta method was employed for the numerical
solution of the differential equations. This method allowed one to change
the increment in the stepwise solution without setting up the equations

again, and seemed the most efficient method fto use in view of the number
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of equations to be solved similtaneously. While the solution of equations
(92) required only the solution of the equations for d%' (4,+4,) and
3’.%’!#9-)- simltaneocusly, the solution for A4 >4 required the
solution of three equations simltaneocusly as will be seen later, The
calculations show ; 1o be 0,190 centimeters as compared to ‘bﬁe 0.071
calculated by the perturbation scheme. However, as was mentioned earlier,

the f, calculated in the perturbation solution was for a temberature

i
maximum occurring far outside the limits of applicability of the integral
technique. Thus, one should really compare the perturbation and integral
methods in the manner described earlier where the first interaction of the
temperature maximum with the lower pure mixing boundary is compui;ed. For
the present case, the # corresponding to the mixing boundary can be com-
puted from the expansion for 7//‘_’_5_*._';'* s equations(93), with @ =7=0 .
Then _7_1 = - ,-,T-'di /1"77-2-) .f;g « The Jf, corresponding to this

? was calculated (Appendix C) to be /f/__.’“‘— o223 so that X, = azo om
which shows good agreement, and indicates that this method of calculating

an approximate 4; for use in the integral method, would give good results.

For ¢ -; A; » the differential equations are more involved than

those for the region =J4; due to the more complicated_ température
profiies and the addition of an unknown 2, (¥} , the maximum temperature.

Performing the indicated integrations in equations (78), (80), (81), (83),

and (8}) yields the following differential equations:

/I-2)d (e- 8 — 7/
(-3)g o) + e =2 T

o)
(95)
- - & e — 2 = = /- .
HORgn) 5 pes) S -k R

- Z Ay,
* 2 (4 ,/’2,‘? /tzz/?//) =)
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2o (fa-a,)60-3,)) - (4 ) ae = 0

ax

(~2) 2 (-5 )(8,5.)) + (1~ #m) gt = & 7,-(/-/(44)

Tu=z

(95)

1-2)d (K@) (B+4,)) - x5 =Y T _KA) _ 2(a*a)xlz)I6) S
( } ( @) )) #)dﬁ sa 2 (2rd;) Fz(t%fﬁ)uz- €

where, now

&
gg e gl 2
Z65,) = /L_&z;_ CAF V0 (96)
/+r B-24%
9 )

is a function of 2{ /¥) . Z(4,) is computed in the same manner as Z ,
except that no approximation is used, both 4 and 29 being functions
of z:;%; in this region.

From the matching conditions and the profiles themselves, it can

be shown that

"lao

= (- i)(2te) + 2 | (97)

and also, the previously derived relation for /&) still holds,
B rd, =) (4, +4,) .
Substitution of these relations into the equations (95) and solution

of the resulting equations for the sought after derivatives yields;
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o (4+4)_ i / / _ 4 M-ﬂ.)I/g’,_,)e"g/’i
ax 2r-2) Sl KBB,)(1- k(8,) (a,44,) (7-2) (H-1) ez

2 (4-p)= (2= Jm v ’ // *
ax P )00) + T | 207-2) S Kie)(i- k) (0,423 ) -
(ﬂz'ﬁO)

*25% 72 (/- kym))] + 7? 4 -
B 97 2(m2)9-7) RE (B-8,)

2 T(h)EH / £, 207-2) (B-1) (6-4) ?
(7-2) (3-1) &« & k#) /P AIR) T (9—/1}2 {xff/) (4,+4,) ]/

dxrfe) — / ///—/m.))g( a4 +4,) - & (6,-4 : (98)
v .?(A,-}-A:)z / G’X(’ -?) oy /I /ﬁ) |
T V / [Sc {a, +A¢)(/*4‘(ﬁ.)) -4 Z
207-2) Sl (4r+a,)(1-x08.) YA
o = LY. L 72 d/E-
gf 2 Fa () 7’ ax (44

-4 - E@)/AI 4:2 /l//ﬂ.)/ﬂ 44) A A
é}((ﬂ‘ %) (,e,-,e,; i (A’r‘ﬂ-; /(d[/m)/d M)/ d/ﬁ)} ©

The solution of these equations was obtained numerically employing,
as before, the Runge Kutta method, using as initial values for gG,¥/,

B&)s Botx) s L dr)and 4,(r), those values which were obtained at ¥= 4,



69

kin the preceding calculations.‘ The calculations were carried -out to the
point at which a laminar flame developed, at which time s (ora,) - i_o*'/ﬁ,-,a)

= dj.'-/ /’@_‘*4* ) =¢ since then the thicknesses of the zones remain con-
stant. Thus, the values for 4,#d., #/®)and g, -4, Were obtained bjr
solving the first three equations of (98) similtaneously. Khowirig these
values, the other two equations were solved separately, and also 4,/1)
was computed (Appendix D). | |

Figure 7 shows the downstream variation of 2, from . at

A= to # at the X distance at which a laminar flame de-
vveloped. The Vexponential increase of the maxilmm'tempera’ouré is shown as
the gas moves away from the point of initial mixing. Also of iri’per_ést is
the comparison with 2%, obtained from the first order perturbation.,

This shov?s that at least for ¥ the first order solution is good for the
major: part of the mixing zone,

The detailed progress of the various regions and zoneé are ‘traced
in figure 8, in which the} vertical scale is exaggerated for clarity.
While 4, and g,¢r) are really separate lines, the scale ;:sf the plot is
such that the diAi’ference cannot be noted. Figure 8 demonstrates well the
relatively sudden appearance of the laminar flame i)ropagating, into the
co’mbli‘stible. This is indicated by the rapid convergence of the lines
representing different temperatures and hence the appearanééb‘of strong
“temperature gradients, This plot also illustrates the {;otal distance
traversed before a laminar flame is developed, and indicétes that for

Uy = Uy = 200 cmfg,s ANA 7.&/75_ =250, a combustible. with the physical
properties of azomethane travels approximately .75 cm dcﬁnstream hefore

the flame front is developed. Since for #, = 3.50 s _/=o. g7¢ , this
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means that f~/ at the end of the mixing region.

It should be mentioned that all plots showing a vertical f or
» scale are drawn for the corresponding incompressible flow. It seemed
unnecessary to transform back into the compressible plane since only the
vertical scale would be affected and the axial or X direction -and
variations of functions in the X direction are of most interest,
Furthermore, the thicknesses represented in the integral teéhnique are
approximations so that transformation would serve little value.

It is evident that knowing all thicknesses, and &, , the de-
tailed temperature profiles can be computed, and this is shown in figure
9 using & ¢x) as a base. Figure 9 again illustrates well the I_'é}pid
change in the profiles from almost mixing profiles to those with the
steep gradients noted at the end of the mixing zone. It is interesting
to note that the major steepening of the profiles occurs in the last ten
per cent of the mixing zone. |

The calculations for &, ¢x) for x=x should be discussed at
this point. Because of the assumption that maximum tempex;ature occurs
at g= ~ 4, 0%) ﬁo conduction terms are found in the equation for ,&,-4;
(98). While this assumption is justified throughout most <_>f thé region

X = s for x-x; small, the heat conducted, though small, is of
the same order as that convected. Hence, some measure of the heat con-
ducted from the combustion region, must be made. Denoting by & the
y distance from 7—.——4,(1) to the line along which a maximum actually

oceurs, one can compute the derivative &2 as follows:

s



27 = é__zﬂ - &3y +
%7 ly=-a, F ltsy 7
However,
a2 =0
AR A
S0,
22 = - &P
AL CARLLrA

Next, from equation (3L), one can write the energy equation along the line

where 2% 2, as

"

From the values of 24, for x close to X; N computed from the first

2

/ w -] ,z/,z)e"%-
o

zz

“l
&Y.

three of equations (98), it is apparent that _é’/':-zf is very small,
R 2 _

(Appendix D)

é_/ = o.22
2 1, éaf&

while the heat reléase term is of order

(;»é-/) /K/z@,) 6_14/4@' ~ 45 KP.?/?*/os) /g/.,/‘;)

rad L0

&

= B8 Mth)

so that even if 1/1,4,,) is supposed as small as 2 x 10"2, the re-
action term is an order of magnitude larger than the convecition ternm.

Therefore, for y-J) <</ , this convection term is neglected so that
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372 V. ar
and
Y éé’/ = & M,-/j wig,) &
Bd 2
a

v £ Gh) B
4

since 2, =z at #=~4x and 4/(7,) can be replaced by a constant,
Z 5 as a first approximation. & may be defined as a characteristic

length associated with the conduction process and may be interpreted as

= [.‘z ( /% _42)
with ¢, as a constant of proportionality. Finally, then, the con-

duction term may be written as

— -2 :
v gz_/ = oE ) EF ps-0,) (99)
RU 99 g ez
with the constants ¢ £ still to be determined.

When the slope at 4= -4, is not considered ito be zero, the

third of equations (95) becomes;

g [ et )] =2l 8) gt » 22 2

4 4:-4.(:} (100)

»\,l“

Now, observation of the values calculated for /f,,—/g and 4,4)
as J4-X; increases (see Appendix D) showed that these two functions are
initially linear in ¥-4; . Thus, expanding each function in a series,
one finds the first term adequate for x-x; small enough. If

-2, = Co(X-X) 5 dy-A,0r) = C(¥-x) , and one uses equation

(99) for the conduction term, equation (100) becomes;
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- — — -4
_a_l_/ﬂé_’,-ai)xc‘{/_—_- —2GO X TIGK A y‘/’&-d;)
ax . £z
if
/?-: )"/Y"
It is evident that a linear expression for 4,-4, satisfies

this equation as well as the condition g,-4,=¢0 at ¥=¢ , so that

Sma = L2 %) - Qo)
GRYp) g e _ )
G &z
if
H-X; <</
From equation (101), one can see that /3, -4, becomes‘hsensitive
to the choice of (34 only when E‘_-'_z"‘_ &) a2 becomes of
O

order 1. For the conditions used in the numerical example, / 2 =5
U =200 c,%_“/ ‘/ G = 42/) y & would have to be of. order
3 x 10~3 before /3 —4z Dbecame very sensitive to the choice of ¢ K .
Thus, for <% of the order of 1, a lower bound on £ would be about
Ix 10"3, since below that value, 3, -4, would become negative, that
is, the conduction term would be insufficient, a fact one knows to be
physically untrue.
As an upper bound on & s one can use the value of # calcu-
4
VAR AR S
ey %z mgx/e”,

Since the maximum temperature occurs close to, but at a slightly lower con-

lated at the maximum reaction rate (equation (39)) as

centration value than that for maximm reaction rate, due to conduction,

the value of & must be less than 6 x 10”2, Hence for Gt »

<
4

3

S0 "<l < éx0-° o+ The value finally chosen was & =240

which is close to that value occurring at the meximom rate. With £,= %,
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then, (G & =.,0"* a value which is well above the minimum. This choice
of constants, then, puts each constant in the proper order of magnitude
range.

Since the preceding analysis is good only for A4 <</ »
and serves only as a start for the computations for & -4, ,ianother,
more general calculation of the conduction term must be made., After the
breakdown of the linear variation of the various functions ﬁith' A~-x
the simple boundary layer approximation may be used. Thus 3;7 =4 i%:‘z’{i
was used for the conduction term at the end of the region of applicability
of the linear conduction term, At this point, thén, the two conduction
terms were equated to give £, . For the case calculated, this point
oceurred at -4, xoo8 c» , which gave a value of ¢  of about 1/5.
Since ¢  is generally of the order of 1, the calculated value was in
the correct range. As A -4, increased the conduction term became
smaller, and finally was negligible, whereupon equation (100) feverted to
the third of equations (9%5).

While the above approximations are very crude, it is believed that
they give the cofréct relative order of magnitude of the variable /4. as
compared to A, .+ BSince the integral approach in itself is aﬁ approxi-
mate hethod, however, these calculations must be interpreted as a cuali-
tative picture of the depth to which the higher temperatures penetrate,

While, in general, the lines & &) , &cr) 5 A (Y) , ete., show
- what one would expect to occur physically, the decreases in 4¢/ and 4,()
which occur just before a laminar flame develops, shown in figure 8, are
physically impossible, since they indicate that the fluid heats up

slightly, is cooled, and then is heated up to the flame temperature as
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it flows downstream. One probable cause of this situation is the fact
that since profiles with finite boundaries are used, and since the slope
of the profile at the matching line controls the thickness of the upper
zone, the extreme rapidity with which the slope grows just before a laﬁi—

nar flame develops, caused inaccuracies in the thicknesses.

V-’-I,‘, ~ T~

\\-
|
| |
e I |
| |
i I
7’ l |
A o T I |
p =g, Ao By —* A

Thus, as is illustrated in the sketech, &2/ . 2=/ , so that
éy o, B,
as 8% increases, 4, -4, mist decrease, Hence a slight inaccuracy in

2
the i;te of growth of the slope could lead to the result noted in figure
8, where /4, -/, attains values which should occur just slightly farther
downstream. |
It is interesting, next, to caleculate a flame speed existent with

the present conditions, and using the integral technique. It is evident
that after a laminar flame develops, all lines &4/, &,(r) » ;Ldnh
zbaﬂ‘etc. will lie parallel to one another. Hence one may define a
normal flame speed as that velocity perpendicular to 4 in the com-

pressible plane. Hence, denoting by the subscript ‘¢ the aforementioned

thicknesses in the compressible plane, one finds that

,,, "":/“o S/noe ~ 4 c‘a.rc(]p’ (102)
e
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where /aa , % Z, s 4, and o¢ are defined in the sketch.
‘e

/’}(‘ d’t ﬂoc 4_'
///
) rd
7

One can assume that the flame has propagated far enough into +the

o

s/

upper stream that it is outside the regular velocity boundary layer in
the incompressible plane. Thus, since &¢ is unchanged in going from
the incompressible to the compressible plane, this means that-é(, = Uy
in the compressible plane also.

Next, from equation (30)
%5,) = - - wa) + ur o4 '/
P2 )

since ',0/4#5)%#4.. However,

27 = df 27 J%
Hole,de  THof ‘ao ‘ Pt
= 3’1 "_féz
T 2 Ay,
= l - ﬁ(
ax i,
,Since at z"-ﬂ'f s =4 , etc. Also fan«:a%gr while
4
X=X, , and d__@_. <, so that, substituting in equation (102),
X

one obtains the equation
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« =4=dco.roe/2@-m)
o = z P /
If the boundary layer assumptions are satisfied, Zaser 2/ , so that

sy = “z./céﬁ - 2z - (203)
Zx Uy
which is recognized as the incompressible flame speed derived in the
section describing the reduction of the equations of change .into an
8quivalent one dimensional system. Since in the present case =g ond
= dg =4 equation (103) reduces to

The :—,/f' which exists at the fully developed flame may be

computed by noting that since all lines are parallel, j"/ ) = o
2%

b
2 ta)=0 | and 2 (B8,F) =0 so that LARI_ o . From
X / =3 X '

equations (98), then, one can get the conditions on the thicknesses and

temperatures, themselves. Thus,

=¥ : = -2 I//Je’%

“@4.) (1-x(8.)) (0, +22) (/f-.z) > -1)

&lt

- _)Z / J _25'¢ /"A—J/ﬂé)—/
M) XU K8 ) (1~ K (8.) (4, +45) / )/ )

(109)

» 7 v ) _ 4 _Z6h)E /’4-/,6’ 1FKA)+ 4@/‘4—/M
20r2) G-7) Ralep,) (TD 4z (1) )t G-n) & '///(A,Mz)

:+Az)//- /(66‘,)) =/

—ﬁa



Lo = Z ¥ /
ax 2z RU(8-4,)

Simultaneocus solution of the first three equations yields the

following results

/—/@0 -~ /
4,+4, 264-1)_ ) » B
G4-1) Y
106
/f//&): / - Ie;“(‘?o) _)_2' ( )
-0, #4:/ e

72k
B = I(_»:.L{zi-_/)e A@)
2 2% 16%,) 41,)

Also from equation (97) and the matching relation for 4//4,)

%, = #4R) [ 18 ) (oh-1) 24
% ~fo

so that with substitution of the above relations for /4s) and /fif’
24, = / 2/2%v) -1 /-1
% q»s_/j V[ E-D +

However, J-/ = -?//a-// » 50 that

2 = # (107)

i.e.; the maximum temperature is, in fact, the adiabatic flame temperature,

at the fully developed flame.

Finally, after substitution for :’TY/_% AT and

3

A(4), the normal flame speed may be written as
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- J _ V2
w, = |=2»3e It5) e A’ J;:T' / (108)
P* 7 (h-) | 7+ &( 2t )/
R

which indicates that the flame speed varies with S, and %  essentially
as 7%

f: . .
other derivations of the flame speed, the numerical values for &, is

. While this variation with transport properties agrees with

almost twice that calculated for azgmethane by Hirschfelder, for example.
This is due in part to the simplifying assumptions made for the transport
properties; however, even more, this discrepancy is due to theffacf that
by neglecting the combustion effects in the upper stream, %, .@hen
assumes the character of an ignition temperature found in one dimensional
thermal theory, and the usual difficulty of defining the proper 1gn1t10n

temperature is 1ncurred.
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VII. CONCLUDING REMARKS

Through the application of a boundary layer type of analysis to
the problem of ignition and combustion in the mixing zone between paral-
lel streams of combustible and combustion products some of the eésential
features have been deduced with relative ease. Thus, there is illustrated
the basic change in temperature profile from a smooth mixing profile to
that associated with combustion where a "bulge" exists due to a tempera-~
ture maximum within the thermal mixing region. Also, although the stream

-of combustible eventually ignites, it is shown thét when the temperature
of the hot stream is too low, the distance (or time) required ishexcessive.
Then the flame develops so far downstream that it is essentially “blown
off" any finite apparatus. A general qualitative picture of the character
of the mixing and reacting zone is given to the point at which a laminar
flame develops, showing the relative thicknesses of the temperéture and
combustible concentration “boundary layers' and the downstream growth of
the maximum temperature., Finally, in the Appendix A the équations are
developed whereby the preceding methods may be used for a ternary system
in which the local concentrations of two of the coﬁstituents aré small
compared to the third.

In a broader sense the analysis shows that z new class of com-
‘bustion problems is open to investigation through extenéion of the usual
boundary layer concepts. In addition to the present one, this class in-
cludes such important problems as the theory of thermal quenching near a
cool wall, the ignition and flame stabilization on & heated surface from

which the boundary layer is unseparated, the erosive burning of solid
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propellant grains, and a greast many others. There is no essential
difficulty in proceeding to problems with axial symmetry and it seems
quite possible that the process may be extended to include cases of
turvulent mixing. Thus the theory of the plane laminar flame togethef
with the description of such boundary layer regions as may be tréated
by the methods.just described, would seem to disclose the essential
features of a relatively wide class of problems which involve steady,

constant pressure deflagration,
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APPENDIX A

COMBUSTION IN A LAMINAR MIXING ZONE
INVOLVING THREE COMPONENTS

The general conservation equations (2), (10), (3), (15), :(6), (7,
and (8) written for an arbitrary number of components, can be modified

through the use of the boundary layer assumptions to the following:

2 (Pu.) + I (Pn) =0 (A=1)
ar y
, @A # P DAY = -2 (P ) . A,
‘=4234
Pl Do # o2 Pl = £ /céﬁ) A
2 = ﬁ/% (4-3)

A
r4 27 P IT = é./d__’)-é,;—’zm A -[27_%-_/; ‘27 (A=L)

P=nk7 = constont ' : (a=5)
v Em B g o
Py !
1o /A
where -D;.; is the multi component diffusion coefficient and thermal

diffusion and viscous dissipation have been neglected,

The coefficient of viscosity for the mixture is defined as(21)



e = Z (A7)
R

+ L
-
<

with

[ ) (5)]
¢_== & 4

“ 4 - 7% (A-8)
= [1 »~ 2L [7*

where Af = mole fraction , and /@4 = molecular weight.
The multi component diffusion coefficients have been studied by
Curtiss and Hirschfelder. In particular, the ternary diffusion QOef-

ficient may be written as follows;(22)

.D =, )1+ 5 (2, &J/ | (4-9)

#l,, r2d, +7,8

with the others obtained by cyclical permutation of the indicies. Again,
ng indicates a binary diffusion coefficient.

The problem which is to be considered now is the ignition and com-
bustion in a laminar mixing zone consisting of a ternary mixture in which
the relative concentrations of two of the constituents are_smali compared
to‘the third. Also, the two small concentration components consist of the
combustible and product of combustion of a simple first order reaction
while the large concentration component is an inert gas. In this case,
then, the upper stream is supposed to consist, initially, of a cool mix-
ture of the inert gas and combustible, with the lower stream consisting,

initially, of a hot mixture of the inert gas and the products of combustion,
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—
H,= /- _ -
Ay =eo¢ ~
e

Ky =
£=0 b,
7=7 — A, mixing zone
U=«&y \
7= T \
D aemm—aa e

N
A, = /—'& ~
K =0 ~ ~
k.?:’ -~ -~

Again it is supposed that Cp, = CC. =G = Cp

Thus if one denotes A, as the mass concentration of the inert
gas, 4, as the concentration of the combustible, and A ‘as the con-
centration of the product of combustion, then #,<</ , A,<<s7 , and

A, — b &4 in the reaction.

Since 4, = 2% ,7@": Zigr: it is apparent that for 2 ﬁﬁ <</
something must be said about the ratios ”.’/’.’" and f’/:& . (Here 4, and
/7; refer to molecular quantities and m”: and My refér to. molar quanti-
ties. They are comnected by Avogadro's number, 27 = 22 _ .= tn; (Br. Me) )

WZr "%.)

It is assumed that the mole fractions ,_/”_”t'z- A <<sfor the components c=.z3

while all the molecular weights are of the same order, ise. A% a’ .
With the foregoing assumptions, then, that 2. , #» and thus

= ”7
M, s and A3 are negligible compared to unity, one may investigate the

density and transport coefficients for the mixture. Thus:
P= M F e My tmy My

(A-10)

il

m//‘{/% F N My "/‘{rM:)

""/7/‘7



87

However 4]~/ and /Y, ~/7 ~/Y, , while 4 <</ and #,c</ .
Therefore, it will be supposed that the variation of the average molecular
weight, A&7 , is negligible,; with /7  being calculated either as the
initial average molecular weight, or as # = /Yy, ,

Supposing the molecules to be Zaxwellian with the same force con-

stants, implies that

A, °<,//z. 7
so that
/{(" = _/Z“
4 T
and
b, =_1%2 __  ~
Y 7 * M 72
]
while‘ v
e A A # _La s By

KENY, YL, 2 rM A, FH By,

/‘I/*/,g é; 7‘4‘/’@3

éo that to the same order of approximation,

A = . ‘ ‘ (A-11)

From the Eucken correction, for a mixture
A= (Z rs £ e
Sl Sl | (A-12)

Hence, with the knowledge of _e¢ , é; and &/ , A is known.

/

Finally, one can write the ternary diffusion coefficients as

D. = 4 | (4-13)

<) ('S
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where, for example, ,, is, from equation (A-9),

Ad = 77+ #» /%’Z’a@rzﬂe) ' (A-1ly)

12
1,5+l + 1, 4,

with the others being obtained by cyclical perrutation of the ind_ices.
In terms of A/, , 4., becomes

4‘__/ = / # /v,JvﬂJ ﬁ/}
4 "[ZJ +M LG, 214,

Taking account of the fact that the aﬁ“ ’s do not differ by an order of

magnitude since the molecular weights are of the same order, then to the

given order of approximation,
4, =/ - (4-15)

The remaining 4',; s and their approximations are listed below

A—(J = /A /‘{/7/’7/;’%/ -ay‘-;) . (A—lé)
%%J*%ﬂ?j *‘A‘{ﬂli ’
x St Lo
% Je.?
A.?/ = /J + A/ M, JZ /)
K&, * M8, 4, » (A-17)
=~ /

F2

&) 4 H s (A-18)

{;

It is apparent, that with the foregoing assumptions, 24 = constant,
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and P = Cptt = constant, and a Schmidt number, defined as
A
5. = U = Ll — _% = constonrt
Ly FJ F'ﬂ ”]52 7

since qg;. &,ﬁl-_: and P=nrk&7 . Thus, the Howarth transformation
may again be applied, uncoupling the momentum from the species ana energy
conservation equations. Performing again the transformations in equations
(2h) to (31), with /,r 2, = - P4 e Yer _ _ 1725 Ay f'rom’a simple

z
Arrhenius rate law, one can derive the following equations,

QL + J¥ = o
X 53

e 24 fzx‘dléz—_é(/_?g_/z‘ -t O

X a; a/

X 2y 2 :
A (4-19)
U U +2rIU = Y I
Ix éj ;yz
2 = - Yer
445772'7“#‘;4_7__:_3_/57__7 7+ dH,, 2_/_&.6
7 F oF &
% = p? 2. D.. & /4
3 e Ik o Ud; h}
PAl P4l P .
where - ‘2:_'/7,‘/‘_ T = mAk L{,v{,) since X ,=o and ?m‘.}f‘.=0 )

A
from continuity considerations. 4/7_/_,3—_— Z 7{3 is again interpreted as an
average heat release per unit gram of the reactant over the ﬁemperatu’re
range.

Next, 24 mst be computed.



e [ A 2r) e s a2 () ]

=f/;//— mf"gz; d-'zj-}-dé f/m.?"g_? 4:3 =472, 4/4::)?}4‘//2

since p = 4, #+ /s # Ry . Further,

Wz":__{_?_z /-_@ y) 07/?09 7"/ —-ﬁ_’xay,z A.e/)i'{../z’_g/
/725 a}/ /

However, since j» == constant, and with the approximations.for 4,; ,

or since 2at=,2 4, > and m =, .

2% -V I - (A-20)

& 5. 94

likewise, the same type of analysis gives for the third component,

5% _ _ Y ok (4-21)
x 53 2%

It is evident that if the expressions just derived for 72224 d 4%

: & z

are substituted in the species conservation equations (A-~19), a set of
equations exactly similar to those for the binary system (equation (32) of
text) are obtained and hence the transformation to the 7 and X
variables can be carried out in the same manner. The equations (4-19)

then become,
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4

- - . - - -7%
L %, +..f?l.-z—7[Xé’__:-=_4\’_/{._e “/p

— - ‘ -2%
L O p SO FUAO - kD
I, 99 Z o Ix P

20 o F 28/ Fer x 7 &

L P+ L 2P fhDE — —oc s X K E
P o5 = 9p Ix oL 47

Here, 2¢ and / have the same definition as in the text, and e and

/A are the initial concentrations of 4, and A% respectively, so that

4= 7
(A-23)
4y =/ Ay
The boundary conditions are as follows,
F'=1, =0 , ot p=ao
fl=a =0 , af 7——@
(A-2L)
K,=/ , ¥ =0,/ , Db = DG I p of p=a (o &)
v St Sp
/Z=0/ /: =/ y 2= %, e — O — ¥ a//:—ay (a//x)

3% 2y Iz
with initial conditions /i—fz =/ /Z =¢ , and Y=/ in the upper

stream and Zf; =g /?; =/ , and 2= &g , in the lower stream.

Since, in terms of /&, , the problem is exactly similar to the

binary problem in that the limits of /Z are / and © , while 27 goes

from / to 2% in the same interwal if . = 2 , the definition of
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£ , the characteristic chemical length is the same. Hence, defining

f= % again, one can write the species and energy conservation

equations in terms of f as,

_ ~ L]
L QW + £ M - S = ///z;-/)éj@e‘wv zg/’
Sy 242 z 2% of 22

with the proper expansions for f <</ being

K, = B%%y) + f BN+ B2 +--

= B2 + fEl) 3R G) - (4-26)
2= Py + fIUp) # $ )
The zero'th and first order equations are then
N dz/f_g(o) " 7[ a/ (6)
Sz dp2 2 d?
(A-27)

and
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/L _ L
U LR rE aBE - FB gl @ e (T )
Ssa 0’?2 2 a/? I{‘

byt </ bwrt ¢/ — - _{ —-_.’! :
L & f S B R < - N0 R B % (G %) (A-28)
o Ty 2 Iy ~ %*

_ Y,
L LY 4 f_zf” B - ot A Ls (28-1))3% BY e £l )
R d»2 <

V4 %% 23 :

From equations (A-27) and (A-28) it is seen that for = , the
problem reduces to a pure mixing problem of two components, ;43 and A3 ,
while for o¢ finite, the zero'th order solution in § , covers the pure
mixing problem with all three components. The first order problem, then,
consists of the three components with small heat release. It can be seen
that for o and § small the heat addition is very small.

In view of the fact that the equations ana boundary conditions are
the same as those encountered in the binary problem, the solutions for the

case of velocities equal can be written immediately.

0@ _ »ZH - /»g-/) erf[]g:j_?)
/,_/z[” = %Z// # erf/,gf_:?/// - (A-29)
A_/J(D) — ké{[/ - é’l"/‘. }/-y;’:?}/)



oL

Zy) = x B s (H-1) 2L / §(p.5;)RG) S5

&7 Z
-0
@ A
/40/[?/=_0(J,‘z [4—/)@%‘/4(?/?/, JJ‘Z} a?(é)d?— (A-BO)
z
-
&l = 5, (A1) / 6.5, 59) R
2 A :
where ;g .
Fy) = BB GTE) | iHe g-s

and & is the same Gresen's function computed in the text.
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APPENDIX B

CALCULATION OF PHYSICAL PARAMETERS

1) Reaction

I‘he reaction considered was the decomposition of azomethane,

Q H, Ny —> G H, + N , which follows a first order reaction.

While the products are a mixture of ethane and nitrogen, it .is assumed
that this mixture is one component, with the average properties of the
actual mixture. For example, the molecular weight of the product of
reaction is A, = ﬁ.&%ﬂﬂ—; 27.”_%",3_;. |
2) %, , &

From data presented in reference 1,

s

IH, = 862 + /(,',-Cg)dr

J00 %4 (B-1)

- |
= 862 + [(0.035 - L5L10" » 235207 |/ 7
7 Tz
Joo K

where subscripts /s and 2 refer to azomethane and a mixture of hydrogen
and ethane respectively. Thus, at 7= 3J00o % , JH, = 62 co/ fom  while
at T=7, = JésO K s K, = 736 64/4,,, . The average J#,, 1is used for

the calculations,

IH, = 800 ca/ /g, (3-2)

However, 4/, = Cp(7;~7)  wWhere T, = /és0 K , and 7 = 300 °K

Therefore,

Cp= Au . 5 597 5'4//3,”

-7 (3-3)
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E) 4

From the Eucken correction,

Ao (Grizs )= w G (s st (3-h)

where A7 1is the average molecular weight.

Since, AR = /P87 calfmole ey /1'7"—..—34(.;37-.29)=¢35 a=

mole
with ¢ as calculated,
P= Gt = / = 0.9 (B-5)
A (7+ r25R )
Co 77
L) S
From reference 1 again, Eucken's form for A dis written as
= o,z P
A [f,,m/e +AZ5‘/?)7?J:7:_
where Cp e is the molar specific heat. In terms of C&p , then

However, since the usual form for ) 1is listed above, it is obvious that

the assumption was _-_-_/_?__P,ﬂz » Or, since P=pPAR 7 , and u=,d,
7 n

so that

e = _’_“_ =/ |

3 | (8-6)
The same assumption is used in the present paper.
5) 2%

Since A= s0 #co/ , (reference 1),

2 = 4 = 83870 _
2=z (B=7)
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6) »

Since Y= V. = Mz s and 2 can be calculated with the given
=3 z
&

——

data, /Z = /;/_’;7/;‘! = L 767x/0"% 9ms oo s 1t is necessary to calculate
Ay . However, ,«I.-.—&_f- Ar = J‘,/;(a&,,?z_ so that A, or («,)r mst
be calculated. In reference 1 it was assumed that A ~7‘”‘[},‘07whiie in the
present analysis A~ 7 . Hence a Ay was chosen such that 2 then
agreed closely over the temperature range 77 to 7;; wiﬁh the values
given in reference 1, in order to keep a comparatively consistent set of

- physical parameters. The following graph shows a plot of both the laminar

variation and the variation chosen by Hirschfelder et al.

e
)

/ Linepr Varrotion

&
Q
N

20 Vd

// T~ Data of Refherences

S
w A

A = A | of Reference 1
/.0

Rotio of Thermal C(onduvctivity (be/fif'ie”t";j‘;
X

l.0 20 2.0 4.0 S0 &0 70

Temperatuvre Ratio, T

Iz
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It was found that a fairly good representation was obtained with R,

equal to eight tenths of the A; calculated from the equation given in

reference 1., Thus,

Ay = 0.3[6’,,(7;) -I-J.fa:ﬂ/[/-é 749 */0'7/7})%

&%) = M,/o. 988 - 290202 + ‘-”"W'].

7r 77
so that
21 = 4.06 *10°% :o//c'm/‘/f/.fec (B-9)
Then
Ve= 353 1077 cm'frec (B-10)

A summary of all values used follows
Reaction MMy —= CcH; + N

A

SO xecao/ .=/

z

r0” ' sec V=p= 257 10"° cm?®fsec

R

it

1987 <cal fmole /ox %= o0

M= 92,5 975/ /mole ¥ = 83.870
C

= O.593 CW//?M/’/( 7; = JESO N

P
P= 0.9
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APPENDIX C

CALCUILATIONS FOR PERTURBATION METHOD

From equation (55) of the text,
/. Y 15)e £
“ = - /l" - x 3 ?!2& 5 )iy
) = -[E L= 04 /)é;_f ] 2 0) /// (5)e% t Riz)d

@

+H,0) |H 57T ’ﬁ/;/d;//.
7

Since, from equation (49), it is evident that ;/J/?) = -////.?) it was
necessary to compute only one. A%®J)and /ﬁ’/(?) were calculated uéing the
tabulated error function, and after tabulating e-»z/ % and _e;/; z* R
the kernel of each of the integrals was calculated for a range -& £y« 8
at increments of 4y = o, .25 . Using Simpson's rule for numerical
integration, then, this gave values for the integrals at ihcrements of
4y =050 over the same range. Table I gives the values of /("//?/ s
A/(’J/?j R ;/2/?/ ,v —7,(/) s _Z‘z(?) and /('//7) ‘over the range

L5 = z <55 o Where

7
z,0) = [ HG)ef? Ry
2 4

(c-1)

&K
L) = / 2 5)eF 8 prs)d 5
?

for 2 =zs0.



100

In order to calculate /. from equation (64) of the text, it was

necessary to compute e » where

C=- /X,/;’/e?’z 7" pt5)d5
-

This was calculated from the numerical work using the definition of @

Thus,
@

‘1‘ e~ /¥
4//7}61 e ﬁ/z)o/f n-Cr 22 ’ be=?)
7% (5-R)

)

Values of the integral are given in Table I. By letting ¢=-¢6, -7

2

and -8 , (¢ was calculated to be 17:408, 17.397, 17.395; the value
used then, was CP= /7«40 . With this value of @ s 4 Waé calcu—
lated by trial and error from Equation (6l) to be 4y =-657 .

<

From equation (66),

- Lits-3) - Hils-n)

7.:/_’_7 3_2 //_. )/CD__ 2L et -8 _e_? //-/2 ,*,}/

C 2 A1) 2 297 5. (5-7) 53 Pt /
Substituting values of 4 =-4s7, o=/ , R=09 , %} =L£s50
gives

2
f = 0556 & _
¢ 2 (c-2)
"Therefore

X = ossé A4
4

%
= 0556 Uz T(FH-1)E ‘//Z'
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so that for Uy =&y = zoo cm/fsec aN4 7= 0777,

o= L2 v 0™ (1) é"z/’g (em) (C-3)

Some representative values, then, for JA; as a function of 2 are

% i &)
3.5 0.071
3.25 0.0k
3.00 3,082
2,75 3L.2L

It was necessary, also to compute an equivalent 4; for an 7‘,
of -3.08 so as to compare with the Karman integral method, according to

the method described in the text. From equations (59), (L6), and (65),

P e:&
© ORI G L) g J;/fy
7
so that
_ £y
Xm—2 1) 4, 7 44 e’”
(Z?/T z a’?/ _Z/?} +co_7l_z :{?)/ } (C-h)
7

where J, () and Z,(p/ are given in Table I for integer and half
integer values of 4 . From the development preceding equation (54)

in the text,

a///, = _«; A - /_/em"[/“?}—/)/
4&= _/,y 7 (et () +//]
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After substitution of 7{ =75 and the given values for 2 ,

% etc.,  4; was calculated for values of z-_- -285 s —Ro ,and

-2 giving the following values for X

2 A (em)
- 2.5 0.58)
- 3.0 0.215
- 3.5 0.129

Plotting the given values of A vs Z and reading the value for

7= 4,= -3.08, gave A = o.20 em.
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APPENDIX D

NUMERICAL VALUES OF THICKNESSES, A(4.),
AND MAXIMUYM TEMPERATURE

The differential equations obtained using the integral tebhnique
were solved numerically using the Runge Kutta method. The equations did
not contain X explicitly, making calculations easier. The physical
parameters used were those calculated in Appendix B.

For 2§, =24 , the initial conditions calculated from the

expansions (equations (93), text) were, for ¥= s~ % cm.

4, +4; = 2969 x/0 cm

ALE) = O Sool

Ll = g rh = /299 210"  em

Ao = O.o00

The results of integrating equations (92) of the text are presented
in Table II, The values existing at = .f, were then uséd as initial
values for integl;ating equations (98) of the text, the results of which are
presented in Table II. The accuracy of the values in Table II is approxi-
mately 2 per cent since the values of 7 /4, ) were read from a graph of
Iﬁg} vs /f., similar to that shown in the following sketch. Separate
graphs of Zf) vs ¢ were drawn for various ranges of ¥, , but the
accuracy was no better than 2 per cent. The predicted final values were

computed from equations (106).
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TABLE 1

PERTURBATION FUNCTIONS

Vd B°Yp) Vaul)) 2, (») Z,O)xd? I,(n) )
5.5 1.0003 0.9999 52.3362 7.3790 0.0000  0.0000
5.0 - 1.0009 0.9998 43.8672 7.3790 0.0000 0.0000
T 1.0030 0.9992 36,1563 7.3790 0.0000 0.0001
.0 1.0087 0.9977 29.3L96 7.3790 0.0000 0.0002
3.5 1.0228 0.9933 23,2966 7.3790 0.0000 0.0005%
3.0 1.0538 0.9831 18,0421 7.3790 0.0000 0.0015
2.5 1.,1147 0.9615 13.5767 7.3790 0.0000 0,0038
2.0 1.2217 0.921Y4 9.8782 7.3790 0.0000 0.0091
1.5 1.3895 0.8556 6.9110 7.3790 0.0000 0.0199
1.0 1.6249 0.7603 11,6283 73790 0.0000 0.0L05
0.5 1.9199 0.6382 2.9461 7.3790 0.0000 0.0766
0.0 2.2500 0.5000 1.7725 7.3789 0,0000 0.1355
-0.5 2.5801 0.3618 1.0022 7.3682 0.0000 0.2252
-1.0 2.8751 0.2398 0.5295 7.1889 -0.0012" 0.3513
-1.5 3.1105 0.1hMl 0.2602 6.,2313 -0.0182 = 0.L956
~2.0 3.2783 0.0787 0.1184L L.2056 -0.1213 0.5801
-2.5 3.3353 0.0386 0.0497 2.100L 04490 0.5267
~3.0 3.h462 0.0170 0.0192 0.8023 -1.0997 0.3683
-3.5 3.4772 0.0067 0.0068 0.2498 ~2.05h); 0.2055
=4.0 3.4913 0.0023 0.0022 0.0650 -3.2180 0.0915
1.5 3.4970 0.0007 0,0006 0.0153 =l.01i912 0.0350
~5.0 3.4991 0.0002 0.0002 0.0031 -5.8008 0.0112
-£.5 3.4997 0.0001 0.0001 0.0006 -7.1023 0.0035
-6.0 ~ 3.L4999) 0.00001 0.0000 0.0001 ~8.3618 0,0008
6.5

3.49999 0.0000 - 0.0000 0.0000 -3.5533 0.0001
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TABLE II

THICKNESSES AND /4(8.) FOR X&£A;

X (mm) (a4, "'Az) 6’1”‘) VA(D (po *42) (mm) (,G, _’0’) ‘("”")
0.01 0.02447 0.5001 0.0123 0.0129
0.02 0.0349 ° 0.5001 0.0175 -~ 0.0183
0.03 0.0427 0.5002 0.021)L 0.022}
0.13 0.0893 0.5007 0.0L)7 0.0467
0.23 0.118 0.5012 0.0593 0.0618
0.33 0.1h41 0,5017 0.0709 0.,0737
0.143 0.161 0.5022 0.0808 0.0838
0.53 0.178 0.5027 0.0896 0.0927
0.63 0.194 0.5032 0.0976 ‘ -0,1007
0.73 0.208 0.5037 0.105 0.108
0.83 0,222 0.5042 0.112 0.115
0.93 0.23l 0.50L7 0.118 0.121
1.03 ° 0.2146 0.5052 0.12 0.127
1.23 0.268 0.5063 0.136 0,138°
1.43 0.288 0.507L 0.146 0.1L48
1.83 0.323 0.5096 0.16h 0.165
1.90

0.339 0.5100 0.168 0.168  x=x,
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TABLE II (Continued)

THICKNESSES, 4'/8,) , AND IAXIMUNM TEMPERATURE FOR X2 JX;

X (mm)  (4,402) Gom)  K(B)  (Bt02) (wm) (£,~P0) bom) S (mm)  (Ba-43) (mm) (G4

1.90 0.329 0.510 0,168 0.1€3 0.005) 0 0.00

2,10  0.344 0.511 0.178 0.175 0.0062 0,002 0,004
2.30  0.359 0.512 0.183 0.182 0.0070 0.005 0.009
2.50 0.372 0.513 0,191 0.189 0.0080 0.007 0.015
2.70 0.385 0.51L 0.198 0.195 0.0090 0.009 0.020
2.90 0397 0,515 0.204 0.200 0.0100 0,011 0,026
3.10 0.408 0.516 0,211 0.205 0.,0112 0.012 0.034
3.30 0.lag 0.517 0.217 0.210 0.0125 0.013 0.0L41
3.50 0.429 0.518 0,222 0.21l 0.0138 0,014 0.049
3.70 0.438 0.520 0,228 0,218 0.0153 0,015 0.058
4.10 0.155 0.523 0.238 0.22} 0.0185 0,017 0.076
L.50 0.168 0.526 0.216 0.228 0.0223 . 0.020 0.099
470 0.47hL 0.528 0.250 0.230 0.0245 0.021 0.111
11,90 0.479 0.530 - 0.25) 0.230 0.0268 0.023 ~ 0.125
5.10 0.1:82 0.532 0.257 0.231 0.029%  0.026 0.140
5.30 0.485 0.53L 0.259 0.230 0.,0322 0.029 - 0.156
5.50 0.L487 ~ 0.537 0.261 0.229 0.0353 0.033 0.176
5.70 0.487 04539 0.262 0.227 0,0387 0.037 0.196
5.90  0.4L85  0.5hk2  0.263 0.224 0.0426 0,043  0.220
6.10 0.481 0.546 0.263 0.219 0.0470 0.051 0.2L9
6.30 0.7l 0.550 0.261 0.213 0,0520 0.060 0.280
6.50  0.L6li  0.55k  0.257 0.205 0.0579 0,073  0.319
6.70 0,448 0.560 0.251 0.194 0.0650 0.090 0.369
6.90 0.h2) 0.567 0.240 0.178 0.0739 0.11L4  0.435
7.00 0.106 0.571 0.232 0.168 0.0795 0.131 0.479
7.10 0.383 . 0.576 0.220 0.155 0.0862 0.153 0.533
7.20 0.352 0.582 0.205 0.138 0.0942 0,180 0.603
7.22 0.34L5 0.583 0,201 0.13L4 0.0960 0.186 .  0.619
7.2h 0.337 0.58l 0.197 0.130 0.0979 0.193 0.636
7426 0.328 0.586 0.192 0.126 0,100 0.200 0.656
7.28 0.319 0,587 0.187 0.122 0,102 0.208 0.678
7.30 0.309 0.589 0.182 0,117 0.10L 04217 0,700
7.32 0.298 0.591 0.176 0.111 0.107 0,226 0.725
7.34 0.286 0,592 0.169 0.106 0.110 - 0.235 0,75
C7.36 0.272 0.59L 0.162 0.0994 0.112 0.247 0.784
7.38 0.258 0.596 0.153 0,0927 0,115 0.259 0.818
7.40 0.2h1 0.598 0.1lh 0.0853 0.119 0.272 0.859
7.42 0,222 0.600 0.133 0.0772 0.122 0.287 0.90L
Y 0.200 0.602 0,120 0.0682 0.127 0.304 0,956
7.46 0.175 0.60k 0,106 0.0583 0.131  0.322 1.019
7.48 0.147 0.605 0.0892 0.0476 0.136 0.343 1.091
7.50 0,117 0.606 0.0707 0.0365 0.142 0.365 1.17k
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TABLE II (Continued)

THICKNESSES, £C8) 5 AND MAXTMUM TEMPERATURE FOR X >4

X Gom) (0,425) mm)  K(B) (8+0;)(mm)  (B,~f5) (o) B, lum) (8y-22) () (G )

7.52 0.0856 0.605 0.0518 0.0258 0.1L8 0.388 1.259
7.5 - 0.0586 0.608 0.0356 0.0173 0.15)4 0.412 1.326
7.56 0.0412 0.626 0.0258 0.0124 0.140 0.433 1.359
7.58 0.0329 0561 0.0218 0.0102 0.166 0439 1.405
7.59 0,029}, 0.679 0.0200 0.00919 0.169 0.1430 1.470
7.60 0.0253 0.697 0.0177 0.00784 0.173 0117 1.565
7.61 0.0203 0.715 0.,01l5 0.00616 0.178 0.399 1.699
7 .62 " 0.0150 0.730 0,0110 0.00442 0,185 0.386 1.851

7.6225 0.0142 0.733 0.0104 0.00416 0,187 0.384 1.88L
7.6275 0,0129 0.737 0.00953 0.00374  0.191 0.383 1.939
7.6325 0.0121 0.739 0.00897 0,00348 0.195 0.337 1.969
7.6375 0.,0117 0.740 0.00866 0.0033L 0.200 0.392 1.988
7 .6400 0.0116 0.7L40 0,00862 0.00332 0.202 0.396 1.993
7.6425 0.0116 0.741 0.00857 0.00330 0.20L 0.400 1.995

Predicted Values

0.0115 0.7407  0.00850 0.00327 2.00
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