SOME INVESTIGATIONS IN THE

BUCKLING OF THIN RODS

Thesis by

Wallace D. Hayes

In Pertiel Fulfillment of the Heqguirements

for the Degree of Aeronauticsal kEngineer

Californie Institute of Technology
Pasadens, California

1943



I wish to teke this opportunity to thank
Dr. Harry Betemen for his very instructive sssis-

tence snd suggestions.



\CT

ABSTRA
2 non-uniform, streight rod

= uni-

=3

The general csse of
investigated, ancd several methods

under verying exial load is
of soclution are indicated or described., The case of
form rod with constant exiel load is investigated by means
of its deflection curve, and the direct determination of the
e S

stability with genersl end restreints is made possible by the
The correlstiocn between the ena fixities of

use of & graph.
nd ite beheavior as a bean is given.

a rod =



III.

Iv.

Page
Introduction 1
Genersl case with pin ends 5
Development of the equaticns 4
Methods of soluticn 7
Uniform rod 18
Geometry of the buckled rod 19
Stability equations 21
Correletion with beam behavior 24

Elestic end conditions in the generel case 27



2.

R

REF

1
=4
eal

ENCES

Dinnik, 4. N., "Design of Columns of Varying Cross
Secticn®, Trans. Am. Soc. lech. Eng., 51 (1929) pp.
105-114, znd 54 (1932) pp. 165-171.

Dinnik, £. N., and Lokshin, A. S., "The Latersl Bending
of Bars Limited by Surfeces of Seconc Order®, Phil. Meg.,
(7) 10 (1930) pp. 785-808.

Timoshenke, S., "Theory of Elastic Stability", McGraw-
Hill, 1936, New York.

Howard, H. B., "Stresses in kLer plene Structures®,
Pitman, 192%Z, London.

Niles, &. S., and Newell, J. &., "Airplene Structures",

Volurme II, Wiley, 1938, New York.



SOME INVESTIGATIONS IN THE

BUCKLING OF THIN RODS

I. Introcduction

Quite an extensive boay of work has been cone in recent
times on problems of the buckling of rods. Dinnick, Timoshenko,
ancd others have developed the theory for rods with siwple end condi-
tions that are non-uniform or that have simply distributed axdel
loads (Ref. 1, 2, and 3). MNr. H. B. Howard has given a graphical
methoa for the solution of a non-uniform rod with o constant axiel
load and pin-ended conditions (Ref. 4). However, with = few excep-
tions such as the last reference above, the discussions are limited
to cases where the parameters of the problem are connected by aznslytic
functions, and very litile has been salc of the generel case., Cases
discussed have mostly been limited to those with simple end conditions,
and the author has been unable to find an explicit solution of the
uniform rod compressed by a constant axiel load both of whose ends are
restreained elastically, the amount of restraint not being necessarily
symmetrical,

It is the purpose of this paper to discuss znd to present
practical methods of sclution for the general buckling case, and to
present in a useable form the solution of the simple rod with elasti-
cally restrained end conditions.

In the analysis following, the assumptions are mede thatb:



The materisl in the rod consicered is elastic.

As indicated by the title, the rod is thin enough to buckle

belcw the proportionsal limit of the materiel.

Conventional beam theory may be applied.

Deflections due to shear are negligible.

No side loads or moments independent of deflection need be con-
sicered. I.e., no "beam-column" sction. The column is initislly
straight.

Buckling is uniplenar.

A1l end conditions are position-fixed (y = C at x =0, x =1).
Ena concitiong are either pin-ended, or free to rotate; direction-
fixed, or unable to rotate; or elastically restrained. The
latter means that there will be a restoring moment at the end

which is proportional to the sngular deflection.
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II. General case with pin ends

The column to be considerec lies between the points x = O
and x = L, and has variable stiffness, axial loaaq, and for the most
generzl case, lies in a resisting medium. The shear considered is
that perpendicular to the unbuckled column, the x axis. Following
is the notstion used:

y{x) deflection of the rod

P(x) axizl lead

V(x) shear

¥(x) Dbending moment

BI(x) stiffness

k(x) constant of the resisting medium
P1(x) distribution of tangent axial load
Ps(x) distribution of parsllel axizl load

also P_ = P(Q)

o]

v, = V(0)
& =p] +P;
ax

The bean convention taken is such that positive bending
moment, shear, and side loads are those that correspond to positive
vaives of the corresponding derivatives of the deflection.

Distributed tangent axial load is distributed axial load
whose direction remains tangent to the directicn of the rod at the

point of application. Distributed parsllel axisal load is distributed



axial load whose direction remains parsllel to the direction of

the unbuckled rod, the x sxdis.

The aistinction between these types

seems not to be commonly recognized, but is essential.

:> ~~—— P+ dP

' V+dV

Equsting vertical forces and moments in the above gives

the equations

_Ql_: !QX_“
.d_&: 7 QX >
= =V-Pl. (2)
Differentizting (2), substituting (1), and using the relstion
aP _ ! 1
fd‘}E"Pl‘FPZ:
LU, pEysp! Wt+iy=0 ()
& dx



The conventional beam equation holds

2
= g1 &4, (4)
QX

Cowbining (3) and (4), dividing by EI, gives

. _CG2ET .

T 3 P+12 -2 ;

‘%‘f} 2d1<.?gmld3 ax ay+2gg:z;+_ls.y=o (5)
ax™ ax ax EI dx Bl dx EI

To fina out whether a thin rod will buckle uncer given conditions,

it is necessary to solve the equetion abeve with the boundary

conditions
2
& s I =Y dx? ’ ax 5

at x = L, y = C.

. . d ; P - , -
If at x =1, ~f§ = (0, the rod is in e criticel state. If y every-
ax

4 2
where hes the same sign as the initisl slope, and if‘gif et x =L
ax
has the opposite sign to the initial slope, the rod will not buckle.
. Lo f 4 .
In most practical cases k = 0, ana P{ =G, P; = 0, or

P{ = P3 = 0. In any of these cases a great simplificstion of the
1 ¥ P

equations governing the deflection will result.
Case 1. k = Pl = 0.

In this case (1) integrates to V = V,, and equating moments on the

rod as a whole (pin-ended case) gives Vo = 0. Also P = Py, and



M=~ Pyy, (6)

which combined with (Z) and (4) gives

F¥ P
—+2M¥=0, 0r (7)
ax L
dz y P [e}
—=+—=y=0 (8)
axe EI

Case 2. Lk =P; = 0.

In this case (3) and (4) give directly

&M , P
e M = .
>+ =0 (9)

Case 3. k = Pi = Q.

L3}

In this case (1) integrates to V = V,, end equating moments on the

rod as a whole (pin-ended case) gives the relation

-

L L b4
l ] ] __1:, d ] ~ {
- 50132 y ax =2 50 & gg PI(§)af ax (10)

Equations (2) =na (4) give

Py, dlog B Py Par_ Yo (11)
.3 -
Cx ax ax EI dax EI

and differentiating (2) and substituting (2) gives

2

s M P oM. P . P
oM pal P y-_Hy (12)
@& P dx EI p °



Equations (11) and (12) are not truly non-homogeneous, due to the
form of relation (10). In the analysis of a fixed-free column
buckling under its own weight, not here considered since the upper
end 1s not position fixed, V5 = 0, simplifying the equations.

To find out whether z rod in one of the above cases will
buckle, it is necessary to solve equation (7), (9), or (12) with

the boundary conditions

atx:o,z\azo,g—i‘i«#o,

If et x=L, M =0, the rod is in a critical state. If i everywhers
has the same sign as its initizl derivative, the rod will not buckle.
No attempt will be made here to analyze any of the analytical
cases; the reader will find interesting examples of analytic cases
in Reference 1, 2, and 3. Methods of solution will be indicated
for cases where the parameters are not analytically known but ars,
say, given by curves on graph paper.
Metaods of solution of the buckling problem may be classed
into several types:
1. Graphical Methods. The only practical graphical metnod available
is based upon the polar gresphical methods for beam columns and may
be applied to cases 1 ana 2 szbove. This method is given by H. B.
Howard in Reference 4 and proceeds as follows: The rod is considered

as a beam column with the boundary conditions ¥ = 0, %% #0at x =0,



solved graphicelly considering P/EI to vary stepwise, and the
stability found from the value of M st x = L. An excellent American
exposition of the basic graphical methods for beam colums is to be
found in Reference 5.

2. Energy Methods. The simplest forn of an energy method, the
Raleigh method, consists of zssuming a form for the buckled deflection
curve, and equating the column shortening energy to the totel elastic
energy less that for the unbuckled columm. This method gives guick
estimates for criticsl loads and is aeveloped by Timoshenko in
Reference 2. Assuming more genersl forms for the deflection curve
with linear parszmeters incresses the accuracy, and involves haleigh-
Ritz methods. None of these energy methods are based on the deflection
equations derived above.

3, Method of Power Series. In this method the variasble coefficients
of the aifferentizl equation considered (5, 7, 9, 11, or 12) are first
expresseq in polynomial approximation by standard stetistical fitting
methods. A solution in power series fitting the appropriate bounds
conditions is obtained (for equation 5 this involves evaluating two
independent solutions at x = L in order to fit the condition y = 0
there). Buckling of the rod will then depend upon the vosition of
the first root of the power series obtained by cividing the series for

_.21 i
9;5 or M by its first term. This series will be of the form
a

l+alx+ 3.2}{2 +8.33(3 veeee ZO, (15)



and will have an infinite radius of convergence (be =n entire func-
tion), due to the properties of the differential equation. This
latter property peramits the expression of the infinite sums of the
inverse n'th powers of the roots in terms of the coefficients of

the series. Thus, if ry are the roois,

:Z: r§4"= -2

> rif = - 2e (14)

Z I‘{s “&i + 5&1“2 - 53_3

ete.

Let Z ri“’n = E,. For n sufficicntly large, the first term will

be dominent, snd the first root desired may be approximated by

-1 _
I‘l = (f\‘.n} n (15)

The proper expression for Ky is obtained by the methods of symmetric
functions. This welhod 1s apt Lo be very long snd onerous.

It shoulc be noted that for egustion (11), the soluticn will

come out in the form (bouncery conditions are y = gﬁg =0 at x=0):
ax’
which with reletion (1C) gives
L
Vo = - T (17)
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which will give y explicitly. Eqguation (12) may be treested similarly.
4. OContinuous Numericsl Solutions. The equetions may be treated
by sny of a number of standard methods for the numericsl solution
of differentiszl equstions.
5. Ritz dlethods. In = Ritz method the varisble y (or M) is ascumed
te be of the form

n

y= >, civilx) (18)

i=}
where the ¢j are paremeters to be determinec, and the yj are a finite
munber of functions which must satisfy the boundary conditiens but
must not interfere with the freedon of the other end conditions and
ere chosen accorcing to the judgement of the person using the method.

£ subsidiery conciticn must be specified to insure 2L Z0atx=0

ax
¢
22: ciay = K, any constant. (18)
i=l

Letting the differentiszl equation be expressed in the symbolic form

o[y] =0, (20)

L
Z g 5 0 [Yi] v f{x)dx = A 2 (21)
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where f(x) is a welghting function which way be unity and which is
at the discretion of the anelyst, and A is a parsmeter whose value
is not importsnt. Equations (21) may be solved for the Ci, giving
en approximation for the function y (or of course M), which may be
plotted to investigate its roots. For equation (5), of course, the

2 .
roots of éwgiare investigated.
dx
6. lethocs of Successive Approximation. These methods fall into =

few subclasses, which will be consicered separstely.

(a). Hethod of integrazl equations. This method is applicable only

N$]
S

to equations (7), (8}, or (12). The substitution is first msde (in

the cese of equations 7 or 9), assuming P never venishes,

£

= jd8, where G

1
o
o
¥

i
o

Al

Cute
Y
i

e
o
jn

@

]

9]

o

.
[
pe
i
g:"i

i N )
:1" tae) S =0, (22)
where p(@} = éf;- = Qo.:%iﬂébj.. (23}

The function K under the boundary conditions saticfies the integral

equation
6
4(g) = A sin 6 ~ g sin(6 - t)plt)ut(t)ct (24)
0
Thie may be solved by letting



where

12

H(0) = lg(6) + M1 () + 4p(8) + wevewr ,  (25)
Mg(Q) = 4 sin ©
e
(8 = - § sin (8 - t)p()i(c)at (26)
0
e

]

) iig0) [ 2 (6)etn(o - 1) - p(t)cos(e - v)] at

If this solution is sufficiently rapidly convergent, it may be plotted

to investigate the roots. For equation (12), equation (22) becomes

! ai | . :
Z@g + p(e) o Tu=- q(e)V,, where

Pt )
Q(g) = %ﬁ_ R and eQuatiO’n (24)

oy - a(@) dlos .

becones

e
4{(8) = 4 sin 6 - 5 sin(6 - t) [p{t)fﬁ’(t} ~ 2Voq(Q)cos t + voq(t}] at.

C

This way be solved similarly, but seems quite troublesome.

(v).

Heauction of equation to first order. This applies only to

equations (7) =nd (2). In equation (22), a solution is assumed of

the form

(e) = A(8) sinl_@ + 8(@}] , such that

%%.: 4(@) cos [G + 8(9}], with the boundery (27)
d

conditions 8(0) = 0, 4(0) = u*(0).



This leads, from equetion (£2), to the conditions

o

"sin (6 + 6) + £ 8" cos (8 + &) =0,

A' cos (6 + 8) + pL cos (8+8) - £ & sin (6 + &)
which give AY + oA cos® (x + &)

pA sin {(x + 8) cos (x+ &) - 48 = 3.

The zbove equations are solvable under the boundary conditions, leav-

. % i .
ing, since A# 0 from Y £ 0 at x = 0,

Thieg first order non-linesr ¢ifferenticl equstion ma .y be solved by

. o S i~ [ ... b A - o - . - % ~
standarc aethods for numerical solution but is very essily solved

r
]
P

@©
St

i

(@)
e
PN
Ay

o
St

\ 1 { vooas ST .
Sp41(8) =%} plt) sin z;[z + én(t}} dt

The function A{g) has no roots, so thé first root of #(8) will occur

&t

s

ubstitution z = tan (6 + &) changes (28) into

3
ey
e8]



~

RIS _— Ty o - o oy - e

which has z = § at @ = 0, can bs solvad to about 2z = 1, transforae
o Ty - 2 o P o + ot

to the equation for 1/z, solved to about 1/z =k, transformed back,

™y ot VloY v whan N Mea

The first root of M(8; will occur whea z azain resches 0.

fc). Hethods of Iteration. As these metiods can be resdily used

1Y

k4
while when k # 0 2 method of includinz the k tera must be devised.
It is assumed that the proportionsl rslations between the various

axial loads is fixed, so that they may be expressad

]
H

A

|

e
i
T T 3T T
e
ford
"
Pty
&
X

o

Bi en

it

1o |

«}
lo

J

where M 1s a parameter which will determine the eritical losd.

Then the iteration process to be uced may be expressad
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|3 < B 41X
EI($ ) o+l

e
e
e
i
oo
e i
e
N
i
et
fo g
)
]
P
c+
P
ﬁ‘
£,
“
PN
(o]
R
S

9

he conditvion yp41(0) = ypa1(0) = 0. The iteration

£
E\MJ .
[¢]
i
W
o
I3
‘;.J-
141
bty
}.J °
{0
w
fan

is staried with an spproximstion to the deflect

'.J.
o]
&
Q
&
g4
<
(0]
A
o
A~
i
-
e
2
o

ey
L
\" “y
[
w
n
=
}-w-‘
[
Q
5
‘.“
4]
¥
L
[
-
o9
w
o
%
}.,.l' 3
]
oQ
et
Ly
4]
+3
@

is no degemeraty. This acthod
will yilela any desired sccuracy, =ud the Raleigh method (Energy ideth

will give a very zccurste value for M from s reasonably accurals

deflection curve frowm the itsration.

above. Eguztion (11) may be expressed

Loar £y = p(v, - P 38)
&y dy?} Pie - & (s6)
1 L,
whence letting EQn = - i’i}gi,thx’ (87)
the iteration 1s given by

ods)
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X, $ i
Yo+l = l“n+1{--n+w + §3 ,ch_:j_), (v, - p Znyasag (58)

whers An+1 must be chosen suc Ecuation {12}

o
ot
5
ot

&t

o

<+

ot
~—~
A

i
[}

may be treatsd similquy? but 4, must be integrated in order to {ind
Vo, s and the use of equatioa (11) is much less troublesome.
Discussion of thg‘ﬁethods. Methods 2 and 6c¢ are the only uethodls
which yleld criticsl lo=as directly. The other methods only deter-
aine woebaer & rod is stsble or unstsble.

sethods 2 and 5 do not lesd to exact czleulaitions of fhe

problem, the other auethods sll giving increasing sceuracy with in-

£

crease of labor while ia wmethods 2 anc o larger nuwbers of sssuus

~ v T 1. - N g S A8 T g tee e - ~ o
prececed by dr. Howard., Method 8b is dus o the author alone.
T ke G e S o s v ORI I ) s ERS B
Metaccs 1, 8a, =ana 8b may be appliocd only to the simplifisd

o

In practiesl computations, if stability of one of the siumple

[
m
o]
¢}
oy
I,.J
N
ct
(e}
(o)
[
(
o
<
[

tigeted, methous 1 or &b can be applied very

rapidly. TFor sny csse, method 2 l¢ very rapid in its simplest form,

probably be best.
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The effect of discontinuities in the various paramebsrs

snd the effect of discrete

]

axilsl loads and side restreining forces
woplicd in the span of the rou must be considersd. Method 1 implies
in the practicsl plotting the approximstion of a discontinuous ejuiva-
=n¢ 15 thus unaffected by discontinmities. HMethod 3 will

a0t work, while the other aebaods will, it being necessary to con-

it ' 1 et it At agprela oevace tha
2oration by parts of the various integrszls scross the

)
p)
47}
(¢
]
ju
o
Su b
fa
p-
iJo
o
=N
(6]
0
fte
3
&
2y
ot
Frgd
Ly
O
O
w

5 and 6, =znd to stop snda restzri the

~ - -

solution of method 4 with new boundary conditions at a discontinmuity.
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ITI. Uniform rod with elastic end conditions.

¢

The case now to be considered is that of s uniforn rod with

no forces or moments on it except at the ends, with the two ends

hel

position fixed and elastically restrained. The deflection curve
is set up in coordinates thst simplify the geometry without originsl
reference o the location of the ends of the rod. The followiag is

the notatlon Iintroduced in this section:

2 colum fixddiy

i

oM

o

g angle of roa at ena with unbuackled position
L gdistance of end from origin

N oruinate @bt end

i moment a2t end

K coefficient of end restraint = U/
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_Ll"Lz

€ L, ,@=91+92

The genersl solution to equation (7) with constant stiffness

is
y=L+ Bx+Ccos £+ D sinE, (29}
d d
Translating and roteting any solution will bring it to the foru
- bl LI
v = SO cos £=, where (40)
o
EYT
;La:‘f, and P =T ==
.é.&o LQ
which with the definition foryc above gives
- CWEI
P o= = (41)

4
~
v
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y = &, cos iqT (40}
o
iy SoM
& = . 20T g5p XN (42)
ax Ly Lo
2
2y 5o W x T
d‘g = - 02 cos (43)
OX LQ Lg}
= (% -
_ (44)
- - é
bz = ﬁﬁ - <‘E}%)~
. 5,m Iy L,W
g = (sin sin )
L I L
o =0 C
by . o« €T
8 = =2 sin —— cos (45)
ey & [+
1Y 7= - ke - L
JEN B S )
& &
Ly - L) § Ja] L.m
= §, cos (kg R~ Z9(cos “A_ + cos 2
2Ly 2 2 2
oW
= §, cos 5:L=§l - CO& =) {46)
Combining (46) =na {47}, there results
Lo _ 2« sin «W /2 or
1) 1 - cos oW/2 °’
o w
LS = zmyT cotye L. (47)
O -

The significant point zbout expression (47) is that the guantity

W
fete

expressed is independent of the quentity € , which is z neasure o:
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the asymmetry of the rod. The relation will hold for any bent
compressed rod irrespective of the stability if c¢ is considered the
ratio of actuasl to the Euler load for a pin ended rod. Equation

(47) is plotted in Figure 1.

/ 3 =3 v Lyw
p:mzé‘é(cgﬁimcesﬂﬂ
L L L
- 25, 48)
p = 0 sig 2W gin £ (
L 2 2

From eguations (44),

6 o~
8, = =2 ['\1 * sin Lt _ 2 sin ¥ gin -‘i—zl
L Lo 2 2
§ LW e
3% =£["\Ta sin 28 4 5 iy BT 45, €T
L - 2 2
From equstion (4),
My = - Elfﬂ‘éc cos 11T
Lo Lo
(50}
. EIm & L, W
11“12 e ..__..i.j ’g- co .—i..‘.;g
) o
From K = /0,
1. L
. - cos "1,
i{lL - ’n X E:Q
- T -
Bl mwosin AN L2 sin K osin €T
Lo 2 z
. L, (51)
K, L - mia"  cos T~
EI L.AT P
aT €T
(1L sian + 2 sin o 7 sin =~
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Expressions (51) may be expressed

., Yem €T .. YT . em
KL -7 c(vae'Lz?aacos - - sla 5 sin = )
B Y™ 2l Yeu €T c T
M Ve (sin >~ cOS —— + COS sin 9) - 2 sin Y= sin =
2 P 2 2 e 2
— o
Vo YT €W . . yoT . em (52)
KBL N -7 CLCOS 5 COs ——2&- Sin 5 SLd =
EI = e
TMye (sin Vel cos €M _ oo {E\’“ sin &) + 2 gin YT 5 €T
: 2 2 2 2 2
or
KL M'c (cosyeM + cos €M)
£l ( /e ) cos €M) T (sin Yo T+ sin€W) + sin VoW sin €T
(1 - cosyeW)(1 ~ cos €M) —myec (sinycTi+ sinéW)+ sin oW sin
(53}
. W -
Kol M ¢ {cosye T+ coséem) o
T .
EL (L ~ cosyeT)(1 ~ cos €M) ~TyC (sinyeW- sin €T) - sin Ve sin 1T

Equations (52) or (53) umay be used for computstion. Since € is only
& measure ol the asymmebry, it is desired to eliminate € 1o obitsin ¢

in terws of the end restraint coefficients. This may be done by =

by

graph, and such a graph is preseated ia Figure 2.

If Ky = 0, the asbove reduce to

e e
BI mye eatl/é"ﬂ"m 1

(54)

KqL - . ar
T = -mye cot LT (55)

&t

EI



23

If X = o,
Kib _ l—»'ﬂ\/g cot, Yo T (56)
By pen LT I
"m/" 2

The equations (54), (55), and (56) above are plotted on Figure 3,

r the

¥

and correspond, respectively, to the intercepts, to veluss o

, znd to the asymptotes of the curves on Figure 2. They

(]

o

!».Jc
]
[t}
o
o

5,
33

are the formulas for a compressed rod which is, respectively, pin-
ended at one ead, egually restrained at both ends, and rigidly fixed
st one end.

The corresponding eguatlions for rods with negabive axisl loeds,

or with compression, way be obt 4 immedistely from the sbove by the
substitution y¢ = iy-c¢, whers -c¢ 1s the ratio of the tensile axisl

3

load to the buler compressive loac anc 1 is the imaginary unit. The
resuliing equations have hyperbolie funciions in the place of trigono-
metric, =nd no imaginary teras are left. It should be remembered that
the coefficicnts of end restrzint may be considered negative.

[

Wiith the information on Figure 2 (expanded 4o cover a more

exbensive range) critical loads for contimuous beam columns or systems

~

of rigidly jointed columns may be very easily investigated., A loadin

4]

on the system 1s assumed, the c¢'s for zll the units are calculated on
the basis that 211 are criticel. Then considering the units ia the
same order as they would be considersd in & truss snalysis for a system

of mewbers, the necessary K's for criticality are calculated starting
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at the ends. At a joint, the K given to the last unit consicered is
minus the sum of the K's calculated there for the other units. For

a simple continuous column the procedure is obvious. The system will
then be stable or unstable depending upon the stability of the last
member considered. The suthor belicves this method will be very much
simpler than the three moment eguation metnod or Lundquist's method
described in Reference 5.

The coefficicnts of end restraint may be directly correlated

’J'

to the end moments and slopes on the rod when it is lozded as a bean

without axial load under =ny beam loading condaition, with the given
end restrazints. Let the end moments on the beam with the ends rigidly
ized by My and iy, the end slopes on the beam with the ends pin-canded

be 91 and 6, =nd the end moments and slopes on the beam with the ends

elastically restrained by My, My, 61, and 9;.

M;zl\:‘_} 6,20
4 4 M, = M, 0, =0

M, =0 e, -6,
= 2 M2 =° €. =6,

M|= n|m_! e|: (‘—P')?A
E; fﬂ My = “1933 .= (\-p) 6,



m, - L1
The queantities ny, ny, pi,

T are de

o

§ &n

Further let kl =

T ] -
will hola

and will not be derived:

and ps
fl.x 1o}
g = M/l r
X
;%?3 Kz = §§£ o« Then the fF
=L Bl
come sasily from conv

, all of which

uny + ng s

are cefined sbove.

&g + 1

2112 + qnl - ”Zégl + 4:} + Zrkl
2t g (kg + 4i(ks + 4) - 4
2 2
2rp, - = B, (ky, + 4+ £
P V& 91)
2r - 1 4(ley + 8)(ky + 3) - kike
S Boolk, +4+20)
% - 4(ky + 8)(ky + 3) - Lilk,
2
30, =4 21 - or P2
(L-mp) + 2 (1 - ) 1-p
3ng _ bz %
(L -mg) +2 (1~ ny) 1-ps

25

The quantitie

~
o
o0

et

(61)

13



26

These equations may be used in the experimental determination of
coefficients of end restrsint of a rod by loading it &s = besm und

measuring either the end slopes or end moments.
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IV. Elastic end conditions in the general case

Vhere no simplification may be made, egustion (5) holds as

*

before, but must be investigated under more complex boundary condi-

tions:
2
atx=0,y—O,EI—;-=z{l #Q,aud
Gx*
et x =L, y= 0.
2
The stability depends upon the relative values of EI &L ang
% & d}."g

7 d" . 32 . d
- K =L g¢ ¥y = L. The condition EI =—i = K, 2L at x = L may be

substituted for the condition y = O there, and the stability investi-

gated with reference to the roots of y. Methods 2, &, 4, 5, and &¢

mey be applied.

For tne simplifisd cases, equations (7), (9), (11) =nd (12)
will remsin unchanged. Eguation (6) will become:
Case 1. M= Vax - Poy + Hy, where (62)
ar oM
v = g ‘Tig; {5@
° L
i — Sh'a 2E dr
My = Kq (=), M, = K, (&L 64
1 léc&}ij‘j" 2 4§ax)z ( )
Equation (8) becomes
%5 F ¥ o3 i
24y ia o 1 (85)
o - <
A EI EL EL

Relation (10) iz chengsd
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vaz_% Ml“m%+é Py y dxb . (66)

l..le
[

Of methocds 1, €8, sand 6b wh
Ccase, only methol €a may be spplied with end restrainl present
The methoc is the same except that & term B cos € is included in the

integrsl equetion and in the expressicn for EQQG). The tvo independ-

ent solutions arising must be integreted to get dy/dx and y to be fit
to the more generzl boundery equsations descriked sbove.,
Generally, =1l the comments relative to the variouvs methods

cf solution mace ebove inm Sectiorn II hold for the case with elasti-

czlly restrsined ends.
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