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ABSTRACT

The conical transformation of variables of M. D. Haskind and
S. V. Falkovich is applied to the steady-state problem of thin delta
wings with subsonic leading edges in az supersonic flow. It is shown
that solutions may be obtained, in terms of elliptic functions, for
1ifting wings of zero thickness with prescribed angle-of-attack distri~
bution, and for symmetric non-lifting where the perturbation pressure is
prescribed on the wing surface (thickness case, mean-surface aséumption);
the wing boundary conditions are assumed to be given in terms of poly-
nomials in the space variables in the plane of the wing. Some previously

known results are obtained to illustrate the method of analysis.



I.
II.

I1I.

V.
V.

VI.

CONTENTS

ANALYSIS * B 6 s & & e = 2 2 s s 2 s » e+ 2 @

. I I‘ITRG DUCTION L] s s s e @ * ¢ & e s & & » * = 0w .

A, Equations of Linear Theory . « « v« « « « .+ .

B. Haskind-Falkovich Transformation . « « . .

*

C. Boundary Conditions; Determination of W { €)

1, Lifting Wings of Zero Thickness . . .
2. Symmetric Hon~-Lifting wings . . . . .

APPLIGATIOIQ‘S - * & & & s s @ *« s ¢ & e « = s

A, Lifting Delta Wing « « « v o ¢ o o s o o
B. Quasisteady Pitching Wing . . . « « + « .
Co Blliptic CONE 4 4 ¢« ¢ o o o o ¢ ¢ o & o @
LIST OF STHBOLS + v v v v v v v v v v e v

R&’FE@I@CES *® 5 & & & * e s s =& * & = 5 2 e e

Page

12

| 13
18.
22
22
23
26
29
32
L3



I. 1NTRODUCTION

The aerodynamic characteristics of a thin wing placed in a uniform
supersonic flow, such that the flow deviations caused by the Wiﬁg are
sufficiently small, can be determined to a sabtisfactory degree of
approximation by means of the linearized compressible flow theory. In
particular, conical flows, in which the perturbation velocity components
are constant along rajrs through the wing apex (i.e., the pezfturba’sion
potentigl is a homogeneous function of degree one in the physical space
variables) have been investigated thoroughly by Lagersirom (Ref. 1) R
and the results of the theory have been applied to obtain the s;olfwltions
to many practical problems involving supersonic wings. 4n evident
generalization of conical flow is that in which the potential is homo-
genéous of degree greater than one. Flow fields of this type have been
investigated by a number of different methods; Germain (Ref. 2), and
Hayes, Roberts, and Haaser (Ref. 3) have used the methods of function
theory, while Lomax and Heaslet (Ref. li) have applied integral equation
techniques. In Reference 5, Lampert has extended the La:me’ funetion
approach to supersonic wing theory, introduced by Robinson and used by
Squire (Ref. 6), to obtain solutions to a number of thickness problems
for triangular wings with blunt leading edges.

In Reference 7, Haskind and Falkovich presented a series solution
for the problem of a delta wing, with subsonic leading edges, oscillating
harmonically in a supersonic flow. A conical transformation of variables

was introduced, and the problem was reduced to finding a solution to



Laplace's two-dimensional equation, with prescribed boundary conditions,
for each term of the series. If the analysis of Reference 7 is reduced
to the steady-state case, then it is equivalent to the superposition of
homogeneous flow fields of degree one and higher. In the present paper
this approach is applied to the steady-state problems of thin lifting
delta wings, and symmetric non-lifting delta wings, having the leading
edges swept behind the Mach cone, with the boundary conditions on the
wing given as homogeneous polynomials in the coordinate plane containing
the wing. The problems reduce to finding solutions to Laplace's
equation in two dimensions, with prescribed boundary conditions; The
method of conformal transformation is used to obtain the solutions in
terms of elliptic functions, similar to the type of analysls introduced
in Reference 8. Some previously known results are obtained to illustrate

the method of analysis.



I, ANALYSIS

L. BEguations of Linear Theory

The steady-state, compressible potential flow of a perfect gas is

deseribed by the differential equation
5 .
a’v: =(V§)V(-2’-V§) (1)

where a 1is the local speed of sound in the gas; a-= %L(: s with constant
entropy. If the flow is uniform with velocity V¥, in the x direction,
except for small perturbations due to the presence of a body with surface

tangents varying little from the free-stream direction, equati.ori &h)

2
ﬁ?b”-gsyy _¢ZZ=0/ (2)
the well-known Prandtl-(Lavert equation, where ﬁ =V/V\f -

A

and M o = -‘a—o' s the free-stream HMach number. (See Figure 1, showing

reduces to

the (x, y, 2z) coordinate system.) The potential ¢ in equation (2) is
associated with the perturbation velocities w, v, w in the x, v, 2
directions, respectively, and is connected with @ by the relation

P =WUx + 9, 7, .

The difference between the local and free-stx_'eam pressures is

Poboz =& [Yut f(vi+wl)] O

If it is assumed that the boundary conditions on the surface of the body

nay be satisfied on a "mean surface,® in the present paper the xy plane,



equation (3) may be written

P-Po= -0V u
The local slope of the wing surface is connected with the velocity
component W on the wing by

dz _ w

dX A
and, by the mean-surface assumption, may be prescribed as a function

of % and y.

B. Haskind-Falkovich Transformation

The Prandtl-Glauert equabtion is also satisfied by the perturbation
velocity components v, v, and w, or by a state property of the gas,

such as pressure; i.e.,
2 ,
BL-5 ~& =0 (L)

where P denotes the particular velocity or state property. In his
treatment of conical flows, Stewart (Ref, 8) applied the transformation

of variables

n

r

M
6

Vx? -Fz(yZHZT

L ' )

(2]

to equation (L), yielding

n



,f’ t+t2r& a/u[(/-/“) ]-f[ e =0 (6)

If the function P is independent of »r, equation (6) reduces to
d [ 2
2 _ - -
(M 9%.(’ﬂfﬁ]+P
and setting S :\/ﬁ}l‘ yields

Sas Saf)+ 362' 0

which is the normal form of Laplacels equation in two—dimensionél polar
coordinates. Hence P may be written as the real part of an analytic
function of the complex variable S =5¢€ 48 (see Figure 2), and
the methods of function theory may be employed to find P , subject to
suitable boundary conditions.

The Haskind-Falkovich transformation of variables (Ref. 7) is

5 = r . _L A7
Xt8Y / Xt 8y |

or

k=g 1480) [y 2 g li-sty) 2e gL

and it has been pointed out by Dr. H. J. Stewart that eciuations (7) are

equivalent to the bilinear transformation

Jtid S

€= 103



where £ = 57",(?7 . In(x, v, 2) (see Figure 3), the surfaces
S = constant are elliptic cones with apexes at the origin, and con-
taining the line 2z =0, My X +Y = (0 ; the Mach circle corresponds to
§ = 0. The surfaces 7] = constant are planes containing the line
z =0, MXty= ) ; the plane '7=0 coincides with the xy
plane, z = {, in which the boundary conditions are to be specified.
The € plane is shown in Figure L. It is seen that the Mach circle
If‘ - 1 is mapped into the imaginary axis; the right half-plane
corresponds to the region inside the Mach circle, while the left half-
plane corresponds to the region outside the Mach circle. The éegmen'b
R [S = O; | Ims / £ S , corresponding to the wing, is mapped into
the line 9 =0, A& €< b , and the reflection of the wing in
(31 =1 (ﬁ’ 37=0,/Im3f2 g’:)ismappedinto '7:0/ -béjé"ﬁ-

Here | v
_ 125y I3 pcac, b, ab=|
a= l‘f'So /’50

In equatiori (L), the transformed Prandtl-Clauvert equation, let

Pz ?5 , and assume solutions in the form
- h
¢ - r Xn (.§l 7)

- where in this paper n is a positive integer. {(n = | corresponds to

conical flow.) This yields

2 8% | %) X = 0
3 (6)32 + ar(Z Hh
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v Xy o= ¢ Haln)

d In Hn ZG‘)'H) dHn C)Hn =0
a; [T U 3/7

which is Darboux's equation (Ref. 9); solutions for H, nay be written
ht!
19 -
Hn = (j 'g}") Un (f,?)

where Un ( 3, 7) ) is a solution to Laplace's equation in two-

dimensional rectangular coordinates,

332+ o’ 0

Therefore Xn ( §, "])

Xn (9)

]
G
=
g
——
lml\
Q"Q,
\__/
A
—_
L:vx
S

2 .-
Since v Un =0 , Un may be written as the real part of an
analytic function of £ )

Wie) = U, +iVs
Uy . - U . _ 4%

9§ " om ' dq T 4§

and the method of conformal mapping may be used to find the function

W (€) (and its derivatives) which satisfy the given boundarv conditions.
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If the linear differential operator G is defined by

6 = = ¢ 9%- » equation (9) may be written in the form

X, =-§__ 6(6 - -2)(6-4)(4- ZN)U(L"?).». (10)

hti

An equivalent expression is

= " [gdy o [0 ()5 e
( n integrals)

2ntl
ir 0 Up(gm) $o , and the arbitrary functions of integration

are all taken to be zero,

In ( §,M, I ) coordinates, the velocity components are

-

Lr
2

aEICTey %o + (1= 47 )%—257-3%}<12a>

v=-Brt [g—(l ¢n")Xn t (115 “7)”“+2§”7 3—3;— (120)
v = Frn-l[__n(%'xn*’ -a—éﬂ) '1'5 %2%1} | (12¢)

The n™ derivatives of sb are obviously independent of r

3

so ‘they may be writben as the real parts of analytic functions of E.



For nsl (conical)

Util

U, (¢)
V(e
VVO(E) = whw

V4.7

W

Thus, in terms of W (&),

4
dU . 1-et) dW
At ¢) de? (13a)

d

4
v 2yd W
___.-_E./S("?LE) 64

C/ - (13b)
Wy . ipedW
SC’:—-G-— = AFE Je (13¢)

and these equations are of course equivalent to the well-known conpati-
bility relations for comical flow. For n=2 » the six distinet second
derivatives of ¢ nay be written

B f =RIR(E s Ay 2RI Fale

g_;_r * f3 Rl Fs(e) %bi = fiz = Rl Fp (€)
5t s TRIE(E) ] 3 < fy = RIF(6



and in terms of W (&),

\
= t-er £
3.“_6:2.& - ;}'—/32(11‘62)25,—0—@7
g..’:sa - -ﬁzez 3—:%7 (, BRYEIN
fe il G
dFzs | -%;er(wez) ;'{L?;f

b

a_jQ. o
o
1 Y]
Ny—
-
™
m
-~
N
n
N
\-—J
o
=
N

and these equations are equivalent to six compatbtibility relations con-
necting the functions Fj; (€). Equations (13) and (14) will be used
in subsequent sections of this paper to determine the zeros of certain

derivatives of W( €).
‘ The 1ift is

b

401 /25)"" n($,0)
L =ze°v;//uc/ﬂ’7 : p’f’o‘é(%)/ ! (,j hz %‘-
; a “?)

for a given n , where S5 1is the wing area, s, the semispan, and

mg ‘the tangent of one-half the apex angle. By transforming the 1ift



inbegral directly to ( S , 'r( ) coordinates,

// ( l’c/ra'j

| -
For a given n, u= r 9( j) on the wing, so the 1ift on the area
bounded by the hyperbolas r=r, , r:=r, and the leading edges

meX £ ¥Y=0 is

L /B(nﬂ)(rz ""'W)/Q(f)//‘f )

Assume that u has a singularity at the leading edges (say § =b)

1

(b-5)"2
near ¢ = b, 9(3) = (bg_'f))m“i" 9‘”7) F0 or 0.

of the form , where m dis a positive integer, i.e.,

The integral for 11 diverges if m 7 1, so for finite 1ift m=1.

The drag due to pressure (wave drag) is

_-Ze‘v'//uurc/xc/)/ %—-//“—‘—é‘—’(/-ﬁé;)rdrdg

and if the wing has blunt leading edges, such that near S =b,
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me--
- 2
wzrh™! /7, [ﬁ)/(!:‘j) 5 it is necessary that m=1 for finite drag.
(For the additional effect of leading-edge 'push! on the total drag, see
Reference 10,)

C. Boundary Conditions; Determination of W (&)

Wing problems in superscnic linearized theory may be divided into
two classes: (1) Lifting wings of zero thickness , where the angle~of-
atback distribution of the wing is given, and it is required to find the
pressure on the wing, or conversely; and (2) symmetrical non~lifting wings.
The thickness distribution may be given, with the pressure to be determined,
or conversely.

The symmetry properties, with respect to the =xy plane, of

¢ s W, v, and w for these classes are as follows, where A Z anti-
symmetric, S = symmetric:
43 u v w
Thin 1ifting wing: A A A S

Symmetric non-lifting wing: S S S A

The potential ?5 for any flow may be written as the sum of an even
and an odd function, so that any problem may be reduced to these two
cases.

The basic physical principle for determining the boundary conditions
is that a discontinuity in u or w may occur only where there is a
wing, i.e., over certain portions of the xy plane. Thus for a lifting
wing of zero thickness, wu=o off the wing in the xy plane, and for

symmetric non~-lifting wings, w=o off the wing in the =xy plane.
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Further, conbimiity requires that ¢ s 0, Vv, ¥=0 on the Mach cone
(the disturbance is assumed to be zero upstream of the Mach cone), A

full discussion of these considerations is given in Reference 1.

1. Lifting Wings of Zero Thickness

Assume that (w), is given as a function of x and y , and

expand the potential in the fom

¢ = f r % (57).

Then "
= () <ps 2o (5] = £lar) 3
Let
flsr) =85S i 1 8) s
n=i
Then

)= -1 4] ()
a’f) 0 .g ‘)3 | dj 0
by applying the Cauchy-Riemann equabion oUn _ _ a_-\_/ﬂ. .



This may be written
+!
8(6-2)(6-2n)(DV;), =-§ £(5) e

which is an ordinary differential equation for (Dvn) The sélution

o L[ ]
is

(0v,), = Co + (g gz to t Can§T Pn (f)

where F" ( 9 is the particular solution corresponding %o 7[,., ( j ) .
Assume that (w), is given as a homogeneous polynomial of degree m in
X and y . Then n=mn+l, and the potential is |

¢ = I’n Xh (51’7).
From equations (7a), S )i, ( f) is a homogeneous polynomial of degree
(n-1) .in ( 5 1 .‘é’ ), so Sh” fn (3) is an odd polynomial in
_ S ~of degree (2n-1); from the form of the left-hand side of
equation (16), the particular solution Pn ( § ) is an odd ﬁol:momial
in g , of degree (2n~1). The solution of equation (1.6) for this type

of boundary condition may therefore be written
_ _ 2n -
D), = Gt G+ +Gns " an

with (n+l) constants of integration Cq, (7 , Con .

dW | 2

— -

The function d€ will necessarily contain terms of the form A (o
(A = positive integer, €N ), corresponding to the even-powered terms in
equation (17); by direct substitution into the equation defining X n as

a function of DUy, , it is found that the contribution of these terms to
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,Xn ( 3,7}) is everywhere zero, so the integration constants Co, (p,7* Czp
may be pubt equal to zero, and

2n-|

3 :
(DV;)O = Gt Gyt TG - (18)

where the constants C; are all known.

On the Mach cone (§=0) , (P, v, v, and w0, From the
equations (12) defining wu, v, w in terns of ( §,7),1 ), these con-
ditions are all satisfied if

oUh) =0,
(33 g:o

Therefore the function E]—é— may be contimed anslytically over the

left half-plane by the principle of reflection. This gives

d wr/_z) = _ dW(€& :
Z?W( €) ST (19)

so DU!’J is an odd function of § s and DV, is an even function of j .

Fron equations (12) and the syrmetry properties of wu, v, and w , DU, is

an odd function of ?‘1 and DVp, is an even function of ‘)'1 s so that 32’\7
€

" is even in €& .

Let

2ty 2n+! ,
6y () 2 o = DU 1D Gn+1 h.
h C’ |

From equations (18) and (19), Gp (€) 4is pure real on the real and
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reflected wings; the other boundary conditions on G, (€) (obtained
from the symmetry properties of W(€) ) are showm in Figure 5. Since
G, (€)= RL on both top and bottom of the real and reflected wings ,

it may be continued across them by reflection; this gives

Gn ( 6 ) = Gn (é)
which contradicts the known symmetry properties of €n and hp .
Hence a contour crossing the real or reflected wings must pass into a
second Riemann sheet, and the € plane is necessarily double-sheeted;
the sheets are connected along the slits 7 =0, A< § .4. b , and

"? =90, - b & § & "a, corresponding respectively to the real and
reflected wings.

Apply the conformal transformation

€
/‘Z

1\

bd’l’?(é,,k)
(.—

D

"

i

Then the entire two-sheeted € plane is mapped into a rectangle in the
E,. plane, with corners at the points F+ K ¢ 2% K.. (See
Figure 6.) The points are lettered to correspond with points in the
€ plane , Figure L. The unprimed Roman numerals refer to the upper
sheet, the primed numerals to the lower sheet. It is seen that the top _4
and bottom sides of the real wing are mapped into the real axis,
-K < g, < K. e points &, = nK ‘J"Zﬂ'ﬂ'/\ll‘

(n,n' = 0,1/, 12, "“) correspond to the leading-edge
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points € = 1 A&, ib

Transform G, (€) to the €, plane, Gn(€) — Gn(é,) at
corresponding points. The boundary conditions on G, ( €;) and its
derivative are shown in Figure 7. If Gp ( €,) is conbtinued outside

the basic rectangle by reflection, it is found that

Gn(él+ZK) = Gh (eo)
Gn (6, +41K') = Gn(é,)

i.e., G, ( E,) and its derivative are elliptic functions with periods
2k, LiX'. The singularities of G, ( €,) must ocewr at the leading-
edge points; in the period cell _2K' ¢ Im € < 2K, -K ¢ Rl €<K
these are €, = - K, 0, "K'ZU(I, -2iK', For the 1ift to
be finite, the maximm order of the poles of G, (€ ) is (2n-1),
so the maximum possible order R of Gy, ( &) is R < én .
The boundary conditions on G;., ( €)) require zeros at the points

- Kz i K ' and + LK ‘ in the period cell; the labter points

correspond to € =R ,amdfor [(E|l 777 1

il b

|
Gn(é): O(W ]6|>>71

{

vl
and G, ( €;) has zeros of order at least (2n+1) at iAK and

the conjugate points. The use of the compatibility equations in
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determining the orders and locations of all the zeros of G r,, ( €) is
shown in the section on applications; the arbitrary multiplying constant
associated with G;., ( €,) can be deternmined by the condition that the
even derivatives of W (&) are real on the Mach circle
(é‘i"?, € = j,‘f‘.iK') by equation (19).

If u (i.e., the pressure distribution) is prescribed, then
(DU, ), is a known polynomial in § (see equation (20), i:agé 19 ,
syrmetricsl non~lifting wings, with pressure prescribed), and it is
necessary to find a certain derivative of ( DVp ), +o obtain the angle
of attack distribution supporting the given loading. The sblution for
( DU, )o contains one constant of integration, which can be evaluated

by using the symmetry properties of the velocity components.

2. Symmetric Non-Lifting Wings

Consider a thin wing, symmetric about the =xy plane, and assume
that the velocity u (i.e., the perturbation pressure) on the wing is
given as a homogeneous polynomial in X and ¥y of degree m . Then

n=m+41, and-

Wy = 5r""4.(5)

|
where fn (f ) is a given homogeneous polynomial in ( 3i 'E" ), of
" degree (n-1). By equation (12a)

(1-¢) 3—2—‘-’1+§-(:+31)x,, = £, (%)

S0

Xo(5,0) = co(g—}'—)nﬂ-')n(i"g‘

«)" 5 £.(5)

ds



-19 -

on the wing, where Co is a constant of integration. The real part

dW

of — on the wing is

d€
DUL), = GG t+ari o +as5")
t(botbs s+ +hen §°")
+(ds+d;s 33+"‘ + dan- jzn-l)

where the a A and b, are known constants, and the d; are constants

ol integration. Associated with the odd polymonial, the function

dW 22-1

'a"'e‘" will contain terms of the form € . A< n , and
it can be shown directly from the equation defining 7(,-, ( § ,'r]) that
the contribution of such terms to Xn ( 3 ) 7]) is everywhere zero.

Hence put d, = d3 = '** = dyp-; =0, and

(DUn )0 = Ca (ﬂo + &4, SZ +'~1'612n §2n> | (20)
+ ( b szﬁl t e + bap Sm),

The conditions S?S, u, v, w =0 on the ldach cone give

EZW( €) py ()

dW

' so by the symnetry properties of u, v, and w, —— is an odd

€
function of E « Let

n+Z

6 () = n = Gn Hibn.

dezmz
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By virtue of equations (20) and (21), RL G, (€) =0 on the real and
reflected wings; the boundary conditions on Gp (€) are shown in
Figare 8, The function G, (€ ) may be continued across the wing slits

by reilection, which gives

o ———————

Gn(g) = - Gn(é)

and this contradicts the known symmetry properties of g, and ;hn .
Therefore, as in the case of a lifting wing, the € plane is a two-
sheeted Riemamn surface, connected along the slits 7 = 0, A £/ sl ¢ b,
and G, (&) may be mapped to the €, plane (Figure §) %o obtain the
solution to the problem. The boundary conditions on G, ( &) and ibs
derivative are shown in Pigare 9. If G,( €,) is contimued outside the

basic rectangle by reflection, it is found that

Gn ( € t2K) = Gn(€)

G, (€.t 4iK) = G, (6)

so Gp (€), and iherefore its derivatives, are elliptic functions with
perﬁ.o_ds 2%, b ix' . The singularitics of Gp ( €, ) must occur at the
poinbs corresponding to the leading edges of the wing; for finite drag
the maximum order of the poles of Gp ( &,) is (2n + 1), so the order
'R of Gp( &) is R £4(2nt),

for |EI>>71

S{-—:V\I-‘t—)l‘]’_l?_:g_-f—u:

de = € €3

where the b} are real consbants; so
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/
6o t61 0 be) 17

and Gp ( €,) has zeros of order at least (2n + 2) abt the points
€, = 114 K" in the period cell.
Irf (w )o (i.e., the thickness distribubtion) is prescribed, then
( DVp ), 1is a given polynomial in S (see equation (18), page 15, .
1ifting wings) and the derivatives of ( DUp )q must be found to obtain
the pressure distribution. As in the 1ifting case, the solution does

not involve awmy constants of integration.
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ITI. APPLICATIONS

A. Tlat Lifting Delta Wing (Conical)

Consider a thin lifting wing with the boundary conditions on the

wing (W), = W, (constant). From equation (15)

72 (§) n=1

\l‘

gS n=1, ¢ =ri,.
0 .

n>1

H

and the imaginary part of g‘g‘ on the wing is

o
]

order of zeros of G; (€,) at Xt ik p,z1
. t

p, = order of zeros of G: ( €) at *rK.

P, = number of other zeros of G: ( €)), if any

(multiple zeros counted according to their

multiplicity).

"Then
R = p, +2p T 2Pz & 8
2pt2p. 2 8

50 Po =0, P = |, P =3 , R=8 » and the elliptic function satisfying
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all the conditions is

! _ dné,
GJ(C‘) = C snt €, (n*€

vwhere G 1is a real constant, to be determined. Integration gives

2 z
Cn é‘ _Sn é|
G, (&) = - ¢ SnéE, cné€,

G(ZW ) 2 ¢ ,
- - b1tk € -2E(e)] +ic,

Q.

2 ’
and imposing the condition that D V, =0 on € = A-"? (Mach ecircle)

gives
W

T Bb(2E-KK),

 From equations (11) and (12a) the velocity u on the wing is

w= Yo (-k)  _ 1+§ 1
B VR (ZE-RE) N (g-a)(65-§)

whieh is in agreement with the result given in Reference 8.

B. Quasisteady Pitching Wing

The boundary condition on the surface of a flat wing pitching

about its apex with angular velocity q may be approximated by ( W)a = —?X,
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Fron equation (15)

i

5 (§) = —2—%-{/%-5’7) Y.

"
(Y
3
-

™

S0
¢ = f’27(z

and

(%), = —%lgl(l-éz).

Fronm equation (1b),

dfs _ 0fn o3 _ 1,42 2y slre
_EZ}: =52 _AW Lif E(tE ) G, (€) (a2

ow

By symmetry, 37‘ = 7[23 =0 on l€ =1 , and bj the boundary
conditions, f23 = 0 on the real and reflected wings. It follows
from equation (22) that C—'2 (€) =0 at € =11, so C—’z( €,) has
zeros of order at least one at the points <+ K/2 , T K/Z —2iK
in the period cell. Let

p, = order of zeros of Glz( €) at -X t ix' p,Zz1

p, = order of zeros of Gp (&) at Tk K' pp 25

1 K s gl
order of zeros of G, ( €/) at * ’l'?f"' iz“‘Z/‘K P3 z1

o
1)

!
muber of other zeros of G, ( € ) (multiple

(]
)
1

zeros counted according to their multiplicity).
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Then

R = Po +2p t2p, +4ps €16
ZF;‘?"ZFZ t4ps 216

50 IOO = O, p = /, PZ = 5, F3 = /,REZG. The function satisfying all

the conditions is therefore

22 Y\
62'(6') C cfné,(/ b(/jﬂ é,) ,C' -eal.

sn¥e cnte,

Integration yields

€, +k'sn'e, %, ~sn'e
C’ 2 cn €, cn € !
G, = 3’(5 ) sni€ cnié€ +40-K Sne, C”é' (23)

and from equation (11)

(30 - - SE-R 1+ @ (5-a)(B-§)

onthemnsr(’q 0t 6{<S£b).
- Integration of equation (23) and application of the condition

D4Vz = 0 onég = §+il yields

= é@ /fl//_(_' 1 |
ﬁ (1= k) k2(1- -3k') K’ //«2 bkti) E'

50 ?(Z is known., In terms of (x, y, z) coordinates, equation (12a) yields
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for the pressure coefficient

ap __4kgx 2m¢ - yY/x*
9 Ve -y kKK +(1-2kPEk)
(o= 2IF

|1 K

Wy

as given in Reference 11.

C. Elliptic Cone (Conical)

Consider a thin symmetric wing, with the pressure specified as

constant on the surface; (U), = Up. Tt follows that N = ] (conical)
and
= - L ‘ 0% — L U
)y = cof5-+) +us (Z}—)O~Co(f‘/‘jz)’f’ 0
By symmetry, v=0 at € =11, and therefore (g—?) =0at €=11.
-

Hence Cy = - 50

) = Fls+g)  acpied
U

—_—
Q-
K
S
1
[
——
Cor
N
{
—
>
({8
LA
I~
Us_

Ha
}
S

MO 2‘ -'{:
2 - Yo (g) b

on [€] 21, v =0, and by the boundary conditions R G, (€) = 0

on the wing. But

a_
=~

|

_ W v _taiitel) G (€)
- 5 iy = rp! )

o
[\
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and it therefore follows that G, ( 11) =0. Hence @, (&) hes

zeros at the points € =1 K/Z) t Klz -2iK' in the period cell,
Let [, be the order of these zeros, let [Pz be the order of the
zeros at €, = L il l, and let [0y be the mmber of other zeros, if

any, of Gy (.€). Then
R = 4F1+ZP2*T% < |2
4p, + ZPz z 12
Przl, Rz4, po20

50

'FO :0; Pl=1; PZ:4I R:/Z‘
The elliptic function satisfying the conditions is therefore

| - b*dn’e,

(
Gl \é') Sn3 é’ Cn.? 6[ | (21{.)

where Cl is a real constant. Integration of equation (2li) yields

I T I
N ricbk| k.)[(f ()& t LEE(E)

dne (snzé' +/.(,mz&')]

T SnE Cne

3
and d is determined by the condition that RL C.’__Y-;T = 0 on the iach

cone (é, = §, T;-K'): de

Ku, 1
C = TR-R2 (I+k)K-E
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From the equations for Xn and w , it is found that the surface

slope is

c_f;-_-i(ﬁ),_éﬁ'_, L 1
dx Vo) 1+k  (+K)K-E ¥mZ -y’

and the surface is an elliptic cone, in agreement with the result given

by Squire and others.



Ao >

cn(uk)

dn (4, k)
dz /dx
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Iv. LIST OF SYMBOLS

Coordinate in £ plane, corresponding to wing leaéimg edge.
Anbisymmetric.

Coordinate in € plane, corresponding to wing leading edge.
Real constant.

Jacobi elliptic function, argument u and modnlus k.
Operator %5 s wing drag.

Jacobl elliptic function, argument u and modulus k.

Airfoil surface slope.

Complete elliptic integrals, second kind, moduli k and
k', respectively.

p——

fi i fi
A second derivative of (f) in (%, y, 2).

dZnT'TN dZn"'ZW

or

T 7ntl RRFET e
de?n dézmz

Reagl part of Gp.

Imaginary part of Gp.

Imaginary part.
V-1

Complete elliptic inbtegrals, first kind, moduli k and
! , respectively.

\/1 - z/bz'
T 7

Wing 1ift.



M 0 Free-stream Mach number,
Mo - Slope of wing leading edge, in xy plane.
n Degree of a homogeneous flow (positive integer).

(subscript) Value on wing; constant value.

F Local static pressure.

Po Free-stream static pressure.

i Order of a zero of an elliptic function.

?, Dynamic pressure; angular velocity of pitch.
2 o\ !

ro xe -gtryiezy

R/ Real part.

R Crder of an elliptic function.

S Wing ares; symmetric.

S

] . Wing semispan.

| -1
3 7/%77“

So Coordingte in :f Plane corresponding to an airfoil
leading edge. ‘

. sn u, k) Jacobi elliptic function, argument u and modulus k.

w+id

Perturbation velocity component in x direction:

<=

U +iV ; fres-stream velocity.

Q-
-

Perturbation velocity corponent in y direction:

U, +iVh

W wtiw

|

s os 8
<
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w Perturbation velocity component in 2 direction: &é—é
Z

X, ¥, Z - Cartesian coordinates.
8 T
€ §T4m
6| _Sa + ';'174

3 setf

T

y Bz

xtp)y
. ' - y
6 f'an (/z) 3 operator 3 3%‘
- xX/r
E’o Free-gtream density.

¢ Perturbation potential.
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V. FIGURES
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